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Thesis abstract 

Phytoplankton are key to global carbon cycling, and critical to understanding a changing climate. 

Phytoplankton such as diatoms remove CO2 from the atmosphere via photosynthesis, of which one 

fifth is exported to the deep ocean in a process termed the “Biological Pump”. In opposition to the 

Biological Pump, the “Carbonate Counter-Pump” releases CO2, driven by calcifying phytoplankton 

such as coccolithophores. Thus carbon export depends upon phytoplankton community 

composition, quantified with sediment traps, which preserve a time series of sinking particles. 

Sediment trap deployments are patchy in the Subantarctic and Subtropics and little work has been 

done quantifying the phytoplankton. This thesis quantified assemblages and flux of diatoms and 

coccolithophores from Australian and New Zealand deployments, were not previously well 

characterized, and discusses their role in export. 

Subantarctic Australian traps captured among the highest coccolith fluxes of the southern 

hemisphere, while diatoms were the main silica-exporters. Species-level phytoplankton seasonal 

ecological succession was also reported for the first time in the Australian region. Scanning 

Electron Microscopy culminated in a taxonomic study describing the poorly-known diatom genus 

Shionodiscus, improving our understanding of key Australian taxa.  

In Subantarctic New Zealand, a 48-day “pulse” bloom of Pseudo-nitzschia diatoms comprised 98% 

of annual diatom flux. New Zealand Subtropical traps exhibited strong coastal and benthic 

phytoplankton input, providing evidence for significant particle advection as a result of local 

oceanography, the Wairarapa Eddy system. Finally, diatom and coccolith fluxes from 46 sediment 

trap deployments were mapped from the Subtropics to Antarctica, revealing a broad trend of 

increasing diatom flux from 30° S to the coast of Antarctica, which will potentially inform future 

trapping efforts. Records of phytoplankton seasonality and abundance are key to understanding 

the physical and chemical drivers of regional differences in the Biological Pump, and how carbon 

cycling may experience regional change in the future, under future climate change. The work 

undertaken for this thesis provides a valuable record against which future studies may compare, 

and makes a compelling argument for the continuation of sediment trap studies. 
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1. The oceanic carbon cycle 

The ocean contains approximately 50 times more carbon than the atmosphere, and 20 times as 

much as the terrestrial biosphere (Sigman & Haug 2003). As carbon dioxide (CO2) is released by 

heterotrophic respiration and anthropogenic processes (burning of fossil fuels), much of it 

dissolves into the ocean. Once dissolved, CO2 reacts with water to form carbonic acid, and 

eventually bicarbonate, releasing hydrogen ions, and causing the water to become more acidic 

(Equation 1). During the two centuries since the Industrial Revolution, oceanic pH has fallen by 0.1 

units, becoming ~30% more acidic (Ciais et al. 2013). Anthropogenic CO2 production has increased 

in this time, and is accelerating (IPCC synthesis report 2014). Increasing atmospheric CO2 uptake 

by the ocean, accompanying increases in acidification, and interplay with other climate-change 

related effects such as warming, is likely to affect the functioning of marine ecosystems in 

unexpected ways (Deppeler and Davidson 2017). 

Equation 1. CO2 + H2O  2HCO3- + H+ 

The Southern Ocean is the water mass encircling Antarctica from ~40° S, and is bounded on the 

north by the Subtropical Front, the meeting place of subtropical and subantarctic water masses 

(Arndt et al. 2013). Approximately 40% of anthropogenic CO2 absorption occurs in the Southern 

Ocean from 30° S (Frölicher et al. 2015). Palaeontological data from ice cores indicate that past 

shifts in atmospheric CO2 have been associated with changes in climate (Petit et al. 1999; Pearson 

and Palmer 2000). The Southern Ocean has apparently regulated these events in the past via CO2 

uptake or outgassing (Rosenthal et al. 2000; Gottschalk et al. 2016; Ronge et al. 2018), and 

continues to influence global climate and carbon cycling (Toggweiler et al. 2006). 

1.1 Oceanic carbon cycling mechanisms 

Carbon cycling within the ocean is driven by both biological and physical processes. The combined 

biological processes are referred to as the “Biological Pump” (Fig 1), and are related largely to the 

phytoplankton- a diverse, polyphyletic group of mainly single-celled photosynthesizing organisms, 

spanning four kingdoms and eight phyla. Phytoplankton take up CO2 via photosynthesis, turning it 

into carbon biomass (primary production). Due to their vast numbers, phytoplankton are 

responsible for half of global carbon fixation (Falkowski and Knoll 2007). Most phytoplankton 

biomass produced in the ocean’s photic zone is consumed by zooplankton or remineralised by 

microbes, becoming Dissolved Inorganic Carbon (DIC), which accumulates in the deep ocean 

reservoir (Gottschalk et al. 2016). In fact over 90% of global inorganic carbon is stored within the 

ocean (Sigman and Boyle 2000). A small fraction of biological carbon will escape these fates and 
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sink to the deep ocean layers in the form of Particulate Organic Carbon (POC) (Falkowski et al. 

2003; Honjo et al. 2008).  

 

Figure 1. Schematic of the biological pump, showing the flow of carbon in the ocean from atmosphere to 

primary production, followed by heterotroph consumption and bacterial recycling (respiratory processes), 

and/or export to the deep sea (sequestration).  

Individual phytoplankton cells sink slowly, increasing the likelihood that an individual cell will be 

remineralised in the water column (Alldredge & Gotschalk, 1989). Thus most POC export occurs in 

the form of aggregates, which fall more quickly, often over 100m d-1 or more (Smetacek, 1985; 

Alldredge & Gotschalk, 1989), and thus have a higher chance of reaching the depths undissolved 

and intact. Aggregates may be formed by the entanglement of cells during dense blooms, the 

adhesion of particles due to phytoplankton mucous production (de la Roche, 2003; Amin et al., 

2012), or commonly in the form of zooplankton faecal pellets (De La Rocha and Passow 2007).  

The physical processes of carbon cycling are referred to as the Solubility Pump, which describes 

the transport of CO2 in dissolved form from the atmosphere to the ocean interior, and relies upon 

the physical properties of ocean water that affect solubility and diffusion, such as temperature 

3
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(Volk and Hoffert, 1985). Carbon exported to the deep ocean is considered isolated (sequestered) 

from the active carbon cycle, and may remain so for decades or millennia (Honjo et al. 2008). 

Eventually, carbon stored by the ocean is cycled back to surface waters via upwelling (Anderson et 

al. 2009), where it is either recycled in the euphotic zone, or “outgassed” as CO2 into the 

atmosphere. The process of upwelling of CO2-rich waters to the surface, followed by the outgassing 

as a result of thermohaline circulation (Ducklow et al. 2001) to the atmosphere falls under the 

combined physical processes of the Solubility Pump (Volk and Hoffert, 1985). 

In opposition to the biological and solubility pumps, the carbonate counter pump increases 

dissolved CO2 in surface waters via the formation of calcium carbonate by organisms such as 

coccolithophores and foraminifera (Equation 2; Smith and Key 1975; Frankignoulle et al. 1994). 

The counter pump results in the formation of Particulate Inorganic Carbon (PIC) in the form of 

calcium carbonate. The balance of the biological and carbonate counter pumps determines the net 

direction of carbon movement (Riebesell et al. 2009), quantified using the “Rain Ratio”, or the ratio 

of POC:PIC.  

Equation 2. Ca2+ + 2HCO3- ↔ CaCO3 + CO2 + H2O 

The strength of the biological and carbonate pumps is largely determined by variability in 

phytoplankton community structure (see section 2), while the solubility pump is affected by 

variability in physical properties of the ocean, so that while some regions of the ocean are 

considered carbon sinks, others are considered carbon sources (outgassing) (Balch 2018). Typically, 

regions of upwelling that bring deep waters to the surface are carbon sources, such as in the 

Antarctic Divergence Zone of the Antarctic Circumpolar Current (ACC) (Hayakawa et al. 2012).  

The Southern Ocean has been alternately a carbon sink and source throughout geological time, 

due to a complex interplay of factors. Changes in wind, and the resulting increased upwelling has 

been suggested as a mechanism for increased atmospheric CO2 in the deglacial period (Anderson 

et al. 2009). However many factors are likely responsible for changing sinks and sources of CO2 in 

the Southern Ocean in the past, including sea ice retreat (Stephens and Keeling 2000), and 

variability in algal production and consequently in marine calcium carbonate production (Sigman 

and Boyle 2000). The Southern Ocean is presently considered a net carbon sink for 0.2-0.9 Pg 

carbon per year (Hanson 2001), but even regionally, the strength of upwelling is seasonal 

(Hayakawa et al. 2012). Recently, the strength of the Southern Ocean carbon sink has fluctuated, 

with evidence to suggest a trend of weakening between 1980 and 2000 (Lenton et al. 2013), 

although the sink is believed to have strengthened since (Landschützer et al. 2015). Because of the 
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volume of carbon stored by the Southern Ocean, its future as a carbon sink will be relevant as 

atmospheric CO2 continues to increase.  

2. Roles of diatoms and coccolithophores in carbon cycling 

Phytoplankton export approximately 16 gigatons of carbon to the deep ocean each year (Falkowski 

et al. 1998). In the Southern Ocean phytoplankton growth is highly seasonal (Harrison et al. 2018) 

and often patchy (Smith and Nelson 1986; Weber and El-Sayed 1987; Little et al. 2018), so the 

quantity of carbon export varies both spatially and seasonally (Schlitzer 2000). How different 

phytoplankton groups will respond to increasing atmospheric and oceanic CO2 levels is unclear, 

and remains the subject of ongoing study (Kaufman et al. 2017). The opposing influences of the 

biological and carbonate counter pumps is well illustrated by two abundant phytoplankton groups: 

diatoms and coccolithophores, respectively.  

Diatoms are unicellular photosynthetic eukaryotes (Phylum Bacillariophyta) found in all aquatic 

ecosystems, and even in moist terrestrial environments. They range in size from approximately 10 

- 200µm, and may exist in the water column individually, in chains and/or in colonies. They are 

taxonomically the most diverse of the phytoplankton (Harper et al. 2012), and during the last 100 

million years, the most abundant (Armbrust 2009). Diatoms account for as much global carbon 

fixation as all terrestrial rainforests combined (Nelson et al. 1995; Field et al. 1998). 

Diatoms are most recognisable for their siliceous shell (frustule), which afford them their 

distinctive and diverse shapes. The silica frustule is highly ornate, and is one of the main taxonomic 

features used to differentiate species (Kooistra et al. 2007). The tough, often spined frustules have 

roles in anti-herbivory, pathogen resistance, and buoyancy in the water column (Hamm and 

Smetacek 2007). The ruggedness of the frustules means that diatoms can be well preserved in the 

sediment, providing us a record of past climates which is used extensively in modelling and 

palaeoreconstruction in marine, estuarine and polar environments (Takahashi 1994; Crosta et al. 

2004; de Vernal et al. 2013; Chiba et al. 2016; Taffs et al. 2017). Because the silica frustule does 

not contain calcium carbonate, diatoms do not contribute to the carbonate counter pump, but to 

the biological pump.  Diatoms tend to increase in abundance south of the Polar Front (~60° S), the 

mixing point of subantarctic and Antarctic waters, facilitated by high silicate concentrations 

(Bostock et al. 2013).  

Coccolithophores are marine unicellular autotrophs (Phylum Haptophyta, class 

Prymnesiophyceae) that usually exist as single cells.  They are characterised by their overlapping 

calcium carbonate scales, or coccoliths. The morphology and crystallography of the coccoliths is 

the main taxonomic feature used to differentiate species of coccolithophores (Hagino and Young 
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2015). Like diatoms, coccolithophores are important carbon fixers, but with a more complex effect 

on carbon export. While the construction of coccoliths releases CO2 into the water (via the 

carbonate counter pump), the incorporation of the relatively heavy coccoliths into particles 

increases sinking speed (ballasting), thus expediting carbon export (Klaas and Archer 2002; Weber 

et al. 2016). In this way, coccolithophores contribute to both the biological and carbonate counter 

pumps, particularly the ubiquitous Emiliania huxleyi, the most abundant coccolithophore globally, 

and capable of exporting large quantities of carbon, such that a bloom of E. huxleyi may still result 

in net carbon export (Winter et al. 2014).  

In the past, the dominant paradigm held that large diatoms accounted for the bulk of carbon export 

to depth (Martin 1990; Moore et al. 2001). In recent years this paradigm has been questioned, and 

it is now suggested that high organic carbon export regimes are characterised by small cells and 

high abundances of calcium-carbonate producers such as coccolithophores (Lam et al. 2011; Maiti 

et al. 2013; Leblanc et al. 2018). Further, the quality and quantity of exported materials may 

depend on the specific diatom assemblage composition and diversity, life histories, nutrient status 

and the size classes of species present (Mouw et al. 2016; Tréguer et al. 2018). The carbonate 

production of coccolithophores is also species-specific: for example Coccolithus pelagicus produce 

30 to 80 times more calcium carbonate than Emiliania huxleyi (Daniels et al. 2016), although the 

latter is the most common and abundant coccolithophore in the global ocean. Since different taxa 

may contribute differently to carbon export, traditional taxonomic work remain valuable to studies 

of carbon fluxes. Now, and in future oceans, knowledge of diatom and coccolithophore assemblage 

composition will be of great interest and importance in determining the efficiency and 

changeability of the biological pump.  

3. Quantifying carbon export- sediment traps 

Critical to the study of export production was the development and use of time-series of sediment 

traps beginning in the 1980s (Honjo and Doherty 1988; Honjo et al. 2008). Using sediment traps, 

researchers can quantify the volume and spatial variability of POC and PIC export as well as other 

components of fluxes such as biogenic silica (BSi) – the silica produced by organisms such as 

diatoms and radiolarians. These data may give insights into the type of export system in which the 

trap was moored. For example, if the ratio of BSi:PIC is less than 1, the region would be considered 

part of the “carbonate ocean”, i.e., export mainly composed of calcium carbonate, while a value 

>1 would suggest a “silicate ocean” region (Honjo et al. 2008). Sediment traps also provide highly 

valuable data for developing understanding of the contribution of different phytoplankton taxa to 

global carbon export, as the assemblages of captures species may be analysed from sediment trap 

records, along with their seasonal abundances. 
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Sediment traps are receptacles that may be moored, free floating, or surface-tethered, and capture 

particulate matter settling from the surface ocean (Fig. 2). Though they have been in use (in a 

simple form) since the 1970s, modern sediment traps can be deployed for a year or longer, often 

comprising several capture receptacles that are programmed to open for pre-determined time 

increments of several days to a month, and capture a time-series of export.  

 

Figure 2. Diagram of a generic conical aperture moored sediment trap setup. Sediment trap deployments 

may often include current speed, tilt, pressure and temperature sensors on the mooring line.  

Sediment traps have been critical to our understanding of the spatial and temporal variability of 

surface production and export (Honjo and Doherty 1988; Honjo et al. 2008; Maiti et al. 2013). In 

1984, the Joint Global Ocean Flux Study (JGOFS) was initiated in order to identify the best way to 

employ sediment traps to their full advantage, and to make advancements in our understanding 
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of oceanic carbon fluxes. The work resulting from JGOFS researchers set the scene for modern 

sediment trap research, and created a scaffold of understanding of oceanic particle fluxes, upon 

which researchers continue to build (Fasham et al. 2001). It is increasingly understood that export 

is influenced not only by the volume of production at the surface, but by various transformative 

processes that occur in the water column, and even interactions between phytoplankton, 

zooplankton and their symbionts (Foster and Zehr 2006; Amin et al. 2012). Sediment traps studies 

indicate that particle export is greatest at high latitudes, such as the Southern Ocean, where 

remineralization of particles by microbes is slower due to lower temperatures, and particle sinking 

rates are higher due to ballasting by heavy phytoplankton (e.g. coccolithophores, particularly north 

of the Polar Front) (Weber et al. 2016). 

Considerable uncertainty exists about the relationship between surface production and export at 

high latitudes, such as in the Southern Ocean (Maiti et al. 2013), and how climate change may 

affect export. While rising oceanic CO2 intuitively should promote phytoplankton growth, 

increasing sea temperature is expected to shift phytoplankton towards smaller size classes, causing 

decreased particle export efficiency (Cram et al. 2017). However, this too is contentious, with other 

studies suggesting that small plankton size classes are the most important exporters anyway (Maiti 

et al. 2013, Richardson 2018). Further, the effects on increasing ocean acidification on 

phytoplankton are complex; calcifying groups such as coccolithophores may experience altered 

growth rates and reduced calcification (Feng et al. 2016), with flow-on effects on the oceanic 

carbon cycle (Law et al. 2017). However, the effect on growth and photosynthesis may be species-

specific (Langer et al 2006), resulting in changes to community assemblages. 

Despite the complexity of the various effects of climate change on phytoplankton, it is generally 

accepted that the size structure and community composition of phytoplankton is likely to have 

great bearing on the efficiency of the biological pump in the Southern Ocean and globally (Mouw 

et al. 2016; Weber et al. 2016; Tréguer et al. 2018). Understanding phytoplankton communities 

will be of vital significance to determining flux controls, and how they may change under future 

climate change (Laurenceau et al. 2015).  

3.1 Phytoplankton fluxes from sediment traps 

Globally, few studies report both diatom and coccolith fluxes from the same sediment traps 

deployments. These reports are mainly from the Northern Hemisphere, with deployments 

spanning the Norwegian-Greenland Sea (Samtleben et al. 1995), Mediterranean (Bárcena et al. 

2004; Hernández-Almeida et al. 2011; Rigual-Hernández et al. 2013; Malinverno et al. 2014), 

Atlantic (Abrantes et al. 2002; Fischer et al. 2016), temperate to subarctic North Pacific oceans 
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(Takahashi et al. 2002; De Bernardi et al. 2005) and off Northwest Africa (Köbrich and Baumann 

2009). Sediment trap studies that quantify coccolith flux are particularly rare and are largely 

restricted to the Northern Hemisphere e.g. (Broerse et al. 2000; Ziveri et al. 2000; Romero et al. 

2002; González et al. 2004; Ziveri et al. 2007). In the Southern Hemisphere, the only publications 

that reported both diatom and coccolith fluxes from the same deployment are in the Benguela 

Upwelling System (~30°S) (Romero et al. 2002). 

3.2 The focal sector- Australia and New Zealand 

Considering the importance of understanding the relative contribution of different phytoplankton 

groups to carbon export at regional and global levels, the relative dearth of attempts to 

characterise the flux of diatoms and coccoliths in the Southern Hemisphere is of concern. One of 

the best-sampled regions of the Southern Ocean is the Australian and New Zealand sector. In the 

Australian and New Zealand sectors, ~44 moorings have been deployed with sediment traps since 

the 1970s (Fig. 2; Table 1 Chapter 4). Many of these trap deployments have yielded diatom flux 

data for an annual series (indicated with white rings in Fig. 3, references in Chapter 4). However, 

prior to this thesis, none of these trapping efforts published coccolith fluxes, let alone both diatom 

and coccolith fluxes from the same deployment.  

Despite the lack of published fluxes, both diatom and coccolithophore living assemblages are well 

documented in the Australian and New Zealand sector (Malinverno et al. 2015; Davies et al. 2017), 

making these sectors ideal for studying surface to deep ocean export processes. Further, geological, 

palaeobiological and geochemical evidence indicates that the Australian/New Zealand sector has 

alternately been both a carbon source and sink to the atmosphere over the last 30,000 years due 

to physical changes in winds, circulation of water masses and upwelling of sequestered carbon 

(Anderson et al. 2009; Bostock et al. 2013). Given the potential significance of this sector to carbon 

sequestration, and the existing good spatial coverage of sediment traps, the Australian and New 

Zealand sector is considered an excellent candidate for spatial and temporal comparisons of 

sediment trap-derived flux data. 
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Figure 3.  Map of sediment trap moorings of the Australian and New Zealand sector from the subtropics to 

Antarctica. Sediment trap moorings are indicated with blue circles. Red circles represent the study locations 

in this thesis. Ocean fronts defined in Orsi et al. (1995); STF = Subtropical Front, STZ = Subtropical Zone, SAF 

= Subantarctic Front, SAZ = Subantarctic Zone, PF= Polar Front, PFZ = Polar Frontal Zone, SACCF= South 

Antarctic Circumpolar Current Front, AZ = Antarctic Zone, SB= Southern Boundary (of the ACC). Trap 

identifiers given in Chapter Five. Map created with Ocean Data View, available http://odv.awi.de (Schlitzer 

2016) 

In the Australian and New Zealand sectors, maximum winter sea ice does not extend north of ~60° 

S, and does not influence the trap sites in this thesis (World Ocean Atlas 2009 data, Locarnini et al., 

2010). The Australian sector site (47° S) and the New Zealand sector site SCR (see Fig. 3) occupy a 

similar latitude, but due to local oceanography, different hydrological conditions affect each trap 

site. In this sector the key phytoplankton nutrient iron is relatively high north of the STF, while 

nitrate is higher to the south (Fig. 4). The 47° S site, sitting south of the STF, is lower in both nitrate 

and iron than its New Zealand counterpart, and as such differences in phytoplankton assemblages 

are expected. Further, the sites are influenced by different conditions in the surface layer of the 

ocean-the mixed layer, in which temperature, salinity and nutrients are considered homogenous. 

For a particle to be exported, it must leave the mixed layer. The degree of stratification of the 

water column can significantly affect phytoplankton productivity, as it affects light levels to which 

the phytoplankton are exposed, and nutrient supply via upwelling (Gran and Braarud 1935). 
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Figure 4. Map of a) iron, and b) nitrate concentrations in the Australian and New Zealand regions. Data from 

Goddard Earth Sciences Data and Information Services Centre (GES DISC). Plotted using Ocean Data View 4, 

available at http://odv.awi.de (Schlitzer 2006). 

In terms of phytoplankton communities, some taxa will be adapted to living in deeper mixed layers 

than others (Balch et al. 2018). In the SAZ south of Australia, summer mixed layer depths are 

between 75-100 m, while in winter depths reach 400+ m (Rintoul and Trull 2001). These fairly deep 

mixed layers present the challenge of light limitation to phytoplankton in this region, even in 

summer when the mixed layer is shallower (Rintoul and Trull 2001), and possibly favouring low-

light adapted taxa. In the New Zealand sector, mixed layer depths are generally shallower than in 

the Australian sector (Dong et al. 2008). In the region of the Chatham Rise, Dong et al. (2008) report 

mixed layers north of the Chatham Rise between 220 m (August) and ~30 m (December/January), 

consistent with maximum depth determined by Sutton (2001) of roughly 200 m in winter. At SCR, 

maximum winter mixed layer depth is about 117 m, while the minimum is 20 m (Dong et al. 2008, 

Chapter 3 Supplementary Figure 1). 

3.2.1 Oceanography of the Australian sector  

The uppermost margin of the Southern Ocean is the Subtropical Front (STF), which is the boundary 

between the warmer, saltier Subtropical waters and the cooler, fresher Antarctic waters. In the 

Australian Sector, the STF presently occurs at a steady 44.5° S - 45.6° S (Orsi et al. 1995). The 
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Australian sediment trap mooring is located just within the Subantarctic Zone (SAZ), just south of 

Tasmania (Fig. 5), and considered representative of the SAZ between 90° E and 145° E (Trull et al. 

2001a). The trap site is largely influenced by the Leeuwin current, which travels eastward along 

the Great Australian Bight, deflecting southwards towards the Tasmanian shelf, and becoming the 

Zeehan current (Baines et al. 1983), which may carry shelf material to the trap site at 47°S. 

Westward water flow originating from the east of Australia (the East Australian Current, EAC) has 

also been observed passing south of Tasmania (Herraiz-Borreguero and Rintoul 2011), with the 

potential to carry warm, saline EAC waters to near the trap site.  

 

Figure 5. Australian sector local oceanography showing current systems. Summer extension of the East 

Australian Current (EAC) shown, as per Cresswell (2000). The SAZ Project site at 47 °S is indicated with a red 

circle. Plotted using Ocean Data View 4, available at http://odv.awi.de (Schlitzer 2006). 

3.2.2 Oceanography of the New Zealand sector  

The eastern margin of New Zealand is bathed in both Subtropical and Subantarctic surface waters, 

separated by the STF at roughly 43° S (Heath 1985). The STF follows the southern flank of the 

Chatham Rise, an ~1500 km long undersea rise extending due east from the north-eastern coast 

of the South Island at 250-350 m depth (Sutton 2001; Chiswell et al. 2015) (Fig. 6).  
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Figure 6. Schematic of New Zealand region showing generalized oceanographic features influencing the 

mooring sites, and front positions (after Sutton 2001, Fig. 1). Abbreviations: East Cape Current, ECC; 

Wairarapa Eddy, WE; Southland Current, SC; North Subtropical Front, NSTF; South Subtropical Front, SSTF; 

Subtropical Frontal Zone, STFZ (gray region); North Chatham Rise, NCR; South Chatham Rise, SCR. Plotted 

using Ocean Data View 4, available at http://odv.awi.de (Schlitzer 2006). 

As elsewhere in the Southern Ocean, a northern and southern subtropical front can be 

distinguished in the New Zealand region (NSTF and SSTF; (Belkin et al. 1988; Belkin and Gordon 

1996), Fig. 6). The New Zealand trap sites sit north and south of the Chatham Rise (NCR and SCR, 

respectively). The mixing of iron-rich, nitrate-poor subtropical waters with nitrate-rich subantarctic 

waters over the Chatham Rise creates a unique, high-productivity region (Bradford-Grieve et al. 

1997; Boyd et al. 1999). Thus, while NCR and SCR are believed to be sampling primarily from 

subtropical and subantarctic waters, respectively, both sites exhibit elevated productivity typical 

of the STF. 
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3.3 Knowledge gaps in phytoplankton export 

Despite significant efforts and funding associated with Australian/New Zealand sector sediment 

trap deployments over the last ~20 years, prior to this thesis, there were no deployments for which 

diatom and coccolith fluxes had been characterised. The rarity of sediment trap studies calculating 

phytoplankton flux assemblages in the Southern Ocean is attributable to the cost of trap 

deployment, geographic isolation, and lack of taxonomic expertise. Diatoms do not conform well 

to traditional definitions of species because of high numbers of intermediate forms, cryptic taxa, 

and seasonal morphological variants (Guiry 2012). Coccolithophores also show pseudo-cryptic 

speciation indicating that there are perhaps more coccolithophore species than are presently 

recognised (Hagino and Young 2015). Presently, the taxonomy of both diatoms and 

coccolithophores is in a “transitional” stage whereby most taxonomists use morphological 

characteristics in identification, but increasingly genetic analysis are challenging phylogenies. 

However, specimens from sediment trap samples are typically too old and degraded for genetic 

analyses, so traditional morphologically-based taxonomy remains of great value.  

Knowledge of the spatial and seasonal contribution of different phytoplankton taxa to export is 

crucial, particularly in light of climate change. Rising temperatures, ocean acidification, and 

changes to nutrient availability are predicted to drastically affect phytoplankton assemblages 

(Hopkinson et al. 2011; Feng et al. 2017) and hence, potentially, export flux and carbon 

sequestration (Lam et al. 2011).  

4. Thesis objectives and structure 

In this thesis, archival sediment trap material from three mooring locations in the Australian and 

New Zealand Sectors was analysed for diatom and coccolithophore species composition and flux 

for an annual cycle. The seasonality of diatom and coccolithophore assemblages was documented 

for the three trap sites in order to identify patterns of ecological succession. The trap deployments 

analysed were located south of Tasmania (46° 46’ S, 142° 4’ E; 2003-2004), and at two sites east of 

New Zealand, north  and south of the Chatham Rise (44° 37’ S 178°37’ E, and 42° 42’ S 178°38’ E, 

respectively; 1996-1997) (indicated with stars in Fig. 3). The three deployment sites for which 

sediment trap material was analysed in this thesis are, at the time of writing, the only sites in the 

Australian/New Zealand sector for which both diatom and coccolith fluxes have been quantified to 

species level for an entire annual cycle.  
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The aims of this thesis were: 

1. To characterise the diversity, abundance and seasonality of two major phytoplankton groups, 

diatoms and coccolithophores, from sediment trap records in two hydrologically distinct 

regions of the Southern Ocean (Chapters Two and Three), 

2. To place these findings into the wider context of Southern Hemisphere sediment trap 

research, with commentary on the state of the field and the limitations of the medium 

(Chapter Four). 

3. To provide a description and guide to the identity of the poorly-known diatom genus 

Shionodiscus from the Australian sector, with a clarification of its taxonomic status (Chapter 

Five), 

Several chapters of this thesis have been published, and are included in their published format 

with the permission of the copyright holders. Detailed methodology for each chapter is provided 

in Supplementary Information 1. The thesis objectives are addressed in each chapter as follows: 

Chapter Two (Wilks et al. 2017) 

Wilks JV, Rigual-Hernández AS, Trull TW, Bray SG, Flores J-A, Armand LK (2017) Biogeochemical flux 

and phytoplankton succession: A year-long sediment trap record in the Australian sector of the 

Subantarctic Zone. Deep Sea Research Part I: Oceanographic Research Papers 121:143-159. 

This chapter is included in its published format, available at 

https://doi.org/10.1016/j.dsr.2017.01.001. 

This chapter used sediment trap material from a year-long deployment south of Tasmania, at 500 

and 2000 m depths. Diatom and coccolith total and species fluxes were calculated for the entire 

annual record, in addition to bulk compound fluxes calculated by researchers at the University of 

Tasmania. The ecology and seasonal succession of diatoms and coccolithophores was determined, 

as well as their individual significance to carbon and other fluxes in this region. This paper 

represented the first annual record of seasonal coccolith flux and assemblages in the Tasmanian 

region, as well as the first diatom record at 500 m depth, and just below the mixed layer.  

Chapter Three (Wilks et al.; in review) 

Titled: “Diatom and coccolithophore flux assemblages from the Subtropical Frontal region, east of 

New Zealand.”  

This chapter employed the same methodology as Chapter Two, whereby diatom and coccolith 

fluxes were characterised at two sites and two depths (300 m and 1000 m). These two sites 
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represented unique hydrological zones north and south of the Subtropical Front, where 

Subtropical waters meet the Subantarctic. This chapter’s data was generated from archival trap 

material as an addition to the biogeochemical fluxes already published by Nodder and Northcote 

(2001), in order to complete the picture of particle flux in these records. This represents the first 

record of diatom and coccolith fluxes and assemblages for an annual record in this region, and 

allows for contrast of the export regimes and community structures at each site. Further, the 

analysis of assemblages allowed us to identify some of the complex particle sources at each trap 

site, and captured a potentially significant carbon-exporting, sporadic flux event of the diatom 

Pseudo-nitzschia. 

Chapter Four (Wilks and Armand 2017) 

Titled: “Reviews and syntheses: diatom and coccolith fluxes from temperate to polar Southern 

Hemisphere sediment traps.” 

From Chapters Two and Three, it became apparent that broad-scale comparisons of sediment trap 

phytoplankton fluxes would be of great value in determining regions potentially significant to the 

global carbon cycle. A review of this type was lacking in the Southern Hemisphere. Chapter Five of 

this thesis is a meta-analysis/systematic review of 76 publications since 1977, spanning 126 

mooring sites from 30° S to the Antarctic coast. Diatom flux data were available for 44 trap 

deployments, while coccolith fluxes existed for six. Given the range of methodologies employed 

and data presentation methods, flux calculations were standardised and mapped for the first time 

in this region. In doing so, some broad-scale patterns of diatom flux became clear. In addition to 

mapping, several environmental parameters, known to influence diatom flux magnitudes, were 

chosen to create a simple model identifying the key predictors of diatom flux. The model revealed 

that nitrate concentration, above all others, is key in determining the magnitudes of diatom fluxes 

in this region. 

Chapter Five 

Wilks JV, Armand LK (2017) Diversity and taxonomic identification of Shionodiscus spp. in the 

Australian sector of the Subantarctic Zone. Diatom Research 32:295-307 

This is the author’s accepted manuscript of an article published as the version of record in Diatom 

Research © International Society for Diatom Research 

https://doi.org/10.1080/0269249X.2017.1365015.  

During diatom taxonomic analyses of Chapter Two, some taxa were encountered that were 

believed to be different species, but which could not be distinguished using light microscopy. 

Chapter Four used Scanning Electron Microscopy (SEM) to differentiate these taxa, revealing that 
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Shionodiscus spp. may be more significant in Australian waters than would be determined using 

light microscopy alone. Using cell measurements, new taxonomic descriptions and a key were 

constructed for Australian sector Shionodiscus spp. diatoms. Traditional diatom taxonomy will 

always have a place in sediment trap research, or other fields in which DNA may not be preserved 

in samples, making molecular taxonomy infeasible. Further, taxonomic studies are valuable to 

palaeobiological studies, where past climatic conditions may be reconstructed from preserved 

species assemblages.
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Methodologies are discussed in respective chapters, so to avoid repetition, a brief account is 

below. 

S1. Deployments and trap processing 

S1.1 The SAZ Project sediment trap deployments- Chapter Two  

The Tasmanian sediment trap samples used in this project were obtained as part of the work 

undertaken during the multidisciplinary Subantarctic Zone (SAZ) Project, which began in 1997 (Bray 

et al. 2000). McLaneTM PARFLUX sediment traps were deployed in the Subantarctic Zone (46°46’S, 

140° E) from Sept. 2003 to Oct. 2004, at 500 m and 2000 m depths. Details on deployment 

methodology is given in Bray et al. (2000); Trull et al. (2001a); Trull et al. (2001b). Taxonomic data 

for Chapter Four was also derived from these sediment traps.  

After retrieval, samples were sieved through a 1 mm sieve cloth, then split with McLane rotary 

splitter into ten 50 ml centrifuge tubes. Chapter Two used a 1/10 fraction, and the remaining nine 

fractions were analysed for total mass, inorganic carbon, biogenic silica, other elements, and 

presence of other organisms captured such as foraminifera and large planktonic swimmers such 

as copepods and pteropods. 10 ml from the fraction allocated to this study was used for coccolith 

fluxes and assemblage analysis at the Universidad de Salamanca, Spain. 

S1.2 The NIWA sediment trap deployments- Chapter Three 

The New Zealand sediment trap samples were obtained with a McLaneTM PARFLUX 7G-21 time-

incremental sediment trap, deployed for one continuous year at two locations on either side of 

the Chatham Rise ridge between 1996 and 1997. The North Chatham Rise (NCR) trap was deployed 

on the northern flank of the Chatham Rise (42°42’S 178°38’E) from early September 1996 to May 

1997, and the South Chatham Rise (SCR) trap was deployed on the southern flank (44°37’S 

178°37’E) from May 1996 to May 1997. Traps were deployed at 300 and 1000 m depths at both 

sites, in water 1500 m deep.  

After retrieval, subsamples were taken from each 250 mL sample bottle for nutrient analyses. The 

remaining material was sieved through a 1 mm mesh to remove swimmers, and split using a 

McLaneTM wet-splitter. Several fractions were used in determining biogeochemical fluxes, which 

are presented and discussed in Nodder and Northcote (2001). This study used one 1/16th split from 

each trap depth at each site. Of the 1/16th split, 10 mL was set aside for coccolith analysis (1/80th 

of original sample). The remaining portion was cleaned for diatom counting. 
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S2. Sample preparation and analysis 

S2.1 Sample cleaning for diatom analysis 

Sample cleaning followed the same methodology for Chapters Two and Three for the diatom flux 

analyses. The subsamples removed for coccolith fluxes were not processed in this way. Diatom 

samples were cleaned of organic material and carbonates, leaving just siliceous material (diatoms, 

silcoflagellates and radiolarians). Samples were transferred to glass beakers, and 50 ml of saturated 

potassium permanganate was added, then left overnight to react. The next day, in a water bath at 

95°C, 50 ml 1M HCL was added to samples and left for 30 minutes or until bubbling had stopped. 

Following this, 50 ml of hydrogen peroxide was added and left again until the reaction had 

completed, and the samples became clear. Distilled water was added to bring beakers to 

approximately the same volume, and then left overnight. The following day the supernatant was 

again removed and the pellet transferred to centrifuge tubes. Tubes were topped up to 45 ml with 

distilled water. In some of the New Zealand samples, the samples were very high in carbonates 

and did not clear after one round of cleaning. In these cases, after the first round of acid and 

peroxide had been added, the samples were allowed to settle and then the supernatant was 

removed, and the acid and peroxide steps repeated. 

To bring the pH to neutral for long-term storage, samples were spun for 8 minutes at 2000 rpm in 

the centrifuge, then the supernatant removed, and the sample topped up to 45 ml again with 

distilled water and mixed. This process was repeated 7 or 8 times until the samples tested neutral 

with pH test strips. The final sample pellet was transferred to a small Nalgene™ 60ml plastic archive 

bottle and topped up to 50 ml with distilled water. A broken 22 x 22 mm glass coverslip was added 

to the archive bottles to increase silica saturation inside the bottles. Although the solubility of 

silicates in distilled water is very low, the presence of excess silicate in the form of the glass cover 

slip minimises the possibility of diatom dissolution. 

S2.2 Slide preparation 

Preparation of slides for microscopic analysis was the same for Chapters Two and Three. Three 

slides per sample were prepared using a modified form of the random settling method (Flores & 

Sierro, 1997), while coccolithophore slides were made true to the latter author’s directions. For 

diatoms, two glass coverslips were placed in the bottom of a 30 ml glass petri dish, and the dish 

was mostly filled with distilled water. During early stages of slide processing, a solution of gelatin 

in distilled water (0.09 g L-1) was used as a medium instead of distilled water, to reduce surface 

tension and promote the even distribution of diatom frustules on the coverslip. However, gelatin 

20



Supplementary Information 1 

solution and distilled water methods were compared, giving identical results, so distilled water was 

chosen to prepare all slides. 

A known fraction of the diatom suspension was pipetted into the petri dish containing the distilled 

water, with a zigzagging motion so as to distribute the sample throughout the dish. Then with the 

pipette, the solution was sucked in and out repeatedly in a zigzagging motion across the dish from 

left to right, then from top to bottom. This created turbulence inside the dish, ensuring even 

distribution of frustules onto the coverslip. The petri dishes were left covered overnight until the 

sediment solution had settled, and then a single strip of filter paper (~1cm wide) was placed into 

each petri dish to allow the water to quickly evaporate. Once dry, each coverslip was evenly coated 

with diatom frustules. The coverslips were glued to glass slides using UV-activated, optical grade 

NalgeneTM glue.  

For Scanning Electron Microscopy (SEM) analysis in Chapter Four, smaller, round coverslips 

designed for use with SEM “stubs” were coated with the diatom suspension the same way as above, 

and then gold-coated. 

S2.3 Diatom taxonomy and counting protocols 

The counting procedure used followed that published by Schrader and Gersonde (1978). Slides 

were viewed under phase contrast on a DIC phase Olympus BH-2 compound microscope at 1000x 

magnification. Counting was undertaken along three transects on each slide. All diatoms within 

the field of view along each transect were visually identified to species or genus level and counted. 

This method was employed for all three slides for each sample, until 300 individual diatoms had 

been counted. 300 cells has been determined as the minimum threshold at which error stabilizes 

between replicate counts of the same sample, and a good balance is achieved between time taken 

and breadth of coverage of rare species (Boden 1991).  

Diatom identification followed modern taxonomy as per Tomas (1997). During diatom counts, 

other siliceous organisms (silicoflagellates and radiolarians) were also counted, but not identified. 

Diatoms were identified to species level, except when not possible due to degradation or when 

frustules were covered in debris. When more than half of a frustule was present, it was counted 

as one. For long pennate taxa such as Thalassiothrix, which are rarely found intact, one end of the 

frustule was counted as ½. Species that could not be identified to species level were grouped by 

genus (e.g. Pseudo-nitzschia, and some Shionodiscus and Navicula spp.). Chaetoceros spores and 

vegetative cells were grouped thus. If the genus could not be determined, cells were counted as 

unknown centric or unknown pennate. Frustules of less than 15 μm, and also unidentifiable were 

called either centric or pennate <15 μm.  
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For the Tasmanian traps, coccoliths were counted at both 500 and 2000 m depths, while for the 

New Zealand traps, only the 300 m traps were counted due to time constraints. 300 coccoliths per 

sample were counted and identified under 1000x magnification using a LEICA DMRXE polarized 

light microscope, following the procedure of diatoms. Identification of coccolithophore taxa 

followed Young et al. (2003; 2014). Identification was to species level where possible, but 

additional groupings were used to capture unknown Gephyrocapsa spp., and Gephyrocapsa spp. 

<3 µm. Oolithotus spp., Pontosphaera spp., and Syracosphaera spp. were not identified past genus 

level. 

S2.4 Flux calculations 

For all trap samples, flux of diatoms and coccoliths was calculated for every cup interval, and 

transformed into both fluxes m-2 d-1 and fluxes m-2 year-1 using the equation of Sancetta and Calvert 

(1988):  

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑜𝑜𝑉𝑉𝑖𝑖𝑖𝑖ℎ 𝑓𝑓𝑉𝑉𝑓𝑓𝑓𝑓 𝑚𝑚−2 𝑑𝑑−1  = �
𝑁𝑁. �𝐴𝐴𝑉𝑉� . (𝑉𝑉𝑉𝑉)

𝐷𝐷.𝑇𝑇
� 

where N is the number of specimens counted, A is the area of the petri dish upon which the slide 

was made, a is the area of the slide counted, V is the volume of the diluted initial sample before 

splitting, v is the volume of the split of each cup, D is the number of days of trap deployment, and 

T is the area of the sediment trap opening in m2. For the flux calculations for both diatoms and 

coccoliths, a modifier was applied after flux was calculated to compensate for the fact that a 10 

mL subsample was removed for the calcareous phytoplankton (i.e. that the diatom fluxes were 

calculated based on ~80% of a whole sample, while the coccolith fluxes were calculated using 20%). 

S2.5 Environmental data collection and statistical analyses 

Chapters Two and Three of this thesis dealt with seasonal phytoplankton fluxes, and similar 

statistical methods were employed, which are described in the relevant chapters. For each set of 

deployments, diatom or coccolith fluxes were log10 transformed. Environmental parameters were 

gathered in order to relate flux seasonality to physical processes at each site. For Chapter Two, 

Photosynthetically Active Radiation (PAR), chlorophyll-a concentration (Chl-a) and Sea Surface 

Temperature (SST) data for the trap deployment period (Aug. 2003 - Oct. 2004) were obtained 

from the Goddard Earth Sciences Data and Information Services Centre (GES DISC) for the area 48° 

30' 0'' S - 46° 30' 0'' S x 130° 0' 0'' E - 150° 0' 0'' E. In Chapter Three (New Zealand traps), ten-year 

monthly average NASA Ocean Biogeochemical Model (NOBM) Photosynthetically Active Radiation 
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(PAR; 2000 to 2010, 9 km resolution) and Chlorophyll-a concentration (Chl-a; 2002 to 2012, 4 km 

resolution) was obtained from the Goddard Earth Sciences Data and Information Services Centre 

(GES DISC) for 0.5 decimal degrees around each study site at NCR and SCR. Advanced Very High 

Resolution Radiometer (AVHRR) Sea Surface Temperature (SST; 9 km resolution) data were 

obtained from a publication on the same trap deployments (King and Howard 2001). 

Chapters Two and Three employed Canonical Correspondence Analysis (CCA) to visually represent 

the relationships between species fluxes and environmental parameters, and were undertaken 

using PAST software (Hammer et al. 2001). CCA identifies the most significant drivers of variation 

in a dataset, then plots data points (here species and environmental data) in a 2-dimensional 

matrix, with the most significant driver on one axis, and the second most significant on another. 

Environmental data are displayed as “vectors” (lines), with species data points close to vectors 

indicating a stronger influence of that environmental variable on that species. CCA represents a 

way to extract patterns from seemingly complex datasets when more “robust” statistical methods 

are not possible, due to the limitations of replicates in sediment trap studies. 

In Chapter Four, environmental data were also gathered to create a linear model attempting to 

identify which variables best predicted diatom flux from sediment trap records. Eight 

environmental variables were selected: phosphate, nitrate, silicate, iron, Sea Surface 

Temperature, % annual sea ice cover, Chlorophyll-a concentration, and Particulate Inorganic 

Carbon as possible drivers of diatom flux. Phosphate, nitrate, silicate and SST were accessed from 

the World Ocean Atlas 2009, from the National Centres for Environmental Information (accessible 

at https://www.nodc.noaa.gov/OC5/WOA09/pr_woa09.html). Time-averaged (2009-2014) mean 

Chl-a (4km resolution, MODIS-Aqua satellite), time-averaged (2009-2014) mean iron (0.67 x 1.25° 

resolution, NOBM model), time-averaged (2009-2014) PIC concentration (4km resolution, MODIS-

Aqua satellite), and time-averaged (2009-2014) mean % annual sea ice cover (NOBM model) was 

obtained from the via the Goddard Earth Sciences Data and Information Services Centre (GES DISC)  

for the region 25° S to the pole (accessible at https://giovanni.gsfc.nasa.gov). Statistical analyses 

in Chapter Four were undertaken in R Studio. A linear model was fitted for log10 maximum diatom 

flux against the chosen variables, using the lm function in R. Then, the predictive value of each 

variable was tested using the step function (backwards and forwards). Analyses were conducted 

in R v. 3.5.0 (R Core Team 2018). Silicate was log10 transformed to improve linearity of data points. 

23



      Supplementary Information 1
           

 
 

References 

Abrantes F, Meggers H, Nave S, Bollman J, Palma S, Sprengel C, Henderiks J, Spies A, Salgueiro E, 

Moita T, Neuer S (2002) Fluxes of micro-organisms along a productivity gradient in the 

Canary Islands region (29°N): implications for paleoreconstructions. Deep Sea Research 

Part II: Topical Studies in Oceanography 49:3599-3629. 

doi:https://doi.org/10.1016/S0967-0645(02)00100-5 

Amin SA, Parker MS, Armbrust EV (2012) Interactions between diatoms and bacteria. 

Microbiology and Molecular Biology Reviews 76:667-684. 

Anderson R, Ali S, Bradtmiller L, Nielsen S, Fleisher M, Anderson B, Burckle L (2009) Wind-driven 

upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science 

323:1443-1448. 

Armbrust EV (2009) The life of diatoms in the world's oceans. Nature 459:185-192. 

Arndt JE, Schenke HW, Jakobsson M, Nitsche FO, Buys G, Goleby B, Rebesco M, Bohoyo F, Hong J, 

Black J (2013) The International Bathymetric Chart of the Southern Ocean (IBCSO) 

Version 1.0—A new bathymetric compilation covering circum‐Antarctic waters. 

Geophysical Research Letters 40:3111-3117 

Baines P, Edwards R, Fandry C (1983) Observations of a new baroclinic current along the western 

continental slope of Bass Strait. Marine and Freshwater Research 34:155-157. 

Balch WM (2018) The Ecology, Biogeochemistry, and Optical Properties of Coccolithophores. 

Annual review of marine science 10:71-98. 

Bárcena M, Flores J, Sierro F, Pérez-Folgado M, Fabres J, Calafat A, Canals M (2004) Planktonic 

response to main oceanographic changes in the Alboran Sea (Western Mediterranean) as 

documented in sediment traps and surface sediments. Marine Micropaleontology 

53:423-445. 

Belkin IM, Gordon AL (1996) Southern Ocean fronts from the Greenwich meridian to Tasmania. 

Journal of Geophysical Research: Oceans 101:3675-3696. 

Belkin, IM (1988) Main hydrological features of the central South Pacific. In:  ME Vinogradov, MV 

Flint (eds) Pacific Subantarctic Ecosystems. Nauka, Moscow, pp 21–28. 

Boden P (1991) Reproducibility in the random settling method for quantitative diatom analysis. 

Micropaleontology:313-319 

24



Supplementary Information 1 

 
 

Bostock HC, Barrows TT, Carter L, Chase Z, Cortese G, Dunbar G, Ellwood M, Hayward B, Howard 

W, Neil H (2013) A review of the Australian–New Zealand sector of the Southern Ocean 

over the last 30 ka (Aus-INTIMATE project). Quaternary Science Reviews 74:35-57. 

Bostock HC, Hayward BW, Neil HL, Sabaa AT, Scott GH (2015) Changes in the position of the 

Subtropical Front south of New Zealand since the last glacial period. Paleoceanography 

30:824-844. doi:10.1002/2014PA002652 

Boyd P, LaRoche J, Gall M, Frew R, McKay RML (1999) Role of iron, light, and silicate in controlling 

algal biomass in subantarctic waters SE of New Zealand. Journal of Geophysical Research: 

Oceans 104:13395-13408. doi:10.1029/1999JC900009 

Bradford-Grieve J, Chang F, Gall M, Pickmere S, Richards F (1997) Size‐fractionated 

phytoplankton standing stocks and primary production during austral winter and spring 

1993 in the Subtropical Convergence region near New Zealand. New Zealand journal of 

marine and freshwater research 31:201-224. 

Bray S, Trull T, Manganini S, Antarctic C (2000) SAZ project moored sediment traps: results of the 

1997-1998 deployments. Antarctic CRC 

Broerse AT, Ziveri P, van Hinte JE, Honjo S (2000) Coccolithophore export production, species 

composition, and coccolith-CaCO 3 fluxes in the NE Atlantic (34° N21° W and 48° N21° 

W). Deep Sea Research Part II: Topical Studies in Oceanography 47:1877-1905. 

Burckle LH (1984) Diatom distribution and paleoceanographic reconstruction in the Southern 

Ocean — Present and last glacial maximum. Marine Micropaleontology 9:241-261. 

doi:10.1016/0377-8398(84)90015-X 

Chiba T, Sugihara S, Matsushima Y, Arai Y, Endo K (2016) Reconstruction of Holocene relative sea-

level change and residual uplift in the Lake Inba area, Japan. Palaeogeography, 

Palaeoclimatology, Palaeoecology 441:982-996. 

doi:http://dx.doi.org/10.1016/j.palaeo.2015.10.042 

Chiswell SM, Bostock HC, Sutton PJH, Williams MJM (2015) Physical oceanography of the deep 

seas around New Zealand: a review. New Zealand Journal of Marine and Freshwater 

Research 49:286-317. doi:10.1080/00288330.2014.992918 

Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann 

M, et al. (2013) Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner 

GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, editors. Climate 

change 2013: the physical science basis. Contribution of working group I to the fifth 

25



Supplementary Information 1 

 
 

assessment report of the Intergovernmental Panel on Climate Change. Cambridge (UK): 

Cambridge University Press. p. 465–570. 

Cram JA, Weber T, Leung SW, McDonnell AM, Liang JH, Deutsch C (2017) The role of particle size, 

ballast, temperature, and oxygen in the sinking flux to the deep sea. Global 

Biogeochemical Cycles 32:858-876. 

Crosta X, Sturm A, Armand L, Pichon J-J (2004) Late Quaternary sea ice history in the Indian 

sector of the Southern Ocean as recorded by diatom assemblages. Marine 

Micropaleontology 50:209-223. doi:http://dx.doi.org/10.1016/S0377-8398(03)00072-0 

Daniels CJ, Poulton AJ, Young JR, Esposito M, Humphreys MP, Ribas-Ribas M, Tynan E, Tyrrell T 

(2016) Species-specific calcite production reveals Coccolithus pelagicus as the key 

calcifier in the Arctic Ocean. Marine Ecology Progress Series 555:29-47. 

Davies CH, Coughlan A, Hallegraeff G, Ajani P, Armbrecht L, Atkins N, Bonham P, Brett S, 

Brinkman R, Burford M (2017) A database of marine phytoplankton abundance, biomass 

and species composition in Australian waters. Scientific data 4:170042. 

De Bernardi B, Ziveri P, Erba E, Thunell RC (2005) Coccolithophore export production during the 

1997–1998 El Niño event in Santa Barbara Basin (California). Marine Micropaleontology 

55:107-125. doi:https://doi.org/10.1016/j.marmicro.2005.02.003 

De La Rocha CL, Passow U (2007) Factors influencing the sinking of POC and the efficiency of the 

biological carbon pump. Deep Sea Research Part II: Topical Studies in Oceanography 

54:639-658. doi:https://doi.org/10.1016/j.dsr2.2007.01.004 

de Vernal A, Gersonde R, Goosse H, Seidenkrantz M-S, Wolff EW (2013) Sea ice in the 

paleoclimate system: the challenge of reconstructing sea ice from proxies – an 

introduction. Quaternary Science Reviews 79:1-8. 

doi:http://dx.doi.org/10.1016/j.quascirev.2013.08.009 

Deppeler SL, Davidson AT (2017) Southern Ocean phytoplankton in a changing climate. Frontiers 

in Marine Science 4:40. 

Dong S, Sprintall J, Gille ST, Talley L (2008) Southern Ocean mixed-layer depth from Argo float 

profiles. Journal of Geophysical Research: Oceans 113. doi:doi:10.1029/2006JC004051  

Ducklow HW, Steinberg DK, Buesseler KO (2001) Upper ocean carbon export and the biological 

pump. Oceanography Washington DC Oceanography Society- 14:50-58. 

26



Supplementary Information 1 

 
 

Dutkiewicz A, O'Callaghan S, Müller R (2016) Controls on the distribution of deep‐sea 

sediments. Geochemistry, Geophysics, Geosystems 17:3075-3098. 

Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical Controls and Feedbacks on Ocean 

Primary Production. Science 281:200-206. doi:10.1126/science.281.5374.200 

Falkowski PG, Knoll AH (2007) CHAPTER 1 - An Introduction to Primary Producers in the Sea: Who 

They Are, What They Do, and When They Evolved. In: Evolution of Primary Producers in 

the Sea. Academic Press, Burlington, pp 1-6. 

Falkowski PG, Laws EA, Barber RT, Murray JW (2003) Phytoplankton and their role in primary, 

new, and export production. In: Ocean biogeochemistry. Springer, Berlin, pp 99-121 

Fasham MJ, Baliño BM, Bowles MC, Anderson R, Archer D, Bathmann U, Boyd P, Buesseler K, 

Burkill P, Bychkov A (2001) A new vision of ocean biogeochemistry after a decade of the 

Joint Global Ocean Flux Study (JGOFS). AMBIO: A Journal of the Human Environment 

10:4-31. 

Feng Y, Roleda MY, Armstrong E, Boyd PW, Hurd CL (2017) Environmental controls on the 

growth, photosynthetic and calcification rates of a Southern Hemisphere strain of the 

coccolithophore Emiliania huxleyi. Limnology and Oceanography 62:519-540. 

Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary Production of the Biosphere: 

Integrating Terrestrial and Oceanic Components. Science 281:237-240. 

doi:10.1126/science.281.5374.237 

Fischer G, Karstensen J, Romero O, Baumann K-H, Donner B, Hefter J, Mollenhauer G, Iversen M, 

Fiedler B, Monteiro I (2016) Bathypelagic particle flux signatures from a suboxic eddy in 

the oligotrophic tropical North Atlantic: production, sedimentation and preservation. 

Biogeosciences 13:3203-3223. 

Foster RA, Zehr JP (2006) Characterization of diatom–cyanobacteria symbioses on the basis of 

nifH, hetR and 16S rRNA sequences. Environmental Microbiology 8:1913-1925. 

Frankignoulle M, Canon C, Gattuso JP (1994) Marine calcification as a source of carbon dioxide: 

Positive feedback of increasing atmospheric CO2. Limnology and Oceanography 39:458-

462 

Frölicher TL, Sarmiento JL, Paynter DJ, Dunne JP, Krasting JP, Winton M (2015) Dominance of the 

Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. Journal of 

Climate 28:862-886. 

27



Supplementary Information 1 

 
 

González HE, Hebbeln D, Iriarte JL, Marchant M (2004) Downward fluxes of faecal material and 

microplankton at 2300m depth in the oceanic area off Coquimbo (30 S), Chile, during 

1993–1995. Deep Sea Research Part II: Topical Studies in Oceanography 51:2457-2474. 

Gottschalk J, Skinner LC, Lippold J, Vogel H, Frank N, Jaccard SL, Waelbroeck C (2016) Biological 

and physical controls in the Southern Ocean on past millennial-scale atmospheric CO2 

changes. Nature Communications 7:11539. doi:10.1038/ncomms11539 

https://www.nature.com/articles/ncomms11539#supplementary-information 

Gran HH, Braarud T (1935) A Quantitative Study of the Phytoplankton in the Bay of Fundy and the 

Gulf of Maine (including Observations on Hydrography, Chemistry and Turbidity). Journal 

of the Biological Board of Canada 1:279-467. doi:10.1139/f35-012 

Guiry MD (2012) HOW MANY SPECIES OF ALGAE ARE THERE? Journal of Phycology 48:1057-1063. 

doi:10.1111/j.1529-8817.2012.01222.x 

Hagino K, Young JR (2015) Biology and paleontology of Coccolithophores (Haptophytes). In: al. Oe 

(ed) Marine Protists. Springer, pp 311-330. 

Hamm C, Smetacek V (2007) CHAPTER 14 - Armor: Why, When, and How A2 - Falkowski, Paul G. 

In: Knoll AH (ed) Evolution of Primary Producers in the Sea. Academic Press, Burlington, 

pp 311-332. 

Hanson RB (2001) Introduction to the Joint Global Ocean Flux Study (JGOFS). Ambio 10:3-31. 

Harper M, Cassie Cooper V, Chang FH, Nelson W, Broady P (2012) Phylum Ochrophyta: brown 

and golden-brown algae, diatoms, silicoflagellates, and kin. New Zealand inventory of 

biodiversity. Volume Three. Kingdoms Bacteria, Protozoa, Chromista, Plantae, Fungi. 

Canterbury University Press, Christchurch:114-163. 

Harrison CS, Long MC, Lovenduski NS, Moore JK (2018) Mesoscale Effects on Carbon Export: A 

Global Perspective. Global Biogeochemical Cycles 32:680-703. 

doi:10.1002/2017GB005751 

Hayakawa H, Shibuya K, Aoyama Y, Nogi Y, Doi K (2012) Ocean bottom pressure variability in the 

Antarctic Divergence Zone off Lützow-Holm Bay, East Antarctica. Deep Sea Research Part 

I: Oceanographic Research Papers 60:22-31. 

doi:https://doi.org/10.1016/j.dsr.2011.09.005 

Heath RA (1985) A review of the physical oceanography of the seas around New Zealand — 1982. 

New Zealand Journal of Marine and Freshwater Research 19:79-124. 

doi:10.1080/00288330.1985.9516077 

28



Supplementary Information 1 

 
 

Hernández-Almeida I, Bárcena MA, Flores JA, Sierro FJ, Sanchez-Vidal A, Calafat A (2011) 

Microplankton response to environmental conditions in the Alboran Sea (Western 

Mediterranean): One year sediment trap record. Marine Micropaleontology 78:14-24. 

doi:https://doi.org/10.1016/j.marmicro.2010.09.005 

Herraiz-Borreguero L, Rintoul SR (2011) Regional circulation and its impact on upper ocean 

variability south of Tasmania. Deep Sea Research Part II: Topical Studies in Oceanography 

58:2071-2081. doi:http://dx.doi.org/10.1016/j.dsr2.2011.05.022 

Honjo S, Doherty KW (1988) Large aperture time-series sediment traps; design objectives, 

construction and application. Deep Sea Research Part A. Oceanographic Research Papers 

35:133-149. doi:http://dx.doi.org/10.1016/0198-0149(88)90062-3 

Honjo S, Manganini SJ, Krishfield RA, Francois R (2008) Particulate organic carbon fluxes to the 

ocean interior and factors controlling the biological pump: A synthesis of global sediment 

trap programs since 1983. Progress in Oceanography 76:217-285. 

IPCC (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to 

the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, 

Geneva. 

Kaufman DE, Friedrichs MAM, Smith WO, Hofmann EE, Dinniman MS, Hemmings JCP (2017) 

Climate change impacts on southern Ross Sea phytoplankton composition, productivity, 

and export. Journal of Geophysical Research: Oceans 122:2339-2359. 

doi:10.1002/2016JC012514 

Klaas C, Archer DE (2002) Association of sinking organic matter with various types of mineral 

ballast in the deep sea: Implications for the rain ratio. Global Biogeochemical Cycles 

16:1116. 

King AL, Howard WR (2001) Seasonality of foraminiferal flux in sediment traps at Chatham Rise, 

SW Pacific: implications for paleotemperature estimates. Deep Sea Research Part I: 

Oceanographic Research Papers 48:1687-1708 

Köbrich M, Baumann K (2009) Coccolithophore flux in a sediment trap off Cape Blanc (NW-

Africa). Journal of Nannoplankton Research 30:83-96. 

Kooistra WHCF, Gersonde R, Medlin LK, Mann DG (2007) CHAPTER 11 - The Origin and Evolution 

of the Diatoms: Their Adaptation to a Planktonic Existence A2 - Falkowski, Paul G. In: 

Knoll AH (ed) Evolution of Primary Producers in the Sea. Academic Press, Burlington, pp 

207-249. 

29



Supplementary Information 1 

 
 

Lam PJ, Doney SC, Bishop JK (2011) The dynamic ocean biological pump: Insights from a global 

compilation of particulate organic carbon, CaCO3, and opal concentration profiles from 

the mesopelagic. Global Biogeochemical Cycles 25:GB3009. doi:10.1029/2010GB003868. 

Landschützer P, Gruber N, Haumann FA, Rödenbeck C, Bakker DCE, van Heuven S, Hoppema M, 

Metzl N, Sweeney C, Takahashi T, Tilbrook B, Wanninkhof R (2015) The reinvigoration of 

the Southern Ocean carbon sink. Science 349:1221-1224. doi:10.1126/science.aab2620 

Langer G, Geisen M, Baumann K-H, Kläs J, Riebesell U, Thoms S, Young JR (2006) Species-specific 

responses of calcifying algae to changing seawater carbonate chemistry. Geochemistry, 

Geophysics, Geosystems 7. doi:10.1029/2005GC001227 

Laurenceau-Cornec E, Trull T, Davies D, Bray S, Doran J, Planchon F, Carlotti F, Jouandet M-P, 

Cavagna A-J, Waite A (2015) The relative importance of phytoplankton aggregates and 

zooplankton fecal pellets to carbon export: insights from free-drifting sediment trap 

deployments in naturally iron-fertilised waters near the Kerguelen plateau. 

Biogeosciences Discussions 11:13623-13673. 

Law CS, Bell JJ, Bostock HC, Cornwall CE, Cummings VJ, Currie K, Davy SK, Gammon M, Hepburn 

CD, Hurd CL, Lamare M, Mikaloff-Fletcher SE, Nelson WA, Parsons DM, Ragg NLC, Sewell 

MA, Smith AM, Tracey DM (2017) Ocean acidification in New Zealand waters: trends and 

impacts. New Zealand Journal of Marine and Freshwater Research 52:155-195. 

doi:10.1080/00288330.2017.1374983 

Leblanc K, Quéguiner B, Diaz F, Cornet V, Michel-Rodriguez M, de Madron XD, Bowler C, Malviya 

S, Thyssen M, Grégori G (2018) Nanoplanktonic diatoms are globally overlooked but play 

a role in spring blooms and carbon export. Nature Communications 9:953. 

Lenton A, Tilbrook B, Law R, Bakker DC, Doney SC, Gruber N, Hoppema M, Ishii M, Lovenduski NS, 

Matear RJ (2013) Sea-air CO 2 fluxes in the Southern Ocean for the period 1990-2009. 

Biogeosciences Discussions 10:285-333. 

Little HJ, Vichi M, Thomalla SJ, Swart S (2018) Spatial and temporal scales of chlorophyll 

variability using high-resolution glider data. Journal of Marine Systems 187:1-12. 

doi:https://doi.org/10.1016/j.jmarsys.2018.06.011 

Locarnini R, Mishonov A, Antonov J, Boyer T, Garcia H, Baranova O, Zweng M, Johnson D (2010) 

World Ocean Atlas 2009, Volume 1: Temperature US Government Printing Office, 

Washington, DC. 

30



Supplementary Information 1 

 
 

Maiti K, Charette MA, Buesseler KO, Kahru M (2013) An inverse relationship between production 

and export efficiency in the Southern Ocean. Geophysical Research Letters 40:1557-1561. 

doi:10.1002/grl.50219 

Malinverno E, Maffioli P, Corselli C, De Lange GJ (2014) Present-day fluxes of coccolithophores 

and diatoms in the pelagic Ionian Sea. Journal of Marine Systems 132:13-27. 

doi:https://doi.org/10.1016/j.jmarsys.2013.12.009 

Malinverno E, Triantaphyllou MV, Dimiza MD (2015) Coccolithophore assemblage distribution 

along a temperate to polar gradient in the West Pacific sector of the Southern Ocean 

(January 2005). Micropaleontology 61:489-506. 

Martin JH (1990) Glacial‐interglacial CO2 change: The iron hypothesis. Paleoceanography 5:1-

13. 

Moore JK, Doney SC, Glover DM, Fung IY (2001) Iron cycling and nutrient-limitation patterns in 

surface waters of the World Ocean. Deep Sea Research Part II: Topical Studies in 

Oceanography 49:463-507. doi:http://dx.doi.org/10.1016/S0967-0645(01)00109-6 

Mouw CB, Barnett A, McKinley GA, Gloege L, Pilcher D (2016) Phytoplankton size impact on 

export flux in the global ocean. Global Biogeochemical Cycles 30:1542-1562. 

Nelson DM, Tréguer P, Brzezinski MA, Leynaert A, Quéguiner B (1995) Production and dissolution 

of biogenic silica in the ocean: revised global estimates, comparison with regional data 

and relationship to biogenic sedimentation. Global Biogeochemical Cycles 9:359-372. 

Orsi AH, Whitworth T, Nowlin WD (1995) On the meridional extent and fronts of the Antarctic 

Circumpolar Current. Deep Sea Research Part I: Oceanographic Research Papers 42:641-

673. 

Pearson PN, Palmer MR (2000) Atmospheric carbon dioxide concentrations over the past 60 

million years. Nature 406:695. doi:10.1038/35021000 

Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, 

Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, PÉpin L, Ritz 

C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 

years from the Vostok ice core, Antarctica. Nature 399:429. doi:10.1038/20859 

R Core Team (2018) R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria, https://www.R-project.org/ 

31



Supplementary Information 1 

 
 

Richardson T (2018) Contributions of Small Particles to Particle Flux and Attenuation. Annual 

Review of Marine Science 10. 

Riebesell U, Körtzinger A, Oschlies A (2009) Sensitivities of marine carbon fluxes to ocean change. 

Proceedings of the National Academy of Sciences 106:20602-20609. 

doi:10.1073/pnas.0813291106 

Rigual-Hernández AS, Bárcena MA, Jordan RW, Sierro FJ, Flores JA, Meier KJS, Beaufort L, 

Heussner S (2013) Diatom fluxes in the NW Mediterranean: evidence from a 12-year 

sediment trap record and surficial sediments. Journal of Plankton Research 35:1109-

1125. doi:10.1093/plankt/fbt055 

Rintoul SR, Trull TW (2001) Seasonal evolution of the mixed layer in the Subantarctic Zone south 

of Australia. Journal of Geophysical Research: Oceans 106:31447-31462. 

Romero O, Boeckel B, Donner B, Lavik G, Fischer G, Wefer G (2002) Seasonal productivity 

dynamics in the pelagic central Benguela System inferred from the flux of carbonate and 

silicate organisms. Journal of Marine Systems 37:259-278. 

Ronge T, Geibert W, Lippold J, Lamy F, Schnetger B, Prange M, Tiedemann R (2018) Climate, CO2 

and Ice Sheets-A Southern Ocean Perspective. 27th International Polar Conference, 

Rostock, 25 March 2018 - 29 March 2018. 

Rosenthal Y, Dahan M, Shemesh A (2000) Southern Ocean contributions to glacial‐interglacial 

changes of atmospheric pCO2: An assessment of carbon isotope records in diatoms. 

Paleoceanography and Paleoclimatology 15:65-75. 

Samtleben C, Schäfer P, Andruleit H, Baumann A, Baumann K-H, Kohly A, Matthiessen J, 

Schröder-Ritzrau A (1995) Plankton in the Norwegian-Greenland Sea: from living 

communities to sediment assemblages —an actualistic approach. Geologische 

Rundschau 84:108-136. doi:10.1007/bf00192245 

Sancetta C, Calvert SE (1988) The annual cycle of sedimentation in Saanich Inlet, British Columbia: 

implications for the interpretation of diatom fossil assemblages. Deep Sea Research Part 

A. Oceanographic Research Papers 35:71-90 

Schlitzer R (2000) Applying the adjoint method for biogeochemical modeling: export of 

participate organic matter in the world ocean. Inverse methods in global biogeochemical 

cycles 114:107-124. 

32



Supplementary Information 1 

 
 

Sigman DM, Boyle EA (2000) Glacial/interglacial variations in atmospheric carbon dioxide. Nature 

407:859. doi:10.1038/35038000  

Sigman D, Haug G (2003) The biological pump in the past. Treatise on geochemistry 6:625.  

Smith S, Key G (1975) Carbon dioxide and metabolism in marine environments 1. Limnology and 

Oceanography 20:493-495. 

Smith WO, Nelson DM (1986) Importance of ice edge phytoplankton production in the Southern 

Ocean. BioScience 36:251-257. 

Stephens BB, Keeling RF (2000) The influence of Antarctic sea ice on glacial–interglacial CO 2 

variations. Nature 404:171. doi:10.1038/35004556 

Sutton P (2001) Detailed structure of the subtropical front over Chatham Rise, east of New 

Zealand. Journal of Geophysical Research: Oceans 106:31045-31056. 

Taffs KH, Saunders KM, Logan B (2017) Diatoms as Indicators of Environmental Change in 

Estuaries. In: Weckström K, Saunders KM, Gell PA, Skilbeck CG (eds) Applications of 

Paleoenvironmental Techniques in Estuarine Studies. Springer Netherlands, Dordrecht, 

pp 277-294. 

Takahashi K (1994) From modern flux to paleoflux: assessment from sinking assemblages to 

thanatocoenosis. In: Carbon Cycling in the Glacial Ocean: Constraints on the Ocean’s Role 

in Global Change. Springer, pp. 413-424. 

Takahashi K, Fujitani N, Yanada M (2002) Long term monitoring of particle fluxes in the Bering 

Sea and the central subarctic Pacific Ocean, 1990–2000. Progress in Oceanography 55:95-

112. doi:http://dx.doi.org/10.1016/S0079-6611(02)00072-1 

Toggweiler JR, Russell JL, Carson SR (2006) Midlatitude westerlies, atmospheric CO2, and climate 

change during the ice ages. Paleoceanography 21:PA2005. 

Tréguer P, Bowler C, Moriceau B, Dutkiewicz S, Gehlen M, Aumont O, Bittner L, Dugdale R, Finkel 

Z, Iudicone D, Jahn O, Guidi L, Lasbleiz M, Leblanc K, Levy M, Pondaven P (2018) Influence 

of diatom diversity on the ocean biological carbon pump. Nature Geoscience 11:27-37. 

doi:10.1038/s41561-017-0028-x 

Trull T, Bray S, Manganini S, Honjo S, Francois R (2001a) Moored sediment trap measurements of 

carbon export in the Subantarctic and Polar Frontal Zones of the Southern Ocean, south 

of Australia. Journal of Geophysical Research: Oceans (1978–2012) 106:31489-31509 

33



Supplementary Information 1 

 
 

Trull T, Sedwick P, Griffiths F, Rintoul S (2001b) Introduction to special section: SAZ Project. 

Journal of Geophysical Research: Oceans (1978–2012) 106:31425-31429 

Volk T, Hoffert MI (1985) Ocean carbon pumps: Analysis of relative strengths and efficiencies in 

ocean‐driven atmospheric CO2 changes. Geophysical Monograph Series 32:99-110. 

Weber LH, El-Sayed SZ (1987) Contributions of the net, nano- and picoplankton to the 

phytoplankton standing crop and primary productivity in the Southern Ocean. Journal of 

Plankton Research 9:973-994. doi:10.1093/plankt/9.5.973 

Weber T, Cram JA, Leung SW, DeVries T, Deutsch C (2016) Deep ocean nutrients imply large 

latitudinal variation in particle transfer efficiency. Proceedings of the National Academy 

of Sciences 113:8606-8611. doi:10.1073/pnas.1604414113 

Winter A, Henderiks J, Beaufort L, Rickaby RE, Brown CW (2014) Poleward expansion of the 

coccolithophore Emiliania huxleyi. Journal of Plankton Research 36:316-325. 

World Ocean Atlas (WOA) (2009). Available at 

https://www.nodc.noaa.gov/OC5/WOA09/pr_woa09.html  

Young JR, Geisen M, Cros L, Kleijne A, Sprengel C, Probert I, Østergaard J (2003) A guide to extant 

coccolithophore taxonomy. Journal of Nannoplankton Research Special Issue 1. 

Young J, Bown P, Lees J (2014) Nannotax3 website. International Nannoplankton 

Association. 〈http://ina.tmsoc.org/Nannotax3〉. (accessed 21.04.14) 

Ziveri P, de Bernardi B, Baumann K-H, Stoll HM, Mortyn PG (2007) Sinking of coccolith carbonate 

and potential contribution to organic carbon ballasting in the deep ocean. Deep Sea 

Research Part II: Topical Studies in Oceanography 54:659-675. 

Ziveri P, Rutten A, De Lange G, Thomson J, Corselli C (2000) Present-day coccolith fluxes recorded 

in central eastern Mediterranean sediment traps and surface sediments. 

Palaeogeography, Palaeoclimatology, Palaeoecology 158:175-195. 

 

 

34



Chapter Two 

Biogeochemical flux and phytoplankton succession: A 
year-long sediment trap record in the Australian sector of the 
Subantarctic Zone 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The following chapter is presented in the format in which it was published. 

 

35



Contents lists available at ScienceDirect

Deep–Sea Research I

journal homepage: www.elsevier.com/locate/dsri

Biogeochemical flux and phytoplankton succession: A year-long sediment
trap record in the Australian sector of the Subantarctic Zone

Jessica V. Wilksa,⁎, Andrés S. Rigual-Hernándeza,b, Thomas W. Trullc,d, Stephen G. Brayc,
José-Abel Floresb, Leanne K. Armanda

a MQ Marine Research Centre and Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
b Department of Geology. Universidad de Salamanca, Salamanca 37008, Spain
c Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, Tasmania 7001, Australia
d CSIRO Oceans and Atmosphere Flagship, Hobart, Tasmania 7001, Australia

A R T I C L E I N F O

Keywords:
Diatoms
Coccolithophores
Sediment traps
Subantarctic Zone
Mass flux
Southern Ocean

A B S T R A C T

The Subantarctic Zone (SAZ) plays a crucial role in global carbon cycling as a significant sink for atmospheric
CO2. In the Australian sector, the SAZ exports large quantities of organic carbon from the surface ocean, despite
lower algal biomass accumulation in surface waters than other Southern Ocean sectors. We present the first
analysis of diatom and coccolithophore assemblages and seasonality, as well as the first annual quantification of
bulk organic components of captured material at the base of the mixed layer (500 m depth) in the SAZ.
Sediment traps were moored in the SAZ southwest of Tasmania as part of the long-term SAZ Project for one
year (September 2003 to September 2004). Annual mass flux at 500 m and 2000 m was composed mainly of
calcium carbonate, while biogenic silica made up on average < 10% of material captured in the traps. Organic
carbon flux was estimated at 1.1 g m−2 y−1 at 500 m, close to the estimated global mean carbon flux. Low diatom
fluxes and high fluxes of coccoliths were consistent with low biogenic silica and high calcium carbonate fluxes,
respectively. Diatoms and coccoliths were identified to species level. Diatom and coccolithophore sinking
assemblages reflected some seasonal ecological succession. A theoretical scheme of diatom succession in live
assemblages is compared to successional patterns presented in sediment traps. This study provides a unique,
direct measurement of the biogeochemical fluxes and their main biological carbon vectors just below the winter
mixed layer depth at which effective sequestration of carbon occurs. Comparison of these results with previous
sediment trap deployments at the same site at deeper depths (i.e. 1000, 2000 and 3800 m) documents the
changes particle fluxes experience in the lower “twilight zone” where biological processes and remineralisation
of carbon reduce the efficiency of carbon sequestration.

1. Introduction

The Subantarctic Zone (SAZ) is the northernmost zone of the
Southern Ocean, delineated by the Subtropical Front to the north and
the Subantarctic Front to the south. The SAZ is the Southern Ocean's
warmest zone, and comprises > 50% of its surface area (Orsi et al.,
1995). Yet, the SAZ is a High-Nitrate, Low-Chlorophyll (HNLC) zone
due to low phytoplankton biomass production, despite the excess in
nitrate and phosphate in surface waters (Bucciarelli et al., 2001).
Strong silicate and iron limitation (Blain et al., 2001; Hutchins et al.,
2001; Fripiat et al., 2011), as well as light limitation due to deep winter
mixing, each contribute to the zone's HNLC status (Bucciarelli et al.,
2001; Trull et al., 2001c). Nonetheless, the SAZ is significant as one of
the strongest oceanic sinks of atmospheric CO2 in global climate (Metzl

et al., 1999; Trull et al., 2001c; Shadwick et al., 2015), driven by
phytoplankton primary production and subsequent particle export (i.e.
the biological pump), and by uptake via dissolution in newly formed
waters (i.e. the solubility pump) (Honjo et al., 2000; Trull et al., 2001c).

Sediment traps measure biological and particulate matter exported
from the photic zone to the ocean interior, providing insights into
oceanic particle flux and phytoplankton ecology (e.g. Honjo et al.,
2008; Romero and Armand, 2010). The multidisciplinary SAZ Project
was initiated in 1997 by the Antarctic Cooperative Research Centre
(ACE CRC) in Tasmania to remedy the lack of oceanographic data
within the SAZ and the Polar Frontal Zone (PFZ) (Trull et al., 2001c).
The SAZ Project deployed bottom-tethered sediment traps to quantify
and characterise the particle fluxes from the Subantarctic to the
Antarctic along 140°E, enabling comparisons between zones (Trull
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et al., 2001c, 2001a; Rigual-Hernández et al., 2015a, 2016b). The SAZ
Project also allowed comparison to other particle flux studies in nearby
regions, such as the Antarctic Environment and Southern Ocean
Process Study (AESOPS), which deployed sediment traps in the SAZ,
PFZ, AZ, and Ross Sea along 170°W (Smith et al., 2000; Honjo et al.,
2000; Anderson and Smith, 2001), the Subantarctic National Institute
of Water and Atmospheric Research (NIWA) studies (Nodder and
Northcote, 2001); and trapping studies in the Atlantic sector (Wefer
and Fischer 1991; Fischer et al., 2002). Early results of the SAZ Project
time-series traps focused on the bulk particulate components, report-
ing lower algal biomass accumulation in the Australian sector than in
the Atlantic or New Zealand sectors of the SAZ (Rintoul and Trull,
2001; Trull et al., 2001a), although total particulate organic carbon flux
was similar to the global ocean median (Lampitt and Antia, 1997).

A series of papers succeeding the SAZ Project have contributed to
our understanding of production and carbon fluxes in the Australian
sector across oceanographic zones, and the influence of phytoplankton
assemblages on Southern Ocean biogeochemistry (Ebersbach et al.,
2011; De Salas et al., 2011; Rigual-Hernández et al., 2015a, 2015b).
Work remains to be undertaken to quantify the carbon exporting
capacity of the range of phytoplankton species in this region.

Diatoms are a diverse group of unicellular phytoplankton that occur
in high abundances in the Southern Ocean (Alvain et al., 2008), and are
the most significant contributors of biogenic silica to the Southern
Ocean's sediments, particularly south of the Polar Front (Ragueneau
et al., 2000; Rigual-Hernández et al., 2016). Both live and sediment-
trap records of diatom assemblages have been studied in the Australian
sector (De Salas et al., 2011; Kopczyńska et al., 2007; Rigual-
Hernández et al., 2015a; Rigual-Hernández et al., 2015b). Analyses
of live coccolithophore assemblages (Nishida, 1986; Findlay and
Giraudeau, 2000), and past and present calcification (Cubillos et al.,
2007, 2012), have also been conducted in the Australian sector whilst
seafloor sediment core-top analyses have recently revealed that cocco-
liths comprise a significant percentage of sediment in the Pacific sector
of the SAZ (Saavedra-Pellitero et al., 2014). Sediment traps deployed
near the Crozet Plateau (PFZ) revealed that coccoliths were responsible
for roughly a third of particulate inorganic carbon (PIC) export (Salter
et al., 2014), while coccoliths made up > 85% PIC exported over the
Kerguelen Plateau (AZ) (Rembauville et al., 2016). Yet despite their

significance to PIC production and export, coccolithophore fluxes have
not been quantified within the pelagic waters of the SAZ.

To address the need for a comprehensive understanding of the
major biological export flux taxa and their seasonal contribution to
particle export in the Australian sector of the SAZ, this study returns to
the SAZ Project trap programme's 47°S trap sample splits (Sept. 2003–
Oct. 2004, 47°S, 140°E; 500 m and 2000 m depth). This new investiga-
tion on the preserved material enables:

1) A description of temporal seasonality and composition of particle
fluxes at the base of the mixed layer in the SAZ, and

2) The documentation of assemblage composition of two of the main
groups of phytoplankton in the region: diatoms and coccolitho-
phores.

Aim 1 delivers the first annual quantification of biogenic silica,
calcium carbonate and POC export for the Australian sector of the SAZ
at the base of the winter mixed layer. The second aim provides the first
report of seasonal variability of diatom and coccolithophore assem-
blages for the pelagic waters of the SAZ in the Southern Ocean.
Additionally, we present a comparison of how theoretical live diatom
ecological succession is reflected in sediment trap records.

1.1. Oceanographic setting

The Southern Ocean is banded by approximately concentric zones
of water masses (Orsi et al., 1995), possessing distinct and relatively
uniform hydrological properties that influence the phytoplankton
species found (Boyd et al., 2000; Sokolov and Rintoul, 2002; Pollard
et al., 2002) (Fig. 1). These water masses make up the Antarctic
Circumpolar Current (ACC), which includes, from north to south, the
Subantarctic Zone (SAZ), Polar Frontal Zone (PFZ), and the Antarctic
Zone (AZ). Zones are defined by the fronts at which they meet, where
the characteristics of the water masses (particularly temperature and
salinity) sharply change. The SAZ stretches from the Subtropical Front
(STF), the boundary between subtropical and subantarctic waters to
the north (44.5–45.6°S in the Australian region), to the Subantarctic
Front (SAF), the strongest front within the ACC (50–53°S) (Sokolov
and Rintoul, 2002). The water masses of the SAZ are stratified in

Fig. 1. Regional context of sediment trap deployment (SAZ Project) 2003–2004 showing fronts and zones (adapted from Orsi et al., 1995). Triangles indicate SAZ Project sediment trap
deployment locations; red triangle shows current site at 47°S. Lines indicate front locations, from top to bottom: Subtropical Front (STF) green line; Subantarctic Front (SAF) red line;
Antarctic Polar Front (APF) blue line; south Antarctic Circumpolar Current front (sACCf) purple line; Antarctic Circumpolar Current Southern Boundary (ACCSB) brown line. Coloured
bar denotes Chlorophyll-a concentrations (mg m2 d−1), August 2003 to August 2004. Map created with Ocean Data View, available at http://odv.awi.de (Schlitzer, 2016).
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austral summer, with stratification controlled mainly by temperature,
and weakening stratification in winter (Rintoul and Trull, 2001; Pollard
et al., 2002). In this study, we use the front definitions of Orsi et al.
(1995).

The trap deployment site (46°48′S, 142°6′E) is biogeochemically
typical of the SAZ, being low in silica and iron year-round but replete in
nitrate (Rintoul and Trull, 2001; Sedwick et al., 1999, 2008). The site is
representative of the SAZ between 90° and 145°E (Trull et al., 2001a).
The SAZ has a deep mixed layer in winter (up to 600 m during more
extreme years) that shallows to 75–100 m in summer (Rintoul and
Trull, 2001; Trull et al., 2001c). In general, the mixed layer is deeper
than the euphotic zone in this region throughout the year. The euphotic
zone (the depth at which PAR is 1% of the surface incident PAR) ranges
from ~115 m in winter, when phytoplankton abundance is lowest, to
~45 m in summer when algal biomass reaches maximal values
(Westwood et al., 2011). During sunny, calm weather in summer, the
mixed layer can be shallower (to ~25 m) than the euphotic zone, and
production below the mixed layer may reach 10% of the total water
column production (Westwood et al., 2011). These conditions are
short-lived and chlorophyll fluorescence profiles show that phytoplank-
ton biomass is distributed uniformly within the mixed layer without
subsurface maxima (Rintoul and Griffiths, 2001; Bowie et al., 2011).
Regionally, the SAZ has slightly higher silicate and slightly deeper
mixed layer depths to the south due to the input of cooler, fresher water
moving northwards across the SAF. Such differences in hydrological
properties between the north and south of the SAZ are more pro-
nounced during summer than winter (Lourey and Trull, 2001; Rintoul
and Trull, 2001).

2. Materials and methods

2.1. Field Experiment

McLane PARFLUX sediment traps (0.5 m2 capture area) were
deployed for one year (2003–2004) in the Australian sector of the
Subantarctic Zone (46°46′ S, 142°4′ E) via the SAZ Project (Trull et al.,
2001c) (Fig. 1). Traps were deployed on one mooring line at 500 m,
1000 m and 2000 m, however, the 1000 m trap captured little material
and was not analysed.

The 500 m trap was equipped with a tilt meter, and an Aanderaa
RCM8 current meter placed 50 m below it on the mooring line. Current
speeds for the duration of the deployment averaged 10.9 cm s−1

(Supplementary Table 1); slightly below speeds at which trapping
efficiency is considered to decrease (~12 cm s−1; Baker et al., 1988).
There were occasional short excursions to higher velocities during the
autumn and winter months, however, 95% of the time current speeds
were below 23 cm s−1.

Each trap consisted of 21×500 mL collection cups rotated on a 14 d
(summer and spring) or a 35 d (autumn and winter) pre-programmed
schedule. All traps successfully completed collection for the entire
sampling period, though some cups contained too little material to
analyse. At 500 m, cup 12 was omitted from analyses, while for the
2000 m trap, only cups 1 – 11 (spring to summer) and 17 (autumn)
were exploitable for this study as the remaining cups captured too little
material to analyse (Supplementary Table 1). Sampling dates and
lengths are given in Table 1.

After retrieval, samples were sieved with a 1 mm sieve to remove
large swimmers. Samples were split into ten fractions using a McLane
rotary splitter, and were stored at 4 °C in the dark in 50 mL tubes (Bray
et al., 2000; Trull et al., 2001b).

2.2. Biogeochemical flux determination

Detailed explanation of Total Mass Flux (TMF), Particulate Organic
Carbon (POC), calcium carbonate (CaCO3), and Biogenic Silica (BSi)
calculations are given in Bray et al. (2000) and Trull et al. (2001a).

POC, CaCO3 and BSi were not calculated for cups 13–21 at 2000 m, as
too little material was captured. Annual TMF was calculated for the
500 m trap only, as the 2000 m trap did not contain an entire year's
useable samples. Three 1/10 splits of the < 1 mm fraction were stored
for later microscopic analyses. The remainder was filtered, dried,
weighed, and ground. Samples were filtered using 0.4 μm Millipore
polycarbonate membranes. Samples were dried at 60 °C in a forced
convection oven. Particulate inorganic carbonate (PIC) was measured
by adding phosphoric acid to the dry sample, and measuring CO2

produced using a colourimeter. Total particulate carbon (PC) and
nitrogen (PN) were determined using a Perkin Elmer CHN Analyser,
and POC was estimated by difference, i.e. POC=PC−PIC. BSi was
estimated using hot alkaline digestion and visible spectrometry follow-
ing Quéguiner (2001).

2.3. Siliceous microplankton preparation and identification

One 1/10 split of the sieved fraction was used for the biological flux
analyses. This split was topped up to 40 mL using distilled water, and a
10 mL subsample was taken for coccolith analyses. The remaining split
was cleaned of organic material using potassium permanganate,
hydrochloric acid, and hydrogen peroxide as per Romero et al.
(1999). After organic material removal, samples were centrifuged, the
supernatant removed, and topped up with distilled water.

Slides were prepared using a modified form of the random settling
method (Flores and Sierro, 1997), to ensure even diatom distribution
within the suspension to avoid frustule overlap or clumping on slides. A
known fraction (4 mL standard, up to 25 mL for very sparse samples)
of the diatom suspension was used to make three microscope slides/
sample.

The slides were analysed using an Olympus BH-2 compound light
microscope at 1000x magnification. Counts were undertaken along
non-overlapping transects on each slide, evenly spaced and avoiding
coverslip edges. All diatoms within the field of view along each transect
were visually identified to species or genus level and 400 individual
diatoms were counted per sample (Armand and Leventer, 2010).
Winter cup sample splits contained sparse material, so for these
samples, the enumeration protocol was lowered to 100 individuals
(Fatela and Taborda, 2002). Samples containing fewer than 100
diatoms are indicated with asterisks in Supplementary Tables 2a and
2b.

Taxonomic identification followed modern taxonomy as per Hasle
and Syvertsen (1997). Diatoms that could not be identified to genus
level were placed into additional categories: unknown pennate, un-
known centric, and unknown centric < 20 μm. One group of diatoms
could not be identified past genus level and was named “Thalassiosira
sp. 1” (Rigual-Hernández et al., 2015b). This grouping contained
centric diatoms larger than 20 μm with radial-style areolation, appear-
ing to be poorly-preserved valves of the genus Thalassiosira. The
resting spores of Chaetoceros species were grouped simply as
Chaetoceros resting spores.

2.4. Calcareous microplankton sample preparation and identification

A 10 mL subsample of each split was removed prior to acid
digestion to allow an analysis of the coccolithophore community
assemblage and flux. The entire 10 mL subsample was used to prepare
slides for light microscopy. As flux captured in the traps was low, due to
limited material SEM analysis of coccoliths was not undertaken. Slides
were prepared as per diatoms. Coccoliths were counted under 1000×
magnification using a LEICA DMRXE polarised light microscope, and
300 coccoliths were identified per sample.

Identification of coccolithophore taxa followed Young et al. (2003)
and Young et al. (2014). In total eleven coccolithophore taxa were
identified from coccoliths. Only few coccospheres were detected in the
samples, most likely due to the fact that the majority of the material
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sinking out of the mixed layer in this region has been heavily processed
by phytoplankton (Ebersbach, 2011). In addition, it is possible that
some disaggregation of coccoliths from coccospheres may have oc-
curred during sample storage, splitting and sample processing. It is
worth noting that the 47°S sediment trap site location is considered
representative of a large portion of the zonal SAZ (i.e. between 90 and
145°E; Trull et al., 2001c). Therefore, even if some coccoliths would
have been laterally transported from a relatively distant area, it is likely
that the sinking coccolith assemblages captured by the traps are still
representative of the homogenous environmental conditions this sector
of the SAZ. While Gephyrocapsa muellerae and G. oceanica were
counted separately, coccoliths that were clearly of the genus
Gephyrocapsa, but < 3 μm in diameter, were placed in their own
grouping (Gephyrocapsa < 3 μm) (Flores et al., 2000). The grouping
Gephyrocapsa < 3 μm contained G. ericsonii and G. ampliaperta, both

of which are difficult to discern under light microscopy. Most of the
specimens of Calcidiscus leptoporus were subspecies leptoporus,
however some of the small C. leptoporus complex were occasionally
encountered. Coccoliths attributed to the genera Syracosphaera,
Pontosphaera, Oolithothus and Umbilicosphaera were not identified
past genus level.

2.5. Flux calculations and statistics

Raw counts per sample were transformed into daily fluxes using the
following equation (Sancetta and Calvert 1988):

⎛

⎝
⎜⎜

⎞

⎠
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D T
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.
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Table 1
Daily and annual fluxes of total mass flux, biogenic silica (BSiO2), calcium carbonate (CaCO3), particulate organic carbon (POC), diatom and coccolith flux, and Shannon's Equitability
Index (Eh), for every cup at both trap depths (500 m and 2000 m). * indicates “annualised values.” Mean annual bulk component fluxes were not calculated for the 2000 m trap due to
lack of cups retrieved. Mean flux spring/summer† refers to the overlapping sampling period (spring and summer; cups 1–11) in which enough material was captured for analysis at both
500 m and 2000 m traps.

Sampling
midpoint

Sampling
length

Total Mass
Flux

BSiO2 CaCO3 POC Diatom flux Coccolith flux Shannon's
Equitability

Cup # (days) (mg m−2

d−1)
(mg
m−2

d−1)

(%) (mg m−2

d−1)
(%) (mg

m−2

d−1)

(%) (x103 valves
m−2 d−1)

(x106 coccoliths
m−2 d−1)

Eh

500 m

1 28/09/2003 14 26.2 1.88 7.2 16.5 63 2.7 10.2 28.3 310 0.70
2 12/10/2003 14 106.8 7.66 7.2 80.1 75 6.8 6.4 721.3 720 0.75
3 26/10/2003 14 59.3 3.06 5.2 44.4 75 4.4 7.4 229.7 825 0.72
4 9/11/2003 14 123.3 7.86 6.4 100.8 82 6.5 5.3 1248.6 1539 0.76
5 23/11/2003 14 139.1 8.79 6.3 105.1 76 8.9 6.4 810.2 2543 0.70
6 7/12/2003 14 174.6 13.59 7.8 132.0 76 11.1 6.3 7384.3 5203 0.69
7 21/12/2003 14 16.6 0.83 5.0 11.4 69 1.7 9.9 13.6 482 0.67
8 4/01/2004 14 9.0 0.37 4.1 6.5 72 0.8 9.1 12.7 205 0.67
9 18/01/2004 14 3.5 0.14 4.1 2.4 69 0.4 10.8 0.8 79 0.82
10 1/02/2004 14 6.1 0.25 4.1 4.2 69 0.7 10.8 1.5 81 0.70
11 15/02/2004 14 0.7 0.03 4.1 0.5 69 0.1 10.8 0.2 13 0.95
13 14/03/2004 14 16.9 0.54 3.2 11.1 65 2.1 12.5 64.6 221 0.63
14 28/03/2004 14 1.6 0.06 3.8 1.2 71 0.2 9.4 0.2 27 0.93
15 11/04/2004 14 2.8 0.11 3.8 2.0 71 0.3 9.4 0.4 58 0.58
16 25/04/2004 14 1.3 0.05 3.8 0.9 71 0.1 9.4 0.4 31 0.34
17 19/05/2004 35 0.2 0.01 3.8 0.1 71 0.0 9.4 0.03 5 0.77
18 23/06/2004 35 0.8 0.03 3.8 0.6 71 0.1 9.4 0.2 29 0.65
19 28/07/2004 35 0.3 0.01 3.8 0.2 71 0.0 9.4 0.09 4 0.19
20 1/09/2004 35 1.3 0.05 3.8 0.9 71 0.1 9.4 0.2 48 0.80
21 26/09/2004 14 533.1 23.41 4.4 411.1 77 33.8 6.3 5750.1 23221 0.59
Mean daily flux 47.2 2.6 4.78 35.9 71.73 3.1 8.91 813.38 1782.22
Mean flux spring/summer† 60.5 4.0 6.6 45.8 75.7 4.0 6.6 950.1 1091.0
Annual flux (g m−2 y−1) 17* 0.9 13.1 1.1 2.3 ×

108 m−2

y−1

6.5 ×
1011 m−2 y−1

Mean Eh 0.68

2000 m
1 28/09/2003 14 23.1 1.9 8.3 18 76 1.38 6.0 36 78 0.78
2 12/10/2003 14 60.9 5.0 8.2 47 77 2.84 4.7 103 340 0.74
3 26/10/2003 14 52.2 4.1 7.8 39 76 2.48 4.8 169 458 0.76
4 9/11/2003 14 52.8 3.4 6.5 42 80 2.24 4.2 95 551 0.73
5 23/11/2003 14 125.0 8.7 6.9 98 78 6.11 4.9 892 1911 0.78
6 7/12/2003 14 152.2 12.3 8.1 119 78 7.36 4.8 1699 2304 0.71
7 21/12/2003 14 138.7 12.9 9.3 110 79 5.29 3.8 1081 3356 0.71
8 4/01/2004 14 74.5 6.4 8.6 58 78 3.00 4.0 326 1454 0.70
9 18/01/2004 14 118.4 14.7 12.4 86 73 5.34 4.5 1258 1316 0.70
10 1/02/2004 14 171.7 16.9 9.9 129 75 8.47 4.9 2724 1201 0.68
11 15/02/2004 14 161.1 21.3 13.2 106 66 10.86 6.7 3650 891 0.68
17 19/05/2004 35 0.39 5.01 0.80
Mean flux

spring/
summer†

102.76 9.79 9.03 77.53 76.10 5.03 4.85 1093.82 1260.09

Annual flux (g m−2 y−1) 38* – – – – – – – –

Mean Eh 0.73
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where N is the number of specimens counted, A is the area of the petri
dish upon which the slide was made, a is the area of the slide counted,
V is the volume of the diluted total sample, v is the volume of the split
of each cup, D is the number of days of trap deployment, and T is the
area of the sediment trap opening in m2. For the diatom flux
calculations, a modifier was applied after flux was calculated to
compensate for the 10 mL subsample for the calcareous phytoplank-
ton. For graphing, fluxes were transformed into relative abundances.

The Shannon-Weaver Equitability index (Eh) was used to estimate
the diversity and evenness of species assemblages (Shannon and
Weaver, 1949). Eh values range between zero and one, with values
close to zero indicating poor diversity and evenness, and values close to
one indicating high diversity and evenness.

A table of correlation matrices was constructed in order to identify
relationships present between diatom and coccolith flux, and annual
biogeochemical fluxes.

2.6. Meteorological and environmental data

Photosynthetically Active Radiation (PAR), chlorophyll-a concen-
tration (Chl-a) and Sea Surface Temperature (SST) data for the trap
deployment period (Aug. 2003–Oct. 2004) were obtained from the
Goddard Earth Sciences Data and Information Services Centre (GES
DISC) for the area 48° 30′ 0″ S−46° 30′ 0″ S×130° 0′ 0″ E−150° 0′ 0″
E (Fig. 2a; Supplementary Table 3).

2.7. Canonical correspondence analysis

Canonical Correspondence Analysis (CCA) was conducted using the
free software PAST (Hammer et al., 2001). Fluxes were normalised
with a log10 transformation, and CCA was applied to 19 diatom species
of greater than 0.5% relative abundance present at 500 m, and to the
eight coccolithophore taxa observed in two or more cups at 500 m. The
environmental constraints applied were SST and PAR for both groups
(Supplementary Table 3). Diatom and coccolithophore taxa groupings
that emerged from the CCA were combined by relative abundance, and
plotted separately over time.

3. Results

3.1. Satellite-derived environmental parameters

Photosynthetically Active Radiation (PAR) increased gradually
from 21 Einstein m−2 d−1 at the beginning of the time series, and
peaked in December at 45.1 Einstein m−2 d−1 (Fig. 2a; Supplementary
Table 3). Then PAR values steadily decreased over autumn, reaching
the annual minimum by June. Sea Surface Temperature (SST) in-
creased slowly during spring, beginning to rise nearly 2 months after
the winter-to-spring PAR increase, and eventually peaked in late
December at 11 °C (Fig. 2a; Supplementary Table 3). Minimum SST
was observed in June (8.3 °C). Chlorophyll-a concentrations in surface
waters ranged from the summer maximum of 0.317 mg m−3, occurring

Fig. 2. Surface environmental parameters, and particle flux measurements at 500 m and 2000 m traps across the 2003–2004 study period. (a) Photosynthetically Active Radiation
(PAR) (yellow line), Chlorophyll-a concentration (orange line) and Sea-Surface Temperature (SST) (black dotted line), across sampling year; (b) Carbonate (CaCO3) (green bar),
Particulate Organic Carbon (POC) (red bar), Biogenic Silica (BSi) (blue bar), and total mass flux (black line) at 500 m trap across sampling year; (c) CaCO3, POC, BSi, and total mass flux
at 2000 m trap across sampling year.
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in late December, to winter lows of 0.12 mg m−3 in July (Fig. 2a;
Supplementary Table 3).

3.2. Mean total mass flux and seasonality

Total Mass Flux (TMF) was calculated for the entire sampling
period for 500 m (Fig. 2b; Table 1), but was only calculated for spring
and summer (September-February) at 2000 m as capture was too low
for the rest of the sampling year (see Section 2.1) (Fig. 2c; Table 1).
TMF at 500 m ranged from a peak of 175 mg m−2 d−1 during the
summer maximum in December, and dropped to below 3 mg m−2 d−1

for 6 months of the year (Table 1), and approximately 50% of the TMF
accumulated between October and early December (Fig. 2b). An
exceptionally high TMF value of 533 mg m−2 d−1 was recorded in a
peak-flux event in September 2004 at 500 m (Fig. 2b; Table 1).

A first peak in TMF at 2000 m (152 mg m−2 d−1) was captured in
December, coinciding with the TMF peak at 500 m (Fig. 2c; Table 1). A
second TMF peak, and the maximum observed at 2000 m at
172 mg m−2 d−1, occurred in February (Fig. 2c; Table 1). Mean annual
TMF was calculated at 17 g m−2 d−1 at 500 m, but was not estimated at
2000 m as capture was too low after the spring/summer months
(Table 1).

The mean annual contributions of the three major components of
biogeochemical flux, CaCO3 POC and BSi, were calculated for the
500 m trap (Table 1). Annual values could not be determined for the
2000 m trap (see above), however mean spring/summer fluxes were
calculated. CaCO3 represented the bulk of TMF during the spring/
summer period, averaging 76% of TMF at both trap depths (Figs. 2b
and 2c; Table 1). CaCO3 flux peaked in early December at 500 m,
however, maximum CaCO3 flux occurred during the September 2004
peak-flux event (Fig. 2b; Table 1). At 2000 m, CaCO3 flux peaked in
December, and reached a maximum in February (129 mg m−2 d−1)
(Fig. 2b; Table 1). POC flux during the spring/summer period averaged
7% and 5% of annual TMF at 500 m and 2000 m, respectively
(Table 1). POC flux followed a similar trend at both depths, with small
flux peaks in December, followed by maxima occurring simultaneously
in February (Table 1). BSi fluxes were the most variable of the bulk
components at 500 m. BSi made up on average 7% and 9% of TMF at
500 m and 2000 m over the spring/summer period, respectively
(Table 1). BSi fluxes, as per the other bulk components, peaked in
December, however maximum BSi flux was registered in the September
2004 peak-flux event (Table 1).

3.3. Diatom and coccolith total fluxes

Mean annual diatom and coccolith fluxes at 500 m were 2.3×108

valves m−2 y−1, and 6.5×1011 coccoliths m−2 yr−1, respectively
(Table 1). Mean annual flux values of diatoms and coccoliths were
not determined for the 2000 m trap, as too little material was captured
after February (see Section 2.1).

At 500 m, diatom flux increased gradually from September to
November, and peaked sharply to reach a maximum of 7.4×106 valves
m−2 d−1 in December (Fig. 3a; Table 1). A second maximal peak
occurred in the September 2004 peak-flux event (Fig. 3a; Table 1).
From mid-summer through winter (January to September) diatom flux
was low (a few hundred valves m−2 d−1), with the exception of a small
peak event in March (Fig. 3a; Table 1).

At the 2000 m trap, diatom flux increased from the beginning of the
sample period to peak first in December, and again in February at
which time peak fluxes occurred (3.7×106) (Fig. 3b; Table 1). Only one
cup exists for the period after February at 2000 m (May), in which
diatom fluxes were low (3.9×102 valves m−2 d−1) (Fig. 3b; Table 1).

At 500 m, coccolith fluxes increased gradually between the start of
sampling and spring/summer peak fluxes of 5.2×109 coccoliths m−2

d−1 in December (Fig. 3a; Table 1). Coccolith fluxes declined sharply in
late December following the peak, and remained low until the

September 2004 peak-flux event (Fig. 3a; Table 1).
Coccolith flux at 2000 m also increased gradually before a spring/

summer maximum in late December of 3.4×109 coccoliths m−2 d−1, one
cup later than at 500 m (Fig. 3b; Table 1). Coccolith flux declined
sharply in January, after which a more gradual decline can be inferred
before reaching winter lows of 5.01×106 coccoliths m−2 d−1 in May
(Fig. 3b; Table 1).

The correlation matrices revealed correlation, to a greater or lesser
extent, between all pairs of biogeochemical flux components, and
diatom and coccolith flux, at both depths (p > 0.05; Table 2).
Coccolith fluxes most strongly correlated with CaCO3 fluxes, while
diatom fluxes most strongly correlated with BSi fluxes, at both depths.
Diatom flux and coccolith flux were weakly correlated with each other
at both depths, but particularly at 2000 m (Table 2).

3.4. Diatom flux and seasonality

In total, 64 species or groupings of diatoms were identified between
the two trap depths, with 57 diatom taxa at 500 m, and 51 taxa at
2000 m (excluding unidentified pennates and centrics) (Supplementary
Tables 2a and 2b). The Shannon-Weaver Equitability index (Eh) for
diversity and evenness was calculated for diatom assemblages at all
sampling intervals, at both depths (Table 1). At 500 m, mean Eh was
0.74, with greatest diversity in February, and lowest in July (Table 1).
Mean Eh for the spring/summer period at 2000 m was 0.73, and
greatest species diversity was seen in May (Table 1).

Canonical Correspondence Analysis (CCA) was applied to log-
transformed fluxes of 19 diatom species, each over 0.5% mean relative
abundance at 500 m (Table 3), constrained by two environmental
variables (PAR and SST) (Fig. 4a). Axis one accounted for 99.9% of the
variation observed, while axis two explained the remainder. Three
rough groupings of diatoms were identified, with two species,

Fig. 3. Coccolith flux (coccoliths m−2 d−1, solid grey bars), and diatom flux (valves m−2

d−1, hashed bars) at (A) 500 m trap depth, and (B) 2000 m trap depth across the
sampling year. Boxes delineated by dotted line indicate no data retrieved by sediment
traps. Grey vertical bars differentiate the summer and winter months.
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Thalassiosira ferelineata and Nitzschia sicula var. bicuneata falling
outside of these groupings (Fig. 4a). The first grouping identified
correlated most strongly with PAR. Group one contained
Thalassiothrix spp., Thalassiosira sp. 1, Rhizosolenia bergonii,
Nitzschia kolaczekii, and Fragilariopsis doliolus, with the
Shionodiscus frenguellii group tentatively included (Fig. 4a).
Combined group one reached maximum abundance peaks during
spring and early summer, between September and November, and up
to December (Fig. 5). Shionodiscus frenguellii group was included as it
also displays the early growth pattern of the other group one species.
The second grouping identified contained species that reached max-
imum abundances in late summer and autumn (end of February
onwards), but were also present earlier in the season. This grouping
was more closely related to SST, and included Chaetoceros resting

spores, Stellarima microtrias, and Roperia tesselata, with the spec-
ulative inclusion of Nitzschia bicapitata, which also displayed high
relative abundances in late summer, and in winter (Fig. 4a; Fig. 5). The
third grouping identified contained the heavily silicified species
Fragilariopsis kerguelensis, Azpeitia tabularis, Thalassiosira lentigi-
nosa, Chaetoceros vegetative cells, T. lineata, and Hemidiscus cunei-
formis (Fig. 4a). The group three species tended to occur at maximum
abundances at higher SSTs (usually > 10 °C) and later in the sample

Table 2
Correlation matrices between biogeochemical fluxes and diatom /coccolith flux. Values above 0.05 indicate significance.

500 m trap Mass Flux BSi flux CaCO3 flux POC flux Diatom flux Coccolith flux

Mass Flux –

BSi flux 0.97 –

CaCO3 flux 1.0 0.97 –

POC flux 1.0 0.96 1.0 –

Diatom flux 0.79 0.87 0.78 0.78 –

Coccolith flux 0.97 0.89 0.97 0.97 0.74 –

2000 m trap Mass Flux BSi flux CaCO3 flux POC flux Diatom flux Coccolith flux
Mass Flux –

BSi flux 0.92 –

CaCO3 flux 0.99 0.86 –

POC flux 0.94 0.94 0.88 –

Diatom flux 0.87 0.95 0.80 0.97 –

Coccolith flux 0.64 0.43 0.71 0.39 0.25 –

Table 3
Annual percentage contribution (Relative Abundance, RA) of diatom and coccolitho-
phore species to total annual flux. (Note: only diatom species > 0.5% annual RA are
included, and only coccolithophore taxa seen in two or more cups are included). See
Supplementary Tables 2a, 2b, 4a, 4b for complete species listing.

Species 500 m 2000 m

% flux
annual

% flux spring/
summer

% flux spring/
summer

Fragilariopsis kerguelensis 24.8 21.1 15.3
Azpeitia tabularis 10.8 12.9 5.0
Chaetoceros resting spore 7.2 3.2 5.9
Thalassiosira sp. 1 7.0 10.1 3.4
Thalassiosira lineata 6.0 7.3 2.9
Roperia tesselata 2.9 3.7 1.6
Stellarima microtrias 2.5 3.2 1.3
Nitzschia bicapitata 2.3 3.2 5.9
Thalssiothrix spp. 1.7 1.1 2.4
Rhizosolenia bergonii 1.7 2.0 0.9
Hemidiscus cuneiformis 1.6 2.0 1.1
Shionodiscus oestrupii 1.6 1.6 1.4
Nitzschia sicula var.

bicuneata
1.5 2.1 2.2

Shionodiscus frenguellii
group

1.3 2.1 0.5

Fragilariopsis doliolus 1.2 1.5 1.0
Thalassiosira lentiginosa 0.8 1.0 0.5
Nitzschia kolaczekii 0.8 1.1 0.7
Chaetoceros vegetative cell 0.7 1.0 8.3
Thalassiosira ferelineata 0.7 0.5 0.8
Emiliania huxleyi 59.3 52.3 78.5
Gephyrocapsa spp. < 3 μm 37.9 43.3 13.0
Calcidiscus leptoporus 1.3 1.9 4.6
Helicosphaera carteri 0.8 1.0 1.7
Syracosphaera spp. 0.2 0.4 0.5
Coccolithus pelagicus 0.2 0.5 0.8
Gephyrocapsa mullerae 0.2 0.3 0.5
Gephyrocapsa oceanica 0.1 0.3 0.4

Fig. 4. Canonical Correspondence Analysis (CCA) of (A) 19 diatom; and (B) 8
coccolithophore taxa from 500 m, constrained by PAR and SST (black lines). Numbers
represent sample cups. Dots represent individual species/taxa. Solid lines=ecological
groupings; dashed lines=tentative groupings. (A) Diatom taxa. PAR gp.=first grouping, or
PAR group; Trans gp.=second grouping, Transition group; Pres gp.=third grouping,
Preservation group, as defined in text. Key: A. tab=Azpeitia tabularis; CRS=Chaetoceros
resting spores; CVC=Chaetoceros vegetative cells; F. dol=Fragilariopsis doliolus; F.
kerg=F. kerguelensis; H. cun=Hemidiscus cuneiformis; N. bic=Nitzschia bicapitata; N.
kola=N. kolaczekii; N. sic=Nitzschia sicula var. bicuneata; R. berg=Rhizosolenia
bergonii; R. tess=Roperia tesselata; S. freng. gp.=Shionodoscus frenguellii group; S.
micro=Stellarima microtrias; S. oest=Shionodiscus oestrupii ; T. lent=Thalassiosira
lentiginosa; T. lin=T. lineata; T. sp 1=Thalassiosira species 1; Thal’thrix=Thalassiothrix
spp. (B) Coccolithophore taxa.
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period, but were generally present year-round.
Figs. 5 and 6 show the relative and absolute abundances of the most

abundant diatom species, at both depths. Species present throughout, or
for most of the year, were Azpeitia tabularis, Fragilariopsis kerguelensis
and Roperia tesselata. Fragilariopsis kerguelensis was the most abun-
dant diatom in almost every month at 500 m, comprising 25% of mean
annual abundance (Table 3). During the spring/summer period, F.
kerguelensis was 21% and 15% of total diatoms captured at 500 m
and 2000 m, respectively (Table 3). Seasonally, F. kerguelensis made up
a greater portion of the diatoms captured during the mid/late summer
period (–December to February), although this trend was more pro-

nounced at 500 m than at 2000 m (Figs. 5 and 6). Azpeitia tabularis also
constituted a significant fraction of diatoms observed year-round at both
depths. At 500 m, A. tabularis averaged 13% mean relative abundance
during the spring/summer period, and reached 39% abundance at its
peak inMarch (Fig. 5). Azpeitia tabularis averaged 5% across the spring/
summer period at 2000 m (Fig. 6). Maximum relative abundances of
Roperia tesselata at both 500 m and 2000 m were seen at the beginning
of the sampling period in September (11% and 12%, respectively)
(Figs. 5 and 6). Roperia tesselata relative abundances declined after
September at both depths, with fluctuating abundances for the remain-
der of sampling (Figs. 5 and 6).

Fig. 5. Relative abundance (%; lines) and absolute abundance (valves m2 d−1 × 104; bars) at 500 m of 15 diatom taxa of over 1% spring/summer relative abundance. Grey vertical bars
differentiate the summer and winter months.

Fig. 6. Relative abundance (%; lines) and absolute abundance (valves m2 d−1 ×104; bars) at 2000 m of 15 diatom taxa of over 1% spring/summer relative abundance. Grey vertical bars
differentiate the summer and winter months.
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The species present during the spring/summer period, but absent
or exhibiting low abundances during the autumn and winter months
were Fragilariopsis doliolus, Nitzschia kolaczekii, Rhizosolenia bergo-
nii, Thalassiosira species 1, and Shionodiscus frenguellii group
(Fig. 5). Chaetoceros vegetative cells were present only in one cup in
early December at 500 m, but appeared slightly later at 2000 m,
although they constituted a substantial 20% of relative abundances in
February at 2000 m.

Several diatom species appeared at low abundances or were absent
early in the year, but were present during the autumn/winter months.
Hemidiscus cuneiformis was present throughout the spring/summer
period at ~5% relative abundance, but was significant in winter
assemblages, peaking to 50% relative abundance in May at 500 m
(Fig. 5). At 2000 m, highest H. cuneiformis abundances of approxi-
mately 8% were seen in November (Fig. 6). Thalassiosira lineata was
present throughout the sampling period at 500 m, although highest
abundances occurred in late April (Fig. 5). To a lesser extent, at
2000 m T. lineata averaged only 3% relative abundance in the spring/
summer period, but was almost 5% of diatoms present in winter
(Fig. 6).

Chaetoceros resting spores contributed little to total flux between
September and early December at 500 m (~1%), but peaked in cup 11
at 25% of diatom relative abundance. Annually, Chaetoceros resting
spores averaged 7.2% of diatom assemblages (Table 3). Chaetoceros
resting spores were also present in winter, and towards the end of the
sampling period (June to September) (Fig. 5). Thalassiosira lentigi-
nosa followed a similar late-blooming trend at 500 m, with a peak
abundance of 25% in February (Fig. 5). At 2000 m, Chaetoceros resting
spores and T. lentiginosa comprised a relatively small component of
the diatom fluxes in the spring/summer period (6% and 0.5% of
relative abundance, respectively).

3.5. Coccolithophore flux and seasonality

In total, eleven coccolithophore species or groups were found in the
sediment traps. Emiliania huxleyi dominated coccolithophore assem-
blages at both depths, representing 59% of total annual coccolitho-
phore flux (Table 1).

A CCA was applied to the eight most abundant coccolithophore taxa
observed in this study, constrained by PAR and SST (Fig. 4b). Axis one
revealed 93% of variation in the dataset. The CCA indicated two major
groupings of coccolithophore taxa (Fig. 4b). The first grouping con-
tained three taxa: Coccolithus pelagicus, Syracosphaera spp., and
Gephyrocapsa muellerae. The species in this grouping exhibited peak
abundances in spring and summer, with lower abundances later in the
sampling period, with the exception of the more complex pattern
shown by G. muellerae (Fig. 7). The second grouping of coccolitho-
phore taxa revealed by the CCA was composed of Emiliania huxleyi,
Gephyrocapsa spp. < 3 μm, and Calcidiscus leptoporus. The species in
the second grouping either exhibited peak abundances in spring/
summer and remained abundant throughout the sampling year, or
were most abundant during the autumn/winter period (E. huxleyi, C.
leptoporus, and Gephyrocapsa spp.; Fig. 7). Two species,
Helicosphaera carteri and Gephyrocapsa oceanica, did not appear to
fit with either grouping.

The relative abundance of Emiliania huxleyi was stable throughout
the sampling period. Emiliania huxleyi represented 52%, and nearly
80% of spring/summer coccolith flux at 500 m and 2000 m, respec-
tively (Table 3). Maximum E. huxleyi abundances occurred in April at
500 m, at which point it dominated coccolith flux at 94% of total
coccolith abundance (Fig. 7). At 2000 m, the maximum peak of E.
huxleyi occurred in December, representing 90% of coccolith abun-
dance (Fig. 8).

Gephyrocapsa spp. < 3 μm averaged 43% of spring/summer
coccolith fluxes at 500 m, but were less abundant at 2000 m, at only
13% of coccolith fluxes (Table 3). Peak abundances occurred in

November at 500 m, where Gephyrocapsa spp. < 3 μm comprised
57% of the coccolithophore assemblage. Abundances of this group were
lower in the autumn/winter period, but remained a significant fraction
of the fluxes (Fig. 7). Peak Gephyrocapsa spp. < 3 μm abundances of
about 50% of all coccoliths at 2000 m were seen in May (Fig. 8).
Calcidiscus leptoporus and Gephyrocapsa oceanica showed similar
trends in abudance as Gephyrocapsa spp., whereby both species
appeared most abundant in the 500 m sediment trap in late sum-
mer/early autumn (Figs. 7 and 8) at both depths. Calcidiscus lepto-
porus reached a maximum 13% of the coccolithophore assemblage in
February, but was a small contributor (av. < 4%) to coccolith fluxes for
the rest of the sampling period (Fig. 7).

Syracosphaera spp. and Coccolithus pelagicus exhibited highest
relative abundances in spring, with peaks in September and October,
respectively (Fig. 7), and lower or fluctuating abundances for the rest of
the sampling year. Gephyrocapsa muellerae was found at highest
relative abundances in winter, but peaked in absolute abundance in late
spring/early summer at 500 m (Fig. 7).

4. Discussion

4.1. Magnitude and composition of the particle fluxes

The annual TMF in the 500 m trap (17 g m−2 y−1) was within the
range of previous flux measurements at 1000 m at the 47°S site (15 ±
3 g m−2 y−1 at 1000 m; Rigual-Hernández et al., 2015b; Trull et al.,
2001c). Moreover, annual TMF at 500 m was of the same order of
magnitude as, though slightly higher than, fluxes measured in the
western Pacific and New Zealand sectors of the SAZ (11.5 g m−2 y−1 at
1000 m (Honjo et al., 2000) and 14.9 g m−2 y−1 at 1500 m (Nodder
et al., 2016), respectively). The similarity between fluxes recorded at
500 m (present study) and the fluxes recorded at 1000 m (Honjo et al.,
2000; Nodder and Northcote, 2001) indicate that the particle fluxes
experienced little change between the base of the mixed layer and the
mesopelagic zone (~1000 m) (i.e. the deep twilight). Annual TMF was
not calculated for the 2000 m trap, as only cups 1–11 and 17 contained
enough material for analysis. When only these first 11 sampling cups
representing the spring/summer period were taken into account, TMF
at the 2000 m trap was higher than at the 500 m trap (103 vs.
60.5 mg m−2 d−1, respectively) (Table 1). Trapping efficiency is often
greater at depth due to lower current speeds and greater consolidation
of aggregates (Scholten et al., 2001; Yu et al., 2001), potentially
explaining the higher fluxes at the 2000 m trap. Input of resuspended
sediment into deep sediment traps has been reported in pelagic
systems (e.g. Treppke et al., 1996). The potential lithogenic transport
and input from the Tasmanian coast via the Tasman Outflow (EAC
derived; Herraiz-Borreguero and Rintoul, 2011) has been considered
previously (Findlay, 1998; Findlay and Giraudeau, 2000; Rigual-
Hernández et al., 2016b). Yet, evidence from lithogenic fluxes calcu-
lated from the initial SAZ project sediment trap deployment at 47°S
(1997–1998) were very low: 0.66 g m−2 y−1 at 2000 m (Trull et al.,
2001a), suggesting that the influence of resuspended sediments can be
considered negligible in this study.

Biogeochemical fluxes at 47°S were carbonate-rich ( > 70%
annual TMF; Table 1) and silicate-poor, confirming previous regio-
nal microplankton investigations where live assemblages were
dominated by non-siliceous taxa (de Salas et al., 2011; Kopczyńska
et al., 2001). Coccolith flux to both depths was over three orders of
magnitude greater than diatom flux. Although this study did not
calculate the specific contribution of coccoliths to the carbonate
component of fluxes captured in the traps, the very high correlation
between coccolith and CaCO3 fluxes (Table 2) suggest that coccoliths
were likely an important contributor to the carbonate fraction.
Likewise, diatom flux was strongly correlated with BSi flux, again
suggesting that diatoms were an important component of BSi fluxes
at both depths (Table 1).
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Foraminifera and pteropods are also known to be important
contributors to Southern Ocean CaCO3 export (Schiebel, 2002; King
and Howard, 2005; Howard et al., 2011; Roberts et al., 2011), but were
not considered in this study. However, both pteropod and foraminifera
fluxes have been previously documented in sediment traps from the
region (Howard et al., 2011 and King and Howard, 2003, respectively).

The BSi: PIC molar ratio at this site was «1 (Table 1), placing it
within the “carbonate ocean” defined by Honjo et al. (2008), as

opposed to zonal systems further south where particle fluxes are
diatom-dominated (i.e. “silica ocean”). The annual POC flux measured
at 500 m at 47°S (1.1 g m−2 yr−1) was similar to those reported in
previous 1000 m depth deployments at the same site (0.9–1.4 g m−2

yr−1; Rigual-Hernández et al., 2015b; Trull et al., 2001c), and in the
SAZ of the western Pacific sector (1.0 g m−2 yr−1; Honjo et al., 2000).
The annual POC flux values at 500 m were similar to the global average
of 1.4 g C m−2 d−1 (normalised to 2000 m; Lampitt and Antia (1997)),

Fig. 7. Relative flux contributions (%; lines) and absolute abundance (coccoliths m2 d−1 ×107; bars) of eight major coccolithophore taxa across the sampling year at 500 m. Grey vertical
bars differentiate the four seasons. Missing cup 12 not indicated.

Fig. 8. Relative flux contributions (%; lines) and absolute abundance (coccoliths m2 d−1 ×107; bars) of eight major coccolithophore taxa across the sampling year at 2000 m. Grey
vertical bars differentiate the four seasons. No data available in March and April, and from June to October. Data from cup 17 (May) is shown as a data point on each plot.
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which highlights the importance of this region for carbon sequestration
despite its relatively low algal biomass accumulation (Bowie et al.,
2011). In this study POC flux was not normalised due to the lack of a
full annual data series from this study, and would be slightly lower if
normalised to 2000 m.

4.2. Temporal dynamics of particle fluxes

Total Mass Flux (TMF) peaked in December in both the 500 and
2000 m traps, and again in February at the 2000 m trap only (Fig. 2a
and b). Maximum TMF occurred one month prior to peak chlorophyll-
a concentrations, and one sampling interval later than maximum PAR
(Fig. 2a). Peak Chl-a represents the time at which plankton abundances
are greatest, and yet TMF in the sediment trap peaked and began to
decline before the Chl-a maximum. Although speculative, if the
sediment traps were capturing material from an earlier-blooming
patch of ocean due to lateral transport, then maximum trap abun-
dances could appear to occur before peak Chl-a was measured. The
second TMF peak at 2000 m occurred one cup later than maximum
Chl-a, but was not observed in the 500 m trap, again suggesting the
capture of a bloom upstream of the mooring site at 2000 m.

Both diatom and coccolith fluxes peaked simultaneously in
December (Fig. 3), and subsided before peak Chl-a concentration in
surface waters (Fig. 2). This observation is surprising, as diatoms
typically bloom before coccolithophores in temperate (e.g. Margalef,
1978; Rigual-Hernández et al., 2013; Thunell et al., 1996) and polar
regions (Alvain et al., 2008). The simultaneous peaks in biogeochem-
ical flux components and both diatoms and coccoliths could be due to
the co-sedimentation of material into the sediment traps, caused by
aggregation of material (Rigual-Hernández et al., 2015b), with this
speculation consistent with the correlation matrix outcomes.

The bulk of oceanic POC export in many pelagic ecosystems often
occurs in the form of aggregates, which can be clusters of cells and
particles ballasted by lithogenic material and phytoplankton remains
and/or zooplankton faecal pellets (Honjo et al., 2008). Coccolith-
ballasted aggregates are denser and tend to fall faster through the
water column than diatom-ballasted aggregates (Klaas and Archer,
2002; Iversen and Ploug, 2010). Coccoliths can be “scavenged” by
aggregates (De La Rocha and Passow, 2007; Iversen et al., 2010),
enhancing transport speed (Iversen and Ploug, 2010). During times of
high productivity (e.g. September to December at 500 m), rapid
aggregate or faecal pellet formation and scavenging of smaller particles
could lead to the simultaneous peaking of coccoliths and diatoms in
sediment traps, as previously suggested by Rigual-Hernández et al.
(2015b). The correlation between all biogeochemical components, and
both phytoplankton groups shown in the correlation matrix (Table 2)
lends further support to the suggestion of co-sedimentation of material,
and explains why the two groups appear to flourish at the same time in
sediment traps.

Particle sinking speed was not estimated in this study, however, the
peaks in TMF at both 500 m and 2000 m depth that occurred in
December were presumed to represent the capture of the same bloom
material. For this to be the case, sinking speeds of ~107 m d−1 are
sufficient for the 14 d capture interval in the spring/summer period. A
sediment trap study in the Australian sector of the PFZ found POC
sinking rates of up to 850 m d−1 (Ebersbach et al., 2011), hence the
estimated ~107 m d−1 is plausible. At 47°S, however, Rigual-
Hernández et al. (2016b) calculated particle settling speeds of only
20 m d−1 between 1000 m and 2000 m depth. These latter settling
speed estimates at the deeper depths did not investigate the type or
form of exported particles. Particles packaged within faecal pellets, for
example, will fall much faster than amorphous aggregates (Ebersbach
et al., 2011). In order for particles to travel the estimated ~107 m d−1

required in the present study, aggregated faecal pellets would have
been the likely export particle form. The state of particles captured in
this study's sediment traps was not noted due to post-collection

modification of material, however, it is possible that faecal pellets were
also the main form of particle packaging and settling in this study.

Fluxes between autumn and winter (March–August, 500 m) were
uncharacteristically low in comparison to a multi-year trapping study
at 800 m at the same site (Rigual-Hernández et al., 2015b), while fluxes
registered in September 2004 during the peak-flux event were atypi-
cally high. A potential explanation is that the trap opening clogged in
mid-February, resulting in low capture for the remainder of the year,
until the built-up material presumably fell, all at once, into the final
cup. If this was the case, then estimates of annual TMF are still valid, as
the material captured in the peak-flux event represents that of the
entire late summer to winter period. However, it may not be mean-
ingful to analyse winter flux seasonality, thus discussion hereafter
focuses on the spring/summer capture period.

4.3. Coccolith and diatom fluxes

The coccolith flux values in this study are some of the highest
recorded in sediment traps deployed in the Southern Ocean. By way of
comparison, a study by Ternois et al. (1998) in the Indian sector of the
Southern Ocean (50°S, 68°E), within the PFZ, documented coccolith
fluxes four orders of magnitude lower (4.7×107 m−2 yr−1), despite
trapping at a similar latitude. Contrarily, studies on living coccolitho-
phore assemblages in the New Zealand sector indicated the highest
concentrations of coccolithophores within the PFZ, and lowest within
the SAZ (Malinverno et al., 2015, 2016). Coccolith concentrations are
seasonally so high in the Southern Ocean, particularly near the
Subantarctic Front, that the region has been termed the “Great
Calcite Belt” (Balch et al., 2011, 2016).

Coccolith fluxes in this study were similar to findings at more
temperate sites. Broerse et al. (2000) calculated 4.4×1011, and
1.4×1011 coccoliths m−2 yr−1 in sediment traps deployed in the
subtropical (34°N) and temperate (48°N) northeast Atlantic, respec-
tively. Ziveri et al. (2000) captured coccolith fluxes from traps placed in
the northeast Atlantic (48°S) of 1×1010 coccoliths m−2 y−1. In the
tropical Panama Basin (2°S–8°N), traps deployed by Steinmetz (1994)
recorded coccolith fluxes of 1.2×1011 m−2 yr−1, and 3.3×1011 m−2 yr−1.
The coccolith fluxes found in the SAZ, south of Australia, appear to
represent abundances transitional between those seen in polar or
warmer temperate regions.

Annual diatom valve fluxes at 500 m in the present study (2.3×108

valves m−2 yr−1) are in agreement with the diatom flux estimate of
0.3×108 valves m−2 yr−1 at 1000 m at the same site (Rigual-Hernández
et al., 2015b). The latter authors’ findings suggest little silica dissolu-
tion below the mixed layer, and that annual diatom export at 47°S in
the SAZ, south of Australia, is relatively constant.

The temporal flux observations from the 47°S traps are in line with
previous studies globally and regionally. Low diatom fluxes are typical
of low-productivity areas of the carbonate ocean, such as much of the
SAZ, including the present study region (Trull et al., 2001b; Honjo
et al., 2008). Diatom growth in the SAZ is thought to be limited by low
iron and silicic acid availability (Hutchins et al., 2001; Leblanc et al.,
2005), as well as light limitation due to the deep mixed layer (Rintoul
and Trull, 2001). Coccolithophores are not Si-dependent, and can
tolerate low nutrient concentrations (Balch, 2004). The southernmost
extent for coccolithophore growth appears to be at around 2 °C
(Gravalosa et al., 2008). In the Australian sector, with the exception
of Emiliania huxleyi, coccolithophore abundances decrease south of
the SAZ, and are not found below the Polar Front (Findlay and
Giraudeau, 2000). The distribution of E. huxleyi is more complex,
forming a monospecific assemblage south of the Polar Front, before
abundances halt polewards of ~60°S (Nishida, 1986; Findlay and
Giraudeau, 2000). In the Indian sector of the STZ and PFZ, the high
abundances of the ubiquitous E. huxleyi have been attributed to the
inability of diatoms to take advantage of the available nutrients (Patil
et al., 2014). It is likely that a similar situation occurs in the Australian

J.V. Wilks et al. Deep–Sea Research Part I 121 (2017) 143–159

153

Chapter Two

46



sector of the SAZ, whereby coccolithophores and other phytoflagellates
are able to capitalise on available nutrients, hence the low diatom
abundances reported in both live (Kopczyńska et al., 2007) and
sediment trap samples (this study; Rigual-Hernández et al., 2015b).

4.4. Diatom assemblage composition and seasonality

The diatom assemblage at 47°S was consistent with Subantarctic
assemblages influenced by Subtropical waters, as previously reported
from studies focused on both live assemblages (e.g. Kopczyńska et al.,
2001; Kopczyńska et al., 2007; De Salas et al., 2011; Olguín et al.,
2011; Assmy et al., 2013) and more regionalised seafloor sediment
distributions (e.g. Armand et al., 2005; Crosta et al., 2005; Romero
et al., 2005a, 2005b; Rigual-Hernández et al., 2016b). The influence of
warmer waters relative to the trap location was demonstrated via
moderate to rare occurrences of diatom taxa such as Thalassiosira
lineata, Fragilariopsis doliolus, Nitzschia spp., Hemidiscus cuneifor-
mis, and isolated occurrences of Cocconeis spp. and Diploneis spp.
(Table 3). The Zeehan Current, which flows from coastal South
Australia, and southwards along western Tasmania, is a possible source
of warm water species input, in conjunction with the East Australia
Current (EAC)-derived Tasman Outflow (Herraiz-Borreguero and
Rintoul, 2011). Thus, the possibility of diatom species input from the
Tasmanian shelf is not unlikely, and previous studies have speculated
on the influence of Tasmanian waters on sediment trap assemblages at
the same site (Rigual-Hernández et al., 2016b). Seafloor sediment
assemblages reported elsewhere resembled the species compositions
observed in the traps more closely than in surface water studies, with
high sediment abundances of Azpeitia tabularis (Romero et al., 2005a,
2005b) and Fragilariopsis kerguelensis (Crosta et al., 2005). Some
subtropical species occurred at 47°S, including Fragilariopsis doliolus,
Roperia tesselata, Thalassiosira symmetrica, Hemidiscus cuneiformis
and Shionodiscus oestrupii (formerly Thalassiosira oestrupii) (Crosta
et al., 2005; Romero et al., 2005a, 2005b). Lower diatom assemblage
diversity in winter cups was likely a product of the low sample sizes
(Table 1; Supplementary Tables 2a and 2b).

The results of the CCA performed on the diatom fluxes revealed
three rough ecological groupings found within sediment traps: the PAR
(first group), Transition (second group), and Preservation (third group)
species, which were collectively plotted by way of comparison with the
current understanding of live diatom succession (Fig. 9b). These
ecological groupings are consistent with the theories of diatom succes-
sion proposed by both Guillard and Kilham (1977) for the Southern
Ocean, and Quéguiner (2013) for the Permanently Open Ocean Zone
(POOZ) and the PFZ, summarised in Fig. 9a. Diatom succession
schemes for the Southern Ocean identify two different “groups” of
diatoms, forming three different assemblage stages. Early diatom
assemblage succession in the POOZ and PFZ is generally dominated
by fast-growing, lightly silicified species (i.e. opportunistic or r-strate-
gists) that take quick advantage of the increased light in spring- the
“group 1” species (Quéguiner 2013), forming the stage 1 assemblage
(Guillard and Kilham, 1977) (Fig. 9a). As “group 1” species decline,
they are overtaken by “group 2” species, which are slower-growing,
large, and more heavily silicified, with a more persistent growth
strategy. High abundances of “group 2” species represent stage 3 of
diatom succession. Stage 2 occurs at the point junction between “group
1” and “group 2” species, and represents the most diverse stage of
diatom succession (Guillard and Kilham, 1977).

Diatoms, as well as other plankton groups, preserved within
sediment traps, reflect live assemblage succession after the filter of
transformational processes, which occur during particle sinking, have
taken place. These transformational processes include lateral transport,
particle repackaging and dissolution, and as such, sediment traps are
likely to provide an altered chronology of species succession and
relative abundances to live assemblage studies. Fig. 9b highlights the
apparent succession of the three ecological groupings identified by the

CCA. In 9b, the Preservation ecological grouping appears abundant
year-round, and particularly in winter. Of the other two groupings, the
PAR group reaches maximum abundances in early spring (during the
theoretical stage 1), and is overtaken by the Transition grouping in
summer (theoretical stage 2). During this theoretical stage 2 within the
sediment trap assemblages, diversity indices were highest (Table 1), as
per Guillard and Kilham (1977). In sediment trap stage 3, the heavily
silicified Preservation grouping dominated diatom assemblages, with a
sporadic presence of Transition species.

The PAR group identified from sediment trap assemblages was
analogous to the stage 1 of diatom succession identified by Guillard and
Kilham (1977) (Fig. 9a). This is supported by the correlation between
PAR and the PAR group species in the CCA (Fig. 4a). Chaetoceros
vegetative cells are commonly cited as the quintessential early-bloom-
ing species characteristic of this growth pattern (Smetacek et al., 2004;
Assmy et al., 2013; Boyd, 2013). While the vegetative cells of
Chaetoceros were almost absent at 500 m, they made up on average
8% of assemblages at 2000 m, appearing in late summer (December to
February). Chaetoceros spp. are opportunistic and form localised
blooms (Assmy et al., 2013), which could explain the appearance of
Chaetoceros vegetative cells in the deeper trap alone if the 500 m and
2000 m traps were sampling from different surface ocean patches.

Of the PAR group species, Fragilariopsis doliolus, Rhizosolenia
bergonii and Nitzschia kolaczekii typically inhabit more temperate
waters (Hasle and Syvertsen, 1997). Fragilariopsis doliolus and R.
bergonii exhibit persistent, but low, abundances within the northern
SAZ (Zielinski and Gersonde, 1997). The light silicification of “group 1”
species means that they are likely to be dissolved or fractured via
predation in the water column, leaving a much smaller record in
sediments than reflects their live abundances (Romero et al., 2000;
Romero et al., 2005a, 2005b). As a result, the “group 1” diatom signal
may be reduced or possibly invisible in sediment trap and seafloor
sediment studies compared to live observations. In addition to this,
sediment trap and seafloor sediment studies are likely to find that

Fig. 9. Schematic illustrating theoretical diatom succession in live assemblages and
sediment traps across a year in the SAZ (adapted from Guillard and Kilham (1977) and
Quéguiner (2013)). (A) Theoretical live assemblage succession of diatom groups: Stage 1
(light grey)=assemblage type dominated by small, fast-growing diatoms; Stage 2 (mid
grey)=transitional assemblage type with high-diversity diatom assemblage; Stage 3 (dark
grey)=assemblage dominated by large, slow-growing diatoms. (B) Combined relative
abundances of diatoms grouped into PAR, Transition and Preservation groups in this
study, across sampling year, as per groups indicated on Fig. 4.
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“group 1” species appear later in the season than expected, simply due
to the time elapsed between photic zone production and trap capture or
sedimentation (Fig. 9a; b).

The second successional grouping, the Transition group, was
characterised by the appearance of Chaetoceros resting spores (CRS)
within the sediment traps at 500 m and 2000 m. CRS were present in
spring, but appeared in significant numbers in late summer as the
bloom subsided (February and January; 500 m and 2000 m respec-
tively) (Figs. 5 and 6). CRS formation is triggered by declining
environmental conditions, particularly nitrogen limitation, but also
iron, silica and light limitation, such as occurs later in a bloom (e.g.
Leventer, 1991; Assmy et al., 2013). Resting spore formation repre-
sents the transition from the fast-growing PAR group towards an
assemblage characterised by slower-growing, heavily silicified species
(Quéguiner, 2013; Boyd et al., 2013; Guillard and Kilham, 1977)
(Fig. 9). Two centric species, Stellarima microtrias and Roperia
tesselata, appeared within the Transition group. Both of these species
were present throughout the spring sampling period, but reached
maximum abundances in April before declining to almost zero
abundances during the rest of the sample interval (Fig. 5). While R.
tesselata is commonly reported from the Subantarctic, S. microtrias is
endemic to the colder waters of the Southern Ocean (Hasle and
Syvertsen, 1997). This is potentially due to the transport of cooler
water northwards crossing the SAF (Rintoul and Trull, 2001), carrying
this species into the study area. Nitzschia bicapitata was also tenta-
tively placed within the Transition grouping, as it showed peak
abundances within spring and summer, but was also present in one
winter month (Fig. 5).

The third diatom grouping observed was named the Preservation
group, containing almost exclusively large, well-silicified diatoms, with
persistent year-round abundances, particularly abundant in the au-
tumn and winter months from March onwards. The Preservation group
archetype was Fragilariopsis kerguelensis, the most abundant and
widespread diatom in the surface sediments of the Southern Ocean
(Crosta et al., 2005). It was the most abundant diatom found in
sediment traps at both depths, and present year-round, (Figs. 5 and 6;
Table 3). Fragilariopsis kerguelensis exhibits a persistent strategy
(slow growing but present season-round), and is considered to sink
silica rather than carbon due to its thick, grazing and dissolution-
resistant frustule (Assmy et al., 2013). Despite being abundant in traps,
F. kerguelensis was rare in live assemblages at latitudes north of 53.7°S
(Kopczyńska et al., 2007). The relative rarity of this species in surface
waters compared to sediment traps points to selective enhancement of
abundances due to the dissolution of lighter species, as appears the
case with all of the Preservation group species.

Other preservation group diatoms included Azpeitia tabularis,
Thalassiosira lentiginosa, T. lineata, and Hemidiscus cuneiformis;
each considered heavily silicified and dissolution resistant species that
were well preserved in the 47°S sediment traps. Azpeitia tabularis and
H. cuneiformis are most abundant in subtropical waters, however A.
tabularis is considered cold tolerant and is abundant within sediments
in the SAZ (Romero et al., 2005a, 2005b). The strong presence of H.
cuneiformis is additional evidence for potential warm, coastal water
input from the north to the 47°S site, as this species tends to be
associated with more saline, oligotrophic water masses (Romero et al.,
2005a, 2005b). Thalassiosira lentiginosa is a widespread, open ocean
species endemic to the Southern Ocean (Zielinski and Gersonde, 1997),
and the large valves of this species were often found intact even in
poorly preserved samples. The preservation group in this study can be
considered akin to the “group 2” assemblage proposed by Quéguiner
(2013), heralding stage 3 of diatom bloom evolution (Guillard and
Kilham, 1977).

The diatoms that did not appear to sit within any grouping were
Thalassiosira ferelineata, and the Shionodiscus frenguellii group. It is
possible that the chosen environmental variables, SST and PAR, cannot
adequately explain the abundance patterns of any of these species, and

that other variables are in play, such as nutrient availability and/or
zooplankton grazing.

4.5. Coccolithophore assemblage composition and seasonality

The coccolithophores recovered from sediment traps at 47°S were
similar to the Emiliania huxleyi-dominated assemblage observed by
Findlay and Giraudeau (2000) taken from live samples at the same site.

The CCA performed on the coccoliths found in this study revealed
two major ecological groupings. The first grouping contained the taxa
Coccolithus pelagicus, Syracosphaera spp., and Gephyrocapsa muel-
lerae, and appeared more strongly correlated with PAR than the second
grouping (Fig. 4b). Both C. pelagicus and Syracosphaera spp. com-
prised more of the coccolithophore assemblage within the spring/
summer period, and were largely absent during the autumn and winter
months. This pattern was less distinct with G. muellerae, which
displayed sporadic peaks in abundance between periods of absence
within the traps (Fig. 7). Despite the incomplete record, the early-
peaking trend of the first grouping species was more pronounced at
2000 m, with all three taxa exhibiting highest abundances in
September or October, before declining to low winter abundances.
Contrary to the apparent seasonal succession recorded in the traps,
Syracosphaera spp. tend to be K-selected in other settings of the
world's oceans, often reaching maximum abundances later in the
productive season than more opportunistic coccolithophores (Broerse
et al., 2000; Dimiza et al., 2008). In the Australian sector,
Syracosphaera spp. were described as preferring warmer waters, and
were not found live south of 49°S (Findlay and Giraudeau, 2000).
Though speculative, the intrusion of warmer water filaments from the
north from earlier-blooming coccolithophore populations could have
resulted in the early-blooming appearance of Syracosphaera spp.
captured by these sediment traps. In contrast to the latter species,
both C. pelagicus and G. muellerae exist preferentially in cooler waters
(Findlay and Giraudeau, 2000).

The second grouping revealed by the CCA included the three most
abundant taxa found in sediment traps, with a preference for cooler
waters: E. huxleyi, Gephyrocapsa spp. < 3 μm, and C. leptoporus, with
the tentative inclusion of G. oceanica (Fig. 4b). The sharp rise in small
Gephyrocapsa spp. in late spring was followed by the rise in C.
leptoporus and E. huxleyi between summer and early autumn, and
the subsequent assemblage dominance of E. huxleyi for the remainder
of the year. The ubiquitous cosmopolitan E. huxleyi is considered the
most abundant coccolithophore species at high latitudes in both
hemispheres (e.g. Gravalosa et al., 2008; Saavedra-Pellitero et al.,
2014; Winter et al., 2014).

Emiliania huxleyi can be broadly defined as a R-selected, oppor-
tunistic species that exhibits a high growth rate compared to other
coccolithophore species (Tyrrell and Merico, 2004). High E. huxleyi
concentrations are a common feature in the Subtropical, Subantarctic,
and Polar Fronts (Balch et al., 2011). Although the factors selecting for
E. huxleyi blooms are still unclear, the development of this species
seems to be favoured by water column stability, high incident
irradiance, and relatively low nutrient concentrations (Iglesias-
Rodríguez et al., 2002). Indeed, E. huxleyi blooms in high latitude
systems are often associated with moderate stratification of the water
column and take place within a few weeks of the summer solstice in
high latitude systems of both hemispheres (Balch, 2004). Our results
agree well with this pattern as maximum of E. huxleyi were registered
in December coinciding with both the austral summer solstice and a
relatively stratified water column. Several morphotypes of this species
exist, though they were not discriminated in this study, as limited
material was available for coccolith analysis, and thus only light
microscopy was undertaken (see Section 2.4). However, a study by
Cubillos et al. (2007) identified E. huxleyi morphotypes in the
Australian sector of the Southern Ocean, finding the overcalcified “type
A” dominant within the SAZ, and replaced by lesser-calcified morpho-
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types south of the SAF. Type A E. huxleyi coccoliths were likely the
main morphotype captured in the present study.

Gephyrocapsa spp. < 3 μm were the next most abundant coccolith
grouping following E. huxleyi, making up 37.9% mean relative
abundance at 500 m, while the remaining species observed each
accounted for less than 2% of total coccoliths (Table 3).
Gephyrocapsa spp. < 3 μm are indicative of high productivity regions
such as areas of upwelling (Andruleit et al., 2003). Gephyrocapsa spp.
< 3 μm respond quickly to nutrient input, and are considered R-
selected in strategy (Dimiza et al., 2008), which could explain the
greater abundances of Gephyrocapsa spp. < 3 μm observed in the late
spring/early summer period. G. oceanica, like the small Gephyrocapsa
spp., are also considered R-selected (Dimiza et al., 2008), which lead to
the expectation that it would peak earlier in sediment trap assem-
blages. While it appeared in the summer period, maximum abundances
of G. oceanica occurred in autumn, hence its inclusion within the
second coccolithophore grouping.

Calcidiscus leptoporus represented a small (usually < 10% mean
relative abundance) but omnipresent component of coccoliths fluxes
throughout the sampling period, at both depths (Fig. 6). This species
tends to inhabit cool, nutrient rich waters (Boeckel et al., 2006). Like E.
huxleyi, several morphotypes of this species exist, however, they were
not identified in this study. Future work on sediment trap records in
the Australian sector will help to clarify the morphologies of C.
leptoporus in the SAZ. The abundance of C. leptoporus at 2000 m
was greater than twice that at 500 m during the spring/summer period
(Table 3), again possibly the result of some lateral transport of
coccoliths.

Helicosphaera carteri exhibited patchy abundances throughout the
year, peaking in both spring and autumn/winter (Fig. 7), which likely
resulted in it appearing distinct from both groups in the CCA (Fig. 4b).
The placement of H. carteri closer to the second coccolithophore
grouping could reflect its preference for cooler waters, like the majority
of the second grouping species.

4.6. Ecology and seasonal succession of diatoms and coccolithophores

This study found evidence largely consistent with the previously
diatom succession schemes. All three stages of diatom succession were
visible in the 47°S sediment trap assemblages, and corresponded to the
stages/groups outlined by previous workers on diatom succession. We
presumed that the second stage in diatom succession (i.e. Transitional
assemblage group; Fig. 9) was likely to be of shorter duration at depth
than in live assemblages. This is believed to be because the signal of
early-blooming taxa is small within traps due to dissolution, thus
assemblages are soon dominated by Preservation species, which
represent the greater fraction of diatoms captured in sediment traps.
Of the Transition group, only the presence of Chaetoceros resting
spores was an undeniable indicator. The Preservation group on the
other hand was unmistakeable in sediment traps, being more likely to
survive export intact than the other two groups. Selective preservation
of heavily silicified diatom species is most likely the main factor
determining the strongest evidence for stage 3 diatom succession in
the sediment traps (Fig. 9). The links between photic zone production
and sediment preservation are complex and unclear, with implications
for studies aiming to reconstruct past oceanic conditions using seafloor
sediment. Thus, further investigations in both surface layer and
sediment traps as well as in other sectors of the circumpolar SAZ are
required to better understand the diatom seasonal succession and links
between production and export in this region of the world's ocean.

Moreover, the data presented here represents the first seasonal
record of coccolithophore species succession in the SAZ.
Coccolithophore assemblage composition, registered by the sediment
traps, were consistent with previously reported live coccolithophore
assemblages in the surface waters of the region. Coccolithophore
assemblages were dominated by the ubiquitous species E. huxleyi

which represented 59% of the annual assemblage. Two ecological
groupings were observed relating to the seasonal succession of
coccolithophores captured in traps. The first grouping contained three
taxa (Coccolithus pelagicus, Syracosphaera spp., and Gephyrocapsa
muellerae) with seasonality associated with PAR. These species tended
to peak within the spring/summer period, and were absent or low in
autumn and winter. The second ecological grouping contained taxa
either displaying greater abundances outside of the spring/summer
period (e.g. C. leptoporus), or that were present persistently year-
round (such as E. huxleyi). The appearance of coccolithophore succes-
sion from these sediment trap records was complex, and it is
speculated that oceanographic influences, such as warm water intru-
sion from the north, influenced assemblages captured by the sediment
traps. A seasonal evolution scheme of coccolithophore communities,
like that of diatoms, remains to be constructed. Further sediment trap
studies of seasonal coccolithophore assemblages will allow for a deeper
understanding of coccolithophore ecology. Live assemblage sampling
in the SAZ, and analyses of coccolithophore assemblages within, will be
necessary to begin to identify a generalised successional scheme for this
group.

5. Conclusions

This study reports on the biochemical, siliceous and calcareous
phytoplankton fluxes registered by a time-series sediment trap de-
ployed during a year in the Australian sector of the SAZ at 500 m and
2000 m depths. The BSi: PIC reflects the high abundance of cocco-
lithophores and other calcareous microplankton in comparison with
diatoms (three orders of magnitude lower). The specific contribution of
the two phytoplankton groups to POC export could not be quantified,
however, it is suggested that coccoliths provide a major source of
ballast for settling particles in this sector of the SAZ. Total mass fluxes
were seasonal, with the overwhelming majority of material captured
between spring and early summer. The maximum particle flux was
registered at the same time at both depths, despite a 1500 m vertical
disparity between the traps, leading to the inference that particle
settling speed was high, at ~100 m d−1.

Diatom assemblages in this study displayed some expected succes-
sional trends in keeping with ecological succession theory, with some
differences thought to have resulted from the transformation of
particles anticipated to have occurred at depth and with particle
export. Diatom assemblages were roughly categorised into three
ecological groupings: the “PAR group” of fast-proliferating, early
blooming species, the "Transition group”, and the “Preservation group”
of heavily silicified large diatoms. A scheme is presented illustrating the
effects of transport through the water column on the appearance of
diatom succession from sediment trap records in the SAZ. Further
comparison of diatom successional patterns between live and sediment
assemblages is warranted to better understand the transformational
processes at play in this region. Palaeoreconstructions using preserved
diatoms, and particularly those that use diatoms as seasonal signals,
rely upon accurately linking surface processes to the sediment. Future
clarification of how live diatom assemblage seasonality is reflected in
the sediment or in sediment traps will lend greater accuracy to
palaeoreconstructive work.

Coccolith assemblages also displayed some successional trends,
with two ecological groupings of taxa identified within sediment traps.
The precise interaction between these ecological groupings and envir-
onmental variables is yet to be determined, and will require further
sediment trap analysis. Work on differentiating the morphological
variations among coccoliths captured by sediment traps in the
Australian sector will be conducted in future studies.

A deeper understanding of the biological and physical processes
that control the carbon export in the SAZ is of critical importance to
determine of the role of the Southern Ocean in the global cycling of
nutrients and climate. The results of the present and previous studies
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on the 47°S site show that the carbon export in the Australian sector of
the SAZ is similar to those reported in other zonal systems further
south (PFZ and AZ). Coccolithophore-related carbon export has been
found to be significant in the SAZ, however, the specific contribution of
different species to export, and the expression of coccolithophore
seasonality in sediment traps, will be the focus of future trapping
studies.
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Abstract 11 

The Chatham Rise supports some of New Zealand’s most economically and environmentally valuable 12 
fish species, fuelled by the productive waters of the Subtropical Frontal Zone. Climate change-related 13 
shifts in phytoplankton community structures are predicted and may affect Chatham Rise 14 
productivity. However, little is known about how two major groups, the diatoms and 15 
coccolithophores, will respond, as knowledge of their export and seasonality is not known in the SW 16 
Pacific sector. This study is the first to report on phytoplankton seasonality in this region, using a 12-17 
month sediment trap record (1996-1997), both north (subtropical) and south of the Chatham Rise 18 
(subantarctic). Diatom and coccolithophore flux assemblages were characterised at 300 and 1000 m 19 
trap depths. Northern phytoplankton assemblages were typical of the subtropics, with most 20 
particulate organic carbon and biogenic silica export associated with diatoms. A significant 21 
contribution of coastal and benthic diatom species in the northern traps suggests advection from a 22 
coastal regime, driven by the Wairarapa Eddy, but particle input via seafloor resuspension into the 23 
deep trap is also inferred. In the south, a combination of subantarctic and frontal zone communities 24 
were observed. Southern phytoplankton fluxes were on average an order of magnitude higher than 25 
the northern site, possibly due to the traps’ proximity to the productive Subtropical Frontal Zone. 26 
The bulk of diatom flux in the southern trap occurred during a 16-day spring Pseudo-nitzschia “pulse” 27 
event associated with high biogenic silica flux. High coccolith flux in the south was typical of 28 
subantarctic export regimes. This paper provides a baseline of phytoplankton assemblages across 29 
Chatham Rise, against which current and projected changes in environmental parameters may be 30 
assessed. 31 

Keywords  32 
Sediment trap; phytoplankton; diatom; coccolithophore; SW Pacific; export flux. 33 

1. Introduction  34 

Phytoplankton are responsible for ~50% of global carbon fixation (Field et al. 1998), and form the 35 
basis of marine food webs. The carbon fixed by phytoplankton may be exported to the deep ocean 36 
as cells sink, either individually, in aggregates, or as faecal pellets, in a process known as the biological 37 
pump (Honjo et al. 2014). The volume of carbon exported varies globally, as does the role of different 38 
phytoplankton groups in this process (De La Rocha and Passow 2007). Phytoplankton assemblage 39 
dynamics are predicted to shift under future climate change scenarios (Law et al. 2017), with 40 
implications for the strength and efficiency of the biological pump (Boyd 2015; Deppeler and 41 
Davidson 2017). 42 

Siliceous and calcareous phytoplankton fluxes are reported in this study for the first time in this 43 
region, allowing new insights into particle export and community assemblages. The focus is on 44 
diatoms and coccolithophores. Diatoms are diverse, widespread aquatic phytoplankton that exist in 45 
both fresh and marine environments, as well as terrestrial environments and ice. They are major 46 
contributors to carbon export due to their robust, siliceous frustules (Honjo 1997). Coccolithophores 47 
are unicellular marine phytoplankton that possess calcareous scales (coccoliths). They contribute 48 
significantly to the global carbon cycle as both organic carbon and carbonate-producers (Broecker 49 
and Clark 2009), because the coccoliths provide ballast, which may boost sinking rates of organic 50 
matter (Klaas and Archer 2002). The productivity and assemblage composition of both diatoms and 51 
coccolithophores are predicted to be affected by increasing ocean acidification, as well as climate-52 
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change-related changes in light, temperature and nutrient availability in the future (Lefebvre et al. 53 
2012; Kottmeier et al. 2016; Trimborn et al. 2017).  54 

The Chatham Rise is an undersea ridge extending due east from the north-eastern coast of the South 55 
Island of New Zealand (Nodder et al. 2012). The rise constrains the passage of the Subtropical Frontal 56 
Zone (STFZ), representing the convergence of subtropical and subantarctic waters (Sutton 2001; 57 
Chiswell et al. 2015a). The zone is a significant, seasonal sink for atmospheric carbon due to elevated 58 
phytoplankton productivity (Currie and Hunter 1998), and supports important deep-water fish stocks 59 
(Bull and Livingston 2001; Clark 2001). Phytoplankton composition has been analysed from water 60 
samples across and on the Chatham Rise (Bradford-Grieve et al. 1997; Chang and Gall 1998; Boyd et 61 
al. 1999; Chang and Northcote 2016). Remotely-sensed ocean colour data has been used effectively 62 
to estimate phytoplankton abundance and composition on seasonal timescales (Murphy et al. 2001), 63 
and diatom microfossil assemblage distributions either side of the Rise have been mapped using 64 
sediment core-tops (Fenner et al. 1992; Cochran and Neil 2009). Recent studies of coccolithophore 65 
biogeography have been conducted in the New Zealand region on surface water samples (Saavedra-66 
Pellitero et al. 2014; Chang and Northcote 2016), reporting high coccolithophore diversity in New 67 
Zealand waters. 68 

Sediment traps are used to sample the composition and seasonality of export fluxes and link surface 69 
processes with the sedimentary record (Buesseler et al. 2007). In the New Zealand region, short-70 
term floating traps (1-3 days deployment) have been used to measure total mass flux, and analyses 71 
of phytoplankton groups present in the subtropical, subantarctic, and frontal zones (Nodder 1997a; 72 
Nodder and Gall 1998; Nodder and Alexander 1998), while longer term moored sediment trap 73 
records have been obtained from the flanks of the Chatham Rise and in the subtropics and 74 
subantarctic (Nodder and Northcote 2001; Nodder et al. 2005; Northcote and Neil 2005; Sikes et al. 75 
2005; Nodder et al. 2016). However, no study has specifically quantified diatom or coccolithophore 76 
assemblage composition nor seasonality from sediment trap records across this region.  77 

This study reports on diatom and coccolithophore fluxes and assemblage seasonality from a pair of 78 
sediment trap deployments moored on the northern and southern flanks of the Chatham Rise 79 
between June 1996 and May 1997, to test if differences would be observed in production and 80 
sedimentation between the two distinct oceanographic zones (Nodder and Northcote 2001). These 81 
20-year-old historical samples are an important archival record of diatom and coccolithophore mass 82 
flux and assemblage seasonality from the SW Pacific Ocean. By analysing these trap archives, this 83 
study adds to existing knowledge on fluxes over the rise since Nodder and Northcote (2001). This 84 
record may be used as a point of comparison for future studies

1.1 Oceanographic setting 86 

The Chatham Rise is a ~1500 km long submarine rise, spanning 42° 12’-45° S, and from the eastern 87 
coast of New Zealand (172° 48' E) to roughly 168° 6’ W. The convergence of subtropical water (north) 88 
and subantarctic water (south) over the Chatham Rise occurs at the Subtropical Frontal Zone (STFZ). 89 
The zone is ~150 km wide (Sutton 2001), and is characterised by strong temperature and salinity 90 
gradients (Chiswell 2001; Sutton 2001; Chiswell 2002). It is bounded by two fronts, the north 91 
Subtropical Front (NSTF) and the stronger south Subtropical Front (SSTF) (Belkin 1988, Stanton and 92 
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Ridgway 1988, Belkin and Gordon 1996, Sutton 2001; Fig. 1). The STFZ is considered “bathymetrically 93 
locked” to the Chatham Rise (Heath 1985; Chiswell 2001; Sutton 2001; Chiswell et al. 2015a; Fig. 1), 94 
thus occupying a relatively constant position in this region. The NSTF meanders north and south 95 
(Stanton and Ridgway 1988) and is impacted by the large Wairarapa Eddy to the north of the rise 96 
(Roemmich and Sutton, 1998; Chiswell 2005).  97 

 98 

Figure 1. Schematic of New Zealand region showing generalized oceanographic features influencing the mooring sites, and 99 
front positions (after Sutton 2001, Fig. 1). Abbreviations: East Cape Current, ECC; Wairarapa Eddy, WE; Southland Current, 100 
SC; North Subtropical Front, NSTF; South Subtropical Front, SSTF; Subtropical Frontal Zone, STFZ (gray region); North 101 
Chatham Rise, NCR; South Chatham Rise, SCR. Nearby trap deployments STM and SAM (indicated as orange dots; Nodder 102 
et al. 2016). Plotted using Ocean Data View 4, available at http://odv.awi.de (Schlitzer 2016). 103 

The two mooring location sites, North Chatham Rise (NCR) and South Chatham Rise (SCR), are ~200 104 
km apart, and subject to distinct hydrological and oceanographic conditions, but experience similar 105 
climatic conditions (Sikes et al. 2005). The mooring sites were chosen to represent the Subtropical 106 
Zone (STZ) and Subantarctic Zone (SAZ); however, it has more recently been established that the 107 
NCR and SCR mooring sites are both within the outer fringes of the STFZ (Sutton 2001). Also pictured 108 
in Fig. 1 are two nearby sediment trap deployments, the Subtropical Mooring (STM, north) and the 109 
Subantarctic Mooring (SBM, south) (Nodder et al. 2016). 110 

Despite their proximity to the STFZ, NCR and SCR are also influenced by subtropical and subantarctic 111 
waters, respectively. Water masses over NCR originate from the East Cape Current (ECC), which 112 
travels south-west along the east coast of the North Island, carrying warm, saline waters to the trap 113 
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site. These waters may become entrained into the Wairarapa Eddy (WE), a semi-permanent, 2000 m 114 
deep anticyclonic eddy system situated off the eastern coast of the North Island (Chiswell 2005) (Fig. 115 
1). The eddy circulates warmer subtropical water to the coast, periodically casting off smaller eddies 116 
(Chiswell 2005). The ECC is deflected east upon reaching the Chatham Rise (Heath 1985; Chiswell et 117 
al. 2015a), and continues eastwards along its northern flank. Subantarctic water may be advected 118 
northward at the western end of the rise through the Mernoo Gap, and become entrained into 119 
subtropical waters (Boyd et al. 1999; Chiswell 2001). 120 

The bulk of STFZ flow is thought to occur on the southern flank of the Chatham Rise (Chiswell 2001), 121 
associated with the southern front, explaining higher, but less variable current speeds measured at 122 
SCR than NCR (Chiswell 2001; Nodder and Northcote 2001). The southern boundary of the STFZ is 123 
derived from the Southland Current, which travels northwards along the east coast of the South 124 
Island, carrying subantarctic waters to the STFZ (Hopkins et al. 2010; Smith et al. 2013). The 125 
Southland Current varies seasonally and inter-annually, influencing the strength of the SSTF over the 126 
rise (Chiswell 2001; Sutton 2003; Hopkins et al. 2010). The SCR mooring was deployed on the 127 
southern flank of the Chatham Rise, which is influenced by typical cooler, less saline subantarctic 128 
waters.  CTD data for the trap sites were obtained between 1991 and 1999, but not published (S. 129 
Nodder, NIWA unpublished data). However, data from the CSIRO Atlas of Regional Seas (Ridgway et 130 
al. 2002) indicates higher year-round silicate concentrations (µmol/L) at NCR than SCR, and higher 131 
concentrations of the nutrients nitrate and phosphate at SCR than NCR (Sikes et al. 2005). This is 132 
consistent with the general High-Nitrate, Low-Chlorophyll, Low-Silicate status of subantarctic waters 133 
(Dugdale et al. 1995). Oxygen concentration (µmol/L) is not, on average, vastly different between 134 
the two sites (World Ocean Atlas 2009, Locarini et al. 2010). 135 

Mixed layer depths determined using the potential density difference from Argo floats deployed 136 
between 2001 and 2006 indicate generally deeper and more seasonally variable mixed layers at NCR 137 
than SCR (Supplementary Figure 1) (data from Dong et al. 2008). NCR mixed layers published in Dong 138 
et al. (2008) range between 220 m (August) and ~30 m (December/January), consistent with 139 
maximum depth determined by Sutton (2001) of roughly 200 m in winter. At SCR, maximum winter 140 
mixed layer depth was 117 m, while the minimum was 20 m (Supplementary Figure 1).  141 

2. Methodology 142 

2.1 Trap deployments 143 
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145 A detailed description of the field experiment and equipment used is given in Nodder and Northcote 
146 (2001). Briefly, two mooring lines were deployed at the NCR and SCR sites, each equipped with two 
147 McLaneTM PARFLUX Mk 7G-21 sediment traps placed at 300 m and 1000 m depth, in water depth of 
148 1500 m.  The NCR trap bottles were poisoned with borax-buffered HgCl2 (0.3%) to allow the 
149 deployments to be compared to pre-existing data sets, and to permit organic biomarker analyses 
150 planned for NCR samples (see Nodder and Northcote 2001). The SCR bottles were poisoned with 
151 borax-buffered formalin (6%). HgCl2 and formalin have similar effectiveness in reducing zooplankton 
152 swimmer activity and microbial activity (Hedges et al. 1993).  



The NCR traps were deployed at 42°42’S 178°38’E in early September 1996 while the SCR traps were 152 
deployed at 44°37’S 178°37’E in late May 1996. Both NCR and SCR moorings were recovered in May 153 
1997, sampling for 243, and 340 days, respectively. From mid-September 1996 until mid-December 154 
1996 the sampling interval at NCR was 7-8 days, with twice as many sampling intervals in this period 155 
at NCR than SCR. Sampling intervals for the SCR deployment were 16 days during the entire sampling 156 
period. From mid-December 1996 until the recovery of the traps, sampling intervals were 157 
synchronised between the two sites (Table 1). At NCR 300 m, five sample cups were inexplicably 158 
broken possibly at the time of retrieval between November 1996 and January 1997, as well as 159 
another single cup in April, leaving 178 sampling days.160 
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161 
Table 1. North Chatham Rise (NCR) and South Chatham Rise (SCR) mooring cup numbers and sampling intervals, Diatom 162 
Flux and Coccolith Flux. * indicates cups in which fewer than 100 diatom valves were enumerated. ᵻ indicates cups for 163 
which sampling was yet to commence. 164 
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Aanderaa current meters were included in the trap deployment, indicating speeds on average higher 165 
at the SCR deployment site (maximum 50 cm s-1), but were occasionally high at NCR too (maximum 166 
48 cm s-1). The threshold current speed over which trapping efficiency beings to decrease is 12 cm s-167 
1 (Baker et al. 1988). Current speeds during this deployment were mainly below this threshold, and 168 
Nodder and Northcote (2001) did not find a strong relationship between current speed and mass 169 
flux capture efficiency, at either site or trap depths. They concluded that hydrodynamic bias of 170 
particle capture by the sediment traps is not a significant issue in the present study.  171 

2.2 Trap recovery and sample processing 172 
The trap sample processing protocol is provided by Nodder and Northcote (2001). After retrieval, 173 
subsamples were taken from each 250 mL sample bottle for nutrient analyses. The remaining 174 
material was sieved through a 1 mm mesh to remove swimmers, and split using a McLaneTM wet-175 
splitter. Several fractions were used in determining biogeochemical fluxes, discussed in Nodder and 176 
Northcote (2001). This study uses one 1/16th split from each trap depth at each site. Of the 1/16th 177 
split, 10 mL was set aside for coccolith analysis (1/80th of original sample). Although this is a small 178 
split, in most cases the minimum number of coccoliths counted to obtain a reasonable capture of 179 
species diversity was met. The remaining portion was cleaned for diatom counting. 180 

Sample cleaning for diatom analysis followed Romero et al. (1999), involving a treatment of 181 
saturated potassium permanganate, 3M hydrochloric acid and 30% hydrogen peroxide to remove 182 
organic material. The remaining siliceous material was transferred to a centrifuge tube and topped 183 
up with MilliQ water. The samples were then serially spun at low speeds (800 rpm) to avoid frustule 184 
breakage, the supernatant removed, the water topped up, and spun again until the pH of the samples 185 
was neutral for storage.  186 

2.3 Slide preparation and phytoplankton identification 187 

Diatom slides were prepared using a modified random settling method of Flores and Sierro (1997), 188 
with a known quantity of the suspension (200 µL to 25 mL, depending on sample density). Four slides 189 
were made per sample.  190 

Slides were viewed using an Olympus BH-2 compound light microscope at 1000x magnification. 191 
Diatom frustules were counted and identified to species level along 10 non-overlapping transects 192 
until 300 frustules per sample had been counted. 300 cells is the minimum threshold at which error 193 
stabilizes between replicate counts of the same sample, and a good balance is achieved between 194 
time taken and breadth of coverage of rare species (Bodén 1991). Diatom identification followed 195 
modern taxonomy as per Tomas (1997). Silicoflagellates and radiolarians encountered on these 196 
transects were also counted, but not identified. Diatoms that were poorly preserved, too small, or 197 
missing key taxonomic features were grouped into additional categories: unknown pennate, 198 
unknown centric, and unknown centric <15 μm. Chaetoceros vegetative cells were identified as 199 
subgenus Hyalochaete or Phaeoceros, and all resting spores of Chaetoceros were counted together. 200 
Pseudo-nitzschia spp. were not identified past genus level at SCR as accurate identification of this 201 
group requires scanning electron microscopy (Ajani et al. 2013), and the samples were too dense.  202 
Determination of NCR diatom taxa as coastal, benthic, coastal and cosmopolitan, or open-ocean was 203 
as per ecological descriptions in Hallegraeff et al. (2010), Chang (1983) and Tomas (1997).  204 
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Slides for coccolith identification were prepared as per Flores and Sierro (1997), using the entire 10 205 
mL subsample. Only 300 m traps were used for coccolith analysis due to time constraints. 300 206 
coccoliths per sample were counted and identified to species level where possible under 1000x 207 
magnification using a LEICA DMRXE polarized light microscope, following the procedure of diatoms. 208 
Identification of coccolithophore taxa followed Young et al. (2003). Additional groupings were used 209 
to count unknown Gephyrocapsa spp., and Gephyrocapsa spp. <3 µm. Oolithotus spp., Pontosphaera 210 
spp., and Syracosphaera spp. were not identified past genus level.  211 

A list of all diatom and coccolithophore species encountered is given in Supplementary Tables 1a-2b. 212 

2.4 Flux calculations 213 

Diatom and silicoflagellate flux were calculated per m2 per day at each sampling interval using the 214 
equation of Sancetta and Calvert (1988), and modified to compensate for the 10 mL subsample set 215 
aside for the coccolith identification and flux calculation. For graphing, fluxes were transformed into 216 
relative abundances. Annual fluxes were calculated using the extrapolation method, whereby fluxes 217 
in missing samples were estimated based on the general flux trend (e.g. low fluxes in winter, high 218 
fluxes in spring). The SCR traps sampled for nearly a full annual cycle (340 days). Annualized fluxes 219 
at NCR 1000 m were based on 242 days and may be less accurate. Fluxes were not annualized at NCR 220 
300 m because only 178 days’ material was recovered.  221 

2.5 Environmental data from satellite remote-sensing 222 

Since the field experiment was conducted before the commencement of the Sea WIFS chlorophyll-a 223 
data record in September 1997, no chlorophyll-a data was available for the collection intervals of 224 
our sediment traps. Nonetheless, in order to have a general view of the timing of biomass 225 
accumulation, an inter-annual average of SeaWiFS ocean colour estimate of chlorophyll-a was 226 
obtained (Fig. 2A). Ten-year monthly average NASA Ocean Biogeochemical Model (NOBM) 227 
Photosynthetically Active Radiation (PAR; 2000 to 2010, 9 km resolution) and Chlorophyll-a 228 
concentration (Chl-a; 2002 to 2012, 4 km resolution) was obtained from the Goddard Earth Sciences 229 
Data and Information Services Centre (GES DISC) for 0.5 decimal degrees around each study site at 230 
NCR and SCR. Advanced Very High Resolution Radiometer (AVHRR) Sea Surface Temperature (SST; 9 231 
km resolution) data are reported in King and Howard (2001). 232 

2.6 Statistical Analyses 233 

Canonical Correspondence Analysis (CCA) was performed on the most abundant diatoms (>1% 234 
annual weighted abundance, and >5% relative abundance in any cup) and coccolithophore taxa 235 
(present in >1 cup) for both 300 m traps. Advanced Very High Resolution Radiometer (ADHRR) SST, 236 
10-year monthly average Photosynthetically Active Radiation (PAR), and 10-year monthly average 237 
Chlorophyll-a (Chl-a) concentration data were used as environmental parameters. Due to the 238 
apparent input of bottom-resuspended material within the 1000 m traps (Nodder and Northcote 239 
2001), CCA was only performed on the 300 m traps. 240 

Correlation matrices were constructed to compare seasonality of total diatom flux, total coccolith 241 
flux and silicoflagellate flux at both sites and depths, with the particle fluxes published in Nodder and 242 
Northcote (2001) (i.e. total mass flux (TMF), Particulate Organic Carbon (POC), Biogenic Silica (BSi), 243 
and Lithogenic Silica (LSi)). Chaetoceros resting spores and Pseudo-nitzschia spp. fluxes were 244 
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included in the matrices at NCR and SCR, respectively, as they comprised the bulk of diatom fluxes 245 
at their respective mooring sites. 246 

Assemblage diversity and evenness was calculated for diatoms and coccolithophores using the 247 
Shannon-Weaver Equitability index (Eh) (Shannon and Weaver 1949). 248 

3. Results 249 

3.1 Satellite-derived environmental parameters 250 

Chl-a was higher at NCR than SCR, and showed two peaks in production in an average year (Fig. 2A). 251 
Peak Chl-a occurred in November at 1 mg m-3 at NCR, with another small peak tending to occur in 252 
April at ~60% of the main spring peak (Fig. 2A). At SCR, maximum Chl-a tended to occur in February 253 
(0.72 mg m-3; Fig. 2A). PAR levels throughout an average year were similar at both NCR and SCR, 254 
increasing from austral winter lows in June, and peaking in mid-summer between December and 255 
January at 51 - 53 Einstein m−2 d−1 (Fig. 2B). Peak SST occurred at both sites in February at ~18°C and 256 
15°C, NCR and SCR, respectively (Fig. 2C). 257 
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 258 

Figure 2. Fluxes and environmental parameters across sampling period at NCR and SCR. A, NOBM-derived, 10 year monthly 259 
average Chlorophyll-a concentration (Chl-a; mg m-3); B, NOBM-derived 10 year monthly average Photosynthetically Active 260 
Radiation (PAR; Einstein m-2 d-1); C, AVHRR Sea Surface Temperature (SST; °C); D, total diatom and coccolith flux (valves 261 
and coccoliths m-2 d-1) at North Chatham Rise 300 m; E, total diatom flux at NCR 1000 m; F, total diatom and coccolith flux 262 
(valves and coccoliths m-2 d-1) at South Chatham Rise 300 m; G, total diatom flux at SCR 1000 m. SST data from King and 263 
Howard (2001). Gray bars delineate winter and summer months. 264 
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3.2 Phytoplankton flux seasonality 265 

Total diatom flux was higher at SCR than NCR (Table 1). At NCR, maximum flux occurred in mid-266 
October at 300 and 1000 m (29.4 x 104 and 4.0 x 104 valves m-2 d-1, respectively), though this 267 
maximum was less pronounced at 1000 m (Table 1; Figs. 2D-E). The bulk of diatom flux at NCR 300 268 
m was captured during an 8-day sampling interval in October (Fig. 2D). The 1000 m trap at NCR 269 
captured lower, but more consistent flux for the duration of sampling, though with slightly lower 270 
values over winter (Fig. 2D). Due to missing samples at NCR, the magnitude of summer fluxes at 300 271 
m are unknown. Diatom and coccolith flux was calculated for the 65-day spring bloom at both depths. 272 
Mean spring flux at NCR 300 m and 1000 m was 4.2 x 104 valves m-2 d-1 (or 3.4 x 105 m-2 for the 273 
season), and 1.8 x 104 diatom valves m-2 d-1 (1.4 x 105 m-2 per season), respectively. Annualized diatom 274 
flux at NCR 1000 m was 1.5 x106 m-2y-1(Table 1). 275 

Diatom flux peaked later in the season at SCR, and was captured during the late October-early 276 
November sampling interval at both trap depths (Fig. 2F-G). Total diatom flux for the SCR spring peak 277 
was 5.1 x 106 (300 m) and 8.3 x 106 (1000 m) diatom valves m-2 d-1. In contrast to NCR, peak diatom 278 
flux at SCR was greater at 1000 m than at 300 m (5.4 x 106, and 3.4 x 106 valves m-2 d-1, respectively; 279 
Table 1, Figs. 2F-G). Annual diatom flux was estimated at 8.2 x107 and 1.4 x108 valves m-2 y-1 at SCR 280 
300 m and 1000 m, respectively (Table 1).  281 

Silicoflagellates and radiolarians exhibited fluxes at times almost as high as diatom flux, and 282 
silicoflagellate and radiolarian fluxes were respectively six and four-times higher at SCR than NCR 283 
(Supplementary Tables 1a - 2b). At both sites, radiolarian flux increased with depth, but 284 
silicoflagellate flux increased with depth only at SCR (Supplementary Tables 1a - 2b). Peak 285 
silicoflagellate flux occurred in September at both NCR depths and at SCR 300 m, and in late-August 286 
at SCR 1000 m. Radiolarians, on the other hand, tended to show abundances more evenly spread 287 
throughout the sample period at NCR, though highest fluxes occurred in July/August at SCR 288 
(Supplementary Tables 1a - 2b). 289 

Annual coccolith flux at SCR 300 m was 1.4 x108 coccoliths m-2 y-1, and spring coccolith flux was higher 290 
at SCR 300 m (7.6 x 104 m-2 d-1 or 7.4 x 106 m-2 per season) than NCR (8.5 x 103 m-2 d-1 or 6.9 x 105 m-291 
2per season; Table 1). Maximum coccolith flux at NCR 300 m occurred in late-September, at 3.3 x 105 292 
coccoliths m-2 d-1, 16 days before the peak in diatom flux (Table 1, Fig. 2D). Flux was then low from 293 
October until after the deployment resumed trapping in mid-January, after which coccolith capture 294 
fluctuated with small peaks observed again in January, March and April (Table 1, Fig. 2D). Spring 295 
coccolith flux at NCR was 8.5 x 103 coccoliths m-2 d-1 (Table 1). At SCR, coccolith flux reached 296 
maximum abundance more than one month before the diatom spring bloom, peaking in late-297 
September at 3.5 x106 coccoliths m-2 d-1 (Table 1, Fig. 2F). Coccolith flux then exhibited another 298 
smaller peak simultaneous with the diatom pulse event at SCR, before decreasing more gradually to 299 
summer/autumn lows (Fig. 2F).  300 

3.3 Environmental influences on phytoplankton fluxes 301 

Inter-flux correlations tended to be weaker at SCR than NCR, and weaker at depth (Table 2). At NCR 302 
300 m, correlation matrices revealed a strong, positive correlation between diatom flux, and TMF, 303 
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POC and BSi flux (0.98, 0.99 and 0.97, respectively; Table 2), holding true to a lesser extent at 1000 304 
m. Silicoflagellates were strongly correlated (>0.9) with diatom flux, TMF, POC and BSi fluxes at NCR 305 
300 m (Table 2). Chaetoceros resting spores were associated with TMF, POC and BSi at both depths 306 
at NCR. 307 
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NCR 300 m Diatoms Coccoliths TMF POC  BSi  LSi  CRS 
Coccoliths -0.17 -      
TMF 0.98 -0.12 -     
POC  0.99 -0.17 0.99 -    
BSi  0.97 -0.14 0.93 0.97 -   
LSi  -0.03 0.37 -0.11 -0.03 0.17 -  
CRS 0.62 -0.26 0.55 0.63 0.75 0.33 - 
Silicoflagellates 0.95 0.11 0.94 0.94 0.93 0.06 0.54 
NCR 1000 m Diatoms Coccoliths TMF POC  BSi  LSi  CRS 
TMF 0.68 n/a -     
POC  0.80  0.77 -    
BSi  0.56  0.70 0.81 -   
LSi  -0.03  0.22 0.26 0.24 -  
CRS 0.98  0.64 0.79 0.52 -0.03 - 
Silicoflagellates 0.45  0.36 0.55 0.71 0.20 0.35 
SCR 300 m Diatoms Coccoliths TMF POC  BSi  LSi  Pseudo-nitzschia spp. 
Coccoliths 0.24 -      
TMF 0.88 0.57 -     
POC  0.51 0.73 0.66 -    
BSi  0.86 0.51 0.88 0.78 -   
LSi  0.13 0.82 0.49 0.68 0.45 -  
Pseudo-nitzschia spp. 1.00 -0.10 0.82 0.38 0.92 -0.33 - 
Silicoflagellates -0.12 0.86 0.29 0.56 0.23 0.94 -0.53 
SCR 1000 m Diatoms Coccoliths TMF POC  BSi  LSi  Pseudo-nitzschia spp. 
TMF 0.17 n/a -     
POC  0.76  0.56 -    
BSi  0.71  0.73 0.84 -   
LSi  -0.04  0.73 0.27 0.55 -  
Pseudo-nitzschia spp. 1.00  -0.01 0.77 0.68 -0.14 - 
Silicoflagellates 0.00  0.82 0.35 0.62 0.81 -0.16 

Table 2. Correlation matrices comparing diatom flux, coccolith flux, silicoflagellate flux and Pseudo-nitzschia spp. flux with Total Mass, POC, BSi and LSi fluxes. Values <-0.5 and >0.5 indicate 308 
negative and positive correlation, respectively (indicated in bold). Values close to 0 indicate no correlation. Total Mass Flux, TMF; Particulate Organic Carbon, POC; Biogenic Silica, BSi; 309 
Lithogenic Silica,LSi; Chaetoceros resting spores, CRS.310 
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At SCR 300 m, diatom flux was strongly positively correlated with TMF (0.88) and BSi flux (0.86), but 311 
more weakly with POC (0.51) (Table 2). Coccoliths, on the other hand, were more strongly related to 312 
POC (0.73). Pseudo-nitzschia spp. were correlated with both TMF and BSi, but negatively related to 313 
silicoflagellate abundances. Diatom flux remained correlated with POC (0.76) and BSi (0.71) flux at 314 
1000 m, but the relationship between diatom and TMF did not hold at SCR 1000 m. LSi and BSi were 315 
positively associated, and both were correlated with silicoflagellates at 1000 m (Table 2). 316 

3.4 Phytoplankton diversity 317 

78 diatom and 12 coccolithophore taxa were observed at the NCR site, and 64 diatom and 11 318 
coccolithophore taxa at SCR (Supplementary Tables 1a-2b).  Diatom diversity was slightly higher at 319 
the 300 m traps than at the 1000 m traps (Supplementary Table 3). At NCR, the lowest diversity 320 
occurred in late-April at 300 m (Eh = 0.31) and in early-October at 1000 m (0.29). Highest diversity 321 
occurred in January at 300 m at 0.81, and in mid-September at 1000 m, 0.91. Coccolithophore 322 
diversity was highest in early-October at NCR 300 m (1.0), and lowest in January (0.29), with a mean 323 
of 0.6 (Supplementary Table 3).  324 

At SCR, the lowest diatom diversity was found in mid-November at both 300 and 1000 m (Eh = 0.11 325 
and 0.21, respectively) (Supplementary Table 3). Highest diversity at 300 m was seen in late-326 
December at 0.93, and at 1000 m in the same cup at 0.81. Coccolithophore diversity was lower at 327 
SCR than NCR, with a mean of 0.49, and maxima and minima occurring in April and November, at 328 
0.71 and 0.24, respectively (Supplementary Table 3). 329 

3.5 NCR phytoplankton assemblages  330 

Coastal and benthic diatoms comprised up to 40% of total diatom flux at NCR 300 m, and ~30% at 331 
1000 m early in the sampling period (Fig. 3, Supplementary Tables 1a-1b). At other times, coastal 332 
and benthic input consistently represented between 5-10% of assemblages (Fig. 3). The benthic 333 
diatom Delphineis minutissima was common at both depths, comprising 5% and 5.5% of annual 334 
integrated diatom flux, at 300 and 1000 m, respectively (Table 2, Fig. 3). Other common benthic 335 
species at NCR included Navicula directa, Psammodictyon panduriformis, Diploneis bombus and 336 
Melosira spp. Several typically coastal diatoms, designated “coastal and cosmopolitan” were also 337 
abundant at NCR, including Chaetoceros spp. and Stephanopyxis orbicularis. The largest contributor 338 
to diatom flux over the whole sampling period were Chaetoceros resting spores, contributing 45% 339 
and 65% of annual integrated fluxes at 300 and 1000 m, respectively (Table 3).  340 
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 341 

Figure 3. Diatom assemblages expressed as proportions of benthic, coastal, coastal and cosmopolitan, and open ocean taxa 342 
throughout the sampling period. A, NCR 300 m; B, NCR 1000 m.343 
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Diatoms NCR 300 m NCR 1000 m SCR 300 m SCR 1000 m 
Achtinoptichus senarius  0.4   
Bacteriastrum spp. 2.56 0.1   
Chaetoceros resting spores 44.8 64.7 0.1 1.4 
Coscinodiscus spp. 0.4 0.3   
Delphineis minutissima 5.0 5.5   
Diploneis bombus  0.2   
Ditylum brightwellii 0.5 0.7   
Fragilariopsis kerguelensis  0.1  0.5 
Fragilariopsis separanda 0.5 1.0   
Chaetoceros Hyalochaete spp. 9.8 0.6   
Lauderia annulata 6.1     
Navicula directa 1.2 0.2   
Nitzschia bicapitata 1.2 0.8 2.5 3.3 
Odontella weissflogii 

 
0.7   

Chaetoceros Phaeoceros spp. 5.7 0.3   
Psammodictyon panduriformis 0.5 0.6   
Pseudo-nitzschia australis 2.5    
Pseudo-nitzschia pungens 3.3 0.3 95.0 90.7 
Rhizosolenia setigera 0.8 3.7   
Shionodiscus frenguellii group 1.2 2.6   
Shionodiscus oestrupii 0.4 2.6 0.5  
Shionodiscus poroseriatus 6.0 0.3   
Stephanopyxis orbicularis 1.2 2.8   
Thalassionema nitzschioides 0.6 2.4   
Thalassiosira ferelineata 0.3 0.2   
Centric <15 µm 1.3 0.6   
Coccolithophores     
Calcidiscus leptoporus 1.9 - 9.0 - 
Coccolithus pelagicus 1.3 -  - 
Emiliania huxleyi 65.7 - 76.7 - 
Gephyrocapsa muellerae 2.4 -  - 
Gephyrocapsa oceanica 3.8 - - - 
Gephyrocapsa spp. 7.5 - 0.5 - 
Gephyrocapsa spp. (< 3 µm) 11.0 - 11.3 - 
Helicosphaera carteri 0.7 -  - 
Umbellosphaera tenuis  - 1.7 - 
Oolithotus spp. 0.5 - 0.3 - 
Pontosphaera spp. 0.04 -  - 
Syracosphaera spp. 1.3 - 0.1 - 
Rhabdoliths 0.1 -  - 
Reworked 0.1 - - - 

Table 3. List of diatom and coccolithophore species of over 1% weighted annual relative abundance at either depth (%). 344 
Blank cells indicate values below 0.1. Dashes indicate no data. 345 
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At NCR 300 m, CCA plotted diatom species against two axes, with Axis 1 most strongly correlated 346 
with SST, and Axis 2 with PAR (Table 4). The CCA showed two seasonal groupings of diatoms (Fig. 4A), 347 
with taxa exhibiting peak relative abundance in spring clustered with the Chl-a vector, and 348 
summer/autumn species associated with SST. S. poroseriatus and S. frenguellii also appeared to be 349 
associated with PAR (Fig. 4A).  Most of the major diatom species observed at NCR 300 m peaked in 350 
relative abundance coinciding with the maximum spring peak in total diatom flux in early-October 351 
(Figs. 2, 5), with peak abundances associated with highest mean Chl-a (Figs. 4A, 5). These spring-352 
peaking taxa were Pseudo-nitzschia pungens, Psammodictyon panduriformis, Chaetoceros 353 
Hyalochaete and Phaeoceros spp., Stephanopyxis orbicularis, Shionodiscus poroseriatus, Lauderia 354 
annulata, Nitzschia bicapitata, Bacteriastrum spp., and centric spp. < 15µm (Fig. 5). Taxa exhibiting 355 
highest relative abundance in summer or autumn months formed a second grouping comprising 356 
Chaetoceros spores, Shionodiscus oestrupii, S. frenguellii group, and Rhizosolenia setigera, with 357 
peaks in abundance associated with higher SST (Fig. 4A). Note that many of these species also 358 
showed high abundances in spring, but showed a strong resurgence later in the sampling period. 359 
Delphineis minutissima was associated with this group, despite being most abundant in spring, 360 
although a secondary peak in D. minutissima relative abundance occurred in autumn when SST was 361 
near its warmest (Fig. 2C, 5). The correlation values between the vectors and axes are given in Table 362 
4. 363 

NCR diatom fluxes SCR diatom fluxes 
 Axis 1 Axis 2 Axis 1 Axis 2 
SST -0.73 -0.31 -0.27 0.21 
Chl-a 0.57 -0.27 -0.38 -0.33 
PAR -0.05 -0.75 0.50 0.09 

NCR coccolith fluxes SCR coccolith fluxes 
SST -0.36 0.26 -0.68 -0.27 
Chl-a 0.51 -0.26 -0.71 -0.10 
PAR 0.30 0.31 -0.01 0.36 

Table 4.   Correlation between axes and vectors for SCR and NCR plotted in Figs. 4 and 8.364 
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 365 

Figure 4. Canonical Correspondence Analysis (CCA) output for NCR 300 m. A, Diatoms ≥1% weighted annual RA and ≥5% RA 366 
in any cup, axis one = 71.3% of variation; B, coccolithophores present in more than one cup, axis one = 74.1% of variation. 367 
Vector lines are Sea Surface Temperature (SST), Photosynthetically Active Radiation (PAR) and Chlorophyll-a (Chl-a). Dashed 368 
line in A separates summer/autumn, and spring groupings. Dashed circle and solid circle in B highlights autumn and spring 369 
groupings, respectively. Correlation values between the vectors and axes are given in Table 4.370 

72

Chapter Three



 371 

Figure 5. NCR 300 m (dark blue bars) and 1000 m (light blue bars) dominant diatom relative abundance (%; lines) and absolute abundance (valves m2 d−1 × 103; bars). Diatom taxa over 1% 372 
weighted annual abundance and over 5% relative abundance in any cup. Grey vertical bars indicate no data collected.373 
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Generally, species fluxes at 1000 m were lower and less strongly seasonal than at 300 m, except S. 374 
oestrupii, which showed higher valve fluxes (but lower relative abundance) at the deeper trap, 375 
peaking at ~1300 valves m-2 d-1 in late-December (Fig. 5). Other species which showed peak valve 376 
flux in the summer months at 1000 m were Nitzschia bicapitata, Shionodiscus poroseriatus and S. 377 
frenguellii group (Fig. 5).  378 

The bulk of the coccolith spring peak at both sites was composed of Emiliania huxleyi, the most 379 
abundant coccolithophore observed in this study, at 66% total integrated abundance. This taxon 380 
dominated fluxes in all but one cup at NCR, with maximum abundances of 91% in October (Table 3, 381 
Fig. 6). Emiliania huxleyi abundances were above 30% for the entire sampling period, except in early 382 
October, when G. muellerae and G. spp. were co-dominant (Fig. 6). Small Gephyrocapsa spp. were 383 
the next most significant group, and combined, the genus Gephyrocapsa comprised nearly 25% of 384 
total coccolith flux at NCR (Table 3).  385 

 386 

Figure 6. NCR (light blue bars) and SCR (dark blue bars) coccolith relative abundance (%; lines) and absolute abundance 387 
(coccoliths m2 d−1 × 103; bars) of all coccoliths observed in more than one cup. Grey vertical bars indicate no data collected. 388 
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Ten coccolithophore taxa were plotted on the CCA, and three main clusters were identified: Chl-a-389 
associated taxa, autumn taxa weakly related to SST, and taxa not related to any one environmental 390 
variable, clustered towards the centre of the plot (Fig. 4B). Gephyrocapsa spp. appeared to be related 391 
to the PAR vector (Fig. 4B). The Chl-a cluster included Calcidiscus leptoporus, Gephyrocapsa oceanica 392 
and Syracosphaera spp., all of which showed highest absolute flux in the spring period (Fig. 6) C. 393 
leptoporus and Syracosphaera spp. exhibited high relative abundances in winter (low Chl-a), while G. 394 
oceanica showed greatest relative abundance in spring (high Chl-a; Fig. 6). The autumn-peaking taxa, 395 
Coccolithus pelagicus and Oolithotus spp., exhibited relative abundance maxima in March (Fig. 6). It 396 
should be noted that at low abundances (such as of the latter two species), the relationships 397 
presented in the CCA may not be robust, making some of these groupings simply suggestions of 398 
seasonality. The remaining coccolithophore taxa (E. huxleyi, G. muellerae and G. spp. <3µm, and 399 
Helicosphaera carteri) were present to some extent throughout the sampling period. (Fig. 6). 400 

3.6 SCR phytoplankton assemblages  401 

The bulk of diatom flux at SCR was composed of Pseudo-nitzschia spp., at 95% and 91% of annual 402 
diatom fluxes at 300 and 1000 m, respectively (Table 3). Pseudo-nitzschia spp. formed a dense bloom 403 
(“pulse”) event, the sedimentation of which was captured in October-November (Fig. 7; 404 
Supplementary Plate 1). The overwhelming flux of Pseudo-nitzschia caused the weighted annual 405 
abundances of other species to appear low, so the CCA was expanded to include the top 13 diatom 406 
taxa by relative abundance (Fig. 8).  Axis 1 was most strongly related to PAR, while Axis 2 was 407 
correlated, although weakly, to Chl-a (Table 4). 408 
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 409 

Figure 7. SCR 300 m (dark blue bars) and 1000 m (light blue bars) dominant diatom relative abundance (%; lines) and absolute abundance (valves m2 d−1 × 103; bars). Diatom taxa over 1% 410 
weighted annual abundance and over 5% relative abundance in any cup. Grey vertical bars indicate no data collected.411 
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 412 

Figure 8. Canonical Correspondence Analysis (CCA) output for site SCR 300 m. A) 13 most abundant diatoms by relative 413 
abundance, axis one = 87.6% of variation; B) coccolithophores present in more than one cup, axis one = 68.9% of variation. 414 
Vector lines are Sea Surface Temperature (SST), Photosynthetically Active Radiation (PAR) and Chlorophyll-a (Chl-a). Dashed 415 
line in A separates early-peaking/year-round from late-peaking/PAR groupings. Solid circle and dashed line in B highlights 416 
Chl-a/SST related, and Low-abundance/autumn groupings, respectively. Correlation values between the vectors and axes 417 
are given in Table  4.418 
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At SCR 300 m, the CCA identified taxa either peaking in relative abundance ‘late’ in the sample period 419 
(i.e. during or after the main October total diatom flux peak in mid-spring or summer), peaking early 420 
in the period (i.e. before the main October total diatom flux peak in winter to early-spring), or 421 
present year-round (Fig. 8A). The late-peaking species included the dominant Pseudo-nitzschia spp. 422 
(maximum relative abundance in spring), as well as S. poroseriatus (maximum in summer), S. 423 
frenguellii group (summer) and N. bicapitata (late spring). These taxa were associated with 424 
increasing PAR, and had maximum abundances from September to late January (Fig. 7, 8A). N. sicula 425 
appeared with this grouping despite seeing peak relative abundance just before the main October 426 
diatom flux peak, but was entirely absent after November, when PAR was highest (Figs. 2, 7).  427 

SST and Chl-a were correlated in the CCA, with the first minor peak in Chl-a associated with the 428 
beginning of SST warming in September, and the Chl-a maximum occurring with maximum SST in 429 
February (Figs. 2, 8A). Diatom taxa that plotted near the SST and Chl-a vectors fell into two groups, 430 
the first being early-peaking species showing highest relative abundances before the main spring 431 
peak in October, when SST began to increase (Rhizosolenia bergonii, Azpeitia tabularis, Hemidiscus 432 
cuneiformis and Shionodiscus oestrupii). The second group were those species with maximum 433 
relative abundances in summer when Chl-a was highest (Chaetoceros resting spores, Thalassionema 434 
nitzschioides var. lanceolate and Fragilariopsis kerguelensis; Fig. 7).  435 

Flux patterns at 300 m were largely mirrored at 1000 m (Fig. 7). Pseudo-nitzschia spp., Chaetoceros 436 
resting spores, R. bergonii, and N. sicula showed greater diatom flux at 1000 m than at 300 m. In 437 
some cases, the disparity between flux captured in the 300 and 1000 m traps was substantial; 438 
Pseudo-nitzschia fluxes at 1000 m were roughly 1.5 times those captured at 300 m, N. bicapitata 439 
were 2 times higher, and spore fluxes were five times higher in the deeper trap (Fig. 7).  440 

Emiliania huxleyi was the most abundant coccolithophore at SCR, forming 77% of the total integrated 441 
assemblage (Table 3). As at NCR, Gephyrocapsa spp. were common in the sediment trap records, 442 
with small Gephyrocapsa spp. <3 µm comprising >11% of the total capture, although other 443 
Gephyrocapsa were rarer (Table 3).  444 

The CCA plotted SCR coccolith species into three clusters; those species related to Chl-a and SST, the 445 
low abundance or autumn-peaking taxa, and taxa with abundance patterns not related to the 446 
environmental variables (Fig. 8B). Chl-a and SST vectors plotted close to one another, indicating 447 
similar influences on Oolithotus spp., Syracosphaera spp., and Umbellosphaera tenuis (Fig. 8B). 448 
Syracosphaera spp. were most abundant early in the sampling period when SST and Chl-a were 449 
lowest in July, but was present at low abundances year-round (Fig. 6). Oolithotus spp. and U. tenuis 450 
appeared at peak relative abundances later in the record when SST and Chl-a was high, with the 451 
latter almost 60% of all coccoliths in late summer (Fig. 6). The taxa at the lower right of the plot, 452 
Gephyrocapsa spp., Coccolithus pelagicus, and H. carteri, indicated no observable relationship to the 453 
environmental vectors, but tended to be present at low abundances, and throughout autumn (Figs. 454 
6, 8B).  455 

The remaining coccolithophore species, and three most abundant taxa observed at SCR 300m, E. 456 
huxleyi, C. leptoporus and Gephyrocapsa spp. <3 µm, showed complex abundance patterns that did 457 
not relate to any individual environmental variable (Figs. 6, 8B). These taxa were a prominent 458 
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component of SCR sediment trap records for the time series, with E. huxleyi and C. leptoporus 459 
showing peak abundance in summer, and Gephyrocapsa spp. <3 µm recorded with greatest 460 
abundance in winter (Fig. 6).  461 

4. Discussion 462 

4.1 Fluxes north and south of the Chatham Rise  463 
4.1.1 Siliceous phytoplankton  464 
The magnitude of diatom fluxes at SCR was greater than at NCR, consistent with diatom flux results 465 
from nearby traps, which reported diatom flux over seven times higher in the subantarctic (SAM, 466 
1500 m) than Subtropical (STM, 1500 m) (Prebble et al. 2013) (Fig. 1). Deeper mixed layers at the 467 
NCR site, allowing for greater microbial action on sinking particles, may have been a factor resulting 468 
in lower fluxes at NCR, but this remains speculative. The annual diatom flux estimated for the SCR 469 
300 m (8.2 x107 valves m-2 y-1) was within the range observed in the Australian sector of the SAZ at 470 
the same latitude (3 – 23 x 107, 500 to 1000 m; Rigual-Hernandéz et al. 2015a; Wilks et al. 2017). SCR 471 
flux was, however, low relative to the nearest sediment trap deployments in the New Zealand sector, 472 
(AESOPS site MS2, 56° 54’S, 170° 10’W, 982 m), where fluxes were calculated at 5 x109 m-2 y-1 473 
(Grigorov et al. 2014).   474 

The strong correlation between POC flux with diatom and BSi fluxes at NCR (Table 2), paired with the 475 
known significance of diatoms to cell carbon in surface waters of the STFZ off New Zealand (Bradford-476 
Grieve et al. 1997) together imply that diatoms likely played an important role in POC and BSi export 477 
north of the Chatham Rise (Nodder and Northcote 2001, Sikes et al. 2005). At SCR, coccolith flux was 478 
more strongly associated with POC flux than diatom flux, although BSi flux remained clearly diatom-479 
driven. Nonetheless, since the carrying capacity of POC per cell could not be quantified in this study, 480 
the role of either group in organic carbon export at these sites remains hypothetical.  481 

The potential significance of other silicifying groups is considered; silicoflagellates and radiolarians 482 
were abundant at SCR, with fluxes at times almost as high as diatom flux (Supplementary Tables 1a 483 
- 2b). The nearby STM and SAM moorings (1500 m trap depths) echo this finding, also indicating 484 
higher silicoflagellate fluxes in the subantarctic than in the subtropical waters east of New Zealand 485 
(though roughly equivalent radiolarian fluxes in the two water masses; Prebble et al. 2013). In the 486 
Australian sector, silicoflagellates have been observed with increasing flux from the SAZ and south, 487 
and comprise a significant proportion of silica exported in the Subantarctic Zone (Rigual-Hernández 488 
et al. 2016a). Conversely, in the sediment record, radiolarians exhibited better preservation and 489 
were more abundant at NCR than SCR (Hollis and Neil 2005), which has been attributed to lower 490 
silicic acid concentrations relative to nitrate in subantarctic waters (Dugdale et al. 1995).  491 

Over 90% of total diatom flux captured at SCR occurred during a 48-day pulse of Pseudo-nitzschia 492 
spp. from mid-October to early-November (austral spring), with higher fluxes in the 1000 m than the 493 
300 m trap (Fig. 7). This pulse corresponded with a spike in BSi flux into the traps (Nodder and 494 
Northcote 2001), and a strong correlation was indicated between Pseudo-nitzschia flux and BSi at 495 
300 m (0.92; Table 2). Pseudo-nitzschia spp. are generally regarded as opportunistic diatoms, and 496 
iron fertilisation experiments result in rapid proliferation (with other pennate diatoms), with Pseudo-497 
nitzschia often dominating or co-dominating phytoplankton communities in the Southern Ocean 498 
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(Gall et al. 2001; Coale et al. 2004; De Baar et al. 2005) and elsewhere (Landry et al. 2000; Marchetti 499 
et al. 2006; Trick et al. 2010).  500 

The dense Pseudo-nitzschia spp. “mats” observed during the pulse event also entangled other large 501 
pennate diatoms, such as Thalassiothrix spp., and diatoms with long spines such as Chaetoceros 502 
(Phaeoceros) vegetative cells. It is likely that the formation of these mats facilitated the rapid export 503 
and consequently good preservation of other taxa, evidenced by a simultaneous resurgence in 504 
coccolith fluxes with the Pseudo-nitzschia pulse (Fig. 2). Interestingly, biomarker analysis in the same 505 
sediment trap samples revealed a peak in alkenone abundance (signalling mainly Emiliania huxleyi) 506 
coinciding with the Pseudo-nitzschia pulse (Sikes et al. 2005), providing compelling evidence of 507 
enhanced export of other phytoplankton groups such as haptophytes at the same time. The 508 
correlation between coccoliths and POC, TMF and BSi export at SCR 300 m (Table 2) may also be a 509 
mat-associated phenomenon resulting from enhanced sedimentation (Kemp and Villareal 2013), and 510 
the consequent co-sedimentation of different flux components.   511 

Canonical Correspondence Analysis revealed a relationship between Pseudo-nitzschia and enhanced 512 
light levels (PAR) (Fig. 8A), congruent with reports of increasing day length and light intensity as a 513 
trigger for Pseudo-nitzschia blooms (Rhodes et al. 2013). On the other hand, Pseudo-nitzschia spp. 514 
have been reported as important contributors to subsurface chlorophyll layers in several oceanic 515 
systems (Revelante and Gilmartin 1995; Totti et al. 2000; Seegers et al. 2015), including the Southern 516 
Ocean (Gomi et al. 2007). Deep-growing taxa may account for as much export production as the 517 
spring bloom itself (Kemp et al. 2000) and such production is not necessarily detected by satellite 518 
remote sensing of chlorophyll-a. Indeed, an 11-year sediment trap record from New Zealand 519 
subantarctic waters recorded several years in which spring export was associated with subsurface 520 
production and high BSi fluxes, undetected by chlorophyll-a accumulation in surface waters (Nodder 521 
et al. 2016). Ocean colour data suggests the autumn bloom in subtropical waters in this region are 522 
likely the result of wind-caused mixing of subsurface production to the upper layers (Chiswell et al. 523 
2013), presumably followed by their sedimentation in autumn. Subsurface production may be a 524 
common occurrence within the New Zealand SAZ, whether driven by deep-living Pseudo-nitzschia 525 
spp., or other typical shade flora (e.g. Rhizosolenia or Thalassiothrix). Nonetheless, accompanying in 526 
situ measurements of mixed layer depth and vertical distribution of nutrients and chlorophyll-a will 527 
be required to identify with confidence the factors triggering the development and rapid export of 528 
Pseudo-nitzschia blooms. 529 

4.1.2 Coccolithophores 530 
Spring coccolith flux was roughly an order of magnitude higher at SCR than NCR, but low relative to 531 
other trap deployments in the Australian/New Zealand sector (Wilks et al. 2017; Rigual-Hernández 532 
et al. 2018). High coccolith flux and diversity is typical in the SAZ in the open-ocean subantarctic 533 
south Pacific region (Honjo et al. 2000; Gravalosa et al. 2008). East of New Zealand, seafloor 534 
sediments in the SAZ are between 70 and 90% carbonate (Nodder et al. 2003), indicating high export 535 
of calcareous phytoplankton and heterotrophic calcifying zooplankton, such as foraminifera and 536 
pteropods. Sediment trap deployments in the SAZ typically capture calcium carbonate-rich material 537 
(>50% of mass flux) (Honjo et al. 2000; Trull et al. 2001a; Rigual-Hernández et al. 2015a; Nodder et 538 
al. 2016). Coccolithophores are more abundant than diatoms in subantarctic waters, both near SCR 539 
(Malinverno et al. 2016), and in the Australian sector (Trull et al. 2018).  540 
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Annual coccolith flux estimates at the SCR 300 m trap (1.4 x 108 coccoliths m-2 y-1) were three orders 541 
of magnitude lower than coccolith fluxes estimated in the Australian sector at ~47°S (6.5 x1011 542 
coccoliths m-2 y-1; Wilks et al. 2017), but comparable to estimates from sediment traps at 50°S, in the 543 
Indian sector’s Antarctic Zone (4.7 x107 coccoliths m-2 y-1; Ternois et al. 1998). Lower coccolith fluxes 544 
at SCR than in the corresponding Australian sector traps could be due simply to inter-annual 545 
variability of fluxes. It is likely that the coccolith fluxes of Wilks et al. (2017) represented unusually 546 
high coccolith sedimentation, though without multi-year data, this remains speculative.  547 

4.2 Phytoplankton community assemblages and seasonal succession on the Chatham Rise  548 

Phytoplankton community succession from coccolithophores to diatoms occurred at both sites (Fig. 549 
2). In upwelling regions, diatoms typically bloom earlier in the season, declining after depleting the 550 
surface waters of silicate, allowing coccolithophore proliferation (Hopkins et al. 2015; Balch et al. 551 
2016). However, diatoms and coccolithophores can bloom synchronously (Hopkins et al. 2015). 552 
Additionally, strong inter-annual variability in sediment trap fluxes has been observed in New 553 
Zealand waters, especially in the SAZ (Nodder et al. 2016). The 1996-97 study year was particularly 554 
warm (Sikes et al. 2005), with the Wairarapa Eddy intermittently delivering warmer waters over the 555 
NCR study site, potentially influencing the timing of phytoplankton bloom development in this study 556 
period. Further phytoplankton analysis on multi-year datasets (i.e. Nodder et al. 2016) in the study 557 
region will be required to determine the typical phytoplankton successional regime in these waters. 558 

Zooplankton grazing may cause sediment trap composition and seasonality to inaccurately mirror 559 
surface production, for example via grazing-facilitated export due to incorporation of preferred prey 560 
into aggregates and faecal pellets (Boyd et al. 1997). Grazing was not measured in this study, but 561 
based on copepod faecal production rates, Zeldis et al. (2002) estimated faecal pellet export at half 562 
to one third of SCR 300 m POC export, and therefore potentially highly significant to phytoplankton 563 
fluxes. The potential impact of mesozooplankton grazing and faecal pellet flux on POC fluxes was 564 
addressed by Nodder and Gall (1998), who estimated that faecal pellet export was highest in the 565 
STFZ and STZ, compared to the SAZ, in spring while opposite trends were observed in winter. 566 
Alkenone records from SCR and NCR indicated high winter zooplankton grazing at both sites, but 567 
with zooplankton-related biomarker products dominating export production at NCR (Sikes et al. 568 
2005). In the 1996-97 period, it is likely that grazing pressure was more pronounced at NCR. High 569 
winter grazing can exaggerate the natural amplitude of phytoplankton population growth and 570 
decline across a season in sediment trap records, with poor export efficiency due to particle recycling 571 
in the upper water column (Nodder et al. 2005), and a lack of ballasting (Armstrong et al. 2001).  572 

4.2.1 Diatoms 573 
NCR and SCR traps contained largely distinct diatom communities, which are consistent with 574 
previous reports on diatom assemblage composition in the surface waters (Chang and Gall 1998) and 575 
sediments in the study region (Fenner et al. 1992; Romero et al. 2005; Cochran and Neil 2009). 576 
Diatom floral composition at NCR was a typical subtropical open ocean assemblage characterised by 577 
warm water taxa, such as Thalassionema nitzschioides and Fragilariopsis doliolus, but with a 578 
substantial input of benthic (Delphineis minutissima, Navicula directa, Melosira spp.), 579 
benthic/cosmopolitan (Diploneis bombus), and coastal/cosmopolitan (Psammodictyon 580 
panduriformis) species (Table 3) (Hallegraeff et al. 2010).  581 
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Diatom assemblage diversity was the same at both the NCR and SCR sediment traps. The loss of 582 
lightly silicified species at depth explains the slightly higher diversity index values resolved from the 583 
shallower traps at each site (Supplementary Table 3). Diatom diversity at NCR was higher during the 584 
spring/summer months, possibly attributable to enhanced aggregation rates and hence particle 585 
export in the productive season (e.g. Rigual-Hernández et al. 2016b). In contrast, at SCR the lowest 586 
diversity values were seen during the Pseudo-nitzschia pulse event (Supplementary Table 3), where 587 
the high abundance of Pseudo-nitzschia spp. frustules overwhelmed the export flux, possibly causing 588 
the under-estimation of the relative abundance of co-occurring species. 589 

The observed seasonal pattern in the NCR and SCR sediment traps broadly follows the seasonal 590 
succession scheme proposed by Quéguiner (2013) and Kemp et al. (2000) for colder and temperate 591 
regions. Quéguiner (2013) outlines a basic diatom successional scheme whereby “group 1” taxa 592 
(small, fast-growing, colonizing species) are seen first in assemblages, later succeeded by “group 2” 593 
(slow-growing, persistent species). There is some evidence for such a succession of assemblages in 594 
the Chatham Rise traps. Maximum abundances of the small pennates representing group 1, (e.g. 595 
Delphineis minutissima) and centrics, were seen in late winter/early spring at NCR, while larger taxa 596 
representing group 2 (Shionodiscus spp., Rhizosolenia spp.) reached their peak fluxes towards the 597 
end of summer, and were associated with higher SST (Figs. 4, 5).  598 

Cold water, subantarctic-associated species, such as Thalassiothrix spp., Fragilariopsis rhombica and 599 
Stellarima microtrias, were occasionally observed at the NCR mooring (Table 3, Supplementary 600 
Tables 1a-1b), providing evidence of the occasional advection of subantarctic waters across the 601 
Chatham Rise. These occurrences did not appear to be linked to any obvious seasonal processes, 602 
though mixing has been reported previously across the Chatham Rise (Chiswell et al. 2001), with 603 
filaments of subantarctic waters found at least 150 km into the subtropical surface water mass 604 
(Nodder 1997b). Mixing appeared to go in both directions over the rise, with the occasional input of 605 
warm-water diatoms observed in the SCR trap (F. doliolus and Roperia tesselata; Supplementary 606 
Tables 2a-b). 607 

The ubiquitous Fragilariopsis kerguelensis occurred at higher abundances within SCR than NCR traps. 608 
F. kerguelensis formed up to 80% of the winter assemblage at SCR; however on an annual scale, this 609 
species was infrequent compared to its usual dominance in other Southern Ocean sediment trap 610 
records, particularly those reported from higher latitudes (Rigual-Hernández et al. 2015a; Rigual-611 
Hernández et al. 2015b; Wilks et al. 2017).  612 

Some taxa identified in the SCR and NCR sediment traps represent distributions not previously 613 
recorded in regional phytoplankton surveys. For example, Odontella mobiliensis was only found in 614 
the STFZ by Chang and Gall (1998), but was up to 5% of diatom sediment trap abundances at NCR, 615 
highlighting the STFZ influence at this site. O. mobiliensis abundances were greatest in the deeper 616 
trap, suggesting relative enrichment of this species due to enhanced dissolution of this more lightly 617 
silicified taxa. Delicate species such as L. annulata, though more abundant in surface waters in winter 618 
(Chang and Gall 1998), were only found in trap samples in spring and autumn. Particle sinking rates 619 
(and hence preservation) are seasonal in the Southern Ocean (Berger and Wefer 1990), with greater 620 
production leading to enhanced sinking rates in spring (Closset et al. 2015). This may explain the 621 
higher prevalence of delicate forms such as L. annulata during periods of greater sedimentation. 622 
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Chaetoceros Hyalochaete vegetative cells and resting spores were a common feature at NCR, though 623 
were also found at SCR (Table 3). The differential preservation of Chaetoceros resting spores relative 624 
to less robust taxa may also play a role in the continued high spore fluxes at NCR, even after the 625 
decline of the vegetative cells in October. The high, sustained presence of spores throughout the 626 
decline of the main bloom was recorded in Australian sector sediment trap studies in the SAZ (Wilks 627 
et al. 2017), signalling a transitional assemblage between early and late-successional taxa. Spore 628 
formation is thought to be triggered by nutrient deficiency (Leventer 1991; Oku and Kamatani 1997), 629 
and tends to occur later in the spring bloom progression in this region (Boyd et al. 1999; Ellwood et 630 
al. 2015). Thus, the presence of spores reflects a mid/later stage of diatom bloom succession, after 631 
the fast-growing, pioneer group 1 species (Quéguiner 2013).  632 

Resting spores are adapted to dormancy during periods of low light and nutrient availability (Round 633 
et al. 1990), so tend to be high in carbon (Kuwata et al. 1993), and resistant to zooplankton grazing 634 
(Kuwata and Tsuda 2005). They have been identified as significant carbon exporters in the sub-polar 635 
Atlantic (Rynearson et al. 2013), and near the subantarctic Kerguelen Plateau, where they were 636 
responsible for >50% of POC export (Rembauville et al. 2015). The relative contribution of individual 637 
taxa to carbon export was not estimated in this study. Nonetheless, resting spore abundances were 638 
correlated with POC and BSi flux at both depths (Table 2) and when taken into consideration with 639 
the observations of high year-round abundances and good frustule preservation, resting spores may 640 
be major POC flux contributors at NCR. Further, Chaetoceros spp. tend to be coastal-associated 641 
diatoms, as the germination of resting spores hinges upon them being mixed back into the photic 642 
zone (i.e. not exported to great depth). A pulse in Chaetoceros spores might, then, be another 643 
indicator of coastal water influence over the sediment traps. 644 

At the SCR trap, patterns of seasonal succession are less clear, with spring assemblages containing 645 
small species, typical of Quéguiner’s group 1 (Azpeitia tabularis and Nitzschia bicapitata), and larger 646 
taxa normally associated with Quéguiner’s group 2 assemblage (Hemidiscus cuneiformis) (Fig. 7). As 647 
at the NCR mooring, Chaetoceros spores were mostly present later in the year, as was Fragilariopsis 648 
kerguelensis, a typical group 2 species (Quéguiner 2013). High abundances of these diatoms are likely 649 
attributable to their robustness and selective preservation.  650 

Peak abundances of Rhizosolenia setigera were observed in autumn/winter at the NCR site (Fig. 5), 651 
and high contribution of Rhizosolenia bergonii, and Thalassiothrix spp. in winter assemblage at the 652 
SCR trap (Fig. 7) could be due to a different ecological strategy of these species. Some members of 653 
the genera Rhizosolenia and Thalassiotrix have been reported to belong to the so-called “shade 654 
flora”, i.e., living near the base of the mixed layer (Kemp et al. 2000), with peak export associated 655 
with the breakdown of the seasonal stratification of the water column in autumn/winter. The 656 
presence of deep-living taxa would certainly be expected at NCR, which had maximum winter mixed 657 
layer depths almost twice as deep as SCR (Supp. Fig. 1). R. bergonii and Thalassiothrix spp. formed a 658 
large portion of the winter assemblage within the SCR trap (Fig. 7), but were not reported by Chang 659 
and Gall (1998) in the SAZ, prompting questions on the origin of R. bergonii frustules in these 660 
sediment traps. R. bergonii may be involved in episodic particle flux events (Romero et al. 2000), 661 
possibly related to sporadic nutrient supply, resulting in temporally and spatially patchy species 662 
distributions (Sancetta et al. 1991). In addition, some Rhizosolenia spp. may adjust their buoyancy to 663 
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migrate vertically in the water column (Villareal et al. 1993), or exist at greatest abundances in 664 
deeper layers (Kemp et al. 2000), and may elude shallow water sampling.  665 

4.2.2 Coccolithophores 666 
Emiliania huxleyi, the most abundant and widespread coccolithophore globally (Young et al. 2003), 667 
was the most abundant coccolithophore found within sediment trap material at NCR and SCR, and 668 
in surface waters in the New Zealand region (Chang and Northcote 2016). Considered a pioneer 669 
species, E. huxleyi tends to reach peak abundances in late spring or early summer (Rost and Riebesell 670 
2004). However, it can dominate assemblages year-round, due to its high tolerance to a range of 671 
environmental conditions (Winter et al. 1994) including long day length (Balch 2004) and highly 672 
stratified waters with low nutrients (Ziveri et al. 2000). Though highest abundances occurred in 673 
spring at both Chatham Rise traps, E. huxleyi was overwhelmingly abundant in almost every sampling 674 
cup, explaining its lack of correlation with any individual environmental factor in the CCA analysis 675 
(Fig. 4B). Emiliania huxleyi’s tendency to over-produce, and shed excess coccoliths (Paasche 2001) 676 
could obscure real seasonal patterns in this species, and lead to overestimates of E. huxleyi fluxes in 677 
sediments. 678 

While 46 coccolithophore taxa were recovered in live assemblages east of New Zealand (Chang and 679 
Northcote 2016), not all were identified in our sediment traps, though under light microscopy some 680 
taxa, such as Syracosphaera spp., and are not discernible to species level. In this study, 681 
coccolithophore diversity was greater at the NCR than SCR moorings (Table 2), and higher in spring 682 
and summer, possibly due to enhanced export efficiency during these times. Seasonality of 683 
coccolithophore diversity has been reported by Chang and Northcote (2016), who noted that during 684 
E. huxleyi blooms, only four to six coccolithophore taxa were present, compared to 22 on average. 685 
Coccolithophore assemblages are increasingly E. huxleyi-dominated towards the poles, eventually 686 
becoming monospecific (Gravalosa et al. 2008; Malinverno et al. 2015; Rigual Hernández et al. 2018). 687 
Lower abundances of E. huxleyi at NCR than SCR, as well as the presence of a wider variety of species 688 
(13 and seven, respectively), accounts for the higher species diversity observed at NCR. 689 

Notable exceptions to E. huxleyi dominance include early October at NCR, when Gephyrocapsa spp. 690 
were the dominant taxa, and February at SCR, when Umbellosphaera tenuis peaked at 60% of 691 
assemblages captured (Fig. 6). Notably, U. tenuis was a minor component of coccolithophores in 692 
surface waters in the New Zealand SAZ (Malinverno et al. 2015). However, surface water 693 
assemblages only provide a snapshot of phytoplankton standing stocks compared to sediment traps, 694 
which provides an integration of the annual cycle, so discrepancies between these study types are 695 
anticipated.  696 

After E. huxleyi, small Gephyrocapsa spp. (<3 µm) were the next most abundant coccolithophore 697 
species in the Chatham Rise sediment traps, and are known to be widely distributed in New Zealand 698 
waters (Chang and Northcote 2016). Gephyrocapsa spp. diversity and abundance was greater at NCR, 699 
with at least four groups identified (Table 3). Sediment core analysis in the Australian sector 700 
identified G. oceanica as typical of a warmer-water assemblage usually north of the STF, while G. 701 
muellerae was associated with a cooler-water assemblage (Findlay and Flores 2000). In the present 702 
study, both G. oceanica and G. muellerae were more common at the subtropical site, suggesting 703 
subantarctic water flow into the NCR trap region. Calcidiscus leptoporus, a warm-water associated 704 
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species, was 9% of SCR annual assemblages (Table 3), and is associated with high-productivity 705 
environments (Boeckel et al. 2006), providing further evidence for frontal influence at the SCR trap 706 
site.  707 

Higher abundances of Syracosphaera spp. at NCR than SCR are consistent with a preference for 708 
warmer water (Boeckel et al. 2006). Syracosphaera spp. were particularly diverse in a recent survey 709 
of New Zealand surface waters (Chang and Northcote 2016), with an average 31% relative 710 
abundance. In contrast, Oolithotus spp., which reached 16% of coccolith abundances in SCR sediment 711 
traps (Fig. 6), were not found in surface waters in the New Zealand region (Chang and Northcote 712 
2016). This could be explained by the depth preferences of Oolithotus spp. The common tropical to 713 
temperate Oolithotus fragilis, also found in the Australian sector (Findlay and Flores 2000), inhabits 714 
the mid-to-lower photic zone (50-200 m depths) (Okada and McIntyre 1977), thus the shallow near-715 
surface sampling of Chang and Northcote (2016) may have excluded taxa inhabiting deeper ocean 716 
layers. Oolithotus spp. and Helicosphaera carteri tended to appear later in the season (summer and 717 
autumn). Occurrences of Oolithotus spp. in the spring and summer months at NCR are followed by 718 
its appearance in summer and autumn at SCR, possibly reflecting the delayed onset of southward-719 
migrating blooms (e.g. Chiswell et al. 2013). 720 

Syracosphaera spp. were recorded in early spring at NCR, consistent with its relationship with Chl-a 721 
in the CCA analysis (Fig. 4B), though at odds with its general acceptance as a late-succession taxon 722 
(Dimiza et al. 2008). Gephyrocapsa spp. <3µm appeared in spring at NCR. This group tends to rapidly 723 
respond to high nutrients, such as during upwelling conditions (Broerse et al. 2000; Andruleit et al. 724 
2003). Both small Gephyrocapsa and G. oceanica are considered to exhibit a more pioneer, early-725 
blooming life strategy (Dimiza et al. 2008), hence high abundances of both species in early to mid-726 
spring at NCR. The seasonal appearance of small Gephyrocapsa spp. was more complex at SCR, 727 
where maximum abundances occurred in the winter period.  728 

4.3 Influence of advection from coastal sites on oceanic diatom fluxes  729 
Diatom flux at NCR 1000 m was nearly constant throughout the trapping period and apparently 730 
decoupled from seasonal production, raising the question of particle sources at this site (Fig. 2). 731 
Nodder and Northcote (2001) previously reported higher mass flux and less pronounced seasonality 732 
in the deeper traps at both sites. Normally, flux decreases with depth due to particle remineralization 733 
(Buesseler and Boyd 2009), unless an additional particle source is present. Nodder and Northcote 734 
(2001) partially attributed the higher mass flux at 1000 m to resuspension of material from the 735 
Chatham Rise into the deeper traps, particularly as the deeper traps sit below the crest.  736 

Diatom assemblage data at NCR support the resuspension hypothesis, but also suggest an additional 737 
coastal particle origin not previously identified. Up to 40% of the assemblage at NCR was composed 738 
of benthic (shelf/estuary) and coastal diatoms, derived from a coastal or continental shelf/slope via 739 
advection. The East Cape Current (ECC) has the capacity to advect coastal material from the North 740 
Island, feeding into the Wairarapa Eddy, the southern edge of which circulates over NCR (Chiswell et 741 
al. 2015a; Fig. 1). Trace metal analyses also report material from the east coast becoming 742 
incorporated into eddies shed eastwards off the continental margin (Ellwood et al. 2014 ), making 743 
this a plausible source of coastal material to NCR. Seafloor sediment analyses around New Zealand 744 
revealed 10% of diatom assemblages were coastally-derived, with STZ sediments having the greatest 745 
percentage of coastal species, consistent with our findings (Cochran and Neil 2009). The presence of 746 
coastal diatoms coincided with maximum LSi flux early in the sampling period at NCR, supporting the 747 
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conclusion that particle advection from a coastal/benthic system occurred at this time. Nodder and 748 
Northcote (2001) estimated particle sources between 10 – 120 km away for the 300 m trap, though 749 
possibly further due to the spatial extent of the Wairarapa Eddy, lending weight to this conclusion. 750 

Benthic diatom capture at NCR indicates transport of sediments from a nearshore source, suggesting 751 
a distant particle source such as the Cook Strait, where strong tidal flows may be capable of 752 
resuspending and transporting sediment (Stevens 2014), which can then be advected out to near the 753 
NCR trap site (Barnes 1985). Significant volumes of terrigenous material are shed into the sea by 754 
rivers in the New Zealand region, particularly from the eastern coast of the North Island (Griffiths 755 
and Glasby 1985; Hicks et al. 2011) and are transported to the open ocean by the ECC (see Fig. 1) 756 
and perhaps entrained into offshore eddies (Ellwood et al. 2015). The transport of land-derived, 757 
lithogenic material into sediment traps north of Chatham Rise is well-documented (Nodder et al. 758 
2005; Nodder et al. 2016). In particular, the presence of the small pennate D. minutissima in the NCR 759 
trap is a robust proxy for the advection of coastal sediments (Hallegraeff et al. 2010). 760 

There is evidence for material input via resuspension at SCR too, with a relatively high correlation 761 
between diatom flux and lithogenic particles (Table 2), as well as higher mass (Nodder and Northcote 762 
2001) and higher diatom flux at 1000 m (Fig. 7). This is supported by Nodder et al. (2007), who 763 
reported the deposition of seafloor sediments containing diatom frustules into sediment traps 764 
deployed on the southern flank of the rise (2 m above seafloor), in the vicinity of the SCR site. 765 
Furthermore, the relative enrichment of the STFZ in diatoms compared to the STZ and SAZ (Bradford-766 
Grieve et al. 1997; Chang and Gall 1998) may account for higher fluxes at SCR, given the proximity of 767 
the site to the southern boundary of the STFZ (Fig. 1). This is considered a possibility, given that STFZ 768 
waters are known to be advected to the SCR trap site (and even further south) in the form of deep 769 
eddies (Uddstrom and Oien 1999; Williams 2004).  770 

With the present data, it is difficult to conclusively identify particle sources at NCR or SCR, and this 771 
region may benefit from a future dedicated study investigating particle pathways. Future sediment 772 
trap studies of a year or longer in the region are needed to understand the inter-annual variability 773 
of phytoplankton fluxes in this region, and to determine whether the present study’s findings 774 
represent typical export patterns east of New Zealand. Future studies would also benefit from the 775 
existence of this seasonal dataset, and with it could assess the degree of change in phytoplankton 776 
export patterns with climate change.  777 

5. Conclusions 778 

Baseline studies of phytoplankton assemblage composition and export seasonality from sediment 779 
traps are vital to understand the direction, rate of change and adaptive capacity of key ecosystems 780 
in a changing climate. Such data also allow a better understanding of which factors, environmental 781 
or chemical, drive growth and export patterns, and how they may be changing. While bulk sediment 782 
trap fluxes were published previously in Nodder and Northcote (2001), here we add valuable 783 
information on species fluxes that may be employed in palaeoceanographic reconstructions and 784 
export flux modelling. By understanding diatom and coccolithophore seasonality and preservation, 785 
more insights may be gained from analysis of species deposition patterns in seafloor cores, 786 
contributing to our knowledge of past climatic change. 787 
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We present the first record of seasonal variability of diatoms and coccolithophores in this region, 788 
using sediment trap material from an approximately year-long record (1996-97) north and south of 789 
the Subtropical Frontal Zone. From these findings we infer a complex array of potential particle 790 
sources and processes that affect diatom and coccolith fluxes in the region, which are summarised 791 
in Fig. 9. 792 

 793 

Figure 9. Schematic (not to scale) of inferred particle sources into NCR and SCR sediment traps. 794 

• Higher phytoplankton fluxes at SCR than at NCR likely reflected the proximity of the former 795 
to the strong frontal gradients associated with the southern extent of the Subtropical Frontal Zone. 796 
At NCR, diatom assemblages indicated coastal/benthic particle sources, suggesting this site was 797 
sampling mainly from subtropical waters, including particles from waters that had a more 798 
coastal/continental shelf origin. Occasional subantarctic input of diatoms at NCR was also evident 799 
(cross-rise advection, Fig. 9). 800 
• Seasonal decoupling of diatom fluxes at the deep NCR 1000 m trap was probably due to 801 
regular resuspension of Chatham Rise sediments into the trap, as well as “shedding” from the 802 
Wairarapa Eddy (Fig. 9). 803 
• At the NCR mooring, the resting spores of the diatom Chaetoceros were likely significant in 804 
POC export to the trap. At the SCR mooring, ~98% of annual diatom flux occurred during a Pseudo-805 
nitzschia spp. pulse event associated with high BSi flux. Co-sedimentation of other taxa with the 806 
rapid-sinking mats may have enhanced the export of POC. 807 
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• Seasonal progression was observed among phytoplankton assemblages as a whole, with 808 
diatoms preceded by coccolithophores. Within diatom and coccolithophore communities, some 809 
classical succession was observed at NCR, with small-celled diatoms giving way to larger taxa, though 810 
at SCR, size classes tended to be mixed. Succession amongst coccolithophore species generally 811 
reflected the designation of taxa as pioneer or late-succession species. 812 
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Supplementary Figures 829 

 830 

Supplementary Figure 1. Mixed Layer Depth (m) at NCR and SCR for an annual series determined from Argo 831 
float data (2001-2006) using the density difference criterion, data from Dong et al. (2008). 832 
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Abstract 9 

Sediment trap studies since the 1970s have been instrumental in developing knowledge of oceanic 10 

particle flux and export drivers. In the Southern Hemisphere, sediment traps have been in use since 11 

the 1970s, and have revealed the significance of the Southern Ocean as a major carbon sink, driven 12 

by seasonally high phytoplankton production. The strength of this carbon sink may be reduced in 13 

the Southern Ocean under future climate scenarios, making baseline studies of phytoplankton 14 

fluxes highly valuable. Yet, deployments are clustered, leaving some regions neglected. 15 

Furthermore, studies that calculate fluxes and assemblages of diatoms and coccolithophores are 16 

comparatively rare. In this study, sediment trap deployment data was compiled from publications 17 

since 1977, spanning 126 mooring sites from 30° S to the Antarctic coast. Diatom flux data were 18 

available for 49 trap deployments, while coccolith flux data exist for only seven. Diatom fluxes were 19 

mapped along with the major hydrological zones, revealing a general trend of increasing diatom 20 

flux from the Polar Front to the Antarctic coast. Exceptions to this trend were found in the Antarctic 21 

Peninsula and Ross Sea region, possibly driven by differences in exported phytoplankton 22 

assemblage and/or methodological disparities. Linear models are used to relate diatom fluxes to 23 

eight physical, biological and chemical variables that may influence flux magnitudes. The models 24 

reveal surface nitrate concentration as the single most significant driver of diatom flux, contrary to 25 

expectations that key diatom nutrients silicate and iron would be the strongest flux predictors. 26 

Coccolith fluxes were also mapped, however, data points were too sparse to derive meaningful 27 

trends. Future trap studies that calculate phytoplankton fluxes at the species level will be 28 

invaluable in determining potential regional changes in the functioning of the biological pump, and 29 

in palaeoreconstructions from seafloor sediment assemblages. 30 
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1. Introduction  31 

The biological pump (BP) describes the process by which primary organic material synthesised in 32 

the photic zone of the ocean by photosynthetic phytoplankton is transferred to the deep sea via 33 

the seasonal export of particles (i.e. marine snow) (Volk and Hoffert, 1985). This process lowers 34 

the partial pressure of CO2 in the photic zone, and is driven by non-calcifying autotrophs, such as 35 

diatoms. The BP drives the transfer of CO2 to the deep ocean (Honjo, 2004).  In contrast, the 36 

Carbonate Counter Pump (CCP) describes the release of CO2 associated with the production of 37 

calcium carbonate skeletons in organisms such as coccolithophores and foraminifera 38 

(Frankignoulle et al., 1994). The relative strength of either pump, in combination with the physical 39 

processes of CO2 dissolution and movement in the water column, will influence whether an oceanic 40 

region is a net sink or source for CO2 (Balch, 2018). Future climate scenarios indicate that 41 

phytoplankton assemblages are likely to change. For example, increasing CO2 content of water may 42 

favour diatom photosynthetic rates  (Hopkinson et al. 2011). Nitrate deficiency paired with ocean 43 

acidification may place coccolithophores under increased pressure due to carbonate dissolution 44 

and growth rates, possibly reducing their contribution to carbon export (Feng et al., 2017). At any 45 

rate, the effects will be complex, with flow-on implications for atmospheric CO2 levels (Heinze et 46 

al., 2015). 47 

Carbon export may be quantified chronologically using sediment traps; moored or free-floating 48 

receptacles that capture and compartmentalise a time series (by days or weeks) of particulate 49 

export. In this study, data from sediment trap deployments reporting diatom and/or coccolith 50 

fluxes in the subtropical to polar Southern Hemisphere were compiled and mapped. Linear models 51 

were derived for diatom flux using eight environmental variables implicated to influence particle 52 

transfer efficiency in terms of potential production (nitrate, phosphate, silicate, iron and sea ice 53 

cover), actual production (chlorophyll-a concentration), dissolution rates (sea surface 54 

temperature) and ballast availability (particulate inorganic carbon concentration). 55 

Over the last 50 years, sediment trap deployments across the Earth’s oceans have revealed that 56 

the volume, composition, and manner in which particles are exported is highly spatially and 57 

temporally variable (Lampitt and Antia, 1997; Honjo et al., 2008). Sediment traps are not without 58 

problems; high current speeds, trap tilt, trap shape (cylindrical or funnel shaped), or the entry of 59 

swimming zooplankton into traps (“swimmers”) may all adversely influence particle capture and 60 

skew results (Gardner, 1985; Asper, 1996; Buesseler et al., 2007; McDonnell et al., 2015). Despite 61 

these limitations, significant advances in understanding particle export in the oceans have resulted, 62 

allowing the construction of global oceanic carbon budgets (Lampitt and Antia, 1997; Honjo et al., 63 

2008).  64 
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A strength of sediment trap studies over other tools is that not only can the total quantity of export 65 

be determined, but also the seasonal composition of planktonic organisms. Relative to seafloor 66 

sediment analyses, which provide information on export over centennial to millennial scales, 67 

sediment traps studies capture seasonality of exported assemblages. Sediment trap data can also 68 

be used by micropaleotologists to understand how the seasonal phytoplankton record may be 69 

represented in the sediments (Rigual-Hernández et al., 2016).  70 

The assumption that particle flux is directly related to magnitude of production is increasingly being 71 

challenged (Maiti et al., 2013). Recent studies have revealed that physical features such as ocean 72 

temperature and oxygen concentration may significantly alter particle export rates via particle 73 

remineralisation (Cram et al., 2017), as may the types of ballasting particles present (Weber et al., 74 

2016). However, these studies have exclusively focused on identifying environmental drivers that 75 

explain bulk carbon flux, and the composition of the phytoplankton component has been largely 76 

ignored or underestimated. Phytoplankton assemblages in a given system likely determine the 77 

magnitude of export.  78 

Recently, sediment trap data have challenged the traditionally-held paradigm that larger diatoms 79 

contribute the bulk of carbon exported, suggesting previously-overlooked pico- and nano-sized 80 

diatoms may be more important carbon exporters in some systems (Leblanc et al., 2018). Often, 81 

high organic carbon export regimes are characterised by small cells and high abundances of 82 

calcium-carbonate producers such as coccolithophores (Lam et al., 2011; Maiti et al., 2013; Leblanc 83 

et al., 2018). Despite the importance of characterising phytoplankton assemblage fluxes on 84 

seasonal timescales, most sediment trap studies are limited to bulk component analysis 85 

(Particulate Organic Carbon (POC), Particulate Inorganic Carbon (PIC), Biogenic Silica (BSi), 86 

Particulate Nitrogen and Particulate Phosphorus, etc.). 87 

1.2 Regional setting 88 

In the Southern Hemisphere from 30° S to Antarctica there are several distinct 89 

oceanographic/hydrological regions (Supp. Fig. 1).The major part of this study region is the 90 

Southern Ocean, which is the water mass encircling Antarctica from ~40° S, and is bounded on the 91 

north by the Subtropical Front (STF), the meeting place of Subtropical and Subantarctic water 92 

masses (Ardnt et al. 2013). North of the STF, the Subtropical Zone consists of relatively warm, saline 93 

waters that tend to be low in nitrate (Supp. Fig. 1).  94 

The major current of the Southern Ocean, the Antarctic Circumpolar Current (ACC), consists of 95 

those waters south of the STF. It is banded by several major water masses, each with distinct 96 

hydrological properties (Sokolov and Rintoul, 2009) that significantly influence the phytoplankton 97 
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species, and hence the export regimes, observed in the region (Pollard et al., 2002). Nitrate, silicate 98 

and iron all tend to increase south of the STF, towards the pole, while salinity decreases (Supp. Fig. 99 

1). 100 

South of the STF is the Subantarctic Zone (SAZ), the northernmost and largest belt of the Southern 101 

Ocean. The SAZ is bounded on the south by the Subantarctic Front (SAF), followed by the Polar 102 

Frontal Zone (PFZ) and the Antarctic Zone (AZ), between which is the Polar Front (PF). The AZ is 103 

divided further by Sokolov and Rintoul (2009) with the identification of two additional fronts 104 

between the PF and the Antarctic coastline- the Southern ACC Front (SACCF) and the Southern 105 

Boundary of the ACC (SB).  The meridional positions of the Southern Ocean fronts varies due to 106 

local bathymetry (Gordon et al., 1978): for example, the SAF meanders considerably and is found 107 

as far north as ~42° S east of Argentina, but sits around 60° S at the Drake Passage (Fig. 1). 108 

In the Southern Hemisphere, latitudinal gradients of nutrient availability constrain the locations of 109 

carbonate-export (e.g. coccolithophores, foraminifera) and silicate-export (e.g. diatoms and 110 

radiolarians) regions. North of the Polar Front (PF), export is suggested to be principally related to 111 

carbonate particle flux and is known as the “Carbonate Ocean” (Honjo et al. 2008). South of the 112 

PF, siliceous phytoplankton make up a significant proportion of flux (the “Silicate Ocean”; Honjo, 113 

2004; Honjo et al., 2008), corresponding with high surface water silicate concentrations between 114 

the PF and the Antarctic continent (Supp. Fig. 1) (Bostock et al., 2013).  Carbonate is regarded as a 115 

better ballast for the export of particulate matter compared to silicate (Klaas and Archer, 2002). 116 

Because of the latitudinal differences in the types of exported material (see above), there is an 117 

expectation that regional variation in ballasted particle sinking speeds, and therefore biological 118 

pump efficiency, occurs in the Southern Ocean (Jin et al., 2006). Studies of phytoplankton fluxes 119 

should consider regional differences in ballast availability in explaining flux patterns. 120 

Sediment trap deployments would ideally be well-spread, sampling a diversity of oceanographic 121 

regimes. This is not the case, and sediment trap deployments have been clustered in some regions, 122 

leaving others unsampled (Romero and Armand, 2010; Fig. 1). In part this is the result of 123 

remoteness and inherent difficulty of access in some regions (for example regions that are distal 124 

from countries with oceanographic programs), and the cost of deployment and retrieval. Of the 125 

sediment trap publications in the temperate and Subantarctic, few report fluxes of coccoliths 126 

and/or diatoms (red dots in Fig. 1). Even fewer studies determine fluxes of individual species, even 127 

though it is increasingly evident that the floristic composition of the phytoplankton community 128 

largely determines biological pump efficiency in oceanic ecosystems (Assmy et al., 2013; Balch, 129 

2018; Leblanc et al., 2018).  130 
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131 
Figure 1. Map of Southern Hemisphere from 30° S with annual time-averaged Chlorophyll-a concentration 132 
(mg/m-3) indicated by colour (https://giovanni.gsfc.nasa.gov). Sediment trap moorings shown by dots. 133 
Sediment trap mooring locations for which diatom and/or coccolith flux was available are identified by red 134 
dots. Station identifiers in Supp. Table 1. Fronts from Orsi et al. 1995. STF= Subtropical Front, SAF = 135 
Subantarctic Front, PF= Polar Front, SACCF= South Antarctic Circumpolar Current Front, SB= Southern 136 
Boundary (of the ACC). Map created with Ocean Data View 4 (http://odv.awi.de; Schlitzer 2016). Dark blue 137 
line indicates maximum winter sea ice extent. 138 

Investigations reporting both diatom and coccolith fluxes from the same deployments have been 139 

principally undertaken for the Northern Hemisphere. Of these, one study collected an exceptional 140 

19 years of export histories in the Bering Sea and central subarctic Pacific (Takahashi et al., 2012), 141 

although shorter duration trap studies have also been undertaken (e.g. 2 years in the Gulf of 142 

California; Ziveri and Thunell, 2000). Several annual trap deployments, and studies examining both 143 

diatom and coccolith fluxes have been published from the Mediterranean (Bárcena et al., 2004; 144 

Hernández-Almeida et al., 2011; Rigual-Hernández et al., 2013; Malinverno et al., 2014). In the 145 
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Southern Hemisphere, diatoms and coccolith fluxes from the same trap deployment have been 146 

reported from single-year trap deployments within the Benguela Upwelling System (Romero et al., 147 

2002), the Australian sector of the Subantarctic Zone (Wilks et al., 2017), and from locations within 148 

the subtropical and subantarctic marine systems surrounding New Zealand (Wilks et al., in review). 149 

Studies calculating both diatom and coccolith fluxes from the same trap are valuable because as 150 

the main phytoplankton silicate and carbonate producers, respectively, both are needed to 151 

decipher the mechanisms driving organic matter export. 152 

1.3 Review aims 153 

General reviews of global or sector-based particle flux have been undertaken in the past (e.g. 154 

Lampitt and Antia, 1997; Honjo et al., 2008; Romero and Armand, 2010; Rigual-Hernández et al., 155 

2018b), but, no specific review comparing results from sediment trap-derived diatom and coccolith 156 

fluxes across the subtropical (from 30° S) to polar Southern Hemisphere has been attempted. The 157 

aims of this semi-quantitative review are twofold; 158 

1) compile an exhaustive spatial record of Southern Ocean to subtropical diatom and coccolith 159 

fluxes from sediment trap records in order to identify large scale patterns in phytoplankton fluxes, 160 

and  161 

2) identify possible relationships between Southern Hemisphere diatom fluxes from the 162 

Subtropical to Polar regions from existing sediment trap reports and environmental parameters. 163 

Based on these observations, recommendations for future sediment trap research specific to the 164 

Subtropical, Subantarctic and Southern Ocean regions of the Southern Hemisphere are proposed. 165 

2. Methodology 166 

2.1 Compilation of sediment trap data  167 

A comprehensive survey of published data from moored sediment traps and other types of free-168 

drifting and surface tethered deployments south of 30° S since 1977 (to our knowledge the first 169 

trap deployment in this region) are used as the basis of this review. Although the bulk of the 170 

publications compiled report on Southern Ocean (generally defined as south of 50° S) traps, this 171 

study expanded its focus to 30° S to enable inclusion of several subtropical studies. Publications 172 

were included based on diatom and/or coccolithophore flux data from a sediment trap 173 

deployment. Data compiled included diatom and coccolithophore fluxes, site coordinates, 174 

deployment years and deployment depths. Each published survey was provided with a station 175 

identifier (Supp. Table 1) to facilitate analysis and graphic representation. 176 
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With respect to diatom or coccolith fluxes documented, flux estimates were extracted from 177 

original publications or supplementary material and recorded as diatom frustules/valves or 178 

coccoliths m-2 y-1. Coccosphere fluxes were not considered in this study. Where flux values were 179 

provided as an annual value, these data were left unchanged. In instances where a sediment trap 180 

was deployed for more than 200 days, the annual flux was calculated from reported daily fluxes 181 

via normalisation to account for the missing sampling days (indicated in Table 1 in italics). For some 182 

studies, trapping duration was too short (less than 200 days), or daily fluxes for sampling duration 183 

were not provided, making extrapolation to an annual flux impossible. In these cases, fluxes are 184 

given as originally published. In some instances, annual flux could not be determined. For example, 185 

although diatoms were counted from the two moorings east of New Zealand (Prebble et al., 2013), 186 

and the deployment time was in total sufficient to estimate annual flux, sampling was 187 

discontinuous, making annual estimate too inaccurate.  188 

2.2 Considerations of sediment trap methodologies 189 

There are considerable methodological barriers to comparing sediment trap records. Studies have 190 

compared particle capture from different trap mooring techniques (i.e. surface tethered, free-191 

floating/neutrally-buoyant and bottom-tethered) finding considerable differences in the volume 192 

of material captured with each technique, and even different particle composition (Buesseler et 193 

al., 2000). Theoretically, neutrally-buoyant drifting traps, such as those utilised in Leventer (1991) 194 

are the most free of hydrodynamic bias, as they may match ambient current speeds (Buesseler et 195 

al., 2007), though these are disadvantaged by not being deployable for as long as a typical moored 196 

trap. The degree of trap tilt may depend on both the trap type and shape (cylindrical vs. conical) 197 

(Gust et al., 1994), and deployment depth (Buesseler et al., 2007). Issues of collection efficiency 198 

are likely of greater concern for earlier sediment trapping efforts, because some early trap designs 199 

simply comprised PVC cylinders without preservatives (McMinn, 1996; Schloss et al., 1999). Even 200 

in contemporary, and widely used Parflux traps, the clogging of trap baffles during highly 201 

productive periods causes inaccuracies in sediment capture (Honjo et al., 2000). 202 

In this review, all publications for which diatom or coccolith fluxes were reported are included. 203 

Deployments were mainly of the moored type, although some were under-ice deployments 204 

(Leventer and Dunbar, 1987; Leventer 1991).  205 

“Swimmers” (organisms that enter the trap actively and die) are not considered part of the 206 

passively sinking flux, but may comprise a significant portion of the organic carbon captured by 207 

traps (Hargrave et al., 1989; Buesseler et al., 2007). Typically, swimmers are removed by sieving, 208 

and/or picked by hand, usually under magnification. A 1.0 mm screen is most commonly used, 209 
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sometimes also paired with hand-picking (Abelmann and Gersonde, 1991; Fischer et al., 2002; 210 

Salter et al., 2012). Hand-picking of swimmers is considered the most reliable way to distinguish 211 

active from passive entrance into the trap to determine mass fluxes without risk of material loss 212 

(Chiarini, 2013), and several studies in this compilation used hand-picking alone rather than 213 

screening trap material (Leventer and Dunbar, 1987; Suzuki et al., 2001; Rembauville et al., 2015a). 214 

Again, in this review, processing methods varied, and should be considered when interpreting the 215 

flux results. 216 

2.3 Environmental and oceanographic data analysis  217 

Data on eight variables previously suggested to influence diatom flux were obtained for each 218 

sediment trap deployment site. The variables included four key nutrients and minerals; phosphate 219 

(PO3−
4; µmol L-1), nitrate (NO3-; µmol L-1), silicate (SiO4−

4; µmol L-1), iron (Fe; nmol L-1), which are 220 

necessary for diatom growth. Sea Surface Temperature (SST; °C) was chosen as it can influence 221 

both phytoplankton growth and dissolution rate, and hence export efficiency (Laufkötter et al., 222 

2017). Phosphate, nitrate, silicate and SST data was retrieved from the World Ocean Atlas 2009, 223 

from the National Centres for Environmental Information 224 

https://www.nodc.noaa.gov/OC5/WOA09/pr_woa-09-html. 225 

Chlorophyll-a concentration (Chl-a; mg m-3) was included as a measure of actual mean primary 226 

production. Finally, Particulate Inorganic Carbon (PIC; mol m-3) concentration was included as a 227 

proxy for abundance of calcifying phytoplankton, as well as ballast availability, which has been 228 

identified as a key export efficiency-related variable (Weber et al., 2016; see also Appendix 1). 229 

Annual time-averaged (2009- 2014) mean Chl-a (4 km resolution, MODIS-Aqua satellite), time-230 

averaged (2009-2014) mean iron (0.67 x 1.25° resolution, NOBM model), time-averaged (2009-231 

2014) mean % annual sea ice cover (NOBM model), and time-averaged (2009-2014) PIC 232 

concentration (4 km resolution, MODIS-Aqua satellite) was obtained from the Goddard Earth 233 

Sciences Data and Information Services Centre (GES DISC) for the region 25° S to the South pole 234 

(see https://giovanni.gsfc.nasa.gov; Appendix 1). This particular 5-year window was selected 235 

because it was the most recent time interval for which data exists for the three environmental 236 

parameters obtained from GES DISC. Since many of the trap deployments pre-date satellite data 237 

for this region, it was not feasible to obtain data spanning the actual trap deployment years. 238 

2.4 Modelling diatom and coccolith flux using oceanographic data 239 

Diatom and coccolith annual and maximum fluxes were log transformed for mapping and 240 

modelling, to improve model interpretation. A linear model was fitted for log10 maximum diatom 241 

flux against seven variables chosen as potential predictors of diatom flux using R’s lm function. 242 
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Predictive values of each variable was tested using R’s step function (backwards and forwards). All 243 

analyses were conducted in R version 3.5.0 (R Core Team, 2018). Silicate was log10 transformed to 244 

improve linearity of data. A Pearson’s product-moment correlation matrix was also constructed to 245 

visualise potential relationships between predictors and log10 max diatom flux. 246 

2.5 Mapping diatom and coccolith flux 247 

Diatom and coccolith maximum and annual fluxes varied by several orders of magnitude between 248 

studies, so log10-transformed fluxes were plotted using Ocean Data View (ODV) (Schlitzer, 2016). 249 

Data points are extrapolated via weighted-average gridding. Oceanic fronts follow Orsi et al. 250 

(1995). Plotted data are provided in Supplementary Tables 2-3. Oceanic sectors are defined thus: 251 

Atlantic and eastern Pacific sector from 80° W to 25° E, the Indian sector from 25° E to 150° E, and 252 

the Pacific sector from 150° E to 80° W. Abbreviations for the oceanic zones spanned by this study 253 

are given in Figure 1 caption. 254 

3. Results 255 

3.1 Summary of sediment trap compilation 256 

Since 1977 there have been 76 publications documenting observations from 126 moored sediment 257 

trap sites between the Antarctic coast and 30° S (Fig. 1; Supp. Table 1). Deployments are highly 258 

clustered, with the most comprehensively studied regions being the Antarctic Peninsula/Drake 259 

Passage, Weddell and Ross Seas (Fig. 1). The majority of deployments are in shallow, shelf or 260 

coastal regions. In the Weddell Sea, most of the 15 mooring deployments were undertaken in the 261 

1980s, with a recent deployment in 2012 in the northern Weddell Sea near South Georgia 262 

(Rembauville et al., 2016; Supp. Table 1). The densely-monitored Ross Sea has 24 mooring sites, 263 

providing observations through to the late 1990s, while the Antarctic Peninsula (19 moorings) was 264 

sampled into the early 2000s (Supp. Table 1). The most systematically and recently-sampled area 265 

is the Australian/ New Zealand sector, with sediment trap deployments spanning all major 266 

hydrological zones, and deployments from 1996 up to as recently as 2012 east of Tasmania 267 

(Nodder et al., 2016; Fig. 1, Supp. Table 1). There is a notable absence of data in the southeast 268 

Indian sector between the Kerguelen Islands and Tasmanian deployments south of Australia. 269 

Conversely, the southern Pacific sector, from ~170° W to 70° W has had no sediment trap deployed 270 

and constitutes the largest gap in the sediment trap record of the Southern Hemisphere. 271 

Generally, sediment trap deployments in the subtropical to polar Southern Hemisphere occur in 272 

the more-productive regions, as indicated by mean chl-a concentration, for example in the Ross 273 

Sea (Fig. 1). However, there are some high productivity regions that have not been studied such as 274 

the on the western Antarctic continental margin (Bellingshausen/Amundsen Sea region), where 275 
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there has been no sediment trap mooring, possibly due to year-round inaccessibility due to sea ice 276 

(Fig. 1). One of the highest productivity regions by areal extent is found along the southeast coast 277 

of Argentina, for which no sediment trap data are available. 278 

In this review, 25 documented diatom and coccolithophore observations from an additional 65 279 

free-drifting, tethered and moored sediment traps at various depths. Amongst these studies, 21 280 

calculated only diatom fluxes, two determined only coccolith fluxes, and three studies recorded 281 

both diatom and coccolith fluxes (Table 1).  282 

Most of the deployments for which phytoplankton fluxes were determined presented daily and 283 

annual fluxes in the text or figures, though there were exceptions for which neither annual nor 284 

maximum fluxes were published. For example, the Syowa Station deployments in Lützow-Holm 285 

Bay, Antarctica (Ishikawa et al., 2001; Ichinomiya et al., 2008) reported the fluxes separately for 286 

dominant pennate and centric diatom taxa only (Fragilariopsis kerguelensis, Pseudo-nitzschia 287 

turgiduloides, Chaetoceros spp., Porosira pseudodenticulata and Thalassiosira australis). 288 

Rembauville et al. (2015b and 2018; Kerguelen plateau), and Wefer et al. (1988; Bransfield Strait, 289 

Antarctica) reported on traps of longer duration (322, 337 and 330 days, respectively), but did not 290 

present annual flux data. Suzuki et al. (2001) reported short deployments in the Australian sector 291 

of the Antarctic Zone, but did not provide fluxes of the whole diatom component, only separate 292 

fluxes for fast and slow-sinking fractions. 293 

3.2 Southern Hemisphere diatom flux 294 

Maximum diatom flux was published for 49 trap deployments south of 30° S, while annual flux was 295 

provided for 28 (Fig. 2, Table 1). With the exception of the central Pacific and southeast Indian 296 

sectors, diatom fluxes in the Southern Ocean are generally well-represented by trapping efforts to 297 

date (Table 1), and some generalisations are possible. Diatom flux tends to increase towards the 298 

pole, and diatom flux is highest, with a few exceptions, south of the Polar Front (PF; Fig. 2). 299 
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  300 

Figure 2. (a) Log10 maximum (m-2 d-1), and (b) annual (m-2 y-1) diatom flux for sediment trap studies in the 301 
subtropical to polar Southern Hemisphere for which data was available. Magnitude of fluxes indicated by 302 
colour bars. White-ringed black circles indicate trap site. Oceanic abbreviations and trap identifiers are the 303 
same as Fig. 1. Dark blue and light blue lines indicate maximum winter, and minimum summer sea ice extent, 304 
respectively.305 
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In several instances, a sharp differentiation between  diatom flux magnitudes are seen north and south 306 

of the PF, with noticeably higher fluxes to the south, consistent with the identification of Honjo (2004) 307 

as a region of high silica export. This trend is particularly evident in the systematic trapping efforts in 308 

the Australian and New Zealand regions, such as between trap stations MS2 and MS3 (Grigorov et al., 309 

2014), and between the Polar Frontal Zone (PFZ) and Antarctic Zone (AZ) traps (Rigual-Hernández et 310 

al., 2015a; Rigual-Hernández et al., 2015b; Fig. 2, Table 1). The sharp demarcation between low fluxes 311 

north of the PF, and high fluxes south is also visible between the Crozet Plateau (M5, M6 and M10 in 312 

Fig. 2; Salter et al., 2012) and Kerguelen Plateau (A3 in Fig. 2, KERFIX; Rembauville et al., 2015b; 2018). 313 

While the Crozet and Kerguelen traps occupy a similar latitude, the latter sit south of the PF, and have 314 

correspondingly higher maximum diatom fluxes (~1 order of magnitude, Fig. 2a). Similarly, in the 315 

Atlantic sector, the KG2 site, north of the PF, captured lower diatom flux than the similar-latitude 316 

Antarctic Peninsula traps, which sit south of the PF in this sector (Fig. 2a). 317 
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Table 1. Compilation of sediment trap studies of diatom or coccolithophore fluxes in the subtropics (30°S) to the Antarctic coast. Annual flux estimates annualized by 318 
normalization are indicated in italics. Where the same site was published in more than one publication, the publication in which the fluxes were stated is given here. * 319 
indicates discontinuous sampling spanning 300 days (Prebble et al., 2013). 320 

Region/ Trap 
ID 

Latitude, Longitude Trap 
depth 
(m) 

Water 
column 
depth (m) 

No. 
days 

Diatom flux 

 

Coccolith flux Reference 

Southeast Pacific sector       

CH 30° S, 73°11’ W 2300 4700 ~669 - 3.5 x105-1.2 x108 m-2 d-1 González et al., 2004 

CH3-1 30°01.5’ S, 73°11.0’ W 2333 4360 180 2.3-69.8 x105 m-2 d-1 - Romero et al., 2001 

CH4-1 30°00.3’ S, 73°10.3’ W 2303 4330 160 0.2-1.6 x105 m-2 d-1 - Romero et al., 2001 

CH10-1 29°59.9’ S, 73°16.8’ W 1492 4500 260 1.2-28.2 x105 m-2 d-1 - Romero et al., 2001 

CH10-2 29°59.9’ S, 73°16.8’ W 2578 4500 260 0.6-15.8 x105 m-2 d-1 - Romero et al., 2001 

CH11-1 29°58.8’ S, 73°18.1’ W 2526 4442 228 0.2-3.6 x105 m-2 d-1 - Romero et al., 2001 

Drake Passage/ Antarctic Peninsula      

KG1 62°15.4’ S, 57°31.7’ W 494 1952 348 >26.6x109 m-2 y-1 - Abelmann and Gersonde, 
1991 

“ 62°15.4’ S, 57°31.7’ W 1588 1952 360 2.6 x1011 m-2y-1 - Abelmann and Gersonde, 
1991 

KG2 62°20.1’ S, 75°28.3’ W 700 1650 344 0.8 x109 m-2y-1 - Abelmann and Gersonde, 
1991 

KG3 62°22.0’ S, 57°59.9’ W 687 1992 162 2.2 x109 m-2y-1 - Abelmann and Gersonde, 
1991 

EBS 61°45.8’ S, 54°59.1’ W 1000 2134 364 Max 2.4 x x109 m-2 d-1 - Kang et al., 2003 

R13 63°25’ S, 62°23’ W 100-200 n/a 4-5 13.33-66.68 x107 m-2 d-1 - Leventer, 1991 

R20 61°55’ S, 62°00’ W  n/a “ 1.26 to 5.32 x107 m-2 d-1 - Leventer, 1991 

R39 62°30’ S, 61°32’ W  n/a “ 3.71 to 70.89 x107 m-2 d-1 - Leventer, 1991 

R43 64°17’ S, 61°17’ W  n/a “ 6.24 to 978.5 x107 m-2 d-1 - Leventer, 1991 

R48 63°14’ S, 60°55’ W  n/a “ 0.42 to 183.25 x107 m-2 d-1 - Leventer, 1991 
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Weddell Sea        
WS-1 62°26.5’ S, 34°45.5’ W 443 3880 418 ~106 to 107 m-2d-1 - Fischer et al., 1988 
WS1 62°26.5’ S, 34°45.4’ W 863 3880 418 0.26 x109 m-2y-1 - Abelmann and Gersonde, 

1991 
WS2 64°55.0’ S, 2°30.0’ W 4454 5053 304 8.8 x109 m-2y-1 - Abelmann and Gersonde, 

1991 
WS3 64°53.1’ S, 2°33.7’ W 360 5053 385 1.0 x1010 m-2y-1 - Abelmann and Gersonde, 

1991 
WS4 64°55.5’ S, 2°35.5’ W 352 5044 360 >1.8 x109 m-2y-1 - Abelmann and Gersonde, 

1991 
PF1 50°09.0’ S, 5°43.8’ E 700 3779 421 5.5 x109 m-2y-1 - Abelmann and Gersonde, 

1991 
AWI206 63°29.6’ S, 52°07.4’ W 500 946 233 166.1 x106 m-2 sampling 

period-1 (=2.6 x108 m-2 y-1) 
- Gersonde and Zielinksi, 2000 

AWI208 65°36.3’ S, 36°29.9’ W 1000 4768 345 1722.0 x106 m-2 sampling 
period-1 (=1.8 x109 m-2 y-1) 

- Gersonde and Zielinksi, 2000 

P2 55°11.99' S, 41°7.42' W 1500 3200 230 Max 1.4 x107 m-2 d-1 - Rembauville et al., 2016 
P3 52°43.40' S, 40°8.83' W 2000 3800 292 Max 1.2 x108 m-2 d-1 - Rembauville et al., 2016 
East Atlantic 
sector 

       

BO1 54°20.3’ S, 3°22.6’ W 450 2734 368 21049 x106 m-2 sampling 
period-1 (=2.1 x1010 m-2 y-1) 

- Gersonde and Zielinski, 2000, 
Fischer et al., 2002 

BO2 54°20.8’ S, 3°23.6’ W 456 2695 200 1906.9 m-2 sampling period-1 
(=3.5 x109 m-2 y-1) 

- Gersonde and Zielinski, 2000 

PF1 50°09.0’ S, 5°43.8’ E 700 3779 421 5.5 x109 m-2y-1 - Abelmann and Gersonde, 
1991 

PF3 50°07.6’ S, 5°50.0’ E 614 3785 378 12163.8 m-2 sampling period-

1 (=1.2 x1010 m-2 y-1) 
- Gersonde and Zielinski, 2000 

PF5 50°06.0’ S, 5°55.4’ E 654 3804 200 322.8 m-2 sampling period-1 

(=5.9 x108 m-2 y-1) 
- Gersonde and Zielinski, 2000 

NU 29°12’ S, 13°07’ E 2516 3055 ~365 1.5 x108 m-2 yr-1 1.6 x1012 m-2 yr-1 Romero et al. 2002 
Southwest Indian sector       
KERFIX 50°40’ S, 68°25’ E 280 2300 337 <1 x106-1.3 x108 m-2 d-1 - Rembauville et al., 2018 
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“ 50°40’ S, 68°25’ E 200 1700 290 - 0.1 to 137.6 x106 m-2 d-1 Ternois et al., 1998 
A3 50°38.30’ S, 72°02.6’ E 289 527 322 <5 x106-6.1 x107 m-2 d-1 - Rembauville et al., 2015b 
PZB-1 62°28.6’ S, 72°58.6’ E 1400 4000 366 <3 x106 to >270 x106 m-2 d-1 - Pilskaln et al., 2004; Rigual-

Hernández et al., 2018b 
M10 44°29.95’ S, 49°59.9’ E 2000 2935 352 1.3 x109 m-2 yr-1 - Salter et al., 2012 
M5 46°00’ S, 56°05.0′ E 3195 4277 361 2.0 x109 m-2 yr-1 - Salter et al., 2012 
M6 49°00.03′S, 51°30.6’ E 3160 4221 361 8.3 x108 m-2 yr-1 - Salter et al., 2012 
Australian/New Zealand Sector       
MS2 56°54’ S, 170°10’ W 982 4924 425 5.0 x109 m-2 y-1 - Grigorov et al., 2014 
MS3 60°17’ S, 170°03’ W 1003 3957 425 2.9 x1010 m-2 y-1 - Grigorov et al., 2014 
MS4 63°09’ S, 169°54’ W 1031 2885 425 1.8 x1011 m-2 y-1 - Grigorov et al., 2014 
MS5 66°10’ S, 169°40’ W 937 3015 425 2.6 x1010 m-2 y-1 - Grigorov et al., 2014 
NCR 44°37’ S 178°37’ E 300 1500 178 5.5 x 105 m-2 yr-1 1.0 x107 m-2 yr-1 Wilks et al., under review 
”  1000 “ 243 1.5 x106 m-2 yr-1 - Wilks et al., under review 
SCR  42°42’ S 178°38’ E 300 1500 340 8.2 x107 m-2 yr-1 1.4 x108 m-2 yr-1 Wilks et al., under review 
“  1000 “ 340 1.4 x108 m-2 yr-1 - Wilks et al., under review 
STM 41°15’ S, 178°33’ E 1500 3100 >300* Max 3.4 x104 m-2 d-1 - Prebble et al., 2013 
SAM 46°33’ S, 178°33’ E 1500 2700 >300* 1.2 x105 m-2 d-1 - Prebble et al., 2013 
SAZ 46°46’ S, 142°40’ E 1060 4540 790 0.5 ± 0.4 x108 m-2 yr-1 - Rigual-Hernández et al., 

2015a 
47S 46°46’ S, 142°4’ E 500 4540 364 2.3 x108 m-2 yr-1 6.5 x1011 m-2 yr-1 Wilks et al., 2017 
PFZ 53°45’ S, 141°45’ E 830 2280 1894 3.1 ± 5.5 x109 m-2 yr-1 - Rigual-Hernández et al., 

2015a 
AZ 60°44.4’ S, 139°54.0’ E 2000 4393 309 2.4 x1010 m-2 yr-1 1.03 ×1011 m-2 yr-1 Rigual-Hernández et al., 

2015b; 2018a 
“  3700 “ 172 2.3 x1010 m-2 yr-1 1.2 x1011 m-2 yr-1 Rigual-Hernández et al., 

2015b; 2018a 
Ross Sea        
B-F, I, L 76°56'-77°52’ S, 

163°46’-166°37’ W 
15-685 41-715 ~61 <1 x105 to >4 x107 m-2 d-1 - Leventer and Dunbar, 1987  

RS-A 76°30.1’ S, 167°30.3’ E 250 not stated 357 Max 5.5 x 108 m-2 d-1 - Leventer and Dunbar, 1996 
RS-B 76°30.3’ S, 74°59.1’ W 250 not stated 363 Max 9.5 x107 m-2 d-1 - Leventer and Dunbar, 1996 

321 
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3.2.1 Southeast Pacific and Atlantic sector traps  322 

Sediment trap deployments in the Southeast Pacific and Atlantic sector are well scattered between 323 

the Antarctic Peninsula/Bransfield Strait and Weddell Sea, with a total of 13 mooring sites for 324 

which diatom fluxes were reported (Fig. 3). Sediment trapping in this region was mainly 325 

undertaken in the mid-1980s to 1990s (Supp. Table 1), with the exception of two sites, P2 and P3 326 

in the northern Weddell Sea region downstream of South Georgia, which had sediment trap 327 

deployments in 2012 (Rembauville et al., 2016). The Drake Passage was the site of the first 328 

sediment trap deployed in the Antarctic region (site DP80-81) between 1980 and 81, although 329 

diatom fluxes were not determined for this deployment (Fig. 1; Supp. Table 1). The steep gradient 330 

in diatom flux magnitude north and south of the PF breaks down around the Antarctic Peninsula/ 331 

Weddell Sea traps, with lower fluxes seen in the central Weddell Sea (especially WS1 and AWI208 332 

(Abelmann and Gersonde, 1991; Gersonde and Zielinski, 2000) than in surrounding moorings. 333 

Traps to the west, on the Antarctic Peninsula/ Bransfield Strait (EBS, AWI206, KG1 and 3), and in 334 

the eastern Weddell Sea (PF1, BO1 and WS2-4) reported some of the highest diatom fluxes in the 335 

focus region (Fig. 2a; Table 1). The central Benguela site NU, at the eastern edge of the Atlantic 336 

sector, was also a relatively low diatom flux site, with annual fluxes of 1.5 x108 valves m-2 yr-1 (Table 337 

1; Romero et al., 2002). 338 

 339 
Figure 3. Atlantic sector sediment trap moorings. Red circles indicate moorings for which diatom flux data is 340 
available. Oceanic abbreviations and trap identifiers are the same as Fig. 1.341 
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The seasonally ice-covered sites in the Bransfield Strait and Antarctic Peninsula reported high 342 

fluxes of Fragilariopsis curta and F. cylindrus, typical sea-ice species. At EBS, F. cylindrus was also 343 

present, but fluxes were dominated by Minidiscus chilensis (87% of total flux), a diatom not 344 

reported in other trap studies in this region, as well as Pseudo-nitzschia heimii and Thalassiosira 345 

Antarctica (Kang et al., 2003) (Table 2). 346 

Fragilariopsis kerguelensis was highly abundant at the Weddell Sea sites WS2-4 (up to 90% of 347 

winter assemblages at WS3), and at PF1 (60-85%) (Abelmann and Gersonde 1991). At P2 and P3, 348 

F. kerguelensis was 46% and 31% of total assemblages, respectively (Rembauville et al. 2016). 349 

Fragilariopsis curta was usually in excess of 20% of total flux at the Weddell Sea AWI, BO and WS 350 

sites, and up to 50% at BO1, while F. cylindrus was 70% of the winter assemblage at WS1 (Abelmann 351 

and Gersonde, 1991; Gersonde and Zielinski, 2000). The ice-free PF1 traps overwhelmingly 352 

captured F. kerguelensis (60-85%) and Thalassionema nitzschioides (5-15%) (Abelmann and 353 

Gersonde 1991). 354 

Low diatom fluxes were captured off the coast of Chile in the Subtropical Humbolt Current System 355 

(CH traps), between 1993-94 (CH1-3; normal year) and 1997-98 (CH11-1; El Niño year). Total 356 

annual diatom flux in the El Niño year was 75% lower than in the normal year, and spring flux 357 

maxima were 15.8 x105 m-2 d-2 in 1997-98, compared to 69.8 valves x105 m-2 d-2 in 1993-94 (Romero 358 

et al., 2001). Both normal and El Niño years saw high abundances of Chaetoceros resting spores 359 

and F. doliolus, although assemblage diversity was higher in the El Niño year, and taxa such as 360 

Rhizosolenia and Chaetoceros vegetative cells were more abundant (Romero et al. 2001). At the 361 

other subtropical station NU (non El Niño deployment years 1992-93), assemblages were also rich 362 

in F. doliolus (34% total), as well as Azpeitia spp. And Thalassionema nitzschioides (Table 2; Romero 363 

et al., 2002). 364 
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Table 2. Top diatom taxa at sediment trap deployments in the study region for which data are available. Guide to abbreviations: F. = Fragilariopsis, T. = Thalassiosira, 365 
CRS = Chaetoceros resting spores, A. = Azpeitia, P-n. = Pseudo-nitzschia, N. = Nitzschia. 366 

Region/ Trap ID Deployment 
years 

Trap 
depth 
(m) 

Most abundant taxa References 

Southeast Pacific sector    

CH3-1 1993-1994 2300 CRS, F. doliolus, A. curvulatus Romero et al., 2001 

CH10-1 1997 2578 CRS, Rhizosolenia spp., Chaetoceros spp. Romero et al., 2001 

Drake Passage/ Antarctic Peninsula   

KG1 1983-1984 494 Chaetoceros spp. (50-70%), T. antarctica, F. kerguelensis Abelmann and Gersonde, 1991 

KG2 1984-1985 700 Chaetoceros spp. (50-60%) Abelmann and Gersonde, 1991 

KG3 1983 687 T. antarctica (30-80%), Chaetoceros spp. (10-35%) Abelmann and Gersonde, 1991 

EBS 1998-1999 1000 Minidiscus chilensis (max 87%), P-n. heimii, T. antarctica Kang et al., 2003 

DP80/81 1980-1981 965 F. curta (25.3%), F. cylindrus (8.4%), Chaetoceros spp. (0.5%) Gersonde and Zielinski, 2000 

PB83 1983 1660 F. cylindrus (48.7%), F. curta (4.2%), Chaetoceros (6.2%) Gersonde and Zielinski, 2000 

Weddell Sea     
WS1 1985-1986 863 F. curta (33.2%), F. cylindrus (24.3%), T. gracilis (20-40%) Abelmann and Gersonde, 1991 
WS2 1987 4454 F. kerguelensis (90%) Abelmann and Gersonde, 1991 
WS3 1988-1989 360 F. kerguelensis (30-60%), F. cylindrus (12.5%), F.curta (5-20%) Abelmann and Gersonde, 1991 
WS4 1989-1990 400 F. kerguelensis (30-40%), F. cylindrus (25.6%), F. curta (14.1%) Abelmann and Gersonde, 1991 
PF1 1987-1988 700 F. kerguelensis (60-85%), T. nitzschioides (5-15%) Abelmann and Gersonde, 1991 
AWI208 1990-1992 500 F. cylindrus (10.6%), F. curta (17.7%), F. sublinearis (17.9%) Abelmann and Gersonde, 1991 
AWI206 1989-1990 1000 F. cylindrus (9%), F. curta (47.8%), F. obliquecosta (1.3%) Abelmann and Gersonde, 1991 

P2 2012 1500 F. kerguelensis (45.7%), F. separanda (15.6%), T. gracilis (8.9%) Rembauville et al., 2016 

P3 2012 2000 F. kerguelensis (31.4%), CRS (42.7%), T. nitzschioides (8.9%) Rembauville et al., 2016 
East Atlantic sector     
BO1 1990-1991 450 F. curta (37%), F. kerguelensis (28.7%), T. gracilis (7%) Gersonde and Zielinski, 2000, 

Fischer et al., 2002 
BO2 1992 456 F. cylindrus (max 38%), F. curta (max 30%) Gersonde and Zielinski, 2000 
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PF1 1987-1988 700 F. kerguelensis (60-85%), T. nitzschioides (5-15%) Gersonde and Zielinski, 2000 
PF3 1989-1990 614 F. kerguelensis (40.4%), T. nitzschioides (25.7%), T. lentiginosa (6.5%) Gersonde and Zielinski, 2000, 

Fischer et al., 2002 
NU 1992-1993 2516 F. doliolus (34%), A. tabularis, A. neocrenulata, T. nitzschioides Romero et al. 2002 
Southwest Indian sector    
KERFIX 1994-1995 280 F. kerguelensis (59.8%),  CRS (5.6%), P-n. lineola (5.4) Rembauville et al., 2017 
A3 2011-2012 289 Chaetoceros spp., E. antarctica var. antarctica, P-n. spp. Rembauville et al., 2015b 
PZB-1 1998-1999 1400 Fragilariopsis cylindrus (25%), F. kerguelensis (24%), P-n. spp. (10%) Rigual-Hernández et al., 2018 
M10 2004-2005 2000 E. antarctica var. antarctica (58%), F. kerguelensis (40%) Salter et al., 2012 
M5 2004-2005 3195 E. antarctica var. antarctica (28%), F. kerguelensis (67%) Salter et al., 2012 
M6 2005-2006 3160 F. kerguelensis (83%), Rhizosolenia spp. (0.3%), Thalassiothrix spp. 

(0.3%) 
Salter et al., 2012 

Australian/New Zealand Sector    
MS2 1996-1998 1000 F. kerguelensis (58.5%), N. bicapitata (6.5%), T. lentiginosa (4.4%) Grigorov et al., 2014 
MS3 1996-1998 1000 F. kerguelensis (67.1%), T. gracilis (6.9%), F. cylindrus (3.2%) Grigorov et al., 2014 
MS4 1996-1998 1000 F. kerguelensis (34.7%), T. gracilis (8.3%), F. separanda (7.9%), Grigorov et al., 2014 
MS5  1996-1998 1000 F. curta (31.7%), F. cylindrus (23.3), F. kerguelensis (22.2%) Grigorov et al., 2014 
SCR 1996-1997 300 P-n. spp. (95%), N. bicapitata (2.5%), S. oestrupii (0.5%) Wilks et al., under review 
NCR 1996-1997 300 CRS (44.8%), Chaetoceros spp. (9.8%), L. annulata (5.1%) Wilks et al., under review 
SAZ 2003-2004 500 F. kerguelensis (24.8%), A. tabularis (10.8%), CRS (7.2%)  Wilks et al., 2017 
PFZ 1997-1998, 

1999- 2000, 
2002- 2007 

830 F. kerguelensis (60%), P-n. lineola (10%),T. gracilis (6%) Rigual-Hernández et al., 2015a 

AZ 2001-2002 2000 F. kerguelensis (72%), T. lentiginosa (5%), T. gracilis (6%) Rigual-Hernández et al., 2015b 
Ross Sea     
B 1984 25-103 N. stellata, F. curta, Amphiprora spp., Fragilaria islandica Leventer and Dunbar, 1987  
D 1984 28-161 Amphipropra spp., Thalassiosira spp., F. curta Leventer and Dunbar, 1987  
F 1984 32-238 Pinnularia quardatarea, Amphiprora spp., Pleurosigma spp. Leventer and Dunbar, 1987  
RS-A 1991-1992 250 F. curta (92%), F. cylindrus Leventer and Dunbar, 1996 
RS-B 1991-1992 250 F. curta, F. cylindrus, Fragilariopsis spp., Thalassiosira spp. Leventer and Dunbar, 1996 

367 
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3.2.2 The Indian sector 368 

In the Indian sector, diatom flux data was available from six moorings; the three Crozet Island 369 

moorings (M5, M6 and M10; Salter et al. 2012), the Kerguelen Island and Plateau moorings (KERFIX 370 

and A3; Rembauville et al., 2015b; Rembauville et al., 2018), and the Prydz Bay site PZB-1 (Pilskaln 371 

et al., 2004; Rigual-Hernández et al., 2018b) (Fig. 4). Studies of diatom fluxes in this sector report 372 

on traps deployed as early as 1993 (KERFIX), to the Crozet Island deployments retrieved as recently 373 

as 2006 (Supp. Table 1; Salter et al. 2012). The Crozet Plateau and A3 deployments were each one 374 

year, while KERFIX was sampled for 2 years (Supp. Table 1). In the case of the PZB traps, although 375 

they were deployed between 1998 and 2001, phytoplankton analyses were not undertaken on 376 

these records until very recently (Rigual-Hernández et al., 2018b). North of the PF, the Crozet Island 377 

traps had moderate diatom fluxes (maximum 5.6 x 107 valves m-2 d-1 at M6), comparable in 378 

magnitude to fluxes at a similar latitude in the Australian sector (SAZ and 47° S; Fig. 2). KERFIX, A3 379 

and PZB-1, south of the PF, showed increasing diatom flux towards the Antarctic continent. 380 

 381 

Figure 4. Indian sector sediment trap moorings. Red circles indicate moorings for which diatom flux data is 382 
available. Oceanic abbreviations and trap identifiers are the same as Fig. 1. 383 

At the two naturally iron-fertilized Crozet sites M10 and M5, two taxa, Eucampia antarctica var. 384 

antarctica and Fragilariopsis kerguelensis together comprised over 92% of total diatom fluxes 385 

(Table 2). However, E. antarctica was absent from the non-iron fertilised trap at M6 (Salter et al., 386 

2012).  F. kerguelensis was also highly abundant at KERFIX (59.8% total flux) (Rembauville et al., 387 

2017), but less so at the nearby site A3, where it made up only 11.8% (Rembauville et al., 2015b). 388 

Instead, Chaetoceros Hyalochaete cells were the bulk of diatom flux at A3, followed by E. antarctica 389 
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var. antarctica, and Pseudo-nitzschia spp. Further south, at the PZB station, F. kerguelensis and F. 390 

curta were roughly a quarter of total fluxes each, while Pseudo-nitzschia were also a significant 391 

component at 10% of total flux (Rigual-Hernández et al., 2018b).  392 

3.2.3 The Australian and New Zealand sector and Ross Sea 393 

The Australian and New Zealand sectors (southeast Indian Ocean to southwest Pacific Ocean) are 394 

arguably the most comprehensively-studied in the Southern Hemisphere in terms of 395 

phytoplankton flux and community characterisation, with moorings spanning all major zones 396 

between the subtropics and the Antarctic coast (Fig. 5). The Australian and New Zealand sectors 397 

contain the longest and second-longest sediment trap deployments in the Southern Ocean, 398 

respectively. The longest mooring is the Southern Ocean Time Series located in the Australian 399 

sector at 140° E, 47° S (SOTS; 1998-present), under the management of Tom Trull and Eric Schulz 400 

(Integrated Marine Observing System, University of Tasmania). Most recently, surface 401 

phytoplankton assemblages were determined from a one-year sediment trap deployment at SOTS 402 

(Eriksen et al., 2018). Other sediment trap deployments south of Australia represent every main 403 

hydrological zone of the Southern Ocean (Bray et al., 2000; Trull et al., 2001a), with intermittent 404 

sediment trap deployments over the last decade (Table 1). 405 
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 406 
Figure 5. Summary map of all sediment trap moorings in the Australian and New Zealand sector. Sediment 407 
trap moorings are indicated with blue circles. Circles with white rings have calculated annual records of 408 
diatom and/or coccolith flux. Red circles represent the study locations for which both diatom and coccolith 409 
fluxes are available. Abbreviations defined in Fig. 1 caption. Oceanic abbreviations and trap identifiers are 410 
the same as Fig. 1. 411 

East of New Zealand, the STM and SAM mooring sites represent the second longest sediment trap 412 

time series in the Southern Ocean (2000-2012), managed by the National Institute of Water and 413 

Atmospheric research, New Zealand (NIWA) (Nodder et al., 2016). Of the moorings managed by 414 

NIWA, the NCR and SCR deployments are the first for which annual diatom and coccolith flux, as 415 

well as assemblage seasonality, has been calculated (Wilks et al., in review). Southeast of New 416 

Zealand, in the Southwestern Pacific sector, US JGOFS-Antarctic Environment and Southern Ocean 417 

Process Study (AESOPS) program deployments extend from the SAZ (MS1) to below the Southern 418 

Boundary (SB) of the ACC (MS5), with trap coverage from 1996-98 (Supp. Table 1, Fig. 5) (Honjo et 419 

al., 2000). Of the AESOPS moorings, diatom assemblages and fluxes between MS2-5 have been 420 

characterised to species level (Grigorov et al., 2014).  421 

The SAZ Project and AESOPS deployments again represent rare trapping efforts for which diatoms 422 

and/or coccolith fluxes have been determined over an annual cycle, in addition to the bulk 423 

compounds usually measured (i.e. POC, biogenic silica, PIC etc.) (Honjo et al., 2000; Grigorov et al., 424 

2014; Rigual-Hernández et al., 2015a; Rigual-Hernández et al., 2015b; Wilks et al., 2017). 425 

Exceptionally, seafloor sediment and phytoplankton standing stock analyses have also been 426 
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undertaken at or near the NIWA moorings (Bradford-Grieve et al., 1997; Nodder et al., 2007; Chang 427 

and Northcote, 2016), SAZ Project moorings (Hutchins et al., 2001; Rigual-Hernández et al., 2016) 428 

and AESOPS mooring sites, making these deployments comprehensive in terms of complete 429 

surface to seafloor characterisation.  430 

East of New Zealand, Fragilariopsis kerguelensis dominated diatom flux between MS-2, MS-3, and 431 

MS-4, averaging 58.5 %, 67.1 % and 34.7 % of diatom flux across the study period, respectively 432 

(Grigorov et al., 2014). At MS-5, the dominance of F. kerguelensis was replaced by higher 433 

abundances of sea ice taxa F. curta and F. cylindrus, though F. kerguelensis still accounted for 434 

22.2 % of average flux. High fluxes of Chaetoceros resting spores were captured at the Subtropical 435 

station NCR off New Zealand (44.8 %), along with high proportions of coastal and benthic taxa, 436 

whereas the SCR station to the south saw diatom flues overwhelmingly dominated by Pseudo-437 

nitzschia spp. (95 %) (Wilks et al., under review). In the Australian sector, F. kerguelensis was about 438 

a quarter of total flux at the 2003-04 SAZ station deployment, followed by Azpeitia tabularis 439 

(10.2 %) and Chaetoceros spores (7.2 %) (Wilks et al., 2017). For the 1999-2000 deployment the 440 

same site, F. kerguelensis was even more abundant (48 %), with A. tabularis again 10 % (Rigual-441 

Hernández et al., 2015a). Finally, F. Kerguelensis abundances increased southwards at the PFZ and 442 

AZ sites, comprising 60 % and 72 % of annual assemblages, respectively (Rigual-Hernández et al., 443 

2015a, b).  444 

In the Ross Sea, diatom fluxes at mooring RS-A was an order of magnitude higher than RS-B and 445 

the short-term under-ice McMurdo Sound Deployments (D, E, F, I-L) (Fig. 2a). The McMurdo Sound 446 

mooring sites each saw several deployments of several days in length, and at various depths 447 

(ranging from 15 – 685 m (Leventer and Dunbar, 1987). Although fluxes from the McMurdo Sound 448 

traps have been plotted for the sake of completion, the short deployment times and inconsistent 449 

conditions make comparisons with other sediment trap deployments difficult. Common taxa 450 

sampled in McMurdo Sound were Amphiprora spp., Pleurosigma spp. and Nitzschia stellate (Table 451 

2; Leventer and Dunbar., 1987). RS-A and RS-B sampled for over a continuous year each, and 452 

Fragilariopsis curta was the dominant diatom at both moorings (Leventer and Dunbar 1996).  453 

3.3 Diatom flux model  454 

Four key nutrients were used as predictors in linear models (nitrate, phosphate, iron and silicate), 455 

as well as Chl-a (indicator of total algal biomass accumulation), SST, sea ice cover (%) and 456 

Particulate Inorganic Carbon (PIC). A correlation matrix was created to summarise the relationships 457 

between each of the eight variables and log10 diatom flux. Most of the environmental variables 458 

appeared to co-vary and were strongly and significantly correlated (Table 3). Notable exceptions 459 
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include iron, which showed weakly negative correlations with all variables except SST (and 460 

significant only for sea ice), and a weakly positive (significant) correlation with SST (p= 0.02; Table 461 

3). 462 

Table 3. Pearson’s product-moment correlation matrix of environmental predictors of Log10 maximum 463 
diatom flux (valves m-2 d-1). Values in bold are significant (p value given in brackets).  464 

 
log10 max 
diatom 
flux 

Phosphate  Nitrate log10 
Silicate SST Chl-a Iron Sea ice 

cover PIC 

Log10 max 
diatom flux -         

Phosphate  0.76 
(<0.001) -        

Nitrate 0.78 
(<0.001) 

0.97 
(<0.001) -       

log10 
Silicate 

0.63 
(<0.001) 

0.92 
(<0.001) 

0.85 
(<0.001) -      

SST -0.67 
(<0.001) 

-0.96 
(<0.001) 

-0.92 
(<0.001) 

-0.96 
(<0.001) -     

Chl-a -0.10 0.14 -0.02 0.34 
(0.02) 

-0.30 
(0.04) -    

Iron -0.09 -0.25 -0.27 -0.27 0.35 
(0.02) -0.19 -   

Sea ice 
cover 0.19 

0.49 

(<0.001) 

0.36 

(0.01) 
0.74 -0.64 0.61 

-0.29 

(0.04) 
-  

PIC 0.20 0.18 0.15 0.32 
(0.03) 

-0.30 
(0.04) 

0.47 
(<0.001) -0.18 0.57 - 

 465 

SST demonstrated significant correlation with all variables except sea ice. The strongest 466 

relationships were observed between phosphate and nitrate (positive, r = 0.97), and log10Silicate 467 

and SST (negative, r = -0.96; Table 3). There was a positive relationship between diatom flux and 468 

the nutrients phosphate and nitrate (r > 0.76), diatom flux and silicate (r = 0.63), and negatively 469 

with SST (R = -0.67) (Table 3). PIC was weakly positively correlated with log10 silicate and 470 

chlorophyll-a, and weakly negatively correlated with SST (Table 3).  471 

A stepwise regression test was performed to determine which of the eight variables were the best 472 

potential predictors of log10 max diatom flux (Figs. 6a-d; only models for which r2> 0.4 included). 473 

Backwards (subtractive) and forwards (additive) stepwise regressions were undertaken to 474 

determine which of the variables best predicted variation in log10 diatom flux. The backwards 475 

stepwise model identified phosphate, iron and sea ice in combination as the most significant 476 

predictors of log10 diatom flux (AIC= -28.35), predicting 63 % of log10 max diatom flux in this dataset 477 

(p< 0.001). The forwards stepwise model identified the most important predictors as nitrate and 478 
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iron (AIC= -28.28), explaining 62 % of variation in log10 max diatom flux (p< 0.001). Given that 479 

phosphate and nitrate are extremely well correlated (0.97; Table 3), and nitrate alone explains 480 

most of the variation in log10 diatom flux (adjusted r2= 0.60, p< 0.001), nitrate concentration was 481 

identified as the single most important variable controlling log10 max diatom flux in this dataset, 482 

followed by phosphate, SST, and log10 silicate (r2= 0.57, 0.44 and 0.38, respectively; Fig. 6a-d). 483 

Nitrate concentration tends to increase between the PF and the Antarctic coast (Fig. 7), consistent 484 

with the observed trend of increasing diatom fluxes south of the PF.  485 

 486 
Figure 6. Linear models visualising individual parameters: (a) Nitrate; (b) Phosphate; (c) log10 Silicate; (d) SST, 487 
as predictors of log10 maximum diatom flux. Adjusted r2 value given on plot. Grey bars represent 95% 488 
prediction confidence intervals. 489 
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 490 

Figure 7. Map of Subtropical to Antarctic Southern Hemisphere with annual average nitrate concentration 491 
(µmol.L-1) indicated by colour (https://www.nodc.noaa.gov/OC5/WOA09/pr_woa09.html). Oceanic 492 
abbreviations and trap identifiers are the same as Fig. 1. Dark blue and light blue lines indicate maximum 493 
winter, and minimum summer sea ice extent, respectively. 494 

3.4 Southern Hemisphere coccolith flux 495 

Of the studies that calculated coccolith flux, two were just within the scope of this study, between 496 

~29 and 30° S off southwest South America (González et al., 2004), and southwest Africa (Romero 497 

et al., 2002). The other four studies detailing coccolith fluxes were at the KERFIX (Kerguelen Island) 498 

station (Ternois et al., 1998) at ~50° S, the subtropical and subantarctic New Zealand sites (NCR 499 

and SCR; Wilks et al., in review), and south of Australia at the SAZ (Wilks et al., 2017) and AZ 500 

deployments (Rigual-Hernández et al., 2018a). Thus, despite the known extent of carbonate 501 
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production in the Southern Ocean (Balch et al., 2016), knowledge on the seasonality of coccolith 502 

fluxes is relatively limited. 503 

Seven data points for sediment trap-derived coccolith fluxes were available to map log10 maximum 504 

coccolith fluxes, and five data points for annual coccolith flux (Fig. 8). Highest annual coccolith flux 505 

was observed in the central Benguela system (NU) at 1.6 x 1012
 coccoliths m-2 yr-1, with daily maxima 506 

of ~2.3 x 108 coccoliths m-2 d-1 (Romero et al., 2002). Similarly high coccolith fluxes were observed 507 

at the SAZ site at 6.5 x 1011 m-2 yr-1 (Table 1; Wilks et al., 2017). Surprisingly, site CH, occupying a 508 

similar latitude to the productive NU site, showed only moderate coccoliths fluxes comparable to 509 

KERFIX (Fig. 8). The lowest coccolith fluxes in the study region occur at the NCR site east of New 510 

Zealand at 1.0 x 107 coccoliths m-2 yr-1 (Wilks et al., in review) (Fig. 8b). All studies reported 511 

Emiliania huxleyi as the dominant coccolithophore in trap records, with minor contributions from 512 

taxa such as Coccolithus pelagicus, Gephyrocapsa spp. and Calcidiscus leptoporus.  513 
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 514 

Figure 8. (a) Log10 maximum and (b) annual coccolith flux for sediment trap studies in the subtropical to polar 515 
Southern Hemisphere. Magnitude of fluxes indicated by colour bars. Oceanic abbreviations and trap 516 
identifiers are the same as Fig. 1. Dark blue and light blue lines indicate maximum winter and minimum 517 
summer winter sea ice extent, respectively. 518 
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4. Discussion 519 

4.1 Spatial trends in diatom flux 520 

To address aim one, log10 maximum and log10 annual diatom fluxes derived from sediment trap 521 

deployments in the Southern Hemisphere were mapped with the major oceanic fronts, revealing 522 

some broad regional trends. Diatom flux is highest, with a few exceptions, south of the Polar Front 523 

(PF; Fig. 2a). A review of 27 sediment traps by Antia et al. (2001) reported increasing carbon export 524 

flux towards the poles, while Honjo (2004) found the PF to be the boundary between calcium-525 

carbonate-driven export to the north, and biogenic silica-driven export to the south. 526 

One of the recurring discoveries of multi-year sediment trapping has been variability in both the 527 

timing and magnitude of fluxes between years (e.g. Gersonde and Zielinski, 2000; Romero et al., 528 

2001; Rigual-Hernández et al., 2015a; Nodder et al., 2016). This needs to be kept in mind as a 529 

potential cause of variability in the broader diatom flux trends. At high latitudes, annual primary 530 

production is highly seasonal due to light limitation (Harrison et al., 2018). Further, in some regions 531 

the start date of spring diatom bloom can vary by a month (Broekhuizen et al., 1998). Short term, 532 

and even whole-year sediment trap records, may be less readily extrapolated to typical seasonality 533 

and flux than multi-year trap studies. However, short-term trapping studies may still be of great 534 

value. Studies such as those of Ichinomiya et al. (2008) under sea ice at Syowa Station (38 days), 535 

or the Drake Passage traps DP80/81 (52 days; Gersonde and Zielinski, 2000) are undertaken during 536 

productive seasons, and may provide excellent data about the magnitude of spring export flux, as 537 

well as contributing species composition (Ichinomiya et al., 2008). 538 

The preservation potential of different diatom taxa may account for differences in fluxes between 539 

sediment trap deployments, and may also be influenced by sea ice and proximity to land. In the 540 

Antarctic Peninsula, high abundances of resting spore-forming taxa are suggested as a “seeding” 541 

strategy in neritic and sea-ice regions (Bodungen et al., 1986). Sediment trap deployments in the 542 

Antarctic Peninsula (e.g. EBS, KG1-3, AWI206) and seasonally ice-covered Weddell Sea (AWI208, 543 

WS1) traps do tend to report a high presence of spore forming taxa, which are resistant to 544 

dissolution and appear as a strong signal in sediment traps. Despite this, total fluxes at AWI206 545 

and 208 were relatively low, possibly because both sites were ice-free for only 2-3 months of the 546 

year (Gersonde and Zielinski, 2000). Traps WS1 and KG1 in the Antarctic Peninsula region collected 547 

data in the same year (1985-86) and for roughly the same duration, but diatom fluxes were an 548 

order of magnitude higher at KG1 (Table 1). Higher fluxes in the region of the Antarctic Peninsula 549 

could be the result of higher sediment input due to resuspension or lateral transport because of 550 

the proximity of the KG1 mooring site to the coast (Abelmann and Gersonde, 1991). Abelmann and 551 

Gersonde (1991) reported high fluxes of dissolution-resistant Chaetoceros resting spores in KG1 552 
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(up to 80% of fluxes) and Thalassiosira antarctica (including its spores) at KG3 (80 %). WS1 553 

contained more lightly-silicified taxa, but still a large contribution from resting spores (up to 60 %; 554 

Abelmann and Gersonde, 1991).The open-ocean site WS2, on the other hand, also captured higher 555 

flux than WS1 (Fig. 2a), but these authors attributed this to the year-round resuspension of 556 

material from the adjacent Maud Rise.  557 

The proximity of land masses may also influence the assemblages captured by sediment traps. For 558 

example, high iron conditions may be found close to continental shelves where upwelling occurs 559 

(Graham et al., 2015),  allowing the growth of large, heavily silicified taxa such as Eucampia, or 560 

Fragilariopsis kerguelensis, (Salter et al., 2012; Rembauville et al., 2016). These heavily silicified 561 

taxa often preserve better, and could result in higher flux capture by sediment traps. Chaetoceros 562 

taxa also tend to be associated with coastal systems (Tomas, 1997), and spores of Chaetoceros 563 

form a significant proportion of high-nutrient coastal and upwelling assemblages. Chaetoceros 564 

spores were also present in seafloor sediments near the Humbolt Current upwelling system (CH) 565 

traps (Romero et al., 2001). The Island Mass Effect is also evident north of the Weddell Sea, (P2 566 

and P3, Rembauville et al., 2016). P3, downstream of South Georgia, where influence from the 567 

island causes high nutrient concentrations, captured diatom fluxes an order of magnitude higher 568 

than the upstream trap, P2 (Fig. 2). Further, assemblages at P3 were rich in Chaetoceros spores 569 

(43 % integrated annual flux), consistent with the influence of island-derived water masses, while 570 

P2 traps captured mainly Fragilariopsis kerguelensis (~40 %; Rembauville et al., 2016).   571 

In the Indian sector, diatom resting spores comprised significant portions of fluxes at both Crozet 572 

and Kerguelen, both naturally iron-fertilized regions. At Crozet, resting spores of Eucampia 573 

antarctica var. antarctica were strongly correlated with POC export (Salter et al., 2012), while at 574 

A3, 60% of POC flux was attributable to Chaetoceros Hyalochaete spores and Thalassiosira 575 

antarctica resting spores (Rembauville et al., 2015a). In contrast, Chaetoceros resting spores were 576 

a relatively minor contribution to flux at KERFIX, attributable to deeper waters at KERFIX than A3 577 

preventing spore recirculation after sinking, and higher silicic acid availability inhibiting spore 578 

formation (Rembauville et al., 2018). At the seasonally ice-covered Prydz Bay site (PZB-1), 579 

assemblages were dominated by Fragilariopsis kerguelensis, which was identified as key to 580 

biogenic silica export in this trap record, and a typically well-preserved taxon (Rigual-Hernández et 581 

al., 2018b).  582 

The ubiquitous and dissolution-resistant Fragilariopsis kerguelensis also dominated in the New 583 

Zealand sector traps between MS-2 and MS-4. At M-5, which is covered by sea ice for over 50% of 584 

the year (Supp. Table 2), the dominance of F. kerguelensis was replaced by higher abundances of 585 
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other Fragilariopsis taxa, F. curta and F. cylindrus (Grigorov et al., 2014). In the Australian sector, 586 

decreasing diatom diversity between the SAZ and AZ was accompanied by flux assemblages 587 

increasingly dominated by the robust F. kerguelensis (up to 96 % of assemblages at the AZ site, and 588 

80 % of the annual integrated flux; Rigual-Hernández et al., 2015b; Rigual-Hernández et al., 2016). 589 

The site of maximum F. kerguelensis flux in the Australian sector (AZ), and in the New Zealand 590 

sector (MS-3), sit at nearly the same latitude (Fig. 5). F. kerguelensis is generally considered a 591 

silicon-sinking, rather than a carbon-sinking diatom (Assmy et al., 2013). So, a bloom of F. 592 

kerguelensis may not export as much carbon as a typical carbon-sinking group (such as 593 

Chaetoceros). It is thus of merit to understand the way diatom assemblage fluxes change 594 

throughout the ocean, as this has a bearing on the composition of exported material. This type of 595 

comparison of latitudinal gradients in diatom assemblages is made possible as a result of the 596 

systematic Australian/New Zealand sector trapping efforts. 597 

4.2 Can environmental parameters explain diatom flux patterns? 598 

Collectively, phosphate (or nitrate), iron and % annual sea ice cover were the best predictors of 599 

diatom flux in this dataset. Nitrate, phosphate, silicate and iron are the major nutrients required 600 

by diatoms, although co-limitation by silicate and iron often limits diatom growth in the Southern 601 

Ocean (De Baar et al., 1995; Boyd et al., 1999). The Southern Ocean is commonly described as 602 

HNLC (High-Nitrate, Low-Chlorophyll), and in HNLC systems nitrate and phosphate may not be fully 603 

utilized by phytoplankton due to iron limitation, resulting in large phytoplankton blooms when iron 604 

is seasonally, or artificially, enriched (Martin, 1990; Martin et al., 1994). Since the preservation and 605 

flux of diatom frustules is often enhanced in bloom conditions due to higher sinking rates 606 

(Smetacek, 1985), iron and phosphate are logical predictors of diatom flux.  607 

The seasonal presence and absence of sea ice is known to affect diatom sedimentation at very high 608 

latitudes (Abelmann and Gersonde, 1991; Armand et al., 2005). In fact, some of the highest 609 

maximum daily rates of primary productivity of the Southern Ocean occurs at the retreating ice 610 

edge in spring/summer (Arrigo et al., 2008), because of high nutrient upwelling and more stable, 611 

stratified waters at the edges of melting ice (Smith and Nelson, 1986). 612 

Several recent studies have attempted to determine the factors controlling the efficiency of 613 

particulate organic carbon export flux in the global ocean (Henson et al., 2012; Weber et al., 2016; 614 

Cram et al., 2017). Although these factors remain contentious, there is agreement that flux is 615 

controlled not only by the amount of production, but also the degree to which particles are 616 

changed while in the water column, such as by microbial degradation (which can be affected by 617 

SST; Cram et al., 2017)), as well as by zooplankton grazing. Microbial remineralization affects 618 
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organic fluxes, but does not affect the flux of the siliceous remains of diatoms, so was not 619 

considered in this review. Rather, diatom frustules are at greatest risk of dissolution before 620 

reaching export depths; an estimated 50% of biogenic silica dissolves in the upper 100m of the 621 

ocean, but may be slower at lower water temperatures (Nelson et al., 1995). SST was significantly 622 

negatively correlated with log10 diatom flux (-0.67; Table 3), and slower rates of silica dissolution is 623 

incited as a possible reason, though as SST co-varies with iron concentration (one of the three main 624 

predictors of diatom flux), this remains speculative.  625 

The correlations between diatom flux, chlorophyll-a, and PIC are best interpreted with care. The 626 

lack of any significant relationship between diatom flux and Chl-a does not, intuitively, sit well with 627 

the high correlation between diatom flux and key nutrients (except iron) unless a large proportion 628 

of the production observed via Chl-a is not attributable to diatoms. This conclusion is possible; 629 

other autotrophs such as Phaeocystis spp., dinoflagellates and picoeukaryotes may be regionally 630 

significant Chl-a producers (Boyd et al., 2000; Alvain et al., 2008). Phaeocystis spp., for example, 631 

are highly abundant in Southern Ocean waters (Arrigo et al., 1999). Another alternative is the 632 

decoupling of fluxes from surface production, which is not uncommonly observed from sediment 633 

trap deployments, and may occur if sinking particles are very rapidly remineralized or dissolved 634 

before reaching traps (Buesseler, 1998). This phenomenon has been observed in the New Zealand 635 

sector (Nodder et al., 2005). Decoupling may also be the result of stochastic “pulse” bloom events 636 

(for example of Rhizosolenid diatoms), whereby particles are drawn down together with sinking 637 

fluxes, and surface production thus does not reflect flux capture (Sancetta et al. 1991). 638 

Zooplankton grazing may be another cause of decoupling of production from export, with 639 

zooplankton grazing reported to exceed new production under some conditions (James and Hall, 640 

1998). The extent to which surface-export decoupling occurs is unknown, and this question alone 641 

certainly warrants further sediment trap investigations. 642 

The correlation between Chl-a and PIC might suggest calcifying organisms as key producers, except 643 

that in coastal regions or shallow waters, particulate resuspension is known to affect the accuracy 644 

of PIC concentration estimates via remotely sensed ocean colour (Daniels et al., 2012). Given that 645 

most of the trap deployments are in such regions, the Chl-a and PIC correlation may be an artefact. 646 

Further, remotely-sensed Chlorophyll-a data does not account for sub-surface chlorophyll 647 

production, which is not remotely detectable and may account for a significant proportion of 648 

annual flux (Kemp et al., 2000; Nodder et al., 2016). The significance of sub-surface production is 649 

not well known, but may vary between years (Nodder et al., 2016), possibly limiting attempts to 650 

draw relationships between flux and remotely-sensed Chlorophyll-a. 651 

133



Chapter Four 

 

The model applied in this study must be viewed with a degree of caution, because a simple linear 652 

model cannot account for factors such as community composition, grazing, or the influence of 653 

microbial dynamics (Laurenceau et al., 2015). Additionally, since environmental data were not 654 

obtained at the time of trapping in most instances, they should be regarded only as indicative of 655 

general patterns of nutrient distribution, rather than recording local conditions at the time of 656 

sampling. Unfortunately, with so few trap deployments that calculated coccolith flux, it was not 657 

possible to derive a relationship between coccolith flux and any environmental parameter. 658 

4.3 Methodological considerations 659 

In the Ross Sea, the generalised pattern of increasing diatom flux towards the poles is confounded 660 

by McMurdo Sound traps D, E, F, I, L (Leventer and Dunbar, 1987) and RS-B (Leventer and Dunbar, 661 

1996). Relative low fluxes in McMurdo Sound contrast with a global database of diatom 662 

abundance, which reported highest abundances of diatoms in the water column (cells L-1) in the 663 

Ross Sea region (Leblanc et al., 2012), though as previously discussed, this does not necessarily 664 

mean higher flux. The McMurdo Sound traps utilised a conical single-cup sediment trap design, 665 

suspended beneath sea ice for up to 61 days, with either 1950 or 400 cm2 capture area (Leventer 666 

and Dunbar, 1987). The RS-B and RS-A traps were longer and deeper-deployed, time-incremental 667 

traps anchored to the seafloor with 500 cm2 capture area (Dunbar et al., 1998).  668 

As a result of the different methodologies employed, perhaps the ~2 month duration McMurdo 669 

Sound trap record should not be compared with the annual RS-A and RA-B traps. Though 670 

speculative, the lower fluxes at McMurdo Sound could be the result of disturbance to under-ice 671 

plankton communities caused by the deployment method itself (ice-drilling). Other authors have 672 

reported that algae are very easily detached from the underside of the ice during trap deployment 673 

(McMinn, 1996), even coming loose by the currents caused by scuba divers (Sasaki and Watanabe, 674 

1984), thus it is possible that the act of drilling and deploying early under-ice traps may have 675 

disturbed natural flux patterns.    676 

Material processing after trap retrieval may also affect flux results, and the ways material was 677 

processed by studies included in this review should be considered. Prebble et al. (2013) hand-678 

picked swimmers, then sieved at 200 and 6 µm, and the 6-200 µm fraction was used in 679 

phytoplankton analysis. In this instance, it is possible that very small taxa (e.g. Delphineis 680 

minutissima) and very large diatoms (such as long Thalassiothrix antarctica or Pseudo-nitzschia 681 

spp. chains), all of which have been observed at or near STM and SAM sites in New Zealand (Wilks 682 

et al., in review), may have been omitted from those counts. Leventer (1991) used short-term 683 

134



Chapter Four 

 

Racer trap material filtered through a 20 µm screen, and counted the >20 µm fraction only, again 684 

leading to the possibility of underrepresentation of small size fractions.  685 

Sediment trap practice has evolved considerably since the earliest deployments, and although 686 

methodologies have greatly improved with time, some methodological disparities between studies 687 

are unavoidable. The strengths and weaknesses of sediment trap deployment methods and 688 

designs have been reviewed elsewhere (Buesseler et al., 2007; McDonnell et al., 2015). The 689 

differences in trap deployment and processing methodology in the present compilation are 690 

acknowledged, but efforts to map diatom and coccolith fluxes from sediment trap records are 691 

clearly of great value. For the most part, nearby trap deployments, despite utilising different 692 

methodologies and deployment times, tended to calculate fluxes of a similar magnitude, and this 693 

broadly demonstrates data comparability. For example, traps WS1 (1985-86) (Fischer et al., 1988) 694 

and AWI208 (1989-90) (Gersonde and Zielinski, 2000) reported similar maximum diatom fluxes, as 695 

did the Bransfield Strait/Antarctic Peninsula traps EBS (1998-1999; Kang et al., 2003), AWI206 696 

(1989-90; Gersonde and Zielinski, 2000) and KG1/3 (1983-84, and 1985-86; Abelmann and 697 

Gersonde, 1991) (Fig. 2a).  698 

Methodologically, the NIWA, AESOPS and SAZ Project trap results are readily comparable, having 699 

employed similar deployment types and processing methods. Each deployment used McLaneTM 700 

Parflux conical sediment traps, though different trap preservatives were employed; HgCl2 for the 701 

SAZ Project traps, buffered formalin for the AESOPS traps, and either buffered formalin or HgCl2 in 702 

the NZ traps. The NIWA, AESOPS, and SAZ Project deployments also used a minimum 1.0 mm 703 

screen to remove swimmers prior to flux calculation. The consistency between the Australian and 704 

New Zealand sector deployments, and their ease of comparability, should be considered the aim 705 

of all future deployments. 706 

4.4 Spatial trends in coccolith fluxes 707 

Coccolith flux was also mapped relative to oceanographic fronts, but only seven data points were 708 

available for log10 maximum coccolith flux, while five were available for log10 annual coccolith flux 709 

(Table 1; Fig. 8). Highest coccolith flux at the Namibia Upwelling (NU) and Tasmanian (SAZ) sites is 710 

supported by reports of calcium carbonate-dominated export flux (maximum 74 % and 82 % of 711 

total flux, respectively) (Romero et al,. 2002; Wilks et al., 2017). Relatively high annual and 712 

maximum coccolith fluxes were recorded at the AZ trap (Rigual-Hernández et al., 2018a), in which 713 

calcium carbonate comprised up to 30 % of total flux into the traps.  714 

Calcium carbonate was also the major component of trap material at the Chilean site (CH), but 715 

coccolith fluxes were relatively low (González et al., 2004). This disparity cannot easily be 716 
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attributed to methodological differences, since all three mooring sites used conical traps (either 717 

Parflux or Kiel, 0.5m2 aperture) and HgCl2 poisoning methods. It is difficult to explain this distinct 718 

difference without more comparative deployment data. Coccolith fluxes at the KERFIX site were 719 

determined from a near-annual record obtained between April 1993 and January 1994 (290 days) 720 

(Ternois et al., 1998). This record may not have captured a peak in export in late summer, as minor 721 

coccolith flux peaks in February and March have been observed elsewhere in the Southern Ocean 722 

(Romero et al. 2002; González et al. 2004), though with only one record this also remains 723 

speculation.  724 

All sites recorded Emiliania huxleyi as the most abundant coccolithophore captured in sediment 725 

traps. Highest abundances of E. huxleyi were found within the southernmost AZ traps, where the 726 

annual integrated abundance of the taxon was >99 % of coccolith flux captured at both depths, 727 

and with minor occurrences of C. leptoporus (Rigual-Hernández et al., 2018a). Comparatively, the 728 

annual integrated abundance of E. huxleyi at the SAZ trap in the same sector was only 59.3 % of 729 

coccolith flux (500 m trap depth), followed by Gephyrocapsa spp. < 3 μm (37.9 %) with other taxa 730 

below 2% abundance each (Wilks et al., 2017). Coccolithophore assemblage are known to become 731 

increasingly E. huxleyi- dominated at high latitude in the Southern Ocean, and are more or less 732 

monospecific south of ~60 °S (Gravalosa et al., 2008; Malinverno et al., 2015). Seafloor sediment 733 

composition has been examined more widely than either coccolith or diatom flux (see Dutkiewicz 734 

et al., 2016), making further studies of coccolith fluxes warranted in the Southern Hemisphere.  735 

4.5 Priority regions in sediment trapping 736 

Despite the scattered distribution of sediment traps in the Southern Hemisphere, the Southern 737 

Ocean zones exhibit relatively homogenous chemical and physical water column properties 738 

(Lutjeharms et al., 1993), meaning that a deployment may be representative of a relatively broad 739 

area. For example, the SAZ moorings were determined to be representative of the region from 90° 740 

to 145° E based on satellite data and oceanographic observations of the region (Trull et al., 2001b). 741 

The exception is near island masses, where upwelling and runoff induce increased nutrient 742 

concentrations and productivity (Blain et al., 2001). So, while sediment trap deployments in the 743 

pelagic Southern Ocean may be representative of a relatively large region, coastal and shelf regions 744 

may need to be more densely sampled in order to capture potential regional variability. Sediment 745 

trapping in the central Indian and central Pacific sectors of the Southern Ocean is lacking (Fig. 1), 746 

and should be considered priority regions for future sediment trap deployments.  747 

Co-ordinated time series investigations with well-defined coverage, sufficient length of 748 

deployment (minimum 200 days for an annual extrapolation to be estimated, and preferably one 749 
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year or longer), and standardised method of analysis will be key. The Argentinian shelf region 750 

would greatly benefit from sediment trap work, given the high productivity of the region. The Ross 751 

Sea region, while densely trapped, saw most interest in the 1980s and 1990s, and would benefit 752 

from trapping using modern deployment methodologies (e.g. Parflux traps) and for longer 753 

duration. Existing trap records, archival or modern, would be well used to calculate phytoplankton 754 

fluxes, where preservation allows. A broad knowledge of phytoplankton flux magnitude, and 755 

species composition, is ideal in order to predict how large scale carbon export may change, and 756 

which taxa are likely to drive export in the future.757 
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5. Conclusions  758 

Comparing sediment trap data needs to be treated with some caution due to methodological and 759 

oceanographic/biological variability, but these pelagic records provide highly valuable data for 760 

developing understanding of the contribution of different phytoplankton taxa to global carbon 761 

export. In this systematic review, major sediment trapping efforts is mapped and modelled in 762 

subtropical to the polar oceans of the Southern Hemisphere over the last 40 years. The region is 763 

mostly well-trapped (e.g. the Ross and Weddell Seas, Antarctic Peninsula, and Australian/New 764 

Zealand sector), though there remain extensive un-trapped zones for which we may only estimate 765 

diatom fluxes (e.g. the Pacific sector).  766 

Diatom fluxes were available for 49 trap deployments. Log10 maximum diatom flux tended to 767 

increase south of the Polar Front and to the Antarctic continent. This pattern was not observed in 768 

all regions, such as the central Weddell Sea and McMurdo Sound, Ross Sea. In the Weddell Sea, 769 

the factors controlling spatial differences in diatom fluxes are complex and are not resolved, but 770 

may relate to local oceanography (e.g. upwelling from Maud Rise at WS2), or the preservability of 771 

assemblages at the different sites. In McMurdo Sound, diatom flux was more difficult to interpret 772 

due to seasonal nutrient variability associated with continental run-off and differences in 773 

methodologies employed to capture pelagic data.  774 

Coccolith fluxes were available for only seven deployments, and too few data points were available 775 

to make any generalizations about flux patterns. Given the well-known importance of carbonates 776 

in Southern Ocean sedimentary processes, the dearth of coccolith flux studies is both surprising 777 

and unfortunate. Future efforts to characterise coccolith fluxes from a range of deployments will 778 

be vital in attempts to weigh the relative influence of the biological and carbonate counter pumps 779 

in this region. 780 

Diatom fluxes were also compared to time-averaged data including nutrient concentration (nitrate, 781 

phosphate, silicate and iron), productivity (chlorophyll-a),variables that affect production and 782 

export (sea ice, SST) and ballast concentration (PIC) to determine which, if any, of these factors 783 

best predicted flux. The linear model suggests that the majority of diatom flux could be correlated 784 

with nitrate/phosphate concentration, iron and sea ice. These data should be considered with care 785 

given that the diatom flux, and environmental parameter datasets were extracted for different 786 

time intervals by necessity. 787 

Phytoplankton community structure has great bearing on export efficiency and magnitude of 788 

carbon fluxes throughout the ocean (Lam et al., 2011). Climate change-related increases in sea 789 

surface temperature are expected to influence plankton size classes, and hence the transfer 790 
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efficiency of particles in the future (Cram et al., 2017). This review has demonstrated the value of 791 

phytoplankton flux calculations from sediment trap deployments, and particularly those for which 792 

species flux data is available. The need for systematic, multi-year sediment trap deployments 793 

employing consistent, best-practice methodologies in under-sampled regions of the global ocean, 794 

followed by both bulk compound and phytoplankton flux analyses will lead to a better 795 

understanding of global ocean productivity and oceanographic processes. 796 
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Supplementary Figure 1. Physical and chemical hydrology of the Southern Hemisphere from 30° S to the 

pole. a) Salinity (psu); b) Nitrate (umol.L-1); c) Iron (nmol.L-1); d) Silicate (umol.L-1).  
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Supplementary Table 1. List of mooring sites in subtropical to polar Southern Hemisphere and associated publications covered in Chapter Five. 
Region Trap ID# coordinates Depths Years Sources 

Weddell Sea WS1 62°26.5' S, 
34°45.5' W 863 1985-1986 

Abelmann Gersonde 1991, Fischer et al., 1988, Gersonde and Zielinski 
2000, Pudsey and King, 1997, Wefer et al. 1988, Wefer et al. 1990, Wefer 
and Fischer 1991 

 WS2 64°55.0’ S, 
2°30.0’ W 4454 1987 Wefer and Fischer 1991, Wefer et al. 1988, Wefer et al. 1990, Abelmann 

Gersonde 1991 
 WS3 64°53.1’ S, 

2°33.7’ W 360 1988-1989 Wefer and Fischer 1991,  Abelmann and Gersonde 1991, Gersonde and 
Zielinski 2000 

 WS4 64°55.5’ S, 
2°35.5’ W 352, 400 1989-1990 Wefer and Fischer 1991,  Abelmann and Gersonde 1991 

 PF1 50°09.0’ S, 
5°43.8’ E 700 1987-1988 Wefer and Fischer 1991,  Abelmann and Gersonde 1991 

 WS1-I 63°11’ S, 
42°43’ W 2971, 3777 1988-1990 Pudsey and King 1997 

 WS1-VIII 62°05’ S, 
40°36’ W 2971, 3777 1990-1992 Pudsey and King 1997 

 AWI208 63°29.6’ S, 
52°07.4’ W 500 1989-1990 Gersonde and Zielinski 2000 

 AWI206 65°36.3’ S, 
36°29.9’ W 1000 1989-1990 Gersonde and Zielinski 2000 

 KN 71°07’ S, 
12°12’ W 250 1988 Bathman et al. 1991 

 1-274 72°35’ S, 
18°09’ W 80 1985 Nöthig and Bodungen 1989 

 3-284 72°15’ S, 
18°21’ W 80 1985 Nöthig and Bodungen 1989 

 4-286 72°31’ S, 
17°17’ W 80 1985 Nöthig and Bodungen 1989 

 
P2 

55°11.99' 
S,41°07.42' 
W 

1500 2012 Rembauville et al. 2016 

 P3 52°43.40' S, 
40°08.83' W 2000 2012 Rembauville et al. 2016 
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Bransfield 
Strait/Drake 
Passage/ Antarctic 
Peninsula 

KG1 62°16.3’ S, 
57°22.8’ W 

323, 494, 539, 
963, 1410, 1588, 
1835 

1983-1984 Liebezeit and Bodungen 1987, Wefer et al. 1990, Wefer et al. 1998, Wefer 
and Fischer 1991,  

 KG2 62°20.1’ S, 
75°28.3’ W 700 1984-1985 Wefer et al. 1988, Abelmann and Gersonde 1991 

 KG3/ 
KG83 

62°16.3 S, 
57°22.8 W 

323, 539, 687, 
963, 1410, 1835 

1983, 1985-
1986 

von Bodungen et al. 1986, Gersonde and Wefer 1987, Wefer et al. 1988, 
Abelmann and Gersonde 1991, Abelmann 1991 

 EBS 61°45.8’ S, 
54°59.1’ W 1000 1998-1999 Kang et al. 2003 

 AB 64°46.58’ S, 
62°49.68’ W 279, 379, 416 2001-2003 Berger et al. 2009 

 27 64°13.25’ S, 
61°14.48’ W 447, 531, 573 2001-2003 Berger et al. 2009 

 MC 62°13’ S, 
58°47’ W 30 1998-2000 Khim et al. 2007 

 S1 62°14’ S, 
58°38’ W 30-40 1991-1994 Schloss et al. 1999 

 S2 62°14’ S, 
58°38’ W 30-41 1991-1992 Schloss et al. 1999 

 M269 60°54.6’ S 
57°06.0’ W 965, 2540 1980-1981 Wefer et al. 1982, Müller et al. 1986 

 DP80/81 60°54.6 S 
57°06.0 W 965, 2540 1980-1981 Gersonde and Wefer 1987, Gersonde and Zielinski 2000 

 PB83 60°32.0’ S, 
48°18.8’ W 1660 1983 Gersonde and Wefer 1987, Gersonde and Zielinski 2000 

 HI ~64°30’ S, 
66°00’ W 350 1992-2006 Ducklow et al. 2008 

 CS 66°10.5’ S, 
66°25.17’ W 350 1992-2006 Ducklow et al. 2008 

 PB 64°50.11’ S, 
64°8.36’ W 350 1992-2006 Ducklow et al. 2008 

 RaTS1 67°34.02’ S, 
68°14.02’ W 200, 420 2005-2006 Weston et al. 2013 

 RaTS2 67°33.97’ S, 
68°14.06’ W 200, 420 2006 Weston et al. 2013 

155



                                                                                                     Supplementary Information 2 
  

 
 

 RaTS3 67°34.01’ S, 
68°14.00’ W 200, 420 2006-2007 Weston et al. 2013 

 MT 67°55.39’ S, 
68°24.15’ W 123, 735 2005-2006 Weston et al. 2013 

Ross Sea B/EIT 77°42’ S, 
166°21’ W 25, 51, 77, 103 1984 Leventer and Dunbar 1987, Dunbar et al. 1989 

 D/HP1 77°52’ S, 
166°30’ W 28, 57, 109, 161 1984 Leventer and Dunbar 1987, Dunbar et al. 1989 

 E/NH1 77°40’ S, 
163°36’ W 

47, 99, 151, 203, 
255 1984 Leventer and Dunbar 1987, Dunbar et al. 1989 

 F/NH3 77°38’ S, 
163°46’ W 32, 84, 186, 238 1984 Leventer and Dunbar 1987, Dunbar et al. 1989 

 
I/GH 76°56’ S, 

163°13’ W 

34, 127, 220, 
313, 406, 499, 
592, 685 

1984 Leventer and Dunbar 1987, Dunbar et al. 1989 

 L/HP2 77°51’ S, 
166°37’ W 15, 37 1984 Leventer and Dunbar 1987, Dunbar et al. 1989 

 NH2 77°41’ S, 
163°29’ W 210 1986 Dunbar et al. 1989 

 TI 77°42’ S, 
166°12’ W 313 1986-1987 Dunbar et al. 1989 

 BG 77°36’ S, 
166°11’ W 345 1986-1987 Dunbar et al. 1989 

 DG1 77°7’ S, 
163°20’ W 181 1986-1987 Dunbar et al. 1989 

 DG2 77°1’ S, 
163°35’ W 464 1986-1987 Dunbar et al. 1989 

 GH 77°56’ S, 
163°13’ W 715 1984 Dunbar et al. 1989 

 MS 77° 46’ S, 
165°39’ W 500 1986 Dunbar et al. 1989 

 MS-6 73°33’ S, 
176°53’ E 200, 465 1996-1998 Collier et al. 2000 

 MS-7 76°30’ S, 
178°1’ W 200 1996-1998 Collier et al. 2000 
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 TNB 74°41.9’ S, 
164°07.5’ E 40 1993-1994 Fabiano et al. 1997 

 JB-B 74°01.50′S, 
175°05.55′E 200 1994-1996 Langone et al. 2000 

 D 75°06’ S, 
164°13’ E 95, 180, 868 1995-1997 Accornero et al. 2003 

 F 77°59’ S, 
177°01’ W 423 1995-1996 Accornero et al. 1999  

 C 72°29.55’ S, 
175°08.10’ E 200, 416 1994-1996 Cerchierini et al. 2004 

 K 74°42.00’ S, 
164°14.82’ E 200, 514 1996-1998 Cerchierini et al. 2004 

 RS-A 76°30.1’ S, 
167°30.3’ E 250, 659 1991-1992 DeMaster et al. 1992; Leventer and Dunbar 1996, Dunbar et al. 1998 

 RS-B 76°30.3’ S, 
174°59.1’ W 250, 469 1991-1992 DeMaster et al. 1992; Leventer and Dunbar 1996, Dunbar et al. 1998 

 RS-C 72°30’ S, 
172°30’ W 250, 443 1990-1992 DeMaster et al. 1992; Leventer and Dunbar 1996, Dunbar et al. 1998 

 MA 76°41’ S , 
169°02’ E 370, 780 2008 Chiarini et al. 2013  

 MB 74°00’ S, 
175°05’ E 235, 550 2008 Chiarini et al. 2013  

East Atlantic sector BO1 54°20.3’ S, 
3°22.6’ W 450 1990-1991 Gersonde and Zielinski 2000, Fischer et al. 2002 

 BO2 54°20.8’ S, 
3°23.6’ W 456 1992 Gersonde and Zielinski 2000 

 PF1 50°09.0’ S, 
5°43.8’ E 700 1987-1988 Gersonde and Zielinski 2000 

 PF3 50°07.6’ S, 
5°50.0’ E 614 1989-1990 Gersonde and Zielinski 2000, Fischer et al. 2002 

 PF5 50°06.0’ S, 
5°55.4’ E 654 1992 Gersonde and Zielinski 2000 

 M269 60°54.6’ S 
57°06.0’ W 965 1980-1981 Wefer and Fischer 1991,  

 Lambert 
Bay 

32°05.02’ S, 
18°16.01’ E 20 1984, 2002-

2005 Pitcher 1986, Pitcher and Joyce 2009 
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 NU 29°12’ S, 
13°07’ E 2516 1992-1993 Romero et al. 2002 

Australian/New 
Zealand Sector MS1 53°02’ S, 

174°44’ W 
982, 1981, 3381, 
4741 1996-1998 Honjo et al. 2000, Grigorov et al. 2014, Pollard et al. 2009 

 MS2 56°54’ S, 
170°10’ W 

982, 1976, 2966, 
4224 1996-1998 Honjo et al. 2000, Grigorov et al. 2014, Pollard et al. 2009 

 MS3 60°17’ S, 
170°03’ W 

1003, 1997, 
3257 1996-1998 Honjo et al. 2000, Grigorov et al. 2014, Pollard et al. 2009 

 MS4 63°09’ S, 
169°54’ W 

1031, 2026, 
2182 1996-1998 Honjo et al. 2000, Grigorov et al. 2014, Pollard et al. 2009 

 MS5  66°10’ S, 
169°40’ W 

937, 1033, 1842, 
2311 1996-1998 Honjo et al. 2000, Grigorov et al. 2014, Pollard et al. 2009 

 SCR 42°42’ S 
178°38’ E 300, 1000 1996-1997 Nodder and Northote 2001, Wilks et al. 2018, in press, Sikes et al. 2005, 

King and Howard 2001 
 NCR 44°37’ S 

178°37’ E 300, 1000 1996-1997 Nodder and Northote 2001, Wilks et al. 2018, in press, Sikes et al. 2005, 
King and Howard 2001 

 STM 41°15’ S, 
178°33’ E 1500 2000-2012 Prebble et al. 2013, Nodder et al. 2016 

 SAM 46°33’ S, 
178°33’ E 1500 2000-2012 Prebble et al. 2013, Nodder et al. 2016 

 TAS 44°12.25'5, 
147°5.35’ E 305, 952 1992-1993 Parslow et al. 1995 

 SAZ 
A/42S 

42° 7.3’ S, 
141°45.3’ E 1000, 4250 1997-1998, Bray et al. 2000 

 SAZ B/ 
47S 

46°46’ S, 
142°40’ E 

500, 1060, 2050, 
3850 

1997-1998, 
1999-2001, 
2003-2004 

Bray et al. 2000, Trull et al. 2001, Rigual-Hernández et al. 2015b, Wilks et 
al. 2017 

 SAZ E/ 
51S 

53°45’ S, 
141°45’ E 830, 3080, 3300 1997-1998, Bray et al. 2000, Trull et al. 2001, Rigual-Hernández et al. 2015b  

 

SAZ C/ 
PFZ/ 54S 

53°45’ S, 
141°45’ E 800, 1580 

1997-1998, 
1999- 
2000,2002-
2004, 2005- 
2007 

Bray et al. 2000, Trull et al. 2001, Rigual-Hernández et al. 2015 

 61S/AZ 60°44.4’ S, 
139°54.0’ E 

1000, 2000, 
3700 2001-2002 Rigual-Hernández et al. 2015a, Rigual-Hernández et al., 2018a 
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 KH83-4 61°33’ S, 
150°27’ E 

690, 930, 1330, 
2330, 3130 1983-1984 Harada and Tsugonai 1986 

 KH94-4 64°42′S, 
139°59′E 

537, 796, 1259, 
1722, 2727 1994-1995 Suzuki et al. 2001 

 AO 61°30’ S, 
150°30’ E 

520, 770, 1200, 
2260, 3110 1984-1984 Noriki and Tsugonai 1986 

  A.Stn.3 61°34.1’ S, 
150°23.3’ E 630, 1430, 3230 1983-1984 Matsueda and Handa 1986 

Southeast Pacific 
sector CH1-3 29°59.27’ S, 

73°11.05’ W 3700 1991-1992 Marchant et al. 1998, Hebbeln et al. 2000, Romero et al. 2001, González et 
al. 2004 

 CH3-1 30°1.05’ S, 
73°11.0’ W 2300 1993-1994 Romero et al. 2001, Marchant et al. 1998 

 CH3-2 30°1.05’ S, 
73°11.0’ W 3700 1993-1994 Marchant et al. 1998 

 CH4-1 30°0.3’ S, 
73°10.27’ W 2300 1994 Romero et al. 2001, Marchant et al. 1998 

 CH5-2 29°59.61′, 
73°13.23′ 2407 1994-1995 Marchant et al. 2004 

 CH6-2 29°57.30′, 
73°17.21′ 2393 1995 Marchant et al. 2004 

 CH7-2 29°57.40′, 
73°17.30′ 2498 1995-1996 Marchant et al. 2004 

 CH8-2 29°54.80′, 
73°17.97′ 2508 1996 Marchant et al. 2004 

 CH10-2 29°59.90′, 
73°16.75′ 2578 1997 Romero et al. 2001, Marchant et al. 2004 

  CH11-1 29°58.80′, 
73°18.10′ 2526 1997-1998 Romero et al. 2001, Marchant et al. 2004 

Southwest Indian 
sector/Lützow-Holm 
Bay 

Syowa 
Stn.I 

68°37.2’ S 
38°47.5’ E 50, 100, 150 1977 Fukuchi and Sasaki 1981 

 Syowa 
Stn.II 

68°41.1’ S 
38°35.8’ E 50, 100, 150 1977 Fukuchi and Sasaki 1981 

 Syowa 
Stn.III 

68°41.5’ S 
38°39.0’ E 50, 100, 150 1977 Fukuchi and Sasaki 1981 
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 Syowa 
Stn.1 

68°20.3’ S 
39°21.2’ E 

0.3, 10, 30,50, 
100, 150 1979, 1983 Fukuchi and Sasaki 1981, Sasaki and Hoshiai 1986  

 Syowa 
Stn.2 

69°00’ S, 
39°35’ E 5, 25 1984-1985 Matsuda et al. 1987 

 Syowa 
Stn.3 

69°0’ S, 
39°37.12’ E 1.6, 5, 5.6, 20, 25  

1982, 1997-
1998, 2005-
2006 

Sasaki and Hoshiai 1986, Matsuda et al. 1987, Ishikawa et al. 2001, 
Ichinomiya et al. 2008 

 KERFIX 50°40’ S, 
68°25’ E 280 1993-1994, 

1994-1995 
Ternois et al. 1998, Miquel et al. 1998, Rembauville et al. 2018, Jeandel et 
al. 1998 

 A3 50°38.30’ S, 
72°02.6’ E 289 2011-2012 Rembauville et al. 2014, 2015a, 2015b, 2016 

 PZB-1 62°28.6’ S, 
72°58.6’ E 

1400, 2400, 
3400 

1998-2000, 
2000-2001 Pilskaln et al. 2004, Rigual-Hernández et al. 2018 

 PZB-2 63°27.7’ S, 
76°09.5’ E 3300 1998-2000, 

2000-2001 Pilskaln et al. 2004  

 IB ~68°35’ S, 
78° E 5 1992 McMinn et al. 1996 

 MB ~68°35’ S, 
78°2’ E 5 1992 McMinn et al. 1996 

 DB ~68°35’ S, 
78°4’ E 5 1992 McMinn et al. 1996 

 M10 44°29.95’ S, 
49°59.9’ E 2000 2004-2005 Pollard et al. 2009, Salter et al. 2012 

 M5 46°00’ S, 
56°05.0′ E 3195 2004-2005 Pollard et al. 2009, Salter et al. 2012 

  M6 49°00.03′S, 
51°30.6’ E 3160 2005-2006 Pollard et al. 2009, Salter et al. 2012 

# = trap reference 
used in Figure 1.      
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Supplementary Table 2. Diatom annual and maximum flux from sediment trap deployments, and eight environmental. parameters. Phosphate, nitrate, 
silicate and SST from World Ocean Atlas 2009 (https://www.nodc.noaa.gov/OC5/WOA09/pr_woa09.html). Time-averaged (2009-2014) mean Chl-a (4km 
resolution, MODIS-Aqua satellite), time-averaged (2009-2014) mean iron (0.67 x 1.25° resolution, NOBM model), and time-averaged (2009-2014) PIC 
concentration (4km resolution, MODIS-Aqua satellite)  was obtained from the via the Goddard Earth Sciences Data and Information Services Centre (GES 
DISC)  for the region 25° S to the pole (accessible at https://giovanni.gsfc.nasa.gov).  

 Author Station  LAT. LONG. 

Annual 
diatom 
flux 

max 
diatom 
flux silicate  

log10 
silicate  phosphate  nitrate  iron 

Annual 
mean 
sea ice PIC SST chl-a 

       m2/y m2/d 
umol/
L   umol/L umol/L 

nmol/
L % mol/m3 °C mg/m3 

Abelmann 
Gersonde 1991 KG1 -62.3 -57.5 2.7E+10 5.6E+09 73.38 1.87 1.94 25.07 0.27 24.6 0.00012 -0.98 0.52 
Abelmann 
Gersonde 1991 KG2 -62.3 -75.5 8.0E+08 5.7E+06 28.78 1.46 1.65 24.36 0.18 0.7 0.00031 1.90 0.15 
Abelmann 
Gersonde 1991 KG3 -62.4 -58.0 2.2E+09 1.3E+07 73.38 1.87 1.94 25.07 0.27 24.6 0.00012 -0.98 0.52 
Abelmann 
Gersonde 1991 WS1 -62.4 -34.8 2.6E+08 1.7E+07 70.47 1.85 1.85 24.49 0.32 61.1 0.00041 -1.08 0.26 
Abelmann 
Gersonde 1991 WS3 -64.9 -2.6 1.0E+10 2.2E+08 64.27 1.81 1.87 26.14 0.29 55.3 0.00046 -0.95 0.35 
Abelmann 
Gersonde 1991 WS4 -64.9 -2.6 1.8E+09 8.7E+07 65.12 1.81 1.90 26.27 0.29 55.3 0.00046 -0.98 0.39 
Abelmann 
Gersonde 1991 WS2 -64.9 -2.5 8.8E+09 8.0E+07 65.12 1.81 1.90 26.27 0.29 57 0.00035 -0.98 0.35 
Abelmann 
Gersonde 1991 PF1 -50.2 5.7 5.5E+09 7.5E+07 19.35 1.29 1.73 21.21 0.44 0 0.00025 2.88 0.30 
Fischer et al1998 WS1.1 -62.4 -34.8  1.0E+07 70.47 1.85 1.85 24.49 0.32 66.2 0.00041 -1.08 1.51 
Gersonde Zielinski 
2000 AWI206 -63.5 -52.1 2.6E+08 1.9E+07 80.37 1.91 1.91 27.89 0.26 71.3 0.00017 -1.22 0.44 
Gersonde Zielinski 
2000 AWI208 -65.6 -36.5 1.8E+09 1.4E+07 71.46 1.85 1.89 25.34 0.29 73.1 0.00046 -1.33 0.63 
Gersonde Zielinski 
2000 BO1  -54.3 -3.4 2.1E+10 4.6E+08 39.18 1.59 1.71 25.45 0.47 1.6 0.00016 0.14 0.21 
Gersonde Zielinski 
2000 BO2  -54.3 -3.4 3.5E+09  39.18 1.59 1.71 25.45 0.47 1.6 0.00016 0.14 0.21 
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Gersonde Zielinski 
2000 PF3 -50.1 5.8 1.2E+10  19.35 1.29 1.73 21.21 0.44 0 0.00027 2.88 0.30 
Gersonde Zielinski 
2000 PF5 -50.1 5.9 5.9E+08  19.35 1.29 1.73 21.21 0.44 0 0.00027 2.88 0.30 
Grigorov et al. 
2014 MS5 -66.2 -169.7 2.6E+10 9.3E+07 56.76 1.75 1.87 26.54 0.25 56.1 0.00045 -0.99 0.30 
Grigorov et al. 
2014 MS4 -63.2 -169.9 1.8E+11 3.2E+08 37.65 1.58 1.79 26.24 0.35 17.3 0.00073 0.06 0.35 
Grigorov et al. 
2014 MS3 -60.3 -170.1 2.9E+10 4.3E+07 17.54 1.24 1.69 24.86 0.25 0.1 0.00035 2.12 0.25 
Grigorov et al. 
2014 MS2 -56.9 -170.2 5.0E+09 1.6E+07 7.35 0.87 1.44 20.08 0.18 0 0.00020 5.38 0.16 
Kang et al. 2003 EBS -61.8 -55.0  1.0E+09 65.35 1.82 1.97 26.79 0.28 21.8 0.00010 -0.55 0.37 
Leventer and 
Dunbar 1987 D -77.9 -166.5  3.2E+06 64.43 1.81 1.59 18.61 0.21 74.6 0.00053 -1.29 1.53 
Leventer and 
Dunbar 1987 E  -77.7 -163.6  2.8E+06 66.95 1.83 1.70 17.50 0.21 75 0.00037 -1.30 3.54 
Leventer and 
Dunbar 1987 F -77.6 -163.8  8.0E+05 66.95 1.83 1.70 17.50 0.21 75 0.00037 -1.30 3.54 
Leventer and 
Dunbar 1987 I -76.9 -163.2  4.7E+07 63.05 1.80 1.76 19.36 0.21 80 0.00049 -1.40 1.49 
Leventer and 
Dunbar 1987 L -77.9 -166.6  1.9E+07 64.43 1.81 1.59 18.61 0.21 74.6 0.00035 -1.29 1.53 
Leventer and 
Dunbar 1996 RS-A -76.5 167.5  5.5E+08 65.35 1.82 1.57 19.88 0.23 76.8 0.00204 -0.97 2.69 
Leventer and 
Dunbar 1996 RS-B -76.5 -175.0  9.5E+07 64.06 1.81 1.75 23.34 0.24 71.8 0.00044 -1.31 1.06 
Pilskaln et al. 2004 PZB1 -62.5 73.0  2.9E+08 38.92 1.59 1.85 27.89 0.23 45 0.00032 -0.68 0.30 
Prebble et al. 2013 STM -41.3 178.6  3.4E+04 1.86 0.27 0.23 1.21 0.18 0 0.00021 15.28 0.34 
Prebble et al. 2013 SAM -46.6 178.6  1.2E+05 2.41 0.38 0.66 7.31 0.21 0 0.00026 10.64 0.31 
Rembauville et al. 
2015b A3 -50.6 72.0  6.1E+07 16.43 1.22 1.75 26.42 0.28 0 0.00033 2.68 0.85 
Rembauville et al. 
2016 P2 -55.2 -41.1  1.4E+07 23.19 1.37 1.57 23.56 0.26 0.2 0.00033 1.50 0.45 
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Rembauville et al. 
2016 P3 -52.7 -40.2  1.2E+08 12.45 1.10 1.60 22.61 0.28 0 0.00016 2.56 1.37 
Rembauville et al. 
2017 KERFIX -50.7 68.4  1.3E+08 14.81 1.17 1.71 25.34 0.30 0 0.00020 3.43 0.27 
Rigual-Hernández 
et al. 2015a SAZ -46.8 142.7 4.0E+07 1.6E+06 2.98 0.47 0.81 10.21 0.15 0 0.00029 10.66 0.25 
Rigual-Hernández 
et al. 2015a PFZ -53.8 141.8 5.5E+09 1.0E+08 9.73 0.99 1.54 23.90 0.18 0 0.00017 4.46 0.14 
Rigual-Hernández 
et al. 2015b AZ -60.7 139.9 2.4E+09 4.8E+08 28.35 1.45 1.83 28.61 0.22 4.6 0.00021 0.96 0.17 
Romero et al. 2001 CH3-1 -30.0 -73.2  7.0E+06 1.97 0.29 0.48 2.98 0.68 0 0.00016 16.04 0.47 
Romero et al. 2001 CH4-1 -30.0 -73.2  1.6E+05 1.97 0.29 0.48 2.98 0.68 0 0.00016 16.04 0.47 
Romero et al. 2001 CH10-1 -30.0 -73.3  2.8E+06 2.03 0.31 0.45 2.74 0.60 0 0.00018 16.32 0.48 
Romero et al. 2001 CH11-1 -30.0 -73.3  3.6E+05 2.03 0.31 0.45 2.74 0.60 0 0.00018 16.32 0.48 
Romero et al. 2002 NU -29.2 13.1 1.5E+08 1.9E+06 3.70 0.57 0.50 1.90 0.22 0 0.00014 17.71 0.26 
Salter et al. 2012 M10 -44.5 50.0 1.3E+09 2.5E+07 7.59 0.88 1.32 15.77 0.27 0 0.00032 6.82 0.46 
Salter et al. 2012 M5 -46.0 56.1 2.0E+09 2.9E+07 6.37 0.80 1.37 16.57 0.27 0 0.00020 6.69 0.36 
Salter et al. 2012 M6 -49.0 51.5 8.3E+08 5.6E+07 10.11 1.00 1.56 22.06 0.34 0 0.00018 3.81 0.17 
Wefer et al. 1988 KG1.0 -62.3 -57.5  1.0E+09 73.38 1.87 1.94 25.07 0.27 37.3 0.00012 -0.98 0.24 
Wilks et al. 2017 47S -46.8 142.1 2.3E+08 7.4E+06 2.98 0.47 0.81 10.21 0.15 0 0.00024 10.66 0.26 
Wilks et al. 2018, 
in press SCR -44.6 178.6 1.4E+08 5.4E+06 2.04 0.31 0.46 3.91 0.32 0 0.00026 12.28 0.48 
Wilks et al. 2018, 
in press NCR -42.7 178.6 1.5E+06 4.0E+04 1.87 0.27 0.29 1.77 0.19 0 0.00017 14.25 0.42 
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Supplementary Table 3. Coccolith annual and maximum fluxes from sediment trap deployments. 
Author Station  LAT LONG Annual coccolith flux Maximum coccolith flux 
    m2/y m2/d 
González et al. 2004 HCS -30 -73.2   1.2E+08 
Romero et al. 2002 NU -29.2 13.1 1.6E+12 2.3E+10 
Ternoise et al. 1998 KERFIX -50.7 68.417  1.4E+08 
Wilks et al. 2017 47S -46.8 142.1 6.5E+11 2.3E+10 
Wilks et al. 2018 SCR -44.6 178.6 1.4E+08 3.5E+06 
Wilks et al. 2018 NCR -42.7 178.6 1.0E+07 3.3E+05 
Rigual-Hernández et al. 2018 AZ -60.7 139.9 1.0E+10 2.2E+09 
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Diversity and taxonomic identification of Shionodiscus spp. in the Australian sector of the
Subantarctic Zone
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Diatoms are siliceous phytoplankton that play a major role in global carbon fixation, as well as forming the basis of most marine food
webs. In the Southern Ocean, diatoms are responsible for significant volumes of carbon export and sequestration in the deep sea. Diatoms
are unicellular and microscopic, thus diatom taxonomy has naturally progressed as imaging and molecular technologies have developed.
Despite recent advancements, some aspects of diatom taxonomy remain unclear. The genus Shionodiscus was separated from Thalas-
siosira in 2006, and possesses, as a group, internal extensions of the marginal strutted processes as well as a labiate process on the
valve face, usually distant from the margin. The features distinguishing Shionodiscus from Thalassiosira, and Shionodiscus spp. from
each other, are difficult to examine under light microscopy, and most taxonomists will group similar Shionodiscus species together when
encountered, rather than discriminating species. As a result, the full extent of Shionodiscus diversity is rarely examined in individual
studies. In this study, sediment trap material captured in the Australian sector of the Subantarctic Zone was examined using both light and
scanning electron microscopy, and compared to known measurements on Shionodiscus species and varieties. This study had two aims;
to catalogue for the first time the diversity of Shionodiscus spp. within the Australian sector, and to create a formalized set of criteria for
grouping Shionodiscus species, when only light microscopy analysis is possible. By documenting Shionodiscus diversity in the Australian
sector and establishing a standard identification protocol, researchers will be better able to determine the ecological significance of the
genus in diatom assemblages.

Keywords: diatom, Shionodiscus, taxonomy, Southern Ocean, sediment traps

Introduction
Diatoms are an extremely diverse and widespread group
of unicellular phytoplankton that exist in both marine and
freshwater habitats worldwide. Marine diatoms are cen-
tral to the global carbon and silica cycles, due to their
siliceous cell-covering (frustule) and export of carbon from
the water column to the deep ocean (Treguer et al. 1995,
Jin et al. 2006). While marine phytoplankton as a whole
account for nearly half of global net primary production
(Field et al. 1998), the diatoms alone are thought to be
responsible for approximately 20% of global net primary
production (Nelson et al. 1995).

Thalassiosira Cleve is the third most abundant and
widespread of the diatom genera with over 100 different
species (Hasle & Syvertsen 1997, Malviya et al. 2016),
and both marine and freshwater species (Hallegraeff 1984).
Thalassiosira is not a monophyletic group, and the char-
acters discriminating Thalassiosira from the Thalassiosir-
ales as a whole remain unclear. Despite the complexity
in the current state of the phylogeny of Thalassiosir-
ales, diatoms classified as Thalassiosira have both strutted
processes (fultoportulae) and at least one labiate process

*Corresponding author. E-mail: jessica.wilks@mq.edu.au
Associate Editor: Bank Beszteri
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(rimoportula), and possess spines or occluded processes
at the valve margin (Theriot & Serieyssol 1994). Species
are identified by a suite of morphological features such as
cell shape, location and number of strutted and labiate pro-
cesses, pattern of areolation and areola size, and anatomy
of the girdle band, although many of these features are
not distinguishable without scanning electron microscopy
(SEM) (Fryxell & Hasle 1972, Hasle 1972, 1978, Fryxell
1975, Hasle & Fryxell 1977).

Hasle (1968) separated the genus Thalassiosira into
two morphological groups, ‘A’ and ‘B’. Hasle’s group
‘A’ contained Thalassiosira spp. with strutted processes
extending mainly outwards and the labiate process on the
valve mantle, while group ‘B’ displayed mostly inward
extensions of the strutted processes and the labiate pro-
cess on the valve face (Hasle 1968, Hasle & Syvertsen
1997). A study by Alverson et al. (2006) reviewed the
two morphological groups, placing many of the former
group ‘B’ species in a new genus, Shionodiscus Alver-
son, Kang & Theriot. Diatoms of Shionodiscus possess the
derived trait of a labiate process on the valve face rather
than the mantle (usually distant from the valve margin) and

© 2017 The International Society for Diatom Research
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marginal strutted processes with longer inward extensions,
and with reduced or absent outward extensions (Alverson
et al. 2006).

Shionodiscus is common and relatively abundant in the
Southern Ocean, a band of water that encircles Antarc-
tica from approximately 40–70°S (Orsi et al. 1995). Within
the Subantarctic Zone (SAZ) (the largest Southern Ocean
water mass), both Thalassiosira and Shionodiscus spp.
comprise a significant proportion of the diatom assem-
blages as spring bloom-forming taxa, but are also present
year-round (Johansen & Fryxell 1985, Kopczyńska et al.
2007, Rigual-Hernández et al. 2015a). From sediment trap-
ping and seafloor sediment studies they are also observed
to make up a large component of the diatom fluxes in
the SAZ (Zielinski & Gersonde 1997, Crosta et al. 2005,
Romero et al. 2005, Rigual-Hernández et al. 2015a, Wilks
et al. 2017). In the last study, sediment traps were deployed
in the Australian Sector of the SAZ, south of Tasmania
(46°46′S, 142°4′E) as part of the Antarctic Cooperative
Research Centre’s Subantarctic Zone (SAZ) Project (Trull
et al. 2001b). Analysis of trap material revealed the pres-
ence of several Shionodiscus spp., which were not discrim-
inated under LM and were combined, for convenience of
analysis, into the ‘Shionodiscus frenguellii group’ (Wilks
et al. 2017). Wilks et al. (2017) found that the S. frenguel-
lii group formed 1.3% of total diatom relative abundance
in sediment traps, and up to ∼ 4% relative abundance at
their peak in the summer months. Other studies at the same
site have found the same group (designated the ‘Thalas-
siosira trifulta group’) to be even more abundant, making
up ∼ 2% to ∼ 3.5% relative diatom abundance at 1000 m
(Rigual-Hernández et al. 2015a, 2016).

Due to the fine structure and overlapping size and dis-
tributional ranges of S. frenguellii (Kozlova) Alverson,
Kang & Theriot and related species, positive identifications
under LM are usually impossible. Preliminary SEM anal-
yses of the SAZ Project samples indicated that this group-
ing included S. frenguellii, Shionodiscus trifultus (Fryxell)
Alverson, Kang & Theriot, and possibly Shionodiscus
frenguelliopsis (Fryxell & Johansen) Alverson, Kang &
Theriot (J.V. Wilks et al., unpub.).

In the absence of SEM studies of diatom assemblages
in this region, the precise contribution of Shionodiscus spp.
to diatom diversity in the SAZ was until now unknown.
In this study, sediment trap samples from the SAZ Project
deployment at 47°S were revisited using SEM in order to
determine the extent of the presence of the S. frenguellii
group and similar species in the Australian sector of the
SAZ. This study aims to provide a new description, sepa-
rating four S. frenguellii group diatoms based on observa-
tions from this region, as well as outlining a formalized
grouping convention for species difficult to differentiate
based on light microscopy (LM) analysis alone. These sug-
gested groupings are proposed as a starting point for LM-
based studies that encounter indistinguishable Shionodis-
cus species, prior to (or in place of, if not possible) the use

Fig. 1. Map of mooring site of sediment traps at 47°S
in context of regional fronts. STF = Subtropical Front;
SAF = Subantarctic Front; PF = Polar Front. Front locations
from Orsi et al. (1995). Map created using Ocean Data View,
available at http://odv.awi.de.

of additional identification techniques. While molecular
research on Shionodiscus is needed, more rigorous naming
conventions and detailed taxonomic identifiers will help
researchers to better understand the ecological significance
of these ambiguous species.

Methods
Oceanographic setting
The Antarctic Circumpolar Current (ACC) circulates unin-
terrupted around the globe, making up the region known as
the Southern Ocean. The ACC is banded by several major
zones that flow westerly (Orsi et al. 1995). Each zone is
designated by several uniform properties that determine
phytoplankton assemblages and are roughly homogeneous
throughout (Pollard et al. 2002, Sokolov & Rintoul 2002)
(Fig. 1). The transition from one hydrological zone to
another is called a front, where the physical and biolog-
ical characteristics of the water masses change sharply.
The Subantarctic Zone (SAZ) is the region between the
Subtropical Front (STF) to the north, occurring at around
44.5–45.6°S in the Australian region, and the Subantarc-
tic Front (SAF) to the south, the strongest front within the
ACC, occurring at 50–53°S (Sokolov & Rintoul 2002). In
the SAZ, hydrological masses are strongly stratified, with
this stratification controlled mainly by temperature (Pol-
lard et al. 2002). In this study the front locations defined in
Orsi et al. (1995) are used.

The trap deployment site (46°48′S, 142°6′E) (Fig. 1) is
low in silica and iron year-round but replete in nitrate, mak-
ing it hydrologically typical of the SAZ (Rintoul & Trull
2001). The SAZ between 90° and 145°E is homogeneous,
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so the trap deployment site is considered representative of
this wider region (Trull et al. 2001a). The winter mixed
layer can be as deep as 600, 75–100 m in summer (Rintoul
& Trull 2001, Trull et al. 2001b).

Field experiment
Detailed methods on sediment trap deployment may be
found in Trull et al. (2001b) and Wilks et al. (2017).
Briefly, two sediment traps were deployed at 46°48′S,
142°6′E between September 2003 and October 2004, at
500 and 2000 m depth. Each trap operated on a 14 or 35-
day rotation capture cycle, with 21 cups in total at each
depth. After retrieval, each cup was poisoned with mer-
curic chloride, sieved to remove ‘swimmers’, and divided
into ten splits.

Sample cleaning and preparation
The sample cleaning protocol is described in Wilks et al.
(2017). Glass slides for SEM were prepared using the ran-
dom settling first developed by Flores & Sierro (1997) and
modified as per Wilks et al. (2017). Once prepared, slides
were gold coated and observed using a JEOL JSM-6480LA
SEM at 10 kV.

Diatom identification
Slides known to contain the target species were systemat-
ically observed along transects under SEM until the entire
slide had been searched. The target number of specimens
of each species was 20 to capture the full range of mor-
phological diversity, however, 20 individuals could not be
found for all species. Taxonomic identifications followed
Fryxell & Hasle (1979a), Hallegraeff (1984), Johansen &
Fryxell (1985) and Hasle & Syvertsen (1997). Measure-
ments taken and morphological features observed were
valve diameter, areolae in 10 μm at the centre and mar-
gin, number and arrangement of central strutted processes,
number of marginal strutted processes in 10 μm, number
of struts on strutted processes, presence of occluded pro-
cesses, placement of labiate process, valve convexity and

areolation pattern on valve face. Girdle band width and
ornamentation was recorded where possible. The degree of
dissolution was also noted.

Helicon Focus© software was used to stack 3 LM
images at different focal planes for Figs 7 and 9 in order to
increase clarity (purchased from www.heliconsoft.com).

Results
LM and SEM were used to analyse material collected
from sediment traps placed in the SAZ as part of the
SAZ Project. Fourteen samples, spanning ten collecting
months and three sediment trap depths, were systematically
searched for Shionodiscus spp. Four different Shionodis-
cus spp. (and their varieties) were observed; S. frenguel-
lii, Shionodiscus gracilis var. gracilis (Karsten) Alverson,
Kang & Theriot, S. gracilis var. expectus (VanLanding-
ham) Alverson, Kang & Theriot, Shionodiscus oestrupii
var. oestrupii (Ostenfeld) Alverson, Kang & Theriot, S.
oestrupii var. venrickae (Fryxell & Hasle) Alverson, Kang
& Theriot and S. trifultus. Specimen measurements are
given in Table 1.

Within the samples, six specimens of S. frenguellii,
and only two specimens of S. trifultus were observed. The
two varieties of S. gracilis (var. gracilis and var. expectus)
and of S. oestrupii (var. oestrupii and var. venrickae) were
relatively common in the samples (Table 1).

Species observations
Shionodiscus frenguellii (Kozlova) Alverson, Kang &
Theriot (Figs 2–6)
Basionym: Thalassiosira frenguellii. Kozlova (1967, fig. 6)

Species descriptions are based upon six individual speci-
mens of S. frenguellii observed in samples taken between
July and September (winter to spring) (Table 1). Cells were
15.6–22.6 μm in diameter. Valve areolae hexagonal under
LM, arranged in irregularly linear to sublinear array (Figs.
2, 4), eight to nine areolae in 10 μm at valve centre, 10–
14 at margin. Two trifultate central strutted processes and
one ring of marginal strutted processes, placed roughly

Table 1. Morphological measurements of Shionodiscus spp. and varieties found in the Australian sector of the SAZ.

Specimens Diameter CSPs Distance CSP to LP
Distance between

MSPs Areolae in 10 μm

Species name # μm # μm # areolae μm Centre Margin

S. oestrupii v. oestrupii 23 12–23.6 (16.6) 1 2.4–6.7 (4.6) 2–4 (2.6) 1.3–3.4 (1.9) 7–12 (9.0) 8–17 (12.2)
S. oestrupii v. venrickae 15 15.3–26.6 (22.1) 1 4.4–8.9 (7.1) 3–6 (4.7) 3.3–5.7 (4.8) 7–12 (8.8) 9–24 (12.4)
S. gracilis v. gracilis 21 7.4–23.1 (14.4) 1 2–7.8 (4.9) 2–6 (4.1) 2.2–3.8 (2.9) 9–24 (13.5) 20–36 (28.3)
S. gracilis v. expectus 15 12.8–24.4 (17.9) 1 2.6–6.5 (4.5) 2–5 (3.8) 3.2–5 (3.7) 10–14 (11.5) 14–26 (19.4)
S. frenguellii 6 15.6–22.6 (19.3) 2 4.7–7.2 (5.7) 2–4 (3.4) 4.7–5 8–9 (8.2) 10–14 (11.8)
S. trifultus 2 38.8–39 2–3 12–14.3 7–9 4–4.8 7 9.5–10

Notes: Values given in parentheses are averages. CSP = central strutted process. MSP = marginal strutted process. LP = labiate
process.
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Figs 2–6. Shionodiscus frenguellii in light (Figs 2, 4) and SEM (Figs 3, 5–6). Figs 2, 4. The same cell in two planes of focus, with
marginal strutted processes visible. Fig. 3. Internal valve view, showing strutted and labiate processes. Fig. 5. External valve view. Note
central strutted processes and labiate process are visible from the outside as apparently wider areolae (arrowed). Fig. 6. Close-up internal
valve view of central strutted and labiate processes. Note trifultate structure of central strutted processes. Scale bars represent 5 μm.

5 μm apart (Figs 3, 5–6). Marginal strutted processes have
internal extensions and are difficult to see under LM. Labi-
ate process is on valve face, with two to four areolae
(4.7–7.2 μm) between it and the central strutted processes
(Fig. 6).

Shionodiscus gracilis var. gracilis (Karsten) Alverson,
Kang & Theriot (Figs 7–8)
Basionym: Coscinodiscus gracilis. Karsten (1905, pl. 3,
fig. 4)
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Figs 7–11. Shionodiscus gracilis with light (Figs 7, 9) and SEM (Figs 8, 10, 11). Fig. 7. Shionodiscus gracilis v. gracilis; Fig. 9.
Shionodiscus gracilis v. expectus. Fig. 8. Internal valve view of S. gracilis var. gracilis. Note the pore-free space surrounding the oper-
culate central strutted process. Fig. 10. Internal valve view of S. gracilis var. expectus showing strutted and labiate processes. Fig. 11.
External view of S. gracilis valve. Note depressed central region, and labiate process visible as a large areola approximately halfway
between the centre and margin (arrowed). Scale bars represent 5 μm.

Synonym: Thalassiosira gracilis (Karsten) Hustedt var.
gracilis Hustedt (1958, pl. 3, figs 4–7)

Twenty one individual specimens of S. gracilis var. gra-
cilis were measured, with the majority of specimens taken
from late winter/early spring samples (August–November)

(Table 1). Cell diameter ranged from 7.4 to 23.1 μm. Are-
olae are distinctly larger in the centre (9–24 in 10 μm) than
at the valve margin (20–36 in 10 μm). Areolae at the cen-
tre surrounded by depressed hyaline region, distinct under
both LM and SEM (Figs 7, 8). Cells possess one operculate
strutted process positioned in either a central or subcentral
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position, and one labiate process placed two to five areo-
lae (3.6–8 μm; though sometimes as little as 2 μm) apart
on the valve face (Fig. 8). Marginal strutted processes are
operculate, 2.2–3.8 μm apart.

Shionodiscus gracilis var. expectus (VanLandingham)
Alverson, Kang & Theriot (Figs 9–10)
Basionym: Thalassiosira expecta VanLandingham
Synonym: Thalassiosira gracilis var. expecta Fryxell, &
Hasle

Fifteen specimens of S. gracilis var. expectus were mea-
sured, tending to occur in spring and summer (October–
December) (Table 1). Cells ranged from 12.8 to 22.5 μm
in diameter. Areolae in the centre are smaller than at mar-
gin (10–14, and 14–26 in 10 μm, respectively), though not
as distinctively different as in S. gracilis var. gracilis (Fig.
10). One subcentral operculate strutted process, with a labi-
ate process two to five areolae (2.6–6.5 μm) away. Areolae
at centre may appear slightly thick-rimmed under LM (Fig.
9). Marginal strutted processes tend to be more widely
spaced than in S. gracilis var. gracilis; 3.2–5 μm apart.
External valve view shown in Fig. 11.

Shionodiscus oestrupii var. oestrupii (Ostenfeld)
Alverson, Kang & Theriot (Figs 12–14)
Basionym: Coscinodiscus oestrupii Ostenfeld
Synonym: Thalassiosira oestrupii var. oestrupii Fryxell &
Hasle (1980, figs 1–10).

Twenty three specimens of S. oestrupii var. oestrupii were
measured, with specimens found in greatest abundance
in late spring/summer (November–December) (Table 1).
Valves range from 9.2 to 23.6 μm in diameter; areolation is
sublinear, but the areolation pattern may not be visible in
smaller specimens. This species can appear heavily silici-
fied under LM, with bubble-shaped areolae (Fig. 12), 7–12
in 10 μm at the centre, and 8–17 in 10 μm at the margin.
Usually two (or up to four) areolae between the triful-
tate central strutted process and labiate process (Fig. 13).
Marginal strutted processes are closely spaced, 1.3–3.4 μm
apart (Figs 13–14).

Shionodiscus oestrupii var. venrickae (Fryxell & Hasle)
Alverson, Kang & Theriot (Figs 15–16)
Basionym: Thalassiosira oestrupii var. venrickae Fryxell
& Hasle (1980, figs 11–19)

Shionodiscus oestrupii var. venrickae, like S. oestrupii var.
oestrupii, was found predominantly between late spring
and early summer, with 15 specimens measured (Table 1).
Cells 15.3–28.6 μm in diameter, with areolation ranging
from sublinear to eccentric (Fig. 15). Areolae in the cen-
tre are 7–10 in 10 μm, and at the margin 9–24 in 10 μm.
Usually four or five (can be only three or up to six) are-
olae between the central trifultate strutted process and the

labiate process (Figs 15, 16). Marginal strutted processes
more widely spaced than in S. oestrupii var. oestrupii;
3.3–5.7 μm apart.

Shionodiscus trifultus (Fryxell) Alverson, Kang &
Theriot (Figs 17–21)
Basionym: T. trifulta Fryxell. Fryxell & Hasle (1979b, figs
1–24)

Only two specimens of S. trifultus were observed,
both occurring in winter/spring samples (July–September)
(Table 1). Cells 38–39 μm in diameter. Areolation is sub-
linear in pattern, with seven areolae in 10 μm at the centre,
and 9.5–10 at the margin. Areolae appear hexagonal under
LM; central strutted processes usually visible and marginal
processes sometimes visible under LM (Figs 17, 19). Two
or three trifultate central strutted processes, arranged in a
line when more than two, and with labiate process 12–
14.3 μm (7–9 areolae) away (Figs 18, 20–21). Marginal
strutted processes are 4–4.8 μm apart.

Discussion
Shionodiscus spp. in the Australian sector
In the Australian sector of the SAZ, the diversity and
morphology of Shionodiscus spp. have not previously
been documented. Previous workers have assessed diatom
species diversity in both surface waters (Kopczyńska et al.
2001, 2007, de Salas et al. 2011), sediment traps (Rigual-
Hernández et al. 2015a, 2016, Wilks et al. 2017) and
seafloor sediment (Crosta et al. 2004) in this area, although
the full diversity of Shionodiscus was not the focus of these
studies. In the sediment trap studies (Rigual-Hernández
et al. 2015a, 2016, Wilks et al. 2017), the two S. oestrupii
varieties and the two S. gracilis varieties were grouped
together for statistical analyses.

The Shionodiscus specimens identified in this study
were for the most part consistent with previous descrip-
tions and measurements. With the exception of S. gracilis
var. expectus, the specimens tended to be at the lower size
ranges of the respective species. It is not known whether
Shionodiscus of the Australian sector are simply small
specimens, or whether the sizes found reflect some sort of
cell transformation (e.g., dissolution and breakage of larger
cells, leaving smaller cells) between surface and sediment
trap, or during sample processing. Despite this, the results
confirm the presence of previously undifferentiated species
within the Australia sector of the SAZ.

Shionodiscus gracilis
This study confirmed the presence of both varieties of S.
gracilis in the Australian sector of the SAZ. The largest
specimens of S. gracilis var. expectus observed exceeded
previously recorded cell diameters (Fryxell & Hasle 1979a,
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Figs 12–16. Shionodiscus oestrupii in light (Fig. 12) and SEM (Figs 13–16). Fig. 12. Shionodiscus oestrupii group, marginal processes
not visible. Figs 13, 14. Internal valve views of S. oestrupii var. oestrupii, note more closely spaced marginal strutted processes. Figs 15,
16. Internal valve views of S. oestrupii var. venrickae. Note that placement of the labiate process relative to the trifultate central strutted
process is variable. Scale bars represent 5 μm.

Hasle & Syvertsen 1997), with cell diameters of over
24 μm found (Table 1).

In addition to being difficult to identify under LM, the
varieties of S. gracilis have not generally been considered

worth separating taxonomically, as they most likely repre-
sent different growth stages of the same species (Fryxell
1994, Crosta et al. 2005). The nominate form, S. gracilis
var. gracilis, is significantly more heavily silicified than
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Figs 17–21. Shionodiscus trifultus in light (Figs 17, 19) and SEM (Figs 18, 20, 21). Figs 17, 19. S. trifultus. Figs 18, 20. Internal
valve views of S. trifultus with three and two central strutted processes, respectively. Fig. 21. Close-up view of trifultate central strutted
processes and labiate process. Scale bars represent 5 μm.

the finer S. gracilis var. expectus, and represents the win-
ter variant of this species. Due to its robustness, the winter
stage, S. gracilis var. gracilis, is likely to appear in greater
abundances within surface waters and sediments than its
summer counterpart (Fryxell 1994). This is certainly con-
sistent with the reports of Johansen & Fryxell (1985), who

noted that S. gracilis var. expectus is less abundant than S.
gracilis var. gracilis, although the two varieties have sim-
ilar distributions. Aside from the tendency of the robust
winter form to be better represented in sediments, and the
potential over-estimation of its abundances as a result, the
summer variety may be difficult to distinguish from other
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morphologically similar species under LM. With LM, the
fine structure of the strutted processes are not discernible,
thus, given that S. gracilis var. expectus lacks the easily-
distinguishable hyaline section seen in S. gracilis var.
gracilis, to the less trained eye it is a potential mimic of,
for example, S. oestrupii var. venrickae. This problem is
solved by the use of SEM, with which the operculate pro-
cess of S. gracilis is easily distinguished from the trifultate
processes of S. oestrupii. If the two varieties of S. gracilis
can be reliably discriminated, they would likely be of eco-
logical use in paleo-reconstructions, as the ratio of summer
and winter forms is indicative of the amount of growth
occurring during winter periods (Fryxell 1994).

Shionodiscus oestrupii
Both S. oestrupii var. oestrupii and S. oestrupii var. ven-
rickae were found in sediment trap records from the Aus-
tralian sector of the SAZ. As with S. gracilis, the specimens
of S. oestrupii observed in this study were small rela-
tive to existing size ranges reported south of the Antarc-
tic Convergence Zone, where S. oestrupii var. oestrupii
reached 60 μm diameter and S. oestrupii var. venrickae
39 μm diameter (Johansen & Fryxell 1985). A study of
Thalassiosira diversity in tropical Australian waters also
found only small S. oestrupii cells in water samples, with
maximum diameters of 25 μm (Hallegraeff 1984).

As is the case for S. gracilis varieties, due to the high
overlap of other distinguishing traits (Hasle & Syvertsen
1997), S. oestrupii varieties are difficult to differenti-
ate under LM if the marginal processes are not visi-
ble. Shionodiscus oestrupii varieties have been grouped
together in previous studies (Romero et al. 2005, Rigual-
Hernández et al. 2015b, 2016). When visible, however,
the spacing of the marginal strutted processes remains the
most consistent morphological distinction between the two
varieties. It is of ecological interest to distinguish the two
varieties as, while they have not been confirmed as sea-
sonal, they do appear to have different, though overlapping,
distribution patterns (Fryxell & Hasle 1980). Fryxell &
Hasle (1980) described S. oestrupii var. oestrupii as more
cosmopolitan in distribution than S. oestrupii var. ven-
rickae, with the former found in oceanic regions, while the
latter is related to shelf and inshore environments and has
been found in tropical and subtropical waters. Hallegraeff
(1984) found only S. oestrupii var. venrickae in the Aus-
tralian tropics. If S. oestrupii var. venrickae is linked to
warm waters, then its presence in the Subantarctic could
indicate the southward movement of warm, coastal waters.
Hence, discrimination of the two varieties in the Subantarc-
tic Zone could provide insights into the movement of water
masses.

Shionodiscus frenguellii and S. trifultus
Shionodiscus frenguellii and S. trifultus are virtually indis-
tinguishable under LM, and only reliably distinguishable

under SEM, when the valves are viewed from the inside
and both strutted and labiate processes are visible. For this
reason, studies using LM diatom counts have tradition-
ally grouped the two species together for convenience, and
because species abundances were not great enough to make
discriminating the two worthwhile (Wilks et al. 2017). Fur-
ther, both S. frenguellii and S. trifultus may possess just one
central strutted process, making them very similar to other
species (e.g., S. oestrupii var. venrickae), so that the sin-
gle central process forms may not even be included within
the ‘Shionodiscus trifultus group’. Thus, the abundance of
this species is likely to be underestimated in LM studies.
The most consistent distinguishing trait between these two
species, assuming the overlap of other features such as size
and number of central processes, is the number of areolae
between the central strutted process and labiate process.
In S. frenguellii specimens, the labiate process is placed
closer to the central strutted processes than S. trifultus (2–
4 areolae, and 7–9 areolae apart, respectively) (Table 1;
Figs 2, 18).

Both S. frenguellii and S. trifultus are typically present
in cool, fresh, stratified waters (Sancetta 1983, Medlin &
Priddle 1990). In this study we have confirmed, for the
first time, the presence of both S. frenguellii and S. tri-
fultus within the Australian sector of the SAZ. Although
previous studies within the Australian sector have reported
low relative abundances of this group, (Rigual-Hernández
et al. 2015a, 2016), studies from other regions revealed
a more significant presence. A sediment trap study in the
Bering Sea found the S. trifultus group to be among the
most dominant diatom group observed (Stroynowski et al.
2015).

Defining Shionodiscus groupings under LM
Given the difficulties in distinguishing Shionodiscus
species, even under SEM, the use of molecular techniques
to clarify the taxonomy of this genus is surely warranted.
Some molecular analyses of Shionodiscus species have
been undertaken in the northern hemisphere. Alverson
et al. (2007) constructed a phylogenetic tree of 78 species
in the Thalassiosirales, including Shionodiscus ritscheri
(Hustedt) Alverson, Kang & Theriot and S. oestrupii var.
venrickae. Several studies have identified Shionodiscus
bioculatus (Grunow) Alverson, Kang & Theriot using
DNA/RNA analysis techniques (Hamsher et al. 2013,
Malviya et al. 2016, Balzano et al. 2017), though none
within the Australian Sector. Despite this work, the major-
ity of Shionodiscus species have received no attention from
a molecular perspective, and there has been no molecular
analysis of Southern Ocean Shionodiscus species. Distin-
guishing Shionodiscus species at the DNA level will be of
merit in the future. Nevertheless, there is still merit in LM
studies of this genus, with a more clearly defined grouping
system in place for those species indistinguishable under
LM. To that end, four groupings of SAZ Shionodiscus taxa
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Table 2. Shionodiscus spp. groupings based on shared characteristics visible under LM.

Group name Species/varieties included Group features visible under LM Group notes

Frenguellii group S. frenguellii • (12) 16–25 μm diameter
• 1–2 CSPs
• 1–2 MSPs in 10 μm
• 7–13 + areolae in 10 μm

at valve centre
• Sublinear – irregularly lin-

ear areolation

Specimens matching this description, but
with more than two CSPs, and/or fewer
than seven areolae in 10 μm at the valve
centre, are most likely S. trifultus.

S. frenguelliopsis
S. trifultus (with 1–2 CSPs)

Gracilis group S. gracilis var. gracilis • 7–17 μm diameter
• 3–4 MSPs in 10 μm
• 8–20 areolae in 10 μm at

valve centre

Variety expectus specimens tend to have
much a less pronounced hyaline region
at the valve centre.

S. gracilis var. expectus

Oestrupii group S. oestrupii var. oestrupii • 7–39 μm diameter
• 1 CSP
• 6–11 areolae in 10 μm at

valve centre

MSPs tend to be invisible under LM,
but when visible are the main feature
distinguishing the two varieties, with
var. oestrupii having five to ten MSPs
in 10 μm, and var. venrickae having two
or three. Very small specimens with
significantly larger areolae at the centre
of the valve than the margin and with
CSP only one or two areolae from the
LP are likely var. oestrupii.

S. oestrupii var. venrickae

Note: CSP = central strutted process; MSP = marginal strutted process; LP = labiate process.

are suggested, based on taxonomic features visible under
LM (Table 2). Given the current complexity of Thalas-
siosirales phylogeny, these groupings are likely not mono-
phyletic, and may change as molecular work on Shionodis-
cus is undertaken. However, the groupings provide a con-
venient and consistent starting point to assist the separation
of taxa into ecological groupings for statistical analyses
in LM-based studies. The groupings presented (Table 2)
are based on measurements shared by all species or vari-
eties within the grouping. Specimens that fall outside the
given ranges are deemed to be identifiable to species
level.

The name ‘trifultus/trifulta’ group has been used in sev-
eral ways, to capture the former group ‘B’ species (Shiono
& Koizumi 2000, Stroynowski et al. 2015), and in other
studies to include only the species commonly confused
with S. trifultus (in particular S. frenguellii, S. frenguelliop-
sis and S. trifultus) (Onodera et al. 2014, Rigual-Hernández
et al. 2016). We propose that the grouping containing S.
frenguellii, S. frenguelliopsis and S. trifultus be called the
S. frenguellii group. Since the features that overlap under
LM more reliably discriminate S. trifultus from the other
two species, than S. frenguelli from S. frenguelliopsis, it
seems more sensible to name the group in this way. Spec-
imens matching the description of S. frenguellii and S.
frenguelliopsis under LM, but with more than two cen-
tral strutted processes, can be designated as S. trifultus,
particularly if the specimens are also > 25 μm in diam-
eter. Under SEM this group’s diagnosis begins with the
discernment of an operculate (e.g., S. frenguelliopsis), or
trifultate (S. frenguellii and S. trifultus) central strutted
process. Thus, ‘S. frenguellii group’ is suggested to be

valid only for LM-based studies, since S. frenguellii and
S. frenguelliopsis are phylogenetically distant.

As outlined earlier, the two varieties of S. gracilis are
most likely to be different seasonal forms of the same
species. They are not always impossible to distinguish
under LM, however, reliable diagnoses are difficult due
to overlapping diagnostic measurements of the two vari-
eties, possibly due to the presence of intermediate forms.
The hyaline central region is more pronounced in S. gra-
cilis var. gracilis, although it is not easy to quantify
this feature. Thus for more intermediary forms a S. gra-
cilis group is recommended. Where possible, the varieties
should be counted separately to enable the possibility of
linking the ratio of the varieties to seasonal and ecological
processes.

The two varieties of S. oestrupii are easily identified
using SEM. Once the presence of a single trifultate cen-
tral strutted process is confirmed, the distance between
marginal strutted processes will reliably differentiate S.
oestrupii var. oestrupii from S. oestrupii var. venrickae,
with the former having more closely spaced marginal pro-
cesses. In very small specimens particularly, the marginal
processes are often not visible under LM and given the
overlap between other diagnostic measurements, the only
option is a broader S. oestrupii group.

A key to Shionodiscus spp. of the Australian sector of
the SAZ
The following key has been constructed from observations
and measurements made using LM and SEM analysis of
Shionodiscus spp. in the Australian sector of the SAZ,
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1a One central or subcentral strutted process 2
1b More than one central or subcentral strutted process 6

2a Central strutted process is trifultate 3
2b Central strutted process is operculate 4

3a One or two marginal strutted processes in 10 μm 5
3b Five to ten marginal strutted processes in 10 μm S. oestrupii var. oestrupii

4a One or two marginal strutted processes in 10 μm S. frenguelliopsis
4b Three or four marginal strutted processes in 10 μm 7

5a Areolae at valve centre 1.5 or 2 times larger than at valve margin S. oestrupii var. venrickae
5b Areolae at valve centre not significantly larger than at valve margin S. frenguellii

6a Central strutted processes arranged in a cluster, with labiate process subcentral
or halfway between valve centre and margin

S. ritscheri

6b Central strutted processes arranged in one or two rows 8

7a Areolae at valve centre surrounded by hyaline region S. gracilis var. gracilis
7b Areolae at valve centre not surrounded by hyaline region S. gracilis var. expectus

8a Labiate process four or five areolae distant from central strutted process S. frenguellii
8b Labiate process more than five areolae distant from central strutted process 9

9a 11–16 areolae in 10 μm at valve centre Shionodiscus poroseriatus
9b 5–7 areolae in 10 μm at valve centre S. trifultus

taken from sediment trap samples and from data within
Hasle & Syvertsen (1997).

Specimens with labiate process on valve face and
marginal strutted processes with internal extensions.

Conclusions
Thalassiosira is one of the most diverse and widespread
diatom genera. In recent years, morphological and
molecular studies have confirmed that Thalassiosira is a
polyphyletic grouping (Alverson et al. 2007) and efforts
continue to improve species characterization within the
genus. Shionodiscus, recently separated from Thalas-
siosira, contains several morphologically similar Southern
Ocean species, which are difficult to distinguish using LM
alone, and are often placed in more inclusive groupings. In
the Australian sector, Shionodiscus spp. make up a season-
ally significant component of total diatom fluxes, yet the
ecological significance of the genus is not well known, in
part due to the difficulty of distinguishing closely related
Shionodiscus species.

In this study, we analysed sediment trap samples from
the Australian sector of the SAZ, using both LM and
SEM, and described the Shionodiscus spp. found. Using
these measurements, a new taxonomic key and three new
Shionodiscus spp. groupings (the S. frenguellii, S. gra-
cilis and S. oestrupii groups) were defined to enable future
workers in the region to better identify these species using
the technologies available to them.
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This thesis undertook to satisfy three principal aims (Fig. 1), and to concurrently help fill critical 

knowledge gaps in Australian and New Zealand phytoplankton fluxes and assemblages, and their 

significance to the wider Southern Ocean region. The aims of this thesis, the manner in which they 

were addressed, and the significance of the findings are discussed in the sections below. 

 

 

Figure 1. Schematic conclusion of this thesis, summarising the aims and relationships between the aims 

and chapters. 

Aim One- Characterise phytoplankton assemblages 

The first aim of this thesis was to characterise the diversity, abundance and seasonality of two 

major phytoplankton groups, diatoms and coccolithophores, from sediment trap records in two 

hydrologically distinct regions of the Southern Ocean. This was addressed in Chapters Two and 

Three.  

Carbon dioxide uptake by the ocean, and subsequently carbon sequestration via export, has 

regulated global climate in the past, and continues to do so (Honjo et al. 2008; Landschützer et al. 

2015; Gottschalk et al. 2016). Oceanic carbon export hinges upon the balance between three key 

pumps. These are the biological pump (exemplified by diatoms and other phytoplankton), the 

carbonate counter-pump (driven by calcifying phyto- and zooplankton, such as coccolithophores 

and foraminifera) (Riebesell et al. 2009), and the solubility pump (the movement of dissolved CO2 
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in water due to physical processes) (Volk and Hoffert 1985). Knowledge of the composition and 

volume of export in a system is alone insufficient because: 

1. different phytoplankton species are known to export varying volumes of carbon (Lam et al. 

2011; Maiti et al. 2013; Leblanc et al. 2018), and 

2. the assemblage composition and seasonality of phytoplankton is projected to shift in the 

future due to climate change (Law et al. 2017), so 

3. only by comprehensive knowledge of key exporter assemblages and seasonality can we 

make projections about how export regimes may change, and the flow-on effects this may 

have on human livelihoods. 

Chapter Two- The Australian sector sediment traps 

Chapter Two used sediment trap data from two sediment trap depths (500 and 2000 m) south of 

Tasmania, obtained from 2003 to 2004. Diatoms and coccoliths were identified and counted for an 

annual cycle at both depths, adding value to existing data (published for the first time in this 

chapter) on annual bulk compound fluxes. The assemblage compositions of both diatoms and 

coccolithophores were characterised for both depths for the entire sample period. These data 

constitute three novel outcomes: 

(a) these data represent the first sediment trap data in the Subantarctic Zone for which both 

diatom and coccolithophore assemblages and flux were characterised, 

(b) the first seasonal record of coccolithophores in this sector, and 

(c) the first seasonal record of diatoms just below the mixed layer in this sector.  

Outcome (a) represents a significant and globally rare undertaking, the magnitude of which is made 

apparent in Chapter Five. Seasonal records of phytoplankton assemblage export are highly 

valuable, and even more so when from the same trap deployment. This is because phytoplankton 

assemblages and seasonality is highly variable both between years and on very small spatial scales 

(Little et al. 2018), especially at high latitudes (e.g. the Southern Ocean) (Harrison et al. 2018). 

Hence, even two sediment traps deployed under identical conditions in different years may 

capture significantly different volumes of material (Nodder et al. 2016) and assemblages 

(Abelmann and Gersonde 1991). For this reason, having phytoplankton and bulk compound fluxes 

from the same trap facilitates a more accurate way to estimate the role of different phytoplankton 

species in export processes during a season. In this record, coccoliths were three orders of 

magnitude more numerous than diatoms and, coupled with high particulate inorganic carbon flux 

in the same traps, indicate a strong carbonate counter-pump in the sample year.  
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Chapter Two also provided a valuable record of coccolithophore seasonality and flux assemblages 

in the Tasmanian sector (outcome b). This was, at the time of publication, only the fourth such 

dataset in the subtropical to polar southern hemisphere (the first three being in the Indian ocean 

sector near Kerguelen Island (Ternois et al. 1998), the Humboldt Current System off Chile (González 

et al. 2004), and the Namibia Upwelling system west of Africa (Romero and Hensen 2002)). 

Coccolith flux seasonality is poorly understood in the Southern Ocean, even though export is 

carbonate-related (i.e. the “Carbonate Ocean”) in waters north of the Polar Front (Honjo et al. 

2008). Thus outcome (b) also allowed a preliminary assessment of coccolithophore ecological 

succession, revealing two seasonal ecological groupings throughout the sample period: those 

species associated with day length, and those taxa with high abundances year-round or outside of 

the main productive season. Such data is crucial for developing a taxon-specific scheme of 

coccolithophore succession comparable to existing schemes for diatoms. 

Regarding outcome (c), the mixed layer is the surface of the upper layers of the ocean that is 

considered homogenous in nutrients, temperature and salinity due to turbulence (Mellor and 

Durbin 1975). Particles are not considered “exported” until they have passed through the mixed 

layer (at minimum, though many studies extend export definitions to the base of the twilight zone), 

and so are unlikely to be mixed back to the surface (Ducklow et al. 2001; Buesseler and Boyd 2009). 

At the Tasmanian trap site, the mixed layer was particularly deep, up to 600 m in winter (Rintoul 

and Trull 2001), and thus shallow sediment traps may not reflect true export processes. The 

deployment of traps just below, or within the base of the mixed layer, and deeper traps at 2000 m 

(this study), and 1000 m (Rigual-Hernández et al. 2015) allow for a comprehensive comparison of 

particle flux attenuation at various depths.   

Chapter Three- The New Zealand sector sediment traps 

Chapter Three followed a similar model to Chapter Two, whereby diatoms and coccolithophores 

were identified and counted for an annual record (1996-1997), this time at two sites in different 

water masses east of New Zealand. The North Chatham Rise site (NCR) sampled subtropical waters, 

while the South Chatham Rise site (SCR) was moored in Subantarctic waters. Both moorings 

contained traps at 300 and 1000 m depths, and diatom flux was calculated for all four records, but 

coccolith flux was calculated for the 300 m traps only due to time constraints. The key outcomes 

of this chapter were as follows. These data represent: 

(a) first sediment trap data of diatom and coccolith flux and assemblage seasonality north and 

south of the productive Chatham Rise, and first record of coccolith fluxes from sediment 

traps in the New Zealand sector,  
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(b) substantiating evidence for significant coastal and benthic input to the North Chatham Rise, 

and 

(c) identification of a short, monogeneric “pulse” bloom event as a major particle flux source 

South of Chatham Rise. 

The samples used in Chapter Three were archival, and the bulk compound fluxes were calculated 

and published by Nodder and Northcote (2001). Additionally, alkenone fluxes (temperature 

markers, and indicators for some phytoplankton) (Sikes et al. 2005), and current dynamics 

(Chiswell 2001) were published. However, phytoplankton fluxes had not yet been calculated, and 

the good preservation of these samples, despite gaps in the record, made it feasible to do so 

(outcome a).  

The Chatham Rise supports several key New Zealand fisheries (Clark 2001). Characterisation of 

phytoplankton fluxes (as the base of the marine food web) is of importance to fisheries 

management. In addition, this research provides the first record of coccolith fluxes and seasonality 

in New Zealand waters, and represents only the fifth publication on coccolith fluxes in the southern 

hemisphere south of 30° S. The New Zealand and Tasmanian traps employed similar trap designs, 

deployment and processing methods, and occupied roughly the same latitude, but spanned 

different hydrological zones. This allowed for some novel comparisons of fluxes in the two sectors. 

A key result of Chapter Three was persuasive evidence corroborating previous reports of the 

advection of coastal waters to the Chatham Rise (outcome b), as demonstrated by oceanographic 

observations (Chiswell et al. 2015), trace metal circulation (Ellwood et al. 2014), seafloor sediment 

contents (Cochran and Neil 2009), and terrigenous material captured by nearby sediment trap 

deployments (Nodder et al. 2005; Nodder et al. 2016). Prior to the results of this research, the 

presence of coastal and benthic taxa, and importantly, the seasonality of their input, had not been 

directly observed from sediment trap records. Considering the importance of the region to carbon 

export (Currie and Hunter 1998), knowledge of the sources of export fluxes in this region will be 

crucial to deciphering how export may change.  

Analysis of diatom assemblages revealed the overwhelming bulk of diatom export at the South 

Chatham Rise site was contributed by a transitory Pseudo-nitzschia spp. pulse event, associated 

with a spike in silica flux; outcome (c). Pseudo-nitzschia spp. are well documented in New Zealand 

waters, but primarily in their capacity as contributors to harmful algal blooms (Rhodes et al. 2013). 

Pseudo-nitzschia bloom events may go unnoticed as these diatoms can preferentially grow at the 

base of the mixed layer (Seegers et al. 2015), and escape remote observations of oceanic 

chlorophyll-a concentration. Circumstantial evidence of the significance of sub-surface blooming 
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phytoplankton is offered by a long-term, 11-year sediment trap record, in which several years’ flux 

capture appeared uncoupled to remote chlorophyll-a observations (Nodder et al. 2016). This study 

provides a compelling argument for the characterisation of phytoplankton fluxes, in order to 

identify key export taxa that may be underrepresented using other sampling methods. 

Aim Two- Contextualise phytoplankton fluxes 

In attempting to place the outcomes of Chapters Two and Three into the wider context of the 

Southern Ocean (Aim Three), it became clear that a synthesis of sediment trap deployments, and 

an analysis of all current data on diatom and coccolith fluxes in this region had not been previously 

undertaken. Since phytoplankton flux varies over small spatial scales and between years, a 

sediment trap in isolation yields limited information about typical export regimes or seasonal 

succession. When placed into the context of sediment trap results elsewhere, patterns may 

emerge to give insights into the main drivers of flux in different oceanic systems. Indeed, Chapter 

Five reveals some interesting patterns in diatom flux in the Southern Hemisphere not previously 

been visualised. The outcomes of Chapter Five were: 

(a) the first synthesis of diatom and coccolith fluxes from published sediment trap records 

between the subtropics and Antarctica, 

(b) the first attempt to model diatom flux data with remotely-sensed environmental 

parameters to derive drivers of flux, and 

(c) commentary on sediment trapping with recommendations towards improving 

comparability of future trap data. 

In Chapter Five, all available data on diatom flux (44 sediment trap moorings) and coccolith flux 

(six sediment trap moorings) from 30° S to Antarctica were compiled. The data were normalized 

to flux m-2 y-1 and/or maximum spring flux m-2 d-1, depending on availability and length of 

deployment, log10 transformed, and mapped; outcome (a). In doing so, a trend of increasing diatom 

flux south of the Polar Front, the mixing point of subantarctic and Antarctic water masses, was 

revealed. This trend is nearly universal for the Southern Ocean, with some exceptions in the Ross 

and Weddell Seas that are potentially the result of differences in methodologies or preservability 

of diatom assemblages.  

Outcome (b) attempted to identify which environmental features were driving the trend in diatom 

fluxes in this dataset. To do this, satellite-derived environmental data were obtained for every 

mooring site, and were grouped according to their potential influence on diatom fluxes. Nutrient 

concentrations (nitrate, phosphate, silicate and iron) control the amount of primary production, 

and hence the volume of production exported. Sea Surface Temperature and oxygen concentration 

188



Chapter Six 

were chosen as variables controlling the speed of remineralization in the water column, which is 

inversely related to export (Laufkötter et al. 2017). Chlorophyll-a concentration was included as a 

measure of actual mean primary production (excluding sub-surface production). Finally, 

Particulate Inorganic Carbon concentration was used as a proxy for the abundance of calcifying 

phytoplankton, as well as ballast availability, a key export efficiency-related variable (Weber et al., 

2016). Nitrate and phosphate, followed by temperature and oxygen, were identified as key 

indicators of diatom flux in this dataset. These results are of great interest for several reasons, not 

least of which being that millions of dollars’ worth of sediment trap deployments had never been 

compiled and analysed in this manner before. In the past two or three years there have been 

several reviews and modelling efforts to try and decipher particle flux patterns in different oceans, 

although they have exclusively focused on bulk fluxes (e.g. organic carbon flux), not phytoplankton 

fluxes. Thus the impending publication of this Chapter is timely, serving to elucidate regional 

drivers of flux, and identify where further collecting efforts are needed.  

The compilation and modelling of diatom fluxes was a deceptively difficult task, given that many 

of the deployments employed very different methodologies, and often presented the flux data in 

different formats. Methodologically, phytoplankton fluxes recorded can be influenced by the type 

of sediment trap used (e.g. conical, funnel shaped, moored or drifting) (Gust et al. 1994; Buesseler 

et al. 2000), poisoning method (Hedges et al. 1993), deployment depth (Buesseler et al. 2007), and 

post-collection processing (e.g. sieving, hand-picking) (Chiarini et al. 2013). Given the multitude of 

considerations in methodology, those studies that used consistent trap and processing techniques 

were particularly valuable, as were the rarer multi-year sediment trap studies. Sediment trap 

deployments of several years’ duration, particularly in poorly sampled regions, is suggested as the 

ultimate aim of all future Southern Ocean trapping efforts to better constrain and understand 

phytoplankton fluxes in the southern hemisphere; outcome (c). 

Aim Three- Clarify diatom taxonomy 

Sediment trap records reveal that it is not the total volume of production but the phytoplankton 

assemblages involved that control the quantity of carbon export (Lam et al. 2011; Maiti et al. 2013; 

Leblanc et al. 2018). Diatom assemblage composition, for example, may influence whether a bloom 

primarily exports carbon or silica (Tréguer et al. 2018), which may also be seasonal, as silica- and 

carbon-sinking diatoms appear to display ecological succession both in the Southern Ocean and 

elsewhere (Margalef 1978; Quéguiner 2013). Accurate identification of diatom taxa in sediment 

traps is essential to the understanding of the contribution of different species to total flux. Further 

research is required to differentiate diatom species, and their functional roles in export using 
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traditional taxonomic techniques because the nature of sediment trapping frequently precludes 

the preservation of genetic material. 

During microscopic analysis of data documented in Chapter Two, some taxa were not 

distinguishable using light microscopy. To determine which taxa were present, some samples were 

imaged using scanning electron microscopy, which revealed the genus Shionodiscus as a common 

taxon in the samples. Several Shionodiscus spp. are not reliably distinguishable under light 

microscopy due to overlapping morphological characteristics. To remedy this, the second aim of 

this thesis was to provide a description of the poorly-known diatom genus Shionodiscus from the 

Australian sector, with a clarification of its taxonomic status. The key outcomes were: 

(a) the diversity of Shionodiscus spp. in Australian waters was characterised for the first time, 

(b) a key to Shionodiscus was produced, distinguishing between features visible using different 

imaging techniques, and 

(c) recommendations for a systematic method of grouping Shionodiscus species for counting 

when species-level identification is impossible or infeasible. 

Chapter Two revealed that Shionodiscus diatoms comprised, together, ~10% of sinking diatom 

assemblages, suggesting a significant role in export. Because of outcome (a), the diversity of 

Shionodiscus in this sector was illuminated, with four Shionodiscus species or varieties observed, 

including two species, Shionodiscus frenguellii (A.J. Alverson, S.H. Kang & E.C. Theriot, 2006) and 

Shionodiscus trifultus ((G. Fryxell) A.J. Alverson, S.H. Kang & E.C. Theriot, 2006) that are rarely 

distinguished from one another in assemblage analyses due to similarity of morphology.  

To aid future studies, including identifying Shionodiscus specimens encountered in Chapter Three, 

a new key was created for Australian sector Shionodiscus diatoms, including those not encountered 

in this study, but often considered morphologically similar. Shionodiscus spp. captured in sediment 

traps represented smaller size classes, and in some cases, minimum cell diameter was less than 

that reported in some key taxonomic texts (such as Tomas 1997). Outcomes (a) and (b) are thus 

valuable for taxonomists and will aid future attempts to calculate fluxes.  

Due to difficulties in identifying Shionodiscus, most studies using light microscopy placed 

morphologically similar, or specimens too small to visualise, into broad groupings (e.g. “Frenguellii 

group”- those Shionodiscus species with features overlapping with, but not necessarily actually S. 

frenguellii). However, there is was standardised convention on grouping species. Further, 

publications were found employing different nomenclatural methods (Onodera et al. 2014; 

Stroynowski et al. 2015). Thus, outcome (c) created a standard and logical naming convention, 
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allowing comparability between future taxonomic studies, whether employing light or scanning 

electron microscopy. 

Future Directions 

With atmospheric CO2 concentrations increasing, the need for a thorough understanding of carbon 

cycling in the global ocean is pressing. Sediment traps provide a well-tested means to quantify 

oceanic carbon flux via the biological pump, as well as determining flux timing and composition. 

They are, however, costly to deploy and retrieve, and analyses of phytoplankton fluxes require 

significant taxonomic expertise and time. Perhaps consequent to this, and as demonstrated in the 

compilation of such studies undertaken in Chapter Five, it appears that the height of sediment trap 

usage in the Southern Ocean was in the late 1990s and that their popularity as a tool has declined 

(Fig. 2). The year 1997 saw 16 sediment trap new or continuing multi-year deployments in the 

Southern Ocean, but there have been no new or continued deployments published since 2013.  

 

Figure 2. Number of sediment trap deployments, new or continuing and reported in publications, in the 

Southern Ocean between the earliest recorded trap (1977) and the present (2018). It is noted that there is 

at least one continuing sediment trap record in the Southern Ocean, of about 20-years duration, and the 

longest in the southern hemisphere at the Southern Ocean Time Series station (SOTS). However, not yet 

published, it is not included in the figure. 

Despite declining use, there is much to be gained from sediment trap records, particularly in the 

under-sampled regions of the Southern Ocean. Current uncertainties over the future of the 

Southern Ocean biological pump under elevated CO2 and temperature indicate that increased 
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understanding of the processes involved in carbon export would be highly valuable. In particular, 

future efforts should: 

1. Systematically span hydrological zones and target under-sampled regions. 

2. Consistently employ current best practice standard methodologies. 

3. Include surface-to-seafloor characterisation of water column. 

4. Attempt to quantify the influence of zooplankton grazing on cell carbon export. 

Recommendation 1: 

Chapter Five revealed that approximately 30% of the Southern Ocean has never been subject to 

sediment trap sampling in either open-ocean or coastal systems (e.g. the central Pacific and central 

Indian sectors). Instead, most sediment trap deployments have been undertaken near the coast 

and in areas known to be high in productivity. However, since most of the Southern Ocean exhibits 

low phytoplankton biomass accumulation (data via satellite; Chapter Five, Fig. 1), representative 

sampling of the Southern Ocean necessitates sampling in low-productivity, open-ocean systems in 

addition to the coast/shelf. Sediment trap deployments in the central Pacific and south-central 

Indian sector should be considered a priority. Further, deployments spanning several hydrological 

zones, particularly multi-year records, will be of greatest value, such as the AESOPS trap 

deployments in the New Zealand sector (Honjo et al. 2000).  

Recommendation 2: 

The most recent sediment trap deployments in the Southern Ocean have been undertaken using 

similar methodologies, and are thus highly comparable (e.g. AESOPS, SOTS, KERFIX). This is in large 

part thanks to the efforts of the Joint Global Ocean Flux Study (JGOFS), which, at the height of 

interest in sediment traps (in the late 1980s to 1990s), attempted to institute certain standardised 

protocols for sediment trap deployments and processing (US GOFS, 1989; Knap et al., 1996). As a 

result of JGOFS, it was demonstrated that the oceanic carbon cycle is more complex than was 

known or expected (Denman and Pena 2000). Future deployments in the Southern Ocean would 

benefit from the direction of a similar governing body to ensure systematic efforts, to derive the 

greatest possible value from each deployment.  

Recommendation 3: 

Particle fluxes attenuate between the surface and seafloor due to particle remineralization and 

consumption in the water column (Buesseler and Boyd 2009). Consequently, surface, water 

column and seafloor assemblages are not the same: and sediment traps and seafloor sediment are 

often enriched with taxa that are most resistant to consumption, breakage or dissolution (Grigorov 
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et al. 2014; Rigual-Hernández et al. 2016). This is well illustrated by Rembauville et al. (2016), who 

compared surface, sediment trap and seafloor abundances of key diatom taxa, demonstrating the 

increasing dominance of the more robust frustules from surface to seafloor. Future studies will 

ideally attempt to characterise export and sedimentation from the surface to the seafloor 

combining various methodological approaches. This could be achieved by combining sediment trap 

flux records at several depths with phytoplankton and zooplankton standing stock community 

characterisation and cell density, and seafloor assemblage analysis. 

Recommendation 4:  

One key outcome of JGOFS was the identification that zooplankton exert considerable control over 

phytoplankton fluxes. The role of zooplankton in controlling phytoplankton fluxes and preserved 

assemblages should not be overlooked: this was emphasised by Honjo et al. (2008) in their review. 

Analyses of the ratio of full:empty cells from sediment trap material may be used to estimate the 

influence of zooplankton grazing, and, combined with knowledge of cell volumes, to calculate 

actual carbon exported by taxa (Assmy et al. 2013; Rembauville et al. 2016). This is a realistic goal, 

particularly in the Australian sector, where considerable efforts have been made to characterise 

diatom diversity and cell biomass in a comprehensive database (Davies et al. 2017). In older 

samples, however, this may not always be possible. For example, samples stored in unbuffered 

formalin may see significant dissolution of both carbonate and silicate fractions (Hedges et al. 

1993), making both bulk compound and phytoplankton flux estimates impossible. In the case of 

older studies, traps were often deployed without preservatives (McMinn 1996; Schloss et al. 1999), 

leading to sample degradation, and rendering estimates of full:empty cells infeasible. Further, 

carbon-destructive processing methods (such as were employed in this thesis) also preclude such 

analyses. Where possible, analyses of full:empty cells in existing archival or future trap records is 

highly recommended.  

Concluding remarks 

Even in the absence of new deployments, in fridges and freezers spanning the globe there are 

bottles and boxes of archival sediment trap material suitable for phytoplankton flux analyses which 

have lain untouched for years or even decades. Each sediment trap record retrieved is the result 

of great cost, effort and planning on the part of researchers. From this perspective, sediment tap 

records should be utilized to their utmost value. 

In this thesis, significant value was derived from 15 and 20-year-old archival sediment trap material. 

By analysing diatom and coccolithophore assemblages, insights were gained on particle sources, 

succession, and export whereas these samples would otherwise have languished, unused. This 
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thesis demonstrates that both sediment trapping and phytoplankton assemblage analyses are 

worthwhile and relevant, and will remain a useful investment of research resources and funds in 

the future.  
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Appendix of diatom occurrence and plates  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
During the diatom counts undertaken for each sediment trap record, more than 80 diatom 
taxonomic groups were identified (mainly to species or subspecies level). In this appendix, the 
occurrence of each of these species at the three sediment traps is listed, along with light 
microscopy and/or scanning electron microscopy plates where possible.
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Table A1. List of diatom taxa observed in this thesis with authority, presence in each trap 
(indicated with asterisk), and plate (if applicable).   

Present in 
Species Authority 47°S NCR SCR Plate 
Actinocyclus curvulatus Janisch, 1874 * 

  
1.1 

Actinocyclus spp. C.G. Ehrenberg, 1837 * * * 1.2-1.3 
Achtinoptichus senarius (Ehrenberg) Ehrenberg, 1843  * * 1.4 
Achtinoptichus spp. (Ehrenberg) Ehrenberg, 1844  * * 1.5 
Asteromphalus 
parvulus 

Karsten, 1905 * * * 2.1 

Asteromphalus hookeri C.G. Ehrenberg, 1844 * 
  

2.2-2.4 
Azpeitia tabularis (Grunow) G.Fryxell & P.A.Sims, 

1986 
* * * 2.5-2.6 

Azpeitia spp. M. Peragallo in J. Tempère & H. 
Peragallo, 1912 

* * * n/a 

Bacteriastrum c.f. 
deliculatum 

G. Shadbolt, 1854 
 

* * 3.1 

Chaetoceros c.f. 
peruvianus 

Brightwell, 1856 * 
  

n/a 

Chaetoceros 
Hyalochaete taxa 

C.G. Ehrenberg, 1844 
 

* 
 

3.2 

Chaetoceros 
Phaeoceros taxa 

C.G. Ehrenberg, 1844 
 

* * 3.3 

Chaetoceros resting 
spore 

C.G. Ehrenberg, 1844 * 
 

* 3.4-3.6 

Cocconeis spp. C.G. Ehrenberg, 1837 * 
  

3.7-3.8 
Corethron cryophilum Castracane, 1886 * * 

 
4.1 

Coscinodiscus spp. C.G. Ehrenberg, 1839 
 

* 
 

4.2-4.3 
Cyclotella stelligera Cleve & Grunow, 1882 

 
* 

 
4.4 

Dactyliosolen 
antarcticus 

Castracane, 1886 * 
 

* 4.5 

Delphineis minutissima (Hustedt) Simonsen, 1987  * * 5.1 
Delphineis spp. G.W. Andrews, 1977 

 
* 

 
5.2 

Diploneis bombus (Ehrenberg) Ehrenberg, 1853  * * 5.3 
Diploneis stigmosa Heiden & Kolbe, 1928 * 

  
5.4 

Ditylum brightwellii (T. West) Grunow, 1885 
 

* 
 

5.5 
Eucampia antarctica (Castracane) Mangin, 1915 * 

  
5.6 

Fragilariopsis doliolus (Wallich) Medlin & P.A. Sims, 1993 * * 
 

5.7-5.8 
Fragilariopsis 
kerguelensis 

(O'Meara) Hustedt, 1952 * * * 6.1 

Fragilariopsis 
pseudonana 

(Hasle) Hasle, 1993 * 
  

n/a 

Fragilariopsis rhombica (O'Meara) Hustedt, 1952 * * * 6.2-6.3 
Fragilariopsis ritscherii Hustedt, 1958 * 

  
6.4 

Fragilariopsis 
separanda 

Hustedt, 1958 
 

* 
 

n/a 

Hemidiscus cuneiformis Wallich, 1860 * * * 6.5 
Lauderia annulata Cleve, 1873 

 
* 

 
7.1 

Melosira spp. C.A. Agardh, 1824 * * * 7.2 
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Navicula directa (W.Smith) Ralfs, 1861 
 

* * 7.3 
Navicula spp. J.B.M. Bory de Saint-Vincent, 1822 * * * 7.4 
Nitzschia bicapitata Cleve, 1901 * * * 7.5-7.6 
Nitzschia braarudii G.R. Hasle, 1960 * * * 7.7-7.8 
Nitzschia kolaczekii Grunow, 1867 * * * 8.1-8.2 
Nitzschia longissima (Brébisson) Ralfs, 1861 

 
* 

 
n/a 

Nitzschia sicula (Castracane) Hustedt * * * 8.3 
Odontella c.f. aurita C.A. Agardh, 1832 

 
* 

 
8.4 

Odontella mobilensis (J. W. Bailey) Grunow, 1884  * * 8.5 
Pleurosigma sp. W. Smith, 1852 

 
* 

 
9.1 

Porosira glacialis (Grunow) Jörgensen, 1905 * 
  

n/a 
Psammodictyon 
panduriforme 

(W.Gregory) D.G. Mann, 1990 * * * 9.2 

Pseudonitzschia c.f. 
australis 

H. Peragallo in H. Peragallo & M. 
Peragallo, 1900 

 * 
 

9.3 

Pseudonitzschia c.f. 
pungens 

H. Peragallo in H. Peragallo & M. 
Peragallo, 1900 

 * 
 

9.4 

Pseudo-nitzschia spp. H. Peragallo in H. Peragallo & M. 
Peragallo, 1900 

* * * 9.5 

Pseudo-nitzschia 
prolongatoides 

(G.R.Hasle) G.R. Hasle, 1993 * 
  

n/a 

Rhizosolenia antennata (Ehrenberg) N.E. Brown, 1920 * * * 10.1 
Rhizosolenia bergonii H. Peragallo, 1892 * 

  
10.2 

Rhizosolenia setigera Brightwell, 1858 
 

* 
 

10.3 
Roperia tessalata (Roper) Grunow ex Pelletan, 1889 * * * 10.4 
Shionodiscus frenguellii 
group 

(Kozlova) A.J. Alverson, S.H. Kang & 
E.C. Theriot, 2006 

* * * 10.5 

Shionodiscus gracilis 
var. expectus 

(Karsten) A.J. Alverson, S.H. Kang & 
E.C. Theriot, 2006 

* 
 

* 10.6 

Shionodiscus gracilis 
var. gracilis 

(Karsten) A.J. Alverson, S.H. Kang & 
E.C. Theriot, 2007 

* * * 10.7-
10.8 

Shionodiscus oestrupii 
var. oestrupii 

(G. Fryxell & Hasle) A.J. Alverson, 
S.H. Kang & E.C. Theriot, 2006 

* * * 11.1 

Shionodiscus oestrupii 
var. venrickae 

(G. Fryxell & Hasle) A.J. Alverson, 
S.H. Kang & E.C. Theriot, 2006 

* * * 11.2-
11.3 

Shionodiscus 
poroseriatus 

(Ramsfjell) A.J. Alverson, S.H. Kang 
& E.C. Theriot, 2006 

* * * 11.4 

Shionodiscus trifultus (G. Fryxell) A.J. Alverson, S.H. Kang 
& E.C. Theriot, 2006 

* 
  

11.5 

Stellarima microtrias (Ehrenberg) G.R. Hasle & P.A. Sims, 
1986 

* * * 11.6 

Stellarima stellaris (Roper) G.R. Hasle & P.A. Sims, 
1986 

* 
  

11.7-
11.8 

Stephenopyxis 
orbicularis 

Wood, Crosby & Cassie, 1959 
 

* * 12.1 

Thalassionema 
nitzschioides var. 
capitulata 

(Castracane) Moreno-Ruiz in 
Moreno-Ruiz & Licea, 1995 

* 
  

n/a 

203



Appendix One 

 
 

Thalassionema 
nitzschioides var. 
lanceolata 

(Grunow in Van Heurck) Peragallo 
& Peragallo, 1901 

* * * 12.2-
12.3 

Thalassionema 
nitzschioides var. 
nitzschioides 

(Grunow) Mereschkowsky, 1902 * * * 12.4 

Thalassionema 
nitzschioides var. parva 

Heiden & Kolbe, 1928 * * 
 

n/a 

Thalassiosira c.f. 
aestivalis 

P.T. Cleve, 1873 emend. Hasle, 
1973 

 * 
 

12.5-
12.6 

Thalassiosira decipiens (Grunow) E.G. Jørgensen, 1905  * * 12.7 
Thalassiosira eccentrica (Ehrenberg) Cleve, 1904 * * * 12.8 
Thalassiosira 
ferelineata 

Hasle & G.A. Fryxell, 1977 * * * 13.1 

Thalassiosira c.f. 
gravida 

P.T. Cleve, 1896 
  

* 13.2 

Thalassiosira 
lentiginosa 

(Janisch) Fryxell, 1977 * 
 

* 13.3-
13.4 

Thalassiosira lineata Jousé, 1968 * * * 13.5-
13.6 

Thalassiosira maculata G.A. Fryxell & J.R.Johansen, 1985 * * * 13.7-
13.8 

Thalassiosira c.f. 
punctigera 

P.T. Cleve, 1873 emend. Hasle, 
1973 

 * 
 

14.1 

Thalassiosira rotula Meunier, 1910 
 

* 
 

n/a 
Thalassiosira 
symmetrica 

G.A. Fryxell & Hasle, 1973 * * * 14.2-
14.3 

Thalassiosira tumida (Janisch) Hasle, 1971 * 
  

15.1 
Thalassiothrix 
antarctica 

A. Schimper ex G.Karsten, 1905 * * * 15.2-
15.3 

Trachyneis aspera (Ehrenberg) Cleve, 1894 
 

* 
 

15.4-
15.5 

Trichotoxon c.f. spp. F.M. Reid & F.E. Round, 1988  
  

n/a 
Trigonium alternans (Bailey) A. Mann, 1907 

 
* 

 
15.6 
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