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ABSTRACT

Energy harvesting (EH) is the process of capturing renewable energy from the

environment and converting it into usable electrical energy. In wireless communi-

cation systems, collecting renewable energy from the environment is a key factor

in building self-sustainable networks. In addition, EH-powered wireless commu-

nications help reduce carbon footprint and enable “green” communications to

solve important issues such as haze, global warming, and climate change. Due

to these ecological and economic reasons, various types of EH-powered wireless

communications have become current research hotspots.

However, challenges arise in EH-powered wireless communication systems.

First, the reliability of data transmissions is challenged due to the inherent ran-

domness and instability of environmental energy sources. Second, due to the

limited energy provided by environmental energy sources, how to make full use

of the limited energy and ensure the systems obtain optimal performances is also

a stringent subject. Therefore, for EH-powered wireless communication systems,

we need to conduct reasonable energy management and resource allocation to en-

sure reliable and efficient communications, thus optimizing system performances.

On the one hand, for EH-powered WSN links, we optimize energy management

for the transmitters, so that the collected energy is properly distributed to data

transmissions. On the other hand, we introduce smart-grid technology to jointly

provide renewable energy and grid’s persistent energy to base stations (BSs) in



cellular networks, compensating for unstable and insufficient EH power supply.

Through the optimal energy management of BSs, we make full use of renewable

energy, maximize the system throughput or minimize the electricity transaction

cost with the grid, while satisfying users’ quality of service (QoS).

Optimal energy management is first investigated for EH-powered WSN links.

A new “dynamic string tautening” algorithm is proposed to generate the most

energy-efficient offline schedule for delay-limited traffic of transmitters. The al-

gorithm is based on two key findings derived through convex formulation and

resultant optimality conditions, specifies a set of simple but optimal rules, and

generates the optimal schedule with a low complexity. The proposed algorithm

is also extended to on-line scenarios, where the transmit schedule is generated

on-the-fly.

An infinite time-horizon resource allocation problem is then formulated to

maximize the time-average downlink throughput for smart-grid powered multiple-

input multiple-output (MIMO), subject to a time-average energy cost budget.

By using the advanced time decoupling technique, a novel stochastic subgradient

based online control (SGOC) approach is developed for the resultant smart-grid

powered communication system. It is established analytically that the proposed

online control algorithm is able to yield a feasible and asymptotically optimal

solution without a-priori knowledge of the stochastic system information.

Last, a two-scale stochastic control framework is put forth for smart-grid

powered coordinated multi-point (CoMP) systems.The energy management task

is formulated as an infinite-horizon optimization problem minimizing the time-

average energy transaction cost. Leveraging the Lyapunov optimization approach

as well as the stochastic subgradient method, a two-scale online control (TS-

OC) approach is developed for the resultant smart-grid powered CoMP systems.



xi

Using only historical data, the proposed TS-OC makes online control decisions at

two timescales, and features a provably feasible and asymptotically near-optimal

solution.
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Chapter 1

Introduction

1.1 Background and Motivations

Nowadays, information and communication technology (ICT) has become an indispens-

able part of people’s daily life. However, energy consumption has raised as a big issue

with the rapid proliferation of ICT, as well as greenhouse gas (CO2) emissions. It has

been estimated that, in 2012, the average annual power consumption by ICT industries

exceeded 200 GW [7]; 3 percent of the world’s annual electrical energy consumption and

2 percent of CO2 emissions are caused by the ICT infrastructure. Moreover, ICT en-

ergy consumption is expected to increase by 15–20 percent annually, doubling every five

years [8]. As an important field of ICT, the CO2 emissions of wireless communication sys-

tems in 2002 accounted for 42 percent of the total ICT CO2 emissions, and it is expected

that this proportion will increase to 51 percent by 2020 [9]. In 2012, the largest mobile

network in the world–China Mobile–consumed more than 14 billion kWh of energy in its

network of 1.1 million base stations [10]. In the 5G era, millions of base stations with

higher functionality are expected to connect with billions of smartphones and devices with

higher data rates.

1



2 Chapter 1. Introduction

As people become more aware of the potentially harmful effects of CO2 emissions and

non-renewable energy consumption on the environment, it is urgent to develop green and

energy-efficient telecommunications systems. From the perspective of telecom operators,

reducing power consumption is not only a matter of being green and responsible, it is

also a very important economic issue. A large portion of the operational expenditure

(OPEX) of a telecommunications network are used to pay the electricity bill. The global

mobile network OPEX for electricity has exceeded 10 billion US dollars [11]. To achieve

economic efficiency and out of social responsibility for coping with global climate change,

green energy-efficient communication is bound to become an important trend of the next

generation wireless communication networks.

Several research groups and consortia have been investigating green and energy-efficient

communications for wireless communication systems, including Mobile VCE, EARTH, and

Green-Touch. Mobile VCE has focused on the hardware, architecture, and operation of

BSs, achieving energy saving gains of 75–92 percent in simulations [10]. EARTH has de-

vised an array of new technologies including low-loss antennas, antenna muting, and micro

direct transmission based on traffic fluctuations, realizing energy savings of 60–70 percent

with less than 5 percent throughput degradation [11]. GreenTouch has set up a more am-

bitious goal to improve energy efficiency 1000 times by 2020 [12]. In addition, some oper-

ators have been actively developing green technologies, e.g., green BSs powered solely by

renewable energy, and green access infrastructure such as cloud/collaborative/clean radio

access network (C-RAN) [13]. Communication equipment manufacturers, e.g., Huawei,

are also working on the research and development of green communication technologies.

Academic research on green communications is also very active. The Institute of Electri-

cal and Electronics Engineers (IEEE) has organized discussions on green-communication

related topics in international conferences such as ICC and Globecom; and in major inter-

national journals and magazines on communications, research outcomes related to green
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energy-efficient communications from all over the world have been published [14].

As one of the key technologies for achieving green communications, energy harvesting

(EH) is the process of capturing renewable energy from the environment and converting it

into usable electrical energy [15]. In wireless communication systems, collecting renewable

energy from the environment is a key factor in building self-sustainable networks, such

as wireless sensor networks (WSNs) in remote human-unfriendly environments [16]. It

helps communication networks get rid of the limits of the grid, enabling people to provide

network services in remote areas without grid coverage or in harsh areas. Various types of

EH-powered wireless communications have increasingly become current research hotspots.

However, challenges arise in EH-powered wireless communication systems. First, the

reliability of data transmissions is challenged due to the inherent randomness and in-

stability of environmental energy sources. Second, due to the limited energy provided

by environmental energy sources, how to make full use of the limited energy and en-

sure the systems obtain optimal performances is also a stringent subject. Therefore,

for EH-powered wireless communication systems, we need to conduct reasonable energy

management and resource allocation, and develop optimal data transmission schedules to

ensure reliable and efficient communications, thus optimizing system performances.

On the one hand, for EH-powered WSN links, we optimize energy management for

the transmitters, so that the collected energy is properly distributed to data transmis-

sions. We propose optimal transmission schedules to deliver delay-sensitive data packets

before their deadlines, and minimize energy consumption, thus achieving green communi-

cations. On the other hand, based on the use of traditional energy sources, we introduce

smart-grid technology to jointly provide renewable energy and grid’s persistent energy to

wireless communication facilities (i.e., base stations) in cellular networks, compensating

for unstable and insufficient EH power supply. Through the optimal energy management

of base stations, we make full use of renewable energy, maximize the system throughput
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or minimize the electricity transaction cost with the grid, while satisfying users’ quality

of service (QoS).

1.1.1 Energy Harvesting

Energy harvesting technology mainly includes three aspects: energy conversion, energy

storage and energy management. Energy conversion uses special materials (e.g., piezo-

electric materials) to sense potential energy changes, and convert the input signal into a

weak energy output. The energy conversion of piezoelectric sensors is the most common

application. Energy storage is to store weak electrical energy through rechargeable bat-

teries or capacitors. Energy management is responsible for the rational use of collected

energy. The following describes the harvesting and storage of environmental energy.

Harvesting of Environmental Energy

With the development of energy technology, the implementation methods of harvesting

environmental energy tend to be diversified. A large number of external energy sources

have potential to be harvested. They are [17]:

- natural (renewable) energy, e.g., wind, water flow, ocean currents and the sun;

- mechanical energy, e.g., vibration, and mechanical stress and strain;

- thermal energy, e.g., waste energy from furnaces, heaters, and friction;

- light energy, e.g., natural and artificial light;

- electromagnetic energy, e.g., inductors, coils and transformers;

- energy from the human body, e.g., a combination of mechanical and thermal energy

naturally generated by people when walking, sitting, climbing and running;

- energy from other sources, such as chemical and biological sources.

However, the amount of energy available for collection in the environment varies over

space and time. Solar energy is available during the day and it vanishes at night. Ur-
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Energy source Power density Advantages Disadvantages

Solar 15 mW/cm3 Sufficient energy in the daytime,

high output voltage 
Disappear at night 

Vibration 200 uW/cm3 Without voltage source Brittle materials

Thermoelectric 40 uW/cm2 Long life, reliable with low

maintenance

Low energy conversion

efficiency

Acoustic noise 960 nW/cm3 High energy conversion efficiency
Rare environments with

high acoustic noise levels 

Airflow 1 mW/cm2 Sufficient in certain place and time Big size 

Radio frequency 1 uW/cm2 Simultaneous wireless information

and power transfer 

Attenuate rapidly over

distance

Figure 1.1: Power densities, advantages, and disadvantages of different energy sources.

ban areas provide radio frequency (RF) energy, while open areas provide wind energy.

Therefore, it is important to select the appropriate energy harvesting method based on

the energy harvesting environment of the communication system. Fig. 1.1 lists the power

densities, advantages, and disadvantages of different energy sources [4].

Fig. 1.2 shows a practical model diagram for EH systems [4]. The energy harvester is

the most important device in the energy harvesting process. It can be an energy conversion

sensor made of a specific material, an integrated chip with energy conversion function,

or an energy conversion circuit composed of different components. The energy harvester

converts ambient energy into electrical energy, which is to be stored in a rechargeable

battery or capacitor (referred to as an energy buffer). A rechargeable battery or capacitor

provides power to the micro-controller and transmitter module. The micro-controller

can manage the entire node, including the supply, information to transmit or receive.

Typically, there is a data storage device called a data buffer storing collected data.

Solar energy is typically harvested by solar panels. According to the size and power

consumption of the equipment in communication systems, the size of the solar panels

equipped can be designed and adjusted [18]. For electronic tags that can communicate
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Figure 1.2: A practical model diagram for EH systems [4].

autonomously, due to the size limitation of the transmitters and the design of low power

consumption, the size of the solar panels equipped must also be reduced, while meeting the

basic power requirements of signal transmission. For large relay base stations, the solar

panels are relatively large in size to provide more power supply and meet the high power

consumption requirements, provided that the deployment of equipment is not affected.

Compared with wind energy, solar energy provides relatively less, but more stable energy

supply, and is easy to predict in the short term. Generally, a communication device with

relatively low reliability requirements can select an independent power supply scheme

based on solar energy provision, along with a rechargeable battery [19].

Wind energy harvesting is the process of converting the energy of air streams, such

as wind, into electrical energy. Wind energy is usually harvested by wind turbines with

appropriate size [20]. Micro wind turbines can generate enough energy to power WSN

nodes [21]. However, the efficient design of small-scale wind energy harvesting still

needs to be studied, which is challenged by low flows, fluctuating wind intensity, and

unpredictable flow sources. In general, the advantage of wind power is that it can provide

sufficient energy more effectively, but the flexibility of its deployment is limited [22].

Wind energy powered communication facilities are usually deployed outdoors, due to the
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characteristics of wind energy harvesting and the limitations of the power generation

units. To meet the reliability requirements, in addition to rechargeable batteries, the

wind energy powered system also consumes energy from traditional power grids in many

cases to compensate for the instability of wind energy. This approach not only reduces

energy costs and negative impacts on the environment, but also guarantees QoS.

RF energy harvesting falls into the category of wireless energy harvesting. It is a

process of converting electromagnetic waves into electrical energy through rectifying an-

tennas. The harvesting of RF energy may come from RF power in the environment such

as radio and television broadcasts, cell phones, wireless communications, and microwaves,

or electromagnetic signals generated from specific wavelengths. As the signal is further

away from the source, the energy is rapidly reduced. Therefore, although there is a large

amount of potential ambient RF power, the energy of existing electromagnetic waves is

very low. In order to efficiently collect RF energy from existing environmental waves, the

harvester must be deployed close to the RF source. Another solution is to use dedicated

RF transmitters or power beacons to generate more powerful electromagnetic signals to

power sensor nodes. This kind of RF energy harvesting can effectively increase power

from microwatts to a few milliwatts, depending on the distance between RF transmitters

and harvesters.

Storage of Environmental Energy

Batteries are often considered as ideal energy storage devices to cope with the instability

of environmental energy. It contains a given amount of energy units. A node operation

(such as sending or receiving a data packet) uses a certain amount of energy units, based

on the energy cost of the operation. After an operation is performed, the remaining

energy in the battery is decreased by the amount of energy required for the operation.

In practice, however, the battery experiences self-discharge. Even batteries that are not
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being used suffer from a charge reduction incurred by internal chemical activity. Moreover,

batteries have (dis)charge efficiency, which is smaller than 1, that is, some energy is lost

during (dis)charging. In addition, batteries have some nonlinear characteristics [23]. They

are: rate-based capacity, that is, as the discharge rate increases, the delivered capacity

of the battery decreases in a nonlinear manner; temperature effect, in that operating

temperature affects battery discharge behavior and directly affects self-discharge rate;

recovery effect, for which if discharge and idle time alternate (pulse discharge), the lifetime

and delivery capacity of a battery will increase. Besides, rechargeable batteries reduce

their capacity during each recharge cycle, and their voltage is dependent on the charging

level of the battery and also varies during discharge. These characteristics should be

properly considered when designing and simulating EH systems.

Different types of batteries have different energy (dis)charge characteristics and self-

discharge loss. Among them, lithium batteries have higher (dis)charge efficiency, generally

up to 95 percent or more; capacitor-based batteries have large self-discharge loss, thus not

suitable for long-term storage of electrical energy; lead-acid batteries can provide large

capacity for energy storage; however, they have high (dis)charge loss [24].

1.1.2 Wireless Sensor Networks

The emerging concept of the Internet of Things (IoT) is considered to be the next techno-

logical revolution, enabling many types of objects, machines and devices to communicate

on an unprecedented scale. WSNs can be seen as an essential part of IoT, because they

help users (people or machines) interact with their environment and react to real-world

events. WSNs are made up of a large number of sensors networked in unattended applica-

tions. These sensors measure environmental conditions and convert these measurements

into signals, to reveal certain features of the area around these sensors.

There are various applications of WSNs. For example, one of the earliest applications
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of WSNs is environmental monitoring, ranging from tracking fauna to monitoring hard-

to-reach areas. WSNs can also be used in military for detecting and tracking snipers,

intruders. In addition, the deployment of WSNs can address the challenges of logistics

management, such as maintaining the quality of the cargo by monitoring the temperature

of the container to improve logistics efficiency.

Furthermore, WSNs can also be used to improve gaming experience by using wearable

and implantable camera sensors to enhance the interaction between the physical world

and the virtual world. Medical and health applications form another important set of

WSNs applications. WSNs enable paramedics to monitor the conditions of patients in

the hospital or at home. Radiation level control, explosive gas level and leakage detection

are also part of the potential safety and emergency applications of WSNs.

As enablers of applications ranging from health control to environmental monitoring,

WSNs have played an important role in multi-hop wireless network research. Research in

this area covers a wide range of topics, and has significant advantages in energy manage-

ment, node hardware, and tracking techniques [25].

Research on WSNs is driven by a common focus: energy efficiency. WSN nodes are

typically powered by batteries. The nodes are usually small in size, and the batteries can

only store limited energy. The energy of the nodes determines the lifetime of the entire

network. The batteries can only be replaced or recharged in very particular applications.

Even though, the replacement or recharging operations are time consuming, expensive,

and can degrade network performance. Therefore, different techniques for slowing down

the depletion of battery energy have been proposed, including power control and the use

of duty cycle-based operation [25].

Power control refers to the proper allocation of available energy by adjusting the

transmission rates of data packets. According to theoretical and practical statistics, most

of energy in sensor nodes is consumed by data transmission. In many modulation coding
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schemes, the transmission power is an increasing convex function with respect to the

transmission rate [26]. This means that to transmit the same amount of data, the energy

consumed at a low rate in a longer period of time is less than the energy consumed at a

high rate. However, data is often delay-sensitive. In order to meet the quality of service

(QoS) requirements, the transmission time cannot be arbitrarily long and should meet

the deadline constraint. Therefore, how to construct data transmission schedules in WSN

links, and make full use of the limited energy in sensor nodes, while meeting the QoS

requirements, is an important and challenging research topic.

Duty cycle-based operation uses the low power modes of wireless transceivers, whose

components can be switched off to save energy. When a node is in low power (or sleep)

mode, its power consumption is much lower than when the transceiver is on. However,

the node cannot transmit or receive data packets while asleep. The duty cycle represents

the ratio between the time when the node is on and the total time when the node is on

and asleep. To enable a long-lasting WSN, adopting a protocol operating at a very low

duty cycle is the primary solution [27]. But this approach has two main drawbacks [25].

1) This approach has an inherent tradeoff between EE and data latency, and

2) battery-powered WSNs cannot meet the requirements of many emerging applications

that require decades or even longer network lifetimes. The presence of battery

leakage can deplete batteries within a few years even if they are rarely used.

Out of these reasons, recent research on long-lasting WSNs has taken a different method,

combining energy harvesters with rechargeable batteries and super capacitors as a key

enabler of WSN operations. EH powered WSNs enable WSN nodes to extract energy

from the surrounding environment. EH subsystems continuously collect energy from the

environment and store it for future use, which enables a long-lasting WSN.

QoS, such as delay and packet error rate, is crucial to data transmission on WSN links.
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Many sensory data are delay intolerant, especially in bushfire or flood monitoring, and

security/safety surveillance applications. Three critical challenges arise in providing QoS

to EH powered wireless transmissions.

• The first critical challenge is to generate QoS-guaranteed transmit schedules, given

the unreliable and unstable power supply of EH. The harvested energy is time-

varying. It can become insufficient to transmit data by their deadlines, if the trans-

missions are inadequately scheduled.

• The second critical challenge is to increase the EE of transmissions, especially in

short-range wireless sensor networks where the energy consumed on the circuits (e.g.,

signal processing, digital-to-analogue conversion, and power amplification) is non-

negligible [28]. It is important to make the insufficient energy meet the transmission

requirement, reducing outage probability and QoS violations.

• The third critical challenge of providing QoS to EH powered transmissions is to

reduce the computational complexity of generating schedules and in turn the en-

ergy consumption [29]. General convex optimization solvers (such as interior point

methods [30]) may not be computationally efficient to solve this specific problem.

Developing low-complexity specialized solvers may be required.

1.1.3 Smart-Grid Powered 5G Cellular Networks

Fifth-generation (5G) cellular networks are anticipated to be densely deployed with a sig-

nificantly reduced coverage area per cell. Along with its reduced per-cell size, the number

of cells will dramatically increase due to the explosively increasing mobile traffic and the

limited availability of high-frequency spectrum [31]. Consequently, the total energy con-

sumption of all base stations (BSs) would be high. It would contribute overwhelmingly to

the operational expenditure of cellular networks, and adversely to global carbon footprint.
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For economical and ecological purposes, an increasing number of BSs are now equipped

with energy harvesting devices, e.g., solar panels or wind turbines. Renewable energy

up to 10,000 KW has been used to power cellular systems, supplementing to persistent

supplies from power grid [32]. Efficient techniques, such as ON/OFF BS switching [33],

online scheduling [1, 34] and power control [35], have been proposed to reduce the power

consumption and delay, or achieve a near-optimal throughput region for energy harvesting

powered users.

While cellular networks are evolving, the revolution of power grid is also under the

way. The next-generation smart grid, equipped with advanced smart meters and control

capability, will be flexible, versatile, and able to support many new functionalities such

as distributed energy generation, two-way energy flows, energy trading and redistribu-

tion, and energy demand management [36]. Traditional energy users, such as cellular

networks, are potentially becoming an integral part of the smart grid, helping generate

and redistribute energy.

From a management and productivity point of view, cellular networks are uniquely

positioned to interoperate with smart grid. In particular, the sheer scale and ubiquity of

cellular networks result in a significant amount of energy, either purchased off the grid or

harvested from ambient environments. The amount is non-negligible to the load of the

entire smart grid. Moreover, the centralized close control of cellular networks resembles

to that of the smart grid. This can provide efficient redistribution of energy, and effective

price negotiation with the smart grid [37].

Fig. 1.3 illustrates the new interoperable framework of 5G and smart grid, where BSs

equipped with energy harvesting devices are connected to the smart grid through smart

meters. The BSs are also connected to the core network (i.e., the gateway and Internet)

through broadband backhaul links using gigabit or carrier-grade Ethernet [38]. Effective

interoperability between 5G and the smart grid is not only feasible, but also important
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Figure 1.3: A new interoperable framework of 5G and smart grid. Two BSs with local

renewable energy harvesting devices and batteries perform two-way energy trading with

the main grid.

to both 5G and the smart grid.

A number of new functionalities become possible under this new interoperable frame-

work.

Two-way energy trading: Cellular BSs, as an integral part of the grid, can purchase

energy off the grid in shortage of renewable energy, and sell energy back to the grid

when renewable energy is in abundance [36]. The abundant renewable energy can be

redistributed through the smart grid for environmental benefits, as well as financial gains

of 5G. This helps balance energy load and relieve pressure on the grid, and hence improve

the reliability of the grid.

Dynamic energy pricing: As a result of intermittent renewable energy and two-way

energy trading, energy prices are expected to exhibit strong dynamics in smart grid. The

dynamic pricing is important to regulate the energy demands, and encourage users such

as 5G networks to consume energy wisely and efficiently. The prices of both selling and



14 Chapter 1. Introduction

10 12 14 16 18 20
0

2

4

6

8

10

12

14

Time Slot

P
ri
c
e
 (

$
/k

W
h
)

 

 

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

H
a
rv

e
s
te

d
 e

n
e
rg

y
 (

k
W

h
)

Long−term buying price
Real−time buying price
Energy harvesting process
Discretized energy harvesting

Figure 1.4: Multiple timescales of energy pricing and harvesting in the interoperable

framework of future 5G and smart grid.

buying energy, fluctuate along the time to reflect the real-time energy demand and supply

availability.

Multi-timescale energy planning: The interoperability of 5G and smart grid needs

to be supported over multiple different timescales, i.e., for grid-energy pricing, energy

harvesting and wireless transmission, as shown in Fig. 1.4. The different timescales are

due to the physical properties of wireless channels and energy harvesting, the time-varying

demand and supply across smart grid, and the marketing strategies of electricity utility

companies.

• The wireless timescale depends on the channel coherence time of typically tens of

milliseconds. The BSs update transmission schedules based on this interval to keep

up with changing wireless channels.

• The smart-grid energy pricing timescales are regulated by the electricity utility com-
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panies, depending on the demand and supply, and marketing strategies. Different

business models and contractual arrangements can be made. Long-term pricing,

lasting for up to days or months, reflects medium-to-long-term demand and supply,

and changes in fuel market. On the other hand, short-term pricing reflects real-time

changes in demand and supply. It can apply the wireless timescale, since wireless

transmissions drive the changes.

• Energy harvesting is typically a slowly-changing continuous process, under current

low energy transfer rate. Nevertheless, harvested energy is buffered in battery and

the time instants transmitter attempts to use battery are discrete. To capture the

real-time changes of energy consumption in wireless transmissions, it is reasonable

to discretize energy harvesting based on the wireless timescale.

Taking these different timescales into account, a foresighted plan of energy usage in ad-

vance will be of significance to reduce the operational cost of 5G networks.

Other new interoperable functionalities between 5G and smart grid include energy- and

spectrum-efficient wireless transmission, energy redistribution, wireless energy transfer,

grid management and control monitoring [39].

In this thesis, we focus on two scenarios in 5G cellular networks: smart-grid pow-

ered multiple-input multiple-output (MIMO) downlink communications, and smart-grid

powered coordinated multi-point (CoMP) communications.

MIMO

MIMO refers to the use of multiple transmit and receive antennas to exploit multipath

propagation, thereby multiplying the capacity of a radio link and improving the communi-

cation quality. MIMO can make full use of space resources, realize multiple transmission

and multiple reception through multiple antennas, and multiply the channel capacity of
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the system without increasing the antenna transmission power or spectrum resources.

MIMO has played an essential part in wireless communication standards, including IEEE

802.11n (Wi-Fi), WiMAX (4G), and Long Term Evolution (LTE 4G).

MIMO can be divided into three main categories: precoding, spatial multiplexing, and

diversity coding.

Precoding narrowly refers to multi-stream beamforming. More generally, it refers to

all spatial processing that occurs at the transmitter. In single-stream beamforming, the

same signals are transmitted from each transmit antenna with proper phase and gain

weighting to maximize the signal power at the receiver input. Beamforming can increase

the gain of the received signals by making signals transmitted from different antennas

add up constructively, and reduce the multipath fading effect. Nevertheless, conventional

beams are primarily characterized by multipath propagation in cellular networks. The

transmit beamforming could not maximize the signal level at all receive antennas at the

same time, when the receiver has multiple antennas. It is usually beneficial to precode

with multiple streams. It is worth noting that precoding needs a-priori knowledge of

channel state information (CSI) at both the transmitter and the receiver.

Spatial multiplexing demands MIMO antenna configuration. In spatial multiplexing,

the high-rate signal is divided into multiple low-rate streams, and each stream is emitted

from a different transmit antenna in the same frequency channel [40, 41]. With accurate

CSI known a priori, the receiver can separate the streams into almost parallel channels,

only if the arrived signals have sufficiently different spatial signatures. Spatial multiplex-

ing is particularly useful to increase channel capacity at higher signal-to-noise ratios. It

can also be used to simultaneously transmit signals to multiple receivers, which is known

as multi-user MIMO. In this case, the transmitter needs CSI [42]. Good separability is

allowed for the scheduling of receivers with different spatial signatures. Spatial multi-

plexing can be implemented without CSI at the transmitter; and can be combined with
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precoding with full knowledge of CSI.

In diversity coding, a single stream is transmitted and encoded using the technique

called space-time coding. The signals are transmitted from each transmit antenna with

either full or near orthogonal coding. Signal diversity is enhanced by diversity coding

exploiting independent fading in multiple antenna links. Diversity coding can be used

without CSI at the transmitter; no beamforming or array gain is produced since there is

no channel information. When certain channel information is available at the transmitter,

diversity encoding and spatial multiplexing can be jointly applied.

Benefiting from technological advances in the smart grid era, next-generation MIMO

communication systems are expected to be powered by RES integrated in the distribu-

tion grid, thus realizing the vision of green communications. However, penetration of

renewables introduces variabilities in the traditional power system, making RES bene-

fits achievable only after appropriately mitigating their inherently high variability, which

challenges existing resource allocation strategies.

CoMP

Currently, the wireless industry is facing the growing demand for data traffic in cel-

lular networks. The performance of point-to-point communication solutions is rapidly

approaching the limits of fundamental information theory. In order to meet this grow-

ing demand, we can increase network coverage and capacity by deploying heterogeneous

networks (HetNets), which consist of small base stations and macro ones [43]. CoMP is

an effective management mechanism for intercell interference in HetNets [44]. In CoMP

systems, BSs are partitioned into multiple clusters, and BSs in the same cluster serve

the users by emitting coordinated beamforming [45–47]. BSs communicate with each

other through the backhaul link to limit intercell interference and take full advantage

of the benefits of distributed multi-antenna systems, leading to the increase of network



18 Chapter 1. Introduction

throughput.

CoMP can effectively eliminate co-channel interference between cells by sharing some

necessary information between BSs. According to whether users’ information is shared

between BSs, CoMP can be classified into two categories: joint processing/transmission

(JP/JT) and coordinated scheduling/beamforming (CS/CB).

• JP/JT: BSs in the same cluster share channel information and users’ information

at the same time, and perform joint pre-processing on users’ data to reduce the

interference between BSs. In this way, BSs within the entire cluster serve one or

more users simultaneously.

• CS/CB: BSs in the same cluster can properly allocate the resources of systems by

cooperation, and try to avoid the conflicts between the resources used by cell edge

users in time and frequency. In this way, BSs within the cluster only need to share

channel information, and each serves its respective users.

Green CoMP communication pursue energy efficient transmission and economical and

environmentally friendly operation mode of BSs. It is a crucial means to achieve EE

and resource optimization. Combining smart grid technology to optimize the resource

allocation of green CoMP communication is a new method to improve the performance

of wireless communications.

1.2 Previous Work

1.2.1 EH-powered WSN communications

Some recent works have been conducted in EH powered wireless links [48–57], but none of

them addresses the three challenges of QoS provision, energy efficiency, and computational

complexity, altogether. The works [48–55] were all focused on delay-tolerant traffic, thus
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cannot provide QoS to delay-intolerant applications in practical systems. In [48, 49], the

optimal schedules were generated to maximize the delay-tolerant throughput of an EH

powered wireless link with negligible circuit power in time-invariant channels. In [50],

a directional water-filling approach was proposed to maximize the throughput in time-

varying channels. In [51], an “on-off” transmit schedule was developed to maximize the

throughput of delay-tolerant traffic over a static point-to-point channel with non-ideal

circuit power consumption. Later, extensions to time-varying channels were carried out

in [52, 53]. Asymptotically optimal resource allocation was developed to maximize the

throughput of delay-tolerant traffic for EH point-to-point link, where symbols could be

transmitted through several parallel independent streams in [54]. In [55], a game theoretic

approach was proposed to distribute the EH power of a relay among multiple source-

destination pairs, which improved the trade-off between the outage of delay-tolerant traffic

and system complexity for wireless cooperative networks.

In a different context from our research, there are recent works focused on energy

efficient transmissions of delay-sensitive traffic in systems with persistent power supply,

such as [58,59]. In [58], a “string tautening” algorithm was proposed to produce the most

energy-efficient schedule for delay-limited traffic, where the circuit power was assumed to

be negligible. Given the persistent and sufficient power supply, the optimal schedule was

generated by tautening a string between the static staircase curves of the data amount

that can be transmitted by any instant and that must be transmitted by then. In [59],

the algorithm was extended to the case of non-negligible circuit power. However, it is

non-trivial to extend these string tautening algorithms to EH systems, where unreliable

and insufficient power supply can stop the data being transmitted before deadline (as is

never experienced with persistent power supplies). Transmissions powered by EH also

undergo dependence among the data amount transmitted across the schedule. Every

instant a transmit rate is decided, the remaining (insufficient) energy for the rest of the
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schedule can change, and so do the data that can be transmitted at future instants. None

of the existing string tautening algorithms can deal with the dependence. More works

also include [60–63], which assumed persistent power supplies and cannot apply to EH

powered systems.

1.2.2 Smart-grid powered MIMO downlink communications

Assuming that transmitters are powered by harvesting RES, [64–67] investigated optimal

resource allocation strategies to maximize the total throughput of broadcast channels.

Without considering energy storage units in a simplified smart-grid model, recent works

pursued energy-efficient resource allocation for coordinated downlink transmissions in

cellular networks [37, 68, 69]. Building on practical smart-grid models, our recent works

in [70,71] developed energy management and transmit-beamforming designs to minimize

the energy transaction cost subject to user quality-of-service (QoS) guarantees of coordi-

nated cellular downlinks. However, none of these works addressed the impact of smart-

grid capabilities on the fundamentally achievable rate limits for the broadcast (downlink)

channels in cellular networks.

Since MIMO techniques are well-documented boosters of spectrum efficiency, we are

particularly interested in optimal resource allocation for smart-grid powered MIMO down-

link transmissions to approach the fundamental rate limits in future cellular networks. In

this context, assuming that the random RES generation lies in a deterministic uncertainty

region, offline robust rate-maximizing resource management over a finite time horizon was

pursued in [72]. However, the approach in [72] is applicable only if future information of

energy prices is perfectly known, and the scheduling time horizon is fairly small. Its com-

putational complexity will become prohibitively high as the scheduling horizon increases.
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1.2.3 Smart-grid powered CoMP communications

A few recent works have considered the smart-grid powered CoMP transmissions [37,69–

71]. Assuming that the energy harvested from RES is accurately available a priori through

e.g., forecasting, [69] and [37] considered the energy-efficient resource allocation for RES-

powered CoMP downlinks. Building on realistic models, our recent work dealt with

robust energy management and transmit-beamforming designs that minimize the worst-

case energy transaction cost for the CoMP downlink with RES and DSM [70]. Leveraging

novel stochastic optimization tools [73–75], we further developed an efficient approach to

obtain a feasible and asymptotically optimal online control scheme for smart-grid powered

CoMP systems, without knowing the distributions of involved random variables [71].

A salient assumption in [37, 69–71] is that all involved resource allocation tasks are

performed in a single time scale. However, RES and wireless channel dynamics typically

evolve over different time scales in practice. Development of two-scale control schemes

is then well motivated for CoMP systems with RES. In related contexts, a few stochas-

tic optimization based two-scale control schemes were recently proposed and analyzed

in [76–79]. Extending the traditional Lyapunov optimization approach [73–75], [76] in-

troduced a two-scale control algorithm that makes distributed routing and server man-

agement decisions to reduce power cost for large-scale data centers. Based on a similar

approach, [77] developed a so-called MultiGreen algorithm for data centers, which allows

cloud service providers to make energy transactions at two time scales for minimum op-

erational cost. As far as wireless communications are concerned, [78] performed joint

precoder assignment, user association, and channel resource scheduling for HetNets with

non-ideal backhaul; while [79] introduced a two-timescale approach for network selection

and subchannel allocation for integrated cellular and Wi-Fi networks with an emphasis on

using predictive future information. Note that, neither [78] nor [79] considers the diversity

of energy prices in fast/slow-timescale energy markets, and the energy leakage effects in
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the energy management task.

1.3 Contributions of the Thesis

The main contributions of this thesis can be summarized as follows.

1.3.1 A new dynamic string tautening algorithm for WSN links

• In Chapter 2 [1], we consider the new scenario of EH powered transmission of data

packets with strict deadlines, where the new challenge of unreliable power supply is

imposed .

• A new DST algorithm is developed to generate the optimal transmit schedule in

a computationally efficient, graphical manner by recursively updating the energy

constraint curve on-the-go. The visualization of DST algorithm is illustrated in

Fig. 2.1.

• A well-structured on-line scheme is proposed based on DST algorithm in Section

2.5, which follows the optimal rules that we develop, and produces the transmit

schedule in real-time without a-priori knowledge on the data or energy arrivals.

1.3.2 A novel stochastic subgradient based online control ap-

proach for MIMO downlinks

• In Chapter 3 [2]1, targeting a ‘sweet spot’ of spectrum and cost efficiency, we formu-

late the stochastic online resource allocation task for a smart-grid powered MIMO

1Note that the content of Chapter 3 has been published in [2], of which the author of this thesis is the

3rd author listed on the paper. The work presented in this chapter, and in [2], was done collaboratively

and the author of this thesis contributed to all parts. In particular the main technical contributions

individually made by this thesis author were the derivation of the conditions to ensure feasibility of the
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downlink as an infinite horizon optimization problem in (3.6), which maximizes the

time-average (weighted) throughput, subject to a time-average energy cost budget.

• Adopting the so-termed “virtual queue” relaxation techniques in [71, 73, 74], we

decouple the optimization variables across the infinite time horizon, and reformulate

the problem as a state-independent stochastic programming. Then leveraging the

dual relaxation and stochastic approximation methods, we develop a novel online

control algorithm in Section 3.3.

• Different from [71, 73], and [74], where only one virtual queue, or, multiple inde-

pendent queues are accounted for, the considered energy cost budget and battery

energy level (two virtual queues) are actually correlated under the designed problem

structure (as shown in (3.17)), which challenges the design of appropriate algorithm

parameters and initializations to guarantee system feasibility.

• Facing this difficulty, we generalize the performance analysis in [71, 73], and [74]

to derive additional conditions that ensure feasibility of the proposed algorithm

(Lemmas 3-5 and Remark 1), and rigorously establish asymptotic optimality under

the i.i.d. assumption for the random processes involved.

• Though the analytical claim relies on the i.i.d. assumption for the underlying ran-

dom processes, extensive numerical tests are performed in Section 3.4, using both

i.i.d. and non i.i.d. data to demonstrate that the proposed algorithm also works

well when the underlying random process is highly correlated over time.

proposed algorithm, and performing all the simulations in [2]. Although the thesis author was only listed

third in the author list in [2], the work in [2] is included in this thesis as the thesis author did make

significant and important contributions, and the paper investigated energy management for smart-grid

powered CoMP systems with RES, which is directly integral to the theme of this thesis.
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1.3.3 A novel two-scale online control approach for CoMP sys-

tems

• In Chapter 4 [3], leveraging the ahead-of-time and real-time electricity markets, and

building on our generalized system models in [70,71], a novel two-scale optimization

framework is developed to facilitate the dynamic resource management for smart-

grid powered CoMP systems with RES and channel dynamics at different time

scales.

• While [71,76] and [77] do not account for battery degeneration (energy leakage), we

integrate the modified Lyapunov optimization technique into the two-scale stochas-

tic optimization approach to leverage the diversity of energy prices along with the

energy leakage effects on the dynamic energy management task in Section 4.3.1.

• Using only past channel and energy-price realizations, a novel stochastic subgradient

approach is developed in Section 4.3.3 to solve the ahead-of-time energy planning

(sub-)problem, which is suitable for a general family of continuous distributions, and

avoids constructing the histogram estimate which is computationally cumbersome,

especially for high-dimensional vector of random optimization variables.

• Rigorous analysis is presented in Section 4.4 to justify the feasibility and quantify

the optimality gap for the proposed two-scale online control algorithm.

1.3.4 Other non-trivial contributions

In addition to the main contributions, there are other non-trivial contributions listed as

follows:

1. A new interoperable framework of 5G and smart grid is illustrated in Fig. 1.1,

where BSs equipped with energy harvesting devices are connected to the smart grid
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through smart meters. The BSs are also connected to the core network (i.e., the

gateway and Internet) through broadband backhaul links using gigabit or carrier-

grade Ethernet.

2. In Chapter 2, the original non-convex problem is reformulated into a convex program

through a series of changes of variables, as shown in (2.4).

3. Lemmas 1 and 2 show the two key findings that determine the pattern of the optimal

transmit rate for EH powered WSN links.

4. Figs. 2.2 and 2.3 validate the optimality of our proposed algorithms from the per-

spectives of packet drop rate and total energy consumption, and also reveal that

the circuit power consumption can have significant impact on the optimal transmit

schedules.

5. Fig. 2.4 shows that the proposed off-line and on-line algorithms, i.e., Algorithms 1

and 2, only require about 3.7% and 1.6% of the CPU time that the standard CVX

toolbox requires for large T values, respectively.

6. In Chapter 3, to construct a tractable problem, the BC capacity region can be

alternatively characterized by the capacity regions of a set of “dual” multi-access

channels (MACs) by using the information-theoretic uplink-downlink duality, as

shown in (3.7).

7. Fig. 3.2 shows that ALGs 1 and 2 incur about 3.0% and 13.3% smaller throughputs

than the proposed SGOC algorithm.

8. Fig. 3.6 shows that the transmission-related power follows the opposite trend to the

fluctuation of energy purchase price.
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9. In Chapter 4, derived from the feasibility requirement of the proposed algorithm, the

maximum and minimum values of the queue perturbation parameter Γ and weight

parameter V are given in (4.16)-(4.18).

10. In Chapter 4, we derive Proposition 2 which asserts that the proposed TS-OC algo-

rithm converges to a region with a upper-bounded optimality gap. The optimality

gap between the TS-OC and the offline optimal scheduling first decreases and then

increases with the growth of the battery capacity, as depicted in Fig. 4.4.

11. Fig. 4.3 shows that the time-average transaction costs of ALGs 1 and 2 are about

71% and 31% larger than the proposed TS-OC algorithm, respectively.

12. Fig. 4.6 reveals that with a smaller storage efficiency, the TS-OC algorithm tends

to maintain a lower energy level to reduce average energy loss, and (dis)charge the

battery less frequently.

1.4 Organization of the Thesis

In Chapter 2, a new “dynamic string tautening” algorithm is proposed for data trans-

mission on EH-powered WSN links. The proposed algorithm generates the most energy-

efficient offline schedule for delay-limited traffic of transmitters with non-negligible circuit

power. The algorithm is based on two key findings that we derive through judicious con-

vex formulation and resultant optimality conditions, specifies a set of simple but optimal

rules, and generates the optimal schedule with a low complexity of O(N2) in the worst

case. The proposed algorithm is also extended to on-line scenarios, where the transmit

schedule is generated on-the-fly. Simulations show that the proposed algorithm requires

substantially lower average complexity by almost two orders of magnitude to retain opti-

mality than general convex solvers. The effective transmit region, specified by the trade-off



1.4. Organization of the Thesis 27

of the data arrival rate and the energy harvesting rate, is substantially larger using our

algorithm than using other existing alternatives. Significantly more data or less energy

can be supported in the proposed algorithm.

In Chapter 3, an infinite time-horizon resource allocation problem is formulated to

maximize the time-average downlink throughput for smart-grid powered MIMO, subject

to a time-average energy cost budget. By using the advanced time decoupling technique,

a novel stochastic subgradient based online control (SGOC) approach is developed for

the resultant smart-grid powered communication system. It is established analytically

that even without a-priori knowledge of the independently and identically distributed

(i.i.d.) processes involved such as channel coefficients, renewables and electricity prices,

the proposed online control algorithm is still able to yield a feasible and asymptotically

optimal solution. Numerical results further demonstrate that the proposed algorithm also

works well in non i.i.d. scenarios, where the underlying randomness is highly correlated

over time.

In Chapter 4, a novel two-scale stochastic control framework is put forth for smart-

grid powered CoMP systems. Considering RES, dynamic pricing, two-way energy trading

facilities and imperfect energy storage devices, the energy management task is formulated

as an infinite horizon optimization problem minimizing the time-averaged energy transac-

tion cost, subject to the users’ QoS requirements. Leveraging the Lyapunov optimization

approach as well as the stochastic subgradient method, a two-scale online control (TS-

OC) approach is developed for the resultant smart- grid powered CoMP systems. Using

only historical data, the proposed TS-OC makes online control decisions at two timescales,

and features a provably feasible and asymptotically near-optimal solution. Numerical tests

further corroborate the theoretical analysis, and demonstrate the merits of the proposed

approach.
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Chapter 2

Provisioning quality-of-service to

EH-powered WSN communications

2.1 Introduction

Energy harvesting (EH) is a process of capturing and converting ambient energy (e.g.,

solar, wind and thermal energy) into usable electrical energy [80]. In wireless communica-

tion systems, environmental EH is a critical component to build self-sustainable networks,

such as wireless sensor networks in remote human-unfriendly environments [29]. On the

other hand, Quality-of-Service (QoS), such as delay and packet error rate, is crucial to

many wireless applications [29, 81]. Many sensory data are delay intolerant, especially in

bushfire or flood monitoring, and security/safety surveillance applications.

In this chapter, we propose a new Dynamic String Tautening (DST) algorithm, which

jointly addresses the three critical challenges altogether and generates the most energy-

efficient off-line schedule for delay-limited traffic of transmitters with non-negligible circuit

power. While [48–55] aimed to maximize the throughput of delay-tolerant traffic under

the assumption that data were always available, here we consider the EH powered trans-

29
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mission of delay-sensitive packets that arrive in bursts and need to be delivered before

strict deadlines. Our algorithm is based on two key findings that we derive through judi-

cious convex formulation and resultant optimality conditions. The findings are visualized

and interpreted as a set of rules which guide us to generate the optimal schedule in a com-

putationally efficient, graphical manner by tautening a transmit string in a recursively

updated solution region. The optimal transmit schedule here can be produced with a low

computational complexity (which is O(N2) in the worst case, where N is the number of

instants within a schedule).

Given the optimality and reduced complexity of the algorithm, we further extend

it to on-line scenarios, where the transmit schedule is generated on-the-fly. Simulation

results show that our proposed algorithm requires substantially lower average complexity

(i.e., less energy) to retain optimality than the standard convex programming methods,

reducing the CPU running time by almost two orders of magnitude. As a result, the

effective transmit region, specified by the data arrival rate and the EH rate, is substantially

larger using our algorithm than using general convex solvers. In other words, significantly

more data or less energy can be supported in the proposed algorithm.

In our earlier work [5], the transmit schedule was optimized for delay-limited traffic

of EH powered links with negligible circuit power. The new algorithm proposed in this

chapter is substantially different, because the consideration of non-ideal circuit power

consumption results in a different optimization problem and hence the distinct structure

of the optimal schedule. When compared to the proposed algorithm, a significant loss of

data and energy efficiency could occur when the schedule generated in [5] is applied in the

case of non-ideal circuit power consumption (as will be shown in Section 3.4). In [82], we

gave a brief introduction on the concept of the new algorithm without providing technical

details. In this chapter, the full technical details are provided, and the optimality is

rigorously proved. Moreover, this chapter also extends the algorithm to generate an on-



2.2. System Model 31

line transmit schedule on-the-fly.

The rest of the chapter is organized as follows. In Section 2.2, the system model

is described. In Section 2.3, the convex optimization problem is formulated and the

two key insightful findings are derived. In Section 2.4, the proposed DST algorithm is

elaborated on, which produces the optimal off-line schedule for delay-sensitive bursty

data. In Section 2.5, the proposed algorithm is extended to practical on-line scenarios.

In Section 2.6, simulations are carried out to validate the optimality of our algorithm and

its superiority of reduced complexity, followed by conclusions in Section 2.7.

2.2 System Model

Consider a time-invariant wireless link, where the transmitter is powered by EH. Let Emax

denote the capacity of the rechargeable battery at the transmitter. The channel coefficient

of the wireless link is denoted by h, and the transmit rate of the link is r. The additive

white Gaussian noise (AWGN) is assumed to have unit variance at the receiver.

Our discussion is focused on a time period [0, T ], over which there are (N + 1) time

instants: 0 = t0 < t1 < t2 < · · · < tN = T . We refer to the interval between two

consecutive time instants as an epoch; the duration of the ith epoch is Li = ti − ti−1,

i = 1, · · · , N .

At each time instant ti (i = 0, 1, · · · , N), new energy is harvested, or new bursty

data are collected, or strict deadlines of the collected data are reached at the trans-

mitter. The amount of the harvested energy, the collected data, and the data whose

deadlines are reached can be written respectively as sequences {E0, E1, E2, · · · , EN−1, 0},

{A0, A1, A2, · · · , AN−1, 0}, and {0, D1, D2, · · · , DN−1, DN}, corresponding to the time in-

stants {t0, t1, t2, · · · , tN−1, tN}. Ei ≥ 0 is the energy harvested at ti; Ai ≥ 0 is the number

of packets collected at ti; Di ≥ 0 is the number of packets that must be transmitted
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by ti. E0 and A0 are the initial energy level and the initial number of packets at the

transmitter. Note that we consider the optimal schedule for the general case where the

packets can have different delay requirements, i.e., the packets are of different traffic types

or for different applications. Whenever new packets arrive, the transmitter may need to

re-shuffle the packets in the buffer to ensure that the packets with more stringent dead-

lines are placed head-of-line. For the special case that all the packets have the same delay

requirements, such reshuffling becomes unnecessary and the data queue simply operates

in a first-in-first-out manner.

We set EN = AN = 0, as any energy harvested or data collected at tN cannot be dealt

with during the current time period of [0, T ] and will be used to initialize the next time

period. Also, it is clear that
∑N−1

i=0 Ai =
∑N

i=1Di. In other words, the total number of

packets required to deliver is equal to that of arrived packets.

2.3 Convex Formulation and Resultant Optimality

Conditions

In this section, we mathematically characterize the optimal transmit schedule under the

ideal (impractical) assumption that the arrival processes of data and energy are known

a priori to the transmitter. The variables li and ri (i = 1, · · · , N) are to be optimized,

where li ∈ [0, Li] is the duration that the transmitter is on during epoch i and ri is the

transmit rate associated with li.

The way of our interpreting the optimal schedule is new. It involves formulating the

convex optimization problem and rigorously proving that the optimal solution can be

directly constructed based on the resultant optimality conditions. This lays foundation

to a new simple and efficient on-line scheduling algorithm in practical scenarios where the

data arrivals and energy collections are unknown a priori, as will be described in Sections
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2.4 and 2.5.

First, the total power Ptotal consumed by the transmitter can be given by [51,60]:

Ptotal =


P
η

+ ρ, P > 0,

β, P = 0,
(2.1)

where ρ denotes the circuit power consumption when the transmitter is transmitting (i.e.,

in an “on” mode), β the circuit power consumption when the transmitter is idle (i.e., in

an “off” mode) and η the efficiency of the RF chain at the transmitter. For specificity,

the transmit power P is given by

P (r) =
1

|h|2
(er − 1), (2.2)

where r is the instantaneous data rate of the wireless link.1 We assume ρ > 0 and β = 0

without loss of generality, since ρ � β in practical systems [60]. We also assume η = 1,

as η is just a scaling factor.

Given that P (r) is convex, it was proved that the transmit rate over the “on” period

li of each epoch i, ri, should remain unchanged in the optimal schedule [51]. The problem

of interest becomes to find the optimal pairs of (ri, li), i = 1, · · · , N , to minimize the

total energy consumed to deliver data packets by their deadlines. The problem can be

formulated as

min
r,l

N∑
i=1

{[P (ri) + ρ]li}

s.t. ri ≥ 0, 0 ≤ li ≤ Li, ∀i;

(C1) :
n∑
i=1

rili ≤
n−1∑
i=0

Ai;

(C2) :
n∑
i=1

rili ≥
n∑
i=1

Di;

(C3) :
n∑
i=1

{[P (ri) + ρ]li} ≤
n−1∑
i=0

Ei;

(n = 1, · · · , N),

(2.3)

1The proposed approach applies to any other convex power functions.
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where r := {r1, r2, . . . , rN} collects the transmit rates during the “on” periods of the

epochs, and l := {l1, l2, . . . , lN} collects the durations of the “on” periods of the epochs.

Here, (C1) presents the data causality constraints: the number of packets
∑n

i=1(rili)

transmitted up to any time tn cannot exceed the number of available packets
∑n−1

i=0 Ai at

the transmitter’s buffer. (C2) presents the deadline constraints:
∑n

i=1(rili) must be no

less than the data required to be transmitted to meet their deadlines, i.e.,
∑n

i=1Di. (C3)

presents the energy causality constraints: the total amount of energy
∑n

i=1 {[P (ri) + ρ]li}

consumed up to any time tn must be no greater than
∑n−1

i=0 Ei that has been harvested

and accumulated in the battery so far.

Clearly, (2.3) is not convex or concave, because neither of rili and P (ri)li is convex

or concave with respect to (ri, li). Yet, it can be reformulated into a convex program

through a series of changes of variables. Define Φi := rili and Φ := {Φ1,Φ2, . . . ,ΦN}. We

can rewrite (2.3) into

min
Φ,l

N∑
i=1

{[P (
Φi

li
) + ρ]li}

s.t. Φi ≥ 0, 0 ≤ li ≤ Li, ∀i,
n∑
i=1

Φi ≤
n−1∑
i=0

Ai,

n∑
i=1

Φi ≥
n∑
i=1

Di,

n∑
i=1

{[P (
Φi

li
) + ρ]li} ≤

n−1∑
i=0

Ei;

(n = 1, · · · , N).

(2.4)

where we have P (Φi
li

)li = 0 if li = 0. For any convex P (ri), P (Φi
li

)li is called its perspective,

and is a convex function of (Φi, li) [83]. As a result, (2.4) is a convex problem.

Let Λ := {λcn, λdn, µcn, n = 1, . . . , N} where λcn, λdn, and µcn are the Lagrange multipliers

associated with the data causality, deadline and energy causality constraints, respectively.
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The Lagrangian of (2.4) is given by

L(r, l,Λ) =
N∑
i=1

{[P (
Φi

li
) + ρ]li}+

N∑
n=1

λcn(
n∑
i=1

Φi −
n−1∑
i=0

Ai)

+
N∑
n=1

λdn(
n∑
i=1

Di −
n∑
i=1

Φi)

+
N∑
n=1

µcn{
n∑
i=1

{[P (
Φi

li
) + ρ]li} −

n−1∑
i=0

Ei}

= C(Λ) +
N∑
i=1

{{[P (
Φi

li
) + ρ]li}(1 +

N∑
n=i

µcn)

− Φi(
N∑
n=i

λdn −
N∑
n=i

λcn)},

where C(Λ) := −
∑N

n=1 λ
c
n(
∑n−1

i=0 Ai) +
∑N

n=1 λ
d
n× (

∑n
i=1 Di) −

∑N
n=1 µ

c
n(
∑n−1

i=0 Ei) for

notation simplicity.

Let (Φ∗, l∗) denote the optimal solution for (2.4), and Λ∗ the optimal Lagrange mul-

tiplier vector for its dual problem. Also define per epoch i:

wi :=
N∑
n=i

[(λdn)∗ − (λcn)∗]/[1 +
N∑
n=i

(µcn)∗]. (2.5)

Then the sufficient and necessary Karush-Kuhn-Tucker (KKT) optimality conditions for

(2.4) dictate that [84]: ∀i,

(Φ∗i , l
∗
i ) = arg min

Φi≥0, 0≤li≤Li
{[P (

Φi

li
) + ρ]li − wiΦi}; (2.6)

and the non-negative (λcn)∗, (λdn)∗ and (µcn)∗ satisfy the complementary slackness condi-

tions: ∀n,  (λcn)∗ = 0, if
∑n

i=1 Φ∗i <
∑n−1

i=0 Ai;∑n
i=1 Φ∗i =

∑n−1
i=0 Ai, if (λcn)∗ > 0;

(2.7)

 (λdn)∗ = 0, if
∑n

i=1 Φ∗i >
∑n

i=1Di;∑n
i=1 Φ∗i =

∑n
i=1 Di, if (λdn)∗ > 0;

(2.8)
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∑n

i=1 {[P (Φi
li

) + ρ]li} <
∑n−1

i=0 Ei;∑n
i=1 {[P (Φi

li
) + ρ]li} =

∑n−1
i=0 Ei, if (µcn)∗ > 0.

(2.9)

For any i, we let r∗i =
Φ∗i
l∗i

if l∗i > 0, and allow r∗i to take an arbitrary non-negative

value if l∗i = 0. It is obvious that (r∗, l∗) is the optimal solution to (2.3).

From (2.6)–(2.9), we can establish the sufficient and necessary optimality conditions

for (2.3), as given by

(r∗i , l
∗
i ) = arg min

ri≥0, 0≤li≤Li
[P (ri) + ρ− wiri]li (2.10)

 (λcn)∗ = 0, if
∑n

i=1(rili) <
∑n−1

i=0 Ai,∑n
i=1(rili) =

∑n−1
i=0 Ai, if (λcn)∗ > 0;

(2.11)

 (λdn)∗ = 0, if
∑n

i=1(rili) >
∑n

i=1Di,∑n
i=1(rili) =

∑n
i=1 Di, if (λdn)∗ > 0;

(2.12)

 (µcn)∗ = 0, if
∑n

i=1 {[P (ri) + ρ]li} <
∑n−1

i=0 Ei,∑n
i=1 {[P (ri) + ρ]li} =

∑n−1
i=0 Ei, if (µcn)∗ > 0.

(2.13)

For any given li > 0, from (2.10) we can have the optimal transmit rate r∗i , as given

by

r∗i = arg min
ri≥0

[P (ri) + ρ− wiri]. (2.14)

As P (ri) is strictly convex and increasing, this is equivalent to: P ′(r∗i ) = wi, where P ′(·)

denotes the first derivative of function P (·).

Substituting P ′(r∗i ) = wi into (2.10), we can have

l∗i = arg min
0≤li≤Li

[P (r∗i ) + ρ− P ′(r∗i )r∗i ]li, (2.15)

which is the optimal duration of the “on” period per epoch i.

The followings are two key findings derived from (2.14) and (2.15).
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Lemma 1. The optimal schedule for (2.3) can only adopt one of the following three

strategies per epoch i: (i) l∗i = 0 (i.e., “off”), (ii) r∗i = ree and l∗i ≤ Li (i.e., “first-on-

then-off” or “on-off” for short), or (iii) r∗i > ree and l∗i = Li (i.e., “on”). Specifically, ree

is the bits-per-Joule EE-maximizing rate, i.e.,

ree = arg max
r≥0

r

P (r) + ρ
, (2.16)

and can be efficiently obtained through a bisectional search [51], because r
P (r)+ρ

is (concave-

over-linear) quasi-concave.

Proof. See Appendix A.0.1.

Lemma 1 shows that any transmit rate ri < ree should not be adopted in the optimal

schedule. In fact, since ree maximizes the bits-per-Joule EE, a transmission strategy with

an ri < ree over an epoch is always dominated by an on-off transmission with ree, which

can use less energy to deliver the same data amount. Only when the data deadlines are

strict (i.e., no further delay is allowed) should we adopt an r∗i > ree; in this case, the

transmitter should be always on, i.e., l∗i = Li, over epoch i.

Let P ′−1(·) denote the inverse function of P ′(·). If l∗i > 0, we can obtain from (2.14)

that

r∗i = arg min
ri≥0

[P (ri) + ρ− wiri] := P ′−1(wi)

= log(|h|2wi)
(2.17)

which is an increasing function of wi.

Given (2.17) and (2.11)–(2.13), we establish the following structure of the optimal

transmit schedule, as stated in Lemma 2.

Lemma 2. In the optimal schedule for (2.3), the transmit rate r∗i only changes at tn on

which the data causality, deadline or energy causality constraints are met with equality.

Specifically, r∗i increases after tn with
∑n

i=1(r∗i l
∗
i ) =

∑n−1
i=0 Ai or

∑n
i=1{[P (r∗i ) + ρ]l∗i } =∑n−1

i=0 Ei, and decreases after tn with
∑n

i=1(r∗i l
∗
i ) =

∑n
i=1Di.
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Proof. See Appendix A.0.2.

Lemma 2 shows that the optimal transmit rate of the EH powered transmitter changes,

if and only if the constraints take effect. Otherwise, the transmit rate should be main-

tained constant to minimize the energy consumption.

Note that this optimal off-line schedule could be obtained using standard convex pro-

gramming methods. However, general convex solvers (e.g., the interior point methods)

would require much higher complexity, which, in turn, compromises the optimality of the

schedule by increasing power consumption on the circuit. Details will be provided in Sec-

tion 2.6. In addition, no key findings would be observed to guide the design of practical

on-line scheduling, if a standard convex programming solver is adopted.

2.4 Proposed Optimal Off-line Dynamic String Taut-

ening Algorithm

In this section, we propose a new DST algorithm, which produces the optimal schedule for

delay-sensitive data over EH powered wireless links, given the a-priori knowledge on Ei, Ai

and Di (i = 0, · · · , N). Based on the key results of the mathematical characterization in

Section 2.3, the algorithm provides the energy consumption lower bound for EH powered

wireless links. It will also be extended to play a key role in practical on-line operations

where the a-priori knowledge is absent, as will be described in Section 2.5.

2.4.1 Visualization of Dynamic String Tautening

Fig. 2.1 illustrates our proposed DST process, where the data arrival curve Ad(t) plots the

amount of data generated for transmission and the deadline (minimum data departure)

curve Dmin(t) plots the amount of data reaching their deadlines. Ad(t) and Dmin(t) can
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Figure 2.1: An illustrative example of the proposed DST method and the achieved optimal

transmission schedule.

be written as

Ad(t) =
N−1∑
i=0

[Aiu(t− ti)], (2.18)

Dmin(t) =
N∑
i=1

[Diu(t− ti)], (2.19)

where 0 ≤ t ≤ T and u(t) is the unit-step function. Ad(t) and Dmin(t) are plotted in

the very beginning and fixed, prior to the string tautening process, similar to the existing

string tautening algorithm [61].

There are a series of energy curves, sequentially produced from left to right. Each

curve plots the maximum amount of data that can be transmitted at future instants,

given both the energy harvested and the data transmitted so far. The energy curves are

plotted as follows.

At an instant tτ where the transmit rate changes, a new energy curve starting from

tτ is generated tentatively by assuming that the transmitter remains “on” over all the
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remaining unscheduled epochs, as given by

Aeτ (t) =
N−1∑
i=τ

[
(rei+1

i+1∑
n=τ+1

Ln − rei
i∑

n=τ+1

Ln)u(t− ti)
]
, (2.20)

where rei > 0 satisfies
∑i

k=τ+1{[P (rei ) + ρ]Lk} =
∑i−1

k=τ ek, or rei = 0, with eτ being the

residual energy in the battery by instant tτ , and ek = Ek for k = τ + 1, · · · , N .

The Aeτ (t) curve of (2.20) may not be exact, as the optimal transmit rate r∗τ+1 that

is yet to be determined for the epoch beginning at tτ may differ from reτ+1. The curve

may need to be adjusted once the optimal transmit rate is determined; and in turn, it can

affect the duration of the transmission with the optimal rate. Details will be provided

later.

The Ad(t), Dmin(t), and Aeτ (t) curves specify the (tentative) closed feasible solution

region for the transmit rate. Specifically, the Ad(t) and Aeτ (t) curves provide the upper

boundary of the region, and the Dmin(t) curve provides the lower boundary, as shown in

the figure.

We can generate the optimal data departure curve D∗(t) whose slopes present the

optimal transmit rates r∗i , within the feasible solution region, yielding the following rules.

1. Connect the origin (0, 0) and the rightmost joint of the Ad(t) and Dmin(t) curves

with a string, and tauten the string tight so that it only bends at the corners.

2. Compare the slope of the lowest straight segment of the string to ree.

(a) If the slope is no less than ree, set the right end of the segment to be the left

end of a new string.

(b) If the slope is less than ree,

i. shift the right end of the segment leftwards along the Ad(t) or Aeτ (t) curve,

and tauten the segment until it intersects the Ad(t) or Aeτ (t) curve with the

slope of ree. If the segment bends at a corner and becomes two segments,



2.4. Proposed Optimal Off-line Dynamic String Tautening Algorithm 41

repeat 2b-i) on the lower of the two segments, until the lower segment is

unbent.

ii. Update the Aeτ (t) curve for the case where the lowest unbent segment

adopts the “on-off” mode (ree is adopted), and update the lowest segment

accordingly (i.e., if the segment intersects the Aeτ (t) curve, it needs to be

updated to intersect the updated Aeτ (t) curve).

iii. Set the corner right to the lowest unbent segment to be the left end of a

new string.

3. Tauten the new string to the rightmost joint of the Ad(t) and Dmin(t) curves, and

repeat 2) on the lowest straight segment of the new string.

Rules 1 and 3 are designed to satisfy Lemma 2, because a string tautening process

(as described in the rules) can guarantee that the slope of the string increases after the

string bends around a corner of the upper boundary of the feasible solution region, and

decreases after bending around the corner of the lower boundary; refer to instants 5 and

6 in Fig. 2.1.

Rule 2a is based on both Lemma 1 (that r∗i ≥ ree) and Lemma 2 (that the optimal

transmit rate keeps unchanged, until the data/energy causality constraint is met with

equality and the rate increases; or the deadline constraint is met with equality and the

rate decreases). The rule is optimal because it is able to meet the constraints in the most

energy efficient way. For the epochs with Φ = r∗iLi ≥ reeLi, any “on-off” strategy (ri, li)

with ri > r∗i and rili = Φ would only increase the energy consumption, since

[P (ri) + ρ]li = Φ
P (ri) + ρ

ri
> Φ

P (r∗i ) + ρ

r∗i
, (2.21)

where the inequality is due to the fact that P (r)+ρ
r

is strictly increasing when r ≥ ree. The

examples of implementing the rule are the epochs [5, 6] and [6, 8] in the figure.
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Rule 2b is based on Lemma 1 that r∗i = ree with l∗i ≤ Li is the most energy efficient.

The optimality of the rule lies in the fact that the energy cost for transmission of data

amount Φ = riLi over epochs is minimized by a transmission with ree ≥ ri over an “on”

period of l∗i = Φ/ree < Li, as shown in

[P (ree) + ρ]l∗i =
[P (ree) + ρ]Φ

ree
= Φ min

r≥0

P (r) + ρ

r

= min
rli=Φ

[P (r) + ρ]li.

(2.22)

The examples of implementing the rule are the epochs [0, 1] and [1, 5].

In this sense, Rule 2 generates the optimal transmit rate over the epochs where the

rate does not change. Rule 3 extrapolates Rule 2 to generate such optimal rates across

the transmission period [0, T ], rendering the optimality of the entire transmit schedule

generated. Particularly, Rule 2b specifies that the left end of a new string to be tautened

corresponds to the case where the transmitter is running out of either data or energy

(i.e., the data or energy causality constraint is met with equality). No causality remains

between the past and the current tautening processes. Tautening the new string using

Rule 3 does not invalidate the optimality of the transmit schedules generated so far by

Rule 2.

The reason for tentatively plotting the Aeτ (t) curve as (2.20) also becomes clear. It

is because the optimal transmit rate determined by Rule 2 may lift the tentative Aeτ (t)

curve due to the improved energy efficiency (as compared to rei ). The optimal transmit

rate will not be invalidated by the lifted Aeτ (t) curve, if the segment associated with the

rate intersects with the Ad(t) or Dmin(t) curve. The optimal transmit rate will also remain

valid, if the segment intersects with the tentative Aeτ (t) curve, since the optimal transmit

rate is ree in this case (as specified in Rule 2). However, the duration of the segment can

increase to intersect the lifted Aeτ (t) curve (or the Ad(t) curve if the intersecting part of

the Ad(t) curve is between the tentative and lifted Aeτ (t) curves). An example is given by

epoch [0, 1] in the figure, where l∗1 is slightly extended to intersect the lifted (pink) Aeτ (t)
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curve.

Note that the upper boundary Ad(t) and Aeτ (t) curves may cross and become un-

derneath the lower boundary Dmin(t) curve during part of the transmission period. No

transmissions will take place during that part of the period due to insufficient energy.

The part of the period is an infeasible solution region. Note also that the rules can apply

directly to the case where the transmitter has a maximum transmit power. In this case,

the slope of the string is upper-bounded by a maximum transmit rate.

2.4.2 Dynamic String Tautening Algorithm

Algorithm 1 Proposed DST Algorithm

1: Input A, D, E and T , set noffset = 0, r∗i = l∗i = 0, ∀i.

2: while noffset < N do

3: Calculate ran, rdn and ren, n = noffset + 1, . . . , N ;

4: r− = 0, r+ =∞, τ− = τ+ = 0;

5: τ = N, r̃ = raN = rdN ;

6: for n = noffset + 1 to N do

7: if r+ ≥ min{ran, ren} then

8: r+ = min{ran, ren}, τ+ = n;

9: end if

10: if r− ≤ rdn then

11: r− = rdn, τ− = n;

12: end if

13: if r− ≥ r+ then

14: if τ+ ≥ τ− then

15: τ = τ−, r̃ = r−;

16: else
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17: τ = τ+, r̃ = r+;

18: end if

19: break;

20: end if

21: end for

22: for i = noffset + 1 to τ do

23: r∗i = max{ree, r̃};

24: end for

25: if tτ is the instant the data causality or deadline

26: constraint is met with equality then

27: find a feasible set of {l∗i } satisfying

28:
∑τ

i=noffset+1 l
∗
i =

∑τ
i=noffset+1

r̃Li
r∗i

29: else

30: find a feasible set of {l∗i } satisfying

31:
∑τ

i=noffset+1 l
∗
i =

∑τ
i=noffset+1

[P (r̃)+ρ]Li
P (r∗i )+ρ

32: end if

33: update (A,D, E , T );

34: noffset = τ ;

35: end while

Algorithm 1 summarizes the proposed off-line DST process in a structured way, which

will play a key role in the practical on-line algorithm, as will be described in Section 2.5.

Denote A := {A0, A1, · · · , 0}, D := {0, D1, · · · , DN}, E := {E0, E1, · · · , 0}, and T :=

{t0, t1, · · · , tN}. noffset denotes the left end of the series of strings to be tautened. It is

initially set to zero, and updated through the WHILE loop of Steps 2 to 35.

Steps 3 to 33 describe the operations specified in Rules 1–3 in Section 2.4.1.

• In Steps 3 to 21, the number of epochs since noffset, during which the optimal transmit
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rate keeps unchanged, is identified by recursively updating and comparing r+ (in

Steps 7-9), the minimum of the rates determined by the upper boundary of the

feasible region (i.e., ran and ren), and r− (in Steps 10-12), the maximum of the rates

determined by the lower boundary of the region (i.e., rdn), from n = noffset + 1 until

r− ≥ r+ (in Steps 13-20). τ indicates the index of the time instant at which the

string bends, i.e., the optimal transmit rate changes. In other words, Steps 3 to 21

determine every straight segment of the entire string generated by Rule 1 in every

iteration. By iteratively running Steps 3 to 21, the string connecting (0, 0) and the

rightmost joint of the Ad(t) and Dmin(t) curves, which is specified in Rule 1, can

be determined. As mentioned in (2.20), ren satisfies
∑n

i=noffset+1{[P (ren) + ρ]Li} =∑n−1
i=noffset

ei. It is unique and can be determined by a bisectional search per n,

since P (·) is monotonically increasing. Likewise, ran and rdn can be obtained by

solving
∑n

i=noffset+1(ranLi) =
∑n−1

i=noffset
Ai and

∑n
i=noffset+1(rdnLi) =

∑n
i=noffset+1Di,

respectively.

• Steps 22 to 24 adjust the transmit rate to be no less than ree.

• Steps 25 to 33 summarize the operations that decide the durations associated with

the optimal transmit rates determined above, as specified in Rule 2. Particularly,

Steps 30 and 31 describe the case where the tentative Aeτ (t) curve needs to be

lifted and subsequently the duration of a transmission with ree is to be extended,

as discussed earlier in Section 2.4.1.

As noted earlier in Section 2.4.1, the solution region of the optimal transmit schedule

may be infeasible. The data arrival and EH processes are independent by nature. It

is then possible that the transmitter runs out of energy when there are still deadline-

approaching data in the buffer, i.e., Di is too large to be supported by the available energy

harvested and accumulated so far. In this case, the upper boundary curve can cross and
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go underneath the lower boundary Dmin(t) curve, the problem becomes infeasible. No

transmissions can be scheduled until new energy is harvested. Data with deadlines within

the infeasible region are dropped.

The following theorem confirms the global optimality and efficiency of the proposed

Algorithm 1.

Theorem 1. Algorithm 1 can find the optimal transmission schedule for (2.3) when it is

feasible.

The theorem can be proved by first confirming the existence of a Lagrange multiplier

vector Λ∗, with which r∗ and l∗ satisfy the sufficient and necessary conditions (2.10)–

(2.13), followed by showing that (r∗, l∗) ensures l∗i = Li when r∗i > ree and l∗i ≤ Li when

r∗i = ree. In other words, (r∗, l∗) is a global optimum. A detailed proof of the theorem is

provided in Appendix A.0.3.

We also confirm that Algorithm 1 has a complexity of O(N2) in the worst case. In

that case, the optimal transmit rate changes at every instant, i.e., N optimal rates are to

be calculated. Besides, to confirm the rate change at any instant, all the future instants

after that instant need to be evaluated. This is because r− remains less than r+ until

the last instant at which r− becomes equal to or larger than r+. As a result, at every

instant tn (n = 0, 1, · · · , N − 1), the algorithm evaluates the future (N − n) instants. It

calculates the three rates rai , r
e
i and rdi , compares min{rai , rei } with r+ and compares rdi

with r−, and updates r+ and r− (as described in Steps 3 to 21), from i = n + 1 all the

way through i = N . The calculation required is 3
∑N−1

n=0 (N − n) = 3
2
(N2 +N).

In fact, the complexity of Algorithm 1 is much lower than O(N2) in most cases. This

is because the optimal transmit rate may keep unchanged across a number of instants; in

other words, fewer optimal transmit rates need to be calculated. It is also because it often

does not require all the future instants to be evaluated to get r− ≥ r+. Fewer instants

are evaluated to calculate an optimal transmit rate.
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In contrast, the standard convex solvers designed for generality, such as the inte-

rior point methods, typically require matrix operations, high-order multiplications and

repeated iterations. They have a polynomial complexity higher than O(N3) [84]. Corrob-

orated by our simulations, the CPU time for Algorithm 1 is less than 3.7% of that with

the standard CVX program [30], as will be shown in Section 2.6.

It is worth mentioning that our proposed algorithm can be readily extended to a

general time-varying channel. In that case, the time-invariant channel coefficient h will

be replaced by hi (i = 1, · · · , N), where hi is the channel coefficient per epoch i. The

extension of our algorithm can be done by tautening the “water-level” wi, defined in (2.5),

in the same way as we did on ri, since in the optimal schedule wi only changes at the

instants where the data/energy causality or the deadline constraint is met with equality,

as proved in Appendix A.0.2. Based on a “water-level” based DST approach, the optimal

w∗i can be determined per epoch i. Given w∗i , the optimal transmit rate r∗i can then be

determined using (2.17). It is clear that for the time-varying case, the water-filling type

power allocation will be resulted; i.e., with the same water-level w∗i , higher power (and

rate) is allocated for epoch with better channel quality. Interested readers can refer to

our conference paper [5] for such a generalization.

The emphasis of the chapter is on unreliable and insufficient power supply of EH

systems, which is the dominant cause of compromised QoS. We have also pointed out

that the EH ratio is typically low (e.g., 10%) in practice. For these reasons, we assume

that the capacity of battery is large enough to accommodate the harvested energy; i.e.,

battery capacity induced energy overflow is not considered in our formulation to facilitate

elaboration of main ideas. The impact of the finite battery capacity on the optimality

of the proposed schedule will be tested through simulations in Section 2.6. It will be

justified that a battery capacity of 1500 mJ (recall that the capacity of a typical AAA

Alkaline battery is 2700 J) is sufficient to render negligible optimality loss for the proposed
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approach.

2.5 On-line Extension of Dynamic String Tautening

We proceed to extend the proposed off-line DST algorithm to practical on-line applications

where a-priori knowledge on data and energy arrivals is unavailable.

The extension is done as such that, at any time instant, we set the current instant as

t0, and set the future latest deadline instant of all the arrived data as tN . The period

between the two instants is T . We use (2.18), (2.19) and (2.20) to plot the future data

causality and deadline curves, and the energy curve between t0 and tN . The transmit rates

till the latest future instant can be optimized by conducting the proposed DST algorithm

within the feasible solution region specified by the curves. Data will be transmitted with

the optimal transmit rates, until a new arrival of data or energy.

At the instant of the new data/energy arrival, the data arrival, deadline, and energy

curves will be updated by taking the instant as the initial instant. The optimal transmit

rate will be recalculated for the instant and beyond. This process repeats, and automates

the on-line transmit schedule generation, as summarized in Algorithm 2.

Of course, the on-line extension may not be optimal. This is because the transmit

rates, optimized for a future period of T without a-priori data/energy arrival knowledge

during the period, may violate Lemma 2 in the case where data or energy does arrive

during the period and new schedules are generated. In the other cases, no data or energy

arrives during the period. The schedule generated at the beginning of the period will

remain optimal till the end of the period. In this sense, the on-line DST algorithm

provides a structured way to schedule future transmissions in practice.
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Algorithm 2 Proposed On-line Scheduling based on DST Algorithm

1: while The transmitter is powered on do

2: if new data or energy arrives at the current instant then

3: Set the current instant as t0, and the instant of

4: the future latest data deadline as tN ;

5: Update (A,D, E , T );

6: Run Algorithm 1 to update the transmit rates

7: through tN ;

8: end if

9: Transmit the data with the updated transmit rates;

10: end while

2.6 Numerical Results

In this section, simulations are carried out to evaluate our proposed DST algorithms,

where we set ρ = 30 mW (unless otherwise specified) and |h|2 = 20 dB during [0, T ].

The data arrival process and the EH process are modelled as two independent Poisson

processes. The average data arrival rate is 1 packet/sec, unless otherwise specified. The

average EH rate ranges from 40 to 400 mJ/sec. For illustration simplicity, we set all

the packets with the same delay requirement (i.e., the maximum delay allowed). It is

noteworthy that our algorithms are general and applicable to other stochastic processes

of data arrival and EH.

For comparison purpose, we use the MATLAB CVX toolbox to solve (2.3) for off-

line transmit schedules, and to replace Algorithm 1 in Algorithm 2 for on-line transmit

schedule generation. The CVX toolbox is based on the standard convex optimization

solver – the interior point methods [30]. It is effective and has been extensively used to

solve optimization problems with convex structures. Particularly, the CVX toolbox can
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Figure 2.2: Packet drop rate versus EH rate, where we assume the transmitter has un-

limited battery capacity, the deadline is 2.5 seconds for every packet and the data arrival

rate is 0.6 packet/sec.

produce the exactly same optimal schedules as our proposed algorithms, in the case where

the energy consumed to generate transmit schedules is negligible as compared to the rest

of the energy consumed on the circuit, such as baseband processing and radio generation.

However, in practice, the energy for schedule generation is non-negligible, especially in

short-distance wireless sensor networks. Given the complexity of O(N3), the standard

interior point methods would consume more energy, drain the battery faster, and incur

higher packet losses than our proposed algorithms which only have a complexity of lower

than O(N2).

Figs. 2.2 and 2.3 validate the optimality of our proposed algorithms from the perspec-

tives of PDR and total energy consumption, where the energy required to generate the

optimal schedules is assumed to be negligible. The packet drop is caused by the expiration

of the deadlines of some packets which are unsent due to insufficient energy. The opti-
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Figure 2.3: Comparison of average energy consumption for the proposed algorithms, the

existing algorithm developed in [5], and the standard CVX toolbox, where we assume the

transmitter has unlimited battery capacity, the deadline is 2 seconds for every packet, the

data arrival rate is 0.6 packet/sec and the EH rate is 400 mJ/sec.

mality of the proposed algorithms is confirmed by comparing to the optimal results of the

CVX toolbox, and revealing that the results of our algorithms coincide with those of the

CVX toolbox. The PDR and energy consumption of the off-line energy-efficient transmit

schedule optimized under the assumption of negligible circuit power consumption are also

plotted, using the algorithm developed in [5].

In a sense, our proposed algorithm can minimize the infeasible region, by developing

the most energy-efficient transmit schedules. In other words, it can minimize the number

of packets dropped. This is because our algorithm can minimize the number of undelivered

packets by the instant when the problem becomes infeasible. As a result, the energy

requirement is minimized for the problem to become feasible again, which minimizes the

duration of the infeasible region, as well as the packets dropped during the region.

As expected, the figures also show that on-line generation of transmit schedules can
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Figure 2.4: Comparison of average CPU time for the proposed off-line and on-line algo-

rithms, with the CVX toolbox.

increase the PDR and the energy consumption, compared to the optimal schedules gen-

erated off-line. This is due to the unavailability of future knowledge on data and energy

arrival in practice. As a result, the on-line transmit rates change more frequently than

the optimal rates generated off-line. The energy consumption grows, as shown in Fig. 2.3.

In turn, more packets are dropped, as shown in Fig. 2.2. In this sense, a higher EH rate

is required for on-line algorithms to maintain a given PDR. Consider a PDR of 1%. The

proposed on-line algorithm needs to increase the EH rate from 40 mJ/sec of the proposed

off-line optimal scheme to 200 mJ/sec, as pointed out in Fig. 2.2.

Figs. 2.2 and 2.3 also reveal that the circuit power consumption can have significant

impact on the optimal transmit schedules. It is shown that a significant loss of both the

packet and energy would occur if the circuit power consumption is neglected, as in [5].

Our proposed algorithms, which take the circuit power consumption into account, are

important, and have applications to practical circuits.

In practice, the energy consumed to generate transmit schedules is often non-negligible,
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due to the complexity involved. Fig. 2.4 plots the average CPU time required for the

proposed algorithms in comparison to the CVX toolbox, where T ranges from 10 to

320 seconds, and the EH rate is 400 mJ/sec. The average values are taken over the

number of trials run on a computer. It is shown that the proposed off-line and on-line

algorithms, i.e., Algorithms 1 and 2, only require about 3.7% and 1.6% of the CPU time

that the standard CVX toolbox requires for large T values, respectively. This is because

our algorithms are specialized and directly construct the optimal solution for (2.3) based

on the optimality conditions. Therefore, they are much more computationally efficient

than the CVX toolbox, which is general and is designed to solve any convex optimization

problems.

As noted earlier, the proposed Algorithm 1 has a worst-case complexity of O(N2),

whereas the general CVX toolbox has a complexity of O(N3). On the other hand, a much

larger gap of complexity can be observed between Algorithm 1 and the CVX toolbox in

Fig. 2.4. This confirms that Algorithm 1 has a significantly lower complexity in most

cases than it has in the worst case, as discussed earlier in Section 2.4.2.

In light of Fig. 2.4, we proceed with a practical on-line scenario, where the energy for

generating transmit schedules is non-negligible. Consider ρ = ρ1 + ρ2, where ρ1 is the

non-negligible energy consumption on schedule generation and ρ2 is the rest of the energy

consumed on the circuit. ρ1 can differ between the proposed Algorithm 2 and the CVX

program. We assume ρ1 = 15 mW for Algorithm 2. The value of ρ1 for the on-line CVX

program depends on the ratio of the CPU time between the CVX program and Algorithm

2. The ratio can be obtained from Fig. 2.4. ρ2 stays the same for both the approaches.

We set ρ2 = 15 mW.

Fig. 2.5 compares the PDR of the proposed Algorithm 2 and the on-line CVX program

with the growth of deadline, where the transmitter is assumed to have unlimited battery.

As expected, the PDR decreases, as the deadline increases. It also decreases, as the EH
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Figure 2.5: Packet drop rate of the proposed Algorithm 2 and the on-line CVX program

versus delay requirement, where we assume the transmitter has unlimited battery capacity

and the data arrival rate is 1 packet/sec.

rate increases. The reason for these is obvious, i.e., more available energy and/or looser

data deadlines allow more packets to be delivered, hence reducing the PDR. In either

case, we see that Algorithm 2 is better than the CVX program, given its superiority of

substantially reduced energy requirement (as implied by Fig. 2.4).

As observed in Fig. 2.5, the reduced PDR of Algorithm 2 (compared to the CVX

program) diminishes with the increasing deadline for large EH rates (e.g., 400 mJ/sec),

while keeping growing for small EH rates (e.g., 40 mJ/sec). The reason for this is that

the higher energy requirement of the CVX program makes the approach “saturate” at

a smaller EH rate. In other words, the PDR stops decreasing further with the growth

of deadline. It would not converge to zero, even without deadline (i.e., the deadline is

infinite). The convergent/saturated PDR value can be easily obtained by first calculating

the difference between the total energy harvested and the total energy consumed on the
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Figure 2.6: Packet drop rate of the proposed Algorithm 2 and the on-line CVX program

versus battery capacity, where the data arrival rate is 1 packet/sec and the deadline

requirement is 2.5 seconds.

circuit, and then the number of packets that can be supported by the energy difference

using ree.

Given the substantially low energy requirement, our proposed Algorithm 2 tolerates

much smaller EH rates before saturating. Our algorithm also has much lower convergent

PDR values. As shown in Fig. 2.5, the CVX program saturates with a convergent PDR

of about 50%, when the EH rate is 40 mJ/sec. Meanwhile, Algorithm 2 is unsaturated,

and it exhibits the obvious tendency of continuously decreasing.

Fig. 2.6 compares the PDR of the proposed Algorithm 2 and the standard on-line CVX

program with the growth of the limited battery at the transmitter. The battery overflows,

if the energy harvested and accumulated exceeds the battery capacity. As expected, we see

that the PDR starts by decreasing with the growth of battery capacity at the transmitter,

and then becomes flat when the battery is large and little energy is overflown. We also see
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that our proposed algorithm outperforms the standard CVX program with a consistent

PDR reduction, across the entire spectrum of battery capacity, for a given EH rate. The

consistent PDR reduction is due to the energy that our algorithm saves against the CVX

program, and the saved energy is independent of the battery capacity.

The consistent PDR reduction is also enlarged when the EH rate increases; in other

words, more energy can be saved with the increased EH rate. Specifically, the CVX

program has bigger ρ and subsequently a smaller ree according to (2.16), compared to the

proposed Algorithm 2. This increases the likelihood of transmitting data over an entire

epoch with a less energy-efficient rate ren or ran, since the optimal rate is the largest of

ree and those rates based on Lemma 1. The likelihood is further increased due to more

and shorter epochs with the increased EH rate. The increased number of epochs, over

which the energy is less efficiently utilized in the CVX program, results in the enlarged

gap between Algorithm 2 and the CVX program. More energy is saved by the proposed

Algorithm 2, and more packets can be sent using the saved energy under a larger EH rate.

Last but not least, we plot the trade-off between the data arrival rate and the EH rate

in Fig. 2.7, where we set a fixed PDR of 10%. In addition to Algorithm 2 and the on-line

CVX program, we also plot the proposed optimal off-line algorithm – Algorithm 1. In

general, the proposed on-line algorithm, Algorithm 2, substantially surpasses the standard

on-line CVX program. The effective on-line transmit region, which is the close region

underneath every plotted curve, is significantly larger in Algorithm 2 than it is in the

on-line CVX program. This is the result of the reduced complexity of Algorithm 2, and

significantly more data or less energy can be supported in the proposed algorithm. The

difference of sizes between the effective transmit regions of the two on-line approaches

enlarges with the increased tightness of deadline.
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Figure 2.7: EH rate versus packet arrival rate, where we assume the transmitter has

unlimited battery capacity, the deadline is 2.5 seconds for every packet.

2.7 Conclusions

In this chapter, we proposed the new DST algorithm to generate the optimal off-line

transmit schedule for delay-limited traffic under non-negligible circuit power. Only con-

sisting of a set of string tautening rules that we derived from the optimality conditions

of the original problem, the proposed algorithm has a low complexity (i.e., O(N2) in the

worst case). We also extended the algorithm to generate energy-efficient transmit sched-

ules on-the-fly. Simulation shows that our algorithm reduces the average complexity by

almost two orders of magnitude, compared to general convex solvers. The effective trans-

mit region can also be substantially enlarged by our algorithm. Significantly more data or

less energy can be supported in the proposed algorithm. Building on this work, promising

future directions include modeling more practical battery unit with finite capacity and

energy leakage, accounting for charging/discharging loss, and developing low-complexity

on-line schemes with analytical performance guarantees.
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Chapter 3

Smart-grid powered MIMO

downlink communications

3.1 Introduction

Downlink communications from the base station (BS) to mobile users in wireless cellular

systems is usually analyzed as a Gaussian broadcast channel in information-theoretic ap-

proaches. Shannon’s capacity for both single-input-single-output (SISO) and multi-input

multi-output (MIMO) broadcast channels has been well addressed [85–87], when the trans-

mitters (i.e., BSs) are powered by persistent energy sources of the conventional electricity

grid. However, the current grid infrastructure is on the verge of a major paradigm shift,

migrating from the aging grid to a “smart” one. The smart grid is envisioned with new

features and capabilities, including e.g., high-penetration of renewable energy sources

(RES), two-way energy trading, and demand-side management (DSM) [88–90].

While integration of smart-grid technologies into resource allocation clearly holds the

key to fully exploiting the potential of future downlink communications [69], only a few

works explore this direction.

59
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In the present chapter, we develop a stochastic online resource allocation approach,

which dynamically makes instantaneous decisions without a-priori knowledge of any statis-

tics of the underlying random channel, renewables, and electricity price processes. To this

end, the intended task is formulated as an infinite horizon optimization problem aiming

to maximize the time-average (weighted) downlink throughput subject to a time-average

energy cost budget. Targeting a low-complexity online solution, we adopt the relaxation

techniques in [71, 73, 74] to decouple the decision variables across time. Then leveraging

the stochastic dual-subgradient method, we develop a novel online control algorithm. To

analyze the proposed scheme, we generalize the framework in [71, 73, 74] to character-

ize the two coupled “virtual” queues involved in our online control setting. It is then

rigorously established that the proposed online control algorithm yields a feasible and

asymptotically optimal resource allocation strategy for the original problem. Although

the performance analysis is based on i.i.d. random processes, numerical results further

demonstrate that the proposed algorithm also works well in non i.i.d. scenarios, where

the underlying randomness is highly correlated over time.

The rest of the chapter is organized as follows. The system models are described in

Section 3.2. The proposed dynamic resource allocation scheme is developed and analyzed

in Section 3.3. Numerical results are provided in Section 3.4, followed by concluding

remarks in Section 3.5.

3.2 System Models

Consider a MIMO downlink where a BS with Nt antennas communicates to K mobile

users, each having Nr antennas; see Fig. 3.1. Powered by a smart microgrid, the BS is

equipped with one or more energy harvesting devices (solar panels and/or wind turbines),

and can perform two-way energy trading with the main grid upon energy surplus or deficit
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Figure 3.1: A smart-grid powered MIMO downlink system.

in the microgrid. In addition, with a goal of mitigating the high variability of RES, an

energy storage device (i.e., battery) is considered in the BS, so the BS does not have

to consume or sell all the harvested energy on the spot, but can save it for later use.

A controller at the BS coordinates the energy trading as well as the allocation of com-

munication resources. This central entity can collect both the channel state information

(CSI) through the feedback links from the users, as well as the energy information (energy

buying/selling prices) via the smart meter installed at the BS.

3.2.1 MIMO Downlink Channels

The downlink from the BS to the users constitutes a broadcast channel (BC). Assume

slot-based transmissions from the BS to the users, and a quasi-static model for the wire-

less channels, where the channel coefficients remain invariant per slot but are allowed to

vary across slots. This assumption is reasonable when the length of the slot is selected to

be smaller than the coherence time of the wireless channels. Suppose also a slowly time-
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varying setup so that the slot length is sufficiently large to accommodate the Shannon

capacity-achieving encoding schemes. For convenience, the slot duration is normalized to

unity; thus, the terms “energy” and “power” will be used interchangeably throughout the

chapter. Notice that our algorithm could also be extended to a two time scale schedul-

ing approach, where the battery can be operated in the slow scale, while the remaining

decision variables in the fast time scale [76].

Consider a (possibly infinite) scheduling horizon consisting of T slots, indexed by the

set T := {0, . . . , T − 1}. Per slot t, let Hk,t ∈ CNr×Nt denote the channel coefficient

matrix from the BS to user k = 1, . . . , K, and Ht := {H1,t, . . . ,HK,t}. For simplicity, we

assume that Ht evolves according to an independent and identically distributed (i.i.d.)

random process. Note that the proposed algorithm in the sequel can be applied without

any modification to non-i.i.d. scenarios as well. Yet, performance guarantees in the non-

i.i.d. case must be obtained by applying the more sophisticated delayed Lyapunov drift

techniques in [91].

Let x(t) ∈ CNt×1 denote the transmitted vector signal, which is the sum of the signal

independently transmitted to individual users: x(t) =
∑K

k=1 xk(t). The received complex-

baseband signal at user k is then

yk(t) = Hk,tx(t) + zk(t) (3.1)

where zk(t) is additive complex-Gaussian noise with zero mean and covariance matrix I

(the identity matrix of size Nr).

The capacity of the MIMO BC can be achieved by dirty paper coding (DPC) [92].

With DPC, users are sequentially encoded such that each user sees no interference from

previously encoded users. For the DPC codeword xk(t), the transmit covariance matrix

of user k is Γk,t := E[xk(t)x
†
k(t)]. With Px,t denoting the transmit-power budget at the

BS per slot t, it holds that
∑K

k=1 tr(Γk,t) ≤ Px,t. The BC capacity region per slot t is then



3.2. System Models 63

given by

CBC(Px,t;Ht) = Co

(⋃
π

Rπ(Px,t;Ht)

)
(3.2)

where Co(·) denotes the convex hull, the union is over all permutations π of {1, 2, . . . , K},

and

Rπ(Px,t;Ht) =
⋃

{Γk,t:
∑K
k=1 tr(Γk,t)≤Px,t}

{
(r1, . . . , rK) :

rπ(k) ≤ log

∣∣∣I +
∑k

u=1Hπ(u),tΓπ(u),tH
†
π(u),t

∣∣∣∣∣∣I +
∑k−1

u=1Hπ(u),tΓπ(u),tH
†
π(u),t

∣∣∣ , ∀k
}
.

Here rk denotes the achievable transmission rate for user k = 1, . . . , K, and | · | signifies

the determinant operator.

3.2.2 Smart Grid Operations

While Section 3.2.1 shows the communication model for MIMO downlink channels, in

what follows, we introduce the operation model for smart grid. The smart-grid powered

BS can harvest RES and store the energy in the battery for future use. Let Et denote the

(random) energy harvested at the beginning of slot t at the BS, with Et ≤ Emax, ∀t.

Let C0 denote the initial energy, and Ct the state of charge (SoC) in the battery at the

beginning of slot t. The battery is assumed to have a finite capacity Cmax. Furthermore,

for reliability purposes, it may be required to ensure that a minimum energy level Cmin is

maintained at all times1; hence, we have Cmin ≤ Ct ≤ Cmax, ∀t ∈ T . Let Pb,t denote the

power delivered to or drawn from the battery at slot t, which amounts to either charging

(Pb,t > 0) or discharging (Pb,t < 0). Hence, the stored energy obeys the dynamic equation

Ct+1 = Ct + Pb,t, ∀t. (3.3)

1Battery will become unreliable with high depth-of-discharge (DoD) – percentage of maximum charge

removed during a discharge cycle; hence, a minimum level Cmin is to avoid high DoD. Such a level could

be also required to support the BS operation in the event of a grid outage.
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The amount of power (dis-)charged is also bounded by

Pmin
b ≤ Pb,t ≤ Pmax

b (3.4)

where Pmin
b < 0, and Pmax

b > 0.

Per slot t, the total energy consumption Pg,t at the BS includes the transmission-

related power Px,t, and the rest that is due to other components such as air conditioning,

data processor, and circuits, which can be collectively modeled as a constant power,

Pc > 0 [37]; namely,

Pg,t = Pc + Px,t/ξ

where ξ > 0 denotes the power amplifier efficiency. Without loss of generality, we nor-

malize the constant to ξ = 1; and further assume that Pg,t is bounded by Pmax
g .

When the renewable harvested energy is insufficient, the main grid can supply the

needed Pg,t to the BS. With a two-way energy trading facility, the BS can also sell its

surplus energy to the grid at a fair price in order to reduce operational costs. Given the

required energy Pg,t, the harvested energy Et, and the battery charging energy Pb,t, the

shortage energy that needs to be purchased from the grid for the BS is [Pg,t−Et +Pb,t]
+;

or, the surplus energy (when the harvested energy is abundant) that can be sold to the

grid is [Pg,t − Et + Pb,t]
−, where [a]+ := max{a, 0}, and [a]− := max{−a, 0}. Both the

shortage and surplus energies are non-negative, and we have at most one of them be

positive at any time t.

Suppose that the energy can be purchased from the grid at price αt, while the energy

is sold to the grid at price βt per slot t. Assume that the prices are bounded; i.e.,

αt ∈ [αmin, αmax], βt ∈ [βmin, βmax], ∀t. Note that we shall always set αt > βt, ∀t, to avoid

meaningless buy-and-sell activities of the BS for profit. Per slot t, the transaction cost

for the BS is given by

G(Pg,t, Pb,t) = αt[Pg,t − Et + Pb,t]
+ − βt[Pg,t − Et + Pb,t]

−. (3.5)
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Again for simplicity, we assume that the random variables (Et, αt, βt) are generated

according to an i.i.d. random process, while generalization to non-i.i.d. scenarios can be

addressed using the techniques in [91].

3.3 Dynamic Resource Allocation Algorithm

Based on the models of Section 3.2, we formulate and optimize in this section, the alloca-

tion of resources for the smart-grid powered broadcasting operation. Let wk denote the pri-

ority weight for user k = 1, . . . , K, Γt := {Γ1,t, . . . ,ΓK,t}, and Gmax the maximum allow-

able power cost at the BS. Over the scheduling horizon T , the central controller at the BS

determines the optimal transmit covariance matrices {Γt,∀t}, transmit-power {Px,t,∀t},

and battery charging energy {Pb,t,∀t}, in order to maximize the average (weighted) total

throughput limT→∞
1
T

∑K
k=1[wk

∑T−1
t=0 (rBk (Γt))], subject to an average energy cost con-

straint. For notational brevity, we introduce the auxiliary variables Pt := Pg,t + Pb,t, and

formulate the problem as

max
{Γt,Ct,Pt,Px,t,Pb,t}

lim
T→∞

1

T

K∑
k=1

[wk

T−1∑
t=0

(rBk (Γt))] (3.6a)

s. t. lim
T→∞

1

T

T−1∑
t=0

G(Pt) ≤ Gmax (3.6b)

Pt = Px,t + Pb,t + Pc (3.6c)

0 ≤ Pc + Px,t ≤ Pmax
g (3.6d)

Pmin
b ≤ Pb,t ≤ Pmax

b (3.6e)

Ct+1 = Ct + Pb,t (3.6f)

Cmin ≤ Ct ≤ Cmax (3.6g)

rB(Γt) ∈ CBC(Px,t;Ht), ∀t. (3.6h)
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Here, (3.6b) is the average energy cost constraint, (3.6d) is the maximum power consump-

tion constraint for BSs, and (3.6e)-(3.6g) are the constraints related to battery operations.

3.3.1 Reformulation and Relaxation

For the tractability of (3.6), in this subsection, the problem is reformulated and relaxed

to a convex sum-power allocation problem for a point-to-point link.

With ψt := (αt − βt)/2 and φt := (αt + βt)/2, it follows readily from (3.5) that

G(Pt) = ψt|Pt − Et|+ φt(Pt − Et).

Since αt > βt > 0, we have φt > ψt > 0 which clearly implies that G(Pt) is a convex

function of Pt.

Now let us convexify the rate functions rBk (Γt). By the information-theoretic uplink-

downlink duality [93,94], the BC capacity region CBC(Px,t;Ht) can be alternatively char-

acterized by the capacity regions of a set of “dual” multi-access channels (MACs). In the

dual MAC, the received signal is

y(t) =
K∑
k=1

H†k,txk(t) + z(t)

where xk(t) is the signal transmitted by user k, and z(t) is additive complex-Gaussian

with zero mean and covariance matrix I (the identity matrix of size Nt). Let Qk :=

E[xkx
†
k] � 0 denote the transmit covariance matrix of user k, and let p := [P1, . . . , PK ]>

collect the transmit-power budgets of all users. For a given p, the MAC capacity region

is

CMAC(p;H†t) =
⋃

{Qk: tr(Qk)≤Pk, ∀k}

{
(r1, . . . , rK) :

∑
k∈S

rk ≤ log

∣∣∣∣∣I +
∑
k∈S

H†k,tQkHk,t

∣∣∣∣∣ , ∀S ⊆ {1, . . . , K}}.
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The uplink-downlink duality dictates that the BC capacity region (3.2) equals the

union of these MAC capacity regions corresponding to all power vectors p satisfying∑K
k=1 Pk ≤ Px,t; that is,

CBC(p;Ht) =
⋃

{p:
∑K
k=1 Pk≤Px,t}

CMAC(p;H†t). (3.7)

Using the definition

Rt(Px,t) := max
rB(Γt)∈CBC(Px,t;Ht)

K∑
k=1

wkr
B
k (Γt)

[67, Lemma 1] has established the following result.

Lemma 3. The function Rt(Px,t) can be alternatively obtained by the optimal value of

the problem:

max
Qk�0

K∑
k=1

(wπ(k) − wπ(k+1)) log

∣∣∣∣∣I +

k∑
u=1

H†π(u),tQπ(u)Hπ(u),t

∣∣∣∣∣
s. t.

K∑
k=1

tr(Qk) = Px,t

(3.8)

where π is the permutation of user indices {1, . . . ,K} such that wπ(1) ≥ · · · ≥ wπ(K), and

wπ(K+1) = 0. In addition, Rt(Px,t) is a strictly concave and increasing function of Px,t.

Using Rt(Px,t) and expressing the variables {Pb,t} in terms of {Pt, Px,t}, the optimal

broadcasting problem can be converted into the optimal sum-power allocation for an
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equivalent “point-to-point” link without any optimality loss, as follows

max
{Ct,Pt,Px,t}

lim
T→∞

1

T

T−1∑
t=0

[Rt(Px,t)] (3.9a)

s. t. lim
T→∞

1

T

T−1∑
t=0

G(Pt) ≤ Gmax (3.9b)

0 ≤ Px,t ≤ Pmax
g − Pc (3.9c)

Pmin
b ≤ Pt − Px,t − Pc ≤ Pmax

b (3.9d)

Ct+1 = Ct + Pt − Px,t − Pc (3.9e)

Cmin ≤ Ct ≤ Cmax, ∀t. (3.9f)

The convexity of constraint (3.9b) has been clarified, and constraints (3.9c)-(3.9f)

are linear. As Rt(Px,t) is a concave function of Px,t per Lemma 3, problem (3.9) is a

convex program. Note that here we implement a nested optimization procedure. Namely,

we first solve (3.9) to find the optimal {C∗t , P ∗t , P ∗x,t, P ∗b,t}. Given P ∗x,t per slot, we then

solve the convex optimization (3.8) to obtain the optimal “virtual” uplink covariance

matrices Qk(P
∗
x,t), ∀k, and subsequently, the desired downlink covariance matrices Γ∗k,t

from Qk(P
∗
x,t) via uplink-downlink duality. Let R∗ denote the value of the objective in

(3.6) under an optimal control policy.

Although (3.9) becomes convex after judicious reformulation, it is still difficult to solve

since we aim to maximize the average total throughput over an infinite time horizon. In

particular, the battery energy level relations in (3.6f) couple the optimization variables

over the infinite time horizon, which renders the problem intractable for traditional solvers

such as dynamic programming.

By recognizing that (3.6f) can be viewed as an energy queue recursion, we next apply

the time decoupling technique to turn (3.9) into a tractable form [73, 74]. For the queue

of Ct, the arrival and departure are Pt and Px,t + Pc, respectively, per slot t. Over

the infinite time horizon, the time-averaging rates of arrival and departure are given
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by limT→∞
1
T

∑T−1
t=0 Pt and Pc + limT→∞

1
T

∑T−1
t=0 Px,t, respectively. Define the following

expected values:

E[Rt(Px,t)] := lim
T→∞

1

T

T−1∑
t=0

Rt(Px,t)

E[G(Pt)] := lim
T→∞

1

T

T−1∑
t=0

G(Pt)

E[Pt] := lim
T→∞

1

T

T−1∑
t=0

Pt, E[Px,t] := lim
T→∞

1

T

T−1∑
t=0

Px,t

where the expectations are taken over all sources of randomness. These expectations exist

due to the stationarity of {Ht, Et, αt, βt}.

Now simply remove the variables {Ct} and consider the following problem

R̃∗ := max
{Pt,Px,t}

E[Rt(Px,t)]

s. t. E[G(Pt)] ≤ Gmax, E[Pt] = Pc + E[Px,t]

(4.23c)− (3.9d).

(3.10)

It can be shown that (3.10) is a relaxed version of (3.9). Specifically, any feasible

solution of (3.9) also satisfies the constraints in (3.10). To see this, consider any policy

that satisfies (3.9e) and (3.9f). Then summing equations in (3.9e) over all t ∈ T yields:

CT−C0 =
∑T−1

t=0 [Pt−Pc−Px,t]. Since both CT and C0 are bounded due to (3.9f), dividing

both sides by T and taking limits as T →∞, yields E[Pt] = Pc + E[Px,t]. It is then clear

that any feasible policy for (3.9) is also feasible for (3.10). As a result, the optimal value

of (3.10) is not less than that of (3.9); that is, R̃∗ ≥ R∗.

Note that the time coupling constraint (3.9e) has been relaxed in problem (3.10), which

then becomes easier to solve. It can be shown that the optimal solution to (3.10) can be

achieved by a stationary control policy that chooses control actions {Pt, Px,t} every slot

purely as a function (possibly randomized) of the current {Ht, Et, αt, βt} [91]. We next

develop a stochastic dual subgradient solver for (3.10), which under proper initialization
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can provide an asymptotically optimal solution to the original resource allocation problem

(3.6).

3.3.2 Dual Subgradient Approach

Let Ft denote the set of {Pt, Px,t} satisfying constraints (3.9c)–(3.9d) per t, and λ :=

{λ1, λ2} collect the Lagrange multipliers associated with the two average constraints.

With the convenient notation Xt := {Pt, Px,t} and X := {Xt,∀t}, the partial Lagrangian

function of (3.10) is

L(X,λ) :=E[Rt(Px,t)]− λ1(E[G(Pt)]−Gmax)

− λ2(E[Pt]− Pc − E[Px,t]) (3.11)

while the Lagrange dual function is given by

D(λ) := max
{Xt∈Ft}t

L(X,λ) (3.12)

and the dual problem of (3.10) is: minλ1≥0,λ2 D(λ).

For the dual problem, we can resort to a standard subgradient method to obtain the

optimal λ∗. This amounts to running the iterations

λ1(j + 1) = [λ1(j)− µgλ1(j)]+

λ2(j + 1) = λ2(j)− µgλ2(j)

(3.13)

where j is the iteration index, and µ > 0 is an appropriate stepsize. The subgradient

g(j) := [gλ1(j), gλ2(j)] can be then expressed as

gλ1(j) = Gmax − E[G(Pt(j))]

gλ2(j) = Pc + E[Px,t(j)]− E[Pt(j)]

(3.14)

where Pt(j) and Px,t(j) are given by

{Pt(j), Px,t(j)} ∈ arg max
{Pt,Px,t}∈Ft

[Rt(Px,t)

−λ1(j)G(Pt)− λ2(j)(Pt − Pc − Px,t)]. (3.15)
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By the concavity of Rt(Px,t), convexity of G(Pt), and the nonnegativity of λ1(j), the

objective function here is concave. Since F t is a convex set, the maximization problem

in (3.15) is a convex program. By Lemma 3, the problem can be transformed into (3.16),

which can be efficiently solved by the Matlab CVX solver in polynomial time. With

{Pt(λ(j)),Q∗k(λ(j)), ∀k} denoting the optimal solution of (3.16), one can subsequently

determine Pt(j) = Pt(λ(j)), and Px,t(j) =
∑K

k=1 tr(Q∗k(λ(j))).

max
Qk�0,Pt≥0

K∑
k=1

(wπ(k) − wπ(k+1)) log

∣∣∣∣∣I +
k∑

u=1

H†π(u),tQπ(u)Hπ(u),t

∣∣∣∣∣+ λ2(j)
K∑
k=1

tr(Qk)

− λ2(j)Pt − λ1(j)G(Pt)

s. t. 0 ≤
K∑
k=1

tr(Qk) ≤ Pmax
g − Pc, Pmin

b ≤ Pt −
K∑
k=1

tr(Qk)− Pc ≤ Pmax
b

When a constant stepsize µ is adopted, the subgradient iterations (3.13) are guaranteed

to converge to a neighborhood of the optimal λ∗ for the dual problem from any initial

point λ(0). The size of the neighborhood is proportional to the stepsize µ. In fact, if we

adopt a sequence of non-summable diminishing stepsizes satisfying limj→∞ µ(j) = 0 and∑∞
j=0 µ(j) =∞, then the iterations (3.13) converge to the exact λ∗ as j →∞ [95]. Since

(3.10) is convex, the duality gap is zero, and convergence to λ∗ will also yield the optimal

solution {P ∗t , P ∗x,t, ∀t} to the primal problem (3.10).

3.3.3 Online Control Algorithm

A challenge associated with the subgradient iterations (3.13) is computing E[Pt(j)], E[Px,t(j)],

and E[G(Pt(j))] per iterate. This amounts to performing (high-dimensional) integration

over unknown joint distribution functions; or approximately computing the corresponding

time-averages over an infinite time horizon. Clearly, such a requirement is impractical.

To bypass this impasse, we will rely on a stochastic subgradient approach. Specifically,
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dropping E from (3.13), we propose the following iteration

λ̂t+1
1 = [λ̂t1 − µ(Gmax −G(Pt(λ̂

t)))]+

λ̂t+1
2 = λ̂t2 − µ(Pc + Px,t(λ̂

t)− Pt(λ̂t))
(3.16)

where {λ̂t1, λ̂t2} are stochastic estimates of those in (3.13), and Pt(λ̂
t), Px,t(λ̂

t) are obtained

by solving (3.15) with λ(j) replaced by λ̂t.

Note that t denotes both iteration and slot indices. In other words, the update (3.16) is

an online approximation algorithm based on the instantaneous decisions {Pt(λ̂t), Px,t(λ̂t)}

per slot t. This stochastic approach is made possible due to the decoupling of optimization

variables across time in (3.10). Convergence of online iterations (3.16) to the optimal λ∗

can be established in different senses; see [91] and [96–98].

Based on the stochastic iterations (3.16), we will develop next a stochastic subgradient

based online control (SGOC) algorithm for the original problem (3.6). The algorithm is

implemented at the BS as follows.

SGOC : Initialize with a proper λ̂0 := {λ̂0
1, λ̂

0
2}. At every time slot t, observe λ̂t, Ht,

Et, αt, βt, and then do:

• Real-time energy management: Obtain {Pt(λ̂t), Px,t(λ̂t)} by solving (3.15).

Perform energy transaction with the main grid; that is, buy the energy amount

[Pt(λ̂
t)−Et]+ with price αt upon energy deficit, or, sell the energy amount [Pt(λ̂

t)−

Et]
− with price βt upon energy surplus. Charge (or discharge) the battery with the

amount Pb,t = Pt(λ̂
t)− Px,t(λ̂t)− Pc.

• Real-time broadcast schedule: Given the transmit-power Px,t(λ̂
t) at the BS,

solve the convex problem (3.8) to obtain the optimal “dual” MAC transmit-covariance

matrices {Qk(Px,t(λ̂
t)),∀k}. With π being the permutation of user indices {1, . . . , K}
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such that wπ(1) ≥ · · · ≥ wπ(K), define for k = 1, . . . , K,

Ak := I +Hπ(k)

(
k−1∑
u=1

Γπ(u),t−1

)
H†π(k),

Bk := I +
K∑

u=k+1

(
H†π(u)Qπ(u)(Px,t(λ̂

t))Hπ(u)

)
.

Using Ak and Bk, find the optimal transmit covariance matrices: k = 1, . . . , K,

Γπ(k),t = B
− 1

2
k FkG

†
kA

1
2
kQπ(k)(Px,t(λ̂

t))A
1
2
kGkF

†
kB

− 1
2

k

where the matrices Fk and Gk could be obtained by singular value decomposition

(SVD) of the effective channel Hπ(k): B
− 1

2
k H†π(k)A

− 1
2

k = FkSG
†
k with a square and

diagonal matrix S [94].2 Perform MIMO broadcast with the transmit covariance

matrix Γk,t per user k.

• Lagrange multipliers updates: With Pt(λ̂
t), Px,t(λ̂

t) available, update Lagrange

multipliers λ̂t+1 via (3.16).

3.3.4 Performance Guarantees

Next, we will rigorously establish that the proposed algorithm asymptotically yields a

feasible and optimal solution of (3.6) under proper initialization of λ̂0. To this end, we

first establish the asymptotic optimality of the proposed SGOC algorithm in the following

sense.

Lemma 4. If {Ht, Et, αt, βt} are i.i.d. over slots, then the time-averaging throughput

under the proposed SGOC algorithm satisfies

lim
T→∞

1

T

T−1∑
t=0

E[Rt(Px,t(λ̂
t))] ≥ R∗ − µM

2Note that Γπ(1),t = B
− 1

2
1 F1G

†
1Qπ(1)(Px,t(λ̂

t))G1F
†
1B
− 1

2
1 , which only requires knowledge of

Qk(Px,t(λ̂
t)), ∀k. When calculating Γπ(k),t, k > 1, we need Ak whose calculation requires knowledge of

previously obtained {Γπ(u),t}k−1u=1. In such a sequential way, all Γk,t can be determined.
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where the constant is given by

M :=
1

2

[
(max{Pmax

b ,−Pmin
b })2 + (Gmax)2+

(max{αmax(Pmax
g + Pmax

b ), βmax(Emax − Pmin
b )})2

] (3.17)

and R∗ is the optimal value of (3.9), or, equivalently, (3.6), under any feasible control

algorithm, even if that relies on knowing future random realizations.

Proof. See Appendix A.0.4.

Lemma 4 asserts that the proposed SGOC algorithm converges to a region with opti-

mality gap smaller than µM , which vanishes as the stepsize µ→ 0. The proof mimics the

lines of the Lyapunov optimization technique in e.g., [91]. Yet, slightly different from [91],

here the Lagrange dual theory is utilized to simplify the arguments.

We have shown that the SGOC iteration can achieve a near-optimal objective value for

(3.9). However, since the proposed algorithm is based on a solver for the relaxed (3.10),

it is not guaranteed that the resultant dynamic control policy is a feasible one for (3.9).

In the sequel, we will establish that the SGOC in fact can yield a feasible policy for (3.9),

when it is properly initialized.

Since Rt(Px,t) is strictly concave and increasing per Lemma 3, it has left and right

derivatives at any Px,t, and the left derivative is no less than the right one. Let R′t(Px,t)

be the left (or right) derivative of Rt(Px,t). Clearly, R′t(Px,t) ≥ 0 is strictly decreasing in

Px,t. Let R′(0) := max{R′t(0),∀t}, and assume R′(0) < ∞ (this holds when Hk,t, ∀k, t,

have bounded maximum eigenvalues). We can show that:

Lemma 5. The BS transmit-powers Px,t under the SGOC algorithm satisfy: Px,t(λ̂
t) = 0,

if λ̂t1 >
R′t(0)

βt
. In addition, the battery (dis-)charging amounts Pb,t under the SGOC obey:

i) Pb,t(λ̂
t) = Pmin

b , if λ̂t2 > −λ̂t1βt; and ii) Pb,t(λ̂
t) = Pmax

b , if λ̂t2 < −λ̂t1αt.

Proof. See Appendix A.0.5.
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Lemma 5 reveals partial characteristics of the dynamic SGOC policy. Such a structure

can be justified by the economic interpretation of the Lagrange multipliers. Specifically,

λ̂t1 and λ̂t2 can be viewed as the stochastic instantaneous power and charging prices,

respectively. When the power price λ̂t1 is high, zero transmit-power is adopted at the

BS, i.e., Px,t(λ̂
t) = 0. For high charging prices λ̂t2 > −λ̂t1βt, the SGOC dictates the

full discharge Pb,t(λ̂
t) = Pmin

b . Conversely, the battery units can afford full charge if the

charging price is low; i.e., λ̂t2 < −λ̂t1αt. Note that here, whether the charging price λ̂t2 is

high or low, depends also on the power price λ̂t1.

Based on the structure revealed by Lemma 5, we can first establish the following

lemma.

Lemma 6. If αmax(Pc + Pmax
b ) ≤ Gmax, then the SGOC guarantees: 0 ≤ λ̂t1 ≤

R′(0)
βmin +

max{0, µ(αmax(Pmax
g + Pmax

b )−Gmax)}, ∀t.

Proof. See Appendix A.0.6.

Note that αmax(Pc + Pmax
b ) ≤ Gmax is in fact a mild condition, which implies that

the BS has a (minimum) power budget to support its normal operation and full battery

charge at any time. Use short-hand notation δλ1 := max{0, αmax(Pmax
g + Pmax

b )−Gmax}.

Leveraging the bounds in Lemma 6 and the structure in Lemma 5, we can subsequently

establish that:

Lemma 7. If the stepsize satisfies µ ≥ µ, where

µ :=
αmaxR′(0)

βmin(Cmax − Cmin + Pmin
b − Pmax

b − δλ1)
(3.18)

then the SGOC guarantees the Lagrange multiplier λ̂t2 ∈ [−αmax(R
′(0)
βmin +µδλ1)+µPmin

b , µCmax−

µCmin − αmax(R
′(0)
βmin + µδλ1) + µPmin

b ], ∀t.

Proof. See Appendix A.0.7.
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Consider now the linear mapping

Ct =
λ̂t2
µ

+
αmaxR′(0)

µβmin
+ αmaxδλ1 + Cmin − Pmin

b . (3.19)

It can be readily inferred from Lemma 7 that Cmin ≤ Ct ≤ Cmax holds, ∀t; i.e, (3.9f)

is always satisfied under the SGOC. With the battery (dis-)charging dynamics (3.9e)

naturally performed, it follows that the proposed SGOC scheme yields a feasible dynamic

control policy for the problem (3.9).

Remark 1. From (3.19), the Lagrange multiplier λ̂t2 can be regarded as a scaled version

of the “perturbed” energy queue-size Ct (i.e., λ̂t2 equals Ct after subtracting a constant

(αmax/µβmin)R′(0) + αmaxδλ1 +Cmin − Pmin
b , and then multiplying by a scalar µ). Hence,

λ̂t2 can be treated as a “virtual” queue, and likewise for λ̂t1. Different from [71] and [73],

where the “virtual” queues evolve independently, the evolution of λ̂t2 in (3.16) clearly

depends on the value of λ̂t1, and vice-versa; e.g., {Pt(λ̂t), Px,t(λ̂t)} are actually functions of

λ̂t := {λ̂t1, λ̂t2}, and Pb,t(λ̂
t) is characterized by the joint relationship among λ̂t1, λ̂

t
2, αt, βt.

This is different from a simple threshold-based (dis-)charging profile in [71, Lemma 2]

and [73, Lemma 2]. In this sense, the coupling of the “virtual” queues complicates the

analysis, and the performance analysis framework in [71,73] is generalized here to derive

additional conditions that ensure feasibility of the proposed algorithm. Specifically, by

exploiting the revealed characteristics of our SGOC policy, we first establish bounds for

λ̂t1 in Lemma 6. Capitalizing on the specific coupling of the two “queues,” we further

establish a lower bound on the stepsize µ to ensure the bounds for λ̂t2 in Lemma 7.

Based on Lemmas 4, 6 and 7, we arrive at the main result.

Theorem 2. If we set λ̂0
1 ∈ [0, R

′(0)
βmin +µδλ1 ], and λ̂0

2 = µC0−µCmin +µPmin
b −αmax(R

′(0)
βmin +

µδλ1), and select a stepsize µ ≥ µ, then the proposed SGOC yields a feasible dynamic
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control scheme for (3.9), which is asymptotically optimal in the sense that

lim
T→∞

1

T

T−1∑
t=0

E[Rt(Px,t(λ̂
t))] ≥ R∗ − µM

where M and µ are given by (3.17) and (3.18), respectively.

Remark 2. Choosing µ = µ, the minimum optimality gap (regret) between the SGOC,

and the offline scheduling is clearly given by µM . The asymptotically optimal solution

can be attained if the power purchase prices αt are very small, or, the battery capacities

Cmax are large enough, so that µ→ 0. This makes sense intuitively because when the BS

battery has large capacity, the upper bound in (3.9f) is loose. In this case, with proper

initialization, the SGOC using any µ will be feasible for (3.9), or, (3.6).

3.4 Numerical Results

In this section, simulations are presented to evaluate our proposed dynamic approach,

and justify the analytical claims of Section 3.3.

The considered MIMO downlink has a BS with Nt = 2 antennas, communicating to

K = 10 mobile users equipped with Nr = 2 antennas each. The system bandwidth is

1 MHz, and each element in channel coefficient matrixHk,t, ∀k, t, is a zero-mean complex-

Gaussian random variable with unit variance. The duration of a time slot is set to be

1 second. The default parameters are listed in Table 3.1. The energy purchase price

αt is uniformly distributed within [0.1, 1] and the selling price is set as β = rα with

r = 0.9. Samples of the harvested energy Et are generated from a Weibull distributed

wind speed using the wind-speed-to-wind-power mapping. An autoregressive model is

adopted to capture the possible spatio-temporal correlations as in [99]. Although all the

random quantities are assumed i.i.d. in our performance analysis, here the renewable

generations are actually generated from the non i.i.d. process in order to better simulate

the real-world traces. Finally, the stepsize is chosen as µ = µ [cf. Theorem 1] by default.



78 Chapter 3. Smart-grid powered MIMO downlink communications

Table 3.1: Parameter Values for the MIMO network. All units are kWh.

Maximum electricity cost Gmax 15

Maximum energy consumption of BSs Pmax
g 50

Minimum charging amount of battery Pmin
b -5

Maximum charging amount of battery Pmax
b 5

Minimum energy level of battery Cmin 0

Maximum energy level of battery Cmax 50

Initial energy level of battery C0 0

The proposed SGOC algorithm is compared with two baseline schemes to bench-

mark its performance. ALG 1 is a “greedy” scheme that maximizes the instantaneous

throughput per time slot without leveraging the battery. Specifically, the instantaneous

decisions {Pt, Px,t} are obtained by solving the convex problem (3.9) per slot t without

(dis-)charging, i.e., Pb,t = 0. The instantaneous throughput maximization and lack of a

storage device make ALG 1 myopic, and vulnerable to future high purchase prices. ALG 2

is similar to the proposed one in the sense that it uses the stochastic dual subgradient to

iteratively approximate the primal solution. Yet, neither renewable energy nor battery is

taken into account, and only one-way trading mechanism is adopted between the BS and

grid market implying that all consumed energy are bought from grid with no energy sold

in the energy surplus case.

Fig. 3.2 compares the average throughputs of the proposed algorithm and ALGs 1-

2 over time slots. It is observed that within 300 time slots, the proposed approach

converges to the largest throughput, while ALGs 1-2 incur about 3.0% and 13.3% smaller

throughputs. Intuitively speaking, this is because the proposed algorithm intelligently

leverages the renewable energy and energy storage device to hedge against future losses,

which cannot be fully exploited by ALGs 1-2.
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Figure 3.2: Comparison of average throughput.
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Figure 3.3: Average throughput versus stepsize µ.
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Figure 3.4: The battery state-of-charge Ct versus stepsize µ, where Pmax
g = 10 kWh.

Fig. 3.3 validates the impact of the stepsize µ on the average throughput of the pro-

posed algorithm. The average throughput is compared under different µ = {0.01µ, 0.1µ, µ}.

The dotted upper bound is obtained in the case where Px,t = Pmax
g −Pc for all time slots t

without considering the maximum budget Gmax. It is shown that the proposed algorithm

always converges to a value lower than the upper bound with different stepsize µ. How-

ever, it approaches the upper bound with a smaller stepsize. Specifically, when µ = 0.01µ,

the proposed algorithm obtains an average throughput only 3.2% lower than the upper

bound, which is consistent with Lemma 4 in a way that the optimality gap is proportional

to the stepsize µ.

However, as stated in Lemma 7, the value of stepsize µ can significantly affect feasibility

of the proposed online scheme. Fig. 3.4 illustrates the evolution of battery SoC Ct with

different µ = {0.1µ, µ}. It reveals that Ct is always within the prescribed bounds (i.e.,

Cmin ≤ Ct ≤ Cmax) when µ = µ. In contrast, if a smaller stepsize µ = 0.1µ is chosen, Ct

will violate its physical upper bound frequently.

In Fig. 3.5, −λ̂t1αt, −λ̂t1βt, λ̂t2 as well as Pb,t are jointly depicted to demonstrate the
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Figure 3.5: SGOC based schedule of battery power Pb,t, where Pmax
g = 10 kWh.

(dis-)charging rules revealed by Lemma 5. It can be seen that the SGOC dictates the full

discharge Pb,t = Pmin
b when λ̂t2 > −λ̂t1βt at t = 2, 5, 7, 10, while the battery is fully charged

Pb,t = Pmax
b when λ̂t2 < −λ̂t1αt at t = 1, 3, 6, 8, 11. In addition, when λ̂t2 ∈ [−λ̂t1αt,−λ̂t1βt]

at t = 4, 9, Pb,t can only been obtained by solving (16) numerically. Note that the

insightful online policy are also applicable for the slots after t = 11, and it can be further

observed that the Lagrange multiplier λ̂t2 is in fact an affine mapping of the real-time

battery SoC Ct [cf. 21].

Fig. 3.6 depicts the optimal power schedule Px,t of the proposed SGOC over time,

and the fluctuation of energy purchase prices αt is also plotted to illustrate the resultant

online policy. It can be clearly observed that the power consumption highly depends on

the instantaneous energy purchase price αt. Specifically, the proposed scheme tends to

consume more power when αt is lower (e.g., t = 2, 12, 24), and tends to consume less

power when αt is higher (e.g., t = 3, 14, 15). In other words, the proposed method allows

purchasing more energy from the smart-grid when energy purchase price αt is lower for

economic concern. Fig. 3.6 shows that the transmission-related power Px,t follows the
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Figure 3.6: SGOC based schedule of transmission-related power Px,t.

opposite trend to the price fluctuation.

The average throughputs of the SGOC and ALGs 1-2 are compared with respect to

the growth of Gmax in Fig. 3.7. Clearly, the throughputs of all three algorithms increase as

Gmax or Pmax
g increases since larger energy cost or looser maximum energy consumption

limit will allow more energy purchases from the smart grid and larger energy consumption,

leading to the increase of average throughputs. In both cases, we observe that the proposed

algorithm performs better than ALGs 1-2. For instance, when Gmax = 10 and Pmax
g =

50 kWh, the proposed scheme has 5.0% and 24.3% gains in average throughput over

ALGs 1 and 2, respectively. Besides, it turns out that the average throughput of the

SGOC approaches the upper bounds when Gmax is large or Pmax
g is small. Intuitively

speaking, with a limited Pg,t, a large Gmax becomes redundant so that the SGOC could

always allocate maximal transmission power to increase throughput. We can see that the

proposed algorithm converges faster than ALGs 1-2 with a given Pmax
g , which also means

it expects a smaller budget in order to “saturate.”
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Figure 3.7: Average throughput versus Gmax.

3.5 Conclusions

In this chapter, real-time resource allocation was developed for smart-grid powered MIMO

downlink transmissions. Taking into account the time variations of channels, harvested

renewables and electricity prices, a stochastic optimization problem was formulated to

maximize the expected throughput while satisfying the energy cost constraints. Relying

on the stochastic subgradient method, an online algorithm was developed to obtain fea-

sible decisions ‘on-the-fly’ by relaxing the time-coupling storage and budget dynamics. It

was proven that the novel approach yields feasible and asymptotically optimal resource

schedules without knowing any statistics of the underlying stochastic processes. Simula-

tions further corroborated the merits of the proposed scheme in non i.i.d. cases, where

the underlying randomness is highly correlated over time. In the guidance of present

work, interesting future works include modeling more practical storage units with energy

leakage, considering the power network structures, and pursuing the two-timescale energy

management and wireless resource allocation mechanism.
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Chapter 4

Smart-grid powered CoMP

communications

4.1 Introduction

Interference is a major obstacle in wireless communication systems due to their broadcast

nature, and becomes more severe in next-generation spectrum- and energy-constrained

cellular networks with smaller cells and more flexible frequency reuse [100]. With ever

increasing demand for energy-efficient transmissions, coordinated multi-point processing

(CoMP) has been proposed as a promising paradigm for efficient inter-cell interference

management in heterogeneous networks (HetNets) [101]. In CoMP systems, base stations

(BSs) are partitioned into clusters, where BSs per cluster perform coordinated beamform-

ing to serve the users [102–104]. The BSs in the same cluster share channel information

and users’ information at the same time, and perform joint pre-processing on users’ data

to reduce the interference between BSs. As the number of BSs in HetNets increases,

their electricity consumption constitutes a major part of their operational expenditure,

and contributes a considerable portion to the global carbon footprint [105]. Fortunately,

85
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emerging characteristics of smart grids offer ample opportunities to achieve both energy-

efficient and environmentally-friendly communication solutions. Such characteristics in-

clude high penetration of renewable energy sources (RES), two-way energy trading, and

dynamic pricing based demand-side management (DSM) [89, 90, 106]. In this context,

energy-efficient “green” communication solutions have been proposed for their economic

and ecological merits [102–105]. Driven by the need of sustainable “green communica-

tions,” manufacturers and network operators such as Ericsson, Huawei, Vodafone and

China Mobile have started developing “green” BSs that can be jointly supplied by the

persistent power sources from the main electric grid as well as from harvested renewable

energy sources (e.g., solar and wind) [107, 108]. It is expected that renewable powered

BSs will be widely deployed to support future-generation cellular systems.

In the present chapter, we develop a two-scale online control (TS-OC) approach for

smart-grid powered CoMP systems considering RES, dynamic pricing, two-way energy

trading facilities and imperfect energy storage devices. Suppose that the RES harvest-

ing occurs at the BSs over a slow timescale relative to the coherence time of wireless

channels. The proposed scheme performs an ahead-of-time (e.g., 15-minute ahead, or,

hour-ahead) energy planning upon RES arrivals, while deciding real-time energy balanc-

ing and transmit-beamforming schedules per channel coherence time slot. Specifically,

the TS-OC determines the amount of energy to trade (purchase or sell) with the ahead-

of-time wholesale market based on RES generation, as the basic energy supply for all the

time slots within a RES harvesting interval. On the other hand, it decides the amount of

energy to trade with the real-time market, energy charging to (or discharging from) the

batteries, as well as the coordinated transmit-beamformers to guarantee the users’ qual-

ity of service (QoS) per time slot. Generalizing the Lyapunov optimization techniques

in [76–79,109], we propose a synergetic framework to design and analyze such a two-scale

dynamic management scheme to minimize the long-term time-averaged energy transac-
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tion cost of the CoMP transmissions, without knowing the distributions of the random

channel, RES, and energy price processes.

The rest of the chapter is organized as follows. The system models are described

in Section 4.2. The proposed dynamic resource management scheme is developed in

Section 4.3. Performance analysis is the subject of Section 4.4. Numerical tests are

provided in Section 4.5, followed by concluding remarks in Section 4.6.

4.2 System Models

Consider a cluster-based CoMP downlink setup, where a set I := {1, . . . , I} of distributed

BSs (e.g., macro/micro/pico BSs) is selected to serve a set K := {1, . . . , K} of mobile

users, as in e.g., [70, 71]. Each BS is equipped with M ≥ 1 transmit antennas, whereas

each user has a single receive antenna. Suppose that through the smart-grid infrastructure

conventional power generation is available, but each BS can also harvest RES (through

e.g., solar panels and/or wind turbines), and it has an energy storage device (i.e., battery)

to save the harvested energy. Relying on a two-way energy trading facility, the BS can also

buy energy from or sell energy to the main grid at dynamically changing market prices.

For the CoMP cluster, there is a low-latency backhaul network connecting the set of BSs

to a central controller [103], which coordinates energy trading as well as cooperative com-

munication. This central entity can collect both communication data (transmit messages,

channel state information) from each BS through the cellular backhaul links, as well as the

energy information (energy purchase/selling prices, energy queue sizes) via smart meters

installed at BSs, and the grid-deployed communication/control links connecting them.1

1Perfect channel state information will be assumed hereafter, but the proposed formulation can readily

account for the channel estimation errors to robustify the beamforming design; see e.g., [70, 71]. In

addition, generalizations are possible to incorporate imperfect energy queue information based on the

Lyapunov optimization framework in [77]. Although their detailed study falls outside the present work’s
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Figure 4.1: A smart grid powered CoMP system. Two BSs with local renewable energy

harvesting and storage devices implement two-way energy trading with the main grid.

As the RES and wireless channel dynamics emerge typically at different time scales in

practice, we propose a two-scale control mechanism. As shown in Fig. 4.1, time is divided

in slots of length smaller than the coherence time of the wireless channels. For convenience,

the slot duration is normalized to unity; thus, the terms “energy” and “power” can be

used interchangeably. On the other hand, we define the (virtual) “coarse-grained” time

intervals in accordance with the slow RES harvesting scale, with each coarse-grained

interval consisting of T time slots.

4.2.1 Ahead-of-Time Energy Planning

At the beginning of each “coarse-grained” interval, namely at time t = nT , n = 1, 2, . . .,

let Ai,n denote the RES amount collected per BS i ∈ I, and An := [A1,n, . . . , AI,n]′. With

An available, an energy planner at the central unity decides the energy amounts Ei[n], ∀i,

scope, such imperfections are not expected to substantially affect the effectiveness of the proposed scheme.
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to be used in the next T slots per BS i. With a two-way energy trading facility, the BSs

then either purchase energy from the main grid according to their shortage, or sell their

surplus energy to the grid at a fair price in order to reduce operational costs. Specifically,

following the decision, BS i contributes its RES amount Ai,n to the main grid and requests

the grid to supply an average energy amount of Ei[n]/T per slot t = nT, . . . , (n+ 1)T −1.

RES is assumed harvested for free after deployment. Given the requested energy Ei[n]

and the harvested energy Ai,n, the shortage energy that is purchased from the grid for BS

i is clearly [Ei[n]−Ai,n]+; or, the surplus energy that is sold to the grid is [Ai,n−Ei[n]]+,

where [a]+ := max{a, 0}. Depending on the difference (Ei[n]−Ai,n), the BS i either buys

electricity from the grid with the ahead-of-time (i.e., long-term) price αlt
n , or sells electricity

to the grid with price βlt
n for profit (the latter leads to a negative cost). Notwithstanding,

we shall always set αlt
n > βlt

n to avoid meaningless buy-and-sell activities of the BSs for

profit. The transaction cost with BS i for such an energy planning is therefore given by

Glt(Ei[n]) := αlt
n [Ei[n]−Ai,n]+−βlt

n [Ai,n−Ei[n]]+. (4.1)

For conciseness, we concatenate into a single random vector all the random variables

evolving at this slow timescale; i.e., ξlt
n := {αlt

n , β
lt
n ,An,∀n}.

4.2.2 CoMP Downlink Transmissions

Per slot t, let hik,t ∈ CM denote the vector channel from BS i to user k, ∀i ∈ I, ∀k ∈ K;

let hk,t := [h′1k,t, . . . ,h
′
Ik,t]

′ collect the channel vectors from all BSs to user k, and Ht :=

[h1,t. . . . ,hK,t]. With linear transmit beamforming performed across BSs, the vector signal

transmitted to user k is: qk(t) = wk(t)sk(t), ∀k, where sk(t) denotes the information-

bearing scalar symbol with unit-energy, and wk(t) ∈ CMI denotes the beamforming vector
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across the BSs serving user k. The received vector at slot t for user k is therefore

yk(t) = hHk,tqk(t) +
∑
l 6=k

hHk,tql(t) + nk(t) (4.2)

where hHk,tqk(t) is the desired signal of user k,
∑

l 6=k hHk,tql(t) is the inter-user interference

from the same cluster, and nk(t) denotes additive noise, which may also include the

downlink interference from other BSs outside user k’s cluster. It is assumed that nk(t) is

a circularly symmetric complex Gaussian (CSCG) random variable with zero mean and

variance σ2
k.

The signal-to-interference-plus-noise ratio (SINR) at user k can be expressed as

SINRk({wk(t)}) =
|hHk,twk(t)|2∑

l 6=k(|hHk,twl(t)|2) + σ2
k

. (4.3)

The transmit power at each BS i clearly is given by

Px,i(t) =
∑
k∈K

wH
k (t)Biwk(t) (4.4)

where the matrix

Bi := diag

0, . . . , 0︸ ︷︷ ︸
(i−1)M

, 1, . . . , 1︸ ︷︷ ︸
M

, 0, . . . , 0︸ ︷︷ ︸
(I−i)M

 ∈ RMI×MI

selects the corresponding rows out of {wk(t)}k∈K to form the i-th BS’s transmit-beamforming

vector of size M × 1.

To guarantee QoS per slot user k, it is required that the central controller selects a

set of {wk(t)} satisfying [cf. (4.3)]

SINRk({wk(t)}) ≥ γk, ∀k (4.5)

where γk denotes the target SINR value per user k.
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Figure 4.2: Hourly price trend for day-ahead and real-time electricity markets during Oct.

01-07, 2015 [6].

4.2.3 Real-Time Energy Balancing

For the i-th BS, the total energy consumption Pg,i(t) per slot t includes the transmission-

related power Px,i(t), and the rest that is due to other components such as air conditioning,

data processor, and circuits, which can be generally modeled as a constant power, Pc > 0

[37]. We further suppose that Pg,i(t) is bounded by Pmax
g . Namely,

Pg,i(t) = Pc +
∑
k∈K

wH
k (t)Biwk(t) ≤ Pmax

g , ∀i. (4.6)

Per slot t, the energy supply available from the ahead-of-time planning may not exactly

meet the actual demand at BS i. Hence, the BS i is also allowed to perform real-time

energy trading with the main grid to balance its supply with demand. Let Pi(t) denote

the real-time energy amount that is purchased from (Pi(t) > 0) or sold to (Pi(t) < 0) the

grid by BS i. Let αrt
t and βrt

t (αrt
t > βrt

t ) denote the real-time energy purchase and selling

prices, respectively. Then the real-time energy transaction cost for BS i is

Grt(Pi(t)) := αrt
t [Pi(t)]

+ − βrt
t [−Pi(t)]+. (4.7)
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Fig. 4.2 depicts the day-ahead and real-time energy prices in the Pennsylvania-Jersey-

Maryland (PJM) wholesale market [6]. In practice, the average purchase price in the real-

time market tends to be no lower than that in the day-ahead market; that is, E{αrt
t } ≥

E{αlt
n}; similarly, we have E{βrt

t } ≤ E{βlt
n}. Again, we use a random vector ξrt

t :=

{αrt
t , β

rt
t ,Ht,∀t} to collect all random variables evolving at the fast timescale.

4.2.4 Energy Storage with Degeneration

As energy consumption will become a major concern of the future large-scale cellular

networks, uninterrupted power supply type storage units can be installed at the BSs to

prevent power outages, and provide opportunities to optimize the BSs’ electricity bills.

Different from the ideal battery models in [37,69–71,77], we consider here a practical bat-

tery with degeneration (i.e., energy leakage over time even in the absence of discharging)

as in [109].

For the battery of the i-th BS, let Ci(0) denote the initial amount of stored energy, and

Ci(t) its state of charge (SoC) at the beginning of time slot t. The battery is assumed to

have a finite capacity Cmax. Furthermore, for reliability purposes, it might be required to

ensure that a minimum energy level Cmin is maintained at all times. Let Pb,i(t) denote the

energy delivered to or drawn from the battery at slot t, which amounts to either charging

(Pb,i(t) > 0) or discharging (Pb,i(t) < 0). The stored energy then obeys the dynamic

equation

Ci(t+ 1) = ηCi(t) + Pb,i(t), C
min ≤ Ci(t) ≤ Cmax, ∀i (4.8)

where η ∈ (0, 1] denotes the storage efficiency (e.g., η = 0.9 means that 10% of the stored

energy will be “leaked” over a slot, even in the absence of discharging).

The amount of power (dis)charged is also assumed bounded by

Pmin
b ≤ Pb,i(t) ≤ Pmax

b , ∀i (4.9)
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where Pmin
b < 0 and Pmax

b > 0 are introduced by physical constraints.

With nt := b t
T
c and consideration of Pb,i(t), we have the following demand-and-supply

balance equation per slot t:

Pc +
∑
k∈K

wH
k (t)Biwk(t) + Pb,i(t) =

Ei[nt]

T
+ Pi(t), ∀i. (4.10)

4.3 Dynamic Resource Management Scheme

Note that the harvested RES amounts {An,∀n}, the ahead-of-time prices {αlt
n , β

lt
n ,∀n},

the real-time prices {αrt
t , β

rt
t , ∀t}, and the wireless channel matrices {Ht,∀t} are all ran-

dom. The smart-grid powered CoMP downlink to be controlled is a stochastic system.

The goal is to design an online resource management scheme that chooses the ahead-

of-time energy-trading amounts {Ei[n],∀i} at every t = nT , as well as the real-time

energy-trading amounts {Pi(t),∀i}, battery (dis)charging amounts {Pb,i(t),∀i}, and the

CoMP beamforming vectors {wk(t), ∀k} per slot t, so as to minimize the expected total

energy transaction cost, without knowing the distributions of the aforementioned random

processes.

According to (4.1) and (4.7), define the energy transaction cost for BS i per slot t as:

Φi(t) :=
1

T
Glt(Ei[nt]) +Grt(Pi(t)). (4.11)

Let X := {Ei[n],∀i, n;Pi(t), Pb,i(t), Ci(t), ∀i, t; wk(t), ∀k, t}. The problem of interest is to

find

Φopt := min
X

lim
N→∞

1

NT

NT−1∑
t=0

∑
i∈I

E{Φi(t)}

subject to (4.5), (4.6), (4.8), (4.9), (4.10), ∀t

(4.12)

where the expectations of Φi(t) are taken over all sources of randomness. Note that here

the constraints (4.5), (4.6), (4.8), (4.9), and (4.10) are implicitly required to hold for every

realization of the underlying random states ξrt
t and ξlt

n .
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4.3.1 Two-Scale Online Control Algorithm

(4.12) is a stochastic optimization task. We next generalize and integrate the Lyapunov

optimization techniques in [76–79, 109] to develop a TS-OC algorithm, which will be

proven feasible, and asymptotically near-optimal for (4.12). To start, assume the following

two relatively mild conditions for the system parameters:

Pmax
b ≥ (1− η)Cmin (4.13)

Cmax − Cmin ≥ 1− ηT

1− η
(Pmax

b − Pmin
b ). (4.14)

Condition (4.13) simply implies that the energy leakage of the battery can be com-

pensated by the charging. Condition (4.14) requires that the allowable SoC range is large

enough to accommodate the largest possible charging/discharging over T time slots of

each coarse-grained interval. This then makes the system “controllable” by our two-scale

mechanism.

Our algorithm depends on two parameters, namely a “queue perturbation” parameter

Γ, and a weight parameter V . Define ᾱ := max{αrt
t ,∀t} and β := min{βrt

t ,∀t}. Derived

from the feasibility requirement of the proposed algorithm (see the proof of Proposition 1

in the sequel), any pair (Γ, V ) that satisfies the following conditions can be used:

Γmin ≤ Γ ≤ Γmax, 0 < V ≤ V max (4.15)

where

Γmin := max
τ=1,...,T

{
1

ητ
(
1− ητ

1− η
Pmax
b − Cmax)− V β

}
(4.16)

Γmax := min
τ=1,...,T

{
1

ητ
(
1− ητ

1− η
Pmin
b − Cmin)− V ᾱ

}
(4.17)

V max := min
τ=1,...,T

{
Cmax−Cmin− 1−ητ

1−η (Pmax
b −Pmin

b )

ητ (ᾱ− β)

}
. (4.18)

Note that the interval for V in (4.15) is well defined under condition (4.14), and the

interval for Γ is valid when V ≤ V max.
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We now present the proposed TS-OC algorithm:

• Initialization: Select Γ and V , and introduce a virtual queue Qi(0) := Ci(0) + Γ,

∀i.

• Ahead-of-time energy planning: Per interval τ = nT , observe a realization ξlt
n ,

and determine the energy amounts {E∗i [n],∀i} by solving

min
{E∗i [n]}

∑
i∈I

{
V
[
Glt(Ei[n]) +

τ+T−1∑
t=τ

E{Grt(Pi(t))}
]

+
τ+T−1∑
t=τ

Qi(τ)E{Pb,i(t)}

}

s. t. (4.5), (4.6), (4.9), (4.10), ∀t = τ, . . . , τ + T − 1 (4.19)

where expectations are taken over ξrt
t . Then the BSs trade energy with the main

grid based on {E∗i [n],∀i}, and request the grid to supply an average amount E∗i [n]/T

per slot t = τ, . . . , τ + T − 1.

• Energy balancing and beamforming schedule: At every slot t ∈ [nT, (n+1)T−

1], observe a realization ξrt
t , and decide {P ∗i (t), P ∗b,i(t),∀i; w∗k(t),∀k} by solving the

following problem given Ei[n] = E∗i [n]

min
{P ∗i (t),P ∗b,i(t),w

∗
k(t)}

∑
i∈I

{
V Grt(Pi(t)) +Qi(nT )Pb,i(t)

}
s. t. (4.5), (4.6), (4.9), (4.10). (4.20)

The BSs perform real-time energy trading with the main grid based on {P ∗i (t), ∀i},

and coordinated beamforming based on {w∗k(t),∀k}.

• Queue updates: Per slot t, charge (or discharge) the battery based on {P ∗b,i(t)},

so that the stored energy Ci(t + 1) = ηCi(t) + P ∗b,i(t), ∀i; and update the virtual

queues Qi(t) := Ci(t) + Γ,∀i.
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Remark 3. Note that we use queue sizes Qi(τ) instead of Qi(t) in problems (4.19) and

(4.20); see also [76, 77]. Recall that the main design principle in Lyapunov optimization

is to choose control actions that minimize
∑

t

∑
i E [V Φi(t) +Qi(t)Pb,i(t)]. For the ahead-

of-time energy planning, this requires a-priori knowledge of the future queue backlogs Qi(t)

over slots [τ + 1, . . . , τ + T − 1] at time τ = nT . It is impractical to assume that this

information is available. For this reason, we simply approximate future queue backlog

values as the current value at τ = nT , i.e., Qi(t) ≈ Qi(τ), ∀t = τ + 1, . . . , τ + T − 1,

in (4.19). To ensure that the real-time energy balancing and beamforming schedule solves

the same problem as the ahead-of-time energy planning, we also use Qi(nT ) in (4.20)

although the real-time battery state of charge Qi(t) is available at slot t. Rigorous analysis

shows that the performance penalty incurred by such an approximation does not affect the

asymptotic optimality of the proposed stochastic control scheme. On the other hand, using

Qi(t) in real-time energy balancing can be also suggested in practice. While our feasibility

analysis affords such a modification, deriving the optimality gap is left for future research.

Next, we develop efficient solvers of (4.19) and (4.20) to obtain the TS-OC algorithm.

4.3.2 Real-Time Energy Balancing and Beamforming

It is easy to argue that the objective (4.20) is convex. Indeed, with αrt
t > βrt

t , the

transaction cost with Pi(t) can be alternatively written as

Grt(Pi(t)) = max{αrt
t Pi(t), β

rt
t Pi(t)} (4.21)

which is clearly convex [84]; and so is the objective in (4.20).

The SINR constraints in (4.5) can be actually rewritten into a convex form. Observe

that an arbitrary phase rotation can be added to the beamforming vectors wk(t) without

affecting the SINRs. Hence, we can choose a phase so that hHk,twk(t) is real and nonneg-

ative. Then by proper rearrangement, the SINR constraints become convex second-order
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cone (SOC) constraints [110]; that is,√∑
l 6=k

|hHk,twl(t)|2 + σ2
k ≤

1
√
γk

Re{hHk,twk(t)},

Im{hHk,twk(t)} = 0, ∀k.

We can then rewrite the problem (4.20) as

min
∑
i∈I

{
V Grt(Pc +

∑
k∈K

wH
k (t)Biwk(t) + Pb,i(t)−

E∗i [nt]

T
)

+Qi(ntT )Pb,i(t)}
}

s. t.

√∑
l 6=k

|hHk,twl(t)|2 + σ2
k ≤

1
√
γk

Re{hHk,twk(t)},

Im{hHk,twk(t)} = 0, ∀k

Pmin
b ≤ Pb,i(t) ≤ Pmax

b , ∀i

Pc +
∑
k∈K

wH
k (t)Biwk(t) ≤ Pmax

g , ∀i. (4.22)

As Grt(·) is convex and increasing, it is easy to see that Grt(Pc +
∑

k wH
k (t)Biwk(t) +

Pb,i(t) − E∗i [nt]/T ) is jointly convex in (Pb,i(t), {wk(t)}) [84, Sec. 3.2.4]. It then readily

follows that (4.22) is a convex optimization problem, which can be solved via off-the-shelf

solvers.

4.3.3 Ahead-of-Time Energy Planning

To solve (4.19), the probability distribution function (pdf) of the random state ξrt
t must

be known across slots t = nT, . . . , (n + 1)T − 1. However, this pdf is seldom available

in practice. Suppose that ξrt
t is independent and identically distributed (i.i.d.) over time

slots, and takes values from a finite state space. It was proposed in [76] to obtain an

empirical pdf of ξrt
t from past realizations over a large window comprising L intervals.

This estimate becomes accurate as L grows sufficiently large; then it can be used to
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evaluate the expectations in (4.19). Based on such an empirical pdf, an approximate

solution for (4.19) could be obtained.

Different from [76], here we propose a stochastic gradient approach to solve (4.19).

Suppose that ξrt
t is i.i.d. across time slots (but not necessarily with a finite support).

For stationary ξrt
t , we can remove the index t from all optimization variables, and rewrite

(4.19) as (with short-hand notation Qi[n] := Qi(nT ))

min
∑
i∈I

{
V Glt(Ei[n]) + TE

[
V Grt(Pi(ξ

rt
t )) +Qi[n]Pb,i(ξ

rt
t )
]}

s. t.

√∑
l 6=k
|hHk wl(ξ

rt
t )|2 + σ2

k ≤
1
√
γk

Re{hHk wk(ξ
rt
t )},

Im{hHk wk(ξ
rt
t )} = 0, ∀k, ξrt

t (4.23a)

Pmin
b ≤ Pb,i(ξrt

t ) ≤ Pmax
b , ∀i, ξrt

t (4.23b)

Pc +
∑
k∈K

wH
k (ξrt

t )Biwk(ξ
rt
t ) ≤ Pmax

g , ∀i, ξrt
t (4.23c)

Pc+
∑
k∈K

wH
k (ξrt

t )Biwk(ξ
rt
t )+Pb,i(ξ

rt
t )=

Ei[n]

T
+Pi(ξ

rt
t ),∀i, ξrt

t . (4.23d)

Note that this form explicitly indicates the dependence of the decision variables {Pi, Pb,i,wk}

on the realization of ξrt
t .

Since the energy planning problem (4.19) only determines the optimal ahead-of-time

energy purchase E∗i [n], we can then eliminate the variable Pi and write (4.23) as an

unconstrained optimization problem with respect to the variable E∗i [n], namely

min
{Ei[n]}

∑
i∈I

[
V Glt(Ei[n]) + TḠrt({Ei[n]})

]
(4.24)

where we define

Ḡrt({Ei[n]}):= min
{Pi,Pb,i,wk}

∑
i∈I

E
{
VΨrt(Ei[n], Pb,i(ξ

rt
t ), {wk(ξ

rt
t )})

+Qi[n]Pb,i(ξ
rt
t )

}
s. t. (4.23a), (4.23b), (4.23c) (4.25)

with the compact notation Ψrt(Ei, Pb,i, {wk}) :=Grt(Pc+
∑

k∈KwH
k Biwk+Pb,i−Ei

T
). Since

E[VΨrt(Ei[n], Pb,i(ξ
rt
t ), {wk(ξ

rt
t )}) +Qi[n]Pb,i(ξ

rt
t )] is jointly convex in (Ei, Pb,i, {wk}) [cf.
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(4.22)], then the minimization over (Pb,i, {wk}) is within a convex set; thus, (4.23a)-

(4.23c) is still convex with respect to Ei[n] [84, Sec. 3.2.5]. In addition, due to αlt
n > βlt

n ,

we can alternatively write Glt(Ei[n]) = max{αlt
n(Ei[n] − Ai,n), βlt

n (Ei[n] − Ai,n)}, which

is in the family of convex functions. Hence, (4.24) is generally a nonsmooth and uncon-

strained convex problem with respect to {Ei[n]}, which can be solved using the stochastic

subgradient iteration described next.

The subgradient of Glt(Ei[n]) can be first written as

∂Glt(Ei[n]) =


αlt
n , if Ei[n] > Ai,n

βlt
n , if Ei[n] < Ai,n

any x ∈ [βlt
n , α

lt
n ], if Ei[n] = Ai,n.

With {PE
b,i(ξ

rt
t ),wE

k (ξrt
t )} denoting the optimal solution for the problem in (4.25), the par-

tial subgradient of Ḡrt({Ei[n]}) with respect to Ei[n] is ∂iḠ
rt({Ei[n]}) = V E{∂Ψrt(Ei[n],

PE
b,i(ξ

rt
t ), {wE

k (ξrt
t )})}, where

∂Ψrt(Ei[n], PE
b,i(ξ

rt
t ), {wE

k (ξrt
t )}) =



−βrt
t

T
, if Ei[n]

T
> ∆

−αrt
t

T
, if Ei[n]

T
< ∆

x ∈ [
−αrt

t

T
,
−βrt

t

T
], else

with ∆ := Pc +
∑

k wE
k
H

(ξrt
t )Biw

E
k (ξrt

t ) + PE
b,i(ξ

rt
t ).

Defining ḡi(Ei) := V ∂Glt(Ei)+T∂iḠ
rt({Ei}), a standard sub-gradient descent iteration

can be employed to find the optimal E∗i [n] for (4.24), as

E
(j+1)
i [n] = [E

(j)
i [n]− µ(j)ḡi(E

(j)
i [n])]+, ∀i (4.26)

where j denotes iteration index, and {µ(j)} is the sequence of stepsizes.

Implementing (4.26) essentially requires performing (high-dimensional) integration

over the unknown multivariate distribution function of ξrt
t present in ḡi through Ḡrt in
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(4.25). To circumvent this impasse, a stochastic subgradient approach is devised based

on the past realizations {ξrt
τ , τ = 0, 1, . . . , nT − 1}. Per iteration j, we randomly draw a

realization ξrt
τ from past realizations, and run the following iteration

E
(j+1)
i [n] = [E

(j)
i [n]− µ(j)gi(E

(j)
i [n])]+, ∀i (4.27)

where gi(E
(j)
i [n]) := V (∂Glt(E

(j)
i [n])+T∂Ψrt(E

(j)
i [n], PE

b,i(ξ
rt
τ ), {wE

k (ξrt
τ )})) with {PE

b,i(ξ
rt
τ ),

wE
k (ξrt

τ )} obtained by solving a convex problem (4.25) with Ei[n] = E
(j)
i [n].

As gi(E
(j)
i [n]) is indeed an unbiased random realization of ḡi(E

(j)
i [n]) = E{gi(E(j)

i [n])}

[111], if we adopt a sequence of non-summable diminishing stepsizes satisfying limj→∞ µ
(j)

= 0 and
∑∞

j=0 µ
(j) = ∞, the iteration (4.27) asymptotically converges to the optimal

{E∗i [n],∀i} as j →∞ [95].

Compared with [76], the proposed stochastic subgradient method is particularly tai-

lored for our setting, which does not require the random vector ξrt
t to have discrete and

finite support. In addition, as the former essentially belongs to the class of statistical

learning based approaches [112], the proposed stochastic method avoids constructing a

histogram for learning the underlying multivariate distribution and requires a considerably

smaller number of samples to obtain an accurate estimate of E∗i [n].

Remark 4. The computational complexity of the proposed algorithm is fairly low. Specifi-

cally, for solving the real-time energy balancing and beamforming problem (4.22) per slot t,

the off-the-shelf interior-point solver incurs a worst-case complexity O(I3.5K3.5) to obtain

the decisions {P ∗b,i(t), ∀i; w∗k(t),∀k} [30]; for solving the ahead-of-time energy planning

problem (4.25) every T slots, the stochastic subgradient approach needs O(1/ε2) itera-

tions to obtain an ε-optimal solution, while the per iteration complexity is in the order of

O(I3.5K3.5). And updating E
(j)
i [n] in (27) requires only linear complexity O(I).
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4.4 Performance Analysis

In this section, we show that the TS-OC can yield a feasible and asymptotically (near-

)optimal solution for problem (4.12).

4.4.1 Feasibility Guarantee

Note that in problems (4.19) and (4.20), {Ci(t)} are removed from the set of optimization

variables and the constraints in (4.8) are ignored. While the battery dynamics Ci(t+1) =

ηCi(t)+Pb,i(t) are accounted for by the TS-OC algorithm (in the step of “Queue updates”),

it is not clear whether the resultant Ci(t) ∈ [Cmin, Cmax], ∀i, t. Yet, we will show that

by selecting a pair (Γ, V ) in (4.15), we can guarantee that Cmin ≤ Ci(t) ≤ Cmax, ∀i, t;

meaning, the online control policy produced by the TS-OC is a feasible one for the original

problem (4.12), under the conditions (4.13)–(4.14).

To this end, we first show the following lemma.

Lemma 8. If ᾱ := max{αrt
t ,∀t} and β := min{βrt

t ,∀t}, the battery (dis)charging amounts

P ∗b,i(t) obtained from the TS-OC algorithm satisfy: i) P ∗b,i(t) = Pmin
b , if Ci(ntT ) > −V β−

Γ; and ii) P ∗b,i(t) = Pmax
b , if Ci(ntT ) < −V ᾱ− Γ.

Proof. In TS-OC, we determine P ∗b,i(t) by solving (4.20). From the equivalent problem

(4.22), we can see that the determination of P ∗b,i(t) is decoupled across BSs, and it depends

on the first derivative of Grt(·). By (4.21), the maximum possible gradient for Grt(·) is

V ᾱ. It then follows that if V ᾱ +Qi(ntT ) < 0, we must have P ∗b,i(t) = Pmax
b . Similarly, if

V β+Qi(ntT ) > 0, we must have P ∗b,i(t) = Pmin
b . Given that Qi(t) = Ci(t) + Γ, the lemma

follows readily.

Lemma 8 reveals partial characteristics of the dynamic TS-OC policy. Specifically,

when the energy queue (i.e., battery SoC) is large enough, the battery must be discharged
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as much as possible; that is, P ∗b,i(t) = Pmin
b . On the other hand, when the energy queue

is small enough, the battery must be charged as much as possible; i.e., P ∗b,i(t) = Pmax
b,i .

Alternatively, such results can be justified by the economic interpretation of the virtual

queues. Specifically, −Qi(t)
V

can be viewed as the instantaneous discharging price. For

high prices −Qi(t)
V

> ᾱ, the TS-OC dictates full charge. Conversely, the battery units can

afford full discharge if the price is low.

Based on the structure in Lemma 8, we can thus establish the following result.

Proposition 1. Under the conditions (4.13)–(4.14), the TS-OC algorithm with any pair

(Γ, V ) specified in (4.15) guarantees Cmin ≤ Ci(t) ≤ Cmax, ∀i, ∀t.

Proof. See Appendix A.0.8.

Remark 5. Note that Proposition 1 is a sample path result; meaning, the bounded energy

queues Ci(t) ∈ [Cmin, Cmax], ∀i, hold per time slot under arbitrary, even non-stationary,

{An, α
lt
n , β

lt
n , α

rt
t , β

rt
t ,Ht} processes. In other words, under the mild conditions (4.13)–

(4.14), the proposed TS-OC with proper selection of (Γ, V ) always yields a feasible control

policy for (4.12).

4.4.2 Asymptotic Optimality

To facilitate the analysis, we assume that the random processes {ξlt
n} and {ξrt

t } are both

i.i.d. over slow and fast timescales, respectively. Define C̄i := 1
NT

∑NT−1
t=0 E{Ci(t)} and

P̄b,i := 1
NT

∑NT−1
t=0 E{Pb,i(t)}. Since Pb,i(t) ∈ [Pmin

b , Pmax
b ] and Ci(t+ 1) = ηCi(t) + Pb,i(t),

it holds that

P̄b,i =
1

NT

NT−1∑
t=0

E{Ci(t+ 1)− ηCi(t)} = (1− η)C̄i. (4.28)

As Ci(t) ∈ [Cmin, Cmax], ∀t, (4.28) then implies

(1− η)Cmin ≤ P̄b,i ≤ (1− η)Cmax, ∀i. (4.29)
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Consider now the following problem

Φ̃opt := min
X

lim
N→∞

1

NT

NT−1∑
t=0

∑
i∈I

E{Φi(t)}

s. t. (4.5), (4.6), (4.9), (4.10), ∀t, (4.29).

(4.30)

Note that the constraints in (4.8), ∀t, are replaced by (4.29); i.e., the queue dynamics that

need to be performed per realization per slot are replaced by a time-averaged constraint

per BS i. The problem (4.30) is thus a relaxed version of (4.12) [109]. Specifically, any

feasible solution of (4.12), satisfying (4.8), ∀t, also satisfies (4.29) in (4.30), due to the

boundedness of Pb,i(t) and Ci(t). It then follows that Φ̃opt ≤ Φopt.

Variables {Ci(t)} are removed from (4.30), and other optimization variables are “de-

coupled” across time slots due to the removal of constraints (4.8). This problem has

an easy-to-characterize stationary optimal control policy as formally stated in the next

lemma.

Lemma 9. If ξlt
n and ξrt

t are i.i.d., there exists a stationary control policy Pstat that is a

pure (possibly randomized) function of the current (ξlt
nt , ξ

rt
t ), while satisfying (4.5), (4.6),

(4.9), (4.10), and providing the following guarantees per t:

E{
∑
i∈I

Φstat
i (t)} = Φ̃opt

(1− η)Cmin ≤ E{P stat
b,i (t)} ≤ (1− η)Cmax, ∀i

(4.31)

where P stat
b,i (t) denotes the decided (dis)charging amount, Φstat

i (t) the resultant transaction

cost by policy Pstat, and expectations are taken over the randomization of (ξlt
nt , ξ

rt
t ) and

(possibly) Pstat.

Proof. The proof argument is similar to that in [113, Theorem 4.5]; hence, it is omitted

for brevity.

Lemma 9 in fact holds for many non-i.i.d. scenarios as well. Generalizations to other

stationary processes, or even to non-stationary processes, can be found in [113] and [114].
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It is worth noting that (4.31) not only assures that the stationary control policy Pstat

achieves the optimal cost for (4.30), but also guarantees that the resultant expected trans-

action cost per slot t is equal to the optimal time-averaged cost (due to the stationarity

of ξlt
nt , ξ

rt
t and Pstat). This plays a critical role in establishing the following result.

Proposition 2. Suppose that conditions (4.13)–(4.15) hold. If ξlt
n and ξrt

t are i.i.d. across

time, then the time-averaged cost under the proposed TS-OC algorithm satisfies

lim
N→∞

1

NT

NT−1∑
t=0

∑
i∈I

E{Φ∗i (t)} ≤ Φopt +
M1 +M2 +M3

V

where the constants2

M1 :=
IT (1− η)

2η(1− ηT )
MB (4.32)

M2 :=
I[T (1− η)− (1− ηT )]

(1− η)(1− ηT )
MB (4.33)

M3 := I(1− η)MC (4.34)

with MB and MC given by

MB := max{[(1− η)Γ + Pmin
b ]2, [(1− η)Γ + Pmax

b ]2}

MC := max{(Γ + Cmin)2, (Γ + Cmax)2};

Φ∗i (t) denotes the resultant cost with the TS-OC, and Φopt is the optimal value of (4.12)

under any feasible control algorithm, including the one knowing all future realizations.

Proof. See Appendix A.0.9.

Remark 6. Proposition 2 asserts that the proposed TS-OC algorithm ends up with a

time-averaged cost having optimality gap smaller than M1+M2+M3

V
. The novel TS-OC can

also be viewed as a modified version of a classic queue-length based stochastic optimiza-

tion scheme, where queue lengths play the role of “stochastic” Lagrange multipliers with

2Note that limη→1
1−ηT
1−η = T , and limη→1

T (1−η)−(1−ηT )
(1−η)(1−ηT )

= T−1
2 .
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a dual-subgradient solver to the regularized dual problem by subtracting an `2-norm of La-

grange multipliers. Intuitively, the gap M1/V is inherited from the underlying stochastic

subgradient method. The gap M2/V is introduced by the inaccurate queue lengths in use

(since we use Qi(nT ), instead of Qi(t), for all t = nT, . . . , (n + 1)T − 1), while the gap

M3/V is incurred by the presence of the `2 regularizer in the dual function (a. k. a. the

price of battery imperfections).

4.4.3 Main Theorem for the Proposed TS-OC

Based on Propositions 1 and 2, it is now possible to arrive at our main result.

Theorem 3. Suppose that conditions (4.13)–(4.15) hold and (ξlt
n , ξ

rt
t ) are i.i.d. over slots.

Then the proposed TS-OC yields a feasible dynamic control scheme for (4.12), which is

asymptotically near-optimal in the sense that

Φopt ≤ lim
N→∞

1

NT

NT−1∑
t=0

∑
i∈I

E{Φ∗i (t)} ≤ Φopt +
M

V

where M := M1 +M2 +M3, as specified in Proposition 2.

The asymptotic behavior of the proposed dynamic approach is more complicated than

that of existing alternatives due to the nature of multi-scale scheduling and battery im-

perfections. Interesting comments on the minimum optimality gap with the TS-OC are

now in order.

1) When η = 1 (perfect battery), the optimality gap between the TS-OC and the

offline optimal scheduling reduces to

M

V
=
M1 +M2

V
=
IT

2V
max{(Pmin

b )2, (Pmax
b )2}.

The typical tradeoff from the stochastic network optimization holds in this case

[113]: an O(V ) battery size is necessary, when an O(1/V ) close-to-optimal cost is
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achieved. Clearly, the minimum optimality gap is given by M/V max, which vanishes

as V max →∞. By (4.18), such an asymptotic optimality can be achieved when we

have very small price difference (ᾱ− β), or very large battery capacities Cmax.

2) When η ∈ (0, 1), the constants M1, M2 and M3 are in fact functions of Γ, whereas the

minimum and maximum values of Γ also depend on V [cf. (4.16)–(4.17)], thus the

typical tradeoff in the case 1) is no longer correct. For a given V max, the minimum

optimality gap, Gmin(V max), can be obtained by solving the following problem:

min
(V,Γ)

M

V
=
M1(Γ)

V
+
M2(Γ)

V
+
M3(Γ)

V
, s. t. (4.15). (4.35)

For V ≥ 0, we know that the quadratic-over-linear functions
[(1−η)Γ+Pmin

b ]2

V
and

[(1−η)Γ+Pmax
b ]2

V
are jointly convex in V and Γ [84]. As a point-wise maximum of these

two convex functions, MB(Γ)
V

is also convex [84]. Then M1(Γ)
V

and M2(Γ)
V

are clearly

convex by (4.32)-(4.33); and likewise for M3(Γ)
V

. Since the objective is convex and the

constraints in (4.15) are linear, problem (4.35) is a convex program which can be

efficiently solved by general interior-point methods. Note that Gmin(V max) no longer

monotonically decreases with respect to V max (or Cmax); see also [109]. This makes

sense intuitively because for a large battery capacity, the impact of using inaccurate

queue lengths (battery SoC) and the dissipation loss due to battery imperfections

will also be enlarged. The smallest possible optimality gap can be numerically

computed by one dimensional search over Gmin(V max) with respect to V max.

4.5 Numerical Tests

In this section, simulated tests are presented to evaluate our proposed TS-OC algorithm,

and justify the analytical claims in Section 4.4.
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Table 4.1: Parameter Values for the CoMP network. All units are kWh.

Constant energy consumption of BSs Pc 10

Maximum energy consumption of BSs Pmax
g 50

Minimum charging amount of battery Pmin
b -2

Maximum charging amount of battery Pmax
b 2

Minimum energy level of battery Cmin 0

Maximum energy level of battery Cmax 80

Initial energy level of battery Ci(0) 0

4.5.1 Experiment Setup

The considered CoMP network includes I = 2 BSs each with M = 2 transmit antennas,

and K = 3 mobile users. The system bandwidth is 1 MHz, and each element in channel

vectors hik,t,∀i, k, t, is a zero-mean complex-Gaussian random variable with unit variance.

Each coarse-grained interval consists of T = 5 time slots. The limits of Pg,i, Pb,i and Ci,

as well as the values of the initial SoC Ci(0) and Pc are listed in Table 4.1. The battery

storage efficiency is η = 0.95. The ahead-of-time and real-time energy purchase prices

αlt
n and αrt

t are generated from folded normal distributions, with E{αlt
n} = 1.15 and

E{αrt
t } = 2.3. The selling prices are set as βlt

n = 0.9 × αlt
n and βrt

t = 0.3 × αrt
t . The

harvested energy Ai,n is also generated from a folded normal distribution. Finally, the

Lyapunov control parameter V is chosen as V = V max. The proposed TS-OC algorithm

is compared with three baseline schemes to benchmark its performance. ALG 1 is a one-

scale scheme without ahead-of-time energy planning; ALG 2 performs two-scale online

control without leveraging the renewable energy or energy storage devices; and the offline

benchmark is an ideal scheme with a-priori knowledge of future channel states, energy

prices and RES arrival realizations.
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4.5.2 Numerical Results

Fig. 4.3 shows the running-average transaction costs of the proposed algorithm, ALGs 1-

2, as well as the offline benchmark. It is seen that within 500 time slots, the proposed

approach converges the closest to the lower bound, while ALGs 1-2 incur about 71%

and 31% larger costs than the proposed one. However, note that the optimal offline

counterpart cannot work in practice due to the lack of future. In addition, the optimality

gap can be reduced as the battery efficiency η approaches 1. Among online schemes, the

TS-OC algorithm intelligently takes advantage of the ahead-of-time energy planning, and

the renewable energy and batteries, to hedge against future potential high energy cost,

while ALGs 1-2 have to purchase much more expensive energy from the real-time energy

market and result in a higher transaction cost.

The theoretical optimality-gap [cf. (4.35)] between the TS-OC and the offline optimal

scheduling is depicted in Fig. 4.4 under different battery capacities Cmax. As analyzed

after Theorem 1, the optimality-gap M/V for η = 1 diminishes as Cmax (or V max) grows;

whereas the gaps for η = 0.9 and η = 0.95 are no longer monotonically decreasing.

Specifically, both of them first decrease and then increase, reaching the lowest points

(where the optimality gaps are minimized) at Cmax = 40 kWh and Cmax = 55 kWh,

respectively. As expected, the gap for the worst storage efficiency η = 0.9 remains the

largest across the entire spectrum of battery capacity.

In Fig. 4.5, the average transaction cost of the TS-OC is compared under different

battery efficiencies η = 0.9, 0.95, 1. Clearly, the average costs monotonically decrease

as Cmax grows. The BSs with imperfect batteries (η = 0.9, 0.95) require larger budgets

for energy purchase than the ones with perfect batteries (η = 1), thus compensating

for the battery degeneration losses. In particular, when Cmax = 120 kWh, the costs for

η = 0.9 and η = 0.95 are 41.8% and 33.8% larger than that of the perfect battery case,

respectively.
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Figure 4.3: Comparison of average transaction cost.

The evolutions of battery SoC C1(t) with different storage efficiencies η are compared

in Fig. 4.6. Clearly, all the three lines fluctuate within the feasible region; i.e., Cmin ≤

C1(t) ≤ Cmax. Among the three cases, the battery with η = 1 maintains the highest

energy level, followed by those with η = 0.95 and η = 0.9. Intuitively speaking, keeping a

high energy level in an imperfect battery results in much higher energy dissipation losses.

As a result, the TS-OC algorithm tends to maintain a low energy level in such cases (e.g.,

around 30 kWh for η = 0.9) to reduce average energy loss, and (dis)charge the battery

less frequently.

The previous remarks are further substantiated by Fig. 4.7, where the instantaneous

discharging price, or, the “stochastic” Lagrange multiplier −Q1(t)
V

is compared with the

running-average purchase and selling prices ᾱrt
t := (1/t)

∑t
τ=1 α

rt
τ and β̄rt

t := (1/t)
∑t

τ=1 β
rt
τ .

It is interesting to observe that with a perfect battery (η = 1), the instantaneous dis-

charging price −Q1(t)
V

is hovering between the average purchase and selling prices, which

features a frequent (dis)charging operation. For η = 0.95 or η = 0.9, −Q1(t)
V

is relatively
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Figure 4.6: TS-OC based schedule of the battery SoC C1(t).

high compared to the average purchase and selling prices, which discourages frequent

(dis)charging; see also Fig. 4.6. Note that the evolution of −Q1(t)
V

can be further linked to

the standard results from sensitivity analysis, which implies that the subdifferential of the

objective limN→∞
1
NT

∑NT−1
t=0

∑
i E{Φi(t)} with respect to Pb,i(t) (the convex hull of aver-

age purchase and selling prices) coincides with the negative of the optimal dual variable

corresponding to (4.28) [84]. Building upon this claim, the asymptotic optimality can be

easily verified for η = 1 since the “stochastic” Lagrange multiplier −Q1(t)
V

converges to a

neighborhood of the optimal dual variable; and a large optimality gap is also as expected

for the imperfect batteries η < 1 due to the distance between −Q1(t)
V

and the average

purchase and selling prices.

Taking a deeper look, the battery SoC C1(ntT ) and the real-time battery (dis)charging

P ∗b,1(t) are jointly depicted in Fig. 4.8 to reveal the (dis)charging characteristics stated in

Lemma 8. It can be observed that the TS-OC dictates the full discharge P ∗b,1(t) = Pmin
b

in the incoming 5 fine-grained slots t ∈ [20, 24] when C1(ntT ) > −V β−Γ at n = 4, while
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Figure 4.9: TS-OC based schedule of the optimal energy planning E∗1 [n].

the battery is fully charged P ∗b,1(t) = Pmax
b when C1(ntT ) < −V ᾱ − Γ at n = 1, 3, 5, 6, 8.

In addition, when C1(ntT ) ∈ [−V ᾱ − Γ,−V β − Γ] at n = 2, 7, P ∗b,1(t) must be obtained

by solving (4.22) numerically.

Fig. 4.9 shows the optimal energy planning E∗1 [n] over a 100-slot period, along with

the fluctuating ahead-of-time energy purchase prices αlt
n for the resultant online policy.

One observation is that the ahead-of-time energy purchase E∗1 [n] highly depends on the

long-term price αlt
n . Specifically, the proposed scheme tends to request more energy for

future T slots when αlt
n is lower (e.g., n = 10, 13, 17), and tends to purchase less energy

when αlt
n is higher (e.g., n = 2, 11).

4.6 Conclusions

A two-scale dynamic resource allocation task was considered for RES-integrated CoMP

transmissions. Taking into account the variability of channels, RES and ahead-of-time/real-

time electricity prices, as well as battery imperfections, a stochastic optimization problem
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was formulated to minimize the long-term average energy transaction cost subject to

the QoS requirements. Capitalizing on the Lyapunov optimization technique and the

stochastic subgradient iteration, a two-scale online algorithm was developed to make con-

trol decisions ‘on-the-fly.’ It was analytically established that the novel approach yields

feasible and asymptotically near-optimal resource schedules without knowing any statis-

tics of the underlying stochastic processes. Simulated tests confirmed the merits of the

proposed approach and highlighted the effect of battery imperfections on the proposed

online scheme. This novel two-scale optimization framework opens up some interesting

research directions, which include incorporating the power network constraints and/or

transmission losses in the formulation, pursuing a fast convergent approach by learning

from historical system statistics, and reducing the battery size leveraging the so-called

predictive scheduling.



Chapter 5

Thesis Conclusion and Future Work

5.1 Thesis Conclusions

EH is a key factor in building self-sustainable networks. It helps communication networks

get rid of the limits of the grid, enabling people to provide network services in remote areas

without grid coverage or in harsh areas. In addition, EH helps reduce carbon emissions

and enables green communications. To deal with the inherent randomness and instability

of environmental energy sources in EH-powered wireless communication systems, this

thesis developed optimal data transmission schedules and resource allocation to ensure

reliable and efficient communications, thus optimizing system performances.

In Chapter 2, we considered EH-powered WSN links, where data has strict deadline

constraints and the power supply is unreliable. In the presence of circuit power consump-

tion, a new DST algorithm was proposed, which generates the optimal transmit schedule

in a computationally efficient, graphical manner by recursively updating the energy con-

straint curve on-the-go. We also extended the algorithm to online scenarios. The online

algorithm follows the optimal rules we derived, generating transmission schedules in real

time without a-priori knowledge of data or energy arrivals. Simulations showed that our

115
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algorithm reduces the average complexity by almost two orders of magnitude compared

to the standard convex solvers. The effective transmit region can also be substantially

enlarged by our algorithm.

In Chapter 3, real-time resource allocation was developed for smart-grid powered

MIMO downlink transmissions. Taking into account the time variations of channels,

harvested renewables and electricity prices, a stochastic optimization problem was formu-

lated to maximize the expected throughput while satisfying the energy cost constraints.

Adopting the so-termed “virtual queue” relaxation techniques in [71,73,74], we decoupled

the optimization variables across the infinite time horizon, and reformulated the problem

as a state-independent stochastic programming. Then leveraging the dual relaxation and

stochastic approximation methods, we developed a novel online control algorithm. It was

proven that the novel approach yields feasible and asymptotically optimal resource sched-

ules without knowing any statistics of the underlying stochastic processes. Simulations

further corroborated the merits of the proposed scheme in non i.i.d. cases, where the

underlying randomness is highly correlated over time.

In Chapter 4, a two-scale dynamic resource allocation task was considered for RES-

integrated CoMP transmissions. Taking into account the variability of channels, RES and

ahead-of-time/real-time electricity prices, as well as battery imperfections, a stochastic

optimization problem was formulated to minimize the long-term average energy trans-

action cost subject to the QoS requirements. Based on [70, 71], a novel two-scale opti-

mization framework was developed to facilitate the dynamic resource management for

smart-grid powered CoMP systems with RES and channel dynamics at different time

scales. While [71,76] and [77] did not account for battery degeneration (energy leakage),

we integrated the modified Lyapunov optimization technique into the two-scale stochas-

tic optimization approach to leverage the diversity of energy prices along with the energy

leakage effects on the dynamic energy management task. Simulated tests confirmed the
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merits of the proposed approach and highlighted the effect of battery imperfections on

the proposed online scheme.

5.2 Future Research Directions

Based on the work of this thesis, prospective future directions include

• modeling more practical battery unit with finite capacity and energy leakage, ac-

counting for charging/discharging loss;

• extrapolation of the optimal transmission scheduling and energy management to

large-scale EH powered networks;

• EH processes with multiple (discrete and/or continuous) power sources, and their

impact on QoS;

• upper layer adaptation to the EH powered transmissions, including routing, priori-

tization, and QoS provision over EH powered wireless networks;

• incorporating the power network constraints and/or transmission losses in the for-

mulations; and

• pursuing fast convergent approaches by learning from historical system statistics for

energy management, etc.
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Appendix A

Proofs of lemmas, propositions and

theorems

A.0.1 Proof of Lemma 1

Define ξee(r) := P (r)+ρ
r

. Taking the first derivative of ξee(r), we have:

dξee(r)

dr
=
P ′(r)r − (P (r) + ρ)

r2
. (A.1)

Due to its “convex-over-linear” form, we can show that ξee(r) first decreases and then

increases with r, and it reaches the minimum at ree. This implies:
P ′(r)r − (P (r) + ρ) < 0, if r < ree,

P ′(r)r − (P (r) + ρ) = 0, if r = ree,

P ′(r)r − (P (r) + ρ) > 0, if r > ree.

(A.2)

If we have an r∗i < ree when l∗i > 0, it follows from (A.2) that P ′(r∗i )r
∗
i − (P (r∗i ) + ρ) < 0.

But when P ′(r∗i )r
∗
i − (P (r∗i ) + ρ) < 0, (2.15) implies that l∗i = 0, which leads to a

contradiction. Hence, r∗i < ree is not allowed when l∗i > 0.

When r∗i > ree, we have P ′(r∗i )r
∗
i − (P (r∗i ) + ρ) > 0 according to (A.2). This together

with (2.15) then dictates l∗i = Li. In the case of r∗i = ree, we have P ′(r∗i )r
∗
i−(P (r∗i )+ρ) = 0,

119
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so any l∗i ∈ [0, Li] is a minimizer in (2.15).

A.0.2 Proof of Lemma 2

Clearly, r∗i = P ′−1(wi) changes only when wi changes its value. By the definition of wi

in (2.5), if (λcn)∗, (λdn)∗, (µcn)∗ = 0,∀n = 1, . . . , N − 1, then a constant w = [(λdN)∗ −

(λcN)∗]/[1 + (µcN)∗] will be used over all the epochs. We will have a change only when

one of the Lagrange multipliers is positive for a certain n ∈ [1, N − 1], which occurs at

the corresponding tn. In addition, it follows from the complementary slackness conditions

(2.11)-(2.13) that we have the corresponding constraints met with equality at such a tn.

If the rate changes at tn where
∑n

i=1(r∗i l
∗
i ) =

∑n−1
i=0 Ai, the corresponding (λcn)∗ > 0.

For the epoch n, we have wn =
∑N

l=n[(λdl )
∗ − (λcl )

∗]/[1 +
∑N

l=n(µcl )
∗]. On the other hand,

we have wn+1 =
∑N

l=n+1[(λdl )
∗ − (λcl )

∗]/[1 +
∑N

l=n+1(µcl )
∗] for the epoch (n + 1); thus,

wn+1 − wn = (λcn)∗/[1 +
∑N

l=n+1(µcl )
∗] > 0. We can conclude that the rate increases after

this tn as P ′−1(wi) is an increasing function of wi.

If a change occurs at a certain tn where
∑n

i=1(r∗i l
∗
i ) =

∑n
i=1Di, then (λdn)∗ > 0. We

can similarly obtain that wn+1−wn = −(λdn)∗/[1 +
∑N

l=n+1(µcl )
∗] < 0, which indicates the

rate decreases after this tn.

If a change occurs at a certain tn where
∑n

i=1 [(P (r∗i ) + ρ)l∗i ] =
∑n−1

i=0 Ei, then (µcn)∗ >

0. We can derive that 1/wn− 1/wn+1 = (µcn)∗/
∑N

l=n+1[(λdl )
∗− (λcl )

∗] > 0, which indicates

the rate increases after this tn.

A.0.3 Proof of Theorem 1

Given the rules in Algorithm 1, it can be shown that the rate-changing pattern in the

transmit schedule R := (r∗, l∗) produced by Algorithm 1 is consistent with the optimal

structure revealed in Lemma 2 [5], i.e., (i) if the rate in use is first r and then changed to

r̃ at tτ where
∑τ

i=1(rl∗i ) =
∑τ−1

i=0 Ai or
∑τ

i=1{[P (r) + ρ]l∗i } =
∑τ−1

i=0 Ei, then we must have
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r̃ > r; and (ii) if the rate r is changed at tτ where
∑τ

i=1(rl∗i ) =
∑τ

i=1Di, then we must

have the next rate r̃ < r.

Suppose that the rate changes M times in R yielded by Algorithm 1 at time instants

{tτ1 , tτ2 , . . . , tτM}. We divide the schedule into M + 1 phases: rate r∗i = ř1 over epochs

i ∈ [1, τ1], r∗i = ř2 over epochs i ∈ [τ1+1, τ2], . . . , r∗i = řM+1 over epochs i ∈ [τM+1, N ]. We

can then construct a set of Lagrange multipliers Λ∗ := {(λcn)∗, (λdn)∗, (µcn)∗, n = 1, . . . , N}

as follows:

For convenience, let ∆1 denote [P ′(řm+1)− P ′(řm)] and ∆2 denote [ 1
P ′(řm)

− 1
P ′(řm+1)

].

For a certain τm, ∀m = 1, . . . ,M ,

1. if
∑τm

i=1(r∗i l
∗
i ) =

∑τm−1
i=0 Ai, then

(λcτm)∗ = ∆1 · [1 +
N∑

l=τm

(µcl )
∗];

2. if
∑τm

i=1 (r∗i l
∗
i ) =

∑τm
i=1Di, then

(λdτm)∗ = −∆1 · [1 +
N∑

l=τm

(µcl )
∗];

3. if
∑τm

i=1{[P (r∗i ) + ρ]l∗i } =
∑τm−1

i=0 Ei, then

(µcτm)∗ = ∆2 ·
N∑

l=τm

[(λdl )
∗ − (λcl )

∗];

We have shown that the rate řm+1 > řm if the data or energy causality constraint is

tight at tτm , and řm+1 < řm if the deadline constraint is tight at tτm . Recalling that P ′(r)

is increasing in r, it readily follows that (λcτm)∗ > 0, (λdτm)∗ > 0, or (µcτm)∗ > 0, depending

on which type of constraint is tight at tτm . Besides, let (λdN)∗ = P ′(řM+1) > 0. Except

these M + 1 positive (λdN)∗, (λcτm)∗, (λdτm)∗ and (µcτm)∗, all other Lagrange multipliers in

Λ∗ are set to zero.

With such a Λ∗, the complementary slackness conditions (2.11)-(2.13) clearly hold.

Using such a Λ∗ leads to wi :=
∑N

n=i[(λ
d
n)∗−(λcn)∗]/[1+

∑N
n=i(µ

c
n)∗] = P ′(řm), ∀i ∈ [τm−1+
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1, τm] (with τ0 := 1 and τM+1 := N). This implies that r∗i = řm = [log(|h|2wi)]+,∀i ∈

[τm−1 +1, τm]. In addition, the construction of R ensures l∗i = Li when r∗i = řm > ree, and

computes a feasible set of l∗i ≤ Li when r∗i = řm = ree in each phase m. This guarantees

that each pair of (r∗i , l
∗
i ) satisfies (2.10); thus, (r∗, l∗) follows the optimal structure in

Lemma 1.

A.0.4 Proof of Lemma 4

From recursions (3.13), we deduce

(λ̂t+1
2 )2 ≤ [λ̂t2 − µ(Pc + Px,t(λ̂

t)− Pt(λ̂t)]2

= (λ̂t2)2 − 2µλ̂t2[Pc + Px,t(λ̂
t)− Pt(λ̂t)]

+ µ2[Pc + Px,t(λ̂
t)− Pt(λ̂t)]2 (A.3)

≤ (λ̂t2)2 − 2µλ̂t2[Pc + Px,t(λ̂
t)− Pt(λ̂t)]

+ µ2(max{Pmax
b,i ,−Pmin

b,i })2

where the last inequality holds due to (3.9d). Similarly, it follows that

(λ̂t+1
1 )2 ≤ (λ̂t1)2 − 2µλ̂t1[Gmax −G(Pt(λ̂

t)] + µ2[(Gmax)2

+ (max{αmax(Pmax
g + Pmax

b ), βmax(Emax − Pmin
b )})2]. (A.4)

Considering now the Lyapunov function V (λ̂t) := 1
2
[(λ̂t1)2 + (λ̂t2)2], it readily follows

that

−4V (λ̂t) := −V (λ̂t+1) + V (λ̂t)

≥ µλ̂t2[Pc + Px,t(λ̂
t)− Pt(λ̂t)] (A.5)

+ µλ̂t1[Gmax −G(Pt(λ̂
t)]− µ2M.
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Taking expectations and adding µE[Rt(Px,t(λ̂
t))] to both sides, we arrive at

E[−4V (λ̂t)] + µE[Rt(Px,t(λ̂
t))]

≥ µ
(
E[Rt(Px,t(λ̂

t))] + λ̂t2[Pc + Px,t(λ̂
t)− Pt(λ̂t)]

+ λ̂t1[Gmax −G(Pt(λ̂
t)]
)
− µ2M (A.6)

= µL(X(λ̂t), λ̂t)− µ2M

= µD(λ̂t)− µ2M

≥ µR̃∗ − µ2M

where we used the definition of L(X,λ) in (3.11); X(λ̂t) denotes the optimal primal

variable set given by (3.15) for λ = λ̂t (hence, L(X(λ̂t), λ̂t) = D(λ̂t)); R̃∗ denotes the

optimal value for problem (3.10); and the last inequality is due to the weak duality:

D(λ) ≥ R̃∗, ∀λ.

Summing over all t, we then have

T−1∑
t=0

E[−4V (λ̂t)] + µ
T−1∑
t=0

E[Rt(Px,t(λ̂
t))]

= −E[V (λ̂T )] + V (λ̂0) + µ
T−1∑
t=0

E[Rt(Px,t(λ̂
t))] (A.7)

≥ T (µR̃∗ − µ2M)

which leads to

1

T

T−1∑
t=0

E[Rt(Px,t(λ̂
t))] ≥ R̃∗ − µM − V (λ̂0)

µT

≥ R∗ − µM − V (λ̂0)

µT
. (A.8)

The lemma follows by taking the limit T →∞.
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A.0.5 Proof of Lemma 5

Recall that Pb,t = Pt − Pc − Px,t. Given λ̂t, we can rewrite the maximization problem in

(3.15) in terms of {Px,t, Pb,t} as

max
Px,t,Pb,t

Rt(Px,t)− λ̂t1G(Pb,t + Pc + Px,t)− λ̂t2Pb,t

s. t. 0 ≤ Px,t ≤ Pmax
g − Pc, Pmin

b ≤ Pb,t ≤ Pmax
b .

(A.9)

Consider the following two cases [cf. (3.5)]

i) If Pb,t + Pc + Px,t ≥ Et, then G(Pb,t + Pc + Px,t) = αt(Pb,t + Pc + Px,t − Et). The

problem (A.9) can be decomposed into two subproblems, namely

max
0≤Px,t≤Pmax

g −Pc
Rt(Px,t)− λ̂t1αtPx,t (A.10)

max
Pmin
b ≤Pb,t≤Pmax

b

−(λ̂t1αt + λ̂t2)Pb,t. (A.11)

Let R′t
−1 denote the inverse function of R′t. It is easy to see that we must have

Px,t(λ̂
t) = max{0,min{Pmax

g − Pc, R′t
−1

(λ̂t1αt)}}.

Pb,t(λ̂
t) =


Pmin
b , if λ̂t1αt + λ̂t2 > 0

Pmax
b , if λ̂t1αt + λ̂t2 < 0.

(A.12)

ii) If Pb,t + Pc + Px,t < Et, then G(Pb,t + Pc + Px,t) = βt(Pb,t + Pc + Px,t − Et); and we

similarly arrive at

Px,t(λ̂
t) = max{0,min{Pmax

g − Pc, R′t
−1

(λ̂t1βt)}}.

Pb,t(λ̂
t) =


Pmin
b , if λ̂t1βt + λ̂t2 > 0

Pmax
b , if λ̂t1βt + λ̂t2 < 0.

(A.13)

Combining cases i) and ii), we deduce that per slot t, if λ̂t1 > max{R′t(0)/αt, R
′
t(0)/βt} =

R′t(0)/βt, then Px,t(λ̂
t) = 0. Similarly, if λ̂t2 > max{−λ̂t1αt,−λ̂t1βt} = −λ̂t1βt, then

Pb,t(λ̂
t) = Pmin

b ; and if λ̂t2 < min{−λ̂t1αt,−λ̂t1βt} = −λ̂t1αt, then c.
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A.0.6 Proof of Lemma 6

Due to the projection operation, it is clear λ̂t1 ≥ 0. We next establish the upper bound

for λ̂t1 by induction. First, set λ̂0
1 ≤

R′(0)
βmin + max{0, µ(αmax(Pmax

g + Pmax
b ) − Gmax)}, and

suppose that this holds for all λ̂t1 at slot t. We show that the bound holds for λ̂t+1
1 as well,

in the following two cases.

c1) If λ̂t1 ∈ [0, R
′(0)
βmin ], we have λ̂t+1

1 = [λ̂t1+µ(G(Pt(λ̂
t))−Gmax)]+ ≤ R′(0)

βmin +max{0, µ(αmax

(Pmax
g + Pmax

b ) − Gmax)}, since G(Pt(λ̂
t)) ≤ αmax(Pmax

g + Pmax
b ) due to Pt(λ̂

t) ≤

Pmax
g + Pmax

b by the constraints (3.9c)–(3.9d), and G(Pt) is increasing in Pt.

c2) If αmax(Pmax
g + Pmax

b ) − Gmax ≥ 0 and λ̂t1 ∈ (R
′(0)
βmin ,

R′(0)
βmin + µ(αmax(Pmax

g + Pmax
b ) −

Gmax)], then we must have Px,t(λ̂
t) = 0 by Lemma 4; thus, Pt(λ̂

t) ≤ Pc + Pmax
b . It

follows that λ̂t+1
1 = [λ̂t1 + µ(G(Pt(λ̂

t))−Gmax)]+ ≤ [R
′(0)
βmin + µ(αmax(Pmax

g + Pmax
b )−

Gmax) +µ(αmax(Pc +Pmax
b )−Gmax)]+ ≤ R′(0)

βmin +µ(αmax(Pmax
g +Pmax

b )−Gmax), since

αmax(Pc + Pmax
b ) ≤ Gmax.

A.0.7 Proof of Lemma 7

The proof again proceeds by induction. First, set λ̂0
2 ∈ [−αmax(R

′(0)
βmin +µδλ1)+µPmin

b , µCmax−

µCmin−αmax(R
′(0)
βmin +µδλ1)+µPmin

b ], and suppose that this holds for all λ̂t2 at slot t. Define

short-hand notation λmax
1 := R′(0)

βmin + µδλ1 . We next show that the bounds hold for λ̂t+1
2 as

well, in subsequent instances.

c1) If λ̂t2 ∈ (0, µCmax−µCmin−αmaxλmax
1 +µPmin

b ], it is clear that λ̂t2 > 0 > max{−λ̂t1βt,∀t}.

It then follows from Lemma 5 that λ̂t+1
2 = λ̂t2+µPmin

b ∈ [−αmaxλmax
1 +µPmin

b , µCmax−

µCmin − αmaxλmax
1 + µPmin

b ], since Pmin
b < 0.

c2) If λ̂t2 ∈ [−αmaxλmax
1 , 0], then λ̂t+1

2 = λ̂t2 + µP t
b (λ̂

t) ∈ [λ̂t2 + µPmin
b , λ̂t2 + µPmax

b ] ⊆

[−αmaxλmax
1 + µPmin

b , µPmax
b ] ⊆ [−αmaxλmax

1 + µPmin
b , µCmax − µCmin − αmaxλmax

1 +
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µPmin
b ], where the upper bound holds when µ ≥ µ ≥ αmaxλmax

1

Cmax−Cmin+Pmin
b −Pmax

b
.

c3) If λ̂t2 ∈ [−αmaxλmax
1 + µPmin

b ,−αmaxλmax
1 ), it holds that λ̂t2 < −αmaxλmax

1

< min{−λ̂t1αt,∀t}. By Lemma 5, we have λ̂t+1
2 = λ̂t2+µPmax

b ∈ [−αmaxλmax
1 +µPmin

b +

Pmax
b ,−αmaxλmax

1 + Pmax
b ) ⊆ (−αmaxλmax

1 + µPmin
b , µCmax − µCmin − αmaxλmax

1 +

µPmin
b ), where the last step follows from the facts Pmax

b > 0, and−αmaxλmax
1 +Pmax

b ≤

Pmax
b ≤ µCmax − µCmin − αmaxλmax

1 + µPmin
b when µ ≥ µ.

A.0.8 Proof of Proposition 1

The proof proceeds by induction. First, set Ci(0) ∈ [Cmin, Cmax], ∀i, and suppose that

this holds for all Ci(nT ) at slot nT . We will show the bounds hold for Ci(t), ∀t =

nT + 1, . . . , (n+ 1)T , as well as in subsequent instances.

By Ci(t+ 1) = ηCi(t) + P ∗b,i(t), we have

Ci(t) = ηt−nTCi(nT ) +
t−1∑
τ=nT

[ηt−1−τP ∗b,i(τ)],

∀t = nT + 1, . . . , (n+ 1)T. (A.14)

Note that by the definitions of Γmin and Γmax in (4.16)-(4.17), we have Cmin ≤ −V ᾱ−

Γ < −V β − Γ ≤ Cmax. We then consider the following three cases.

c1) If Ci(nT ) ∈ [Cmin,−V ᾱ − Γ), then Lemma 3 implies that P ∗b,i(t) = Pmax
b , ∀t =

nT, . . . , (n+ 1)T − 1. From (A.14), we have, ∀t = nT + 1, . . . , (n+ 1)T ,

i) Ci(t) ≥ ηt−nTCmin + 1−ηt−nT
1−η Pmax

b ≥ Cmin, due to the condition (4.13);

ii) Ci(t) ≤ ηt−nT (−V ᾱ − Γ) + 1−ηt−nT
1−η Pmax

b ≤ ηt−nT (−V β − Γ) + 1−ηt−nT
1−η Pmax

b ≤

Cmax, due to β < ᾱ, Γ ≥ Γmin, and the definition of Γmin in (4.16).

c2) If Ci(nT ) ∈ [−V ᾱ − Γ,−V β − Γ], then P ∗b,i(t) ∈ [Pmin
b , Pmax

b ]. We have, ∀t =

nT + 1, . . . , (n+ 1)T ,
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i) Ci(t) ≥ ηt−nT (−V ᾱ − Γ) + 1−ηt−nT
1−η Pmin

b ≥ Cmin, due to Γ ≤ Γmax and the

definition of Γmax in (4.17);

ii) Ci(t) ≤ ηt−nT (−V β − Γ) + 1−ηt−nT
1−η Pmax

b ≤ Cmax, as with c1-ii); and

c3) If Ci(nT ) ∈ (−V β − Γ, Cmax], it follows from Lemma 3 that P ∗b,i(t) = Pmin
b , ∀t =

nT, . . . , (n+ 1)T − 1. We have, ∀t = nT + 1, . . . , (n+ 1)T

i) Ci(t) ≥ ηt−nT (−V β−Γ)+1−ηt−nT
1−η Pmin

b ≥ ηt−nT (−V ᾱ−Γ)+1−ηt−nT
1−η Pmin

b ≥ Cmin,

due to β < ᾱ and c2-i);

ii) Ci(t) ≤ ηt−nTCmax + 1−ηt−nT
1−η Pmin

b ≤ Cmax, due to η ≤ 1, and Pmin
b < 0.

Cases c1)–c3) together prove the proposition.

A.0.9 Proof of Proposition 2

The evolution of Qi(t) in the TS-OC is given by Qi(t + 1) = Ci(t + 1) + Γ = ηCi(t) +

P ∗b,i(t) + Γ = ηQi(t) + (1− η)Γ + P ∗b,i(t). Hence, we have

[Qi(t+ 1)]2 = [ηQi(t) + (1− η)Γ + P ∗b,i(t)]
2

= η2[Qi(t)]
2 + 2ηQi(t)[(1− η)Γ + P ∗b,i(t)]

+ [(1− η)Γ + P ∗b,i(t)]
2

≤ η2[Qi(t)]
2 + 2ηQi(t)[(1− η)Γ + P ∗b,i(t)] (A.15)

+ max{[(1− η)Γ + Pmin
b ]2, [(1− η)Γ + Pmax

b ]2}

where the last inequality holds due to (4.9).

With Q(t) := [Q1(t), . . . , QI(t)]
′, consider the Lyapunov function L(Q(t)) := 1

2

∑
i[Qi(t)]

2.
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Using the short-hand notation Q[n] := Q(nT ), it readily follows that

4T (Q[n]) := L(Q[n+ 1])− L(Q[n])

≤ −1

2
(1− η2)

(n+1)T−1∑
t=nT

∑
i∈I

[Qi(t)]
2 +

IT

2
MB

+

(n+1)T−1∑
t=nT

∑
i∈I

{ηQi(t)[(1− η)Γ + P ∗b,i(t)]} (A.16)

≤ IT

2
MB +

(n+1)T−1∑
t=nT

∑
i∈I

{ηQi(t)[(1− η)Γ + P ∗b,i(t)]}.

Since Qi(t + 1) = ηQi(t) + (1 − η)Γ + P ∗b,i(t) and Pmin
b ≤ P ∗b,i(t) ≤ Pmax

b , we have:

∀t = nT, . . . , (n+ 1)T − 1,

ηt−nTQi[n] +
1− ηt−nT

1− η
[(1− η)Γ + Pmin

b ] ≤ Qi(t)

≤ ηt−nTQi[n] +
1− ηt−nT

1− η
[(1− η)Γ + Pmax

b ]. (A.17)

This implies that ∀t = nT, . . . , (n+ 1)T − 1,

Qi(t)[(1− η)Γ + P ∗b,i(t)] ≤ ηt−nTQi[n][(1− η)Γ + P ∗b,i(t)]

+
1− ηt−nT

1− η
max{[(1− η)Γ + Pmin

b ]2, [(1− η)Γ + Pmax
b ]2}. (A.18)

Consequently, it follows that

4T (Q[n]) ≤ IT

2
MB +

(n+1)T−1∑
t=nT

∑
i∈I

{η(1− ηt−nT )

1− η
MB

+

(n+1)T−1∑
t=nT

∑
i∈I

{ηt−nT+1Qi[n][(1− η)Γ + P ∗b,i(t)]}

≤ IT

2
MB +

Iη[T (1− η)− (1− ηT )]

(1− η)2
MB (A.19)

+

(n+1)T−1∑
t=nT

∑
i∈I

{ηt−nT+1Qi[n][(1− η)Γ + P ∗b,i(t)]}.
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Taking expectations and adding
∑(n+1)T−1

t=nT

∑
i[η

t−nT+1V E{Φ∗i (t)}] to both sides, we arrive

at (with short-hand notation M4 := IT
2
MB + Iη[T (1−η)−(1−ηT )]

(1−η)2 MB):

E{4T (Q[n])}+

(n+1)T−1∑
t=nT

ηt−nT+1
∑
i∈I

[V E{Φ∗i (t)}]

≤M4 +

(n+1)T−1∑
t=nT

[ηt−nT+1
∑
i∈I

Qi[n](1− η)Γ]

+

(n+1)T−1∑
t=nT

[ηt−nT+1
∑
i∈I

E{V Φ∗i (t) +Qi[n]P ∗b,i(t)}]

= M4 +

(n+1)T−1∑
t=nT

[ηt−nT+1
∑
i∈I

Qi[n](1− η)Γ]

+
η(1− ηT )

(1− η)T

(n+1)T−1∑
t=nT

[
∑
i∈I

E{V Φ∗i (t) +Qi[n]P ∗b,i(t)}]

≤M4 +

(n+1)T−1∑
t=nT

[ηt−nT+1
∑
i∈I

Qi[n](1− η)Γ]

+
η(1− ηT )

(1− η)T

(n+1)T−1∑
t=nT

[
∑
i∈I

E{V Φstat
i (t) +Qi[n]P stat

b,i (t)}]

= M4 +

(n+1)T−1∑
t=nT

[ηt−nT+1
∑
i∈I

E{V Φstat
i (t)}]

+

(n+1)T−1∑
t=nT

[ηt−nT+1Qi[n]{(1− η)Γ + P stat
b,i (t)}]

≤M4 + Iη(1− ηT )MC +
η(1− ηT )

1− η
V Φ̃opt (A.20)

where the two equalities hold since both
∑

i∈I E{V Φ∗i (t)+Qi[n]P ∗b,i(t)} for the TS-OC and∑
i∈I E{V Φstat

i (t) +Qi[n]P stat
b,i (t)} for Pstat are in fact the same for slots t = nT, . . . , (n+

1)T−1, when ξrt
t is i.i.d. over slots; the second inequality is because the TS-OC algorithm

minimizes the third term
∑

i E{V Φi(t) +Qi[n]Pb,i(t)}] among all policies satisfying (4.5),

(4.6), (4.9), and (4.10), including Pstat; and the last inequality is due to (4.31) and

Qi[n] ∈ [Cmin + Γ, Cmax + Γ] under conditions (4.13)–(4.15) per Proposition 1.

Again, note that
∑

i[V E{Φ∗i (t)}] for the TS-OC is the same for slots t = nT, . . . , (n+
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1)T − 1, when ξrt
t is i.i.d. over slots. Summing over all n = 1, 2, . . ., we then have

N−1∑
n=0

E{4T (Q[n])}+
N−1∑
n=0

(n+1)T−1∑
t=nT

ηt−nT+1
∑
i∈I

[V E{Φ∗i (t)}]

= E[L(Q[N ])]− L(Q[0]) +
η(1− ηT )

(1− η)T

NT−1∑
t=0

∑
i∈I

[V E{Φ∗i (t)}] (A.21)

≤ N [M4 + Iη(1− ηT )MC +
η(1− ηT )

1− η
V Φ̃opt]

which leads to

1

NT

NT−1∑
t=0

E[
∑
i∈I

E{Φ∗i (t)}]

≤ Φ̃opt +
M1 +M2 +M3

V
+

(1− η)

η(1− ηT )

L(Q[0])

NV
(A.22)

≤ Φopt +
M1 +M2 +M3

V
+

(1− η)

η(1− ηT )

L(Q[0])

NV

and the proposition follows by taking the limit as N →∞.



Appendix B

List of Acronyms

5G fifth-generation

AWGN Additive White Gaussian Noise

BC broadcast channel

BS base station

CoMP coordinated multi-point

C-RAN cloud/collaborative/clean radio access network

CS/CB coordinated scheduling/beamforming

CSCG circularly symmetric complex Gaussian

CSI channel state information

DPC dirty paper coding

DSM demand-side management

DST dynamic string tautening

EE energy efficiency

EH energy harvesting

HetNets heterogeneous networks

ICT information and communication technology
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IEEE Institute of Electrical and Electronics Engineers

i.i.d. independent and identically distributed

IoT Internet of Things

JP/JT joint processing/transmission

KKT Karush-Kuhn-Tucker

MACs multi-access channels

MIMO multiple-input multiple-output

OPEX operational expenditure

QoS quality of service

RES renewable energy sources

RF radio frequency

SGOC stochastic subgradient based online control

SINR signal-to-interference-plus-noise ratio

SISO single-input single-output

SoC state of charge

TS-OC two-scale online control

WSN wireless sensor network



Appendix C

List of Notations

x Scalar x

x Vector x

X Matrix X

CM×N M ×N dimensional complex matrices

RM×N M ×N dimensional real matrices

(·)′ Transpose

(·)† Conjugate transpose

diag(a1, . . . , aM) Diagonal matrix with diagonal elements a1, . . . , aM

| · | Magnitude of a complex scalar

tr(A) Trace operator for matrix A

A � 0 Square matrix A is positive semi-definite

E Expectation
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