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Abstract

In this thesis we consider sequential probabilistic programs. Such programs are a means

to model randomised algorithms in computer science. They facilitate the formal analysis of

performance and correctness of algorithms or security aspects of protocols.

We develop an operational semantics for probabilistic programs and show it to be equiva-

lent to the expectation transformer semantics due to McIver and Morgan. This connection

between the two kinds of semantics provides a deeper understanding of the behaviour of

probabilistic programs and is instrumental to transfer results between communities that use

transition systems such as Markov decision processes to reason about probabilistic behaviour

and communities that focus on deductive verification techniques based on expectation trans-

formers.

As a next step, we add the concept of observations and extend both semantics to facilitate

the calculation of expectations which are conditioned on the fact that no observation is

violated during the program’s execution. Our main contribution here is to explore issues that

arise with non-terminating, non-deterministic or infeasible programs and provide semantics

that are generally applicable. Additionally, we discuss several program transformation to

facilitate the understanding of conditioning in probabilistic programming.

In the last part of the thesis we turn our attention to the automated verification of prob-

abilistic programs. We are interested in automating inductive verification techniques. As

usual the main obstacle in program analysis are loops which require either the calculation of

fixed points or the generation of inductive invariants for their analysis. This task, which is

already hard for standard, i.e. non-probabilistic, programs, becomes even more challenging

as our reasoning becomes quantitative. We focus on a technique to generate quantitative

loop invariants from user defined templates. This approach is implemented in a software tool

called Prinsys and evaluated on several examples.
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and Pedro R. D’Argenio, editors, Quantitative Evaluation of Systems - 10th Interna-

tional Conference, QEST 2013, Buenos Aires, Argentina, August 27-30, 2013. Proceed-

ings, volume 8054 of Lecture Notes in Computer Science, pages 193–208. Springer, 2013

For the following article I contributed to the definition of semantics, worked out analysis

examples and suggested the two program transformations, including the notion of iid loops.

Additionally, I provided the correctness proof of the transformation that turns an observation

into a loop and its reverse.

• Friedrich Gretz, Nils Jansen, Benjamin Kaminski, Joost-Pieter Katoen, Annabelle

McIver, and Federico Olmedo. Conditioning in probabilistic programming. To appear

in MFPS 2015.

vii





Contents

1. Introduction 1

1.1. Motivation – probabilistic systems . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Expressiveness of probabilistic programs . . . . . . . . . . . . . . . . . . . . . 3

1.3. Benefits and challenges of probabilistic programs . . . . . . . . . . . . . . . . 8

1.4. Research questions and our contributions . . . . . . . . . . . . . . . . . . . . 10

1.4.1. Linking operational and denotational semantics . . . . . . . . . . . . . 10

1.4.2. Conditional probabilities and expectations . . . . . . . . . . . . . . . . 12

1.4.3. Automated analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2. Linking operational and denotational semantics 15

2.1. The probabilistic Guarded Command Language . . . . . . . . . . . . . . . . . 15

2.2. Operational semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1. Markov decision processes . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3. Denotational semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1. Distribution based – forward . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2. Expectation based – backward . . . . . . . . . . . . . . . . . . . . . . 24

2.4. Transfer theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3. Conditional probabilities and expectations 29

3.1. Operational semantics for programs with conditioning . . . . . . . . . . . . . 29

3.2. Expectation transformer semantics for programs with conditioning . . . . . . 33

3.2.1. Infeasible programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.2. Alternative definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.3. Expectation transformers and non-determinism . . . . . . . . . . . . . 37

3.3. Reasoning with conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1. Replacing observations by loops . . . . . . . . . . . . . . . . . . . . . . 40

3.3.2. Replacing loops by observations . . . . . . . . . . . . . . . . . . . . . . 43

ix



Contents

3.3.3. Observation hoisting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.4. iid loops and hoisting – a case study . . . . . . . . . . . . . . . . . . . 49

3.3.5. Conditional expectations in loopy programs – the Crowds protocol . . 54

4. Automated analysis 57

4.1. Proving properties of probabilistic programs . . . . . . . . . . . . . . . . . . . 57

4.1.1. Computing fixed points . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.2. Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2. Feasible level of automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3. Prinsys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.1. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.2. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.3. Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5. Conclusion and future work 73

Appendix 83

A. Operational versus Weakest Precondition Semantics for the Probabilistic Guarded

Command Language 85

B. Operational versus weakest pre-expectation semantics for the probabilistic guarded

command language 97

C. Conditioning in Probabilistic Programming 137

D. Prinsys – On a Quest for Probabilistic Loop Invariants 155

x



1. Introduction

1.1. Motivation – probabilistic systems

This thesis is situated within the very broad topic of analysis of probabilistic systems. In

general, the term probabilistic systems denotes any formal representation of a mechanism,

process or algorithm, that evolves over time and whose behaviour depends on random events.

The study of such probabilistic mechanisms provides key insights in a large number of fields

such as chemistry [11], quantum physics [65] and economy [10], just to name a few. Our

focus lies on probabilistic systems within the context of computer science. Because of their

omnipresence and importance, there is a general interest to formalise instances of probabilistic

systems using some formal description languages and thereby allow for the formal analysis

of such systems. However there is always a trade-off between the expressiveness of a formal

language and its aptitude for automated analysis. For instance, consider the well known

Chomsky hierarchy of grammars [16]. There we know that e.g. unrestricted grammars are

more expressive than context-free grammars. This means the set of languages that can be

described is larger for unrestricted grammars. Meanwhile there are analysis questions – e.g.

the word problem – that can be answered automatically for any context-free grammar but

cannot be answered for an unrestricted grammar in general.

Returning to our discussion of probabilistic systems, there are several features that we may

control: is the underlying state-space of a process allowed to be only finite or infinite? Can

it be only discrete or continuous? Can our process be parameterised or do all values have

to be numerical? Do we permit the parallel execution of several processes or only execute

one process sequentially? Do we model continuous time? In the past, various approaches

to formalise probabilistic systems have emerged and each approach facilitates a particular

analysis technique. Here we mention just a few.

Church1 is a language where a user can describe generative models in a functional pro-

gramming style. Generative models are used to model joint probability distributions over

1http://projects.csail.mit.edu/church/wiki/Church
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1. Introduction

observable data. In the field of computer science, prominent examples of generative models

are Hidden Markov models or probabilistic context-free grammars. The Church language

comes with a programming environment Webchurch2 which can simulate any given pro-

gram and display a resulting histogram. This is an example of a very expressive language

with only limited analysis capabilities as the produced histograms vary for each run and

while they may convey some intuition about the modelled process they do not serve as

a rigorous proof of any particular property. There are many other probabilistic program-

ming environments which are based on sampling techniques such as Gibbs sampling [48],

Metropolis-Hastings [54] and other variants of Markov chain Monte Carlo sampling [38]. The

probabilistic-programming.org website provides an extensive overview.

On the other side of the spectrum we find more restricted languages that were designed

with some particular verification technique in mind. Thus any program in that language

is amenable to automated verification. One of the most prominent examples is the Prism

language [44] which allows the specification of finite state Markov chains or Markov decision

processes3. Given a description of such a Markovian process and a specification in proba-

bilistic computation tree logic (PCTL), the model checker Prism can automatically decide

whether the model meets the specification. From the verification point of view this is a

powerful tool, as it needs no user interaction in the verification process and allows the quan-

titative analysis of many interesting properties. However the systems that can be described

in Prism may appear limited in practice as it has to have a finite state space and transition

probabilities between states have to be specified as numerical values rather than samples from

some possibly parameterised distribution.

Our area of research can be positioned somewhere in between the two approaches described

above. We use a language so expressive that systems specified in it cannot be exhaustively

checked by a model checker in general, yet it is structured enough to allow for rigorous

proofs about the behaviour of the system. The next section treats what we call probabilistic

programs in greater detail and prepares us for the discussion of research questions that

motivate this work.

2https://probmods.org/play-space.html
3not be confused with a programming language of the same name for statistical modelling, cf. http://sato-

www.cs.titech.ac.jp/prism/
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1.2. Expressiveness of probabilistic programs

1.2. Expressiveness of probabilistic programs

In this thesis we study probabilistic programs, which are a special kind of probabilistic systems.

Probabilistic programs are written in an imperative language – just like standard programs

usually are – but the language is enriched with a statement that allows random samples to be

drawn from some distribution. These programs are executed sequentially and as they proceed

step by step, their outcome may depend on the samples drawn during the execution. One

can think of various languages for describing probabilistic programs. In this thesis we choose

to work with the probabilistic Guarded Command Language (pGCL), which is a probabilistic

extension of Dijkstra’s GCL [23], and was introduced by McIver and Morgan [50]. A program

written in this language can draw a sample from a Bernoulli distribution and, depending on

the outcome, executes one or the other branch of a choice statement. A common illustration

of a Bernoulli experiment is a coin flip which has two outcomes “heads” or “tails”. Of course,

a Bernoulli experiment need not have equal probabilities for both outcomes and then in our

illustration we speak of a biased coin flip. The language pGCL is simple enough so we do

not have to care about complex data structures, objects or other implementation details in

our arguments and at the same time it is expressive enough to succinctly capture programs

which are interesting both, theoretically and practically.

In what follows we illustrate the possibilities of pGCL. Having only Bernoulli trials at our

disposal might seem to be a severe limitation, but in fact this is sufficient to write subpro-

grams that produce a sample from other important distributions. For example, the geometric

distribution gives the probability of encountering the first success in a series of independent

Bernoulli trials. Figure 1.1a shows a program whose outcomes are distributed according to

the geometric distribution with parameter p. In Chapter 2 we will make precise what each

statement in this program means. All we need for now is that we have a program that re-

peatedly can choose to increase a variable x with probability p or to stop with probability

1−p. The set of possible values of x upon termination is the set of all natural numbers. And

for each number k, the probability to terminate with x = k is (1 − p)kp which is precisely

how the geometric distribution is defined. This is a simple example where a distribution

is implicitly encoded by a probabilistic program. Similarly, it is possible to write pGCL

programs that produce samples distributed according to a binomial distribution which gives

the probability to have k successes within a series of independent Bernoulli trials of length

n. With slight modifications one obtains programs for the hypergeometric distribution and

3



1. Introduction

1 x := 0;

2 flip := 0;

3 while (flip = 0) {

4 ( flip := 1 [p] x := x + 1 );

5 }

(a) Program text

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8
p = 0.25
p = 0.5
p = 0.75

(b) Generated distributions over x for various val-

ues of p

Figure 1.1.: A probabilistic program implicitly models a distribution.

the negative binomial (Pascal) distribution. Finally, it is also known how to obtain a discrete

uniform distribution using repeated fair coin flips [47]. This shows that in fact we have access

to a variety of discrete distributions and are able to describe all systems that draw samples

from these distributions.

Another interesting aspect of probabilistic programs is the possibility of conditioning the

generated distribution using observe statements in the program. An observe statement is

equipped with a boolean guard and behaves like a “filter” that selects runs that pass the

guard. Thereby the distribution which is encoded by the program becomes conditioned on

the fact that all observations have been passed during the program’s execution. To motivate

this let us briefly consider Bayesian Networks, which are frequently used in the area of

artificial intelligence, to concisely represent probability distributions. They are graphs in

which each node represents an event and arrows between nodes represent dependencies, e.g.

A → B indicates that the probability of B being true is conditioned on the truth value of

A. Finally each node is labelled with a table giving these conditional probabilities. Consider

for example the Bayesian network in Figure 1.2a taken from [27]. It models the likelihood

that a student will receive a recommendation letter based on his performance. Bayesian

inference [20] allows to extract the probability of some (possibly conditioned) events from the

network. Let us assume we have observed the “Grade” event in the Bayesian network, i.e. the

student has passed his exams with good grades, and given this information, we need to infer

the likelihood of the other events. Instead of working with the network we may translate

4



1.2. Expressiveness of probabilistic programs

(a) Bayesian network [27] which implicitly represents the joint probability over the five events Dif-

ficulty, Intelligence, Grade, SAT and Letter. The marginal distributions of the first two are

independent of any other events while the marginal distributions of the latter three are given as

conditional distributions.

1 i := 1 [0.3] i := 0;

2 d := 1 [0.4] d := 0;

3 if (i = 0 and d = 0)

4 g := 1 [0.7] g := 0;

5 else if (i = 0 and d = 1)

6 g := 1 [0.95] g := 0;

7 else if (i = 1 and d = 0)

8 g := 1 [0.1] g := 0;

9 else

10 g := 1 [0.5] g := 0;

11 observe(g = 1);

12 if (i = 0)

13 s := 1 [0.05] s := 0;

14 else

15 s := 1 [0.8] s := 0;

16 if (g = 0)

17 l := 1 [0.1] l := 0;

18 else

19 l := 1 [0.6] l := 0;

(b) Program adapted from [27] that represents the above network and allows to infer the probability

of all variables i, d, g, s, l conditioned on the fact that g has been set to 1.

Figure 1.2.: A probabilistic program that models a conditional probability distribution.

5



1. Introduction

1 counter := 0;

2 while (x > 0) {

3 (x := x + 1 [p] x := x - 1);

4 counter := counter + 1;

5 }

Figure 1.3.: An unbounded one-dimensional random walk.

it into a probabilistic program in a straightforward way, cf. Figure 1.2b and analyse that.

Here each variable takes values 0 or 1 to indicate whether the corresponding event in the

Bayesian network has occurred. The observation is built into the program, cf. line 11, and

admits only those runs that satisfy the predicate g = 1, according to our assumption. As we

will see in Chapter 3, the conditional probability of any of the variables being 1 can easily

be determined for this program. Querying a Bayesian network by analysing a probabilistic

program is just one of the possible applications of observations. In Chapter 3 we will see

various other use cases. What the example in Figure 1.2 nicely shows – and what is also

emphasised in [27] – is that probabilistic programs encompass other modelling formalisms.

This allows to transfer results between different communities such as formal methods and

AI. For example, a successful program analysis technique thus becomes also an inference

method for Bayesian networks. From a programmer’s point of view, observe can be seen as

the probabilistic extension of the assert statement known from most standard programming

languages. We will explain in detail what observe means and how we can reason about

conditional probabilities and expectations in Chapter 3.

So far we have considered programs that were merely representatives of some distributions.

There was no notion of a process. An interesting process, which has applications in physics,

chemistry or biology, is the random walk and its many variations [63]. The simplest form

of a random walk is the unbounded symmetrical walk on a line. Its description in pGCL

is shown in Figure 1.3. Variations include introducing bounds and adding more dimensions

producing random walks on grids or cubes. Despite its short and intuitive program text the

analysis of such a process is far from trivial and requires advanced mathematics, cf. [62, Ch.

2.4] and [25, Ch. 14].

In the context of computer science we are mostly interested in modelling randomised algo-

rithms or protocols. As an example of these, consider Zeroconf [15], which is a randomised

6



1.2. Expressiveness of probabilistic programs

1 configured := false;

2 while(!configured) {

3 //choose random IP

4 (collision := true [q] collision := false);

5 //assume an unused IP was chosen

6 configured := true;

7 //query the network N times

8 i := 0;

9 while(i<N){

10 {

11 if(collision){

12 configured := false;

13 }

14 }

15 [1-p]

16 {

17 skip;

18 }

19 i := i + 1;

20 }

21 }

Figure 1.4.: The Zeroconf protocol

protocol that allows to configure IP addresses within a network. It has been modelled and

analysed before by Bohnenkamp et al. [8]. We adapt their model and obtain the program in

Fig. 1.4. This program models the process of a new host connecting to a network and finding

an unused IP address. Of course, the program abstracts from all implementation details of

the internet protocol. Instead we focus on the probability q of guessing an unused IP and the

probability p to miss a response from a host that indicates a collision. Depending on these

parameters we can answer questions like: “what is the probability that a new host chooses

an address which is already in use and therefore a collision will occur in the network?” This

example nicely shows how the probabilistic behaviour of an actual protocol can be modelled

7



1. Introduction

1 {x := 1 [0.5] x := 2}

2 []

3 {x := 1 [0.75] x := 2}

(a) This program offers a non-deterministic

choice between two distributions over

program variable x.

1 x := 1 [0.65] x := 2

(b) This is a possible refinement of the pro-

gram in Fig. 1.5a. Note that an implemen-

tation does not have to be equal to either

branch of the non-deterministic program

but may be formed by a convex, i.e. prob-

abilistic, combination of the choices.

Figure 1.5.: A non-deterministic probabilistic program and its refinement.

within pGCL. In Chapter 3 we will explain its analysis.

Finally, pGCL inherits non-deterministic choice from GCL. The benefit of that is twofold:

First, it is possible to underspecify choices when no probabilistic information is available or

it can be used in conjunction with probabilistic choice to specify probability ranges. Second,

non-determinism allows for a notion of refinement between programs. Figure 1.5 illustrates

both points. The program on the left sets x to 1 with probability at least 1/2 and at most

3/4. Conversely x is set to 2 with some probability between 1/4 and 1/2. The program on

the right resolves the non-deterministic choice by a probabilistic choice where it takes the

first option with probability 0.4 and the second option with probability 0.6. In this way a

program is obtained where the probability to set x to 1 is 0.4 · 0.5 + 0.6 · 0.75 = 0.65 and

correspondingly the probability to set x to 2 is 0.4 ·0.5+0.6 ·0.25 = 0.35. We may refer to the

program in Figure 1.5a as a specification (or abstraction) and to the program in Figure 1.5b

as its implementation (or refinement). Any claim we can prove for the specification will also

hold for its implementation. For instance, a claim could be: “x is at least 1.5 on average”.

A further discussion of abstraction and refinement between probabilistic programs is beyond

the scope of this thesis and we refer to e.g. [50].

1.3. Benefits and challenges of probabilistic programs

A formal language achieves two things: One is that we are given a formal yet intuitive way

to describe a process. This eliminates ambiguity that we otherwise would have to face when

describing a process in natural language. To illustrate this issue, consider the famous debate

8



1.3. Benefits and challenges of probabilistic programs

about the solution to the Monty hall problem which may be formulated as follows [1]:

Suppose you are on a game show, and you are given the choice of three doors:

Behind one door is a car; behind the others, goats. You pick a door, say No. 1,

and the host, who knows what is behind the doors, opens another door, say No.

3, which has a goat. He then says to you, “Do you want to pick door No. 2?” Is

it to your advantage to switch your choice?

Would you describe the game as a pGCL program, then all assumptions become explicit and

it can be rigorously proven that switching doors is the best strategy. This in fact was done

for example in [18]. Moreover within the broad area of computer science, there is a number

of fields that make use of probabilistic algorithms such as machine learning [7], artificial

intelligence [60], security [6] or randomised algorithms design [52]. In all of these disciplines

we are already used to write down programs in a programming language so a formalism

that adds probabilistic behaviour to a programming language supports the straightforward

description of randomised algorithms as advocated by Gordon et al. [27]. With probabilistic

programs a programmer can use the well established constructs of sequential composition,

conditional branching and loops to specify randomised algorithms. This, in fact, we consider

as the main use case of probabilistic programs. So before we attempt any analysis we need to

define rigorously the meaning of programs and make sure that our intuition about the meaning

of a program matches its formal semantics. This issue is further addressed in Sections 1.4.1

and 1.4.2.

The second benefit that we gain from formalising processes inside a language like pGCL is

that we are able to prove or disprove properties of the modelled process. In our introduction,

model checking has been mentioned as an approach which is able to calculate probabilities

of particular events in a given model. Unfortunately, many of the pGCL programs are not

amenable to model checking. In Fig. 1.1 and Fig. 1.3 we have seen two examples of systems

with an infinite underlying state space. In the first example, for every value of the counter x,

there is a positive probability that the program will terminate with this value. In the second

example, the walk can take arbitrarily many steps to the right before eventually returning

to zero. Therefore if we want an exact analysis without further assumptions or restrictions

on the systems, we have to deal with infinite state spaces. Another very useful feature of

probabilistic programs is that they may be parameterised. In the examples above we did

not specify numerical probabilities, e.g. 1/2, but instead used a parameter p that stands for

any number between zero and one. This is a great benefit. For example, the program in

9



1. Introduction

Fig. 1.1 represents all geometric distributions and any property that we can verify for that

program will hold for all instances of geometric distributions. The ability to reason with

parameters furthermore facilitates parameter synthesis; a task in system design where one

seeks to optimise the parameters of a system to meet given performance criteria. Again, we

must pay a price for this generality as it precludes any numerical analysis technique. Our

analysis tools must support symbolic computations if we deal with parameters. There have

been efforts to model check infinite state spaces [22, 43, 37], and progress has been made

to tackle parametric systems in model checking [41, 36]. As of today, runtime and the size

of the system remain limiting factors for the applicability of the proposed methods. On the

other hand verification by means of deductive reasoning with invariants can be carried out

regardless of the underlying state space of a program or parameters in the program text.

Furthermore finding a loop invariant achieves more than just verifying that a particular state

can or cannot be reached with some probability. An invariant summarises the behaviour of

the loop in just one expression. This is analogous to invariants found e.g. in physics that

describe the behaviour of dynamical systems or reaction equations in chemistry. An example

of invariants in physics are Newton’s laws of motion. While physical laws are universally

applicable in everyday life, we have to find new invariants for each and every written loop.

We have described the importance of probabilistic programs and we have given a list of

challenges that occur when analysing these programs. In the following sections we go into

more detail about which particular problems we have identified in our research and how we

contributed to their solution.

1.4. Research questions and our contributions

In the scope of this thesis we have identified three topics, which we have studied in detail.

1.4.1. Linking operational and denotational semantics

Any formal language comprises two elements: syntax and semantics. While the former is

simply given by a set of rules that tell us how to write programs in that language, the latter

needs more attention. Semantics tell us what a given program text actually means. There are

different ways to explain the meaning of a program. Probably the most popular is in terms

of some transition system where a program defines a set of states and transitions between

them. We call this the operational semantics of a program. Another possibility is to think

10
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of the meaning of a program as a (partial) function. For example, Dijkstra [23] gave the

meaning of a GCL program P in terms of a function wp(P, ·) which maps a postcondition

to a precondition such that when P is executed from a state that satisfies the precondition

it is guaranteed to terminate in a state that satisfies the given postcondition. The pre- and

postconditions are expressed as predicates (in first-order logic) and therefore this function

is called a predicate transformer. The particular function wp(P, ·) gives the most general

precondition, i.e. a precondition that is satisfied by the largest possible set of initial states,

and is therefore called weakest precondition. Whenever a meaning of a program text P is given

by a function like wp(P, ·) above, we call this the denotational semantics of a program. An

important sanity check is that no matter which semantics are used to describe the meaning of

a given program, they should all agree on the outcome of the program, i.e. they should assign

the same “meaning” to the given program. Although transition systems have been used to

describe the meaning of a program at least since the 1960s [26] and Dijkstra [23] introduced

predicate transformer semantics in the 1970s, it was not until nearly 20 years later that

Lukkien [46] has shown that these semantics agree. At the beginning of our research we have

found a similar gap between semantics for probabilistic systems. McIver and Morgan [50] have

given a denotational semantics for pGCL. In analogy to Dijkstra’s approach they describe a

wp(P, ·) function that they call an expectation transformer. This is because for probabilistic

programs we evaluate a random variable on the final states instead of a postcondition. And we

are asking for the expected value of that random variable instead of a precondition. However

a large part of the probabilistic verification community has been working with models that are

presented as transition systems. For example, model checking algorithms operate on systems

given as (among others) discrete time Markov chains (DTMCs) or Markov decision processes

(MDPs). A straightforward question that comes to mind is: can pGCL programs be given an

operational semantics in terms of MDPs and if so, what property of this MDP is captured by

wp(P, ·)? We have addressed this question and in this thesis we give an operational semantics

of pGCL using parametric MDPs with rewards (RMDPs). Subsequently we establish a link

between McIver and Morgan’s expectation transformer and the so called expected reward on

the RMDP. This correspondence not only provides a good insight in how those two semantics

are related but is also a nice tool because it allows to prove claims about pGCL programs

using either semantics and then to transfer the result onto the other. This is why we refer to

this theorem as the transfer theorem. For example, it is applied in the proof of Theorem 3 in

Chapter 3. The transfer theorem is explained in Chapter 2. Our original work appeared in a

11



1. Introduction

journal article [34] and in conference proceedings [32]. Both publication can be found in the

appendix of this thesis.

1.4.2. Conditional probabilities and expectations

In probability theory, it is common to condition the probability of an event or the expectation

of a random variable on the occurrence of some other event. In this way one obtains condi-

tional probability distributions and conditional expectations. An application of conditional

probabilities can, for instance, be found in medicine where one tries to estimate the likelihood

of a particular disease after having observed some symptoms. In a similar way we may e.g.

ask for the expected outcome of a probabilistic program given the fact that it has visited

particular states during its execution. To allow for such specifications we follow Claret et

al. [17] and add the observe keyword to the pGCL language. There, and in related work,

e.g. [39, 54], they are concerned with purely probabilistic programs for which they try to find

the probability of some outcome using simulation or symbolic program execution. All their

programs are assumed to be terminating almost surely. Semantics are specified with these

applications in mind and some questions are left open: How do we specify the semantics

of a loop in general? What happens when we have non-terminating constructs? Can we

retain non-determinism when reasoning about conditional measures? Can their semantics be

phrased in terms of wp or a generalisation thereof? In our work we made an effort to answer

all of these questions. We provide both denotational and operational semantics for pGCL

with observe without making any assumptions about termination. In fact we discuss alterna-

tives where non-termination can be considered favourable or unfavourable when conditioning.

We then provide case studies that show how we can reason about those conditional measures

over pGCL programs. The details are outlined in Chapter 3, which is based on our paper

[30]. It can be found as Appendix C in this thesis.

1.4.3. Automated analysis

From the perspective of a computer scientist there is a large discrepancy between having a

mathematical framework within which one can verify claims about a program and verifying

those claims automatically. Just to name one example, it is common knowledge that the

halting problem is undecidable, which means that there is no general and effective method that

would correctly decide for every given program description whether it eventually terminates

or not. Still there is no reason why a human could not (in principle) decide the halting

12
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problem for each program presented to him – he “just” needs to come up with an original

idea for every problem instance at hand. The formal semantics of pGCL consitutes a theory

that can be mechanised [40, 12, 18]. This allows to use theorem provers like HOL [28] or

Isabelle [53] to write down computer checkable proofs. However this mechanisation does

not mean that proofs are carried out automatically. Rather an expert has to write the crucial

parts of the proof and the theorem prover merely checks that these proofs are correct. A

question that comes to mind is to what degree this process can be automated. Obviously

a “push-button-technique” is not to be expected since pGCL is an extension of a Turing

complete language. Therefore we focus on the problem on how to assist a human who tries to

prove some property of a program. Verification of standard programs like GCL relies on loop

invariants. McIver and Morgan [50] have generalised the idea of invariants to probabilistic

programs and established some proof rules for total correctness of probabilistic programs.

Later, Katoen et al. [42] suggested that candidate expressions can be checked for invariance

automatically. Subsequently we have revised and implemented their method for invariant

generation. Chapter 4 evaluates the tool on several case studies. It is based on our work [33],

which can also be found in the appendix of this thesis.

In the next three chapters we discuss each of these contributions and present the results.

For further details, e.g. proofs we refer the reader to the papers in the appendix.

13





2. Linking operational and denotational

semantics

In Section 1.2 we have given some examples of pGCL programs and discussed their meaning

intuitively. Now we formalise the syntax and semantics of pGCL. This leads to our first

result on the equivalence of operational and denotational semantics.

2.1. The probabilistic Guarded Command Language

As is common for imperative languages, a program in pGCL will consist of a list of commands

whose execution can modify or depend on the values of program variables. The only data type

that we use for program variables are real numbers. The careful reader will object that it is

impossible to use real valued numbers on a computer because in general a real number cannot

be finitely represented. Since in the following we are not concerned with implementation

details on actual hardware but rather focus on the mathematical properties of the language’s

semantics we follow the established terminology and speak about real numbers. All definitions

and results used or given in this thesis can be rephrased using rational numbers instead.

The language, as introduced in [50], has eight commands. We start with the primitive

commands. There is the no-operation command

skip

which has no effect and is simply used as a placeholder to explicitly indicate that nothing

has to be done. Contrary to that the improper termination command

abort

is used to indicate that the program has reached a point from which nothing definite can be

said about its behaviour. It might not terminate at all or it might stop in some arbitrary
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2. Linking operational and denotational semantics

state which we know nothing about. Finally there is the assignment command that assigns

the result of some arithmetic expression to a variable:

x := E .

The arithmetic expression E is built using the usual operations (addition, multiplication,

subtraction and division) between program variables. The remaining commands are defined

inductively. For this we assume to have some pGCL programs P and Q. The conditional

choice allows to decide between two alternative subprograms based on the current truth value

of a boolean predicate:

if (G) {P} else {Q} .

The predicate G is called the guard and is built using the boolean operators (conjunction,

disjunction and negation) between predicates over program variables. Note that at the be-

ginning of this section we defined all program variables to be real valued, however for better

readability in some examples, we may assign boolean values to a variable or use a variable

as a predicate whenever we know that it only takes boolean values. In such cases we use

the convention true = 1 and false = 0. Probabilistic choice allows to choose between two

alternative subprograms probabilistically:

{P} [a] {Q} .

Here, with probability a the left hand side program P is chosen to be executed next and

with the remaining probability 1 − a the subprogram Q is chosen. The probability a may

be explicitly given as a number in the interval [0, 1] or it can remain as a symbol which

denotes some unknown but fixed probability in that interval. This is the language construct

that gives us access to Bernoulli trials as discussed in the introduction. When P and Q

are primitive commands we may drop the curly braces for better readability. This language

construct is in fact the only difference to Dijkstra’s GCL [23]. As stated in the introduction

a particular feature of pGCL is that it retains non-determinism. For the non-deterministic

choice between subprogram P and Q we write:

{P} [] {Q} .

Again, we may drop the curly braces for readability when both subprograms consist of a

primitive instruction only. Like every other Turing complete language, pGCL has to have

some repetition construct. At this point we could first introduce recursion in general and
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2.2. Operational semantics

then consider loops as special cases of that. However since we do not need recursion in the

rest of this thesis we base our presentation on while loops directly. We write

while (G) {P}

to specify that the program P is repeated until the guard G becomes false. Finally a pGCL

program is a sequence of one or more subprograms which is written as:

P ;Q .

Here first P is executed and upon its termination Q is executed. Again for the sake of

readability some simplification of notation applies: we usually use the semicolon only to either

terminate or concatenate primitive commands, but we omit it between other constructs. For

example, we may write

if (x > 1) {x := x− 1; }x := x+ y;

instead of

if (x > 1) {x := x− 1}; x := x+ y ,

i.e. we use the semicolon to terminate the assignment statements but leave it out after the

closing brace of the if-statement. This corresponds to the syntax used in everyday imperative

programming languages like Java or C. This concludes the presentation of pGCL’s syntax.

In Chapter 3, we will introduce one more command called observe, which however is not

relevant for us at this stage.

2.2. Operational semantics

We now formalise the meaning of the commands introduced above using an operational se-

mantics. The purpose is to explain the meaning of a program by describing how its execution

proceeds in a stepwise fashion. Using structured operational semantics (SOS) rules [55] we

translate program text to a (possibly infinite) Markov decision process (MDP).

2.2.1. Markov decision processes

In this section we give a brief account on MDPs that suffices for the understanding of the

following results. For our formal treatment of all subtleties see pages 5-9 of “Operational ver-

sus Weakest Pre-expectation Semantics for the Probabilistic Guarded Command Language”
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Figure 2.1.: An example MDP

in the appendix. For an introduction of MDPs in the context of software verification see [3,

Ch. 10.6], for a more general treatment we refer to [56].

Discrete time Markov decision processes can be viewed as transition systems. Each state

may have a finite number of enabled actions, each providing a probability distribution over

successor states. The system is executed by choosing one such action non-deterministically

and moving to a successor state probabilistically. To facilitate understanding, let us consider

the example in Figure 2.1. There are two actions enabled in the state s0 labelled with ν and

µ respectively. We use these labels synonymously to refer to action names as well as to the

distributions that these actions offer. For example, upon selecting distribution ν in state s0

the system will move either to s1 or to s2 with 1/2 probability each. The MDP itself does

not provide any information on how non-deterministic choices should be resolved. These

choices are made by an external entity called the scheduler1. A scheduler is a function that

maps a sequence of states to actions. The sequence is called the history that leads up to the

current state. A special case are schedulers that are memoryless2, i.e. map individual states

to actions.

An MDP can be extended in two ways. Firstly, we allow probabilistic transitions to be pa-

rameterised. This means that instead of giving numeric probabilities we can use parameters,

which represent some number in [0, 1]. For example, we could define distribution ν such that

it assigns probability p to s1 and probability 1−p to s2. Another extension is the annotation

of states with so called rewards. A reward function assigns values to states. In our example

the reward of s0 is 0. But upon reaching the state s3 we earn reward 17. In the presence of

probabilistic transitions it makes sense to speak of the expected reward which can be earned

1Also called environment, policy, adversary or strategy, depending on the context within which MDPs are

studied.
2Also called positional.
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2.2. Operational semantics

starting in a given state. Let us examine our example MDP once again. Intuitively we see that

distribution ν determines an expected reward calculated by 1/2 · 1+ 1/2 · 4 = 5/2. Analogously

we compute the expected reward under µ, which amounts to 1/3 ·4+1/2 ·17+1/6 ·8 = 67/6. But

which one is the expected reward starting in s0? In the presence of non-determinism it does

not make sense to ask for the expected reward because depending on the scheduler’s choice

it will either be 5/2 or 67/6 and we have no information whatsoever to decide which one it will

be. In order to solve this issue we consider high rewards desirable whereas we assume that

a scheduler behaves adversely, i.e. tries to minimise the expected reward. Because of this

adversarial behaviour we call the scheduler a demon and its choices demonic. In this way we

can ask for the expected reward which is guaranteed regardless of how non-determinism is

resolved. In our example, a demon would choose action ν to minimise the expected reward.

Therefore we can say, that from state s0 we can guarantee an expected reward of at least 2/5.

This informal description of an MDP is reminiscent of the behaviour of pGCL and therefore

provides a suitable setting for an operation semantics. A state of the MDP may represent the

current valuation of the program variables and the position within the program text while

the transitions allow for a direct encoding of probabilistic and non-deterministic choices.

Formally, we give the operational semantics of a program P by the MDP M[[P ]] = (S, S0,→)

where

• S is the set of pairs ⟨Q, η⟩ with Q a pGCL-program or Q = exit, and η is a variable

valuation of the variables occurring in P ,

• S0 = { ⟨P, η⟩ } where η is arbitrary, and

• → is the smallest relation that is induced by the following inference rules3:

In a state where we have to execute the skip command there is only one transition

which leads to an exit state without modifying the valuation

⟨skip, η⟩ → ⟨exit, η⟩ .

An abort state behaves like a trap to prevent the execution from reaching any proper

exit states

⟨abort, η⟩ → ⟨abort, η⟩ .

3For the sake of readability we simplify our transitions. Whenever there is only one action we drop its name

from the transition and write the probabilities only. Whenever all enabled distributions are point distri-

butions we drop the probabilities from the transition and thus whenever a step is taken deterministically,

i.e. there is only one enabled action and one successor with probability 1, we simply write s → t.
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2. Linking operational and denotational semantics

From a state where an assignment has to be performed we take a step to the exit state

and update the valuation according to the assignment

⟨x := E, η⟩ → ⟨exit, η[x := [[E ]]η]⟩ .

A conditional choice offers to choose between two branches. In the state where this

choice needs to be made the guard is evaluated and thus a single successor is determined.

Hence we have two inference rules. In case the current variable valuation satisfies the

guard the first branch is taken

η |= G

⟨if (G) {P} else {Q}, η⟩ → ⟨P, η⟩

otherwise the second branch is taken

η ̸|= G

⟨if (G) {P} else {Q}, η⟩ → ⟨Q, η⟩
.

In a state where a while loop begins we evaluate the guard and similarly to the condi-

tional choice decide between two alternatives: either the loop is executed or skipped.

In the first case we have

η |= G

⟨while (G) {P}, η⟩ → ⟨P ;while (G) {P}, η⟩

and in the second
η ̸|= G

⟨while (G) {P}, η⟩ → ⟨exit, η⟩
.

Now we consider the states that may have two successors. In a state where a proba-

bilistic choice is made two transitions with the respective probabilities emanate:

⟨{P} [a] {Q}, η⟩ a→ ⟨P, η⟩ ⟨{P} [a] {Q}, η⟩ 1−a−→ ⟨Q, η⟩ .

Analogously, for non-deterministic choice there are two successors as well. However

they are annotated with actions instead of probabilities and it is up to the scheduler to

determine which action will be selected during the execution:

⟨{P} [] {Q}, η⟩ ν→ ⟨P, η⟩ ⟨{P} [] {Q}, η⟩ µ→ ⟨Q, η⟩ .

In order to define sequential composition we assume that from a state ⟨P, η⟩ a step to

some distribution µ can be taken. Of course, there may be several possible successor

distributions due to non-determinism. What we need to ensure now is that from the
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1 (t := A [] t := B);

2 c := 1;

3 while (c = 1) {

4 if (t = A) {

5 (c := 0 [a] t := B);

6 } else {

7 (c := 0 [b] t := A);

8 }

9 }
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(b) Corresponding MDP where a state ⟨P, η⟩ is identi-

fied by the program line in which P starts and the

individual values of t and c that are stored in η.

Figure 2.2.: Duelling cowboys program

state ⟨P ;Q, η⟩ where the composition has to be executed the stepwise behaviour is the

same until P terminates and only Q needs to be executed. This is expressed by the

following rule

⟨P, η⟩ → µ

⟨P ;Q, η⟩ → ν
with ν(⟨P ′;Q, η′⟩) = µ(⟨P ′, η′⟩)

where exit;Q = Q.

The rule above states that if in a state ⟨P, η⟩ a distribution µ over successor states

⟨P ′, η′⟩ may be selected, then in a state modelling the sequential composition a distri-

bution with the same probabilities over successor states exists. In this way it is ensured

that first the program P is executed and when it terminates, i.e. the execution reaches

a state of the form ⟨exit;Q, η′′⟩, the MDP proceeds with the execution of Q starting

with valuation η′′.

Example 1 (Operational semantics of programs). We illustrate the program semantics using

a simple program which has a finite underlying state space. Figure 2.2a shows the program
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2. Linking operational and denotational semantics

text. It models a duel between two cowboys A and B. We use the variable t to keep track

of who’s turn it is and we use c to keep track whether the duel continues after a shot

has been fired or upon success of either contestant the program stops. Initially, one of the

cowboys starts and then they alternate their shots. Each cowboy has a probability to hit his

opponent which is given by a and b respectively. Figure 2.2b shows the corresponding MDP

semantics. Formally, there are uncountably many possible initial states and we would need

to fix a particular state to draw this system. However since the first two lines of the program

basically lead us to only two possible states we make a simplification in our presentation

and collapse all initial states into one. From there we apply the SOS rules given above and

obtain the MDP. Each state contains a program line, i.e. the remaining program text and

the valuation of the two variables t and c. This MDP induces two distributions over the

outcomes ⟨exit, A, 0⟩ and ⟨exit, B, 0⟩ depending on the resolution of the choice in the initial

state.

We might now, for example, ask for the least guaranteed probability that cowboy A wins

the duel. For this we introduce a reward function that indicates if cowboy A has won. The

reward function evaluates to zero for each state except ⟨exit, A, 0⟩ where it is one. We can

then compute the expected rewards for all resolutions of non-determinism. Assume we take

the transition ⟨1, ∗, ∗⟩ → ⟨2, A, ∗⟩ from the initial state then the expected reward is given by

the sum of all terminating runs multiplied by the reward achieved. In this case this amounts

to
∞∑
i=0

((1− a)(1− b))ia =
a

a+ b− ab
. (2.1)

Analogously, if we assume that the initial choice is resolved by taking the step ⟨1, ∗, ∗⟩ →
⟨2, B, ∗⟩, then the calculation gives us

∞∑
i=0

((1− a)(1− b))ia(1− b) =
a(1− b)

a+ b− ab
. (2.2)

We see that (2.2) is less than (2.1) so overall the minimal expected reward is

a(1− b)

a+ b− ab
.

What we learn from this is that no matter how the non-determinism in program 2.2a

is resolved, we can guarantee that cowboy A will win the duel with probability at least

a(1−b)/a+b−ab.
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In this section we have explained the meaning of pGCL programs by MDPs and we have

shown how a random variable with respect to the program translates to a reward function over

that MDP. Consequently we can measure expectations by determining the minimal expected

reward of the RMDP which we generally define as:

Definition 1 (Minimal expected reward). Let (M, r) be an RMDP with state space S, T ⊆ S

and s ∈ S. Further let C denote the set of all cumulative reachability reward values that can

be accumulated by paths from s to T in (M, r). The minimal expected reward until reaching

T from s, denoted ExpRew(M,r)(s |= ♢T ), is defined by:

inf
S

∑
c∈C

c · PrS{π ∈ PathsS(s,♢T ) | rT (π) = c } .

Alternatively, we may obtain the expected reward by a summation over all paths where

for each summand we multiply the accumulated reward of that path with the probability of

that path:

ExpRew(M,r)(s |= ♢T ) = inf
S

∑
π̂∈PathsSmin(s,♢T )

PS(π̂) · rT (π̂) .

With Example 1 in mind this definition should be self-explanatory. For further details, we

once again refer to our work [34].

2.3. Denotational semantics

In the previous section we have seen how a program translates to a probabilistic and non-

deterministic transition system, an MDP. There we have seen that after resolving non-

determinism in some way this system defines a probability distribution on the outcomes

of the program and we can ask for a minimal expected reward. We may say that the program

implicitly describes a random experiment. The reward function that assigns values to final

states of the MDP is nothing but a random variable which maps the program’s outcomes

to real values. Then what we determined with the minimal expected reward is just the ex-

pectation of this random variable that is distributed according to the given program. This

terminology allows us to introduce the denotational semantics more intuitively and already

hints at the result to be established in last section of this chapter.
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2.3.1. Distribution based – forward

Instead of describing the meaning of the program by giving all possible state transitions

as we did before, we may instead assume that we have some description of a probability

distribution at hand and what we ask for are rules that tell us how each command of the

language transforms this distribution. In fact, since the language features non-determinism

the result of a transformation may be a set of distributions and subsequent transformations

have to be applied to each of them. The description of the transformations to be applied to a

distribution can be given for each of the eight commands individually in the same style as the

previously described operational semantics. Assuming we would run through this exercise

once more, we are able to define the meaning of a program as a function that maps a given

initial distribution to a set of outcome distributions. It is possible to define some random

variable with respect to these outcome distributions. What we can do then is measure the

probability of events or any moment of that random variable with respect to each output

distribution. Here we focus on determining the expectation. This is because events can be

described by indicator random variables so that their expectation equals the probability of

the described event. Furthermore determining variance and higher moments of a distribution

goes beyond our research topic. So what we are left with in the end is a set of expectations.

As before we can choose the least of these expectations to make claims about a lower bound

on the expected value of our random variable.

2.3.2. Expectation based – backward

A crucial problem with the approach that keeps track of possible distributions is that we

need to keep track of unboundedly many of them. We cannot throw away any of those until

we know what the least expectation of a given random variable will be. On top of that,

each distribution may have a support that is too large to fit in computer memory or even

infinite. Therefore an alternative approach is to go backwards. Starting with an expression

that describes how a random variable is evaluated over the final states of a program, we

can proceed backwards through the program and arrive at an expression which is evaluated

over the initial states, and that happens to be the minimal expectation of that given random

variable. Any non-deterministic choice that is encountered on the way may be resolved

immediately since we already know what is the function that we are minimising. To make

this precise let us reconsider our language constructs one by one and explain how each of them

determines an expectation of a given random variable. In the following let f be a random
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2.3. Denotational semantics

variable that maps variable valuations to (non-negative) real values. We use wp(P, f) to

denote the minimal expectation of random variable f with respect to pGCL program P .

The reason for this notation will become clear in a moment. The skip command does not

alter the current distribution and conversely the expected value of f is whatever value f

evaluates to in the initial state:

wp(skip, f) = f .

The abort command does not produce any distribution and hence the expectation of any

random variable in any initial state is the least possible value which by definition is zero:

wp(abort, f) = 0 .

An assignment x := E will transform the random variable by substituting every occurrence

of x in f by its new value E:

wp(x := E, f) = f [x/E] .

Assuming we know how some subprograms P and Q produce the minimal expectation, we

can give the rules for the inductively defined commands. Conditional choice between P and

Q behaves as either one of them depending on the guard G, hence:

wp(if (G) {P} else {Q}, f) = [G] · wp(P, f) + [¬G] · wp(Q, f) .

We use [·] to cast a boolean value to a real value assuming [true] = 1 and [false] = 0. In

this way the whole expression remains a mapping from variable valuations to real values.

Probabilistic choice is probably the most interesting one. It takes the weighted average

between the expectation given by P and Q:

wp({P} [a] {Q}, f) = a · wp(P, f) + (1− a) · wp(Q, f) .

This of course agrees with our intuition from probability theory that for random variables

Z,X and Y where Z = a ·X + (1− a) · Y it holds that

E(Z) = E(a ·X + (1− a) · Y ) = a · E(X) + (1− a) · E(Y ) .

As explained before we obtain the minimal expectation because non-deterministic choices

are resolved demonically:

wp({P} [] {Q}, f) = min{wp(P, f),wp(Q, f)} .
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2. Linking operational and denotational semantics

Thus wp({P} [] {Q}, f) is a function that agrees with the point-wise minimum between the

expectations with respect to P and Q. As mentioned above this allows us to resolve choices

directly and essentially turn them into deterministic choices with respect to the given random

variable f . Sequential composition of two programs P ;Q will first determine the expectation

of random variable f with respect to Q. The result will be regarded as a random variable

again and its expectation with respect to P determines the expectation of f with respect to

P ;Q:

wp(P ;Q, f) = wp(P,wp(Q, f)) .

The denotation of loops is defined using fixed point semantics:

wp(while (G) {P}, f) = lfp
x
([G] · wp(P, x) + [¬G] · f) .

In the terminology of McIver and Morgan [50], any expression that maps valuations of

program variables to real values is called an expectation. In particular, our random variable

f is called a post-expectation and what we have so far described as the minimal expecta-

tion wp(P, f) is called pre-expectation. The motivation for this is that random variables

may be regarded as expectation functions with a dirac distribution. The terms pre- and

post-expectation are motivated by the fact that post-expectations are evaluated after the

programs execution and pre-expectations are evaluated before the execution on the initial

states. These terms also resemble the well established notions of pre- and postconditions

known from Hoare logic. Finally, the mapping wp(P, ·) requires an expectation and returns

an expectation that is transformed according to the rules given before. Hence we call wp(P, ·)
an expectation transformer and we refer to denotational semantics which are defined using

such transformations as expectation transformer semantics or wp semantics.

Example 2 (Evaluating wp semantics). Using the rules above we may consider the program

from Figure 2.2a once again and re-calculate the probability that cowboy A wins the duel

which is given by

wp(prog, [t = A]) .

We start at the end of the program and work our way up as the rule for sequential composition

suggests. Intermediate results of our calculation are given in between the program lines.

1 ⟨ (1−b)a
a+b−ab⟩

2 ⟨min{ a
a+b−ab ,

(1−b)a
a+b−ab}⟩

3 (t := A [] t := B);
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2.4. Transfer theorem

4 ⟨[t = A] · a
a+b−ab + [t = B] · (1−b)a

a+b−ab⟩
5 c := 1;

6 ⟨[t = A ∧ c = 0] · 1 + [t = A ∧ c = 1] · a
a+b−ab +[t = B ∧ c = 1] · (1−b)a

a+b−ab⟩
7 while (c = 1) {

8 ⟨[t = A ∧ c = 1] · a
a+b−ab + [t = B ∧ c = 1] · (1−b)a

a+b−ab⟩
9 ⟨[t = A ∧ c ̸= 1] · a+ [t = A ∧ c = 1] · a

a+b−ab

+[t = B ∧ c = 0] · (1− b) + [t = B ∧ c = 1] · (1−b)a
a+b−ab⟩

10 if (t = A) {

11 (c := 0 [a] t := B);

12 } else {

13 (c := 0 [b] t := A);

14 }

15 ⟨[t = A ∧ c = 0] · 1 + [t = A ∧ c = 1] · a
a+b−ab +[t = B ∧ c = 1] · (1−b)a

a+b−ab⟩
16 }

17 ⟨[t = A]⟩

We do not give the calculation of least fixed point that is determined in line 6. In Section 4.1.1

we return to this issue and show the calculations for a similar example.

Not surprisingly, the expression in line 1 matches the probability we have found in Exam-

ple 1. This observation is formalised in the next section and constitutes our first contribution.

2.4. Transfer theorem

As we have seen before the MDP semantics describes the possible executions of a program.

However in order to reason about some expected reward, a reward function needs to be intro-

duced in the first place. Similarly, the wp semantics requires a post-expectation to be given

in order to tell what the pre-expectation will be. While the latter formalism takes the post-

expectation as an argument, we need to incorporate it into the MDP as a reward function.

This is straightforward as we have already suggested that a random variable is evaluated

on the outcomes. Hence the reward function assigns non-zero values only to exit states by

applying the given function to the variable valuation η of such a terminal state. Formally,

for a given program P and random variable f , the reward-MDP Rf [[P ]] = (M, r) consists of

an MDP M which is constructed according to the inference rules given in section 2.2.1 and

the reward function r defined as r(s) = f(η) if s = ⟨exit, η⟩ and r(s) = 0 otherwise.
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2. Linking operational and denotational semantics

Our terminology already indicated the similarity between the two presented semantics and

the following theorem4 makes this precise.

Theorem 1 (Transfer theorem). For pGCL-program P , variable valuation η, and post-

expectation f :

wp(P, f)(η) = ExpRewRf [[P ]](⟨P, η⟩ |= ♢P
√
) ,

where P
√

denotes the set of exit states of program P , i.e. states of the form ⟨exit, η′⟩.

Theorem 1 says that for any initial variable valuation, any program and any given ran-

dom variable the minimal expected reward in the RMDP corresponds to the weakest pre-

expectation given by wp. The theorem asserts that the two semantics agree and serves as

a sanity check. For the first time we provide a state based view on the meaning of pGCL

programs. A question like “here is a DTMC, so what is the wp on that?” can now be an-

swered precisely. Further more this correspondence theorem allows to carry over results that

are known in the pGCL community to the community that studies MDPs and vice versa. In

the following chapter we will see a result that has been proven using the operational view. It

is due to Theorem 1 that we can carry out the proof using either semantics and transfer it

then onto the other. This motivates the theorem’s name.

4Theorem 1 appears as Theorem 23 in Appendix A and Appendix B where it is referred to as “correspon-

dence theorem”. Additionally, these papers contain a correspondence theorem for the notions of wlp and

LExpRew.

28
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In the introduction, conditioning was identified as one of the important features of proba-

bilistic programming. In this chapter we discuss both operational and denotational semantics

of programs with conditioning. Our aim is to find semantics that coincide with our intuition,

are as general as possible, e.g. do not require the programs to terminate almost surely, and

generalise our previous definitions and the transfer theorem. We conclude the chapter by

exploring various program transformations and case studies to showcase the analysis of con-

ditional expectations in probabilistic programming.

3.1. Operational semantics for programs with conditioning

From probability theory we know that the conditional probability of an event A given an

event B is determined by their joint probability which is scaled by the probability of B

P(A|B) =
P(A ∩B)

P(B)
.

This can be phrased analogously with indicator random variables. Let 1A be the random

variable which maps all outcomes in the event A to one and all outcomes outside A to zero

and let 1B be defined analogously, then

P(1A = 1|1B = 1) =
P(1A = 1,1B = 1)

P(1B = 1)
.

One can also generalise expectations to conditional expectations. The expected value of a

discrete random variable X given an event B is defined as

E(X|1B = 1) =
∑

x∈range(X)

x ·P(X = x|1B = 1) =

∑
x∈range(X) x ·P(X = x,1B = 1)

P(1B = 1)
. (3.1)

In the previous chapter we have seen that a program given as an MDP induces (a set of)

distributions and a random variable with respect to such a distribution may be represented

by a reward function, which gives rise to an RMDP. Using this connection we can naturally
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3. Conditional probabilities and expectations

1 (f1 := goldfish [0.5] f1 := piranha);

2 f2 := piranha;

3 (sample := f1 [0.5] sample := f2);

4 observe([sample = piranha]);

Figure 3.1.: The “fishbowl” program

define conditional probabilities and expectations over programs based on their underlying

RMDPs. In the following we introduce the notion of conditional minimal expected rewards

using a puzzle taken from [62, p. 216]. It goes as follows:

One fish is contained within the confines of an opaque fishbowl. The fish is

equally likely to be a piranha or a goldfish. A sushi lover throws a piranha into

the fish bowl alongside the other fish. Then, immediately, before either fish can

devour the other, one of the fish is blindly removed from the fishbowl. The fish

that has been removed from the bowl turns out to be a piranha. What is the

probability that the fish that was originally in the bowl by itself was a piranha?

Let us formalise this “story” in terms of a pGCL program. The result is displayed in Fig-

ure 3.1. We are looking for the probability that the fish, initially contained in the fishbowl,

f1 was a piranha. The observation that the fish removed has been a piranha is built into the

program directly using the observe keyword. In order to understand this program’s behaviour

consider Figure 3.2. Each state of our transition system consists of the program line that the

program is currently at and the valuations of the three program variables f1, f2 and sample.

The program starts in line 1 with some undetermined variable valuation1. It proceeds to set

f1 probabilistically and f2 deterministically. The variable sample is then assigned the value

of either f1 or f2 probabilistically. Finally, the observe statement is checked. Let the event

A be that initially there was a piranha in the fishbowl, i.e. f1 = piranha. In order to measure

this event on the RMDP we assign a reward of 1 to the state ⟨exit, p, p, p⟩ and 0 everywhere

else. Let event B be that we avoid program runs that terminate with sample ̸= piranha. In

order to measure this event we label ⟨exit, g, p, g⟩ with  . Then the answer to the puzzle is

1As we did before in Figure 2.2b, we collapse infinitely many, initial states where the values have some

particular values into one where we do not care about the variable valuation because the program will

overwrite these values any way.
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1 ∗ ∗ ∗

2 g ∗ ∗ 2 p ∗ ∗

3 g p ∗ 3 p p ∗

4 g p g 4 g p p 4 p p p

exit g p g

0  
exit g p p

0

exit p p p

1

0.5 0.5

0.5 0.5

0.5

0.5

Figure 3.2.: Operational semantics of the fishbowl program

given by

P(A|B) =
1 · 0.5 + 0 · 0.25

0.5 + 0.25
=

1/2
3/4

=
2

3
.

One may think B should be the event that we reach a state with sample = piranha. In

this particular example both formulations are equivalent, however as we will see later they

become crucially different for programs that do not terminate almost surely. This motivates

the following definition of conditional minimal expected rewards in RMDPs.

Definition 2 (Conditional expected reward). Let (M, r) be an RMDP with state space S,

T ⊆ S and s ∈ S. Further let C denote the set of all cumulative reachability reward values

that can be accumulated by paths from s to T in (M, r). The conditional minimal expected

reward until reaching T from s avoiding  states, denoted CExpRew(M,r)(s |= ♢T |¬♢ ), is
defined by:

inf
S

∑
c∈C c · Pr

S{π ∈ PathsS(s,♢T ) | rT (π) = c }
1− PrS{π ∈ PathsS(s,♢ ) } .

Note that we are of course not the first to consider conditioning on Markov models, cf. [2, 4],

for example. We condition on avoiding  states because the observe statement does not force

a program to reach the observation – it could diverge before, or avoid it by resolving non-
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3. Conditional probabilities and expectations

deterministic choices accordingly. Consider the following example

{abort} [0.5] {{x := 0} [0.5] {x := 1}};

observe (x = 1)

With probability 0.5 the program diverges and does not reach the observation – and hence

does not violate it. Accordingly, Definition 2 determines the conditional expectation of x to

be

1 · 0.25
0.5 + 0.25

=
1

3
.

Intuitively the observation rules out 1/4 of all runs that terminate with x = 0. The remaining

3/4 of runs do not violate the observation, either because they do not reach it or they reach

it with x = 1. One third of these runs have expectation 1 and two thirds (the aborting runs)

have expectation 0, hence the conditional expectation of x is indeed 1/3. In contrast to this,

an alternative definition that conditions on runs that must reach the observation statement

(instead of just avoiding its falsification) would alter the semantics of the probabilistic pro-

gram and introduce inconsistencies. In the given example the conditional expectation would

be 1 which contradicts our intuition about the operational behaviour as explained previously.

Furthermore the statement observe (true), which should not alter the behaviour of a program

at all, could be used to enforce the program’s termination. In particular the programs

{abort} [0.5] {{x := 0} [0.5] {x := 1}}

and

{abort} [0.5] {{x := 0} [0.5] {x := 1}};

observe (true)

would produce different expectations for x. In the Section 3.2.2 we revisit this issue on the

level of wp semantics. Finally, note that our definition of conditional expectations corresponds

also to our intuition about assert statements in standard programs. A run violates an assertion

only if it reaches the assertion and the predicate in the assert statement evaluates to false. If

a run diverges before, it does not violate the assertion.
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3.2. Expectation transformer semantics for programs with conditioning

3.2. Expectation transformer semantics for programs with

conditioning

We extend the definition of the greatest pre-expectation by the rule

wp(observe (G), f) = [G] · f ,

where G is a boolean predicate. Additionally we need the notion of the greatest liberal pre-

expectation wlp [50, p. 184]. It behaves just like wp – in particular non-deterministic choices

are resolved demonically as well – except that non-termination is considered desirable and

generates the maximal expectation, 1 in this case. Thus wlp follows the same rules that were

given in Section 2.3.2, page 24ff. except for

wlp(abort, f) = 1 , and

wlp(while (G) {P}, f) = gfp
x
([G] · wlp(P, x) + [¬G] · f) .

In order to define the greatest fixed point, the cpo of expectations that wlp(P, ·) ranges over
has to be bounded. Since in the context of conditional pre-expectations we will use wlp

to measure the probability to pass observations its range is naturally bounded in [0, 1]. In

Chapter 4 we will revisit the notion of wlp in a broader context.

We extend wlp with a rule for observe in the same way we did for wp above and postulate

wlp(observe (G), f) = [G] · f .

Using these expectation transformers, we are able to define conditional expectations on ex-

pectation transformer level.

Definition 3 (Conditional pre-expectation). For fully probabilistic2 pGCL programs P with

observe statements we define the conditional pre-expectation cwp as

cwp(P, f) =
wp(P, f)

wlp(P, 1)
.

Example 3 (Evaluation of cwp). Assume some pGCL program of the form P ; observe (G)

and post-expectation f . Then

cwp(P ; observe (G), f) =
wp(P ; observe (G), f)

wlp(P ; observe (G), 1)
=

wp(P, [G] · f)
wlp(P, [G])

.

2Programs without non-deterministic choice.
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3. Conditional probabilities and expectations

We see how the conditional weakest pre-expectation amounts to determining the expectation

of f and the indicator random variable of G and dividing it by the probability that P does

not terminate or establishes G. This reminds us of the definition of conditional expectations

in (3.1). Note however that in general it is not required that the observation is the last

statement of the program. In principle, as with any other command, an arbitrary number of

observations may occur in the program text.

For program P that does not contain any observations, it holds

cwp(P, f) = wp(P, f) .

This means that our definition of cwp naturally generalises wp. A remark about notation: our

new transformer is denoted cwp where the “c” stands for conditional and we keep the “wp”

because it essentially behaves like wp. However one should note that the attribute “weakest”

does not have much meaning here as we do not have any non-deterministic choices, which

could make a difference between weakest and strongest pre-expectations.

We have to note that our pre-expectation definition of observe (G) makes it a genuinely

new language construct with respect to the wlp transformer. While for wp it holds

wp(observe (G), f) = wp(if (¬G) {abort} else {skip}, f)

for all expectations f , there is no pGCL language construct that could mimic its behaviour

with respect to wlp. This is because wlp treats abortion or divergence as an instance of

unbounded non-determinism that is angelically resolved to achieve the highest possible ex-

pectation. If one could write down a malicious program demon that does terminate but has

pre-expectation zero with respect to arbitrary post-expectations, then we would have

wlp(observe (G), f) = wlp(if (¬G) {demon} else {skip}, f) .

However demon is not implementable. We state this fact without proof and refer to a result

on a dual programming concept which is usually referred to as magic [51].

Furthermore we can extend our transfer theorem to conditional (fully probabilistic) pro-

grams. Remember that a program P induces an RMDP Rf [[P ]] on which we can measure

the conditional minimal expected reward CExpRew. Together with Definition 3 this leads to

the following result3.

3Theorem 2 appears in Appendix C as Theorem 4.6. There it is called “correspondence theorem” to emphasise

the relationship between the two semantics.
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Theorem 2 (Transfer theorem for conditional programs). For fully probabilistic pGCL-

program P with observe statements, variable valuation η, and post-expectation f :

cwp(P, f)(η) = CExpRewRf [[P ]](⟨P, η⟩ |= ♢P
√
|¬♢ ) .

As before, we refer to Appendix C and the technical report [31] for technical details and

proofs.

3.2.1. Infeasible programs

A peculiar corner case with conditional probabilities occurs when conditioning on an im-

possible event. In applications of discrete probability theory one may neglect this issue as

“obviously there is no point in conditioning on an event with probability zero”. However

within the syntax of a programming language it is possible to write programs with impossi-

ble observations. We call such programs infeasible. There is no syntactical characterisation

of feasible or infeasible programs as the study of the following three programs shows. In all

three programs we are interested in the conditional expectation of x.

P1 : {x := 0} [0.5] {x := 1}; observe (x = 1)

P2 : {x := 0; observe (x = 1)} [0.5] {x := 1; observe (x = 1)}

P3 : x := 0; observe (x = 1)

The situation for P1 is straightforward, we have a uniform distribution over the outcomes

zero and one, the condition ensures the outcome must be one and hence conditional expected

value is one. In P2 the observation has been pushed inside the probabilistic choice. If we

were to consider the branches of the choice separately we see that the left branch contains

an infeasible program which sets x to 0 but then ensures it is 1, which is impossible. So

what is the meaning of the overall program P2? It turns out it has the same semantics as P1.

The reader may check that both programs induce the same RMDP. Alternatively, we may

evaluate the expectation transformer cwp and see that

cwp(P1, x) =
wp(P1, x)

wlp(P1, 1)
=

0.5 · 0 + 0.5 · 1
0.5 · 0 + 0.5 · 1

=
wp(P2, x)

wlp(P2, 1)
= cwp(P2, x) .

This example4 shows that the conditional pre-expectation of probabilistic choice is not ob-

tained as the weighted average between conditional pre-expectations of subprograms (as was

4Note, that we use “x” both as a variable identifier in program text and as an expectation which evaluates

to the real value that is associated with x.
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the case with wp).

cwp({P} [a] {Q}, f) = wp({P} [a] {Q}, f)
wlp({P} [a] {Q}, 1)

=
a · wp(P, f) + (1− a) · wp(Q, f)

a · wlp(P, 1) + (1− a) · wlp(Q, 1)

̸= a · wp(P, f)
wlp(P, 1)

+ (1− a) · wp(Q, f)

wlp(Q, 1)

= a · cwp(P, f) + (1− a) · cwp(Q, f) .

In fact, if we consider P3, which consists of the left branch of P2 only, we see that the

conditional pre-expectation is undefined as we would need to divide by zero. We say P3 is

infeasible. Since there is no syntactical characterisation of feasible programs we need to check

that wlp(P, 1) ̸= 0, which, at least theoretically, may be intricate. As an illustration consider

the following programs P and Q.

P : x := 1; Q : x := 1;

while(x = 1) { while(x = 1) {

x := 1 {x := 1} [0.5] {x := 2};

} observe (x = 1);

}

Clearly the non-probabilistic program P does not terminate and thus its weakest liberal pre-

expectation wlp(P, 1) is always 1 and its conditional pre-expectation cwp(P, f) is 0 regardless

of the given post-expectation f . Program Q is a slightly modified version of P where we first

assign 1 or 2 to x and then ensure the variable was set to 1 using an observation. One may

think that Q behaves the same way as P because it establishes x = 1 at the end of each

iteration, but we claim that in fact wlp(Q, 1) = 0. We verify our claim by computing the wlp

semantics, which involves finding the fixed point of the loop. The calculation below is shown

for completeness only. A careful discussion of fixed point calculations seems distracting at

this point and is deferred to Chapter 4.

wlp(Q, 1)

= wlp(x := 1,wlp(while (x = 1) {{x := 1; } [0.5] {x := 2; }; observe (x = 1)}, 1))

= wlp(x := 1, gfp
z
([x = 1] · wlp({x := 1; } [0.5] {x := 2; }; observe (x = 1), z) + [x ̸= 1] · x))

= wlp(x := 1, inf
n
([x = 1] · wlp({x := 1; } [0.5] {x := 2; }; observe (x = 1), 1) + [x ̸= 1] · x)n)
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= wlp(x := 1, inf
n
([x = 1] · wlp({x := 1; } [0.5] {x := 2; }; observe (x = 1),

[x = 1] · 0.5 + [x ̸= 1] · x) + [x ̸= 1] · x)n−1)

= wlp(x := 1, inf
n
([x = 1] · wlp({x := 1; } [0.5] {x := 2; }; observe (x = 1),

[x = 1] · 0.52 + [x ̸= 1] · x) + [x ̸= 1] · x)n−2)

...

= wlp(x := 1, [x ̸= 1] · x)

= 0

The difference to the non-probabilistic program is that the observation admits one diverging

run, but this run almost surely never happens. Intuitively, we are flipping a coin infinitely

often and due to the observation force it to land on the same side every time. But the event

that a fair coin will never land on tails (assuming 2 represents tails) in an infinite number

of trials has probability zero. And since wlp(Q, 1) = 0, the program is infeasible and the

conditional expected outcome cannot be measured.

3.2.2. Alternative definition

We defined cwp as wp scaled by wlp where the latter measures the probability to pass all obser-

vations or to avoid them. In principle we could have defined the conditional pre-expectation

as
wp(P, f)

wp(P, 1)
. (3.2)

But as already discussed in Section 3.1, page 32ff., non-termination and violation of ob-

servations would be regarded as the same event in this case. As a consequence one would

always implicitly condition on the fact that the program terminates almost surely and thus

for observation free programs this definition does not generalise wp.

3.2.3. Expectation transformers and non-determinism

On inductive definitions of transformers and positional schedulers. The expectation trans-

formers wp(P, ·) and wlp(P, ·) are defined inductively on the structure of the program P . This

means in particular that in order to determine, say, wlp(R; {P} [] {Q}, f), we first determine

f ′ = wlp({P} [] {Q}, f) and subsequently wlp(R, f ′). Here the intermediate expectation f ′

depends only on the transformation of f with respect to programs P and Q and is inde-

pendent of R. Operationally this means that in all states which offer the choice between P
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1 x := 0;

2 i := 0;

3 continue := true;

4 while(continue) {

5 (continue := false [] i := i + 1);

6 }

7 while(i > 0) {

8 (x := 1 [0.5] i := i - 1);

9 }

Figure 3.3.: This program can almost surely terminate with x ̸= 0, but there exists no sched-

uler that implements this behaviour.

and Q, the scheduler can resolve it regardless of the path (i.e. history) that led to this state.

This has been pointed out in [34] where they state that it is sufficient to consider positional5

schedulers for calculating expectations. While this claim is undoubtedly true we would like

to elaborate on this and stress why the “infimum” in the definition of e.g. the operational

equivalent of wlp

LExpRew(M,r)(s |= ♢T )

= inf
S

{
PrS(s ̸|= ♢T ) +

∑
c∈C

c · PrS{π ∈ PathsS(s,♢T ) | rT (π) = c }

}
,

is crucial. The claim above merely states that to determine the infimum it suffices to consider

only positional schedulers S, however this does not mean that there is a positional scheduler

that actually achieves the lower bound, in fact it may be the case that such a scheduler does

not exist at all. We demonstrate this by means of an example, which was inspired by [9]. Let

P be the program in Figure 3.3. Obviously we have wlp(P, [x = 1]) = 0 because the demon

would choose to terminate the first loop after the first iteration and thus never increase i.

Consequently the second loop is not entered and the program terminates with x = i = 0.

However wlp(P, [x = 0]) equals 0 as well, which is not that easy to see. A weakest liberal

pre-expectation with value 0 means that the program terminates almost surely. Otherwise

the non-termination probability would be included by wlp and the result would be strictly

greater than 0. Further, upon termination x ̸= 0 must hold. To avoid x = 0 almost surely,

5Also called memoryless.
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Figure 3.4.: Positional schedulers do not suffice in this RMDP.

we have to execute the second loop an unbounded number of times. For that the value

of i must be arbitrarily large, which is only possible when the first loop is executed an

unbounded number of times. Hence there is no particular value k of the counter i after

which a scheduler may decide to stop incrementing i and proceed to the next loop. Instead

our result wlp(P, [x = 0]) = 0 is obtained as the infimum over all schedulers that terminate

the loop after some k ∈ N steps. This explains why the definitions of ExpRew, LExpRew

and CExpRew use infima. However, for each k the underlying scheduler is positional. This

insight is important as we are used to assuming finite state MDPs in the area of formal

methods. For finite state MDPs one could obviously substitute the infimum by a minimum

and consequently implement a positional scheduler that does achieve the minimal expected

reward.

Schedulers are not compositional with respect to conditional minimal expected rewards.

In the following we illustrate how schedulers that minimise the conditional expected reward

in an RMDP depend on “context”. As a consequence we do not have a cwp rule for non-

deterministic choice that tells us how to compute the minimal conditional expectation from

the current valuation and the cwp(P, ·) and cwp(Q, ·) of the two subprograms P and Q.

Consider the RMDP R in Figure 3.4. There are only two schedulers. Let Sµ be the

scheduler that chooses to go from s2 to s3 and let Sν be the scheduler that chooses s4 as the

successor of s2. Further let T = {s1, s3, s6} and let RS be the Markov chain obtained from

R by resolving all choices according to S. Then we calculate CExpRewRSµ (♢T | ¬♢ ) = 1.5

and CExpRewRSν (♢T | ¬♢ ) = 1.4. Hence CExpRewR (♢T | ¬♢U) = 1.4 and the minimising

scheduler is Sν . However if we only consider the subsystem R’ that starts execution in

state s2 we obtain CExpRew
R′

Sµ (♢T | ¬♢ ) = 2 and CExpRewR′
Sν (♢T | ¬♢ ) = 2.2. So in

that subsystem the minimising choice is given by Sµ. This shows how choices are resolved
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3. Conditional probabilities and expectations

depending on the “context” within which the state occurs in the system.

Therefore any attempt to define any transformer T for non-deterministic choice as

T ({P} [] {Q}, X) = min
4

{T (P,X), T (Q,X)}

must fail for any representation of conditional expectations X and any order 4 between them

because the decision is made at a point where the “context” information is missing. In this

sense no inductive definition of a conditional expectation transformer is possible as was the

case for wp and wlp.

To remedy this we could devise a transformer that does not resolve choices immediately but

delays the decision between subprograms until the whole program has been evaluated. We

would call such a transformer a powerset expectation transformer because it must keep track of

all possible combinations of decisions. However it seems that this straightforward approach

is impractical, particularly in the context of loops. At this stage the study of conditional

expectation transformer semantics for non-deterministic choice remains a problem for future

work.

3.3. Reasoning with conditioning

Note that our examples have just one observation at the end of the program. This is because

it is quite natural to state a requirement about (parts of) the outcome of the program.

However all results, unless otherwise stated, apply to programs with an arbitrary number of

observations written at arbitrary positions within the program text.

3.3.1. Replacing observations by loops

In this section we show that conditional expectations over a program with observations can

be cast as (unconditional) expectations over a transformed program without observations. In

that sense, observations are “syntactic sugar” to the pGCL language. For conditional seman-

tics that normalise with respect to the terminating behaviour of programs as in Section 3.2.2,

we may use the following equivalence between program constructs

wp(observe (¬G), f) = wp(if (G) {abort} else {skip}, f) = wp(while (¬G) {skip}, f) .

Hence observe statements can readily be replaced by a non-terminating loop [17, 39]. The

conditional expectations can be then computed on this transformed observation-free program.
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3.3. Reasoning with conditioning

Our semantics does not require that a run terminates but only that it does not violate any

observation. We can establish an analogous result but the program transformation is more

intricate. Briefly stated, the idea is to restart a violating run from the initial state until it

satisfies all encountered observations. To achieve this we introduce a fresh boolean-valued

variable rerun and transform a given program P into a new program P ′ as described below:

observe (G) → if (¬G) {rerun := true} else {skip}
x := E → if (¬rerun) {x := E} else {skip}
abort → if (¬rerun) {abort} else {skip}

while (G) {. . .} → while (G ∧ ¬rerun) {. . .}

(3.3)

Initially, the variable rerun is false. The first transformation replaces observe statements

by if–then–else statements that use the variable rerun to indicate that some observation has

been violated. The other transformations take account of commands that alter the program’s

state or divergence behaviour. Our aim is that once rerun is true, i.e. an observation has

been violated, the execution skips over the rest of the program text to the end. If we do not

skip over assignments this may lead to an undefined state as in the following example

{x := 0} [0.5] {x := 1}

observe (x ̸= 0);

y := y/x;

In this program the observation makes sure that the program does not divide by zero. Simi-

larly, an observation may prevent a run from aborting or diverging as in the following example

{x := 0} [0.5] {x := 1}

observe (x ̸= 0);

while(x < 10) {

x := x · 2;

}

In order to ensure that the termination behaviour of P and P ′ are the same, we encapsulate

the abort statement as we did for assignment and we strengthen the guard of each loop.

The transformation from P to P ′ gives us an observation free-program such that for every

post-expectation f , the conditional pre-expectation of f given that rerun remains false in P ′

equals the conditional pre-expectation of f in P . Now we can get rid of the conditioning
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3. Conditional probabilities and expectations

by repeatedly executing P ′ from the same initial state until rerun remains false, which

corresponds to the event that a run in the original program P passes all observations.

This is implemented by program P ′′ below:

s1, . . . , sn := x1, . . . , xn;

rerun := true;

while(rerun) {
x1, . . . , xn := s1, . . . , sn;

P ′;

}

(3.4)

Here, s1, . . . , sn are fresh variables and x1, . . . , xn are all program variables of P . The first

assignment stores the initial state in the variables si and the first line of the loop body, ensures

that the loop always starts with the same (initial) values. These transformations show that

observe can be considered as syntactic sugar in the pGCL language, which is formally stated

in our next theorem6.

Theorem 3. Let programs P and P ′′ be as above. Then

cwp[P ](f) = wp[P ′′](f) .

Note that in the proof ([31], p. 23) we exploit our transfer theorem (Theorem 2) and argue

on the level of operational semantics. Hence the result holds not only for fully probabilistic

programs but for pGCL programs with observe in general. However cwp is restricted to fully

probabilistic programs. We illustrate the two main steps of our transformation using our

fishbowl example.

Example 4 (Replace observations by a loop).

Original program P :

1 (f1 := goldfish [0.5] f1 := piranha);

2 f2 := piranha;

3 (sample := f1 [0.5] sample := f2);

4 observe([sample = piranha]);

Transformation to P ′ using transformations at 3.3:

6Theorem 3 appears as Theorem 6.2 in our extended technical report [31].
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3.3. Reasoning with conditioning

1 rerun := false;

2 {if(!rerun){f1 := goldfish;}} [0.5] {if(!rerun){f1 := piranha;}}

3 if(!rerun){f2 := piranha;}

4 {if(!rerun){sample := f1;}} [0.5] if(!rerun){{sample := f2;}}

5 if(sample != piranha) {rerun := true;}

Final result P ′′ using transformations at 3.4:

1 s1 := f1;

2 s2 := f2;

3 s3 := sample;

4 rerun := true;

5 while(rerun) {

6 f1 := s1;

7 f2 := s2;

8 sample := s3;

9 rerun := false;

10 {if(!rerun){f1 := goldfish;}} [0.5] {if(!rerun){f1 := piranha;}}

11 if(!rerun){f2 := piranha;}

12 {if(!rerun){sample := f1;}} [0.5] if(!rerun){{sample := f2;}}

13 if(sample != piranha) {rerun := true;}

14 }

3.3.2. Replacing loops by observations

Theorem 3 shows how to define and effectively calculate the conditional expectation using

a straightforward program transformation and the well established notion of wp. However

in practice it will often be infeasible to calculate the fixed point of the outer loop or to

find a suitable loop invariant – even though it exists. This is because finding fixed points

of loops is the major obstacle in automated program analysis as we will see in Chapter 4.

Thus the loop introduced by this transformation increases the analysis effort. In particular a

program with simple (i.e. non-nested) loops will be turned into a program with nested loops.

While the result in the previous section is of theoretical interest it does not simplify the
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3. Conditional probabilities and expectations

analysis of programs. In practice, one would prefer to analyse the straight-line program P

from Example 4 over the program with a loop. It seems beneficial to have a transformation

that goes the other way around. However while the transformation in Theorem 3 works for

any program, no transformation in the other direction can be expected that is applicable

in general. Yet we can identify a subclass of programs that can easily be transformed to a

loop-free program, albeit an additional observe statement. Reconsider the last program P ′′

in Example 4. We see that the variables s1, . . . , s3 are obsolete because f1, f2 and sample are

set independently of their values in lines 10-12. Moreover the decision whether the loop has

to perform one more iteration is made at the very end in line 13. Hence we can push the

predicate into the loop’s header and replace line 4 by an arbitrary assignment that ensures

sample ̸= piranha. A simplified version of P ′′ can thus be written as:

1 sample := goldfish;

2 while(sample != piranha) {

3 (f1 := goldfish [0.5] f1 := piranha);

4 f2 := piranha;

5 (sample := f1 [0.5] sample := f2);

6 }

By the previous arguments we have seen that there is no dataflow between the iterations of

the loop. Hence the iterations of the loop generate a sequence of program variable valuations

that are independent and identically distributed (iid). We refer to such loops as iid loops,

which can be formally defined as follows.

Definition 4 (iid loop). A loop while (G) {P} is called iid, if wp(P, f) = wp(P k, f) for all

expectations f and k ∈ N\{ 0 }, where P k = P ;P ; . . . P︸ ︷︷ ︸
k

is the k-fold repetition of P .

The aim of Definition 4 is to capture the absence of dataflow between loop iterations

formally by requiring that the distribution generated by running the loop body P once is

indistinguishable from the distribution generated after running it multiple times. Since we

do not have access to distributions in our semantics, we require that the pre-expectations

agree for any post-expectation f . Indeed two discrete distributions are equal if and only if

the expectation of any random variable over these distributions is equal. In particular, if two

discrete distributions differ, there must be an outcome ω, such that E(1ω) differ between the

two distributions.
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3.3. Reasoning with conditioning

Example 5 (iid loops). Consider the programs P and Q:

P : b := 0 Q : while(c){

while(c){ b := 1

b := 1− b {c := 0} [1/2] {c := 1}

{c := 0} [1/2] {c := 1} if(c){

} b := 0

{c := 0} [1/2] {c := 1}

}

}

The loop in P inverts a bit b on every iteration. This inversion requires the knowledge of

the value of b from the previous iteration, hence we have dataflow between iterations and

the loop is not iid. Another way to see this is to check the distributions generated by the

iterations of the loop body. Let body denote the loop body in P . We have

wp(body, [b = 1]) = [1− b = 1] ̸= [b = 1] = wp(body2, [b = 1]) .

Thus running the loop once produces a distribution which is different from the distribution

produced after two runs and that by Definition 4 violates the iid property.

By contrast, the loop in program Q is iid. This is easy to see, as both variables b and c

are set regardless of their previous value inside the loop body of Q. More formally, let body

denote the loop body of Q. Then we can show that for any post-expectation f(b, c) and any

number of repetitions of body the pre-expectations agree, i.e.:

wp(body, f(b, c)) =
1

4
· f(0, 0) + 1

4
· f(0, 1) + 1

2
· f(1, 0) = wp(bodyk, f(b, c)) for all k > 1 .

This example shows also a curiosity. Namely that sometimes a loop which is not iid can be

rewritten into one which is iid. Here in fact program Q is obtained from P by merging two

iterations of the loop together. Of course this does not always work. For example, a loop

with a counter cannot be an iid loop.

The iid property allows to replace a loop by its body and an observation.
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3. Conditional probabilities and expectations

Theorem 4 (Transformation of iid loops). Let loop = while (G) {P} be an iid loop and let

Q = if (G) {P ; observe (¬G)} else {skip}. Then for any expectation f

wp(loop, f) = cwp(Q, f) .

Proof. Apply Theorem 3 to program Q. Let the resulting program be loop’. Since loop is iid,

from Definition 4 we have that wp(P, f) = wp(P k, f) for all f and k and therefore loop’ is

iid, too. Thus the same simplification steps as in Example 4 apply: there is only one observe

statement at the end of loop’ and furthermore there is no data flow between iterations of

loop’. Hence by removing all if–then–else statements that are vacuously true and pushing the

observation into the loop header we arrive at the desired program loop.

Theorem 4 formalises a claim from our technical report [31], p. 10. There we tacitly

assumed that the loop will be executed at least once and therefore left out the if–then–else

statement in Q, which is now taken care of explicitly.

3.3.3. Observation hoisting

Here we present yet another program transformation that supports the removal of observe

statements from programs. The idea is to “push” all observe statements upwards in the

program text such that in the end we obtain a program with one initial observation followed by

an observation free pGCL program text. For this we generalise observations to be functions in

the [0, 1] interval rather than just predicates. Intuitively such a quantitative observation gives

us the probability that the program fragment that follows it will establish some condition.

Figure 3.5 lists the transformation rules for each pGCL command. The single most important

transformation rule is the one for probabilistic choice. Based on the valuation of the current

state, it rescales the probabilistic choice proportional to the probability of the successor states

to pass all observations.

With the transformation rules from Figure 3.5 we establish the following result7.

Theorem 5 (Correctness of hoisting). Let P admit at least one feasible run for every initial

state and T (P, 1) = (P̂ , ĥ). Then for any expectation f ,

wp(P̂ , f) = cwp(P, f) .

7Theorem 5 appears as Theorem 5.1 in Appendix C.
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T (observe (G), f) = (skip, [G] · f)

T (skip, f) = (skip, f)

T (abort, f) = (abort, 1)

T (x := E, f) = (x := E, f [x/E])

T (if (G) {P} else {Q}, f) = (if (G) {P ′} else {Q′}, [G] · fP + [¬G] · fQ)
where (P ′, fP ) = T (P, f), (Q′, fQ) = T (Q, f)

T ({P} [a] {Q}, f) = ({P ′} [a′] {Q′}, a · fP + (1− a) · fQ)
where (P ′, fP ) = T (P, f), (Q′, fQ) = T (Q, f), and

a′ = a·fP
a·fP+(1−a)·fQ

T (while (G) {P}, f) = (while (G) {P ′}, f ′)

where f ′ = gfpx ([G] · (π2 ◦ T )(P, x) + [¬G] · f) , and

(P ′, ) = T (P, f ′)

T (P ;Q, f) = (P ′;Q′, f ′′) where (Q′, f ′) = T (Q, f), (P ′, f ′′) = T (P, f ′)

Figure 3.5.: Program transformation for hoisting observe statements. In the transformation

of the while–loop the function π2 is the projection to the second component (of

T ).
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Note that we apply the transformation rules from Figure 3.5 where f initially is the constant

expectation 1. Hence none of the commands change it, except for the observe command. It

will introduce the predicate G and all further hoisting steps are then carried out with respect

to G (and any other observations found on the way up). We revisit our simple fishbowl

example for a last time to illustrate a straightforward application of hoisting.

Example 6 (Hoisting observe).

Original program

{f1 := goldfish} [0.5] {f1 := piranha};

f2 := piranha;

{sample := f1} [0.5] {sample := f2};

observe ([sample = piranha])

First step of the hoisting transformation

{f1 := goldfish} [0.5] {f1 := piranha};

f2 := piranha;

observe ([f1 = piranha] · 0.5 + [f2 = piranha] · 0.5);

{sample := f1}
[

[f1 = piranha] · 0.5
[f1 = piranha] · 0.5 + [f2 = piranha] · 0.5

]
{sample := f2}

Second step of the hoisting transformation

{f1 := goldfish} [0.5] {f1 := piranha};

observe ([f1 = piranha] · 0.5 + 0.5);

f2 := piranha;

{sample := f1}
[

[f1 = piranha] · 0.5
[f1 = piranha] · 0.5 + [f2 = piranha] · 0.5

]
{sample := f2}

Last step of the hoisting transformation

observe (3/4);

{f1 := goldfish} [1/3] {f1 := piranha};

f2 := piranha;

{sample := f1}
[

[f1 = piranha] · 0.5
[f1 = piranha] · 0.5 + [f2 = piranha] · 0.5

]
{sample := f2}
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Conceptually we have to pay the price of finding loop fixed points in order to hoist observa-

tions over loops. We gain a separation between the observations that we condition on and the

rest of the program which can be analysed using the wp transformer. Such a hoisting can be

applied e.g. in simulation approaches where one would like to terminate infeasible executions

a soon as possible. Hoisting observations all the way through the program thus allows to

generate only feasible runs and leads to a better performance of the simulation technique.

This has been exploited in [54], but there instead of coin flips they introduce probability by

sampling from distributions. Therefore their transformation rule is weaker in that it does not

compute the weakest pre-expectation with respect to the probabilistic assignment. Instead

their rule overapproximates probabilistic assignment by non-deterministic assignment and

the observation is existentially quantified. In cases where the distribution is Bernoulli (or a

distribution that can be build using Bernoulli trials as shown in the introduction) our tech-

nique is more accurate. However our hoisting transformation cannot be applied to programs

that sample from e.g. continuous distributions.

The presented transformation could in principle be automated. All transformation rules

except the rule for the loop are purely syntactical. In order to apply the transformation to a

loop we first need to find a pre-expectation with respect to the original loop. In principle, we

could cast the problem of finding a fixed point as an invariant generation problem (studied

in Chapter 4) and apply the machinery there. The difference is just that instead of applying

wp, we need to apply T to the loop body P and the given post-expectation f . Finally, given

that pre-expectation, the loop body is transformed again in a syntactical manner. However

at this point the transformation has not been yet implemented and evaluated but certainly

is interesting future work for our tool development.

After independently discovering the rules in Figure 3.5 we found out that the same “trick”

has recently been applied in [4] where a transformation of Markov chains is introduced to

facilitate a fast computation of conditional probabilities of ω-regular objectives. The corre-

spondence between our hoisting transformation of probabilistic programs and their transfor-

mation of Markov chains may once again be seen as a consequence of the transfer theorem

and moreover serves as a good sanity check.

3.3.4. iid loops and hoisting – a case study

In what follows we apply the presented transformation techniques to determine conditional

probabilities in a randomised network protocol.
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Example 7 (Zeroconf). When a device is connected to a network it needs to be assigned a

unique IP address to enable communication with other devices on the network. The chosen

address must be unique as the device would otherwise cause a collision in the network, which

is highly undesirable. Zeroconf [15] is a protocol which allows the device to configure its own

IP address automatically without the need of a centralised server that manages the IPs of

all devices connected to the network. Such an IP configuration mechanism may be used in

ad hoc networks, for example. We are interested in the high level, probabilistic behaviour of

Zeroconf and follow [8] in its presentation.

Once connected, the device randomly generates its IP address. To verify that it is unique

it broadcasts a probe to the network and waits a certain amount of time for a reply in case

another device is already using the chosen address. It is possible that such an answer to the

probe is lost or does not arrive before the timer expires. Therefore the device sends several

probes and settles for the chosen IP address only if none of the probes receives an answer.

We assume some probability q to pick an address which is already in use. Furthermore we

assume that a fixed number N of probes is sent and each probe’s answer may (independently

of all the others) get lost with probability p. The protocol is modelled as a pGCL program

in Figure 3.6. As said before it is crucial to avoid collisions. Therefore the goal is to find

the probability that the protocol settles on an already used IP address, i.e. terminates with

collision = true. First we simplify the program and remove the for-loop while updating the

message loss probability to pN . This can be done because in case there is no collision, the

for-loop has no effect (and neither has the updated probabilistic choice) and in case a collision

does happen, configured will be reset to false unless the left hand side of the choice is chosen

on all N iterations which may happen with probability pN . For future reference we call this

program Zeroconf1.

1 configured := false;

2 while(!configured) {

3 (collision := true [q] collision := false);

4 configured := true;

5 {

6 skip;

7 }

8 [p^N]

9 {
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1 configured := false;

2 while(!configured) {

3 //choose random IP

4 (collision := true [q] collision := false);

5 //assume an unused IP was chosen

6 configured := true;

7 //query the network N times

8 for(1..N){

9 {

10 //no answer due to message loss

11 skip;

12 }

13 [p]

14 {

15 //if a used IP was chosen,

16 //the probe is answered accordingly

17 //and the protocol is restarted

18 if(collision){

19 configured := false;

20 }

21 }

22 }

23 }

Figure 3.6.: A pGCL program modelling the probabilistic behaviour of the Zeroconf protocol.

We use for (1..N) {. . .} to abbreviate i := 0;while (i < N) {. . . ; i := i+ 1}.

51



3. Conditional probabilities and expectations

10 if(collision){

11 configured := false;

12 }

13 }

14 }

Additionally, we see that there is no data flow between the iterations of the while-loop. The

variables collision and configured are set on each iteration regardless of their previous values.

Hence we have an iid loop to which Theorem 4 may be applied to replace the loop by an

observe statement. Thus we obtain a program Zeroconf2.

1 configured := false;

2 (collision := true [q] collision := false);

3 configured := true;

4 {

5 skip;

6 }

7 [p^N]

8 {

9 if(collision){

10 configured := false;

11 }

12 }

13 observe(configured = true);

We may hoist this observation all the way up through the program text by applying our

program transformation from Figure 3.5 yielding the final program Zeroconf3.

1 observe(qp^N / 1-q(1-p^N));

2 configured := false;

3 (collision := true [qp^N / 1-q(1-p^N)] collision := false);

4 configured := true;

5 {

6 skip;

7 }

8 [[configured=true]p^N / [configured=true]p^N + (1-p^N)[\neg collision]]
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p = 0.1, q = 0.001526
p = 0.2, q = 0.001526
p = 0.1, q = 0.015259
p = 0.2, q = 0.015259

Figure 3.7.: Collision probabilities as functions of the number of probes sent.

9 {

10 if(collision){

11 configured := false;

12 }

13 }

By Theorem 4, we have wp(Zeroconf1, [collision = true]) = cwp(Zeroconf2, [collision =

true]) and by Theorem 5, cwp(Zeroconf2, [collision = true]) = wp(Zeroconf3, [collision =

true]). The latter is now trivially given by the probabilistic choice in line 3. Our analysis

shows that Zeroconf may cause a collision on the network with probability

qpN

1− q(1− pN )
.

Figure 3.7 visualises how the collision probability depends on the number of probes sent.

In order to reduce the dimension of the distributions we fix certain values for the probability

parameters p and q. We assume the device picks an IP address within the 169.254/16 prefix

uniformly at random, which amounts to 65536 possible addresses. Assuming further that 100

out of these are already in use gives q = 0.001526, or if 1000 are already in use q = 0.015259.

We assume that a message is lost either with probability p = 0.1 or p = 0.2. This gives rise

to four scenarios and consequently the four distributions in Figure 3.7. We see that already

after three probes the collision probability is far below 10−3. In fact for q = 0.001526, p =

0.1, N = 3 the probability amounts to 1.53 · 10−6.
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3. Conditional probabilities and expectations

3.3.5. Conditional expectations in loopy programs – the Crowds protocol

We conclude this chapter by studying a variant of a network anonymity protocol. The example

serves two purposes, one is that we demonstrate how conditional expectations are calculated

for programs where our previously introduced simplification steps are not applicable. The

other is that this example motivates the topic of the next chapter, which deals with the

question how to compute fixed points of while-loops.

Example 8 (Crowds). To demonstrate the applicability of the cwp-semantics to a practical

example, we consider the Crowds protocol [58]. A set of nodes forms a fully connected

network called the crowd. Crowd members would like to exchange messages with a server

without revealing their identity to the server. To achieve this, a node initiates communication

by sending its message to a randomly chosen crowd member, possibly itself. Upon receiving

a message, a node probabilistically decides to either forward the message once again to a

randomly chosen node in the network or to relay it to the server directly. A commonly

studied attack scenario is that some malicious nodes called collaborators join the crowd and

participate in the protocol with the aim to reveal the identity of the sender. The pGCL-

program Crowds in Figure 3.8 models this protocol where p is the forward probability

and c is the fraction of collaborating nodes in the crowd. The initialisation corresponds to

the communication initiation. Our goal is to determine the probability of a message not

being intercepted by a collaborator. We condition this by the observation that a message is

forwarded at most k times.

Note that the operational semantics of Crowds induce an infinite parametric RMDP since

the value of k is fixed but arbitrary. Further note that due to the counter the loop is not iid and

cannot be easily removed as in the previous examples. The hoisting transformation – though

still applicable – requires to find a fixed point of the loop with respect to the observation,

which is as hard as determining the cwp directly. The probability that a message is not

intercepted given that it was rerouted no more than k times is given by

cwp(Crowds, [¬intercepted]) = wp(Crowds, [¬intercepted])
wlp(Crowds, 1)

(3.5)

The computation of this quantity requires to find fixed points. For details we refer to

Appendix A11 of our technical report [31]. As a result we obtain a closed form solution

parametrized in p, c, and k:

(1− c)(1− p)
1− (p(1− c))k

1− p(1− c)
· 1

1− pk
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1 // Let c be the fraction of corrupted nodes on the network

2 // Let p be the forward probability

3 intercepted := false;

4 delivered := false;

5 // Initiate communication path to server by sending the message

6 // to someone in the network

7 (intercepted := true [c] skip);

8 counter := 1;

9 while(delivered = false) {

10 {

11 (intercepted := true [c] skip);

12 counter := counter + 1;

13 }

14 [p]

15 {

16 delivered := true;

17 }

18 }

19 observe(counter <= k)

Figure 3.8.: Model of the Crowds protocol where the length of the communication path

through the network is bounded by some fixed number k.
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Figure 3.9.: The conditional probability that a message is intercepted as a function of k for

fixed c and p.

One can visualise it as a function in k by fixing the parameters c and p. For example,

Figure 3.9 shows the conditional probability plotted for various parameter settings. The

automation of this analysis requires to find the fixed points in (3.5) automatically. This issue

is addressed in the next chapter.
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In the previous chapters we have studied the meaning of probabilistic programs. Now we focus

on how we can actually calculate the weakest pre-expectation given a program and a post-

expectation. In this chapter we consider pGCL programs as defined in Chapter 2 without

observations. Recall that all language constructs other than the while-loop allow a purely

syntactical calculation of the pre-expectation, which may easily be automated. However for

loops, fixed points need to be found. In the following we use an example to explain how fixed

points can be found “by hand”. Then we summarise how invariants are used as an alternative

means to reason about pre-expectation of loops. Subsequently we show one approach for the

analysis of probabilistic programs using invariants and discuss to what extent our software

tool Prinsys help the user in this process.

4.1. Proving properties of probabilistic programs

4.1.1. Computing fixed points

Our first example in Figure 1.1 was a program that generated samples according to a ge-

ometric distribution. While not very spectacular on its own, we have seen variations of it

reappearing in other programs such as the duelling cowboys, cf. Figure 2.2a or the Crowds

protocol, cf. Figure 3.8. These programs have a similar structure: there is a loop which may

terminate with a fixed probability or update some variables with the complementary proba-

bility. The results of the analyses were thus given by some instance of the geometric series.

Since we believe that the geometric distribution is at the heart of many other probabilistic

programs, we choose its program as the example for the detailed wp calculation to come. In

the following let P be that program, which for convenience is displayed in Figure 4.1 once

again. We are interested to find the mean value of the random variable x. According to the
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4. Automated analysis

1 x := 0;

2 flip := 0;

3 while (flip = 0) {

4 ( flip := 1 [p] x := x + 1 );

5 }

Figure 4.1.: Program P generates a random sample x according to the geometric distribution

with parameter p.

denotational semantics presented in Section 2.3.2, this quantity is given by

wp(P, x) = wp(x := 0,wp(flip := 0,wp(while(flip = 0){flip := 1[p]x := x+ 1}, x))) (4.1)

= wp(x := 0,wp(flip := 0,

lfp
F

[flip = 0] · wp(flip := 1[p]x := x+ 1, F ) + [flip ̸= 0] · x︸ ︷︷ ︸
Φ(F )

)) (4.2)

= wp(x := 0,wp(flip := 0,

sup
k

[flip = 0] · wp(flip := 1[p]x := x+ 1, 0) + [flip ̸= 0] · x︸ ︷︷ ︸
Φ(0)


k

)) . (4.3)

Equation (4.1) is given directly by the semantics of sequential composition of pGCL com-

mands. In the next line we apply the definition of wp for loops. The expectation transformer

Φ(F ) = [flip = 0] · wp(flip := 1[p]x := x+ 1, F ) + [flip ̸= 0] · x takes some expectation F and

returns its pre-expectation with respect to one loop iteration. The solution to the fixed point

equation in (4.2) is obtained using the Kleene fixed point theorem. It tells us that the least

fixed point of Φ can be found by taking the supremum over k of Φk which denotes the k-fold

application of Φ. This results in (4.3). For a detailed account of fixed point theorems, we

refer to [45]. There, Theorem 3 applies in our setting where the cpo is the set of expectations

with point-wise ordering ({S → R∞
≥0},≤). In order to find the supremum in (4.3) we consider

the expression for several k and deduce a pattern:

Φ(0) = [flip = 0] · wp(flip := 1[p]x := x+ 1, 0) + [flip ̸= 0] · x

= [flip ̸= 0] · x
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Φ2(0) = Φ([flip ̸= 0] · x)

= [flip = 0] · wp(flip := 1[p]x := x+ 1, [flip ̸= 0] · x) + [flip ̸= 0] · x

= [flip = 0] · (px+ (1− p)[flip ̸= 0](x+ 1)) + [flip ̸= 0] · x

= [flip = 0] · px+ [flip ̸= 0] · x

Φ3(0) = Φ([flip = 0] · px+ [flip ̸= 0] · x)

= . . .

= [flip = 0] · (px+ (1− p)p(x+ 1)) + [flip ̸= 0] · x

Φ4(0) = Φ([flip = 0] · (px+ (1− p)p(x+ 1)) + [flip ̸= 0] · x)

= . . .

= [flip = 0] · (px+ (1− p)p(x+ 1) + (1− p)2p(x+ 2)) + [flip ̸= 0] · x
...

Φk+2(0) = [flip = 0] ·
k∑

i=0

(1− p)i · p · (x+ i) + [flip ̸= 0] · x

...

sup
k

Φk(0) = [flip = 0] ·
∞∑
i=0

(1− p)i · p · (x+ i) + [flip ̸= 0] · x

= [flip = 0] · (1− p

p
+ x) + [flip ̸= 0] · x .

The jump from Φ4(0) to Φk+2(0) is justified “by inspection” rather than a formal argument.

However, if we believe that this is correct, then we can easily find the supremum and hence

the sought fixed point for equation (4.3). To verify that our guess was correct and that we

have found the least fixed point, we first check that it indeed is a fixed point.

Φ([flip = 0] · (1− p

p
+ x) + [flip ̸= 0] · x)

= [flip = 0] · (px+ (1− p)([flip = 0] · (1− p

p
+ x+ 1) + [flip ̸= 0] · (x+ 1))) + [flip ̸= 0] · x

= [flip = 0] · (px+ (1− p)(
1− p

p
+ x+ 1)) + [flip ̸= 0] · x

= [flip = 0] · (1− p

p
+ x) + [flip ̸= 0] · x . (4.4)
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To convince ourselves that this fixed point is the least, we merely need to observe that the

loop terminates almost surely and that for such loops the greatest and the least fixed points

coincide [50, p. 182]. Using this result we can continue the calculation of the expected value

of x in program 4.1 as follows:

wp(P, x) = wp(x := 0,wp(flip := 0,

sup
k

([flip = 0] · wp(flip := 1[p]x := x+ 1, 0) + [flip ̸= 0] · x)k))

= wp(x := 0,wp(flip := 0, [flip = 0] · (1− p

p
+ x) + [flip ̸= 0] · x))

= wp(x := 0,
1− p

p
+ x)

=
1− p

p

This agrees with the expectation of the geometric distribution.

The fixed point calculation can be automated to some degree. Barsotti and Wolovick [5]

have suggested a method that iteratively approximates the fixed point. In their paper they

study, among other examples, the geometric distribution program as well. The only difference

is that they consider the variant where one is interested in the number of Bernoulli trials to

get one success. Mathematically speaking, if in our example we consider a random variable

X, they consider X+1. This difference is however irrelevant for the techniques discussed here

and is only mentioned to avoid confusing the interested reader who studies our and their work

at the same time. Their method relies on numerical calculations and therefore instead of a

parameter p their probabilistic choice must use some numerical value, e.g. 0.5. Furthermore

they require a user to provide a template, that is a set of predicates that partition the

state space into disjoint areas. Assuming we found a good partition, then their method will

iteratively approximate the expectation of the random variable for each of these partitions.

In the given example, the template of course is rather straightforward since the execution of

the program merely depends on the value of flip. Hence they start with an expression

[flip = 0] · (a2 · flip+ a1 · x+ a0) + [flip ̸= 0] · (b2 · flip+ b1 · x+ b0) (4.5)

and after some iterations converge to

a2 = b2 = b0 = 0 and a1 = b1 = 1 and a0 = 2 .

The wp calculation can be then carried out using the template with its parameters instantiated

as above as the pre-expectation of the loop and finally arrive at the pre-expectation of 2 for
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4.1. Proving properties of probabilistic programs

their program. This corresponds with the expectation of the modelled distribution which is

1/0.5 = 2. While the implementation seems promising, it is hard to tell from the two examples

discussed in [5] to what class of programs this fixed point approximation is applicable and

where the practical limits of this approach are. Conceptually, they exclude reasoning with

parameterised programs, i.e. programs where probabilities are not specified by a particular

number but some parameter p.

Another approach to compute quantities in probabilistic programs with loops has been

introduced by Claret et al. [17]. There again, they assume that all probabilities are given

as numerical values and that all variables can be discretised to take values from a finite set.

They then use abstract decision diagrams (ADDs) to represent joint probability distributions

over the programs state space. Using a forward semantics (as discussed in section 2.3.1) they

update an initial distribution until the program terminates and the output distribution can

be used to determine any quantity of interest. In order to deal with loops they assume that

one can find a threshold such that the distance (e.g. Kullback-Leibler divergence) between

a distribution before and after one iteration of the loop becomes smaller than the chosen

threshold. The loop is determined to stop then and the computation is carried on, possibly

with a small numerical error. Based on the examples discussed in [17], their algorithm

produces interesting results. However it is not clear to what degree it may suffer from

numerical imprecision due to abstraction to a finite state space and the under-approximation

of the loop behaviour. Further the result of their analysis is an ADD representation of the

distribution over the program’s outcomes. This allows to measure any events or moments,

but the result is merely a number. It does not explain how the measured outcome depends

on the variables of the program. On the contrary, fixed points—and invariants, which we

are about to study in the next section—not only facilitate the calculation of an expectation

but also provide a deep insight into the program’s behaviour. For example, the fixed point

that we found in (4.4) gives the expectation of x depending on the initial value of flip and

probability parameter p. In the introduction we have compared this to scientific laws which

describe relations between physical quantities by means of a mathematical formulas.

4.1.2. Invariants

In the verification of standard, i.e. non-probabilistic programs, we often find it convenient to

separate the proofs of termination and partial correctness. For example, in Hoare calculus

for standard programs variants are used to establish termination and invariants are required
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to show partial correctness. Together they form the proof of total correctness. McIver and

Morgan [50, Ch. 2] have introduced variants and invariants for probabilistic programs. If, for

a probabilistic program P and expectations g and f , we can establish

g = wp(while (G) {P}, f) , (4.6)

then we have shown the total correctness of while (G) {P} with respect to post-expectation

f . For an initial valuation η of program variables, g(η) is the expectation of f computed

over all terminating runs of while (G) {P}. In this sense, wp takes care of both, probabilistic

termination and expectation calculation. In the following we divide the task of calculating

pre-expectations into two separate subtasks: finding a liberal pre-expectation and proving

almost sure termination. Stated in Hoare calculus terms we seek to find probabilistic invari-

ants and variants. Probabilistic invariants are the topic in the remainder of this chapter. The

theory of probabilistic variants is beyond the topic of our studies and we refer to e.g. [50] for

further details.

Definition 5 (Probabilistic loop invariants). An expectation I is called a probabilistic loop

invariant for while (G) {P} if

[G] · I ≤ wlp(P, I)

Essentially, this definition is analogous to the standard definition of invariants for non-

probabilistic loops except that our invariant is an expectation and not a predicate and there-

fore implication between predicates is lifted to an inequality between expectations. From now

on we refer to probabilistic loop invariants simply as invariants for readability. The idea of

an invariant is that it approximates the liberal pre-expectation of a loop from below since it

cannot decrease after one iteration of the loop body P . In that sense, invariants may be seen

as variants of martingales [64]. A submartingale is a stochastic process Xn with the property

that the expected value of Xn given the knowledge of the value of the previous step Xn−1 is

no less than Xn−1. In Definition 5 above we can identify the current value of I with Xn−1 and

wlp(P, I) with the expectation of Xn. Since non-determinism in P is resolved (demonically)

in wlp(P, I), we get a stochastic process and may apply results from martingale theory when

reasoning about invariants of probabilistic programs. The link between program analysis of

probabilistic programs and martingale theory has first been established by Chakarov and

Sankaranarayanan [13].
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We have introduced wlp in the previous chapter when defining conditional pre-expectations.

The difference between wp and wlp is that the former gives the expectation which is measured

over terminating runs whereas the latter gives the expectation over all runs. But what should

be the reward of a non-terminating run? The intuition is that in a state where the program

diverges the liberal transformer for standard programs returns true, which is the top element

on the cpo of predicates. By analogy we would expect that the probabilistic variant of wlp

returns the top element on the cpo of expectations. However since expectations are defined

on non-negative real numbers, the top element would be an expectation that evaluates to

infinity everywhere. But it is not possible to carry out any meaningful computations with

infinity as the top element because any consistent definition of addition or multiplication

with infinity evaluates to infinity again and any other definition of arithmetical operations

immediately leads to contradictions. Therefore we need a top element that allows for reason-

able calculations, hence must be an actual real number. For simplicity we fix the range of

expectation that wlp transforms to [0, 1] and thereby obtain a top element, which is the ex-

pectation that evaluates to one everywhere. When studying conditional pre-expectations the

wlp transformer naturally was bound in [0, 1] because it measured the probability to satisfy

observations. In general this need not be the case. McIver and Morgan [50] merely require

that the expectations are bounded by some real upper bound α which may depend on the

program at hand. In order to justify the restriction to the [0, 1] interval they argue that for

almost surely terminating programs all calculations can be rescaled accordingly. Indeed all

programs that we have studied in the context of this chapter do terminate almost surely.

A probabilistic invariant, as defined in (5) may be used to prove g ≤ wlp(while(G){P}, f)
if

g ≤ I (4.7)

[¬G] · I ≤ f . (4.8)

If we can additionally prove that the loop terminates from a set of states characterised by T ,

then we can use I for the stronger claim [T ]·g ≤ wp(while(G){P}, f), i.e. we take termination

into account.

A crucial difference between standard and probabilistic invariants is that the latter may

underestimate the outcome. For example, an invariant for a standard program may be too

specific and miss some of the initial states from which execution indeed would reach the

postcondition. However a probabilistic invariant, not only could miss such states as well (i.e.

assign the expectation 0 to them), but even in states where it is non-zero it may be far below
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the actual expectation that could be achieved from that state. However in practice we want

to find the pre-expectation of a loop precisely, not just some under-approximation. Indeed in

all our examples throughout this chapter the invariants are chosen such that they establish

the pre-expectation exactly.

Another approach to define invariants for probabilistic programs is due to Chakarov and

Sankarnarayanan [14]. There an expression e over program variables is called an inductive

expectation invariant (IEI) if

wp((while (G) {P})n, e) ≥ 0 ∀n ∈ N (4.9)

where (while (G) {P})n is the n-fold unrolling of the loop and they assume (while (G) {P})0 =
skip. This definition tells us that the expectation of e has to be non-negative with respect

to the initial distribution and with each further iteration of the loop the expectation of e

remains non-negative with respect to the updated distribution. Their IEI expressions can be

used to derive bounds on an unknown expected value. For example if e = 2x + 1 is an IEI,

then from this we learn that

wp(while(G){P}, 2x+ 1) ≥ 0 .

Since wp, which is nothing but an expectation, is linear, we can rewrite this as

2 · wp(while(G){P}, x) + 1 ≥ 0 (4.10)

wp(while(G){P}, x) ≥ −0.5 (4.11)

Thus using e as a lower bound on the expectation of x can be derived. Interestingly, a

method [14] that generates such an IEI e may do so without the need to find the expected

value of x itself, which might be much harder.

An obvious question is how do invariants I in the sense of Definition 5 relate to IEI e in

(4.9)? They are different in nature. An invariant I is defined to be a quantity that never

decreases from one iteration of the loop to another. In contrast e is an expression such that

the predicate in (4.9) is maintained for every iteration of the loop. However the value of e

may fluctuate and is actually irrelevant (as long as its expectation is provably no less than

0). So in [14] they generate expressions e that in our framework satisfy

wp(while(G){P}, e)(η0) ≥ 0
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where η0 is the initial state from which the loop starts its execution1. However if we choose

to prove this inequality using a probabilistic invariant I, it will not necessarily resemble the

shape of e in any way.

In the next section we briefly survey approaches to computer aided invariant generation

before we consider our software tool Prinsys.

4.2. Feasible level of automation

Classical undecidability results in computer science show that we cannot expect to devise

an algorithm to find an invariant for every given loop and every given postcondition (or

post-expectation). Instead there are basically two orthogonal approaches for computer aided

invariant generation. We say “computer aided” to emphasise that eventually it is a human

user who actually finds the invariant but is assisted in various ways by a computer software.

One approach, that we colloquially refer to as abstract interpretation based, starts with a

representation of known facts about the initial state of the loop and updates these facts by

iteratively unrolling the loop. To achieve convergence with a small number of unrollings a

technique called widening is used, which approximates the further behaviour of the loop. The

result of this generation technique is a set of invariants that a user inspects and amongst which

hopefully finds a useful invariant for his proof goal. Due to widening, abstract interpretation

based methods are doomed to be incomplete which means they cannot discover all facts (and

thus all invariants) of a loop. Therefore it might be the case that the invariant that the user

is actually searching for is “overlooked” by these methods. However in practice we see that

they often do generate useful information, i.e. interesting loop invariants. For further details

of this techniques and their implementations we refer to published results on standard [59]

and probabilistic [14] programs.

Opposed to abstract interpretation based methods there exist so called constraint based

methods. As we have seen from the previous section a loop while (G) {P} and the post-

expectation f yield constraints

[G] · I ≤ wlp(P, I) (4.12)

[¬G] · I ≤ f (4.13)

1In [14] they work with initial distributions, but we do not have a way to express an initial distribution.

Luckily it does not really matter as for computing expectations they only need to know the average over

the initial distribution which can be encoded in a state η0.
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where I is the invariant to be determined. In principle, I may be an arbitrary piece-wise

defined function from variable valuation to real values. Without further information about I
there are too many degrees of freedom for the choice of I: How should I partition the state

space and should be the values be described by a function that is linear or polynomial in

the program variables? And if it is polynomial, what degree does it have for each variable?

Thus we need to constrain the problem further. One way is to guess a candidate invariant

precisely. Then the above inequalities may be checked and in case they are satisfied the guess

was indeed successful. Of course, one would like to be less stringent and not require a correct

guess of an invariant right away. So instead, the user may provide a so-called template for

I. This is an expectation, but some factors or additive constants may be parameterised. We

have seen an example of a template earlier, cf. (4.5). For such templates we can automatically

decide whether this template admits a solution and if so how those template parameters need

to be instantiated. Further an important feature is that the constraint based approach is goal

driven, i.e. the user has a post-expectation f in mind and needs to find a pre-expectation

that satisfies (4.13). So he will shape his template accordingly and, when successful, is able

to finish his proof. Finally this method is complete in a sense that if the user provides a

template that has an invariant instantiation it is guaranteed to be included in the result of

this approach. Of course the major drawback is that it is the user who has to provide a lot of

information before the computer takes over. For standard programs, implementations exists,

e.g. [35, 61, 19].

In the following section we discuss our implementation of a constraint based method due

to [42] and evaluate its applicability on some examples. Its key benefit is that it checks (4.12)

automatically and thereby saves the user the hardest calculations that are needed to establish

pre- and post-expectations of probabilistic loops.

4.3. Prinsys

Prinsys implements an invariant generation method suggested by Katoen et al. [42]. It is

available for download on http://moves.rwth-aachen.de/research/tools/prinsys/ For

a detailed explanation of Prinsys’s methodology and implementation we refer to our paper

in Appendix D. There we also revisit the program from Figure 4.1 and work out all steps

which the tool performs to find the desired invariant. Here we only briefly mention the idea

and then proceed to discuss other programs which we have studied.
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4.3. Prinsys

4.3.1. Methodology

Prinsys requires the user to provide a program that contains a single, non-nested loop, such

as the geometric distribution example from Figure 4.1. In fact all of the code before and after

the loop is irrelevant to our tool so we may just as well focus on the loop only to which we

refer as loop = while (G) {P}. Additionally, the user provides a so-called invariant template

T . For the loop above a suitable template might be chosen as

T = [x ≥ 0 ∧ flip = 0] · (α+ x) + [x ≥ 0 ∧ flip ̸= 0] · x ,

where α is the unknown template parameter the value of which we want to find. From loop

and T , Prinsys generates the necessary condition for invariance of T

[G] · T ≤ wlp(P, T ) . (4.14)

Since P is free of loops wlp(P, T ) can be automatically evaluated and yields some expectation

T ’. The inequality

[G] · T ≤ T ′

is then translated to a first-order formula which is true if and only if the inequality holds.

Subsequently we use Redlog [24] as an off-the-shelf solver to decide this formula. Since T
contains free parameters the result of this decision procedure is not merely a yes-or-no answer

but a constraint over those template parameters that characterises all invariant instances. For

example, T above produces the following output

α · p− α ≤ 0 ∧ α · p+ p− 1 ≤ 0 .

This simplifies to

0 ≤ α ≤ 1− p

p
,

and in particular we have invariant instantiation

T [α/
1− p

p
] = [x ≥ 0 ∧ flip = 0] · (1− p

p
+ x) + [x ≥ 0 ∧ flip ̸= 0] · x ,

which is a stronger expression then the fixed point in (4.4), but it suffices to show the desired

pre-expectation. If a parameter-free template T is used, then Prinsys will simply report

whether the inequality (4.14) is satisfied or not. For such invariance checks, we recently have

added an option to use Z3 [21] as the back end. As there are no parameters to take care of,

an SMT solving technique as implemented by Z3 suffices to decide the inequality (4.14). The
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benefit is that SMT solving may outperform the quantifier elimination procedure of Redlog.

Furthermore in case the parameter-free T is not invariant, Z3 allows to extract a valuation

of the variables that shows why inequality 4.14 does not hold. This may serve as valuable

information to the user to refine his guess of what T should be.

4.3.2. Examples

Further examples in which we were able to successfully identify an invariant with the help of

Prinsys include the following.

Generating a biased coin from a fair one. In [42], Hurd’s algorithm to generate a sample

according to a biased coin flip using only fair coin flips has been analysed. This algorithm is

given in terms of pGCL in Figure 4.2 With Prinsys we have successfully verified that

I = [x ≥ 0 ∧ x− 1 ≤ 0 ∧ (b− 1 = 0 ∨ x = 0 ∨ x− 1 = 0)] · (x)

is invariant. Using I one may show that the probability to establish x = 1 is p and conversely

x = 0 with probability 1− p. Thus the program generates a biased coin flip with a given bias

p using a repetition of fair coin flips. For a detailed analysis we refer to our work in [29, p.

47ff.].

Generating a fair coin from a biased one. Here we consider an algorithm for the opposite

problem. Using a coin with some arbitrary bias 0 < p < 1, the algorithm in Figure 4.3

generates a sample according to a fair coin flip. The loop terminates when the biased coin

was flipped twice and showed different outcomes. We remind the reader that this loop is an

instance of an iid loop, which were introduced in Section 3.3.2, and can thus be elegantly

analysed by introducing an observe statement. Here however we would like to show the

applicability of invariants. Starting with the template

T = [x = 0 ∧ y − 1 = 0] · (α) + [x− 1 = 0 ∧ y = 0] · (β)

Prinsys tells us that the template parameters α and β must satisfy

αp2 − αp+ βp2 − βp ≤ 0 .

This simplifies to α = −β and gives us an invariant that allows us to show that the probability

of the outcomes x = 0 and x = 1 have probability 1/2 each. For a detailed analysis we refer

to our work in [33], cf. Appendix D.
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1 x:= p;

2 b:= true;

3 while (b - 1 = 0) {

4 (b := false [0.5] b := true);

5 //if b is true

6 if (b - 1 = 0) {

7 x:= 2*x;

8 if (x - 1 >= 0) {

9 x:= x-1;

10 } else {

11 skip;

12 }

13 }

14 else if (x - 0.5 >= 0) {

15 x:= 1;

16 }

17 else {

18 x:= 0;

19 }

20 }

Figure 4.2.: Algorithm which generates a sample x = 1 with probability p and x = 0 with

probability 1− p by repeatedly flipping a fair coin.

1 x := 0;

2 y := 0;

3 while (x - y = 0) {

4 (x := 0 [p] x := 1);

5 (y := 0 [p] y := 1);

6 }

Figure 4.3.: Algorithm which generates x = 0 and x = 1 with equal probability by repeatedly

flipping a coin with an arbitrary bias p.

69



4. Automated analysis

1 x := 0;

2 n := 0;

3 while (n - M + 1 <= 0) {

4 (x := x + 1 [p] skip);

5 n := n + 1;

6 }

Figure 4.4.: Algorithm which generates a sample x distributed binomially with parameters p

and M .

Binomial distribution. In this thesis we have seen many examples that in essence are a

variant of the geometric distribution. Another important distribution underlying various

interesting processes is the binomial distribution. Figure 4.4 gives a pGCL program that

produces a sample x distributed according to the binomial distribution, i.e. the probability

to terminate with x = k is given by(
M

k

)
pk(1− p)M−k .

Using our expectation calculus we may show that the pre-expectation of x is pM , which

agrees with the expectation of a binomial distribution with parameters p and M . For this

we use the template

T = [x ≥ 0 ∧ x− n ≤ 0 ∧ n−M ≤ 0] · (αx+ βn+ γ) .

Interacting with Prinsys we arrive at an invariant instance which is given by

T [α/
1

M
,β/

−p

M
, γ/p] = [x ≥ 0 ∧ x− n ≤ 0 ∧ n−M ≤ 0] · ( 1

M
x− p

M
n+ p) .

This invariant allows to show that the expectation of x/M is p. Since wp is linear (just as

the mathematical expectation is) this result may be scaled by M to obtain the desired claim.

For a detailed analysis we refer to our work in [29, p. 45ff.].

4.3.3. Problems

Technical. Essentially there are two technical problems with the Prinsys approach. A

minor issue is that we are currently limited to the study of algorithms without nested loops.

While nested loops maybe rewritten into an equivalent single loop [57], this transformation
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seems impractical since part of the program’s structure is lost and it will be harder to find an

invariant for the new loop. Instead we believe our approach can be extended straightforwardly

to support nested loops. For example consider the following program where G and H are

boolean guards and P , Q and R are loop-free subprograms.

while (G) {

P ;

while (H) {

R

}

Q;

}

Then we need two invariants: one invariant, say I, for the outer loop and one, say J , for the

inner loop. Given some post-condition f , the conditions (4.12) and (4.13) generalise to

[G] · I ≤ wlp(P,J ) (4.15)

[H] · J ≤ wlp(R,J ) (4.16)

[¬H] · J ≤ wlp(Q, I) (4.17)

[¬G] · I ≤ f . (4.18)

Condition (4.16) ensures that J is an invariant of the inner loop. Together with conditions

(4.15) and (4.17) this further ensures that I is an invariant of the outer loop. Finally (4.18)

establishes a lower bound on the given post-expectation f upon termination of the loops –

in the same way as (4.13) did before. These constraints can be encoded in an first-order

formula and solved. However this generalisation to nested loops has not been implemented

as single-loop programs pose enough problems that need to be overcome before taking on

further challenges.

The second technical problem is due to practical limitations of computer resources and

insufficiencies in the current solvers. More precisely, the expressions that our tool handles

grow very fast depending on the number of predicates in the template and the number

of (conditional, probabilistic or non-deterministic) choices in the loop body. In the step

where we translate (4.14) to a first-order formula, the size of the data structures blows
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up exponentially. During our implementation we have learnt that it is crucial to simplify

expressions at intermediate steps to maintain a manageable size. But even if Prinsys and

the tools in the back end can successfully cope with the large data, the results that are

returned to the user may be inconclusive. In the previous examples we have seen how well

chosen templates lead to a small set of constraints that tell us what our invariant will be.

However for other programs we may get results that are too large to be readable by a human

user. A closer look however reveals that many simplifications, which seem obvious to a human

user, are missed by the algorithms implemented in the solvers.

Conceptual. Conceptually we may identify two issues. The first is of a theoretical nature

and that is we can only represent polynomial expectations. They do not suffice to express

expectations of interesting random variables which are given by non-polynomial functions.

For instance, our approach cannot be used to calculate the probability of an event such as

x = i for some fixed i, given the binomial or geometric programs (and in fact all algorithms

that are based on those) because that would require reasoning with exponential functions

and binomial coefficients, i.e. factorials. However an automated technique that can reason

with such functions is not to be expected because currently it is not even known whether the

theory of real numbers with exponential functions is decidable or not [49].

The greater conceptual issue is that the user has to provide a good template. This means

essentially that if we know what the pre-expectation of the loop should look like, we can

easily motivate the shape of a template and find an invariant instantiation with the help of

Prinsys. However if a user has no clue what the sought pre-expectation of the loop is, it

is not clear how to proceed. A constraint-based approach to invariant generation can only

work with the input given by the user. A template that has no invariant instantiation will

produce the answer false, but no hint will be given as to how to repair the template. The

use of Z3 allowed us to find valuations that violate the invariance condition of Definition 5.

However this does not give a direct hint at how to reshape the template. A possible remedy

could be the use of patterns: If a software tool could automatically analyse the control flow

structure of a loop and identify it to be an instance of an already known program – such as

the geometric or binomial loop, which we have studied before – a good invariant candidate

could be suggested to the user. However before the automation of such pattern detection

algorithms can be approached we need to analyse a large number of case studies manually

and identify the individual patterns that could be reused later.
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In this thesis we have studied the semantics and analysis techniques for probabilistic pro-

grams. We have given pGCL programs an operational semantics by means of reward Markov

decision processes and linked expected rewards of such RMDPs to the weakest pre-expectation

semantics. This correspondence result allows us to use either semantics to analyse or prove

facts about pGCL programs. In a following step, we enriched pGCL by an observation

statement which blocks all executions of a program that fail to satisfy a given predicate.

Accordingly we extend both, the RMDP and wp, semantics to cater for this language ex-

tension. This gave rise to the notion of conditional minimal expected rewards over RMDPs

and the conditional weakest pre-expectation over programs. Various examples have been

studied to better understand the intricate behaviour of these conditional quantities as well

as their practical application. As a result we were again able to establish a transfer theorem

for the extended language, however restricting it to fully probabilistic programs only. We

demonstrated by means of an example why a conditional expectation transformer cannot be

given for non-deterministic probabilistic programs. The task to characterise the necessary

and sufficient properties of programs that allow for a cwp style semantics have been left for

future work.

The last chapter discussed our implementation of a constraint-based invariant generation

technique for probabilistic programs. It saves the user a considerable amount of hard and

error prone calculations and we have presented a set of programs that have been successfully

analysed with our tool Prinsys. The major drawback in the application of Prinsys, turned

out to be that it works well to check an educated guess of the user, but it fails to guide the

user’s search for an invariant in case the guess was not successful. We believe this may be

remedied in the future by developing patterns for invariants. However, a larger set of case

studies is needed to evaluate the applicability of such patterns. In the introduction we briefly

mentioned that new abstraction techniques are evolving in the probabilistic model checking

community which target infinite or parametric systems. Since our programs induce infinite,

parametric Markov chains or Markov decision processes we hope to benefit from these recent
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developments. Possibly they could be applied to learn invariants for interesting subclasses of

pGCL programs.
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[6] Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella Béguelin. Probabilistic

relational reasoning for differential privacy. ACM Trans. Program. Lang. Syst., 35(3):9,

2013.

75

http://en.wikipedia.org/wiki/Monty_Hall_problem


Bibliography

[7] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science

and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[8] Henrik C. Bohnenkamp, Peter van der Stok, Holger Hermanns, and Frits W. Vaandrager.

Cost-optimization of the ipv4 zeroconf protocol. In 2003 International Conference on

Dependable Systems and Networks (DSN 2003), 22-25 June 2003, San Francisco, CA,

USA, Proceedings, pages 531–540. IEEE Computer Society, 2003.
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Together with our paper in Appendix B, this paper forms the basis of Chapter 2.
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Abstract—This paper proposes a simple operational semantics
of pGCL, Dijkstra’s guarded command language extended with
probabilistic choice, and relates this to pGCL’s wp-semantics by
McIver and Morgan. Parameterised Markov decision processes
whose state rewards depend on the post-expectation at hand
are used as operational model. We show that the weakest pre-
expectation of a pGCL-program w.r.t. a post-expectation corre-
sponds to the expected cumulative reward to reach a terminal
state in the parameterised MDP associated to the program. In a
similar way, we show a correspondence between weakest liberal
pre-expectations and liberal expected cumulative rewards.

I. INTRODUCTION

Formal semantics of programming languages has been the
subject of intense research in computer science for several
decades. Several approaches have been developed for the de-
scription of program semantics. Structured operational seman-
tics defines the meaning of a program by means of an abstract
machine where states correspond to program configurations
(typically consisting of a program counter and a variable
valuation) and transitions model the evolution of a program by
executing statements. Program executions are then the possible
runs of the abstract machine. Denotational semantics maps
a program onto a mathematical object that describes for in-
stance its input-output behaviour. Finally, axiomatic semantics
provides the program semantics in an indirect manner by
describing its properties. A prominent example of the latter
are Hoare triples in which annotations, written in predicate
logic, are associated to control points of the program.

The semantics of Dijkstra’s seminal guarded command
language [2] from the seventies is given in terms of weakest
preconditions. It is in fact a predicate transformer semantics
that is a total function between two predicates on the state
of a program. The predicate transformer E = wp(P, F ) for
program P and postcondition F yields the weakest precondi-
tion E on the initial state of P ensuring that the execution of
P terminates in a final state satisfying F . There is a direct
relation with axiomatic semantics: the Hoare triple {E}P{F}
holds for total correctness if and ony if E ⇒ wp(P, F ). The
weakest liberal precondition wlp(P, F ) yields the weakest
precondition for which P either does not terminate or es-
tablishes F . It does not ensure termination and corresponds
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to Hoare logic in partial correctness. Although providing an
operational semantics for the guarded command language is
rather straightforward, it lasted until the early nineties until
Lukkien [8], [9] provided a formal connection between the
predicate transformer semantics and the notion of a computa-
tion.

Qualitative annotations in predicate calculus are often insuf-
ficient for probabilistic programs as they cannot express quan-
tities such as expectations over program variables. To that end,
McIver and Morgan [10] generalised the methods of Dijkstra
and Hoare to probabilistic programs by making the annotations
real-valued expressions —referred to as expectations— in the
program variables. Expectations are the quantitative analogue
of predicates. This yields an expectation transformer semantics
of the probabilistic guarded command language (pGCL, for
short), an extension of Dijkstra’s language with a probabilistic
choice operator. An expectation transformer is a total function
between two expectations on the state of a program. The ex-
pectation transformer wp(P, f) for pGCL-program P and post-
expectation f over final states yields the least expected value e
on P ’s initial state ensuring that P ’s execution terminates with
a value f . The annotation {e}P{f} holds for total correctness
if and only if e ≤ wp(P, f), where ≤ is to be interpreted
in a point-wise manner. The weakest liberal pre-expectation
wlp(P, f) yields the least expectation for which P either does
not terminate or establishes f . It does not ensure termination
and corresponds to partial correctness.

This paper provides a simple operational semantics of
pGCL using parametric Markov decision processes (pMDPs),
a slight variant of MDPs in which probabilities may be
parameterised [3]. Our main contribution in this paper is a
formal connection between the wp- and wlp-semantics of pGCL
by McIver and Morgan and the operational semantics. This
provides a clean and insightful relationship between the ab-
stract expectation transformer semantics that has been proven
useful for formal reasoning about probabilistic programs, and
the notion of a computation in terms of the operational model,
a pMDP. In order to establish this connection we equip pMDPs
with state rewards that depend on the post-expectation at
hand. Intuitively speaking, we decorate a terminal state in the
operational model of a program with a reward that corresponds
to the value of the post-expectation. All other states are
assigned reward zero. We then show that the weakest pre-



expectation of a pGCL-program P w.r.t. a post-expectation
corresponds to the expected cumulative reward to reach a
terminal state in the pMDP associated to P . In a similar
way, we show that weakest liberal pre-expectations correspond
to liberal expected cumulative rewards. The proofs are by
induction on the structure of our probabilistic programs. This
paper thus yields a computational view on the expectation
transformer semantics of probabilistic programs using first
principles of Markov decision processes.

A. Structure of this paper.

The rest of the paper is divided as follows. In Sect. II
we introduce the probabilistic programming language pGCL.
Parametric Markov decision processes with rewards are intro-
duced in Sect. III. Section IV recaps the denotational semantics
of pGCL [10] and introduces operational semantics for this
language. Then the main result is established, namely that
the two semantics are equivalent. Finally, Sect. V provides
an example of reasoning over pGCL programs.

II. PROBABILISTIC PROGRAMS

Our input language pGCL [10] is an extension of Dijkstra’s
guarded command language [2]. Besides a non-deterministic
choice operator, denoted [], and a conditional choice, it in-
corporates a probabilistic choice operator, denoted [p], where
p is a real parameter (or constant) whose values lies in
the range [0, 1]. pGCL is a language to model sequential
programs containing randomized assignments. For instance,
the assignment (x := 2 ·x [0.75] x := x+1) doubles the value
of x with probability 3

4 and increments it by one with the
remaining probability 1

4 .

Definition 1. (Syntax of pGCL) Let P, P1, P2 be pGCL-
programs, p a probability variable, x a program variable, E
an expression, and G a Boolean expression. The syntax of a
pGCL program P adheres to the following grammar:

skip | abort | x := E | P1;P2 | P1 []P2 | P1 [p]P2 |

if(G){P1} else {P2} | while(G){P}.

skip stands for the empty statement, abort for abortion,
and x := E for an assignment of the value of expression
E (over the program variables) to variable x. The sequentially
composed program P1;P2 behaves like P1 and subsequently
like P2 on the successful termination of P1. The statement
P1 []P2 denotes a non-deterministic choice; it behaves like
either P1 or P2. The statement P1 [p]P2 denotes a probabilistic
choice. It behaves like P1 with probability p and like P2 with
probability 1−p. The remaining two statements are standard:
conditional choice and while-loop. Throughout this paper, we
assume that pGCL-programs are well-typed. This entails that
for assignments of the form x := E we assume that x and E
are of the same type. In a similar way, we assume G to denote
a Boolean expression and variable p to denote a probability
in the real interval [0, 1].

Listing 1. The duelling cowboys, cf. [10].

1 int cowboyDuel(a, b) {
// 0 < a, b < 1

2 (t := A [] t := B);
// decide who starts

3 c := 1;
4 while (c = 1) {
5 if (t = A) {
6 (c := 0 [a] t := B);
7 } else {
8 (c := 0 [b] t := A);
9 }

10 }
11 return t; // the survivor
12 }

Example 2. (Duelling cowboys [10]) The pGCL program in
Lst. 1 models the following situation: There are two cowboys,
A and B, who are fighting a classical duel. They take turns,
shooting at each other until one of them is hit. If A (resp.
B) shoots then he hits B (resp. A) with probability a (resp.
b). We assume that either cowboy A or B is allowed to start;
the choice of who will start is resolved nondeterministically.
Variable t keeps track of the turns, while c determines whether
the duel continues or someone is hit. Note that it is a distinctive
feature that we do not have to specify exact probabilities and
instead allow arbitrary parameters.

III. MARKOV DECISION PROCESSES

This section introduces the basics of MDPs enriched with
state rewards. We first recall the definition of an MDP with
a countable state space and define elementary notions such
as paths and policies. Subsequently, we introduce reward-
MDPs in which states are equipped with an integer reward and
focus on reachability objectives, in particular (liberal) expected
cumulative rewards to reach a set of states. These measures
are later shown to closely correspond to weakest pre-condition
semantics of pGCL-programs.

A. Preliminaries

Let X be a finite set of real-valued variables, and V (X)
denote the set of expressions over X .

Definition 3. (Parametric distribution) A parametric
distribution µ is a function that maps states to probabilities.
The probabilities are real values in [0, 1] or expressions over
X:

µ : S → V (X) with
∑
s∈S

µ(s) = 1.

Example 4. (Parametric distribution) Consider S =
{s0, s1, s2}. Then a parametric distribution µ might be:
µ(s0) = p, µ(s1) = 1 − p and µ(s2) = 0 where p ∈ [0, 1].
Just note that p is a symbol and not an explicit number like
0.4.

Definition 5. (Markov decision process) An MDP M is
a tuple (S, S0, −→) where S is a countable set of states with



initial state-set S0 ⊆ S where S0 ̸= ∅, and −→ ⊆ S×Dist(S)
is a transition relation from a state to a set of distributions
over states.

Let s → µ denote (s, µ) ∈ −→ and s → t denote s →
µ with µ(t) = 1. We define Dist(s) = {µ | s → µ } to
be the set of enabled distributions in state s. The intuitive
operational behavior of an MDP M is as follows. First, non-
deterministically select some initial state s0 ∈ S0. In state s
with Dist(s) ̸= ∅, non-deterministically select µ ∈ Dist(s).
The next state t is randomly chosen with probability µ(t). If
Dist(t) = ∅, exit; otherwise continue as for state s.

Our MDPs are called parametric because the underlying
distributions are parametric.

Remark 6. (Finite support) In the context of this paper
we are only interested in finitely branching Markov decision
processes. This means that every state has finitely many
successor states. Therefore |Dist(s)| < ∞ for all s ∈ S and
all distributions are assumed to have finite support.

A path of MDP M is a maximal alternating sequence π =
s0

µ0−−→ s1
µ1−−→ . . . such that µi(si+1) > 0 for all i ≥ 0. As

any path is a maximal sequence, it is either infinite or ends
in state s with Dist(s) = ∅. Reasoning about probabilities
on sets of paths of an MDP relies on the resolution of non-
determinism. This resolution is performed by a policy1 that
selects one of the enabled distributions in a state. Whereas in
general a policy may base its decision in state s on the path
fragment from s0 ∈ S0 to s, it suffices in the context of this
paper to consider positional policies.

Definition 7. (Positional policy) Function P : S →
Dist(S) is a positional policy for MDP M = (S, S0, −→ )
with P(s) ∈ Dist(s) for all s ∈ S.

A positional policy thus selects an enabled distribution
based on the current state s only. As in the rest of this paper,
we only consider positional policies, we call them simply
policies. The path fragment leading to s does not play any
role. The path π = s0

µ0−−→ s1
µ1−−→ . . . is called a P-

path if it is induced by the policy P, that is, P(si) = µi

for all i ≥ 0. Let PathsP(s) denote the set of P-paths
starting from state s. A policy of an MDP M induces a
Markov chain MP with the same state space as M and
transition probabilities P(s)(t) for states s and t. For finite
path fragment π̂ = s0

µ0−−→ s1
µ1−−→ . . .

µk−1−−−−→ sk of a P-
path, let P(π̂) denote the probability of π̂ which is defined
by µ0(s1) × . . . × µk−1(sk) =

∏k
i=1 µi−1(si). Let PrP(Π)

denote the probability of the set of paths Π under policy
P. This probability measure is defined in the standard way
using a cylinder set construction on the induced Markov chain
MP [1].

To compare our operational semantics of pGCL with its wp-
and wlp-semantics, we use rewards (or, dually costs).

Definition 8. (MDP with rewards) An MDP with rewards
(also called reward-MDP, or shortly RMDP) is a pair (M, r)

1Also called scheduler, strategy or adversary.

with M an MDP with state space S and r : S → N a function
assigning a natural reward to each state.

Intuitively, the reward r(s) stands for the reward earned
on entering state s. The cumulative reward of a finite path
fragment s0

µ0−−→ s1
µ1−−→ . . . sk is the sum of the rewards in all

states that have been visited, i.e., r(s0)+ . . .+r(sk) provided
k > 0, and 0 otherwise.

Example 9. (RMDP, cumulative reward of a path)
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Assume a policy P with P(s0) = µ. Then π = s0
µ−−→ s3

is a possible path that is taken with probability 0.5 and has
cumulative reward r(π) = 17.

B. Reachability objectives

We are interested in reachability events in reward-MDPs.
Let T ⊆ S be a set of target states. The event ♢T stands
for the reachability of some state in T , i.e., ♢T is the set
of paths in MDP M that hit some state s ∈ T . Formally
♢T = {π ∈ Paths | ∃i ≥ 0.π[i] ∈ T } where π[i] denotes
the i-th state visited allong π. We write π |= ♢T whenever
π belongs to ♢T . It follows by standard arguments that ♢T
is a measurable event. The cumulative cost for this event is
defined as follows.

Definition 10. (Cumulative cost for reachability) Let
π = s0

µ0−−→ s1
µ1−−→ . . . be a maximal path in reward-MDP

(M, r) and T ⊆ S a set of target states. If π |= ♢T ,
the cumulative cost along π before reaching T is defined
by: rT (π) = r(s0)+ . . .+r(sk) where si ̸∈ T for all i <
k and sk ∈ T . If π ̸|= ♢T , then rT (π) = 0.

Stated in words, the cumulative costs for a path π to reach
T is the cumulative cost of the minimal prefix of π satisfying
♢T . In case π never reaches a state in T , the cumulative cost
is defined to be zero. We denote by Paths(s,♢T ) the set of
paths starting in s that eventually reach T .

Definition 11. (Expected reward for reachability) Let
(M, r) be an RMDP with state space S and T ⊆ S and
s ∈ S. The minimal expected reward until reaching T ⊆ S
from s ∈ S, denoted ExpRew(M,r)(s |= ♢T ), is defined by:

min
P

∞∑
c=0

c · PrP{π ∈ PathsP(s,♢T ) | rT (π) = c } .

The minimal liberal expected reward until reaching T from s,



denoted LExpRew(M,r)(s |= ♢T ), is defined by:

min
P

{ ∞∑
c=0

c · PrP{π ∈ PathsP(s,♢T ) | rT (π) = c }

+ PrP(s ̸|= ♢T )
}

.

We leave away the superscript when the underlying model is
clear from context.

The expected reward in s to reach some state in T is the
expected cumulative cost over all paths (reaching T ) induced
under a demonic policy. The motivation to consider a demonic
and not an angelic policy becomes clear further on in this
paper, and has a direct relation with the notion of weakest pre-
expectation. Note that in case T is not reachable from s under
a demonic policy, ExpRew(s |= ♢T ) = 0. LExpRew(s |= ♢T )
is the expected reward to reach T or never reach it from s. In
case there is no policy under which T can be reached from
s, we have that LExpRew(s |= ♢T ) = 1. Note that ExpRew
and LExpRew coincide if T is reached with probability 1.
For finite MDPs without parameters, expected and liberal
expected rewards for reachability objectives can be obtained by
solving a linear programming problem. A detailed description
is outside the scope of this paper; its analogue for Markov
chains is fully described in [1, Ch. 10.5].

Example 12. (Expected rewards)
...
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Let T = {s2, s3}. Then ExpRew(s0 |= ♢T ) = min{2, 59
6 } =

2. And LExpRew(s0 |= ♢T ) = min{2.5, 10} = 2.5.

IV. pGCL SEMANTICS

This section describes an expectation transformer semantics
of pGCL, as well as an operational semantics using MDPs. The
main result of this section is a formal connection between these
two semantics.

A. Denotational Semantics

When probabilistic programs are executed they determine a
probability distribution over final values of program variables.
For instance, on termination of

(x := 1 [0.75] x := 2);

the final value of x is 1 with probability 3
4 or 2 with proba-

bility 1
4 . An alternative way to characterise that probabilistic

behaviour is to consider the expected values over random
variables with respect to that distribution. For example, to
determine the probability that x is set to 1, we can compute

the expected value of the random variable “x is 1” which is
3
4 · 1+

1
4 · 0 = 3

4 . Similarly, to determine the average value of
x, we compute the expected value of the random variable “x”
which is 3

4 · 1 + 1
4 · 2 = 5

4 .
More generally, rather than a distribution-centred approach,

we take an “expectation transformer” [10] approach. We anno-
tate probabilistic programs with expectations, cf. [10]. Expec-
tations are functions which map program states to real values.
They are the quantitative analogue to Hoare’s predicates for
non-probabilistic programs. An expectation transformer is a
total function between two expectations on the state of a
program. The transformer wp(P, f) for program P and post-
expectation f yields the least expected value e on P ’s initial
state ensuring that P ’s execution terminates with a value
f . Annotation {e}P {f} holds for total correctness if and
only if e ≤ wp(P, f) where ≤ is to be interpreted in a
point-wise manner. Intuitively, implication between predicates
is generalised to pointwise inequality between expectations.
For convenience we use square brackets to link boolean
truth values to numbers and by convention [true] = 1 and
[false] = 0.

Definition 13. (wp-semantics of pGCL) Let P and Q be
pGCL-programs, f a post-expectation, x a program variable, E
an expression, and G a Boolean expression. The wp-semantics
of a program is defined by structural induction follows:

• wp(skip, f) = f
• wp(abort, f) = 0
• wp(x := E, f) = f [x := E]
• wp(P ;Q, f) = wp(P,wp(Q, f))
• wp(if(G){P}else{Q}, f) =

[G] · wp(P, f) + [¬G] · wp(Q, f)
• wp(P []Q, f) = min (wp(P, f),wp(Q, f))
• wp(P [p]Q, f) = p · wp(P, f) + (1−p) · wp(Q, f)
• wp(while(G){P}, f) = µX. ([G]·wp(P,X)+[¬G]·f)
Here µ is the least fixed point operator w.r.t. the ordering

≤ on expectations.

If program P does not contain a probabilistic choice, then
this wp is isomorphic to Dijkstra’s wp [10]. A weakest
liberal pre-expectation wlp(P, f) yields the least expectation
for which P either does not terminate or establishes f .

Definition 14. (wlp-semantics of pGCL) wlp-semantics
differs from wp-semantics only for while and abort:

• wlp(abort, f) = 1
• wlp(while(G){P}, f) = νX. ([G]·wlp(P,X)+[¬G]·f)

Here ν is the greatest fixed point operator w.r.t. the ordering
≤ on expectations.

So the difference between wp and wlp is lies in the
handling non-termination. As for ExpRew and LExpRew the
expectation transformers wp and wlp coincide for programs
that terminate with probability 1.

Example 15. (Application of wlp-semantics) Consider
again the duelling cowboys example. Assume we are given



the post-expectation:

f = [t = A ∧ c = 0] + [t = A ∧ c = 1] · a

a+ b− ab

+ [t = B ∧ c = 1] · (1− b)a

a+ b− ab
.

Let us compute the weakest liberal pre-expectation of the loop
body from Lst. 1 w.r.t. the post-expectation f . This yields:

wlp(if(t = A){(c := 0 [a] t := B); }
else{(c := 0 [b] t := A); }, f)

= [t = A] · wlp((c := 0 [a] t := B), f)

+ [t ̸= A] · wlp((c := 0 [b] t := A), f)

= [t = A] · (a · wlp((c := 0), f) + (1−a) · wlp(t := B, f))

+ [t ̸= A] · (b · wlp((c := 0, f) + (1−b) · wlp(t := A, f))

= [t = A ∧ c ̸= 1] · a+ [t = A ∧ c = 1] · a

a+ b− ab

+ [t ̸= A ∧ c = 0] · (1− b) + [t ̸= A ∧ c = 1] · (1− b)a

a+ b− ab

The result of this example will be used in Sect. V.

Remark 16. (Expectations are bounded) Reasoning within
denotational semantics requires a lower and upper bound on
expectations. In [10] expectations are defined to be non-
negative with 0 as the least element and 1 as the maximum.
We just note that these bounds can be altered or even given
up provided that the program at hand has certain properties -
the discussion of details is beyond this work. In the following
we stick to the original definitions with bounds 0 and 1.

B. Operational Semantics

Our aim is to model the stepwise behaviour of a pGCL-
program P by an MDP denoted M[[P ]]. This MDP represents
the operational interpretation of the program P and intuitively
acts as an abstract machine for P . This is done as follows. Let
η be a variable valuation of the program variables. That is, η
is a mapping from the program variables onto their (possibly
infinite) domains. For variable x, η(x) denotes the value of
x under η. For expression E, let [[E ]]η denote the valuation
of E under valuation η. This is defined in the standard way,
e.g., for E = 2 ∗ x+y with η(x) = 3 and η(y) = 7, we
have [[E ]]η = 2 ∗ η(x)+η(y) = 13. We use the distinguished
semantic construct exit to denote the successful termination of
a program. States in the MDP are of the form ⟨Q, η⟩ with Q
a pGCL-statement or Q = exit and η a variable valuation. For
instance, the execution of the assignment x := 2 ∗ x+y under
evaluation η with η(x) = 3 and η(y) = 7 results in the state
⟨exit, η′⟩ where η′ is the same as η except that η′(x) = 13.
Initial states of program P are tuples ⟨P, η⟩ where η maps any
variable onto an arbitrary value.

Definition 17. (Operational semantics of pGCL) The
operational semantics of pGCL-program P , denoted M[[P ]],
is the MDP (S, S0,→) where:

TABLE I
INFERENCE RULES FOR pGCL PROGRAMS

⟨skip, η⟩ → ⟨exit, η⟩ ⟨abort, η⟩ → ⟨abort, η⟩

⟨x := expr, η⟩ → ⟨exit, η[x := [[ expr ]]η]⟩

⟨P, η⟩ → µ

⟨P ;Q, η⟩ → ν
with ν(⟨P ′;Q, η′⟩) = µ(⟨P ′, η′⟩)

where exit;Q = Q.

⟨P [] Q, η⟩ → ⟨P, η⟩ ⟨P [] Q, η⟩ → ⟨Q, η⟩

⟨P [p] Q, η⟩ → µ

with µ(⟨P, η⟩) = p and µ(⟨Q, η⟩) = 1−p

η |= G

⟨if(G){P} else {Q}, η⟩ → ⟨P, η⟩

η ̸|= G

⟨if(G){P} else {Q}, η⟩ → ⟨Q, η⟩

η |= G

⟨while(G){P}, η⟩ → ⟨P ;while(G){P}, η⟩

η ̸|= G

⟨while(G){P}, η⟩ → ⟨exit, η⟩

• S is the set of pairs ⟨Q, η⟩ with Q a pGCL-program or
Q = exit, and η is a variable valuation of the variables
occurring in P ,

• S0 = { ⟨P, η⟩ } where η maps every variabe in P to an
arbitrary value, and

• → is the smallest relation that is induced by the inference
rules in Table I.

Example 18. (Operational semantics) Figure 1 depicts
the MDP underlying the cowboy example. This MDP is
parameterized with parameters a and b but has a finite state
space. A slight adaptation of our example program in which we
keep track of the number of shots before one of the cowboys
dies, yields an MDP with infinitely many states. The support
of any distribution in this MDP is finite however.

Let P
√

denote the set of states in MDP M[[P ]] of the form
⟨exit, η⟩ for arbitrary variable valuation η. Note that states in
P

√
represent the successful termination of P . If P

√
= ∅,

program P diverges under all possible policies.

Definition 19. (Reward-MDP of a pGCL-program) Let
P be a pGCL-program and f a post-expectation for P . The
reward-MDP associated to P and f is defined as Rf [[P ]] =
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Fig. 1. MDP M for the duelling cowboys example. Each state is determined
by a 3-tuple: (program location, value of t, value of c) where ∗ denotes an
arbitrary value.

(M[[P ]], r) with M[[P ]] the MDP of P as defined before and
reward function r defined by r(s) = f(η) if s = ⟨exit, η⟩ ∈
P

√
and r(s) = 0 otherwise.

Note that we use a special reward structure: only terminal
states are assigned a reward which is not necessarily 0. All
other states have a zero reward. This property allows us to
rewrite the definition of expected rewards as follows.

Lemma 20. (Characterizing expected rewards)

For pGCL program P and variable valuation η, we have:

ExpRewRf [[P ]](⟨P, η⟩ |= ♢P
√
)

= min
P

∑
π̂∈PathsPmin(s,♢P

√
)

P(π̂) · rP√(π̂) ,

where PathsPmin(s,♢T ) is the set containing all finite paths of
the form s0 . . . sk with s0 = s, sk ∈ T and si ̸∈ T for all
0 ≤ i < k that adhere to the policy P.

Proof: Let T = P
√

for pGCL program P . The proof
has two ingredients. First, we observe that a path which
fails to reach a final state has reward 0 according to the wp
semantics of abort. Secondly, in a finitely-branching MDP
with countably many states there are “only” countably many
paths that reach any given set. Consider the definition of
expected reward:

min
P

∞∑
c=0

c · PrP{π ∈ PathsP(s,♢T ) | rT (π) = c }.

Given that Pr(π |= ♢T ) = P(π̂) where prefix π̂ of π is
minimal and ends in T , the above term equals:

min
P

∞∑
c=0

c ·P{π̂ ∈ PathsPmin(s, T ) | rT (π̂) = c}.

As M[[P ]] is a finitely branching MC, there are countably
many π̂ for each reward c. This yields:

min
P

∑
π∈PathsPmin(s,T )

P(π̂) · rT (π̂)

We use this fact in our proofs later on.

Remark 21. (Real valued rewards) Lemma 20 provides
a straight-forward way to calculate expected rewards when
the rewards are real valued instead of just integer. This is
because the summation runs not over the possible cumulative
rewards (of which there are uncountably many in the case of
real valued rewards) but over the possible paths that reach an
exit state. In the following we stay with integer rewards as
introduced earlier but bear in mind that Theorems 23 and 24
also hold for real valued post-expectations.

Analogously we obtain:

Lemma 22. (Characterizing liberal expected rewards)

For pGCL program P and variable valuation η, we have:

LExpRewRf [[P ]](⟨P, η⟩ |= ♢P
√
)

= min
P

∑
π∈PathsPmin(s,P

√
)

P(π̂) · rP√(π̂) + PrP(⟨P, η⟩ ̸|= ♢P
√
) .

Proof: Follows immediately from Lemma 20.

C. Main Results

This brings us at a position to present our main results of
this paper: a formal relationship between the wp-semantics
of pGCL-program P and its operational semantics in terms of
a reward-MDP, and similary for the wlp-semantics. We first
consider the wp-semantics.

Theorem 23. (Operational vs. wp-semantics) For pGCL-
program P , variable valuation η, and post-expectation f :

wp(P, f)(η) = ExpRewRf [[P ]](⟨P, η⟩ |= ♢P
√
).

Proof: By structural induction over the pGCL program P .
For the sake of convenience, let Paths(P

√
, η, c) denote the set

{π ∈ Paths(⟨P, η⟩,♢P
√
) | rP√(π) = c }.

Furthermore we write paths as sequences of states and leave
out the distribution in between each pair of states because it
is obvious. Induction base:

• For P = skip we derive:

ExpRewRf [[ skip ]](⟨skip, η⟩ |= ♢skip
√
)

= min
P

∞∑
c=0

c · PrP
(

PathsP(skip
√
, η, c)

)
= f(η) · Pr{π = ⟨skip, η⟩⟨exit, η⟩ | rskip√(π) = f(η)}
= f(η) · 1
= f(η)

= wp(skip, f)(η).



• For P = abort we derive:

ExpRewRf [[ abort ]](⟨abort, η⟩ |= ♢abort
√
)

= min
P

∞∑
c=0

c · PrP
(

PathsP(abort
√
, η, c)

)
= 0

= wp(abort, f)(η)

as there is no path starting from ⟨abort, η⟩ that reaches
an exit-state.

• Let P be the assigment x := E. For this case, we have:

ExpRewRf [[ x:=E ]](⟨x := E, η⟩ |= ♢x := E
√
)

= min
P

∞∑
c=0

c · PrP
(

PathsP(x := E
√
, η, c)

)
= f(η[x/E]) · Pr{π = ⟨x := E, η⟩⟨exit, η[x/E]⟩

| rx:=E
√(π) = f(η[x/E]) }

= f(η[x/E]) · 1
= f(η[x/E])

= wp(x := E, f)(η).

Induction hypothesis: assume

wp(P, f)(η) = ExpRewRf [[P ]](⟨P, η⟩ |= ♢P
√
).

Induction step:

• Consider the probabilistic choice P [p]Q (this also covers
conditional choice since it can be written as P [G]Q):

ExpRewRf [[P [p]Q ]](⟨P [p]Q, η⟩ |= ♢(P [p]Q)
√
)

= min
P

∞∑
c=0

c · PrP
(

PathsP((P [p]Q)
√
, η, c)

)
= min

P

∞∑
c=0

c · p · PrP
(

PathsP(P
√
, η, c)

)
+

∞∑
c=0

c · (1− p) · PrP
(

PathsP(Q
√
, η, c)

)
∗
= p ·min

P1

∞∑
c=0

c · PrP1

(
PathsP1(P

√
, η, c)

)
+ (1− p) ·min

P2

∞∑
c=0

c · PrP2

(
PathsP2(Q

√
, η, c)

)
= p · ExpRewRf [[P ]](⟨P, η⟩ |= ♢P

√
)

+ (1− p) · ExpRewRf [[Q ]](⟨Q, η⟩ |= ♢Q
√
)

I.H.
= p · wp(P, f)(η) + (1−p) · wp(Q, f)(η)

= wp(P [p]Q, f)(η)

In ∗ we use the fact that the policy for paths starting in
⟨P, η⟩ is independent of the policy for paths starting in
⟨Q, η⟩.

• Consider the non-deterministic choice P []Q:

ExpRewRf [[P []Q ]](⟨P []Q, η⟩ |= ♢(P []Q)
√
)

= min
P

∞∑
c=0

c · PrP
(

PathsP((P []Q)
√
, η, c)

)
= min

{
min
P

∞∑
c=0

c · PrP
(

PathsP(P
√
, η, c)

)
,

min
P

∞∑
c=0

c · PrP
(

PathsP(Q
√
, η, c)

)}
= min{ExpRewRf [[P ]](⟨P, η⟩ |= ♢P

√
),

ExpRewRf [[Q ]](⟨Q, η⟩ |= ♢Q
√
)}

I.H.
= min{wp(P, f),wp(Q, f)}
= wp(P []Q, f)(η)

• Consider the sequential composition P ;Q:

ExpRewRf [[P ;Q ]](⟨P ;Q, η⟩ |= ♢(P ;Q)
√
)

= min
P

∞∑
c=0

c · PrP
(

PathsP((P ;Q)
√
, η, c)

)
La20
= min

P

∑
π̂∈PathsPmin(s,P

√
)

P(π̂) · rP ;Q
√(π̂)

∗
= min

P

∑
π̂∈PathsPmin(s,P

√
)

P(π̂) · rq
P

√(π̂)

where rq
P

√(π̂) is the sum of rewards rq along π̂ with

rq(s) = min
P′

 ∑
π̂′∈PathsP′

min(s,Q
√
)

P(π̂′) · rQ√(π̂′)


if s = ⟨exit, η′⟩ ∈ P

√
and rq(s) = 0 otherwise

= ExpRewRg [[P ]](⟨P, η⟩ |= ♢P
√
)

where g(η) = ExpRewRf [[Q ]](⟨Q, η⟩ |= ♢Q
√
)

I.H.
= wp(P ;wp(Q, f))(η)

= wp(P ;Q, f)(η) .

In ∗ we rewrite each single path into a prefix which
corresponds to the execution of P and all possible
continuations according to Q. Then we can compute the
expected reward rq of Q and use this as an intermediate
result to compute the expected reward of the sequential
composition.

• Consider the loop while(G){P}. This case is proven by
induction on the number of iterations that a while-loop
performs. Let the bounded while-loop for k > 0 be:

(while(G){P})k+1

= if(G){P ; (while(G){P})k} else {skip} .

where the base case is (while(G){P})0 = abort. We will
show for every k that

wp((while(G){P})k, f)(η)

= ExpRewRf [[ (while(G){P})k ]](η) .
(1)



Observe that

wp((while(G){P})k+1, f)(η)

≥ wp((while(G){P})k, f)(η) .

From the fixpoint theorem 3 in [7] we know that the more
iterations the bounded while loop is allowed to perform
the closer it approximates the fixpoint given in Def. 13.
Formally this means

lim
k→∞

wp((while(G){P})k, f)(η)

= wp(while(G){P}, f)(η) .
(2)

From (1) it follows that for every k, ExpRew behaves
identically to wp. Thus with (2) it follows that

wp((while(G){P}), f)(η) = ExpRewRf [[ (while(G){P}) ]](η).

It remains to prove (1). This is done by induction on k.
Base case (k = 0):

wp((while(G){P})0, f)(η)
= wp(abort, f)(η)
∗
= ExpRewRf [[ abort ]](η)

= ExpRewRf [[ (while(G){P})0 ]](η)

(∗) was already shown earlier in the case abort.
Induction hypothesis: equation (1) holds for some un-
specified but fixed value of k.
Induction step:

wp((while(G){P})k+1, f)(η)

= wp(if(G){P ; (while(G){P})k}else{skip}, f)(η)
= [G] · wp(P ; (while(G){P})k) + [¬G] · wp(skip, f)(η)
∗
= [G] · ExpRewRf [[P ;(while(G){P})k ]](η)

+ [¬G] · ExpRewRf [[ skip ]](η)

= ExpRewRf [[ if(G){P ;(while(G){P})k}else{skip} ]](η)

= ExpRewRf [[ (while(G){P})k+1 ]](η)

(∗) follows from the induction hypothesis and the previ-
ously shown cases for skip and sequential composition.

Thus, wp(P, f) evaluated at η is the least expected value of
f over any of the result distributions of P .

Theorem 24. (Operational vs. wlp-semantics) For pGCL-
program P , variable valuation η, and post-expectation f :

wlp(P, f)(η) = LExpRewRf [[P ]](⟨P, η⟩ |= ♢P
√
).

Proof: By structural induction over the pGCL program
P (analogously to the proof of Theorem 23). Due to space
limitations we skip the base cases which are rather simple.
Induction hypothesis: assume

wlp(P, f)(η) = LExpRewRf [[P ]](⟨P, η⟩ |= ♢P
√
).

Induction step:

• Consider the probabilistic choice P [p]Q (again, this
covers conditional choice):

LExpRewRf [[P [p]Q ]](⟨P [p]Q, η⟩ |= ♢(P [p]Q)
√
)

= min
P

( ∞∑
c=0

c · PrP
(

PathsP((P [p]Q)
√
, η, c)

)
+PrP(s ̸|= ♢(P [p]Q)

√
)
)

= min
P

( ∞∑
c=0

c · p · PrP
(

PathsP(P
√
, η, c)

)
+ p · PrP(s ̸|= ♢P

√
)

+
∞∑
c=0

c · (1− p) · PrP
(

PathsP(Q
√
, η, c)

)
+(1− p) · PrP(s ̸|= ♢Q

√
)
)

= p ·min
P1

( ∞∑
c=0

c · PrP1

(
PathsP1(P

√
, η, c)

)
+PrP1(s ̸|= ♢P

√
)
)

+ (1− p) ·min
P2

( ∞∑
c=0

c · PrP2

(
PathsP2(Q

√
, η, c)

)
+PrP2(s ̸|= ♢Q

√
)
)

= p · LExpRewRf [[P ]](⟨P, η⟩ |= ♢P
√
)

+ (1− p) · LExpRewRf [[Q ]](⟨Q, η⟩ |= ♢Q
√
)

I.H.
= p · wlp(P, f)(η) + (1− p) · wlp(Q, f)(η)

= wlp(P [p]Q, f)(η) .

• Consider the non-deterministic choice P []Q:

LExpRewRf [[P []Q ]](⟨P []Q, η⟩ |= ♢(P []Q)
√
)

= min
P

( ∞∑
c=0

c · PrP
(

PathsP((P []Q)
√
, η, c)

)
+PrP(s ̸|= ♢(P []Q)

√
)
)

= min

{
min
P

( ∞∑
c=0

c · PrP
(

PathsP(P
√
, η, c)

)
+PrP(s ̸|= ♢P

√
)
)
,

min
P

( ∞∑
c=0

c · PrP
(

PathsP(Q
√
, η, c)

)
+PrP(s ̸|= ♢Q

√
)
)}

= min{LExpRewRf [[P ]](⟨P, η⟩ |= ♢P
√
),

LExpRewRf [[Q ]](⟨Q, η⟩ |= ♢Q
√
)}

I.H.
= min{wlp(P, f)(η),wlp(Q, f)(η)}
= wlp(P []Q, f)(η) .



• Consider the sequential composition P ;Q:

LExpRewRf [[P ;Q ]](⟨P ;Q, η⟩ |= ♢(P ;Q)
√
)

= min
P

( ∞∑
c=0

c · PrP
(

PathsP((P ;Q)
√
, η, c)

)
+PrP(s ̸|= ♢(P ;Q)

√
)
)

La22
= min

P

 ∑
π∈PathsPmin(s,P

√
)

P(π̂) · rP ;Q
√(π̂)

+PrP{⟨P ;Q, η⟩ ̸|= ♢P ;Q
√
}
)

= min
P

 ∑
π∈PathsPmin(s,P

√
)

P(π̂) · rq
P

√(π̂)

+PrP{⟨P, η⟩ ̸|= ♢P
√
}
)

where rq
P

√(π̂) is the sum of rewards rq along π̂ with

rq(s) = min
P′

 ∑
π̂′∈PathsP′

min(s,Q
√
)

P(π̂′) · rQ√(π̂′)

+PrP{⟨Q, η′⟩ ̸|= ♢Q
√
}
)

if s = ⟨exit, η′⟩ ∈ P
√

and rq(s) = 0 otherwise

= LExpRewRg [[P ]](⟨P, η⟩ |= ♢P
√
)

where g(η) = LExpRewRf [[Q ]](⟨Q, η⟩ |= ♢Q
√
)

I.H.
= wlp(P ;wlp(Q, f))(η)

= wlp(P ;Q, f)(η) .

• Consider the while loop while(G){P}. Again we prove
this case by induction on the number of iterations that a
while-loop performs. Let (while(G){P})k be defined as
in the proof of the previous theorem. We show for every
k that

wlp((while(G){P})k, f)(η)

= LExpRewRf [[ (while(G){P})k ]](η) .
(3)

The only difference is now that

wlp((while(G){P})k+1, f)(η)

≤ wlp((while(G){P})k, f)(η) .

Using this we again know that the bounded while loop
approximates the fixpoint given in Def. 14 (only this time
from above). Formally this means

lim
k→∞

wlp((while(G){P})k, f)(η)

= wlp(while(G){P}, f)(η) .
(4)

From (3) we know that for every k LExpRew behaves
identically to wlp. Thus with (4) it follows that

wlp((while(G){P}), f)(η)
= LExpRewRf [[ (while(G){P}) ]](η) .

It remains to prove (3). This is done by induction on k. Base
case (k = 0):

wlp((while(G){P})0, f)(η)
= wlp(abort, f)(η)
∗
= LExpRewRf [[ abort ]](η)

= LExpRewRf [[ (while(G){P})0 ]](η)

(∗) was already shown earlier in the case abort.
Induction hypothesis: equation (3) holds for some unspeci-

fied but fixed value of k.
Induction step:

wlp((while(G){P})k+1, f)(η)

= wlp(if(G){P ; (while(G){P})k}else{skip}, f)(η)
= [G] · wlp(P ; (while(G){P})k) + [¬G] · wlp(skip, f)(η)
∗
= [G] · LExpRewRf [[P ;(while(G){P})k ]](η)

+ [¬G] · LExpRewRf [[ skip ]](η)

= LExpRewRf [[ if(G){P ;(while(G){P})k}else{skip} ]](η)

= LExpRewRf [[ (while(G){P})k+1 ]](η)

(∗) follows from the induction hypothesis and the previously
shown cases for skip and sequential composition.

The weakest liberal pre-expectation wlp(P, f) is thus the
least expected value of f over any of the result distributions
of P plus the probability that P does not terminate.

Example 25. (Duelling cowboys.) Consider again the du-
elling cowboys example from Lst. 1. Assume we are interested
in the probability that cowboy A wins the duel. In terms of
the MDP semantics this means we are interested in

LExpRew(M,r)(⟨2, ∗, ∗⟩ |= ♢(M, r)
√
)

where M is the MDP from Fig. 1 and r is the reward function
that indicates whether cowboy A has won or not, i.e.

r(s) =

{
1 if s = ⟨11, A, 0⟩
0 otherwise

In this example the MDP is finite and this allows us to compute
the desired expected cumulative reward easily. That is, cowboy
A wins with probability at least

(1− b)a

a+ b− ab
.

Figure 2 visualises this result.

V. ANALYSIS

Although the computation of (liberal) expected rewards on
MDPs may be numerically involved, it is intuitive in principle.
However, pGCL programs will usually have an infinite state
space due to the infinite domain of the program variables. It
is then not possible to compute the expected reward on the
reward model in general. In contrast to this, the denotational



Fig. 2. Probability that A wins the duel, depending on a and b. Bear in
mind that this is the least guaranteed probability that A wins. In the worst
case (for A) cowboy B will shoot first and therefore as b tends to 1 the plot
goes to 0, i.e. cowboy A has no chances. However for smaller values of b the
influence of a increases.

semantics do not depend on the underlying state space but on
the structure of the program. In this section we show how to
determine a pre-expectation using wlp-semantics.

Again let us determine the probability that cowboy A wins
the duel. Therefore we choose [t = A] as the post-expectation
and want to find wlp(cowboyDuel, [t = A]). Listing 2 shows
the cowboy duelling program with annotations.

Listing 2. The duelling cowboys, annotated with expectations

1 int cowboyDuel(a, b) {
2 ⟨ (1−b)a

a+b−ab
⟩

3 ⟨min{ a
a+b−ab

, (1−b)a
a+b−ab

}⟩
4 (t := A [] t := B);
5 ⟨[t = A] · a

a+b−ab
+ [t = B] · (1−b)a

a+b−ab
⟩

6 c := 1;
7 ⟨[t = A ∧ c = 0] · 1 + [t = A ∧ c = 1] · a

a+b−ab

+[t = B ∧ c = 1] · (1−b)a
a+b−ab

⟩
8 while (c = 1) {
9 ⟨[t = A ∧ c = 1] · a

a+b−ab
+ [t = B ∧ c = 1] · (1−b)a

a+b−ab
⟩

10 ⟨[t = A ∧ c ̸= 1] · a+ [t = A ∧ c = 1] · a
a+b−ab

+[t = B ∧ c = 0] · (1− b) + [t = B ∧ c = 1] · (1−b)a
a+b−ab

⟩

11 if (t = A) {
12 (c := 0 [a] t := B);
13 } else {
14 (c := 0 [b] t := A);
15 }
16 ⟨[t = A ∧ c = 0] · 1 + [t = A ∧ c = 1] · a

a+b−ab

+[t = B ∧ c = 1] · (1−b)a
a+b−ab

⟩
17 }

18 ⟨[c ̸= 1] ·
(
[t = A ∧ c = 0] · 1 + [t = A ∧ c = 1] · a

a+b−ab

+[t = B ∧ c = 1] · (1−b)a
a+b−ab

)
⟩

19 ⟨[t = A]⟩
20 return t; // the survivor
21 }

The program is annotated backwards according to the rules
from Def. 13 (and 14). In line 19 we start with the post-
expectation that we are interested in. We finish with the sought
probability in line 2. The only non-trivial step is to discover
the so-called invariant which appears in line 7 and 16. But

let us assume for the moment that it is given. Then all other
annotations are obtained by applying the syntactic rules from
Def. 13. In particular the calculation from line 16 to line
10 was already shown in Example 15. This means that the
analysis can be automatically carried out by a computer once
we have found the aforementioned invariant - irrespective of
the underlying state space size.

The annotation in line 7 and 16 which we call invariant is
an expectation that over-approximates the fixed point solution
in Def. 14. More precisely, an annotation f is called invariant
if

f · [G] ≤ wlp(loop body, f) . (5)

In our example, f is the expectation in line 7, G is the
loop guard c = 1 and loop body is the code in lines 11–
15. In line 9 the expectation represents f · [G] and line 10 is
wlp(loop body, f). Clearly, (5) is satisfied in our example.

The difficulty in reasoning with denotational semantics is
to find suitable invariants. The invariant generation process is
a topic on its own and beyond the scope of this paper. We
refer to [4], [10] for this matter. Our recently developed tool
PRINSYS2 helps the user to find certain kinds of invariants
semi-automatically.

VI. CONCLUSION

This paper provided a formal connection between the ex-
pectation transformer semantics of pGCL by McIver and Mor-
gan [10] and a simple operational semantics using (parametric)
MDPs. This yields an insightful relationship between seman-
tics used for formal reasoning for probabilistic programs and
the notion of a computation in terms of an MDP. Our approach
assigns rewards to terminal states (only), and establishes that
expected cumulative rewards correspond to wp-semantics. A
slight variant of expected rewards yields a connection to the
wlp-semantics.

Possible future work is to establish a relation to a denota-
tional semantics in terms of metric spaces, like in [6] or to
link our semantics to the seminal work by Kozen [5] where
probabilistic programs are interpreted as partial measurable
functions on a measurable space.
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Abstract

This paper proposes a simple operational semantics of pGCL, Dijkstra’s guarded
command language extended with probabilistic choice, and relates this to pGCL’s
wp-semantics by McIver and Morgan. Parametric Markov decision processes
whose state rewards depend on the post-expectation at hand are used as the
operational model. We show that the weakest pre-expectation of a pGCL-program
w.r.t. a post-expectation corresponds to the expected cumulative reward to reach
a terminal state in the parametric MDP associated to the program. In a similar
way, we show a correspondence between weakest liberal pre-expectations and
liberal expected cumulative rewards. The verification of probabilistic programs
using wp-semantics and operational semantics is illustrated using a simple run-
ning example.

Keywords: expectation transformer semantics, operational semantics, Markov
decision process, expected rewards

1. Introduction

Formal semantics of programming languages has been the subject of intense
research in computer science for several decades. Various approaches have been
developed for the description of program semantics. Structured operational se-
mantics defines the meaning of a program by means of an abstract machine
where states correspond to program configurations (typically consisting of a
program counter and a variable valuation) and transitions model the evolution
of a program by executing statements. Program executions are then the possi-
ble runs of the abstract machine. Denotational semantics maps a program onto
a mathematical object that describes for instance its input-output behaviour.
Finally, axiomatic semantics provides the program semantics in an indirect man-
ner by describing its properties. A prominent example of the latter are Hoare
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triples in which annotations, written in predicate logic, are associated to control
points of the program.

The semantics of Dijkstra’s seminal guarded command language [1] from
the seventies is given in terms of weakest preconditions. It is in fact a predicate
transformer semantics, i.e. a total function between two predicates on the state
of a program. The predicate transformer E = wp(P, F ) for program P and
postcondition F yields the weakest precondition E on the initial state of P
ensuring that the execution of P terminates in a final state satisfying F . There is
a direct relation with axiomatic semantics: the Hoare triple ⟨E⟩P ⟨F ⟩ holds for
total correctness if and ony if E ⇒ wp(P, F ). The weakest liberal precondition
wlp(P, F ) yields the weakest precondition for which P either does not terminate
or establishes F . It does not ensure termination and corresponds to Hoare logic
in partial correctness. Although providing an operational semantics for the
guarded command language is rather straightforward, it was not until the early
nineties that Lukkien [2, 3] provided a formal connection between the predicate
transformer semantics and the notion of a computation.

Qualitative annotations in predicate calculus are often insufficient for prob-
abilistic programs as they cannot express quantities such as expectations over
program variables. To that end, McIver and Morgan [4] generalised the meth-
ods of Dijkstra and Hoare to probabilistic programs by making the annotations
real-valued expressions —referred to as expectations— in the program variables.
Expectations are the quantitative analogue of predicates. This yields an expec-
tation transformer semantics of the probabilistic guarded command language
(pGCL, for short), an extension of Dijkstra’s language with a probabilistic choice
operator. An expectation transformer is a total function between two expec-
tations on the state of a program. The expectation transformer e = wp(P, f)
for pGCL-program P and post-expectation f over final states yields the least ex-
pected value e on P ’s initial state ensuring that P ’s execution terminates with
a value f . The annotation ⟨e⟩P ⟨f⟩ holds for total correctness if and only if
e ≤ wp(P, f), where ≤ is to be interpreted in a point-wise manner. The weak-
est liberal pre-expectation wlp(P, f) yields the least expectation for which P
either does not terminate or establishes f . It does not ensure termination and
corresponds to partial correctness.

This paper provides a simple operational semantics of pGCL using parametric
Markov decision processes (pMDPs), a slight variant of MDPs in which probabil-
ities may be parameterised [5, 6]. Our main contribution in this paper is a formal
connection between the wp- and wlp-semantics of pGCL by McIver and Morgan
and the operational semantics of pGCL. This provides a clean and insightful
relationship between the abstract expectation transformer semantics that has
been proven useful for formal reasoning about probabilistic programs, and the
notion of a computation in terms of the operational model, a pMDP. In order
to establish this connection we equip pMDPs with state rewards that depend
on the post-expectation at hand. Intuitively speaking, we decorate a terminal
state in the operational model of a program with a reward that corresponds to
the value of the post-expectation. All other states are assigned reward zero. We
then show that the weakest pre-expectation of a pGCL-program P w.r.t. a post-
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expectation corresponds to the expected cumulative reward to reach a terminal
state in the pMDP associated to P . In a similar way, we show that weakest
liberal pre-expectations correspond to liberal expected cumulative rewards. The
proofs are by induction on the structure of our probabilistic programs using stan-
dard results from fixed point theory. This paper thus yields a correspondence
theorem that enables us to understand the mathematically involved expectation
transformers intuitively using only first principles of Markov decision processes
with rewards. In addition, for finite-state programs (or program fragments), our
result implies that algorithms for computing expected accumulated rewards in
MDPs – for which efficient algorithms and tools based on linear programming
exist – can be employed for computing weakest pre-expectations. Finally we
recall the notion of probabilistic invariants [4] and apply our correspondence
theorem to find an operational characterisation of invariants (which originally
are defined in terms of expectation transformers).

1.1. Related Work

The MDP semantics of pGCL in this paper bears strong resemblance to the
operational semantics of similar languages. To mention a few, Baier et al. [7]
provide an MDP semantics of a probabilistic version of Promela, the modeling
language of the SPIN model checker. Di Pierro et al. [8] give a semantics to
a very similar programming language without non-determinism. The seminal
work by Kozen [9] provides two semantics of a deterministic variant of pGCL
and shows their correspondence. Kozen interprets probabilistic programs as
partial measurable functions on a measurable space, and as continuous linear
operators on a Banach space of measures. He et al. [10] provide a mapping
from a semantics based on a probabilistic complete partial order which contains
non-determinism à la Jones [11] to a semantics which is a mapping from initial
states to sets of probability distributions over final states. To our knowledge,
our results on relating weakest pre-expectations of pGCL and an operational
semantics are novel. Our set-up and results can be considered as a probabilistic
analogue of the work by Lukkien [2, 3] who provided a formal connection between
the predicate transformer semantics of Dijktra’s guarded command language and
the operational notion of a computation.

More examples of how to discover and apply invariants when reasoning about
probabilistic programs can be found at [12]. There we also describe Prinsys, a
tool for semi-automatic invariant generation.

1.2. Structure of this paper.

The rest of the paper is divided as follows. In Sect. 2 we introduce the
probabilistic programming language pGCL. Parametric Markov decision pro-
cesses with rewards are introduced in Sect. 3. Section 4 recaps the denotational
semantics of pGCL [4] and introduces operational semantics for this language.
Then the main result is established, namely that the two semantics are equiva-
lent. Section 5 provides an example of reasoning over pGCL programs. Finally,
Sect. 6 introduces invariants and uses our main result to give an operational
characterisation for them.
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This paper is an extended version of the conference paper [13]. This version
contains a generalised version of the proofs of Theorems 23 and 24, a new section
on invariants and an appendix with a new proof for continuity of wp(P, ·) and
wlp(P, ·).

2. Probabilistic Programs

Our programming language pGCL [4] is an extension of Dijkstra’s guarded
command language [1]. Besides a non-deterministic choice operator, denoted [],
and a conditional choice, it incorporates a probabilistic choice operator, denoted
[p], where p is a real parameter (or constant) whose value lies in the range
[0, 1]. pGCL is a language to model sequential programs containing randomized
assignments. For instance, the assignment (x := 2·x [0.75] x := x+1) doubles
the value of x with probability 3

4 and increments it by one with the remaining
probability 1

4 .

Definition 1. (Syntax of pGCL) Let P, P1, P2 be pGCL-programs, p a
probability variable, x a program variable, E an expression, and G a Boolean
expression. The syntax of a pGCL program P adheres to the following grammar:

skip | abort | x := E | P1;P2 | P1 []P2 | P1 [p]P2 |

if(G){P1} else {P2} | while(G){P}.

skip stands for the empty statement, abort for abortion, and x := E for an
assignment of the value of expression E (over the program variables) to variable
x. The sequentially composed program P1;P2 behaves like P1 and subsequently
like P2 on the successful termination of P1. The statement P1 []P2 denotes a
non-deterministic choice; it behaves like either P1 or P2. The statement P1 [p]P2

denotes a probabilistic choice. It behaves like P1 with probability p and like P2

with probability 1−p. The remaining two statements are standard: conditional
choice and while-loop. Throughout this paper, we assume that pGCL-programs
are well-typed. This entails that for assignments of the form x := E we assume
that x and E are of the same type. We assume G to denote a Boolean expression
and variable p to denote a probability in the real interval [0, 1].

Example 2. (Duelling cowboys [4]) The pGCL program in Lst. 1 models
the following situation: There are two cowboys, A and B, who are fighting a
classical duel. They take turns, shooting at each other until one of them is hit.
If A (resp. B) shoots then he hits B (resp. A) with probability a (resp. b).
We assume that either cowboy A or B is allowed to start; the choice of who
will start is resolved nondeterministically. Variable t keeps track of the turns,
while c determines whether the duel continues or someone is hit. Note that it
is a distinctive feature that we do not have to specify exact probabilities and
instead allow arbitrary parameters such as a and b.
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Listing 1: The duelling cowboys, cf. [4].

1 (t := A [] t := B);
2 c := 1;
3 while (c = 1) {
4 if (t = A) {
5 (c := 0 [a] t := B);
6 } else {
7 (c := 0 [b] t := A);
8 }
9 }

3. Markov decision processes

This section introduces the basics of Markov decision processes (MDPs) [5, 6]
enriched with state rewards. We first recall the definition of an MDP with a
countable state space and define elementary notions such as paths and policies.
Subsequently, we introduce reward-MDPs in which states are equipped with a
real valued reward and focus on reachability objectives, in particular (liberal)
expected cumulative rewards to reach a set of states. These measures are later
shown to closely correspond to the weakest (liberal) pre-condition semantics of
pGCL-programs.

3.1. Preliminaries

Let Var be a set of variables. In the following we consider a countable state
space S where each state s is a valuation which maps variables to real values

S : Var → R .

This approach later allows us to nicely connect states of a program to states of
a transition system like an MDP (as defined below). Additionally we fix a set
of parameters Par which are independent of states. These parameters will rep-
resent probabilities which can be left unspecified. So each parameter represents
a value from the interval [0, 1]. Let V (Par) denote the set of expressions over
Par.

Definition 3. (Parametric distribution) A parametric distribution µ is
a function that maps states to probabilities. The probabilities are real values in
[0, 1] or expressions over Par:

µ : S → V (Par) ∪ [0, 1] with
∑
s∈S

µ(s) = 1.

The set of all parametric distributions over state space S is denoted Dist(S).

Example 4. (Parametric distribution) Consider S = {s0, s1, s2}. Then
a parametric distribution µ might be: µ(s0) = p, µ(s1) = 1 − p and µ(s2) = 0
where p ∈ V (Par) is an expression that consists of just a single parameter. The
expression’s value is fixed but unknown. The parameter p can be refined by any
value from [0, 1].
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It is important to stress that Def. 3 requires that for any state s the resulting
expression µ(s) is a probability, i.e. an expression that evaluates to a value in
[0, 1] for all possible states s and all possible parameter valuations.

Definition 5. (Parametric Markov decision process) A pMDP M is
a tuple (S, S0, −→) where S is a countable set of states with initial state-set
S0 ⊆ S where S0 ̸= ∅, and −→ ⊆ S × Dist(S) is a transition relation from a
state to a set of parametric distributions over states.

Let s → µ denote (s, µ) ∈ −→ and s → t denote s → µ with µ(t) = 1.
We define Dist(s) = {µ | s → µ } to be the set of enabled distributions in
state s. In the following we do not emphasise the parametric nature of our
structures and use the term “Markov decision process” (MDP) synonymously.
The intuitive operational behaviour of an MDP M is as follows. First, non-
deterministically select some initial state s0 ∈ S0. In state s with Dist(s) ̸= ∅,
non-deterministically select µ ∈ Dist(s). The next state t is randomly chosen
with probability µ(t). If Dist(t) = ∅, exit; otherwise continue as for state s.

Remark 6. (Countability of paths) In the context of this paper we are only
interested in finitely branching Markov decision processes with bounded non-
determinism. Therefore |Dist(s)| < ∞ for all s ∈ S and all distributions are
assumed to have finite support. Consequently every state has finitely many
successor states. Hence there are countably many (finite) paths between any
two states. This property is crucial for Def. 12 and Lem. 21 later on.

A path π of MDPM is a maximal alternating sequence of states and distribu-
tions, written π = s0

µ0−−→ s1
µ1−−→ . . . such that µi ∈ Dist(si) and µi(si+1) > 0

for all i ≥ 0. As any path is a maximal sequence, it is either infinite or ends in a
state s with Dist(s) = ∅. The set of all paths in M is denoted Paths(M). Rea-
soning about probabilities on sets of paths of an MDP relies on the resolution of
non-determinism. This resolution is performed by a policy2 that selects one of
the enabled distributions in a state. In general a policy may base its decision in
state s on the path fragment from s0 ∈ S0 to s. However in the context of this
paper we are interested in computing expectations in MDPs and so it suffices
to consider positional policies as shown in [6].

Definition 7. (Positional policy) A functionP : S → Dist(S) withP(s) ∈
Dist(s) for all s ∈ S is called a positional policy for MDP M = (S, S0, −→ ) .

A positional policy deterministically selects an enabled distribution based
on the current state s only. As in the rest of this paper we only consider
positional policies, we call them simply policies. The path fragment leading
to s does not play any role. The path π = s0

µ0−−→ s1
µ1−−→ . . . is called a

P-path if it is induced by the policy P, that is, P(si) = µi for all i ≥ 0.
Let PathsP(s) denote the set of P-paths starting from state s. A policy of
an MDP M induces a Markov chain MP with the same state space as M

2Also called scheduler, strategy or adversary.
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and transition probabilities P(s)(t) for states s and t. For finite path fragment
π̂ = s0

µ0−−→ s1
µ1−−→ . . .

µk−1−−−−→ sk of a P-path, let PP(π̂) denote the probability

of π̂ which is defined by µ0(s1) × . . . × µk−1(sk) =
∏k

i=1 µi−1(si). Let PrPs (Π)
denote the probability of the set of paths Π all starting in s under policy P.
This probability measure is defined in the standard way using a cylinder set
construction on the induced Markov chain MP [14]. In the following we drop
the subscript s whenever it is clear from the context. Note that the measure
PP(π) of a path π starting in state s is 0 if π ̸∈ PathsP(s).

To compare our operational semantics of pGCL with its wp- and wlp-semantics,
we use rewards (or, dually costs).

Definition 8. (MDP with rewards) An MDP with rewards (also called
reward-MDP, or shortly RMDP) is a pair (M, r) with M an MDP with state
space S and r : S → R≥0 a function assigning a real reward to each state.

Intuitively, the reward r(s) stands for the reward earned on entering state
s. The cumulative reward of a finite path fragment s0

µ0−−→ s1
µ1−−→ . . . sk is the

sum of the rewards in all states that have been visited, i.e., r(s0)+ . . .+r(sk).

Example 9. (RMDP, cumulative reward of a path)
...
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Assume a policy P with P(s0) = µ. Then π = s0
µ−−→ s3 ∈ PathsP(s0) is a

possible path that is taken under policy P with probability PP(π) = 0.5 and
has cumulative reward r(π) = 17.

3.2. Reachability objectives

We are interested in reachability events in RMDPs. Let T ⊆ S be a set
of target states. The event ♢T stands for the reachability of some state in T ,
i.e., ♢T is the set of paths in MDP M that hit some state s ∈ T . Formally
♢T = {π ∈ Paths(M) | ∃i ≥ 0.π[i] ∈ T } where π[i] denotes the i-th state
visited along π. We write π |= ♢T whenever π belongs to ♢T . It follows by
standard arguments that ♢T is a measurable event. Its measure depends on the
chosen initial state and policy. In order to define the cumulative reward for this
event we need to introduce the cumulative reward along a path.

Definition 10. (Cumulative reachability reward) Let π = s0
µ0−−→ s1

µ1−−→ . . .
be a maximal path in RMDP (M, r) and T ⊆ S a set of target states. If
π |= ♢T , the cumulative reward along π before reaching T is defined by:
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rT (π) = r(s0)+ . . .+r(sk) where si ̸∈ T for all i < k and sk ∈ T . If π ̸|= ♢T ,
then rT (π) = 0.

Stated in words, the cumulative reward for a path π to reach T is the cu-
mulative reward of the minimal prefix of π satisfying ♢T . In case π never
reaches a state in T , the cumulative reward is defined to be zero. We denote
by PathsP(s,♢T ) the set of paths starting in s that eventually reach T under
policy P.

Remark 11. (Reward for paths that fail to reach an objective) One can argue
that the choice of zero as the reward for never reaching T is arbitrary and
that this reward could alternatively be defined as e.g., any constant or even
infinity. This depends on the purpose of rewards. Later we will reward states
that correspond to the terminal states of a program. If an execution fails to
reach a terminal state, then we treat this as “undesired” behaviour that has
reward zero. This agrees with the previous definition.

We can now define the expected reward for reachability. Usually an expecta-
tion of a real valued random variable X with a density function p(x) is defined
as

E(X) =

∫
x

x·p(x)dx .

Our random variable is the reward but it is not continuous. Even though a re-
ward function maps states to non-negative real values, there are only countably
many different rewards that can be accumulated on the way from a state s to
a target set T . This is because there are only countably many finite prefixes
of paths that lead from a state s to states in T . Hence the random variable –
the reward – can assume only countably many distinct values. We can there-
fore define a discrete probability distribution, which assigns each given reward
c the probability of all finite path prefixes that run from s to T and have the
cumulative reachability reward c.

Definition 12. (Expected reward for reachability) Let (M, r) be an
RMDP with state space S and T ⊆ S and s ∈ S. Further let C denote the set
of all cumulative reachability reward values that can be accumulated by paths
from s to T in (M, r). The minimal expected reward until reaching T ⊆ S from

s ∈ S, denoted ExpRew(M,r)(s |= ♢T ), is defined by:

inf
P

∑
c∈C

c · PrP{π ∈ PathsP(s,♢T ) | rT (π) = c } .

The minimal liberal expected reward until reaching some state in T from s,
denoted LExpRew(M,r)(s |= ♢T ), is defined by:

inf
P

{
PrP(s ̸|= ♢T ) +

∑
c∈C

c · PrP{π ∈ PathsP(s,♢T ) | rT (π) = c }

}
.

We omit the superscript (M, r) when the underlying model is clear from the
context.
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The expected reward in s to reach some state in T is the expected cumulative
reward over all paths (reaching T ) induced under a demonic policy. A demonic
policy resolves non-determinism such that the expected reward is minimised.
The motivation to consider a demonic and not an angelic (maximising) policy
lies in the relationship between demonic choice and the notion of weakest pre-
expectation of pGCL programs. As we will see later, a non-deterministic choice in
pGCL will be resolved in such a way that the pre-expectation is minimised. Note
that in case T is not reachable with positive probability from s under a demonic
policy, ExpRew(s |= ♢T ) = 0. LExpRew(s |= ♢T ) is the expected reward to
reach T or never reach it from s. In case there is no policy under which T can be
reached from s with positive probability, we have that LExpRew(s |= ♢T ) = 1.
This measure is motivated by reasoning about partial correctness where termi-
nation is not guaranteed and we will later see the relationship to the weakest
liberal pre-expectation in Thm. 24. Note that ExpRew and LExpRew coincide
if T is reached with probability one under all policies. For finite MDPs without
parameters, expected and liberal expected rewards for reachability objectives
can be obtained by solving a linear programming problem, cf. [6].

Example 13. (Expected rewards)
...
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Let T = {s2, s3}. Then ExpRew(s0 |= ♢T ) = min{4· 12 , 4·
1
3+17· 12} =min{2, 59

6 }
= 2. And LExpRew(s0 |= ♢T ) = min{ 1

2 +4 · 12 ,
1
6 +4 · 13 +17 · 12} = min{2.5, 10}

= 2.5.

4. pGCL semantics

This section describes an expectation transformer semantics of pGCL, as well
as an operational semantics using MDPs. The main result of this section is a
formal connection between these two semantics.

4.1. Denotational Semantics

When probabilistic programs are executed they determine a probability dis-
tribution over final values of program variables. For instance, on termination
of

(x := 1 [0.75] x := 2);

the final value of x is 1 with probability 3
4 and 2 with probability 1

4 . An alterna-
tive way to characterise that probabilistic behaviour is to consider the expected
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values over random variables with respect to that distribution. For example, to
determine the probability that x is set to 1, we can compute the expected value
of the random variable “x is 1” which is 3

4 ·1+
1
4 ·0 = 3

4 . Similarly, to determine
the average value of x, we compute the expected value of the random variable
“x” which is 3

4 · 1 + 1
4 · 2 = 5

4 .
More generally, rather than a distribution-centred approach [15, 16], we take

an “expectation transformer” [4] approach. We annotate probabilistic programs
with expectations. As before we assume a state space S, a set of parameters Par
and a set of expressions V (Par) over it.

Definition 14. (Expectation) Expectations are functions which map pro-
gram states to (non-negative) real values or expressions over parameters. The
set of expectations over state space S is then

E = {f | f : S → R≥0 ∪ V (Par)} .

Note that every expectation f maps to a non-negative real value or an expres-
sion that is non-negative for all possible evaluations of its parameters. Expec-
tations are the quantitative analogue to Hoare’s predicates for non-probabilistic
programs. An expectation transformer is a total function between two ex-
pectations. The expectation transformer wp(P, f) for program P and post-
expectation f yields the least expected value e on P ’s initial state ensuring
that P ’s execution terminates with a value f . Annotation ⟨e⟩P ⟨f⟩ holds for
total correctness if and only if e ≤ wp(P, f) where ≤ is to be interpreted in
a point-wise manner. Intuitively, implication between predicates is generalised
to pointwise inequality between expectations. For convenience we use square
brackets to cast Boolean truth values to numbers and by convention [true] = 1
and [false] = 0.

Definition 15. (wp-semantics of pGCL [4]) Let P andQ be pGCL-programs,
f a post-expectation, x a program variable, E an expression, and G a Boolean
expression. The wp-semantics of a program is defined by structural induction
over the program as follows:

• wp(skip, f) = f

• wp(abort, f) = 0

• wp(x := E, f) = f [x/E]

• wp(P ;Q, f) = wp(P,wp(Q, f))

• wp(if(G){P}else{Q}, f) = [G] · wp(P, f) + [¬G] · wp(Q, f)

• wp(P []Q, f) = min (wp(P, f),wp(Q, f))

• wp(P [p]Q, f) = p · wp(P, f) + (1−p) · wp(Q, f)

• wp(while(G){P}, f) = µX. ([G]·wp(P,X)+[¬G]·f)
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Here f [x/E] denotes a function that is obtained from f by replacing every
occurrence of x by E. The least fixed point operator µ is used w.r.t. the ordering
≤ on expectations. The existence of the fixed point can be seen from Thm. 30
in the appendix. We refer to [4] for more details.

If program P does not contain a probabilistic choice, then this wp is isomor-
phic to Dijkstra’s wp [4]. A weakest liberal pre-expectation wlp(P, f) yields the
least expectation for which P either does not terminate or establishes f .

Definition 16. (wlp-semantics of pGCL) wlp-semantics differs from wp-
semantics only for while and abort:

• wlp(abort, f) = 1

• wlp(while(G){P}, f) = νX. ([G]·wlp(P,X)+[¬G]·f)

Here ν is the greatest fixed point operator w.r.t. the ordering ≤ on expectations.

While expectations do not need to be bounded from above in general, an up-
per bound is required for the definition of wlp. This is because non-terminating
programs produce the maximal pre-expectation which has to be well-defined.
In this paper we set this upper bound of wlp to one. In [17] a more general
approach is discussed.

As the previous definitions indicate, the difference between wp and wlp lies
in the handling of non-termination. The expectation transformers wp and wlp
coincide for programs that terminate with probability one as is the case for
ExpRew and LExpRew.

Example 17. (Application of wp-semantics) Consider again the duelling
cowboys example. Assume we are given the post-expectation:

f(c, t) = [t = A∧c = 0]+[t = A∧c = 1]· a

a+ b− ab
+[t = B∧c = 1]· (1− b)a

a+ b− ab
.

The post-expectation f gives the probability that A wins, depending on the
state that the program is in. The states are characterised by the predicates in
square brackets. Let us compute the weakest pre-expectation of the loop body
from Lst. 1 w.r.t. the post-expectation f . This yields:

wp(if(t = A){(c := 0 [a] t := B); }else{(c := 0 [b] t := A); }, f)
= [t = A] · wp((c := 0 [a] t := B), f)

+ [t ̸= A] · wp((c := 0 [b] t := A), f)

= [t = A] · (a · wp(c := 0, f) + (1−a) · wp(t := B, f))

+ [t ̸= A] · (b · wp(c := 0, f) + (1−b) · wp(t := A, f))

= [t = A] ·
(
a ·
(
[t = A ∧ 0 = 0] + [t = A ∧ 0 = 1] · a

a+ b− ab

+[t = B ∧ 0 = 1] · (1− b)a

a+ b− ab

)
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+(1− a) ·
(
[B = A ∧ c = 0] + [B = A ∧ c = 1] · a

a+ b− ab

+[B = B ∧ c = 1] · (1− b)a

a+ b− ab

))
+ [t ̸= A] ·

(
b ·
(
[t = A ∧ 0 = 0] + [t = A ∧ 0 = 1] · a

a+ b− ab

+[t = B ∧ 0 = 1] · (1− b)a

a+ b− ab

)
+(1− b) ·

(
[A = A ∧ c = 0] + [A = A ∧ c = 1] · a

a+ b− ab

+[A = B ∧ c = 1] · (1− b)a

a+ b− ab

))
= [t = A] ·

(
a · [t = A] + (1− a) · [c = 1] · (1− b)a

a+ b− ab

)
+ [t ̸= A] ·

(
b · [t = A] + (1− b)

(
[c = 0] + [c = 1] · a

a+ b− ab

))
= [t = A] · a+ [t = A ∧ c = 1] · (1− a)(1− b)a

a+ b− ab

+ [t ̸= A ∧ c = 0] · (1− b) + [t ̸= A ∧ c = 1] · (1− b)a

a+ b− ab

= [t = A ∧ c ̸= 1] · a+ [t = A ∧ c = 1] · a

a+ b− ab

+ [t ̸= A ∧ c = 0] · (1− b) + [t ̸= A ∧ c = 1] · (1− b)a

a+ b− ab

In the last step we use the fact that [t = A] · a can be split into

[t = A ∧ c = 1] · a+ [t = A ∧ c ̸= 1] · a .

This computation tells us that if, say f describes the probability after one
iteration of the loop that cowboy A wins, then the computed expression gives
the probability that A wins before that iteration of the loop. The result of this
example will be used in Sect. 5.

4.2. Operational Semantics

Our aim is to model the stepwise behaviour of a pGCL-program P by an
MDP denoted M[[P ]]. This MDP represents the operational interpretation
of the program P and intuitively acts as an abstract machine for P . This is
done as follows. Let η be a variable valuation of the program variables. That
is, η is a mapping from the program variables onto their (possibly infinite)
domains. For variable x, η(x) denotes the value of x under η. For expression
E, let [[E ]]η denote the value of E under valuation η. This is defined in the
standard way, e.g., for E = 2·x+y with η(x) = 3 and η(y) = 7, we have
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[[E ]]η = 2·η(x)+η(y) = 13. We use the distinguished semantic construct exit to
denote the successful termination of a program. States in the MDP are of the
form ⟨Q, η⟩ with Q a pGCL-statement or Q = exit and η a variable valuation. For
instance, the execution of the assignment x := 2·x+y under valuation η with
η(x) = 3 and η(y) = 7 results in the state ⟨exit, η′⟩ where η′ is the same as η
except that η′(x) = 13. Initial states of program P are tuples ⟨P, η⟩ where η is
arbitrary.

Definition 18. (Operational semantics of pGCL) The operational seman-
tics of pGCL-program P , denoted M[[P ]], is the MDP (S, S0,→) where:

• S is the set of pairs ⟨Q, η⟩ with Q a pGCL-program or Q = exit, and η is a
variable valuation of the variables occurring in P ,

• S0 = { ⟨P, η⟩ } where η is arbitrary, and

• → is the smallest relation that is induced by the inference rules in Table 1.

Each rule tells us how to obtain the successors from a state. For example, in a
state with probabilistic choice the MDP will make a transition to the parametric
distribution µ. Then a successor state is chosen according to µ. We omit the
distribution when it is obvious and write an arrow to the successor instead. For
instance the rules for non-deterministic choice are a shorthand for

⟨P [] Q, η⟩ → {µ, ν}
with µ(⟨P, η⟩) = 1 and ν(⟨Q, η⟩) = 1 .

A premise is used to enable or disable transitions depending on the variable
valuation of the current state. Consider the last two rules: if the system evolves
from a state that represents a loop, it will proceed to a state where the loop
body has to be executed once before going back to the loop header provided
that the current variable valuation η satisfies the loop’s guard G. If it does not,
the last rule dictates that the loop is terminated, i.e. the system moves to an
exit state.

Example 19. (Operational semantics) Figure 1 depicts the MDP un-
derlying the cowboy example. This MDP is parameterized with parameters a
and b. Technically, for every possible initial variable evaluation there should be
an initial state. However, a programmer usually has to initialise the program
variables before they may be used in a computation. This is also the case in
our example program from Lst. 1. Therefore it does not matter in which initial
state we start as the initialisation steps will always take us to the states (4, A, 1)
or (4, B, 1). This observation allows us to represent the program by an MDP
with a finite state space where all initial states have been merged into one. A
slight adaptation of our example program in which we keep track of the number
of shots before one of the cowboys dies, yields an MDP with infinitely many
states. The support of any distribution in this MDP is finite however.
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Table 1: Inference rules for pGCL programs

⟨skip, η⟩ → ⟨exit, η⟩ ⟨abort, η⟩ → ⟨abort, η⟩

⟨x := E, η⟩ → ⟨exit, η[x := [[E ]]η]⟩

⟨P, η⟩ → µ

⟨P ;Q, η⟩ → ν
with ν(⟨P ′;Q, η′⟩) = µ(⟨P ′, η′⟩)

where exit;Q = Q.

⟨P [] Q, η⟩ → ⟨P, η⟩ ⟨P [] Q, η⟩ → ⟨Q, η⟩

⟨P [p] Q, η⟩ → µ

with µ(⟨P, η⟩) = p and µ(⟨Q, η⟩) = 1−p

η |= G

⟨if(G){P} else {Q}, η⟩ → ⟨P, η⟩

η ̸|= G

⟨if(G){P} else {Q}, η⟩ → ⟨Q, η⟩

η |= G

⟨while(G){P}, η⟩ → ⟨P ;while(G){P}, η⟩

η ̸|= G

⟨while(G){P}, η⟩ → ⟨exit, η⟩

Let P
√

denote the set of states in MDP M[[P ]] of the form ⟨exit, η⟩ for
arbitrary variable valuation η. Note that states in P

√
represent the successful

termination of P . If P
√
is not reachable, program P diverges under all possible

policies.

Definition 20. (RMDP of a pGCL-program) Let P be a pGCL-program
and f a post-expectation for P . The reward-MDP associated with P and f is
defined as Rf [[P ]] = (M[[P ]], r) with M[[P ]] the MDP of P as defined before
and reward function r defined by r(s) = f(η) if s = ⟨exit, η⟩ ∈ P

√
and r(s) = 0

otherwise.

Note that we use a special reward structure: only terminal states are assigned
a reward which is not necessarily zero. All other states have a zero reward. The
following lemma explains how expected rewards can be computed in Rf [[P ]].

Lemma 21. (Characterizing expected rewards)

14



...

1

.

∗

.

∗

.

2

.

B

.

∗

.

2

.

A

.

∗

.

3

.

A

.

1

.

4

.

A

.

1

.

5

.

A

.

1

.

5

.

A

.

1

.

3

.

A

.

0

.

exit

.

A

.

0

.

5

.

A

.

1

.

3

.

B

.

1

.

4

.

B

.

1

.

7

.

B

.

1

.

7

.

B

.

1

.

7

.

B

.

1

.

3

.

B

.

0

.

exit

.

B

.

0

.

a

.

1− a

.

1− b

.

b

Figure 1: MDP M for the duelling cowboys example. Each state is determined by a triple:
(program location, value of t, value of c) where ∗ denotes an arbitrary value.

For pGCL program P and a state s = ⟨P, η⟩, we have:

ExpRewRf [[P ]](s |= ♢P
√
) = inf

P

∑
π̂∈PathsPmin(s,♢P

√
)

PP(π̂) · rP√(π̂) ,

where PathsPmin(s,♢P
√
) is the set containing all (finite) paths of the form

s0 . . . sk with s0 = s, sk ∈ P
√

and si ̸∈ P
√

for all 0 ≤ i < k that adhere
to the policy P.

Proof: Let T = P
√

for pGCL program P . The proof requires a property
stated in Remark 6 namely that in an MDP there are only countably many
finite paths that lead from one state to another. Consider the definition of
expected reward:

inf
P

∑
c∈C

c · PrP{π ∈ PathsP(s,♢T ) | rT (π) = c } .

Given that PrP(π |= ♢T ) = PP(π̂) where prefix π̂ of π is minimal and ends in
T , the above term equals:

inf
P

∑
c∈C

c ·PP{π̂ ∈ PathsPmin(s,♢T ) | rT (π̂) = c} .

As in Rf [[P ]] the number of finite path prefixes π̂ that reach T and accumulate
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a reward c is countable we can rewrite the sum into:

inf
P

∑
π̂∈PathsPmin(s,♢T )

PP(π̂) · rT (π̂) .

Lemma 21 expresses the expected reward in terms of paths that reach an
exit state and their cumulative rewards. This provides a straightforward way to
calculate expected rewards (for finite systems). In the next subsection Lem. 21
will be helpful in the proofs of our main results.

Analogously we obtain:

Lemma 22. (Characterizing liberal expected rewards)

For pGCL program P and variable valuation η, we have:

LExpRewRf [[P ]](⟨P, η⟩ |= ♢P
√
)

= inf
P

PrP(⟨P, η⟩ ̸|= ♢P
√
) +

∑
π̂∈PathsPmin(s,♢P

√
)

PP(π̂) · rP√(π̂)

 .

Proof: Follows immediately from Def. 12 and Lem. 21.

4.3. Correspondence between operational and expectation transformer semantics

We now present the main results of this paper: a formal relationship between
the wp-semantics of pGCL-program P and its operational semantics in terms of a
RMDP, and similary for the wlp-semantics. We first consider the wp-semantics.

Theorem 23. (Correspondence theorem) For pGCL-program P , variable
valuation η, and post-expectation f :

wp(P, f)(η) = ExpRewRf [[P ]](⟨P, η⟩ |= ♢P
√
) .

Proof: By structural induction over the pGCL program P . We write paths as
sequences of states and leave out the distribution in between each pair of states
for the ease of presentation. In this proof we use the alternative definition for
expected rewards given in Lem. 21.
Induction base:

• For P = skip we use the fact that skip does not change the post-expectation.
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We derive:

ExpRewRf [[ skip ]](⟨skip, η⟩ |= ♢skip
√
)

= inf
P

∑
π̂∈PathsPmin(⟨skip,η⟩,♢skip

√
)

PP(π̂) · rskip√(π̂)

= inf
P

PP(⟨skip, η⟩⟨exit, η⟩) · f(η)

= 1·f(η)
= f(η)

= wp(skip, f)(η).

• For P = abort we use the fact that it fails to terminate and has a pre-
expectation of zero. We derive:

ExpRewRf [[ abort ]](⟨abort, η⟩ |= ♢abort
√
)

= inf
P

∑
π̂∈PathsPmin(⟨abort,η⟩,♢abort

√
)

PP(π̂) · rabort√(π̂)

= 0

= wp(abort, f)(η)

as there is no path starting from ⟨abort, η⟩ that reaches an exit-state.

• Let P be the assignment x := E. For this case we apply the substitution:

ExpRewRf [[x:=E ]](⟨x := E, η⟩ |= ♢(x := E)
√
)

= inf
P

∑
π̂∈PathsPmin(⟨x:=E,η⟩,♢(x:=E)

√
)

PP(π̂) · r(x:=E)
√(π̂)

= inf
P

PP(⟨x := E, η⟩⟨exit, η[x/E]⟩ · f(η[x/E])

= 1·f(η[x/E])

= f(η[x/E])

= f [x/E](η)

= wp(x := E, f)(η).

Induction hypothesis: assume that for program P (and analogously for Q)

wp(P, f)(η) = ExpRewRf [[P ]](⟨P, η⟩ |= ♢P
√
) .

Induction step:

• Consider the probabilistic choice P [p]Q (this also covers conditional choice
since it can be written as P [[G]]Q)3. The idea is to represent the ex-
pected reward as a weighted sum of the expected rewards computed from

3The guard is enclosed in square brackets twice: the inner brackets cast the boolean formula
to a {0, 1}-valued function, the outer brackets are part of the probabilistic choice statement.
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successor states. This corresponds to the weighted sum for the weakest
pre-expectation:

ExpRewRf [[P [p]Q ]](⟨P [p]Q, η⟩ |= ♢(P [p]Q)
√
)

= inf
P

∑
π̂∈PathsPmin(⟨P [p]Q,η⟩,♢(P [p]Q)

√
)

PP(π̂) · r(P [p]Q)
√(π̂)

= inf
P

∑
π̂∈PathsPmin(⟨P,η⟩,♢P

√
)

p ·PP(π̂) · rP√(π̂)

+
∑

π̂∈PathsPmin(⟨Q,η⟩,♢Q
√
)

(1− p) ·PP(π̂) · rQ√(π̂)

∗
= p · inf

P1

∑
π̂∈PathsP1

min(⟨P,η⟩,♢P
√
)

PP(π̂) · rP√(π̂)

+ (1− p) · inf
P2

∑
π̂∈PathsP2

min(⟨Q,η⟩,♢Q
√
)

PP(π̂) · rQ√(π̂)

= p · ExpRewRf [[P ]](⟨P, η⟩ |= ♢P
√
)

+ (1− p) · ExpRewRf [[Q ]](⟨Q, η⟩ |= ♢Q
√
)

I.H.
= p · wp(P, f)(η) + (1−p) · wp(Q, f)(η)

= wp(P [p]Q, f)(η)

In ∗ we use the fact that the policy for paths starting in ⟨P, η⟩ is indepen-
dent of the policy for paths starting in ⟨Q, η⟩ because they are positional
policies.

• Consider the non-deterministic choice P []Q which is analogous to proba-
bilistic choice, except that min replaces the weighted sum:

ExpRewRf [[P []Q ]](⟨P []Q, η⟩ |= ♢(P []Q)
√
)

= inf
P

∑
π̂∈PathsPmin(⟨P []Q,η⟩,♢(P []Q)

√
)

PP(π̂) · r(P []Q)
√(π̂)

= min

inf
P

∑
π̂∈PathsPmin(⟨P,η⟩,♢P

√
)

PP(π̂) · rP√(π̂) ,

inf
P

∑
π̂∈PathsPmin(⟨Q,η⟩,♢Q

√
)

PP(π̂) · rQ√(π̂)


= min{ExpRewRf [[P ]](⟨P, η⟩ |= ♢P

√
),

ExpRewRf [[Q ]](⟨Q, η⟩ |= ♢Q
√
)}

I.H.
= min{wp(P, f),wp(Q, f)}
= wp(P []Q, f)(η)
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• Consider the sequential composition P ;Q. The idea is break up each path
into a prefix that corresponds to the execution of P and a suffix that
corresponds to the execution of Q. We can then compute the expected
reward over the suffixes and use this intermediate result to compute the
expected reward over the prefixes which corresponds to the nesting of
weakest pre-expectations:

ExpRewRf [[P ;Q ]](⟨P ;Q, η⟩ |= ♢(P ;Q)
√
)

= inf
P

∑
π̂∈PathsPmin(⟨P ;Q,η⟩,♢(P ;Q)

√
)

PP(π̂) · r(P ;Q)
√(π̂)

∗
= inf

P

∑
π̂∈PathsPmin(⟨P ;Q,η⟩,♢P

√
)

PP(π̂) · rq
P

√(π̂)

where rq
P

√(π̂) is the sum of rewards rq along π̂ with

rq(s) = inf
P′

 ∑
π̂′∈PathsP

′
min(s,♢Q

√
)

PP′
(π̂′) · rQ√(π̂′)


if s ∈ P

√
and rq(s) = 0 otherwise

= ExpRewRg [[P ]](⟨P, η⟩ |= ♢P
√
)

where g(η) = ExpRewRf [[Q ]](⟨Q, η⟩ |= ♢Q
√
)

I.H.
= wp(P ;wp(Q, f))(η)

= wp(P ;Q, f)(η) .

In ∗ we divide each path into the aforementioned pre- and suffixes. We use
the positionality of policies as the policies according to which the suffixes
are constructed are independent of the history, i.e. the prefix of those
paths.

• Consider the loop while(G){P}. For this case we show by induction that
the two semantics correspond for every iteration that the loop performs.
We rely on the previously shown cases for abort, skip and sequential com-
position. Let the bounded while-loop for k > 0 be

(while(G){P})k+1 = if(G){P ; (while(G){P})k} else {skip}

where the base case is (while(G){P})0 = abort. We will show for every k
that

wp((while(G){P})k, f)(η) = ExpRewRf [[ (while(G){P})k ]](η) . (1)

Observe that

wp((while(G){P})k+1, f)(η) ≥ wp((while(G){P})k, f)(η) .
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From the fixpoint theorem 3 in [18] we know that the more iterations the
bounded while loop is allowed to perform, the closer it approximates the
fixpoint given in Def. 15. Formally this means

lim
k→∞

wp((while(G){P})k, f)(η) = wp(while(G){P}, f)(η) . (2)

A thorough justification for (2) is given in Appendix A.

From (1) it follows that for every k, ExpRew behaves identically to wp.
Thus with (2) it follows that

wp(while(G){P}, f)(η) = ExpRewRf [[while(G){P} ]](η).

It remains to prove (1). This is done by induction on k. Base case (k = 0):

wp((while(G){P})0, f)(η)
= wp(abort, f)(η)
∗
= ExpRewRf [[ abort ]](η)

= ExpRewRf [[ (while(G){P})0 ]](η)

(∗) was already shown earlier in the case abort.

Induction hypothesis: equation (1) holds for some unspecified but fixed
value of k.

Induction step:

wp((while(G){P})k+1, f)(η)

= wp(if(G){P ; (while(G){P})k}else{skip}, f)(η)
=
(
[G] · wp(P ; (while(G){P})k, f) + [¬G] · wp(skip, f)

)
(η)

∗
=
(
[G] · ExpRewRf [[P ;(while(G){P})k ]] + [¬G] · ExpRewRf [[ skip ]]

)
(η)

= ExpRewRf [[ if(G){P ;(while(G){P})k}else{skip} ]](η)

= ExpRewRf [[ (while(G){P})k+1 ]](η)

(∗) follows from the induction hypothesis and the previously shown cases
for skip and sequential composition.

Thus, wp(P, f) evaluated at η is the least expected value of f over any of
the result distributions of P .

Theorem 24. (Correspondence theorem for liberal semantics) For
pGCL-program P , variable valuation η, and post-expectation f :

wlp(P, f)(η) = LExpRewRf [[P ]](⟨P, η⟩ |= ♢P
√
) .
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Proof: By structural induction over the pGCL program P (analogously to the
proof of Theorem 23). Similarly we apply Lem. 22 here. To avoid repetition we
skip the base cases which are rather simple.
Induction hypothesis: assume that for program P (and analogously for Q)

wlp(P, f)(η) = LExpRewRf [[P ]](⟨P, η⟩ |= ♢P
√
) .

Induction step:

• Consider the probabilistic choice P [p]Q (again, this covers conditional
choice):

LExpRewRf [[P [p]Q ]](⟨P [p]Q, η⟩ |= ♢(P [p]Q)
√
)

= inf
P

PrP(⟨P [p]Q, η⟩ ̸|= ♢(P [p]Q)
√
)

+
∑

π̂∈PathsPmin(⟨P [p]Q,η⟩,♢(P [p]Q)
√
)

PP(π̂) · r(P [p]Q)
√(π̂)

= inf
P

(
+p · PrP(⟨P, η⟩ ̸|= ♢P

√
)

+
∑

π̂∈PathsPmin(⟨P,η⟩,♢P
√
)

p ·PP(π̂) · rP√(π̂)

+ (1− p) · PrP(⟨Q, η⟩ ̸|= ♢Q
√
)

+
∑

π̂∈PathsPmin(⟨Q,η⟩,♢Q
√
)

(1− p) ·PP(π̂) · rQ√(π̂)


= p · inf

P1

PrP1(⟨P, η⟩ ̸|= ♢P
√
)

+
∑

π̂∈PathsP1
min(⟨P,η⟩,♢P

√
)

PP(π̂) · rP√(π̂)

+ (1− p) · inf
P2

PrP2(⟨Q, η⟩ ̸|= ♢Q
√
)

+
∑

π̂∈PathsP2
min(⟨Q,η⟩,♢Q

√
)

PP(π̂) · rQ√(π̂)

= p · LExpRewRf [[P ]](⟨P, η⟩ |= ♢P
√
)

+ (1− p) · LExpRewRf [[Q ]](⟨Q, η⟩ |= ♢Q
√
)

I.H.
= p · wlp(P, f)(η) + (1− p) · wlp(Q, f)(η)

= wlp(P [p]Q, f)(η) .
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• Consider the non-deterministic choice P []Q:

LExpRewRf [[P []Q ]](⟨P []Q, η⟩ |= ♢(P []Q)
√
)

= inf
P

PrP(⟨P []Q, η⟩ ̸|= ♢(P []Q)
√
)

+
∑

π̂∈PathsPmin(⟨P []Q,η⟩,♢(P []Q)
√
)

PP(π̂) · r(P []Q)
√(π̂)

= min

inf
P

PrP(⟨P, η⟩ ̸|= ♢P
√
) +

∑
π̂∈PathsPmin(⟨P,η⟩,♢P

√
)

PP(π̂) · rP√(π̂)

 ,

inf
P

PrP(⟨Q, η⟩ ̸|= ♢Q
√
) +

∑
π̂∈PathsPmin(⟨Q,η⟩,♢Q

√
)

PP(π̂) · rQ√(π̂)


= min{LExpRewRf [[P ]](⟨P, η⟩ |= ♢P

√
),

LExpRewRf [[Q ]](⟨Q, η⟩ |= ♢Q
√
)}

I.H.
= min{wlp(P, f)(η),wlp(Q, f)(η)}
= wlp(P []Q, f)(η) .

• Consider the sequential composition P ;Q:

LExpRewRf [[P ;Q ]](⟨P ;Q, η⟩ |= ♢(P ;Q)
√
)

= inf
P

(
PrP{⟨P ;Q, η⟩ ̸|= ♢(P ;Q)

√
}

+
∑

π̂∈PathsPmin(⟨P ;Q,η⟩,♢(P ;Q)
√
)

PP(π̂) · r(P ;Q)
√(π̂)


∗
= inf

P

(
PrP{⟨P, η⟩ ̸|= ♢P

√
}

+
∑

π̂∈PathsPmin(⟨P ;Q,η⟩,♢P
√
)

PP(π̂) · rq
P

√(π̂)


where rq

P
√(π̂) is the sum of rewards rq along π̂ with

rq(s) = inf
P′

(
PrP

′
{⟨Q, η′⟩ ̸|= ♢Q

√
}

+
∑

π̂′∈PathsP
′

min(s,♢Q
√
)

PP′
(π̂′) · rQ√(π̂′)


if s ∈ P

√
and rq(s) = 0 otherwise

= LExpRewRg[[P ]](⟨P, η⟩ |= ♢P
√
)

where g(η) = LExpRewRf [[Q ]](⟨Q, η⟩ |= ♢Q
√
)
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I.H.
= wlp(P ;wlp(Q, f))(η)

= wlp(P ;Q, f)(η) .

In ∗ we again rewrite each path into a prefix and a suffix and use position-
ality of policies. Additionally, observe that diverging paths are also split
up into paths that already diverge before reaching an exit state of P and
paths that do reach the end of P but diverge before reaching an exit state
of Q. The probability of the former is captured by PrP{⟨P, η⟩ ̸|= ♢P

√
}

and the probability of the latter is the product of the probability of the
prefix and the suffix whose probability is captured by rq

P
√ .

• Consider the loop while(G){P}. Again we prove this case by induction on
the number of iterations that a while-loop performs. Let (while(G){P})k
be defined as in the proof of the previous theorem. We show for every k
that

wlp((while(G){P})k, f)(η) = LExpRewRf [[ (while(G){P})k ]](η) . (3)

The only difference is now that

wlp((while(G){P})k+1, f)(η) ≤ wlp((while(G){P})k, f)(η) .

Using this we again know that the bounded while loop approximates the
fixpoint given in Def. 16 (only this time from above). Formally this means

lim
k→∞

wlp((while(G){P})k, f)(η) = wlp(while(G){P}, f)(η) . (4)

From (3) we know that for every k LExpRew behaves identically to wlp.
Thus with (4) it follows that

wlp(while(G){P}, f)(η) = LExpRewRf [[while(G){P} ]](η) .

It remains to prove (3). This is done by induction on k. Base case (k = 0):

wlp((while(G){P})0, f)(η)
= wlp(abort, f)(η)
∗
= LExpRewRf [[ abort ]](η)

= LExpRewRf [[ (while(G){P})0 ]](η)

(∗) was already shown earlier in the case abort.
Induction hypothesis: equation (3) holds for some unspecified but fixed value

of k.
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Induction step:

wlp((while(G){P})k+1, f)(η)

= wlp(if(G){P ; (while(G){P})k}else{skip}, f)(η)
=
(
[G] · wlp(P ; (while(G){P})k, f) + [¬G] · wlp(skip, f)

)
(η)

∗
=
(
[G] · LExpRewRf [[P ;(while(G){P})k ]] + [¬G] · LExpRewRf [[ skip ]]

)
(η)

= LExpRewRf [[ if(G){P ;(while(G){P})k}else{skip} ]](η)

= LExpRewRf [[ (while(G){P})k+1 ]](η)

(∗) follows from the induction hypothesis and the previously shown cases for
skip and sequential composition.

The weakest liberal pre-expectation wlp(P, f) is thus the least expected value
of f over any of the result distributions of P plus the probability that P does
not terminate.

Example 25. (Duelling cowboys.) Consider again the duelling cowboys
example from Lst. 1. Assume we are interested in the probability that cowboy
A wins the duel. In terms of the MDP semantics this means we are interested
in

ExpRew(M,r)(⟨2, ∗, ∗⟩ |= ♢(M, r)
√
)

where M is the MDP from Fig. 1 and r is the reward function that indicates
whether cowboy A has won or not, i.e.

r(s) =

{
1 if s = ⟨11, A, 0⟩
0 otherwise

In this example the MDP is finite and this allows us to compute the desired
expected cumulative reward easily. That is, cowboy A wins with probability at
least

(1− b)a

a+ b− ab
.

Figure 2 visualises this result. We nicely see how the expected winning chance
depends on a and b. Parametrising our model allows us to carry out a calculation
only once and make statements about all possible refinements of the system.
According to Theorem 23 we can obtain the same result when applying the
expectation transformer mechanism. The following section illustrates how this
works.

5. Analysis

Although the computation of (liberal) expected rewards on MDPs may be
numerically involved, its basic idea is intuitive in principle. However, pGCL
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Figure 2: Probability that A wins the duel, depending on a and b. Bear in mind that this is
the least guaranteed probability that A wins. In the worst case (for A) cowboy B will shoot
first and therefore as b tends to 1 the plot goes to 0, i.e. cowboy A has no chances. However
for smaller values of b the influence of a increases.

programs will often have an infinite state space in particular due to the infinite
domain of the program variables. In that case it is not possible to compute
the expected reward on the reward model in general. In contrast to this, the
denotational semantics does not depend on the underlying state space but on
the structure of the program. In this section we show how to determine a
pre-expectation using wp-semantics.

Again let us determine the probability that cowboy A wins the duel. There-
fore we choose [t = A] as the post-expectation and determine

wp(cowboyDuel, [t = A]) .

Listing 2 shows the program cowboyDuel with annotations.

Listing 2: The duelling cowboys, annotated with expectations

1 ⟨ (1−b)a
a+b−ab

⟩
2 ⟨min{ a

a+b−ab
, (1−b)a
a+b−ab

}⟩
3 (t := A [] t := B);

4 ⟨[t = A] · a
a+b−ab

+ [t = B] · (1−b)a
a+b−ab

⟩
5 c := 1;

6 ⟨[t = A ∧ c = 0] · 1 + [t = A ∧ c = 1] · a
a+b−ab

+[t = B ∧ c = 1] · (1−b)a
a+b−ab

⟩
7 while (c = 1) {

8 ⟨[t = A ∧ c = 1] · a
a+b−ab

+ [t = B ∧ c = 1] · (1−b)a
a+b−ab

⟩
9 ⟨[t = A ∧ c ̸= 1] · a+ [t = A ∧ c = 1] · a

a+b−ab

+[t = B ∧ c = 0] · (1− b) + [t = B ∧ c = 1] · (1−b)a
a+b−ab

⟩
10 if (t = A) {
11 (c := 0 [a] t := B);
12 } else {
13 (c := 0 [b] t := A);
14 }

15 ⟨[t = A ∧ c = 0] · 1 + [t = A ∧ c = 1] · a
a+b−ab

+[t = B ∧ c = 1] · (1−b)a
a+b−ab

⟩
16 }
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17 ⟨[c ̸= 1] ·
(
[t = A ∧ c = 0] · 1 + [t = A ∧ c = 1] · a

a+b−ab

+[t = B ∧ c = 1] · (1−b)a
a+b−ab

)
⟩

18 ⟨[t = A]⟩

The program is annotated backwards according to the rules from Def. 15. In
line 18 we start with the post-expectation that we are interested in. We finish
with the sought probability in line 1. The only non-trivial step is to discover the
so-called invariant which appears in lines 6 and 15. But let us assume for the
moment that it is given. Then all other annotations are obtained by applying
the syntactic rules from Def. 15 and rewriting. We can rewrite the expectation
in line 9 into the expectation in line 8 because at this point the program must
be in a state where c = 1 (the loop guard) holds and the expectations are
equivalent for all these states. The same applies to expectations in lines 17 and
18 because at that point c ̸= 1 holds. The calculation from line 15 to line 9
was already shown in Example 17. This means that once we have found the
aforementioned invariant, the analysis can be automatically carried out by a
computer - irrespective of the underlying state space size.

6. Invariants

The annotation in lines 6 and 15 of Lst. 2 which we call an invariant is an
expectation that over-approximates the fixed point solution in Def. 15. In the
following we use I for invariant expectations.

Definition 26. (Probabilistic invariant) An expectation I is called in-
variant for a loop while(G){P} if

I · [G] ≤ wlp(P, I) . (5)

In our example, I is the expectation in line 6, G is the loop guard c = 1 and
loop body P is the code in lines 10–14. In line 8, the expectation represents
I · [G] and line 9 is wlp(P, I). Clearly, (5) is satisfied in our example.

6.1. Standard Invariants

Before we elaborate more on invariants for probabilistic programs, let us
consider invariants for traditional, non-probabilistic programs and how they are
used. For this we remind the reader of the non-probabilistic version of Def. 26
along the lines of [1].

Definition 27. (Standard invariant) A predicate I is called invariant for
a loop while(G){P} if

I ∧G ⇒ wlp(P, I) . (6)

In this definition a single iteration of the loop body P is considered. The
implication ensures that an execution of the loop body preserves the validity of
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I. Note that G appears in the premise because we restrict our attention to states
from which the loop will perform (at least) one iteration. States characterised
by I ∧ ¬G are irrelevant because the loop will be skipped and one can trivially
conclude that at the end of the loop’s execution I is still true. Since (6) has to
be satisfied on every iteration of the loop it follows that any execution beginning
in a state that satisfies the invariant will terminate in a state that again satisfies
the invariant (or the execution of the loop does not terminate). This property
is colloquially summarised as “the set of states characterised by I is not left by
the execution of the loop”.

The key motivation for invariant annotations is that they establish the fol-
lowing relationship:

I ⇒ wlp(while(G){P}, I ∧ ¬G) .

This relationship is called partial correctness. It means that every execution of
the loop from a state satisfying the invariant can only terminate in a state that
also satisfies the invariant and violates the guard G. The correctness is partial
because it is possible that there are some executions which never terminate.
In a separate proof, e.g. using a loop variant, one can establish that the loop
terminates when started in some state in I. This gives us total correctness:

I ⇒ wp(while(G){P}, I ∧ ¬G) .

In practice one usually wants to prove that given some precondition pre before
the beginning of the loop, the postcondition post will hold after the loop’s
execution. The straightforward way is to show this by directly applying wp
semantics, i.e. proving

pre ⇒ wp(while(G){P}, post) .

But it turns out to be hard because this requires to find the least fixed point
of the loop with respect to post. Although that fixed point is mathematically
well-defined it often is difficult to compute it in practice. Instead it usually4 is
easier to

1. find a predicate I such that

pre ⇒ I and I ∧ ¬G ⇒ post ,

2. show I is invariant for the loop while(G){P}, cf. Def. 27 and

3. prove that the loop terminates from any state in I ∧G.

Via this detour the same relation between pre and post is established as

pre ⇒ I ⇒ wp(while(G){P}, I ∧ ¬G) and I ∧ ¬G ⇒ post .

4One can construct a loop and pre- and postconditions such that the alternative approach
turns out to be as hard as finding the fixed point. In practice however there is a big difference.
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6.2. Probabilistic Invariants

Let us now return to probabilistic programs. In the probabilistic setting,
we use an invariant I in the same way but this time it is an expectation. The
post-expectation I · [¬G] has the pre-expectation I.

However there is a crucial difference between non-probabilistic and prob-
abilistic programs. Once we have shown that the loop in a non-probabilistic
program terminates we have at the same time established that the set of reach-
able states is finite. This is because in a non-probabilistic program there may
be several different executions from a given state due to non-determinism but
the proof of termination shows that there are only finitely many emanating
executions and each of them has finite length. For probabilistic programs the
situation is somewhat different. Consider the example in Lst. 3 below.

Listing 3: Symmetric random walk over N with absorbing barrier at zero [4].

1 n := 1;
2 while(n != 0){
3 (n := n - 1 [0.5] n := n + 1);
4 }

This loop will terminate with probability one5 because the probability of an
infinite walk is zero. However there exist infinitely many different walks of finite
length from the initial state. Each of these walks has a positive probability. To
convince ourselves that this indeed makes a difference we choose the invariant
I = n. It does satisfy Def. 26. Hence,

n ≤ wlp(while(n ̸= 0){n := n− 1 [0.5]n := n+ 1}, n·[n = 0]) .

And we have already shown that the loop terminates almost surely. We could
therefore falsely conclude that

n ≤ wp(while(n ̸= 0){n := n− 1 [0.5]n := n+ 1}, n·[n = 0]) .

This would “prove” that the expected value of n·[n = 0] depends on the initial
value of n and in the given example it is one. This of course is wrong as n·[n = 0]
is zero everywhere. It is a nice exercise to compute the fixed point of this loop
w.r.t. n. It gives a function that evaluates to zero for every n which coincides
with the intuition that the expected outcome, in fact the only possible one, is
zero. This also nicely shows that establishing termination is not the same as
establishing termination with probability one.

In conclusion, given a probabilistic loop while(G){P} and a post-expectation
post, we can establish an upper bound for pre-expectation pre if we

1. find an expectation I such that

pre ≤ I and I ∧ ¬G ≤ post ,

5Also referred to as almost sure termination.
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2. show I is invariant for the loop while(G){P}, cf. Def. 26,

3. prove that the loop terminates from any state in G with probability one
and

4. either show that from every initial state of the loop only a finite state
space is reachable
or make sure that I is bounded from above by some fixed constant
or show that wp(P, I · [G]) tends to zero as the number of iterations tends
to infinity.

The last item gives sufficient conditions to make reasoning with invariants sound
for probabilistic programs [4, pp. 71-72].

Even though we argue that finding invariants and proving termination sep-
arately is easier than computing the least fixed point of the loop directly, it
still remains a hard task to find a non-trivial invariant. Trivial invariants are
constant functions such as 0 or 1 which are invariant for every loop but will
hardly be useful for calculating an expectation. The invariant generation pro-
cess is a topic on its own and beyond the scope of this paper. For probabilistic
programs we have developed a constraint-based approach to generate invari-
ants [19]. These ideas were implemented in our recently developed prototype
tool Prinsys [12]. It helps the user to find invariants for probabilistic programs
semi-automatically. For instance, it was applied to our running example, the
duelling cowboys, to calculate cowboy A’s winning probability in Sect. 5.

In the rest of this section we apply our theoretical set-up to obtain an oper-
ational view of invariants for probabilistic systems.

6.3. Characterising invariants operationally

Recall that invariants for non-probabilistic programs are predicates, and
they characterise the set of states that is never left by a loop as discussed
before. This yields a straightforward operational characterisation of invariants:
in a transition system that represents the loop we can identify a set of states
with the property that one iteration of the loop started in such a state will end
in this set again. If we can describe this set by a predicate this predicate will
satisfy Def. 27.

For probabilistic programs the situation is more complicated. Invariants are
expectations and not predicates and therefore do not necessarily characterise
states. Instead they assign values to states such that an execution of the loop
body started from a state with value e will on average end in a state with a value
no less than e (if the execution terminates at all). Thus invariants establish lower
bounds on pre-expectations. In fact, this idea generalises standard invariants
which can be represented as {0, 1}-valued expectations.

Theorem 24 allows us to give an operational interpretation to invariants for
probabilistic programs in terms of MDPs. Given an MDP for a while loop that
is constructed according to the rules in Table 1 we can characterise an invariant
in the following way:

Corollary 28. (Operational interpretation of quantitative loop in-
variants.) An expectation I is invariant for the loop while(G){P} if in
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M[[while(G){P} ]] for any state s of the form ⟨P ;while(G){P}, η⟩:

I(η) ≤ LExpRewRI [[P ]](⟨P, η⟩ |= ♢P
√
) .

Intuitively this formula requires that the liberal expected reward w.r.t. the
execution of the loop body P and the post-expectation I is bounded from below
by I. Corollary 28 is an immediate consequence of Def. 26 and Thm. 24. On the
left hand side we evaluate I on η in those states where the loop has just been
entered. This corresponds to the left hand side of the inequality in Def. 26. For
the right hand side we have applied Thm. 24 to the right hand side of Def. 26.
Thus the operational characterisation of invariants requires an expectation to
meet a set of inequality constraints. Any expectation that is a solution to this
set of constraints will satisfy Def. 26 as well. The difference between Def. 26
and Cor. 28 is that the former gives one inequality between two functions and
this inequality is obtained by applying the wlp calculus while the latter gives
one inequality for every possible initial state of the loop and each inequality is
obtained by calculating a reachability objective in an MDP.

Below is an example for two different expectation functions, one of which is
invariant and the other is not.

Example 29. (Invariants)
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Both MDPs represent the loop from our running example in Lst. 1. Here the
solid black states are of the form ⟨P ;while(G){P}, η⟩ and the grey shaded states
are the ones where one iteration of the loop has finished.

Let us once again consider the expectation

f = [t = A∧c = 0] ·1+[t = A∧c = 1] · a

a+ b− ab
+[t = B∧c = 1] · (1− b)a

a+ b− ab
.
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We evaluate this expectation in the black and grey states of the left MDP.
According to Cor. 28 the following two inequalities have to be checked:

f(A, 1) =
a

a+ b− ab
≤ a

a+ b− ab

= a · 1 + (1− a) · (1− b)a

a+ b− ab

= a · f(A, 0) + (1− a) · f(B, 1) X

f(B, 1) =
(1− b)a

a+ b− ab
≤ (1− b)a

a+ b− ab

= b · 0 + (1− b) · a

a+ b− ab

= b · f(B, 0) + (1− b) · f(A, 1) X

Both are fulfilled and hence f is invariant.
Now let us choose a different expectation, for instance

g = [t = A] · c .

The expectation g is evaluated on the black and grey states of the right MDP
and the inequalities given by Cor. 28 become:

g(A, 1) = 1 � 0

= a · 0 + (1− a) · 0
= a · g(A, 0) + (1− a) · g(B, 1) ×

g(B, 1) = 0 ≤ 1− b

= b · 0 + (1− b) · 1

= b · g(B, 0) + (1− b) · g(A, 1) X

We find out that g is not invariant because the inequality corresponding to state
⟨4, A, 1⟩ does not hold.

In this section we have discussed the purpose of invariants and their proper-
ties. Furthermore we have shown an operational characterisation for invariants
for probabilistic programs. As mentioned above, in other work [19] we have de-
veloped a technique to support the semi-automatic discovery of loop invariants
which can be used to verify probabilistic properties of while loops.

7. Conclusion

This paper provides a formal connection between the expectation trans-
former semantics of pGCL by McIver and Morgan [4] and a simple operational
semantics using (parametric) MDPs. This yields an insightful relationship be-
tween semantics used for deductive reasoning for probabilistic programs and the
notion of a computation in terms of an MDP. Our approach assigns rewards to
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terminal states (only), and establishes that expected cumulative rewards corre-
spond to wp-semantics. A slight variant of expected rewards yields a connection
to the wlp-semantics.

The presented operational semantics provides a connection to model-checking
algorithms for MDPs. In case a pGCL program yields a finite (parameterised)
MDP, expected cumulative rewards (and thus weakest pre-expectations) can be
computed by solving rational functions [20]. Future research will focus on ex-
ploiting results on the analysis of infinite MDPs (such as one-counter MDPs) to
the verification of pGCL programs.
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Appendix A. Proofs

In the proofs of Theorems 23 and 24 we rely on the fact that the wp and wlp
semantics of a loop can be seen as the limit of a loop that may perform only n
steps where n tends to infinity. This is a consequence of one of the renowned
fixed point theorems. In [18] the authors discuss several similar fixed point
theorems due to Kleene, Knaster and Tarski. We justify our proof by what they
propose as the “folk theorem”:

Theorem 30. (Theorem 3 in [18]) Every continuous function F over a
cpo has a least fixed point which is lubn∈N{Fn(⊥)}.

Note that “continuous” means Scott-continuous here. In the following we
define the necessary notions to understand the theorem and subsequently show
that our expectation transformer wp(P, ·) is indeed a Scott-continuous func-
tion. Hence we can characterise the behaviour of a loop by the supremum6

over the behaviours of bounded loops. Finally, since wp((while(G){P})k, ·) is
monotonically increasing we can exchange supremum for limit. Analogously,
wlp((while(G){P})k, ·) is monotonically decreasing and the infimum can be re-
placed by the limit as well.

The first necessary notion is that of a directed set.

Definition 31. (Directed set) A non-empty set D is directed if for all
x, y ∈ D, there exists z ∈ D such that z ≥ x and z ≥ y.

The expectation space (E,≤) (cf. Def. 14, page 10) is directed because for
any two expectations we can find an expectation which is (pointwise) greater
than both, for example by taking their pointwise supremum.

Definition 32. (Complete partial order) A set C is a (directed) complete
partial order (cpo) if for every directed subset D ⊆ C the supremum of D exists
and lies in C.

(E,≤) is not a cpo in general because there is no top element. Hence in-
finitely ascending chains are possible in (E,≤). So for technical reasons we
assume there is a top element ∞ in E such that for any directed subset D of
expectations we can take the pointwise supremum which again is in E. Alter-
natively we may restrict ourselves to pGCL programs for which we can prove
that a bounded post-expectation will always be transformed to a bounded pre-
expectation. This alternative approach is taken in [4].

Note that Thm. 30 above requires a bottom element ⊥ in the cpo. In the
domain of expectations this is the constant 0 function.

Definition 33. (Scott-Continuous Function) Let C, C ′ be cpo’s. A
function F : C → C ′ is Scott-continuous if

• for all directed subsets D ⊆ C, the image F (D) is directed and

6Least upper bound (lub) and supremum (sup) mean the same.
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• F (supD) = supF (D)

This concludes our introduction of necessary definitions and we can now
prove the following lemma that justifies the application of Thm. 30 in the proof
of Thm. 23 (and similarly Thm. 24).

Lemma 34. (Continuity of expectation transformers)

For every pGCL program P the expectation transformer wp(P, ·) is a Scott-
continuous function over (E,≤). The same holds for wlp(P, ·).

Proof: The first point of Def. 33 follows immediately from monotonicity of
wp(P, ·).

It remains to show that for any directed subset D of expectations

wp(P, sup
f∈D

f) = sup
f∈D

wp(P, f) .

The proof is carried out by induction on the structure of the program P .
Induction base:

• P = skip:
wp(skip, sup

f∈D
f) = sup

f∈D
f = sup

f∈D
wp(skip, f) .

• P = abort:
wp(abort, sup

f∈D
f) = 0 = sup

f∈D
wp(abort, f) .

• Let P be an assignment x := E:

wp(x := E, sup
f∈D

f) =

(
sup
f∈D

f

)
[x/E]

∗
= sup

f∈D
(f [x/E])

= sup
f∈D

wp(x := E, f) .

For (∗) observe that one can construct the supremum expectation and
then substitute x for the expression E or first do the substitution and
then construct (the same) pointwise supremum.

Induction hypothesis: assume that for program P (and analogously for Q)

wp(P, sup
f∈D

f) = sup
f∈D

wp(P, f) .

Induction step:
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• Consider the sequential composition P ;Q:

wp(P ;Q, sup
f∈D

f) = wp(P,wp(Q, sup
f∈D

f))

I.H.
= wp(P, sup

f∈D
wp(Q, f))

I.H.
= sup

f∈D
wp(P,wp(Q, f))

• Consider the probabilistic choice P [p]Q (this also covers conditional choice
because it can be rewritten as P [[G]]Q):

A property of sup immediately provides an inequality:

wp(P [p]Q, sup
f∈D

f) = p · wp(P, sup
f∈D

f) + (1− p) · wp(Q, sup
f∈D

f)

I.H.
= sup

f∈D
(p · wp(P, f)) + sup

f∈D
((1− p) · wp(Q, f))

≥ sup
f∈D

(p · wp(P, f) + (1− p) · wp(Q, f))

= sup
f∈D

wp(P [p]Q, f) .

We can strengthen the inequality to equality. Assume for the purpose of
contradiction that

sup
f∈D

(p · wp(P, f) + (1− p) · wp(Q, f))

< sup
f∈D

(p · wp(P, f)) + sup
f∈D

((1− p) · wp(Q, f)) .

Then by definition of sup there must exist g1, g2 ∈ D for which this strict
inequality holds.

sup
f∈D

(p · wp(P, f) + (1− p) · wp(Q, f))

< p · wp(P, g1) + (1− p) · wp(Q, g2)
∗
≤ p · wp(P, h) + (1− p) · wp(Q,h)

≤ sup
f∈D

(p · wp(P, f) + (1− p) · wp(Q, f)) Contradiction!

Where in (∗) we use that D is directed and therefore there is an h ∈ D
with g1 ≤ h and g2 ≤ h. And since wp(P, ·) is monotonous for any P ,
the summands cannot decrease and hence the sum cannot decrease which
gives the (non-strict) inequality.

• Consider the non-deterministic choice P []Q. The proof for this case goes
along the same lines as for probabilistic choice: A property of sup imme-
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diately provides an inequality:

wp(P []Q, sup
f∈D

f) = min

{
wp(P, sup

f∈D
f),wp(Q, sup

f∈D
f)

}
I.H.
= min

{
sup
f∈D

wp(P, f), sup
f∈D

wp(Q, f)

}
≥ sup

f∈D
min {wp(P, f),wp(Q, f)}

= sup
f∈D

wp(P []Q, f) .

We can strengthen the inequality to equality. Assume for the purpose of
contradiction that

sup
f∈D

min {wp(P, f),wp(Q, f)}

< min

{
sup
f∈D

wp(P, f), sup
f∈D

wp(Q, f)

}
.

Then by definition of sup there must exist g1, g2 ∈ D for which this strict
inequality holds.

sup
f∈D

min {wp(P, f),wp(Q, f)}

< min {wp(P, g1),wp(Q, g2)}
≤ min {wp(P, h),wp(Q,h)}
≤ sup

f∈D
min {wp(P, f),wp(Q, f)} Contradiction!

• Consider the loop while(G){P}.
In Def. 15, the semantics of the loop (w.r.t. a post-expectation f) were
defined as the least fixed point of a function

F (X) = [G] · wp(P,X) + [¬G] · f

For the sake of notation we additionally define:

Fsup(X) = [G] · wp(P,X) + [¬G] · sup
f∈D

f .

By the induction hypothesis F (X) is Scott-continuous in X. Therefore
we can apply Thm. 30:

µX.F (X) = sup
n∈N

Fn(0)
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Using this we deduce:

wp(while(G){P}, sup
f∈D

f) = sup
n∈N

Fn
sup(0)

= sup
n∈N

(sup
f∈D

F )n(0)

∗
= sup

n∈N
sup
f∈D

Fn(0)

∗∗
= sup

f∈D
sup
n∈N

Fn(0)

= sup
f∈D

wp(while(G){P}, f)

For (∗) one can show that (supf∈D F )n(0) = supf∈D Fn(0) by induction on n
using the definition of F , directedness of D and continuity of wp(P, ·) as per
induction hypothesis.

The equality in (∗∗) can be established by applying the suprema to Fn(0)
one by one and showing inequality in both directions. The existence of these
suprema is a consequence of the induction hypothesis which gives us the conti-
nuity of F and Thm. 30.

The wlp-semantics for a loop is defined as the greatest fixed point solution
of an equation, cf. Def. 16. We can adapt the proof above to wlp(P, ·), if we
reverse the direction of the directed set of expectations and bound expectation
functions from above by 1 (as in the Def. 16). The semantics of the loop will be
the limit of Fn(1) (where the constant expectation function 1 is the top element
in the reversed cpo).

Remark 35. (Continuity proofs) Continuity was proven for regular trans-
formers of expectations over finite and countable state spaces [4]. Our result
generalises to uncountable state spaces but restricts to pGCL programs which
induce a subset of regular transformers.
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C. Conditioning in Probabilistic Programming

To appear in MFPS 2015. This paper forms the basis of Chapter 3. An extended technical

report can be found on arXiv [31].
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feature, e.g., in machine learning. We provide a quantitative weakest pre–condition semantics. In contrast
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1 Introduction

In recent years, interest in probabilistic programming has rapidly grown [9,11]. This

is due to its wide applicability, for example in machine learning for describing distri-

bution functions; Bayesian inference is pivotal in their analysis. It is used in security

for describing both cryptographic constructions such as randomized encryption and

experiments defining security properties [4]. Probabilistic programs, being exten-

sions of familiar notions, render these fields accessible to programming communities.

A rich palette of probabilistic programming languages exists including Church [8]

as well as modern approaches like probabilistic C [23], Tabular [10] and R2 [22].

Probabilistic programs are sequential programs having two main features: (1)

the ability to draw values at random from probability distributions, and (2) the

ability to condition the value of variables in a program through so–called obser-

vations. The semantics of languages without conditioning is well–understood: In

his seminal work, Kozen [19] considered denotational semantics for probabilistic

? This work was supported by the Excellence Initiative of the German federal and state government.
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programs without non–determinism or observations. One of these semantics—the

expectation transformer semantics—was adopted by McIver and Morgan [21], who

added support for non–determinism; a corresponding operational semantics is given

in [13]. Other relevant works include probabilistic power–domains [17], semantics of

constraint probabilistic programming languages [15,14], and semantics for stochastic

λ–calculi [26].

Semantic intricacies. The difficulties that arise when program variables are

conditioned through observations is less well–understood. This gap is filled in this

paper. Previous work on semantics for programs with observe statements [22,16]

do neither consider the possibility of non–termination nor the powerful feature of

non–determinism. In contrast, we thoroughly study a more general setting which

accounts for non–termination by means of a very simple yet powerful probabilis-

tic programming language supporting non–determinism and observations. Let us

first analyze a few examples illustrating the different problems. We start with the

problem of non–termination; consider the two program snippets

x := 2 and {x := 2} [1/2] {abort} .

The program on the left just assigns the value 2 to the program variable x, while the

program on the right tosses a fair coin—which is modeled through a probabilistic

choice—and depending on the outcome either performs the same variable assign-

ment or diverges due to the abort instruction. The semantics given in [22,16] does

not distinguish these two programs and is only sensible in the context of terminating

programs. A programmer writing only terminating programs is already unrealistic

in the non–probabilistic setting. Our semantics does not rely on the assumption

that programs always terminate and is able to distinguish these two programs.

To discuss observations, consider the program snippet Pobs1

{x := 0} [1/2] {x := 1}; observe (x=1),

which assigns zero to the variable x with probability 1/2 while x is assigned one with

the same likelihood, after which we condition to the outcome of x being one. The

observe statement blocks all invalid runs violating its condition and renormalizes

the probabilities of the remaining valid runs. This differs, e.g., from program anno-

tations like (probabilistic) assertions [25] as we will see later. The interpretation of

the program is the expected outcome conditioned on the valid runs. For Pobs1 , this

yields the outcome 1 · 1—there is one valid run that happens with probability one,

with x being one.

More involved problems arise when programs are infeasible meaning all runs are

blocked. Consider a slight variant of the program above, called Pobs2 :

{x := 0; observe (x=1)} [1/2] {x := 1; observe (x=1)}

The left branch of the probabilistic choice is infeasible. Is this program equivalent

to the sample program Pobs1 ? It will turn out that this is the case, meaning that

setting an infeasible program into context can render it feasible.

The situation becomes more complicated when considering loopy programs that

2
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may diverge. Consider the following two programs:

Pdiv : x := 1; while (x=1) {x := 1}
Pandiv : x := 1; while (x=1) {{x := 1} [1/2] {x := 0}; observe (x=1)}

Program Pdiv diverges as x is set to one in every iteration. This yields a null

expected outcome. Due to the conditioning on x=1, Pandiv has just a single (valid)—

non–terminating—run, but this run almost surely never happens, i.e. it happens

with probability zero. The conditional expected outcome of Pandiv can thus not

be measured. Our semantics can distinguish these programs while programs with

(probabilistic) assertions must be loop–free to avoid similar problems [25]. Other

approaches insist on the absence of diverging loops [5]. Neither of these assumptions

are realistic.

Non–determinism is a powerful means to deal with unknown information, as

well as to specify abstractions in situations where implementation details are unim-

portant. This feature turns out to be intricate in combination with conditioning. 1

Consider the program Pnondet

{{x := 5}2 {x := 2}} [1/4] {x := 2}; observe (x>3),

where with probability 1/4, x is set either to 5 or to 2 non–deterministically (denoted

{x := 5}2 {x := 2}), while x is set to 2 with likelihood 3/4. Resolving the non–

deterministic choice in favor of setting x to five yields a conditional expectation of

5 for x, obtained as 5 · 1/4 rescaled over the single valid run of Pnondet . Taking the

right branch however induces two invalid runs due to the violation of the condition

x>3, yielding a non–measurable conditional outcome.

Contributions. The above issues—non–termination, loops, and non–determi-

nism—indicate that conditioning in probabilistic programs is far from trivial. This

paper presents a thorough semantic treatment of conditioning in a probabilistic

extension of Dijkstra’s guarded command language (known as pGCL [21]), an ele-

mentary though foundational language that includes (amongst others) parametric

probabilistic choice. We take several semantic viewpoints.

We first provide a conditional version of a weakest pre–condition (wp) semantics

à la [21]. This is typically defined inductively over the structure of the program. We

show that combining both non–determinism and conditioning cannot be treated in

this manner. To treat possibly non–terminating programs, due to e.g., diverging

loops or abortion, this is complemented by a weakest liberal pre–condition (wlp)

semantics. Moreover, our w(l)p semantics is backward compatible with the original

pGCL semantics for programs without conditioning; this does not apply to alterna-

tive approaches such as R2 [22].

Furthermore, Markov Decision Processes (MDPs) [24] are used as the basis for

an operational semantics. This semantics is simple and elegant while covering all

aforementioned phenomena, including non–determinism. We show that conditional

1 As stated in [11], “representing and inferring sets of distributions is more complicated than dealing
with a single distribution, and hence there are several technical challenges in adding non–determinism to
probabilistic programs”.
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expected rewards in the MDP–semantics correspond to (conditional) wp in the de-

notational semantics, extending a similar result for pGCL [13].

Finally, we present a program transformation which entirely eliminates condi-

tioning from any program and prove its correctness using our semantics.

Summarized, after introducing pGCL (Section 2), we give a denotational seman-

tics for fully probabilistic programs (Section 3). We provide the first operational se-

mantics for imperative probabilistic programming languages with conditioning and

both probabilistic and non–deterministic choice (Section 4). Our semantics enables

us to prove the correctness of a program transformation that eliminates observe

statements (Section 5). Finally, we show that it is not possible to provide an induc-

tive semantics for programs that include both conditioning and non–determinism

(Section 6).

An extended version of this paper including all proofs and further program

transformations for eliminating observe statements is available in [12].

2 The Programming Language

In this section we briefly present the probabilistic programming language used for

our development. The language is an extension of the probabilistic guarded command

language (pGCL) of McIver and Morgan [21]. The original pGCL is given by syntax

P ::= skip | abort | x := E | P;P | ite (G) {P} {P}
| {P} [p] {P} | {P}2 {P} | while (G) {P}

and constitutes a plain extension of Dijkstra’s guarded command language (GCL) [7]

with a binary probabilistic choice operator. Here, x belongs to V, the set of program

variables; E is an arithmetical expression over V; G a Boolean expression over V;

and p a real–valued parameter with domain [0, 1]. Most of the pGCL instructions

are self–explanatory; we elaborate only on the following: {P} [p] {Q} is a proba-

bilistic choice where program P is executed with probability p and program Q with

probability 1−p; {P}2 {Q} is a non–deterministic choice between P and Q; finally

abort is syntactic sugar for the diverging program while (true) {skip}.
To model probabilistic programs with conditioning we extend pGCL with ob-

servations, leading to the conditional pGCL (cpGCL). At the syntactic level, an

observation is introduced with the instruction observe (G), G being a Boolean ex-

pression over V. The effect of such an instruction is to block all invalid program

executions violating G and rescale the probability of the remaining executions so

that they sum up to one.

As an illustrative example consider the following pair of programs:

P1 : {x := 0} [p] {x := 1}; {y := 0} [q] {y := −1}
P2 : {x := 0} [p] {x := 1}; {y := 0} [q] {y := −1}; observe (x+y=0)

Program P1 admits all (four) runs, two of which satisfy x=0; for this program

the probability of x=0 is p. Program P2—due to the observe statement requiring

x+y=0—admits only two runs, only one of them satisfying x=0; for this program

4
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the probability of x=0 is pq
pq+(1−p)(1−q) .

Note that there exists a connection between the observe statement used in

our work and the well–known assert statement. Both statements observe (G)

and assert (G) block all runs violating G. The crucial difference, however, is that

observe (G) normalizes the probability of the unblocked runs while assert (G) does

not, yielding then a sub–distribution of total mass possibly less than one [20,4].

3 Denotational Semantics for Conditional pGCL

In this section we recall the expectation transformer semantics of pGCL and extend

it to conditional programs in the fully probabilistic fragment of cpGCL.

3.1 Expectation Transformers in pGCL

Expectation transformers are a quantitative version of predicate transformers [7]

used to endow probabilistic pGCL programs a formal semantics. Loosely speaking,

they capture the average or expected outcome of a program, measured w.r.t. a utility

or reward function over the set of final states. To make this more precise, let S be the

set of program states, where a program state is a variable valuation. Now assume

that P is a fully probabilistic program, i.e. a program without non–deterministic

choices. Intuitively, we can think of P as a mapping from an initial state σ ∈ S to a

distribution of final states JP K(σ); its formal semantics is captured by a transformer

wp[P ], which acts as follows: Given a random variable f : S → R≥0, wp[P ](f)

maps every initial state σ to the expected value EJP K(σ)(f) of f with respect to the

distribution of final states JP K(σ). Symbolically,

wp[P ](f)(σ) = EJP K(σ)(f) .

In particular, if f = χA is the characteristic function of some event A, wp[P ](f)

retrieves the probability that the event occurred after the execution of P . (Moreover,

if P is a deterministic program in GCL, EJP K(σ)(χA) is {0, 1}–valued and we recover

the ordinary notion of predicate transformers introduced by Dijkstra [7].)

For a program P including non–deterministic choices, the execution of P yields a

set of final distributions. To account for this, we assume that wp[P ](f)(σ) gives the

tightest lower bound infµ∈JP K(σ) Eµ(f) for the expected value of f . This corresponds

with the notion of a demonic adversary resolving the non–deterministic choices.

We follow McIver and Morgan [21] and use the term expectation to refer to a ran-

dom variable mapping program states to real values. The expectation transformer

wp then transforms a post–expectation f into a pre–expectation wp[P ](f) and can

be defined by induction on the structure of P , following the rules in Figure 1. The

transformer wp also admits a liberal variant wlp, which differs from wp in the way

in which non–termination is treated.

Formally, the transformer wp operates on unbounded expectations in E = S →
R∞≥0 and wlp operates on bounded expectations in E≤1 = S → [0, 1]. Here R∞≥0

denotes the set of non–negative real values with the adjoined ∞ value. In order

to guarantee the well–definedness of wp and wlp we need to provide E and E≤1 the

structure of a directed–complete partial order. Expectations are ordered pointwise,
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i.e. f v g iff f(σ) ≤ g(σ) for every state σ ∈ S. The least upper bound of directed

subsets is also defined pointwise.

In the remainder we make use of the following notation related to expectations.

We use bold fonts for constant expectations, e.g. 1 denotes the constant expecta-

tion 1. Given an arithmetical expression E over program variables we simply write

E for the expectation that in state σ returns σ(E). Given a Boolean expression

G over program variables we use χG to denote the {0, 1}–valued expectation that

returns 1 if σ |= G and 0 otherwise.

3.2 Conditional Expectation Transformers

We now study how to extend the notion of expectation transformers to conditioned

probabilistic programs without non–determinism in cpGCL. To illustrate the in-

tuition behind our solution, consider the following scenario: Assume we want to

measure the probability that some event A occurs after the execution of a condi-

tioned program P . Since P contains observations, its execution leads to a condi-

tional distribution µ|O of final states. Now the conditional probability that A occurs

(given that O occurs) is given as the quotient of the probabilities Pr[µ ∈ A ∧O] and

Pr[µ ∈ O]. Motivated by this observation, we introduce an expectation transformer

cwp[·] : E × E≤1 → E × E≤1, whose application cwp[P ](χA,1) will yield the desired

pair of probabilities (Pr[µ ∈ A ∧ O], Pr[µ ∈ O]). We are only left to define a

transformer cwp[P ] that computes the corresponding quotient. Formally, we let

cwp[P ](f) ,
cwp1[P ](f,1)

cwp2[P ](f,1)
,

where cwp1[P ](f, g) (resp. cwp2[P ](f, g)) denotes the first (resp. second) component

of cwp[P ](f, g). If cwp2[P ](f,1)(σ) = 0, then cwp[P ](f) is not well–defined in σ (in

the same way as the conditional probability Pr(A |B) is not well–defined 2 when

Pr(B) = 0) and we say that program P is infeasible from state σ, meaning that all

its executions are blocked by observations.

As so defined, cwp[P ](f) represents the weakest conditional pre–expectation of

P with respect to post–expectation f and cwp[·] generalizes the transformer wp[·] to

conditioned programs. The weakest liberal conditional pre–expectation cwlp[P ](f)

is defined analogously, in terms of the transformer cwlp[P ] : E≤1×E≤1 → E≤1×E≤1.

We are only left to provide definitions for cwp[P ] and cwlp[P ]. Both trans-

formers are defined by induction on the structure of P , following the rules in Fig-

ure 1. Let us briefly explain these rules. cwp[skip] behaves as the identity since

skip has no effect. cwp[abort] maps any pair of post–expectations to the pair

of constant pre–expectations (0,1). Assignments induce a substitution on expec-

tations, i.e. cwp[x := E] maps (f, g) to pre–expectation (f [x/E], g[x/E]), where

h[x/E](σ) = h(σ[x/E]) and σ[x/E] denotes the usual variable update on states.

cwp[P1;P2] is obtained as the functional composition (denoted ◦) of cwp[P1] and

cwp[P2]. cwp[observe (G)] restricts post–expectations to those states that satisfy

G; states that do not satisfy G are mapped to 0. cwp[ite (G) {P1} {P2}] behaves

2 In the continuous setting we could define a conditional density even when conditioning on events with 0
measure using the Radon–Nikodym theorem. However, our programs generate discrete distributions only.
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P wp[P ](f) cwp[P ](f, g)

skip f (f, g)

abort 0 (0, 1)

x := E f [x/E] (f [x/E], g[x/E])

observe (G) — not defined — χG · (f, g)

P1; P2 (wp[P1] ◦ wp[P2])(f) (cwp[P1] ◦ cwp[P2])(f, g)

ite (G) {P1} {P2} χG · wp[P1](f) + χ¬G · wp[P2](f) χG · cwp[P1](f, g) + χ¬G · cwp[P2](f, g)

{P1} [p] {P2} p · wp[P1](f) + (1−p) · wp[P2](f) p · cwp[P1](f, g) + (1−p) · cwp[P2](f, g)

{P1}2 {P2} λσ• min{wp[P1](f)(σ), wp[P2](f)(σ)} — not defined —

while (G) {P ′} µ f̂ •
(
χG · wp[P ′](f̂) + χ¬G · f

)
µv,w(f̂ , ĝ)•

(
χG · cwp[P ′](f̂ , ĝ) + χ¬G · (f, g)

)
P wlp[P ](f) cwlp[P ](f, g)

abort 1 (1, 1)

while (G) {P ′} ν f̂ •
(
χG · wp[P ′](f̂) + χ¬G · f

)
νv,v(f̂ , ĝ)•

(
χG · cwp[P ′](f̂ , ĝ) + χ¬G · (f, g)

)
Fig. 1. Definitions for the wp/wlp and cwp/cwlp operators. The wlp (cwlp) operator differs from wp (cwp)
only for abort and the while–loop. Multiplication h · (f, g) is meant componentwise yielding (h · f, h · g).
Likewise, addition (f, g) + (f ′, g′) is meant componentwise yielding (f + f ′, g + g′).

either as cwp[P1] or cwp[P2] according to the evaluation of G. cwp[{P1} [p] {P2}]
is obtained as a convex combination of cwp[P1] and cwp[P2], weighted according

to p. cwp[while (G) {P ′}] is defined using standard fixed point techniques. 3 The

cwlp transformer follows the same rules as cwp, except for the abort and while

statements. cwlp[abort] takes any post–expectation to pre–expectation (1,1);

cwlp[while (G) {P}] is defined in terms of a greatest rather than a least fixed point.

Observe that Figure 1 presents no rule for the non–deterministic choice operator.

Therefore our conditional expectation transformers cwp/cwlp can only handle fully

probabilistic cpGCL programs. In Section 6 we elaborate on this limitation.

Example 3.1 Assume we want to compute the expected value of the expression

10+x after executing program P ′ given as:

1: {x := 0} [1/2] {x := 1};
2: ite (x = 1)

{
{y := 0} [1/2] {y := 2}

}{
{y := 0} [4/5] {y := 3}

}
;

3: observe (y=0)

The computation of cwp[P ′](10+x,1) goes as follows:

cwp[P ′](10+x,1) = cwp[P ′1-2](cwp[observe (y=0)](10+x,1))

= cwp[P ′1-2](f, g) where (f, g) = χy=0 · (10+x,1)

= cwp[P ′1-1](cwp[ite (x=1) {. . .} {. . .}](f, g))

= cwp[P ′1-1](χx=1 · (h, i) + χx 6=1 · (h′, i′)) where

(h, i) = cwp[{y :=0} [1/2] {y :=2}](f, g) = 1
2 · (10 + x, 1) , and

(h′, i′) = cwp[{y :=0} [4/5] {y :=3}](f, g) = 4
5 · (10 + x, 1)

= 1
2 ·

4
5 · (10 + 0, 1) + 1

2 ·
1
2 · (10 + 1, 1) =

(
27
4
, 13
20

)
.

The expected value of 10+x is then given by cwp[P ′](10+x) = 27
4
/13
20

= 135
13
≈ 10.38.

3 We define cwp[while (G) {P}] as the least fixed point w.r.t. the order (v,w) in E × E≤1. This way we
encode the greatest fixed point in the second component w.r.t. the order v over E≤1 as the least fixed point
w.r.t. the dual order w.
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In the rest of this section we investigate some properties of the expectation

transformer semantics (of the fully probabilistic fragment) of cpGCL. As every fully

probabilistic pGCL program is contained in cpGCL, we begin by studying the relation

between the w(l)p–semantics of pGCL and the cw(l)p–semantics of cpGCL. To that

end, we extend the w(l)p operator to cpGCL by the clauses wp[observe (G)](f) =

χG · f and wlp[observe (G)](f) = χG · f . Our first result says that cwp (resp. cwlp)

can be decoupled as the product wp× wlp (resp. wlp× wlp).

Lemma 3.2 (Decoupling of cw(l)p) Let P be a fully probabilistic cpGCL pro-

gram, f ∈ E and f ′, g ∈ E≤1. Then cwp[P ](f, g) =
(
wp[P ](f), wlp[P ](g)

)
and

cwlp[P ](f ′, g) =
(
wlp[P ](f ′), wlp[P ](g)

)
.

Our next result shows that the cwp–semantics is a conservative extension of the

wp–semantics for the fully probabilistic fragment of pGCL. The same applies to the

weakest liberal pre–expectation semantics.

Theorem 3.3 (Compatibility with the w(l)p–semantics) Let P be a fully

probabilistic pGCL program, f ∈ E, and g ∈ E≤1. Then wp[P ](f) = cwp[P ](f)

and wlp[P ](g) = cwlp[P ](g).

Proof. By Lemma 3.2 and the fact that wlp[P ](1) = 1 (see Lemma 3.4). 2

We now show that cwp and cwlp preserve the so–called healthiness conditions

of wp and wlp.

Lemma 3.4 (Healthiness conditions of cwp and cwlp) For every fully proba-

bilistic cpGCL program P with at least one feasible execution (from every initial

state), every f, g ∈ E and non–negative real constants α, β:

i) f v g implies cwp[P ](f) v cwp[P ](g) and likewise for cwlp (monotonicity).

ii) cwp[P ](α · f + β · g) = α · cwp[P ](f) + β · cwp[P ](g) (linearity).

iii) cwp[P ](0) = 0 and cwlp[P ](1) = 1.

Proof. Using Lemma 3.2 one can show that the transformers cwp and cwlp inherit

these properties from wp and wlp. For details see [12, p. 15]. 2

We conclude this section by discussing alternative approaches for providing an

expectation transformer semantics for P ∈ cpGCL. By Lemma 3.2, the transformers

cwp[P ] and cwlp[P ] can be recast as

f 7→ wp[P ](f)

wlp[P ](1)
and f 7→ wlp[P ](f)

wlp[P ](1)
,

respectively. An alternative is to normalize using wp instead of wlp in the denomi-

nator, yielding the two transformers

i) f 7→ wp[P ](f)

wp[P ](1)
and ii) f 7→ wlp[P ](f)

wp[P ](1)
.

Transformer ii) is not meaningful, as the denominator wp[P ](1)(σ) may be smaller

than the numerator wlp[P ](f)(σ) for some state σ ∈ S. This might lead to proba-

bilities exceeding one. Transformer i) normalizes w.r.t. the terminating executions.

8
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This interpretation corresponds to the semantics of the probabilistic programming

language R2 [22,16] and is only meaningful if programs terminate almost surely (i.e.

with probability one). A noteworthy consequence of adopting transformer i) is that

observe (G) is equivalent to while (¬G) {skip} [16], see the discussion in Section 5.

Let us briefly compare the four alternatives by means of a concrete program P :{
abort

}
[1/2]

{
{x := 0} [1/2] {x := 1}; {y := 0} [1/2] {y := 1}; observe (x=0∨y=0)

}
P tosses a fair coin and according to the outcome either diverges or tosses a fair coin

twice and observes at least once heads (y=0 ∨ x=0). We measure the probability

that the outcome of the last coin toss was heads according to each transformer:

wp[P ](χy=0)

wlp[P ](1)
=

2

7

wlp[P ](χy=0)

wlp[P ](1)
=

6

7

wp[P ](χy=0)

wp[P ](1)
=

2

3

wlp[P ](χy=0)

wp[P ](1)
= 2

As mentioned before, the transformer ii) is not significant as it yields a “probability”

exceeding one. Note that our cwp–semantics yields that the probability of y=0 after

the execution of P while passing all observe–statements is 2
7 . As shown before, this

is a conservative and natural extension of the wp–semantics. This does not apply to

the R2–semantics, as this would require an adaptation of rules for abort and while.

4 Operational Semantics for Conditional pGCL

This section presents an operational semantics for cpGCL using Markov decision

processes (MDPs) as underlying model. We begin by recalling the notion of MDPs.

For that, let Distr(S) denote the set of distributions µ : S → R over S with∑
s∈S µ(s) = 1.

Definition 4.1 An MDP is a tuple R = (S, sI , Act , P, L) with a countable set of

states S, an initial state sI ∈ S, a finite set of actions Act , a transition probability

function P : S×Act → Distr(S) with
∑

s′∈S P(s, α)(s′) = 1 for all (s, α) ∈ S×Act
and a labeling function L : S → 2AP for a set of atomic propositions AP .

A function r : S → R≥0 is used to add rewards to an MDP. A path of R is a

finite or infinite sequence π = s0α0s1α1 . . . such that si ∈ S, αi ∈ Act , s0 = sI , and

P(si, αi)(si+1) > 0 for all i ≥ 0. The i-th state si of π is denoted π(i). The set of

all paths of R is denoted by PathsR. PathsR(s) is the set of paths starting in s and

PathsR(s, s′) is the set of all finite paths starting in s and ending in s′. This is also

lifted to sets of states. We sometimes omit superscript R in PathsR.

MDPs operate by a non–deterministic choice of an action α ∈ Act that is enabled

at state s and a subsequent probabilistic determination of a successor state according

to P(s, α). For resolving the non–deterministic choices, so–called schedulers are

used. Here, deterministic and memoryless schedulers suffice which are functions

S : S → Act . Let SchedR denote the class of all such schedulers for R.

For MDP R, the fully probabilistic system SR induced by a scheduler S ∈
SchedR is called the induced Markov Chain (MC) on which a probability measure

over paths is defined. The measure PrR for MC R is given by PrR : PathsR →
[0, 1] ⊆ R with PrR(π̂) =

∏n−1
i=0 P(si, si+1), for a finite path π̂ = s0 . . . sn. This is

9
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lifted to infinite paths using the standard cylinder set construction, see [2, Ch. 10].

The cumulated reward of a finite path π̂ = s0 . . . sn is given by r(π̂) =
∑n−1

i=0 r(si).

Note that in our special setting the cumulated reward will not be infinite.

We consider reachability properties ♦T for a set of target states T ⊆ S where

♦T also denotes all paths that reach T from the initial state sI . Analogously, the

set ¬♦T contains all paths that never reach a state in T .

First, consider reward objectives for MCs. The expected reward for a count-

able set of paths ♦T is given by ExpRewR (♦T ) =
∑

π̂∈♦T PrR(π̂) · r(π̂). For a

reward bounded by one, the notion of the liberal expected reward also takes the

mere probability of not reaching the target states into account: LExpRewR (♦T ) =

ExpRewR (♦T ) + PrR(¬♦T ). To exclude the probability of paths that reach “un-

desired” states, we let U = {s ∈ S |  ∈ L(s)} and define the conditional expected

reward for the condition ¬♦U by 4

CExpRewR (♦T | ¬♦U) ,
ExpRewR (♦T ∩ ¬♦U)

PrR(¬♦U)
.

Reward objectives for MDPs are now defined using a demonic scheduler S ∈ SchedR

minimizing probabilities and expected rewards for the induced MC SR. For the ex-

pected reward this yields ExpRewR (♦T ) = infS∈SchedR ExpRew
SR (♦T ). For con-

ditional expected reward properties, the value of the quotient is minimized:

CExpRewR (♦T | ¬♦U) , inf
S∈SchedR

ExpRew
SR (♦T ∩ ¬♦U)

Pr
SR(¬♦U)

.

The liberal reward notions for MDPs are analogous. Regarding the quotient min-

imization we assume “0
0 < 0” as we see 0

0—being undefined—to be less favorable

than 0. For details about conditional probabilities and expected rewards see [3].

〈init〉 X

〈 〉

〈sink 〉

diverge

X
X X

XX

The structure of the operational

MDP of a cpGCL program is depicted

on the right. Terminating runs even-

tually end up in the 〈sink 〉 state;

other runs are diverging (never reach

〈sink 〉). A program terminates either

successfully, i.e. a run passes a X–

labelled state, or terminates due to a

violation of an observation, i.e. a run passes 〈 〉. Squiggly arrows indicate reaching

certain states via possibly multiple paths and states; the clouds indicate that there

might be several states of the particular kind. The X–labelled states are the only

ones with positive reward. Note that the sets of paths that eventually reach 〈 〉, or

X, or diverge are pairwise disjoint.

Definition 4.2 [Operational cpGCL semantics] The operational semantics of P ∈
cpGCL for σ ∈ S and f ∈ E is the MDP Rf

σJP K = (S, 〈P, σ〉, Act , P, L, r), such

that S is the smallest set of states with 〈 〉 ∈ S, 〈sink 〉 ∈ S, and 〈Q, τ〉, 〈↓, τ〉 ∈ S

4 Note that strictly formal one would have to define the intersection of sets of finite and possibly infinite
paths by means of a cylinder set construction considering all infinite extensions of finite paths.

10



Gretz, Jansen, Kaminski, Katoen, McIver, Olmedo

for Q ∈ pGCL and τ ∈ S. 〈P, σ〉 ∈ S is the initial state. Act = {left , right} is the set

of actions. A state of the form 〈↓, τ〉 denotes a terminal state in which no program

is left to be executed. P is formed according to SOS rules given in [12, p. 5].

For some τ ∈ S, the labelling and the reward function is given by:

L(s) ,


{X}, if s = 〈↓, τ〉
{sink }, if s = 〈sink 〉
{ }, if s = 〈 〉
∅, otherwise,

r(s) ,

{
f(τ), if s = 〈↓, τ〉
0, otherwise .

To determine the conditional expected outcome of program P given that all ob-

servations are true, we need to determine the expected reward to reach 〈sink 〉 from

the initial state conditioned on not reaching 〈 〉 under a demonic scheduler. For

Rf
σJP K this is given by CExpRewRfσJP K (♦sink | ¬♦ ). Recall for the condition ¬♦ 

that all paths not eventually reaching 〈 〉 either diverge (thus collect reward 0) or

pass by a X–labelled state and eventually reach 〈sink 〉. This gives us:

CExpRewRfσJP K (♦sink | ¬♦ ) = inf
S∈SchedR

f
σJP K

ExpRew
S
RfσJP K (♦sink ∩ ¬♦ )

Pr
S
RfσJP K(¬♦ )

= inf
S∈SchedR

f
σJP K

ExpRew
S
RfσJP K (♦sink )

Pr
S
RfσJP K(¬♦ )

.

The liberal version CLExpRewR
f
σJP K (♦sink | ¬♦ ) is defined analogously.

Example 4.3 Consider the program P ∈ cpGCL:

{{x := 5}2 {x := 2}} [q] {x := 2}; observe (x>3)

where with parametrized probability q a non–deterministic choice between x being

assigned 2 or 5 is executed, and with probability 1−q, x is directly assigned 2. Let

for readability P1 = {x := 5}2 {x := 2}, P2 = x := 2, P3 = observe (x>3),

and P4 = x := 5. The operational MDP Rx
σI
JP K for an arbitrary initial variable

valuation σI and post–expectation x is depicted below:

〈P, σI〉

〈P1; P3, σI〉 〈P2; P3, σI〉〈P4; P3, σI〉

〈↓; P3, σI [x/2]〉〈↓; P3, σI [x/5]〉

〈P3, σI [x/2]〉

〈P3, σI [x/5]〉

〈↓, σI [x/5]〉5

〈 〉〈sink 〉

q 1− q

left right

11
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The only state with positive reward is s′ := 〈↓, σI [x/5]〉 and its reward is indicated

by number 5. Assume first a scheduler choosing action left in state 〈P1; P3, σI〉.
In the induced MC the only path accumulating positive reward is the path π going

from 〈P, σI〉 via s′ to 〈sink 〉 with r(π) = 5 and Pr(π) = q. This gives an expected

reward of 5 ·q. The overall probability of not reaching 〈 〉 is also q. The conditional

expected reward of eventually reaching 〈sink 〉 given that 〈 〉 is not reached is hence
5·q
q = 5. Assume now the demonic scheduler choosing right at state 〈P1; P3, σI〉.

In this case there is no path having positive accumulated reward in the induced

MC, yielding an expected reward of 0. The probability of not reaching 〈 〉 is also 0.

The conditional expected reward in this case is undefined (0/0) and thus the right

branch is preferred over the left branch. In general, the operational MDP need not

be finite, even if the program terminates almost–surely (i.e. with probability 1).

We now investigate the connection to the denotational semantics of Section 3,

starting with some auxiliary results. First, we establish a relation between (liberal)

expected rewards and weakest (liberal) pre–expectations.

Lemma 4.4 For any fully probabilistic P ∈ cpGCL, f ∈ E, g ∈ E≤1, and σ ∈ S:

ExpRewR
f
σJP K (♦〈sink 〉) = wp[P ](f)(σ) (i)

LExpRewR
g
σJP K (♦〈sink 〉) = wlp[P ](g)(σ) (ii)

Moreover, the probability of never reaching 〈 〉 in the MC of program P coincides

with the weakest liberal pre–expectation of P w.r.t. post–expectation 1:

Lemma 4.5 For any fully probabilistic P ∈ cpGCL, g ∈ E≤1, and σ ∈ S we have

PrR
g
σJP K(¬♦ ) = wlp[P ](1)(σ).

We now have all prerequisites in order to present the main result of this section:

the correspondence between the operational and expectation transformer seman-

tics of fully probabilistic cpGCL programs. It turns out that the weakest (liberal)

pre–expectation cwlp[P ](f)(σ) (resp. cwlp[P ](f)(σ)) coincides with the conditional

(liberal) expected reward in the RMC RfσJP K of terminating while never violating

an observe–statement, i.e., avoiding the 〈 〉 states.

Theorem 4.6 (Correspondence theorem) For any fully probabilistic P ∈
cpGCL, f ∈ E, g ∈ E≤1 and σ ∈ S,

CExpRewR
f
σJP K (♦sink | ¬♦ ) = cwp[P ](f)(σ)

CLExpRewR
g
σJP K (♦sink | ¬♦ ) = cwlp[P ](g)(σ) .

Proof. The proof makes use of Lemmas 4.4, 4.5, and Lemma 3.2 which

are themselves proven by induction on the structure of P . For details

see [12, p. 13-14, 16-21]. 2

5 Program Transformation

In this section we present a program transformation for removing observations from

fully probabilistic cpGCL programs and use the expectation transformer semantics

12
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T (skip, f) = (skip, f)

T (abort, f) = (abort,1)

T (x := E, f) = (x := E, f [E/x])

T (observe (G), f) = (skip, χG · f)

T (ite (G) {P} {Q}, f) = (ite (G) {P ′} {Q′}, χG · fP + χ¬G · fQ) where

(P ′, fP ) = T (P, f), (Q′, fQ) = T (Q, f)

T ({P} [p] {Q}, f) = ({P ′} [p′] {Q′}, p · fP + (1−p) · fQ) where

(P ′, fP ) = T (P, f), (Q′, fQ) = T (Q, f), p′ = p·fP
p·fP+(1−p)·fQ

T (while (G) {P}, f) = (while (G) {P ′}, f ′) where

f ′ = νX• (χG · (π2 ◦ T )(P,X) + χ¬G · f) , (P ′, ) = T (P, f ′)

T (P ;Q, f) = (P ′;Q′, f ′′) where (Q′, f ′) = T (Q, f), (P ′, f ′′) = T (P, f ′)

Fig. 2. Program transformation for eliminating observe statements in fully probabilistic cpGCL programs.

from Section 3 to prove the transformation correct. Intuitively, the presented pro-

gram transformation “hoists” the observe statements while updating the probabili-

ties of the probabilistic choices. Given a fully probabilistic program P ∈ cpGCL, the

transformation delivers a semantically equivalent observe–free program P̂ ∈ pGCL
and—as a side product—an expectation ĥ ∈ E≤1 that captures the probability that

the original program establishes all observe statements. For an intuition, reconsider

the program from Example 3.1. The transformation yields program

{x := 0} [8/13] {x := 1}; ite (x=1) {{y := 0} [1] {y := 2}}{{y := 0} [1] {y := 3}}

and expectation ĥ = 13
20

. By eliminating dead code in both probabilistic choices

and coalescing the branches in the conditional, we can simplify the program to

{x := 0} [8/13] {x := 1}; y := 0

As a sanity check note that the expected value of 10+x in this program is equal

to 10 · 8
13 + 11 · 5

13 = 135
13 , which agrees with the result obtained by analyzing the

original program. Formally, the program transformation is given by a function

T : cpGCL× E≤1 → pGCL× E≤1 .

To apply the transformation to a program P we need to determine T (P,1), which

gives the semantically equivalent program P̂ and the expectation ĥ.

The transformation is defined in Figure 2 and works by inductively comput-

ing the weakest pre–expectation that guarantees the establishment of all observe–

statements and updating the probability parameter of probabilistic choices so that

the pre–expectations of their branches are established in accordance with the origi-

nal probability parameter. The computation of these pre–expectations is performed

following the same rules as the wlp operator. The correctness of the transforma-

tion is established by the following Theorem, which states that a program and its

transformed version share the same terminating and non–terminating behavior.

Theorem 5.1 (Program Transformation Correctness) Let P be a fully prob-

abilistic cpGCL program that admits at least one valid run for every initial state

and let T (P,1) = (P̂ , ĥ). Then for any f ∈ E and g ∈ E≤1, we have wp[P̂ ](f) =

cwp[P ](f) and wlp[P̂ ](g) = cwlp[P ](g).

13
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Proof. See [12, p. 21]. 2

A similar program transformation has been given by Nori et al. [22]. Whereas

they use random assignments to introduce randomization in their programming

model, we use probabilistic choices. Consequently, they can hoist observe–

statements only until the occurrence of a random assignment, while we are able to

hoist observe–statements over probabilistic choices and completely remove them

from programs. Another difference is that the semantics of Nori et al. only ac-

counts for terminating program behaviors and thus they can guarantee the correct-

ness of the program transformation for almost–surely terminating programs only.

Our semantics is more expressive and enables establishing the correctness for non–

terminating program behavior, too.

6 Denotational Semantics for Full cpGCL

In this section we argue why (under mild assumptions) it is not possible to provide

a denotational semantics in the style of conditional pre–expectation transformers

(CPETs for short) for full cpGCL, i.e. including non–determinism. To show this, it

suffices to consider a simple fragment of cpGCL containing only assignments, ob-

servations, probabilistic and non–deterministic choices. Let x be the only program

variable that can be written or read in this fragment. We denote this fragment

by cpGCL−. Assume D is some appropriate domain for representing conditional

expectations of the program variable x with respect to some fixed initial state σ0

and let J · K : D → R∪{⊥} be an interpretation function such that for any d ∈ D we

have that JdK is equal to the (possibly undefined) conditional expected value of x.

Definition 6.1 [Inductive CPETs] A CPET is a function cwp∗ : cpGCL− → D

such that for any P ∈ cpGCL−, Jcwp[P ]K = CExpRewRxσ0JP K (♦ sink | ¬♦ ). cwp∗

is called inductive, if there exist two functions K : cpGCL− × [0, 1] × cpGCL− →
D and N : cpGCL− × cpGCL− → D, such that for any P1, P2 ∈ cpGCL− we

have cwp∗[{P1} [p] {P2}] = K(cwp∗[P1], p, cwp∗[P2]) and cwp∗[{P1}2 {P2}] =

N (cwp∗[P1], cwp∗[P2]), where ∀d1, d2 ∈ D• N (d1, d2) ∈ {d1, d2}.

This definition suggests that the conditional pre–expectation of {P1} [p] {P2} is de-

termined only by the conditional pre–expectation of P1 and P2, and the probability

p. Furthermore the above definition suggests that the conditional pre–expectation

of {P1}2 {P2} is also determined by the conditional pre–expectation of P1 and P2

only. Consequently, the non–deterministic choice can be resolved by replacing it ei-

ther by P1 or P2. While this might seem like a strong limitation, the above definition

is compatible with the interpretation of non–deterministic choice as demonic choice:

The choice is deterministically driven towards the worst option. The requirement

N(d1, d2) ∈ {d1, d2} is also necessary for interpreting non–deterministic choice as

an abstraction where implementation details are not important.

As we assume a fixed initial state and a fixed post–expectation, the non–

deterministic choice turns out to be deterministic once the pre–expectations of P1

and P2 are known. Under the above assumptions (which do apply to the wp and

wlp transformers) we claim:

14
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Theorem 6.2 There exists no inductive CPET.

〈P 〉

〈P1〉
1

〈P5〉

〈P2〉
2

〈P4〉

 〈P3〉
2.2

1
2

1
2

left right

1
2

1
2

Fig. 3: Schematic depiction of the

RMDP Rx
σ0JP K

Proof Sketch (for details, see [12, p. 11]).

By contradiction: Consider the program P =

{P1} [1/2] {P5} with

P1 : x := 1

P5 : {P2}2 {P4}

P2 : x := 2

P4 : {observe false} [1/2] {P3}

P3 : x := 2.2

A schematic depiction of the Rx
σ0JP K is given

in Figure 3. Assume there exists an inductive

CPET cwp∗ over some appropriate domain D. With the program given above, one

can get to the contradiction Jcwp∗[P5]K = Jcwp∗[P4]K > Jcwp∗[P2]K = Jcwp∗[P5]K. 2

As an immediate corollary of Theorem 6.2 we obtain the following result:

Corollary 6.3 We cannot extend the cwp or cwlp rules in Figure 1 for non–

deterministic programs such that Theorem 4.6 extends to full cpGCL.

This result is related to Varacca and Winskel’s work [27], who have already noticed

the difficulties that arise when trying to integrate non–determinism and probabili-

ties, even in the absence of conditioning. When conditioning is taken into account,

Andrés and van Rossum [1] have also observed that positional schedulers—i.e. the

kind of schedulers implicitly considered in the expectation transformer semantics—

are not sufficient for minimizing probabilities. In contrast to our work, their devel-

opment is done in the context of temporal logics.

7 Conclusion and Future Work

This paper presented an extensive treatment of semantic issues in probabilistic pro-

grams with conditioning. Major contributions are the treatment of non–terminating

programs (both operationally and for weakest liberal pre–expectations), our results

on combining non–determinism with conditioning, as well as the presented program

transformation. We firmly believe that a thorough understanding of these seman-

tic issues provides a main cornerstone for enabling automated analysis techniques

such as loop invariant synthesis [5,18], program analysis [6] and model checking [3]

to the class of probabilistic programs with conditioning. Future work consists of

investigating conditional invariants and a further investigation of non–determinism

in combination with conditioning.
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Abstract. Prinsys (pronounced “princess”) is a new software-tool for
probabilistic invariant synthesis. In this paper we discuss its implemen-
tation and improvements of the methodology which was set out in previ-
ous work. In particular we have substantially simplified the method and
generalised it to non-linear programs and invariants. Prinsys follows
a constraint-based approach. A given parameterised loop annotation is
speculatively placed in the program. The tool returns a formula that
captures precisely the invariant instances of the given candidate. Our
approach is sound and complete. Prinsys’s applicability is evaluated on
several examples. We believe the tool contributes to the successful ana-
lysis of sequential probabilistic programs with infinite-domain variables
and parameters.

Keywords: invariant generation, probabilistic programs, non-linear con-
straint solving

1 Introduction

Motivation. Probabilistic programs are pivotal in different application fields like
security, privacy [2]—several probabilistic protocols (e.g. onion-routing) aim to
ensure privacy, and there is an increasing interest in the topic, partly driven by
the social-media world—and cryptography [1] as well as quantum computing [13].
Such programs are single threaded and typically consist of a small number of
code lines, but are hard to understand and analyse. The two major reasons
for their complexity are the occurrence of program variables with unbounded
domains, and parameters. Such parameters can be either loop bounds, number
of participants (in a protocol), or probabilistic choices where the parameters
range over concrete probabilities. For example, the following simple program
generates a sample x according to a geometric distribution with parameter p.
In every loop iteration, the variable x is increased by one with probability 1−p
? This work is partially funded by the DFG Research Training Group Algosyn, the

EU FP7 Project CARP (Correct and Efficient Accelerator Programming), and the
EU MEALS exchange project with Latin America.
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Listing 1. x ∼ geom(p)

x := 0 ;
f l i p := 0 ;
while ( f l i p = 0) {

( f l i p := 1 [ p ] x := x+1 ) ;
}

and flip is set to one with probability p, where p is an unknown real value from
the range (0, 1). The occurrence of unbounded variables and parameters comes
at a price, namely that probabilistic programs in general cannot be analysed
automatically by model-checking tools such as Prism [10], Param [6], Pass [5]
or Apex [9].

Approach. Instead we resort to deductive techniques. Recall that one of the
main approaches to the verification of sequential programs rests on the pioneer-
ing work of Floyd, Hoare, and Dijkstra in which annotations are associated with
control points in the program. Whereas the annotations for sequential programs
are qualitative and can be expressed in predicate logic, quantitative annotations
are needed to reason about probabilistic program correctness. McIver and Mor-
gan [11] have extended the method of Floyd, Hoare, and Dijkstra to probabilistic
programs by making the annotations real- rather than Boolean-valued expres-
sions in the program variables. Using these methods we can prove that in the
above program the average value of x is 1−p

p . Annotating a probabilistic pro-
gram with such expressions is non-trivial and undecidable in general. The main
reason is the occurrence of loops. This all boils down to the question on how to
establish a loop invariant. It is known that this is a notorious hard problem for
traditional programs. For probabilistic programs it is even more difficult as loop
invariants are quantitative—so-called probabilistic loop invariants. Variables do
no longer have a value, but have a certain value with a given likelihood. Finding
an invariant is hard and requires both ingenuity as well as involved computations
to check that a given expression is indeed invariant. Recently, Katoen et al. [7]
have proposed a technique for finding linear invariants for linear probabilistic
programs. Linearity refers to the fact that right-hand sides of assignments and
guards are linear expressions in the program variables (and parameters). This
technique is based on speculatively annotating a loop with a template (in fact a
linear inequality) and using constraint solving techniques to distill all parameters
for which the template is indeed a loop invariant.

Contributions of this paper. The contributions of this paper are manifold. First
and foremost, this paper presents Prinsys (pronounce “princess”), a novel
tool for supporting the semi-automated generation of probabilistic invariants
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of pGCL3 programs. This publicly available tool implements the technique ad-
vocated in [7], i.e., automatically computes the constraints under which a user-
provided template is invariant, saving the user from tedious and error prone
calculations. To the best of our knowledge, it is the first tool for synthesizing
probabilistic invariants. Secondly, we show that the theory in [7] can be con-
siderably simplified. In particular, we show that the usage of Motzkin’s trans-
position theorem (a generalisation of Farkas’ lemma) to turn an existentially
quantified formula into a universally quantified one, is not needed. As a result,
Prinsys allows arbitrary formulas in templates and program guards. This al-
lows for polynomial invariant templates and non-linear program expressions. So,
an immediate consequence of this simplification is that the restriction to linear
programs and linear invariants can be dropped. This is more of theoretical in-
terest than of practical interest, as polynomial invariants—as for the traditional,
non-probabilistic setting—are hard to synthesize in practice. Finally, we present
some applications of the tool such as proving the equivalence of two programs
computing a sample from X−Y where X and Y are both geometrically dis-
tributed, and the generation of a fair coin from a biased one. We evaluate the
experiments and give directions for future research.

Organization of the paper. Section 2 provides the preliminaries such as pGCL,
probabilistic invariants, and expectations. Section 3 presents the steps of our
approach and the simplification of [7]. Section 4 provides three examples to
give insight about what Prinsys can establish. Section 5 evaluates the tool and
approach, whereas Sect. 6 concludes the paper and provides pointers to future
work.

2 Background

When probabilistic programs are executed they determine a probability distri-
bution over final values of program variables. For instance, on termination of

(x := 1 [0.75] x := 2);

the final value of x is 1 with probability 3
4 or 2 with probability 1 − 3

4 = 1
4 .

An alternative way to characterise that probabilistic behaviour is to consider
the expected values over random variables with respect to that distribution.
For example, to determine the probability that x is set to 1, we can compute
the expected value of the random variable “x is 1” which is 3

4 · 1 + 1
4 · 0 = 3

4 .
Similarly, to determine the average value of x, we compute the expected value
of the random variable “x” which is 3

4 · 1 + 1
4 · 2 = 5

4 . More generally, rather
than a distribution-centred approach, we take an “expectation transformer” [11]
approach. We annotate probabilistic programs with expectations.

3 pGCL extends Dijkstra’s guarded command language with a probabilistic choice
operator.
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Expectations. Expectations map program states to non-negative real values.
They generalise Hoare’s predicates for non-probabilistic programs towards real-
valued functions. Intuitively, implication between predicates is generalised to
pointwise inequality between expectations. For convenience we use square brack-
ets to link Boolean truth values to numbers and by convention [true] = 1 and
[false] = 0. In the example above, we call “x” the post-expectation and 5

4 its
pre-expectation. Thus the annotated program is 〈 54 〉 (x := 1 [0.75] x := 2); 〈x〉.

The formal mechanism for computing pre-expectations for a given program
and post-expectation is the expectation transformer semantics [11]. Expecta-
tion transformers are the quantitative pendant to Dijkstra’s predicate trans-
formers. McIver and Morgan extend Dijkstra’s concept and introduce a func-
tion wp(prog,post) which based on the program prog determines the greatest
pre-expectation for any given post-expectation post. A summary of pGCL’s ex-
pectation transformer semantics is given in Table 1 where f is a given post-
expectation. From an operational perspective, pGCL programs can be viewed
as (infinite state) MDPs with a reward structure induced by the given post-
expectation f . Then the greatest pre-expectation can be computed as the ex-
pected cummulative reward on that model [4].

syntax prog semantics wp(prog,f)

skip f

abort 0

x := E f [x/E]

P ; Q wp(P,wp(Q, f))

if (G) { P } else { Q } [G] · wp(P, f) + [¬G] · wp(Q, f)

P [] Q min{wp(P, f),wp(Q, f)}

P [p] Q p · wp(P, f) + (1− p) · wp(Q, f)

while (G) { P } µX.([G] · wp(P,X) + [¬G] · f)

Table 1. Syntax and expectation transformer semantics of pGCL

For loop-free programs, the pre-expectation is simply given by syntactic rules.
However, loops pose a problem because their expectation over final values is given
in terms of a least fixed point (over the domain of expectations with the ordering
≤, a pointwise ordering on expectations).

Invariants. Using special expectations which we call invariants we can avoid
the calculation of a loop’s fixed point. Assume we are given two expectations pre
and post and we want to show that pre is a lower bound on the loop’s actual
pre-expectation, i.e.

pre ≤ wp(while(G){body}, post) .
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Instead of computing the greatest pre-expectation wp(while(G){body}, post) di-
rectly, it is more practical to divide this problem into simpler subtasks:

1. find an expectation I such that

pre ≤ I and I · [¬G] ≤ post ,

2. show I is invariant4, that is I · [G] ≤ wlp(body, I)
3. show I is sound, that is I ≤ wp(while(G){body}, I · [¬G])

Points 2. and 3. may seem odd as they resemble the original problem of proving
an inequality between an expectation and the greatest pre-expectation of a loop.
However they are easier than the original problem, because in 2. the greatest pre-
expectation can be explicitly computed because body is a loop-free program. In
order to guarantee soundness (point 3.) the loop must terminate with probability
one and the invariant I has to additionally meet one of the following sufficient
conditions [11]:

– from every initial state of the loop only a finite state space is reachable
– or I is bounded above by some fixed constant
– or wp(body, I · [G]) tends to zero as the number of iterations tends to infinity.

Remark 1. It is an open problem to give the necessary and sufficient conditions
for soundness.

Put all together this proves the inequality above as

pre ≤ I ≤ wp(while(G){body}, I · [¬G]) ≤5 wp(while(G){body}, post) .

Example 1 (Application of invariants.). Consider the program prog in Lst. 2.
On each iteration of the loop it sets x to −1 with probability 0.15, to 0 with
probability 0.5 and to 1 with probability 0.35. We would like to prove that the
probability to terminate in a state where x = 1 is 0.7 or equivalently

wp(prog, [x = 1]) = 0.7 .

Instead of computing the least fixed point of the loop wrt. post-expectation
[x = 1], we can show that I = [x = 0] · 0.7 + [x = 1] is invariant. If the loop
terminates, we can establish:

[¬G] · I = [x 6= 0] · [x = 0] · 0.7 + [x = 1]

= [x = 1] .

4 wlp is the “liberal” version of wp. Both expectation transformers coincide for almost
surely terminating programs. Since in this paper we do not consider nested loops,
i.e. body is loop-free (and hence surely terminates), we do not discuss the theoretical
differences between wp and wlp here.

5 wp is monotonic in its second argument [11].
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Listing 2. A simple loop

x := 0 ;
while ( x=0) {

( x := 0 ; ) [ 0 . 5 ] { ( x := −1 [ 0 . 3 ] x := 1 ) ; }
}

At the beginning of the program the initialisation of x transforms the invariant
to:

wp(x := 0, I) = [0 = 0] · 0.7 + [0 = 1]

= 0.7 .

In this way we obtain the annotation

〈0.7〉 x := 0; 〈I〉 while(x = 0){. . .} 〈[x 6= 0] · [I] = [x = 1]〉

as desired. It is sound because the program obviously terminates with probability
one and I is bounded.

The crucial point in determining a pre-expectation of a program is to discover
the necessary loop invariants for each loop. Checking soundness and carrying out
subsequent calculations for the other program constructs turns out be easy in
practice. In the following section we explain our approach to finding invariants
step by step.

3 Our Approach

To explain the steps carried out by Prinsys we revisit the geometric distribution
program from Lst. 1. In the next section, we will view it in a broader context.

Template. Consider the loop:

while (flip = 0){ ( flip := 1 [p] x := x+1); }

and an expectation

Tα = [x ≥ 0] · x+ [x ≥ 0 ∧ flip = 0] · α

where α is an unknown (real) parameter. We call Tα a template. Replacing α by
a real value yields an instance of the template. Depending on this value, some
instances may satisfy the invariance condition Tα · [G] ≤ wlp(body, Tα).

Goal. Prinsys gives a characterisation of all invariant instances of a given
template. This characterisation is a formula which is true for all admissible values
of the template parameters, α in our example. It is important to stress that this
method is complete in the sense that for any given template the resulting formula
captures precisely the invariant instances.
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Workflow. Stage 1: After parsing the program text and template, Prinsys
traverses the generated control flow graph of the program and computes:

wp(flip := 1 [p] x := x+1, Tα)

= [x ≥ 0] · px+ (1− p) · ([x+ 1 ≥ 0] · (x+ 1) + [x+ 1 ≥ 0 ∧ flip = 0] · α) .

For details, cf. Table 1. After expanding this expression, the invariance condition
amounts to:

Tα·[G]︷ ︸︸ ︷
[x ≥ 0 ∧ flip = 0] · (x+ α) ≤ [x ≥ 0] · px

+ [x+ 1 ≥ 0] · ((1− p)x− p+ 1)

+[x+ 1 ≥ 0 ∧ flip = 0] · (1− p)α︸ ︷︷ ︸
wlp(body,Tα)

.

Our goal is to find all α such that the point-wise inequality is satisfied, i.e. it
holds for every x and every flip. This can be done by pairwise comparison of the
summands on the left-hand side and the right-hand side. But summands may
overlap. This makes it necessary to rewrite the expectations in disjoint normal
form (DNF).

Theorem 1 (Transformation to DNF [7]). Given an expectation of the form

f = [P1] · w1 + . . .+ [Pn] · wn.

Then an equivalent expectation in DNF can be written as:

∑
I∈P(n)\∅

∧
i∈I

Pi ∧ ¬

 ∧
j∈P(n)\I

Pj

 ·(∑
i∈I

wi

)
where n is the index set {1, . . . , n} and P(·) denotes the power set.

The left-hand side of the inequality for the example program above is already
in DNF as there is only one summand. We apply the transformation to the right-
hand side expression. The result is an expectation with 15 summands. For better
readability we only show the summands that are not trivially zero:

[x+ 1 ≥ 0 ∧ x < 0 ∧ flip = 0)] · ((1− p)x+ (1− p)α− p+ 1)

+[x ≥ 0 ∧ flip = 0)] · (x+ (1− p)α− p+ 1)

+[x+ 1 ≥ 0 ∧ x < 0 ∧ flip 6= 0] · ((1− p)x− p+ 1)

+[x ≥ 0 ∧ flip 6= 0] · (x− p+ 1) .

The following theorem provides a straightforward encoding of the inequality as
a first-order formula.
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Theorem 2. Given two expectations over variables x1, . . . , xn in disjoint-normal
form

f = [P1] · u1 + . . .+ [PM ] · uM , g = [Q1] · w1 + . . .+ [QK ] · wK .

The inequality f ≤ g holds if and only if

∀x1, . . . , xn ∈ R :
∧
m∈M

∧
k∈K

(Pm ∧Qk ⇒ (um − wk ≤ 0))

∧
∧
m∈M

Pm ∧
∧
k∈K

¬Qk

⇒ um ≤ 0


∧
∧
k∈K

Qk ∧
 ∧
m∈M

¬Pm

⇒ 0 ≤ wk


holds, where X is the set of indices {1, 2, . . . , X}.

The idea is that we consider individual summands on the left-hand and right-
hand side of the inequality and compare their values. It may also be the case that
for some evaluations, all predicates on the right-hand side are false and hence
the expectation is zero (i.e., the zero function). Then it must be ensured that no
summand is greater than zero on the left-hand side. Conversely, if none of the
predicates on the left-hand side are satisfied, the summands on the right-hand
side may be no less than zero.

Theorem 2 originally appears in [7] where the last case is omitted because
expectations are assumed to be non-negative by definition. However it is crucial
to encode such informal assumptions in the formula as the tools are not aware of
such expectation properties and instead treat them as usual functions over real
values. This issue remained undiscovered until its implementation in Prinsys
caused incorrect results. The lesson learned is that bridging the gap between an
idea and a working implementation requires more than “just” coding.

Continuing our example, the (simplified) first-order formula obtained is:

∀x,flip :(αp+ p− 1 ≤ 0 ∨ flip 6= 0 ∨ x < 0)

∧ (αp− α+ px+ p− x− 1 ≤ 0 ∨ flip 6= 0 ∨ x+ 1 < 0 ∨ x ≥ 0)

∧ (flip = 0 ∨ px+ p− x− 1 ≤ 0 ∨ x+ 1 < 0 ∨ x ≥ 0)

∧ (flip = 0 ∨ p− x− 1 ≤ 0 ∨ x < 0) .

The calculation of this formula by Prinsys concludes the first stage.
Stage 2: The formula is passed to Redlog which simplifies the formula by

quantifier elimination. Sometimes the result returned by Redlog still contains
redundant information and can be further reduced by its built-in simplifiers or
by the Slfq tool. In the end the user is presented a formula that characterises
all αs that make Tα invariant:

αp+ p− 1 ≥ 0 .
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Listing 3. Annotated program from Lst. 1

〈 1−p
p
〉

x := 0 ;
f l i p := 0 ;

〈[x ≥ 0] · x+ [x ≥ 0 ∧ flip = 0] · 1−p
p
〉

while ( f l i p = 0) {
( f l i p := 1 [ p ] x := x+1 ) ;

}
〈x〉

We pick the greatest admissible α and obtain an invariant:

T 1−p
p

= [x ≥ 0] · x+ [x ≥ 0 ∧ flip = 0] · 1− p
p

.

This can be used to prove that the program in Lst. 1 has an average outcome of
1−p
p which indeed is the mean of a geometric distribution with parameter p. The

annotated program now looks as follows: The soundness of our invariant is given
because there is always a non-zero probability to exit the loop, cf. definition of
invariants above.

Figure 1 pictures the described workflow of Prinsys.

Parsing
Numerical
constraints
generation

Transformation
to disjoint
normal form

Translation to
FO-formulae

Quantifier
elimination

Redlog

Simplification

Slfq, Redlog

template

program

invariant

Stage 1

Stage 2

Fig. 1. Tool chain workflow

New insights. There are major differences with the approach sketched in [7].
In Prinsys we skip the additional step of translating the universally quantified
formula into an existential one using the Motzkin’s transposition theorem. This
step turns out to be not necessary. In fact it complicates matters as the exis-
tential formula will have more quantified variables which is bad for quantifier
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Listing 4.

c := IC ; // c a p i t a l c ( i s s e t to some I n i t i a l C a p i t a l )
b := 1 ; // i n i t i a l l y b e t one u n i t
rounds := 0 ; //number o f rounds p layed ( s u r v i v e d )
while (b > 0){

{// win wi th p r o b a b i l i t y p
c := c+b ;
b := 0 ;}

[ p ]
{// l o s e wi th p r o b a b i l i t y 1−p

c := c−b ;
b := 2∗b ;}

rounds := rounds +1;
}

elimination. Furthermore, Motzkin’s transposition theorem requires the univer-
sally quantified formula to be in a particular shape. Our implementation however
does not have these restrictions and allows arbitrary predicates in the program’s
guards and in templates. Also the template and program do not have to be linear
(theoretically at least) because Redlog and Slfq can work with polynomials.
Moreover the invariant generation method remains complete in this case. This
is because starting with the invariance condition all subsequent steps to obtain
the simplified first-order formula are equivalence transformations.

This section has not only illustrated how the tool-chain works but also clearly
shows the great amount of calculations that are done automatically for the user.
Within seconds the user may try out different templates and play with the
parameters until an invariant is found. The Prinsys tool saves the user a lot
of tedious, error-prone work and pushes forward the automation of probabilistic
program analysis.

4 Applications

This section presents three examples, for simplicity all based on our running
example of the geometric distribution, that illustrate the possibilities of the
Prinsys approach. Let us start with a relatively simple example.

Martingale betting strategy. Another variant of the geometric distribution
appears in the following program, which models a gambler with infinite resources
who is playing according to the martingale strategy. Note that this program has
two unbounded variables. Using the same template as before, we discover that 1

p
is the expected number of rounds played before the gambler stops. The expecta-
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Listing 5.

x := 0 ;
f l i p := 0 ;
while ( f l i p = 0) {

( x := x+1 [ p ] f l i p := 1 ) ;
}
f l i p := 0 ;
while ( f l i p = 0) {

( x := x−1 [ q ] f l i p := 1 ) ;
}

Listing 6.

x := 0 ;
( f l i p := 0 [ 0 . 5 ] f l i p := 1 ) ;
i f ( f l i p = 0) {

while ( f l i p = 0) {
( x := x+1 [ p ] f l i p := 1 ) ;

}
} else {

f l i p := 0 ;
while ( f l i p = 0) {

x := x−1;
( skip [ q ] f l i p := 1 ) ;

}
}

tion differs from what we have computed for the program in Lst. 1 because here
the counter is increased also on the last iteration before the loop terminates.

Geometric distribution. This example is taken from [8] where amongst oth-
ers it has been shown that the two programs in Lst. 5 and Lst. 6 are equivalent
for p = 1

2 and q = 2
3 . The proof in [8] relies on language equivalence check-

ing of probabilistic automata. Here, we show how the techniques supported by
Prinsys can be used to show that both programs are equivalent for any p and
q satisfying q = 1

2−p . Let us explain the example in more detail. The aim is to
generate a sample x according to the distribution X−Y where X is geometrically
distributed with parameter 1−p and Y is geometrically distributed with 1−q.

0

1

1p

q

Fig. 2. Pairs (p, q) for which the programs
in List. 5 and List. 6 produce the same x
on average.

Although it is not common to say that
a distribution has a parameter 1−p, it
is natural in the context of these pro-
grams where x is manipulated with
probability p and the loop is termi-
nated with the remaining probability.
The difference between the programs
in Lst. 5 and Lst. 6 is that the first
uses two loops in sequence whereas
the latter needs only one out of two
loops. Our goal is to determine when
the two programs are equivalent, in
the sense that they compute the same
value for x on average.

The Prinsys tool generates invariants for single loops, so we consider each
loop separately. Using the template Tα = [x ≥ 0] · x+ [x ≥ 0 ∧ flip = 0] · α from
our running example, Prinsys yields the following invariants:
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Listing 7. x is set to zero or one, each with probability 0.5

x := 0 ; // s t o r e s outcome o f f i r s t b i a s e d coin f l i p
y := 0 ; // s t o r e s outcome o f second b i a s e d coin f l i p

while (x−y = 0) {
( x := 0 [ p ] x := 1 ) ;
( y := 0 [ p ] y := 1 ) ;

}

– I11 = x+ [flip = 0] · p
1−p ,

– I12 = x+ [flip = 0] ·
(
− q

1−q

)
,

– I21 = I11 and

– I22 = x+ [flip = 0] ·
(
− 1

1−q

)
,

where Iij is the invariant of the j-th loop in program i, i, j ∈ {1, 2}. With
these invariants we can easily derive the expected value of x, which is p

1−p −
q

1−q
and p

2(1−p) −
1

2(1−q) for the program in List. 5 and List. 6, respectively. The two

programs thus are equivalent whenever these two expectations coincide; e. g. this
is the case for p = 1

2 and q = 2
3 as discussed in [8]. Figure 2 visualises our result:

for every point (p, q) on the graph the two programs are equivalent. This result
cannot be obtained using the techniques in [8]; to the best of our knowledge
there are no other automated techniques that can establish this.

Generating a fair coin from a biased coin. In [7], Hurd’s algorithm to
generate a sample according to a biased coin flip using only fair coin flips has
been analysed. Using Prinsys the calculations can be automated. This was
elaborated in [3]. Here we consider an algorithm for the opposite problem. Using
a coin with some arbitrary bias 0 < p < 1, the algorithm in Lst. 7 generates a
sample according to a fair coin flip. The loop terminates when the biased coin was
flipped twice and showed different outcomes. Obviously the program terminates
with probability one as on each iteration of the loop there is a constant positive
chance to terminate. The value of x is taken as the outcome. The two possible
outcomes are characterised by x = 0∧y = 1 and x = 1∧y = 0. We encode these
two possibilities in the template:

[x = 0 ∧ y − 1 = 0] · (α) + [x− 1 = 0 ∧ y = 0] · (β)

Prinsys returns one constraint:

αp2 − αp+ βp2 − βp ≤ 0

As before we look for the maximum value, hence we consider equality with zero.
The equation simplifies to α = −β because we know that 0 < p < 1. Hence
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[x = 0∧y−1 = 0]− [x−1 = 0∧y = 0] is invariant6 which, together with almost
sure termination, gives us

wp(prog, [x = 0 ∧ y − 1 = 0]− [x− 1 = 0 ∧ y = 0])

= wp(prog, [x = 0 ∧ y − 1 = 0])− wp(prog, [x− 1 = 0 ∧ y = 0])

= 0 . (1)

where prog is the entire program from Lst 7. The previous argument about
almost sure termination and possible outcomes shows that

wp(prog, [x = 0 ∧ y − 1 = 0] + [x− 1 = 0 ∧ y = 0])

= wp(prog, [x = 0 ∧ y − 1 = 0]) + wp(prog, [x− 1 = 0 ∧ y = 0])

= 1 . (2)

The unique solution to (1) and (2) is

wp(prog, [x = 0 ∧ y − 1 = 0])

= wp(prog, [x− 1 = 0 ∧ y = 0])

= 0.5 .

This concludes the proof that x is distributed evenly for any p satisfying 0 <
p < 1.

5 Evaluation

We have seen three pGCL programs that were variants of the geometric distri-
bution. Our approach allows us to exploit their common structure and enables
us to calculate the expectation of these programs using the same template al-
though they compute different (mean) values. Since our method does not rely
on numerical calculation we are able to parameterise the programs and provide
very general results. In particular we could decide when two programs have the
same expectation depending on their parametric distributions. Another handy
feature of reasoning with expectation-transformer wp is that we can exploit its
properties as well. For example, the reasoning is modular with respect to sequen-
tial composition. That means we can compute the pre-expectation for individual
loops and then add the results when we put the loops in sequence. The last ex-
ample demonstrates yet another use of invariants. Instead of deriving a bound
on the pre-expectation we have shown how an invariant may give constraints on
the pre-expectation. Together with termination these constraints produced the
sought pre-expectation. This exemplifies that invariants are not just a particular
way to compute an expectation but rather they describe the behaviour of the
program and can be used in different ways.

6 We pick α = 1 and β = −1 but in fact any non-zero pair of values α = −β would
result in the same argument.
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Together with the three (other) examples discussed in [4,7] we have a set of
interesting programs which we can analyse with the help of Prinsys. Note, that
our examples do not make use of the non-deterministic choice statement. This
is because the algorithms we focused on do not need it, however Prinsys also
supports non-deterministic pGCL programs. There is no commonly accepted
benchmark suite that we can compare against as this area of research has not
spawned many tools yet. We refrain from giving a table that shows for each
program the state space size, the number of discovered invariants or running
times. This is because the beauty of this approach is exactly that the number
of states does not matter. In fact all programs that generate (a variant) of the
geometric distribution have an infinite set of reachable states! The number of
discovered invariants cannot be really be given as, first of all the result depends
on the template provided and second we get a characterisation of all invariant
instances of a template. Since we reason over the reals there are uncountably
many.

The runtime of Prinsys depends on the size of the expressions that we have
to handle. This means that if we have many choices in the loop (i.e. there are
many paths in the control flow graph) this will blow up the size of wp(body, T ).
The same is true for templates that have many summands. Finally, the external
tools used by Prinsys affect the overall running time. Their execution time
cannot be predicted exactly but experience shows that the final simplification
step takes considerably longer the more parameters we allow in the template.
The overall runtime for the presented examples lies within a second on a laptop
computer.

Since there is no software that could be easily adapted to support our meth-
ods, Prinsys was developed from scratch. It was recently redesigned to be more
extensible and easier to maintain as we hope that future developments in the
area of constraint-based methods will use our work as a basis. From the user’s
point of view, the usability was substantially increased with the introduction of
a graphical user interface that allows an intuitive interaction.

Programs and templates considered in our examples are linear. This means all
guards, assignments or terms are linear in the program variables. As pointed out
earlier, our approach per se allows polynomial expressions as well. To see to what
extent this applies in practice we have tried to generate polynomial invariants for
variants of a bounded random walk, cf. Lst. 8. The goal is here to estimate the
number of steps taken before x hits its lower bound zero or upper bound M where
M is a fixed parameter. Surprisingly quantifier elimination works reasonably fast
for formulas with polynomials but the returned quantifier-free formula is very
big. The lack of powerful simplification methods makes it difficult to find a
concise representation of the formula that describes all invariant instances of the
template. Redlog’s simplifier might increase the formula size or not terminate
at all, whereas Slfq hits the memory bound quickly and crashes, even if the
allocated memory is increased maximally.
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Listing 8. Bounded random walk

counter := 0 ;
while ( x > 0 and x−M < 0){

( x := x+1 [ p ] x := x−1);
counter := counter +1;

}

6 Conclusion

We have presented a new software tool called Prinsys for probabilistic invari-
ant generation. Its functionality was explained and its merits were assessed in
the discussion. Also implementation details that deviate from the theoretic de-
scription of the method in [7] were pointed out. During our evaluation we have
reached the next challenge, that is to extend invariant generation to polynomial
templates. Related work, e.g. [12] suggests a workaround to find polynomial
invariants for non-probabilistic programs. This comes at the price that they sac-
rifice completeness and limit the class of systems permitted. In the future we
would like to work out a similar approximate invariant generation method for
probabilistic systems and evaluate it within Prinsys.
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