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Abstract

The linear programming (LP) approach to control systems is based on the fact that the
occupational measures generated by admissible controls and the corresponding solutions of
a nonlinear system satisfy certain linear equations representing the system’s dynamics in an
integral form. The idea of such linearization was explored extensively in relation to various
deterministic and stochastic problems of optimal control of systems that evolve in continuous
time. However, no results based on this idea for deterministic discrete time control systems
is available in the literature. The thesis aims at the development of LP based techniques
for analysis and solution of a deterministic discrete time optimal control problem with time
discounting criteria. To this end, we reformulate the optimal control problem as that of
optimization problem on the set of discounted occupational measures and we show that the
optimal value of the latter is equal to the optimal value of a certain infinite dimensional
(ID) LP problem. We then show that this IDLP problem can be approximated by semi-
infinite linear programming problems and subsequently by finite-dimensional (“standard”)
LP problems. We also indicate a way how a near optimal control of the underlying nonlinear
optimal control problem can be constructed on the basis of the solution of an approximating
finite-dimensional LP problem.
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1
Introduction

The linear programming (LP) approach to control systems is based on the fact that the
occupational measures generated by admissible controls and the corresponding solutions
of a nonlinear system satisfy certain linear equations representing the system’s dynamics
in an integral form. Using this fact, one can reformulate an optimal control problem as an
infinite-dimensional linear programming (IDLP) problem. The idea of such linearization was
explored extensively in relation to various deterministic and stochastic problems of optimal
control of systems that evolve in continuous time (see, e.g., [3–6, 9, 11–15, 18, 20–22] and
references therein). However, to the best of our knowledge, no results based on this idea for
control systems evolving in discrete time is available in the literature.

The thesis aims at the development of LP based techniques for the analysis and solution
of a deterministic discrete time optimal control problem with time discounting criteria. To
this end, we reformulate the optimal control problem evolving in discrete time as that of
an optimization problem on the set of discounted occupational measures and we show that
the optimal value of the latter is equal to the optimal value of a certain IDLP problem. We
then show that this IDLP problem can be approximated by semi-infinite linear programming
(SILP) problems and subsequently by finite-dimensional (“standard”) LP problems. We
indicate how a near optimal control of the underlying nonlinear optimal control problem
can be constructed on the basis of the solution of an approximating finite-dimensional LP
problem. Note that continuous time counterparts of some of our results can be found in [8],
[9] and [10]. Some of the results obtained in the thesis are announced in [7].

The thesis is organized as follows. Section 1 is this introduction. In Section 2, we
introduce the optimal control problem that is the subject of our consideration andwe introduce
the IDLP problem that, as established in the thesis, is closely related to the former. Also in
this section, we introduce the problem dual with respect to this IDLP problem. The main
results of the section are Proposition 2.3 and Theorem 2.5. Proposition 2.3 establishes that
the set of discounted occupational measures generated by the admissible controls and the
corresponding solutions of the discrete time system is contained in the feasible set of the
IDLP problem, while Theorem 2.5 establishes relationships between the IDLP problem and
its dual.



2 Introduction

In Section 3, we use the dynamic programming principle and one of the duality relation-
ships to establish that the optimal value of the optimal control problem is equal to the optimal
value of the IDLP problem (Theorem 3.2), and we state necessary and sufficient optimality
conditions in terms of a solution of the problem dual to the IDLP problem (Proposition 3.3).
In Section 4 we show that the IDLP problem is approximated by a sequence of SILP problems
(Proposition 4.1) and that the SILP problems are, in turn, approximated by finite-dimensional
LP problems (Proposition 4.3). We then indicate a way of constructing a near optimal control
on the basis of an optimal solution of an approximating finite-dimensional LP problem and
we demonstrate the construction with a numerical example.

We conclude this introductory section with some comments and notations. Let Y stand
for a compact subset of Rm and U be a compact metric space. Denote by P (Y ×U) the space
of probability measures defined on Borel subsets of Y ×U.

Let us endow the space P (Y ×U) with a metric ρ,

ρ(γ′, γ′′) def
=

∞∑
j=1

1
2 j

�����

∫
Y×U

qj (y, u)γ′(dy, du) −
∫

Y×U
qj (y, u)γ′′(dy, du)

�����
, (1.1)

∀γ′, γ′′ ∈ P (Y ×U) where qj (·), j = 1, 2, . . . is a sequence of Lipschitz continuous functions
that is dense in the unit ball ofC(Y ×U). This metric is consistent with the weak convergence
topology of P (Y ×U). Namely, a sequence γk ∈ P (Y ×U) converges to γ ∈ P (Y ×U), that
is, limk→∞ ρ(γk, γ) = 0, if and only if

lim
k→∞

∫
Y×U

q(y, u)γk (dy, du) =
∫

Y×U
q(y, u)γ(dy, du) (1.2)

for any continuous q(y, u) : Y × U → R. Note that the space P (Y × U) is known to be
compact in weak convergence (weak*) topology (see, e.g., [2] or [17]). Using the metric ρ
we can consider the “distance” ρ(γ, Γ) between γ ∈ P (Y ×U) and Γ ⊂ P (Y ×U) and define
the Hausdorff metric, ρH (Γ1, Γ2), between Γ1 ⊂ P (Y ×U) and Γ2 ⊂ P (Y ×U) as

ρ(γ, Γ) def
= inf

γ′∈Γ
ρ(γ, γ′) ρH (Γ1, Γ2) def

= max



sup
γ∈Γ1

ρ(γ, Γ2), sup
γ∈Γ2

ρ(γ, Γ2)


. (1.3)

Note that, although, by some abuse of terminology, we refer to ρH (·, ·) as a metric on the set
of subsets of P (Y ×U), it is, in fact, a semimetric on this set (since ρH (Γ1, Γ2) = 0 implies
Γ1 = Γ2 if and only if Γ1 and Γ2 are closed).



2
Occupational Measure Formulation and

Duality Results

In this sectionwe introduce the optimal control problem that is the subject of our consideration
and we introduce the IDLP problem that, as established in the thesis, is closely related to
the former. Also in this section, we introduce the problem dual with respect to this IDLP
problem. The main results of the section are Proposition 2.3 and Theorem 2.5. Proposition
2.3 establishes that the set of discounted occupational measures generated by admissible
controls and the corresponding solutions of the discrete time system is contained in the
feasible set of the IDLP problem, while Theorem 2.5 establishes relationships between the
IDLP problem and its dual.

Consider a discrete time control system

y(t + 1) = f
(
y(t), u(t)

)
, t = 0, 1, . . . , y(0) = y0 (given), (2.1)

where f : Rm × U → Rm is a continuous vector function and u(t) ∈ U, t = 0, 1, . . . , are
controls (U being a given compact metric space). Denote by y(t, y0, u(·)) the solution of
(2.1) obtained with a control u(·) and initial condition y(0) = y0. We will call (y(·), u(·)) an
admissible pair if u(t) ∈ U and y(t) ∈ Y for all t = 0, 1, . . . , where Y is a given non-empty
compact subset of Rm. Note that, if (y(·), u(·)) is an admissible pair, then f (y(t), u(t)) ∈ Y
for t = 0, 1, . . . .

Consider the optimal control problem

inf
(y(·),u(·))

∞∑
t=0

αtg
(
y (t) , u (t)

) def
= G

(
α, y0

)
, (2.2)

where inf is taken over all admissible pairs, g : Rm×U → R is continuous and α is a discount
factor (0 < α < 1). We say a pair (y(·), u(·)) is optimal in (2.2) if the optimal value is
attained along the trajectory generated by the pair, that is

∑∞
t=0 α

tg(y(t), u(t)) = G(α, y0).
We are interested in establishing connections of the problem (2.2) with the problem

inf
γ∈W (α,y0)

∫
Y×U

g
(
y, u

)
γ

(
dy, du

) def
= g∗

(
α, y0

)
(2.3)
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where

W
(
α, y0

) def
=




γ ∈ P (Y ×U) :
∫

Y×U
α

(
φ

(
f
(
y, u

))
− φ

(
y
))
+

(1 − α)
(
φ

(
y0

)
− φ

(
y
))
γ

(
dy, du

)
= 0

∀φ : Y ×U → R continuous




(2.4)

Note that (2.3) is an IDLP problem since its objective function and its constraints are linear
in γ.

Given an admissible pair (y(·), u(·)), a probability measure γα
y(·),u(·) ∈ P (Y ×U) is called

the discounted occupational measure generated by the pair (y(·), u(·)) if, for any Borel set
Q ⊂ Y ×U,

γαy(·),u(·) (Q) = (1 − α)
∞∑

t=0
αt χQ (y(t), u(t)), (2.5)

where χQ is the indicator function of Q. Note that from this definition it follows that∫
Y×U

q(y, u)γαy(·),u(·) (dy, du) = (1 − α)
∞∑

t=0
αtq(y(t), u(t)) (2.6)

for any q(·) ∈ C(Y ×U).
Due to (2.6), we may restate the optimal control problem (2.2) as the problem of opti-

mization over the set of discounted occupational measures Γ(α, y0) =
⋃
γα
y(·),u(·) (the union

is over the admissible pairs (y(·), u(·))). Namely,

inf
γ∈Γ(α,y0)

∫
Y×U

g
(
y, u

)
γ

(
dy, du

)
= (1 − α)G(α, y0). (2.7)

Let us first establish some basic properties of the set W (α, y0).

Lemma 2.1. The set W (α, y0) is convex.

Proof. The proof follows from the fact that the constraints defining W (α, y0) are linear in γ.
In fact, let µ, γ ∈ W (α, y0) and let ωλ = (1 − λ)µ + λγ for 0 < λ < 1. Then∫

Y×U
α

(
φ

(
f
(
y, u

))
− φ

(
y
))
+ (1 − α)

(
φ

(
y0

)
− φ

(
y
))
ωλ

(
dy, du

)
= (1 − λ)

∫
Y×U

α
(
φ

(
f
(
y, u

))
− φ

(
y
))
+ (1 − α)

(
φ

(
y0

)
− φ

(
y
))
µ

(
dy, du

)
+ λ

∫
Y×U

α
(
φ

(
f
(
y, u

))
− φ

(
y
))
+ (1 − α)

(
φ

(
y0

)
− φ

(
y
))
γ

(
dy, du

)
= 0

since µ, γ ∈ W (α, y0). So (1 − λ)µ + λγ ∈ W (α, y0) and thus W (α, y0) is convex. �

Lemma 2.2. The set W (α, y0) is closed.

Proof. Let γk ∈ W (α, y0) be a sequence that converges to a limit γ. Then, for any q ∈
C(Y ×U),

lim
k→∞

∫
Y×U

q(y, u)γk (dy, du) =
∫

Y×U
q(y, u)γ(dy, du),
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and so

0 = lim
k→∞

∫
Y×U

α
(
φ

(
f
(
y, u

))
− φ

(
y
))
+ (1 − α)

(
φ

(
y0

)
− φ

(
y
))
γk (

dy, du
)

=

∫
Y×U

α
(
φ

(
f
(
y, u

))
− φ

(
y
))
+ (1 − α)

(
φ

(
y0

)
− φ

(
y
))
γ

(
dy, du

)
.

Thus γ ∈ W (α, y0), and so W (α, y0) is closed. �

Proposition 2.3. c̄oΓ(α, y0) ⊂ W (α, y0).

Proof. In light of Lemma 2.1 and 2.2 it is sufficient to show that Γ(α, y0) ⊂ W (α, y0). Thus,
it is sufficient to show that the discounted occupational measure γα

y(·),u(·) generated by an
arbitrary admissible pair satisfies the inclusion γα

y(·),u(·) ∈ W (α, y0). In fact, one can write
down the following equalities

∞∑
t=0

αtφ
(
y (t)

)
= φ(y0) +

∞∑
t=1

αtφ
(
y (t)

)
= φ(y0) +

∞∑
t=0

αt+1φ
(
y (t + 1)

)
= φ(y0) +

∞∑
t=0

αt+1φ
(

f
(
y (t) , u (t)

))
= φ(y0) + α

∞∑
t=0

αtφ
(

f
(
y (t) , u (t)

))
.

Multiplying the latter by (1 − α), we have

(1 − α)
∞∑

t=0
αtφ

(
y (t)

)
= (1 − α)


φ(y0) + α

∞∑
t=0

αtφ
(

f
(
y (t) , u (t)

))
and so, by (2.6), for any admissible pair (y(·), u(·)),∫

Y×U
φ

(
y
)
γαy(·),u(·)

(
dy, du

)
=

∫
Y×U

(1 − α) φ
(
y0

)
γαy(·),u(·)

(
dy, du

)
+ α

∫
Y×U

φ
(

f
(
y, u

))
γαy(·),u(·)

(
dy, du

)
,

the rearrangement of which yields∫
Y×U

α
[
φ

(
f
(
y, u

))
− φ

(
y
)]
+ (1 − α)

[
φ

(
y0

)
− φ

(
y
)]
γαy(·),u(·)

(
dy, du

)
= 0.

Thus, γα
y(·),u(·) ∈ W (α, y0) and so Γ(α, y0) ⊂ W (α, y0) as required. �

From (2.7) and Proposition 2.3 it follows that

(1 − α)G(α, y0) ≥ g∗(α, y0). (2.8)

We now consider the problem

sup
(θ,ψ(·))∈R×C

{
θ ≤ g

(
y, u

)
+ α

[
ψ

(
f
(
y, u

))
− ψ

(
y
)]

+ (1 − α)
[
ψ

(
y0

)
− ψ

(
y
)]
∀

(
y, u

)} def
= d∗

(
α, y0

)
, (2.9)
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which is connected with the IDLP problem (2.3) by duality relations (see statements below).
Thus, we call it the problem dual to (2.3). Note that the supremum in (2.9) is taken over pairs
(θ, ψ(·)) where θ ∈ R and ψ(·) ∈ C (the space of continuous functions).

Lemma 2.4. If W (α, y0) , ∅ then d∗(α, y0) ≤ g∗(α, y0).

Proof. Suppose W (α, y0) , ∅. Then, for any γ ∈ W (α, y0), and any pair (θ, ψ(·)) such that

θ ≤ g(α, y0) + α
[
ψ

(
f
(
y, u

))
− ψ

(
y
)]
+ (1 − α)

[
ψ

(
y0

)
− ψ

(
y
)]

∀(y, u) ∈ Y ×U

one can obtain (via integration of the latter over γ)

θ ≤

∫
Y×U

g(y, u)γ(dy, du).

Hence, by taking the minimum over γ ∈ W (α, y0) in the right hand side,

θ ≤ g∗(α, y0)

and, consequently, the optimal value of (2.3) and it’s dual (2.9) satisfy

d∗(α, y0) ≤ g∗(α, y0).

�

More elaborated duality relationships between the IDLP problem (2.3) and it’s dual (2.9)
are established by the following theorem.

Theorem 2.5. Let d∗(α, y0) be the optimal value of the dual problem (2.9), then

(i) The optimal value of the dual problem is bounded (that is, d∗(α, y0) < ∞) if and
only if the set W (α, y0) is not empty.

(ii) If the optimal value d∗(α, y0) of the dual problem is bounded then

d∗(α, y0) = g∗(α, y0) (2.10)

(iii) The optimal value of the dual problem is unbounded (that is, d∗(α, y0) = ∞) if and
only if there exists a function ψ(·) ∈ C such that

max
(y,u)∈Y×U

{
α

[
ψ

(
f
(
y, u

))
− ψ

(
y
)]
+ (1 − α)

[
ψ

(
y0

)
− ψ

(
y
)] }

< 0. (2.11)

Proof of (iii). If such a function ψ(·) exists, then

min
(y,u)∈Y×U

{
−α

[
ψ

(
f
(
y, u

))
− ψ

(
y
)]
− (1 − α)

[
ψ

(
y0

)
− ψ

(
y
)] }

> 0

and so

lim
β→∞

min
(y,u)∈Y×U

{
g

(
y, u

)
+ β

[
−α

[
ψ

(
f
(
y, u

))
− ψ

(
y
)]
− (1 − α)

[
ψ

(
y0

)
− ψ

(
y
)] ] }
= ∞.

Thus, the optimal value of the dual problem is unbounded.
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Conversely, suppose d∗(α, y0) is unbounded. Then, there exists a sequence (θk, ψk (·))
such that limk→∞ θk = ∞. Now, for all (y, u) ∈ Y ×U

θk ≤ g
(
y, u

)
+ α

[
ψk

(
f
(
y, u

))
− ψk

(
y
)]
+ (1 − α)

[
ψk

(
y0

)
− ψk

(
y
)]

⇒ 1 ≤
1
θk

g
(
y, u

)
+

1
θk

[
α

[
ψk

(
f
(
y, u

))
− ψk

(
y
)]
+ (1 − α)

[
ψk

(
y0

)
− ψk

(
y
)] ]

.

For k large enough, 1
θk
|g(y, u) | ≤ 1

2 so

1
2
≤

1
θk

[
α

[
ψk

(
f
(
y, u

))
− ψk

(
y
)]
+ (1 − α)

[
ψk

(
y0

)
− ψk

(
y
)] ]

for all (y, u) ∈ Y ×U. Define ψ(y) = − 1
θk
ψk (y) then

−
1
2
≥

[
α

(
ψ( f (y, u)) − ψ(y)

)
+ (1 − α)

(
ψ(y0) − ψ(y)

)]
and so ψ(·) satisfies (2.11). �

Before proving parts (i) and (ii) of Theorem 2.5 we must first reformulate the constraint
set W (α, y0) in terms of a countable system of equations. Let φi (·) ∈ C, i = 1, 2, . . . be a
sequence of functions such that any ψ(·) ∈ C can be approximated by a linear combination
of φi. That is, for any ψ(·) ∈ C and any δ > 0, there exists β1, . . . , βk (real numbers) such
that

max
y∈Ŷ




������
ψ(y) −

k∑
i=1

βiφi (y)
������



≤ δ, (2.12)

where Ŷ is a sufficiently large compact set that contains Y as well as f (Y,U) def
= { f (y, u) |

(y, u) ∈ Y×U }. An example of such an approximating sequence is the sequence ofmonomials
yi1

1 . . . y
im
m , i1, . . . , im = 0, 1, . . . , where y j ( j = 1, . . . ,m) stands for the j-th component of y

(see, e.g. [16]).
Due to the above property of the sequence of functions φi (·), i = 1, 2, . . . , the setW (α, y0)

can be represented in the form

W
(
α, y0

)
=




γ ∈ P (Y ×U) :
∫

Y×U
α

(
φi

(
f
(
y, u

))
− φi

(
y
))
+

(1 − α)
(
φi

(
y0

)
− φi

(
y
))
γ

(
dy, du

)
= 0,

i = 1, 2, . . .




, (2.13)

where, without loss of generality, onemay assume that the functions φi (·) satisfy the following
normalization condition

max
y∈Ŷ
{|φi (y) |} ≤

1
2i , i = 1, 2, . . . . (2.14)

Let l1 and l∞ stand for theBanach spaces of infinite sequences such that, x = (x1, x2, . . . ) ∈
l1 if and only if ‖x‖l1

def
=

∑
i |xi | < ∞ and, λ = (λ1, λ2, . . . ) ∈ l∞ if and only if

‖λ‖l∞
def
= supi |λi | < ∞. It is easy to see that given an element λ ∈ l∞, one can define

a linear continuous functional λ(·) : l1 → R by the equation

λ(x) =
∞∑

i=1
λi xi ∀x ∈ l1, ‖λ(·)‖ = ‖λ‖l∞ . (2.15)
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It is also known (see, e.g. [19, p. 86]) that any continuous linear functional λ(·) : l1 → R
can be presented in the form (2.15) for some λ ∈ l∞. Note that from (2.14) it follows that
(φ1(y), φ2(y), . . . ) ∈ l1 for any y ∈ Y , and hence, for any λ = (λ1, λ2, . . . ) ∈ l∞, the function
φλ (y),

φλ (y) def
=

∞∑
i=1

λiφi (y), (2.16)

is continuous.

Proof of Theorem (2.5) (i). Wehave d∗(α, y0) ≤ g∗(α, y0), so ifW (α, y0) , ∅, then d∗(α, y0)
is bounded. Suppose d∗(α, y0) < ∞, and show that W (α, y0) is not empty. Assume, on the
contrary, that W (α, y0) is empty and define

Q def
=




x = (x1, x2, . . . ) |

xi =

∫
Y×U

α
[
φi

(
f
(
y, u

))
− φi

(
y
)]
+ (1 − α)

[
φi

(
y0

)
− φi

(
y
)]
γ

(
dy, du

)
∀γ ∈ P (Y ×U)




The assumption that W (α, y0) is empty is equivalent to the assumption that Q does not
contain the zero element. By a separation theorem (see, e.g. [19, p. 59]) there exists
λ̄ = (λ̄1, λ̄2, . . . ) ∈ l∞ such that

0 = λ̄(0) > max
x∈Q

∑
i

λ̄i xi

= max
γ∈P (Y×U)

{∫
Y×U

α
[
φλ̄

(
f
(
y, u

))
− φλ̄

(
y
)]
+ (1 − α)

[
φλ̄

(
y0

)
− φλ̄

(
y
)]
γ

(
dy, du

)}
= max

(y,u)∈Y×U

{
α

[
φλ̄

(
f
(
y, u

))
− φλ̄

(
y
)]
+ (1 − α)

[
φλ̄

(
y0

)
− φλ̄

(
y
)] }

,

where φλ̄ (y) =
∑

i λ̄iφi (y). Thus,

max
(y,u)∈Y×U

{
α

[
φλ̄

(
f
(
y, u

))
− φλ̄

(
y
)]
+ (1 − α)

[
φλ̄

(
y0

)
− φλ̄

(
y
)] }

< 0

and so, by part (iii), d∗(α, y0) is unbounded which is a contradiction. So W (α, y0) is not
empty. �

Proof of Theorem (2.5) (ii). Suppose d∗(α, y0) is bounded then by part (i) W (α, y0) , ∅ and,
hence, a solution of the problem

inf
γ∈W (α,y0)

∫
Y×U

g(y, u)γ(dy, du) def
= g∗(α, y0)

exists. Define Q̂ ⊂ R × l1 by

Q̂ def
=




(θ, x) | θ ≥
∫

Y×U
g(y, u)γ(dy, du), x = (x1, x2, . . . )

xi =

∫
Y×U

α
[
φi

(
f
(
y, u

))
− φi

(
y
)]
+ (1 − α)

[
φi

(
y0

)
− φi

(
y
)]
γ

(
dy, du

)
∀γ ∈ P (Y ×U)
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For any i = 1, 2, . . . the point (θ j, 0) < Q̂ where θ j
def
= g∗(α, y0) − 1

j . So, by a separation
theorem (see, e.g. [19, p. 59]), there exists a sequence (k j, λ j ) ∈ R × l∞ (where λ j =

(λ j
1, λ

j
2, . . . )) such that

k j
(
g∗(α, y0) −

1
j

)
+ δ j ≤ inf

(θ,x)∈Q̂




k jθ +
∑

i

λ
j
i xi




= inf
γ∈P (Y×U)




k jθ +

∫
Y×U

α
[
ψλ j

(
f
(
y, u

))
− ψλ j

(
y
)]

+ (1 − α)
[
ψλ j

(
y0

)
− ψλ j

(
y
)]
γ

(
dy, du

)
s.t . θ ≥

∫
Y×U

g(y, u)γ(dy, du)




(2.17)

where δ j > 0 for all j and ψλ j =
∑

i λ
j
i φi (y). Firstly note that the above can be true only if

k j ≥ 0. Let us now show that k j > 0. In fact, if it wasn’t, then

0 < δ j ≤ min
γ∈P (Y×U)

{∫
Y×U

α
[
ψλ j

(
f
(
y, u

))
− ψλ j

(
y
)]
+ (1 − α)

[
ψλ j

(
y0

)
− ψλ j

(
y
)]
γ

(
dy, du

)}
= min

(y,u)∈Y×U

{
α

[
ψλ j

(
y + f

(
y, u

))
− ψλ j

(
y
)]
+ (1 − α)

[
ψλ j

(
y0

)
− ψλ j

(
y
)] }

and so

max
(y,u)∈Y×U

{
−α

[
ψλ j

(
f
(
y, u

))
− ψλ j

(
y
)]
− (1 − α)

[
ψλ j

(
y0

)
− ψλ j

(
y
)] }
≤ δ j < 0.

That is, ψ(y) = −ψλ j (y) satisfies (2.11), and so by part (iii), d∗(α, y0) is unbounded. Thus,
k j > 0. Now, dividing (2.17) by k j , we obtain

g∗(α, y0) −
1
j
<

(
g∗(α, y0) −

1
j

)
+
δ j

k j

≤ min
γ∈P (Y×U)




∫
Y×U

g(y, u) +
1
k j α

[
ψλ j

(
f
(
y, u

))
− ψλ j

(
y
)]

+
1
k j (1 − α)

[
ψλ j

(
y0

)
− ψλ j

(
y
)]
γ

(
dy, du

)



= min
(y,u)∈Y×U




g(y, u) +
1
k j α

[
ψλ j

(
f
(
y, u

))
− ψλ j

(
y
)]

+
1
k j (1 − α)

[
ψλ j

(
y0

)
− ψλ j

(
y
)]




≤ d∗(α, y0)

and so g∗(α, y0) ≤ d∗(α, y0). Hence, in light of Lemma 2.4 we have g∗(α, y0) = d∗(α, y0).
�
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3
Equality of the Optimal Values of the
Optimal Control and IDLP Problems

In this section we establish equality of the optimal values of the discounted optimal control
problem and the IDLP problem and establish some necessary and sufficient conditions of
optimality that are implied by this equality. We begin by recalling the well-known Dynamic
Programming Principle (Proposition 3.1) which underpins the argument used in this section.
We then prove the main result of this section (Theorem 3.2) and we conclude with the
establishment of necessary and sufficient conditions of optimality (Proposition 3.3).

Everywhere in this section it is assumed that the set Y is forward invariant with respect
to the system (2.1). That is, f (y, u) ∈ Y if y ∈ Y and u ∈ U. Note that from this assumption
it follows that G(α, ·) is continuous in Y . This can be established similarly to the way it is
established in the continuous time setting (see [1]).
Proposition 3.1 (Dynamic Programming Principle).

G(α, y) = min
u∈U
{g(y, u) + αG(α, f (y, u))} (3.1)

Proof.

G(α, y) = inf
y(·),u(·)

∞∑
t=0

αtg(y(t), u(t))

= inf
y(·),u(·)



g(y(0), u(0)) +

∞∑
t=1

αtg(y(t), u(t))



= inf
u(0)



g(y(0), u(0)) + inf

u(1),u(2),...




∞∑
t=1

αtg(y(t), u(t))






= inf
u(0)



g(y(0), u(0)) + α inf

u(1),u(2),...




∞∑
t=0

αtg(y(t + 1), u(t + 1))






= min
u
{g(y, u) + αG(α, f (y, u))} .

The minimizer in the above expression exists due to the continuity of G(α, ·). �
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The main result of this section is the following theorem.

Theorem 3.2. The equality

g∗(α, y0) = (1 − α)G(α, y0) (3.2)

is valid.

Proof. As a direct consequence of Proposition 3.1, we have

G(α, y) ≤ g(y, u) + αG(α, f (y, u))

for all (y, u) ∈ Y ×U. Thus,

(1 − α)G(α, y0) ≤ g(y, u) + α
[
G(α, f (y, u)) − G(α, y)

]
+ (1 − α)

[
G(α, y0) − G(α, y)

]
for all (y, u) ∈ Y ×U and so, by the very definition of d∗(α, y0) (see (2.9)),

d∗(α, y0) ≥ (1 − α)G(α, y0) (3.3)

since G(α, ·) is continuous.
This inequality, together with (2.8) and Theorem 2.5 (ii) prove (3.2). �

Note that the Dynamic Programming Principle equation (3.1) can be rewritten in the form

min
u∈U
{g(y, u) + αG(α, f (y, u))} − G(α, y) = 0. (3.4)

It is well known that a feedback control u(y) is optimal if and only if

u(y) = arg min
u∈U

{g(y, u) + αG(α, f (y, u))} .

Below, we establish another version of this result by considering the inequality version of
equation (3.4). We shall say that ψ(·) ∈ C is a solution of the inequality form of (3.4) if

g(y, u) + αψ( f (y, u)) − ψ(y) ≥ 0 ∀(y, u) ∈ Y ×U . (3.5)

This will be referred to as the Bellman inequality. Note that this is equivalent to

g(y, u) + α
[
ψ( f (y, u)) − ψ(y)

]
− (1 − α)ψ(y) ≥ 0 ∀(y, u) ∈ Y ×U . (3.6)

We will consider solutions of this inequality that satisfy the additional condition

ψ(y0) = G(α, y0). (3.7)

Observe that, by (3.4), the optimal value function G(α, y) is a solution of the Bellman
inequality satisfying this condition.

Proposition 3.3. Letψ(·) be a solution of (3.5) satisfying (3.7). An admissible pair (y(·), u(·))
is optimal in the optimal control problem (2.2) if and only if

g(y(t), u(t)) + αψ
(

f (y(t), u(t))
)
− ψ(y(t)) = 0 ∀t = 0, 1, . . . , (3.8)

u(t) = arg min
u∈U

{g(y(t), u) + αψ( f (y(t), u))} ∀t = 0, 1, . . . , (3.9)

y(t) = arg min
y∈Y

{g(y, u(t)) + αψ( f (y, u(t))) − ψ(y)} ∀t = 0, 1, . . . . (3.10)

In addition, if (y(t), u(t)) is optimal in (2.2), then

ψ(y(t)) = G(α, y(t)) ∀t = 0, 1, . . . . (3.11)
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Proof. Suppose (y(·), u(·)) is optimal in (2.2). That is,

∞∑
t=0

αtg(y(t), u(t)) = G(α, y0). (3.12)

We will show that (3.8), (3.9) and (3.10) are valid. Consider the partial sum

T∑
t=0

αt+1ψ(y(t + 1)) − αtψ(y(t)) = αT+1ψ(y(T + 1)) − ψ(y0). (3.13)

Since (y(·), u(·)) is an admissible pair we have y(t) ∈ Y for all t = 0, 1, . . . . Furthermore,
ψ(·) is continuous on the compact set Y and thus, |ψ(y(t)) | ≤ const for all t = 0, 1, . . . .
Thus, by taking T → ∞ we obtain

−ψ(y0) =
∞∑

t=0
αt+1ψ( f (y(t), u(t))) − αtψ(y(t))

=

∞∑
t=0

αt [
αψ( f (y(t), u(t))) − ψ(y(t))

]
=

∞∑
t=0

αt [
α

(
ψ( f (y(t), u(t))) − ψ(y(t))

)
− (1 − α)ψ(y(t))

]
.

Thus,
∞∑

t=0
αt [

α
(
ψ( f (y(t), u(t))) − ψ(y(t))

)
+ (1 − α)

(
ψ(y0) − ψ(y(t))

)]
= 0. (3.14)

Hence, (3.12) can be rewritten as
∞∑

t=0
αt

[
g(y(t), u(t)) + α

(
ψ( f (y(t), u(t))) − ψ(y(t))

)
+ (1 − α)

(
ψ(y0) − ψ(y(t))

) ]
= G(α, y0) (3.15)

and so
∞∑

t=0
αt

[
g(y(t), u(t)) + α

(
ψ( f (y(t), u(t))) − ψ(y(t))

)
+ (1 − α)

(
ψ(y0) − G(α, y0) − ψ(y(t))

) ]
= 0. (3.16)

Since ψ(y0) = G(α, y0), we have

∞∑
t=0

αt [
g(y(t), u(t)) + α

(
ψ( f (y(t), u(t))) − ψ(y(t))

)
− (1 − α)ψ(y(t))

]
= 0, (3.17)

which is equivalent to

∞∑
t=0

αt [
g(y(t), u(t)) + αψ( f (y(t), u(t))) − ψ(y(t))

]
= 0. (3.18)

From (3.5) and (3.18) it follows that (3.8) is valid. Furthermore,

(y(t), u(t)) = arg min
(y,u)∈Y×U

{g(y, u) + αψ( f (y, u)) − ψ(y)} (3.19)
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which is equivalent to (3.9) and (3.10).
Conversely, suppose (3.8), (3.9) and (3.10) are satisfied. Then (3.18) is valid. Since

ψ(y0) = G(α, y0), (3.16) is satisfied which together with (3.14) implies (3.12). Hence,
(y(t), u(t)) is optimal in (2.2).

Finally, we will show that (3.11) is true if (y(·), u(·)) is optimal in (2.2). Fix T = 0, 1, . . . ,
and consider again the partial sum (3.13). After a simple rearrangement, we have

αT+1ψ(y(T + 1)) =
T∑

t=0
αt+1ψ(y(t + 1)) − αtψ(y(t)) + ψ(y0).

Since ψ(y0) = G(α, y0) =
∑∞

t=0 α
tg(y(t), u(t)),

αT+1ψ(y(T + 1)) =
T∑

t=0
αt+1ψ(y(t + 1)) − αtψ(y(t)) +

∞∑
t=0

αtg(y(t), u(t)),

which after rearranging yields

αT+1ψ(y(T + 1)) =
T∑

t=0
αt [

g(y(t), u(t)) + αψ(y(t + 1)) − ψ(y(t))
]

+

∞∑
t=T+1

αtg(y(t), u(t))

=

∞∑
t=T+1

αtg(y(t), u(t)).

The latter equality is valid due to the fact that g(y(t), u(t)) + αψ(y(t + 1)) − ψ(y(t)) = 0 for
all t. So,

αT+1ψ(y(T + 1)) =
∞∑

t=0
αt+T+1g(y(t + T + 1))

=αT+1
∞∑

t=0
αtg(y(t + T + 1))

that is ψ(y(T+1)) = G(α, y(T+1)). By re-indexing and recalling thatG(α, y(0)) = ψ(y(0))
we have G(α, y(t)) = ψ(y(t)) for all t = 0, 1, . . . and so (3.11) is valid. �

Let us now establish a connection between the solutions of the Bellman inequality (3.5)
and solutions of the dual problem (2.9). We will call ψ(·) a solution of the dual problem (2.9)
if

g(y, u) + α
[
ψ( f (y, u)) − ψ(y)

]
+ (1 − α)

[
ψ(y0) − ψ(y)

]
≥ d∗(α, y0) ∀(y, u) ∈ Y ×U

(3.20)
Observe that if ψ(·) is a solution of (2.9) then ψ̃(·) = ψ(·) + const is as well.

Lemma 3.4. If ψ(·) is a solution of the Bellman inequality (3.5) that satisfies (3.7) then ψ(·)
is also a solution of the dual problem (2.9). Conversely if ψ(·) is a solution of (2.9) then
ψ̃(·) = ψ(·) − ψ(y0) + G(α, y0) is a solution of (3.5) that satisfies (3.7).
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Proof. Let ψ(·) be a solution of (3.5) that satisfies (3.7). We have

g(y, u) + αψ( f (y, u)) − ψ(y) ≥ 0

⇒ g(y, u) + α
[
ψ( f (y, u)) − ψ(y)

]
+ (1 − α)

[
−ψ(y)

]
≥ 0

⇒ g(y, u) + α
[
ψ( f (y, u)) − ψ(y)

]
+ (1 − α)

[
ψ(y0) − ψ(y)

]
≥ (1 − α)G(α, y0) (3.21)

where the last inequality follows from (3.7). Since d∗(α, y0) = (1 − α)G(α, y0) it follows
that ψ(·) is a solution of (2.9).

Conversely, suppose ψ(·) is a solution of (2.9). Then (3.21) is satisfied. Let ψ̃(·) =
ψ(·) − ψ(y0) + G(α, y0), since ψ̃(·) − ψ(·) = const from (3.21) if follows that

g(y, u) + α
[
ψ̃( f (y, u)) − ψ̃(y)

]
+ (1 − α)

[
ψ̃(y0) − ψ̃(y)

]
≥ (1 − α)G(α, y0). (3.22)

Now ψ̃(y0) = G(α, y0), and the substitution into (3.22) gives

g(y, u) + αψ̃( f (y, u)) − ψ̃(y) ≥ 0

thus ψ̃(·) is a solution of (3.5) satisfying (3.7). �

Note that, due to Theorem 2.5 (ii) and (3.2), G(α, y0) is a solution of (2.9). Note also
that the set of solutions of problem (2.9) can be much broader, as illustrated by the following
example (taken from [7]).

Example. Consider the problem

Minimize
∞∑

t=0
αtg(y(t)),

Subject to:
y(t + 1) = u(t), t ∈ {0, 1 . . . },
y(0) = y0,

u(t) ∈ [0, 1],
y(t) ∈ [0, 1],

where function g is increasing on [0, 1] and g(0) = 0.
It is clear that the optimal control is u ≡ 0 with the corresponding trajectory

y(t) =



y0, t = 0,
0, t > 0,

and the value function is G(α, y0) = g(y0).
Let us show that, if ψ : [0, 1] → R is such that ψ(y0) = g(y0), ψ(0) = g(0) = 0, and

0 ≤ ψ(y) ≤ g(y) for all y ∈ [0, 1], then ψ is a solution of (2.9). Indeed, for such ψ we have

min
(y,u)∈[0,1]×[0,1]

{g(y) + αψ(u) − ψ(y) + (1 − α)ψ(y0)}

= (1 − α)ψ(y0) = (1 − α)G(α, y0) = g∗(α, y0),

where the last equality follows from (3.2). Therefore, ψ is a solution of (2.9) due to Theorem
2.5 (ii). �
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4
Finite Dimensional Approximations

This section consists of two subsections. In subsection 4.1 we show that the IDLP problem is
approximated by a sequence of SILP problems (Proposition 4.1) and that the SILP problems
are, in turn, approximated by finite-dimensional LP problems (Proposition 4.3). In subsection
4.2 we discuss a method of constructing a near optimal feedback control on the basis of a
solution of an approximatingfinite-dimensional LPproblem, andwe illustrate the construction
with a numerical example.

4.1 Approximating Semi-infinite and Finite LP Problems
Let φi (·) ∈ C, i = 1, 2, . . . be a sequence of functions such that any φ(·) ∈ C is approximated
by a linear combination of φi. Note that it is everywhere assumed that φi (·) ≡ 1 for exactly
one i. As has been mentioned in Section 2, we can use such a sequence to represent the set
W (α, y0) in the form of a countable system of equations:

W
(
α, y0

)
=




γ ∈ P (Y ×U) :
∫

Y×U
α

(
φi

(
f
(
y, u

))
− φi

(
y
))
+

(1 − α)
(
φi

(
y0

)
− φi

(
y
))
γ

(
dy, du

)
= 0,

i = 1, 2, . . .




. (4.1)

We now define the set WN (α, y0) as a truncation of the system of equations in (4.1):

WN
(
α, y0

)
=




γ ∈ P (Y ×U) :
∫

Y×U
α

(
φi

(
f
(
y, u

))
− φi

(
y
))
+

(1 − α)
(
φi

(
y0

)
− φi

(
y
))
γ

(
dy, du

)
= 0,

i = 1, 2, . . . , N .




. (4.2)

Everywhere in what follows we will be assuming that, for any N , the functions φi (·) are
linearly independent in the sense that from the fact that

N∑
i=1

νiφi (y) = const ∀y ∈ Y ′,
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where Y ′ is a subset of Y with nonempty interior, it follows that νi = 0,∀i = 1, . . . , N . Note
that this property is satisfied if monomials are used as φi (y).

Consider the following SILP problem

min
γ∈WN

∫
Y×U

g(y, u)γ(dy, du) def
= GN (α, y0). (4.3)

Observe that WN (α, y0) is a convex and compact subset of P (Y ×U) and that

W1(α, y0) ⊃ W2(α, y0) ⊃ · · · ⊃ WN (α, y0) ⊃ · · · ⊃ W (α, y0), (4.4)

which implies

G1(α, y0) ≤ G2(α, y0) ≤ · · · ≤ GN (α, y0) ≤ · · · ≤ g∗(α, y0). (4.5)

Note also that the set WN (α, y0) is empty if (2.11) is true with ψ(y) =
∑N

i=1 viφi (y), where vi
are real numbers.

Proposition 4.1. The set W (α, y0) is not empty if and only if WN (α, y0) is not empty for all
N ≥ 1. If W (α, y0) is not empty then

lim
N→∞

ρH (WN (α, y0),W (α, y0)) = 0 (4.6)

and
lim

N→∞
GN (α, y0) = g∗(α, y0). (4.7)

Furthermore, if γN is a solution of (4.3) and limN ′→∞ ρ(γN ′, γ) = 0 for some subsequence
of integers N′ tending to infinity, then γ is a solution of (2.3). If the solution γ∗ of problem
(2.3) is unique, then, for any solution γN of (4.3),

lim
N→∞

ρ(γN, γ
∗) = 0. (4.8)

Proof. The validity of (4.7) follows from the validity of (4.6). The other statements in the
proposition follow from (4.7) and (4.6). Since W ⊂ WN , to prove that (4.6) is valid, it is
enough to show that

lim
N→∞

sup
γ∈WN (α,y0)

ρ
(
γ,W (α, y0)

)
= 0. (4.9)

Assume it is not true. There exists a positive number δ, a subsequence of positive in-
tegers N′ → ∞ and a sequence of probability measures γN ′ ∈ WN ′ (α, y0) such that
ρ(γN ′,W (α, y0)) ≥ δ. Due to the fact that P (Y × U) is weakly compact, one may as-
sume (without loss of generality) that there exists γ̄ ∈ P (Y ×U) such that

lim
N ′→∞

ρ(γN ′, γ̄) = 0 ⇒ ρ(γ̄,W (α, y0)) ≥ δ. (4.10)

From the fact that γN ′ ∈ WN ′ it follows that, for any integer i and N ′ ≥ i,∫
Y×U

ψi (y, u)γN ′ (dy, du) = 0 ⇒

∫
Y×U

ψi (y, u)γ̄(dy, du) = 0, (4.11)

where ψi (y, u) = α[φi ( f (y, u)) − φi (y)]+ (1− α)[φi (y0) − φi (y)]. Since this is valid for any
i = 1, 2, . . . , it follows that γ̄ ∈ W (α, y0), which contradicts (4.10). This proves (4.6). �
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Assumption 1. For any ψ(y) that is presentable in the form

ψ(y) =
N∑

i=1
viφi (y), (4.12)

the inequality

α
[
ψ( f (y, u)) − ψ(y)

]
+ (1 − α)

[
ψ(y0) − ψ(y)

]
≥ 0 ∀ (y, u) ∈ Y ×U (4.13)

is valid only if
vi = 0, ∀i = 1, 2, . . . , N . (4.14)

Let

Ry0
def
=

{
y

�����
y = y(t), for some t = 0, 1, . . . where,
(y(·), u(·)) is admissible with y(0) = y0

}
. (4.15)

That is, Ry0 is the set of points reachable (in finite time) along trajectories of (2.1). The
following proposition gives some sufficient conditions for Assumption 1 to be true.

Proposition 4.2. Suppose int(clRy0 ) , ∅. Then, for ψ(·) of the form (4.12), the inequality
(4.13) is valid only if (4.14) is valid (that is, Assumption 1 is valid).

Proof. Let ψ(·) be of the form (4.12) satisfying (4.13). For any admissible pair (y, u) that
satisfies y(0) = y0 we have shown already in (3.14) that

∞∑
t=0

α
[
ψ( f (y(t), u(t))) − ψ(y(t))

]
+ (1 − α)

[
ψ(y0) − ψ(y(t))

]
= 0,

which together with (4.13) imply

α
[
ψ( f (y(t), u(t))) − ψ(y(t))

]
+ (1 − α)

[
ψ(y0) − ψ(y(t))

]
= 0 ∀t ∈ {0, 1, . . . } .

Rearranging the latter and recalling that f (y(t), u(t)) = y(t + 1) yields

α
[
ψ(y(t + 1)) − ψ(y(t))

]
= (1 − α)

[
ψ(y(t)) − ψ(y0)

]
∀t ∈ {0, 1, . . . } (4.16)

which gives
ψ(y(t)) = ψ(y0) ∀t ∈ {0, 1, . . . } . (4.17)

To see this, first take t = 0. Then (4.16) gives ψ(y(1)) − ψ(y0) = 0. Substitution of this
into (4.16) for t = 1 yields ψ(y(2)) − ψ(y(1)) = 0. Continuing inductively, we see that
ψ(y(t + 1)) = ψ(y(t)) ∀t = 0, 1, . . . , thus proving (4.17). Consequently, by definition of Ry0

(see (4.15)),

ψ(y) = ψ(y0) ∀y ∈ Ry0 ⇒ ψ(y) = ψ(y0) ∀y ∈ clRy0 .

Thus,
N∑

i=1
viφi (y) =

N∑
i=1

νiφi (y0) = const ∀y ∈ clRy0

and so vi = 0 for i = 1, . . . , N due to linear independence of {φi}
N
i=1. This proves the

proposition. �
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Let ∆ > 0, and let Borel sets Q∆k,l ⊂ Y ×U (k = 1, . . . , K∆ and l = 1, . . . , L∆) be defined
in such a way that Q∆k,l ∩Q∆k ′,l ′ = ∅ (if k , k′ and/or l , l′), ∪k,lQ∆k,l = Y ×U and

sup
(y,u)∈Q∆

k,l

‖(y, u) − (yk, ul )‖ ≤ c∆, c = const, (4.18)

for some point (yk, ul ) ∈ Q∆k,l . It is assumed (from now on) that U is a compact subset of
Rn and ‖ · ‖ stands for a norm in Rn+m. For convenience, the sets Q∆k,l will be referred to
as cells. Fix the points (yk, ul ) for k = 1, . . . , K∆, l = 1, . . . , L∆ and define a polyhedral set
W∆N ⊂ R

L∆+K∆ by the equation

W∆N
def
=




γ = {γk,l } ≥ 0

∑
k,l

γk,l = 1,∑
k,l

ψi (yk, ul )γk,l = 0, i = 1, 2, . . . , N




(4.19)

where ψi (y, u) = α
[
φi ( f (y, u)) − φi (y)

]
+ (1 − α)

[
φi (y0) − φi (y)

]
and

∑
k,l =

∑K∆
k=1

∑L∆
l=1.

Consider now the finite dimensional LP problem

min
γ∈W∆N

∑
k,l

g(yk, ul )γk,l
def
= G∆N (α, y0). (4.20)

Note that the set W∆N is a set of probability measures on Y × U which assign nonzero
probabilities only to the points (yk, ul ) and, as such

W∆N ⊂ WN ⇒ G∆N (α, y0) ≥ GN (α, y0). (4.21)

Proposition 4.3. Let Assumption 1 be satisfied. The set WN is not empty if and only if there
exists ∆0 > 0 such that W∆N is not empty for all ∆ ≤ ∆0. If WN is not empty, then

lim
∆→0

ρH
(
W∆N,WN

)
= 0 (4.22)

and
lim
∆→0

G∆N = GN . (4.23)

Also, if γ∆N is a solution of problem (4.20) and lim∆′→0 ρ(γ∆
′

N , γN ) = 0 for some sequence ∆′
tending to zero, then γN is a solution of (4.3). If the solution γN of problem (4.3) is unique,
then, for any solution γ∆N of (4.20),

lim
∆→0

ρ(γ∆N, γN ) = 0. (4.24)

Proof. Observe that by (4.21) WN is not empty if W∆N is not empty. Suppose WN is not
empty, we will show that W∆N is not empty for ∆ small enough and that (4.22) is valid (the
validity of (4.23) follows from (4.22)); the other statements in the proposition are immediate
consequences of (4.22) and (4.23).

For brevity, let us denote ψi (y, u) = α[φi ( f (y, u)) − φi (y)] + (1 − α)[φi (y0) − φi (y)].
From (4.18) and the fact that ψi (y, u) are continuous it follows that

sup
(y,u)∈Q∆

k,l

|ψi (y, u) − ψi (yk, ul ) | ≤ κ(∆), i = 1, . . . , N (4.25)
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for some κ(∆) such that lim∆→0 κ(∆) = 0. Define the set Z∆N ⊂ R
L∆+K∆ by the equation

Z∆N =




γ = {γk,l } ≥ 0

������������

∑
k,l

γk,l = 1

�������

∑
k,l

ψi (yk, ul )γk,l

�������
≤ κ(∆), i = 1, . . . , N




. (4.26)

For any ∆, let γ∆ ∈ WN be such that ρ(γ∆, Z∆N ) = maxγ∈WN ρ(γ, Z∆N ) (γ∆ exists since WN
is compact) we want to show that

lim
∆→0

max
γ∈WN

ρ(γ, Z∆N ) = lim
∆→0

ρ(γ∆, Z∆N ) = 0. (4.27)

Let γ∆k,l
def
=

∫
Q∆

k,l

γ∆(dy, du). By (4.25),

�������

∑
k,l

ψi (yk, ul )γ∆k,l

�������
=

�������

∑
k,l

ψi (yk, ul )γ∆k,l −
∫

Y×U
ψi (y, u)γ∆(dy, du)

�������
≤

∑
k,l

∫
Q∆

k,l

|ψi (yk, ul ) − ψi (y, u) | γ∆(dy, du)

≤ κ(∆), i = 1, 2, . . . , N .

(4.28)

Hence, denoting γ̃∆ = (γ∆k,l ) we obtain γ̃
∆ ∈ Z∆N and consequently that

ρ
(
γ̃∆, Z∆N

)
= 0. (4.29)

Let q(y, u) : Y ×U → R1 be an arbitrary continuous function and let κq(∆) be such that

sup
(y,u)∈Q∆

k,l

|q(y, u) − q(yk, ul ) | ≤ κq(∆), lim
∆→0

κq(∆) = 0. (4.30)

Then �������

∫
Y×U

q(y, u)γ∆(dy, du) −
∑
k,l

q(yk, ul )γ∆k,l

�������

=

�������

∑
k,l

∫
Qk,l

q(y, u)γ∆(dy, du) −
∑
k,l

∫
Qk,l

q(yk, ul )γ∆(dy, du)
�������

≤κq(∆).

(4.31)

Since the last inequality is valid for an arbitrary continuous function q(y, u) it follows that
lim∆→0 ρ(γ∆, γ̃∆) = 0 which, together with (4.29) implies (4.27).

By (4.21), maxγ∈W∆N ρ(γ,WN ) = 0. Hence, to prove (4.22), it is enough to establish that

lim
∆→0

max
γ∈WN

ρ(γ,W∆N ) = 0. (4.32)

Since (by the triangle inequality),

max
γ∈WN

ρ(γ,W∆N ) ≤ max
γ∈WN

ρ(γ, Z∆N ) + max
γ∈Z∆N

ρ(γ,W∆N ) (4.33)
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and since (4.27) has already been verified, equality (4.32) will be established if we show that

lim
∆→0

max
γ∈Z∆N

ρ(γ,W∆N ) = lim
∆→0

ρ(γ̃∆,W∆N ) = 0, (4.34)

where γ̃∆ = {γ̃∆k,l } ∈ Z∆N is such that ρ(γ̃∆,W∆N ) = maxγ∈Z∆N
ρ(γ,W∆N ).

Let qj (·), j = 1, 2, . . . be a sequence of Lipschitz continuous functions which is dense in
the unit ball of C(Y ×U). Consider the finite-dimensional linear program:

FJ (∆) def
= min

γ={γk,l }∈W∆N

J∑
j=1

1
2 j

�������

∑
k,l

qj (yk, ul )γk,l −
∑
k,l

qj (yk, ul )γ̃∆k,l

�������
. (4.35)

To prove that (4.34) is valid, it is enough to show that

lim
∆→0

FJ (∆) = 0, J = 1, 2, . . . . (4.36)

Below it is shown that the optimal value of the problem dual to (4.35) tends to zero as ∆
tends to zero. Since the latter coincides with FJ (∆), this will prove (4.36). Also, from (4.36)
is follows that FJ (∆) is bounded and, hence, W∆N is not empty for ∆ small enough.

Let us rewrite the problem (4.35) in the equivalent form:

FJ (∆) = min
γ={γk,l∈W∆N }

J∑
j=1

1
2 j θ j, (4.37)

where
−

∑
k,l

qj (yk, ul )γk,l + θ j ≥ −
∑
k,l

qj (yk, ul )γ̃∆k,l, (4.38)

∑
k,l

qj (yk, ul )γk,l + θ j ≥
∑
k,l

qj (yk, ul )γ̃∆k,l . (4.39)

The problem dual to (4.37)-(4.39) is

FJ (∆) = max
λi,µ j,η j,ζ

J∑
j=1

(−µ j + η j )
*.
,

∑
k,l

qj (yk, ul )γ̃∆k,l
+/
-
+ ζ, (4.40)

where λi, i = 1, . . . , N ; µ j, η j , j = 1, . . . , J, and ζ satisfy the following relationships:

N∑
i=1

λiψi (yk, ul ) +
J∑

j=1
(−µ j + η j )qj (yk, ul ) + ζ ≤ 0, (4.41)

l = 1, . . . , L∆, k = 1, . . . , K∆, and

µ j + η j =
1
2 j , µ j ≥ 0, η j ≥ 0, j = 1, . . . , J . (4.42)

Before proving (4.36) let us verify that FJ (∆) is bounded for ∆ small enough (which, by
(4.35), is equivalent to W∆N , ∅). Assume that it is not. Then there exists a sequence ∆r ,
r = 1, 2, . . . , limr→∞ ∆

r = 0, and sequences λr
i , µ

r
j, η

r
j, ζ

r , satisfying (4.41) and (4.42) with
∆ = ∆r , r = 1, 2, . . . , such that limr→∞( |ζ r | +

∑N
i=1 |λ

r
i |) = ∞ and

lim
r→∞

ζ r

|ζ r | +
∑N

i=1 |λ
r
i |

def
= a ≥ 0, lim

r→∞

λr
i

|ζ r | +
∑N

i=1 |λ
r
i |

def
= vi, (4.43)
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where

a +
N∑

i=1
|vi | = 1. (4.44)

Dividing (4.41) by |ζ r | +
∑N

i=1 |λ
r
i | and passing to the limit as r → ∞, one can obtain

N∑
i=1

viψi (y, u) + a ≤ 0 ∀(y, u) ∈ Y ×U, (4.45)

where it is taken into account that every point (y, u) ∈ Y ×U can be presented as the limit of
(yk, ul ) belonging to the sequence of cells Q∆

r

k,l such that (yk, ul ) ∈ Q∆
r

k,l .
Two cases are possible: a > 0 and a = 0. If a > 0, then the validity of (4.45) implies that

the function φ(y) def
=

∑N
i=1 viφi (y) satisfies (2.11) which would lead to WN being empty.

The set WN however, is not empty (by our assumption) and, hence, the only case to
consider is a = 0. In this case, (4.45) becomes

N∑
i=1

viψi (y, u) ≤ 0 ∀(y, u) ∈ Y ×U . (4.46)

By Assumption 1, (4.46) can be valid only with all vi being equal to zero. This contradicts
(4.44) and, thus, proves that FJ (∆) is bounded for ∆ small enough (and thatW∆N is not empty).

From the fact that FJ (∆) is bounded it follows that a solution λ∆i , i = 1, . . . , N ; µ∆i , η
∆
j ,

j = 1, . . . , J, and ζ∆ of the problem (4.40)-(4.42) exists. Using this solution, one can obtain
the following estimates:

0 ≤ FJ (∆) =
J∑

j=1
(−µ∆j + η

∆
j ) *.

,

∑
k,l

qj (yk, ul )γ̃∆k,l
+/
-
+ ζ∆

=
∑
k,l

γ̃∆k,l
*.
,

J∑
j=1

(−µ∆j + η
∆
j )qj (yk, ul )

+/
-
+ ζ∆

≤
∑
k,l

γ̃∆k,l
*
,
−

N∑
i=1

λ∆i ψi (yk, ul ) − ζ∆+
-
+ ζ∆

= −

N∑
i=1

λ∆i
*.
,

∑
k,l

ψi (yk, ul )γ̃∆k,l
+/
-
≤

N∑
i=1
|λ∆i |κ(∆),

(4.47)

where the last inequality is implied by the fact that γ̃∆ = {γ̃∆k,l } ∈ Z∆N (see (4.26))
To prove (4.36), it is now sufficient to show that

∑N
i=1 |λ

∆
i | remains bounded as ∆ → 0.

Assume it is not. Then there exists a sequence∆r , r = 1, 2, . . . , limr→∞ ∆
r = 0, and sequences

λr
i , µ

r
j, η

r
j, ζ

r , satisfying (4.41) and (4.42) with ∆ = ∆r , r = 1, 2, . . . , such that

lim
r→∞

N∑
i=1
|λr

i | = ∞, lim
r→∞

ζ r∑N
i=1 |λ

r
i |
= 0, lim

r→∞

λr
i∑N

i=1 |λ
r
i |
= vi,

N∑
i=1
|vi | = 1. (4.48)

Dividing (4.41) by
∑N

i=1 |λ
r
i | and passing to the limit as r → ∞, one obtains that the inequality

(4.46) is valid, which, by Assumption 1, implies that vi = 0, i = 1, . . . , N . This contradicts
the last equality in (4.48) and, thus, proves (4.36). �
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4.2 Construction of Near Optimal Controls
Let γ∗ be an optimal solution of the IDLP problem (2.3) and let it be generated by an
admissible pair (yγ

∗

(·), uγ
∗

(·)). Then, by (2.6),

g∗(α, y0) =
∫

Y×U
g(y, u)dγ∗

= (1 − α)
∞∑

t=0
αtg(yγ

∗

(t), uγ
∗

(t)).
(4.49)

Consequently, by Theorem 3.2,

(1 − α)
∞∑

t=0
αtg(yγ

∗

(t), uγ
∗

(t)) = (1 − α)G(α, y0)

⇒

∞∑
t=0

αtg(yγ
∗

(t), uγ
∗

(t)) = G(α, y0).

(4.50)

That is, (yγ
∗

(·), uγ
∗

(·)) is an optimal solution of the optimal control problem (2.2).
Define

Θ
def
=

{
(y, u) | (y, u) = (yγ

∗

(t), uγ
∗

(t)) for some t ∈ {0, 1, . . . }
}
. (4.51)

and denote
Y

def
= {y | (y, u) ∈ Θ} , ψ(y) def

= u for (y, u) ∈ Θ, (4.52)

where, it is assumed that if (y, u′) ∈ Θ and (y, u′′) ∈ Θ then u′ = u′′. The set Θ can be
considered as the graph of the optimal feedback control function ψ(y), which is defined on
the optimal state trajectory Y.

Let γ∆N
def
= {γ∆k,l } be a basic optimal solution of the finite dimensional LP problem (4.20).

Assume that the optimal solution γ∗ of the IDLP problem (2.3) is unique. From (4.8) and
(4.24), it follows that

lim
N→∞

lim sup
∆→0

ρ(γ∆N, γ
∗) = 0. (4.53)

That is, γ∆N can be interpreted as an approximation of γ∗ if N is large and ∆ is small enough.
Let

Θ
∆
N

def
=

{
(yk, ul ) | γ∆k,l > 0

}
, (4.54)

and denote
Y∆N

def
=

{
y | (y, u) ∈ Θ∆N

}
, ψ∆N (y) def

= u for (y, u) ∈ Θ∆N, (4.55)

where again it is assumed that if (y, u′) ∈ Θ∆N and (y, u′′) ∈ Θ∆N then u′ = u′′. Note that the
function ψ∆N (y) is defined on the set Y∆N ⊂ Y . Let us extend the definition of ψ∆N (·) to the
whole of Y by using one of the available interpolating schemes.

Conjecture 1. Under certain conditions, the control ψ∆N (y) is near optimal in the optimal
control problem (2.2) (in the sense that the value of the objective function obtained with this
control is close to the optimal one) if N is large enough and ∆ is small enough.
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We do not give the proof of this conjecture in the thesis. It will be a topic of our future
research. We believe that it can be established on the basis of the fact that the sets Θ∆N and
Θ are, in a certain sense, close if N is large and ∆ is small enough (the latter, in turn, can be
proved on the basis of (4.53) similarly to the way it is proved in the continuous time setting;
see Propositions 10 and 11 in [9]).

To illustrate our construction, let us consider the following example

inf
(y(·),u(·))

∞∑
t=0

αt [
−y1(t)u2(t) + y2(t)u1(t)

] def
= G(α, y0) (4.56)

where α = 0.9, −1 ≤ ui (t) ≤ 1 and

yi (t + 1) =
1
2
yi (t) −

1
2

ui (t) for i = 1, 2. (4.57)

Let y(t) ∈ Y = [−1, 1] × [−1, 1] and let

y1(0) =
1
2
,

y2(0) =
1
4
.

(4.58)

Fix integer N > 1. Let ∆1 > 0 and ∆2 > 0 be sufficiently small. Define

yi,1 = −1 + i∆1, y j,2 = −1 + j∆1, uk,1 = −1 + k∆2, ul,2 = −1 + l∆2 (4.59)

where i, j = 0, 1, . . . , 2
∆1

and k, l = 0, 1, . . . , 2
∆2

(∆1, ∆2 being chosen in such a way that

K∆ def
= 2
∆1

and L∆ def
= 2
∆2

are integers). Consider the finite dimensional LP problem

minimize
K∆∑
i=1

K∆∑
j=1

L∆∑
k=1

L∆∑
l=1

(−yi,1ul,2 + y j,2uk,1)γi, j,k,l (4.60)

subject to
K∆∑
i=1

K∆∑
j=1

L∆∑
k=1

L∆∑
l=1

γi, j,k,l = 1 (4.61)

and

K∆∑
i=1

K∆∑
j=1

L∆∑
k=1

L∆∑
l=1



α

((
1
2
yi,1 −

1
2

uk,1

)m (
1
2
y j,2 −

1
2

ul,2

)n

− ym
i,1y

n
j,2

)
+ (1 − α)

(
1

2m
1
4n − ym

i,1y
n
j,2

)


γi, j,k,l = 0. (4.62)

where m = 0, . . . , N0 and n = 0, . . . , N0 (m + n ≥ 1) (compare with the LP problem (4.20)).
The LP problem was solved using IBM CPLEX with N0 = 7 (thus giving a total of

49 constraints), ∆1 = 0.0125 (K∆ = 160) and ∆2 =
1
2 (L∆ = 4). In doing so, the values

of γi, j,k,l were obtained, and the optimal value was evaluated to be ≈ −1.013. The grid
points corresponding to γi, j,k,l > 0 are marked with red dots in Figure 4.1 and their size is
scaled proportionally to the magnitude of γi, j,k,l . Due to the interpretation of γi, j,k,l as an
approximation of the discounted occupational measure generated by the optimal trajectory,
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one may assume that the later passes through neighbourhoods of the points (yi,1, y j,2, uk,1, ul,2)
corresponding to positive γi, j,k,l . We have applied the control ψ∆N (y) in the system (4.56)
with y0 = ( 1

2,
1
4 ) for 100 time periods and obtained the trajectory represented by the blue line

in Figure 4.1. The trajectory becomes close to the square like figure within 4 time periods
and moves along this figure exactly starting from the moment t = 7. The objective value thus
obtained was ≈ −0.986, which is close to the optimal value of the LP problem (−1.013). This
indicates that the control obtained is near optimal (due to Propositions 4.1 and 4.3). Note
that the interpolation of ψ∆N (y) to all of Y was not necessary as the trajectory passed exactly
through points in Y∆N .

Figure 4.1: The optimal state trajectory of the system.



5
Future Research Directions

Wehave shown that the optimal value of a deterministic discrete time optimal control problem
with time discounting is equal to the optimal value of the associated IDLP problem. The
optimal value of the IDLP problem is approximated by the optimal values of SILP problems
which are, in turn, approximated by the optimal values of the finite-dimensional LP problems.
These finite-dimensional problems are readily solvable by one of the many software packages
available. We further conjectured that a near optimal feedback control may be constructed on
the basis of an optimal solution of an approximating finite-dimensional LP problem. Future
research directions are as follows.

• Prove Conjecture 1.

• Develop a LP approach to long-run average optimal control problems in discrete time.

• Explore possibilities of using LP based techniques for the construction of near optimal
controls for discrete time optimal control problems in higher dimensions.
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