WEB INTERFACE FOR THE PROGRAM ANALYSER
SKINK

Arvin Matvosian

Bachelor of Engineering
Software Engineering

]
Pg
ey

MACQUARIE
University

SYDNEY-AUSTRALIA

Department of Computing
Macquarie University

November 5, 2017

Supervisor: Associate Professor Franck Cassez

ACKNOWLEDGMENTS
I would like to acknowledge Associate Professor Franck Cassez for his guidance,
understanding and flexibility throughout the course of my thesis project at Mac-

quarie University.

STATEMENT OF CANDIDATE

I, Arvin Matvosian, declare that this report, submitted as part of the requirement
for the award of Bachelor of Engineering in the Department of Software Engineer-
ing, Macquarie University, is entirely my own work unless otherwise referenced
or acknowledged. This document has not been submitted for qualification or

assessment at any academic institution.

Student’s Name: Arvin Matvosian

Student’s Signature: Arvin Matvosian

Date: November 5, 2017

ABSTRACT

Development of software in this day and age across a wide range of technologies,
from embedded closed systems, to vital, complex, globally interconnected systems
at some point or another suffer from unforeseen outcomes in the use of these
systems. Software bugs and errors are an unfortunate reality in the software
development process that are prone to exist due to the difficulty in producing
perfect programs. Software Verification systems often become incredibly complex,
require a large amount of time, resource and knowledge to install and operate.
As such it is not always easily accessible to most developers who want to check
their work. The goal of this project is to implement an easy to use web interface
for an existing C program analysis tool called Skink, that does not require any
installation or use of complex software or software verification knowledge, that

will provide software verification feedback to the user.

Contents

Acknowledgments
Abstract

Table of Contents
List of Figures

1 Introduction

1.1 Project Overview e
1.0.1 Pioject GOals . o o ¢ v v v ws vm s s ow s s w s s e s e e e e e w
1.2 Project Planning
1.2.1 Scopeo
122 Time e
1.23 Cost e e

2 Background Literature and Related Works

2.1 Software Verification
2.1.1 Difference between Software Verification and Validation
2.1.2 Testing e e

2.2 Software verification systems used L L.
221 Skink.
222 SMT Libraries e

2.3 Project languages used L L
231 Front-End
232 Back-End
233 FileTypes e e

3 Experimental Procedures

3.1 The System Environment
3.1.1 Software Installation
3.1.2 Installing The LAMP Stack

3.2 MySQL, Setting up the database
3.2.1 Experimental Procedures Summary

ix

iii
vii
ix

xiii

CONTENTS

4 Results

4.1 Output e

42 Bageof 88 . . & o i o v v o s vom s oa w s e e e e e e e

4.3 Steps to use the web interface system
431 Step 1: Login
4.3.2 Step 2: Prepare Program
433 Step3: Run Analysis
434 Step 4: Analyse Results L.

Discussion

51 Designing the System e
5.1.1 Requirements e
5.1.2 User Requirements and defining the Use Cases
51.3 UseCases i i i e
5.1.4 System Requirements,
5.1.5 Considerations

5.2 High-Level Design
5.2.1 Initial System Design
522 PHP e
523 C# NetCore
524 Project Code
525 Visual Design e

53 Final Design e

54 Components
541 Front End
042 Back End @ o i h i i e e e m e e e e e

5.5 UML Diagrams e e e
5.5.1 Behavioural UML Diagrams

Conclusion

Future Work

7.1 Analyser Analytics

7.2 Code Syntax Checking e

7.3 Adding per user Code sample saving,

Abbreviations

Project Plan
A1 Project Gantt Chart

19
19
19
20
20
20

CONTENTS xi
B Project Code 51
B.l HTML e 51
B.2 CSS . . 55
B.3 JavaScript 62
B4 PHP 72
C Meeting Attendance Form 73
Bibliography 73

List of Figures

2.1 Venn diagram showing relationship between Software Verification and Soft-

ware Validation 6
2.2 Figure that is an overview of the process Skink uses to determine if a

program is bug free ormot. L. 8
2.3 Anexampleofa SMT 9
2.4 An overview of how z3 solves SMT by test generation 10
4.1 Example Skink XML Output 21
4.2 Example Skink LL Output 22
4.3 Screenshot of the Web Interface system 23
4.4 Step 1: Screenshot of Login screen. 24
4.5 Step 2: Screenshot of Analyser Sereen oo 25
4.6 Step 3: Screenshot Running Analysis 26
4.7 Step 4: Screenshot of Analyser Results screen 27
5.1 An use case of the login for the system 32
5.2 A use case of running analysisonuse code 33
5.3 A use case of logging out of the system 34
5.4 A use case of a privileged user adding/removing/viewing system users . . . 35
5.5 A high-level overview of how the system will be implemented 36
5.6 A screenshot of the web design colour palette 37
5.7 Login Activity Diagram 39
5.8 Skink Activity Diagram 40
5.9 The use case diagram of the system 41
A.1 Gantt Chart of expected Project Timeline 49

xiil

Chapter 1

Introduction

Developing any non-trivial program that will operate exactly as a developer intended is
near impossible. The sheer complexities that arise as a program grows in size mean that
it is very difficult for developers to check every possible outcome of a program to ensure
that it behaves correctly. As humans we are prone to mistakes, couple this with the fact
that there are often a team or organisation of developers working on different parts of a
software system that need to interact and errors/unexpected behaviours are guaranteed.

Existing methods to reduce program errors

There are already development procedures and tools apart from software verification that
help minimise these kinds of mistakes, such as:

e Pair Programming [1] - The practice of having two or more programmers working
together on the same code can lead to quicker detection of errors and an overall
faster development of a system, while improving the happiness of the developers.

e Linter code checking tools [2] - Linter code checking tools are often custom built code
checking tools usually on a per language basis that check for typing/naming/struc-
ture errors in a developers code, and notify the developer to fix the mistakes or
check the warnings in order to improve the general correctness of the code and
reduce common errors to improve code quality.

e Code Review [3] - The process of having developed code being checked by an un-
biased source to pick up on mistakes before code can be published/integrated into
existing systems in order to reduce errors.

However these tools are only a way to mitigate some forms of bugs and errors in
software, they do not actually test for correctness in the program.

The correctness of a program is the determination of how accurately a program meets
its expected outcomes while taking into account all the different possible outcomes during
runtime. A program can be considered correct if all its possible outcomes are expected
results of the program.

2 Chapter 1. Introduction

Why develop this Web Interface Tool?

The purpose of this project is to help develop a more generalised way of accessing software
verification for developers in an easy to use way. There are already some examples of this
kind of tool, such as Whiley Web [4] that allow you to enter code in it’s programming lan-
guage and have it compile/run and return the result on your browser instead of installing
all the dependencies required to compile and run the programs.

Being able to quickly check your code for correctness with no installation requirement
is a huge advantage in writing better code and producing bug-free software systems.
The main verification tool that will be used is the Skink C Analyser, however the system
will be designed so that it is easy to add other tools for use. In the Experimental Proce-
dures section there will be a detailed analysis of the benefits and downsides to this type
of system.

1.1 Project Overview
In this section an overview of the project will be defined. The project plan and code can
be found in the Appendix A and B. The overview of this project is to develop a web

interface for a developing software verification system called Skink. The breakdown of
this thesis document is as follows:

Chapter 2 is some background literature on the programs and systems used by the Skink
analyser, and the tools used in developing the web interface.

Chapter 3 is the experimental procedures that outline the steps and processes used to
completion of the project.

Chapter 4 is the results of the project.

Chapter 5 is the discussion chapter of the paper that will talk about an analysis of the
project and why certain conclusions can be drawn from the project.

Chapter 6 is the conclusion of the project.
Chapter 7 is discussion of any future work that can be undertaken for this project.

1.1.1 Project Goals

The goal of this project is to have a user upload some program code, and receive a
meaningful analysis of the code from the verification tool.
The operation of the web interface in the broad sense is as follows:

1. Take a users code input/parse and format it if necessary

1.2 Project Planning 3

o

Send it to the server that has the software verification systems running on it

e

Transform the input into the correct type for the software verification program

i

Run the Analysis

Gather and format the output

o

6. Send the output back to the user’s computer

7. Display meaningful information from the output to aid a user to understand their
code

The extended goal of this project is to generalise the web interface system so that it
can work with any software verification system that can output analysis in the correct
format, which will be discussed in a later section.

1.2 Project Planning

In order to complete this project it was necessary to determine the needs of the project
and how to procure any necessary components in order to complete the project. In order
to determine this it is important to set a scope for the project so there are some bounds
on what is going to be accomplished.

In order to come to the conclusions of the type of system to use and tools required to
build the project, you can find an analysis of the different options considered in the
Experimental Procedures chapter of this thesis.

1.2.1 Scope

The base scope of this project is to deliver a working implementation of a web inter-
face that can interact with some back-end system that interacts with the Skink program
analyser. This means that the front-end of the system should be able to take user input
such as code, parameters and other information, and process/send this information to the
back-end that interacts with the software verification tool.

The back-end should then collect the result and send it back to the front-end where it
can be displayed and interacted with the user.

Given the minimum requirements of the project it was easy to see that it is possible
to generalise this implementation to target many different software verification systems.
So the scope of the project already allows us to see that there must be some back-end
system in place that will bridge the front-end to the software verification system.

The system set-up will be detailed later in the document, please see the Experimental
Procedures chapter for more detailed information.

4 Chapter 1. Introduction

1.2.2 Time

The expected time period set for this project is beginning 31st of August until the 1st of
November. A detailed view of the project timeline can be seen in the project Gantt chart
in the Appendix.

1.2.3 Cost

The costs involved in this project primarily stem from the fees from renting a web server
to host the back-end of the project.

Through consideration of options that can be found in the Experimental Procedures
chapter, I decided to to use a server hosting company called DigitalOcean through which
I rented a server for 4 months at $20 a month.

There were no other costs associated with this project as all used components were free
to use under their respective licences.

Chapter 2

Background Literature and Related
Works

This chapter of the thesis will provide background literature for the systems used in this
project.

There are a couple of tools that are required for both the Skink Analyser to run and for
the front and back-end systems to be built from that will be detailed in this section.

2.1 Software Verification

Being able to prove that a program will execute in a desired way is why there have been
great strides in the design and development of software verification systems. Being able
to mathematically or other prove a programs correctness means that we can guarantee a
certain behaviour of the program. This is particularly useful property if we are looking to
develop a program that has critical functions that can not behave unexpectedly, such as
in aviation, medicine or nuclear science fields. Often the way these software verification
systems work is through formal verification to try and prove the correctness of input
programs by analysis of the program code under different circumstances to try and find
a path through a program that may result in a bug or fault. A way this is can be done is
by:

e Static program analysis [5] - Analysis of the source code of a program (without
running the program) often by building a model of the program of its run time state
and reasoning as to the possible outcomes of the model.

However these systems are also inherently not perfect, and most of the time can either
identify a bug, find no presence of a bug or are unsure if a bug exists. In saying this
however they are still vital in testing small components of systems to help find the errors
that other methods may not find.

o

6 Chapter 2. Background Literature and Related Works

2.1.1 Difference between Software Verification and Validation

Software verification and Software validation are an overlapping idea [6]. Verification has
the goal of proving the correctness of a system, whereas validation has the goal of asserting
the functioning of a system.

The easiest way to understand the difference is to understand the following:

Validation: Is the system we are building correct?
Verification: Is the system being built correctly?

So in validation we are asking whether or not a system is being built to specification,
whereas in verification we are asking whether or not it’s implementation is correct. The
following Fig.2.2 helps express the overlap between these concepts.

Verification Validation

style T s
checkers .~ e 2 customer .. .
" integration regression \ acceptance ", Pprototyping
test o test
static analysis automated| system test —— odeling
“wlsting test .~ e.g. UML,
izl Vi o formal methods
correctness e , model
robustness i checking

analysis

inspection goelandayse

consistency
checking

model/specification
inspection

Figure 2.1: Venn diagram showing relationship between Software Verification and Soft-
ware Validation

The goal of this project is not to validate a system, only to help in verifying that the
correct outcome is generated from the input program.
Validation of a system is a concept that must be carried out by the developers or users
of a system, this is most often done by a variety of testing methods.

2.2 Software verification systems used 7

2.1.2 Testing

Testing of a system is the detailed checking of a system against expected outcomes in
order to understand if a system is performing as intended. Note that this does not mean
that a system is behaving correctly, in that it is behaving without any faults or bugs.

In a sense software verification does implement some types of testing to find out if a
system is correct. Some methods of testing might be creating and evaluating models of
a system to expected outcomes and analysing the execution of a system with different
inputs parameters or runtime conditions.

2.2 Software verification systems used

This section will outline the different existing tools and systems used in the creation of
this project.

2.2.1 Skink

Skink is a static analysis tool that analyses LLVM-IR of program source code [7]. It
checks whether or not a program can reach a designated point in the code to determine
if the result of a program is correct, incorrect or inconclusive.

e Correct - The program will reach the designated block of code with the correct
output.

e [ncorrect - The program will not reach the designated block of code with the correct
output.

e Inconclusive - The program will not reach the designated block of code or the status
of the program can not be determined.

The approach Skink uses is to take:
“A program P that is abstracted into an antomaton A that generates a language L(A),
first abstraction being the control flow graph of the program. Then the abstraction re-
finement loop is iterated until we find a bug or declare the program bug-free.” [8]

Which means it takes the input source code of the program and generates a custom
language that can then be traced through it's theoretical execution until a bug is either
found or not found.

Then with some analysis of the results it returns a result of correct, incorrect or incon-
clusive. Fig.2.2 visnalises the process at a high level.

8 Chapter 2. Background Literature and Related Works

A := CFG(P) l_ L(A) := L(A) \ L(ITAt))

L(A) = &7 4 IS t feasible?
(4) No, let t € L(A)

Yes Yes

W

Figure 2.2: Figure that is an overview of the process Skink uses to determine if a program
is bug free or not.

The systems used in creating and running the Skink system are:

e Clang - C based language front end for C, C++, Objective C and more [9]

Scala - Functional Object-Oriented language that runs on the Java Virtual Machine
[10]

e Sht-rats parser generator

Kiama Scala Library - Scala library for language processing [11]

e Scala SMT - Scala interface for SMT Solvers [12]

2.2.2 SMT Libraries

This subsection outlines the SMT libraries that Skink relies on when running analysis on
program code.

Z3 Prover

Z3 is a SMT solver prover built by Microsoft Research available under the MIT licence [13].
A SMT is a type of decision problem for logical formulas and whether the formulas are
satisfiable. See Fig.2.3 for an example of a SMT. It is a formula in first-order- logic that
has the problem of determining if the formula is satisfiable. An overview of how z3 works
can be seen in Fig.2.4

CvC4

CV(4 is another open source SMT solver that is used by the Skink system [14].

2.2 Software verification systems used 9

Satisfiability Modulo Theories (SMT)

x+2= y’jifiﬂread-rwite[a, ,@) =Lﬂi£—x+ li)

Arithmetic Array Theory ?Eni?;i:

Figure 2.3: An example of a SMT

SMTInterpol

SMTInterpol is a java based SMT Solver library developed by the University of Freiburg,
also used by Skink [15].

10 Chapter 2. Background Literature and Related Works

Run Test and Monitor Execution Path Condition

Path

MW IngUE Constraint

Solve

Figure 2.4: An overview of how 23 solves SMT by test generation

Unexplored path

2.3 Project languages used

This section outlines the programming/markup languages used in this project in devel-
oping the web interface and back-end server code for the Skink Web Interface project.

2.3.1 Front-End

The front end of the web interface will be a online web page that can be accessed by
a browser that can open a connection with the back-end of the system which in turn
interfaces with the Skink Analysis system. The common tools for the web interface
development are as follows in the sub-sections.

HTML

HTML is a markup language used to describe the structure of a text document most
commonly used by web browsers to help understand rendering of components. Its purpose
is to separate and give structure to different text such that they can be presented or
manipulated in different ways, usually for styling.

CSS

CSS is a markup for applying styling to HTML elements. It comes with predefined styling
parameters that can then be set to help style HTML components.

2.3 Project languages used 11

JavaScript

JavaScript is a weakly typed interpreted programming language. It is part of the three
core technologies used in developing for the web browser. Its job is to provide executable
code that can perform actions that are interactive for the user, such as communicating
with other systems/computers, manipulating input and HTML elements. In this project
its main purpose is to facilitate the parsing, sending, receiving and manipulating of user
input/back-end output for the web interface system.

jQuery

jQuery is a JavaScript library that provides access to already built JavaScript functions
for handling things like animation, events, and the HTML document traversal and ma-
nipulation. It is used in this project to save time in accessing already developed methods
for searching and manipulating the HTML document.

AJAX

AJAX is a JavaScript library for running asynchronous code in the web browser. Usually
for something that does not have an immediate response, such as connecting to a server
sending queries and waiting for a response.

2.3.2 Back-End
PHP

PHP is a general use programming language that runs on servers that have its compiler
installed. It handles a lot of back-end system work such as file manipulation, command
line utilities, database access and any other function required on a computer. In a basic
sense it is the system by which we can interface with

MySQL

MySQL is a type of relational database. The MySQL language is a specially designed
gyntax for running commands on a MySQL database. It is most commonly used to run
queries against data in a database as well as Create/Remove /Modify data and tables in
the database.

2.3.3 File Types

There are 4 main file types that are used in this project.

12 Chapter 2. Background Literature and Related Works

XML

XML stands for eXtensible Markup Language. It is a developed syntax that allows for
structured text in a document in order to represent some data, that can be easily under-
stood by humans and easily parsed by computers.

C Files

The C files are just the plain text C program text saved with the .c file extension.

Graphml

Graphml is an modified XML structure for a text file that allows it to represent graph
structured data. It is one of the outputs the skink system generates from input code file.
1l File

The 1l file in this project is one also generated by skink through the use of CLang LLVR-
IM. It contains llvin data from the output of the ¢ program from skink.

Chapter 3

Experimental Procedures

This chapter details the experimental procedures for this project.

3.1 The System Environment

Setting up the system environment requires an understanding of the requirements of
the project as a whole and the component dependencies. The following table tries to
summarise the dependencies of the system components. Nested components prefixed by
— take their parents dependencies plus their own.

Components | Version ‘ Dependencies
Front-end

HTML 4/5 IE, Firefox, Chrome Web Browser
CSS 3 IE, Firefox, Chrome Web Browser
JavaScript ECMASeript 5/6+ IE, Firefox, Chrome Web Browser
— jQuery 3.F 4+
- Ajax 1.0+ ¢
Back-end

PHP 6.0/7.0 + Windows/Ubuntu Operating System
Skink Windows/Ubuntu Operating System, SMT Solvers
- 73 -
— SMTInterpol - “
- CVC4 -
— Java 7/8 [
—- Scala 2% + “

There was some consideration required when planning how to proceed with the project
in relation to the set up of the back end svstem as well as the tools that would be used

in the project.

Given the dependency table listed in Table.3.1, I decided to use a Linux based distribution,

13

14 Chapter 3. Experimental Procedures

Ubuntu version 16, due to the ease of installation of many components via the easy access
to SSH command line utility and easy installation instructions that are detailed in the
section below.

Another considerations was whether or not to rent a hosted server or to convert and
use an existing system and turn it into a web host service. Researching some server
hosting providers, initially starting a test server with domain name rental from goDaddy,
I soon switched to a more easy to use server host solution: Digital Ocean.

The rented server configuration is as follows: Ubuntu 16.04.3 x64, 2GB Memory, 20GB
SSD.

3.1.1 Software Installation
Z3

To install Z3, download either the compiled binary to a folder on your machine or un-
compiled source from the Z3 github page and build it using the following on Linux using
the command line:

python scripts/mk.make.py
cd build

make

sudo make install

o R R R

CVC4

To install CVCA4, follow the instructions below on Linux using the command line:

echo 'deb http://cved.cs.nyu.edu/debian/ unstable /'

>> [etc/apt/sources. list

echo 'deb—src¢ http://cved.ecs . nyu.edu/debian/ unstable/'
>> [etc/apt/sources. list

echo 'deb http://cved.cs . nyu.edu/debian/ stable /'

>> [etc/apt/sources. list

echo 'deb—src http://cved.cs.nyun.edu/debian/ stable/'
>> [etc/apt/sources. list

apt—get update

apt—get install —y —force—yes cvcd

3.1 The System Environment 15

Clang
To install Clang, follow the instructions below on Linux using the command line:

echo 'deb http://llvm.org/apt/trusty/ llvim—toolchain—trusty —3.7 main'
>> [etc/apt/sources.list echo

'"deb—sre http://llvm.org/apt/trusty/ llvim—toolchain—trusty —3.7 main'
>> /etc/apt/sources. list

apt—get update

apt—get install —y —force—yes clang —3.7 1ldb —3.7

SMTInterpol

To install SMTInterpol, follow the instructions below on Linux using the command line:

wget —no—check—certificate
https://ultimate.informatik .uni—freiburg.de/smtinterpol/smtinterpol.jar
& mv smtinterpol.jar /usr/bin/.

Java 8

To install Java 8, follow the instructions below on Linux using the command line:

wget —no—check—certificate
https://github.com/aglover /ubuntu—equip /raw/master /equip_java8 .sh
&& bash equip_java®.sh

3.1.2 Installing The LAMP Stack

The LAMP stack is the Linux Apache MySql PHP stack of programs that allow for a user
to set up a web service on their machine.

PHP

To install LAMP, follow the instructions below on Linux using the command line:

Install Apache

§ sudo apt—get update

$ sudo apt—get install apache2

$ sudo apache2ctl configtest

$ sudo nano /etc/apache2/apache2.conf

Add server name and IP at the bottom of the above f[ile and restart Apac
$ sudo systemct]l restart apache2

Check for allowance of port 80/443 in the firewall
$ sudo ufw app info 7Apache_Full”

16 Chapter 3. Experimental Procedures

Allow port 80/443
$ sudo ufw allow in " Apache.Full”

Install MySql

$ sudo apt—get install mysql—server
Set up some basic security

$ mysql secure installation

Install PHP
$ sudo apt—get install php libapache2—mod—php php—merypt php—mysql

$ sudo systemectl restart apache2
$ sudo apt—get install php—cli

Skink

The newer versions of Skink come with a bundled dependency list so that it is easier to
install.
Download Skink, build the system using sbt(Scala Build Tools) build and then compile
the system.

You should then be able to run skink.sh via command line like so:
"skink.sh -w -loc %TestFilePath % TestFileOutputPath” or
" [skink.sh -w -loc %TestFilePath %TestFileOutputPath”

3.2 MySQL, Setting up the database

Setting up the database for this project the main goal was to use it as an anthentication
method, however it is very easy to adapt and scale the database to support other func-
tionality such as analytic metrics and other features as mentioned in the Future Work
chapter.

To setup the MySQL Database, ensure it is installed and configured. To access the
database I used a interface called PHPmyAdmin rather than directly working with the
database through command line. Using this tool, | created a table for authentication that
consists of the following fields and their data types:

e Loginld - VarChar
e LoginPassword - VarChar
o AccountCreated - TimeDate

e LastLogin - TimeDate

3.2 MySQL, Setting up the database 17

e LoginTokenld - Int
e LoginToken - Int

In order to authenticate users I would run the query of the username and password
against this table and count the results that were found, if there was no results found
then the login was invalid and the function would return false, and if there was a result
found the user authenticate function would return true to the web system and it would
then take action accordingly.

Using this kind of database makes it really easy to modify and adapt the data and
tables to changes in the system design, by way of the PHPmyAdmin interface, it is also
has the option to allow for database backups so that we do not lose data in the case of a
catastrophic failure in the system.

3.2.1 Experimental Procedures Summary

This chapter summarised the experimental procedures in installing and running the sys-
tem backend of this project. More in depth explanation of the web interface and design
can be found in the Discussion section.

18

Chapter 3. Experimental Procedures

Chapter 4

Results

The results of this project are that as of this paper the Web Interface for Skink is up and
running and working as intended. It satisfies the goals of this project.

1. Users are able to log into the site
2. Write some code into the code editor
3. Run an Analysis on that code

4. Receive a meaningful breakdown of the output of that code from the Skink Analyser

4.1 Output

The original output of the skink analyser for some code looks something like the following
in Fig.4.1 and Fig.4.2. The web interface translates this into a more readable form as
seen in Fig.4.3.

4.2 FEase of use

The ease of use of this system in comparison to the normal method of installing and
running the software locally are readily apparent. The installation of the software and
related systems, not to mention the difficulty of setting up the correct environment for the
systems is already a great deal of work. The web interface system successfully removes all
the installation and background knowledge required to develop such a system and makes
it simple.

19

20 Chapter 4. Results

4.3 Steps to use the web interface system

This section will detail the steps to use the web interface system, each step is accompanied
by a screenshot of what the interface looks like at that particular step.

4.3.1 Step 1: Login

The first step is to login via the login screen, fill out the credential fields as seen in Fig:4.4
and click the login button. The Login request will then be processed and if correct
credentials are given you will be redirected to the Analyser interface screen.

4.3.2 Step 2: Prepare Program

Once you have successfully logged in you will see the default interface for the Skink C
program analyser as seen in Fig:4.5. Here you can edit the default test programs in the
bottom code editor or clear the code and write/paste your own. You can also rename the
file in the file name field. Once you have the desired program ready for analysing move
on to Step 3.

4.3.3 Step 3: Run Analysis

Once you are ready click the Run Analysis button. Clicking this button will bring up a
load screen 4.6 signaling that your analysis request has been sent and is being executed.
Once the analysis is complete the load screen will disappear and you will be able to view
the results of the analysis.

4.3.4 Step 4: Analyse Results

In Fig:4.7 we can see that the analysis has completed on our program and returned a
Failed result, meaning that Skink has identified some error in our program. Skink has
given us the error trace it used to lead to the error as signified by the "Step n” text
printed in our code editor. We can also see the error block that the error was found in.
Using the Step Function Button we can step through the returned trace to help us find
the bug in our program.

4.3 Steps to use the web interface system

21

=defanlt>false</default>
<’key>
<lkey id="wimeass-type” for="graph” attrname="wimasss-type’ attrtype="string”™ />
<key id="scurceccodelang™ for="graph” attrname="sourcecodelang” attr.type="string” >
<key id="producer” for="graph” attr.name="producer” attntype="string" />
<key id="specification"” for="graph" atirname="specification” atintype="string"/'>
“"programfile” for="graph” attr.name="programfile” attrtype="string"/>
‘programhazh”™ for="graph” attnname="programhash” atirntype="string" />
“memorymodel” for="graph" attr. P orymodel” type="string" />
<key id="zrchitactura" for="zraph” attrmame="architactura" atértype="strinz"/>
“assumption” for="sdge" attrmame="assumption" attntype="strng"/>
“assumption scope” for="adze" attrname="assumpticn zcope" attr.type="string" />
<kay id="aszumption resultfunction” for="adge" attrname="aszumption rasultfunction" atirtype="string"/>
—<graph edgedefanlt="directed">
<data key="wimess-fypa”>viclation witness</data>
<data key="sourcecodelansg">C</data>
<data key="producer">skink</data>
— =data key="specification">
CHECK(init{main(), LTL(G ! call{__VERIFIER. error())))
</data=
= =data key="programfile">
Mvarfarerwhtml/project’cScripts/S9£d889£7411d Lil il healle.c
</dataz
<data key="programhash">3362{acfilbdd522662ecbedf7649275cdbl 2173 7</data>
<data key="memocrymodel">simple</data>
<data key="architecture">32bit<'data>
— <node id="N0">
<data key="entry">true</data>
<data key="block"=0</data>
— <data key="node.src">
int pl = _ VERIFIER 31 det_int(); // dition variable
=/data>
</mode=
— cadge id="E0" sonrce="N0" target="171">
=data key="adgs sre">while(l) {=/data>
=data key="startline">8</data>
=data key="endline">8</data>
</edge=
— =node id="N1">
<data key="block"=3</data>
<data key="node.src">cond = _ VERIFIER ncndet_mt();<'data>
</mode>
— <edge id="E1" source="11" target="T72">
<data key="edge src">if (cond == 0) {</data>
<data key="startline">10</data>
<=data key="endline"=10<='data>
<edge=
— =node id="MN2"=
<data key—"block"=6</data>
zdata key="node sre"=if (pl = 0) {</data>
</mode>
= <adee id="E2" sonrce="11" target="T73">
<data key="adge src">if (pl = 0) {<'data>
=data key="startline">14</data>
=<data key="endline">14</data>
</edge=
— =node id="MN3"=
<data key="violation'">truse</data>
=data key="block">E</data>
<'mode>
</graph>
“‘mranhmis

ey i
2
<lkey i

Figure 4.1: Example Skink XML Output

22 Chapter 4. Results

: Puneeior hrers: moumwind uweable

define 332 @mainl) local unnamed _addr $0 !dbg 16 {
¥ = tail call 232 (...) @_VERIFIER nondet_imt() $3, !dbg !E
2 = dSemp eq 332 81, 0
br label b3, !dbg !%

; preds = %, &80
532 [...) §_VERIFIER rendet_izt() $3, 'dbg '10
5 = icmp eq 132 &4, O, !dbg 11
Br i1 88, label 87, label 86, !dbg 112

; <labelr:€: ; preds = &3
br il %3, label %3, label B8, !dbg 13, !llv=.locp !14

i <labels:7: ;i preds = &2
cet i32 0, !dbg '16

; <labelr:@: ; preds = &€

tail call veid (...) i_mir!ﬁa_a:zorl- $4, !dbg 117
snzeachsble, ldbg 147

declare 132 @_VERIFIER nondet_int(

; Function Attrs: noreturn
declare veid §_VERIFIER erzer(...) lscal unna=ed addr $2

ik $0={ d uwtable ® 1y-rounded-dirvide-sqre-fp-math®="false" "disable-tail-calls®™="false® "less-precise-fpmad"="false® “"no-frame—
Foinses-elin® falae® "no-signed-aszes-fp-marh®="Zalae" "mo-szapping-

+ tamx, +a. 2, 487" “unsafe-fpmath"="fa

*falae® "ma-infr-fpomavh®="falac® "me-jusp-tables"="falsc’ "ne-nans-fp-mas

math"="fals
floaz” 3

avcributes f1 = { "eorrectly-rounded-divide-sqre-fp-math®="false® “disable-tail-ealla"="false® "less-precise~fpmad"="false” "no-frame-pointer-elim®="falae®
"na-infa-fp-math’ 2® "ro-nans-fp-math®="false® "no-sigmed-zezos-fp-math®="false® "no-trappingmath"="false” "stack-protector-buffer-=ize"="3" “targes-
Fe €4" "tacget £xsz, frm, toze, tozed, +x3T" ="falze™ "use-zofr-fleat"="falme" }

s"="

rtackp buffer-1ize”="8" "tazget—cpu €4 "targe £ " *sae-soft-

unzafe-Epmath

=1 A £l d=divide-sqrt-Ep-mach"="false” "disable-t
elin"="falss® "no-infs=fp-mach'

* *less-precise-fpmad®="fa no-fxame-pointes-

1se” "ne math™="false” "stack buffer

'="false® "use-soft-floac®="false” }

false® "no-nans-fp-math"="false” "no-signed-teros-fp-mach'
“rarges-featazes®=t+fxsr, mmx, “=se, trzel, +x87% Sumsafe-fp-math

2ige"="E" “rarget-cpu®= xff-84
attributes =
attributes B4

{ ounwiad }
{ reretusn moumwind |}

1llvm.dbg.ca = 1{10}
111lvm.moduly
!llvm.ident = [{!5}

10 = discinet !DICewpilelnit(lanquage: D IANG €39, file: 'l, producer: “clang version 4.0.0 (tags/RELEASE 400/final}®, isOptimized: true, rurcimeVersion:
emizsiorKind: LirelablesOmly, enums: 12}

) DIfilc (Eilemame: "fvaz/wmr/htel/projeet/
! m

13 w {332 2, !"Dwarf Versien", i32 4}

!4 = 1{337 2, !"Debug Info Versiom™, 132 3}

|

'

2z i T4lld-ezalilslal Liz.2", &2 y: "/zeet/skink™)

c.

lang versiom 4.0.0 (sags/RELEASE 200/final}*}
distinet !DISubprograminame: "zain®, scepe: !, file: !%, line: 3, type: !7, islocal: Ealse, isDefiniticm: true, Line: 4, isOptimized: toue, umit

wazriably

17 = 1DTSubroutineType (sypes: '2)
18 = !DIlocation|line: 3, colmmn: 11, =cope: !6)

!Dilecavioniline: 9, columm: 2, scope: !€)

0= 8, celumn: 10, scope: !€}
Hl= 10, H i}
me= = 10,
133 = 14,
11§ = distaact !{!14, !9, !
115 = IDIleszasion(line: 18,
118 = IDITooa (line: 20,
117 = !Dilocation(line: 21,

Figure 4.2: Example Skink LL Output

4.3 Steps to use the web interface system 23

ENGG411 - Program Verification Web Interface Project
Language: C

Information

Guide

FileMame = eca-like false-unreach-calle

Run Anal

Step Funclion

Output

Analysis:
Error Block Line:
Step:

Figure 4.3: Screenshot of the Web Interface system

24

Chapter 4. Results

Login

Email address

Password

Figure 4.4: Step 1: Screenshot of Login screen

4.3 Steps to use the web interface system 25

Information

The goal of this project is to develop an access based interface for programing language analysers.
The main analyser used in the backend system of this interface is Skink, which is developed by Macquarie University.

Run Analysis

Output

Logout

Figure 4.5: Step 2: Screenshot of Analyser Screen

26

Chapter 4. Results

Running Analysis...

Figure 4.6: Step 3: Screenshot Running Analysis

4.3 Steps to use the web interface system

27

Logout

Information

Guide

Run Analysis

Step Function

Output

Analysls:
Error Block Line:
Step:

Figure 4.7: Step 4: Screenshot of Analyser Results screen

28

Chapter 4. Results

Chapter 5

Discussion

5.1 Designing the System

In this section I will detail the process that I took in designing the system. The first
step to designing a software system is to understand the use and the context in which the
system will be used. To do this I needed to do some background research into the field of
Software Verification and use the meetings with my supervisor to understand what their
use of the system would be as well as develop some project goals that I would use as a
starting point in designing the system. The background literature for this project can be
found in Chapter 2.

In order to begin designing the system first we need to document and understand the
requirements of the system.

5.1.1 Requirements

In order to understand the requirements of the system it is required to understand the
use cases of the system you want to design. Once you have a foundation with the Use
Cases of the system you are then able to begin breaking down the use cases to understand
the requirements of the whole system. The most important Use Case of the system was
that it should be able to be completely operated by the user via a common web browser.
A list of Use Cases can be found in the Use Cases subsection.

Requirements Elicitation

Requirements Elicitation is the process of gathering the requirements for a project. There
are many popular methods for achieving this some of these ways are:

e Document Analysis and Background Research - This was one of the main methods
that I used to get an understanding of the topics this project was about. Getting
an understanding of the component systems in the project helped me reach a better
understanding of the project goals by understanding how the systems interacted
and their usage/platforms helped guide the design of the system environment.

29

30

Chapter 5. Discussion

Interviews or Focus Groups - The meetings with my supervisor who is one of the
main end users of the proposed system was a vital part in helping me shape my
understanding of the requirements of this project. Asking questions about expected
functionality and use cases helped me design the system to meet the goal of the
project more accurately.

Observation - Observation in this context means observation of existing old or similar
systems to get a better understanding of the expected system and help develop
requirements. In this project I observed and used the Whiley Web [4] system to get
an idea of how they designed the front-end of their system.

Survey/Questionnaire - This method is often used when a proposed system targets
a large and often diverse user base. The use of surveys and questionnaires helps
gather data that can then be analysed to get a better understanding of the user
requirements of the system. This was not a viable option in this project as the user
base for the main program analyser tool was small.

Brainstorming - During the early stages of this project I used brainstorming to come
up with and filter out ideas to narrow down the scope of the project at its initial
stage in order to have a solid starting point for the project.

5.1.2 User Requirements and defining the Use Cases

This subsection will outline the Use Cases I developed and used in designing the system.
The main goals and expected outcomes of this project were vague in the early stages of
the project, due to the lack of solid goals and outcomes for the project, and as progress
was made prototyping and developing the system it became more and more concrete.
The main was this happened was through constant communication and feedback from
the program supervisor, who was also an end-user tester of the system. The following will
define the terms and structure of the use case documentation.

Goal - The Goal describes the expected outcome of the use case.

Primary Actor - The primary actor in this project is the sole end user that uses the
user interface in the web interface system.

Pre-Condition - The condition of the system prior to this use case.
Post-Condition - The condition of the system after the nse case.
Failure Outcomes - What are the possible failure outcomes in this use case.

Flow of Events - The flow of events the user takes.

5.1 Designing the System 31

5.1.3 Use Cases

Here are the two main use cases used to design the two main functional components of
the system as seen by the user.

e The Login Event
e The Code Analysis Event

These two use cases give a good indication of the front-end requirements for the system.

For example we can extrapolate from 5.1, the login use case, that there needs to be
some login page that restricts access to any other page on the site. But we don’t want
the user to keep logging in every time from a usability perspective so we need a way to
identify if a user has a valid timed login and automatically redirect them to the where
they want to go. From 5.2 we can get an idea of the users experience of the process of
running analysis on their code.

These use cases do not give us the whole picture of what we need to design the system
but they are a good start in understanding how it should work from a users perspective
which will influence the design of the system.

5.1.4 System Requirements

This subsection details the system requirements of the system. As mentioned previously
there are some basic requirement for some of the component systems such as Skink and the
SMT solvers that will restrict the system environment. In particular for this project that
happens to be the operating system that the back-end runs on. As mentioned because of
this I have chosen to use an Ubuntu Operating system that is hosted and deployed on a
Virtual machine by Digital Ocean.

5.1.5 Considerations

There are a few considerations to take into account in designing this system. They are
not direct requirements but they affect the design of the system in some way or another.

Cross-browser Compatibility

The main considerations to account for cross-browser compatibility stem from the visual
design of the web interface. Most of the modern popular browsers such as Edge, Chrome
and Firefox, and unfortunately in some cases Internet Explorer, run on different core
systems which means that in some cases they render and display web pages differently.
This is because of how they understand and apply the stylesheet (CSS) for a particular
page. For this project it turned out to not be a factor due to the design which is explained
more in the Visual Design subsection of High level Design.

32 Chapter 5. Discussion

Use Case ID uc-1

Goal Log into Skink Web Interface System
Primary Actor End User

Pre-Condition 1. User has a valid login to the web

interface
2. The user already has a valid login token
as they navigate to the website

Post-Condition 1. User has successfully logged into the
web interface and can access the
program

Failure Outcomes 1. User cannot log into the system

a. This may be due to incorrect
login credentials or the user
does not have an account

2. User cannot access the online web site

a. The web site is down or

unavailable

Flow of Events

User navigates to the Skink Web Interface

User types in credentials into the login fields

User clicks the login button

User then is successfully redirected, or the credentials are rejected/invalid, and the user
stays on the login page

Ca i

OR

E

User navigates to Skink Web Interface with valid login token
2. Useris automatically redirected to the main Skink analyser page

Figure 5.1: An use case of the login for the system

Security

Security is a major concern for this project due to the fact that its main purpose is to
send user code to the server and run analysis on it. Since this project aims to generalise
the implementation of the Skink analyser to more systems it may be a problem if there
are some systems that run the code server side.

This inherently causes a big problem for security as malicious code can easily steal
private information off or cause damage to the system. Unfortunately the main way to
stop this is to restrict access to the system and log usage of the system.

In order to prevent any catastrophic failure it is also recommended to keep up to date
backups of the system image and/or code.

5.1 Designing the System 33
Use Case ID uc-2
Goal User clicks Run Analysis button
Primary Actor End User
Pre-Condition 1. There is some amount of code in the
code text editor
2. The user is logged in
3. There is a filename given
Post-Condition 1. The user ends up with the analysis
output on screen
2. The user has the option to download or
view the skink output files
Failure Outcomes 1. The analysis crashes or hangs
2. The system returns incorrect
data/values
Flow of Events
1. The user enters or pastes some code into the code editor.
2. The user has entered a valid file name.
3. The user clicks the Run Analysis button.
4. Theinterface view updates as the analysis is complete to show the results.
5. The user can then also view or download the skink output

Figure 5.2: A use case of running analysis on use code

System hand-off and takeover

Another consideration is the inevitable hand-off of or replication of the system after the
completion of this project. The easiest method to tackle this apart from replicating the
system using this document and provided code is to provide and image bundle of the

server that can then be redeployed and configured.

34 Chapter 5. Discussion

Use Case ID uc3

Goal User logs out

Primary Actor End User

Pre-Condition 1. Userislogged in

Post-Condition 2. The useris logged out so that another
person cannot access the system

Failure Outcomes 1. User cannot be logged out and the
system can be accessed by other
person with access to the device

Flow of Events

1. The user clicks the log out button
2. The server invalidates the user's login session token
3. The browser clears/invalidates the stored login token

Figure 5.3: A use case of logging out of the system

5.2 High-Level Design

5.2.1 Initial System Design

There were two main contenders that the design would be implemented with on the server
side (back-end), C# Net Core or PHP.

For this project I have chosen to use PHP instead of C# .Net Core because it has all
the functionality that is required for this project, as well as it being easily manageable in
small files and very easy to install. C# Net Core on the other hand requires installation
of specific IDEs that support it as well as the compilers and runtime in order to get it
working. It also comes with a lot of required files and folder structure that make the
project much more complex.

Using PHP will allow me to have very small functional files that can quickly and easily
be modified and do not require any compilation beforehand, making the development and
testing cycle much faster. Another reason is that the back-end of the system is not large
and a smaller footprint is easier to manage for the small system.

5.2.2 PHP

PHP is also a widely used stable library with many available packages for download. It
does not come with a lot of the boilerplate and system structure that C# .Net requires

5.2 High-Level Design 35

[Use case ID uca

Goal Add/Delete/View Users

Primary Actor Privileged User

Pre-Condition 1. User has correct privilege

Post-Condition 2. User has successfully
added/removed/viewed a user or users

Failure Outcomes 1. User fails to add/remove/view users of
the system

 Flow of Events

1. User navigates to users page
User views users in a list
3. User selects add user and creates a user login
OR
4. User selects a user and removes them from the system

g

Figure 5.4: A use case of a privileged user adding/removing/viewing system users

and is easy to implement and use.

5.2.3 C+# .Net Core

The C# Net Core is a widely used stable software package developed by Microsoft that
has inbuilt libraries to handle many aspects of web development as well as many tools
and utilities for developing server side software. It can run cross-platform and has the
ability to achieve almost anything that requires implementation.

Fig.5.5 gives a high-level view of the prototype design of the Web interface system.

5.2.4 Project Code

The project code in its current state can be found in Appendix B. This may not be a
complete listing of all the code required to deploy the project as some of the PHP files
contain security sensitive information and functions as well as database scripts.

5.2.5 Visual Design

For my design of the interface, it was a requirement for the interface to be easy to use
and understand; this meant that I had to minimise the amount of on screen elements and

36 Chapter 5. Discussion

Back-end

/ N

Front-End CvC4

PP

Interface JavaSenpt -
cul

> ! Java 3
User Code/
Ajax

—

-
Input Skink
Analysis
Output
" FE]
Cutput }4—1
F 1}
orma Siinizrpol

N e i

Figure 5.5: A high-level overview of how the system will be implemented

information presented to the user at any given time. My method for tackling this was to
hide away any unnecessary information the user did not need to see.

This was accomplished by using accordion drawers that animate and hide information
and buttons/elements that are disabled. In order to accomplish this I had to use a colour
palette that allows for easy contrast. In this project I decided to use a dark colour for the
theme with green/blue/red highlights and white text as seen in 5.6. This combination was
chosen after iterations of tweaking. Now when the system is being used active items are
clearly highlighted, important information is easily distinguished and disabled features
are not able to be interacted with and greyed out.

In order to give the user visual feedback for their actions, in particular to understand
that the analyser is running I implemented a loading screen that shows as the analyser is
running and disappears when the results have returned.

5.3 Final Design

This section will detail the final design of the system using software UML diagrams.

5.4 Components 37

File Name array-hard_true-reach-call.c

array-hard_true-reach-call.c

Run Anabysis Clear Program

Qutput

Analyzis:

Logout

Figure 5.6: A screenshot of the web design colour palette

5.4 Components

5.4.1 Front End

The front end of the system consists of a login component and an analysis page component.
Any request to the server calls a user authenticate function which checks for a valid user
login token. If the token is not found or not valid the user is redirected to the login screen.

When the user successfully logs in a cookie is stored on their browser that expires in
one hour. The same token in then stored against their login ID so that the server knows
what to validate against when checking for user authentication.

The default behaviour after successful authentication is to redirect to the code analvser
page. This page as been designed as generic as possible so that with the menu on the left
you can easily switch between analysing tools using the same web elements, such as the
code editor/filename/parameters.

The user can then enter their desired code and information and click a simple Run
Analysis button that will send the analysis request to the server. When the web page
receives the return success or error response it then proceeds to fetch the corresponding
output files for the request.

The xml file is then parsed and the nodes that correspond to the success of failure of
the analysis is found and displayed to the user. The output section turns red to indicate
an error is found in the code or green if the analysis deems the code is correct.

The user can then step through the code lines that it returns (for the skink analyser)

38 Chapter 5. Discussion

to see the steps it took through the program.
The user can then modify their code/ clear it and run another analysis.

5.4.2 Back End

The back end of the system acts as a typical php web server that handles web requests
to it. Every web request that is sent to it is authenticated to ensure the user has valid
access to the system.

Then depending on the request that is send it will either redirect to the login page or
the program analyser page. The program analyser page then can send an AJAX request
to the server that bundles the code and relevant data from the interface and gives it to
the analyser function. This function generated a c file from the data and passes that to
the Skink system. The Skink system outputs a graphml file which I have modified to
output to .xml instead, and a 1l file. The function then sends a response to the web page
with the unique id of the files so that the web page can then access those files, parse and
display relevant information to the user.

5.5 UML Diagrams

This subsection contains two wml diagrams to further help convey the designs of the
system.

5.5.1 Behavioural UML Diagrams

The activity diagrams detail the two main activity processes the server completes cur-
rently.

Activity Diagrams

Use Case Diagram

This use case diagram 5.9 details the current basic usage that users can have of the system.
This can be expanded upon after the end of the project in future work.

5.5 UML Diagrams 39

Receive
Page Request

[Validate Login)
l
ﬁ
(Valid) (Invalid)—; (Login Page)

A

CRedirec’(to page)

Figure 5.7: Login Activity Diagram

40

Chapter 5. Discussion

*,

P Receive N
SkKink Reguest jl

Walidate Login an?“-l

Data
s

l

Create C File \l
o

[§)

()

-
B,
Pass File to Skink |

%
%

w

o .
Eeturn Unique file 1D
o

Figure 5.8: Skink Activity Diagram

5.5 UML Diagrams

41

A0

Privileged
User

Add Users

Delete Users

00090

Figure 5.9: The use case diagram of the system

42

Chapter 5. Discussion

Chapter 6

Conclusion

In conclusion the designed and developed system is at a good, stable point that achieves
the goals that were set out in this project. We are able to allow a user that only has
access to a browser, validate their login, run analysis on their code, return and extract
meaningful data from the output of the skink analyser without having the user install any
program or have an understanding of the underlying system.

This project is important because it takes the field of software verification that is
usually so niche and difficult for the average developer to access and makes it readily and
easily available through a popular medium. This kind of system allows the spread of the
field to more and more people which can in turn directly affect the funding and progress
in development of the software verification systems.

43

44

Chapter 6. Conclusion

Chapter 7
Future Work

In this section [will detail potential future work that can be implemented onto the current
system.

7.1 Analyser Analytics

With the setup of the MySQL database it would be easy to add a table to log the analysis
requests that are sent to the server. With added functionality we can determine the
type of program sent, the analysis result, the time taken and other metrics to help the
developers of the program analysis tool see and understand potential problems and issues
with their system.

7.2 Code Syntax Checking

Currently there is no syntax checking in the online code editor to warn the user of syntax
errors in their code. So the user will send their code for analysis and get an error result
that does not indicate a bug but rather that their code is not correctly formatted. This
was not in the scope of the project but it is a nice tool to have and its implementation
may be trivial if there is an external javascript library that has this functionality.

7.3 Adding per user Code sample saving

If a user wants to test the analysis system using a complex piece of program code, currently
they would need to copy and paste that code into the editor every time they start a new
session with the interface. This can be implemented using per user directory storage or
direct database text storage.

Chapter 8

Abbreviations

AJAX Asynchronous Javascript and XML

CSS Cascading StyleSheet

HTML Hyper Text Transfer Protocol

IDE Integrated Development Environment

LAMP Linux Apache MySql PHP

LLVM-IR LLVM - Intermediate Representation (LLVM is not an acronym)
PHP PHP: Hypertext Preprocessor

SMT Satisfiability Module Theories

SAT Boolean Satisfiability Problem

47

48

Chapter 8. Abbreviations

Appendix A

Project Plan

A.1 Project Gantt Chart

- _

v TaskHame + Duatio St
WebInterface Project 63days Mon 3LT/AT wed HIL/1T
D4 MeebogwithSopendsor G3diys NonUUTT Wed 11/17
314 Rackground Reseanch days Mon 34/0T/17 Thul7/ef17
44 Requirements Anaksis Tdes Sen6f8/17 Mo 14/0817
54 preliminary System design Tdaps SenffDg/17 Menl4ftgf17
[T — Sdas Wed16/08/17 Toe2afa7
{ instal required components Adas Wed 23/08/17 Mon 2810817
4 Test Sewer Web capability May TeeBiBiT Tuelfia/t?

0 4 Design ital TML a0 (55

WSty FAYOT Fgy

Develop avascriptfanctionality 235035 Wed 16/08/17 Men 181017

0 # Develop User feedback prototype 25 days

SR LHARE

Wed 20/08/17 Tue 4/10/17

2 Develophitil rontendtobacke Zdays Th3AH'T7 Thu2sfigf17

Developmentef PP sipts Qs St G SABIT
{0 Test Sinkinstallation S P87 Tuesfosft?
3 4 Developfile output format ddes ThodLIOBSLT TueS/03/17
5 futherDevelop Ajaxspstem Mdays ThoSUOYT Tue3f0f17
i Wiite Draft Thesis. ey SatdMf7 Sun3fosfiT
1 |¢ Comphetethesis roject Wedfii7

Figure A.1: Gantt Chart of expected Project Timeline

49

50

Chapter A. Project Plan

Appendix B

Project Code

B.1 HTML

1 <head>
2 <base href="<7php echo base_url(); 7>" />
3 <meta name="viewport" content="width=device-width >
4 <meta charset="utf-8"/>
5 <title>ENGG411 - C File Analysis</title>
6
7 <!-- Latest compiled and minified C8S8 -->
8 <link rel="stylesheet" href="https:// cotstrapcdn
bootstrap/3.3 :s/bootstra |
9 integrity
shar RAkycuHAHI +
P crossorigin=
10 <link href I gleapis
subset=latin, latin-ext' rel='stylesheet
11
12 <link rel = "sty ' type = "te css'
13 <link rel = "sty type = "te C
>
14 </head>
15
16 <body>
17 <div class="container">
18 <div class="h er">
19 <h1>ENGG411 - Program Verification Web Interface Project</hl>
20 <h2>Language: C</h2>
21
22 <div class="morel Btn" data-toggle='"col se "
data-target="#extral ; " aria-expanded="false
aria-controls=" >
23 Information
24 </div>
25
26 <div class="collapse" id="extralnformation">

52 Chapter B. Project Code
27 <div class="morelInfoContent">
28 <p>The goal of this project is to develop an access based
interface for programing language analysers.</p>
29 <p>The main analyser used in the backend system of this
interface is Skink, which is developed by Macquarie
University.</p>
30 </div>
31 </div>
32
33 <div class="guidebtn inactiveBtn" data-toggle="coll
data-target="#guid:s C aria-expanded=
aria-controls="coll
34 Guide
35 </div>
36
37 <div class="collapse" id="guideInformation">
38 <div class="morelInfoCor
39 <p>Site Usage:</p>
40 <div class="guideList">
41 <div><div class="listMarker"></div>Ensure a file name is
entered</div>
42 <div style="display: none;"><div class="listMarker"></div>
Include input paramaters (if any)</div>
43 <div><div class="listMarker"></div>Develop or Paste your
code snippet into the text editor</div>
RE! <div><div class="listlMarker"></div>Press Run Analysis and
follow prompts</div>
45 <div><div class="listMarker"></div>View results</div>
46 <div style="display: none;"><div class="listMarker"></div>
Step through program trace (optiomal)</div>
47 </div>
48 </div>
49 </div>
50
51 </div>
52
53
54 <div class="code-analy:
5H <div class="code] input
56 <span classg="input-group-addon"
Name
57 <input id="file =" type="te class="form-control"
placeholder= Prog I aria-describedby="
basic-addonl">
58 </div>
59 <div class="code-analyser-info input-group" style="display:
none">
G0 Input
Parameters
61 <input id="paramet ' " clasg="form-control"

ers" type="t
t 1

placeholder="eg:

r nple" aria-describedby=
"basic-addonl">

B.1 HTML 53

62 </div>

63 <div class="f -group">

64 <label for="codeSelect" id="codeSelectLabel">Select Program or

write your own</label>

65 <gselect class="form-control" id="codeSelect">

G6 <option value="0O">array-hard_true-reach-call.c</option>

67 <option value="1">array-hard_true-unreach-call.c</option>

68 <option value="2">array-sequence_true-unreach-call.c</option>

G9 <option value="3">count-up-down_false-unreach-call.c</option>

70 <option value="4">count-up-down_true-unreach-call.c</option>

71 <option value="5">eca-like_false-unreach-call.c</option>

72 <option value="6">»simple-if_true-unreach-call.c</option>

73 </select>

74 </div>

75 </div>

76

77

78

79

80 <div class="row 1trol-box">

81 <div class="code-a col-md-12">

82 <div class="¢ t s">

83 <button id= class="btn
btn-default imary">Run Analysis</
button>

84 <button id=" ir-button" class="btn
btn-default btn-info">Clear Program</
button>

85 <a class="dl-graphml-buttor »r' target="
blank"><button class= rrap button
btn btn-default btn-success" disabled>
View Graphml</button>

86 <a class="dl-1ll-button-anchor" target="
_bl '><button class=] button btn
btn-default btn-success" disabled>View
LL</button>

87 <a class="dl-graphml anchor" download
><button class="dl aphml-button btn
btn-default btn 1 ss" disabled>
Download Graphml</button>

88
<button class="dl] -on btn
btn-default btn-success" disabled>
Download LL</button>

89 </div>

90 <div class="method llapse">

91 <button id="step clags="btn
btn-default btr
button>

92 </div>

93 </div>

94 </div>

54 Chapter B. Project Code

95
96 <div class="outp tn" data-target="#outputCollapse"
aria-expanded="false" aria-controls="">
97 Output
98 </div>
99
100 <div class="collapse" id="outputCollapse">
101 <div class="ou 1
102 <p id="analy itput" class="passed">Analysis: Passed</
span></p>
103 <p class="displaylone" id="errorLineP">Error Block Line: </p>
104 <p class=" playNone" id="errorStep">Step: <span id="
.Ll..(.,lLFll(_“)(/SpED.)(/p)
105 </div>
106 </div>
107
108 tput" style="ba color: black; width:
100%; min-height:40px; </p>
109
110 <div class="code ">
111 <div class=
112 <div class="col-12">
113 <div id="editor"></div>
114 </div>
115 </div>
116 </div>
117
118 <div class="left-side
119 <div>
120 <div class="left-s selector-list">
121 <p class="languageSelector active selected">C</p
>
122 <p class="languageSelector disabled"
data-toggle="tooltip" title="lot Yet
1;:.[_:1c:--c-;m--\d">c++</p>
123 <p class="languageSelector disabled"
data-toggle="tooltip" title="lo
Implemented">C#</p>
124 <p class="languageSelector disa !
data-toggle="tooltip" title= Yet
]"}"te"r—‘.:ﬁ;e-:i“)]&\ra*:/P}
125 <p geSelector disab
" title=
emente J")Scala</p>
126 <div class="logout"><p>Logout</p></div>
127 </div>
128 </div>
129 </div>
130 </div>
131

132

B.2 CSS 55

avw

yne "><div id="lo
>

133 <div id="loadScreen" class="display
Running Analysis...</p>»</div></div

yinner "><p>

134
135
136 <!-- jQuery -->
137 <script src="I

s://ajax.googleapis.com/ajax/libs/jquery/3.2.1/
></script>

138

139 <!-- Latest compiled and minified JavaScript -->

140 <script src="! '/maxcdn.bootstrapcdn.com/bootstrap/3.3.7/)
bootstrap.min. js

141 integrity

sha384-Tc5IQib027qvy {jOMaLkfuW mG(

142 crossorigin="anonymous"></script>

143

144 <!-- ACE Code Editor-->

145 <script src="https://cdn.jsdelivr.net/ace/1.2.6/min/ace.js"></script
>

146

147 <script type = 'text/javascript
scripts.js "></script>
148 </body>

B.2 CSS

src = "<?php echo base_url(); ?>js/

html {
background-color: #141414;

]

1

2

3

4

5 body {
6 padding: 0;
-

8

max-width: 1170px;

9 margin: 0 auto;

10 font-size: 20px;

11 color: white;

12 font-family: Lato;

13 }

14

15 /#-—-------- Code Analyser Interface ---------- */
16

17 .container {

18 width: 100%;

19 background-color: #141414;
20 max-width: 100%;

21 padding: 0;

22 margin-top: 30px;

23 padding-left: 70px;

24 padding-right: 70px;
25 height: 100%;

56 Chapter B. Project Code

26}

27

28 .col-1lg-1, .col-1g-10, .col-1lg-11, .col-1lg-12, .col-1lg-2, .col-1lg-3,
.col-1g-4, .col-1lg-5, .col-1lg-6, .col-1lg-7, .col-1lg-8, .col-1lg-9
, .col-md-1, .col-md-10, .col-md-11, .col-md-12, .col-md-2,
col-md-3, .col-md-4, .col-md-5, .col-md-6, .col-md-7, .col-md-8,
.col-md-9, .col-sm-1, .col-sm-10, .col-sm-11, .col-sm-12,
col-sm-2, .col-sm-3, .col-sm-4, .col-sm-5, .col-sm-6, .col-sm-7,
.col-sm-8, .col-sm-9, .col-xs-1, .col-xs-10, .col-xs-11,
col-xs-12, .col-xs-2, .col-xs-3, .col-xs-4, .col-xs-5, .col-xs-6,
.col-xs-7, .col-xs-8, .col-xs-9 {

29 padding: 0;

30 %

31

32 .row {

33 margin: 0;

34 }

35

36 .header {

37 margin-top: 20px;

38 3

39

40 .header > h1l {

41 margin-bottom: 10px;

42 font-size: 28px;

43 3

1l

45 .header > h2 {

46 margin-bottom: 20px;

47 font-size: 24px;

48 %

49 .moreInfobtn, .guidebtn {

50 border 0

5l background-color: #333333;

52 cursor: pointer;

53 padding: 10px;

54 margin-bottom: 10px;

55 transition: all 0.3s;

56}

57

58 .outputCollapsebtn {

59 border 0;

GO background-color: #333333;

61 padding: 10px;

62 margin-bottom: 10px;

63 transition: all 0.3s;

64 3

65

66 .form-group {

67 border-top: 1px solid white;

68 %}

69

57

B.2 CSS

70 #codeSelectLabel {

71 margin-bottom: 10px;

T2 margin-top: 10px;

73}

T4

75 .outputCollapsebtn {

76 margin-bottom: O0;

77 margin-top: 10px;

8)

79

80 .inactiveBtn:hover A{

81 background-color: #222222;
82 1}

83

84 .morelnfoContent {

85 margin-bottom: 15px;

86 padding-left: 10px;

87 }

88

89 .languageSelector {

90 color: white;

91 }

92

93 .guideList {

94 margin-top: 10px;

95 }

96

97 .guidelist > div {

98 padding-left: 20px;

99 margin-top: 5px;

100 ¥

101

102 .listMarker {

103 display: inline-block;
104 margin-right: 10px;

105 width: 10px;

106 height: 10px;

107 background-color: transparent;
108 border-top: 2px solid #00b432;
109 border-right: 2px solid #00b432;
110 transform: rotate(45deg);
111 %

112

113 .control-box {

114 margin-top: 20px;

115 %

116

117 .code-analyser-info {

118 font-size: 24px;

119 vertical-align: center;
120 margin-bottom: 10px;
121 3

58 Chapter B. Project Code
122

123 .code-analyser-div {

124 width: 100%;

125 background-color: transparent;
126 margin-top: 20px;

127 border-top: 1px solid white;
128 padding-top: 10px;

129 %

130

131 .displaylNone {

132 display: none;

133 %

134

135 .control-buttons {

136

137 %}

138

139 .method-buttons {

140 border-top: 1px solid white;
141 padding-top: 10px;

142 margin-top: 10px;

143 %

144

145 .btn {

146 margin-right: 6px;

147 padding: 5px 15px;

148 min-width: 100px;

149 %}

150

151 .btn-primary {

152 background-color: #0000ff;
153 border-color: #0000ff;

154 %}

155

156 .btn-info {

157 background-color: #0088b1;
158 border-color: #0088b1;

159 }

160

161 .btn-warning {

162 background-color: #b96d00;
163 border-color: #b96d00;

164 %

165

166 .btn-danger {

167 background-color: #5edal0;
168 border-color: #5eda00;

169 %

170

171 .upload {

172 color: #ffffff;

173 margin-bottom: 10px;

B.2 CSS

59

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

¥

.code-analyser-buttons {

padding-top: 10px;

padding-bottom: 10px;
border-top: 1px sclid white;

border-bottom:

}

.code-analyser-text-box {

¥

margin-top: 20px;

#editor {

max-width: 100%:
width: 100%;
min-width: 100%;
min-height: 450px;
max-height: 770px;
font-size: 16px;

margin-bottom: 50px;

)

.output {

background-color: #4cdcdc;
border-radius: 0 0 5px 5px;
padding: 16px;
padding-left: 15px;
padding-right: 15px;
font-size: 16px;
line-height: 150%;

margin-bottom: 10px;

¥

.passed A

¥

background-color: #00b431;

.unknown {

¥

background-color: #b48d3d;

.failed {

}

background-color: #b44851;

.output > p {
padding: 2px;

.output > p > span {

1px solid white;

60 Chapter B. Project Code
226 float: right;

227 %}

228

229 .output p:nth-child(odd){

230 background-color: #616161;

231)

232

233 /+* --- Buttons --- %/

234 #upload-button {

235 margin-right: 20px;

236}

237

238 /# ----- Left side selector ----- */
239 .left-side-selector {

240 position: fixed;

241 left: 0;

242 top: 0;

243 width: 70px;

244 height: 100vh;

245 background-color: #0£0700;

246 padding-top: 200px;

247 3}

248

249 .left-side-selector-list {

250 position: relative;

251 width: 100%;

252 height: auto;

253 list-style: none;

254 text-decoration: none;

255)

256

257 .left-side-selector-list p {

258 height: 50px;

259 font-size: 20px;

260 line-height: 50px;

261 border-bottom: 1px solid white;
262 border-top: 1px solid white;
263 z-index: 2;

264 text-align: center;

265 vertical-align: middle;

266 background-color: transparent;
267 transition: background-color 0.3s;
268}

269

270 .active {

271 cursor: pointer;

272 color: white !important;

273)

274

275 .success {

276
277)}

B.2 CSS

61

278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

.unknown {

¥

.error A
}

.left-side-selector-list .active:hover
background-color: #76c960;
}

.disabled {
cursor: default;
color: #313131;
transition: all 0.3s;

¥

.disabled:hover {
background-color: #444444;
}

.left-side-selector-list p.selected {
background-color: #00b431;
3

/* top header */
.fixed-top-header {

width: 500px;

height: 50px;

position: fixed;

left: 50%;

transform: translateX(-50%);

top: -28px;

background-color: #890000;

cursor: pointer;

transition: all 0.3s;

color: white;

border-radius: Opx Opx 5px 5px;
}

.top-zero {
top: 0;
}

.logout A
cursor: pointer;
transition: all 0.3s;

{

62

Chapter B. Project Code

330 .logout:hover f{

331 background-color: red;
332}

333

334 .logout > p {

335 text-align: center;
336 font-size: 18px;

337 0}

338

339 .drop-down {

340 transition: all 0.3s;
341 3}

342

343 .drop-down:hover {

344 background-color: red;
345 3

346

347 .drop-down > p {

348 text-align: center;
349 vertical-align: middle;
350 %

351

352 #loadScreen {

353 position: fixed;

354 top: 0;

355 left: 0O;

356 width: 100%;

357 height: 100vh;

358 background-color: rgba(0,0,0,0.85);
309 z-index: 10000;

360 3

361

362 #loadSpinner {

363 position: fixed;

364 top: 50%;

365 left: 50%;

366 transform: translate(-50%,-50%);
367 color: white;

368 font-size: 22px;

369 3}

B.3 JavaScript

1 wvar currentLine = 0;

2 wvar functions = [];

3

4 var outputReady = false;

=

)

6 var templateCode = [

T "extern void VERIFIER _error ()

\n" +

B.3 JavaSeript

63

37
38
39
40
41
42
43
RE
45
46

47
48
49
50
51
52
53
54
55
56

"void __VERIFIER_assert(int cond) {\n" +
" if (!(cond)) {\n" +
E

" ERROR: _ _VERIFIER_error () ;\n" +
! F\n" +

it return;\n" +

“}\n" +

”\11” +

"int main(void) {\n" +
" int A[10];\n" +
" int i;\n" +

"\n" +
" for (i = 0; i < 5; i++) {\n" +
" A[il = i;\n" +
" F\n" +
"o+
I __VERIFIER_assert (A[4] == 4);\n" +
II}H
"extern void __VERIFIER_error() __attribute__ ((
"o+

oid) {\a" +
J\n" o+

"int main (v
" int A[10]
" int i;\n"+

" for (i = 0; i < 5; i++) {\n"+

" A[i]l = i;\n"+

" Fin"+

" if (A[4] '= 4) _ _VERIFIER_error();\n"+

I|}||

"extern void __VERIFIER_error () __attribute__ ((
"+

"int main(void) {\n" +
" int A[10];\n" +
" int i;\n"+

" for (i = 0; i < 5; i++) {\n"+

U A[i] = i;\n"+

" F\n"+

" if (A[4] != 4) __VERIFIER_error () ;\n"+

IIJII

"extern void __VERIFIER_ error() __attribute__ ((
+

"unsigned int __VERIFIER_nondet_uint ();\n"+

"int main()\n"+

"{\n"+

" unsigned int n = __VERIFIER_nondet_uint ();\n"+

" unsigned int x=n, y=0;\n"+
" while(x>0)\n"+

"o {\n"+

" x--;\n"+

w y++;\n"+

n },\11|I+

__noreturn__)); \n

__noreturn__J)); \n

Y .\ "

__noreturn__));\n

64 Chapter B. Project Code

a7 " if (y == n) __VERIFIER_error();\n"+

58 "

59,

G0 "extern void __VERIFIER_error() __attribute__ ({__noreturn__)});\n"
+

61 "unsigned int __VERIFIER_nondet_uint ();\n"+

62 "int main()\n"+

63 "{\n"+

64 " unsigned int n = __VERIFIER_nondet_uint () ;\n"+

65 " unsigned int x = n, ¥ = 0;\n"+

66 " while (x>0)\n"+

67 " {\n"+

68 o x-=;\n"+

69 " y++;\n"+

70 " I\n"+

| " if (y != n) __VERIFIER_error();\n"+

T2 "

3,

T4 "extern void __VERIFIER_error() __attribute__ ((__noreturn__));:\n"
+

75 "extern int __VERIFIER_nondet_int () ;\n"+

76 "int main()\n"+

7 "{\n"+

78 " int pl = __VERIFIER_nondet_int(); // condition variable\n"+

79 " int 1lkil; // lock wvariable\n"+

80 " int cond;\n"+

81 " while (1) {\n"+

82 " cond = __VERIFIER_nondet_int () ;\n"+

83 " if (cond == 0) {\n"+

84 " goto out;\n"+

85 " } else {}\n"+

86 ! lk1 = 0; // initially lock is open\n"+

87 ! if (p1 !'= 0) {\n"+

88 " if (1k1 '= 1) goto ERROR; // assertion failureln"+

89 " 1kl = 0;\n"+

90 " } else {}\n"+

91 " F\n"+

92 " out:\n"+

93 " return 0;\n"+

94 " ERROR: __VERIFIER_error () ;\n"+

95 o return 0;\n"+

96 no

97

98 "extern void __VERIFIER_error() __attribute__ ((__noreturn__));\n"
+

99

100 "int __VERIFIER_nondet_int () ;\n"+

101

102 "int main () \n"+

103 "{\n"+

104 " int i = __VERIFIER_nondet_int ()}, j = __VERIFIER_nondet_int () ;\n"

+

B.3 JavaScript

65

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

"OAf (i > j)\n"+
(i > j) VERIFIER_error () ;\n"+

var currentFunc = 0;

var editer = ace.edit('edi
var languageSpan = $("#
var methodButtons = $(".me

var outputCollapsible = $('#out
var outputSection = $('div.outp
var codeChanged = true;

$(document).ready (function () {

initialiseEditor ();
methodButtons.collapse("hide");
$("#file-name").val($(this).find(":selected").text());

$(' [data-to "tooltip"]').teoltip();

$(" . dr own").,on('click', functioen() {
$(".fixed header").toggleClass("top-zero");

b

$(".logout").on('click', function()} A
var url = 'Ltip:ffftuﬁ.exeb.ﬁcﬁtu:ew.pkprug:u_ﬂcutrc..erﬁ
$.ajax({

type: "post",
url: url,
dataType: 'json',
success:function (response, status) {
if (response == true) {
window.location.href = 'http://vindleweb.co/';
} else {
//console.log("invalid") ;
}
},
error: function(status) {
window.location.href = 'http://vindleweb.co/"';
T,
1)
i3I

$('.left-side-selector-1lis
if($(this).hasClass('disablec
return;

lick', function() {

X

ogout

66 Chapter B. Project Code

156 let selectedMode = $('.selected');

157 selectedMode.removeClass('selected');

158

159 $('html, body').animate ({scrollTop: 0}, 300);

160 let selected = $(this);

161 selected.addClass ('selected');

162 setSelectedLanguage (selected);

163 3

164

165 $('div.moreInfobtn').on('click', function() {

166 $(this).toggleClass(' inactiveBtn');

167 $(this).toggleClass('passed');

168)

169

170 $('div.guidebtn').on{'click', function() {

171 $(this) .toggleClass(inac

172 $(this) .toggleClass('p

173 3

174

175 /] e e e e e -

176 // Editor Functiomality -----------------—--—--——-——-———-—-

L B e

178

179 $("#run-button").on('click', function() {

180 var fname = $("#file-name").val().replace(/["a-2zA-20-9]/ig, "");

181 if (fname == """} {

182 alert("No filename, set filename and try again");

183 return;

184 ¥

185

186 if(codeChanged) {

187 currentLine = 0;

188 functions = [];

189 $("#loadScreen") . .removeClass ("displayNone");

190 codeChanged = false;

191 $(this).prop('disabled', true);

192 outputSection.removeClass("failed");

193 outputSection.removeClass ("passed");

194 hideOutputButtons ();

195 $(".dl-graphml-button").prop('disabled', true);

196 $(".dl-11-button").prop{'disabled', true);

197 $("#c button").prop('d vyled', true);

198 $("#cod ect").prop('disabled', true);

199 $('html, body').animate ({scrollTop: $(document).height ()},
300) ;

200

201 var fname = $("#file-name").val().replace(/[~a-zA-Z0-9]/ig, ""
)

202 var parameters = $('#parameters').val();

203 var pCode = editor.getValue();

204 //console.log(pCode);

205 var url = "http://vindleweb.co/index.php/Login_Controller/

B.3 JavaScript 67
parseCode";

206 var graphmlFileUrl = " . xml";

207 var 1lFileUrl = ".11";

208

209 codeChanged = true;

210

211 $.ajax ({

212 type: "post",

213 url: url,

214 data: {filename: fname, code: pCode, params: parameters},

215 dataType: ' json',

216 success:function(response, status) {

217 //console.log("Error");

218 //console.log(status);

219 //console.log(response.responseText) ;

220 var filelLoc = response.responseText;

221 //console.log(fileLoc);

222 var graphmlFile = "/cScripts/" + fileLoc + "-" + fname +".
c" + graphmlFileUrl;

223 var 11File = "/cScripts/" + fileLoc + "-" + fname +
11FileUrl;

224 var nodeXPath = 1

225 var edgeXPath = ;

226

227 $(".dl-graphml-button").prop('disabled', false);

228 $(".dl-11-button") .prop('disabled', false);

229 $("#clear-button").prop(' bled', false):

230 $("#codeSels "Y.prop('d ', false);

231 $(".dl-graphml-button-a or").attr("href","http://
vindl b.co"+graphmlFile);

232 $(".dl-11-button-anchor").attr("href","http://vindleweb.co
"+11File);

233

234

235 var xhttp = new XMLHttpRequest ();

236 xhttp.onreadystatechange = function() {

237 if (this.readyState == 4 && this.status == 200) {

238 //console.log(xhttp.responseXML) ;

239 var xmlresponse = xhttp.responseXML;

240 //var nodes = $(xmlresponse).find("node");

241 //console.log(nodes);

242 /*

243 var text = "";

244 for (var i = 0, len = nodes.length; i < len; i++) {

245 text += nodes[i].textContent + "
";

246 }

247 $("#xmlOutput") . html (text);

248 console.log("\n");

249 */

250 showResult (xmlresponse, nodeXPath);

251 }

252 };

68 Chapter B. Project Code

253 //console.log(graphmlFile);

254 xhttp.open("GET", "http://vindleweb.co"+graphmlFile, true)

255 xhttp.send () ;

256

257 $("#run-button").prop('disabled', false);

258 $("#1loadScreen").addClass{("displayNone");

259 },

260 error: function(response, status) {

261 //console.log("Error");

262 //console.log(status);

263 //console.log(response.responseText);

264 var fileLoc = response.responseText;

265 //console.log(fileLoc);

266 var graphmlFile = "/cScripts/" + fileloc + "-" + fname +".
c" + graphmlFileUrl;

267 var 1llFile = "/cScripts/" + filelLoc + "-" + fname +
11FileUrl;

268 var nodeXPath = "//node";

269 var edgeXPath = "//edge';

270

271 $(".dl-graphml-button").prop('disabled', false);

272 $(".d1-11-button") .prop('disabled', false);

273 $("#clear-button").prop('disabled', false);

274 $("#codeSel ") .prop (' led', false);

275 $(".dl-graphml-button-anchor").attr("href","http://
vindleweb "+graphmlFile);

276 $(".d1l-11-bu n-anchor").attr{("href","http: //vindleweb.co
"+11File);

277

278

279 var xhttp = new XMLHttpRequest();

280 xhttp.onreadystatechange = function() {

281 if (this.readyState == 4 && this.status == 200) {

282 //console.log (xhttp.responseXML);

283 var xmlresponse = xhttp.responseXML;

284 //var nodes = $(xmlresponse).find("node");

285 //console.log (nodes) ;

286 /*

287 var text = "";

288 for (var i = 0, len = nodes.length; i < len; i++) {

289 text += nodes[i].textContent + "
";

290 }

291 $("#xmlOutput") . html (text);

292 console.log("\n");

293 */

204 showResult (xmlresponse, nodeXPath);

295 3}

296 };

297 //conscle.log(graphmlFile);

298 xhttp.open("GET", "http://vindleweb.co"+graphmlFile, true)

i1

B.3 JavaScript 69

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318

319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338

339
340
341
342
343

344

xhttp.send ();

$("#run
$("#1o
},
H;

Uutton“).prop('ﬁiﬁnnﬁed', false);
creen").addClass("displayNone");

¥

s

function showResult(xml, path) {

var txt = ;

if (xml.evaluate) {
//console.log("in show result");
//console.log(xml) ;
//console.log(path);
//console.log("\nevaluating\n");

var nodes = xml.evaluate("+", xml, null, XPathResult.ANY_TYPE,

null);
var result = nodes.iterateNext();
//Find pass/fail
var nodes = $(result).find("node");

//console.log(nodes);

var passed = $(nodes).eq(nodes.length-1).prop('outerHTML"');
//console.log(passed);

passed = $(passed).find("datalkey='vieolation']").html();
//console.log(passed);

if (passed==="true")

{

// Get Failure Edge/s
functions = [1;

var edges = $(result).find("edge");
var getSteps = $(result).find("edge");
console.log(edges);

for(var i = 0; i < edges.length; i++)
{
var tempEdge = $(edges).eq(i).prop(' outerHTML');
var tempEdgeline = $(tempEdge).find("datalkey="'startline']"),
html () ;

console.log(tempEdge) ;
console.log(tempEdgeLline);
functions.push([tempEdgeline, tempEdgeline, 1]);
//editor.insert ({row: tempEdgeLine, column:

editor.session.getline(row).length + 1}, "(Step " +
functions [currentFunc] [0] + ")");
var customPos = { row: tempEdgeline-1, column:

editor.session.getLine (tempEdgeLine-1).length + 1}
editor.session.insert (customPos , "

70 Chapter B. Project Code

+AH1) +)

345 }

346 console.log(functions);

347 //console.log (edges);

348 var errorLine = $(edges).eq(edges.length-1).prop('outerHTML");
349 //console.log (errorLine);

350 errorLine = $(errorLine).find("data[key="'startline']").html{();
351 //console.log(errorLine) ;

352 if (errorLine === "" || errorLine == null) {

353 errorLine = "Error line not found, check Graphml";
354 if (1$("#errorStep").hasClass ("di None"}) {
355 $("#errorStep").addClass("di "y

356 }

357 }

358 $("#errorLineS").html (errorLine);

359 editor.gotoline(errorLine);

360 } else {

361 passed = "false";

362 }

363 }

364 showOutputButtons (passed) ;

365 $("#xml0utput") . .html(passed);

366 //console.log (passed);

367 }

368

369 function showOutputButtons (pass) {

370 if(pass === "false") {

371 outputSection.removeClass("failed");

372 methodButtons.collapse ("hide");

373 outputCollapsible.collapse("show");

374 outputSection.addClass ("passed”);

375 $("#analysisOutput span").html ("Passed");

376 if (1$("#errorLineP").hasClass("displayNone

3T {

378 $("#errorLineP").addClass("displayNone");

379 }

380 if('$("#errorStep").hasClass ("d: {
381 $("#erro

382 }

383 } else {

384 outputSection.removeClass (" 1) ;

385 methodButtons.collapse ("sh

386 outputCollapsible.collapse("show");

387 outputSection.addClass("failed");

388 $("#analysisOutput span").html("F

389 $("#e rlLineP") . removeClass ("d:

390 if (functions.length > 1) {

391 $("#errorSt ep ").removeClass (" displayNone Y
392 $("#currentFunc").html (currentFunc+1);

393 }

394 }

395 }

B.3 JavaScript 71

396

397

398 function hideOutputButtons() {

399 methodButtons.collapse("hide");

400 outputCollapsible.collapse("hide");

401 outputSection.removeClass ("passed”);

402 }

403

404 $('#clear-button').on{'click', function () {
405 $(".dl-graphml-button").prop('disabled', true);
406 $(".dl-11-button").prop('disabled', true);

407 editor.setValue("");

408 codeChanged = true;

409 if (codeChanged) A

410 //console.log("in function");

411 methodButtons.collapse ("hide");

412 outputCollapsible.collapse("hide");

113 outputSection.removeClass ("¢ sed");

414 outputSection.removeClass ("f ed");

415 }

416 };

417

418 $("#step-function').on('click', function () {
419 stepFunction();

420 1)

421

422 [e e e e
423 f/ ====mmmecmccccccmc e c e s e s e e c s e e cm e e m e —m— e
424 /] === mm e m e — -
425

426

427 $('#codeSelect').change (function () {

428 var value = $(this).val().replace(".c", "");
429 setEditorCode (value) ;

430 $("#file-name").val($(this) .find(":selected").text());
431 methodButtons.collapse("hide");

432 outputSection.removeClass("failed");

433 outputSection.removeClass ("passed”);

434 hideOutputButtons () ;

435 b

436 1) ;

437

438 function setSelectedLanguage (selected)
439 $(languageSpan) .html (selected.html());

440}

441

442 function initialiseEditor() {

443 editor.setTheme("ace/theme/clouds_midnight");

444 editor.getSession().setUseWrapMode (true);

445 editor.getSession().setMode("ace/mode/c_cpp");
446 editor.setHighlightActiveline (true);

447 editor.setValue(templateCode [0]);

72 Chapter B. Project Code

448 editor.clearSelection();

449 }

450

451 function setEditorCode(value) {

452 editor.setValue(templateCode [valuel);
453 %

454

455 function clearContents(element) {

456 element.value = "hue';

457 '}

458

459 function stepFunction() {

460 if (currentFunc < functions.length) {

461 editor.gotolLine (functions [currentFunc] [0]);
462 $("#currentFunc"). . html{currentFunc+1);
463 currentFunc++;

464 } else {

465 currentFunc = 0;

466 editor.gotoline (functions [currentFunc] [0]);
467 $("#currentFunc").html{(currentFunc+1);
468 currentFunc++;

469 }

470 }

B.4 PHP

The php code can be found and read on the server when the system is handed over to
Macquarie University as it has security requirements.

Appendix C

Meeting Attendance Form

73

74

Chapter C. Meeting Attendance Form

Consultation Meetings Attendance Form

Week Date Comments Student’s

— (if applicable) Signature M
¢ | sdgn| " S P
7 | o/ gtz | mectng L s <
3 | |t
(| 2y, | Plesd dewetmen

me&-‘f"-"q
fgre | TR R o

Meehny- Updedd o
747 __...f.r".&‘/[%’”?““

5

o | 1Y

7 W [T
g w §22% U/ldd&

YT | ol Mpdate

(o | 5/117 | Enmd Gpdele

[wefton7 | Pere o4 5

BT e A

S Evad Apd atC
(LR | ETig,
17 [etropz| ET L b

Ve

)

;s
¥l
N
;

Bibliography

[1] L. Williams, R. R. Kessler, W. Cunningham, and R. Jeffries, “Strengthening the case

for pair programming,” IEEE Software, vol. 17, pp. 19-25, Jul 2000.

[2] “Atomlinter - example of an code editor with linter support.” https://atomlinter.

3]

14]
[5]
(6]

7]

18]

[9]
[10]

(1]

(12]
[13]

github.io/.

S. Meclntosh, Y. Kamei, B. Adams, and A. E. Hassan, “The impact of code review
coverage and code review participation on software quality: A case study of the qt,
vtk, and itk projects,” in Proceedings of the 11th Working Conference on Mining
Software Repositories, MSR 2014, pp. 192-201, ACM, 2014.

D. D. J. Pearce, “Whiley web programming language.” http://whileylabs.com/.
A. Mgller and M. I. Schwartzbach, “Static program analysis,” 2012.

“Software valdation and verification - overview.” http://www.casterbrook.ca/steve/
2010/11 /the-difference-between-verification-and-validation /, Nov 2010.

F. Cassez, A. M. Sloane, M. Roberts, M. Pigram, P. Suvanpong, and P. G. de Aledo,
Skink: Static Analysis of Programs in LLVM Intermediate Representation, pp. 380-
384. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017.

“Skink functioning overview.” http://science.mq.edu.au/~fcassez/software-verif.
html, 2009.

“Clang - ¢ language frontend for llvi.” https://clang.llvm.org/.

“Scala - the java based functional programming language.” https://www.scala-lang.
org/.

“Kiama - scala library for language processing.” https://bitbucket.org/inkytonik/
kiama.

“Scala smt - scala library for parsing smt-1ib.” https://github.com /regh/scala-smtlib.

N. B. Leonardo de Moura, “Z3: An efficient smt solver.” https://nikolajbjorner.
github.io/slides/Z3_System.pdf, 2008.

76

BIBLIOGRAPHY

[14] “Cved - an open source smt solver library.” http://cved.cs.stanford.edu/web/.

[15] “Smt interpol - java based smt solver.” https://ultimate.informatik.uni-freiburg.de/

smtinterpol/.

	42600847 - Arvin Matvosian - ENGG411 Thesis
	by Arvin Matvosian

