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Abstract

Stream ciphers are symmetric cipher systems which provide confidentiality in many ap-

plications ranging from mobile phone communication to virtual private networks. They

may be implemented efficiently in software and hardware and are a preferred choice

when dealing with resource-constrained environments, such as smart cards, RFID tags,

and sensor networks. This dissertation addresses cryptanalysis of several stream ci-

phers, and a hash function based on stream cipher. Also, the thesis investigates the

design principles and security of stream ciphers built from nonlinear feedback shift

registers. In a design view, any cryptographic attack shows a weak point in the de-

sign and immediately can be converted into an appropriate design criterion. Firstly,

this thesis focuses on the WG-7, a lightweight stream cipher. It is shown that the

keystream generated by WG-7 can be distinguished from a random sequence with a

negligible error probability. In addition, a key-recovery attack on the cipher has been

successfully proposed. Then, a security evaluation of the Rakaposhi stream cipher

identifies weaknesses of the cipher. The main observation shows that the initialisation

procedure has a sliding property. This property can be used to launch distinguish-

ing and key-recovery attacks. Further, the cipher is studied when the registers enter

short cycles. In this case, the internal state can be recovered with less complexity

than exhaustive search. New security features of a specific design based on nonlinear

feedback shift registers have been explored. The idea applies a distinguishing attack

on linearly filtered nonlinear feedback shift registers. The attack extends the idea on

linear combinations of linearly filtered nonlinear feedback shift registers as well. The

proposed attacks allow the attacker to mount linear attacks to distinguish the output

of the cipher and recover its internal state. The next topic analyses a new lightweight

communication framework called NLM-MAC. Several critical cryptographic weaknesses

leading to key-recovery and forgery attack have been indicated. It is shown that the

adversary can recover the internal state of the NLM generator. The attacker also is

able to forge any MAC tag in real time. The proposed attacks are completely practical

and break the scheme. Another part demonstrates some new cryptographic attacks on

RC4(n,m) stream cipher. The investigations have revealed several weaknesses of the

ix



x Abstract

cipher. Firstly, a distinguisher for the cipher is proposed. Secondly, a key-recovery

attack uses a method to find the secret key in real time. Finally, the RC4-BHF hash

function that is based on the well-known RC4 stream cipher is analysed. Two attacks

on RC4-BHF have been developed. In the first attack, the adversary is able to find

collisions for two different messages. The second attack shows how to design a dis-

tinguisher that can tell apart the sequence generated by RC4-BHF from a random

one.

Keywords: Cryptography, Cryptanalysis, Symmetric cipher, Stream cipher, Hash

function, Key recovery attack, Distinguishing attack, Collision attack, Forgery attack.
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1
Introduction

1.1 Cryptology

Cryptology, from the Greek words “kryptos”, meaning “hidden” and “-logia”, meaning

“study” [94], is the study and use of secret words. It includes two major fields: cryp-

tography and cryptanalysis. Historically, cryptography was the art of secret writing.

Today, it is the science of protecting sensitive information communicated over an inse-

cure channel. Cryptanalysis studies the methods and procedures used to compromise

the security of cryptographic schemes. Cryptography deals with design of “secure”

cryptographic algorithms and protocols. The security here is understood as a guar-

antee that a cryptographic system achieves a well defined collection of security goals.

The basic collection of security goals includes confidentiality, authentication, integrity

and non-repudiation.

• Confidentiality: Information transmitted, stored, or processed is unintelligible

to all users but the owner of the information. To achieve confidentiality, one can

apply encryption.

• Authentication: The source of information can be identified and attributed to

its owner or sender. Cryptographic message authentication codes (MACs) are

normally used to achieve this goal.

1



2 Introduction

• Integrity: The receiver of information is able to ensure it has not been modified

during transmission or storing. Cryptographic hash functions are typically used

to achieve integrity.

• Non-repudiation: The receiver can confirm that the received message is exactly

what the sender sent; the sender cannot deny any part of his or her participation.

All the above goals are mainly achieved by cryptographic primitives and protocols.

1.2 Cryptography

Traditionally, encryption algorithms are the heart of cryptography. They can be di-

vided into two categories based on employing the cryptographic key:

• secret-key encryption

• public-key encryption

Secret-key encryption (also called symmetric) applies the same key for encryption

and decryption. Ciphers from this category can be further classified as stream and

block ciphers.

In public-key encryption, messages are encrypted using a public key while the de-

cryption can be done only by the holder of a secret key. It is obvious that knowledge

of the public key should not allow an adversary to recover the secret key.

Modern cryptography was born when C. E. Shannon published his seminal paper

“Communication Theory of Secrecy Systems” in which he laid down the basic princi-

ples of cryptology [127]. He formulated secrecy system foundations and transformed

cryptology from an art into a science.

In 1976, Diffie and Hellman published a paper in which they showed how to agree

on a secret key via public discussion [46]. They also described a concept of public-key

encryption. This revolutionary concept has changed the face of cryptology; public-key

cryptography was born.

Shortly after that, in 1977, Rivest, Shamir and Adleman published their public-key

encryption, denoted by RSA [123], based on the factorisation problem. In addition, the

Merkle-Hellman [110] and McElice [106] schemes based on the knapsack and decoding

problems were the first algorithms to establish public-key cryptosystems.

In the early 1970s, the need for secure communication became urgent. Financial

institutions were concerned about the security of financial data transmitted via leased

public communication channels. The US National Institute for Standards and Tech-

nology (NIST) identified the need and announced a call for an encryption standard.
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The researchers from academia and IBM proposed an encryption algorithm that was

a modification of the IBM Lucifer encryption algorithm. The algorithm was adopted

as the US standard and is called the Data Encryption Standard (DES).

The DES algorithm provides strong encryption, but the key space is relatively

small. This weakness was identified by Diffie in 1975. He argued that with progress

in computing technology, DES may be broken by an exhaustive search of keys. This

prediction was very accurate. In the early 1995s, it was evident that DES no longer

provided a sufficient level of protection. NIST eventually announced a competition for

an Advanced Encryption Standard (AES) in 1997. Finally, among five finalists –RC6

[124], Mars [28], Serpent [4], Twofish [126], and Rijndael [41]– NIST selected Rijndael,

which has a fixed block size of 128 bits and supports a key size of 128, 192, or 256 bits.

The AES block cipher standard is broadly employed to secure communication.

In many applications in which computing resources are limited, stream ciphers play

a critical role. These ciphers can be adapted to specific implementation requirements.

The cryptographic community has assisted business and industry alike by providing

a broad range of stream ciphers. One such cipher is RC4 [122] designed in 1987 by

Ron Rivest. Because of its simplicity of design and the high speed offered by software

implementation, this cipher has gained popularity in many internet applications, such

as TLS/SSL and WEP. A5/1 is also a well-known stream cipher, which is proposed to

provide privacy of conversations on GSM mobile phones. The cipher was designed in

1987 and kept a secret, but it was reverse engineered by Briceno et al. in 1999 [27].

In November 2004, the European Network of Excellence for Cryptology (ECRYPT)

[3] announced a dedicated project called eStream [2] to recognise efficient and secure

stream ciphers for a wide range of applications. For software applications, eStream

emphasised stream ciphers with high throughput requirements, while the hardware

profile had focused on stream ciphers suitable for restricted resources, such as limited

storage, power consumption, or gate count. At the end of the project, in April 2008,

four software-based designs –HC-128 [139], Rabbit [23], Salsa20/12 [13], SOSEMANUK

[11]– and three hardware designs –Grain [70], Mickey [8], Trivium [30]– were selected

as eStream algorithms.

In 2007, NIST announced the SHA-3 Cryptographic Hash competition [1]. The

project’s purpose was to standardise one or more hash functions. After two rounds of

the project, in December 2010, five algorithms selected: BLAKE [7], Grøstl [58], JH

[138], Keccak [15] and Skein [51]. Recently, NIST completed the selection process of

the next hash standard and reported the Keccak hash function [15] as the winner of

the competition [1].

This thesis investigates the security of stream ciphers and hash functions as cryp-

tographic primitives providing confidentiality, authentication, and integrity.



4 Introduction

1.2.1 Hash functions

A hash function maps an input of arbitrary length to a string of fixed length. Thus

the output of a hash function has a fixed length but the input stream can be a string

of an arbitrary length. Formally, a cryptographic hash function H is a map from

variable-length input bit strings to fixed-length output bit strings,

H : {0, 1}? → {0, 1}n.

In particular, H can be defined as

H : {0, 1}k × {0, 1}? → {0, 1}n.

where ? denotes a variable-length of a string. Also, n and k indicate a fixed-length of

the binary strings.

Then the hash function is utilised for authentication and it is called a message

authentication code (MAC). A keyed cryptographic hash function has two inputs, a

shared secret key and an arbitrary-length message to be authenticated, and generates

a MAC (or tag). In this case, everyone who knows the shared key can sign and verify

the message to detect any modification. Otherwise, a cryptographic hash function is

understood as a function without a key.

1.2.2 Cryptographic requirements

A secure hash function satisfies three fundamental security properties: preimage, second-

preimage, and collision resistance. Figure 1.1 graphically clarifies the cryptographic

requirements of a secure hash function.

• Preimage resistance: It should be computationally infeasible to find any input

m which hashes to a pre-specified output h = H(m).

• Second-preimage resistance: Given m such that h = H(m), it should be

computationally infeasible to find another distinct input m′ that hashes to the

same output, that is h = m′.

• Collision resistance: It should be computationally infeasible to find distinct

input messages mapping to the same output value, which means that m 6= m′

but H(m) = H(m′).
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Figure 1.1: Essential security requirements to design hash functions

1.2.3 Hash function design

Cryptographic hash functions are constructed using three phases:

• domain extension (also called padding)

• iterative application of a compression function

• final output transformation.

The main goal of domain extension is to create a message whose length is a multiple

of the hash function block size. Typically, the initial message (of arbitrary length)

is padded by extra bits so that the message is formatted properly. The compressing

phase processes the formatted message block by block. The final output transformation

generates the required message digest.

The famous Merkle-Damg̊ard (MD) construction is the basic structure of iterated

hash functions [42, 111]. The construction iteratively transforms a message block and

the previous chaining value as input to the next chaining value. Figure 1.2 shows

the Merkle-Damg̊ard construction, which starts from a fixed initial value (IV) and

compresses the input message blocks to output the final hash digest (h). The following

relations mathematically describe how the construction performs hashing progress to

generate the hash digest value.

hi = f(hi−1,mi), h0 = IV, i = 0, 1, · · · , l − 1

where M = m0||m1|| · · · ||ml−1 is the padded input message. A simple method to

pad the message is appending a single ‘1’ bit and ‘0’ bits as many as required. The

Merkle-Damg̊ard construction is well understood and several generic attacks, such as
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Figure 1.2: The Merkle-Damg̊ard construction

differentiability [102], long-message second-preimages [44, 81], herding [80] , and multi-

collisions [77] have been proposed for this construction. The strong point of the MD

construction is its collision resistance. In other words, Damg̊ard proved that finding

a collision in a hash function implies finding a collision in its compression function.

Unfortunately, in general, the second-preimage resistance of the MD construction de-

teriorates with the number of applications of the hash function.

To deal with the inherit weaknesses of the MD construction, there has been an

extensive search for alternatives [14, 22, 95].

An alternative to MD is the sponge construction, proposed by Bertoni et al. [14].

The sponge scheme constructs a function with variable-length input and arbitrary

output length, which makes it an alternative construction for hash functions [14] and

stream ciphers [17]. This construction uses a fixed-length permutation f working on

a fixed number of b = r + c bits where r and c are internal parameters called the bit

rate and the capacity respectively (see Figure 1.3). The sponge construction operates

in two stages:

• Absorbing: The r-bit input message blocks (mi) are linearly combined with the

first r bits of the internal state. The next stage starts once all the input message

blocks are injected into the function.

• Squeezing: In each round of operating the permutation f , the first r bits of the

internal state are returned as output. The output can be considered as hash

digest in a hash function or as keystream bits in the stream cipher mode.

Bertoni et al. [16] have proved the security of the construction by employing the indif-

ferentiability concept proposed by Maurer et al. [102]. The designers [16] showed that

to differentiate a sponge construction from a random oracle ,the success probability

is upper bounded by N2 · 2−(c+1) where N is the number of calls to permutation and

N � 2c/2. It is interesting that the bound is independent of the output length. The

sponge scheme is attractive from both the theoretical and practical perspectives. From
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the theoretical view, a random sponge function f is a random permutation or transfor-

mation. The sponge construction can be employed to design practical cryptographic

hash functions and stream ciphers. As a significant example, the Keccak hash function

[15] is based on the sponge structure. The Keccak has been chosen by NIST as the

winner in the SHA-3 competition.

Figure 1.3: The sponge construction

1.2.4 Stream ciphers

Stream ciphers are symmetric cipher systems which provide confidentiality in many

applications ranging from mobile phone communication to private virtual networks.

They may be implemented efficiently in software and hardware and are a preferred

choice when dealing with an environment that has restricted computing resources,

such as smart cards and RFID tags. The inner workings of stream ciphers are con-

trolled normally by two parameters: an initialisation vector (IV ) and a key (K). The

initialisation vector is public and the key is secret and shared between the sender and

receiver. Normally the encryption and decryption algorithms are identical and produce

a keystream of arbitrary length. The keystream bits are used to encrypt message bits

(or decrypt ciphertext bits) by a simple XOR operation. A stream cipher typically

consists of two parts: the initialisation algorithm and key generation algorithm. In

many applications, the stream cipher needs to produce pseudorandom keystreams for

different sessions with the same secret key. An initialisation algorithm mixes the secret

key and IV securely, and provides initial state to generate keystream output bits.

Initialisation Algorithm: The inputs are a secret key K and a known initiali-

sation value IV. The secret key and IV are mapped to the initial state of the stream

cipher (S0) at time t = 0 by an initialisation function denoted by F . Formally,

S0 = F (K, IV ) (1.1)

Key Generation Algorithm: At time t, the stream cipher consists of
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• internal state St,

• variable V ar: it might include secret key, IV, plaintext Pt, ciphertext Ct or

combination of them,

• update function g,

• output function f .

Generally, the operations on the encryption module are as follows:
Zt = g(St, V ar)

Ct = Zt ⊕ Pt
St+1 = f(St, V ar)

(1.2)

At time t, a stream cipher generates output Zt (keystream) to encrypt the plaintext

Pt to produce the ciphertext Ct. Similar to 1.2, the decryption operations are:
Zt = g(St, V ar)

Pt = Zt ⊕ Ct
St+1 = f(St, V ar)

(1.3)

Based on the variable V ar involved in the update and output functions f and g, stream

ciphers are categorised into two main classes:

• Synchronous, and

• Self-synchronising stream ciphers

In a synchronous stream cipher, the keystream is generated independently of the

plaintext and ciphertext. So, the encryption transformation is:
Zt = g(St)

Ct = Zt ⊕ Pt
St+1 = f(St)

(1.4)

and the decryption transformation becomes:
Zt = g(St)

Pt = Zt ⊕ Ct
St+1 = f(St).

(1.5)
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Figure 1.4: Encryption and decryption module of a synchronous stream cipher

A synchronous stream cipher is shown in Figure 1.4. A self-synchronising stream cipher

generates the keystream Zt depending on the plaintext or the ciphertext. By replacing

V ar = Pt or V ar = Ct in Equations 1.2 and 1.3, two variations of self-synchronising

stream ciphers can be defined. Equation 1.6 presents a typical encryption function in

a self-synchronising stream cipher (See Figure 1.5).
Zt = g(St)

Ct = Zt ⊕ Pt
St+1 = f(St, Ct)

(1.6)

Consequently, the decryption operations are:
Zt = g(St)

Pt = Zt ⊕ Ct
St+1 = f(St, Ct)

(1.7)

The designer can add extra input variables, such as a secret key, IV, and ciphertext,

into the functions g and f to make new stream ciphers.

1.3 Cryptanalysis

In the 19th century, Auguste Kerckhoffs, a Dutch linguist and cryptographer, identified

six design principles that a cryptosystem has to satisfy. One of them states that the

system/algorithm must be known to an adversary. The unknown element must be a

secret key only [82]. In fact, the security of a cipher system must rely only on the

secret key. According to this axiom, every cryptographic attack on a cipher intends to

recover the secret key, which is known as key-recovery attack.
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Figure 1.5: Encryption and decryption module of a self-synchronising stream cipher

1.3.1 Attack models

Assuming that an adversary can access the full communication between sender and

receiver, the attack models are classified into four main cryptanalytic attacks:

• ciphertext only attack: The adversary is able to intercept an arbitrary number

of ciphertexts.

• Known plaintext attack: The adversary is able to observe an arbitrary number

of pairs consisting of a message and the corresponding ciphertext.

• Chosen plaintext attack: The adversary has access to the encryption device,

but cannot see the secret key. This access is called the midnight attack. They

can choose arbitrary messages and see the corresponding ciphertext.

• Chosen ciphertext attack: The adversary has access to the decryption device,

but cannot see the secret key. They can choose arbitrary ciphertexts and see the

corresponding messages.

In addition, there are several possible scenarios, such as adaptively chosen plaintext at-

tack and adaptively chosen ciphertext attack, in which the attacker chooses the plaintext

or ciphertext depending on the revealed information from previous (plaintext, cipher-

text) pairs. Also in some cipher systems, there are other public input parameters, such

as the initial value in stream and block ciphers from which the adversary can choose

or adaptively choose to obtain (plaintext, ciphertext) pairs.

1.3.2 Distinguishing attacks

Apart from a key-recovery attack, which is the ultimate goal in cryptanalysis, another

possible attack is known as a distinguishing attack. A distinguisher is an algorithm
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which distinguishes the output of a cipher from a truly random sequence. Distinguish-

ing attacks are weak tests of cryptosystem security. However, once a distinguishing

attack is developed, then it may be possible to convert it into a partial key-recovery

attack. Identifying a correct guess from wrong ones to recover parts of the contents of

the cipher is a common example of the benefits of distinguishing attacks.

1.3.3 Related-key attacks

In a related-key attack, an attacker tries to analyse an cryptographic algorithm by

invoking the cipher with several secret keys which satisfy some known, or even chosen,

relation. For example, the adversary attempts to find any relation between cipher out-

puts which have been encrypted or decrypted by related-secret keys[18]. The related-

secret keys are typically several different keys whose exact values are unknown, but

the adversary knows there is some mathematical relationship connecting the keys. For

instance, the adversary might know that the number of ones of the related keys are

always the same, although they do not know the contents of the keys. The model seems

to be unrealistic, but in some practical applications the scenario can be applicable.

1.3.4 Generic attacks

Generic attacks do not exploit any specific property or internal structure of a cipher.

Instead, the cipher is treated as a black box. They are useful for deriving security

bounds so the user can choose large enough parameters (for cryptographic keys or the

internal state length). They also help cryptographers to compare the general security

aspects of ciphers.

To characterise the efficiency of cryptographic attacks, there are the following mea-

sures:

• Time complexity - this is the time needed to achieve the goal of the attack.

• Memory complexity - the storage required to launch the attack.

• Data complexity - the number of plaintexts and ciphertexts which are required.

• Probability of success - the expected probability of a successful attack.

1.3.5 Exhaustive search attack

An exhaustive search is a trivial approach to recovering the secret key of a cipher. Given

a plaintext (P ) and ciphertext (C) pair, the adversary searches through all possible

keys, and marks the keys for which the observed plaintext is correctly encrypted. The
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secret key which encrypts P and gives C is the correct one. The attack is expected to

recover the correct key after searching about half of the keys, on average.

1.3.6 Time-Memory Trade-Off attack

A time-memory trade-off (TMTO) attack is a generic method that can be used to

invert one-way functions, such as an encryption. The attack, presented first by Martin

Hellman [72] in 1980, recovers a key in N
2
3 operations, which uses N

2
3 words of memory

where N is the number of all possible keys in the cryptosystem. The basic attack can

be summarised as follows:

1. Choose M initial points randomly. Each point is a possible state of the cipher.

2. Compute a chain, by applying a function formed by the cipher, from each initial

point to reach a final point.

3. Sort the initial and final point pairs based on the final point and store in a Table

of size M .

4. Given a point, namely an output of the cryptosystem, build a chain of points and

look them up in the Table.

5. Once a matching happens, recover the input point which has made the given

point.

The first three items introduce the pre-computation phase and the last two items are

an online phase which tries to find a secret key with complexity T . To get success

in the attack, the values of M (memory complexity) and T (time complexity) should

satisfy in the curve T ·M2 = N2 [72].

1.4 Thesis outline

The thesis investigates cryptanalysis of stream ciphers and hash functions based on

stream ciphers with special attention to lightweight algorithms. The rest of the thesis

is structured as follows.

Chapter 2 gives a brief introduction to the design and cryptanalysis of stream

ciphers. The chapter explores several key techniques and primitive elements used to

design stream ciphers, and cryptographic methods used to analyse these ciphers.

Chapter 3 focuses on the WG-7 stream cipher. This cipher is designed to be used for

lightweight applications, such as RFID tags. It is shown that the keystream generated

by WG-7 can be distinguished from a random sequence with about 213.5 keystream bits
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and with a negligible error probability. A successful key-recovery attack on the cipher

can be applied with time complexity of about O(227). The results were published in

the Journal of Cryptography and Communications in December 2012.

Chapter 4 is a security evaluation of the Rakaposhi stream cipher, intended for

uses in restricted computing resources, such as smart cards and sensor networks. The

study identifies the weaknesses and properties of the cipher. The main observation is

that the initialisation procedure has the so-called sliding property. This property can

be used to launch distinguishing and key-recovery attacks. The distinguisher needs

four observations of the related-secret key and initial value pairs. The key-recovery

algorithm allows discovery of the 128-bit secret key after 29 initialisation operations.

Further, the cipher is studied when the registers enter short cycles. In this case,

the internal state can be recovered with less complexity than an exhaustive search.

This result was published in the 9th International Conference on Information Security

Practice and Experience (ISPEC 2013).

Chapter 5 discovers new security features of a specific design based on nonlinear

feedback shift registers. The idea applies a distinguishing attack on linearly filtered

nonlinear feedback shift registers. The attack also extends the idea to linear combina-

tions of linearly filtered nonlinear feedback shift registers. The proposed attacks allow

the attacker to mount a linear attack to distinguish the output of the cipher and recover

its internal state. This approach indicates how invulnerable the modified version of the

Grain stream cipher is against distinguishing attacks. This study has been accepted in

the Journal of Mathematical Cryptology.

Chapter 6 analyses a new lightweight communication framework using authenti-

cated encryption, called NLM-MAC, in wireless sensor networks. This chapter indicates

several critical cryptographic weaknesses leading to key-recovery and forgery attacks.

The internal state of the NLM-n generator can be recovered with time complexity of

about nlog2 7×2 where the total length of the internal state is 2 · n+ 2 bits. The attack

needs about n2 keystream bits. It is shown that the attacker is able to forge any MAC

tag in real time by having only one pair (MAC tag, ciphertext). The proposed attacks

are completely practical and break the scheme with negligible error probability.

Chapter 7 demonstrates some new cryptographic attacks on RC4(n,m) stream ci-

pher. The cipher is a modification of the original RC4 cipher proposed by Rivest. The

investigations have revealed some weaknesses of the RC4(n, m) stream cipher. Firstly,

a distinguisher for the cipher has been proposed. Secondly, a key-recovery attack uses

a method to find the L-bit secret key with time complexity (L/8).2n. When imple-

mented on a standard PC, the attack is able to recover the secret key of RC4(8,32) in

less than one second. This study has been accepted to present at the 6th International

Conference on Security of Information and Networks Conference (SIN 2013).
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Chapter 8 analyses the RC4-BHF hash function that is based on the well-known

RC4 stream cipher. Two attacks on RC4-BHF have been developed. In the first

attack, the adversary is able to find collisions for two different messages with time

complexity around of 213, so it is very practical. The second attack shows how to

design a distinguisher that can tell apart the sequence generated by RC4-BHF from

a random one. The results were presented at the Australian Information Security

Conference (AISC 2012).

Chapter 9 concludes the thesis and outlines directions for future work.



2
Stream Ciphers

In many applications where computing resources are limited, the cryptographic algo-

rithms of choice are stream ciphers. They offer high speed and can be well adapted

to specific implementation requirements. The cryptographic community has assisted

business and industry alike by providing a wide range of stream ciphers. Various de-

sign strategies can help designers to ensure the specific criteria, in terms of security

and performance, will be satisfied. This chapter describes the necessary background of

design and cryptanalysis of stream ciphers, which are the main foci of this thesis.

2.1 Stream Cipher Design

Historically the first stream ciphers were based on very simple transformations. The

driving force in the design was efficiency. Although this is still the case, the developed

analytical techniques allow us to avoid designs that are insecure. Several basic early

constructions are reviewed here.

2.1.1 Building Blocks

The main task for a stream cipher is to generate a keystream output whose statistical

distribution is uniform and indistinguishable from a truly random distribution. In

this view, building blocks to design secure ciphers play a critical role. In fact, strong

15
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building blocks can lead designers to construct reliable designs.

Linear feedback shift register

The linear feedback shift register (LFSR) is broadly utilised as a basic building block

which generates good statistical distributions of outputs. Although a single LFSR is

extremely vulnerable against cryptographic attacks, designers can exploit the uniform

probability distribution and other statistical properties of LFSRs to design mathemat-

ically strong schemes.

An LFSR consists of several memory cells in which each cell is able to hold one

single bit or word at a time. To update the contents, a new value is computed from

some linear combination of the cells and the register is shifted one position and then

the last value is discarded. The new value is placed in the first position. If the shifted

value is a single bit, the LFSR is called bit-oriented, otherwise it is a word-oriented

LFSR. Using larger alphabets in word-oriented LFSRs can generate more bits per

iteration, and give better performance than the bit-oriented LFSRs. Since using words

generally speeds up the keystream generation without a security penalty, most of the

recent stream ciphers are constructed using word-oriented LFSRs. [11, 49, 114] are

some stream cipher designs based on word-oriented LFSRs.

Definition 2.1.1 The content of the cells at time t is called the internal state of the

LFSR at time t and is denoted by St = (st+L−1, st+L−2, · · · , st), where st+i is the content

of cell i at time t. The state S0 is called the initial state of the LFSR.

Figure 2.1 displays the general structure of an LFSR of length L. The feedback poly-

Figure 2.1: A general structure of an LFSR of length L at time t=0

nomial f(x) = c0 + c1x + c2x
2 + · · · + cL−1x

L−1 + xL defines all the properties of the

LFSR. The polynomial f(x) is irreducible over F2[x] if it cannot be represented as the

product of two polynomials in F2[x] which both have a positive degree [109].
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Definition 2.1.2 An irreducible polynomial f(x) of degree n is called a primitive poly-

nomial if the smallest positive integer j such that f(x) divides xj − 1 is j = 2L − 1

[109].

Since every LFSR includes a limited number of cells, any sequence which has been

produced by the LFSR must be repeated after a finite number of clocks.

Definition 2.1.3 There is a positive integer T , called the period, which satisfies the

relation zt = zt+T where zt is tth of bits of a sequence and t ≥ 0.

Theorem 1 If the feedback polynomial f(x) over F2[x] of a linear feedback shift register

is a primitive polynomial of degree L, then for every non-zero initial state the period of

the LFSR is 2L − 1.

Proof 1 The proof can be found in [109].

Definition 2.1.4 The linear complexity of a sequence is the length of the shortest

LFSR that generates the sequence.

To compute the linear complexity of a given sequence, there is an efficient algorithm,

the Berlekamp-Massey [12, 99], which finds the shortest LFSR of length l, given at

least 2 × l bits from the sequence. It is a necessary condition that a secure stream

cipher must produce keystream with large linear complexity.

Nonlinear feedback shift register

By definition an LFSR uses a linear recursion to modify its internal state. The internal

state can also be modified using a nonlinear recursion. This kind of register is called

a nonlinear feedback shift register (NLFSR). Figure 2.2 shows the general structure of

an NLFSR of length L. While the mathematics behind LFSRs is well understood, the

Figure 2.2: A general structure of an NLFSR of length L at time t=0

theory of NLFSRs is in its infancy stage. There are still many basic open problems

related to NLFSRs [63]. For example, we do not know how to determine the period,
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identify different cycles, or find out the linear complexity of NLFSRs. The lack of

understanding of the mathematics behind NLFSRs does not prevent a proliferation

of stream cipher designs based on NLFSRs. For instance, the two eStream finalists,

the Trivium [30] and Grain [70] ciphers, exploit one or several NLFSRs combined with

LFSRs. Other ciphers, such as Achterbahn [56], Rakaposhi [35], KATAN/KTANTAN

[29], and the NLM generator [90], use the NLFSRs as a building block to protect the

designs from the basic linear and algebraic attacks.

Boolean function

A Boolean function f is a mapping f : F2n → F2 which inputs n bits and outputs

one bit (e.g. f(x) = f(x0, x1, · · · , xn−1) ). There are two main representations of a

Boolean function: truth table (TT) and algebraic normal form (ANF). The truth table

form of Boolean function f on F2n is a binary vector of length 2n, so that the first

element is f(0) = f(0, 0, · · · , 0) and the last one is f(2n − 1) = f(1, 1, · · · , 1) and

every element in F2 corresponds to the output of the f function with a n−bit input.

The Boolean function f is denoted balanced if the number of ones and zeros in TT are

equal. Another representation of a Boolean function is the ANF. An ANF of a Boolean

function on F2n is a polynomial of the following form:

f(x0, x1, · · · , xn−1) =
⊕

i=(i0,i1,··· ,in−1)∈F2n

aix
i0
0 x

i1
1 · · ·x

in−1

n−1

where ai ∈ F2. The algebraic degree of f, called deg(f), is the maximum number of

variables involved in the terms of the ANF of f.

Definition 2.1.5 A boolean function f is called an affine function if deg(f) ≤ 1. The

set of affine functions is denoted by A(n).

An affine function with deg(f) = 0 ( e.g. f(x) = 0 or f(x) = 1) is called a constant

function. An affine function without the constant term is called a linear function.

The nonlinearity of an n-variable Boolean function is the minimum distance from

the set A(n) of all n-variable affine functions:

nl(f) = min
g(x)∈A(n)

|{x ∈ F2n : f(x) 6= g(x)}|

The correlation immunity of a Boolean function indicates the degree to which its out-

puts are uncorrelated with some subset of its inputs. The Boolean function f(x) is

called correlation immune with respect to the subset K ⊂ {1, 2, · · · , n} if the proba-

bility for f to get any value from {0, 1} is not changed, so that xi, i ∈ K are fixed and

other variables are chosen independently at random. A function is said to be rth order
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correlation immune if f(x) and any set of r or fewer variables in x are statistically in-

dependent. Also, if f(x) is correlation immune of order r, then it is correlation immune

for any order less than r. A balanced rth order correlation immune function is called

r−resilient.

The Walsh Hadamard transform of f(x) is a real valued function over F2n that can

be defined as

Wf (ω) =
∑
x∈F2n

(1)f(x)+x·ω

where ω = (ω0, ω1, · · · , ωn−1) ∈ F2n and x · ω = x0 · ω0 ⊕ x1 · ω1 ⊕ · · · ⊕ xn−1 · ωn−1.

A function f(x0, x1, · · · , xn−1) is rth order correlation immune iff its Walsh trans-

form satisfies Wf (ω) = 0, for 1 ≤ wt(ω) ≤ m where wt(ω) is the Hamming weight

or the number of ones in ω. The Boolean function f is balanced iff Wf (0) = 0. The

function f(x0, x1, · · · , xn−1) is rth resilient iff its Walsh transform satisfies Wf (ω) = 0,

for 0 ≤ wt(ω) ≤ m . The relationship between the nonlinearity of f(x) and the Walsh

Hadamard Transform is

nl(f) =
1

2
(2n −WHTmax)

where WHTmax is the maximum absolute value of the Walsh Hadamard Transform

[141].

2.1.2 Some design techniques

Shift register based stream ciphers

Linear feedback shift registers are broadly used to design stream ciphers because they

are well-suited for software and hardware implementation, have a large period, and

good statistical properties. However, these registers are vulnerable against linear at-

tack when their output is used alone [109]. To destroy the linearity inherent in LFSRs,

designers use several approaches: nonlinear combination, filter, and clock control gen-

erators.

A nonlinear combination generator mixes outputs of n parallel LFSRs by using a

highly nonlinear boolean function f , known as the combining function, to generate

keystream output. Figure 2.3 presents the construction. Suppose that n LFSRs of

lengths L1, L2, · · · , Ln, are combined by a nonlinear function f(x1, x2, · · · , xn). Then

the keystream zt is the output of f at time t as follows:

zt = f(s1
t , s

2
t , · · · , snt )

where sit is the output of the ith LFSR at time t.
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Figure 2.3: A general structure of a nonlinear combination generator

Another general construction is a filter generator which uses a single LFSR and a

nonlinear function, called a filtering function, to generate keystream outputs. Figure

2.4 illustrates an overall view of the filter generator. Suppose that an LFSR of length

L is filtered by a nonlinear function f(x1, x2, · · · , xn). Then the keystream zt is the

output of f at time t as follows:

zt = f(st+i0 , st+i1 , · · · , st+in−1)

where st+i is the ith bit of the internal state of the LFSR at time t and 0 ≤ i0, i1, · · · , in−1 ≤
L− 1.

Figure 2.4: A general structure of a filter generator

Unlike nonlinear combination generators and nonlinear filter generators in which

LFSRs are clocked regularly, clock-controlled generators use irregular clocking to re-

move linearity of outputs. The main idea with these generators is to use an LFSR to

control movement of other LFSRs. Two well-known clock-controlled generators are the

alternating step generator and the shrinking generator [109].
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The alternating step generator utilises an LFSR R1 to control the clocking of two

LFSRs, R2 and R3. Figure 2.5 depicts the alternating step generator. Suppose that

the output sequences of LFSR Ri are ri0, r
i
1, r

i
2, · · · where rik is the kth bit produced by

LFSR ri for 0 ≤ i ≤ 2. Then the keystream generated by the cipher is

zt = r1
c(t) ⊕ r2

t−c(t)−1

where c(t) = (
∑t

i=0 r
0
i )− 1 for t ≥ 0.

Figure 2.5: A general structure of an alternating step generator

The shrinking generator uses two LFSRs: one generates sequences and another one

decides whether to output the sequences as keystreams or discard them. Figure 2.6

shows a view of a shrinking generator. Suppose that the output sequences of LFSR Ri

are ri0, r
i
1, r

i
2, · · · where rik is the kth bit produced by LFSR ri for 0 ≤ i ≤ 1. Then the

keystream generated by the generator is

zt = r1
c(t)

for t ≥ 0; c(t) is the position of the tth ‘1’ in the sequence r2
0, r

2
1, r

2
2, · · · .

Figure 2.6: The structure of a shrinking generator
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Array and modular addition based ciphers

Many modern stream ciphers utilise large arrays and simple operations, such as mod-

ular additions, rotations and exclusive-or. RC4 [122], Py [20], HC-256 [139], and

RC4(n,m) [65] use word based arrays and modular addition to produce pseudorandom

keystreams. Addition modulo 2n (f : Fn2 × Fn2 → Fn2 ) is a nonlinear mapping over F2

which provides fast computing in most implementation environments.

One of the most widely used ciphers is RC4, designed in 1987 by Ron Rivest. The

cipher uses a large internal state that is stored in an array of words. Because of its

simplicity of design and the high speed offered by software implementation, the cipher

has gained popularity in many internet applications. RC4 is a family of stream ciphers

indexed by an integer n that indicates the size of the word in bits. The internal state

is an array S of 2n words.

RC4 consists of two algorithms. The first is a key-scheduling algorithm (KSA)

which initialises the internal state. The second is a pseudorandom generation algorithm

(PRGA). It generates the output keystream. The KSA algorithm takes an array S and

a secret key K and produces the initial state or a secret permutation of {0, 1, 2, . . . , 2n−
1}. The PRGA algorithm accepts the initial state S and produces a sequence of words

consisting of one word per clock. A popular instantiation of RC4 is for n = 8. In this

instantiation, words are 8 bits long and the array S contains 28 = 256 entries.

The blocks in question are:

• KSA (key-scheduling algorithm) – this function takes as an input a l−byte secret

key array K = (K[0], . . . , K[l − 1]) and initialises the internal state 〈S〉, where

S = (S[0], . . . , S[255]) is a 256-byte sequence. The function is fully described in

Figure 2.7.

• PRGA (pseudorandom generation algorithm) – this function takes the internal

state 〈S〉 as the input and updates it to generate keystream bytes (output). The

pseudocode of the function is given in Figure 2.8.

2.2 Cryptanalysis of stream ciphers

2.2.1 Linear Cryptanalysis

Linear cryptanalysis was first proposed to investigate the security of block ciphers. The

first attacks were applied to the FEAL cipher [128] and DES [45] in the early 1990s

[100, 101]. In the analysis, nonlinear functions are approximated by linear functions.
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1. Input: Secret key K (l bytes).

2. Output: Internal State 〈S〉.

3. for i = 0 to 255

4. S[i] = i;

5. end for

4. for i = 0 to 255

5. j = (j + S[i] +K[i mod l]) mod 256;

5. swap(S[i], S[j]);

9. end for

Figure 2.7: KSA Function

Clearly, it is desirable to find linear functions that are very “close” to their nonlinear

siblings. The quality of approximation is measured by the probability of finding the

correct outputs.

Linear distinguishing attack

A distinguisher constructs a linear relation which involves only keystream outputs so

that

Pr[
⊕
i∈ρ

zt+i] =
1

2
+ ε

where ρ represents certain coefficients making the distinguisher based on finding the

bias (ε) in the keystream bits and t ≥ 0. The required outputs should be in order ε−2 to

distinguish the cipher from truly random sequences. The linear distinguishing attack

has been applied on a large variety of stream ciphers, such as LFSR based ciphers

[24, 34, 69, 116] and array based stream ciphers [75, 79, 117, 119, 120].

2.2.2 Correlation attack

The correlation attack uses a correlation between the output sequence and the internal

state of the cipher. The first proposed attack, introduced by Siegenthaler [129–131],

seeks a statistical bias between one or more LFSRs and the keystream bits in a nonlinear

combination generator. Suppose that a correlation between the first LFSR of length L1
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1. Input: Internal State 〈S〉

2. Output: Updated Internal State 〈S, j〉,
keystream bytes (Output)

3. i = 0; j = 0;

4. Output loop

5. i = i+ 1 mod 256;

6. j = (j + S[i]) mod 256;

7. swap(S[i], S[j]);

8. Output = S[(S[i] + S[j]) mod 256;

Figure 2.8: PRGA Function

and the keystream zt has been found in the nonlinear combination generator mentioned

in the previous section (see Figure 2.3). We show the bias as Pr[s1
t = zt] =

1

2
+ ε.

Then, by testing all possible 2L1 initial states, and checking the correlation between the

output keystream and the internal state of the LFSR, the attacker can find the most

probable initial state of the LFSR. This means the attacker does not need to search all

states of LFSRs, and he can recover each LFSR in a separate process. The main result

found by Siegenthaler is that the combining function should have a high correlation

immunity.

The time complexity of the correlation attack is exponentially related to the length

of the LFSRs. Also the attacker can apply more sophisticated methods. Amongst

many published papers, the fast correction attack deserves to be mentioned due to its

efficiency and low data complexity. In [31, 76, 107], the role of feedback polynomials

to prevent the correlation attacks has been examined. As a result, designers should

use an LFSR with a large state with high-weight feedback functions, and high corre-

lation immune combining functions to protect the design against correlation and fast

correlation attacks.
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2.2.3 Differential Cryptanalysis

A differential attack exploits leaked information where a difference in the state spreads

through the state during initialisation and key-generation phases. [19] provides a frame-

work to apply differential attacks on stream ciphers. For synchronous stream ciphers,

the attacker divides the cipher into three distinct parts to find differentials which may

help to recover the secret key as follows by:

• Finding a difference in the secret key or (and) the IV to generate a difference in

the internal state.

• Tracking the difference which propagates through the internal state-update func-

tion.

• Discovering the difference in the internal state, which produces a keystream dif-

ference.

Once the attacker finds a difference in the secret key or the IV, which generates a

keystream difference, then he can apply a distinguishing attack and even a key-recovery

attack on the cipher.

2.2.4 Algebraic Cryptanalysis

Algebraic attacks on stream ciphers are powerful cryptanalytic techniques to analyse

the algebraic character of the ciphers. Basically, an algebraic attack can be divided

into two main phases: computing a system of equations corresponding to the keystream

outputs, and solving the system to recover the internal state.

To explain the main idea of the algebraic attack, we consider a general scheme

of filter generators: an LFSR of length L bits and a filtering function f illustrated

in Figure 2.4. Let zt, t ≥ 0 be the keystream generated by the cipher, and f be a

nonlinear map defined from GF (2)n → GF (2) with algebraic degree d. The keystream

can be written by:

f(T (s0, ..., sL−1)),

where T (s0, ..., sL−1) extracts the L-bit content of the register. So, the system of

relations can be determined as follows:
z0 = f(T (s0, ..., sL−1))

z1 = f(T (P (s0, ..., sL−1)))

...

zt = f(T (P t(s0, ..., sL−1)))

(2.1)
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where f(T (P t(s0, ..., sL−1))) indicates the output keystream at the clock t, generated by

nonlinear filtering of the internal state (s0, ..., sL−1) under feedback polynomial P . Now

the cryptanalytic problem converts into the problem of solving a system of nonlinear

equations [5, 36–38, 40].

The simplest scenario to solve System (2.1) is known as the linearization technique

[38, 39]. The number N of monomials of degree smaller than or equal to d is

N =
d∑
i=1

(
L

i

)
≈
(
L

d

)
.

Each of these monomials can be considered as a new variable and then the attacker

can solve the nonlinear system with ≈ N equations and time complexity ≈ N log2 7 by

the Gaussian elimination method.

The important idea to improve the efficiency of the algebraic attack is to reduce

the degree of the equations. For this purpose, the attacker needs to find an annihilator

function so that f · g = 0 and deg g < deg f . The steps to apply the attack can be

described as follows:

1. Find an annihilator g of f or f ⊕ 1 with a low degree d̂, d̂ < d.

2. Given multivariate equations of a low degree d̂ on the initial state bits, there are

N̂ =
∑d̂

i=1

(
L
i

)
monomials of degree no bigger than d̂, where L is the length of

the internal state. In the linearisation method, the time complexity to solve the

nonlinear system is N̂ log2 7. The memory complexity of the attack is about N̂ .

This means that the attacker reduces the time complexity from N log2 7 to N̂ log2 7, and

memory complexity from N to N̂ .

Fast algebraic attacks

Fast algebraic attacks [36, 38, 68] on LFSR based stream ciphers are based on equations

of type zXe +Xd with e < d. This is shorthand to describe that at least one equation

of type

z · g(s0, · · · , sL−1) + h(s0, · · · , sL−1) = 0 (2.2)

exists, where g and h are some multivariate polynomials of degree e and d (e < d)

respectively, and z = f(s0, · · · , sn−1). The attack can be summarised as follows:

t+D∑
i=t

αt+i.zi.g(P (Li(s0, · · · , s160))) (2.3)

for some linear combination (α0, · · · , αD1) ∈ GF (2)D, where D =
∑d

i=1

(
n
i

)
. The same

equation applies to each window of D consecutive steps and it can be written E times,
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for E overlapping intervals, with E =
∑e

i=1

(
n
i

)
. This is because we need to get the

final system of degree e that is solvable by linearisation (with complexity Elog2 7). This

approach is discussed in [5, 6, 38, 68]. The steps of the improved attack are summarised

as follows:

1. Relation step: One searches g and h with small degrees such that f · g = h. The

lower bound on the complexity of solving a linear system with D + E equations

is O((D + E)log2 7). In general one considers e < d.

2. Pre-computation step: One Computes linear relations to eliminate the terms of

degree greater than e in the equations. This needs 2 ·D bits of stream bits with

complexity O(D · (log2(D))2).

3. Substitution step: One eliminates the monomials of degree greater than e. The

time complexity is O(E2 · D) [6] but by DFT [68] it can be further reduced to

O(E ·D · log2(D)).

4. Solving step: One solves the system with E linear equations in O(Elog2 7).
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3
Cryptanalysis of WG-7 stream cipher

WG-7 [96] is a fast lightweight stream cipher whose design was inspired by the family of

WG stream ciphers [114]. The original WG is a synchronous stream cipher submitted

to the ECRYPT call. Both WG-7 and WG are hardware-oriented stream ciphers that

use a word-oriented linear feedback shift register and a filter function based on the

Welch-Gong (WG) transformation [64]. The structure of WG-7 is similar to the WG

stream cipher. Both ciphers use LFSRs and filtering functions, however, WG works

in GF (229) but WG-7 in GF (27). WG-7 uses an 80-bit secret key and a 81-bit initial

vector (IV). WG-7 works as follows. First the secret key and IV are used to initialise

the internal state of the cipher LFSR. Next, the LFSR with its nonlinear function is

clocked 46 times. After this initialisation procedure the cipher generates an appropriate

string of keystreams that is used for encryption.

We assume that the initialisation procedure of WG-7 is performed as prescribed.

Consequently, the internal state consists of 161 bits. Note that the security level

claimed by the designers is 80 bits. The cipher has been designed for encryption in

resource restricted environments, such as RFID applications, mobile phones and smart

cards. The authors of the cipher analysed the design and concluded that WG-7 [96]

is secure against time-memory-data trade-off attacks, differential attacks, algebraic

attacks and correlation attacks.

This section is organised as follows. Section 3.1 gives a brief description of the

keystream generator of the WG-7 stream cipher. Section 3.2 deals with cryptographic

29
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weaknesses of the algorithm, which lead to our distinguishing and key-recovery attacks.

Section 3.3 concludes the chapter.

3.1 Description of WG-7

The structure of the WG-7 stream cipher is illustrated in Figure 3.1. It consists of a

23-word LFSR, where a single word is 7 bits long. The filter function WG is a nonlinear

function defined for 7 boolean variables (a word). The word is an element of F27 , where

the finite field F27 is defined by the primitive polynomial g(x) = x7 +x+1 over GF (2).

The characteristic polynomial of the LFSR is primitive over F27 and is given by:

f(x) = x23 + x11 + β, (3.1)

where β is a root of g(x). The nonlinear filter function WG(x ) denoted in Figure 3.1

as WG is a transformation F27 → F2 as defined below:

WG7(x) = f(x) = Tr(x3 + x9 + x21 + x57 + x87), x ∈ F27 . (3.2)

Figure 3.1: The WG-7 stream cipher scheme

where Tr(x) = x+ x2 + · · ·+ x2n−1
is the trace function from F2n → F2.

3.2 Cryptanalysis of WG-7

In this section, we describe our two attacks for WG-7. The first attack distinguishes

the WG-7 stream cipher from the random one. The distinguishing attack, discussed in

Section 1.3.2, exploits a bias in a linear approximation of the nonlinear filter function.

The second attack is a variant of the fast algebraic attack. It permits us to recover not

only the internal state of the cipher, but also the secret key.
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3.2.1 Distinguishing Attack for WG-7

The WG-7 stream cipher has a relatively simple structure. The main component

is an LFSR that generates words that are later transformed in a nonlinear fashion

by the filter function. The filter function is the only nonlinear component in the

cipher. It seems to be quite a reasonable idea to check how well the filter function can

be approximated by an affine function. In other words, we are looking for an affine

function that approximates the filter function as closely as possible (the best linear

approximation). If we apply the well-known Walsh-Hadamard transform to the filter

function, then we can obtain such a linear approximation. Denote it by Γ·(x0, ..., x6)+α,

where xi is the i-th bit of the word x, the sign “·” is the inner product, Γ (Γ ∈ F27) is

a constant (a vector of 7 binary constants) and α is a binary constant. In the case of

WG-7, we have found that there are seven affine functions, which are the best linear

approximations (one such function is 1 +x0 +x1 +x4). As the nonlinearity of the filter

function is 52, we can find the following probability:

Pr(WG(x) = (Γ · x+ α)) =
27 − 52

27
= 0.59375 (3.3)

From Equation (3.1), the following recursive relation can be derived:

Si+23 = Si+11 ⊕ β · Si. (3.4)

Consequently, we need to find the best linear approximation of the relation given below:

WG(Si+23)⊕WG(Si+11)⊕WG(Si) = 0. (3.5)

Remark 1: The piling up lemma cannot be used to compute the bias of Equation (3.5)

because the input variables (Si+23, Si+11, Si) are not independent. In particular, Si+23

is correlated with other variables by Equation (3.1). In addition, β · Si in Equation

(3.4) is a linear transformation of Si. The precise linear relations are given below:

β · Si = β · (si0, si1, si2, si3, si4, si5, si6) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

si1 ⊕ si3 ⊕ si4
si2

si2 ⊕ si5
si4

si1 ⊕ si2
si6

si0 ⊕ si1 ⊕ si2 ⊕ si3 ⊕ si4 ⊕ si5 ⊕ si6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T

(3.6)

We need to determine the exact value of the bias ε in the following probability:

Pr(WG(Si+23)⊕WG(Si+11)⊕WG(Si) = 0) = 0.5 + ε (3.7)
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One method to compute the bias in Equation (3.7) is as follows. We consider the bias

between three output bits at clocks i, i+ 11 and i+ 23. So we get

zi+23 ⊕ zi+11 ⊕ zi =

=WG(Si+23)⊕WG(Si+11)⊕WG(Si)

From Eq. 3.4
=⇒ =WG(Si+11 ⊕ β · Si)⊕WG(Si+11)⊕WG(Si)

(3.8)

Observe that Equation (3.8) is a boolean function with 14 input variables (instead of

21 variables) and a single bit output. In other words, Si+23 depends on Si and Si+11

based on Equations (3.4) and (3.6). Let F ·GF (214)→ GF (2) be a nonlinear boolean

function in the form:

F (Si, Si+11) = WG(Si+11 ⊕ β.Si)⊕WG(Si+11)⊕WG(Si) (3.9)

Now we focus on F (si0, s
i
1, ..., s

i
6, s

i+11
0 , si+11

1 , ..., si+11
6 ) that is an unbalanced boolean

function, where

Pr(F (si0, s
i
1, ..., s

i
6, s

i+11
0 , si+11

1 , ..., si+11
6 ) = 0) =

1

2
− 2−7.145. (3.10)

The relation given by Equation (3.9) defines a distinguisher, which is able to tell apart

the output of the stream cipher from a truly random cipher with the probability ex-

pressed by Equation (3.10). The interesting question is whether there are better biases

to mount a distinguishing attack. We will discuss possible answers in the remaining

part of this section.

Better biases:

In the previous section, we have found a linear approximation leading us to a distin-

guishing attack. One wonders whether it is possible to find a better linear approxima-

tion so that the bias is closer to the maximal value of 0.5.

Let us explore this issue in more detail. Repeated squaring of the characteristic

polynomial of the LFSR (see Equation 3.1) gives other linear recurrence polynomials.

If we use the exponent 27, we get

x23·27 + x11·27 + β27 = 0 (3.11)

Since β = β27 , β ∈ F27 , the summation of Equations (3.1) and (3.11) gives:

x23·27 + x11·27 + x23 + x11 = 0 (3.12)

divided by x11

=⇒ x23·27−11 + x11·27−11 + x12 + 1 = 0. (3.13)
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This means that the attacker can derive a bitwise linear equation, which is valid for

the internal state of the LFSR. Similar to the previous subsection, the function F can

be built as follows:

zi+23·27−11 ⊕ zi+11·27−11 ⊕ zi+12 ⊕ zi
= WG(Si+23·27−11)⊕WG(Si+11·27−11)⊕WG(Si+12)⊕WG(Si)

= WG(Si+11·27−11 ⊕ Si+12 ⊕ Si)⊕WG(Si+11·27−11)⊕WG(Si+12)⊕WG(Si)

(3.14)

Equation (3.14) can be considered as a boolean function with 21 input variables (instead

of 28 variables) and a single bit output. The boolean function F : GF (221) → GF (2)

is an unbalanced boolean function, where

Pr(F (Si+11·27−11, Si+12, Si) = 0) =
1

2
+ 2−6.78 (3.15)

The required data:

Now, we explain the number of output sequences required to distinguish WG-7 from

a truly random cipher. The following theorem determines the required length of

keystream needed to distinguish between two random sequences, where one is uni-

form (both binary values occur with probability 1
2
) and the other is biased (one value

occurs with probability 1
2
(1 + ε)) [98].

Theorem 2 Given two binary random sequences, where the first is uniform and the

other is biased, i.e. one binary value occurs with the probability 1
2
(1 + ε) and the other

with the probability 1
2
(1− ε), then we need to observe O( 1

ε2
) bits in order to distinguish

the two distributions with a non-negligible probability of success.

Proof 2 The proof can be found in [109].

In this case, the amount of data required for the proposed distinguishing attack is

213.56 bits. This amount of data can be collected from consecutive (or non-consecutive)

keystreams and even from one session key or from different session keys at various

times.

The results of the implemented distinguishing attack on the WG-7 stream cipher

are shown in Table 3.1. We have repeated the experiment 1000 times to compute the

success rate of the distinguishing attack with different lengths of output sequence.
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Table 3.1: Experimental results for applying the distinguishing attack on WG-7

Used Data (bits) Success Rate

1 29 68%

2 29.8 75%

3 210.3 85%

4 211.5 90%

5 213.5 99.99%

3.2.2 Key-Recovery Attack on WG-7

In this section, we apply an algebraic analysis to recover the initial state of the cipher,

and consequently the secret key. Our attack can recover the internal states of WG-7

and then the attacker is able to clock the LFSR backward and find the secret key

correctly. The designers of the WG-7 stream cipher have claimed that there is no

algebraic attack with complexity smaller than the exhaustive search and with data

complexity smaller than 224 of consecutive keystream bits. The idea of our attack is

as follows. Let L : GF (2161)→ GF (2161) be a multivariate linear transformation that

corresponds to the linear transformation defined by a single clock. This transformation

is done on the whole state of 23 registers each holding 7 bits (23 · 7 = 161).

Let zt, t = 0, 1, 2, ... be the keystream generated by the cipher after running the

state initialisation algorithm of WG-7. Assume also that f is the nonlinear filter

function WG illustrated in Figure 3.1. We consider f as a nonlinear map defined from

GF (27) → GF (2). As the output bit is calculated on the contents of the last register

or bits from 154 to 160, we denote this by

f(T (s0, ..., s160)),

where T (s0, ..., s160) extracts the 7-bit content of the last register. So, we can establish

the following system of relations for the cipher:
z0 = f(T (s0, ..., s160))

z1 = f(T (L(s0, ..., s160)))

...

zt = f(T (Lt(s0, ..., s160)))

(3.16)

where f(T (Lt(s0, ..., s160))) indicates the output keystream at the clock t, generated by

the stream cipher. Now, the cryptanalytic problem can be converted into the problem

of solving a system of nonlinear equations (refer to [5, 36–38, 40]).
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Algebraic attack on WG-7

Based on the algebraic attack scenario explained in 2.2.4, attacker can check possibility

of the attack. The function f is of degree 5. The number N of monomials of degree

smaller than or equal to 5 is

N =
5∑
i=1

(
161

i

)
≈
(

161

5

)
= 229.65.

Each of these monomials can be considered as a new variable, and then the attacker can

solve the nonlinear system with ≈ 229.65 equations and time complexity ≈ 229.65×log2 7

by the Gaussian elimination method. Consequently, the complexity of the attack is

larger than the exhaustive key search.

An important idea to improve the efficiency of the above attack is to reduce the

degree of the equations. To this end, the attacker tries to find an annihilator function

so that f · g = 0 and deg g < deg f based on the steps explained in Section 2.2.4. The

algebraic normal form (ANF) of f is as follows:

f(x1, ..., x7) = x1 + x1x3 + x2x3 + x4 + x1x4 + x2x4 +

x1x2x4 + x3x4 + x1x3x4 + x1x2x3x4 + x1x3x5 + x4x5 + x1x2x4x5 +

x1x2x3x4x5 + x6 + x2x6 + x1x2x6 + x1x2x3x6 + x1x2x4x6 + x1x2x3x4x6 +

x1x5x6 + x3x5x6 + x1x4x5x6 + x3x4x5x6 + x7 + x2x7 + x1x2x7 + x2x3x7 +

x1x4x7 + x1x2x4x7 + x1x2x3x4x7 + x5x7 + x1x5x7 + x1x3x5x7 + x1x2x3x5x7 +

x2x4x5x7 + x2x3x4x5x7 + x6x7 + x1x2x6x7 + x1x3x6x7 + x1x2x3x6x7 +

x2x4x6x7 + x1x3x4x6x7 + x2x3x4x6x7 + x5x6x7 + x2x5x6x7 + x1x2x5x6x7 +

x2x3x5x6x7 + x1x4x5x6x7 + x3x4x5x6x7.

The best annihilator is of the form:

g(x1, ..., x7) = 1 + x1 + x3 + x1x2x3 + x4 + x1x4 + x2x4 + x1x2x4 + x3x4 + x1x3x4 +

x1x3x5 + x4x5 + x1x4x5 + x3x4x5 + x6 + x1x6 + x2x6 + x1x2x6 + x3x6 +

x2x3x6 + x7 + x3x7 + x1x3x7 + x2x3x7 + x4x7 + x2x4x7 + x2x3x4 +

x3x4x7 + x3x5x7 + x4x5x7 + x6x7 + x1x6x7 + x2x6x7 + x3x6x7.

This means that the attacker can reduce the degree of the relations to 3 and solve them

with time complexity ≈
(

161
3

)log2 7
= 254.36 and memory complexity

(
161
3

)
= 219.38. It is

obvious that the designers of WG-7 have ignored this attack, which breaks the cipher

with memory complexity smaller than 224.
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Improved Attack on WG-7

To apply the fast algebraic attack described in 2.2.4 to the WG-7 stream cipher, we

found the boolean functions g and h, which are demonstrated as follows:

g(x1, ..., x7) = 1 + x1 + x3 + x7.

h(x1, ..., x7) = x1x2x3 + x4 + x1x4 + x2x4 + x1x2x4 + x3x4 +

x1x3x4 + x2x3x4 + x1x3x5 + x4x5 + x1x4x5 +

x3x4x5 + x6 + x1x6 + x2x6 + x1x2x6 + x3x6 + x2x3x6 +

x3x7 + x1x3x7 + x2x3x7 + x4x7 + x2x4x7 + x3x4x7 +

x3x5x7 + x4x5x7 + x6x7 + x1x6x7 + x2x6x7 + x3x6x7.

The data complexity of the fast algebraic attack on WG-7 is
(

161
d

)
=
(

161
3

)
and

the time complexity is approximately
(

161
e

)log2 7 ≈
(

161
1

)2.807
. Table 3.2 summarises the

results of our attacks. The trivial attack in Table 3.2 shows the time complexity when

attacker has not used any algebraic technique to improve the attack. The attack finds

the internal state of cipher, then attacker can clock the register back to recover the

secret key.

Table 3.2: Comparison of different algebraic attacks against WG-7

Attack type n d e Time

Com-

plexity

Data

Com-

plexity

Memory Pre-

Computation

1 Trivial At-

tack

161 5 - 283.02 229.65 - -

2 Algebraic At-

tack

161 3 - 254.36 219.38 - -

3 Fast Alge-

braic Attack

161 1 3 226.73 219.38 214.66 226.87

3.3 Conclusions

In this chapter, the security of the WG-7 stream cipher has been investigated. We

have shown that a distinguishing attack works with a high probability of success after

observing 213.5 keystream bits. Additionally, the key-recovery attack which has been
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described can recover the secret key with time complexity of about 227 and data com-

plexity of 219.38. The presented results have shown that the WG-7 stream cipher is not

secure and, therefore, it is not recommended for use.
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4
Security evaluation of Rakaposhi stream

cipher

The Rakaposhi stream cipher was designed by Cid, Kiyomoto, and Kurihara in 2009

[35]. The cipher is based on a nonlinear feedback shift register and a dynamic linear

shift register (DLFSR). The design was crafted to be suitable for lightweight implemen-

tations, where computing, power and time resources are in short supply. The cipher

claims 128-bit security and has been designed to complement the eStream portfolio for

hardware-oriented stream ciphers. The designers of the cipher claim that the Raka-

poshi is an efficient synchronous stream cipher that resists all known attacks, and they

conjecture that it is also secure against other, yet unknown, attacks.

This chapter analyses the Rakaposhi cipher and shows its weaknesses. We partic-

ularly:

• examine the resistance of the cipher against a related-key attack, where the ad-

versary can access related pairs (IV,K),

• study the security implications when the NLFSR enters a short cycle,

• investigate the security level when the DLFSR enters a short cycle.

39
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Related Work

The related-key attack is studied in the context of the Rakaposhi cipher and its ini-

tialisation procedure. A similar analysis can be found in [50, 53, 78] but in a different

context. The related-key attack can be seen as a member of the differential cryptanal-

ysis toolbox. We use the slide attack published by Cannière et al. in [43] to launch

the related-key attack. The second part of the chapter is influenced by the paper of

Zhang and Wang [143], in which the authors study the security of the Grain stream

cipher [70, 71]. While working on this topic, we have become aware of a paper [74]

that shows a similar analysis of the initialisation procedure of Rakaposhi, but in our

study we have improved dramatically the efficiency of the key-recovery attack and we

have also identified two classes of weak states.

This chapter is structured as follows. Section 4.1 describes briefly the Rakaposhi

stream cipher. Section 4.2 presents the weaknesses of the cipher and investigates the

security of the initialisation procedure under the related-key attack. Section 4.3 dis-

cusses the security implications when one of the registers (either the NLFSR or the

DLFSR) enters a short cycle. Section 4.4 summarises the results.

4.1 Description of Rakaposhi Stream Cipher

The Rakaposhi stream cipher consists of the following three building blocks (see Figure

4.1) :

• a 128-bit NLFSR also called register A,

• a 192-bit DLFSR also called register B,

• a nonlinear function NLF

The NLSFR register A is defined by its feedback function:

g(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x1x3x9 ⊕ x1x7x9 ⊕ x5x8 ⊕ x2x5 ⊕
x3x8 ⊕ x2x7 ⊕ x9 ⊕ x8 ⊕ x7 ⊕ x6 ⊕
x5 ⊕ x4 ⊕ x3 ⊕ x2 ⊕ x1 ⊕ x0 ⊕ 1,

where at+128 = g(at, at+6, at+7, at+11, at+16, at+28, at+36, at+45, at+55, at+62) and at+i is the

ith bit of register A at clock t.

The DLFSR register B is controlled by two bits (c0, c1) taken from the state of the

NLFSR. The bits select one of four possible characteristic polynomials of the DLFSR.
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Figure 4.1: Rakaposhi stream cipher

The form of the polynomials is as follows:

f(x) = x192 ⊕ x176 ⊕ c0x158 ⊕ (1⊕ c0)x155 ⊕ c0c1x136 ⊕
c0(1⊕ c1)x134 ⊕ c1(1⊕ c0)x120 ⊕ (1⊕ c0)(1⊕ c1)x107 ⊕ (4.1)

x93 ⊕ x51 ⊕ x49 ⊕ x41 ⊕ x37 ⊕ x14 ⊕ 1,

where the bits (c0, c1) are the 42th and 90th bits of register A at clock t, respectively.

The recursive relation for the DLFSR is as follows:

bt+192 = bt ⊕ bt+14 ⊕ bt+37 ⊕ bt+41 ⊕ bt+49 ⊕ bt+51 ⊕ bt+93 ⊕
c0 · c1 · bt+107 ⊕ c0 · c1 · bt+120 ⊕ c0 · c1 · bt+134 ⊕ c0 · c1 · bt+136 ⊕ (4.2)

c0 · bt+155 ⊕ c0 · bt+158 ⊕ bt+176

where ci = 1⊕ ci denotes the inversion of ci and bt+i is the ith bit of B at clock t.

Rakaposhi uses a nonlinear filtering function NLF : GF (28) → GF (2), which is

based on the AES S-Box. The NLF function is a balanced Boolean function and its

algebraic degree is 7. NLF takes 8-bit inputs (2 bits from A and 6 bits from B) and

outputs

st = NLF (at+67, at+127, bt+23, bt+53, bt+77, bt+81, bt+103, bt+128),

where the two bits at+67, at+127 are taken from A and the other bits from B. Finally, the

keystream output is generated by a linear combination of the outputs of both registers
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A and B with the output of the NLF function. The reader interested in more detail

is referred to the original paper [35].

4.1.1 Initialisation Procedure

The goal of the initialisation procedure is to mix IV and the secret key K. Assume

that IV = [iv0, · · · , iv191] and K = [k0, · · · , k127]. K and IV are loaded to the NLFSR

and DLFSR respectively, so

ai = ki for 0 ≤ i ≤ 127

bj = ivj for 0 ≤ j ≤ 191,

where the bits of registers A and B are ai and bj, respectively. Registers A and B are

then clocked 448 times without producing any output keystream bits. This stage is

divided into two phases:

Phase 1: The output of the NLF is linearly combined with the feedback of register

B for the first 320 clocks.

Phase 2: The output of the NLF is linearly combined with the feedback of register

A for the next 128 clocks.

After finishing Phase 2, the cipher starts producing keystream outputs.

4.2 Cryptanalysis of Rakaposhi Stream Cipher

Now we show how we can launch the distinguishing and key-recovery attacks on the

Rakaposhi cipher. The attacks use a sliding property of the cipher. An interesting

property of the proposed attacks is that their complexities are not affected by the

number of clocks, which the cipher performs during the initialisation process. This

means that the attacks works even if the number of clocks is increased.

4.2.1 Properties of Rakaposhi Cipher

We present some cryptographic properties of the Rakaposhi stream cipher that corrob-

orate the proposed attacks.

1. The secret key and IV are loaded in two registers A and B, respectively. Conse-

quently, at clock t = 0, A contains K and B contains IV .
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2. The initialisation procedure applies the same primitives that are used during the

keystream generation stage. This implies that the initialisation for the key and

IV is similar to the initialisation for the key and IV when they are shifted by

one position. We refer to this characteristic as the sliding property.

3. Register A (NLFSR) has a short cycle of length ‘1’; when the state of A becomes

all ones, then A stays in this state forever.

4. Register B (DLFSR) has a short cycle of the length ‘1’; when the state of B

becomes all zeros, then B stays in this state forever.

The first two properties mean that the adversary may find related (K, IV ) pairs, which

produce keystream outputs that are shifted. These properties lead the adversary to

a distinguishing attack that needs only four related (K, IV ) pairs, and a key-recovery

attack which recovers all bits of the secret key K after observing 29 related (K, IV )

pairs.

The third and fourth properties can be exploited by the adversary to distinguish the

cipher from a truly random binary source and recover the internal state of the cipher

and finally the corresponding secret key. The proposed attacks recover the secret key

with time complexity of 263.87 and 254.

4.2.2 Related-Key Attack on Rakaposhi

In our sliding attack we assume that we have two related pairs (K, iv) and (K̂, îv).

Consider the initialisation procedure for the two pairs. Let K = (k0, · · · , k127) and

iv = (iv0, ..., iv191) be loaded into the registers A and B, respectively. Denote the

states of registers A and B at the clock t by At and Bt, respectively. The evolution of

states over time is described below.

A0 = [k0, · · · , k127] B0 = [iv0, · · · , iv191]

A1 = [k1, · · · , k127, a128] B1 = [iv1, · · · , iv191, b192]

...
...

Phase 2 of Initialisation
===============⇒A320 = [a320, · · · , a448] B320 = [b320, · · · , b512]

...
...

Initialisation finished
=============⇒ A448 = [a448, · · · , a576] B448 = [b448, · · · , b640]

Key Generation started
==============⇒A449 = [a449, · · · , a577] B449 = [b449, · · · , b641]

A450 = [a450, · · · , a578] B450 = [b450, · · · , b642]
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The keystream output bits zi, where i ≥ 0, are computed as follows:

z0 = a449 ⊕ b449 ⊕NLF (a448+67, a448+127, b448+23, b448+53, b448+77, b448+81, b448+103, b448+128)

z1 = a450 ⊕ b450 ⊕NLF (a449+67, a449+127, b449+23, b449+53, b449+77, b449+81, b449+103, b449+128)
...

The relation between keystreams generated by the cipher when initialised by the related

pairs is described by the following theorem.

Theorem 3 Given two pairs (K, iv) and (K̂, îv), where K = (k0, · · · , k127) and iv =

(iv0, ..., iv191). then, if the pair (K̂, îv) satisfies the following equations,k̂i = ki+1 0 ≤ i ≤ 126, k̂127 = a128

îvi = ivi+1 0 ≤ j ≤ 190, îv191 = b192

(4.3)

the keystream output bits ẑi = zi+1 for i ≥ 0 with probability 2−2.

Proof 3 By satisfying Equation (4.3), the internal states of [A320, B320] are equal to

[Â319, B̂319]. But, at the next clock, the states may not be identical because the state

[Â320, B̂320] is still at the first step while [A321, B321] is running at the second step. If

b̂512 = b511, which occurs with probability 1/2, then

[Â319, B̂319] = [A320, B320].

The same argument is valid for the states [A448, B448] and [Â447, B̂447]. The states are

identical when â446 = b447, which also happens with probability 1/2. Consequently,

ẑi = zi+1 for i ≥ 0 with probability 1/4. �

Table 4.1 presents some (K, IV ) pairs which produce shifted identical keystream out-

puts. According to Theorem 3, the adversary can use this weakness to generate the

same keystreams but l−bit shifted keystream outputs by defining related (K, IV ) pairs

with probability 2−2·l.

The discovered weakness allows the adversary to distinguish the cipher from a

random bit generator. Assume that the adversary can apply related (K, IV ) pairs,

but they do not know the exact values of the secret key. Then, after applying m

(m� 4) different (randomly generated) related (K, IV ) pairs, on the average m/4 of

the generated keystream outputs have identical sequences with just one bit shift.



4.2 Cryptanalysis of Rakaposhi Stream Cipher 45

4.2.3 Recovery of Secret Keys

Now we propose a key-recovery attack that exploits the sliding property of pairs

(K, IV ). We show an algorithm that allows us to recover the 128-bit key after about

29 initialisation operations with related (K,IV) pairs. The attack can find the secret

key with probability close to one.

Assume that both (K, IV ) and (K̂, ÎV ) generate almost identical keystream bits,

where the second keystream is a copy of the first keystream shifted by one bit. At

clock t = 1, the first generated bit is b192, which is equal to:

b192 = b0 ⊕ b14 ⊕ b37 ⊕ b41 ⊕ b49 ⊕ b51 ⊕ b93 ⊕ (1⊕ c0)(1⊕ c1)b107

⊕ (1⊕ c0)c1b120 ⊕ c0(1⊕ c1)b134 ⊕ c0c1b136 ⊕ (1⊕ c0)b155 ⊕ c0b158 ⊕ b176

⊕NLF (a67, a127, b23, b53, b77, b81, b103, b128),

where c0 = a41 and c1 = a89. Since the contents of bi (0 ≤ i ≤ 191) are known and can

be chosen by the adversary, then Equation (4.4) is a nonlinear relation based on only
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4 unknown variables a41, a89, a67, a127. We now take a closer look at Equation (4.4):

b192 = b0 ⊕ b14 ⊕ b37 ⊕ b41 ⊕ b49 ⊕ b51 ⊕ b93 ⊕ (1⊕ a41)(1⊕ a89)b107

⊕ (1⊕ a41)a89b120 ⊕ a41(1⊕ a89)b134 ⊕ a41a89b136 ⊕ (1⊕ a41)b155 ⊕ a41b158 ⊕ b176

⊕ a67a127b23b53b77b81b103 ⊕ a67a127b23b53b77b81 ⊕ a67a127b23b53b77b103

⊕ a67a127b23b53b81b103b128 ⊕ a67a127b23b53b81b103 ⊕ a67a127b23b53b81b128

⊕ a67a127b23b53b81 ⊕ a67a127b23b53b103b128 ⊕ a67a127b23b77b81b103

⊕ a67a127b23b77 ⊕ a67a127b23b81b103 ⊕ a67a127b23b81b128 ⊕ a67a127b23b128

⊕ a67a127b23 ⊕ a67a127b53b77b81b103b128 ⊕ a67a127b53b77b81b128

⊕ a67a127b53b77b81 ⊕ a67a127b53b77b128 ⊕ a67a127b53b77 ⊕ a67a127b53b103

⊕ a67a127b77b81b103b128 ⊕ a67a127b77b81b103 ⊕ a67a127b77b81b128 ⊕ a67a127b77b103b128

⊕ a67a127b77b128 ⊕ a67a127b81b103b128 ⊕ a67a127b81b103 ⊕ a67a127b81 ⊕ a67a127b103

(4.4)

⊕ a67b23b53b77b81b103 ⊕ a67b23b53b77b81b128 ⊕ a67b23b53b77 ⊕ a67b23b53b81b103b128

⊕ a67b23b53b81b128 ⊕ a67b23b53b103 ⊕ a67b23b77b81b103b128 ⊕ a67b23b81b103

⊕ a67b23b81 ⊕ a67b23b103b128 ⊕ a67b23b128 ⊕ a67b53b77b81b103b128 ⊕ a67b53b77b81b103

⊕ a67b53b77b81b128 ⊕ a67b53b77b81 ⊕ a67b53b77b128 ⊕ a67b53b81b103b128 ⊕ a67b53b81

⊕ a67b53b103 ⊕ a67b53 ⊕ a67b77b81b103 ⊕ a67b77b103b128 ⊕ a67b81b103 ⊕ a67b23b53b81b103

⊕ a67b103 ⊕ a67 ⊕ a127b23b53b77 ⊕ a127b23b53b81b103 ⊕ a127b23b53b81b128 ⊕ a127b81

⊕ a127b23b53b81 ⊕ a127b23b53 ⊕ a127b23b77b81b103 ⊕ a127b23b77b103 ⊕ a127b23b77

⊕ a127b23b81 ⊕ a127b23 ⊕ a127b53b77b81b103b128 ⊕ a127b53b77b81b128 ⊕ a127b53b77b103b128

⊕ a127b53b77b103 ⊕ a127b53b77 ⊕ a127b53b81b103 ⊕ a127b53b81 ⊕ a127b53b103

⊕ a127b53b128 ⊕ a127b77b81b103b128 ⊕ a127b77b81b128 ⊕ a127b81b103 ⊕ a127b81b128

⊕ a127b103b128 ⊕ a127b103 ⊕ a67a127 ⊕ a127 ⊕NLF ′(b23, b53, b77, b81, b103, b128)

where NLF ′ is a Boolean function including all monomials of NLF in which variables

a67, a127 do not exist. Note that the adversary does not need to solve the equation.

Instead, the adversary can recover four bits of the secret key by choosing appropriate

bits for IV s. For example, if  bi = 0 i ∈ Φ

b158 = 1

where Φ = {0, 14, 37, 41, 49, 51, 93, 107, 120, 134, 136, 155, 176, 23, 53, 77, 81, 103, 128},
then b192 = a41. Consequently, îv191 = k41. In this way, the adversary is able to

retrieve the four secret key bits. The number of the required related pairs (K, IV ) is 4.
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On the average, to find the valid pairs, the adversary needs 16 pairs. In other words,

to retrieve 4 secret key bits, the adversary should run the initialisation algorithm 16

times for the related (K, IV ) pairs. Now, the adversary can keep going and continue

the attack, finding consecutive 4-bit parts of the secret key. Finally, to determine the

whole 128-bit secret key, the adversary needs to apply 512 = 32 × 16 related (K, IV )

pairs on the average.

4.3 Weak (K, IV ) Pairs

In this section we study the security implications of short cycles of two registers A and

B. Note that the initialisation procedure takes K and IV , loads them to A and B

respectively, and then the cipher is clocked 448 times. At the end of the initialisation,

the cipher can be set in the following weak states:

• Register A contains all ones and the state loops forever. To identify the collection

of pairs (K, IV ) that leads to this state of A, it is enough to set A = 1 and to set

B to an arbitrary 192-bit vector and clock backwards. This process will generate

2192 pairs (K, IV ) and cause the initialisation to weak states.

• Register B contains all zeros and the state loops forever. Again, to identify the

collection of pairs (K, IV ) that leads to this state of B, it is enough to set B = 0

and to set A to an arbitrary 128-bit vector and clock backwards. This process

will generate 2128 pairs (K, IV ) and cause the initialisation to weak states.

• Both registers A = 1 and B = 0. There is a single pair of (K, IV ) only. To

identify it, set the registers appropriately and clock backwards. This case is not

very interesting as it can be easily identified.

4.3.1 Weak (K, IV ) Pairs Leading to A = 1

After the initialisation phase, it may happen that the pair (K, IV ) leads to A = 1.

An immediate consequence of this occurrence is that register A contains all ones and

stays in this state for all clocks. The adversary is able to identify this case, and is also

able to recover the weak pair (K, IV ) that has led to A = 1. Clearly, if the adversary

knows IV , then the task of finding K is easier.

Note that the cipher with register A in the state of all ones is equivalent to a 192-bit

LFSR whose outputs are filtered by a nonlinear Boolean function h with a 6-bit input.

The function h is the nonlinear function NLF with two bits set to ones (those that

are coming from A). The function is a balanced function from h : GF (26)→ GF (2) of



48 Security evaluation of Rakaposhi stream cipher

degree 5 and nonlinearity 20 and is given below.

h(x1, x2, x3, x4, x5, x6) = 1⊕ x1 ⊕ x1x2 ⊕ x3 ⊕ x1x3 ⊕ x1x4 ⊕ x3x4 ⊕ x2x3x4 ⊕ x5

⊕ x1x2x5 ⊕ x2x3x5 ⊕ x1x4x5 ⊕ x3x4x5 ⊕ x1x3x4x5 ⊕ x2x3x4x5

⊕ x1x6 ⊕ x2x6 ⊕ x1x3x6 ⊕ x1x2x3x6 ⊕ x4x6 ⊕ x1x4x6 ⊕ x5x6

⊕ x1x2x4x6 ⊕ x3x4x6 ⊕ x1x3x4x6 ⊕ x2x3x4x6 ⊕ x1x2x3x4x6

⊕ x2x3x5x6 ⊕ x4x5x6 ⊕ x2x4x5x6 ⊕ x1x2x4x5x6 ⊕ x2x3x4x5x6

The function can be approximated by a linear Boolean function 1⊕ x1 ⊕ x1 ⊕ x6 with

probability:

Pr(h = (1 + x1 + x2 + x6)) =
44

64
= 0.6875 = 0.5 + 2−2.415

The algebraic immunity of the function is 3 and the number of annihilators is 10. To

recover the contents of register B, we may apply a basic algebraic attack, described in

Section 2.2.4, that needs 222.75 observations of the keystream bits and whose complexity

is 263.87. Once the adversary knows the contents of B at the end of the initialisation,

they can clock backwards to recover the weak pair (K, IV ).

4.3.2 Weak (K, IV ) Pairs Leading to B = 0

The second class of weak (K, IV ) pairs leads to the state with B = 0. In this case,

register B stays in the zero state for all clocks. Consequently, all the outputs of the

DLFSR are zeros, which is equivalent to removal of register B from the cipher. The

goal of the adversary is to recover the pair (K, IV ). Now we show that the adversary

is able to recover the initial state (and the secret key by clocking NLFSR backwards)

faster than in 254 steps.

Note that the NLF function is now used with its 6 bits coming from register B set

to zero. Consequently, the keystream output function is a linear combination of the

least significant bit of register A with the output of the NLF function. The keystream

output function is denoted by ` : {0, 1}3 → {0, 1} and is of the following form:

`(x1, x2, x3) = x1 ⊕ x2 ⊕ x1x2 ⊕ x3.

The function ` is a nonlinear balanced Boolean function of degree 2. One of the best

approximations of ` is the linear function x3. It is easy to check that

Pr(` = x3) =
6

8
= 0.75 = 0.5 + 2−2. (4.5)
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Distinguishing Attack

If B = 0, then the adversary may distinguish the generated keystream bits from a

random bit generator. Consider the keystream output bits at clocks t+ 0, t+ 6, t+ 7,

t+ 11, t+ 16, t+ 28, t+ 36, t+ 45, t+ 55, t+ 62. If we use the approximation (see

Equation (4.5)) then we can write

Pr(zt+128 = g(zt+0, zt+6, zt+7, zt+11, zt+16, zt+28, zt+36, zt+45, zt+55, zt+62)) ≈ 0.502.

(4.6)

This means that the adversary requires around 217 observations of the keystream out-

put bits to tell apart the cipher from a random bit generator with negligible error

probability.

Recovery Attack

To recover the pair (K, IV ), the adversary may use the linear approximation of ` and

try to guess the contents of A. The probability of the correct guess for the state is

(0.75)128 = 2−53.12, which is much smaller than the probability 2−128. In other words,

the cipher has at most 54 bits of security.

4.4 Summary

In this chapter, we analysed the initialisation algorithm of the Rakaposhi stream ci-

pher. From observations about cryptographic weaknesses of the cipher, we discovered

the so-called sliding property of the pairs (K, IV ). This property can be exploited by

launching distingushing and key-recovery attacks. We showed that there is a distin-

guishing attack that needs only four related (K, IV ) pairs. Our key-recovery attack

recovers all bits of the secret key K after observing 29 related (K, IV ) pairs.

In the second part of this chapter, we studied the security of Rakaposhi when either

register A or register B enters a short cycle at the end of the initialisation procedure.

When register A loops in the all-ones state, then the adversary is able to recover the

pair (K, IV ). Rakaposhi in this case degenerates to a LFSR cipher with a nonlinear

filter function. Thus the initial state of register B can be discovered by using an

algorithm of time complexity 263.87.

If register B enters the zero state at the end of the initialisation procedure, then

we showed two efficient algorithms: one to distinguish Rakaposhi from a random bit

generator and the other to recover the pair (K, IV ). The distinguisher needs 217

keystream bit observations. The key-recovery algorithm requires around 254 operations.

Note that this cryptographic weakness can be explored by the adversary when they
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have access to the cipher device and are allowed to play with the device by running it

for different IV s.
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Table 4.1: Shifted identical keystream outputs corresponding two related (K, IV ) pairs

Pair Key IV Output bits

1 10011011110011101010

00100000001110100110

00000001100010110001

00111101110111010000

01001001000000010011

00110010010100110101

11100111

0100011110000001010001000

1101011000000000001000000

1101110000111110011101010

1100001111100001100110011

1000101110110110000010100

1101100010001110000000100

1001001011110011010110101

01100010110010101

0000011000010001110011

1100000101000101010010

1001010000110111100110

1010101011010000001101

1100111001000100011110

011110000011110101

—————————– ———————————— ——————————–

00110111100111010100

01000000011101001100

00000011000101100010

01111011101110100000

10010010000000100110

01100100101001101011

11001111

1000111100000010100010001

1010110000000000010000001

1011100001111100111010101

1000011111000011001100111

0001011101101100000101001

1011000100011100000001001

0010010111100110101101010

11000101100101011

0000110000100011100111

1000001010001010100101

0010100001101111001101

0101010110100000011011

1001110010001000111100

111100000111101010

2 00000000010111111011

00111011001110010001

01110111011011001111

00101011011101100001

11001000110110000011

10010110101001111001

10110000

0011100010111000111011100

0101100001000100011110000

1100101010010111010110010

0010100000011010011000110

1001001101101110001110011

0101011111110010100001100

1110011101110000000011110

01000110010110101

0111010010011000000111

0011001011000010111010

1111100110000111101110

1001111000010010011010

1110010000011100101000

100010110111101111

—————————– ———————————— ——————————–

00000000101111110110

01110110011100100010

11101110110110011110

01010110111011000011

10010001101100000111

00101101010011110011

01100001

0111000101110001110111000

1011000010001000111100001

1001010100101110101100100

0101000000110100110001101

0010011011011100011100110

1010111111100101000011001

1100111011100000000111100

10001100101101011

1110100100110000001110

0110010110000101110101

1111001100001111011101

0011110000100100110101

1100100000111001010001

000101101111011111
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5
Security analysis of linearly filtered NLFSRs

The one-time pad (OTP) is the only cipher that is unbreakable even for an adversary

who has unlimited computational power. Stream ciphers try to mimic the OTP but,

instead of a truly random sequence, they produce a pseudorandom sequence derived by

a relatively short random sequence (also called the seed). This, however, has a profound

impact on their security. Stream ciphers do not inherit the OTP unconditional security.

Their security is conditional and depends on the difficulty of recovery of the seed from

an observed keystream.

The main advantage of stream ciphers is that they can be implemented very effi-

ciently both in software and hardware making them very popular in the telecommu-

nication industry. They are extensively used in mobile communications, providing the

basic security tool to ensure confidentiality and integrity of communication. Histor-

ically, the first stream ciphers were built using shift registers with a linear feedback.

Linear feedback shift registers (LFSRs) modify their internal state by using a linear

recursion. Stream ciphers based on LFSR are insecure, as the recovery of the internal

state from an observed keystream is equivalent to solving a system of linear equations.

To increase security, stream ciphers are built using LFSRs combined with nonlinear

components. The designs are tested and analysed thoroughly. Consequently, a collec-

tion of design criteria has been identified. The collection can be used by designers to

create new stream ciphers, the security of which can be tested using a collection of cryp-

tographic attacks. The most effective tests for stream ciphers include the correlation

53
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attacks [39, 60, 108, 121] and the algebraic attacks [5, 36, 38, 68].

A natural evolution in the design of stream ciphers is the introduction of nonlinear

feedback shift registers (NLFSRs). NLFSRs can be seen as a generalisation of LFSRs,

where the modification of the internal state is carried out using a nonlinear relation

[63]. While the mathematics behind LFSRs is well understood, the theory of NLFSRs

is in its infancy. There are many basic problems related to NLFSRs that are still open.

For instance, we do not know how to determine efficiently the period, identify different

sub-cycles, or find out the linear complexity of NLFSRs.

One could argue that the lack of understanding of the mathematics behind NLFSRs

has led to proliferation of NLFSR-based stream ciphers, as they are perceived to be

more secure than other designs. The finalists of the e-Stream project include the Triv-

ium [30] and Grain [70] ciphers that are exploiting one or several NLFSRs combined

with LFSRs. The security of a NLFSR filtered by a linear boolean function is investi-

gated using algebraic and correlation attacks in [10, 57]. In particular, the authors of

[10] show that a linearly filtered nonlinear feedback shift register (LF-NLFSR) can be

translated to the well-known filter generator that uses a LFSR and a nonlinear filter

function - see Figure 5.1.

Figure 5.1: Translation of LF-NLFSR into LFSR with nonlinear filter

Our Contributions

This chapter investigates the design principles and security of steam ciphers built from

LF-NLFSRs. First, we introduce a taxonomy of sequences generated by LF-NLFSR

stream ciphers. Next, we examine the security of the LF-NLFSR stream ciphers against

distinguishing attacks. Then, we identify criteria that need to be satisfied for a secure

LF-NLFSR cipher. Finally, based on the proposed criteria, we show how to improve

the time and data complexity of algebraic attacks on the LF-NLFSR ciphers presented

in [10].

The chapter is organised as follows. Section 5.1 describes the LF-NLFSR cipher

and introduces the main idea behind our distinguishing attack. Section 5.2 investigates
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security properties of stream ciphers whose LF-NLFSRs are chosen at random. The

security properties of LF-NLFSRs associated with NLFSRs are studied in Section 5.3.

In Section 5.4, we study the security of a stream cipher which is based on a linear

combination of LF-NLFSRs. We show that this type of cipher may be vulnerable to

distinguishing attacks. In Section 5.5, we suggest the design criteria for stream ciphers

based on LF-NLFSRs. Finally, Section 5.6 concludes the chapter.

5.1 Description of LF-NLFSR

Pseudorandom sequences generated by an LFSR have been exhaustively studied and

there is a good understanding of their statistical and cryptographic properties. A

method to make the sequences immune against algebraic attacks is that the (linear)

sequence generated by an LFSR be filtered by a nonlinear boolean function. The stream

ciphers based on LFSRs with nonlinear filters have been analysed by many researchers.

For instance, the works [25, 96, 114] present three recent designs of LFSR ciphers with

nonlinear filters, and their security is analysed in [62, 118, 125].

The duality between LFSR stream ciphers with nonlinear filters and LF-NLFSR

stream ciphers is investigated in [10, 57]. Given a LFSR stream cipher with a nonlinear

filter, to determine the equivalent LF-NLFSR cipher one needs to find a nonlinear up-

date function for the NLFSR and the linear filter function so that the ciphers generate

the same keystreams. Formally, assume that a LF-NLFSR cipher consists of a n-bit

NLFSR and a linear function Lf . Its operation can be described as follows:

st[i] = st−1[i+ 1] for 0 ≤ i < n− 1

st[n− 1] = f(st−1[0], st−1[1], · · · , st−1[n− 1]),

where st[i] is i-th bit of the internal state of the NLFSR at clock t and f is a nonlinear

feedback (state update) function. The output keystream is generated as follows:

zt = Lf (s
t−1[0], st−1[1], · · · , st−1[n− 1])

In [10], this structure is investigated in terms of the algebraic and correlation attacks.

5.1.1 Attacks on LF-NLFSR

LF-NLFSR ciphers can be vulnerable to distinguishing and state-recovery attacks. The

attacks can be more efficient if the linear filter function is chosen randomly. In this

section, we propose a distinguishing attack against LF-NLFSR ciphers. In the attack,

we exploit linear relations between output bits and the NLFSR internal state. We



56 Security analysis of linearly filtered NLFSRs

approximate the nonlinear feedback function by the nearest affine function and thus

we establish probabilistic linear relations. After solving the relations, we are able to

recover the internal state of the LF-NLFSR cipher. The attack works even when the

NLFSR uses a highly nonlinear feedback function. The difference between our attack

and the attack by Berbain et al. [10] is that our attack needs to approximate a small

number of bits of the nonlinear feedback function only. In other words, our distinguisher

works with a higher probability.

5.1.2 Distinguishing Attack on LF-NLFSR

In this section, we show how to apply distinguishing attacks on LF-NLFSR ciphers

(see Figure 5.2). To make the presentation clearer, we start from a simple example.

Example 5.1.1 Given a 7-bit NLFSR that generates keystream by using the linear

boolean function Lf (s1, s3, s4, s7) = s1 ⊕ s3 ⊕ s4 ⊕ s7, where si (i = 1, · · · , 7) is the

i-th bit of the NLFSR state. The feedback function f is the balanced nonlinear boolean

function of the following form:

f(s1, s2, s3, s5, s6, s7) = s1 ⊕ s2 ⊕ s6 ⊕ (s3 · s5 · s7).

NLFSR generates nonlinear sequences of the period T7 = 27 − 1 (see Figure 5.2) [48].

The output bits are generated as follows:

Oi+1 = si+1 ⊕ si+3 ⊕ si+4 ⊕ si+7 (5.1)

Figure 5.2: 7−bit LF-NLFSR cipher

Now, the adversary can replace bits in the internal state by a linear combination

of the initial state and output bits. In Example 5.1.1, we can rewrite si+7 (i ≥ 0) and
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get the following relations

s7 = s1 ⊕ s3 ⊕ s4 ⊕O1

s8 = s5 ⊕ s4 ⊕ s2 ⊕O2

s9 = s6 ⊕ s5 ⊕ s3 ⊕O3

s10 = s1 ⊕ s3 ⊕ s6 ⊕O1 ⊕O4

s11 = s2 ⊕ s1 ⊕ s3 ⊕O1 ⊕O2 ⊕O5

s12 = s3 ⊕O3 ⊕ s4 ⊕ s2 ⊕O2 ⊕O6

s13 = s3 ⊕O4 ⊕ s5 ⊕O3 ⊕ s4 ⊕O7

s14 = O5 ⊕ s6 ⊕O4 ⊕ s5 ⊕ s4 ⊕O8

s15 = s3 ⊕ s4 ⊕O6 ⊕ s1 ⊕O1 ⊕O5 ⊕ s6 ⊕ s5 ⊕O9

s16 = s3 ⊕ s5 ⊕O7 ⊕ s2 ⊕O2 ⊕O6 ⊕ s1 ⊕O1 ⊕ s6 ⊕O10

s17 = s6 ⊕O8 ⊕O3 ⊕O7 ⊕ s2 ⊕O2 ⊕ s1 ⊕O1 ⊕O11

s18 = s4 ⊕ s1 ⊕O1 ⊕O9 ⊕O4 ⊕O8 ⊕O3 ⊕ s2 ⊕O2 ⊕O12

s19 = s2 ⊕ s3 ⊕ s5 ⊕O2 ⊕O3 ⊕O4 ⊕O5 ⊕O9 ⊕O10 ⊕O13

s20 = s3 ⊕ s4 ⊕ s6 ⊕O3 ⊕O4 ⊕O5 ⊕O6 ⊕O10 ⊕O11 ⊕O14

s21 = s1 ⊕ s3 ⊕ s5 ⊕O1 ⊕O4 ⊕O5 ⊕O6 ⊕O7 ⊕O11 ⊕O12 ⊕O15

(5.2)

In addition to Equations (5.2), each generated internal state bit can be expressed by a

linear approximation of the NLFSR feedback function. The approximation holds with

the probability

Pr(f(s1, s2, s3, s5, s6, s7) = s1 ⊕ s2 ⊕ s6) = 1− 2−3 =
1

2
+

3

8
(5.3)

By applying the linear approximations for the bits in the NLFSR internal state, the

adversary can derive probabilistic linear relations, which are biased. For instance, the

adversary can find a biased relation by combining O2, O3 and O15 as shown below:
O2 = s5 ⊕ s4 ⊕ s1 ⊕ s6

O3 = s6 ⊕ s5 ⊕ s3 ⊕ s2 ⊕ s1 ⊕ s4 ⊕O1

O15 = s2 ⊕ s3 ⊕O2 ⊕O3 ⊕O4 ⊕O7 ⊕O8 ⊕O10 ⊕O11 ⊕O12 ⊕O13.

(5.4)

Note that after linearly combining the relations, the unknown state bits are cancelled

leaving the observable keystream bits that satisfy the following probabilistic linear

relation:

O1 ⊕O4 ⊕O7 ⊕O8 ⊕O10 ⊕O11 ⊕O12 ⊕O13 ⊕O15 = 0 (5.5)
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We know that each relation of Equation (5.4) independently holds with probability

1− 2−3. Therefore, after applying the Matsui piling up lemma, we obtain

Pr(O1 ⊕O4 ⊕O7 ⊕O8 ⊕O10 ⊕O11 ⊕O12 ⊕O13 ⊕O15 = 0) = (5.6)

1

2
+ (22 · (3

8
)3) =

1

2
+ 2−2.245.

Example 5.1.1 uses three linear approximations and establishes a distinguisher that

tests the bias of the keystream bits. One might ask what an upper bound on the

number of linear approximations for a given nonlinear function would be. Theorem 4

gives an answer.

Theorem 4 Given a LF-NLFSR cipher built from an n-bit NLFSR with a feedback

function f and a linear filter function Lf , if the best linear approximation of f is `

such that

Pr(f = `) =
1

2
+ εf

then, having n+1 consecutive bits of the keystream outputs, there is at least one biased

linear function.

Proof 4 The proof can be found in [59]. �

The smallest number of output bits required to find a biased linear function (`p)

depends on the linear filter function Lf and the feedback function f . In general, if

all n + 1 output bits are involved in `p (e.g. n + 1 linear approximations), then the

probability to find at least one `p biased function is

Pr(`p) =
1

2
+ 2n · ε(n+1)

f .

Note that Theorem 4 shows that the security of the cipher cannot be better than

ε
−2·(n+1)
f . For each relation, we need to use at least one linear approximation with

probability PL = 1/2 + ε. Assume that, with m linear equations, the adversary could

find a biased relation for the output keystream bits with probability P = 1/2 + (2m−1 ·
εm), then the attack is successful if

P < 2k/2,

where k is the secret key space of the cipher. In other words, the bias ε′ = 2m−1 · εm

and hence the attack is faster than the exhaustive search O(2k) if (ε′)−2 < 2k/2.

There is a trend in the design of cryptographic components and systems, in which

they are chosen at random. The main justification for this is the belief that random

choice can protect the cryptographic system against new yet unknown attacks. In the

next section, we analyse LF-NLFSR stream ciphers when both the linear filter function

Lf and the nonlinear feedback function f are chosen at random.
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5.2 Random LF-NLFSR Ciphers

A random LF-NLFSR cipher is a cipher whose linear filter function Lf and feedback

function f are generated at random. More precisely, the nonlinear feedback function

f is chosen at random from all balanced nonlinear functions. The linear filter function

Lf is chosen randomly and uniformly from the set of all linear functions (excluding the

constants).

5.2.1 Cryptanalysis of Random LF-NLFSR Ciphers

To analyse the security of random LF-NLFSR ciphers, we need two theorems. The first

theorem evaluates the probability of choosing a set of p linearly independent q-tuples

over F2 if the elements are drawn at random. We take advantage of the results from

[87].

Theorem 5 ([87]) Let Mq,q+p be a q× (q+ p) random matrix, over the finite field F2

where −q ≤ p ≤ 0. If ρ(M) is the rank of matrix M , then we have,

P (ρ(Mq,q+p) = q + p)) =

q+p−1∏
j=0

(1− 1

2q−j
), − q ≤ p ≤ 0.

Proof 5 Proof can be found in [87]. �

In general, the probability that a random q× (q+p) binary matrix Mq,q+p is of the full

rank q for p ≥ 0 and a large q is:

P (ρ(Mq,q+p) = q) =
∞∏

i=p+1

(1− 1

2i
), p = 0, 1, · · · .

An interesting observation shown in [26] is that, for a matrix defined as in Theorem 5,

on the average, one would need two extra columns only to achieve the full rank. This

result does not depend on q. For 7 or 8 extra columns, the probability of achieving the

full rank is very close to 1.

Theorem 6 Given a random binary matrix Mq,q+p whose entries are chosen indepen-

dently and uniformly, where −q ≤ p ≤ 0, then the probability that the rank of matrix

M is less than q + p is:

P (ρ(Mq,q+p) < q+p) = 1−P (ρ(Mq,q+p) = q+p)) = 1−
q+p−1∏
j=0

(1− 1

2q−j
), −q ≤ p ≤ 0.
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Proof 6 The rank of matrix M is at most to min(q, p + q) = p + q. Therefore, the

probability that the rank of matrix M is less than q + p is 1 − P (ρ(Mq,q+p) = q + p)).

According to Theorem 5, the probability is 1−
∏q+p−1

j=0 (1− 1

2q−j
), where −q ≤ p ≤ 0. �

Using Theorems 5 and 6, one can find the lower bound on the bias of linear approxi-

mations for random LF-NLFSR ciphers.

Theorem 7 Given m linear approximations, then to find at least one linear biased

relation with high probability, the number Nm of observed keystream bits should satisfy

π(n,m)−1 =

(
Nm

m

)
,

where π(n,m) is the probability of finding at least one linear dependency for the corre-

sponding matrix of an n-bit random LF-NFLSR cipher.

Proof 7 Using Theorem 6, the probability of finding at least one linear dependency for

the corresponding matrix of a n-bit random LF-NLFSR cipher can be computed as

π(n,m) = 1−
n−m−1∏
j=0

(1− 1

2n−j
),

where m is the number of rows. So, the number of m × n matrices which should be

checked to find at least one linear dependency with probability near to one is 1
π(n,m)

.

The adversary needs to check all combinations of m linear equations from the required

keystream bits (Nm), e.g.

π(n,m)−1 =

(
Nm

m

)
�

For a 64-bit random LF-NLFSR cipher, Theorem 7 states that the probability of

finding a linear biased relation by applying linear approximation for two and four

output bits is 2−64 and 2−61.19, respectively. The required number of keystream bits in

order to apply the attack is 232.48 and 221.25, respectively.

We can consider that the matrices might have the properties of random matrices

even if the feedback/filter functions are not chosen at random. In that case, the

attack works even for schemes with non-random feedback/filter functions. Note that

we consider balanced nonlinear functions and our assumptions do not limit us to a

certain class of Boolean functions. If the adversary finds a linear biased relation using

m linear approximations, then they simply need to approximate the feedback function

m times, and the probability of finding a distinguisher is

Pr(distinguisher exists) = 1/2 + 2m−1 · (εmf ).
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Therefore, the data complexity of the distinguishing attack is O(ε−2·m
f ).

To apply a distinguishing attack on a random LF-NLFSR cipher, two main phases

are needed: pre-processing and on-line. In the pre-processing phase, the adversary

tries to find a distinguisher (or distinguishers). Theorem 7 determines the probability

of finding it and the required data complexity of the pre-processing phase. The on-line

phase consists of the distinguishing attack.

5.3 Ciphers based on LF-NLFSRs and LFSRs

Some stream ciphers are built from both LF-NLFSRs and LFSRs. The Grain stream

cipher [70, 71] is an example. Figure 5.3 shows the overall structure of the Grain cipher,

which has been extensively analysed (see [10, 47, 104] for example).

Figure 5.3: Grain cipher

5.3.1 Distinguishing Attack on Grain [10].

The structure of the Grain stream cipher gives rise to the following equations:

xt =
⊕
i∈α

zi ⊕
⊕
j∈β

xj ⊕
⊕
k∈γ

yk ⊕ ht(y0, · · · , ym),

where xi and yi are the ith bits of the internal states of the NLFSR and LFSR, respec-

tively, and zi are the keystream bits. The sets α, β and γ contain bit indices of the

keystream bits and the NLFSR and LFSR state bits, respectively. The index sets are
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defined by the cipher structure. The bit ht(y0, · · · , ym) is the output of filter function

h at clock t. To apply a distinguishing attack on the Grain cipher, one should first

replace both the nonlinear feedback function f and the function h by their best linear

approximations. Next one needs to find a collection of approximations for which all

the internal unobservable bits cancel themselves. In the best case, we can hope to find

two such linear approximations, named zx and zy, such that

Pr(zx ⊕ zy = 0) =
1

2
+ 23 · (ε−2

f · ε
−2
h ),

where εf and εh indicate the biases of the linear approximations of the nonlinear feed-

back function f and nonlinear filter h, respectively. In this case, the security of the

cipher against the distinguishing attack is (23 · (ε−2
f · ε

−2
h ))−2.

5.4 Ciphers based on Linear Combination of LF-

NLFSRs

LF-NLFSR ciphers can be extended in a natural way by allowing several LF-NLFSR

structures which work in parallel, where the keystream combines bits generated by

the LF-NLFSRs in some linear way. If the cipher keystream is a linear combination

of several LF-NLFSRs, then we call it an LC-NLFSR. Assume that Ot
1, · · · , Ot

m are

outputs of m distinct LF-NLFSRs at clock t. Then the keystream Ot of the cipher is

produced as follows:

Ot = Ot
1 ⊕Ot

2 ⊕ · · · ⊕Ot
m

The LC-NLFSR structure is illustrated in Figure 5.4. Although, the attacks by Berbain

et al. [10] cannot be applied to the LC-NLFSR cipher, we are going to show that the

LC-NLFSR cipher is vulnerable to distinguishing attacks.

5.4.1 Distinguishing Attack on LC-NLFSRs

At SAC 2008, Berbain et al. presented their work [10] and mentioned a few open

problems. One of them is the analysis of a linear combination of two LF-NLFSRs.

In this section, we investigate the security of a linear combination of two LF-NLFSRs

(LC-NLFSR). We present an analysis and criteria to design LC-NLFSR schemes.

Example 5.4.1 Let N1 and N2 be two LF-NLFSRs (with nonlinear feedback func-

tions g1 and g2 and linear filter functions L1 and L2, respectively), which are linearly

combined to generate keystream bits (Ot at time t ≥ 0). Let P1 and P2 be a linear
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Figure 5.4: LC-NLFSR

combination of the internal states of N1 and N2, respectively (see Figure 5.5). We

know that:

P t
1 ⊕ P t

2 = Ot,

where P t
i is a linear filter of shift register Ni at clock t and i ∈ {1, 2}.

Based on the method discussed in Section 5.1.1, we assume that the adversary is

able to find two different biased linear relations λ =
⊕

i∈{φ1} P
i
1 and µ =

⊕
i∈{φ2} P

i
2

for N1 and N2, respectively, where φ1 and φ2 represent the sets of effective coefficients.

Clearly, the adversary cannot use the biased relations λ and µ to find a linear bias of

the output bits, because the sets φ1 and φ2 are not necessarily the same. To find a

linear biased relation based on the output keystream bits, we need to find linear biased

relations derived from two LF-NLFSRs in the same instance. Consider linear biased

relations λ and µ in the following polynomial forms:

λ(x) = c0 + c1x+ c2x
2 + · · ·+ xl1

µ(x) = d0 + d1x+ d2x
2 + · · ·+ xl2,

where ci, di ∈ F2 are coefficients of the polynomials λ(x) and µ(x) of degrees l1, l2,

respectively, where l1 > N1, l2 > N2. To find a linear biased relation which is valid for
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Figure 5.5: LC-NLFSR of Example 5.4.1

the output keystream bits, we can multiply λ(x) and µ(x). In this case, the number

of coefficients involved in the product will be higher than the number of coefficients

involved in each polynomial λ(x) and µ(x). So, it would be more efficient if we could

find the polynomials with the lowest number of coefficients.

A different approach is to find the lowest degree polynomial Λ(x) satisfying the

following conditions:

1. λ(x)|Λ(x)

2. µ(x)|Λ(x)

where f(x)|g(x) means g(x) divides f(x). Note that, in addition to LF-NLFSR and

LC-NLFSR, the distinguishing attack can be successfully applied to m LF-NLFSRs

that are linearly combined with n filter functions. For m = 1, n = 1, the authors

of [10] have investigated the security of the cipher against algebraic and correlation

attacks. However their attacks are not applicable for the cases when m,n > 1.

5.5 Linear Filter Properties

An interesting question is about the choice of a linear filter in LF-NLFSR and its impact

on the cipher security. To answer this question, we need to introduce several concepts

and two theorems from the work of Gammel et al [57]. We follow their notations. Let

V be an infinite vector space whose elements belong to Fq and T be a linear operator

defined on V by the relation Tσ = (si+1)∞i=0, where σ = (si)
∞
i=0 over V and si ∈ Fq.
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Further assume that g is a monic polynomial over Fq. We call g a characteristic

polynomial of σ if the operator g(T ) cancels out σ, i.e. g(T )σ = 0, where 0 stands for

the zero vector of V . For any periodic sequence σ ∈ V ,

Jσ = {g ∈ Fq[x] : g(T )σ = 0}

is a non-zero ideal, known as the T -annihilator of σ, on Fq[x]. The minimal polynomial

of σ is a monic polynomial mσ ∈ Fq[x] with Jσ = (mσ) = mσFq[x]. Hence the char-

acteristic polynomials of σ in Fq[x] are the monic polynomials, which are multiples of

mσ. Note that the degree of mσ is defined as the linear complexity L(σ) of σ. In [57],

a method has been given to compute the minimal polynomial of a periodic sequence

from a known characteristic polynomial and a suitable number of initial terms of the

sequence.

Theorem 8 ([57]) Let A = (ai)
∞
i=0 be a periodic binary sequence with minimal poly-

nomial pa ∈ F2[x] and let Lα = α1 +α2x+ · · ·+αnx
n−1 be a non-zero polynomial over

F2. Then, the sequence

B = (bi)
∞
i=0 = (α1ai+n + α2ai+n−1 + · · ·+ αnai)

∞
i=0

is periodic and its minimal polynomial is given by pb = pa
gcd(pa,Lα)

.

Note that this theory allows us to derive new criteria for the design of LF-NLFSR

ciphers. Let A = (ai)
T
i=0 be a sequence generated by a NLFSR, with the minimal

polynomial pa ∈ F2[x]. To design a linear filter Lα achieving the maximum period

of sequence A, pa and Lα should be co-prime. This point shows the importance of

designing an NLFSR with a single full period. Even if an NLFSR generates sev-

eral long sequences, the linearly filtered output sequences may have a shorter period.

Consequently, the best choice for a linear filter function is an irreducible polynomial.

Theorem 9 describes the criterion.

Theorem 9 ([57]) Let A be a periodic binary sequence generated by an n−bit NLFSR

with period 2n−1 (all nonzero n-bit states). The output sequences B have the same pe-

riod and linear complexity if the canonical factorisation of the filter polynomial contains

only irreducible factors equal to x or x− 1, or whose degrees do not divide n.

5.5.1 Some Observations on the Grain LF-NLFSR

The Grain LF-NLFSR proposed in [71] is a modified version of the Grain cipher [70].

The output bits are generated by applying a linear filter function to the internal state
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of NLFSR. The 80-bit NLFSR has the feedback function f given as follows:

st+80 =f(st, st+1, · · · , st+79)

=st+62 ⊕ st+60 ⊕ st+52 ⊕ st+45 ⊕ st+37 ⊕ st+33 ⊕ st+28 ⊕ st+21

⊕st+14 ⊕ st+9 ⊕ st ⊕ st+63st+60 ⊕ st+37st+33 ⊕ st+15st+9

⊕st+60st+52st+45 ⊕ st+33st+28st+21 ⊕ st+63st+45st+28st+9

⊕st+60st+52st+37st+33 ⊕ st+63st+60st+21st+15 ⊕ st+63st+60st+52st+45st+37

⊕st+33st+28st+21st+15st+9 ⊕ st+52st+45st+37st+33st+28st+21

The keystream bits are generated by the following linear function:

Ot = st+1 ⊕ st+2 ⊕ st+4 ⊕ st+10 ⊕ st+31 ⊕ st+43 ⊕ st+56 ⊕ st+63.

Note that if the linear filter function is not designed properly, then the attacks by

Berbain et al. [10] can be applied more efficiently. As mentioned in [10], the size of

the blocks of equations of a constant degree is determined by the difference between

the position of the highest tap index in the update function and the position updated

by the feedback function. It means that (80 − 63) = 17 bits of the internal state

can be represented as a linear combination of other internal state bits. This decreases

the number of independent variables from 80 bits to 63. The algebraic technique,

proposed in [10], keeps the degree of the corresponding system fixed and applies an

algebraic attack to recover the internal state of the NLFSR. System 5.7 shows that

every internal state bit si, i ≥ 80, can be computed as a linear combination of the

output bits and only 63 internal state bits (i.e. si, 17 ≥ i ≥ 79 ).

s80 = O17 ⊕ s76 ⊕ s60 ⊕ s48 ⊕ s27 ⊕ s21 ⊕ s19 ⊕ s18

s81 = O18 ⊕ s77 ⊕ s61 ⊕ s49 ⊕ s28 ⊕ s22 ⊕ s20 ⊕ s19

s82 = O19 ⊕ s78 ⊕ s62 ⊕ s50 ⊕ s29 ⊕ s23 ⊕ s21 ⊕ s20

s83 = O20 ⊕ s79 ⊕ s63 ⊕ s51 ⊕ s30 ⊕ s24 ⊕ s22 ⊕ s21 (5.7)

...

The important point, which has not been investigated in [10], is the critical role played

by the linear filter function in the security of the cipher. Now we are going to discuss

an impact of the linear filter function on the security of the Grain LF-NLFSR cipher.

Lemma 10 The number of the independent variables in System 5.7 is 63.

Proof 8 All new internal state bits (st+80, t ≥ 0) generated by the update function can

be written as (s17, · · · , s79) variables. In other words, the number of the independent

variables in System (5.7) is 80− 17 = 63. �
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Observation 1 : Linear System (5.7) is generated by a specific polynomial called the

generating polynomial. It is shown that the linear system inherits mathematical prop-

erties from the generating polynomial. If the polynomial is not primitive, then the

linear equations are repeated with period less than 280−17 − 1. Note that, because of

dependency of the new generated variables on the variables (s17, · · · , s79) and output

bits (Ot, t ≥ 0), the new variables may not be exactly repeated, but the linear combi-

nations of the independent variables are the same. Consequently, the linear complexity

of the combination of the output bits decreases.

Assuming that the period of repetition of the linear relations of (s17, · · · , s79) is T ,

then Ot and Ot+T satisfy the following relation:

Ot ⊕Ot+T =
T⊕
τ=0

ατOt+τ

where ατ ∈ F2 depends on the linear filter function.
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Our considerations are illustrated below.

Example 5.5.1 In Example 5.1.1, the period of the NLFSR state is T7 = 27 − 1, but

one can find a repetition of linear equations in the internal state with a period less than

T7. For instance, we have:

s7 = s1 ⊕ s3 ⊕ s4 ⊕O1

s8 = s5 ⊕ s4 ⊕ s2 ⊕O2

s9 = s6 ⊕ s5 ⊕ s3 ⊕O3

s10 = s1 ⊕ s3 ⊕ s6 ⊕O1 ⊕O4

s11 = s2 ⊕ s1 ⊕ s3 ⊕O1 ⊕O2 ⊕O5

s12 = s3 ⊕O3 ⊕ s4 ⊕ s2 ⊕O2 ⊕O6

s13 = s3 ⊕O4 ⊕ s5 ⊕O3 ⊕ s4 ⊕O7

· · ·

s38 = s1 ⊕ s3 ⊕ s4 ⊕O1 ⊕O7 ⊕O9

⊕O10 ⊕O11 ⊕O13 ⊕O14 ⊕O16 ⊕O18

⊕O21 ⊕O22 ⊕O23 ⊕O24 ⊕O28 ⊕O29 ⊕O32

s39 = s5 ⊕ s4 ⊕ s2 ⊕O2 ⊕O8 ⊕O10

⊕O11 ⊕O12 ⊕O14 ⊕O15 ⊕O17 ⊕O19

⊕O22 ⊕O23 ⊕O24 ⊕O25 ⊕O29 ⊕O30 ⊕O33

s40 = s6 ⊕ s5 ⊕ s3 ⊕O3 ⊕O9 ⊕O11

⊕O12 ⊕O13 ⊕O15 ⊕O16 ⊕O18 ⊕O20

⊕O23 ⊕O24 ⊕O25 ⊕O26 ⊕O30 ⊕O31 ⊕O34

s41 = s1 ⊕ s3 ⊕ s6 ⊕O1 ⊕O4 ⊕O10

⊕O12 ⊕O13 ⊕O14 ⊕O16 ⊕O17 ⊕O19

⊕O21 ⊕O24 ⊕O25 ⊕O26 ⊕O27 ⊕O31 ⊕O32 ⊕O35

s42 = s2 ⊕ s1 ⊕ s3 ⊕O1 ⊕O2 ⊕O5

⊕O11 ⊕O13 ⊕O14 ⊕O15 ⊕O17 ⊕O18 ⊕O20

⊕O22 ⊕O25 ⊕O26 ⊕O27 ⊕O28 ⊕O32 ⊕O33 ⊕O36

s43 = s3 ⊕O3 ⊕ s4 ⊕ s2 ⊕O2 ⊕O6

⊕O12 ⊕O14 ⊕O15 ⊕O16 ⊕O18 ⊕O19 ⊕O21

⊕O23 ⊕O26 ⊕O27 ⊕O28 ⊕O29 ⊕O33 ⊕O34 ⊕O37

(5.8)

Relation (5.8) shows that the internal state of the NLFSR after just 31 clocks can be

derived from the previous states by adding a certain linear combination of the output
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bits. In particular, Equation (5.9) presents the relation between s38 and s7.

s38 =s7 ⊕O7 ⊕O9 ⊕O10 ⊕O11 ⊕O13 ⊕O14 ⊕O16 (5.9)

⊕O18 ⊕O21 ⊕O22 ⊕O23 ⊕O24 ⊕O28 ⊕O29 ⊕O32

In the case of the Grain LF-NLFSR cipher, the polynomial describing the linear filter

function is not irreducible and it can be factored as follows:

x80 + x76 + x60 + x48 + x27 + x21 + x19 + x18 =(x+ 1)(x3 + x+ 1)(x18)

(x7 + x5 + x4 + x3 + 1)+

(x14 + x13 + x11 + x10+

x8 + x6 + x5 + x+ 1)+

(x37 + x35 + x34 + x32+

x30 + x25 + x24 + x23+

x21 + x17 + x16 + x10+

x6 + x5 + x3 + x2 + 1)

Table 5.1 compares the results by Berbain et al. [10] with our new results for the Grain

LF-NLFSR cipher.

Table 5.1: Comparison of results

Data Complexity Time Complexity The number of

independent vari-

ables

[10] 221 249 80

Our Results 219.28 244.98 80-17=63

5.6 Summary

This chapter investigated the security of stream ciphers based on LF-NLFSRs. First,

we categorised key generations based on LF-NLFSRs. Then, we examined the security

of LF-NLFSRs, random LF-NLFSRs, and a combination of LF-NLFSRs and filter

generators against distinguishing attacks. We investigated a linear combination of

LF-NLFSRs and observed how their structural properties impact on its security. We
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finally highlighted the criteria for the design of stream ciphers that employ linearly

filtered nonlinear sequences. Based on the proposed criteria, we presented an improved

algebraic attack on the Grain LF-NLFSR cipher. The attack has time complexity 244.98

and data complexity 219.28.
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Practical attack on NLM generators

In 2000, Hoon Jae Leea and Sang Jae Moon proposed an improved summation gen-

erator with 2-bit memory (LM-type Generator) [89]. The design was intended to

enhance security properties by adding an extra bit of memory to the combining func-

tion. However, there were still some cryptographic weaknesses in the cipher. Due to

a high correlation between the input variables and output sequences of the combining

function, the authors of [32, 112] showed that the cipher is vulnerable to correlation

attacks. Also, an efficient attack recovering the internal state of the cipher in real time

was published in [67].

The NLM stream cipher [90] is actually a modification of the LM-type generator,

proposed by Hoon Jae Lee, Sang Min Sung, and Hyeong Rag Kim in 2009. The main

idea of the NLM generator is to add a nonlinear feedback shift register to the summation

generator that strengthens the cipher. In addition, the authors of [91] have checked

the performance of the NLM stream cipher for low power consumption applications

and have confirmed that the cipher is suitable for implementations requiring a small

number of gates.

Related Work

Message authentication codes (MACs) are cryptographic tools that provide integrity

and authentication of messages. A typical MAC can be designed using a symmetric

71
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cipher. There are many constructions of stream ciphers with a built-in MAC function-

ality (see [25, 52, 88, 137, 145] as examples). Recently, Lee et al. in [88] have proposed

a lightweight secure data communication framework, based on the NLM stream cipher

and a new MAC function combined with the cipher, to enhance security in wireless

sensor networks.

The NLM stream cipher has also been employed in two RFID mutual authentica-

tion protocols [92, 93] to encrypt sensitive data. In addition, Lee, Kim and Lee have

proposed an internet protocol to establish secure access for mobile users based on the

functionality of the NLM generator [93]. The cryptographic analysis presented in this

chapter shows weaknesses of the NLM generator and discusses their impact on the

security of the protocols it supports.

This chapter is structured as follows. Section 6.1 describes briefly the NLM stream

cipher and NLM-MAC function. Section 6.2 investigates the weaknesses of the cipher

and proposes a state recovery attack on the NLM generator and a forgery attack on

the MAC function. Also, the section discusses the weaknesses of the whole scheme.

Section 6.3 summarises the results.

6.1 Description of NLM-MAC Scheme

In this section, we first describe the NLM-128 generator. Then we explain how the

NLM-MAC algorithm works.

6.1.1 NLM-128 Stream Cipher

The NLM-128 stream cipher is based on summation generation, which uses LFSR and

NLFSR sequences and two memory bits: a carry bit (ci), and a memory bit (di). Figure

6.1 depicts the cipher. The LFSR has primitive polynomial P (x) as follows:

P (x) = x127⊕x109⊕x91⊕x84⊕x73⊕x67⊕x66⊕x63⊕x56⊕x55⊕x48⊕x45⊕x42⊕
x41⊕ x37⊕ x34⊕ x30⊕ x27⊕ x23⊕ x21⊕ x20⊕ x19⊕ x16⊕ x13⊕ x12⊕ x7⊕ x6⊕ x2⊕ 1

NLFSR uses a nonlinear feedback function f(x) of degree 129 defined as
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f(x) = x5 ⊕ x9 ⊕ x13 ⊕ x17 ⊕ x21 ⊕
x25 ⊕ x29 ⊕ x33 ⊕ x37 ⊕ x41 ⊕
x45 ⊕ x49 ⊕ x53 ⊕ x57 ⊕ x61 ⊕
x65 ⊕ x69 ⊕ x73 ⊕ x77 ⊕ x81 ⊕ (6.1)

x85 ⊕ x89 ⊕ x93 ⊕ x97 ⊕ x101 ⊕
x105 ⊕ x109 ⊕ x113 ⊕ x117 ⊕ x121

⊕x125 ⊕ x129 ⊕ (x1 · x2 · · ·x128 · x129).

The carry bit cj and the additional memory bit dj are updated according to the fol-

lowing relations:

cj = aj · bj ⊕ (aj ⊕ bj) · cj−1 (6.2)

dj = bj ⊕ (aj ⊕ bj) · dj−1 (6.3)

Finally, the keystream bit, zj, is generated as shown below:

zj = aj ⊕ bj ⊕ cj−1 ⊕ dj−1 (6.4)

Figure 6.1: NLM family stream cipher
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6.1.2 The NLM-MAC Function

The NLM message authentication code authenticates the two parties, the sender and

receiver, and verifies the integrity of transmitted messages as follows:

1. The sender encrypts a plaintext with an encryption key and an initialisation

vector and generates the corresponding ciphertext (C) using the NLM-128 stream

cipher.

2. The sender computes a MAC value for the ciphertext with a MAC-Key (i.e.,

Kmac ) according to the following steps:

2.1 C is split into 32-bit words and then the last word is padded with zeros if

required.

2.2 Kmac is fed through 32-bit variables l,m, n, p and then Kmac is linearly

combined with 32-bit C words and 32 bits of l.

2.3 After linearly combining all 32-bit C words with l, the NLM-MAC will be

generated as follows:

NLM-MAC = l ⊕m⊕ n⊕ p

3. The receiver checks the validity of the MAC tag and then decrypts the authen-

ticated ciphertext to obtain the plaintext.

The protocol uses a time stamp to check the freshness of the messages. The time stamp

has no impact on our proposed attack.

6.2 Cryptanalysis of NLM-MAC Scheme

In this section, we reveal several weaknesses of the NLM algorithm and demonstrate

the attack’s details. We also prove that the attacker not only can break the NLM

stream cipher but can also generate valid MAC tags for fake messages in real time.

6.2.1 Cryptanalysis of NLM generator

The NLM generator is the strengthened version of the LM generator family. The

generator aims to prevent the attacks published in [32, 67, 112] by using an NLFSR to

make the design resistant against correlation and algebraic attacks. First, we identify

the weaknesses of the cipher.
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1. The algebraic degree of the keystream output bits when the cipher uses two

LFSRs is only 2. In [67], Han and Lee show that the algebraic degree of LM-type

generators can be kept constant (with degree 2). To show this, we take Equations

(6.2) and (6.3) and get

cj ⊕ dj = ajbj ⊕ bj ⊕ (aj ⊕ bj)(cj−1 ⊕ dj−1).

If we put cj−1 ⊕ dj−1 = zj ⊕ (aj ⊕ bj) to Equation (6.4), we obtain the following

equation

cj ⊕ dj = ajbj ⊕ bj ⊕ (aj ⊕ bj)(zj ⊕ (aj ⊕ bj)) (6.5)

Substituting (j + 1) for j in Equation (6.4) and using Equation (6.5), we finally

have

zj+1 = aj + 1⊕ bj + 1⊕ aj ⊕ ajbj ⊕ (aj ⊕ bj)zj. (6.6)

Equation (6.6) creates equations of degree 2 connecting two output bits and the

register outputs.

2. The NLM designers believed that replacing an LFSR by an NLFSR strengthens

the design and makes it resistant against algebraic analysis. To keep the desir-

able properties of the LM cipher, they have used an NLFSR that has the full

period with feedback function (relation 6.1). Although the algebraic degree of

the feedback function (6.1) is high and equal to 129, the nonlinearity is surpris-

ingly low. The attacker can approximate the nonlinear feedback function with a

linear function with the following probability:

Pr(f(x) = L(x)) = 1− 2−129

where L(x) = (x5 ⊕ x9 ⊕ x13 ⊕ x17 ⊕ x21 ⊕ x25 ⊕ x29 ⊕ x33 ⊕ x37 ⊕ x41 ⊕ x45 ⊕
x49⊕ x53⊕ x57⊕ x61⊕ x65⊕ x69⊕ x73⊕ x77⊕ x81⊕ x85⊕ x89⊕ x93⊕ x97⊕ x101⊕
x105 ⊕ x109 ⊕ x113 ⊕ x117 ⊕ x121 ⊕ x125 ⊕ x129.

The second weakness lets the attacker replace the NLFSR with the LFSR defined by

the feedback function L(x). The cipher can be broken in the two following steps.

1. The attacker constructs the nonlinear algebraic system based on equations of the

form (6.6). The number of variables equals the total length of the shift registers

and two memory bits (e.g. n = 258)). Han and Lee [67] prove that the time

complexity of solving the system is O(n5.6) and the attack needs about n2 bits.
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2. Then, the attacker checks the validity of the recovered internal state. To this

end, the attacker needs to generate additional output bits by using the recovered

internal state. The probability of recovering incorrect internal state equals to

2−129 × n2 = 2−129 × (258)2 = 2−111, which is still a negligible probability. In

addition, one can repeat the attack on the next n2 bits of keystream and find the

internal state to verify the previous result.

6.2.2 Analysis of NLM-MAC Function

The most critical point is that the NLM-MAC function is totally linear. This means

that all relations between the MAC secret key Kmac and the ciphertext are linearly

constructed. So, one can compute the linear relation of Kmac words by having only one

MAC tag and its corresponding ciphertext. This leakage reveals the linear relation of

l,m, n, p which are enough to compute a valid MAC value for every arbitrary ciphertext.

6.2.3 Attack on NLM Scheme

Now, we show how we can launch a key-recovery attack on the NLM cipher and forge

the MAC value. What the attacker needs is about 216 bits of keystream, a MAC tag

and its corresponding ciphertext. The attack works as follows:

1. For a ciphertext of length n2 bits, where n is the number of internal bits, the

attacker finds the internal states of the cipher with negligible error probability.

2. For the pair (ciphertext, MAC tag), the attacker applies the attack explained in

Section 6.2.2.

3. The attacker sends an arbitrary ciphertext along with a valid MAC tag, or by

adding new plaintext bits following the original plaintext, he computes ciphertext

and updates a new MAC value. Another approach is to replace the original

plaintext with an arbitrary text and compute the corresponding ciphertext and

MAC tag.

6.3 Summary

In this chapter, we analysed the NLM-MAC scheme proposed for lightweight applica-

tions, such as wireless sensor networks. We discovered some weaknesses leading to two

successful cryptographic attacks. The first attack allows the adversary to recover the

internal state with time complexity of about 244.86. The proposed attack requires about
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216 output bits. The second attack permits the adversary to forge an MAC tag for ev-

ery ciphertext in real time. Finally, we proposed an attack on the protocol, which lets

the attacker generate arbitrary ciphertexts along with a valid MAC tag. In conclusion,

it is shown that the proposed scheme is totally insecure and is not recommended for

use.
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7
Cryptanalysis of RC4(n,m) stream cipher

The RC4 stream cipher was designed in 1987 by Ron Rivest. The cipher uses a large

internal state that is stored in an array of words. Because of its simplicity of design and

the high speed offered by software implementation, the cipher has gained popularity

in many internet applications, such as TLS/SSL and WEP.

In fact, RC4 is a family of stream ciphers indexed by an integer n that indicates the

size of the word in bits. The internal state is an array S of 2n words. RC4 consists of two

algorithms. The first is a key scheduling algorithm (KSA) and it initialises the internal

state. The second is a pseudorandom generation algorithm (PRGA). It generates the

output keystream. The KSA algorithm takes an array S and a secret key K, and

produces the initial state or a secret permutation of {0, 1, 2, . . . , 2n − 1}. The PRGA

algorithm accepts the initial state S and produces a sequence of words. A popular

instantiation of RC4 is for n = 8. In this instantiation, words are 8 bits long and the

array S contains 28 = 256 entries. The security of RC4 has been extensively studied.

The key schedule of RC4 is examined in [55, 97, 98, 113, 119, 133]. Distinguishing

attacks are presented in [54, 61, 97, 103, 120]. The internal state recovery attacks are

investigated in [86, 105].

When the parameter n is bigger, for instance n = 32, the implementation requires

more memory and, in general, the cipher becomes slower. On the positive side, one

would expect that the cipher will be stronger. This line of investigation resulted in

several generalisations of RC4-like stream ciphers, see for example RC4A [119], VMPC

79
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[144], NGG [115] and RC4(n,m) [65]. We focus on the Gong et al. design, RC4(n,m),

given in [65]. In this cipher the state array S no longer consists of 2n entries. Conse-

quently the state is no longer a permutation. This cipher is called RC4(n,m), where

the state array consists of 2n entries (words) and each word is m bits long (n < m).

For a 32−bit architecture, the recommended parameter values are n = 8 and m = 32.

RC4(n,m) is a fast synchronous stream cipher proposed by Guang Gong, Kishan

Chand Gupta, Martin Hell and Yassir Nawaz in [65]. RC4(n,m) produces m bits per

clock. The main idea of design RC4(n,m) is to exploit the 32-bit and 64-bit processor

architectures without increasing the size of the table significantly. The internal state

size of RC4(n,m) is (2nm) +2n+m bits long, since it consists of an array of 2n entries

and each entry takes m bits , one m-bit variable k and two n-bit indexes i and j. Note

that the key length is proposed to be up to 8192 bits but security is provided for keys

up to 256 bits in size.

Previous Work

RC4(n,m) has been proposed based on a 32-bit RC4-like stream cipher [115] by Y.

Nawaz, K.C. Gupta, and G. Gong called the NGG stream cipher, to improve the

security of the cipher against proposed attacks. H. Wu proposed a distinguishing attack

on NGG [140] which could distinguish the keystream outputs from random sequences

with about 3200 output bits. Also, in [84], a new distinguisher and key-recovery attack

on the cipher has been proposed. The attack can distinguish the cipher from a random

stream using only the first keystream word. The attacker also can recover the secret key

by exploiting leaked information from the first few kilobytes of the keystream output.

But the story about the new version called RC4(n,m) or GGHN is different. 1 Note

that none of the above proposed attacks on NGG are applicable to RC4(n,m).

To our best knowledge, there are few useful attacks on RC4(n,m). Paul and Preneel

have proposed a distinguishing attack that needs 232.89 output keystream words to

distinguish the cipher from a random source [120]. The second attack [132], proposed

by Tsunoo, Saito, Kubo, and Suzaki, is a distinguishing attack which uses the bias

along with the first two words of a keystream associated with approximately 230 secret

keys. In the attack, the authors explore the correlation between indices and entries of

the array. The third attack, proposed by Kircanski and Youssef [83], is a fault attack

which extracts the internal state of the cipher by applying induced faults. The attack

also needs 2 keystream words for each of 257× 255 induced faults and approximately

257 non-faulted keystream words.

1NGG (or NGG(n,m)) is a previous version of RC4(n,m) (or GGHN, GGHN(n,m)). In this

chapter, we analyse the security of RC4(n,m) (GGHN).
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Our Contributions

We study the security of RC4(n,m). We will show several weaknesses in the initialisa-

tion and update function of the algorithm. Two distinguishing attacks are described.

The first attack takes an advantage of the bias of the least significant bits of the in-

ternal state. The idea of this attack is similar to [120, 132], but we apply it to the

key scheduling algorithm. The second attack is based on truncated differentials and

requires 256 output words only. Finally, we will present a key-recovery attack, which is

able to find 256-bit secret keys with time complexity of about 213 algorithm operations

for RC4(8, 32). The current state of analysis is summarized in Section 7.3

In application protocols like Wired Equivalent Privacy (WEP), there is a session-

dependent initial value that needs to be introduced as input to the stream cipher to

produce different pseudorandom streams for different sessions. In these protocols, the

attacker can often manipulate the initial value, as for example in the attack [55] on

RC4 used in the WEP protocol, and exploit a chosen IV attack model to investigate the

security of the scheme. Consequently, for such applications, the stream cipher needs

to be designed to accept initial value inputs, and its security needs to be assessed with

respect to initial value inputs chosen by the attacker. RC4(n,m) also uses three input

parameters (Figure 7.1): secret key, initial vector, and initial value (to initialise the

internal state before applying the key scheduling algorithm). From a practical point

of view, the system designer may exploit all the features of the crypto-algorithm to

improve efficiency. In this case, using the initial value and initial vector as variable

input parameters to differentiate applications, and also to increase the security level,

may seem to be reasonable. We study the extreme misuse of RC4(n,m) when the

initial value is assumed to be under the attacker’s control. The protocol initial value

could be incorporated in two ways: either as the ”initial value” input to the KSA*

module, or as part of the secret key input (using a hash function) as the authors of

RC4(n,m) proposed. From the implementation point of view, the first option might

be tempting since it may be simpler to implement. For the sake of clarity, we assume

that the attacker is able to change the initial value. In this case, we will prove that the

cipher is surprisingly insecure against the distinguishing and key-recovery attacks. We

also note that the attacks (5) and (6) in Table 7.2 are not applicable when the attacker

is not allowed to manipulate the initial value.

This chapter is organised as follows. Section 7.1 provides a description of the

initialisation and key generation parts of the scheme. Section 7.2 is the main part

of the study, which contains our distinguishing and key-recovery attacks. Section 7.3

summarises the results.
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7.1 Description of RC4(n,m) Stream Cipher

The RC4(n,m) stream cipher uses the building blocks defined for the RC4 stream

cipher. These blocks, however, are modified by the authors. A general illustration of

RC4(n,m) is presented in Figure 7.1.

Figure 7.1: RC4(n,m) stream cipher scheme

The algorithms of RC4(n,m) are called KSA* and PRGA* to distinguish them from

KSA and PRGA, respectively. To recall, the parameters of RC4(n,m) are defined as

follows. The size of the state array is N = 2n and each entry of the array holds m bits.

Entries are going to be called words. We define a constant M = 2m. For example,

RC4(8, 32) means that the size of array S is 256 and each entry of S holds 32-bit words.

The original key scheduling algorithm of RC4 is described in Figure 2.7. We give the

modified algorithm of RC4(n,m).

• KSA* (key scheduling algorithm of RC4(n,m)) – the algorithm takes a secret

key2 of a size between 40 and 256 bits and a table of initial values as the input

and returns an updated internal state stored in the array S and a m-bit variable

k. The original paper [65] specifies the minimum value of r for RC4(n,m). The

full details are given in Figure 7.2.

• PRGA* (Pseudorandom Generation Algorithm) – it takes the pair: the internal

state 〈S〉 and variable k as the inputs and generates output keystream words.

The pseudo-code of the algorithm is given in Figure 7.3.

2The designers suggest using a hash function to generate the Key array from the secret key and

initial vector to prevent possible attacks on KSA*.
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1 Input: initial values ai, Secret Key Key[j] 0 ≤ i < N, 0 ≤
j < l

2 Output: Internal State 〈S〉, variable k

3 for i = 0 to N − 1

4 S[i] = ai;

5 end for

6 j = 0;

7 k = 0;

8 Repeat r times;

9 for i = 0 to N − 1

10 j = (j + S[i] +Key[i mod l]) mod N ;

11 swap(S[i], S[j]);

12 S[i] = S[i] + S[j] mod M ;

13 k = k + S[i] mod M ;

14 end for

Figure 7.2: KSA*: The key-scheduling algorithm of RC4(n,m)

7.1.1 Notations

[X]0 is the least significant bit of the word X.

[X]i,...,j are (j− i+ 1) consecutive bits of word X starting from position i and through

to j.

7.2 Cryptanalysis of RC4(n,m) Stream Cipher

In this section, we prove that RC4(n,m) is not resistant against distinguishing and

key-recovery attacks. First, we identify weaknesses in the KSA* algorithm. Next, we

exploit these weaknesses and show how to distinguish the output stream of RC4(n,m)

from a random cipher. The data complexity of the attack is 256 output words. Then, we
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1 Input: Internal State 〈S〉, variable k

2 Output: Output (Keystream words)

3 i = 0;

4 j = 0;

5 Repeat the loop

6 i = i+ 1 mod N ;

7 j = (j + S[i]) mod N ;

8 k = (k + S[j]) mod M ;

9 output = (S[S[i] + S[j] mod N ] + k) mod M ;

10 S[S[i] + S[j] mod N ] = S[i] + k mod M ;

Figure 7.3: PRGA*: Pseudorandom generation algorithm of RC4(n,m)

propose a key-recovery attack based on truncated differentials. The time complexity

of the attack to recover a 256-bit secret key of RC4(8, 32) is about 213 algorithm

operations.

In some applications, one may design a cryptosystem in which the initial values

are varied in different sessions. It looks like this may increase the security level of the

cipher, as the attacker cannot use the results from the analysis of previous sessions

generated for different initial values. In the second distinguishing attack and key-

recovery attack, we assume that the initial value can be modified and selected as in

the chosen IV attack. We show that the cipher is susceptible to this kind of attack.

7.2.1 Weaknesses of RC4(n,m)

Before describing our attacks, we discuss properties of the RC4(n,m) cipher that

underpin our attacks.

Non-Randomness Property of Internal States:

The array S has 256 elements whose lengths are 32 bits and the pointer j takes one byte.

This means that, if we choose two indices i, j ∈ {0, 1}8 at random, then the probability

Pr(S[i] = S[j]) = Pr(i = j) = 2−8 assuming that S[i] 6= S[j] for i 6= j, while for two
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random 32-bit words, this probability is 2−32. Now, we can prove that, for every element

in the array S after applying the initialisation algorithm, Pr([S[i]]0 = 0) = 0.5 + 2−8,

where 0 < i < 256.

Weak Keys:

There are several classes for secret keys that generate internal states with short cycles.

The final internal states (after a run of KSA* but before an execution of PRGA*)

can be computed using a certain relationship among the states. For example, in the

following, we show that the state S[0] in the array moves and all other states swap

with this state only.

Example 7.2.1 Let the internal states of the algorithm be equal to the values suggested

in appendix A in [65], and the secret key be 0X0101 ... 01. According to the KSA

algorithm, we can write the following relations:

i = 0, j = 0, k = 0 i = 1, j = 1, k = S[0] i = 2, j = 2, k = S[0] + S[1]

j = 0 + S[0] +K[0] = 1 j = 1 + S[1] +K[1] = 2 j = 2 + S[2] +K[2] = 3

Swap(S[0], S[1]) Swap(S[1], S[2]) Swap(S[2], S[3])

S[0] = S[0] + S[1] S[1] = S[1] + S[2] S[2] = S[2] + S[3]

k = 0 + S[0] k = S[0] + S[1] k = S[0] + S[1] + S[2]

The above relations show that, in RC4(n,m), there are Finney states [66] that swap

S[i] with S[i + 1] and both indices i and j are incremented by 1. Other weak keys can

be found using probabilistic relations. Note that other weaknesses have been deeply

investigated in [9] recently.

Weak States

We are going to find several initial states for which the outputs will be distinguishable

from a truly random source. The main weakness, which we exploit here, is a low

diffusion of bits in KSA*.

1. For an arbitrary secret key, if the least significant bits of the words stored in the

initial states are equal to zero, then the least significant bits of keystreams will

be zero with the probability one. We can extend this observation for the least

significant 2, 3, · · · , 32-bit of the initial states.

2. Assume that

S[i] (mod 2n) = 1−K[i (mod l)]

and

S[0] (mod 2n) = −K[0]
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then j will be equal to i in the first round. This means that, after one round, all

the internal states will be even (the least significant bits of internal states will

always be zero).

3. Suppose that K[0] is odd and K[1] = K[0]−2. Also assume that (S[0]) mod 2n =

(1 − K[0]) mod 2n, S[1] is even, (S[2]) mod 2n = (2 − K[2]) mod 2n and

(S[i]) mod 2n = 1 − K[i mod l] 3 < i < 255, then the internal states after

one round will be even. In other words, the least significant bit of the keystreams

will be always zero.

Low Diffusion Property

Clearly, the update function of RC4(n,m) is like a T-function [85]. This means that

the i-th bit of output depends on the i-th bit of input and all less significant bits

(i.e. bits i− 1, . . . , 0) of the input. This is a serious weakness for RC4(n,m) because,

if the cryptanalyst changes the most significant bits of initial values (ai) in KSA*,

then only the most significant bits of the keystreams will be changed (other bits will be

unchanged). In the RC4 initialisation algorithm, all bytes of the initial state and secret

key are involved in providing the internal state as an input for the PRGA to generate

the output keystream. This means that, by complementing one bit of the initial state,

all bits of the keystream will be changed with a probability close to 1
2
. In fact, this

property, called the avalanche criterion, is one of the most essential properties of a

secure cipher. However, this property has been confirmed only for the least significant

bytes of the initial value array. In other words, if we change the I−th bit (32 > I ≥ 8),

then more significant bits i may change (i > I), while less significant bits (with index

i < I) are not going to change. This property of the KSA* algorithm of RC4(n,m)

is illustrated in Figure 7.4. Now, we are ready to describe the proposed attacks on

RC4(n,m).

7.2.2 Distinguishing Attack on RC4(n,m)

The first attack

This attack is based on the non-randomness property of the internal states, which is

described in the previous section. Consider line 12 of Figure 7.2 in the r− th round of

the algorithm.

Proposition 7.2.1 Assume that (1) The index j at line 10 of KSA∗ is uniformly

distributed in {0, ..., N − 1} and independent of i, and (2) if i 6= j then S[i]+S[j] mod
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Figure 7.4: RC4(n,m): Another perspective of KSA*. According to the Low Diffusion
Property, the P-th slice of the internal state in the r-th round of KSA* (r is an arbitrary
round) depends on the P-th slice of the internal state and previous slices in the initial state.
Also, any random difference in the P-th slice in the initial state does not change the Q-th
slice in the r-th round of KSA*.

M is independent and uniform in {0, ..., N − 1}. Then, for all elements of Array S,

after performing KSA∗ we have:

Pr([S[i]]0 = 0) =
1

2
(1 +

1

2n
) 0 ≤ i < 2n

Proof 9 First, we know that, if i = j, then in line 12 we have that S[i] = 2·S[i] mod

M is even since M is even. And then, Pr([S[i]]0 = 0) = Pr([S[i]]0 = 0|i 6= j) · Pr(i 6=
j) + Pr([S[i]]0 = 0|i = j) · Pr(i = j) = 1

2
· 2n−1

2n
+ 1 · 1

2n
= 1

2
· (1 + 1

2n
). �

Thus we find that all the least significant bits of the array S contents are biased. If

the keystream just depended on the array S, then we could exploit the bias to mount

a distinguishing attack. But the keystream output is the summation of a word from
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the array S and the variable k. In addition, the variable k is the sum of randomly

chosen elements of the array S. It can be shown that the least significant bit of the

variable k is also biased but the bias is very close to zero. So, we need to use a

combination of outputs to eliminate the effect of variable k and find a biased linear

relationship. For instance, the linear combination of two consecutive outputs can reveal

the expected bias. To do this, let the event E denote the condition in which the relation

kt+1 = kt + S[y] is satisfied as follows:

Output[t] = S[x] + kt mod M,

Output[t+ 1] = S[y] + kt+1 mod M,

where x and y are randomly chosen indices and t = 0. Now, by adding Output[0] and

Output[1], we get

[Output[1]⊕Output[0]]0 = [S[x]]0.

We can formulate the following proposition.

Proposition 7.2.2 In RC(n,m), the probability of ([Output[1] ⊕ Output[0]]0 = 0) is
1
2
· (1 + 1

2(2·n)
).

Proof 10 Pr([Output[1]⊕Output[0]]0 = 0) = Pr([Output[1]⊕Output[0]]0 = 0|E).P r(E)+

Pr([Output[1]⊕Output[0]]0 = 0|Ec)·Pr(Ec) = (1
2
·(1+ 1

2n
))· 1

2n
+ 1

2
· 2n−1

2n
= 1

2
·(1+ 1

2(2·n)
).

�

For an ideal PRBG, the above probability would have been exactly 1
2
. We can

extend our assumption for more than two consecutive output words in which S[x] is

not updated in time t = 0 (or t = 0 and t = 1 ). In other words,

Output[0] = S[z] + kt mod M ;

Output[1] = S[x] + kt+1 mod M ;

Output[2] = S[y] + kt+2 mod M.

The probability of [Output[2] ⊕ Output[1]]0 = 0 can be simply computed by applying

Bayes’ theorem as follows:

Pr([Output[2]⊕Output[1]]0 = 0) =

Pr([Output[2]⊕Output[1]]0 = 0|x 6= z) · Pr(x 6= z)+

Pr([Output[2]⊕Output[1]]0 = 0|x = z) · Pr(x = z) =
1

2
· (1 +

1

2(2·n)
− 1

2(3·n)
).
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The above attack is a generalisation of the attack proposed in [120, 132] with

emphasis on the initialisation part of the algorithm. In the next section, we will

present distinguishing and key-recovery attacks, which exploit a low diffusion property

of KSA*.

Algorithm 1 Distinguishing Attack Scenario on RC4(n,m)

Input: The first two (four) output words corresponding to 24.n randomly chosen

secret keys.

Output: To distinguish between RC4(n,m) outputs and a truly random source.

1. Generate Outputk[0] and Outputk[1] , 0 ≤ k < 24.n, Outputk[i] is i-th output

associated with k-th secret key.

2. S =

∑
k(Output

k[0]⊕Outputk[1])

24.n
;

3. If S ≥ 1

2
then the algorithm which is analysed in this test is RC4(n,m).

Note that the required amount of data to distinguish a biased sequence Z in which

Pr(Zi = 0) = 1/2 + 1/2n from a truly random sequence is determined as the Chernoff

bound by an exponential function in n is greater than 22n · ln 1√
1−PS

where PS is the

expected success probability. In Table 7.1, the success probabilities in theory and

practice are shown.

Table 7.1: Experimental Results and Comparison between theory and simulation

n The required

amount of data

Success Probability

Pe in Theory

The founded Suc-

cess Probability

Pe in simulation

4 216.58 0.95 0.97

4 214.87 0.60 0.59

5 220.58 0.95 0.94

5 218.87 0.60 0.58

The second attack

The second distinguishing attack is based on differential cryptanalysis [21]. Differential

attacks on stream ciphers use a chosen initial value or other public variables. This kind

of attack can be launched if the adversary has access to the cipher and can manipulate

the external (public) elements. But, of course they cannot see the secret elements that
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are assumed to be hidden by, for example, tamper proof hardware. We are going to use

a generalisation of differential cryptanalysis called truncated differential cryptanalysis.

Whereas the standard differential cryptanalysis considers the full difference between

two inputs, the truncated variant takes differences that are only partially determined.

So, the attacker can predict only some of the bits.

As noted in Section 7.2.1, a modification of more significant bits will not change

less significant bits. This property is rephrased below.

Remark 1: Let X + Y = Z , X, Y, Z ∈ GF (2m), ∆ = R 0. . . 0︸ ︷︷ ︸
m−k

, R ∈ GF (2k) and

R be an arbitrary differential input then, for(X ⊕∆1) � Y = Z∆1

(X ⊕∆2) � Y = Z∆2

(7.1)

where ∆1 = R10 · · · 0, ∆2 = R20 · · · 0, and R1 6= R2, we have:

[Z∆1 ]0···(m−k) = [Z∆2 ]0···(m−k).

In modular addition, the most significant bits do not affect the least significant bits.

So, applying difference vectors to more significant bits changes just the corresponding

output bits and the difference for less significant bits will be zero.

Remark 2: If Y = (X ⊕ ∆) and ∆ = 1 0 · · · 000︸ ︷︷ ︸
m−1

then X � X = Y � Y =

(2 ·X) mod 2m. (i.e. the differential value in the output will have disappeared.)

Theorem 11 Given the RC4(n,m) cipher. Let there be two initial values IV1 and IV2,

where IV2[i] = IV1[i]⊕∆IV [i] and ∆IV [i] = 0XRR 00 · · · 00 is a truncated differential

vector. The length of ∆IV [i] is m bits and 0 ≤ i < 2n. For ∆IV [i], the byte RR is

different from zero. Then, for all output keystream words Output1 and Output2 related

to IV1 and IV2, we have:

[Output1[j]]0···(m−8) = [Output2[j]]0···(m−8)

with probability one, where [Outputk[j]]0 is the least significant bit of the j-th output

keystream word, j ≥ 0, and k=1,2.

Proof 11 For two initial vectors IV1 and IV2, the least significant bytes are the same.

According to lines 9 and 10 in Figure 7.2 and lines 6 and 7 in Figure 7.3, the indices i

and j are all updated modulo 28. So, the index j, which depends on the secret key bytes

and the least significant bytes of the internal state, will be the same. Consequently,
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updating the internal state and variable k is similar. However, updating array S and

variable k is based on modular addition, then changing MSB does not change the least

significant bits (see Remark 1), and the bits with less significant bits will remain the

same. �

A distinguishing attack on RC4(8, 32) based on Theorem 11 is shown as Algorithm 2.

Algorithm 2 Distinguishing Attack Scenario on RC4(8, 32)

Input: Two initial vectors IV1 and IV2 which satisfy Equation 7.2.

Output: To distinguish between RC4(8,32) outputs and a truly random source.

1. Select k elements to apply differential input vectors from set K (|K| = k) where

1 ≤ k < 28.

2. Select differential vectors ∆IV [i] = 0xRR000000 where i ∈ K and RR are non-

zero and arbitrary bytes.

3. Generate 2n output keystream words Output1[j] and Output2[j] corresponding

to IV1 and IV2 whereIV1[i]= IV2[i] ⊕ ∆IV [i] i ∈ K

IV1[i]= IV2[i] otherwise
(7.2)

4. Compute output differential vector as ∆Output[j] = Output1[j]⊕Output2[j]

5. If the general form of ∆Output[j] = 0xSS 00 00 00 where SS is output truncated

differential bytes, then the algorithm which is analysed in this test is RC4(8,32).

7.2.3 Key-Recovery Attack on RC4(n,m)

Now we prove that the attacker is able to recover the secret key of RC4(n,m) by

guessing each byte of the secret key sequentially. There are three phases of our key-

recovery attack.

1. Guess each byte of the secret key,

2. Generate appropriate input differential initial values by Equation 7.2,

3. Verify the validity of the guess.

Without loss of generality, we first focus on recovering the first byte of the secret

key. According to Figure 7.2, this byte first affects the S[0] array. Let us define

∆ = 0X80 00 00 00. We consider K = {0}, and ∆IV [0] = ∆, and SK[0] as the least
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Algorithm 3 Key-Recovery Attack Scenario on RC4(8, 32) (First byte of Secret Key)

Input: Two initial vectors IV1 and IV2 which satisfy Equation 7.3.

Output: Key Recovery of SK[0] (the least significant byte of the secret key).

1. Guess SK[0]=ŜK0,

2. Compute [IV1[0]]0···7 = [IV2[0]]0···7 = (−ŜK0) mod 28,

2. Select a differential vector ∆IV [0] = ∆,

3. Generate 28 output keystream words Output1[j] and Output2[j] corresponding to

IV1 and IV2 where IV1[0]= IV2[0] ⊕ ∆IV [0]

IV1[i]= IV2[i] 1 ≤ i < 28
(7.3)

4. Compute output differential vector as ∆Output[j] = Output1[j]⊕Output2[j]

5. If ∆Output[j] = 0X00 00 00 00, then ŜK0 is the least significant byte of the secret

key with probability close to one. Otherwise, Go to step 1.

significant byte of the secret key. Now the key-recovery attack on RC4(8, 32) can be

designed based on Theorem 11 and is shown as Algorithm 3.

Remark 3: When the attacker finds a ŜK0 which is confirmed in step 5, then they

have to repeat the scenario with the same ŜK0 and different IV1[i] and IV2[i] to be

sure that the guessed ŜK0 is the least significant byte of the secret key with probability

one.

Remark 4: The attack efficiency does not depend on the parameter r. This means

that, if the designers increase r, the attack will still be applicable.

To recover all bytes of the secret key, we simply need to perform the above sequences

again. For example, to recover the k − th (0 ≤ k < 32 for 256-bit secret key) byte of

the secret key, the attacker has to find all bytes of SK[i] where 0 ≤ i < k according to

Algorithm 4.

To verify the theoretical results, we implemented the key-recovery attack on RC4(8,32).

The attack can recover a 256-bit secret key in less than one second on a standard PC.

Also, the attack complexity is not different for other members of the RC4(n,m) family.

7.2.4 Discussion

Thwarting the proposed attacks: The attacks proposed in this chapter were based on

two critical weaknesses. The first weakness is the non-randomness property of the

internal state after applying KSA*. This weakness is actually a natural attribute of
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Algorithm 4 Key-Recovery Attack Scenario on RC4(8, 32)

Input: Two initial vectors IV1 and IV2 which satisfy Equation 7.4.

Output: Key Recovery of SK[k] (the k-th byte of the secret key).

1. Guess SK[k] = ŜKk,

2. Compute [IV1[k]]0···7 = [IV2[k]]0···7 = (−ŜKk) mod 28,

2. Select differential vector ∆IV [k] = ∆,

3. Generate 28 output keystream words Output1[j] and Output2[j] corresponding to

IV1 and IV2 where
[IV1[i]]0···7 = [IV2[i]]0···7 = SK[i] 0 ≤ i < k

IV1[i]= IV2[i] ⊕ ∆IV [i] i = k

IV1[i]= IV2[i] = arbitrary 32− bit values k < i < 28

(7.4)

4. Compute the output differential vector as ∆Output[j] = Output1[j]⊕Output2[j]

5. If ∆Output[j] = 0X00 00 00 00, then ŜKk is the the k − th byte of the secret key

with a probability close to one. Otherwise, Go to step 1.

the cipher. The main difference between RC4 and RC4(n,m) is that the length of

elements of internal i and j are kept fixed. The second weak point is a low diffusion

property. This weakness can be removed by using some simple linear operations like

bit-rotation to relocate the positions of the least and most significant bits of the internal

states during the running of KSA* and PRGA*.

7.3 Summary

The security of RC4(n,m) was investigated, and in particular the initialisation part of

the algorithm was analysed. The proposed attacks were based on the non-randomness

of the internal state, which led to a statistical distinguishing attack. In addition, based

on low diffusion property in KSA* and PRGA*, the attacker can apply a truncated

differential technique to recover all bytes of the key array. These attacks are only

applicable when the protocol allows manipulation of the initial value. In this scenario,

we have shown that the output keystream can be distinguished from a truly random

sequence with possession of just 256 output words with success probability near one.

By using this weak point, a practical key-recovery attack, which recovers a 256−bit

secret key with time complexity about 213 algorithm operations, has been proposed.

Table 7.2 gives a comparison between the previous attacks and the proposed attacks.



94 Cryptanalysis of RC4(n,m) stream cipher

Table 7.2: Comparison between the previous attacks and our proposals

Attack

type

The result Data Complexity Time

Complex-

ity

Comments

1 Correlation

attack

[120]

Distinguishing 232·82 output words of

a single stream

232·82 Applied

on

RC4(8,32)

2 Correlation

attack

[132]

Distinguishing 230 first two words of

keystreams

230 Applied

on

RC4(8,32)

3 Fault at-

tack [83]

Internal state

Recovery

2 keystream words.

For each of 257 × 255

induced faults and

approximately 257

non-faulted keystream

words

≈ 216 +

negligible

additional

complexity

to perform

attack

Applied

on

RC4(8,32)

4 Our corre-

lation at-

tack

Distinguishing 24·n 24·n Applied

on

RC4(n,m)

5 Our differ-

ential at-

tack

Distinguishing 2n output words corre-

sponding to two initial

vectors

2n+1 Applied

on

RC4(n,m)

6 Our differ-

ential at-

tack

Secret Key

Recovery

2n × 2n output words

corresponding to two

initial vectors to re-

cover each key byte

(L/n) · 2n

where L is

secret key

length in

bits

Applied

on

RC4(n,m)



8
Cryptanalysis of a hash function based on

RC4

Hash functions are indispensable for a variety of security applications that include

message authentication, integrity verification, and digital signatures. Recent develop-

ments in the analysis of hash functions have demonstrated that most members of the

MD family have many weaknesses that may compromise the security of the applica-

tions in which the hash functions are used. It turns out that for hash functions, such as

MD5, SHA-0 and SHA-1 [134–136], there are attacks that allow us to find random col-

lisions faster than expected. These advances in the cryptanalysis of hashing functions

are the main motivation for the NIST call for the new SHA-3 cryptographic hash stan-

dard [1]. SHA-3 was public and generated a great deal of interest in the cryptographic

community.

There has been a constant flow of new design ideas and new analysis techniques.

One such idea is the use of stream ciphers to construct new hash functions. The RC4

stream cipher seems to be an attractive option to build a fast, and lightweight hash

function [33, 142]. It is a very simple and elegant cipher that can be implemented

using relatively modest computing resources. More importantly, RC4 has been studied

for many years, and its efficiency makes it a good cryptographic tool for building

hash functions that can be implemented as a lightweight algorithm. In 2006 Chang,

Gupta, and Nandi [33] proposed a hash function, called RC4-Hash, that uses RC4 as

95
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the building block. The compression function in RC4-Hash applies the key scheduling

algorithm (KSA) that is one of the main components of RC4. Because of a specific

structure of RC4-Hash, generic attacks, that are so effective against hash functions

from the MD family, fail to work. However, in 2008 Idesteege and Preneel [73] showed

that RC4-Hash is not collision resistant.

Recently Yu, Zhang, and Haung [142] came up with an another hash function design

that is based on RC4. The function was called the RC4-based hash function and we

are going to call it RC4-BHF. In addition to the KSA function, the RC4-BHF hash

function also uses two other RC4 functions, namely H-KSA* and H-PRGA*. The aim

of the designers was to avoid the attacks by Idesteege and Preneel [73]. The H-KSA*

function is similar to KSA but without the initialisation part. The H-PRGA* is similar

to the original pseudorandom generation algorithm (PRGA) of RC4 with the difference

that H-PRGA* does not generate output but changes the internal state. Note that

padding of messages in RC4-BHF is different from the one used in RC4-Hash. A brief

description of RC4-BHF is given in the next section. Full details about RC4-BHF can

be found in [142]. The authors of RC4-BHF argue that their hash function is collision

resistant and very efficient. They claim that RC4-BHF is roughly 4.6 times faster than

SHA-1 and 16 times faster than MD4 [142].

In this chapter, we show that their claim about the security of RC4-BHF is not

valid and we describe how to find collisions. We propose two attacks including a

collision attack and distinguishing attack. In the first attack, by using the periodic

nature of the internal states, we construct colliding message pairs with complexity of

213 compress function operations. Also, we exploit this attack to make multicollisions.

In the second attack, we show that the output of RC4-BHF is distinguishable from

random sequences.

This chapter is structured as follows. Section 8.1 gives details of the RC4-BHF

construction. Section 8.2 contains the main results of this study. In this section, after

identifying weak points of the algorithm, we present a method for finding colliding

messages, and also show how to construct a distinguisher for the hash function. Section

8.3 summarises the chapter.

8.1 Description of the RC4-BHF hash function

The hash function, RC4-BHF, was designed by Yu, Zhang and Hung in 2010. This

hash function uses the algorithms similar to the KSA and PRGA used in the RC4

stream cipher. These blocks, however, are modified by the authors. The algorithms in

question are:
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• KSA (key-scheduling algorithm of RC4) – this function takes as an input a 64-

byte message M = (M [0], . . . ,M [63]) and outputs the internal state 〈S, i, j〉,
where S = (S[0], . . . , S[255]) is a 256-byte sequence and j is a 1-byte index; also

a 1-byte index called i. The function is described in Figure 2.7. Note that the

KSA function is called at the very beginning of RC4-BHF to initialise the internal

state.

• H-KSA* – the function takes two inputs: the message M and the internal state

〈S, i, j〉, as the input and provides an updated internal state. The full details are

given in Figure 8.1.

1. Input: Message M and Internal

State 〈S, i, j〉

2. Output: Updated Internal State

〈S, i, j〉

3. for i = 0 to 255

4. j = (j + S[i] + M [i mod 64])

mod 256;

5. swap(S[i], S[j]);

6. end for

Figure 8.1: H-KSA* function

• H-PRGA* (pseudorandom generation algorithm) – the function takes two inputs:

an integer len and the internal state 〈S, i, j〉, as the input and generates an

updated internal state on its input. The pseudocode of the function is given in

Figure 8.2.

The building blocks (functions) are used to create a sequence of compression func-

tions according to the well-known Merkle-Damg̊ard (MD) structure. Given a binary

message M of arbitrary length, the hashing algorithm proceeds through the following

steps:

1. padding – a binary representation of the padding length is appended to the

message and then an appropriate number of bits (constant or random) is attached
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1. Input: Integer len, Internal State

〈S, i, j〉

2. Output: Updated Internal State

〈S, i, j〉

3. for i = 0 to len

4. i = i+ 1 mod 256;

5. j = (j + S[i]) mod 256;

6. swap(S[i], S[j]);

7. end for

Figure 8.2: H-PRGA* function

so the number of bits in the resulting message is a multiple of 512. Consequently,

the message can be represented as a sequence of M = (M1, . . . ,Mn), where each

Mi is a 512-bit long (or alternatively 64-byte) sequence,

2. compression – the message M1 is used to initialise the internal state 〈S, i, j〉 as

follows

〈S, i, j〉 ← KSA(M1)

and then the function H-PRGA* modifies the state depending on the length len1

of the message M1 (len1 = M1 mod 25)

〈S, i, j〉 ← PRGA∗(len1, 〈S, i, j〉).

For k; k = 2, . . . , n, the internal states are updated step by step

〈S, i, j〉 ← PRGA∗(lenk, KSA
∗(Mk, 〈S, i, j〉)

where lenk = Mk mod 25. Figure 8.3 illustrates the compression process. Note

that the number of rounds applied in H-PRGA* is controlled by the integer

leni = (Mi mod 25).

3. truncation – the output of the compression step consists of 258 bytes (256 bytes

of the state together with 2 index bytes). The final hash value includes the least

significant bit of each state byte and the indices. This means that the hash value

is 272 bits long.
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Figure 8.3: RC4-BHF scheme

The internal state of RC4-BHF is 〈S, i, j〉, where S indicates the internal state of

RC4-BHF and (i, j) are the indices used in the KSA, H-KSA*, and H-PRGA* functions.

The state can be divided into four parts S0, S1, S2, S3, where

S0 = {sk | 0 ≤ k < 64},
S1 = {sk | 64 ≤ k < 128},
S2 = {sk | 128 ≤ k < 192},
S3 = {sk | 192 ≤ k < 256},

and sk is the k-th byte of the internal state.

8.2 Cryptanalysis of RC4-BHF

In this section, we prove that RC4-BHF is not collision resistant. The proposed attack

takes 213 compression function operations and negligible memory. To apply a collision

attack on the algorithm, first we describe the weaknesses of the hashing algorithm and

then, by exploiting these weaknesses, we propose a collision attack and also present
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two distinguishers to tell apart the outputs generated by either RC4-BHF or a random

number generator.

8.2.1 The weaknesses of RC4-BHF

Before describing our attack, we discuss properties of RC4-BHF that underpin our

attack.

1. The internal state is controlled by the input messages and can be manipulated

by an appropriate choice of message bytes. In particular, we will show that we

can select messages in such a way that the internal state repeats periodically.

2. The execution of the function H-PRGA* is controlled by the integer len. Note

that if len = Mk mod 25 = 0, then the function H-PRGA* is not executed and

can be skipped.

3. The index i is defined to be a byte or integer between 0 and 255. But, after

each execution of the function H-KSA*, the index i = 255. Similarly, after each

execution of H-PRGA*, the index i can be an integer between 0 and 31. These

properties are not used in the collision attack, but they may be exploited to

enhance a distinguishing attack on the scheme.

Now we can describe our collision attack on RC4-BHF.

8.2.2 Collision attack on RC4-BHF

The attack takes advantage of the periodicity of the function H-KSA* as formulated

in the following theorem.

Theorem 12 Given the function H-KSA* of RC4-BHF. Let the input internal state

be S = 〈S0, S1, S2, S3, 63〉, the output internal state be S ′ = 〈S ′0, S ′1, S ′2, S ′3, 63〉 and the

message sequence be M = (m0, . . . ,m63), where mi = −(si−1) mod 256; 0 ≤ i < 64 .

Then

KSA∗(〈S0, S1, S2, S3, 63〉) = 〈S ′0 = S0, S
′
1 = S2, S

′
2 = S3, S

′
3 = S1, 63〉

Proof 12 It can be easily shown by applying H-KSA* to the internal state or by induc-

tion, such as a generalisation of Theorem 2 from [73]. Denote by 〈S(i), j(i)〉 the internal

state of RC4-BHF after the i-th step of the compression function H-KSA*. Note that

M [i mod 64] = mi mod 64 = −(si mod 64 − 1) mod 256.
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First, we prove by induction that, for every i < 256, the following equations hold:

j(i) = i+ 63 mod 256, and

S(i)[i+ 1 mod 256] = si+1 mod 64,

S(i)[i+ 2 mod 256] = si+2 mod 64,

...

S(i)[i+ 64 mod 256] = si+63 mod 64.

It is clear that this holds before the first step, i.e., for i = −1, since j(−1) = 1,

S(−1)[0] = S[0] = s0 till S(−1)[63] = S[63] = s63. Assume that the condition holds

after step i (i < 255). Then, the update of the pointer j in the (i+ 1)-th step is

j(i+1) = j(i) + S(i)[i+ 1] +M [i mod 64] mod 256

= ((i+ 63) + si+1) mod 256

+ (−(si+1 mod 64− 1) mod 256

= i+ 64 mod 256.

Thus, S(i+1) is found by swapping the (i+ 1)-th and (i+ 64)-th element of S(i). Hence

S(i+1)[i + 64 mod 256] = S(i)[i + 1 mod 256] = si+1 mod 64. Of course, S(i+1)[i +

64 mod 256] = S(i)[i + 2 mod 256] = si mod 64. This implies that the condition also

holds for step i+ 1. After 254 steps, all the elements of S have been rotated as follows:

S0, S1, S2, S3

S0, S2, S3, S1

Observe that, if we apply the result of Theorem 12 in three consecutive calls to H-KSA*

(3 ∗ 256 steps), then the first state repeats. The situation is illustrated below:

S0, S1, S2, S3

H−KSA∗
=⇒ S0, S2, S3, S1

H−KSA∗
=⇒ S0, S3, S1, S2

H−KSA∗
=⇒ S0, S1, S2, S3

This means that the application of the function H-KSA* three times to the state causes

the same state to be reached. Note that, in addition to the above periodic behaviour of

the internal states, one can choose other specific messages to achieve the same periodic
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behaviour with longer periods. In [73], this behaviour of the internal states of the RC4

stream cipher is investigated and the reader is referred to it for details. Note that the

construction of colliding message pairs is easy. To apply the attack to RC4-BHF, we

need to satisfy two conditions:
Condition 1: j must be equal to 63, and

Condition 2: the least 5 significant bits of

− (s63 − 1) mod 256 must be zero.

(8.1)

We expect that these requirements will be satisfied after testing ≈ 28 ∗25 messages.

8.2.3 Other Period Properties

In addition to cycles of length 3, other cycles can be found for the H-KSA* function.

In fact, the term M [i mod 64] in the functions KSA and H-KSA* can be applied to

other input messages to construct internal states with periods 7, 15, 31, 63, 127.

In a similar way to Theorem 12, we can formulate appropriate conditions for the

internal state and the message M . The results are summarised in Table 8.1.

Using Table 8.1, we can find other colliding messages. Finding an appropriate internal

state requires the same effort (given by the time complexity column) for all cycles.

Although we present two methods for the cycle equal to 3, these methods can be easily

generalised for other cycles different from 3. In the next section we show how we can

construct colliding messages.

8.2.4 Finding Collisions

To construct colliding messages, two methods can be used.

• Method 1. In this method, after applying message M0, we obtain the suitable

internal state to satisfy the conditions (8.1). Then, by applying message M1

three times and padding the block, the hash value will be computed. Now, to

generate other same hash value, we can repeat message M1, as in blocks of 3,

and finally apply a padding block, and compute the final hashing digest. The
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Table 8.1: Properties and conditions to apply a collision attack on Algorithm for other
cycles

The

Cycle

Length

Condition

1

Condition 2 Time Com-

plexity

Relations

1 7 j = 31 −(s31 −
1) mod 64 = 0

28.25 mi = −(si−1) mod 256 , mi =

mi+32, 0 ≤ i < 32

2 15 j = 15 −(s15 −
1) mod 64 = 0

28.25 mi = −(si−1) mod 256 , mi =

mi+16 = mi+32 = mi+64, 0 ≤
i < 16

3 31 j = 7 −(s7 −
1) mod 64 = 0

28.25 mi = −(si−1) mod 256 , mi =

mi+8 = mi+16 = ... = mi+56,

0 ≤ i < 8

4 63 j = 3 −(s3 −
1) mod 64 = 0

28.25 mi = −(si−1) mod 256 ,mi =

mi+4 = mi+8 = ... = mi+60,

0 ≤ i < 4

5 127 j = 1 −(s1 −
1) mod 64 = 0

28.25 mi = −(s0 − 1) mod 256

i even mi =

−(s1 − 1) mod 256 i odd

6 255 j = 0 −(s0 −
1) mod 64 = 0

28.25 mi = −(s0−1) mod 256 , 0 ≤
i < 64

following relations show how colliding messages can be constructed by method 1.

M0 = M0 || Padding
M1 = M0 ||MP || Padding
M2 = M0 ||MP ||MP || Padding
...

Mn = M0 ||MP ||...||MP || Padding

where MP = M1||M1||M1 and M i, 0 ≤ i ≤ n, are colliding messages.
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Table 8.2: Example for Method 1 including M0, M1, M2 and generated hash value.

M0 (64-byte) M1 (64-byte) Hash Value

(272 bit)

1 03DE074C6CB1A37

A201C0C8187BA03

6E87A3CCC89C35D

F742B14E0D6136F

D13986858771176

85ABE130121F415

555ED9D506B5CF4

11DA3B3CF066C04

11DC5548

FF520B5101BFC98

C743E178B6521E7

A30C2E95C43FA77

B25E2E8BB5A3DD0

D9CF299EDA05B11

8CA1A57676E4FB8

041FF520BCED417

8A94D7FCD399347

AA9F5B40

0350EA16

4598FCEC

553FF9C6

9535B628

1F87F266

01D26F48

EEF72985

64265C95

007B

2 004BB7F857C5080

B47B92603AED617

99F14278CAA881C

CD997991397E173

9FE27885236CD8A

E0DBEF561157C71

0616EA139D1DAF7

5A5C0D9FC3CB222

0D879471

52D5AFD2DA1ACFA

B46F514E32F9784

086CB228253A649

BE57835E699275A

799CC8D4F2D7F3D

B95F8A21DAA37DD

94E4AC128BB6290

9E0B566560487BA

6EC3EA00

E42DD715

2E9EAB3F

4851B2A0

AFD358F2

B98DF972

0CD285FD

CA314801

842ECF4B

0009

We expect that after 28.25 = 213 executions of the compression function for

random messages, a suitable M0 can be found. Table 8.2 presents two examples

of messages M0, messages M1 and hash values obtained using Method 1.

Note that changing the length of input message M i has no effect on the padding

content. So, we can construct an arbitrary number of colliding messages with the

same hash value. This property can be used to compute multi-collisions.

• Method 2. The principle used is the same as in the previous method. We first

find two messages M0 and M1 which satisfy the condition (8.1). After these two

messages, messages M1, M3 can be made using Theorem 12. Finally, collision

pairs can be made by the following relations:

M0 = M0||M1||M1||M1||M2||Padding
M1 = M0||M2||M3||M3||M3||Padding
...
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We expect that, after (28.25)2 executions of the compression function for random

messages, a suitable M0 and M2 can be found. Table 8.3 shows two examples of

messages M0, M1 M2, M3, and hash values obtained using Method 2.

Table 8.3: Example for Method 2 including M0, M1, M2, M3 and generated hash values.

M0 (64-byte) M1 (64-byte) M2 (64-byte) M3 (64-byte) Hash

Value (272

bits)

1 273A4F51FAA4

A7CF3225E700

0A9ACDBCCABD

7CAC49991F5B

B042CF9080C2

B7DCD756756F

EFDBC42FE783

580CC6CC0A8D

BDB335AFAC24

60F0E8B61DA7

3C953096

BAFB22B06E1F

20C50948DF65

A260D573927B

560625198784

0044523F1435

862FFC41E3CE

BBDDB3D0A588

5890D759AACB

89CD72D2C1D3

BDABC7364505

F3EECF80

8FFD0B0A03E6

C6BF7714E1C0

BF9B71DE3AED

7139574F6556

57893E7155E2

7E14844B9CE8

B9DBAACC297B

352473E36D73

E1C5852DEA47

5DC6FCB75F0F

797AA7C2

4459229F9B50

A1E3F8A3A772

D464CA054F5D

E62884295ADC

B32609210CC0

E1A4DDBBC8AE

71E00A1243B7

7EAB017B1F48

0B4AE7958A1B

4EB8D2F902FD

DAB01900

BEDE F059

71AC F6A3

AF04 5311

0417 28D5

D77E D338

5D58 4085

46A3 040B

5757 67FE

0029

2 7B45A927E089

C366BB75CB2E

06E9AD053F3A

007FBF33F060

48597B01DD73

E1F5D64A55EB

33AEF9D631B9

094C1B58562C

6306F784F1DB

3BB2BBC6E2C9

96178C36

5A154DFF7B6D

869E3DC2DF25

3F894F68D2B2

F7761C4674CA

6A8B5B944EF6

BFABB5792BC5

D89B7CA926D0

118C83698D6B

A0BB9D906101

4CB68477F8A3

1D6536C0

5CFA81B5EE37

30B8FB0B01A3

5FB4C45B78E9

ECD37CD38830

1059752B16A0

D2B7C6D2B5E4

001F1C04E002

270C94C6843D

6A482A032DFE

4A1DB23882FE

AEA65573

587C8C025B0B

462BB83B3C40

FFEDF472B6CC

D8CF6299285A

8FCA0768E2EB

787D36EA2A6C

2E94B3019103

B1697BC3D057

00313FD496C7

521FFDC19BC8

59649580

11D3 C922

63F9 EFB1

65B6 370A

A78D 6690

79B2 0706

2FE4 1228

2691 9A04

FBDF ED97

0019

8.2.5 Randomness properties of hash digest

As mentioned in Section 8.1, the hash value is generated by concatenating the least

significant bits of each byte of the final internal state S and two bytes of indices i and j.

Note that the first 256 bits of the hash value is the least significant bit of the numbers

0 till 255 which are swapped based on three functions KSA, H-KSA*,and H-PRGA*.
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Although the positions of the integers are changed, their values are not modified, and

this means that the hamming weight of the first 256 bits of hash values for every input

message with arbitrary length will be exactly 128.

In addition, index i in the last round just depends on the last input message Mn, as

i = Mn mod 25, and so it will be an integer between 0 and 31. The designers dedicated

one byte for index i in the hash value. So first we can see that the three most significant

bits for all input messages will be zero and second we can change the other five bits of

the 259-th through to the 263-th bits by changing the five least significant bits of the

last input message Mn with probability one. Of course, if we consider the effect of the

padding block in the last round, then the index i will be fixed while the padding block

does not change. These two weaknesses lead an attacker to a strong distinguisher with

distinguishing advantage close to 1.

8.3 Summary

In this chapter we presented a collision attack on RC4-BHF. The attack required

negligible memory and time complexity of 213 compress function (H-KSA*) operations.

The practicality of the attack has been demonstrated with some colliding messages for

RC4-BHF. We have also shown that the hashing algorithm can be distinguishable from

a truly random sequence with a probability close to one.
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Conclusion

9.1 Thesis summary

This thesis investigates security evaluation of stream ciphers and hash functions based

on stream ciphers.

Chapter 2 introduces several methods to design stream ciphers and cryptographic

techniques used to analyse these ciphers.

In Chapter 3, the security of the WG-7 stream cipher has been studied. The

presented distinguishing and key-recovery attacks show that the cipher is vulnerable

and is not recommended for use. The distinguishing attack can detect the keystream

generated by WG-7 from a random sequence with about 213.5 keystream bits and with a

negligible error probability. The proposed key-recovery attack also recovers the internal

state of the cipher with a time complexity of about O(227). It is interesting to note

whether other members of the WG family such as WG-8, WG-16, and WG-29 are

resistant against the proposed cryptographic attacks. And the question is whether or

not the designs can be kept secure.

Chapter 4 discovers some weak points of the Rakaposhi stream cipher. Firstly,

due to the sliding property of the initialisation procedure, the distinguishing and key-

recovery attacks can be applied to the cipher. The distinguisher needs only four related

(key,IV) pairs. The key-recovery algorithm allows discovery of the 128-bit secret key

after 29 initialisation operations. Secondly, the cipher is investigated when the linear

107
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and nonlinear registers enter short cycles. In this case, the internal state can be recov-

ered with complexity rather than exhaustive search. The cipher uses a new concept

known as a dynamic linear feedback shift register. As a new building block, the se-

curity properties of dynamic linear feedback shift registers would be a good place to

investigate.

The next chapter, Chapter 5, identifies new security criteria of a specific design

based on nonlinear feedback shift registers. The proposed idea applies a distinguishing

attack to linearly filtered nonlinear feedback shift registers. The attack also extends the

idea of linear combinations of linearly filtered nonlinear feedback shift registers. The

proposed attacks allow the adversary to mount a linear attack to distinguish the output

of the cipher and recover its internal state. This approach reveals how invulnerable

the modified version of the Grain stream cipher is against distinguishing attacks. The

following topics can be considered as new future work:

• Working on the mathematical background of NLFSR: NLFSRs have been at-

tracting attention in theoretical and practical research. In the theoretical view,

constructing full period NLFSRs, and determining the period and cycles of se-

quences generated by NLFSRs are still interesting problems to solve.

• Designing new structures with approved properties: Despite the weak mathemat-

ical background of NLFSRs, they are remarkable choices to design lightweight

symmetric ciphers. One idea is to use NLFSRs along with a structure where

their security properties cover their theoretical weak points. For instance, choos-

ing cryptographic elements, such as LFSRs, and T-functions, or specific struc-

tures ,such as Grain based ciphers, which avoid short cycles or boost the period

of keystream outputs, can guarantee that not only do NLFSRs not cause any

structural weak point, but they also improve the security of the cipher.

• New analyses on NLFSR based stream ciphers: There is also room to investigate

security of ciphers exploiting NLFSR.

Chapter 6 investigates the security of a new lightweight authenticated encryption

function, known as NLM-MAC. The chapter presents critical cryptographic weak points

leading to the key-recovery and forgery attacks. The internal state of the NLM-n

generator can be recovered with a time complexity of about nlog2 7×2 where the total

length of the internal state is 2 · n + 2 bits. The attack needs about n2 keystream

bits. It is shown that the attacker is able to forge any MAC tag in real time by having

only one pair (MAC tag, ciphertext). The proposed attacks are completely practical

and break the scheme with negligible error probability. Interesting follow up questions
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would be how to choose the NLFSR to improve the security of the cipher and how to

investigate new analyses of the cipher.

The last two chapters deal with two cryptographic functions based on the RC4

stream cipher. Chapter 7 shows some cryptographic weak points of the RC4(n,m)

stream cipher. Firstly, two distinguishing attacks on the cipher have been proposed.

Then, a key-recovery attack exploits a method to find the L-bit secret key with a time

complexity of (L/8) · 2n. The implemented attack recovers the secret key of RC4(8,32)

in less than one second on a standard PC.

Further, Chapter 8 proposes two cryptographic attacks, the collision and distin-

guishing, in the RC4-BHF which is based on the RC4 stream cipher. The first attack

can find collisions for two different messages with time complexity of around 213, so it is

very practical. In the presented distinguishing attack, it is shown that a distinguisher

can detect the RC4-BHF sequence output from a random one. An interesting problem

suitable for mid-term research, is how to design a secure shuffle based stream cipher

using long word-oriented arrays along with simple operations, such as exclusive-or and

modular addition.

9.2 Future research directions

The future research regarding the results and observations in this thesis are listed as

follows.

• Design and cryptanalysis of new cryptographic primitives is necessary. Specifi-

cally, due to the variety of lightweight applications from RFID tags, smart cards,

and sensor networks to 8-bit coprocessors, there is no single optimum solution

to be employed to secure communications systems. To answer this challenge,

the cryptographic community needs new research directions in designing suit-

able symmetric primitives, investigating new cryptanalytic techniques, and es-

tablishing new security criteria to estimate the security of the lightweight crypto-

systems.

• The proposed attacks, mainly in chapters 4 and 7, showed that the initialisation

procedures of stream ciphers play a key role in the security of the ciphers. The

designer needs to check the strength of their ciphers against the threat models

which give full control to adversaries to choose related keys or IV pairs. The

potential weak points let the adversary apply the cryptographic attacks on the

target cipher.

• Another area identified as needing future research is a security investigation of
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NLFSRs against a combination of algebraic attacks and other cryptographic anal-

yses, such as differential, linear, and guess-determine attacks. More importantly,

it would be worthwhile to take a closer look at the specific structures, such as

linearly filtered designs or a linear combination of two or more NLFSRs.

• Lastly, an interesting environment to research is finding low-weight linear re-

lations derived from a linear feedback polynomial over F2n in a word-oriented

LFSR. There are several algorithms proposed to find low-weight parity checks in

bit-oriented LFSRs. The results can be directly used in the cryptanalysis of the

WG family.
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[31] Anne Canteaut and Michaël Trabbia. Improved fast correlation attacks using

parity-check equations of weight 4 and 5. In Proceedings of the 19th interna-

tional conference on Theory and application of cryptographic techniques, EURO-

CRYPT’00, pages 573–588, Berlin, Heidelberg, 2000. Springer-Verlag. 24

http://jya.com/a51-pi.htm
http://domino.research.ibm.com/comm/research projects.nsf/pages/security.mars.html
http://domino.research.ibm.com/comm/research projects.nsf/pages/security.mars.html


114 References

[32] Chi-Kwong Chan and L. M. Cheng. Correlation properties of an improved sum-

mation generator with 2-bit memory. Signal Process., pages 907–909, 2002. 71,

74

[33] Donghoon Chang, Kishan Chand Gupta, and Mridul Nandi. RC4-hash: a new

hash function based on RC4. In Proceedings of the 7th international conference

on Cryptology in India, INDOCRYPT’06, pages 80–94, Berlin, Heidelberg, 2006.

Springer-Verlag. 95

[34] Joo Yeon Cho and Josef Pieprzyk. Distinguishing attack on SOBER-128 with

linear masking. In Proceedings of the 11th Australasian Conference on Infor-

mation Security and Privacy, ACISP’06, pages 29–39, Berlin, Heidelberg, 2006.

Springer-Verlag. 23

[35] Carlos Cid, Shinsaku Kiyomoto, and Jun Kurihara. The RAKAPOSHI stream

cipher. In Proceedings of the 11th international conference on Information

and Communications Security, ICICS’09, pages 32–46, Berlin, Heidelberg, 2009.

Springer-Verlag. 18, 39, 42

[36] Nicolas Courtois and Willi Meier. Algebraic Attacks on Stream Ciphers with Lin-

ear Feedback. In Advances in Cryptology - EUROCRYPT 2003,Warsaw, Poland,

2003, Proceedings, pages 345–359. Springer, 2003. 26, 34, 54

[37] Nicolas Courtois and Josef Pieprzyk. Cryptanalysis of Block Ciphers with

Overdefined Systems of Equations. In ASIACRYPT, pages 267–287, 2002.

[38] Nicolas T. Courtois. Fast Algebraic Attacks on Stream Ciphers with Linear

Feedback. In Crypto 2003, LNCS 2729, pages 177–194. Springer. 26, 27, 34, 54

[39] Nicolas T. Courtois. Higher Order Correlation Attacks, XL algorithm and Crypt-

analysis of Toyocrypt. In ICISC 2002, pages 182–199. Springer-Verlag, 2002. 26,

54

[40] Nicolas T. Courtois. Algebraic Attacks on Combiners with Memory and Several

Outputs. In Proc. of ICISC04, pages 3–20, 2004. 26, 34

[41] Joan Daemen and Vincent Rijmen. The Design of Rijndael. Springer-Verlag New

York, Inc., Secaucus, NJ, USA, 2002. 3

[42] Ivan Damg̊ard. A Design Principle for Hash Functions. In Proceedings of the

9th Annual International Cryptology Conference on Advances in Cryptology,

CRYPTO ’89, pages 416–427, London, UK, 1990. Springer-Verlag. 5



References 115
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