MATHEMATICAL PATTERNING IN EARLY CHILDHOOD: AN INTERVENTION STUDY

Marina Marie Papic, Dip. Teach, B. Ed, MA

Macquarie University
Australian Centre for Educational Studies
School of Education
Centre for Research in Mathematics and Science Education

This thesis is presented in partial fulfilment of requirements for the degree of Doctor of Philosophy

June, 2007

DEDICATION

In memory of my father, Vladimir
2.5.37-14.9.05
who had a passion for books, a love of learning and
who would have been very proud of both this thesis and my achievements.

ACKNOWLEDGEMENTS

I would like to thank those people who supported this research:

From the formative stages of this thesis, to the final draft, I owe an immense debt of gratitude to my supervisor Associate Professor Joanne Mulligan. Her time, patience, advice, expertise and careful guidance and commitment to this thesis were invaluable. Thank you Joanne, for your constant support, encouragement and friendship.

To my husband Tony, thank you for your patience, support and encouragement. You are my motivation and my inspiration!

To my son Christopher, now 16 years of age, whose own dedication, passion, hard work and achievements inspire me everyday. Thank you for supporting me!

To my mother, Eva, thank you for your support and encouragement. You are an angel and an inspiration.

To my best friend, Grace, for always supporting and encouraging me. Whose own commitment to education and learning are a source of motivation.

To Rosie and Anne, and the rest of my family and friends, who offered me unconditional love and support throughout the course of this thesis.

Associate Professor Michael Mitchelmore, for proof reading the thesis at varying stages and for his invaluable advice and expertise.

To Professor Jennifer Bowes, Institute of Early Childhood Head of School (2004-2006), Macquarie University, Sydney, for her support of this thesis and whose own dedication to research continues to inspire me.

To Associate Professor Jane Torr, Institute of Early Childhood Head of School (2007), Macquarie University, Sydney, for her support and encouragement of this thesis.

To Professor Alan Rice, Dean of the Australian Centre for Educational Studies, Macquarie University, Sydney, for his support and encouragement of this thesis.

To my colleagues at the Institute of Early Childhood, Macquarie University, Sydney, for their encouragement, kind words and friendship. To each one of you, thank you for your support.

To Dr Shirley Wyver, for proof-reading the final draft. Thank you for your time, expert advice and suggestions.

To Dr Greg Robertson, for his expert advice on the best way to analyse and report the research data.

Ann Maree and Ves Vukasin for allowing me to conduct my research in their childcare centre. Thank you to Ann Maree for the videoing, the constant support, encouragement and friendship. Without her commitment, the success of this project would not have been possible.

To the staff of Little Peters, especially Kathleen and Maria, for their open mindedness, their commitment to improving educational opportunities for children, their support of this research and the hours of planning, photographs, videoing, implementation of experiences and documentation. I am truly grateful.

To Grace Raad and the staff of Club Kindy for allowing me into their childcare centre and for their support of this research.

To Kate Highfield, for word processing and formatting, and for her constant support and encouragement.

To Sarah McNeill and Kristy Goodwin for formatting the final draft.

Finally to the children who participated in this research. Without your enthusiasm, your willingness to participate in all the experiences and your wonderful patterns there would be no study. May you continue to have a love of learning! To the memory of Kevin (aged 5 years), from Little Peters - know that you played a very special part in this research.

To each of the above, I extend my deepest appreciation.

STATEMENT OF CANDIDATE

I hereby certify that this work has not been submitted for a higher degree to any other university or institution.

TABLE OF CONTENTS

DEDICATION ii
ACKNOWLEDGEMENTS iii
STATEMENT OF CANDIDATE v
TABLE OF CONTENTS vi
LIST OF FIGURES x
LIST OF TABLES xV
LIST OF APPENDICES xvii
SYNOPSIS xix
CHAPTER 1: INTRODUCTION 1
1.1 WHAT IS A MATHEMATICAL PATTERN? 4
1.1.1 Repeating patterns 4
1.1.2 Growing patterns 6
1.1.3 Functional thinking 7
1.1.4 Linear and non-linear patterns 8
1.1.5 Spatial structure 9
1.2 BACKGROUND OF THE PROBLEM: THEORETICAL PERSPECTIVES 9
1.3 RESEARCH ON EARLY ALGEBRA AND PATTERNING WITH YOUNG 11CHILDREN
1.4 STATEMENT OF THE PROBLEM 13
1.4.1 Pedagogy and curriculum 14
1.4.2 The role of patterns and algebra in early mathematics curricula 15
1.5 RESEARCH QUESTIONS 16
1.6 PURPOSE AND AIMS 17
1.7 SIGNIFICANCE OF STUDY 17
1.8 ORGANISATION OF THE THESIS 18
CHAPTER 2: BACKGROUND TO THE RESEARCH: MATHEMATICS IN EARLY 19 CHILDHOOD
2.1 THE ROLE OF PLAY IN EARLY CURRICULA 20
2.2 PLAY AND EARLY MATHEMATICAL DEVELOPMENT 21
2.3 EARLY CHILDHOOD CURRICULA 23
2.4 RESEARCH DIRECTIONS: EARLY MATHEMATICS LEARNING 27
2.5 EARLY NUMERACY AND MATHEMATICAL ACHIEVEMENT 31
2.6 INTERVENTION STUDIES 32
2.7 EARLY NUMERACY PROGRAMS 34
2.8 LIMITATIONS OF EARLY MATHEMATICS CURRICULUM 35
CHAPTER 3: REVIEW OF LITERATURE: TEACHING, LEARNING AND 38
CURRICULA - EARLY ALGEBRA IN THE PRIMARY AND PRESCHOOL YEARS
3.1 RESEARCH ON THE TEACHING AND LEARNING OF EARLY ALGEBRA 38
3.2 RESEARCH ON EARLY ALGEBRA IN THE ELEMENTARY YEARS 40
3.2.1 Research on the relationship between arithmetic and algebraic 41 thinking
3.2.2 Studies on early algebraic thinking and functional thinking 43
3.3 RESEARCH ON EARLY ALGEBRA AND PATTERNING IN THE EARLY 50
YEARS
3.3.1 Patterning in intervention studies 51
3.3.2 Studies of patterning skills in mathematics learning 57
3.3 PATTERNING IN CURRENT MATHEMATICS CURRICULA 65
3.4 TEACHER PROFESSIONAL DEVELOPMENT: EARLY ALGEBRA 68 PROJECTS
3.5 SUMMARY 74
CHAPTER 4: METHODOLOGY 76
4.1 INTRODUCTION: METHODOLOGICAL APPROACHES 77
4.2 THE PILOT STUDY 82
4.2.1 Purpose 82
4.2.2 Method 82
4.2.3 Pilot study: Task design 83
4.2.4 Procedures 86
4.2.5 Analysis of responses 86
4.2.6 Discussion of results 88
4.2.7 Limitations and implications 88
4.3 THE MAIN STUDY 89
4.3.1 Data collection 89
4.3.2 Sample 90
4.4 THE INTERVENTION 92
4.4.1 Background 92
4.4.2 The preschool setting 92
4.4.3 Description of the Intervention 93
4.4.4 Aims of the Intervention 93
4.4.5 Structured individual and small group work on pattern-eliciting task 94
4.4.6 'Patternising' the regular preschool program 94
4.4.7 Observing children's patterning in free play 94
4.4.8 Procedures 95
4.4.9 Professional development of staff 95
4.4.10 Role of caregivers 96
4.4.11 Data collection 97
4.4.12 Data analysis 98
4.5 INTERVIEW-BASED ASSESSMENT TASKS 99
4.5.1 The development of assessment tasks 99
4.5.2 Concept of patterning: Exploratory tasks 100
4.5.3 Repeating patterns 101
4.5.4 Spatial Structure patterns 105
4.5.5 Growing patterns 108
4.5.6 Assessment interview procedures 110
4.5.7 Analysis of assessment data 112
4.6 SCHEDULE FOR EARLY NUMBER ASSESSMENT (SENA 1) 113
4.7 SCHOOL-BASED ASSESSMENT 114
4.8 SUMMARY 114
5.1 IMPLEMENTATION OF THE INTERVENTION: TOWER, SUBITISING AND 117 HOPSCOTCH PATTERN-ELICITING TASKS
5.1.1 Procedures 118
5.1.2 Framework of assessment and learning: Tower tasks 119
5.1.3 Analysis of responses: Tower tasks 123
5.1.4 Analysis of responses: Case studies 125
5.1.5 Framework of assessment and learning: Subitising tasks 130
5.1.6 Analysis of responses: Subitising tasks 134
5.1.7 Analysis of responses: Hopscotch tasks 136
5.1.8 Data collection and recording 138
5.1.9 Review of weekly program 139
5.2 'PATTERNISING’ THE REGULAR PRESCHOOL PROGRAM 139
5.3 OBSERVING CHILDREN'S PATTERNING IN FREE PLAY 146
5.4 SUMMARY 150
CHAPTER 6: DISCUSSION OF RESULTS: CHILDREN'S CONCEPTIONS OF 153 PATTERN
6.1 DISCUSSION OF RESULTS FOR CONCEPT OF PATTERN TASK 154
CP1.1: IMAGINE AND DRAW A PATTERN
6.1.1 Response categories 154
6.1.2 Analysis of children's responses at three assessment points 156
6.1.3 Longitudinal analysis: Individual patterns of response 169
6.1.4 Summary 174
6.2 DISCUSSION OF RESULTS FOR CONCEPT OF PATTERN TASK 175
CP1.2: DESIGN A PATTERN USING CONCRETE MATERIALS
6.2.1 Response categories 175
6.2.2 Analysis of responses at three assessment points 178
6.2.3 Longitudinal analysis: Individual patterns of response 181
6.2.4 Comparison of individual responses across Tasks CP1.1 and CP1.2 183
6.3 SUMMARY 186
CHAPTER 7: DISCUSSION OF RESULTS: CHILDREN'S RESPONSES TO 188 PATTERNING TASKS AT INTERVIEW-BASED ASSESSMENTS
7.1 PERFORMANCE BY TASK CATEGORY AT THREE ASSESSMENT 189 POINTS
7.1.1 Repeating patterns 190
7.1.2 Spatial Structure patterns 191
7.1.3 Growing patterns 191
7.2 REPEATING PATTERNS: ANALYSIS OF CHILDREN'S SOLUTIONS TO 192
BORDER, HOPSCOTCH AND NUMBER TASKS
7.2.1 Border patterns 192
7.2.2 Hopscotch patterns 196
7.2.3 Number patterns 204
7.2.4 Summary of children's responses to Repeating Pattern tasks 208
7.3 SPATIAL STRUCTURE PATTERNS: ANALYSIS OF CHILDREN'S 208
SOLUTION TO ARRAY, BLOCK, GRID, SUBITISING AND TRIANGULAR 1 TASKS
7.3.1 Array patterns 209
7.3.2 Block patterns 210
7.3.3 Grid patterns 211
7.3.4 Subitising patterns 213
7.3.5 Triangular 1 patterns 214
7.3.6 Summary of children's responses to Spatial Structure tasks 218
7.4 GROWING PATTERNS: ANALYSIS OF CHILDREN'S SOLUTIONS TO 219
TRIANGULAR 2 AND SQUARE TILES TASKS
7.4.1 Triangular 2 patterns 219
7.4.2 Square tile patterns 222
7.4.3 Summary of children's responses to Growing Pattern tasks 225
7.5 SCHEDULE FOR EARLY NUMBER ASSESSMENT 225
7.6 SUMMARY 229
CHAPTER 8: DISCUSSION OF RESULTS: CHILDREN'S RESPONSES TO THE 233 TOWER TASKS
8.1 DESCRIPTORS OF TOWER TASKS ACROSS ASSESSMENT POINTS 234
8.2 CHILDREN'S PERFORMANCE ON TOWER TASKS 234
8.2.1 Analysis of responses: Drawing and constructing towers by copying 237 or from memory
8.2.2 Analysis of responses: Identifying the screened block/element or 246 identifying the blocks required to continue the tower
8.2.3 Assessment 2 extension tasks 251
8.3 SUMMARY 254
CHAPTER 9: CONCLUSIONS AND IMPLICATIONS 256
9.1 SUMMARY OF THE MAIN STUDY 256
9.2 DISCUSSION OF MAIN FINDINGS 258
9.2.1 What are the characteristics of mathematical patterning that young 258children develop naturally prior-to school?
9.2.2 In what ways does an intervention promoting mathematical patterning 259 impact on the complexity of children's patterning concepts and skills and the development of other mathematical processes such as multiplicative thinking?
9.2.3 Is the influence of such an intervention maintained after one year of 262 formal schooling? If so, in what ways?
9.2.4 What is the place of patterning in the development of early algebraic 264 thinking?
9.3 GENERAL DISCUSSION 265
9.4 LIMITATIONS OF THE STUDY 266
9.5 IMPLICATIONS FOR TEACHING, LEARNING AND CURRICULUM 267
9.5.1 Implications for teaching and learning, curriculum and assessment 268
9.5.2Implications for professional development 270
9.6 CONCLUSION 272
REFERENCES 273
APPENDICES 296

LIST OF FIGURES

CHAPTER 1

Figure 1.1
Examples of Growing Patterns (Warren, 2005b, p.307)
6

CHAPTER 2

Figure 2.1 Geomix 24
Figure 2.2 Pattern cards 24
Figure 2.3 Wooden stringing beads 24
CHAPTER 3

Figure 3.1	Series of dots increasing in number over time. Earnest \& Schliemann, 2004, p. 296.	47

CHAPTER 4

Figure 4.1 NSW Mathematics Syllabus, Early Stage 1 Patterns \& Algebra 85
Figure 4.2 Children's replication of 'tower' model (simple AB repetition) 87
Figure 4.3 Longitudinal design of study 90
Figure 4.4 Border task (BP9.1-1) Assessment 1 and $2 \quad 103$
Figure 4.5 Border task (BP9.1-1) Assessment 3 103
Figure 4.6 Border task (BP9.1-2) Assessment 3 103
Figure 4.7 Border task (BP9.2) Assessment 3 103
Figure 4.8 Hopscotch Pattern 104
Figure 4.9 Reconstructing the movement of the Hopscotch Template through 104 four quarter turns
Figure 4.10 Array Patterns: Tasks AP4.1-1 and AP4.1-2 106
Figure 4.11 Block Patterns: Tasks BLP5.1-1 and BLP 5.1-2 107
Figure 4.12 Grid Patterns: Task GP6.1 . 107
Figure 4.13 Triangular Patterns: Tasks TDP3.1-1 and TDP3.1-2 107
Figure 4.14 Regular Dot Patterns: Task SP7.1-1 107
Figure 4.15 Grid Dot Patterns: Task SP7.1-2 108
Figure 4.16 Vertical Stair case Block Patterns: Task SP7.1-3 108
Figure 4.17 Irregular Dot Patterns: Task SP7.1-4 108
Figure 4.18 Triangular 2 Pattern: Task TDP3.1-1 109
Figure 4.19 Square Tile Pattern: Task STP5.1-1 and STP5.1-2 110

CHAPTER 5

Figure 5.1 Subitising regular dot patterns 1-6: "Fishing" game. (Level 2
Figure 5.2 Subitising regular dot patterns 1-6: "Teddy Bear Race" (Level 2132 Emergent)
Figure 5.3 Subitising regular dot patterns 1-6: "Chute" game (Level 2 Emergent)
Figure 5.4 Subitising irregular dot patterns 1-6: "Bee Hive" game (Level 3 133 Perceptual)
Figure 5.5 Subitising regular dot patterns 1-10: "Bear Bingo" (Level 4 134 Conceptual)
Figure 5.6 Subitising grid dot patterns 1-10: "Dot Concentration" (Level $4 \quad 134$ Conceptual)
Figure 5.7 Intervention Hopscotch task: Playing a game of hopscotch 136
Figure 5.8 Intervention Hopscotch task: Repeating the hopscotch element 136
Figure 5.9 Intervention Hopscotch task: Design own hopscotch 137
Figure 5.10 Intervention Hopscotch task: Design own hopscotch 137

Figure 5.11 Child I 17 creates pattern element 137
Figure 5.12 Intervention Hopscotch task: Design own hopscotch 138
Figure 5.13
Shape creatures, AB repetition (1 12, 5.2 years) 140
Figure 5.14
Shape creatures, ABC repetition ($15,4.5$ years) 140
Figure 5.15
Snake experience 141
Figure 5.16
Snake experience, $A B C$ repetition 141
Figure 5.17
Spring Flowers experience 142
Figure 5.18
Spring Flowers experience, AAB repetition 142
Figure 5.19
Rainbow fish border pattern 143
Figure 5.20
Animal masks experience, AAABBB repetition 144
Figure 5.21
Christmas ornament experience $A B$ and $A B C$ repetition 145
Figure 5.22 Christmas Ornament experience $A B$ and $A A B$ repetition 145
Figure 5.23 Christmas wrapping paper $A B$ repetition, colour and shape 145
Figure 5.24 Observation notes: AB repetitions made with Lego $®$ blocks 147
Figure 5.25 Printing shapes: AB repetition incorporating two variables, colour and 147
Figure 5.26 Printing shapes and adding regular dot patterns 147
Figure 5.27 Threading beads: ABCD repetition (I 12, 5.6 years) 148
Figure 5.28 Threading beads: ABCDEFGHI repetition (I 15, 5.4 years) 148
Figure 5.29 Connector straws: Cyclic pattern (I 1, 4.5 years and I 26, 4.4 years) 150
Figure 5.30 Spontaneous play situation: Matching dominoes according to 150 dot patterns (17, 4.6 years)

CHAPTER 6

Figure 6.1
Task CP1.1 Category 1 (I 19, 4.6 years) 158
Figure 6.2 Task CP1.1 Category 1 (NI 21, 4.0 years) 158
Figure 6.3 Task CP1.1 Category 1 (I 25, 4.7 years) 158
Figure $6.4 \quad$ Task CP1.1 Category 2 (NI 10,5.1 years) 158
Figure 6.5 Task CP1.1 Category 2 (NI 13, 4.6 years) 158
Figure 6.6 Task CP1.1 Category 2 (1 18, 4.6 years) 158
Figure 6.7 Task CP1.1 Category 3 (I 4, 4.8 years) 159
Figure 6.8 Task CP1.1 Category 3 ($14,4.10$ years) 159
$\begin{array}{lll}\text { Figure } 6.9 & \text { Task CP1.1 Category } 4 \text { (NI 3,5.1 years) } & 160\end{array}$
Figure 6.10 Task CP1.1 Category 4 (I 22, 4.5 years) 160
Figure 6.11 Task CP1.1 Category 4 (NI 1, 4.9 years) 160
Figure 6.12 Task CP1.1 Category 4 (I 23, 4.10 years) 161
Figure 6.13 Task CP1.1 Category 4 (I 12, 5.1 years) 161
Figure 6.14 Task CP1.1 Category 4 (NI 18, 4.4 years) 161
Figure 6.15 Task CP1.1 Category 4 (I 23, 5.4 years) 163
Figure 6.16 Task CP1.1 Category 4 ($111,5.3$ years) 163
Figure 6.17 Task CP1.1 Category 4 (I 25, 5.1 years) 163
Figure 6.18 Task CP1.1 ABCDE repetition (I 17, 4.7 years) 164
Figure 6.19 Task CP1.1 ABC repetition (1 2,5.4 years) 164
Figure 6.20 Task CP1.1 Category 4 (NI 5,5.7 years) 164
Figure 6.21 Task CP1.1 Category 5 (NI 13,5.0 years) 165
Figure 6.22 Task CP1.1 Category 4 (I 23, 6.4 years) 166
Figure 6.23 Task CP1.1 Category 4 (I 19, 6.0 years) 166
Figure 6.24 Task CP1.1 Category 4 (I 3, 6.4 years) 166
Figure 6.25 Task CP1.1 Category 4 (NI 18,5.10 years) 167
Figure 6.26 Task CP1.1 Category 4 (NI 1, 6.3 years) 167
Figure 6.27 Task CP1.1 Category 6 ($\mathrm{Nl} 10,6.1$ years) 168
Figure 6.28 Task CP1.1 Category 1 (NI 6, 6.3 years) 168
Figure 6.29 Comparison of responses to Task CP1.1 for Child I 25 at 172 Assessments 1-3
Figure 6.30 Comparison of responses to Task CP1.1 for Child I 1 at 173 Assessment 1-3

Figure 6.31
Figure 6.32 Comparison of responses to Task CP1.1 for Child NI 1 at Assessments 1-3
Figure 6.33
Figure 6.34
Figure 6.35
Figure 6.36
Figure 6.37
Figure 6.38
Figure 6.39
Figure 6.40
Figure 6.41
Figure 6.42
Figure 6.43
Figure 6.44
Figure 6.45
Figure 6.46
Figure 6.47
Figure 6.48
Figure 6.49
Figure 6.50
Figure 6.51
Figure 6.52
Figure 6.53
Figure 6.54
Figure 6.55
Figure 6.56
Figure 6.57
Figure 6.58 Task CP1.2 Assessment 3 (I 12, 6.6 years)
Figure 6.59 Comparison of responses CP1.1 and CP1.2 (1 18, 6.0 years)
Figure 6.60 Comparison of responses CP1.1 and CP1.2 (1 9, 6.5 years)
Figure 6.61 Task CP1.2 Growing Pattern (| 12, 6.6 years)

CHAPTER 7

Figure 7.1 Percentage of correct responses for Repeating patterns 190 at three assessment points
Figure 7.2 Percentage of correct responses for Spatial structure tasks 191 at three assessment points
Figure 7.3 Correct response to Task BP9.1-1 (I 18, 4.6 years) 193
Figure 7.4 Incorrect representation Task BP9.1-1 (I 26, 4.1 years) 194
Figure 7.5 Incorrect representation Task BP9.1-1 (I 20, 4.8 years) 194
Figure 7.6 Correct representation Task HP10.1-1 (I 19, 4.6 years) 197
Figure 7.7 Correct representation Task HP10.1-1 (I 26, 4.1 years) 197
Figure 7.8 Incorrect response Task HP10.1-2 (I 2, 4.10 years) 197
Figure 7.9 Incorrect representation Task HP10.1-2 (I 21, 4.0 years) 198
Figure 7.10 Incorrect representation Task HP10.1-2 (NI 4,5.1 years) 198
Figure 7.11 Incorrect representation Task HP10.1-1 (I 13, 4.4 years) 198
Figure 7.12 Incorrect representation Task HP10.1-1 (I 20, 4.8 years) 198
Figure 7.13 Incorrect representation Task HP10.2-1 (| 18, 4.6 years) 199
Figure 7.14 Incorrect representation Task HP10.2-1 (NI 18, 4.4 years) 199
Figure 7.15 Incorrect response Task HP10.2-2, (1 12, 5.1 years) 199
Figure 7.16 Incorrect response Task HP10.2-3, (1 18, 4.6 years) 199
Figure 7.17 Incorrect response Hopscotch Task HP10.2-2, (I 17, 4.1 years) 200
Figure 7.18 Correct response Hopscotch Task HP10.2-2, (I 17, 4.7 years) 200

Figure 7.19
Figure 7.20
Figure 7.21
Figure 7.22
Figure 7.23
Figure 7.24
Figure 7.25
Figure 7.26
Figure 7.27
Figure 7.28
Figure 7.29
Figure 7.30
Figure 7.31
Figure 7.32
Correct response Hopscotch Task HP10.2-3, (I 25, 4.7 years)
200
Correct response Hopscotch Task HP10.2-3, ($125,5.1$ years) 200
Incorrect response Task HP10.3 (I 25, 4.7 years) 201
Incorrect response Task HP10.3 ($\mathrm{NI} 18,4.4$ years) 201
Design a hopscotch task (19,5.0 years) 202
Design a hopscotch task (I25,5.1 years) 202
Design a hopscotch task (18,5.0 years) 202
Design a hopscotch task (11, 5.3 years) 202
Design a Hopscotch task (I 2, 5.4 years) 202
Design a hopscotch task (1 23, 5.4 years) 203
Design a hopscotch task (1 23, 5.4 years) 203
Design a hopscotch task, (NI 11, 5.2 years) 203
Correct response: Task HP10.3, (1 8,5.10 years) 204
Identifying elements in Number Pattern 3, Task NP8.2 207
(I 3, 6.4 years)
Figure 7.33 Correct representation: Task AP4.1-1 Array (a) (| 12, 5.7 years)
Figure 7.34 Correct representation: Task AP4.1-2 Array (a) (1 12, 5.7 years)
Figure 7.35 Incorrect representation: Task AP4.1-1 Array (c) Assessment 2 (I 7, 5.5 years)
Figure 7.36 Incorrect representation: Task AP4.1-1 Array (b) 210 Assessment 2 (Nl 16, 4.11 years)
Figure 7.37 Correct representation Task GP6.1 (c) (I 26, 4.7 years)
Figure 7.38 Correct representation Task GP6.1 (a) (I 22, 4.11 years) 212
Figure 7.39 Correct representation Task GP6.1 (a) (I 18,5.0 years) 212
Figure 7.40 Accurate representation of Triangular patterns (c) and (d) 215 Task TDP3.1-1 (Child I 8, 4.10 years)
Figure 7.41 Accurate representation of Triangular Patterns (c) and (d) 215 Task TDP3.1-2 (Child I 23, 5.4 years)
Figure 7.42 Triangular Pattern (c) ($125,5.1$ years) 217
Figure 7.43 Triangular Pattern (c) (NI 9, 4.11 years) 217
Figure 7.44 Incorrect response Task TDP3.1-1 (NI 10,6.7 years) 220
Figure 7.45 Correct response Task TDP3.1-1 (I 21,5.6 years) 221
Figure 7.46 Correct response Task TDP3.1-1 (1 11,6.3 years) 221
Figure 7.47 Incorrect response Task TDP3.1-1(1 4, 6.2 years) 221
Figure 7.48 Incorrect response Task TDP3.1-1 (I 15, 6.5 years) 221
Figure 7.49 Square Tile Task STP5.1-1 (NI 10, 6.7 years) 222
Figure 7.50 Square Tile Task STP5.1-1 (NI 8,6.3 years) 222
Figure $7.51 \quad$ Square Tile Task STP5.1-1 (NI 17, 5.8 years) 223
Figure 7.52 Square Tile Task STP5.1-1 (NI 7, 6.5 years) 223
Figure 7.53 Square Tile Task STP5.1-1 (NI 4, 6.7 years) 223
Figure 7.54 Incorrect response Task STP5.1-1 (I 11, 6.3 years) 224
Figure 7.55 SENA 1 Results for Intervention and Non-intervention groups 226
Figure 5.56 SENA 1 Number Identification by Level of Response 226
Figure 5.57 SENA 1 Forward Number Word Sequence by Level of Response 227
Figure 5.58 SENA 1 Backward Number Word Sequence by Level of Response 227
Figure 5.59 SENA 1 Early Arithmetic Strategies, by level of strategy 228
Figure 5.60 SENA 1 Level of Subitising skills 228

CHAPTER 8

Figure 8.1
Percentage of correct responses by category of strategy use: 239
Perceptual Tower Task TP2.1-1
Figure 8.2 Percentage of correct responses by category of strategy use: 240
Perceptual Tower Task TP2.1-2
Figure 8.3 Tower Task TP2.1-2, Assessment 1 Category 5 Partial structure 3241 (NI 8, 4.9 years)
Figure 8.4 Percentage of correct responses by category of strategy use: 241 Semi-Abstract Tower Task TP2.2-2
Figure 8.5 Percentage of correct responses by category of strategy use: 242 Abstract Tower Task TP2.4-1
Figure 8.6 Percentage of correct responses by category of strategy use: 244 Abstract Tower Task TP2.4-2
Figure 8.7 Percentage indicating properties identified in responses to 247 Perceptual Tower Pattern task TP2.1-3
Figure 8.8 Percentage indicating properties identified in responses to Semi- 248
Abstract Pattern task TP2.2-1
Figure 8.9 Percentage indicating properties identified in responses to Semi- 250 Abstract Pattern task TP2.3-1
Figure 8.10 Extension Task - Continuing ABBCCCABBCCC single variable 252 repetition ($\mathrm{Nl} 17,4.8$ years)
Figure 8.11 Extension Task - Continuing ABBCCCABBCCC single variable 252 Repetition (NI 12, 5.4 years)
Figure 8.12 Extension Task - Drawing ABBCCCABBCCC single variable 252 repetition from memory (I 3, 5.4 years)
Figure 8.13 Extension Task - Drawing ABBCCCABBCCC single variable 252 repetition from memory ($15,5.5$ years)
Figure 8.14 Extension Task - Designing own complex single variable repetition 253 (I 11, 5.3 years)
Figure 8.15 Extension Task - Designing own complex single variable repetition 253 (1 2, 5.4 years)

LIST OF TABLES

CHAPTER 4

Table 4.1 Schedule of numeracy tasks: Pilot study 84
Table 4.2 Key aspects of patterning and related task categories 99
Table 4.3 Descriptors for task category Concept of Pattern 100
Table 4.4 Repeating Patterns tasks 102
Table 4.5 Number patterns presented at three assessment points 105
Table 4.6 Descriptors for task categories identified as Spatial Structure 106
Table 4.7 Descriptors for task categories identified as Growing Patterns 109

CHAPTER 5

Table 5.1 Schedule of Intervention Patterning-eliciting tasks 118
Table 5.2 Framework of Assessment and Learning for Tower tasks. 120
Table 5.3 Level of Tower Pattern Development 121
Table 5.4 Tower Tasks: Progression of Individual children 124
Table 5.5 Levels of Subitising 131
Table 5.6 Number of children by Subitising level pre- and post-Intervention 134
Table 5.7 Patternised shape experience 140
Table 5.8 Patternised snake experience 141
Table 5.9 Patternised spring flowers experience 141
Table 5.10 Patternised Fish experience 142
Table 5.11 Patternised animal masks experience 144
Table 5.12 Patternised Christmas experience 144

CHAPTER 6

Table 6.1 Descriptors of categories for Concept of Pattern task CP1.1 155
Table 6.2 Number of children by category of representation for Concept of 157 Pattern task CP1.1 at first assessment
Table 6.3 Number of children by category of representation for Concept of 162 Pattern task CP1.1 at second assessment
Table 6.4 Number of children by category of representation for Concept of 165 Pattern task CP1.1 at third assessment
$\begin{array}{lll}\text { Table 6.5 } & \text { Categories of response for Intervention and Non-intervention } & 169\end{array}$ children across three assessments for task CP1.1.
Table 6.6 Progression of individual responses for Concept of Pattern task 170 CP1.1
Table 6.7 Descriptors of categories for Concept of Pattern task CP1.2 175
Table 6.8 A comparison of changes in categories of response for Intervention 178
and Non-intervention children across three assessments: Task CP1.2
Table 6.9 Progression of individual categories of response for Concept of 182
Pattern task CP1.2

CHAPTER 7

Table 7.1 Percentage of correct responses for Border Pattern tasks 192
Table 7.2 Percentage of correct responses for Hopscotch Pattern tasks 196
Table 7.3 Percentage of correct responses on Number Pattern tasks 205
Table 7.4 Number patterns presented at three assessment points 205
Table 7.5 Percentage of correct responses to Task NP8.1-1, for each pattern 205
Table 7.6 Percentage of correct responses on Array Pattern tasks 209
Table 7.7 Percentage of correct responses on Block Pattern tasks 211
Table 7.8 Percentage of correct responses on Grid Pattern tasks 211
Table $7.9 \quad$ Percentage of correct responses on Subitising Pattern tasks 213
Table 7.10 Percentage of correct responses on Triangular 1 Pattern tasks 214
Table 7.11 Percentage of correct responses to Triangular 1 tasks, for each 216
pattern
Table 7.12 Percentage of correct responses on Triangular 2 Pattern tasks 220
Table 7.13 Percentage of correct responses on Square Tile Pattern tasks 222
CHAPTER 8
Table 8.1 Categories of Tower tasks 234
Table 8.2 Percentage of correct responses to Tower tasks at three assessment 235points
Table 8.3 Classification of responses to Tower Perceptual tasks TP2.1-1 and 238TP2.1-2, Semi-Abstract task TP2.2-2 and Abstract tasks TP2.4-1and TP2.4-2
Table 8.4 Classification of responses to Tower Perceptual task TP2.1-3 and 246Semi-Abstract tasks TP2.2-1 and TP2.3-1 at all assessment points

LIST OF APPENDICES

APPENDIX 3A
APPENDIX 3B

APPENDIX 3 C
APPENDIX 3D
APPENDIX 4A
APPENDIX 4B
APPENDIX 4C
APPENDIX 4D
APPENDIX 4E
APPENDIX 4F
APPENDIX 4G
APPENDIX 4H
APPENDIX 41
APPENDIX 4 J
APPENDIX 4K
APPENDIX 4L
APPENDIX 4M
APPENDIX 4N
APPENDIX 40
APPENDIX 4P
APPENDIX 5A
APPENDIX 5B
APPENDIX 5C
APPENDIX 5D
APPENDIX 5E
APPENDIX 6A

APPENDIX 6B

APPENDIX 6 C
APPENDIX 6D

APPENDIX 6E

APPENDIX 7A
APPENDIX 7B
APPENDIX 7C
APPENDIX 7D
APPENDIX 7E

The Early Years Curriculum: Order, sequence and pattern descriptors Patterns, functions and algebra strand, Pre-Kindergarten to Year 2 expectations, The Principles and Standards for School Mathematics (NCTM, 2000)
Early Stage 1 and Stage 1 outcomes, Patterns and Algebra strand, NSW K-6 Mathematics Syllabus
Standards for the Pattern and Algebraic Reasoning strand for grades R-2, South Australian Curriculum Standards and Accountability Framework
Kindergarten teachers' survey
Macquarie University Ethics Committee
Information and Consent Form - Intervention Preschool Director/Staff
Information and Consent Form - Non-intervention Preschool Director/Staff
Information and Consent Form - Intervention Preschool Parents
Information and Consent Form - Non-intervention Preschool Parents
Information and Consent Form - School Principal
Information and Consent Form - Kindergarten Teachers
Information and Consent Form - Kindergarten Parents
Completed Intervention preschool teachers' surveys prior to Intervention
Assessment 1 \& 2 Task Schedule
Assessment 3 Task Schedule
Preschool assessment interview recording sheet
Kindergarten assessment interview recording sheet
The Schedule for Early Number Assessment SENA 1 - tasks administered
The Learning Framework in Number
Excerpts from Child I 10 portfolio: Responses to Tower Tasks
Excerpts from Child I 22 portfolio: Responses to Tower tasks
Excerpts from Child I 21 porttolio: Responses to Tower tasks
Excerpts from Child I 23 portfolio: Responses to Tower tasks
Example of observational records made by researcher/teacher
Categories of response across three assessment points for Task CP1.1comparison between Intervention and Non-intervention children whose category of representation at the first assessment was Category 0
Categories of response across three assessment points for Task CP1.1 comparison between Intervention and Non-intervention children whose category of representation at the first assessment was Category 1 or 2
Case-studies: Comparison of responses to Concept of Pattern task CP1.1 at three assessment points where all responses fell into Category 4
Categories of response across three assessment points for Task CP1.3comparison between Intervention and Non-intervention children whose category of representation at the first assessment was Category 0 NR
Categories of response across three assessment points for Task CP1.2comparison between Intervention and Non-intervention children whose category of representation at the first assessment was Category 1 RA or Category 5 SS
Percentage of correct responses by task category at three assessment points
Percentage of correct responses for individual Intervention children at each assessment point
Percentage of correct responses for individual Non-intervention children at each assessment point
Comparison between individual Intervention and Non-intervention children at three assessment points
Descriptors of levels in The Learning Framework in Number

APPENDIX 8A	Descriptors of task categories for Tower Perceptual tasks TP2.1-1 and TP2.1-2, Semi-Abstract task TP2.2-2 and Abstract tasks TP2.4-1 and
TP2.4-2	

SYNOPSIS

Patterns are widely recognised as the foundation of mathematics. However, it is not yet fully understood how patterning influences the development of representation, symbolisation, abstraction and generalisation in young children's mathematical thinking. A central problem is that patterning has not been considered critical to the development of key mathematical concepts and processes, or early algebraic thinking.

It is believed that children in the elementary grades are not capable of mathematical generalisation until formal algebra instruction in the secondary school (Carraher, Schliemann, Brizuela, \& Earnest, 2006). Recent studies provide evidence that students' later difficulties in algebra may not be a result of developmental constraints after all, but rather, from the limited approach to teaching elementary mathematics (Carraher et al., 2006).

The study raises four key questions: What are the characteristics of mathematical patterning young children develop naturally prior-to-school? In what ways does an intervention program promoting mathematical patterning impact on the complexity of children's patterning concepts and skills and the development of other mathematical processes such as multiplicative thinking? Is the influence of such an intervention maintained after one year of formal schooling? If so, in what ways? What is the role of patterning in the development of early algebraic thinking?

This study describes the patterning skills young children develop prior-to-formal schooling and implements an intervention that promotes the development of a broad range of patterns: Repeating Patterns, Spatial Patterns and Growing Patterns. The study is significant because it identifies how children as young as four years-of-age construct and represent simple and complex patterns using a unit of repeat, and how they apply this to other forms of pattern. The design allows the monitoring of 53 young children's prealgebra (patterning) skills from preschool to the end of the first year of formal schooling. Case-studies of two preschools ('Intervention' and 'Non-intervention') are compared in order to examine the influence of a mathematics intervention promoting children's patterning over a 6-month period. One-to-one task-based interviews were conducted at three intervals over an 18-month period. The study was designed as an intervention employing a mixed-method approach: integrating a traditional constructivist-based teaching experiment (Hunting, Davis \& Pearn, 1996) with more contemporary aspects of a design study (Dede, 2005).

The Intervention comprised three distinct components: Structured individual and small group work on pattern-eliciting tasks, 'patternising' the regular preschool program, and observing children's patterning in free play. Using a Framework of Assessment and Learning, children were placed on an individual 'learning trajectory' and progressed through an increasingly complex series of tasks. Analysis of children's progress focused on levels of structure and abstraction. Further, the Intervention provided on-going professional development of the importance of pattern and structure in early mathematical learning, which assisted teachers in modifying the emergent curriculum to incorporate patterning skills.

Intervention children could successfully identify, construct and abstract the element within Repeating Patterns and calculate the number of repetitions. This was the dominant strategy used by Intervention children at Assessment 2 and sustained at Assessment 3 (12 months later). Many children used their knowledge of unit of repeat to extend and represent patterns in other forms. They were also able to draw complex repetitions from memory. The development of structural thinking about simple repetition, not just the modelling of simple repetition, advantaged the Intervention children. When dealing with Spatial Structures such as arrays of dots, Intervention children could perceive the structure of the patterns. In comparison, Non-intervention children's responses lacked any structural features. Another critical learning process observed during the Intervention was the children's development of transformation skills; they successfully used rotation to construct Hopscotch patterns and visualised simple and complex repetitions from different orientations.

The assessment of counting and arithmetic development provided by the Schedule for Early Number Assessment (SENA 1), administered at the third assessment, showed that Intervention children's numerical strategies were more advanced than Non-intervention children. Some were quite advanced in their arithmetic strategies, using known facts and other non-count-by-one strategies. Further analysis of SENA interview data indicated that Intervention children recognised the structure of the patterns and partitioned the patterns into parts rather than counting individual items.

Intervention children successfully symbolised, abstracted and transferred complex Repeating Patterns, and with no apparent exposure to Growing Patterns, many of these children could construct, extend, represent and justify these patterns 12 months after the Intervention. In contrast, Non-intervention children were unable to identify or extend Growing Patterns. They saw these exclusively as 'items' in simple repetitions in the same
way as the simple repetitions that they were familiar with. These findings support those found by Warren (2005a), where 9-year-olds had greater difficulty with Growing Patterns than with Repeating Patterns. It was inferred that the difficulty with Growing Patterns was not necessarily the absence, or predominance of Repeating Patterns in early mathematics curricula. Rather, the inadequate or inappropriate development of repeating patterns without a sound understanding of the unit of repeat, limited, and possibly impeded the development of Growing Patterns. Children may be able to copy and extend patterns, but they may not necessarily identify a unit of repeat.

The findings support Blanton and Kaput's (2004) conclusion that early algebraic learning is not developmentally constrained; young children have natural powers of generalisation and an ability to express generality (Mason, 1996). This study recommends that experiences in the first year of schooling focus on identifying, justifying and transferring various patterns, and using a variety of materials. Further, the study suggests repeating patterns should include not just "recognising, copying, continuing and creating" (Board of Studies, NSW, 2002, p. 73) simple linear patterns but rather, identifying the element within repeating patterns, the number of repetitions, drawing from memory, viewing patterns from different orientations, extending a pattern in multiple directions, and transferring a pattern to a different medium. Professionals must be aware of the natural patterning experiences in children's play and ask appropriate questions that will promote mathematical thinking. This can only be achieved through programs that integrate effective professional development that build teachers' knowledge and expertise and provide them with the necessary conceptual structures to take ownership of their planning and teaching.

