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Abstract

Controlling the dynamics of quantum states is a common demand in quantum technology. We theo-

retically study quantum transport and switching in long-range coupled quantum networks possess-

ing a single excitation. The qubit networks of our study are affected by Markovian environments

while one qubit is irreversibly connected to an additional site. Different goals are studied towards

controlling quantum transport such as efficient single excitation transfer, switching quantum trans-

port, and manipulating the quantum states of qubit networks. These goals have been previously

investigated using different mechanisms, however in this thesis we approach them by proposing

appropriate geometrical arrangements of sites.

Regarding efficient single excitation transfer we follow two approaches: Checking if there exist

a spatial dimension preference for qubit arrangements towards optimal quantum transport, and

whether the efficient network designs are robust against geometrical variations.

For dimension analysis a random walk optimization method is used to compare the transport ef-

ficiency of networks expanded in one and two spatial dimensions. We find that for some choices

of network parameters the two-dimensional networks are slightly more efficient than the one-

dimensional equivalent networks. This assures that designing one-dimensional qubit channels are

adequate for efficient transport and the two-dimensional networks should only be considered where

the two-dimensional spatial expansion is more compatible with the surrounding architecture. To

design a network, after deciding about the network dimensionality, one may attempt to optimize

xi
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the channel geometry which might result in a non-robust optimal configuration against the geo-

metrical errors.

To achieve robust optimal configurations we follow two approaches: We investigate the efficient

configurations of sites in both one and two dimensional arrangements and present some patterns

of robust geometric arrangements of sites in geometrical parameter space. Another approach

to achieve robust efficient transport is defining a quantity as the geometrical robustness (geo-

robustness) of qubit networks. By optimising geo-robustness against the network-environment

parameters one can efficiently transfer a single excitation with many arbitrary arrangements of the

network sites.

Switching of quantum states is another goal towards controlled quantum dynamics. We study the

transport characteristics of highly symmetric three-dimensional networks and analytically prove

that a fraction of the initially injected excitation can trap for long durations via the creation of dark

states. Using this characteristic we suggest switching devices which are robust against environ-

mental noises.
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1
Introduction

1.1 Quantum transport and switching in qubit networks

Quantum transport is a key concept for understanding the dynamics of the sub-atomic world. It

refers, in general, to the motion of different quantum carriers, especially to electrons in nano-

devices [10, 11]. There are different approaches towards studying quantum transport in general or

in qubit networks, for instance quantum energy or state transfer has been so far studied in differ-

ent spatial dimensions in bulk, mesoscopic, and nanometric materials. It is also possible to study

quantum transport in different natural or synthetic materials like optical fibres, photonic crystals,

and nanoparticles. Another approach to study quantum transport is via the manner by which the

1
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system elements interact with each other and the range of the interactions. This factor can have

significant effects on the transport properties. From a modeling point of view, quantum transport

in open quantum systems can be often subject to a Markov approximation leading to Markovianity.

Moreover, quantum states can be transported through adiabatic passage, i.e. a powerful quantum

transport method that has been studied and demonstrated in different implementations of qubits.

Quantum transport can be also studied from an application point of view to achieve specific pur-

poses like quantum switches or quantum gates in quantum technology. In this introductory chapter

we will review various schemes of quantum transport in qubit networks.

1.1.1 Qubit channels

Arrays of qubits are used to store or transfer quantum states within networks. Quantum channels

are particularly used for transporting qubit states by converting them to a photon or a quantum

carrier state, evolving the carrier over the channel, and then transferring it to a storage site. In

general, a channel is any device taking a quantum system as input and transferring it to a spatially

distant quantum system as the output. This may include any processing steps required, like prepa-

ration, free and controlled time evolutions, and measurements. Channels thus play a central role

in information science. Quantum channels can transmit both classical and quantum information,

ideally using pure or entangled quantum states. Channels have a finite capacity measured in bits or

qubits per unit time which is the flux of quantum information that can be sent undistorted through

the channel. Theoretically, quantum channels are described as complete positive trace-preserving

maps between spaces of operators. They map a density matrix of the input system from one Hilbert

state to a density matrix in the output Hilbert state, potentially with different rank, while preserving

the trace and positivity of the matrix (complete positivity).

Physical implementations of qubit channels vary. They range from arrays of nanoparticles to ar-

rays of trapped ions or neutral atoms, arrays of superconducting qubits, arrays of optical cavities,

or arrays of quantum dots. In various platforms, the quantum energy carriers could be optical pho-

tons, surface plasmons, electrons, Cooper pairs, or exitons.
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A common application of quantum channels is connecting quantum nodes of qubits to create quan-

tum networks. There are different protocols for coupling quantum nodes and channels effectively.

Depending on the types of physics involved, for example, to couple a photonic qubit to a solid

state qubit one can focus the photon to a smaller region and have it interact strongly with the

solid state qubit [12]. Another way is to consider an ensemble of solid state qubits to increase

the absorption cross section [13]. Using optical resonators [14] is also a method to increase the

efficiency of channel-node coupling as the high Q optical resonator photon qubit enhances the

coupling strength. Typically the coupling of channels to nodes is probabilistic due to a variety of

manufacturing errors, different environmental noises, and loss.

1.1.2 Quantum energy or state transfer

For quantum transport in general it has been proven that a short qubit array with an isotropic ho-

mogeneus Heisenberg interaction is suitable for quantum state transfer [15]. In such protocol, an

initial quantum state is prepared at one qubit while the rest of the qubits are in the ground state.

After a certain amount of time the state of the last qubit is measured and the fidelity of this state to

the initial qubit state determines the efficiency of quantum transport.

There are different methods that are proposed to achieve quantum state or energy transfer with unit

fidelity. A special form of the Hamiltonian with spatially varying coupling constants between the

qubits allows us to avoid dispersion for perfect quantum state transfer [16, 17]. Another method

is to form Gaussian wave packets with low dispersion by encoding the information using multiple

spins [18]. Also the combination of two spin chains can be used to achieve perfect state transfer

[19] and this approach can be implemented using almost any two spin chains which is stable to

fluctuations of the chain parameters [20]. However, the time after which perfect state transfer is

achieved grows if the individual fidelities of the chains decrease.

Here we provide some examples of energy excitation transport through different chains of qubits.

Arrays of trapped ion qubits are one of the promising systems for quantum transport. Ramm et al

[7], investigated energy transport in chains of trapped ions. Using pulsed excitation scheme they
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rapidly add energy to the local motion mode of one of the ions and prepare the system in an out-

of-equilibrium state. The propagation of excitation through the chain is determined via subsequent

energy read-outs which show multiple revivals of energy at the end of the chain. Such energy

revivals persist for a surprisingly long time indicating that the system does not thermalize on the

experimental timescale. The pattern of evolved energy transfer for arrays of 2− 37 trapped ions

achieves in compliance with their eigen-energies. Fig. 1.1 shows the schematic and the florescence

image of their experiment.

FIGURE 1.1: Fig 1 of ref [7]: (a) The pulsed excitation beam (blue) rapidly adds energy to the ion chain.
After a free time evolution, the energy can be read out anywhere along the chain with a probe at 729nm
(red). Both beams are at 45◦ with respect to the radial modes of motion. (b) The CCD image of the ion
chain with 37 ions with the tightly focused excitation beam.

The propagation of surface plasmon polaritons through a closely spaced metal nanoparticle array

could be considered as an example of quantum transport [21] by means of nanoparticle qubits with

two distinct states of |1〉 and |0〉 at resonance frequency and off-resonance, respectively. A laser

pulse is applied to one nanoparticle at its resonance frequency and the evolution of this energy is

studied. Via Finite Difference Time Domain simulations Maier et al [8] showed that the electro-

magnetic pulses at optical frequencies can propagate along short arrays of noble metal nanospheres

due to near field interactions of plasmon polariton modes. In addition, the near field microscopy

showed experimental evidence for energy propagation over a distance of 0.5µm of spheroidal silver
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particles fabricated using electron beam lithography. Fig. 1.2 shows the energy transport within an

array of silver nanorods by presenting the far-field extinction spectrum of Ag nanoparticle chains,

and the extinction spectrum of an isolated nanorod, where the extinction of the incoming light is

due to the absorption, reflection, or the scattering from the nanoparticles. The inset of Fig. 1.2 is

the SEM image of the Ag plasmon waveguide of the nanorods.

FIGURE 1.2: Fig 4 of ref [8], The far-field extinction spectrum of a plasmon waveguide consisting of
Ag nanorods with a 3:1 aspect ratio and a surface-to-surface spacing of 50 nm between adjacent particles
shows a plasmon resonance peak shift to higher energies (red triangles and Lorentz fit) compared to the
extinction spectrum of isolated, non-interacting particles (black squares and Lorentz fit). The exciting light
was polarized along the long axis of the nanorods, perpendicular to the particle chain axis. The inset shows
an SEM micrograph of the plasmon waveguide under study.

Another promising chain for quantum state or energy transport is a quantum dot array. In a semi-

conductor crystallite smaller than its exciton Bohr radius, the excitons are squeezed and confined.

The exciton energy levels are discrete as a particle in a box, with energy separation depending

on the length of the box. In this regime the electronic and optical properties are highly tunable

via size and shape variations. For example, the energy band gap of a quantum dot determines the

frequency range of the emitted light which is inversely related to its size. A specific type of quan-

tum dot is lateral quantum dot which is made of a small area of decreased electric potential in a

two-dimensional electron gas confined between two semiconductor sheets such as InAs and GaAs.

The electric potential is applied to the free electron gas by electrical gates. Individual electrons can
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be confined in quantum dots defined by electrostatic gates applied to a two-dimensional electron

gas. The gate pattern can be created by electron-beam lithography and measurements would be

performed at 50 mK, in a dilution refrigerator. The number of electrons on each dot and the tunnel

coupling between dots and from dots to leads can be controlled using gate voltages. In addition,

microwave excitation can drive single-spin rotations of trapped electrons, and coherent exchange

could be achieved using nanosecond gate voltage pulses [22].

For coherent electron charge transfer within such quantum dots, Braakman et al [9] proposed a lin-

ear array of three quantum dots where only adjacent dots were connected through tunnel barriers

and the left and right dots were also tunnel coupled to the left and right reservoirs, respectively. A

scanning electron microscopy (SEM) image of such device is shown in Fig. 1.3. Above the blue

shaded gate a charge sensing quantum dot (SQD) is created, the conductance of which is sensitive

to the number of charges on each dot through capacitive coupling. The strength of four tunnel cou-

plings can be tuned individually with the voltages on the barrier gates labelled B in Fig. 1.3. This

triple dot array is operated in the few electron regime so that by sweeping the voltages on gates LP,

MP, and RP (Fig. 1.3) the number of electrons on each of the dots can be changed one by one. By

using real time charge detection techniques it was shown that the rate of electron hopping between

the outer dots depends on the detunning of the energy levels of the middle site. So coupling within

distant sites via tunnel coupling occurs by means of virtual occupation of an intermediate site. The

strength of this long distant coherent coupling can be adjusted by energy detuning of the middle

site.

1.1.3 Open quantum systems and Markovian regime

Open quantum systems can be studied in Markovian or non-Morkovian regimes. In the Markovian

regime the system evolves through a Markovian master equation where the effect of environment

is modeled by Lindblad operators. The Lindbladian master equation is obtained by considering

Born-Markov approximation by which the system-bath coherence is negligible. In such cases the

total density matrix of the system is a tensor product of the density matrices of the system and the
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FIGURE 1.3: Fig 1a of ref [9]: SEM image of a sample identical to the one used for the measurements.
Dotted circles indicate quantum dots, squares indicate Fermi reservoirs in the 2DEG, which are contacted
through ohmic contacts. Both the current through (white arrow) and the reflectance of the SQD are moni-
tored and used to determine the occupancies of the triple quantum dot.

bath [23].

In the non-Markovian regime the dynamics of the quantum system is strongly affected by the

structure of the environment. Environmental structure is characterizes by spectral distribution,

coherences, the number of excitations and their statistical distribution [24]. There are different

methods for studying system dynamics surrounded by a non-Markovian environment. For exam-

ple, an array of N cavities embedded in a non-Markovian bath has been studied by an exact master

equation without approximations derived by quantum state diffusion approach. It is shown that a

three coupled cavity array in a highly non-Markovian environment can induce cat-like state trans-

fer, the so-called memory-assisted cat state transfer [25].

In the Markovian regime, quantum transport has been studied for different types of qubit networks

within various physical implementations. Population transfer along a qubit network has been also

studied in the Markovian regime. In such modeling the first site is initially populated with one en-

ergy excitation while all other sites are in their ground states. A target site could be considered at

the end of the array which would be dissipatively connected to the last site. It has been shown that

for the cases of all-sites equally interacting [26], or nearest neighbor Heisenberg interactions [27],
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there is a peak of transported population to the target site as one varies the environmental dephas-

ing noise. This indicates that the efficiency of transport will increase by exposing the qubit systems

to dephasing noise. In the absence of dephasing noise the energy is trapped within the network in

terms of dark states that neither absorb nor emit the quantum energy. The environment-assisted

transport is due to the fact that the dephasing disturbs the energy levels of the system which could

trap the initial energy excitation. While each system energy level is fluctuating within a range pro-

portional to the amount of dephasing, new energy paths are provided through the network leading

to more efficient transport [26, 28].

The spin conductivity of a spin chain with a tight binding model has been also studied in the

Markovian regime. While the chain is connected to two lateral sites through a dissipative process

it has been shown that at some dephasing noise rates the conductivity has a single or double max-

ima [27].

Another example is the photon transfer through a system of four coupled optical cavities. It has

been shown that the efficiency of transport can be also improved by including photon path de-

phasing noise. Numerical simulations for experimentally realistic values represent a substantial

enhancement in the photon transport efficiency with environmental dephasing cavity noise [26]. A

similar scheme has been also studied on using a network of atoms in suitable ion traps [29].

1.1.4 Adiabatic passage

By completely isolating a quantum system and changing a parameter in the Hamiltonian slowly in

time, it can evolve adiabatically from an initial state to a final one remaining in an instantaneous

eigenstate. In other words, if the time dependent Hamiltonian of a system varies slowly compared

to the energy gap between the eigenstates, the corresponding quantum system remains in an eigen-

state.

Different protocols have been already proposed for population transfer by adiabatic passage like

Stimulated Raman Adiabatic Passage (STIRAP) [30], Coherent Tunnelling Adiabatic Passage

(CTAP) [31], and Dark state Adiabatic Passage (DSAP) [32, 33].
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STIRAP is studied for different implementations like a triple array of quantum dots [34]. A rou-

tine example of STIRAP is in a three-level Lambda system where population is transferred between

two ground energy levels without populating the excited state. To perform it, two laser pulses are

applied to the system with frequencies corresponding the gap energies of the two ground states

and the excited state. In the case of intuitive transfer, the population of one ground state will be

transferred to the excited state via a Rabi π pulse, and then be transferred to the other unpopulated

ground state via another Rabi pulse. In the counter-intuitive pulse by optimizing the detunings of

laser frequencies from the atomic resonances and the delay time of applying lasers, the population

accumulated on one ground state will be transferred to the other ground state while the excited state

remains empty during the transfer. So the optimized population transfer with STIRAP is achieved

by engineering the detuning frequencies and the time delay [30].

A spatial variant of STIRAP is CTAP which is an adiabatic passage technique to mediate transport

through real space rather than phase space. As an example, Jong et al [31] proposed a CTAP de-

vice composed of five phosphorous donor sites buried in silicon. They put barrier gates on silicon

surface to control the tunnel matrix elements. A counter intuitive alternative gate bias sequence

can transport the electron from one end to the other in a robust manner. This structure is extendable

to an arbitrary (odd) number of sites. Based on an effective mass treatment they analyse the sys-

tem and make estimates of the timescale required for the operation of CTAP with the alternating

coupling scheme for this device.

CTAP has been studied in many contexts like atoms in triple well potentials [35], electrons bound

to quantum dots and donors [36], Bose-Einstein condensates [37], photons in waveguides [38], and

Bose-Hubbard systems [39].

Another scheme related to STIRAP is DSAP. The dark state in a three-level-system is an eigen-

state of the system and has no overlap with the excited state, which is the eigenstate that is utilized

by the STIRAP process. DSAP is named for the multispin generalization of a dark state transfer

process. An example of DTAP is a device of three spin-one sites with nearest-neighbor coupling

which works by applying a pulse sequence such that in the first half of the transforming procedure
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the coupling between the first two sites is much smaller than that of the last two sites, however in

the second half of the transport period, the coupling ratios are exchanged. It is then shown that the

population in the first site would smoothly transfer to the last site while the the middle site is never

populated [32].

1.1.5 Qubit array switches

Besides efficient quantum information transport, manipulating qubit arrays can be used to design

quantum devices or elements of quantum circuits. For example switches play an important role in

programming quantum transport within networks. There are different proposed switching proto-

cols.

For example, there is a switch made of a superconducting qubit array coupled to a superconducting

resonator [40]. Through the nonlinear effects in the many-body state of the qubit array with a semi-

classical approach of study, a sudden switching has been observed in the qubit array as a bistable

regime between the ferromagnetic phase and the paramagnetic phase. Such phase switchings cause

finite energy changes in the qubit array in analogy to a first order phase transition.

Another example of qubit array switching is a network with multiple atomic nodes connected

by guided light [41]. A setup has been experimentally demonstrated that strongly couples a photon

to a single atom trapped in the near field of a nanoscale photonic crystal cavity. It is shown that the

single atom can switch and shift the phase of the coupled photon and on the other hand the photon

can modify the phase of atom. Depending on the state of the atom which is controlled by the single

photon, a flow of photons can be turned on and off. Such single-photon switch in which a single

gate photon controls the propagation of a subsequent probe field can pave the way to integrated

quantum nanophotonic networks.

1.1.6 Thesis preview

In this thesis we theoretically study controlled quantum transport in qubit channels. The two main

studied approaches are efficient quantum transport and switching the transport within different

sites. The channels of interest are qubit arrays in Markovian environments which are initialized in
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the ground state and are supposed to transfer a single energy excitation on one site to an irreversibly

connected site.

In Chapter 2, to achieve optimal transport of pure quantum states two main approaches are

followed: The dimension analysis to check whether there is a spatial dimension preference for

optimal quantum transport within dipolar quantum networks, and analysis regarding the robust ef-

ficient quantum transport. In the first section, the transport efficiencies of one and two-dimensional

qubit networks are compared over a large range of network parameters and it is shown that in some

cases the two-dimensional arrangements of qubits transfer the energy in a more efficient manner

than the one-dimensional ones. In the second section, we show the patterns of network configura-

tions in the corresponding geometrical parameter spaces for robust efficient transport within one

and two-dimensional networks. For instance, it is shown that in few site networks and under spe-

cific circumstances the pair and symmetric configurations of dipolar networks can transfer a pure

state in a robust manner.

In Chapter 3, towards optimal quantum transport a new approach for robust configurations

is followed. The notion of geometrical robustness is defined for qubit channels with power-law

coupling including dipolar and van der Waals interactions. It is shown that the geometrical robust-

ness of one-dimensional qubit arrays has two maxima and the peak positions depend on different

network-environment parameters. In addition, the main peak of geometrical robustness can be also

achieved by coherence-less master equation supposing dephasing noise as the line broadening of

the energy levels.

In Chapter 4, switching of quantum transport is studied as another approach towards controlled

quantum transport. We investigate fully symmetric three-dimensional networks of dipolar coupled

qubits. It is shown that quantum energy can be trapped within such networks in terms of dark

states and be manipulated via nanomechanical displacement of some part of the network as the

controller. Further investigation shows that the switching characteristics persists in the presence of

dephasing noise.
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2
Efficient quantum transport in qubit networks

2.1 Efficient transport in one and two-dimensional dipolar cou-

pled semi-noisy channels

2.1.1 Abstract

Transport in quantum channels is a building block of many miniaturized technologies. In dipolar

channels with an irreversibly connected sink site we compare the quantum transport of different

dimensional configurations and specifically show that the increase of dimension of such channels

does not increase the efficiency of transport significantly. Moreover, we present patterns of optimal

13
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configurations for robust channel design. We show that by adding one site to a one-dimensional

network, the robust patterns of channel configurations in parameter space are repeated. In two-

dimensional channels, the addition of one site, or a clone of n closely located sites to an arbitrary

location just locally affects the optimal configurations. Since robust efficient patterns can not be

easily investigated for networks with larger number of sites or high-dimensional expansions, the

studied behaviours of networks of few number of sites are important for robust design of such

channels.

2.1.2 Introduction

Necessary elements of complex quantum networks are efficient quantum channels transferring

quantum states or energy excitations within the network [42, 43]. Qubit-based channels are im-

plemented by different two-level physical entities like trapped ions and Rydberg atoms [44, 45],

superconducting qubits [46, 47] or (synthesized) metallic nano-waveguides [1, 48–52]. The capac-

ity of quantum channels is an asymptotic concept which is attained only in the limit of infinite uses

of the resource. On the other hand, it is natural to ask what happens in settings where only some

finite number of instances, in the extreme case only one instance, is available. This point of view

is central to one-shot quantum information theory [53, 54], and have already found applications

further afield such as area laws for entanglement in one-dimensional many-body quantum systems

[55, 56].

In this paper we consider dipolar channels consisting N interacting two-level systems coupled via

dipolar type interaction and irreversibly connected to an additional target qubit. This last coupling

enforces some noise into the transport and we denote them as semi-noisy channels to differentiate

from many other studies where each site on the network suffers noise. We numerically study such

networks for optimal quantum transport in terms of varying the spatial dimension of site configu-

rations and the robust geometrical arrangement of sites.

Regarding dimension analysis, it has been shown, for example in [57], that three-dimensional net-

works are O(10−3) more efficient than one-dimensional ones. Here we will find via a random walk
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optimization routine that in a wide range of network parameters, two-dimensional four-site chan-

nels are O(10−2) more efficient than one-dimensional ones. In addition, for networks with larger

number of sites for a typical set of network parameters we show that the order of such difference

remains the same. From this we take that one-dimensional quantum channels are adequate, and

building two-dimensional networks is demanded for specific network designs.

To build a channel, one may determine the required spatial dimensionality, and then may optimize

the positions of sites. It should be considered that finding the global optimal channel configuration

as the number of sites increases is computationally very costly and may not easily succeed due

to the existence of many identical efficient configurations which are spread in a complex manner

within their high-dimensional geometrical parameter spaces. Additionally the resulting efficient

configuration may not be very robust to errors or geometrical variations. Different studies investi-

gated robust quantum transport of general channels [18, 58–60] against different network parame-

ters, however the exact amount of tolerable geometrical variations was not studied.

Here to provide insight on the geometrical parameter spaces of semi-noisy channels, we investi-

gate the robust optimal configurations of few-site networks that are adequate for some quantum

transport demands. We numerically find the patterns of efficient configurations in non-duplicate

geometrical parameter space for channels expanded in one and two dimensions. We show that by

adding one extra site to an existing one-dimensional network the optimal areas are preserved. In

addition, in the more general case of two-dimensional networks, by adding a clone of n closely

located sites to a three or four-site network, the optimal patterns are only locally affected by the

clone. This behaviour can be considered for analyzing geometrical parameter spaces of many-site

two or one dimensional networks when some sites are rather close to each other with respect to the

size of the network.

2.1.3 Comparison of the efficiency of one and two-dimensional channels

We consider a network of N interacting two-level systems which initially contains one excitation

on the first site. To study an irreversible transfer of the initial quantum of energy we consider a
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dissipative process from the Nth site to a target site. In the Markovian regime, the time evolution

of the energy excitation within this quantum channel is obtained by the following master equation

[61]

˙̂ρ =−i[Ĥ, ρ̂]+Ltarget(ρ̂);

Ltarget(ρ̂) = Γ(2σ̂
†
target σ̂N ρ̂σ̂N

†
σ̂target−

{
σ̂N

†
σ̂target σ̂

†
target σ̂N , ρ̂

}
), (2.1)

where H = ∑
N
i=1 ε|i〉〈i|+∑i 6= j Ji j|i〉〈 j| is the Hamiltonian of the N-site network, ε is the energy

of each site, Ji j = v/r3
i j is the dipolar coupling between sites i and j located at distance ri j from

each other, v is the coupling strength, Γ is the dissipation rate from site N to the target, |i〉 is the

quantum state of the system indicating one excitation on site i, and σ̂i
†(σ̂i) is the Pauli creation

(annihilation) operator applied to site i. In order to solve Eq. (2.1) we consider a Hilbert space of

rank N +1 where the N +1st corresponds the target site. Converting the total density matrix of the

system of rank (N + 1,N + 1) to a vector (ρvec) of rank ((N + 1)2,1) in a column-wise manner,

yields the linear matrix equation of ρvec = M.ρvec(0) where M is a super-operator matrix of rank

((N+1)2,(N+1)2). We quantify the transport efficiency of such semi-noisy channels by the pop-

ulation accumulated in the target site calculated by Eq. (2.1) at a specific time i.e. ρN+1,N+1(t).

Now to compare the efficiency of one and two dimensional networks we consider a four-site chan-

nel in which the position of the first and last sites are fixed on the x axis at x1 = −1, and x4 = 1

and the self-energies of sites are zero (ε = 0). Different one-dimensional networks are made up

by locating the two interior sites arbitrarily on the x axis between the two fixed sites. On the other

hand, the two-dimensional channel configurations are described by interior sites positioned inside

a dashed square as shown in Fig. 2.1(1). Through a random walk optimization process we find

the global maximum of target population for various configurations of one and two-dimensional

networks for all sets of network parameters (time of measurement Γt and coupling strength Γ/v).

The random walk optimization routine in a few different turns chooses about 102 different initial

random positions for the interior sites of one and two-dimensional networks. Then for each initial
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random configuration we search for a local maximum of efficiency of transport by taking 1.5×103

Gaussian random steps of width 10−3 which are adding to the position of an arbitrary interior

site. Fig. 2.1(2) shows the difference between the maximum found target populations of one and

two-dimensional four-site networks for the whole range of network parameters (Γt, Γ/v). It can be

seen that the maximum difference of the efficiency of one and two-dimensional networks which

occurs in two parameter regions is of the order of 10−2. The regimes of network parameters of 2D

(3)

߮1

߮2

߮5
߮4

߮3

θ1 θ2 θ3

(t=Γ−1)

(t >> Γ)

(v >> Γ)

(v << Γ)

(v = Γ)

(t=0)

0

FIGURE 2.1: Here we observe that two-dimensional spatial networks can be more efficient at quan-
tum transport than one-dimensional equivalent networks. Sub-figure (1) shows the schematic of a two-
dimensional four-site network irreversibly connected to a target site. The dashed square indicates the do-
main of possible locations of sites 2 and 3. In sub-figure (2) the difference in transport efficiencies between
one and two-dimensional networks are plotted. The one-dimensional networks are due to Y2 = Y3 = 0.
The color bar shows the difference between the transport efficiency of the best configuration of one and
two-dimensional networks optimized over the positions (1D and 2D), of the two interior sites in a four-site
network as a function of network parameters of time of measurement and coupling strength (Γt, and Γ/v).
The small difference in efficiencies indicates that to transport a quantum pure state between the first and
the target sites building a one-dimensional channel is almost optimal. Sub-figure (3) highlights the two
areas with 2D preferential configurations. The constraints on network parameters Γt, and Γ/v are described
by the boundary values of (φ1 = π/28,φ2 = π/14,φ3 = 19π/56,φ4 = 3π/7,φ5 = 13π/28,θ1 = π/7,θ2 =
5π/28,θ3 = 17π/56)

preferential configurations are abstracted in Fig. 2.1(3) and described as following:

(1) The blue isosceles trapezoid: (1−tanφ1.Γ.t)
(t+tanφ1/Γ) < v <min[ (1−Γ. tanφ2.t)

(t+tanφ2/Γ) , Γ/ tanθ2]& t < tanφ3/Γ, and

(2) The yellow rectangle: tanφ4/Γ< t < tanφ5/Γ & Γ/ tanθ3 < v <Γ/ tanθ1, where t,v, and Γ are
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the network parameters and φ1 = π/28,φ2 = π/14,φ3 = 19π/56,φ4 = 3π/7,φ5 = 13π/28,θ1 =

π/7,θ2 = 5π/28,θ3 = 17π/56 as shown in Fig. 2.1(3).

Showing the corresponding 2D optimal configurations of these network parameter regimes is com-

plicated for four site networks as the geometrical parameter space is a film. However the visu-

alization of the comparison of 1D and 2D optimal configurations is simpler for three site net-

works. Fig. 2.2 shows the dimensionality preference of N = 3 networks with network parameters

of Γ/v = 1, and Γ.t = 1.4 which are within the first region of 2D preferential configurations. It can

be seen that there are two areas in 2D configurations that are about 0.05 more efficient than the 1D

networks located on the x axis.

So far we investigated the effect of dimensionality on transport efficiency of four-site networks.
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FIGURE 2.2: Here we consider a three-site semi-noisy network to compare the more efficient 2D config-
urations with respect to the 1D counterparts. It can be seen that for a chosen set of network parameters of
Γ/v = 1,Γ.t = 1.4, there are two off-axis configurations that are 0.05 more efficient than the on-axis one.

To generalize our findings for networks with larger number of sites we only study one set of net-

work parameters since the corresponding computational costs grow enormously. Table 1 shows

the difference between the transport efficiencies of two and one-dimensional networks (δρ21) of

four to eight-site networks with the parameters Γ = 0.7,v = 1, t = 7.143, where xi and y j are the

coordinates of the optimal positions of the interior sites found through random walk optimization.
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It can be seen from Table 1 that for the chosen set of network parameters the increase of the num-

ber of sites does not significantly increase the difference of the transport efficiencies between the

two and one-dimensional networks.

N δρ21 ρtarget1D−max ρtarget2D−max x2, ...,xN−1 (x2,y2), ..., (xN−1,yN−1)

4 0.012083 0.962096 0.974180 -0.203304,
0.284655

(−0.2542,0.6869) ,
(0.2647,0.2482)

5 0.004102 0.982320 0.986422 −0.069839,
0.507384,
0.274892

(0.129424,−0.654375),
(0.130894,−0.085053),
(0.306219,−0.040707)

6 0.005473 0.979168 0.984641 0.529870,
0.324215,
0.122069,
−0.216316

(0.473427,−0.016478),
(0.049347,0.236399),
(0.620126,−0.052786),
(0.302861,−0.081090)

7 0.016030 0.965533 0.981564 -0.536002,
0.300506 ,
-0.638642,
-0.161135,
0.563337

(0.169785,−0.007512),
(0.555746,0.001822),
(−0.195955,0.056127) ,
(−0.439371,0.170068) ,
(0.400808,0.286340)

8 0.014855 0.979812 0.984576 0.023681,
0.699787,
-0.161214,
0.651327,
0.564224,
-0.186924

(−0.544771,0.001322),
(0.355224,0),
(−0.097140,−0.004214) ,
(−0.444345,0.002384),
(0.224117,−0.120531) ,
(0.530776,0.003443)

TABLE 2.1: In this table the transport efficiencies of one and two-dimensional networks are compared
with each other for larger networks of up to N = 8 number of sites in one case of network parameters
Γ = 0.7;v = 1; t = 7.143. The optimized coordinations of the network sites of 1D and 2D networks are
(−1,x2, ...,xN−1,1), and ((−1,0,)(x2,y2), ...,(xN−1,yN−1),(1,0)), with the corresponding target popula-
tions of ρtarget1D−max and ρtaregt2D−max. It can be seen that two-dimensional networks with N = 4− 8
number of sites are more efficient than one-dimensional ones, however increasing the number of sites
does not significantly increase this difference. Thus we expect that one-dimensional networks should be
close to optimal for quantum transport for large N.

We have also studied some specific cases of semi-noisy channels in which the site distances
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are in the range of [10−5,5× 10−2]. To calculate the transport efficiencies of these networks we

used MAT LAB ODE solvers for the stiff problems and realized that the network efficiency does

not depend on site distances within such small separations.

In this section we compared the transport efficiencies of four-site networks expanded in one and

two dimensions within a wide range of network parameters. We found that for some choices of

network parameters the two-dimensional networks are more efficient than one-dimensional ones.

Moreover, the dimension comparison of the networks with larger number of sites also shows that

the order of the difference of transport efficiencies of two and one-dimensional networks is 10−2.

2.1.4 Efficient patterns of sites configurations in one and two-dimensional

networks

Here we study the optimal geometries of one and two-dimensional networks for efficient transport.

However one-dimensional networks are included in two-dimensional geometries, their individual

study is important due to their simpler and more compact structure and that their efficiencies are

in most cases the same as two-dimensional networks.

On-axis networks

In this section we investigate the patterns of configurations for efficient transport of one-dimensional

semi-noisy channels. The positions of the first and last sites in all networks are on the x axis at

x1 = −0.5, xN = 0.5, the relative coupling strength is v/Γ = 1, and the time of measurement is

Γt = 100 unless stated. We seek one-dimensional network configurations for efficient quantum

transport to a target site which is irreversibly connected to site N. The target populations of few-

site one-dimensional networks with non-duplicate configurations is shown in Fig. 2.3. According

to Fig. 2.3(1) there are two efficient robust classes of four-site semi-noisy channels: (1) two in-

terior sites located within a distance from each other i.e. the bright region near the diagonal axis

of X2 = X3. The geometrical robustness of this channel or the maximum separation distance be-

tween the pair of interior sites (Z) varies so that the pair width maximum is in the center of the

network, (2) interior sites located symmetrically with respect to the centre of the network i.e. the
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FIGURE 2.3: This figure shows the efficiency of different configurations of four-site networks as well
as the main efficient configurations of five and six-site networks with parameters v/Γ = 1;Γ.t = 100. Sub-
figure (1-3) shows the non-duplicate parameter space of one-dimensional four to six-site networks, respec-
tively. According to part (1) there are two classes of efficient four-site networks that correspond to pair
and symmetric configurations of the middle sites. Sub-figures (4,5) show two cross sections of the pyramid
parameter space of Sub-figure (2). They confirm that the robust efficient configurations of five-site networks
are the pair configurations of the first and last middle sites (sites 2,3 and sites 4,5, respectively) as well as
symmetric positions of the last middle sites (sites 4,5). Sub-figures (6,7) show the robust patterns of efficient
configurations of one-dimensional six-site networks. It can be seen that the patterns are very similar to those
of five-site networks.

central triangular area in the middle part of Fig 2(1). The robustness of such channels which is the

maximum deviation from the exact symmetric positions depends on the positions of the interior

sites and is marked as r in Fig. 2.3(1). When the symmetrical positions of sites two and three in

Fig. 2.3(1) tend to the sites one and four, respectively (along the diagonal axis of X2 = −X3), the

configurations are efficient but fragile so that by any tiny perturbation of the channel configuration

the transport is completely suppressed. The rest of the configurations of Fig. 2.3(1) with an empty

target site trap the initial energy within the network sites not neighboring the target.

Fig. 2.3(2) shows the efficient patterns of one-dimensional five-site networks within the pyramid

including unique configurations. The brown points represent network configurations with transport

efficiency of %80 of that of the best configuration. Fig. 2.3(4,5) show two typical cross sections

of the pyramid. As the perpendicular white lines in Fig. 2.3(4,5) are at the position of the second

site, it can be confirmed that the following three classes of robust optimal configurations exist for
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five-site channels: (1) area I in Fig. 2.3(5) which is a bright region near the diagonal axis: sites

three and four are located within a distance from each other, (2) area II: sites three and four are in

symmetric positions with respect to the center of sites two and five, and (3) area III: sites one and

two are within a close distance from each other while the fourth site is around the centre.

Now we show the main region laws of one-dimensional six-site networks. The lower diagonal part

of the space X2X3 in Fig. 2.3(3) is a schematic of a four-dimensional non-duplicate parameter space

in which each point includes a lower diagonal part of space X4X5 indicating a unique configuration

of the six-site network indexed by (x2,x3,x4,x5). The optimal patterns of lower diagonal space of

X4X5 corresponding the marks (6) and (7) on Fig. 2.3(3) are shown in Fig. 2.3(6), and Fig. 2.3(7),

respectively. The vertically crossing white lines show the position of the 3rd site confirming the

relation xi < xi+1 for non-duplicate configurations. It can be seen that the main robust classes of ef-

ficient configurations are the same as those of five-site networks. Appendix 1 provides more points

and cross sections of Fig. 2.3(2,3) showing robust and fragile efficient configurations of five and

six-site one-dimensional channels. Although optimizing such networks is costly, one can design

few-site semi-noisy channels according to the presented robust efficient classes of configurations.

So far we discussed the patterns of efficient configurations for a typical case of network parameters

v/Γ = 1;Γ.t = 100. Next we consider other cases of network parameters and show that the patterns

of efficient configurations remain the same as that of the previous case. However the maximum

efficiency or the extension of efficient areas in the parameter space change. We empirically prove

this by considering nine different sets of network parameters. Fig. 2.4 show the target population

of one-dimensional four-site networks in non-duplicate parameter space of X2X3 with various net-

work parameters, where (Γ.t) and Γ/V are the normalized time and the coupling strength. It can

be confirmed from this figure that in different network parameters the efficient patterns of different

network parameters are the same as that of the main case study, however the efficiency and the

extension of some regions within the parameter space X2X3 vary. So it supports our hypothesis that

the stated categorized efficient patterns of one-dimensional networks are the only possible ones for

different network parameters.
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FIGURE 2.4: This figure represents the efficient configurations of one-dimensional four-site networks
with nine different sets of network parameters where the first and last sites are located at x1 =−0.5,x4 = 0.5.
The normalized network parameters of time Γ.T , and coupling strength V/Γ take three values of (0.1,1, and
103). It can be confirmed that the pattern of optimal configurations of almost all range of network parameters
V, t are the same as the sample case of (V/Γ = 1,Γ.t = 100) discussed in this section.

Off-axis networks

Now we discuss the optimal properties of the more general two-dimensional geometries. All net-

work parameters are considered the same as those of the previous section. At first we study the

complete pattern of efficient configurations of two-dimensional three site networks.

Fig. 2.5(1) shows the population of the target site of all network configurations of a two-dimensional

three-site network formed by different positions of the second site (X2,Y2) around the first and

third sites located at (−0.5,0) and (0.5,0), respectively. The patterns show that all network

configurations are optimal except the ones in the dark regions around the first and third sites

(r1,N−1 ≤ R , rN,N−1 ≤ R; regions 1 and 2, respectively), or near the circumference of a circle

around the last site which crosses the first site (rN,N−1 ≈ r1N +δ ; region 3). Fig. 2.5(4-6) show the

populations of the other sites of the network. It can be confirmed from region 1 of Fig. 2.5(1,4-6)

that by tiny changes of the position of site 2 around site 1, the energy excitation rapidly oscillates

between sites 1 and 2. By increasing the distance between the first two sites, the energy excitation
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starts oscillating between the first and the third sites, and by a further increase the whole excitation

directly tunnels through to the target site without populating other sites. In region 2, as the second
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FIGURE 2.5: Efficient patterns of quantum transport in two-dimensional three-site and four-part networks
with network parameters of v/Γ = 1,Γt = 100. Sub-figure (1) shows the transport efficiency of all possible
network configurations of two-dimensional three-site channels. Sub-figures (2,3) show the region laws of
efficient transport while an extra clone of sites is added on the x axis. It indicates that adding such colony
just locally changes the patterns of efficient configurations. Sub-figures (4-6) show the participation of each
site in trapping the excitation for inefficient configurations.

and third sites are within a certain distance from each other the energy excitation is totally trapped

on the first site and does not tunnel through to the other two highly interacting sites at the other

end of the network. In region 3, the excitation is divided between the first two sites as well as the

target sink. This area can be approximated as a circle around the 3rd site with the radius equal

to the distance between the first and 3rd sites (r1N). It can be seen from Fig. 2.5(1,4,5,6) that by

locating the second site in this region the initial population will be divided within the first, second,

and the target sites. The distance from the 3rd site to the first and the second sites are equal to

r1N , and so due the symmetric configuration of the network a standing wave is created within the

first three sites. As the third and the target sites are irreversibly coupled, the population of such

configurations is divided within the first two sites and the target site.

Fig . 2.6 compares the transport efficiencies of networks with different network parameters. It can
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FIGURE 2.6: This figure shows the transport efficiencies of two-dimensional three-site networks with
nine different amounts of network parameters. The first and the last sites are located on x axis at x1 =−0.5
and x3 = 0.5 where the position of the second site varies in range X2 = [−2,2],Y2 = [−2,2]. It can be seen
that in lower times the efficient regions are mostly along the x axis and within the first and the last sites (i.e.
(V/Γ,Γ.t) = (0.1,1),(1,0.1)) or along the y axis and in the center the line connecting the first and the last
sites (i.e. (V/Γ,Γ.t) = (0.1,1000),(1,1000),(1,1)).

be seen that the area of regions 1-3 vary according to the network parameters of time and the cou-

pling strength, however we note that these regions are the main inefficient channel configurations

of two-dimensional three-site networks.

In addition, it can be confirmed from Fig. 2.5 that the initial population on site 1 can be manipu-

lated within the four-qubit network including the target site via the mechanical control of site 2.

Such irreversible control of the quantum state of semi-noisy networks may be used in irreversible

quantum computing [62, 63]. Fig. 2.5(2,3) shows the effect of adding a clone of two and four sites

to a three-site network leading to five and seven-site networks, respectively. It has been checked

that regardless of the position of the clone, the dark patterns are just locally affected by the clone

and the efficiency of the new channel increases around the clone. This is a typical pattern of robust

efficient configurations in two-dimensional networks suggesting that by adding a clone of sites

everywhere around but not very close to the first and last sites, the channel efficiency around the

clone increases to one.
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FIGURE 2.7: Patterns of efficient configurations of two-dimensional four-site and five-part networks with
network parameters of v/Γ = 1,Γt = 100. The first column shows two different frames of Film 1 while the
second site, marked with a black point, is located on the x axis between the first and fourth sites. The 2nd-4th

columns show the region laws of five-part networks including four sites and a clone of arbitrary number of
sites located in different positions. It can be seen that the region laws of different four-site networks are just
locally affected by a new colony.

In the following we investigate efficient patterns of two-dimensional four-site networks. Such effi-

cient configurations can be found by obtaining Fig. 2.5(1) where an extra site is added in different

positions around the network. Film 1 shows all corresponding efficient patterns of four-site two-

dimensional networks where the second site (travelling black point) spans the upper part of a plane

including the first and fourth sites. The colorbar of each frame shows the target population of net-

works with different positions of the third site around the first and last sites. By considering that

the one and two-dimensional four-site networks have almost the same efficiency, and the fact that

the non-duplicate parameter space of the two-dimensional four-site network is more complicated

than that of the one-dimensional one, we just study a few cases of the efficient configurations of

two-dimensional networks and do not categorize all of them.

Fig. 2.7(I-1),(II-1) show two frames of Film 1 for the cases that the second site is on the x axis
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around the center, and the second site is close to the first site, respectively. It can be seen that in

each case there is an efficient area around the second site which is limited by a specific radius.

The other sub-figures of Fig. 2.7 show that by adding a clone of 1-3 sites in an arbitrary position

of the four-site networks of Fig. 2.7(I-1), and (II-1), the efficient patterns of configurations remain

the same. This implies that adding one site or a clone of sites to two-dimensional networks will

only locally change the pattern of robust efficient configurations.

It should be also noted that by changing the network parameters of time and the coupling strength

the general patterns of efficient configurations of two-dimensional networks stay, however the ef-

ficiency and the extension of each pattern changes. For instance, by fixing the amount of coupling

strength and increasing time, the R and δ parameters of regions 1-3 decrease.

In summary, in this section we have studied the efficient patterns of two-dimensional networks of

three sites (Fig. 2.5(1)), and four sites (Film 1) for a sample choice of network parameters. We

generally found that there are two main inefficient circular areas around the first and last sites that

should be avoided in network designs. In addition, adding a clone of sites to the three or four-site

networks provides an efficient area around the clone which only locally affects the other efficient

patterns of the network within the parameter space.

At the end, we would like to interpret the results of this subsection from a different point of view.

Considering the fact that there is no exact analytical solution of such semi-noisy networks, our

numerical results are indicating that a pair or a clone of sites could isolate themselves within the

network by means of not receiving or transporting energy to the rest of the network sites. The

territory of this isolation or the radius of the clone area depends on the network parameters i.e. the

measurement time and the coupling strength. Such phenomena could be explained by a simplified

model with no target sink. Fig. 2.8 shows the four eigenvalues of such system with three sites at

fixed positions (x1 =−0.5,x3 = 0,x4 = 0.5) and a site spanning the x axis (x2). The eigen-states of

pair areas are stated in the boxes and they gradually convert to each other in intermediate regions

through the superposition states.

It can be seen that in pair configurations the lowest energy level of the system falls off. The
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FIGURE 2.8: The graph shows the eigen-energies of four-site noise-less networks with different configu-
rations. Three sites are located at fixed positions x1 =−0.5, x3 = 0, and x4 = 0.5, respectively and one site
(x2) spans the x axis creating different site patterns. It can be seen that there are three energy wells around
the three pair configurations of sites (1,2), (3,2), and (4,2). The approximate eigen-states of the well areas
are presented in boxes of the same colors as eigen-values. As the system is initialized with one excitation on
site 1, different network configurations will turn to the lowest eigen-energies with an eigen-state including
|1〉 i.e. the highlighted boxes. These results confirm the inefficient areas around the first and last sites of
semi-noisy networks as well as the efficient areas around a middle site.

eigen-state of the lowest energy is an anti-symmetric state of the pair sites as shown in gray boxes.

By initializing the system with one excitation at first site i.e. |ψ(0)〉= |1〉, the state of the system

approaches the lowest eigenenergy with an eigen-state including the state |1〉. In Fig. 2.8 the high-

lighted eigen-states in yellow correspond such systems with three different pair configurations.

These eigen-states have been presented in different figures of this section. For example, Fig. 2.5

confirms that by locating site 2 near site 1 which contains one excitation, the total energy of a

two-dimensional three-site network would only bounce within these two sites and cannot reach

the target site. This area was previously called the inefficient region 1. By locating the second

site close to the last site the system approaches the eigen-state including these pair of sites leading

to a zero population of the target site (Fig. 2.5(4)). Another example is a pair configuration that

does not include the first and the last sites i.e. the efficient configurations around the clones of

Fig. 2.5(2,3) and Fig. 2.7((I-1)-(I-4)). In these cases the clone would hardly interact with the first
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and the last sites yielding an efficient discharge of excitation from the last site to the target site.

Other efficient or inefficient configurations shown in the figures of this section cannot be directly

explained from the energy levels of the noise-less systems.

2.1.5 Conclusion

The transport of pure quantum states is studied in networks of two-level systems with single exci-

tation approximation. The sites are considered dipolar coupled and only one qubit is irreversibly

connected to a target site. It is numerically proved that quantum transport in one-dimensional

dipolar semi-noisy channels is almost as efficient as two-dimensional ones and there is no specific

dimensionality preference for designing this type of channels. We also studied the patterns of ef-

ficient configurations of such channels and showed that by adding the number of sites by one the

introduced classes of efficient patterns are being repeated. We also found that by putting a clone of

sites in an arbitrary location, the robust efficient patterns are locally affected by the clone. The em-

pirical behaviours of efficient transport found can be used for robust optimal design to irreversibly

transfer a pure quantum state to a neighbouring device.

2.1.6 Appendix 1

In this appendix we show more details of efficient configurations of one-dimensional five and

six-site networks which may not be robust. Fig. 2.9 shows more cross sections of the essential

pyramid of five-site networks in Fig. 2.3(2). It can be confirmed from Fig. 2.9(2-6) that the fragile

and robust efficient configurations are as the following: (1) the first three sites (1-3) are in the

vicinity of each other at one end of the network while the fourth site is not close to the fifth site,

(2) the first two sites (1,2) are close to each other as well as the last two sites (4,5), while site 3

is around the center, (3) the first two interior sites (2,3) are closely located to each other but not

close to the lateral sites, (4) the last two interior sites (3,4) are in symmetric positions with respect

to the center of the subnetwork of sites 2-5, (5) the last two interior sites (3,4) are close to each

other while site 2 is not close to the first site, and (6) all three interior sites are in the center of the

network and in the vicinity of each other. Fig. 2.10 shows the detailed efficient patterns of six-site
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FIGURE 2.9: The target population (colorbar) of one-dimensional five-site networks with robust and
fragile configurations are shown for network parameters tΓ = 100,v = 1. Sub-figure (1) shows the opti-
mal configurations (possessing target population of more than %80 of that of the best configuration) with
brown marks in the black pyramid including non-duplicate configurations. Sub-figures (2-5) show different
cross sections of the pyramid when site 2 is located in five different positions while the colorbars show the
target population of each unique configuration indexed by (x3,x4). It can be seen that the robust efficient
configurations of five-site networks could be found by combining those of smaller number of networks.

channel configurations which may be fragile due to the geometrical perturbations. Fig. 2.10(I)

is a schematic of a ”super 2D” cross section of a four-dimensional triangle of the corresponding

unique configurations i.e. the lower diagonal part of the space x2x3 in which each point represents

a lower diagonal part of the space x4x5. Each black mark on the x2x3 space of Fig. 2.10(I) is shown

in Fig. 2.10(II) where the colorbars show the target populations of each network configuration

specified by the corresponding site coordinates of (x2,x3,x4,x5). The vertically crossing white

lines are at the position of the 3rd site and the relation xi < xi+1 confirms the uniqueness of the

specified configurations. It can be seen in Fig. 2.10(II) that the efficient patterns of configurations

of each row possessing a fixed x2 are similar and by increasing x3 or switching to the next column,

the efficient areas are scaling down. This confirms a general rule of six-site channels that is by

fixing the position of the second site in an arbitrary place, the efficient pattern of the rest of the

sites is regardless of the position of the third site and only depend on the second site. According to

Fig. 2.10(II) the following efficient classes can be distinguished for six-site semi-noisy channels:
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(1) the pair configurations of sites 4,5 which are not close to the lateral sites of 3 and 6 (in rows

1-4: x2 = 0.3,0.1,0,−0.1), (2) the symmetric configurations of sites 4,5 with respect to the center

of the subnetwork of sites 3-6 (rows 1-4), (3) sites 3-5 are close to each other around the center

(rows 1-4), (4) the 5th site is in a certain distance from the 6th site (rows 5,6).
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FIGURE 2.10: This figure shows the fragile and robust configurations of one-dimensional six-site net-
works. In subfigure (I) the lower diagonal part of the space x2x3 is the schematic of a ”super 2D” triangle
of the non-duplicate parameter space of a six-site network, where each point represents a lower diagonal
part of space x4x5, in which each point indexes a unique configuration of a six-site network. The x4x5 space
corresponding the black points on sub-figure (I) are shown in sub-figure (II). Since the patterns on each
row are similar and by increasing x3 the patterns are just scaling down, it can be concluded that the pattern
laws of sites 3,4, and 5 only depend on the position of the second site. In general, the area laws of six-site
networks are a combination of those of fewer-site networks.
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2.2 Supplementary materials

2.2.1 Comparison of one and two-dimensional qubit configurations

In section 2.1.3 the spatial dimension preference of efficient network configurations has been dis-

cussed. We have shown that the transport efficiency of two-dimensional four-site networks are

O(10−2) larger than that of one-dimensional equivalent networks. Such differences in efficiencies

have found for specific areas of the parameter space of coupling strength and the time of measure-

ment shown in Fig. 2.1(2). In Appendix 1(A1) the optimal two-dimensional configurations that are

more efficient than the one-dimensional ones are presented in Tables (A1-A5) which correspond to

some points or specific lines of the parameter space of ΓT v within the brown areas of Fig. 2.1(2).

2.2.2 Π-chain networks

In this part we propose an example of a new type of qubit networks extended in one and two

dimensions in order to compare the transport efficiencies of such networks with different spatial

dimensions. We introduce Π-chain networks consisting of a straight chain of equidistantly posi-

tioned (N− 2) sites displaced a perpendicular distance h (chain height) from the line connecting

the first and last sites (inset of Fig. 2.11). The first site is initially populated with one energy ex-

citation and the last site is irreversibly connected to a target site. Now by studying the Π-chain

networks we can compare the transport efficiencies of one and two dimensional networks i.e. ON

axis (straight chain) and OFF axis Π-chain. Fig. 2.11 shows the target population of N-site Π-

chains with network parameters of v/Γ = 1,Γt = 1. By increasing the chain height h the target

population increases to a maximum. As the maximum efficiency is due to h > 0 it can confirmed

that the transport efficiency of two dimensional Π-chain networks exceeds that of one-dimensional

networks. With further increase of the chain height the transport efficiency decreases (for particu-

lar chain length) to zero indicating that the initial excitation is trapped within the chain. By further

increasing the chain height, the target population gradually tends to that of a two-site network

(ρtarget ≈ 0.3) where the chain is no longer effective in the transport. So by adjusting the height of
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h

FIGURE 2.11: This figure shows the transport efficiency of different Π-chain networks as a function
of chain height. The target populations display complex oscillations with certain length Π-chains yielding
trapping (zero target population), and maximal (target population> 0.6) excitation transfer. In the case of
many particle Π-chains the optimal configuration is not when h = 0 i.e. when the dimension of the Π-chain
exceeds one.

such networks one can control the transport of the initial excitation to the target site from the zero

amount to a maximum amount in terms of switching.

In addition, it can be confirmed from Fig. 2.11 that by increasing the number of sites, the target

population of one-dimensional chains (i.e. h = 0), decreases. However for non-zero chain heights

(h > 0) the efficiency fluctuates in some cases. We conclude that in such networks, by increasing

the chain height, or equivalently increasing the network dimension from one to two, the optimal

transport efficiency increases.

2.2.3 Clone configurations of qubit networks

In this section we discuss the transport efficiency of qubit networks with large coupling strengths

(> 105). In dipolar qubit networks such large couplings are due to the site distances of less than
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0.01 which indicates that some qubits are located close to each other as a clone. To solve the corre-

sponding system of differential equations we used ode15s function of MAT LAB which efficiently

solve such stiff problems.

Tables 7-9 of Appendix 1(A2) show the transport efficiencies of networks including a pair of sites

separated by 10−3 < O(δxmin)< 10−15 for different choices of network parameters. It can be seen

that the transport efficiencies of such networks are identical up to about 9-10 decimal digits. It it

also found that the network efficiency of one-dimensional four-site networks including an interior

pair of sites is equal to that of a two-site network. So the target population of such networks does

not depend on the location of the interior pair of sites but the network parameters. So the pair of

sites do not participate in the excitation transfer within the network.

It has been also checked that a clone of arbitrary number of sites do not participate in the excitation

transfer and the corresponding target population is equal to that of a two-site n-dimensional net-

work. Moreover, by putting more clones in different points or even changing the site energies of

different clones the system behaves the same as the clones do not participate in quantum transport

process.

By approaching the clones to the two lateral fixed sites of the networks the target population de-

creases to zero. In these cases, each of the first or last sites becomes a part of the clones and so

does not participate in the excitation transfer. As the whole excitation is initially in the first site

and the last site is the only site connected to the target sink, the lack of participation of each of

these two sites in quantum transport leads to zero population transfer.



2.3 DISCUSSIONS AND COMMENTS 35

2.3 Discussions and comments

The problem introduced in section 2.1.3 was proposed by Professor Martin Plenio, my supervi-

sor in Ulm University, who wrote the random walk optimization code and found an increase of

O(10−3) in the transport efficiency of four-site networks transferring from the first dimensional to

the second one. I used tips suggested by him for searching the parameter space and could increase

the difference of efficiencies to O(0.01). By parallel running of the code on a cluster in Ulm I

showed that the maximum difference does not exceed O(0.01). Moreover, to find the rules gov-

erning the optimal positions of the network sites I suggested and developed the studies of sections

2.1.4 and 2.2. The idea of Π-chain networks in section 2.2.2 was proposed by Professor Jason

Twamley, my supervisor in Macquarie University, to whom I am thankful for useful discussions re-

garding the preparation of this chapter. This work was funded by the ARC Centre of Excellence in

Engineered Quantum Systems, ARC Project No. CE110001013, and the Alexander von Humboldt

Foundation.



36 EFFICIENT QUANTUM TRANSPORT IN QUBIT NETWORKS



3
Geometrical robustness of qubit networks

3.1 Robustness of optimal transport in one dimensional parti-

cle quantum networks

3.1.1 Abstract

We study the robustness of quantum transport in four site 1D particle quantum networks irre-

versibly connected to a target site in the presence of environmental dephasing noise. Under condi-

tions of Markovian decoherence we define a quantity - which we denote as geometrical robustness

37
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- to quantify the robustness of transport with regard to the geometrical arrangement of the spin net-

work. We examine the behaviour of this geometrical robustness for both nearest and non-nearest

site interactions and show that for some values of dephasing noise and other network parame-

ters the robustness undergoes revivals ie. the robustness periodically increase with dephasing. In

addition, we find that for high amounts of dephasing noise, the pattern of optimal network con-

figurations changes noticeably from central symmetric configurations to laterally gathered ones,

and we show that this change of pattern seems to occur for any number of network sites in the 1D

chain.

3.1.2 Introduction

Quantum transport is central to quantum information and quantum computation and will be a re-

quired feature among many quantum devices [15, 16, 64]. Quantum transport is widely studied in

networks with the aim of achieving flexible transport of different types of excitations along one

dimensional space (1D) channels [1, 2, 65]. While the effects of system environment or fabrica-

tion disorders are inevitable, achieving high efficiency robust quantum transport in the face of such

deleterious effects is the topic of this work.

The robustness of various quantum networks have been studied against different environmental

perturbations, inter-site interactions, and the length of 1D networks. Several studies [18, 57–

60, 66] have investigated the robustness of spin chains against static random imperfections of

spin-couplings. They have quantified the robustness as the average of the transfer fidelity. In gen-

eral, it is found that in quasi-Markovian regimes the transfer dynamics is rather robust while in

non-Markovian regimes the dynamics is more sensitive to the static imperfections [59]. In noise-

assisted transfer studies the robustness is usually quantified as the population of the target site (or

sink) of the network. Studies show that the robustness of transport quantified in this way can be

increased in the presence of environmental dephasing noise [26, 67–72]. In addition, it has been

also checked that the fundamental mechanisms underpinning dephasing assisted transport are ro-

bust against different noise models [67].
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So far transport robustness has been defined for networks with fixed couplings against small

coupling perturbations, or environmental noise. However distance-dependent couplings in nano-

networks, which can be highly sensitive to fabrication imperfections, may lead to variations in

these coupling strengths and this can generally alter the transport efficiency. Thus, in such geo-

metrical networks, it is vital to quantise the robustness geometrically. We introduce a geometrical

measure of transport robustness (geo-robustness) as the percentage of spatial network configura-

tions which can achieve a transport efficiency better than %80 of the optimal configuration at a

standard reference evolution time. We will see that one can reach the optimal transport robust-

ness by engineering a variety of system-environment parameters e.g. coupling strength, length of

the network, evolution time, and dephasing noise rate. In addition, the dependence of the geo-

robustness on the type of inter-site coupling (short range/nearest neighbor vs. long range), will

be examined. By studying in detail the geo-robustness in a four site model with a target sink at

one end we find curious revivals in the geo-robustness which seem to be fairly independent of the

detailed model. We find that these revival features do not vary much as one considers longer 1D

networks and we conjecture that these revivals may be a generic feature for any 1D network. In

addition, through a specific example of network parameters we show that such revivals can also

happen in coherence-less systems.

3.1.3 Modeling

In this section we analyze 1D excitation energy transfer in spin networks with one excitation. The

system consists of N-sites with zero self-energies (ε = 0) located along one spatial dimension.

The sites i = 1, ...,N interact via tunnel coupling with each other at the rates Ji j. We consider

two types of network interactions: one in which all possible pairs of sites interact (we denote as

type 1), and it is depicted in Fig. 3.1, and nearest-sites interaction (we denote as type 2) in which

Ji j−type2 = Ji j−type1; i = j± 1, Ji j−type2 = 0; i 6= j± 1. The network is located in a homogeneous

noisy environment so that all sites experience dephasing noise at rate γ . The last site (N) is con-

nected to an additional target site or sink through an irreversible process at rate Γ. We consider



40 GEOMETRICAL ROBUSTNESS OF QUBIT NETWORKS

an initial excitation on the first site (i = 1) of the network at t = 0 and study the transport of this

excitation through the network to the sink site. The Hamiltonian of the system can be written as:

Hsys =
N

∑
i, j=1

Ji jσ̂
†
i σ̂ j; Ji j = v(1−δi j)/ ‖ L(ri− r j) ‖α +δi jωi, (3.1)

where v is the coupling constant, δi j is the Kronecker delta function, L~ri is the position of site i, α

is a constant which describes the type of power-law coupling between the sites, ωi is the energy of

site i, and σ̂
†
i (σ̂i) is the creation (annihilation) operator of site i. The time evolution of the system

is described via the master equation with the Lindblad operators of environmental dephasing noise

and dissipative noise to the target site as [61]:

˙̂ρ =−i[Ĥsys, ρ̂]+Ldeph(ρ̂)+Ldiss(ρ̂);

Ldeph(ρ̂) = γ

N

∑
i=1

(2σ̂i
†
σ̂iρ̂σ̂i

†
σ̂i−

{
σ̂i

†
σ̂i, ρ̂

}
),

Ldiss(ρ̂) = Γ(2σ̂
†
target σ̂N ρ̂σ̂N

†
σ̂target−

{
σ̂N

†
σ̂target σ̂

†
target σ̂N , ρ̂

}
), (3.2)

where h̄ is set to be unity, ρ̂ is the density matrix of the system and environment,γ is the dephasing

noise rate to the environment and Γ is the rate of irreversible energy transfer from the last site to the

target site. In the next section, we study the excitation energy transfer through this 1D network. We

numerically calculate the excitation transferred to the target and determine which configurations

are most efficient for this transport at a specific time t. We investigate the measure of the class of

efficient 1D configurations in comparison with all possible geometric configurations by defining

the quantity which we denote as the ”geometric robustness” of transport. Then we study how this

geo-robustness is against variations of dephasing noise rate, coupling strengths, evolution time,

and the number of sites.
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3.1.4 Results

Robustness of transport for all-sites and nearest-sites interaction

To be concrete we choose to study four site networks in which the location of sites on the x axis are

as x1 =−0.5, x2, x3, x4 = 0.5, where the spacial positions (x2,x3) can vary within the region x2,3 ∈

(−0.5,0.5). We assume a physically realistic interaction and take that sites interact as parallel

dipoles Ji j = v(1−δi j)/x3
i j, where v=V L−3 quantifies the strength of the coupling, V is a constant,

L is the size of the network L = |xN − x1|, and xi j = |xi− x j| is the relative distance between the

sites i and j. We normalise the time, coupling strength and dephasing noise in units of Γ and

consider Γt = 100, V L−3/Γ = 1, and γ/Γ = 0. For the rest of the study we restrict ourselves

to four sites and the dipolar form of the coupling unless otherwise stated. Solving the master

equation (3.2) numerically as discussed in section 2, in Fig. 3.1 we show the population of the

target for all network configurations of the parameter space (x2,x3) for both interactions of types 1

and 2 in graphs (a) and (b), respectively. Graph (a) shows that the efficient configurations of all-site

interacting systems are those in which the middle sites are symmetrically located in the network

but rather far from the lateral sites. In addition, the networks with middle sites close to each other

but not very close to the lateral sites are as efficient as symmetric networks. There is also a zero

excitation transfer due to configurations in which the middle sites are separated from each other

by a forbidden distance (border line of the spindle-form region), that decreases by moving the

middle sites to the first or last sites. In part (b), it is shown that the symmetric configurations of

nearest-sites interacting networks are efficient however joint configurations of middle sites (black

region around the diagonal line) trap the initial excitation in the first site. It has been checked that

in this case and also in the case of the forbidden distance configurations of type 1, the trapped

excitation remains on the first site. In all other trapping configurations of types 1 and 2 (spindle

black regions), the excitation oscillates within the first three sites and the fourth site is isolated and

very little excitation makes it to the target sink.

In the literature on quantum transport the robustness of networks has been studied against random
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perturbations in coupling strength [59]. Here we intend to show that even for large coupling

disturbances, or equivalently significant movements of sites, the transport can be robust. We define

the geometrical robustness (µ) of optimal transport at a specific time as follows: the percentage of

configurations that yields a sink population better than %80 of the optimal geometric configuration

at a pre-set evolution time. To visualize this, we refer to Fig. 3.1 and consider the ratio of the white

and yellow area to the area of the whole parameter space of (x2,x3) as a measure of our robustness

(µ). Numerically we discretize the (x2,x3) parameter space to compute this measure. In addition,

as the sites are identical the fundamentally distinct configurations are those in the upper or lower

diagonal part of Fig. 3.1.
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FIGURE 3.1: (Color online) This figure shows the excitation transfer to the target for all configurations of

four site networks in graph (a) (type 1) and graph (b) (type 2). The sites are realized to be at (x1 =−0.5, x2,
x3, x4 = 0.5), respectively. Network parameters are Γt = 100, V L−3/Γ = 1, and γ = 0. The color bar shows
the population of excitation accumulated in the target at time t. In both types (a) and (b), the symmetric
positions of middle sites can efficiently transfer the initial excitation to the target (bright regions); however
joint configurations of middle sites are only efficient for interaction type 1. In all dark regions the fourth site
of the network is isolated so that the efficiency of the excitation transfer is very small.

Variation of robustness with dephasing noise

In the above example in Fig. 3.1, we did not consider any dephasing and set γ = 0. More generally,

we can consider how this robustness depends on dephasing noise, and evaluate the variation of
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robustness of optimal transport (µ) against γ . Fig. 3.2 (a) shows this variation for interaction types

1 and 2 while the network parameters are V L−3/Γ = 1, and Γt = 100. Surprisingly we observe

that there are two main peaks of robustness for both interaction types. Along the upward trend of

the first peak, an increase in the dephasing noise results in an increase in µ . To understand this

trend one may note that different network configuration (x2,x3), represents a distinct 1D quantum

path (or a set of quantum steps along the 1D network), of excitation from the first site (i = 1) to

the target. So as dephasing increases it seems that the density of available transport paths also

increases and some of the trapping configurations involving the first three sites are circumvented.

Dephasing noise breaks the symmetry of the dark states which allows new transport pathways

to open up. Any oscillation of the position of the interior network sites or equivalently, more

environmental dephasing noise, disturbs the energy levels of the system and the previous trapping

eigenstates no longer exist. Thus by increasing dephasing the number of efficient quantum paths

increases. For larger dephasing noise, the robustness reaches a maximum and starts to decrease

along the downward trend off the main first peak. Due to quantum Zeno effects (or equivalently

line broadening [26]), the increased dephasing noise of the excitation remains in the network and

cannot transit to the target site. In the presence of dephasing noise, one can check that the initial

excitation in a trapping configuration does not oscillate within the network but rather exponentially

decays from the first site, and accumulates equally between the first three sites. In graph (a)

there is an extra sub-peak within the first peak of interaction type 1 which is the only significant

difference of robustness between the two interaction types. It has been checked that within this

sub-peak of type 1 the efficient joint configurations depicted in Fig. 3.1 (a) disappear gradually

with increasing dephasing. As this class of efficient paths does not exist for type 2 we expect

different behaviours of robustness for these two types of coupling. Fig. 3.2 (b) depicts the pattern

of reviving efficient configurations throughout the second peak of µ . We observe that in this

regime of dephasing the peak of robustness is due to the spread of ”good” configurations from the

centric-symmetric geometries in the (x2,x3) parameter space to the marginal positions. Therefore,

the environmental dephasing noise has a significant effect on the network optimal patterns and at
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FIGURE 3.2: (Color online) Graph (a) shows the robustness µ against the logarithm of normalized
dephasing noise Log10(γ/Γ) for interaction types 1 and 2, while network parameters are V L−3/Γ = 1 and
Γ.T = 100. The upward trend of the first peak for both interaction types is due to the symmetry breaking
of trapping configurations, and the downward slope is due to a kind of quantum Zeno effect. Graph (b)
shows the efficient configurations of type 1 networks for three different dephasing noise levels during the
second peak of µ . According to these the second peak is due to the change of optimal configurations
or stable energy levels of the system. The main difference of the behaviour of robustness in types 1 and
2 interactions is within the first peak (the additional sub-peak of type 1) due to the different patterns of
efficient configurations shown in Fig. 3.1. During this sub-peak the joint configurations of type 1 gradually
disappear with increasing dephasing.

the value of the top of the second peak acts as the order parameter to transit between different

geometrical arrangements of efficient configurations.

Variation of robustness with network couplings

Now we study the effect of network coupling strength on the robustness oscillations we noted

above. Fig. 3.3 (a) shows the variation of robustness (µ) for the more complicated interaction

of type 1 for various normalised coupling strengths (V L−3/Γ) and dephasing noise (γ/Γ), while

Γt = 100. In order to change the strength of the coupling between the sites, one can change V

or the network size L (the latter is factored out from the distance between network sites so that

inter-site distances would vary as dx < xi j < 1, where dx is the discretization length of the net-

works which is considered 0.006. The distinct border line between the yellow and black regions

depicted in Fig. 3.3 (a) is the position of the first peak of robustness (µ) shown in Fig. 3.2 (a).

Empirically one observes that the maximal value of robustness is located at V L−3/
√

γΓ' 0.0412,
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and the robustness is highly plateaued with a rapid fall off in the regime of V L−3/
√

γΓ & 0.0412.

In other words, for a given set of network parameters the first peak of robustness represents the

dephasing tolerance of the system. By increasing the depahsing after the tolerance amount the

transport efficiency of many optimal configurations suppress resulting a sharp reduce of robust-

ness. Fig. 3.3(a) shows that by increasing the coupling strength the position of the first peak shifts

forward indicating that the dephasing tolerance is more in networks with stronger couplings.

Above we considered the dependence of µ on Ji j = v(1−δi j)/(Lxi j)
3 (a dipole-dipole interaction).
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FIGURE 3.3: (Color online) Graph (a) shows how the robustness µ is influenced by the strength of tunnel
coupling V L−3/Γ and dephasings noise γ/Γ, while Γt = 100. According to the sharp linear border the high
values of robustness are in the regime of V L−3/

√
γΓ & 0.0412, and the low values (starting from the first

peak of Fig. 3.2 (a)) are in the complementary region of V L−3/
√

γΓ . 0.0412. The high value regime of
robustness which includes symmetric configurations are growing by increasing dephasing. The position of
the main peak of robustness is around V L−3/

√
γΓ' 0.0412. Graph (b) shows the dependency of robustness

on coupling rates (J = V/(Lri j)
α ) by changing α possibly represent different physical implementations. It

seems that increasing α shifts the position of the second peak to larger γ/Γ. Moreover, α does not change
the position of the first sub-peak and so efficient pair levels of middle sites are not affected by the model of
physical tunnel coupling.

Now we consider a more general form for these tunnel couplings to be Ji j = v(1−δi j)/(Lxi j)
α . In

the ion trap implementation of the network (in the adiabatic regime), one can adjust the coupling

rates through a changing α experimentally [73]. Fig. 3.3 (b) shows the dependency of the oscil-

lation of µ on the specific model for the physical tunnel couplings. Curiously we find the similar

patterns of robustness as shown in Fig. 3.3(b) for interaction type 2, by focusing on the second

sub-peak of Fig. 3.2(a).
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In general, it can be observed from Fig. 3.3(b) that the increase of α or equivalently the decrease

of Ji j would increase or decrease the robustness according to the value of dephasing rate. This

behaviour is confirmed by Fig. 3.3(a) as well. In addition, the increase of α drives the position of

the second sub-peak which correspond the symmetric configurations forward down and lowers the

position of the first sub-peak corresponding the joint configurations. This indicates that the sym-

metric configurations of networks with van der Waals interaction have a larger depahsing tolerance

than that of a dipolar interacting network; however the overall amounts of robustness is less for

van der Waals interacting systems. On the other hand, the pair configurations of different power-

law interacting networks have the same depahsing tolerance, although the robustness is larger for

networks with stronger couplings like for α = 2.

Variation of robustness with time

The next important parameter that we discuss is time. In Fig. 3.4 the dependence of the robustness

(µ) on time and depahsing noise is shown while V L−3/Γ = 1. It is clear that the position of the

peaks introduced in Fig. 3.2 (a) move forward linearly with increasing time and dephasing i.e. the

position of the peak is a linear function of Γt depicted as a black line on Fig. 3.4. Above this

line (Γ2T/γ & 0.0463) robustness is high and for the complement region of network parameters

(Γ2T/γ . 0.0463) robustness drops to a low value. It can be also confirmed from Fig. 3.4 that for

longer time shots, the four site system can tolerate a larger dephasing noise before most network

configurations shrink the transport and reduce the robustness. In addition, Fig. 3.4 indicates the

absence of any permanent trapping state and at the infinite time limit the robustness of all such

networks would be 1; however for some dephasing regimes to reach the unit robustness one should

wait more than 107Γ. It can be inferred from Fig. 3.4 that for a given set of network parameters

one can find the appropriate time scale by which the geo-robustness of the system is optimal. On

the other hand, it should be also noted that even in very large time shots, it is always possible to

disable the transport of all configurations by an accordingly large dephasing noise.
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Y= 0.9615 X – 1.3346 

FIGURE 3.4: (Color online) The figure shows how robustness µ is influenced by Γt for different de-
phasing noise rates (γ/Γ), while V L−3/Γ = 1. It is shown that by increasing time both peaks shift linearly
forward. In addition, in the range of Γ2T/γ & 0.0463 robustness during the first peak has large values.

Network extension

In the following we study the network extension effect on µ by adding more sites to the chain.

Fig. 3.5 (a) shows the variation of robustness against dephasing noise for different numbers of

network sites for network parameters V L−3/Γ = 1, and Γt = 100. It can be seen that by increasing

dephasing noise, the positions of both peaks move forward and the heights decrease. In part (b)

the efficient configurations of three, four , and five sites networks have been shown for different

dephasing noises within the fundamental regions described as follow: The line of x2 =−0.5 : 0.5

for N = 3, the lower diagonal part of space parameter (x2,x3) for N = 4, and the black triangular

pyramid of the parameter space (x2,x3,x4). For dephasing noise of γ/Γ = 102, the fundamental

optimal region of three sites networks is the black line in the first column of Fig. 3.5 (b). For

N = 4, the fundamental optimal region is the white triangular shape, and for N = 5 it would be

the red triangular pyramid shape. When dephasing noise is γ/Γ = 104, the optimal region for

N = 3 is a smaller black line, in four sites networks (N = 4) it is approximately an ellipse, and

for N = 5, it becomes an ellipsoid. In higher values of dephasing (γ/Γ = 106), the optimal region

for N = 3 is a smaller line, for N = 4 is two ellipses and for N = 5 is three ellipsoids. So it

could be confirmed that by increasing the dephasing noise from γ/Γ = 102 to 106, the pattern
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of efficient configurations in the parameter space for any number of network sites, varies from

central-symmetric regions to marginal ones. It could be also predicted from the last row of Fig. 3.5

(b) that the number of robust optimal regions in high dephasing noise range (γ/Γ = 106) for N sites

networks is N−2. In general, Fig. 3.5 (b) shows that the pattern of the variation of geo-robustness

is invariant to scaling of such networks since by adding the number of the sites, the dimensions

of the fundamental region and the optimal region increases. In addition, the behaviour of optimal

configurations for any arbitrary number of sites in the considered dephasing noise regimes could

be estimated according to Fig. 3.5(b), however the direct calculation of robustness or the optimal

configurations for arbitrary larger number of sites would be very time consuming. In general, for

large number of N network sites for intermediate values of dephasing noise (γ/Γ = 102 to 104), all

central symmetric configurations in the parameter space are optimal, while in the larger regime of

dephasing noise (γ/Γ = 106), N−2 robust regions exist in the corresponding (N−2)-dimensional

parameter space.

The presence of entanglement

In this section we show the presence of entanglement in one dimentional four site networks. We

calculate the logarithmic negativity measure of entanglement [74, 75], using a chosen bipartite split

of network, e.g. the first site v.s. all other sites including the target/sink. For a 4-site chain and

one target/sink, Fig. 3.6 (a), shows the amount of entanglement for all possible network couplings

in (x2,x3) parameter space when γ/Γ = 0, Γt = 100,V L−3/Γ = 1. By comparing Fig. 3.1(a) and

Fig. 3.6(a) one can see that in the high transport network configurations introduced in Fig. 3.1(a),

the logarithmic negativity for the chosen bitartie split almost vanishes. This may be expected as

there will be little occupation left in site 1 when the transport is efficient. However some entan-

glement exists for trapping configurations. The scattered dark points in Fig. 3.6 (a) shows the

fast oscillations of entanglement due to changes in network couplings, which has been observed

before (though with respect to time) [26]. From this one can deduce that inefficient transfer config-

urations posses trapped states and exhibit quantum entanglement - a purely quantum mechanical
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FIGURE 3.5: (Color online) Graph (a) shows the dependence of the robustness µ on dephasing noise
for three different number of network sites (N = 3,4,5) for interaction type 1 with network parameters
V L−3/Γ = 1, and T.Γ = 100. It can be seen that one site to the system does not have a significant effect
on the average amount of robustness however the peaks move forward down. Graph (b) shows the efficient
network configurations for different dephasing noise for N = 3,4 and 5 which could show the behaviour of
optimal configurations of arbitrary N-site networks in different regimes of dephasing noise.

effect. Fig. 3.6(b-d) shows the quantified entanglement using the same bipartite split but now in

the presence of dephasing noise. It is checked that the symmetric and diagonal black configura-

tions with no entanglement in these figures are the efficient configurations for quantum transport.

For example the grey dashed triangules in Fig. 3.6 (d) show the area of efficient configurations

as in Fig. 3.2(b-I). By increasing γ/Γ ∼ 10−2− 103, the maximum Log-negativity decreases and

the oscillations with respect to different configurations disappear. Another characteristic shown in

Fig. 3.6 is that the symmetry of non-zero entanglement area gradually breaks toward the target or

the fifth site. It is clear that the lack of symmetry also exists in zero dephasing noise for some con-

figurations with middle sites closely located to the target. However by increasing γ/Γ, the amount

of Log-negativity for these configurations increases from zero to the maximum amount. This be-

haviour confirms that the dephasing noise has a crucial roll in determining the Log-negativity of
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different network configurations.
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FIGURE 3.6: (Color online) Evidence of quantum entanglement in the dephased networks (γ/Γ =
2× 10−2,10,103). Logarithmic negativity between site 1 and the rest of the network for different site
couplings or network configurations are shown when the network environment parameters are considered as
Γt = 100,V L−3/Γ = 1. The rapid oscillations of entanglement dominate mostly for poor transport network
configurations in small γ/Γ, indicating the existence of trapping network geometries where the excitation is
trapped in correlations within the chain. With higher dephasing noise, the Log-negativity does not oscillate
and is predominant for configurations which are nearer to the last site. The black regions in symmetric areas
and diagonal regions are the efficient configurations of such networks passing the excitation successfully.
For large depahsing this area is shown by the grey triangular dashed lines in part(d). The change of patterns
shows the strong correlation between the dephasing noise and the amount of entanglement for different
classes of network couplings.

Quantumness of the system

In this section we investigate whether the increase of robustness due to dephsing noise is purely

quantum mechanical or can also arrive in a semiclassical coherence-less description of the system.

To check the coherence-less behaviour of the system we apply the Pauli master equation as de-

scribed in [26] for a four site network of nearest neighbor interacting dipoles where the last site

is connected to a target site through an irreversible transfer (rate Γ = 1). The interaction energies

between the sites are considered to be Ei j = 5× 10−3/r3
i j, where ri j is the distance between the
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sites i and j, and the site energies are considered as Ei = − ∑
j=i±1

Ei j keeping the total energy of

the system equal to zero. We then find the ranked eigenenergies of the total Hamiltonian of the

system and the associated energy gaps between the adjacent energy levels k and l as ∆Ek,l . In

addition, a symmetric Lorentzian hopping rate between the system energy levels is considered as

1/(4π)1/(∆E2
k,l + 1/16), and due to the dephasing noise a Lorentzian profile for the line broad-

ening of energy levels has been considered as ELW. To compute the average target population for

a given network configuration and network parameters at t = 100, using the coherence-less Pauli

master equation over accumulated time increments of dt = 0.05, we independently sampled from

the Lorentzian distribution of energy levels at each time step, and averaged over 20 independent

trials to arrive at a final average target population. The amounts of target population of all config-

urations for each different energy level width (ELW) and the corresponding geo-robustness have

been found and shown in Fig. 3.7 (a). It can be seen that in lower amounts of line broadening

the robustness of the system increases by increasing ELW, due to the overlap of energy levels [26]

providing more paths of energy transfer. There is also a possibility of a peak of geo-robustness

within the higher amounts of ELW. Fig. 3.7 (b) shows the pattern of optimal configurations of

four site networks in four different amounts of line broadening of the energy levels (ELW). By

increasing the line broadening further, it can be seen from Fig. 3.7 (b) that the pattern of optimal

configurations gradually changes from a solid triangle to a blinking one, and so the average amount

of geo-robustness decreases due to the fluctuations of target population with respect to the network

geometries. In addition, it should be noted that the amount of geo-robustness changes in different

points of the parameter space of both quantum mechanical and coherence-less systems, and the

revival of µ can be achieved through the coherence-less Pauli master equations or the Markovian

master equations.

3.1.5 Conclusions

The study of robustness of optimal configurations is useful for environment engineering of nano-

networks in the Markovian regime. In this study we showed that the geometrical robustness of
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FIGURE 3.7: (Color online) This figure shows the increase of geo-robustness due to the line broadening
of the energy levels analysed by Pauli master eqaution. Part (a) shows the variation of geo-robustness of a
network of four nearest neighbor interacting dipoles with a Lorentzian hopping rate of 1/(4π)1/(∆E2

k,l +

1/16), initial interaction energies corresponding to 5× 10−3/r3
i j, at t = 100, and Γ = 1, while suffering

from different broadened energy levels of width ELW due to environmental collisions. However the average
amounts of µ in very large energy level widths (ELW> 10) are showing a peak, due to some numerical
errors the decrease of ge-robustness in this range is not deterministic. Part (b) shows the optimal patterns of
configurations of the same network in the presence of four different values of line broadening. It can be seen
that for the chosen network parameters the increase of geo-robustness in the presence of dephasing noise
qualitatively matches that observed in the quantum case.

excitation transfer (µ) in 1D networks depends on the network parameters and the environmental

dephasing noise. The robustness displays two peaks with increased dephasing in specific net-

work parameters. Increasing the number of sites of such networks typically does not change the

behaviour of geometrical robustness. In addition, for both interaction types I and II, there are

substantial differences in the robustness in weak dephasing noise regime. In high values of de-

phasing noise, the pattern of optimal configurations of such networks changes significantly from

central symmetric pattern to marginal ones and the behaviour seems to be preserved for any ar-

bitrary number of sites. In all trapping configurations of such networks the initial excitation is
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accumulated in the entangled states in terms of coherences which ensures the quantum mechanical

characteristics of these networks. Moreover, we have found that the increase of geo-robustness

in the presence of line broadening can be qualitatively explained either through a coherence-less

system or a quantum system.
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3.1.6 Discussions and comments

I prepared a report analysing how network parameters affect the efficient configurations of four-site

one-dimensional networks. Following the discussions with Professor Jason Twamley we noticed a

peak pattern of efficient configurations within the results and proposed the idea of geo-robustness

of such networks. We also compared the transport efficiencies of nearest and non-nearest neighbor

interacting networks and calculated the geo-robustness for different network-environment parame-

ters, types of site-couplings, and number of sites. The referee of the Phy. Rev. A journal suggested

to compare the quantum problem with the classical one and we added the entanglement analysis to

show the quantum effects of the network dynamics. I thank Professor Martin Plenio for supports

regarding the initialization of this paper. This work was partially funded by the Alexander von

Humboldt Foundation, and the ARC Centre of Excellence in Engineered Quantum Systems, ARC

Project Number CE110001013.



4
Switching application of qubit networks

4.1 Platonic quantum networks as coherence-assisted switches

in perfect and imperfect situations

4.2 Abstract

The concept of coherence switches with nanoparticle platonic networks is introduced and anal-

ysed. The platonic networks store an initially injected excitation for extremely long durations via

the formation of dark states. Switching is achieved by the nano-mechanical arrangements of one

site or some part of the network to remove the trapping thus leading to a highly efficient transfer

55



56 SWITCHING APPLICATION OF QUBIT NETWORKS

to the target which is irreversibly connected to one site. We present coherence switches based

on controlling a cubic network both in the absence and presence of environment and manufactur-

ing/topological noise.

4.3 Introduction

Photonic switches are important for integrated quantum optical networks [76, 77]. There are differ-

ent mechanisms and controlling methods that switches are based on. The switching control could

be all-optical [78], nano-mechanical, or a combination. In metallic nano-particle switches [79, 80]

the controlling mechanism could be a combination of laser illumination and nanometric displace-

ment. In a double core optical fibre switch, the switching mechanism is based on nano-mechanical

movement of the core structure [81]. In an optical Kerr switch a nano-mechanical resonator is

coupled to a quantum dot and the switching is achieved by controlling the pumping field [82]. By

trapping an atom in the nearfield of a photonic crystal cavity one can create a quantum phase switch

in which a photon is strongly coupled to the atom and by changing the phase of the atom or photon

the other’s phase can be controlled [41]. In a hybrid system by coupling the surface plasmons of

a metallic nano-particle and the exitons of a quantum dot one can control the enhancement of a

second harmonic signal by changing the intensity or the frequency of the pumping field [80].

In this paper we introduce a coherence-assisted photonic switch which is based on the presence

or absence of dark states. The switch consists of a network of identical sites with dipolar inter-

actions, located on the vertices of platonic geometries shown in Fig. 4.1(b). Each network can

be built through state-of-the-art nano-fabrication methods like wafer thinning, metallization, and

nano-lithography by positioning the sites on crossing wafers. The initially injected excitation on

one site traverses through all sites while the last site is continuously discharging into the target site

through a dissipative process. The switch is controlled by the nano-mechanical movement of one

site or some part of the network where such nano-mechanical movement is possible through a va-

riety of methods [83, 84]. The transfer properties of such networks for arbitrary one-dimensional

geometries and ranges of interactions have been studied [85]. In this work we analytically prove
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the existence of dark states for three-dimensional networks of platonic geometries connected to

a target site, and show their trapping behaviours through simulations for switching usage. The

presence of dark states in such networks is due to the destructive interference of the propagat-

ing excitation along different paths through to the target. The transfer properties of two possible

versions of the simple cubic platonic geometry will be investigated where the associated network

contains eight sites on the vertices and a target site. Moreover, a combination of two platonic net-

works i.e. two concentric cubes with sixteen sites will also be studied. It will be shown that by

changing the position of one site or one part of the network as the controller, the initial excitation

can be completely/partly trapped by the network thus blocking the transport to the target. In some

configurations there is no dark state and the excitation is completely transferred to the target site.

We also show that environmental dephasing and dissipation noise decreases the switching effi-

ciency of cubic networks. However, in some specific cases, and in the presence of topological

errors or large dephasing noise, some blocking/transferring network geometries are found to be

useful for efficient nano-switching.

The considered platonic networks with dipolar interactions are specific and more practical exam-

ples of some general networks with suitable connectivity matrices investigated by continuous time

random walk processing [86], and as such could have a broad range of applications from commu-

nication to computation [87].

4.4 Dark states in platonic networks

The system consists of N sites with one excitation initially located on site 1 at t = 0. The Nth site

of the network is irreversibly connected to a target site at rate Γ. The Hamiltonian of the system

excluding the target is considered as

H =
N

∑
i=1

ε|i〉〈i|+∑
i 6= j

Ji j|i〉〈 j|, (4.1)
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in which ε is the energy of each site, Ji j = 1/r3
i j is the dipolar coupling rate between sites i and

j separated by the distance ri j, and |i〉 is a state of the system indicating that the excitation is on

site i. In the special case which we denote as homogeneous coupling, the coupling rate Ji j which

is dependent on the location of site l is homogenous when other sites are all equidistant to l e.g.

(Jil = Jl), then we have

H|l〉= ε|l〉+ Jl ∑
i 6=l
|i〉. (4.2)

Now consider another site m which has the same symmetrical feature of l i.e. Jl = Jm. In this

case one can easily show that the antisymmetric superposition state |l〉−|m〉 is an eigenstate of the

Hamiltonian with eigenvalue ε− Jl under the conditions of homogeneous coupling. One approx-

imation of such trapping networks is when two, or in general n0 sites, are located close to each

other so that |ri j| � |rik|; i, j ∈ {1, ...,n0}. Such network arrangements will be used for controlling

platonic switches. Another type of dark states exists in networks of N sites where the sites l and m

are symmetrically located with respect to all other sites and the coupling rate between them is Jlm.

The Hamiltonian of Eq. (1) operates on the the state |l〉(|m〉) as follows:

H|l〉= ε|l〉+ Jlm|m〉+
N

∑
i 6=l,m

Jil|i〉. (4.3)

By subtracting H|m〉 from H|l〉 the antisymmetric trapping state of |l〉− |m〉 is achieved with the

corresponding eigenvalue ε−Jlm. Such trapping states exist in networks with platonic geometries.

To achieve switching we connect the last site to a target by an irreversible transfer process of rate

Γ so that any excitation on last site will be irreversibly ”dumped” to the target. This consideration

will add a damping term to the Nth site of the system Hamiltonian [86] and the derived trapped

states remain. The time evolution following the initial excitation on the first site for such networks

can be found by the following Master equation with the Lindblad operators corresponding the en-

vironmental noise in the Markovian regime
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˙̂ρ =−i[Ĥ, ρ̂]+Ltarget(ρ̂)+Ldissipation(ρ̂)+Ldephasing(ρ̂);

Ltarget(ρ̂) = Γ(2σ̂
†
N+1σ̂N ρ̂σ̂N

†
σ̂N+1−

{
σ̂N

†
σ̂N+1σ̂

†
N+1σ̂N , ρ̂

}
),

Ldissipation(ρ̂) = Γdiss

N

∑
i=1

(2σ̂i ρ̂σ̂i
†−

{
σ̂i

†
σ̂i, ρ̂

}
),

Ldephasing(ρ̂) = γ

N

∑
i=1

(2σ̂i
†
σ̂iρ̂σ̂i

†
σ̂i−

{
σ̂i

†
σ̂i, ρ̂

}
), (4.4)

where Γ is the discharge rate of the last site N to the target site N + 1, and Γdiss and γ are the

dissipation and dephasing noise rates from each site to local environments, respectively. σ̂
†
i (σ̂i) is

the Pauli creation (annihilation) operator for site i such that σ̂
†
i = |i〉〈0|. The state |i〉 denotes one

excitation on site i, and the state |0〉 represents the zero energy excitation of the network while the

initial energy has been dissipated to the environment.

By measuring the population of the target by Eq. (4.4) we can gauge the efficiency of the trans-

ferring/blocking through the network. Fig. 4.1(a) shows all five possible platonic networks with

unit edge lengths in which the nearest neighbour sites are equidistantly located on a sphere. The

numerical graphs of Fig. 4.1(b) show the target population in time for each platonic network with

no environmental dissipation or dephasing noise. The self-energies of sites are considered zero for

the whole chapter (ε = 0). The trapped excitation within the networks can be found by subtracting

the target population from the initially injected energy. The spheres on the vertices of the networks

of Fig. 4.1(a) show the average amount of excitation trapped on each site after a long time interval.

It can be seen that in all cases, except the four site tetrahedron network, most of the excitation is

trapped within the first site and a symmetric site which is symmetrically located to that site with

respect to the center of the platonic network. According to Eq. (3) each pair of symmetric sites

(i,ĩ) that are in a same relative distance from all other sites, create a trapping state of |i〉− |ĩ〉. As

the entire excitation is initially on site 1, the average trapped excitation will mostly remain in the

antisymmetric state of |1〉− |1̃〉. Since the Nth site is discharging continuously into the target, the
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FIGURE 4.1: Graph (a) shows the five platonic quantum networks with unit edge length. These networks
consist of identical sites located at the vertices of the five regular platonic solids where we label the sites
as shown. Site 1 in each network is initialized with one energy excitation and the Nth site is connected
irreversibly to a target at rate Γ. The gray spheres depicted on some sites show the average population
of excitation on the sites after a long evolution time of Γt = 1500 that indicate the existence of preferen-
tial trapping sites. Graph (b) shows the target population of each network versus time in the absence of
environmental noise.

averaged trapped excitation on sites N, Ñ are zero. It has been checked that by changing the posi-

tion of the last site this rule persists and the average populations of other sites do not change. In

other words, due to the wave nature of the excitations, such super-symmetric 3D networks behave

as a spherical mirror bouncing the launched excitation between the first and its symmetric site for

a long time.

Now we try to find an analytical expression for the amount of accumulated excitation on the tar-

get. In non-nearest neighbour interacting networks that are all equally coupled to each other and

irreversibly connected to a target i.e. fully connected networks (FCNs), the target population can

be calculated by the expression ρtarget(∞) = 1/(N− 1) [26]. On the other hand, the couplings in

our non-nearest neighbour interacting platonic networks are distant dependent which indicates that
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they are not FCNs. Here we show that due to the symmetric configurations of platonic networks,

the target population obeys a rather similar expression to that of FCNs. Fig. 4.2 shows the time

FIGURE 4.2: The target population of platonic networks for nearest neighbour and non-nearest neighbour
(non n.) interactions. N is the number of sites in platonic networks and N0 is the “equidistant coordination
number” i.e. the number of nearest neighbour sites connected to each site plus the site itself. We observe that
the steady state target population of each network is primarily a function of the corresponding equidistant
coordination number.

variation of the target population of each platonic network for two interaction ranges indicated by

nearest neighbours and non-nearest neighbours. It can be seen that the target population is not sen-

sitive to the type of interaction and the corresponding graphs coincide almost in all cases. However

there is an exception for N = 20 for which the graphs of two types of interactions partly deviate

from each other when Γt ∈ (5,27). The equality of target population for nearest and non-nearest

neighbour systems is due to the symmetric configurations of such networks and remains unchanged

at longer time intervals or different irreversible rates to the target. The same effect has been ob-

served for target population dynamics of one-dimensional symmetric four-site networks, however

for non-symmetric configurations the target population dynamics of nearest and non-nearest neigh-

bour interactions are significantly different for specific network parameters [85].
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Now by neglecting the non-nearest neighbour interactions in platonic networks, it is shown in Ap-

pendix 1 that the steady state target populations obey the relation ρtarget(∞) = 1/(N0−1), where

N0 is a type of ”equidistant coordination number” for the platonic networks i.e. the number of

nearest neighbour sites equidistantly connected to the site and also counting the site itself. For

example according to Fig. 4.1(a), each site on tetrahedron, cube, and dodecahedron networks has

three nearest neighbours yielding a unique equidistant coordination number of N0 = 4 and the same

target population of 1/3 for all of these three platonic networks.

In summary, as all nearest neighbour interacting sites in platonic networks are equally connected

to each other and the non-nearest neighbour interactions are cancelled due to the symmetry, the

target population of platonic N-site networks is the same as that of FCNs with only N0 number of

sites.

(a)

(b): Z7 =1 (c): X7 =1

X7

Y7 Y7

Z7

5

Γ

FIGURE 4.3: Graph (a) shows the schematic of cubic networks where the last site is irreversibly con-
nected to a target sites. The target population of this network is calculated when the 7th site moves in the
plane Z7 = 1 (graph (b)) and in the plane X7 = 1 (graph (c)). It is shown, and has been independently
checked for sites 1 and 5, that by putting the controller site 7 close to sites 2,4,5, and 6, the target popula-
tion approaches 1 (switch ON state), while by locating site 7 around sites 1, 3, and 8 the target population
decreases significantly (switch OFF state).
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4.5 Cubic switches

Here we analyse a platonic cubic network which is an easy 3D geometry to build. The schematic is

shown in Fig. 4.3(a) where the last site is connected to a target site at rate Γ. The target population

of this network is shown on Figs . 4.1 and . 4.2. Fig. 4.3(b) and (c) show the target population

when the 7th site of the cube moves within the planes Z = 1 and X = 1, respectively. Fig. 4.3(b)

indicates that by approaching site 7 as the switch controller to sites 2 and 4, the target population

increases to unity, however by positioning the controller site to the vicinity of the third site, the

target population decreases to the minimum amount. In addition, the bright areas around sites 2

and 6 in Fig. 4.3(c) show other possible positions of the controller yielding perfect transport i.e.

switch ON state, that are quite robust against the position variation of the controller site. All dark

regions of Fig. 4.3(b,c) are examples of switch OFF configurations or trapping regions that can be

achieved by changing the position of the controller site.

The inset of Fig. 4.4(a) shows another possible cubic network in which a solid gray part of 6

sites could be displaced by dy along the positive Y axis through nano-mechanical procedures.

Fig. 4.4(a) shows the target population versus time in units of Γ−1, for different positions of the

gray network (gn) controller which is Ygn = 1+dy. It shows that by increasing |dy| the accumulated

excitation at target gradually increases indicating that the trapping conditions are not satisfied at

Ygn 6= 1(dy 6= 0). Fig. 4.4(b) shows the target populations at two long time instances Γt = 100,200

(solid and dashed lines) for a continuous range of dy. It indicates that there is another trapping state

around dy =−1 where sites 5 and 6 are closely located to sites 1 and 8, respectively. This trapping

configuration is an approximation to the formerly introduced trapping state of closely located sites

of Eq. (2). In addition, Fig. 4.4(b) shows some other tiny trappings around dy = −2(Ygn = −1)

corresponding to a new symmetric network. Now we study the effect of environmental noise as

well as manufacturing disorders on the efficiency of cubic networks. Dephasing and dissipation

environmental noise can be applied to the system through the open quantum system approach of
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Γ.t dy
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FIGURE 4.4: Graph (a) shows the target population versus time for the depicted network of the inset.
dy is the position of the gray solid part of the network consisting of 6 sites moving along the Y axis. At
dy = 0 the network configuration is a cube with a permanent dark state. Graph (b) shows the variation
of target population with different positions of the solid part controller at two different instances of time
Γt = 100,200. It shows that around three values of dy the initial population is partly trapped within the
network and can yield a switch OFF configuration.

Eq. (4). These noises could be the result of elastic or inelastic collisions of network sites with sur-

rounding particles, respectively. It has been numerically checked that the trapping states of perfect

cubic switches are highly disrupted by dephasing noise so that adding a tiny amount of dephasing

could significantly increase the transport efficiency. On the other hand, it has been checked that the

environmental dissipation noise, which leaks the energy excitation of the system to the surround-

ings, has a much less disturbing effect on the dark states of cubic networks. Fig. 4.5(a) and (b)

show the target populations of the cubic networks versus relative dissipation noise rates of Γdiss/Γ,

for different positions of site 7 and the gray network, respectively. By increasing the dissipation

noise rate, at each specific Γdiss/Γ the contrast between the bright and dark regions (switch ON

and OFF configurations) decreases leading to smaller ON/OFF switching ratios.

A further type of noise could be due to manufacturing imperfections. For example, one site of a
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platonic network could be missed or due to some environmental disorders an inter-site interaction

could be blocked randomly. The Euler number represents the topological character of the pla-

tonic geometries and this Euler characteristic will change with such manufacturing errors leading

to topological noise. Fig. 4.5(c) shows the transport efficiency of a cubic network with two men-

tioned types of topological errors occurring with probabilities p0. It can be seen that by applying

such topological noises to a perfect cube network, the target population increases with increasing

topological error rate p0. It is curious to note that the increase is more dramatic in the case where

one link alone is removed rather than one vertex. It is likely that the second type of manufacturing

error greatly restricts the transport flow through to the target site. The black graph of Fig. 4.5(c)

shows the effect of topological noise of the first type on target population of a deviated cubic net-

work with the 7th site located close to the 8th site. It shows that the excitation transport to the target

is not very sensitive to the probability of the topological noise. We thus observe a wide variety of

behaviours of the transport depending on the types of environmental and topological noise.

4.6 Concentric cubic switches

In this section we show that the combination of two platonic networks (two concentric cubes)

enhances the switching ON/OFF ratio in comparison with one platonic network and this ratio is

robust against environmental dephasing noise so that for large dephasing rates the large switching

ON/OFF ratios are retained. We suppose a network of 16 sites located on the vertices of two con-

centric cubes while one of the cubes is rotated around axes x, y, and z by angles (θX ,θY ,θZ). The

first site of the network that initially contains one excitation is a nearest neighbour of the last site

on the same cube which is irreversibly connected to a target site at rate Γ = 1.

Fig. 4.6(a) shows the population accumulated at target until Γt = 100, for different network config-

urations indexed by (θZ,θY ,θX = π/4). The switching ON and OFF states are network configura-

tions for which the target populations are most significantly different from each other and could be

obtained by changing the orientation of one cube or the position of one site as switch controllers. It

can be confirmed from Fig. 4.6(a) that the best achievable switching ON/OFF ratio of this network
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gn 0
P

FIGURE 4.5: The target population of cubic networks in the presence of dissipation and topological noise:
Graphs (a) and (b): the transport efficiency of cubic networks with different positions of site 7 and the gray
network along the Y axis, respectively. It is observed that by increasing the dissipation noise the switching
ON/OFF ratio decreases in both cases. Graph (c): the target population of cubic networks in the presence
of topological errors characterised by a factor p0. The blue marks correspond the cubic networks with one
randomly broken link, the gray marks correspond cubic networks with one randomly removed site with three
missing nearest inter-site interactions, and the black marks correspond a deviated cubic network with site 7
positions near site 8. Each point has shows the average value of the target population of 1000 networks with
each of these topological error types occurring with probability p0. It can be seen that by increasing the
topological noise probability, the average trap states of both types are disturbed in cubic networks leading
to an increase of the transport efficiency. However the trapping excitation of the deviated cube networks is
not disturbed by increasing topological or dissipation noises.

would be 1 while the switch ON state is a network configuration with target population of 1 and

the OFF state has the target population of zero. Fig. 4.6(b) shows the target population of a two

concentric cube network when the second cube has been rotated by (0,0,θZ = π/4) and the 3rd

site as the controller is moving in the plane Z = 0.5 with the origin of coordinates at the center

of the cubes. It can be seen that by changing the position of the 3rd site (X3,Y3,Z3 = 0.5), the

population of the target increases from zero to one. Fig. 4.6(c,d) show the target population of the

concentric cubes network of parts (a) and (b) in the presence of a large relative dephasing noise
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rate γ/Γ = 100. This result indicates that the considered superposition of platonic networks exhibit

high switching contrasts even in the presence of large dephasing rates.

(a) (b)

(c) (d)

FIGURE 4.6: Target populations of a network of 16 sites located on the vertices of two concentric cubes
evaluated when Γt = 100 where the 8th site is connected to the target. In graphs (a) and (c) the second cube
as the switch controller is rotated by angles (θX ,θY , θZ), and in graphs (b) and (d) the position of the 3rd

site moves in the plane Z3 = 0.5. Graphs (c) and (d) show the transport efficiency of the networks in (a) and
(b), respectively, in the presence of dephasing noise of rate γ = 100Γ. This shows that even with significant
dephasing noise such combined platonic networks possess high switching contrast.

4.7 Conclusion

We have shown that a platonic network can partly store energy excitations for a long time using

dark states within the network. The degree of trapping we observed follows the corresponding

relation in arbitrary fully connected network with all sites equally connected to each other. We

suggested that coherence-assisted trapping of such platonic networks could have switching appli-

cations for miniaturized structures. It is shown that by changing the position of one site, or a part
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of the network, in the absence and presence of environmental noise, the target population varies

from a minimum amount to unity which can be considered as switch ON/OFF states. Here we

have considered the first and the target sites as the input and output ports of the switch. In future

it may be also possible to have a switchable irreversible energy rate not only connected to the last

site but also connected to all sites, and as generally discussed in [86], to obtain a multi output port

platonic switch.

4.8 Appendix 1

In this appendix the solution of the Master equation for the target site population of a platonic

network will be given. Eq. (4) can be written in exact terms of density matrix elements as following

ρ̇i j =−[2Γdiss +Γ(δiN +δ jN)+2γ−2γδi j]ρi j− i(
N

∑
l 6=i, j

Jilρl j−
N

∑
l 6=i, j

ρilJl j), (4.5)

ρ̇00 = 2Γdiss

N

∑
j=1

ρ j j, (4.6)

where Jii = ε , and ρ00 is the population of the ancilla site accumulated due to the local dissipation

noise of rate Γdiss applied equally to all sites. For a platonic network with equidistant coordination

number of N0 (the number of sites equidistantly located around each site), Eq. (5) can be written

as

ρ̇i j =−[2Γdiss +Γ(δiN +δ jN)+2γ−2γδi j]ρi j− iJ( ∑
l= f ( j)

ρl j− ∑
l= f (i)

ρil), (4.7)

where J = v/r3
il(or v/r3

l j) is the equal couplings between site i (or j) and its N0−1(=Ne) equidistant

neighboring sites indexed by f (i)(or f ( j)). For example the node site i = 4 in the octahedron

platonic network depicted in Fig. 4.1(a-(2)) is connected to four nearest neighbouring sites (Ne = 5)

with coupling rate J with indices f (i = 4)∈ {1,2,3,6}. Now we define a set of collective variables
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as following

Ri = ∑
j= f (i),i,N

ρi j, Λ = ∑
i= f (i),i,N

Ri. (4.8)

where for a node site i in the vicinity of the Nth site, f (i) takes the values of a set of Ne− 1(=

N0−2) indices. By re-expressing Eq. (7) in terms of the collective variables for a node including

the Nth site, Eq. (A3) of [26] is found where Γ→ Γdiss and ΓN+1→ Γ. Then by substituting N

by N0 Eq. (A4) and (A5) can be obtained which are the first equations including the number of

sites. The rest of the proof can be exactly followed up to Eq. (A15) of [26]. Consequently, the

target population of platonic networks with equidistant coordination number N0, in the absence of

environmental noise (Γdiss = γ = 0) yields

ρtarget(∞) = 1/(N0−1). (4.9)
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4.9 Discussions and comments

In a report I showed that the cubic and two attached tetrahedron networks can permanently trap

an initially injected excitation. I suggested to use them for switching and proposed two methods

for controlling the ON/OFF cubic switch states. Professor Jason Twamley suggested to study

the transport efficiencies of more general symmetric networks with platonic geometries as well as

investigating the effect of coupling range in terms of nearest and non-nearest neighbor interactions.

We numerically showed that all platonic networks can permanently trap some part of an excitation,

and could analytically prove the formula of the amount of trapped excitation. The referee of J.

Phys. D: Appl. Phys. suggested to study the effect of topological noises and we proposed a

practical method to study them. This work was partially funded by the Alexander von Humboldt

Foundation, and the ARC Centre of Excellence in Engineered Quantum Systems, ARC Project

No. CE110001013.
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Conclusion

The general topic of quantum transport in qubit networks is introduced in section I. In the follow-

ing sections we theoretically studied controlled quantum transport in site networks. The networks

of our interest consist of short/long range interacting (mostly dipolar coupled) qubits exposed to

Markovian environments where one qubit is irreversibly connected to an extra one. Two differ-

ent approaches towards controlled quantum transport are studied such as efficient quantum state

transfer, and switching of quantum transport between two points of such networks.

71
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5.1 Efficient quantum transport in qubit networks

We studied efficient quantum transport from two points of view. In the first section we present the

results regarding the spatial dimension preference of network configurations for efficient quantum

transport, while the robust configurations analysis for efficient quantum transport is discussed with

two different methods in the second and third sections.

5.1.1 Spatial dimension analysis for efficient network configurations

Regarding network dimensionality we compared the transport efficiency of networks expanded

in different spatial dimensions. In the absence of environmental noise we thoroughly searched

the network parameters space of the strength of site couplings and the time of measurement. We

found that for specific choices of such network parameters the two-dimensional dipolar four-site

networks are O(10−2) more efficient than the one-dimensional equivalent networks. In addition,

for a specific choice of network parameters we showed that the two-dimensional networks with

five to eight number of sites are also O(10−2) more efficient than their one-dimensional equivalent

networks. Our results empirically assure that one-dimensional channels are adequate to achieve

efficient quantum transport and designing two-dimensional networks should only be considered

where the two-dimensional spatial expansion is demanded.

In a new approach towards dimension analysis we proposed a new type of qubit networks for

which the two-dimensional versions are much more efficient than the one-dimensional ones: Π-

chain networks are an array of equidistantly positioned dipolar coupled qubits that are displaced

a perpendicular distance h (chain height) from the line connecting the first and last sites. For a

specific choice of network parameters we showed that the off axis chain is O(10−1) more efficient

than the on axis chain. So to transfer a quantum of energy within an equidistantly positioned qubit

chain, some two-dimensional Π configurations are much more efficient than putting the straight

chain along the first and last qubits.
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5.1.2 Robust efficient configurations of site networks

A brute optimization of the network geometry even in the case of success may not always lead

to a robust network configuration. So the robust transport analysis is an alternative for the rough

optimization algorithms searching the complex large-dimensional geometrical parameter spaces.

To achieve robust efficient configurations against the geometrical variations we calculated the

transport efficiencies of one and two dimensional arrangements of qubits and presented some ro-

bust efficient patterns of configurations. Regarding one-dimensional networks, it has been shown

that there are two classes of efficient configurations in four-site networks indicated as the pair and

symmetric arrangements of the two interior sites. By changing the network parameters of coupling

strength and the time of measurement the robust optimal patterns remain identical and only the

extension of the patterns in geometrical parameter space or the maximum efficiency of the pattern

changes.

Regarding one-dimensional networks with larger number of sites we showed that the pair and sym-

metric patterns are still the robust efficient configurations but for the last four sites of the networks

where the other interior sites are located in the network center.

For two-dimensional networks consisting three qubits it is shown for a specific choice of network

parameters that the surrounding network area are efficient except three inefficient circular regions

around the first and third sites which trap the initial excitation within the network. By changing

the network parameters of coupling strength and time of measurement the inefficient surface areas

expand or shrink accordingly. Regarding two-dimensional networks including five or larger num-

ber of sites, the inefficient patterns are as those of three-site networks while the extra interiors sites

are located close to each other.

The efficient patterns of two-dimensional four-site networks are more diverse as shown in the at-

tached MP4 file of the film. It can be confirmed from the film that there are at least two robust

inefficient areas around the first and fourth sites as in two-dimensional three-site networks. Chang-

ing the network parameters of site couplings and the time would only change the efficiency and
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extension of the inefficient areas. It has been also shown for two frames of the film that the patterns

of efficient configurations remain identical by increasing the number of sites while the additional

sites are located close to each other.

In general, by adding a cluster of closely located n sites to a two-dimensional network (including

one-dimensional ones), the patterns of optimal configurations only change locally.

5.1.3 Geometrical robustness of site networks

Another approach for robustness analysis is by defining a quantity as the geometrical robustness

(geo-robustness) of qubit networks. By optimising geo-robustness against the network-environment

parameters efficient transport is achieved with most arbitrary arrangements of the network sites.

The geo-robustness is defined as the percentage of network configurations passing the initial exci-

tation through the network as %80 of that of the optimal one.

The effect of a large variety of network parameters like the strength of site couplings, types of

coupling (dipolar, van der Wals, etc), time of measurement, dephasing noise rates, and the num-

ber of sites has been investigated on the geo-robustness of the system. It has been shown that for

one-dimensional four-site networks there are two peaks of geo-robustness in different network-

environmental parameter regimes. The position of the optimal geo-robustness depends on the

network-environment parameters. For instance, by fixing all parameters and increasing the de-

phasing noise the geo-robustness significantly increases. This is due to the fact that the dephasing

noise broadens the system energy levels and provides additional pathways for quantum energy

passing the system. So in larger dephasing noise rates more configurations are close to optimal

and the geo-robustness increases. Another example is that by increasing the number of network

sites, the peaks of geo-robustness shift forward with respect to the dephasing noise rate while other

parameters are fixed. Such results could be used in robust one-dimensional network design for dif-

ferent network parameters implemented by different physical networks.

On the other hand, we checked the behaviour of geo-robustness in coherence-less systems where

the hopping rates between the adjacent energy levels of the system obey a Lorenzian profile and
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the dephasing noise rate is considered as the width of broadened Lorenzian energy levels of the

system. For a given choice of network-environment parameters of such four-site one-dimensional

networks we showed that the increase of dephasing noise will increase the geo-robustness as that

of the equivalent quantum network.
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5.2 Switching of quantum transport in site networks

Switching the quantum pure states between two points of quantum networks is another goal to-

wards controlled quantum transport. We studied the transport characteristics of highly symmetric

three-dimensional qubit networks called platonic networks and showed that some of the initially in-

jected quantum of energy is stored in the network for long durations via the creation of dark states.

We proved that the population accumulated in the target site after an infinite time is 1/(N0− 1)

where N0 is the number of equally distant neighbouring sites. So the trapped population within

platonic networks is (N0− 2)/(N0− 1). On the other hand, it is shown that by changing the po-

sition of one site or a set of sites (as a controller) the efficiency of the transport reaches the unity.

So the ON-OFF switching states can be achieved by changing the position of the controller site

within such coherence-assisted switches. However the transport efficiency of platonic switches

are highly disrupted with environmental dissipation or dephasing noises, it has been checked that

by combining two platonic switches, for example two concentric cubes, the switching efficiency

remains unity even in very high dephasing noise rates.

Another proposed type of switching network is a Π-chain with a specific number of sites. It has

been shown that for some heights of the Π-chain networks the initially injected excitation is com-

pletely trapped within the network so that the target population remains zero. On the other hand,

the height of Π-chain can be adjusted to achieve the maximum transport to the target site. This

characteristics can be used for switching quantum transport within the first and last sites.
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5.3 Future directions

In this thesis we considered networks consisting two-level systems where one site is irreversibly

connected to another two-level system. A possible future route of enquiry is considering qubit

networks without the irreversibly connected sites and investigate perfect and permanent transfer of

quantum information. Such quantum transport can be achieved by engineering the dynamics of the

interior sites. It can be shown that such dynamic networks can permanently transfer an entangled

state within two closely located sites to the two other sites located in a different position and the

distance of transport can increase by adding the number of interior sites.

Another possible investigation is considering a qubit network in which different sites are irre-

versibly connected to distinguished target sites. It can also consider that one or a few source sites

are irreversibly discharging to some sites. Such networks can be investigated as multi-port switches

that are vital for quantum communication and computation purposes.
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A.1 Comparison of transport efficiencies of one and two-dimensional

networks

Here the optimal target population of site networks is found via the random walk optimization code

presented in section 2.1.3. Different network-environment parameters are considered as dissipation

noise rate (Γ) and dephasing noise rate (γ), coupling strength (V ), measurement time (T ), dissipa-

tion noise rate from the last site to the target site or sink (Γsink). In order to realize whether the
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two-dimensional networks are more efficient than one-dimensional ones, we search through dif-

ferent configurations of one and two-dimensional networks via the random walk optimization pro-

cedure and compare the maximum target population of the one-dimensional and two-dimensional

networks (ρsink1D−max,ρsink2D−max). Tables A.1-A.4 presents the cases of network parameters for

which the two-dimensional four-site networks are more efficient than the one-dimensional ones.

In each case, the first and last sites are located at x1 =−1 and xN = 1 and the other sites which are

coupled via dipolar interaction are positioned within these sites as in section 2.1.3. To effectively

search through the network-environment parameter space the product of some variables like Γsink

and T ) is kept constant. It can be confirmed from Tables A.1-A.4 that for network parameters

[Γsink = 0.7,V = 1,T = 7.143,γ = 0,Γ = 0] the maximum difference of transport efficiency of two

and one-dimensional networks is δρ21 = 0.012111.
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[Γsink,V,T,γ,Γ] δρ21 ρsink1D−max ρsink2D−max x1,x2 (x1,y1),(x2,y2)

Γsink.T = 5, [0.5,1,10,0,0.01] 0.001529 0.910242 0.911292 -0.1929,0.3499 (0.2109,−0.1522),

(0.3399,−0.0566)

Γsink.T = 5, [0.6,1,8.33,0,0] 0.006992 0.962838 0.969831 −0.2029,0.2702 (0.2727,0.1631) ,

(−0.2209,0.5113)

Γsink.T = 5, [0.64,1,7.812,0,0] 0.011218 0.962549 0.973767 −0.186749,

0.342074

(0.2506,0.7562),

(−0.2718,0.3135)

Γsink.T = 5, [0.7,1,7.143,0,0] 0.012111 0.962097 0.974209 0.2849,−0.2031 (0.2710,−0.2665),

(−0.2593,−0.6908)

Γsink.T = 5, [0.72,1,6.94,0,0] 0.011672 0.962347 0.974019 −0.1999,0.3451 (0.2518,−0.1870),

(−0.2359,−0.6508)

Γsink.T = 5, [0.74,1,6.76,0,0] 0.008687 0.963368 0.972055 −0.1966,0.3491 (−0.3232,0.7736),

(0.3345,0.4529)

Γsink.T = 5, [0.8,1,6.25,0,0] 0.007851 0.963146 0.970997 −0.2065,0.34990 (−0.2800,−0.7202)

(0.2744,−0.2730)

TABLE A.1: This table shows for the chosen network-environment parameters that the two-dimensional qubit configura-
tions are more efficient than the one-dimensional ones. The product of two network parameters is kept constant and equal to
5. The first and fourth sites of the networks are fixed at−1,1 and the optimized coordinations of the two interior sites of one
and two-dimensional networks are (x1,x2), and ((x1,y1),(x2,y2)), with the corresponding target populations of ρtarget1D−max

and ρtarget2D−max. It can be seen for the presented network parameters that the two-dimensional networks are O(10−2) more
efficient than the one-dimensional ones.
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[Γsink,V,T,γ,Γ] δρ21 ρsink1D−max ρsink2D−max x1,x2 (x1,y1),(x2,y2)

Γsink.T = 5, [0.9,1,5.56,0,0] 0.009317 0.963611 0.972928 0.3544,−0.2149 (−0.2155,0.5743)

(0.2439,0.0652)

Γsink.T = 5, [1,1,5,0,0] 0.011836 0.961117 0.972954 −0.2305,0.35448 (0.2678,−0.0972)

(−0.2322,−0.5275)

Γsink.T = 5, [1.1,1,4.54,0,0] 0.010636 0.960848 0.971484 -0.2027, 0.3259 (−0.2388,0.4764)

(0.2905,0.1208)

Γsink.T = 5, [1.2,1,4.17,0,0] 0.011700 0.959791 0.971492 0.3350, -0.2052 (0.2525,−0.0997)

(−0.1958,0.4459)

Γsink.T = 5, [1.3,1,3.85,0,0] 0.009048 0.961785 0.970833 -0.2051, 0.3388 (0.2680,−0.0604)

(−0.2139,0.4291)

Γsink.T = 5, [1.4,1,3.57,0,0] 0.009486 0.959932 0.969419 -0.2092, 0.3462 (0.2836,−0.0214)

(−0.2289,0.4098)

Γsink.T = 5, [5,1,1,0,0] −2.7 ×

10−10

0.848768 0.848768 0.3870, -0.2933 (0.3870,0)

(−0.2933,0)

TABLE A.2: Continuing Table A.1
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[Γsink,V,T,γ,Γ] δρ21 ρsink1D−max ρsink2D−max x1,x2 (x1,y1),(x2,y2)

Γsink.T = 5, [0.8,2,6.25,0,0] 0.002763 0.931620 0.934383 −0.1896,0.3330 (0.2626,−0.1754)

(−0.2313,−0.5654)

Γsink.T = 5, [0.7,2,7.143,0,0] 0.001789 0.928443 0.930232 0.2836,−0.1919 (0.2535,0.2033),

(−0.2335,0.6115)

Γsink.T = 5, [0.6,2,8.33,0,0] 0.000333 0.924352 0.924685 −0.1921,0.26944 (−0.2231,0.5594),

(0.2497,0.2023)

Γsink.T = 5, [1.2,2,4.167,0,0] 0.001410 0.939192 0.940602 −0.1901,0.3338 (−0.2086,0.2850)

(0.32640,0.1108)

TABLE A.3: Continuing Table A.2
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[Γsink,V,T,γ,Γ] δρ21 ρsink1D−max ρsink2D−max x1,x2 (x1,y1),(x2,y2)

Γsink.V = 0.7, [0.6,1.167,7.143,0,0] 0.004385 0.957473 0.961858 −0.2091,0.2606 (−0.2383,0.6885),
(0.2376,0.2286)

Γsink.V = 0.7, [0.7,1,7.143,0,0] 0.012111 0.962097 0.974209 0.2849,−0.2031 (0.2710,−0.2665),
(−0.2593,−0.6908)

Γsink.V = 0.7, [0.78,0.9,7.143,0,0] 0.009820 0.970849 0.980669 −0.2027,0.3537 (0.2637,−0.1534),
(−0.2286,−0.5877)

Γsink.V = 0.7, [0.875,0.8,7.143,0,0] 0.001245 0.979838 0.981084 −0.2109,0.3614 (0.3702,−0.3183),
(−0.2981,−0.4617)

Γsink.V = 0.7, [1,0.7,7.143,0,0] 0.001031 0.987718 0.988749 0.3680,−0.2231 (0.3488,0.1590),
(−0.2756,0.3559)

Γsink.V = 0.7, [1.167,0.6,7.143,0,0] 0.003868 0.957472 0.961341 −0.2092,0.2604 (−0.2281,0.5962),
(0.2360,0.1873)

V.T = 7.143, [0.7,0.8,8.93,0,0] 0.008702 0.978148 0.986851 0.3555,−0.1904 (−0.2226,−0.6522),
(0.2540,−0.1571)

V.T = 7.143, [0.7,1.2,5.95,0,0] 0.006737 0.951619 0.958356 0.2725,−0.2101 (−0.2289,0.5704),
(0.2442,0.1647)

[0.7;1;7;0;0.01] 0.001080 0.920531 0.921611 0.341386,−0.203263(0.3343,−0.1196)
(−0.2240,−0.2834)

[0.7,0.8,7,0,0.01] 0.006440 0.963963 0.9704029 0.2689,−0.2048 (0.2493,−0.1793)
(−0.2240,−0.5357)

TABLE A.4: This table shows the optimized target population of two and one-dimensional networks. The product of two
network parameter in some cases is kept constant. It is shown that for the chosen network parameters the two-dimensional
networks are more efficient than the one-dimensional ones.
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A.2 Clone configurations of qubit networks

Here we present the optimized target populations of qubit networks with configurations includ-

ing closely located dipolar sites. To check the accuracy of the calculated sink populations via the

ode15s function of MAT LAB we controlled the trace of the total density matrix of the system and

environment up to the 15th decimal digit. This was applied by changing the relative and absolute

tolerances of the ode15s function in each case. The relative tolerance of the ode solver is the av-

erage of acceptable errors for the solutions (ρvec(tmax)), and the absolute tolerance (′AbsTol′) is a

vector consisting the maximum acceptable error for each element of ρvec(tmax).

In all cases the positions of the first and last sites are fixed at x1 = −1,x4 = 1 and the network

parameters considered for all configurations of Table A.5 are (Γsink = 0.1,V = 1,Γ = 0.01,γ =

0, tmax = 10). In the first five rows of Table A.5, the network configuration (x1 =−1,x2,x3,x4 = 1)

is fixed and the distance between the interior sites O(δxmin) decreases from 10−5 to 10−15. In the

last five rows of Table A.5 the position of the interior sites and their relative distances O(δxmin)

change leading to no variation in ρN+1,N+1. The sixth row with O(δxmin) = 0.1 is an example

showing that the increase of the pair distance (O(δxmin)) can change the target population.

The network parameters of Tables A.6, A.7 are (Γsink = 1,V = 10,Γ = 0.01,γ = 0, tmax = 1), and

(Γsink = 1,V = 10,Γ = 0.01,γ = 0.5, tmax = 1), respectively, and in each table the pair position

and the pair distance are different. It can be confirmed from Tables A.6, A.7 that the target popu-

lations of such networks consisting a pair of sites (O(δxmin)< 10−3) only depend on the network

parameters and does not vary according to the position of the interior sites.
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x2,x3 O(δxmin) ode(RelTol,AbsTol) Tr(ρ(tmax)) ρtarget−max

0.179087620299409,
0.179098370635905

10−5 10−12,10−14 1.000000000000000 +
0.000000000000000i

0.345001583975367

0.179087620299409,
0.179086620299409

10−6 10−14,10−16 1.000000000000000 -
0.000000000000000i

0.345001583982857

0.179087620299409,
0.179089620299409

10−6 10−12,10−14 1.000000000000000 +
0.000000000000000i

0.345001583975371

0.179087631299409,
0.179087631399409

10−10 10−12,10−13 1.000000000000000 -
0.000000000000000i

0.345001583974745

0.179087631299409,
0.179087631299408

10−15 10−12,10−13 1.000000000000000 -
0.000000000000000i

0.345001583974745

0.220396956151637,
-0.213588601043372

10−1 10−11,10−12 1.000000000000000 -
0.000000000000000i

0.593430042263472

0.220396956151637,
0.220396956151638

10−15 10−13,10−15 1.000000000000000 +
0.000000000000000i

0.345001583982032

0.220396956151637,
0.220396946141637

10−11 10−13,10−15 1.000000000000000 -
0.000000000000000i

0.345001583982033

0.510000001,
0.510000002

10−9 10−13,10−15 1.000000000000000 -
0.000000000000000i

0.345001583982036

0.3100001, 0.3100002 10−7 10−13,10−14 1.000000000000000 -
0.000000000000000i

0.345001583981941

-0.710000, -0.710001 10−6 10−14,10−15 1.000000000000000 +
0.000000000000000i

0.345001583981941

TABLE A.5: This table shows the exact target population of four-site networks including two closely located sites.
The network parameters of all cases are Γtarget = 0.1,V = 1,Γ = 0.01,γ = 0, tmax = 10. ρtarget is the target population
where the network configuration is denoted as (x1 =−1,x2,x3,x4 = 1). O(δxmin) is the approximate distance between
the interior sites, and Tr(ρ(tmax)) shows the trace of final density matrix of the system up to 15th decimal digit. The
relative and absolute tolerances of ode15 solver are adjusted for each case to maintain the accuracy of the trace of the
density matrix. The maximum calculation time of each case was 1 second.
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x2,x3 O(δxmin) ode(RelTol,AbsTol) Tr(ρ(tmax)) ρtarget−max

-0.20000, -0.20001 10−5 10−12,10−14 1.000000000000000 +
0.000000000000000i

0.389802667849927

0.6000, 0.6001 10−4 10−12,10−12 1.000000000000000 -
0.000000000000000i

0.389802667795225

0.0000006,
0.0000007

10−7 10−12,10−12 1.000000000000000 -
0.000000000000000i

0.389802667829627

0.300, 0.301 10−3 10−10,10−10 1.000000000002080 -
0.000000000000000i

0.389802654705071

TABLE A.6: Network parameters of all cases is considered as Γtarget = 1,V = 10,Γ = 0.01,γ = 0, tmax = 1.
ρtarget is the target site population of the network of site configuration (x1 = −1,x2,x3,x4 = 1). O(δxmin) is the
approximate distance between the middle sites, and Tr(ρ(tmax)) represents the trace of final density matrix of the
system. the relative and absolute tolerances of ode15 solver are adjusted in each case to maintain the trace accuracy
and a maximum calculation time of 1 second.

x2,x3 O(δxmin) ode(RelTol,AbsTol) Tr(ρ(tmax)) ρtarget−max

0.000079, 0.000080 10−6 10−12,10−17 1.000000000000000 +
0.000000000000000i

0.322131771753089

0.3000334,
0.3000334

10−7 10−12,10−17 1.000000000000000 +
0.000000000000000i

0.322131771752234

0.0000006,
0.0000007

10−7 10−12,10−15 1.000000000000000 -
0.000000000000000i

0.322131771751857

0.300, 0.301 10−3 10−10,10−10 1.000000000000410 +
0.000000000000000i

0.322131760527033

TABLE A.7: Network parameters of all cases is considered as Γtarget = 1,V = 10,Γ = 0.01,γ = 0.5, tmax = 1 is
the target site population of the network of site configuration (x1 = −1,x2,x3,x4 = 1). O(δxmin) is the approximate
distance between the middle sites, and Tr(ρ(tmax)) represents the trace of final density matrix of the system. the rela-
tive and absolute tolerances of ode15 solver are adjusted in each case to maintain the trace accuracy and a maximum
calculation time of 1 second.
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