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ABSTRACT

Stability of a circuit is a very important design criteria. Microwave designers

commonly use the well known Linvill or Rollett criteria, known as B or K criteria

to determine the stability of an N-port network. These criteria are limited to

its accuracy and fail in many cases. A rigourous method of testing such as the

Normalised Determinant Function (NDF) is required before the B or K criteria is

applied. The Normalised Determinant Function is a robust test of circuit stability

but can be complicated to implement in a circuit simulator because it requires

access to all active controlled sources in a circuit and multiple simulations. Access

to the necessary controlled sources has recently been implemented in a non-linear

model (Meerkat pHEMT model) for the first time, but some problems remain with

the implementation of this useful feature. This thesis provides further work to

mathematically analyse and simplify the NDF analysis technique to implement in

small signal models that will later on aid Macquarie University’s industry partner,

MACOM Technology Solutions with the NDF implementation in their preferred

Meerkat pHEMT model.
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Chapter 1

Introduction

Design engineers are constantly faced by the challenge of determining stability of a circuit
before it is sent out for fabrication. Unstable circuits can oscillate and fail to meet
its purpose. Over the last 50 years, several tests have been derived for determining
the unconditional stability of two-port networks. These tests are used to determine the
possibility of finding a set of passive terminations that will cause the terminated two-port
to have unstable characteristic frequencies (poles).

The well known Linvill and Rollett stability criteria also known as the B and K criteria
respectively, are usually used by designers, to determine stability of microwave circuits
by reducing the complicated N-node networks to two-ports between input and output
and requiring that K >1 and |∆s| <1 at all frequencies. Platzker et al. [6] prove that
the approach undertaken by the microwave designers with its reliance on K is severly
constraining in many cases. Rollett’s, K stability criteria [12].

The K analysis does not hold in general, and fails in many cases where the unloaded
circuits under investigation contain poles with positive real parts, i.e. poles in the right
half plane (RHP). Rollett [8] recognises the limitation of using steady state analysis in
investigating the stability of Two-Ports. This remains as a significant problem that the
more recent publications, textbooks and software vendors have failed to highlight. Hence,
the microwave designers have forgotten to take this into consideration altogether.

The failure of the B and K criteria stems from the fact that no universal determination
of the stability of N-node networks can be made from the locations of the zeroes of the
determinants of their reduced Two-Ports. They can be unstable even if all of the zeroes
of these determinants have negative real parts. This failure is not dependent on the
symmetry of the networks and can occur in both symmetric and nonsymmetric networks.
Since the conditions for oscillations are the opposite of the conditions for stability, the
notion that a circuit is always oscillatory at a frequency at which the imaginary part
of its input or output admittance is zero provided the real part is negative, is also not
correct. [11].

A proper statement of the Two-Port stability criteria involving K should be: An un-
loaded Two-port which has no poles in the RHP will remain stable when loaded externally
at its input and output if and only if K >1 and |∆s| <1 for all W. The approach of using

1



2 Chapter 1. Introduction

the K criteria to ensure stability in Two-Port networks is not very robust and hence its
role is insignificant. It is limited to the investigation of loading which does not cause
stable unloaded circuits to become unstable. The stability of the open circuit has to be
ascertained by other means. [6]

A robust test such as the Normalized Determinant Function is required to ensure the
stability of a network before the Linvill or Rollett stability criteria are used.

1.1 Normalised Determinant Function

The Normalised Determinant Function analysis technique looks for zeroes in the right
half plane of the full network determinant. The complex quantity NDF is calculated for
a given network along the frequency axis ω from negative infinity to positive infinity and
its locus is plotted in the complex plane. Once network stability is assured, then the
B or K factor can be used to determine the port impedances under which stability is
maintained [4].

The Normalised Determinant Function (NDF) is a robust test of circuit stability but
can be complicated to implement in a circuit simulator because it required access to all
the active controlled sources in a circuit and multiple simulations. Access to the necessary
controlled sources has recently been implemented in a non-linear model (Meerkat pHEMT
model) for the first time but some problems remain with the implementation of this useful
feature.

As mentioned earlier, this thesis is an extension of the work of Wayne Struble and
Aryeh Platzker [11]. Struble found a simple yet rigorous method of determining the
stability of a linear N-Port network by first reducing it to a two port network. Before this
was discovered, a common misunderstanding persisted that the B and K stability criteria
can only be applied to linear two-port networks. This thesis is extended to first analyse
what happens to the two port network NDF calculation when two dependent current
sources are used in a linear model instead of the one source as defined in Struble’s model.
However, the design of the two port circuit is restricted to one common node to make
the simplication easier. The initial findings of the mathematical analysis is shown in the
latter section.

Later, implementation of the above findings is used in a non-linear FET model which is
linearised using small signal model. The result of the thesis will aid in the implementation
of the NDF in MACOM’s more sophisticated and preferred Meerkat pHEMT model.
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1.2 Synopsis

This thesis is based on a very narrow and specialised area of research to aid the implemen-
tation process of the NDF analysis in the design phase of circuits at MACOM Technology
Solutions. Very little work has been done on this robust stability test NDF analysis and
so the resources and references used in this thesis is limited. As stated earlier, engineers
at MACOM, Tony Fattorini and Bryan Schwitter have jointly developed the small signal
implementation of NDF analysis in some simple models, however, some problems remain
with the implementation of this useful feature in the more sophisticated and preferred
non-linear model, Meerkat pHEMT model. One of the problems that arises with the
implementation of the NDF in the Meerkat pHEMT model is that the model consists of
multiple control sources in one single pHEMT and the study by Struble [11] only looks
at single control source transistors. This thesis is an extension to Struble’s work and
looks further into what the implications are in having multiple control sources and how
it changes the NDF algorithm both algebraically and practically.

In this 10 week thesis project, most of the time, about 5 weeks was dedicated in
developing the mathematical case for using a double voltage controlled current source
(VCCS) FET model, the effort of which might not have been portrayed in its true essence
due to the limitation of presenting a step by step mathematical analysis in this thesis.
Next, the remaining amount of time was utilised to modify the circuit model obtained
from MACOM, developed by Tony Fattorini and Bryan Schwitter, to ensure that the
NDF stability analysis works with a single FET. Later, a comparative analysis is drawn
between a single and a double FET model. The double FET model also has two separate
parts to it where two different switching patterns are used. The two switching networks
are used to control the VCCS by an external voltage source, vext. This phenomenon is
described in details in the next chapter.

The results from this thesis can be used to aid the implementation of NDF in a more
complex Meerkat pHEMT model. The calculation required for the NDF analysis and the
concept of NDF and Return Ratios is introduced in the next chapter.
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Scope

This thesis looks at the NDF algorithm of having multiple control sources within the
desired FET model used in MACOM. The case of having multiple control systems was
not explored in any of Struble’s [10] work so this thesis serves as an extension to Struble’s
work and looks at both the mathematical algorithm and practical implementation of NDF
in a simple circuit model. The circuit model used does not contain real transistors and
does not represent a fully complex network containing lumped elements. It is to be noted
that the aim of the thesis is not to implement the full NDF stability analysis or provide
an overall general solution of NDF analysis in any arbritrary circuits as it is outside of the
scope of an Honours thesis since this demands much more time and expertise. The thesis
does not look at writing scripts and macros that was initially suggested to facilitate ease
of use in typical circuit design applications.

Statement of Originality

This thesis is an extension to Struble’s [10] work and such analysis to the best of my
knowledge has not been carried out. The circuit model used in this thesis was not devel-
oped from scratch but was rather a modified version of the circuit model used at MACOM
developed by Tony Fattorini and Bryan Schwitter. This circuit model was modified to
suit the purposes of this thesis.



Chapter 2

Background

2.1 What is the NDF?

Platzker’s normalized network determinant function NDF [6] is the ratio of the full net-
work determinant, including all port terminations, and the resulting passive network de-
terminant when all dependent sources (i.e. either voltage controlled or current controlled
sources) contained within the network are set equal to zero.

NDF =
∆

∆0N

(2.1)

where ∆0N represents the determinant of a passive network and cannot contain any
zeroes in the RHP. Therefore, zeroes in the RHP of the NDF must correspond to zeroes
in the RHP of the full network determinant. This is similar to Bode’s [3] definition of
the Return Difference ∆

∆0
for a single dependent source, where ∆0 represents the network

determinant when the dependent soource is set to zero. Any inear network parameters
such as Y, Z, H etc. can be used to calculate the above determinants. In this paper,
admittance parameter Y is used for the mathematical analysis [10].

2.2 How is the NDF used to determine stability?

To determine stability, the complex quantity NDF is calculated for a given network along
the frequency axis ω from negative infinity to positive infinity and its locus is plotted in
the complex plane if the locus of the NDF encircles the origin (0,0) in a counterclockwise
direction, then the network determinant ∆ contains zeroes in the RHP. The number of
encirclements is equal to the number of zeroes in the RHP. Platzkers test applies the
Principle of the Argument theorem to a NDF to determine the number of zeroes in the
RHP of the full network determinant (and thus poles of the network). Nyquist [5] has
used the same theorem of encirclements for his stability analysis. From Routh [9] and
Bode [3], it is known that if the determinant of a linear network contains any zeroes in the

5



6 Chapter 2. Background

RHP, including the frequency axis ω, the network will be unstable, otherwise the network
is stable [10].

Platzker’s test [6] applies the Principle of the Argument theorem to a NDF to deter-
mine the number of zeroes in the RHP of the full network determinant (and thus poles of
the network). This can be demonstrated by the two figures as shown below in figure 2.1
and figure 2.2

Figure 2.1: Polar plot of NDF (This figure is obtained from [11])

Figure 2.2: Frequency response of NDF plot (This figure is obtained from [10])
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A stable network will always have a cumulative NDF phase/encirclement of zero.
That is, sweeping ω from −∞ to +∞ the plot will begin (by definition) and end at zero
encirclements. It is unimportant if the encirclement plot rises above +1 or below -1 so
long as it returns to 0 at ω = +∞.

When sweeped from ω = −∞ to +∞, an unstable network will have a cumulative NDF
phase of some multiple of 2. Since, the NDF over negative frequencies is the complex
conjugate of positive frequencies, one can look for encirclements from ω = 0 to +∞
only. This will always show half the encirclements. In the experimental part described
in the latter sections of the thesis, the model is sweeped from ω = 0 to +∞ so, half the
encirclements, i.e, multiples of unity can be observed.

From the above figure 2.1 and figure 2.2 it can be observed that the example model
has four zeroes on the RHP, making the circuit unstable.
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2.3 How is the NDF calculated?

The NDF analysis requires the calculation of the network determinants. There are three
ways to calculate the network determinants.

1. Return Ratios

2. Current/Voltage Ratios

3. Network Admittances

The mathematical analysis of the network determinants for the NDF cal-
culation used in MACOM and this thesis is based on the first method, the
Return Ratio method.

The Return Ratio of a dependent source embedded within a network is calculated
by replacing the dependent source, which is controlled by an internal voltage or current,
with an identical source that is controlled by an external voltage or current.The stimulus
from this new source will result in some amount of feedback to the controlling voltage
or current of the original dependent source. The negative ratio of the voltage or current
returned, to the external voltage or current stimulus, is the Return Ratio of the dependent
source. The procedure used to calculate the NDF from Return Ratios (RRs) is described
as follows.

The fastest approach employed by all NDF calculations is to reduce the network to a
parallel connection of two networks, one totally passive and one totally active [10]. This
is demonstrated in figure 2.3.

Figure 2.3: Two-Port representation for calculation of NDF

This reduces the number of nodes in the network and thus the sizes of the relevant
network matrices that are used in the NDF calculation. The network cannot be reduced
further than this due to the complication of potentially introducing zeroes in the RHP of
∆0N . This can result in pole-zero cancellation in the NDF, and thus its trajectory may
not rotate around the origin (0,0) even when ∆ contains zeroes in the RHP.

In networks containing more than five dependent sources, the calculation of the NDF
using commercially available circuit simulators is not straightforward and becomes quite
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tedious. This is due to the limitation in the sizes of matrices that can be saved by the
simulators for external calculations. To simplify this process, the alternative method of
calculating NDF using the concept of Return Ratios has been developed.

The Method of Calculating NDF using Return Ratios

The concept of Return Ratio (RR) was first introduced by Bode [3] and is defined as
follows.

RR =
∆

∆0

− 1 (2.2)

where ∆ is the full network determinant and ∆0 is the full network determinant where
the dependent source is set to zero. For a network containing a single dependent source,
the Return Ratio is equivalent to the NDF. The NDF for a single dependent source is as
follows:

NDF =
∆

∆0

= RR1 + 1 (2.3)

If the network contains more than one dependent source, ∆0 may contain zeroes in
the RHP due to other dependent sources, and a single Return Ratio calculation will not
suffice to provide with a comprehensive assessment of stability of the circuit. However,
the concept of Return Ratios can be extended to networks with N dependent sources by
rearranging the previous equation into the form,

∆ = (RR1 + 1)∆01 (2.4)

and realising that,

∆01 = (RR2 + 1)∆02 (2.5)

where RR2 is the Return Ratio of a second dependent source in the network with the
first dependent source set to zero. By substituting the latter equation to the first, it is
derived that

∆ = (RR1 + 1)(RR2 + 1)∆02 (2.6)

By continuous substitution,

∆ = (RR1 + 1)(RR2 + 1)(RR3 + 1)...(RRN + 1)∆0N (2.7)

or,
NDF = (RR1 + 1)(RR2 + 1)(RR3 + 1)...(RRN + 1) (2.8)

For each successive Return Ratio calculation RRi (i = 2−N), the network is physically
changed by setting all previous dependent sources to zero.
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Return Ratio Calculations

The final step required to implement this rigorous stability test is to calculate the Return
Ratio of any arbritrary dependent source within a known N-port network. This calculation
is carried out by replacing the dependency factor of the dependent source from an internal
voltage or current parameter to an identical external parameter. So, the dependent source
is now controlled by an external voltage or current.

This can be demonstrated with an example in figure 2.4 and figure 2.5 where the
first is a passively terminated N-port linear network with an internally controlled current
source and the latter is the same network, the current source of which is controlled by an
external voltage, vext.

Figure 2.4: Passively terminated N-Port linear network with a voltage controlled current
source (This figure is obtained from [10])

Figure 2.5: Passively terminated N-Port network of Figure 2.4 where the current source
is controlled by an external voltage, vext instead of v13

Later, it has been derived by Platzker [6]

RR = − v13

vext
. (2.9)
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The proof of this simple equation is shown in great detail in [10]. It starts from pulling
out the admittance matrix of the network. The Y representation is

Y (S)V (S) = I(S) (2.10)

where s = σ + jω, Y(S) is a n× n matrix and I(S) and V(S), are respectively excitation
and response column vectors of size n where n is the number of nodes in the circuit. The
Y matrix of the network shown in figure 2.4 is given by the matrix below.∣∣∣∣∣∣∣∣∣∣∣∣∣

y11 y12 y13 y14 y1N

y21 + gm y22 y23 − gm y24 · · · y2N

y31 y32 y33 y34 y3N

y41 − gm y42 y43 + gm y44 y4N
...

. . .

yN1 yN2 yN3 yN4 yNN

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.11)

The next step is to write up the admittance, voltage and current equation of circuit
model shown in figure 2.5. This is shown as follows.



y11 y12 y13 y14 y1N

y21 + gm y22 y23 − gm y24 · · · y2N

y31 y32 y33 y34 y3N

y41 − gm y42 y43 + gm y44 y4N
...

. . .

yN1 yN2 yN3 yN4 yNN


×



v1

v2

v3

v4
...
vN


=



i1
−gm.vext

i3
gm.vext

...
iN


(2.12)

The matrix in equation (2.11) is the full network determinant and the network admit-
tance shown in (2.12) represents Y0 when the dependent source with the transconductance
value gm is excited.

Since, RR = | Y
Y0
| − 1, the Return Ratio for the network is calculated and proved to be

as Equation (2.9).

RR = − v13
vext

This result is particularly useful to extend the work that this thesis presents. In order
to solve the big n× n matrices, there is a need to be familiar with solving matrices using
the concept of partioned matrices or more commonly known as block matrices. This
concept is explained in [7].
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2.4 Microwave Office AWR Simulator

The Microwave Office [1] is a comprehensive software solution for engineers and designers
of all types of RF and microwave circuits starting from integrated microwave assemblies to
monolithic microwave integrated circuits (MMICs). Microwave Office offers an intuitive
user-interface which combined with its unique architecture software allows for seamless
integration of powerful, innovative tools and technologies with application-specific tools
based on the need of partner companies to bring their high-frequency designs to life. The
capabilities of Microwave Office includes:

• Schematic/layout design entry

• Linear and non-linear circuit simulation

• EM analysis

• Synthesis, optimization and yield analysis

• Desgin rule checking/layout vs. schematic (DRC/LVS)

• Process design kits (PDKs) from a wide range of foundries

This thesis makes use of the basic capabilities of Microwave Office NI AWR Design
Environment to enable schematic design entry, linear and non-linear circuit simulation.
However, it also uses more advanced PDKs that have been obtained from MACOM for
the purposes of the thesis.

A process design kit (PDK) is a set of files used within the semiconductor industry to
model a fabrication process for the design tools used to design an integrated circuit. The
PDK is created by the foundry defining a certain technology variation for their processes.
The designers use the PDK to design, simulate, draw and verify the design before handing
the design back to the foundry to produce chips [13].

Microwave Office AWR was used to modify the circuit model provided by MACOM.
This tool combined with the knowledge acquired over the years of using this tool in the
Engineering degree at Macquarie University and the experience of Anthony Parker and
engineers at MACOM was required to carry out the small signal implementation of the
two dependent source model of a FET that is discussed in the next chapter.



Chapter 3

Determining the Stability of N-Port
Networks

The Two-port network model extracted from Struble’s [10] work has been shown in Chap-
ter 2. This mathematical study is an extension of the NDF analysis for N-port networks
carried out by Struble using single current sources. This thesis is aimed to look at the
implications of having multiple control sources within a FET to represent the realistic
transistors used in MACOM’s preferred Meerkat pHEMT model.

This thesis particularly looks at the implementation of a two dependent source model
based on Struble’s Two-Port network as shown in figure 2.5. The two control sources
used in this model are voltage controlled current sources that are equal in magnitude but
opposite in direction. This is represented in the figure 3.1.

Figure 3.1: Introducing a second source in the passively terminated Two-Port network

This new model has been restricted to a common node, Node 1, as shown in figure
3.1. The next step in carrying out the mathematical NDF analysis is to work out the
admittance matrix of the network and use it to find values for v1, v3 and v5. equation
2.10 Y (S) ∗ V (S) = I(S) is used for these Return Ratio calculations that can be referred
back to the previous chapter.

13
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
y11 y12 y13 y14 y15

y21 + gmA + gmB y22 y23 − gmA y24 y25 − gmB

y31 y32 y33 y34 y35

y41 − gmA − gmB y42 y43 + gmA y44 y45 + gmB

y51 y52 y53 y54 y55

×

v1

v2

v3

v4

v5

 =


i1
i2
i3
i4
i5

 (3.1)

These equations are to be used in two different scenarios. These are as follows.

• Scenario 1: Each current source, i.e. gmA and gmB is excited and set to zero succes-
sively and the NDF calculated is based on the two return ratios obtained from each
step in this two step process.

• Scenario 2: Both the sources are probed by an external stimulus, simultaneously
and the NDF is calculated based on the Return Ratios obtained in one single step.

The aim is to compare the NDF for both the scenarios and see whether there is a
common trend. MACOM has recently implemented the NDF analysis in some of their
simpler non-linear models consisting of single control sources within the FET, however,
further work is required to implement the NDF in their preferred more sophisticated non-
linear Meerkat pHEMT model. The Meerkat model contains FETs that have multiple
control sources and so this thesis work which looks into a double VCCS source model would
help with the implementation process. Currently, it is difficult to determine whether the
order in which the control sources are turned off for Return Ratio calculations play a role
in the overall NDF analysis or not. Since, calculating the NDF based on the Return Ratio
method only takes into account the products of the Return Ratio of each control source,
the order should not matter and this is exactly what will be observed in this thesis.
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Scenario 1

Exciting the first control source, which is represented by the transconductance value gmA

through an external stimulus and using equation 3.1.
y11 y12 y13 y14 y15

y21 + gmB y22 y23 y24 y25 − gmB

y31 y32 y33 y34 y35

y41 − gmB y42 y43 y44 y45 + gmB

y51 y52 y53 y54 y55

×

v1

v2

v3

v4

v5

 =


0

−gmA.vext
0

gmA.vext
0

 (3.2)

Exchanging the rows and columns, the terms with gmb are collected together towards
the top of the matrix, to be later used as a block matrix.

y21 + gmB y22 y23 y24 y25 − gmB

y41 − gmB y42 y43 y44 y45 + gmB

y11 y12 y13 y14 y15

y31 y32 y33 y34 y35

y51 y52 y53 y54 y55

×

v1

v2

v3

v4

v5

 =


−gmA.vext
gmA.vext

0
0
0

 (3.3)


y21 + gmB y25 − gmB y22 y23 y24

y41 − gmB y45 + gmB y42 y43 y44

y11 y15 y12 y13 y14

y31 y35 y32 y33 y34

y51 y55 y52 y53 y54

×

v1

v5

v2

v3

v4

 =


−gmA.vext
gmA.vext

0
0
0

 (3.4)

[
y21 + gmB y25 − gmB

y41 − gmB y45 + gmB

]
×
[
v1

v5

]
=

[
−gmA.vext
gmA.vext

]
(3.5)

After solving this 2 × 2 matrix, the Return Ratio, RR1 is obtained. By solving a
similar matrix equation but this time setting exciting the VCCS with transconductance
gmB and setting gmA to zero, Return Ratio, RR2 is obtainted. The two results are then
used to calculate the NDF as follows.

NDF = (RR1 + 1)(RR2 + 1)

=
gmAA+ gmBB + C

gmBB + C
× gmBD + gmAE + F

gmAE + F

where,
A = y41 + y21 + y45 + y25

B = y21 + y45 − y41 − y25

C = y21y43 − y41y25

D = y41 + y21 + y43 + y23

E = y21 + y43 − y41 − y23
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F = y21y43 − y41y23

This was the first scenario calculation, where each of the current sources were excited
successively and in the excitation of the second source, the first source was switched off to
zero. The next step is to look at the scenario where both the current sources are probed
by an external voltage source together.
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Scenario 2

The network matrix remains unchanged and is the same as equation 3.1, however, since
both the sources are excited together, the resulting matrix for this scenario can be shown
below. 

y21 y23 y25 y22 y24

y41 y43 y45 y42 y44

y11 y12 y13 y14 y15

y31 y32 y33 y34 y35

y51 y52 y53 y54 y55

×

v1

v3

v5

v2

v4

 =


−(gmA + gmB).vext
(gmA + gmB).vext

0
0
0

 (3.6)

 y21 y23 y25

y41 y43 y45

y11 y12 y13

×
 v1

v3

v5

 =

 −(gmA + gmB).vext
(gmA + gmB).vext

0

 (3.7)

Solving this 3×3 matrix requires the knowledge of solving the inverse of a 3×3 matrix
which is learnt off from the Khan Academy tutorials [2].

The following NDF expression is obtained from the calculation.

NDF =
[(gmA + gmB)A+X]× [(gmA + gmB)B +X]

X2

where,
A = y43y13 − y12y45 − y11y45 + y41y13 − y12y25 + y23y13 − y21y13 + y11y25

B = −y41y12 + y11y43 + y11y23 − y21y12 + y43y13 − y12y45 − y12y25 + y23y13

X = y21(y43y13 − y12y45)− y23(y41y13 − y11y45) + y25(y41y12 − y11y43)

The results from both the analysis seems to be quite different and cannot be simplified
to present a common solution. It can therefore not be concluded that the two current
sources excited successively as Struble described in [10] is the same as exiting them to-
gether in one single step. The other thing to note is that the 5 × 5 matrix makes the
whole process much more tedious as there are too many admittance parameters to deal
with.
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3.1 Calculating NDF for a Single Three-Port FET

Model

Since, the results from the five-port network calculations did not match as expected, the
next logical step was to take a closer look at what happens when the behaviour of a simple
single three-port network such that of a FET is observed. The FET is represented
in a small signal model with two dependent current sources that are equal
in magnitude and opposite in direction. The model used to represent the three
port FET can be shown below in figure 3.2. We use a FET in this case as engineers at
MACOM have already implemented the NDF in some of their models using FETs.

Figure 3.2: Three-Port FET model with an additional control source

The calculations are carried out in the same way, as explained in the two previous
scenarios using equation 2.10

Y (S) ∗ V (S) = I(S).

The admittance network can be represented in the equation below. y11 − gmB y12 − gmA y13 + gmA + gmB

y21 + gmB y22 + gmA y23 − gmA − gmB

y31 y32 y33

×
 v1

v2

v3

 =

 i1
i2
i3

 (3.8)

For, the first scenario, the two sources are excited one at a time. In this instance, the
control source with transconductance, gmA is excited by an external voltage source, Vext
and the other control source works normally. So, the following equation is obtained. y11 − gmB y12 y13 + gmB

y21 + gmB y22 y23 − gmB

y31 y32 y33

×
 v1

v2

v3

 =

 gmA.vext
−gmA.vext

0

 (3.9)

RR1 =
−v32

vext

Exchanging coloumns and rows and using the concept of partioned matrix [7], the
following is obtained.
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 y12 y13 + gmB y11−gmB

y22 y23 − gmB y21 + gmB

y32 y33 y31

×
 v2

v3

v1

 =

 gmA.vext
−gmA.vext

0

 (3.10)

[
y12 y13 + gmB

y22 y23 − gmB

]
×
[
v2

v3

]
=

[
gmA.vext
−gmA.vext

]
(3.11)

By solving the above equation, RR1 is obtained as follows.

RR1 =
gmA(y23 + y13 + y22 + y12)

y12(y23 − gmB)− y22(y13 + gmB)

In the next step, the control source with transconductance gmB is excited and the first
control source is set to zero. The equation for this step is as follows. y11 y12 y13

y21 y22 y23

y31 y32 y33

×
 v1

v2

v3

 =

 gmb.vext
−gmB.vext

0

 (3.12)

The Return Ratio for this step, RR2 is obtained in the same way as before and the
NDF is calculated as follows.

RR2 =
gmB(y23 + y13 + y21 + y11)

y11y23 − y21y13

NDF = (RR1)(RR2) =
gmAgmBAB + gmAAC + gmBBD +DC

DC

where,
A = y23 + y13 + y22 + y12

B = y23 + y13 + y21 + y11

C = y11y23 − y21y13

D = y21y23 − y12gmB − y22y13 − y22gmB

Moving on from the results that have been obtained by subsequent excitation and
switching of the control sources, we now look at the Scenario 2 where both the VCCS are
excited together. These calculations are still based on the model shown in figure 3.2 and
the equation still remains the same as equation 3.8.

In order to observe what happens when both the sources are excited together, the
following equation is derived.
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 y11 y12 y13

y21 y22 y23

y31 y32 y33

×
 v1

v2

v3

 =

 (−gmA + gmB).vext
(gmA − gmB).vext

0

 (3.13)

This 3× 3 will have to be solved to obtain the NDF. The final result is as follows

NDF =
(g2

mA + g2
mB)(AB)− 2ABgmAgmB + (gmA − gmB)(AX +BX) +X2

X2

where,
A = −y22y33 + y32y23 − y31y12 + y11y32 + y32y13 − y12y33 + y21y32 − y31y22

B = −y31(y23 + y13 + y22 + y12) + y33(y21 + y11) + y32(y22 + y11)
X = y22(y11y33 − y13y31) + y12(y23y31 − y21y33) + y32(y13y21 − y11y23)

It can be observed, that the NDF results for when both the VCCS are controlled
successively and when they are switched simultaneously, are quite different algebraically.
In order to understand this phenomenon a bit better, we take a closer look at the im-
plementation being carried out in the Microwave Office AWR circuit simulator which is
discussed in greater details in chapter 4.



Chapter 4

Small Signal Implementation in
circuit simulator AWR

Since, we have not been able to conclude a great deal from the mathematical analysis of
the three port FET model, we now look at the small signal implementation to compare
results from the two switching patterns. In order to do this, the current model provided
by Bryan Schwitter from MACOM that uses single control source FETs will need to be
modified to include a second control source. Before the small signal implementation could
be carried out, the existing model has to be verified to see if it is working properly as
expected. It would be unwise to employ the second control source when it has not been
ensured that the circuit model provided by MACOM is working perfectly fine.

Following figure 4.1 is the AWR model provided by MACOM

21
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Figure 4.1: Top Level Ciruit model diagram in AWR (obtained from MACOM)

When we go into the second and third bottom level of this circuit we obtain the
following figure 4.2 and figure 4.3.

Figure 4.2: Second Level Ciruit model diagram in AWR
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Figure 4.3: Bottom Level Ciruit model diagram in AWR

The following figure 4.4 is the LRC filter circuit which is represented as sub circuit in
the top level AWR circuit model in figure 4.1. This LRC circuit consists of an inductor
(L), a resistor (R) and a capacitor (C), connected in series.

Figure 4.4: Filter circuit as shown in the top Level of AWR circuit model

Since, two transistors are used, there is the need for a switching block to control
the switching pattern of the two transistors. The calculation of Return Ratio requires
subsequent switching on and off of the two transistors. The switching block is included
within each FET and can be shown in figure 4.5.
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Figure 4.5: Switching block included within the individual FET
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4.1 Modification of the existing circuit model

The model provided from MACOM was looked at thoroughly and some corrections needed
to be made in the output equations. With the current model provided by MACOM, the
NDF calculations did not seem to work properly. This was checked by simplifying the
model to work with a single transistor first. The single transistor model was used to
calculate the Return Ratio and then that value of Return Ratio was used to calculate the
NDF. Meanwhile an experimental NDF was also calculated using the equations provided
by the MACOM Engineers. It was found that there were some discrepancies between the
two. The NDF equation was measured from the same circuit. The equations are given as
follows.

NDF 34 = NDF TEST EXAMPLE : S(3, 4) (4.1)

RR = −NDF S34/2 (4.2)

NDF = (RR[*, 1] + 1) ∗ (RR[*, 2] + 1) ∗ (RR[*, 3] + 1) (4.3)

NDF encirclements = unwrap(angle(NDF ), P I)/(−2 ∗ PI) (4.4)

Both the equations and the model had to be changed for the NDF calculation to work
properly. The following are the changes that were made to the model.

1. The first change was to ensure that only a single transistor was in operation. To do
this, the two other transistors had to disabled and the number of transistors had to
be changed to 1 to avoid sweeping, since there is no sweeping required.

2. The RRout port impedance as show in figure 4.1 was causing the the results to
differ as the port impedance of 50 ohm resistor was adding to the overall circuit
impedance. In order to neglect the effect of this port impedance, the impedance
was increased to the order of 1× 106 ohm.

3. The top level port impedances also hampered the circuit impedance hence was
grounded using resistors. Simple grounding resulted in an error in AWR, so a 1
Ohm resistor was used.

4. Changes in the LRC filter circuit

(a) If we look at the LRC filter circuit as shown in figure 4.4, we will see that a
phase shifter has been used. The phase shifter is only required when more than
two transistors are used. For this purposes, we also disable the phase shifter.
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(b) Previously, the complex value of impedance, Z, of the filter circuit was read off
as a sub circuit however, it was found that to realise the actual complex value
of the LRC circuit impedance, it was required to measure the impedance, Z,
in isolation of the rest of the circuit by measuring the impedance against one
port and grounding the other.
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Single FET

After the above changes and simplifications had been made to the circuit model the new
Return Ratio was calculated. The modified circuit model can be shown in figure 4.6
and figure 4.7. This calculation of the Return Ratio is done in the method described in
Chapter 3 where the Y, admittance matrix of the transistor model has to be obtained
first.

Figure 4.6: Modified circuit model
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Figure 4.7: Modified circuit model

The admittance matrix of the model shown in figure 4.6 is obtained as shown below.[
Y + YI −Y
−Y + gm Y + YL

]
×
[
v1

v2

]
=

[
i1
i2

]
(4.5)

By probing the control source having transconductance gm with an external source,
the following is obtained.[

Y + YI −Y
−Y Y + YL

]
×
[
v1

v2

]
=

[
0

−gmvext

]
(4.6)

From the above matrix shown in equation 4.6, the following simplifications were made

(Y + YI)v1 − Y v2 = 0

−Y v1 + (Y + YL)v2 = −gmvext.
Solving these two equations, the Return Ratio and the NDF can be calculated as

follows.

RR = − vI
vext

=
−gmY

(Y + YL)(Y + YI)− Y 2
.
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Assuming, gm = −1 and ZL = ZI = 50, the following is obtained

RR =
Y

(Y + 1
50

)(Y + 1
50

)− Y 2
.

Next, the whole equation is expressed in terms of impedance, Z

RR =
Z

(1 + Z
50

2
)− 1

.

Hence,

NDF = RR + 1 =
Z

(1 + Z
50

2
)− 1

+ 1. (4.7)

The above equation 4.7 was used to measure the NDF value and compare it to the
quantity measured. The point to be noted here is that the equation 4.7 is calculated
using the transconductance value, gm to be negative unity so it is expected the NDF
measurement and the calculations will only match and overlap when gm is -1. NDF is a
complex quantity so it is necessary to analyse both the magnitude and the angle plots
separately. The results obtained are as follows.

Figure 4.8: Magnitude of NDF versus Magnitude of NDF calculated using equation 4.7
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Figure 4.9: Angle of NDF versus Angle of NDF calculated using equation 4.7

It can be observed in figure 4.8 and figure 4.9 that the two plots, one of NDF mea-
surement and the other of NDF calculation are perfectly overlapping on each other, which
proves that the NDF measurement from the new modified circuit model is working cor-
rectly. The encirlements of the complex quantity of NDF can be represented in the form
of a trajectory swept over an angular frequency, ω of −∞ to +∞ which can be shown as
in figure 4.10.
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Figure 4.10: NDF Encirclements around the origin representing zeroes on the RHP

Figure 4.11: The number of encirclements around the origin

The figure 4.11 represents the number of encirclements of the Normalised Determinant
Function around the origin. It can be seen that it has not quite reached the 1 mark yet
meaning the circuit is still stable. So, in order to increase the number of encirclements
and observe the instability behaviour, the transconductance, gm has to be changed. The
results are discussed in the following chapter.
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Two FETs

Now that it has been proved that the NDF measurement of the circuit model is working
correctly with a single transistor, a second transistor can be introduced. A positive
feedback is required in order to introduce oscillations in the circuit model for
testing purposes. Mathematically, positive feedback is defined as a positive loop gain
around a closed loop. That is, positive feedback is in phase with the input so it works
to make the input larger and larger. A single FET inverts the input and so to be in
phase with the input another FET needs to be added to the circuit to keep the feedback
in phase with the input. So, the two transistors used can either be positive or both
negative . The initial model had three transistors which required a phase shifter in the
LRC filter circuit as the FETs invert thrice and eventually is out of phase with the input.
However, for the purposes of this experiment, a double FET model is used. Since two
FETs are used, a phase shifter is no longer required to maintain positive feedback. The
double FET model is shown in figure 4.12.

Figure 4.12: The modified circuit model to include a second FET
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The number of encirclements i.e zeroes on the RHP can be increased in a number of
ways. One way of increasing the number of zeroes is by introducing a second filter (LRC)
circuit in the circuit model. A single LRC circuit can only provide a single encirclement
of 180 ◦ from -90 ◦ to +90 ◦ degree whearas two FETs produce two encirclements of
180 ◦ each. This can be represented in figure 4.13

Figure 4.13: The modified circuit model to include a second LRC filter circuit

This can be observed when the value of transconductance, gm is tuned to see two clear
encirclements on both the polar trajectory and the encirclement plot. This can be shown
in figure 4.14 and figure 4.15.
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Figure 4.14: NDF Encirclement trajectory
on a polar plot when gm = 0.12

Figure 4.15: Number of encirclements and
zeroes on the RHP when gm = 0.12
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4.2 Implementation of the two control sources in the

switching model

The next step in the thesis is to implement the two control sources within the modified
Two FET model as described in the previous section. A part of the solution to the bigger
problem of providing a general solution to arbritrary circuits and implementing the NDF
stability analysis in the Meerkat pHEMT problem is to observe and compare the result
of when there are multiple control sources within a transistor and what the Return Ratio
calculation alogorithm looks like.

To observe this behaviour, this thesis looks at different switching models for when
there are two control sources. It is assumed that the NDF calculation carried out by the
subsequent excitation and switching of the two control sources yield similar results to when
the two control sources are excited together. This is because the NDF calculation depends
on the products of the Return Ratios so the order in which the excitation and switching
occurs should not matter. This will be proven through this part of the experiment.

The two different switching models are shown below in figure 4.16 and figure 4.17.

Figure 4.16: Two FET two control source FET model with a shared switching block
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Figure 4.17: Two FET two control source model with individual switching blocks

In the first model represented by figure 4.16, it can be observed that there is only
one switching network for both the sources which means that the two control sources get
excited together and the NDF measurement is carried out.This circuit model follows the
same hierarchial structure as the model provided by MACOM where at the top level, two
FETs can be seen and at the bottom most level, the control sources can be seen.

On the contrary, figure 4.17 represents a new hierarchial model where on the top level,
the two FETS can be observed in terms of the two control sources. The two control sources
are denoted by two black boxes for each FET, totalling to 4 control sources altogether. The
two control source model each have their own switching network and this can be observed
when looked at the bottom most hierarchy level. Each control source is represented using
a black box so going into the subcircuit, the gate-drain and the gate-source connections
of the FET can be seen. This can be shown in figure 4.18 and figure 4.19.
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Figure 4.18: Control source with gate-drain connections

Figure 4.19: Control source with gate-source connections

The values used to define the transconductances, gm on each gate-drain and gate-
source connections and the capacitance values are that of a linear FET model obtained
from MACOM by S parameter measurements of a pHEMT. It describes the behaviour
of the intrinsic device channel i.e. how the semiconductor behaves, separated from the
devices metalisation. The values are measured over a frequency range of 50MHz to 50
GH but do not vary much with frequency. The values used are that of frequency 10 GHz.
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The results obtained from these circuit models will be analysed and compared in
chapter 5.



Chapter 5

Comparison of analysis approach

It is important to understand the different circuit models used in this thesis to draw up
a comparison analysis. This comparison analysis will help understand the underlying
differences in adding additional FETs and voltage controlled current sources and how it
affects the polar trajectory and encirclement plots and hence the stability of the circuit
as shown in figure 4.10 and figure 4.11. The models used are defined as follows.

1. Single FET model with single control source

2. Two FET model with single control source

3. Two FET model with double control source

(a) Double control source model controlled and excited together (one shared switch-
ing network)

(b) Double control source model with individual switching network

The results, i.e. the polar trajectory plot and the encirclement plot by sweeping ω
from 0 to −∞ from both the single and double FET model each with single control sources
can be compared to see if there are any similarities or notable differences in the number
of zeroes on the RHP and stability.

39
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5.1 Results for Single FET single source

The following are graphs of varying transconductance, gm values of the voltage controlled
current source. These graphs represent values gm = −0.05 and gm = 0.042.

Figure 5.1: NDF Encirclement trajectory
on a polar plot when gm = −0.05

Figure 5.2: Number of encirclements when
gm = −0.05

Figure 5.3: NDF Encirclement trajectory
on a polar plot when gm = 0.042

Figure 5.4: Number of encirclements when
gm = 0.042
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5.2 Results for Two FETs single source

Now, the behaviour of the Two FET model can be observed using the same values of
transconductance, gm as used for the single FET model. The following represents graphs
when gm = −0.05 and gm = 0.042. These values were chosen with the use of a tuning
tool to display clear encirclement plots.

Figure 5.5: NDF Encirclement trajectory
on a polar plot when gm = −0.05

Figure 5.6: Number of encirclements when
gm = −0.05

Figure 5.7: NDF Encirclement trajectory
on a polar plot when gm = 0.042

Figure 5.8: Number of encirclements when
gm = 0.042

With the help of a tuning tool in AWR, it is observed in the case of a single FET,
the lower the transconductance value, below -0.05, the higher the encirclements, i.e the
zeroes on the RHP starting from one. At a value greater than -0.05, a single FET has no
encirclement. A clear encirclement can only be observed when the value of gm <-0.05.
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With the aid of the same tuning tool, it is observed that using two FETs the polar
trajectory is slightly different. One encirclement is achieved by the Two FET model when
the transconductance value is when -0.09 <gm <-0.05, making the model unstable only
in that range of gm.
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5.3 Results for Two FET, Two Control Source Model

This section can be divided to look into the two different models.

Double control source model containing a single switching network

This particular model makes use of two FETs, each having two VCCS that share a single
switching network. This switching network is used to excite the two FETs simultaneously.
The aim of the thesis is to look at the concept of multiple control sources as a novel area
of research and provide with mathematical and practical evidence to confirm that the
order in which the control sources are excited and the Return Ratios calculated have
no effect on the final NDF calculation and stability. It is expected that the model with
a shared switching network will yield a similar result to when the sources are controlled
individually. The first model developed as represented in figure 4.16 produces the following
encirclement graphs. The output equations to get to these results are very similar to the
equation 4.1, 4.2, 4.3 and 4.4 and had to be modified slightly to reflect the number of
FETs to achieve the encirclement plots shown in figure 5.9 and figure 5.10.

This method allows for the Return Ratios and in turn the NDF to be calculated
in one single step by providing an external stimulus to both the sources at the same
time, instead of calculating it in two successive steps as is in the case of using individual
switching networks for the control sources.

Figure 5.9: Polar trajectory plot by sweeping ω from 0 to −∞
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Figure 5.10: NDF encirclement plot by sweeping ω from 0 to -∞
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Double control source model with individual switching network

The circuit model used to realise the individual switching network is represented in figure
4.17. This model allows for successive excitation and switching of the control sources.
In short, the two control sources are individually controlled and the NDF
obtained using this model is calculated in two steps through working out the
Return Ratio. The first Return Ratio is obtained by providing an external
stimulus to one source and allowing the other to work normally. And in the
next step, the second source is excited with the first source switched off.

The following are the NDF analysis graphs obtained for the above described model.

Figure 5.11: Polar trajectory plot by sweeping ω from 0 to −∞
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Figure 5.12: NDF encirclement plot by sweeping ω from 0 to -∞

If the results from the two models are compared we can see that both produce very
similar results. The NDF polar trajectory obtained by sweeping ω from 0 to -∞ is slightly
different for the two models but the number of encirclements and hence the number of
zeroes in RHP obtained is the exact same since encirclements are only counted in whole
numbers.

Thus, it can be concluded that the NDF analysis results obtained for any two con-
trol sources are the same whether the NDF measurement is carried out by subsequent
excitation of the control sources or whether it is simultaneously probed with an external
stimulus. This information is vital for determining the stability of any network containing
multiple control sources.

5.4 Further Three FET model implementation

This thesis could be extended to a three FET model to match the initial model obtained
from MACOM. Since, the foundation has already been established previously, this imple-
mentation is quite straightforward. A single FET is added to the existing model and the
output equations for the NDF analysis has to be modified a bit to take into account the
third FET. The following figure 5.13 represents the model.
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Figure 5.13: Three FET model for NDF analysis

Next, the NDF analysis can be carried out on this model and the NDF polar trajectory
and the encirclement plots observed. The following figure 5.14 and figure 5.15 represents
this NDF analysis plots.

Figure 5.14: NDF polar trajectory plot by sweeping ω from 0 to −∞
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Figure 5.15: NDF encirclement plot by sweeping ω from 0 to -∞

It can be observed that a three FET model yields a very similar result to a single FET
and Two-FET model. Adding additional FETs to the model does not seem to vary the
results greatly.
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Conclusion

This thesis is focussed on a very specialised area of interest for Macquarie University’s
industry partner MACOM Technology Solutions. For decades design engineers have relied
on using the Linvill and Rollett (B and K) stability criteria to ensure stability of their
circuits, however, both the B and K criteria have limitations. Recently, Struble [11] started
working on a robust stability test called Normalised Determinant Function. Struble’s
work provided the foundation for this thesis however, this thesis was tailored to suit the
implementation needs of MACOM.

MACOM have recently applied NDF in some simple linear models, however, some
problems remain with the implementation of this useful feature in the more sophisticated
and preferred non-linear model, Meerkat pHEMT model. One of the problems that arises
with the implementation of the NDF in the Meerkat pHEMT model is that the model
consists of multiple control sources in one single pHEMT and the study by Struble only
looks at single control source transistors. This thesis is an extension to Struble’s work
and looks further into what the implications are in having multiple control sources and
how it changes the NDF algorithm both algebraically and practically.

At the end of the thesis, it can be concluded that there is mathematical and practical
evidence to prove that NDF can be implemented in the Meerkat PHEMPT model where
each pHEMT has multiple control sources. This thesis will provide the foundation to im-
plementing the NDF in arbritrary circuits and providing an overall solution to implement
the NDF as a circuit stability test.

Future Recommendations

It is recommended that the work in this thesis is carried to the next step in developing
an overall solution to implementing the Normalised Determinant Function as an integral
circuit stability test within the design process of amplifiers, etc. This can be achieved by
looking at more realistic transistor models that are part of a bigger and more complex
network containing lumped elements. The NDF algorithm will then have to be observed
and analysed as to how realistic transistors behave and interact with other circuit ele-
ments. It is also necessary to extend this work to represent the number of control sources
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within the Meerkat pHEMT model that is of interest to MACOM. This thesis only looks
into the case of having two dependent sources within each FET whereas, the Meerkat
model uses multiple sources. The results yielded from the different switching patterns of
the sources will also have to be observed and taken into consideration when developong
the overall general circuit stability.
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Abbreviations

NDF Normalised Determinant Function
RHP Right Hand Plane
FET Field Effect Transistor
pHEMT pseudomorphic High Electron Mobility Transistor
PDK Process Design Kit
VCCS Voltage Controlled Current Source
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Appendix A

Project Attendance Form

This appendix contains the consultation meetings attendance form as required by the
department.Both the supervisor and the student had to sign off the consultation meetings
form for the official record of the meetings.
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