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Abstract

Quantum mechanics has been demonstrated on many experimental platforms which include

super conducting cavities, trapped ions and atomic systems. However, each of these plat-

forms have attributes which make them suitable under certain conditions and applicable to

only specific tasks. By combining these quantum systems it is possible to create hybrids

which benefit from each of the individual advantages of the comprising subsystems. Such

combined systems are referred to as hybrid quantum systems and can be used to reach

regimes, observe behaviours and results which are otherwise impossible to achieve. In this

thesis two hybrid quantum systems are studied with the intentions of both creating a prac-

tical quantum system for applications in quantum technologies and creating macroscopic

quantum states for fundamental studies of quantum mechanics.

The first hybrid quantum system which is studied focuses on light-matter interactions

between spins and an optical resonator. Achieving strong light-matter interactions is one

of the focal points of modern quantum mechanics as such strengths not only allow for the

transportation of quantum information via photons but also for the generation of entangled

quantum states. These are traits that are intensively sought after in almost every field of

quantum science for both fundamental studies and the development of practical quantum

technologies. Fabry-Pérot resonators have been most commonly used to study light-matter

interactions due to their simplicity and compatibility with many experimental configurations.

Here, however, an alternative type of resonator is considered, otherwise referred to as a Whis-

pering Gallery resonator. Such hybrid resonators have more recently become popular due to

their potentially more favourable scalability, in comparison with Fabry-Pérot resonators. In

particular, this work focuses on the interaction between spins and the Whispering Gallery

Modes (WGMs) of a fused silica microsphere with the intention of achieving effective interac-

tions between distant spins. The spherical symmetry of the resonator is utilised to show that

such resonators are capable of supporting an ensemble of degenerate optical modes which

can result in a collective enhancement to the light-matter interaction strength. It is shown

that enhanced interaction strengths on the order of GHz can be achieved, allowing for strong

effective interactions to be attained between distant spins. These interaction strengths would
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x Abstract

allow for the construction of large arrays of coupled spherical resonators/spins which can be

used to create quantum networks, perform quantum simulations of many-body systems and

of course, as a platform for quantum computation.

The second hybrid system focuses on the creation of macroscopic quantum states which

are analogous to the Schrödinger cat state. The creation of such states is currently one of

the most attractive goals in quantum mechanics as they can resemble states which reside

at the borders of the classical and quantum worlds, allowing for the study of how quantum

states become classical. Despite current technological advances, the largest Schrödinger cat

states which have been observed to date still lie within atomic scales. With the intentions

of achieving quantum superpositions of macroscopic objects many researchers have directed

their attention to the field of optomechanics. Here interactions between light and mechanical

oscillators are exploited to concoct schemes in which quantum superpositions of the mechan-

ical oscillator’s position can be created. While the creation of cat states can be somewhat

guaranteed after entangling the position of the oscillator with a single photon or qubit, creat-

ing such states using larger systems requires measurement thus making the creation process

probabilistic. In this work a novel, completely deterministic method of macroscopic cat state

creation is proposed. Here cat states are created by exploiting properties in the optomechan-

ical Membrane In The Middle model where a mechanical oscillator, or membrane, is placed

within a Fabry-Pérot cavity. It is shown that by controlling the membrane’s opacity its

position can be driven to achieve large spatial displacements. This process is used to deter-

ministically grow the spatial extent of a cat state of the membrane’s position. It is found

that by using a Bose-Einstein condensate as a membrane high fidelity cat states with spatial

separations of up to ∼300 nm can be achieved. These cat states are significantly larger than

any which have been observed to date and are created in a completely deterministic manner.
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Chapter 1

Introduction

Quantum mechanics was originally developed to explain otherwise unexplainable phenomena

such as the black body spectrum, wave particle duality and the nature of atomic transitions.

However, with it came completely bizarre and unavoidable theoretical predictions. Until

more recent decades these predictions were somewhat ignored due to their completely counter

intuitive nature. These intrinsic properties of the theory are now the focal point of quantum

science. Originally thought to be inapplicable to any practical applications, such quantum

mechanical effects are now intensively sought after to develop the technologies of the future.

The seemingly unnatural phenomena predicted by quantum theory include quantum su-

perposition, entanglement, tunnelling and teleportation. These phenomena form the basis

for the potential improvements quantum technology may be capable of achieving over cur-

rent technologies. At present, practical implementation of these phenomena has yet to be

achieved, however, over the past few decades remarkable steps have been made towards the

creation, observation and implementation of such quantum mechanical effects. Theory has

also been established underlying many aspects of quantum science, from proposals regarding

the creation and observation of such effects to algorithms designed specifically for quantum

computation. Currently, at the forefront of quantum science, researchers are searching for

methods to construct quantum mechanical systems which can be coherently controlled with

high precision and can be readily scaled for practical applications in quantum technologies.

Practical quantum technology will require the efficient implementation of a range of

quantum mechanical effects. Depending on the application, these requirements include the

ability to generate and manipulate quantum mechanical states, such as superpositions or

entangled states, the efficient storage and transportation of quantum information over long

distances and the ability to maintain quantum coherence for large system sizes at practical

temperatures. There has been significant progress made towards individually reaching the

1



2 Introduction

majority of these goals, such as the storage of quantum information [1–3], long coherence

times at room temperatures [4–9] and the transfer of quantum states [10–13]. However,

integration of each of these attributes to create practical quantum technologies has yet to

be achieved. Focus now lays on the development of hybrid quantum systems to create inte-

grated systems which can be used in practical quantum technologies and to study quantum

mechanics on large scales. As discussed above, the beginnings of practical applications of

quantum mechanics has been demonstrated, however, each of these achievements require

the use of specific quantum systems. These systems each have a unique set of attributes

which make them suitable under certain conditions and applicable to only specific tasks.

Hybrid quantum systems are systems which are comprised of several quantum mechanical

subsystems. By combining several separate quantum systems it is possible to create hybrids

which benefit from each of the individual advantages of the comprising subsystems. These

hybrid quantum systems may provide the intensively sought after attributes required for the

development of both practical quantum technologies and quantum science itself as they can

be used to reach regimes, observe behaviours and results which are otherwise impossible to

achieve. In this thesis two hybrid quantum systems will be studied with the intention of

proposing experimental platforms which can be used either for the construction of practical

quantum technologies or to observe quantum mechanical effects on macroscopic scales.

Figure 1.1: A Fabry-Pérot type cavity which contains a single 2-level atom. The excited and
ground state energy levels of the atom are denoted by |e〉 and |g〉 respectively. Leakage of light
out of the cavity is described by the loss rate κ and spontaneous emission of light from the atomic
excited state into the environment by the rate γ. Interaction between the light and the atom is
described by the interaction strength g.
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Practical quantum systems - As mentioned above, for practical applications in quantum

technologies a quantum system must be capable of creating, maintaining, manipulating

and transporting quantum mechanical states. One of the most successful approaches to

reaching this set of goals involves the study of light-matter interactions. The basic idea

is that light can be used to effectively interact distant quantum systems. This can be

interpreted by imagining that the light acts as an ‘information bus’ which can be used to

transport information between the two distant systems. However, to realistically achieve

this the strength of the light-matter interactions must be made much stronger than any

dissipative effects present in the system, such as the leakage of light into the environment.

For this reason the development of quantum systems which are capable of attaining strong

light-matter interactions is one of the focal points of modern quantum mechanics as such

strengths not only allow for the transportation of quantum information via photons but

also for the generation of quantum states. Quantum systems with these capabilities have

applications in almost every field of quantum science. To study light-matter interactions

light must be confined within the system. This confinement is often achieved through the

use of Fabry-Pérot type resonators, or cavities, which are essentially comprised from two

opposing mirrors. Light-matter interactions can then be studied by introducing matter into

the cavity, see Fig.1.1. Such systems fall into the field of cavity quantum electrodynamics

(cQED). The simplest light-matter interaction which can be studied in cQED corresponds to

the introduction of single two-level atoms into the cavity. This is because the only interaction

that occurs corresponds to either the atom absorbing a photon from the cavity, exciting

the atom into its higher energy state, or the emission of a photon from the atom into

the cavity, relaxing the atom into its lower energy state. Many experiments have been

performed using these types of quantum systems to show that relatively strong light-matter

interaction rates can be achieved using optical frequency light [13–18]. Effective interactions

between two separate atoms can also be achieved by introducing a second atom into the

cavity. With the intention of maximising the distance between the two effectively interacting

atoms, the consideration of alternative types of cavities has become increasingly popular.

This popularity stems from many advantages such cavities have over the standard Fabry-

Pérot type cavity, such as reduced photon leakage and the confinement of light within a

smaller volume. These hybrid resonators include photonic crystal cavities and whispering

gallery resonators. Of particular interest are whispering gallery resonators. These types of

resonators correspond to objects such as disks, toroids and spheres which are capable of

confining light via continuous total internal reflections.

The first hybrid quantum system which will be studied in this thesis focuses on achiev-

ing strong interactions between distant quantum systems through the use of a spherical
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whispering gallery resonator. Here it will be shown that the spherical symmetry of the res-

onator allows for the achievement of an effective enhancement to the light-matter interaction

strength. It is then shown that this enhancement allows for strong interactions to be attained

between distant atoms which can be used to fashion large scale quantum networks.

(a)

(b)

Figure 1.2: A depiction of two types of Schrödinger cat states. (a) depicts an entangled state
where the cat’s fate depends on the state of an atom. The first ket in (a) describes an alive cat
while the atom is excited and the poison bottle is closed while the second ket describes a dead cat
with the atom in its ground state and the poison bottle opened. The lower image (b) depicts a
superposition state where the cat’s fate does not depend on any other quantum systems.

Macroscopic quantum states - The quantum mechanical world is typically imagined to

lie within nanoscopic length scales where quantum mechanics only effects systems as large

as atoms, or ensembles of atoms. While it is true that, to date, such effects have only been

observed on these scales, there is currently no fundamental postulate that confines quantum

mechanical effects to the nanoscopic realm. The main limitation in the observation of such

effects is currently thought to be due to experimentation. For this reason the observation

of quantum mechanical effects on much larger scales is currently one of the most attractive

goals in quantum science. Such observations would allow researchers to study how quantum

mechanical systems become classical and determine whether or not experimentation is the

only limitation. One approach that has been commonly made is to create and study quantum

states of macroscopic objects. A simple example of this would be to create a quantum

state that corresponds to a macroscopic object in a superposition of being located at two

completely separate positions at the same time. Of these states the most popular are those

analogous to the famous Schrödinger’s cat state. The Schrödinger’s cat state is an entangled

state which describes a cat that has been placed inside a box, with its fate determined by the

state of a radioactive particle. Using terms mentioned above, this state can be analogously

described by replacing the radioactive particle with a two level atom, see Fig.1.2a. If the



5

atom is excited, then the cat remains alive, however, if the atom spontaneously emits a

photon, the photon is detected causing poison to be released inside the box, killing the

cat. Alternately, analogous to the spatial superposition state discussed above, the creation

of states that correspond to the cat in a superposition of being both alive and dead at

the same time, independent of any other system, is also intensively pursued, see Fig.1.2b.

Such superpositions are often referred to as ‘cat states’. At present some of the largest

states analogous to either of the two types of Schrödinger cat states that have been created

correspond to either an entangled spatial superposition of a single atom’s position or a

superposition of the state of the electromagnetic field inside a cavity [19, 20]. With the

intention of creating quantum states of macroscopic objects, many researchers have directed

their attention towards the field of optomechanics. This field focuses on the interactions

between light and mechanical oscillators, such as Fabry-Pérot type cavities where one of the

mirrors can move or cavities which contain a mechanical oscillator. These interactions have

been routinely exploited to propose experimental protocols for the creation of macroscopic

quantum states [21–29]. However, if the oscillator is entangled with more than a single

photon or qubit, cat state creation requires measurements to be made on the system making

many of the proposed protocols completely probabilistic.

The second half of this thesis focuses on the proposal of a completely deterministic

macroscopic cat state creation protocol through the use of an optomechanical system. The

system which will be used corresponds to the placement of a mechanical oscillator into a

Fabry-Pérot resonator. This type of system is often referred to as ‘Membrane in the Middle’

(MITM) where the mechanical oscillator is referred to as the membrane. Here it will be shown

that a cat state of a macroscopic membrane’s position can be deterministically created and

grown by controlling its opacity.

This thesis will be split into two main chapters. The first hybrid quantum system will

be discussed in Chapter 2. This chapter will focus on achieving strong interactions between

light that is confined within a spherical Whispering Gallery Mode (WGM) resonator and

distant two-level atomic systems, or spins. It will be shown that an enhancement to the

interaction strength can be achieved by taking advantage of the spherical symmetry of the

WGM resonator which can be used to effectively couple distant spins. To do so, this chap-

ter will begin by individually studying the theory which gives rise to enhancement and the

physics behind the spherical WGMs. This work will then be combined to perform simula-

tions of the interaction between spins and the WGMs. The second hybrid system will be

discussed in Chapter 3. This chapter will focus on the creation of macroscopic superposition

states using the MITM setup. Here it will be shown that light-matter interactions can be

manipulated to deterministically generate spatial superpositions of a membrane’s position.
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To do so, this chapter will be separated into several sections, each describing different aspects

of the cat state creation protocol. The chapter will be concluded with the proposal for an

experimental platform which could be used to realise the proposed protocol and the analysis

of simulations.



Chapter 2

Enhanced Optical Coupling in

Whispering Gallery Resonators

2.1 Introduction

Achieving strong light-matter interactions, or coupling, has been one of the focal points of

modern quantum science for the past four decades. As mentioned above, this regime of

interaction has many potential applications in quantum science. More specifically, strong

interactions can be applied in single photon nonlinear optics [30–33] , quantum simulations

of many body systems [34–38], quantum networks [39–41], quantum repeaters [42], and of

course, in quantum computation [43–46]. The current focus is now on engineering quantum

systems with the largest possible light-matter interaction strengths. In particular, achieving

strong interaction between optical photons and atomic systems has heralded significant in-

terest due to the compatibility with fibres. In cQED, however, achieving strong interaction

with optical photons has proven to be extremely experimentally challenging requiring either

individual spins and ultra-small cavities or an ensemble of identical spins coupled to larger

cavities, see Fig.2.1a and b.

At present, the best results in regard to both the realisation and implementation of

strong interactions have been through the use of superconducting qubits and microwave

photons in circuit QED based experiments. Here effective interaction of qubits separated

by millimetre lengths has been achieved [47–49]. These experiments have been extended

to show that simple quantum gates can be efficiently applied to several qubits with high

fidelity, providing a promising platform for quantum computation [50–53]. They have also

been used to generate quantum states [54] and to demonstrate quantum state teleportation

over millimetre lengths [55]. Though, these superconducting qubit systems are limited to

7
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cryogenic temperatures and are not easily scalable for practical use in quantum technology.

They also depend on microwave photons which pose difficulties in scalability and integration

with current technological infrastructure. Due to the compatibility with current technologies,

such as fibres, achieving the above results with optical photons is now being intensively

pursued.

(a)

(b)

(c)

Figure 2.1: A simple depiction of the traditional approaches, (a) and (b), to achieving strong
light-matter interactions. Here (a) shows a simple Fabry-Pérot cavity where a single atom interacts
with a single mode of light while (b) shows many atoms interacting with a single mode of light.
An alternative approach to achieving strong interactions is shown in (c) where instead two modes
of light interact with a single atom.

The strongest optically based interactions have been demonstrated through the use of

cQED based experiments. As a wide variety of spins can be implemented in such systems,

these experiments are compatible with a broad band of frequencies. However, achieving

strong coupling in these systems is no less of a challenge. As mentioned above, traditional

approaches to achieving strong interactions in cQED involve either single spins in tiny cavities

(Fig.2.1a), or many identical spins in slightly larger cavities (Fig.2.1b), where Fabry-Pérot

type cavities are typically used. The reason that interaction between optical light and many

identical spins is considered is because under special conditions a collective enhancement

to the interaction strength can be attained, which is proportional to the square root of the

number of spins in the system. This enhancement is the result of a constructive quantum

interference which stems from the indistinguishability of the spins with respect to the light

[56]. To date, only a small number of experiments have successfully observed strong light-

matter interactions using these traditional cQED techniques [13, 15–18]. As a consequence,

only very few have demonstrated effective interaction of distant spins via optical photons

[13]. The largest optical interaction strengths achieved using traditional techniques reside

on the scales of MHz for single spins and GHz for ensembles of identical spins [15, 18].
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However, while it has been shown that these approaches can be used to demonstrate strong

light-matter interactions, they are each extremely experimentally challenging, requiring cryo-

genic temperatures and very complex system configurations. These demanding conditions

make such techniques somewhat problematic to scale up for applications within quantum

technologies.

Due to the wide range of applications and the constraints which hinder traditional cQED

methods, enormous effort has been directed towards the implementation of hybrid cavities

in cQED. In particular, photonic crystal and whispering gallery type cavities have been

recently used to achieve relatively strong coupling [57–74]. Whispering gallery resonators

have become increasingly popular due to their relatively small mode volumes, large quality

factors and their potential to strongly couple distant spins within the same mode [72]. While

not yet demonstrated, it has been theorised that with such systems strong interactions and

hence quantum entanglement can be achieved between distant spins with less demanding

system configurations and temperatures compared to traditional techniques [75–81].

There are three main types of whispering gallery resonators that are most commonly

studied in cQED. These include the toroidal, spherical and micro-disk resonators, shown in

Fig.2.2. Interaction strengths on sub-GHz scales have been achieved using micro-disc/ring

resonators in the infrared band [65], however, for practical applications a lot of work has

focused on toroidal and spherical resonators due to their huge quality factors (Q ∼ 1010)

[82, 83], and their capability to reach strong coupling at optical wavelengths. Optical cou-

pling strengths on the order of MHz have been reached between several spins and a single

WGM of a slightly oblate microsphere resonator [70], and also between a single spin and

a toroidal resonator [67]. In the case of spherical resonators the slight oblateness in the

resonator is introduced to ensure that spins interact with only a single WGM [64, 70, 71].

While the optical interaction strengths achieved using these non-traditional cavities have yet

to significantly overcome those demonstrated via traditional approaches these hybrid cavi-

ties offer slightly less demanding experimental conditions. In this chapter it will be shown

that non-oblate spherical resonators can be used to reach interaction strengths orders of

magnitude larger than traditional techniques and provide a scalable architecture to fashion

large scale strongly-coupled cQED arrays.

To achieve strong interactions using spherical resonators a collective enhancement very

similar to that demonstrated with many spins will be considered. As mentioned above,

if N spins interact with a single optical cavity mode the interaction strength is enhanced

by a factor of
√
N , provided that no “which path” information exists that can be used to

differentiate between which spin emits/absorbs into/from the cavity mode. If, instead, a

set of N degenerate optical modes interact with a single spin an identical factor of
√
N
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(a) (b)

(c)

Figure 2.2: Published images of three different types of WGM resonators. A SEM image of
a toroidal resonator is shown in (a) and that of a micro-disk in (b) [65, 83]. The lower picture,
(c), shows an optical image of a slightly deformed microsphere resonator attached to a fibre taper
[70]. The resonators shown in (b) and (c) were coupled to spins, while the first, (a), was used to
demonstrate the high Q-factors toroidal resonators are capable of achieving.

enhancement to the interaction strength can be achieved, provided that the spin interacts

with each of the modes identically to remove any “which path” information. This type

of enhancement has been very rarely studied and in fact demonstrated only once where it

was shown that by considering the spatial cavity mode profile it was possible to engineer

N ≤ 5 near-degenerate cavity modes, yielding only a minor collective enhancement [84–

87]. The difficulty in demonstrating this type of enhancement stems from the experimental

limitations in creating degenerate multi-mode systems using traditional Fabry-Pérot cavities.

The largest number of modes achievable using Fabry-Pérot type cavities is essentially two.

This is because, to ensure that each of the modes are orthogonal and intersect the spin,

introduction of more than two cavities requires increasing the size of each cavity, see Fig.2.1c,

in turn significantly reducing the overall interaction strength. It will be shown in this chapter

that a particular subset of the WGMs in spherical resonators form an excellent platform for

the implementation of a multi-mode system, where the number of modes can range from tens

to thousands, depending on the sphere’s size. The proposed system is shown in Fig.2.3 where

the spins are located at the antipodes of the spherical resonator and interact identically with

an ensemble of WGMs. These modes correspond to rotated fundamental WGMs, which will

be discussed further in Sections 2.3.1.2 and 2.3.3. It will be shown that this system is capable

of achieving strong effective interactions between two distant spins which are separated by

66 µm and provides a scalable and experimentally accessible platform for application in

quantum technologies.
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(a) (b)

(c)

z

y
x

Figure 2.3: (a) A spherical resonator supporting many degenerate rotated WGMs (green tubes)
coupled to two antipodal spins (red spheres) and (b) a depiction of the extension of the model into
one and (c) two dimensional arrays.

This chapter will be split into four sections. The first will focus on studying the multi-

mode system to assure that a factor of
√
N enhancement can be achieved. To do so, the

multi-mode system will be compared against the thoroughly studied multi-spin system. In

this section it will also be shown that a further enhancement can be achieved by considering

both multiple spins and multiple modes and the dynamics of a single excitation will be

solved for. The next section of this chapter will focus on the physics behind WGMs in

spherical resonators. Expressions for the electric fields will be derived and studied for each

of the rotated fundamental WGMs and the number of such modes which can be sustained

by the spherical resonator will be calculated. Section 2.3 will focus on the nature of the

interactions between a single spin and the ensemble of WGMs. In this section it will be

determined whether or not a constructive quantum interference can be achieved yielding

a useful collective enhancement. The final section of this chapter will provide numerical

simulations of the dynamics of several different systems, including a single spin interacting

with many modes, two antipodal spins effectively interacting with one another via the modes,

and clusters of antipodal spins effectively interacting with one another.
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2.2 The Enhanced Jaynes-Cummings Model

In this section several cQED systems will be considered to study the effects that constructive

quantum interference can have on the light-matter interaction strength. The most simple

model in cQED will first be introduced briefly to establish some foundations. Two separate

extensions of this model will then be focused on where it will be shown that an effective

enhancement to the interaction strength can be achieved. These extensions correspond to

the introduction of either many spins or many modes into the system. One final extension

will then be studied which corresponds to a system comprised from an ensemble of spins and

cavity modes. In the first three sections the dynamics of the system will be solved with no

consideration of dissipative effects. These dissipative effects will then be incorporated in the

final section, where the most general, multi-spin multi-mode, system will be studied.

2.2.1 The Jaynes-Cummings Model

Aside from an empty cavity the simplest system in cQED involves a single two-level atom,

or spin, confined within a cavity containing at least a single photon. The Hamiltonian of

such a system can be expressed as the sum of three separate energies, Ĥa, the self energy

of the spin, ĤM , the self energy of the cavity mode and ĤI the interaction energy. The self

energy terms are given by,

Ĥa =
~
2
ωaσ̂z, (2.1)

ĤM = ~ωcâ†â, (2.2)

where σ̂z = σ̂ee−σ̂gg = |e〉〈e|−|g〉〈g|, â†(â) are the creation(annihilation) operators associated

to the mode and ωa/ωc the spin/cavity resonance frequencies. Calculation of the interaction

term, however, is not as straight forward, requiring several approximations. It is the electric

dipole interaction which produces the coupling between the spin and the cavity mode. This

means that ĤI corresponds to dipole interaction energy,

ĤI = −d̂ · Ê, (2.3)

where d̂ is the dipole operator of the spin and Ê the electric field operator of the cavity mode.

By assuming the cavity is a box of volume V the electric field can be quantised giving,

Ê = iE0

(
âeik · r − â†e−ik · r

)
, (2.4)
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where k is the wavevector of the field, r the position vector and,

E0 =

√
~ωc

2ε0V
ê, (2.5)

for an electric field directed along ê [88]. The interaction term, ĤI , can be reduced by

making the dipole approximation, eik · r ≈ 1, then conveniently placing the identity operator,

Î = |e〉〈e|+ |g〉〈g|, around d̂,

ĤI = −
(
|e〉〈e|d̂|g〉〈g|+ |g〉〈g|d̂|e〉〈e|

)
· iE0

(
â− â†

)
, (2.6)

since 〈e|d̂|e〉 = 〈g|d̂|g〉 = 0 [89]. Introduction of the atomic raising and lowering operators,

σ̂+ = |e〉〈g| and σ̂− = |g〉〈e| and relabelling the dipole operator matrix elements as dge =
i
~〈g|d̂|e〉 and deg = d∗ge allows Eq.(2.6) to be more neatly written as,

ĤI = ~g (σ̂+ − σ̂−)
(
â− â†

)
, (2.7)

where g = deg ·E0 = dge ·E0 denotes the interaction strength, which is commonly referred

to as the coupling strength. To further reduce the total Hamiltonian of the system, Ĥ =

Ĥa + ĤM + ĤI , one final approximation can be made. In the interaction picture two rapidly

oscillating terms, associated with σ̂+â
† and σ̂−â, can be removed by the rotating wave

approximation. This results in the famous Jaynes-Cummings Hamiltonian [90],

ĤJC = ~ωcâ†â+
~
2
ωaσ̂z + ~g(σ̂+â+ σ̂−â

†). (2.8)

The dynamics which result from evolution under this Hamiltonian have been thoroughly

studied and can be solved analytically both with and without the consideration of losses

[88, 91]. Without the consideration of dissipative effects the system can be evolved by

solving the Schrödinger equation in the interaction picture,

ĤI
JC = −~ (ωa − ωc) σ̂gg + ~g(σ̂+â+ σ̂−â

†), (2.9)

with the arbitrary state,

|ψJC〉 = α(t)|e, n〉+ C(t)|g, n+ 1〉, (2.10)

where α(t)/C(t) are the probability amplitudes that the spin is excited and the cavity mode

contains n photons or the spin is in its ground state with n + 1 photons in the mode such
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that |α(t)|2 + |C(t)|2 = 1. Solving the Schrödinger equation with Eqs.(2.9, 2.10) yields a set

of coupled first order differential equations,

α̇(t) = −ig
√
n+ 1C(t), (2.11)

Ċ(t) = i (ωa − ωc)C(t)− ig
√
n+ 1α(t), (2.12)

which can be easily solved analytically, see Appendix A.2 for a general derivation of these

equations. In particular, if the spin is on resonance with the mode of light, that is, for zero

detuning, ∆D = ωc − ωa = 0, the solutions to Eqs.(2.11, 2.12) are,

α(t) = cos
(√

n+ 1gt
)
, (2.13)

C(t) = −i sin
(√

n+ 1gt
)
. (2.14)

These solutions show that the oscillation frequency of the excitation transfer between the

spin and the cavity mode is directly proportional to both the coupling rate, g, and the

number of photons in the mode, n. This frequency is related to the renowned Rabi-frequency,

where ΩJC
R = 2g

√
n+ 1, as the probabilities oscillate as |α(t)|2 and |C(t)|2 respectively. The

dynamics of this system are shown in Fig.2.4 where only a single photon is considered.
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Figure 2.4: Rabi-oscillations between a single spin and a single photon (n = 0) in the Jaynes-
Cummings model. The evolution shown was performed using ∆D = 0 in units of g and the initial
state |ψ(0)〉 = |0〉|e〉. Here PS = Tr [ρ̂σ̂ee] denotes the probability that the spin is excited and
PM = Tr

[
ρ̂â†â

]
the probability the mode is excited.
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2.2.2 The Tavis-Cummings Model

With some foundations established for light-matter interactions more complicated systems

can now be studied. The first extension of the JC model which will be considered involves

the introduction of an ensemble of spins into the system. The many spin extension of the JC

model is more commonly known as the Tavis-Cummings (TC) model [56]. Extensive work

has focused both theoretically and experimentally on exploring how such a system evolves

[16, 18, 92]. The Hamiltonian for this system is generally established by simply extending

Eq.(2.8) to describe an ensemble of spins,

ĤG
TC = ~ωcâ†â+

~
2

N∑
i=1

ωiσ̂
i
z + ~

N∑
i=1

gi(σ̂
i
+â+ σ̂i−â

†), (2.15)

where each spin has a unique resonance frequency, ωi, and coupling rate with the light field,

gi. Due to the generality of the Hamiltonian, evolution of this system is not an easy task.

Numerical simulations of the evolution are extremely difficult for realistic values of N and

a large number of excitations in the system due to the enormous size of the Hilbert space.

This means that several assumptions must be made in order to have any hope in performing

an efficient evolution. The most effective assumption which is often made is to assume that

the spins are all identical. This corresponds to gi = g and ωi = ωa for all N spins, reducing

Eq.(2.15) to,

ĤTC = ~ωcâ†â+
~
2
ωa

N∑
i=1

σ̂iz + ~g
N∑
i=1

(σ̂i+â+ σ̂i−â
†). (2.16)

Without the consideration of dissipative effects, evolution under ĤTC with a large number of

spins is still only possible numerically for special cases. In particular in the weak excitation

regime, 〈â†â〉 +
∑N

i 〈σ̂iee〉 ≈ 1, evolution under ĤTC can even be performed analytically,

for zero detuning. The weak excitation regime also allows for the study of quantum inter-

ferences which arise through the interactions between the ensemble of spins and the single

cavity mode. These interferences have been shown to provide a effective enhancement to

the coupling rate, g [16, 18, 56]. The enhancement is the result of constructive quantum

interference which arises from the indistinguishability of the spins with respect to the mode

of light. For example, in the case of a single photon interacting with N identical spins, if

the excitation initially resides in the cavity mode, naturally, it is absorbed by the spins.

However, as the spins are indistinguishable, the photon is not absorbed by a single spin, but

by all of them simultaneously. That is, once a photon has been absorbed from the cavity, the

spins are in a quantum superposition of each being excited while the others are not, resulting
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in a factor of
√
N enhancement to the coupling rate. An alternative, and more comparative,

approach to observing this enhancement involves the introduction of the collective operators,

Σ̂+ =
1√
N

N∑
i=1

σ̂i+ , Σ̂− =
1√
N

N∑
i=1

σ̂i−. (2.17)

By expressing the interaction picture Hamiltonian,

ĤI
TC = −~

M∑
i=1

(ωa − ωc) σ̂igg + ~g
N∑
i=1

(
σ̂i+â+ σ̂i−â

†), (2.18)

in terms of these collective operators the factor of
√
N enhancement can be observed. In the

case of zero detuning, expression of Eq.(2.18) in terms of the collective operators gives,

ĤI
TC = ~g

√
N(Σ̂+â+ Σ̂−â

†), (2.19)

which is almost identical to the interaction picture JC Hamiltonian, Eq.(2.9), but with a

factor of
√
N enhancement to the coupling rate. Evolution under ĤI

TC can now be performed

in an almost identical manner to the JC model but with the replacement of g with
√
Ng

and the consideration of normalisation. Also, as we are working within the weak excitation

regime n ≈ 0. The solutions obtained in this case are then,

αj(t) =
1√
N

cos
(√

Ngt
)
, (2.20)

C(t) = −i sin
(√

Ngt
)
, (2.21)

where αj(t) is the probability amplitude that the jth spin is excited. These solutions make

it clear that as a result of the introduction of many identical spins the Rabi-frequency is

increased by a factor of
√
N , ΩTC

R = 2
√
Ng. The evolution of this system is shown in Fig.2.5

where the enhancement in the Rabi-frequency, in comparison with the JC model (Fig.2.4),

can be clearly observed.
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Figure 2.5: Rabi-oscillations between an ensemble of identical spins and a single photon in
the Tavis-Cummings model. The evolution shown was performed for a system containing N = 9

spins with ∆D = 0 in units of g. Here PS = Tr
[
ρ̂
∑9

i=1 σ̂
i
ee

]
denotes the probability that the spins

are collectively excited and PM = Tr
[
ρ̂â†â

]
the probability the mode is excited. The system was

initialised in the state |ψ(0)〉 = 1
3

∑9
i=1 |0〉|ei〉 where |0〉|ei〉 corresponds to the ith spin excited while

the rest are in the ground state.

2.2.3 The Multi-Mode Jaynes-Cummings Model

While it has been shown an effective enhancement to the coupling strength can be achieved

through the introduction of many identical spins, creating such a system experimentally is

typically difficult as the spins must be confined within a cavity and interact identically with

the cavity mode. This difficulty gives rise to the questions: Is there another, more practical

method in which quantum interference could provide an enhancement to the coupling rate?

As in the TC model the constructive quantum interference results from the indistinguishabil-

ity of the spins with respect to the cavity mode, could such an interference be achieved if the

roles were reversed? That is, would constructive quantum interference arise if an ensemble of

indistinguishable modes interacted with a single spin? To determine if such an enhancement

is in fact possible, the JC model will now be extended to consider an ensemble of degenerate

modes. This extension of the JC model has very rarely been studied [84, 85, 87], typically

due to the experimental difficulties in creating a system which can sustain many degener-

ate modes. As discussed earlier, Fabry-Pérot type cavities are traditionally used in cQED

experiments and can not be advantageously scaled to consider multiple degenerate modes.
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The main limitation stems from the inverse proportionality between the coupling rate and

the mode volume, described in Eq.(2.7). For more than two Fabry-Pérot cavities the mode

volume increases enormously in comparison to the small increase in the enhancement which

means that overall the coupling strength decreases. An alternative type of cavity which can

efficiently sustain many cavity modes will be discussed in Section 2.3. Beforehand, however,

the dynamics of the multi-mode system must be studied to determine if the introduction of

many modes can produce constructive quantum interference. The multi-mode extension of

the JC Hamiltonian can be attained by extending Eq.(2.8) to consider N degenerate modes,

ĤMM = ~ωc
N∑
i=1

â†i âi +
~
2
ωaσ̂z + ~

N∑
i=1

gi(σ̂+âi + σ̂−â
†
i ). (2.22)

By following an identical approach as in the previous section, where gi = g and assuming

that there is only a weak excitation in the system, a factor of
√
N enhancement can be

observed. In the interaction picture Eq.(2.22) reduces to,

ĤI
MM = −~ (ωa − ωc) σ̂gg + ~g

N∑
i=1

(
σ̂+âi + σ̂−â

†
i

)
. (2.23)

Now, by the introduction of multi-mode collective operators,

Â =
1√
N

N∑
i=1

âi , Â† =
1√
N

N∑
i=1

â†i , (2.24)

Eq.(2.23) can be rewritten, in the case of zero detuning, to give,

ĤI
MM = ~g

√
N(σ̂+Â+ σ̂−Â

†), (2.25)

showing that an identical
√
N enhancement can be achieved in the multi-mode case. Again,

in terms of the collective operators the above Hamiltonian resembles that of the JC model,

Eq.(2.9), but with a factor of
√
N increase to the coupling strength. This means that, if

dissipative effects are ignored, the system can be evolved in an analogous manner to the TC

model giving,

α(t) = cos
(√

Ngt
)
, (2.26)

Cj(t) = − i√
N

sin
(√

Ngt
)
, (2.27)
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where here Cj(t) denotes the probability amplitude that the jth mode is excited. These so-

lutions show that as a result of the introduction of many identical modes the Rabi-frequency

is increased by a factor of
√
N , ΩMM

R = 2
√
Ng.

2.2.4 The Multi-Mode Tavis-Cummings Model with Loss

It has now been shown that enhancements to the coupling strength can be achieved by intro-

ducing either an ensemble of atoms, or an ensemble of modes into the system. The question

which now remains is: is that the best we can do? In hope to achieve a larger enhancement

the last extension to the JC model that will be considered is the multi-spin/multi-mode

case. In this case only weak excitation will be considered and it will still be assumed that

the coupling rate is uniform, however, unlike the previous sections, generality of the spin and

mode resonant frequencies will be kept. The Hamiltonian of this system can be attained by

either extension of Eq.(2.22) or Eq.(2.15),

ĤMMTC = ~
N∑
i=1

ωiâ
†
i âi +

1

2
~

M∑
i=1

Ωiσ̂
i
z + ~g

M∑
j=1

N∑
i=1

(
σ̂j+âi + σ̂j−â

†
i

)
, (2.28)

where the resonant frequencies of the spins are now labelled Ωi. Through the use of the

collective operators, Eqs.(2.17, 2.24), it can be shown in an analogous manner that a factor

of
√
MN enhancement can be achieved in this case. As this is the most general of the three

systems considered above the effects of dissipation on the system will be included here. The

standard approach to incorporate decoherence into the evolution of a quantum system is to

solve the master equation. Here it would require solving,

˙̂ρ = − i
~

[
ĤMMTC , ρ̂

]
+

M∑
k=1

γk
[
σ̂k−ρ̂σ̂

k
+ − 1

2

[
σ̂k+σ̂

k
−, ρ̂
}]

+
N∑
j=1

κj

[
âj ρ̂â

†
j + 1

2

{
â†j âj, ρ̂

}]
, (2.29)

which is not possible for the number of spins/modes that will be considered in later sections

due to the enormous size of the Hilbert space. This means an alternative method of evolu-

tion must be used. An approximate approach which is often used to evolve large systems

involves solving the Schrödinger equation with damping accounted for by a non-Hermitian

Hamiltonian [93],

ĤC = ~
N∑
j=1

(
ωj −

i

2
κj

)
â†j âj +

~
2

M∑
j=1

(
Ωjσ̂

j
z − iγjσ̂jee

)
+ ~g

M∑
j=1

N∑
k=1

(
σ̂j+âk + σ̂j−â

†
k

)
. (2.30)
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As this engineered Hamiltonian is not Hermitian, probability is not conserved under evo-

lution. However, by restricting this system to the single excitation basis,
∑N

i 〈â
†
i âi〉 +∑M

i 〈σ̂iee〉 = 1, and by assuming the loss of probability due to the non-unitary evolution

corresponds to the population of the ground state |0〉|g〉, it can be proved that the dynamics

given by the “conditional” Hamiltonian, Eq. (2.30), exactly matches the dynamics obtained

by solving the full master equation, see Appendix A.1. The single excitation subspace for

the M spin N mode system is spanned by the states,

|0〉|ek〉 ≡ |01, ..., 0N〉|g1, g2, ..., gk−1, ek, gk+1, ..., gM〉, (2.31)

|1k〉|g〉 ≡ |01, 02, ..., 0k−1, 1k, 0k+1, ..., 0N〉|g1, ..., gM〉, (2.32)

|0〉|g〉 ≡ |01, ..., 0N〉|g1, ..., gM〉. (2.33)

This system can now be evolved by solving the Schrödinger equation in the interaction

picture,

ĤI
C = −~

M∑
j=1

(
Ωj − i

γj
2
− ω̄

)
σ̂jgg − i

~
2

N∑
j=1

κj â
†
j âj + ~g

M∑
j=1

N∑
k=1

(
σ̂j+âk + σ̂j−â

†
k

)
, (2.34)

with the state,

|ψ(t)〉 =
N∑
k=1

αk(t)|0〉|ek〉+
N∑
k=1

Ck(t)|1k〉|g〉, (2.35)

where ω̄ is the average of all the mode frequencies. Substitution of Eqs.(2.34, 2.35) into the

Schrödinger equation yields the following set of coupled first order equations,

iα̇k(t) = −
M∑
j=1

(
Ωj − i

γj
2
− ω̄

)
αk(t) +

(
Ωk − i

γk
2
− ω̄

)
αk(t) + g

N∑
j=1

Cj(t), (2.36)

iĊk(t) = −
M∑
j=1

(
Ωj − i

γj
2
− ω̄

)
Ck(t)− i

κk
2
Ck(t) + g

M∑
j=1

αj(t), (2.37)

which can be solved numerically. In the special case where there is no dissipation and the

detuning is set to zero, for M = N = 3, the evolution essentially identical to that depicted

in Fig.2.5, where in this case PM = Tr
[
ρ̂
∑3

i=1 â
†
i âi

]
and PS = Tr

[
ρ̂
∑3

i=1 σ̂
i
ee

]
. The benefit

to leaving generality to the most complicated extension of the JC model is that the above

equations can be easily reduced to consider either the TC or MM models more generally.

Simulations of dissipative effects will be left for later sections where realistic values for κ, γ

and g will be used.
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2.2.5 Conclusion

In this section the Jaynes-Cummings model was studied along with three possible extensions.

These extensions involved the introduction of many spins, or modes, into the system as well

as the introduction of many spins and many modes. In each case the dynamics of the

light-matter interactions were solved in the weak excitation regime while assuming that the

coupling strength was uniform. It was found that each system exhibited essentially identical

dynamics as the main effect of increasing the system size was to increase the effective coupling

strength. In the many spin/mode extension of the JC model it was found the increase in the

effective coupling strength was proportional to the square root of the number of spins/modes

considered in the system. It was also found that a further enhancement could be achieved

by considering a system which contained many spins as well as many modes. In this case

the enhancement was proportional to the square root of the number of modes multiplied by

the number of spins. To demonstrate the effective enhancements in each of the considered

extensions the dynamics are presented in Fig.2.6 where the enhancement factor is identical

for each extension. The results clearly show that identical Rabi-Oscillations are achieved in

each of the enhanced cases, which oscillate at higher frequencies compared to the JC model.
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Figure 2.6: The Rabi-oscillations of the mode in the JC, TC, MM and MMTC models. These
simulations were performed with ∆D = 0 in units of g under ideal conditions. The simulations of
the TC/MM models were performed using 9 identical spins/modes and the initial states |ψ(0)〉TC =
1
3

∑9
i=1 |0, ei〉 and |ψ(0)〉MM = |0, e〉 respectively. In the MMTC simulation 3 identical spins and 3

identical modes were used with the initial state |ψ(0)〉MMTC = 1√
3

∑3
i=1 |0〉|ei〉.
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2.3 Whispering Gallery Modes in Microspheres

The basic theory describing the dynamics of a system consisting of an ensemble of cavity

modes and an ensemble of spins has now been established. As mentioned previously, realisa-

tion of such a system is not trivial and is in fact not possible using traditional Fabry-Pérot

type cavities. To date only one multi-mode system has been realised which was only ca-

pable of sustaining a maximum of five semi-degenerate modes [87]. In this section it will

be shown that spherical resonators are capable of supporting a large number of degenerate

modes. These modes are the result of total internal reflections within the spherical resonator

which confine light producing an ensemble of optical modes. The resulting modes are called

whispering gallery modes. A particular subset of these modes will be focused on which are

confined close to the surface of the resonator, referred to as the fundamental mode. The en-

semble of modes that will be considered correspond to rotated duplicates of the fundamental

mode, as shown in Fig.2.3. The interaction between individual spins and the ensemble of

the rotated WGMs will be investigated to determine if constructive quantum interference

can be achieved. To do so, expressions for the electric fields within the resonator will first be

established for each of the rotated WGMs to provide understanding of the field’s intensity

distribution, polarisation and frequency.

2.3.1 Fields in Spherical Whispering Gallery Resonators

2.3.1.1 Deriving the Electric Field

The electric fields of a dielectric sphere will first be derived. To begin, a sphere of radius

a and refractive index n1 which is suspended in a medium of refractive index n2 will be

considered. It will first be assumed that the fields within the dielectric sphere are harmonic,

that is,

E = E0e
i(kx−ωt) , H = H0e

i(kx−ωt), (2.38)

where E is the electric field and H the magnetic vector potential which are related to the

electric displacement vector and magnetic field, respectively, by,

H =
1

µ
B, (2.39)

D = εE. (2.40)
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Now, through the use of Maxwell’s equations,

∇× E = −∂B
∂t
, (2.41)

∇×B =
∂D

∂t
, (2.42)

it can be shown that the electric field is governed by the vectorial Helmholtz equation. This

can be shown by first performing a direct substitution of Eqs.(2.38, 2.39) into Eq.(2.41) to

give,

∇× E = iωµH. (2.43)

Now, taking the curl of this equation on both the left and right hand sides gives,

∇×∇× E = iωµ∇×H = iωµ (−iωεE) , (2.44)

after the substitution of Eqs.(2.42, 2.40 and 2.38). The left hand side of Eq.(2.44) can then

be simplified through the use of a standard vector identity,

∇×∇× E = ∇ (∇ ·E)−∇2E = −∇2E. (2.45)

Finally, after substitution of Eq.(2.45) into Eq.(2.44), the vectorial Helmholtz equation is

achieved,

∇2E + ω2µεE = 0. (2.46)

This equation can be more practically expressed in terms of the wave vector, k, and the

refractive index n(r),

∇2E + k2n2(r)E = 0, (2.47)

where the refractive index is given by,

n(r) =

n1 if r < a,

n2 if r ≥ a.
(2.48)

A general expression for the electric field within the spherical resonator can now be

obtained by solving Eq.(2.47). The vectorial Helmholtz equation has been thoroughly studied

previously where it has been found that analytic solutions exist in the form of vector spherical

harmonics (VSH) [94]. The standard approach to arriving at these solutions is through the

use of Debye potentials. To start this derivation, one must first notice that if ψ is a solution

to the scalar Helmholtz equation, then r̂ψ is a solution to the vectorial Helmholtz equation,
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Eq.(2.47). This implies that both, M = ∇× r̂ψ and N = 1
k
∇×M are a pair of orthogonal

solutions of Eq.(2.47) and hence that the general solution to this equation can be expressed

as the linear combination,

E = c1M + c2N, (2.49)

where c1 and c2 are arbitrary constants. To arrive at an analytic expression for the electric

field through the use of Eq.(2.49) the solutions to the scalar Helmholtz equation, ψ, must be

determined. As a spherical resonator is of interest here, the Helmholtz equation in spherical

coordinates,

2

r

∂ψ

∂r
+
∂2ψ

∂r2
+

1

r2 sin θ
cos θ

∂ψ

∂θ
+

1

r2

∂2ψ

∂θ2
+

1

r2sin2θ

∂2ψ

∂φ2
+ k2n2(r)ψ = 0, (2.50)

must be solved. This equation can be systematically solved using the separation of variables

technique. That is, by assuming the solution can be written in the form ψ = R(r)Θ(θ)Φ(φ).

After substitution of ψ into Eq.(2.50) three separate differential equations arise by noting

that each of the functions R, Θ and Φ are constant with respect to one another.

∂

∂r

(
r2R′

)
+
(
r2k2n2(r)− l(l + 1)

)
R = 0 (2.51)

1

sin θ

∂

∂θ
(Θ′ sin θ) +

(
l(l + 1)− m2

sin2θ

)
Θ = 0 (2.52)

Φ′′ +m2Φ = 0 (2.53)

Each of these equations can now be individually solved to sequentially arrive at an analytic

expression for ψ. The first of these differential equations, Eq.(2.51), resembles the spherical

Bessel equation. Thus the solutions to the radial portion of ψ can be expressed in terms of

the spherical Bessel functions jl and yl,

Rl(r) = c3jl(z) + c4yl(z), (2.54)

where the arbitrary constants c3 and c4 depend on boundary conditions, z(r) = n(r)kr and

the spherical Bessel functions jl/yl are given by,

jl(z) =

√
π

2z
J
l+

1
2
(z), (2.55)

yl(z) = (−1)l+1

√
π

2z
J−l+ 1

2
(z), (2.56)

in which Jk represents the Bessel function of the first kind. As the spherical Bessel function
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yl(z) diverges at r = 0 this solution is typically split into two cases to maintain physical

sense,

Rl(r) =

jl(z) if r < a,

Bχl(z) if r ≥ a,
(2.57)

where B = c4/c3 and χl(z) represents either jl, yl or the linear combinations h
(1)
l = jl + iyl,

h
(2)
l = jl − iyl, otherwise known as Hankel functions.

The polar portion of ψ can now be attained by solving the second of the three equations,

Eq.(2.52). This equation has the form of the associated Legendre equation and hence has

the general solution,

Θ(θ) = c5P
m
l (cos θ) + c6Q

m
l (cos θ) , (2.58)

where Pm
l /Q

m
l are the associated Legendre polynomials of the first and second kind re-

spectively and c5/c6 are arbitrary constants. The indices l and m are integers that satisfy

−l ≤ m ≤ l. As in spherical coordinates, 0 ≤ θ ≤ π, the constant c6 must be set to zero

since Qm
l is unbounded at cos(θ) = ±1. This reduces the solution to the polar portion of ψ

to,

Θ(θ) = c5P
m
l (cos θ) . (2.59)

Finally, the azimuthal component of ψ can be derived by solving Eq.(2.53). This is an

elementary second order differential equation which can be solved to attain the solution,

Φ(φ) = c7e
imφ, (2.60)

for m = ±1,±2, ...,±l [94].

With each of the components of ψ now established, the solution to the scalar Helmholtz

equation can be written,

ψlm(r, θ, φ) = AeimφPm
l (cos θ)R(r) = Y m

l (θ, φ)R(r), (2.61)

allowing for general expressions of the electric field within the spherical resonator to be

achieved. Here Y m
l denote spherical harmonics where A = c5c7 is a normalisation constant.

There are two polarisations of the field which must be taken into consideration; Transverse

electric (TE) and transverse magnetic (TM). In the case of a TE polarised field there should

be no radial electric field component. This means that for TE fields the constant c2 in

Eq.(2.49) must be set to zero, as N · r̂ 6= 0, giving,

ETE = M = ∇× rψ =
1

sin θ

∂ψ

∂φ
θ̂ − ∂ψ

∂θ
φ̂. (2.62)
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For TM polarised fields a radial electric field component is expected which means as N · r̂ 6= 0

and M · r̂ = 0 the constant c1 in Eq.(2.49) must be set to zero to obtain,

ETM =
1

nk
∇×M (2.63)

= − 1

rnk
l(l + 1)ψ r̂ +

(
1

rnk

∂ψ

∂θ
+

1

nk

∂ψ

∂r∂θ

)
θ̂ +

(
1

rnk

1

sin θ

∂ψ

∂φ
+

1

nk

1

sin θ

∂ψ

∂r∂φ

)
φ̂.

These solutions are most commonly expressed more compactly in terms of VSH, see Ap-

pendix B.1, however, written in the above manner each of the field components can be

clearly observed. This allows for the polarisation of the field to be studied in a more efficient

manner.

2.3.1.2 Mode Numbers and Boundary Conditions

With general expressions for the electric fields within a spherical resonator established the

ensemble of different WGMs can be studied. These modes are typically characterised by

three mode numbers, q, l and m the radial, polar and azimuthal mode numbers. The mode

numbers can be interpreted as related to the number of intensity maxima in the; radial, polar

and azimuthal directions, respectively. As seen in Eq.(2.61) the mode numbers m and l result

from solving Eqs.(2.52, 2.53). The radial mode number, q, results from the application of

the boundary conditions on R(r). These conditions differ between the TE and TM modes.

In the case of TE modes, R(r) and n(r)R′(r) must be continuous at the sphere’s surface

(r = a), while in the TM case, R′(r)/n(r) must be continuous. These conditions can be used

both to achieve an expression for the constant B in Eq.(2.57) and to calculate the resonant

wavenumbers of the modes, kql. It is in the calculation of the resonant wavenumbers that the

radial mode number comes into play. Before continuing, however, the boundary conditions

will first be applied to determine B in Eq.(2.57). The first of the boundary conditions can

be used to give,

Rql(r) =

jl(z) if r < a,

jl(z1)
χl(z2)

χl(z) if r ≥ a,
(2.64)

where z1 = n1kqla and z2 = n2kqla.

Now that B has been calculated, the continuity of R′(r) can be used to achieve the

resonance condition,

s
j′l(z1)

jl(z1)
=
χ′l(z2)

χl(z2)
, (2.65)
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where,

s =

n1/n2 for TE modes,

n2/n1 for TM modes,
(2.66)

in which the wavenumbers kql are the solutions. The resonant wavenumbers can be calculated

by either solving Eq.(2.65) numerically or through the use of the Schiller expansion, provided

that λ� a,

zql ≈
v

t
+
ζq
t

(v
2

)1/3

− p2

√
t2 − 1

+
3

10

ζ2
q

22/3tv1/3
− 22/3ζq

3 (t2 − 1)3/2 v2/3
t2p3 +

ζq

21/3 (t2 − 1)3/2 v2/3
t2p,

(2.67)

where v = l + 1
2
, ζq is the qth root of the Airy function, t = n1/n2 and p = 1 for TE modes

or 1/t2 for TM [95].

With the boundary conditions applied and the three mode numbers established the final

task is to determine which of these modes must be considered for the proposed configuration

(Fig.2.3). As the intention is to place each of the spins near the surface of the sphere, we

require a set of mode numbers that correspond to modes propagating around the equator of

the sphere. That is, with large electric fields near the sphere’s surface. This particular set

of mode numbers is called the fundamental mode and occurs when q = 1 and l = m = lmax,

where lmax can be approximated by [96],

lmax ≈
2πan1

λ
, (2.68)

or, more accurately by solving Eq.(2.67) for v with an approximate resonant wavenumber.

The frequency of the WGMs essentially depends only on the q and l mode numbers.

Modes with identical values of q and l but different azimuthal mode numbers, m, are de-

generate for perfectly spherical resonators. However, if the eccentricity of the sphere, εs,

is non-zero this degeneracy is broken resulting in a detuning between modes with different

azimuthal mode numbers. The detuning can be approximated by,

∆ω

ω
= ±ε

2
s (l2 −m2)

4l2
, (2.69)

where ∆ω is the frequency difference between the fundamental WGM (q = 1, l = m) and a

mode with the same q and l mode numbers but a different m. The sign depends on whether

an oblate sphere (+) or a prolate sphere (-) is considered [96].
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2.3.2 Properties of WGMs

As the physics behind the WGM electric fields has now been established several crucial

properties of the fields can be focused on. These properties are either crucial to cQED, as

they essentially determine whether or not strong spin-light interactions can be achieved, or

are essential in achieving the collective enhancement discussed in Section 2.2. In this section

the mode volume and polarisation of the WGMs will first be discussed as these parameters

essentially define the light-matter interaction rate g. The quality factor of the WGMs will

then be examined to achieve an understanding of the optical loss rate κ.

2.3.2.1 Mode Volume

The mode volume is quite possibly the most important parameter in cQED as it is inversely

proportional to the square of the coupling strength, Eq.(2.7), and is one of the few control-

lable degrees of freedom in achieving strong coupling. The standard definition of the mode

volume is,

Vmode =

(∫
|E|2 d3r

)2∫
|E|2 |E|2 d3r

. (2.70)

This can be either calculated numerically for TE or TM modes, through the use of Eqs.(2.62,

2.63), or approximated by,

VM ≈ 3.4π3/2

(
λ

2πn1

)3

l11/6
√
l −m− 1, (2.71)

for spherical resonators, which is only valid for q = 1 and l = lmax [97]. Most importantly,

the approximate form of the mode volume shows that, by recalling Eq.(2.68), it increases

almost quadratically with the sphere’s radius.

2.3.2.2 Polarisation of WGMs

In cQED applications of WGM resonators the polarisation of the fundamental WGM is either

ignored or assumed to be perfectly orthogonal to the direction of propagation [75, 76, 98,

99]. However, this approximation is not entirely valid. It has been recently shown in both

bottleneck and cylindrical resonators that the TM modes are not completely transversal [100,

101]. To address this assumption in microspheres the individual electric field components of

the TE and TM modes can be calculated through the use of Eqs.(2.62, 2.63). The individual

field components for TE and TM modes are presented in Fig.2.7. The results show, in the case

of TE modes, that the electric field is predominately θ̂ directed, orthogonal to the direction
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of propagation, φ̂. However, this is not the case for the TM modes. For the TM modes the

electric field is comprised from an uneven proportion of both r̂ and φ̂ components. This not

only means that the electric field is not orthogonal to the direction of propagation, φ̂, but

that the field itself is partially circularly polarised. This suggests that counter propagating

modes will have different polarisations, that is, a clockwise (CW) propagating mode will

have E ∝ r̂ + iφ̂ while a counter-clockwise (CCW) propagating mode will have E ∝ r̂ − iφ̂.

Such polarisation means that TM modes will interact with ∆ms = ±1 optical transitions in

an atom, depending on the direction of propagation [100]. This directional dependence is

not desired in this work as to achieve constructive quantum interference the modes must be

indistinguishable with respect to the spin. It is also important to note that these calculations

were made in the center of an intensity maxima. Outside of this maxima the direction of

both TE and TM electric fields become more complicated, directed along all three spherical-

polar directions. These results also show that there is a particular depth within the sphere

where the TM mode is perfectly transversal, that will now be referred as the transversal

point.

max

E

E
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rE
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E
TE

E

r<a r>a

32.0 32.5 33.0
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Transversal Point

Figure 2.7: The norm of the TM and TE field components for a 33 µm sphere with n1 =
1.46 suspended in air supporting a WGM of wavelength λ = 637 nm. A special radial position is
depicted, ‘Transversal Point’, where the azimuthal component of the TM mode electric field is zero
and the WGM is completely transversal.



30 Enhanced Optical Coupling in Whispering Gallery Resonators

2.3.2.3 Quality Factor

The quality factor is another crucial parameter in cQED which must be taken into consid-

eration. It is a measure of how long a cavity can confine light, inversely proportional to the

optical loss rate, κ. To calculate the quality factor all loss channels must be considered. In

general there are many loss channels for WGMs in spherical resonators including, surface

scattering, internal losses due to material absorption and Rayleigh scattering, diffraction

losses and those due to surface contaminants [97, 102]. The quality factor of the WGMs can

be expressed as the reciprocal sum of the Q factor associated to each of these loss channels,

Q−1
S = Q−1

SS +Q−1
int +Q−1

cont +Q−1
diff , (2.72)

where QSS, Qint, Qcont and Qdiff denote the factor due to surface scattering, internal losses,

surface contaminants and diffraction losses respectively. In the case of microspheres the

most dominant loss channels are those due to surface scattering and material absorption as

typically Q−1
SS, Q

−1
abs � Q−1

cont, Q
−1
RS, Q

−1
diff [97]. This gives an approximate form of the spherical

WGM quality factor,

Q−1
S ≈ Q−1

SS +Q−1
abs ≈

8π2

3

σ2
sζ

2
s

λ4
l1/3 +

λ

2πn1

αs
4.3× 103

, (2.73)

where σs denotes the characteristic surface roughness, ζs its correlation length and αs the

attenuation in dB km−1 [102]. The quality factor is further reduced if M spherical nano-

particles of radius rnp and refractive index nnp are placed inside the sphere, close to its surface.

This loss results from the scattering of light off the nano-particles where the limiting quality

factor, Qnp, is given by,

Qnp =
2πn1VM
Mλσnp

, (2.74)

where σnp denotes the classical cross section of the spherical nano-particle,

σnp =
8π

3
k4r6

np

(
s′ − 1

s′ + 2

)2

, (2.75)

with s′ = n2
1/n

2
np [103]. The total quality factor of the nano-particle containing spherical

resonator is then,

Q−1 = Q−1
S +Q−1

np , (2.76)

which approximates to Eq.(2.73) for small spherical scatterers.
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2.3.3 Rotation of WGMs

The enhancement to the coupling rate proposed depends entirely on the ability of a spherical

resonator to support many degenerate rotated WGMs. To determine if such degenerate

rotated modes exist within spherical resonators, expressions for the fields of these rotated

modes must first be achieved. In this section expressions for the electric fields of the rotated

fundamental WGMs will be established and then used to determine how many of these modes

a spherical resonator can support.

The proposed system is comprised of a spherical resonator with spins located at the

north and south poles. To achieve an enhanced coupling it is essential that each of the

spins interact identically with N modes of light. As mentioned previously, the N modes

of light correspond to rotated fundamental WGMs, shown in Figs.2.3 and 2.8. Each of the

modes must be rotated such that they each identically intersect both the north and south

poles of the sphere. This rotation is required to ensure that the modes interact identically

with both spins and hence are indistinguishable. To clearly perform these rotations the

spherical harmonics will be expressed in ket notation, that is, Ylm will be expressed as |l,m〉.
As only the fundamental mode will be on resonance with the spin, where m = l = lmax,

the kets become |l, l〉. The states |l, l〉 can be arbitrarily rotated using Euler angles via

R̂(α, β, γ) ≡ R̂z(α)R̂x(β)R̂z(γ), through the use of the Wigner D function [104],

|l, l〉′ =
l∑

m′=−l

|l,m′〉Dl
m′,l(α, β, γ), (2.77)

where Dl
m′,m is the Wigner D function. This expression can be extended to VSHs to achieve

expressions for the electric fields of the rotated modes [105],

Elm(θ′, φ′) =
l∑

m′=−l

El,m′(θ, φ)Dl
m′,l(α, β, γ), (2.78)

in terms of the new basis vectors. That is, the field can be expressed as a superposition of

degenerate fields with different azimuthal mode numbers m. See Appendix B.1 for VSH form

of Elm. Now, as the spins are located at the poles of the sphere, the fundamental WGM,

which lays on the x-y plane, must be rotated about the x-axis by angle π
2
. This first rotation

ensures that the fundamental mode intersects both of the spins. To obtain expressions for

the remaining rotated modes, a rotation of ηi about the z-axis can be performed where

0 ≤ ηi ≤ 2π and 1 ≤ i ≤ N , see Fig.2.8. It is important to notice here that each of the

rotated modes identically intersect the spins.
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Figure 2.8: Depiction of the rotations which are performed to obtain expressions for the rotated
WGMs. First the fundamental WGM, which lays in the x-y plane, (green tube) is rotated about
the x-axis by π

2 (red tube). The mode now intersects the spin (black sphere) which is located on
the z-axis. Next, a rotation about the z-axis by angle ηi is performed to generate the ith rotated
WGM of the ensemble (blue tube).

With expressions for the rotated WGM fields achieved the orthogonality between them

can be studied. To do so, in accordance with the rotations discussed above, a state that has

been rotated arbitrarily by an angle ηi about the z-axis can be written,

|ψ(ηi)〉 =
l∑

m′=−l

|l,m′〉Dl
m′,l(ηi,

π
2
, 0). (2.79)

The overlap between any two states rotated by either ηi or ηj about the z-axis is then,

|〈ψ(ηi)|ψ(ηj)〉|2 ≈
1

24l

∣∣eiηi + eiηj
∣∣4l , (2.80)

which can be approximated by a Gaussian function with standard deviation σ2
sd = l−1

max. This

allows for the number of orthogonal rotated modes that can be supported by the spherical



2.4 WGM-Spin Coupling 33

resonator to be approximated by,

N ≈ 2π

W 1
2

= π

√
lmax

2 log 2
, (2.81)

where W 1
2

is the width at half maximum of the approximated Gaussian. Considering that

lmax ∝ a, it is clear that the number of orthogonal modes grows as
√
a and is also dependent

on the wavelength of the mode, see Eq.(2.68). Finally, it is important to note that the

electric fields of the rotated TM modes are composed from both r̂ and θ̂ components.

2.4 WGM-Spin Coupling

The final task is to now understand the interaction between individual spins and the ensemble

of rotated WGMs. There is a large variety of spins which are used in cQED experiments and

are applicable to the proposed WGM system. In particular, quantum dots and Silicon/Ni-

trogen vacancy (NV) centers in nanodiamond (ND) can be considered. In this section the

interactions between the zero-phonon line (ZPL) of the NV center in ND and the ensemble

of WGMs will be focused on as these solid state systems are relatively popular in cQED

due to their many advantageous qualities. The main purpose of this section is to calculate

the coupling rate, g, and determine if constructive quantum interference can be achieved by

coupling the spin to either the TM or TE WGMs.

When considering the coupling between a mode of light and a single spin the orientation

of the spins optical transition dipole moment is often assumed to be aligned with the mode’s

electric field. To achieve such alignment in most cases is quite challenging experimentally

and consequently maximal coupling rates are not achieved. Here the effects of the dipole

orientation and field polarisation on the coupling strength will be studied. By recalling

Eq.(2.7) the coupling strength is,

g = d ·E = µξ

√
ω

2~ε0VM
|E(r)|
Emax

d̂ · ê, (2.82)

where µ is the optical transition dipole moment, d̂ and ê are the unit vectors of the dipole

moment and the electric field respectively and ω the frequency of the field. The ratio

|E(r)| /Emax and the Debye-Waller factor, ξ, have been introduced to incorporate the effects

of the spatial variations in the electric field strength and the proportion of light which

couples to the ZPL on the coupling rate. At this point a decision must be made in regards

to whether TE or TM modes are ideal in achieving identical interactions between the spin
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and each of the rotated modes. As a set of rotated WGMs that interact identically with the

antipodal spins is essential in achieving an enhancement to the coupling, the electric fields

of the modes at the poles of the sphere must be invariant under rotations about the z-axis.

This essentially means a set of modes that have predominately r̂ directed electric fields is

required. In the case of the TE modes it was seen in Section 2.3.2.2 that the modes were

linearly polarised in the θ̂ direction. This means that the rotated TE modes are linearly

polarised in the φ̂ direction, so identical interactions between the spins and the rotated

TE modes are not possible. The TM modes, in which the electric field was found to be

partially circularly polarised in the r̂ and φ̂ directions, are now the only remaining option.

In the case of the rotated TM modes, the electric field is partially circularly polarised in

the r̂ and θ̂ directions while the mode also propagates in the θ̂ direction. Consequentially

the “handedness” of this circular polarisation still depends on the direction of propagation

and hence counter propagating modes are orthogonally polarised. A CW propagating mode

will have E ∝ r̂ + iθ̂ while a CCW propagating mode will have E ∝ r̂ − iθ̂. This means

that half of the N rotated modes are partially left hand circularly polarised (σL) while the

other half are right hand circularly polarised (σR), making each mode distinguishable to the

atom. This distinguishability can potentially degrade the enhancement to the coupling rate

as half of the modes (σL) couple to ∆ms = 1 transitions while the other half (σR) couple to

∆ms = −1 transitions.

L
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Figure 2.9: The north pole of the spherical resonator where a single spin (red sphere) is
located. The energy level diagram of the spin is presented where the emission of a π transition into
a super position of σL and σR circularly polarised light is depicted. The two circular polarisations
correspond to two counter propagating fundamental WGMs.
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There are two possible approaches that can be made to re-establish indistinguishability

of the modes and hence the enhancement of the coupling. The first becomes apparent when

considering Fig.2.7. At a specific depth inside of the sphere, the azimuthal, or, in the case of

the rotated modes, polar component of the TM field is negligible while the radial component

reaches a maxima. If the spins are placed at this location they will interact with the N

WGMs identically and hence the coupling strength will benefit from a
√
N enhancement.

The second approach involves the placement of the spins away from the transversal point,

where they will simultaneously interact with counter propagating modes. As mentioned

above, it has been observed that the non-transversal TM fields of the WGMs couple to

degenerate ∆ms = ±1 transitions in an atom, depending on the “handedness” of the mode’s

polarisation, see Fig. 2.9 [100]. If the first spin is initialised in the ms = 0 level of the

optically excited state while the second spin and the resonator are initialised in the ground

state, the excited spin simultaneously couples to both CW (σL) and CCW (σR) WGMs.

This interaction can be described by the Hamiltonian,

ĤI = ~
g√
2

N∑
odd i

(σ̂
(+1)
+ âi + σ̂

(+1)
− â†i ) + ~

g√
2

N∑
even i

(σ̂
(−1)
+ âi + σ̂

(−1)
− â†i ), (2.83)

where σ̂
(±1)
+ /σ̂

(±1)
− denote the atomic raising and lowering operators associated with the

∆ms = ±1 transitions with zero detuning. This Hamiltonian is similar to Eq. 2.22 except

here polarisation dependent coupling is considered. Under these dynamics the ms = 0

optically excited spin will emit π-polarised light into a superposition of the σL (CW) and σR

(CCW) polarised WGMs, see Fig. 2.9. This approach allows for the coupling enhancement

to be achieved at any radial position. However, as shown in Eq. 2.83, a factor of
√

2 decrease

of the collective enhancement occurs as CW and CCW WGMs now couple in pairs to each

spin.

The sensitivity of the enhanced coupling strength to miss-positioning and miss-alignment

of the two antipodal spins must now be taken into account. Such imperfections generate

some level of distinguishability of the modes as they couple with the spins and hence can

reduce the enhancement. There are two sources leading to distinguishability between the

modes. The first stems from the spatial dependence of the electric field intensity. If the two

spins are not located exactly at the antipodes of the resonator the interaction strengths with

the ensemble of modes are no longer homogeneous, due to slight differences in the electric

field intensities presented by each WGM to the spins. In Fig. 2.10a the latitudinal position

dependence on the fundamental WGM field strength is depicted which shows that, in the

case of a 33 µm fused-silica microsphere, the intensity of the TM WGM electric field only
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Figure 2.10: (a) The latitudinal variation of the TM WGM field intensity and (b) of the
polarisation about the maximum intensity. The calculations were performed using a 33 µm fused-
silica microsphere supporting a WGM of wavelength 637 nm.

deviates by ∼ 2% at latitudinal distances ±330 nm away from the field maximum. This

means that no significant decrease in the coupling strength will be observed if the spins are

located within this region, which will be confirmed in Section 2.5. Such precise positioning of

nanodiamonds has been achieved through the use of an AFM tip where nanometre precision

is attainable [106]. Similarly, provided the spin lies within this region, the polarisation of

the modes remain essentially constant, see Fig. 2.10b. If the spin’s dipole moment is not

radially aligned with the electric field (i.e. if d̂ ∝ r̂ + θ̂ + φ̂), there may be coupling to both

the TE and TM modes. Further, the TE modes are not degenerate with the TM modes,

typically ωTM − ωTE ≈THz in the system studied here. This means for small linewidth

spins, if the TM modes are on resonance with the spin, the TE modes are not. The effect

of misalignment is then simply a reduction of the TM field coupling strength by a factor

d̂ · êTM .

Indistinguishability of the WGMs can also be destroyed if scatterers are introduced into

the setup. Here there are two possible scatterers that must be considered. The first is
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the spin itself. The solid state spins discussed above reside within nanodiamond particles

which can be as small as 10 nm in diameter. The second scatterer stems from experimental

requirements in studying spherical WGM resonators. Typically in experiments spherical

WGM resonators are attached to the ends of fibre tips, see Fig.2.2c. The introduction of

such a tip to the proposed setup will cause scattering of any modes which intersect the tip. In

either case, such scattering not only reduces the quality factor of the resonator but also results

in inter-mode coupling. For large scatterers inter-mode coupling can cause an undesired

degeneracy breaking of counter-propagating modes, destroying mode indistinguishability

[107]. If nanodiamonds as small as 10 nm in diameter are considered the effects of inter-mode

coupling can be neglected as the inter-mode interaction strength,

gM = 4πr3
nd

ω

2VM

s′ − 1

s′ + 2
, (2.84)

is small, resulting in negligible detuning between the two counter-propagating modes [76].

Here s′ is that described by Eq.(2.75). In the case of the fibre tip, the degeneracy breaking

can be limited in the proposed WGM-spin setup if the diameter of the tip is smaller then the
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Figure 2.11: The single mode/single spin coupling rate (blue) and the multi-mode/single spin
enhanced coupling rate (red) calculated as a function of sphere radius. The calculations were
performed for a fused silica sphere of refractive index n1 = 1.46 tuned to the ZPL of the NV center
in diamond (637nm) in which the NV center, µ = 2.74 × 10−29 Cm [75], was placed in the center
of the fundamental WGM field maxima with a radially aligned dipole moment.
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width of the fundamental WGM, Dtip < W 1
2

in Eq.(2.81). Typically this condition is met

which means that the setup can be arranged such that inter-mode degeneracy breaking will

only effect two of the N counter-propagating modes [108]. Thus, if the spherical resonator

is attached to a fibre tip the maximal number of identical WGMs is N − 2.

Up until now perfect spherical symmetry has been assumed, however, in realistic exper-

iments oblateness must be considered. In [108] a microsphere with an eccentricity of 0.001

was reported which corresponds to a deviation of less then 1Å in the radius of the sphere.

This small oblateness gives rise to a 100 MHz overall spread of the resonance frequencies of

the WGMs, see Eq. 2.69. To address this issue, a spin with a linewidth large enough to en-

capsulate each of the detuned WGMs must be considered. For a microsphere of eccentricity

0.001 this requires a spin with linewidth γ > 100 MHz. A spin with such a linewidth will

interact with each of the WGMs identically as the resonant frequencies of the modes each

lie within the linewidth of the spin.
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Figure 2.12: Ultra-strong coupling of a single spin to the collection of optical modes as a
function of the microsphere radius (a) n0 photon saturation number; (b) L the visibility of the
vacuum Rabi splitting; (c) P Purcell factor; (d) C Cooperativity. For strong coupling we require
gE > κ, γ; P � 1; L� 1; n0 � 1; C � 1.
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The maximum enhancement that can be achieved for a spin located at the transversal

point can now be calculated. To perform these calculations a radially aligned spin will be

considered, that is, a spin with d̂ · r̂ = 1, which is positioned in the center of the WGM field

maxima (|E|/Emax = 1). As mentioned above the calculations will be made using the optical

transition of the NV center in ND and at low temperatures ξ ≈ 1. Nanodiamonds of radius

rnd = 5 nm and refractive index nnd = 2.42 will be used here as this is typically the smallest

size NDs containing only a single NV center can be, minimising scattering losses. Using

Eq.(2.82) and the fact that gE =
√
Ng, where N is given by Eq.(2.81), coupling strengths

on the order of GHz can be reached using spheres with radii less than 100 µm, see Fig.2.11.

In conjunction with Eq.(2.76) and κ = 2πω/Q these results can also be used to determine

whether or not the strong coupling regime can be reached using the WGM-spin setup and

examine its scalability. To do so, the photon saturation number, n0, cooperativity, C, Purcell

factor, P , and the visibility of vacuum Rabi splitting, L, are plotted as a function of sphere

radius, Fig.2.12, as these parameters are commonly used to analyse strong coupling. These

parameters are useful as n0 describes the number of photons required to saturate the atomic

transition, the cooperativity is a measure of the coupling strength in relation to dissipation

and the Purcell factor denotes the decrease in spontaneous emission due to the Purcell Effect.

The spontaneous emission rate γ of the NV center in a ND ranges between 2π× 10 MHz to

2π × 1 GHz [109], depending on its temperature and internal structure. To ensure each of

the rotated WGMs are encapsulated within this linewidth γ = 2π × 200 MHz was used in

the calculations. The results show that the strong coupling scales very nicely with the radius

of the sphere and that the regime can be easily reached, even with 100 µm radius spheres.

2.5 Numerical Simulations

The theory behind the evolution of a dissipative multi-mode system as well as the interac-

tions between individual spins and an ensemble of WGMs has now been established. By

combining these results it is possible to perform realistic simulations of the proposed WGM-

spin system. In this section the dynamics of several versions of this system will be considered

with the aim to achieve high fidelity transfer of an excitation between two distant spins, or

clusters of spins. To start, the dynamics of the interaction between a single NV center and

an ensemble of identical WGMs will be simulated to demonstrate the enhancement to the

coupling strength the system can achieve at low temperatures. Transfer of an excitation be-

tween two antipodal spins will then be simulated, also at low temperatures, then extended

to consider inhomogeneous coupling and two antipodal clusters.
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To perform these simulations a fused silica microsphere (n1 = 1.46) of radius a = 33 µm

suspended in medium of refractive index n2 = 1 is considered. Through the use of Eq.(2.82)

the coupling strength for such a system can be calculated to give g = 2π × 249 MHz at

low temperatures. Also, it is assumed that the spin is located at the transversal point in

the center of the WGM field maxima, to ensure that it interacts with each of the rotated

WGMs identically. As discussed in the previous section, an NV center in ND with linewidth

γ = 2π × 200 MHz will be considered and the damping rate of a cavity containing a single

ND of radius rnd = 5 nm can be calculated to give κ = 2π × 156 kHz. The dynamics of

the multi-mode/single spin system can be attained by solving Eqs.(2.36, 2.37) for κi = κ,

γi = γ, M = 1 and N = 58, found using Eq.(2.81). To compare against previous work,

where spherical symmetry was deliberately destroyed to assure only a single WGM coupled

to the spin, simulations of the M = N = 1 case are also performed. In the case of zero

detuning Fig.2.13 shows the Rabi-oscillations of the spin occupation at low temperatures

when the spin is coupled to both a single WGM and an ensemble of rotated WGMs. To

perform this simulation the excitation was initialised in the spin, that is, |ψ(0)〉 = |0〉|e〉.
The results clearly show that a much larger Rabi-frequency is achieved in the multi-mode

case compared to the single mode case. This shows that the proposed WGM-spin system

should be able to achieve effective coupling strengths much larger than those achieved in

previous work.

1

0.8

0.6

0.4

0.2

0 0.5 1 1.5 2

Sp
in

 O
cc

u
p

at
io

n
 P

ro
b

ab
ili

ty

Time (ns)

1N

SP 

58N

SP 

(a) (b)

Figure 2.13: (a) The Rabi-oscillations of a spin which is coupled to both a single WGM (red)
and an ensemble of degenerate WGMs (black) where PS = Tr [ρ̂σ̂ee]. There is a clear increase in
the Rabi-frequency between the two cases. Both simulations were performed using the parameters
discussed in the text. A picture of the system is also shown in (b) where the spin (red sphere) is
located at the north pole of the spherical resonator. The black arrows represent each of the rotated
WGMs.
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The next step is to determine whether or not the excitation can be efficiently transferred

between two distant spins. Simulations of this excitation transfer can be performed by

increasing the number of spins in the system to M = 2 and solving Eqs.(2.36, 2.37) in a

similar manner to above. Despite this requiring the introduction of a second, antipodal ND,

the increase in the optical damping rate is negligible. To visualise the excitation transfer the

total spin occupation probability, Tr
[
ρ̂
∑2

i σ̂
i
ee

]
, is plotted in Fig.2.14. In this case the system

was initialised in the state |ψ(0)〉 = |0〉|e1〉, which corresponds to the first antipodal spin

being excited while the second spin, and the N WGMs, are in the ground state. The results of

this evolution show that the excitation is transferred between the two spins, which are located

66 µm apart, with ∼84% fidelity after ∼200 ps. The effect of inhomogeneous WGM-spin

interactions on the enhanced coupling strength were also simulated, Fig. 2.14. In the case of

a randomly sampled 2% decrease in the maximum coupling strength only a minor decrease to

the enhanced coupling strength can be observed. To compare against previous experiments

the effective interactions via a single WGM were also simulated, showing significantly lower

frequency oscillations.
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Figure 2.14: Simulations of the total spin occupation probability, Tr
[(∑M

i σ̂iee

)
ρ̂
]
, for two

antipodal spins coupled to a single WGM (green curve) and an ensemble of WGMs in a fused-silica
resonator with homogeneous/inhomogeneous coupling (black/red curves) and two clusters of 2070
antipodal spins within a diamond resonator (blue curve). The simulations for the silica resonator
were performed using g = 2π × 249 MHz, κ = 2π × 156 kHz, γ = 2π × 200 MHz and a 2% random
coupling inhomogeneity. For the diamond resonator g = 2π × 334 MHz, κ = 2π × 109 kHz and
homogeneous coupling was considered.
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As was seen in Section 2.2.4 an alternative method to achieve higher fidelity transport

of the excitation involves the introduction of many spins into the multi-mode system. This

is because the introduction of M spins results in a further factor of
√
M enhancement to

the coupling strength. Here two antipodal clusters of M/2 identical spins are considered.

The maximum number of spins which can be included in each cluster without the loss of

quantum interference can be approximated by first assuming that each of the spins are

separated by δ = 50 nm, to avoid spin-spin interactions. To assure that the constructive

quantum interference is not lost, the WGM-spin coupling must be identical for each of the

spins, which limits the largest volume the spins can occupy to λ3. The maximum number of

spins in each cluster is then,
M

2
=
λ3

δ3
≈ 2070. (2.85)

However, this requires the placement of two antipodal NDs of volume VND ≈ λ3 inside

the sphere, close to its surface. Introduction of these much larger NDs results in a significant

increase to the optical damping rate and in inter-mode coupling, due to scattering. These

effects can be avoided if a diamond spherical resonator is considered. Here the maximum

number of spins is essentially limited by Eq.(2.85). Simulations are performed in this case

where the system is initialised in the state |ψ(0)〉 =
∑M/2

i=1 |0〉|ei〉, corresponding to the exci-

tation residing within the first cluster. At low temperatures the huge collective enhancement

results in a number of ≥99% fidelity excitation transfers between the two antipodal clusters

within 100 ps, shown in Fig.2.14.

2.6 Conclusion

In this chapter a hybrid quantum system designed to achieve strong coupling between distant

spins was proposed. The proposed system consisted from a spherical WGM resonator in

which spins were placed at the antipodes. It was shown that a spherical resonator of radius

a could be used as a N ∝
√
a degenerate mode cavity, where each of the modes corresponded

to a rotated fundamental WGM. Analogous to the effective enhancement to the coupling

strength achieved in the many spin extension of the JC model, it was shown that the many

mode extension can provide an identical enhancement. However, achieving this enhancement

required that the interaction between the spin and each of the rotated WGMs was identical,

which essentially required that the spin was placed at a specific depth inside the sphere.

Finally, several simulations were performed showing that enhanced coupling strengths on

the order of GHz could be achieved using the WGM-spin system, an order of magnitude

larger than those obtained in previous work. It was then shown that this enhancement could
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be used to efficiently transport excitations between spins separated by almost 100 µm and

that significantly larger coupling strengths could be achieved by considering distant clusters

of spins. When two antipodal clusters were considered the system was capable of achieving

a number of extremely high fidelity excitation transfers. Overall the proposed WGM-spin

system was shown to provide an excellent, experimentally accessible and relatively scalable

platform for achieving strong coupling which is applicable in many quantum technologies.

Further, the results show that the WGM-spin system can be used to construct large, strongly

coupled, cQED arrays in which each spin can be individually addressed with optical light.
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Chapter 3

Deterministic Creation of Cat-States

using Membrane in the Middle

3.1 Introduction

Despite current technological advances, quantum mechanical effects have yet to be observed

outside of the nanoscopic realm. Observation of these effects on larger scale systems have

been intensively pursued since the development of quantum mechanics as they would demon-

strate the existence of quantum mechanical states which reside at the borders of the classical

and quantum worlds. The creation of such ‘macroscopic’ quantum states is currently one

of the most attractive goals in quantum mechanics allowing not only for the direct study of

quantum state collapse models [28] but for their extension to potentially practical applica-

tions in quantum information, metrology, teleportation, cryptography, simulation, and even

to potentially improve understanding of complicated biological processes [55, 110–115].

The most intuitive approach which has been commonly made to observe and study quan-

tum mechanical effects on larger scales involves the up-scaling of systems which are already

known to behave quantum mechanically. In particular, extensive efforts have been made

to upscale the well-known double slit experiment in hope to observe wave like behaviour

of particles much larger than electrons. Such experiments correspond to creating macro-

scopic superpositions, where here, macroscopic can refer to systems comprised from 102 up

to 1010 particles or smaller size systems which exhibit quantum mechanical effects over long

distances [116]. To date, wave like behaviour has been reported with the use of particles

ranging from single atoms all the way to organic molecules containing several hundreds of

atoms [117–119]. Macroscopic quantum tunnelling has also been addressed and observed,

45
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for example in Josephson Junctions [120], though, it is the creation of macroscopic super-

positions and entangled states which is significantly more sought after due to the broader

range of applications. Of particular interest is the creation of states which are analogous to

the famous Schrödinger’s cat state due to both their simplicity and their completely quan-

tum mechanical nature. In the field of quantum optics, photonic forms of the Schrödinger’s

cat state are also studied. These states are commonly referred to as cat states and often

correspond to superpositions between two orthogonal coherent states of the electromagnetic

fields in cavities.

Rydberg atom

Electrode

Ion

Mirror

Light

Laser Light

(a) (b)

Figure 3.1: Experimental setups used by both the Haroche (a) and the Wineland (b) groups
to create quantum states [121]. A cat state was created in (a) by interacting Rydberg atoms with
coherent light. The Rydberg atoms entered the cavity in the state |ψi〉 ∝ |e〉+ |g〉 and the resulting
Stark shift induced a phase on the coherent amplitude of the cavities state. After application of a
π/2 pulse the state of each atom was measured, projecting the cavity into a cat state. The Wigner
function of the resulting cat state is shown in the right half of (a) where negative values depict
the ‘quantumness’ of the state [20]. A Schrödinger’s cat state was created in (b) by initialising
a trapped ion in |ψi〉 and introducing a light field [19]. This caused the ion to be conditionally
displaced depending on its internal state.

Widespread efforts have been made to construct large scale quantum states analogous

to the Schrödinger’s cat state. The main difficulties in the creation of these states stem

from destructive interactions between the quantum system and the surrounding environ-

ment, otherwise known as decoherence. Typically these interactions increase with the size

of the system causing loss of the desired quantum coherence. Of particular interest is under-

standing how spatial quantum superpositions become classical. Such understanding requires

the creation of quantum states that correspond to an object being located in two separate

positions simultaneously. Only few experiments have been conducted which have success-

fully created such states. The most influential were those conducted by the 2012 noble prize

winners, Serge Haroche and David Wineland. The Haroche group conducted an experiment
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which provided significant insights into the effects of decoherence on quantum superposi-

tion states of microwave photons confined within a cavity as these effects were continuously

measured, essentially producing a video of the state decohereing, see right half of Fig.3.1a

[20]. This was the first and, to date, only experiment to provide a real time visualisation of

decoherence. The state which was observed was a coherent superposition state of light, often

referred to as a cat state, as mentioned above. Remarkably, the state of the light field could

be repeatedly measured indirectly, as each measurement was performed on atoms which were

individually entangled with the field, rather than on the cavity field itself, see left half of

Fig.3.1a. While the state created in this experiment is not macroscopic, it still stands as

one of the largest coherent superposition states which has ever been observed. Larger scale

spatially entangled states, however, have been somewhat routinely observed over the past

two decades. The Wineland group was the first to observe quantum entanglement between

an ions spatial position and its internal state. In this experiment the dipole force due to

incident light was exploited to conditionally displace the ion depending on its internal state,

see Fig.3.1b. The spatial displacement between the two ion positions achieved was 83 nm

[19], which also remains one of the largest distances achieved between spatially entangled

states of a single atom. To further study decoherent effects these results have been up-scaled

by entangling up to six trapped ions using similar methods [122–125]. Creation of these

types of quantum states with particles beyond atomic sizes, however, has yet to be achieved

experimentally.

With the intention of creating macroscopic quantum states many researchers have di-

rected their attention towards the field of optomechanics. This field of quantum optics

focuses on the interactions between mechanical oscillators and light. Some of the more com-

mon optomechanical systems which are studied involve cavities that are comprised from two

mirrors, one fixed and one moveable. The radiation pressure force due to the light confined

within the cavity causes the second mirror to move, acting as a mechanical harmonic oscil-

lator. Other types of optomechanical systems consider placing mechanical oscillators within

Fabry-Pérot type optical cavities. Such systems have inherited the name “Membrane in the

Middle” where the mechanical oscillator is referred to as the membrane [126]. Several types

of membranes have been used in such setups, ranging from solid silicon nitride crystalline,

flexible 2D films, through to Bose-Einstein condensates (BEC) [127–129]. There are many

possible variations of these optomechanical setups which have been both studied and used as

a platform for cat state creation [21–29]. Of these, perhaps the most macroscopic proposed

involves a tiny mirror, consisting from 1014 atoms, which acts as a mechanical oscillator.

However, this setup has so far only achieved spatial separations on the order of femtometres

with extremely demanding experimental conditions [21].
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While the creation of cat states can be somewhat guaranteed after entangling the position

of an oscillator with a single photon or qubit, creating such states using larger systems

requires measurement thus making the creation process probabilistic. In this chapter a novel,

completely deterministic method of creating cat states of the position of a macroscopic object

will be proposed. These states will be created by exploiting properties in the optomechanical

Membrane In The Middle (MITM) setup [126]. It will be shown that by controlling the

membrane’s opacity its displacement can be driven at a rate proportional to the number of

photons in the system. This will be achieved by effectively switching the membrane’s opacity

between a highly opaque and a transparent state, as shown in Fig.3.2. This technique will

be used as a mechanism to create and deterministically grow the spatial extent of a quantum

cat state. Before a cat state is produced, however, to ensure that the lifetime of the state

is not limited by the finesse of the optical cavity the scheme requires disentanglement of

the membrane’s final position from the two cavity modes. Disentangling such a state using

the MITM model alone is extremely challenging experimentally, essentially requiring that

the membrane’s opacity is also spatially dependent. Instead, an alternative deterministic

disentanglement protocol will be proposed as the final step in creating the cat state. To

demonstrate the accessibility of the cat state creation scheme a possible experimental setup

Transparent Membrane

Opaque Membrane



Figure 3.2: A depiction of the Membrane in the Middle setup is shown in two separate cases.
The top cavity contains a highly opaque membrane while the bottom contains a transmissive
membrane. The switch represents the control over the membrane’s opacity, where ‘on’ corresponds
to an opaque membrane and ‘off’ to a transmissive membrane.
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using optical frequency light will be discussed. Finally, using a BEC type membrane, it will

be shown that the proposed scheme is capable of creating high fidelity cat states with spatial

displacements of up to ∼ 300 nm using only a small photon occupation.

This chapter is dedicated to proposing a deterministic protocol for macroscopic cat state

creation. To do so, the chapter will be split into four sections. Each section will correspond

to a different process in the cat state creation protocol. As mentioned above the platform

which will be used to generate macroscopic cat states is the MITM model. The first section

of this chapter will focus on the dynamics of this model and the effects of controlling the

membrane’s opacity. Here the theory behind the MITM model will be briefly introduced

then the dynamics of the system in the two different opacity regimes will be studied. The

purpose of this section is to show that the membrane’s position can be driven to achieve

large spatial displacements. It is this driving of the membrane’s position which will be used

to ‘grow’ the cat state. The second section of this chapter will focus on the creation of cat

states using the MITM model. It will be shown that this requires a two step process. The

membrane’s position must first be entangled with the two optical cavity modes and then de-

terministically disentangled to produce a cat state. In this section both the entanglement and

the disentanglement protocols will be discussed. With the theoretical protocol established,

Section 3.4 will be dedicated to proposing a possible experimental platform where effective

control over the membrane’s opacity can be achieved. Here the entire macroscopic cat state

creation protocol will be incorporated into the experiment and a step by step explanation

will be provided. The final section of this chapter will provide numerical simulations of the

membrane’s dynamics for several experimental conditions where the resulting macroscopic

cat states will be visualised through the use of the Wigner function.

3.2 The Membrane in the Middle Model

The overarching goal of this work is to deterministically create a cat state of a mechani-

cal object’s position. As mentioned above one approach which has been previously made

involves the introduction of mechanical oscillators into Fabry-Pérot type cavities (MITM).

Here a similar approach will be made but with the included consideration of controlling the

mechanical oscillator’s opacity. To do this will first require establishing theory to describe

the MITM model. The first half of this section will provide a brief introduction to the MITM

model where the form of the light-matter interactions will be discussed. Next, in the second

half of this section, the effects of controlling the opacity of the membrane will be studied

where two extreme cases will be considered. These cases correspond to either an opaque or
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a highly transmissive membrane. Finally, it will be shown that by alternating between these

two opacity states the spatial displacement of the membrane can be driven.

3.2.1 Introduction to MITM

The Membrane in the Middle model describes an optomechanical system which is comprised

from two degenerate modes of a cavity which interact with a physical membrane that is

confined within the cavity, shown in Fig.3.2. The Hamiltonian for this model can be split

into four main portions. These include; ĤC
0 , describing the self energies of the cavity modes,

ĤM
0 , that of the membrane’s motion, ĤT , which describes the transmission of light through

the membrane and Ĥint the interaction energy. The self energy terms are given by,

ĤC
0 = ~ω

(
â†LâL + â†RâR

)
, (3.1)

ĤM
0 = ~Ωb̂†b̂, (3.2)

where âL/âR denote the annihilation operators of the left/right cavity modes with frequency

ω = ωL = ωR and b̂ that of the membrane’s mechanical motion with frequency Ω. In what

follows optical frequency modes will be focused on, for practical purposes. The transmission

term describes the transfer of photons between the left/right cavity modes through the

membrane. It can be described by,

ĤT = −~J
(
â†LâR + â†RâL

)
, (3.3)

where J is the transmission rate of the membrane. Finally, the interaction term describes the

photon pressure force of the cavity mode photons acting on the membrane. This interaction

requires that the wavelength of the optical modes satisfies λc � l, h, where l/h represent

the membrane’s length/height. The photon pressure force can be expressed as F̂ = −ω
L
x̂â†â,

where x̂ = xZPF (b̂† + b̂) is the position operator of the membrane, xZPF = (~/2mΩ)1/2

the zero point fluctuation amplitude and L is the length of the individual cavities. The

interaction term is then expressed as,

Ĥint = −~g0

(
b̂† + b̂

)(
â†LâL − â

†
RâR

)
, (3.4)

where g0 = ωxZPF/L is the optomechanical coupling strength. The Hamiltonian of the

entire system is now ĤMITM = ĤC
0 + ĤM

0 + ĤT + Ĥint. By noticing that
[
ĤMITM , Ĥ

C
0

]
= 0
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this Hamiltonian can be reduced in the interaction picture of the cavity modes to give,

ĤI = ~Ωb̂†b̂− ~J
(
â†LâR + â†RâL

)
− ~g0

(
b̂† + b̂

)
∆̂, (3.5)

where the difference operator ∆̂ = â†LâL − â
†
RâR has been introduced.

3.2.2 Controlled Transmission in the MITM Model

With the theory behind the MITM model established the effects of controlling the trans-

mission rate, J(t), can be studied. Two extreme cases of J can be considered. The first

corresponds to a highly opaque membrane, in particular when J � g0, Ω. In this case ĤI

approximately reduces to,

Ĥ
(1)
I = ~Ω b̂†b̂− ~g0

(
b̂† + b̂

)
∆̂. (3.6)

This Hamiltonian describes a driven harmonic oscillator where the driving strength is di-

rectly proportional to not only the optomechanical coupling rate but also to the difference in

the photon numbers between the optical modes. In the case where ∆̂ is treated as a classical

number Eq.(3.6) corresponds to harmonic motion about a displaced position, which will be

used to interpret later results. Under the evolution of Ĥ
(1)
I the difference in photon numbers

between the left and right cavities is conserved, as
[
Ĥ

(1)
I , ∆̂

]
= 0, significantly simplifying

the solutions to the Heisenberg equations of motion, see Appendix C. These solutions show,

ignoring dissipative effects, that when starting in an initial state |ψ0〉 = |βM , αL, αR〉, corre-

sponding to the membrane initially in a coherent state βM and the left/right cavity modes

in coherent states αL/αR, the expectation value of the membrane’s position evolves as,

〈x̂〉 =
4g0xZPF

Ω
∆ sin2

(
Ωt

2

)
+ xZPF

(
βM
∗eiΩt + βMe

−iΩt) , (3.7)

where ∆ = |αL|2 − |αR|2. This expectation value shows that if the state of the left and

right cavity modes could be completely interchanged at times satisfying Ωt = π(2n + 1),

the position of the membrane could be driven to even larger spatial extensions, see Fig.3.3

and 3.5. The reason for this is that interchanging the state of the left and right modes

effectively switches the phase on the interaction term in Eq.(3.6), that is, −g0∆ ↔ g0∆.

This results in the achievement of an extra membrane displacement of 4xZPF∆g0
Ω

after

every photon number interchange. One way to interpret the effect of the phase on the

optomechanical driving term is to consider the direction of the membranes displacement. For

example, if the system is initialised in the state |ψ0〉 = |0M , αL, αR〉 with ∆ > 0 the phase on
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the optomechanical driving term is − and the membrane is displaced by 4xZPF∆g0
Ω

in the

positive x direction. Alternatively, if the system is initialised in the state |ψ0〉 = |0M , αR, αL〉
the phase on the driving term will be + and thus the membrane will be displaced by the

same amount, but in the opposite direction. An alternative explanation can be made in the

displaced harmonic oscillator picture to easily visualise the protocol described to increase the

membrane’s maximal displacement. The separate ± phases of the optomechanical driving

term correspond to two separate quadratic potentials which are symmetrically displaced

about the origin, as shown in Fig.3.3. Carefully timing the optomechanical phase switching

to occur when the membrane has reached a maximal displacement in one harmonic potential

is analogous to shifting the membrane to the other, displaced, harmonic potential, where the

potential energy is larger. If this process is repeated by switching the membrane between the

two symmetrically displaced harmonic potentials its energy can sequentially be increased to

achieve larger and larger spatial displacements, Fig.3.3 and 3.5.

(1)ˆ ( )IH 

(1)ˆ ( )IH 

(2)ˆ
IH

(1)ˆ
IH  

“Flip”

( )V x

x0 0 

Figure 3.3: Classical visualisation of driving the membranes displacement by alternating the
system between the two symmetrically displaced potential wells. The horizontal arrows represent
the evolution of the membrane’s position in the high opacity regime, Ĥ(1), while the vertical arrows
represent evolution in the transparent membrane regime, Ĥ(2), or, the flipping of the cavity states.
The sign Ĥ(1)(±) denotes the phase on the optomechanical driving term. Here the system is
initialised in the state |ψ(0)〉 = |0M , αL, αR〉 with ∆ > 0.

In order to drive the displacement of the membrane a method of interchanging the state of
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the left/right cavities must first be established. As this requires the flow of photons through

the membrane, the second limiting case of J will now be considered. That is, the case of an

almost completely transparent membrane. In this case, as J � g0, Ω, the transmissive term

in Eq.(3.5) dominates and the Hamiltonian approximately reduces to,

Ĥ
(2)
I = −~J

(
â†LâR + â†RâL

)
. (3.8)

By again working in the Heisenberg picture the cavity mode operators can be evolved to

give,

âL,R(t) = âL,R(0) cos(Jt) + iâR,L(0) sin(Jt), (3.9)

which shows that at times satisfying Jt = (m + 1
2
)π the left and right modes can be inter-

changed completely. Using the initial state |ψ0〉 = |βM , αL, αR〉 the expectation value of the

mode number operators can now be evolved to give,

〈â†L,RâL,R〉 = |αL,R|2 cos2 (Jt) + |αR,L|2 sin2 (Jt) . (3.10)
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Figure 3.4: The dynamics of the MITM model in both the opaque membrane regime (top)
and transparent membrane regime (bottom). In the opaque membrane regime the membrane’s
oscillation amplitude is directly proportional to the number of photons in the cavity N . The
bottom figure shows that by evolving the system in the transparent membrane regime the number
of photons in each of the cavities can be interchanged. Both results were produced via evolution
of the initial state |ψ(0)〉 = |0M , N, 0〉 for a BEC type membrane in units of mechanical frequency.
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Now that a method of interchanging, or “flipping”, the state of the two cavity modes

has been established the membrane’s displacement can be driven in the manner shown in

Fig.3.3. If the flipping process is repeated NF times, whenever Ωt = π(2n + 1) is satisfied,

the membrane’s maximal displacement will increase linearly with NF . Ignoring dissipative

effects, the unitary evolution can be expressed by,

|ψ(t′)〉 =

NF∏
Û2(t2)Û1(t1)|ψ(0)〉, (3.11)

where Ûi = e−itiĤ
(i)
I /~ with Ωt1 = π(2n+ 1) and Jt2 = (m+ 1

2
)π for arbitrary integers n, m.

Numerical simulations of this evolution will be performed in later sections where the effects

of decoherence will be considered, however, the unitary evolution of the membrane’s position

is shown in Fig.3.5. This evolution will be the basis for both the creation and ‘growth’ of a

cat state.
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Figure 3.5: The dynamics of a BEC type membrane’s position when evolving the initial state
|ψ(0)〉 = |0M , N, 0〉 under the alternating evolution described by Eq.(3.11). Several values of the
photon number, N , were used to demonstrate the displacement increase. The simulations were
performed in units of the mechanical oscillation frequency, Ω, with g0 = 32.8Ω and NFlips =
t/τFlip = tΩ

π .
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3.3 Generation of a Cat State

While a possible mechanism for ‘growing’ the spatial extent of the mechanical cat state has

been proposed, the cat state must first be created. One of the most common approaches to

creating cat states is to first establish entanglement in the system. Once an entangled state

is created there are many protocols which can be used to reduce the entangled state into a

cat state. However, the majority of these protocols require that measurements are made on

the system, projecting it into the cat state. This means that many of these protocols are

completely probabilistic. In this section a similar approach to cat state creation will be made.

The first half of this section will focus on establishing entanglement between the membrane’s

position and the two cavity modes. This entanglement will be produced by preparing the

system in specific states then evolving it in the manner discussed above. Several possible

initial states will be considered with the intention of maximising the spatial displacement

of the membrane’s position. The second half of this section will focus on disentangling the

membrane from the two cavity modes to produce the desired cat state. Here, several possible

disentanglement protocols which do not rely on measurement will be discussed with the use

of the MITM model alone. Finally, an ensemble of atoms will be introduced into the MITM

system to show that a completely deterministic and experimentally feasible disentanglement

protocol is possible.

3.3.1 Initial Conditions

As mentioned above, a common approach to cat state creation is to first establish entangle-

ment. This means that a set of initial conditions must be determined which, when evolved

under Eq.(3.11), leave the system in an entangled state that can be reduced into a cat state.

In the proposed system this requires the generation of quantum entanglement between the

membrane’s position and cavity modes. One possible approach to achieving this entangle-

ment is to initialise the system in a state that corresponds to the membrane in its ground

state while the cavity modes are in a NOON state [130]. In the MITM system the NOON

state corresponds to a quantum superposition of the left cavity containing N photons while

the right is empty and the right cavity containing N photons while the left is empty. The

initial state can be expressed as,

|ψ(0)〉 =
1√
2
|0M〉 (|N, 0〉+ |0, N〉) . (3.12)

By evolving this state through the use of Eq.(3.11) the membrane’s position is simultaneously

evolved under the two potentials depicted in Fig.3.3. After such an evolution the state of
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the system is,

|ψ(tE)〉 = C (|βM , 0, N〉+ | − βM , N, 0〉) , (3.13)

where C is a normalisation constant and βM represents the coherent state amplitude of

the membrane which depends on the number of ‘flips’ which have been applied as well as

the number of photons in the NOON state, N . Typically NOON states are experimentally

difficult to create for N > 2. From Eq.(3.7), it is clear that a large N is required to

achieve large spatial displacements of the membrane. This means that, unless an ultra-small

membrane is considered, an alternative set of experimentally feasible initial conditions is

required.

There are currently two possible alternatives to initialising the cavities in a NOON state.

These include (A) the coherent state analogue of the NOON state, referred to as an entangled

coherent state (EC) and (B) the entangled squeezed-coherent state (ESC) [131, 132]. For

possibility (A): an EC can be produced in the proposed setup by initialising the left cavity in

a coherent superposition state (CSS) and the right cavity in a coherent state then evolving

the system in the highly transmissive regime, Eq.(3.8) [131]. Evolution under Eq.(3.8) for

the correct duration effectively acts as a 50:50 beam splitter on the two input states. If the

two cavities are prepared in the states |ψCSS〉 = NCSS (|α〉+ | − α〉) and |ψC〉 = |α〉 then

evolved under the beam splitter dynamics the state,

|ψEC〉 =B̂
(
π
2

)
|ψCSS, ψC〉, (3.14)

=NCSS

(
|
√

2α, 0〉+ |0,
√

2α〉
)
,

is generated, where NCSS is a normalisation constant and B̂ the beam splitter operator,

B̂(η) = e
η
2 (ĉ1ĉ†2−ĉ

†
1ĉ2), (3.15)

for arbitrary input modes ĉ1 and ĉ2. While this provides a coherent state analogue of

the NOON state, the creation of EC states relies directly on the generation of |ψCSS〉.
Such coherent superposition states have only been demonstrated experimentally with small

coherent amplitudes, |α|2 < 3.5, thus EC initial states with large coherent amplitudes may

be beyond current experimental capabilities [20, 133].

For possibility (B): Entangled squeezed coherent states can also be generated using the

proposed setup, Fig.3.2. An ESC state can be created by preparing the left mode in a

squeezed state and the right mode in a coherent state then evolving the system in the highly

transmissive regime, Eq.(3.8). Both squeezed vacuum states and squeezed single photon

states, corresponding to initialisation with a parametrically down converted photon, have
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been used to demonstrate the creation of such entangled states [134, 135]. The resulting

state can be expressed by,

|ψESC〉 =B̂
(
π
2

)
|ψSq(s), ψC〉, (3.16)

where the squeezed state is defined as |ψSq(s)〉 = Ŝ(s)|0〉 with the squeeze operator,

Ŝ(s) = e
1
2(s∗ĉ2−sĉ†2). (3.17)

The appeal of ESC states is that they strongly resemble high N NOON states where there

is essentially no limit on the size of N . The largest ESC states which have been created

correspond to high NOON states with N ≤ 9 [136]. Thus, although they outperform EC

states, ESC states are still far from the N � 1 NOON-like states that are needed to displace

large membranes. This means that realistically only very light membranes can be considered

in our proposed cat state creation protocol.

3.3.2 Disentanglement

As discussed in the previous section, to produce the desired cat state entanglement must first

be established between the membrane’s position and the cavity modes. This entanglement

can be achieved by initialising the system in the state Eq.(3.12) and performing the evolution

described by Eq.(3.11). However, this evolution leaves the system in the state, Eq.(3.13),

where the membrane’s position is in a completely mixed state. To reduce Eq.(3.13) into a

cat state the membrane’s position must be disentangled from the two cavity modes. Dis-

entangling such states is a very difficult task and it is here that many protocols fail and

become probabilistic. Achieving this disentanglement deterministically will first be studied

using only the MITM setup. An ensemble of atoms will then be introduced into the system

to provide a more practical disentanglement protocol.

At first glance there are two possible approaches to perform the required disentanglement

of the state Eq.(3.13) using only the MITM setup. The first of these approaches involves

simply allowing the N photons to decay from both cavities, potentially evolving the system

into the disentangled state |ψ〉 ∝ (|βM〉+ | − βM〉) |0, 0〉. This approach, however, is flawed

as the membrane is left in a mixed state due to the non-unitary evolution. The second

approach involves conditionally flipping the state of the cavity modes, depending on the

membrane’s position. That is, performing the transformation,

|βM , 0, N〉+ | − βM , N, 0〉
P̂−→ |βM , N, 0〉+ | − βM , N, 0〉, (3.18)
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which could be achieved by the unitary,

P̂ = X̂+ ⊗ ÛFlip + X̂− ⊗ Î , (3.19)

where ÛFlip|βM , 0, N〉 = |βM , N, 0〉, and X̂± =
∑
±x>0 |x〉〈x| are position projection oper-

ators. While this approach has the potential to deterministically disentangle the state, it

essentially requires that the transmission rate of the membrane is also position dependent,

J(t, x), which is extremely experimentally challenging for pico to nano-metre displacements

of the membrane.

As the two disentanglement methods discussed above either fail or are impractical an

alternative disentanglement protocol must now be established. One novel method of dis-

entangling Eq.(3.13) involves the polarisation dependent excitation of M > N three level

atomic systems. Here the idea is to transfer the membrane/cavity mode entanglement to

entanglement between the membrane’s position and the state of the atomic ensemble. Once

this is achieved the entangled membrane/atomic state can be disentangled by manipulating

the atomic ensemble. This entanglement transfer can be achieved if the light in the left/right

cavities is left/right hand (σL/σR) circularly polarised. By quickly introducing an ensemble

of M 3-level atoms into the system the photons in the left/right cavity modes are separately

absorbed into the ms = ±1 excited states of the atoms, see Fig.3.6. This process simultane-

ously removes the photons from both cavities while encoding the state of each cavity into the

ensemble of atoms. To explore the mapping of the entanglement to the atomic ensemble the

case of a single 3-level atom interacting with the σL/σR polarised photons can be considered.

e

g

Figure 3.6: Depiction of the transfer of entanglement from the cavity modes to an ensemble of
atoms. The left and right cavity modes are left/right hand circularly polarised then directed into a
cloud of atoms. Two separate transitions are excited depending on the polarisation, shown above.
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In this case the interaction is described by the Hamiltonian,

ĤI
MLJC = gL

(
âLσ̂

(1)
+ + â†Lσ̂

(1)
−

)
+ gR

(
âRσ̂

(−1)
+ + â†Rσ̂

(−1)
−

)
, (3.20)

where the detuning has been set to zero and σ̂
(1)
± /σ̂

(−1)
± are the atomic raising and lowering

operators associated to the ∆ms = 1/ − 1 transitions with coupling strengths gL/gR. As

discussed in Section 2.2.2 if the interaction strengths are identical this Hamiltonian can be

easily extended to account for M atoms. By incorporating M atoms into the entangled

state, Eq.(3.13), and evolving it under the M -atom extension of Eq.(3.20) for a specific time

t3, ensuring all photons are absorbed, the entanglement is essentially transferred from the

two cavity modes to the M atoms,

|ψ(tE + t3)〉 =
1√

2NE

NE∑
i

(
|βM , 0, 0〉| − 1ie〉+ | − βM , 0, 0〉|1ie〉

)
, (3.21)

where NE = M !/(N !(M − N)!), | ± 1i〉 denotes the ith permutation of the N ms = ±1

magnetic states over the M atoms and the subscripts e, g the optical state, see Fig.3.6. This

evolution requires gL/R � g0,Ω to avoid the effects of the changing photon pressure force on

the membrane. If this condition is not met, the amplitude of the membrane’s oscillation will

decrease due to the decreasing number of photons in the cavity. It is also important to note

here that if the cavity is initialised in an EC state, to maintain determinism, this transfer

of entanglement requires that M > |α|2. The membrane-atom entangled state, Eq.(3.21),

can now be disentangled by applying a π pulse of linearly polarised light to the atoms. As

linearly polarised light is comprised of both left and right hand circularly polarised light,

application of a π pulse will simultaneously send the ms = ±1 state atoms to the ground

state. The remaining M −N atoms will be excited into the ms = 0 optically excited state.

After application of this pulse Eq.(3.21) reduces to,

|ψ(tf )〉 =
1√

2NE

NE∑
i

(
|βM , 0, 0〉|0ie〉+ | − βM , 0, 0〉|0ie〉

)
, (3.22)

which is a pure cat state of the membrane’s position. In this case |0ie〉 denotes the ith

permutation of the M −N ms = 0 optically excited magnetic states over the M atoms.
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3.4 Experimental Realisation

In the previous sections it was shown that, in theory, a cat state of the membrane’s po-

sition can be deterministically created by controlling its transmission rate and selectively

introducing M atoms into the system. The experimental realisation of such control over the

membrane’s opacity has, however, never been demonstrated and the well timed introduction

of M atoms into the system at first glance is seemingly impossible. This section will focus

on addressing each of these problems by proposing an experimental platform in which the

transmission rate of the membrane and the introduction of an ensemble of atoms can be

controlled.

The proposed experiment consists of a multi-cavity system where each cavity is distin-

guished by the polarisation of the light in the system, shown in Fig.3.7. Each of the cavities

are separated through the use of appropriately positioned beam displacers and alternated be-

tween by the activation of Electro-optic quarter wave plates (EOP). For vertically polarised

light, the cavity resembles that of a Fabry-Pérot cavity where the membrane is positioned

in the center. The Fabry-Pérot cavity is shown in Fig.3.7 by red and blue lines, each corre-

sponding to the left/right cavities. This means that if the light in the system is vertically

polarised and the natural transmission rate of the membrane satisfies g0,Ω� J the system

can be described by Eq.(3.6). If the light is horizontally polarised the system corresponds

to a Ring cavity containing the membrane, shown as green in Fig.3.7. In this case the ef-

fective transmission rate of the membrane drastically increases as the light can freely travel

between the left/right cavities and hence the system can be described by the highly trans-

missive Hamiltonian, Eq.(3.8). The evolution described by Eq.(3.11), which is required to

drive the displacement of the membrane, can be realised by alternating between these two

cavities through the activation of the EOPs A and B in Fig.3.7. Introduction of many atoms

into the system can be achieved by introducing a third cavity using a similar technique as

above. At the end of the evolution, Eq.(3.11), the system remains in the high opacity regime.

If at this time the EOPs C and D in Fig.3.7 are activated the system will again resemble a

Ring cavity, but one which contains M atoms as well as the membrane. Provided that the

atoms are each prepared in the optical ground state, ∆ms = ±1 transitions will be excited

as the light of each mode is left/right hand polarised by two separate quarter wave plates,

entangling the membrane with the atomic states.

To create a cat state with the proposed experiment a specific operational protocol must

be followed. Once the system has been initialised in the state Eq.(3.12) with M ground state

atoms the experiment starts with an evolution in the high opacity regime for time t1. This

evolution corresponds to driving the membrane to the maximal possible displacement in the
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Figure 3.7: Proposed experimental configuration for effective control of the membranes opacity
and the disentanglement operation. The three cavities necessary for both the preparation and
disentanglement of the cat state are colour coded. The polarisation associated to each mode is
also shown. The EOPs (A, B) are used to alternate the polarisation of the cavity modes to switch
between the two membrane opacity regimes. EOPs (C, D) are used to introduce atoms into the
system.

initial potential well. At the end of this evolution the EOPs A and B in Fig.3.7 can then

be activated to switch the system into the transparent membrane regime. Evolution in this

regime for time t2 will flip the state of the cavity modes, which corresponds to displacing the

harmonic potential. Deactivating these EOPs will then switch the system back into the high

opacity regime but under a displaced harmonic potential, increasing the potential energy

of the membrane. By evolving again in this regime for time t1, the membrane’s maximal

displacement will increase in accordance with Eq.(3.7). This process can be repeated until

the desired spatial displacement is acquired. Once the desired displacement is achieved the

system will reside in the high opacity regime in the entangled state, Eq.(3.13). In order

to create a cat state, the membrane must now be disentangled from the cavity modes. By
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activating EOPs C and D in Fig.3.7, M atoms can be introduced into the system. Evolving

this combined system for time t3 will transfer the entanglement between the membrane and

the cavity modes to the atoms, as shown in Eq.(3.21). Finally, by application of a linearly

polarised π pulse to the atomic ensemble, a cat state of the membrane’s position can be

produced.
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Figure 3.8: Depiction of the Raman transition which can be applied to the 3-level atomic
system to excite the magnetic levels of the optical ground state, | ± 1g〉, rather than those of the
optically excited state, | ± 1e〉. The interaction strength for each transition is denoted by the
respective g.

As optical transitions are considered in the proposed experiment, application of a π pulse

to the ensemble of 3-level atoms to disentangle the system is quite difficult experimentally.

This difficulty stems from the short lifetimes of the optically excited states, in turn, mak-

ing the disentanglement process experimentally challenging. However, the optically excited

states of the 3-level atoms can be bypassed through the use of a Raman transition. The

atoms can be directly excited into the ms = ±1 levels of the optical ground state by detun-

ing the left/right optical cavity modes from the atomic transition and introducing a similarly

detuned coherent field, depicted in Fig.3.8. This is beneficial as these levels of the optical

ground state are significantly longer lived, allowing for a more practical implementation of

the π pulse to the atomic ensemble. Bypassing the optically excited state requires that both

the left/right optical cavity modes and the classical field are off resonance with the atomic

transition such that the detuning, ∆D, satisfies ∆D � g±, where g± denotes the coupling

strength to the ms = ±1 transitions, shown in Fig.3.8. An effective Hamiltonian for this

process can be derived by time-averaging the dynamics of the system. For an interaction

picture Hamiltonian of the form,

ĤI(t) =
N∑
n=1

ĥne
−∆Dt + ĥ†ne

i∆dt, (3.23)
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the effective Hamiltonian can be expressed as [137],

Ĥeff =
N∑

m,n=1

1

~∆D

[
ĥ†m, ĥn

]
. (3.24)

In the case of a single 3-level atom and a single, left hand circularly polarised optical mode,

shown in the left half of Fig.3.8, the interaction picture Hamiltonian of the system before

time-averaging is,

ĤR
I =

~g+

2
|1e〉〈0g|âe−i∆D +

~g̃+

2
|1e〉〈1g|e−i∆Dt +

~g+

2
|0g〉〈1e|â†ei∆Dt +

~g̃+

2
|1g〉〈1e|ei∆Dt.

(3.25)

An identical Hamiltonian can also be written to describe a right hand circularly polarised

optical mode, corresponding to the ∆ms = −1 transition, depicted in the right half of Fig.3.8.

Through the use of Eq.(3.24) the effective Hamiltonian for a single atom system coupling to

both left and right hand circularly polarised optical modes is ĤR = ĤR
+ + ĤR

− where,

ĤR
± =

~g2
±

4∆

(
| ± 1e〉〈±1e|â±â†± − |0〉〈0|â

†
±â±

)
−

~g̃2
±

4∆
(| ± 1e〉〈±1e| − | ± 1g〉〈±1g|)

+
~g±g̃±

4∆

(
| ± 1g〉〈0|â± + |0〉〈±1g|â†±

)
, (3.26)

with g̃± denoting the coupling rate associated with the transition between the virtual ms =

±1 levels of the optical excited state and ms = ±1 levels of the optical ground state, shown

in Fig.3.8. By following a similar rational to that which was discussed in Section 2.2.2 this

Hamiltonian can be easily extended to account for M atoms.

3.5 Numerical Simulations

Both the theory and a possible experimental realisation of the cat state creation protocol

have now been established. Simulations of the proposed protocol can now be performed to

determine the quality and size of the resulting cat states. In this section numerical simula-

tions of the membrane’s dynamics with the consideration of dissipative effects will first be

performed to show that large displacements of the membrane can be achieved. Throughout

the simulations a BEC consisting of ∼ 105 Rubidium-87 atoms will be used due to its small

mass and its compatibility with the MITM model [128]. The two cavity modes will then be

initialised in a NOON state, Eq.(3.12), to show that, after evolution and application of the

disentanglement protocol, a cat state can be created.
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The dynamics of the system can be simulated by solving the full master equation,

˙̂ρ = − i
~

[
Ĥ(t), ρ̂

]
+ κc

L,R∑
i

(
âiρ̂â

†
i −

1

2
{â†i âi, ρ̂}

)
+ γM

(
b̂ρ̂b̂† − 1

2
{b̂†b̂, ρ̂}

)
, (3.27)

where the time dependence in the Hamiltonian describes the alternation between the two

different opacity regimes, Eq.(3.6) and Eq.(3.8). Here the parameters κc and γM denote the

cavity and mechanical damping rates respectively. Before continuing, it will be assumed

that the mechanical damping rate, γM , is negligible with respect to the optical damping rate

during the time scales that will be considered, γM � κc [129]. By solving Eq.(3.27) with

the initial condition |ψ(0)〉 = |0M , N, 0〉 the driving of the membrane’s displacement can be

demonstrated, see Fig.3.9. To examine the dependence of the photon number difference,

∆, on the maximal displacement, simulations were performed using several experimentally

achievable values of N . A linear increase in the maximal displacement with N , predicted

by Eq.(3.7), can be clearly observed in Fig.3.9 where the mechanical frequency was set to

Ω = 2π× 15.2 kHz, the mechanical coupling rate to g0 = 2π× 0.5 MHz, the cavity damping

rate to κc = 2π × 2.6 kHz [129], with a BEC of mass m = 17.3 ag [128]. The results also
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Figure 3.9: The dynamics of a BEC’s position when the system is initialised in the state
|ψ(0)〉 = |0M , N, 0〉. Several values of the photon number, N , were used and dissipative effects
were considered. The simulations were performed in units of Ω with g0 = 32.8Ω, κc = 0.17Ω and
NFlips = t/τFlip = tΩ

π .
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show that nanometre displacements of the BEC’s center of mass position from the origin can

be attained with only three flips of the two cavity states. While the results show that under

these conditions initialising the cavity modes in small number states is somewhat effective

for displacing the BEC, many more flips are required to achieve large spatial displacements

of bigger membranes. Under these conditions performing more than five flips is not possible

if the cavities are initialised in small number states as, in this case, the cavity damping rate

is on the order of the mechanical frequency (κc ∼ Ω). This means that by the time the

BEC reaches its maximal displacement a significant portion of the photons are lost from the

cavity. The loss of photons from the cavity also produces a short time delay between the

point in which the membrane achieves its maximal displacement and the application of the

flip. This is most easily explained in the displaced harmonic oscillator picture, Fig.3.3. As

the system evolves photons are lost from the cavities causing the center of the two potential

wells to shift towards the origin. This results in the achievement of maximal displacements

at times slightly shorter than those predicted in Eq.(3.7). The times predicted by Eq.(3.7)

were used in these simulations to demonstrate this effect as realistically these short time

delays must be accounted for.

In order to create a cat state of the membrane’s position the cavity must be initialised

in a NOON state, Eq.(3.12). In what follows the cavity will be initialised in a NOON state

with N = 2. Of course, evolving this initial state results in 〈x̂〉 = 0, as the membrane is

simultaneously displaced in both the +x and −x directions. Two approaches will be made

to observe the cat state produced. The first involves the calculation the Wigner function

to observe the ‘quantumness’ of the final state while the second involves calculating the

fidelity between the cat state produced and a corresponding ideal cat state. Beforehand,

however, a simplification can be made to the disentanglement process to increase the effi-

ciency of the simulations. As the time scales of the disentanglement procedure are required

to be significantly shorter than that of the standard evolution which drives the membrane’s

displacement, gL/R � Ω, losses during this procedure will be neglected. This also means

that the disentanglement protocol can effectively be performed by application of the disen-

tanglement unitary described in Eq.(3.19). Simulations of the disentanglement protocol are

essentially those which were performed in Section 2.2.4 where instead only two modes of

light must be considered. A cat state of the membrane’s position can then be produced by

application of the disentanglement unitary after the entire evolution has been made,

P̂ |ψ(tE)〉 ∝ (|βM〉+ |βM〉) |0, 0〉|0g〉⊗M , (3.28)

where |0g〉⊗M describes the state in which all M atoms are in the optical ground state. The
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Figure 3.10: Density plots of the Wigner function for different cavity damping rates, κc. These
simulations were performed using the parameters for a BEC shown above with N = 2 photons in
the system and NFlips = 3. The negativity of the Wigner function shows that the final state is still
a quantum state [138].

resulting Wigner function of the membrane’s state after application of P̂ is presented in

Fig.3.10 for several cavity damping rates. These results show that the final state strongly

resembles that of a typical cat state with decoherent effects similar to those observed by

Haroche, presented in Fig.3.1a. They also show that, if the ratio between the trap frequency

of the BEC and the cavity loss rate can be increased by a factor of ∼10, spatial separations

of up to 300 nm can be achieved between the two center of mass positions of the 105 atom

containing BEC. This is more than double the displacement achieved in the entangled state

analogue where only a single ion was used [19]. To determine the degree of resemblance

between the final state, |ψ(tf )〉, and a typical cat state |ψCat(t)〉 ∝ |βM(t)〉+ | − βM(t)〉, the

fidelity can be calculated,

F (t) = |〈ψCat(t)|ψf〉|2 . (3.29)

The coherent amplitude, βM(t), corresponds to the membrane’s state when evolving |ψ(0)〉 =
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Figure 3.11: The fidelity between the evolved state at each time step with a corresponding
ideal cat state using several cavity dampening rates, κc, and N = 2. The sharp peaks correspond to
evolution in the transparent membrane regime whereas the thicker peaks correspond to an artefact
of disentanglement projector, as the projector is only conditional on position and not momentum.
The fidelity is unity initially as F (t=0) = |〈ψCat(β = 0)|ψ0〉|2 = |〈ψ0|ψ0〉|2.

|0M , N, 0〉 under identical conditions, shown in Fig.C.1 of Appendix C. The results show

(Fig.3.11) that with Ω ≈ κc the cat state is destroyed before the first flip is performed.

Using literature values, Ω/κc ≈ 5, the state partially survives the first cavity state flip [129].

For ideal results, F > 80%, the ratio between the mechanical trap frequency of the BEC

and the cavity loss rate must be increased by a factor of 20 where the cat state survives all

three cavity state flips.
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3.6 Conclusion

In this chapter a hybrid quantum system designed for the deterministic creation of macro-

scopic quantum states was proposed. The system consisted from a BEC type membrane that

was placed inside a Fabry-Pérot type cavity. It was shown that by controlling the opacity

of the BEC its displacement from the origin could be driven at a rate proportional to the

number of photons in the system. This result was then used to produce and essentially grow

the spatial extent of a cat state of the BEC’s position. This required the initialisation of

the two cavities in a NOON like state, which was shown generates entanglement between

the membrane’s position and the cavity modes after the system is evolved. To reduce this

entangled state to a cat state a deterministic disentanglement procedure was proposed which

involved the transfer of the entanglement to an ensemble of atoms. A possible experimental

platform was then proposed which was capable of both controlling the membrane’s opacity

and applying the deterministic disentanglement procedure. Finally, several simulations were

performed showing that large spatial displacements of the BEC could be achieved using

only a small number of photons in the system. Simulations of cat state creation were also

performed which showed that relatively high fidelity cat states could be produced if either

slightly larger mechanical frequencies or slight smaller cavity loss rates than those achieved

in previous experiments could be reached. Overall the proposed cat state creation protocol

provided an experimentally feasible method of deterministically creating cat states signifi-

cantly larger than the majority of previous proposals. Creation of such states are essential

to further the understanding of quantum decoherence and have many potential applications

in a wide range of quantum technologies.



Chapter 4

Conclusions and Outlook

With the growth of quantum science, more and more potential applications of quantum

mechanical effects are being established. As many of these applications show promise in

improving current technologies, significant effort is focused on the implementation of such

effects to develop the technologies of the future. However, to develop such technology,

quantum systems must be constructed which have the ability to generate and manipulate

quantum mechanical states, store and transport quantum information over long distances

and maintain quantum coherence for large system sizes at practical temperatures. This

requires not only a thorough understanding of the mechanisms behind the destruction of

quantum coherence, but for the engineering of versatile quantum systems. Hybrid quantum

systems show potential in meeting these requirements as such systems can be designed to

inherit many advantages from their comprising subsystems. In this thesis two separate

hybrid quantum systems were studied where experimental platforms were proposed to either

construct practical quantum technologies or create macroscopic quantum states for the study

of decoherence.

4.1 cQED with WGM Resonators

One of the most successful approaches to the development of practical quantum systems

involves the study of light-matter interactions (cQED). Here light-matter interactions can

be used to effectively couple distant quantum systems allowing for the creation of quantum

states and the transport of quantum information. However, this requires the strength of

the light-matter interactions to be much larger than any dissipative effects present in the

system which has proven to be very experimentally challenging. In Chapter 2 of this thesis

an alternative approach to achieving strong light-matter interactions was proposed. By

69
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considering the interaction between a single spin and an ensemble of degenerate optical

modes, rather then a single mode and an ensemble of spins, it was shown that optical

coupling strengths several orders of magnitude larger then previous experiments could be

achieved. It was then shown that fused silica spherical resonators provide a relatively scalable

experimental platform for the realisation of such strong coupling allowing for high fidelity

transfer of a single excitation between spins separated by almost 100 µm. A method of

further increasing this coupling was also discussed which required the use of a diamond

spherical resonator. To increase the coupling strength even further there are many pathways

which can now be taken. These pathways involve finding methods to reduce the mode

volume, increase the maximal number of modes the resonator can support, decrease the

scattering of light from the spins and minimise the non-transversal components of the TM

WGM electric field. The WGM-spin model can also be extended to study the dynamics of

a single excitation in one and two dimensional cQED arrays. Such extensions could then be

applied in quantum simulations, computation and teleportation.

4.2 Creation of Macroscopic Quantum States

Quantum mechanical effects have yet to be observed on systems outside of the nanoscopic

realm. As there is currently no fundamental postulate which limits quantum mechanical

effects to such scales, the main limitations are thought to stem from experimentation. One

of the more popular approaches which is made to study how quantum mechanical systems

become classical involves the creation of quantum states of macroscopic objects. However,

many of current protocols for the creation of such states are probabilistic, as they rely on

measurements. In Chapter 3 of this thesis a novel method of deterministically creating

macroscopic quantum states was proposed. It was shown that by controlling the opacity

of a macroscopic membrane, quantum superpositions of its position could be created. By

considering a BEC type membrane, states which corresponded to the BEC being located

at two spatial positions simultaneously were deterministically created, where the separation

between the two positions was as large as 300 nm. Our cat state creation protocol required

the initialisation of the two cavity modes in a NOON state, which limited the maximal spa-

tial separation as only a small number of photons could be considered. Further work could

focus on developing alternative initial conditions and approaches which could be used to

achieve much larger spatial separations. Our protocol also required a method of determinis-

tically disentangling the state of the system. While a possible disentanglement protocol was

proposed, future work could focus on an alternative means of disentanglement. Alternative
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types of membrane’s could also be considered to suggest different systems which can be used

to study the transformation between the quantum and classical realms.
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Appendix A

Solving the Multi-Mode

Tavis-Cummings Model

A.1 The Single Excitation Basis

Simulating the dynamics of an N -mode M -spin Jaynes-Cummings system with the inclusion

of dissipative effects can be extremely computationally demanding. In this section an alter-

native approach to the evolution of such a system will be considered and proved equivalent

to the standard master equation approach. The Hamiltonian which describes the N -mode

M -spin Jaynes-Cummings model can be expressed as,

ĤMMTC = ~
N∑
i=1

ωiâ
†
i âi +

1

2
~

M∑
i=1

Ωiσ̂
i
z + ~g

M∑
j=i

N∑
i=1

(
σ̂j+âi + σ̂j−â

†
i

)
. (A.1)

Typically, evolution of this system with the inclusion of dissipative effects requires solving

the full master equation,

˙̂ρ = − i
~

[
ĤMMTC , ρ̂

]
+

M∑
k=1

γk
[
σ̂k−ρ̂σ̂

k
+ − 1

2

[
σ̂k+σ̂

k
−, ρ̂
}]

+
N∑
i=1

κi

[
âiρ̂â

†
i + 1

2

{
â†i âi, ρ̂

}]
, (A.2)

where γk denotes the spontaneous emission rate of the kth spin and κi the damping rate of

the ith mode. An alternative approach to the evolution of this system involves solving the

Schrödinger equation with the non-Hermitian Hamiltonian,

ĤC = ~
N∑
j=1

(
ωj −

i

2
κj

)
â†j âj +

~
2

M∑
j=1

(
Ωjσ̂

j
z − iγjσ̂jee

)
+ ~g

M∑
j=1

N∑
k=1

(
σ̂j+âk + σ̂j−â

†
k

)
. (A.3)
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However, as a consequence of this non-Hermiticity, probability is not conserved under such

an evolution. To prove that the dynamics obtained using this alternative approach are

equivalent to that achieved by solving Eq.(A.2) the model must be restricted to the single

excitation basis,

|0〉|ek〉 ≡ |01, ..., 0N〉|g1, g2, ..., gk−1, ek, gk+1, ..., gM〉, (A.4)

|1k〉|g〉 ≡ |01, 02, ..., 0k−1, 1k, 0k+1, ..., 0N〉|g1, ..., gM〉, (A.5)

|0〉|g〉 ≡ |01, ..., 0N〉|g1, ..., gM〉. (A.6)

In this basis the excitation can be kept track of as here it is possible to assume that any loss

of probability is associated with the system evolving into the ground state |0〉|g〉. To begin

the proof of equivalence the basis states will be relabelled as,

|k〉 ≡ |1k〉|g〉, (A.7)

|N + k〉 ≡ |0〉|ek〉, (A.8)

|0〉 ≡ |0〉|g〉. (A.9)

Now, in terms of the conditional Hamiltonian, the master equation becomes,

˙̂ρ = −i
[
ĤC ρ̂− ρ̂Ĥ†C

]
+

N∑
j=1

κj âj ρ̂â
†
j +

M∑
j=1

γjσ̂
j
−ρ̂σ̂

j
+ = L̂C ρ̂+ Ĵ ρ̂, (A.10)

where the superoperators L̂C and Ĵ are given by,

L̂C ρ̂ = −i
[
ĤC ρ̂− ρ̂Ĥ†C

]
and Ĵ ρ̂ =

N∑
j=1

Ĵj ρ̂, (A.11)

with,

Ĵj ρ̂ = κj âj ρ̂â
†
j and ĴN+j ρ̂ = γjσ̂

j
−ρ̂σ̂

j
+. (A.12)

For an arbitrary initial state containing only a single excitation, the density operator is,

ρ̂(0) =
N+M∑
j1,j2=1

ρj1j2|j1〉〈j2|. (A.13)
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The action of L̂C on the initial state, ρ̂(0), will evolve it into the state,

ρ̂(t) = eL̂Ctρ̂(0) =
N+M∑
j1,j2=1

ρj1j2(t)|j1〉〈j2|, (A.14)

while eL̂Ct|0〉〈0| = |0〉〈0|. Also, the action of Ĵ on the density operator is,

Ĵ ρ̂ =

(
N+M∑
j=1

ρjjΓj

)
|0〉〈0|, (A.15)

where,

Γj =

κj for j ≤ N,

γj for N < j ≤ N +M,
(A.16)

and Ĵ |0〉〈0| = 0. By considering the properties of the superoperators, eL̂Ct|0〉〈0| = |0〉〈0|
and Ĵ |0〉〈0| = 0, it is clear that the formal solution to the master equation,

ρ̂(t) = eL̂Ctρ̂(0)+

∫ t

0

dt1e
L̂C(t−t1)Ĵ eL̂Ct1 ρ̂(0)+

∫ t

0

dt2

∫ t2

0

dt1e
L̂C(t−t1)Ĵ eL̂C(t2−t1)Ĵ eL̂Ct1 ρ̂(0)+...

(A.17)

terminates after the second term. This reduces the formal solution to,

ρ̂(t) = eL̂Ctρ̂(0) +

∫ t

0

dt1e
L̂C(t−t1)Ĵ eL̂Ct1 ρ̂(0), (A.18)

which, after substitution of Eqs.(A.14, A.15), can be expressed as,

ρ̂(t) = eL̂Ctρ̂(0) + |0〉〈0|
∫ t

0

N+M∑
j=1

Γj〈j|eL̂Ct1 ρ̂(0)|j〉. (A.19)

Finally, by taking the trace of the above equation and direct substitution into Eq.(A.19) it

can be shown that,

ρ̂(t) = eL̂Ctρ̂(0) + |0〉〈0|
(

1− Tr
[
eL̂Ctρ̂(0)

])
, (A.20)

and hence 〈j1|ρ̂(t)|j2〉 = 〈j1|ρ̂c(t)|j2〉 for j1, j2 6= 0. This proof was originally performed in

collaboration with Dr James Cresser for the Tavis-Cummings model. It was then indepen-

dently extended to account for N modes.
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A.2 Evolution of Multi-Mode TC Model

In this section the multi-mode Tavis-Cummings Hamiltonian, Eq.(A.3), will be expressed

in the interaction picture and the Schrödinger equation will be solved. To attain a time

independent interaction picture Hamiltonian, Eq.(A.3) must be expressed in terms of two

commuting components, ĤC = Ĥ0
C + Ĥ1

C . One convenient arrangement is,

Ĥ0
C = ~ω̄

(
N∑
j=1

ωj
ω̄
â†j âj +

M∑
j=1

M∑
j=1

σ̂jee

)
+ ~

M∑
j=1

(
Ωj

2
− iγj

2
− ω̄

)(
σ̂jee + σ̂jgg

)
(A.21)

Ĥ1
C = −~

M∑
j=1

(
Ωj − i

γj
2
− ω̄

)
σ̂jgg − i

~
2

N∑
j=1

κj â
†
j âj + ~g

M∑
j=1

N∑
k=1

(
σ̂j+âk + σ̂j−â

†
k

)
, (A.22)

where ω̄ is the average of all the mode frequencies. As
[
Ĥ0
C , Ĥ

I
C

]
= 0, the interaction picture

Hamiltonian is then,

ĤI
C = eiĤ

0
Ct/~Ĥ1

Ce
−iĤ0

Ct/~ = Ĥ1
C . (A.23)

In the previous section it was shown that the system can be evolved by solving the

Schrödinger equation. This requires a general state which describes only a single excitation

in the system. Such a state can be written as,

|ψ(t)〉 =
N∑
k=1

αk(t)|0〉|ek〉+
N∑
k=1

Ck(t)|1k〉|g〉. (A.24)

Substitution of Eqs.(A.22, A.24) into the Schrödinger equation yields,

i~
M∑
k=1

α̇k(t)|0〉|ek〉+ i~
N∑
k=1

Ċk(t)|1k〉|g〉 = ĤI
C |ψ(t)〉. (A.25)

Calculation of the right hand side of Eq.(A.25) is a little cumbersome and hence will be split

into two parts. The first corresponds to the expansion of the first two terms in Eq.(A.22),[
−~

M∑
j=1

(
Ωj − i

γj
2
− ω̄

)
|g〉jj〈g| − i

~
2

N∑
j=1

κj â
†
j âj

]
|ψ(t)〉 =

−~
M∑
j=1

(
Ωj − i

γj
2
− ω̄

) M∑
k=1

αk(t)|0〉|ek〉+ ~
M∑
k=1

(
Ωk − i

γk
2
− ω̄

)
αk(t)|0〉|ek〉 (A.26)

−~
M∑
k=1

(
Ωk − i

γk
2
− ω̄

)( N∑
j=1

Cj(t)|1j〉|g〉

)
− i~

2

N∑
k=1

Ck(t)|1k〉|g〉,
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while the second corresponds to the expansion of the final term in Eq.(A.22),[
~g

M∑
j=1

N∑
k=1

(
σ̂j+âk + σ̂j−â

†
k

)]
|ψ(t)〉 = ~g

M∑
j=1

αj(t)
N∑
k=1

|1k〉|g〉+ ~g
N∑
j=1

Cj(t)
M∑
k=1

|0〉|ek〉.

(A.27)

Combining Eqs.(A.26, A.27) and equating both sides of Eq.(A.25) produces a set of coupled

first order differential equations,

iα̇k(t) = −
M∑
j=1

(
Ωj − i

γj
2
− ω̄

)
αk(t) +

(
Ωk − i

γk
2
− ω̄

)
αk(t) + g

N∑
j=1

Cj(t), (A.28)

iĊk(t) = −
M∑
j=1

(
Ωj − i

γj
2
− ω̄

)
Ck(t)− i

κk
2
Ck(t) + g

M∑
j=1

αj(t), (A.29)

which can be efficiently solved numerically with large values of N and M .

A.3 Simulations

The simulations performed throughout Chapter 2 were done so by solving Eqs.(A.28, A.29)

using MATLAB. In this section the MATLAB code used will be presented. The code is

structured in the following manner: all relevant parameters are first defined, arrays and

integration settings are prepared, the integration is performed by calling the function sys-

temofode which stores Eqs.(A.28, A.29) and finally the results are sorted and stored for

plotting.

To ensure consistency between the relevant parameters in the MATLAB notebook and

those in the systemofode function these parameters are set as global variables.

global Nm Na g deltas freqsum kappas gammas

Next, all relevant physical constants and system parameters are introduced. Here the number

of modes is labelled Nm and the number of spins Na. If two antipodal clusters containing

in total Na spins are considered then each cluster contains M =Na/2 spins.

% Input physical constants

c = 2.99*10^8;

% Setup realistic system parameters (calculated using WGM code)

greal =1.57*10^9; % Coupling Strength

kappareal = 982354; % Cavity Damping Rate
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wareal = 2*pi*c/(637*10^-9); % Spin Resonance Frequency

wcreal = wareal; % Cavity Resonance Frequency

gammareal = 4*pi*10^7; % Spontaneous Emission Rate

scale = greal; % Scaling Parameter

% Setting up the model parameters and scale

Nm=58; Na = 10; g=greal/scale; kappa=kappareal/scale; wa=wareal/scale;

gamma=gammareal/scale; wc = wcreal/scale; M = Na/2;

For the consideration of distinguishable spins/modes several arrays are then constructed to

produce Gaussian distributed resonance frequencies and damping rates.

% Standard deviation for Gaussian distributions

sigmaA=0; % Standard deviation for spin frequencies

sigmaM=0; % Standard deviation for mode frequencies

sigmaDA=0; % Standard deviation for spin damping coefficients

sigmaDM=0; % Standard deviation for mode damping coefficients

% Construct frequency and dissipation arrays

atomfreqs=ones(Na,1)*wa;

modefreqs=ones(Nm,1)*wc;

gammas=ones(Na,1)*gamma;

kappas=ones(Nm,1)*kappa;

atomfreqs=atomfreqs+sigmaA*randn([size(atomfreqs),1]);

modefreqs=modefreqs+sigmaM*randn([size(modefreqs),1]);

gammas=gammas+sigmaDA*randn([size(atomfreqs),1]);

kappas=kappas+sigmaDM*randn([size(modefreqs),1]);

To more efficiently solve Eqs.(A.28, A.29) the average of the cavity resonance frequencies as

well as the rate summations are pre-calculated.

% Calculate average frequency \bar{omega}

Mfreqavg = mean(modefreqs);

% Setup array containing wa -igamma -omegabar for each gamma/wa

deltas = atomfreqs - Mfreqavg-1i*gammas./2;

delta = atomfreqs - Mfreqavg;

freqsum=sum(delta(1:end));
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Next, different sets of initial conditions are generated which are selected based on the desired

simulation.

% Generate inital conditions

inits=zeros(1,Nm+Na); % Base array

initC = inits;

initA = inits;

% Initialise excitation in the cavity when there is 1 mode and N spins.

initC(Na+1) = 1;

% Initialise excitation in the spin when there is 1 spin and N modes.

% Also used when two antipodal spins are considered.

initA(1)=1;

% Initialise excitation within one of the antipodal clusters of M spins.

Asup = inits;

for i = 1:M

Asup(i)=1/sqrt(M);

end

The final preparations which are made regard the integration. To do so, the desired initial

condition is selected and the integration properties are defined.

% Selecting initial conditions and integration accuracy.

init=Asup;

acccc=1e-5;

options = odeset(’RelTol’,acccc,’AbsTol’,acccc);

% Setting up integration between single time steps

dt=0.005; % Integration time step.

tf=5;ti=0; % Initial and final times of the simulation.

Nsteps = tf/dt; % Number of Integration iterations

ysave =zeros(Nsteps,Nm+Na); % Array to store integral results

ysave(1,:)=init; % Setting the initial condition

time = zeros(Nsteps,1); % Array to store time

grnd = zeros(Nsteps,1); % Array to store grnd state prob. amp.

With all required preparations made, Eqs.(A.28, A.29) are then solved using MATLAB’s

ode113 equation solver. The integration is broken into Nsteps steps in order to calculate the

probability associated to evolution of the system into the ground state.
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% Integration loop, integrates between t and t+dt each time

for steps=1:Nsteps

time(steps+1,1)=dt*steps;

% Integrate the ode’s between one time step

[t,y]=ode113(’systemofode’,[time(steps,1) time(steps+1,1)],init,options);

% Set the initial condition for the next integral

init=y(end,:);

% Store the result of each integral

ysave(steps+1,:) = y(end,:);

% Store probability lost -> Prob. Amp. of Ground state |0,g>

grnd(steps+1) = sqrt(1 - (sum(abs(y(end,:)).^2)));

end

Finally, the results of the integration are sorted and stored before plotting.

atoms = 0;

prest = 0;

% Save probability the excitation resides in the spins.

for k=1:Nsteps+1,

atoms(k)=sum((abs(ysave(k,1:Na)).^2));

end

% Save probability the excitation resides in 1st cluster of the spins.

for k=1:Nsteps+1,

atomC1(k)=sum(abs(ysave(k,1:M)).^2);

end

% Save probability the excitation resides in 2nd cluster of the spins.

for k=1:Nsteps+1,

atomC2(k)=sum(abs(ysave(k,M+1:Na)).^2);

end

% Save probability the excitation resides in the modes.
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for k=1:Nsteps+1,

prest(k)=sum((abs(ysave(k,Na+1:end)).^2));

end

% Convert the integration time into nanoseconds.

f = sqrt(Nm*Na)*greal/pi/2;

Tr = 1/f;

ft = 2*sqrt(Nm*Na)/2;

Tt = (2*pi)/ft;

conv = Tr/Tt;

timeNS = conv*time*10^9; % Time in nanoseconds.

The code defining the systemofode function which stores Eqs.(A.28, A.29) is given below.

function dy = systemofode(t,y)

global Nm Na g freqsum deltas kappas

dy = zeros(Nm+Na,1);

dy(1:Na) = -1i.*(deltas(1:Na)).*y(1:Na)+...

1i.*freqsum.*y(1:Na)-1i.*g.*sum(y(Na+1:end));

dy(Na+1:end) = 1i.*freqsum.*y(Na+1:end)-...

kappas(1:Nm).*y(Na+1:end)./2 -1i.*g.*sum(y(1:Na));

end

This function can be easily extended to consider inhomogeneous coupling rates, gi.
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Appendix B

More on Whispering Gallery Modes

B.1 Alternative Form of WGM Fields

In spherical co-ordinates the solutions to the vectorial Helmholtz equation can be expressed

in terms of Vector Spherical Harmonics (VSH). The TM and TE solutions, in terms of VSHs,

are,

ETM
qlm (r, θ, φ) =

1

kn(r)

[
∂

∂r
Rql(r)Ylm(θ) +

1

r
Rql(r)Zlm(θ)

]
, (B.1)

ETE
qlm(r, θ, φ) = Rql(r)Xlm(θ), (B.2)

where Xln,Yln and Zln are VSHs given by,

Xlm(θ, φ) =
im

sin θ
Y m
l (θ, φ)êθ −

∂

∂θ
Y m
l (θ, φ)êφ, (B.3)

Ylm(θ, φ) = êr ×Xlm(θ, φ), (B.4)

Zlm(θ, φ) = l(l + 1)Y m
l (θ, φ)êr, (B.5)

and Y m
l denote spherical harmonics with polar and azimuthal mode numbers l and m.

B.2 Computation of the Modes

The calculations of the WGM electric fields along with other factors discussed in Sections

2.3 and 2.4 were performed in Mathematica. In this section the Mathematica code will

be presented in a manner that will allow for straight forward reproduction of the results.

This code is structured as follows: all relevant physical constants and system parameters are
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defined, functions are then defined for the calculation of desired parameters and a sample

figure is produced.

Setup Physical Constants;

c = 2.99*10^8; (* Speed of light in m/s *)

\[Mu] = 2.74*10^-29; (* in C m *)

hbar = 1.055*10^-34; (* in J s*)

\[Epsilon]0 = 8.85*10^-12; (* in F m*)

nSil = 1.46071; (* refractive index of Silica *)

nAir = 1; (* Refractive index of Air *)

nWater = 1.33372; (* Refractive index of Water *)

nDia = 2.419; (* Refractive index of Diamond *)

Setup system parameters;

a = 33; (* Radius of the sphere in microns *)

nIn = nSil; (* Refractive index of the sphere *)

nMed = nAir; (* Refractive index of suspending medium *)

\[Alpha]s = 2; (* Attenuation of fused silica in dB km^-1 *)

\[Sigma]s = 0.2; (* Surface roughness in nm *)

Ls = 5; (* correlation length in nm *)

\[Lambda]zpl = 637; (* Zero-phonon line wavelength of NV in nm *)

kzpl = (2 \[Pi])/\[Lambda]zpl; (* ZPL wavenumber *)

\[Gamma]dia = 4 Pi 10^7; (* Spont. emission rate for NV *)

The next segment of code generates functions which approximate the fundamental WGM

mode numbers and the roots of the resonance condition discussed in Section 2.3.1.2. This

method of mode number calculation was originally performed in [139].

SchillerExpansion[n1_, n2_, q_, x_] := (x n2 )/n1 - (

AiryAiZero[q] x^(1/3))/(

2^(1/3) n1/n2) - (n2/n1)^2 1/Sqrt[-1 + (n1/n2)^2] + (

3 AiryAiZero[q]^2)/(

10 2^(2/3) (n1/n2) x^(1/3)) - (2^(2/3) AiryAiZero[q])/(

3 (-1 + (n1/n2)^2)^(3/2) x^(2/3)) (n1/n2)^2 (n2/n1)^6 +

AiryAiZero[q] /(

2^(1/3) (-1 + (n1/n2)^2)^(3/2) x^(2/3)) (n1/n2)^2 (n2/n1)^2;

SchillerExpansionTE[n1_, n2_, q_, x_] := (x n2 )/n1 - (

AiryAiZero[q] x^(1/3))/(2^(1/3) n1/n2) - 1/Sqrt[-1 + (n1/n2)^2] + (
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3 AiryAiZero[q]^2)/(

10 2^(2/3) (n1/n2) x^(1/3)) - (2^(2/3) AiryAiZero[q])/(

3 (-1 + (n1/n2)^2)^(3/2) x^(2/3)) (n1/n2)^2 +

AiryAiZero[q] /(2^(1/3) (-1 + (n1/n2)^2)^(3/2) x^(2/3)) (n1/n2)^2;

Mmode[n1_, n2_, q_, rad_, \[Lambda]_] :=

Round[(x /.

FindRoot[(2 Pi n2 rad)/

SchillerExpansion[n1, n2, q, x] == \[Lambda] 10^-3, {x,

300}]) - 0.5]

zTM[n1_, n2_, q_, rad_, \[Lambda]_] :=

N[SchillerExpansion[n1, n2, q,

Mmode[n1, n2, q, rad, \[Lambda]] + 0.5]];

zTE[n1_, n2_, q_, rad_, \[Lambda]_] :=

N[SchillerExpansionTE[n1, n2, q,

Mmode[n1, n2, q, rad, \[Lambda]] + 0.5]];

Next the spherical Bessel functions and their derivatives are introduced along with the

integration constant B in Eq.(2.57) which is labelled here as A. Mathematica’s FindRoot

function is then utilised to more accurately approximate the resonance wavenumber and the

frequency of the WGM, also performed originally in [139].

Bessel Function Setup;

j[l_, z_] := SphericalBesselJ[l, z];

y[l_, z_] := SphericalBesselY[l, z];

dj[l_, z_] := (D[SphericalBesselJ[l, x], x] /. x -> z);

dy[l_, z_] := (D[y[l, x], x] /. x -> z);

A[nI_, nM_, rad_, k_, M_] := j[M, nI k rad] /y[M, nM k rad]

Calculation of resonances;

kTM[nI_, nM_, q_, rad_, M_, \[Lambda]_] :=

k /. FindRoot[

nM/nI dj[M, nI k rad]/j[M, nI k rad] -

dy[M, nM k rad]/y[M, nM k rad] == 0 , {k,

zTM[nI, nM, q, rad, \[Lambda]]/rad/nM}]
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kTE[nI_, nM_, q_, rad_, M_, \[Lambda]_] :=

k /. FindRoot[

nI/nM dj[M, nI k rad]/j[M, nI k rad] -

dy[M, nM k rad]/y[M, nM k rad] == 0 , {k,

zTE[nI, nM, q, rad, \[Lambda]]/rad/nM}]

\[Omega]kTM[nI_, nM_, q_, rad_, M_, \[Lambda]_] :=

kTM[nI, nM, q, rad, M, \[Lambda]] 10^6*c

\[Omega]kTE[nI_, nM_, q_, rad_, M_, \[Lambda]_] :=

kTE[nI, nM, q, rad, M, \[Lambda]] 10^6*c

A function which calculates the radial portion of the WGM electric field is then defined.

This function is then used to define functions which calculate the individual electric field

components of the WGM using Eqs.(B.1, B.2).

Radial Function;

Ri[nI_, rad_, k_, M_, r_] := j[M, nI k r]

Ro[nI_, nM_, rad_, k_, M_, r_] := A[nI, nM, rad, k, M] y[M, nM k r]

R[nI_, nM_, rad_, k_, M_, r_] :=

With[{x = Evaluate[Ri[nI, rad, k, M, r]],

y = Evaluate[Ro[nI, nM, rad, k, M, r]]}, If[r < rad, x, y]]

E Field Calculation Setup;

nr[r_] := If[r < a, nIn, nMed];(* Refractive index of the Sphere *)

dRtm[nI_, nM_, rad_, k_, M_, r_] :=

D[R[nI, nM, rad, k, M, x], x] /. x -> r

X [l_, m_, \[Theta]_] := {0,

I m/Sin[\[Theta]] SphericalHarmonicY[l, m, \[Theta], 0],

D[SphericalHarmonicY[l, m, x, 0], x] /. x -> \[Theta]}

Z[l_, m_, \[Theta]_] := {l*(l + 1)*

SphericalHarmonicY[l, m, \[Theta], 0], 0, 0}

Y[l_, m_, \[Theta]_] := Cross[{1, 0, 0}, X[l, m, \[Theta]]]

E Field Functions;

ETM[r_, \[Theta]_, nI_, nM_, rad_, k_, M_] :=

1/(k nr[r]) (Y[M, M, \[Theta]] dRtm[nI, nM, rad, k, M, r] +

1/r R[nI, nM, rad, k, M, r] Z[M, M, \[Theta]])
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AbsETMR[r_, \[Theta]_, nI_, nM_, rad_, k_, M_] :=

Abs[ETM[r, \[Theta], nI, nM, rad, k, M][[1]]]

AbsETM\[Theta][r_, \[Theta]_, nI_, nM_, rad_, k_, M_] :=

Abs[ETM[r, \[Theta], nI, nM, rad, k, M][[2]]]

AbsETM\[Phi][r_, \[Theta]_, nI_, nM_, rad_, k_, M_] :=

Abs[ETM[r, \[Theta], nI, nM, rad, k, M][[3]]]

ETE[r_, \[Theta]_, nI_, nM_, rad_, k_, M_] :=

R[nI, nM, rad, k, M, r] X [M, M, \[Theta]]

AbsETER[r_, \[Theta]_, nI_, nM_, rad_, k_, M_] :=

Abs[ETE[r, \[Theta], nI, nM, rad, k, M][[1]]]

AbsETE\[Theta][r_, \[Theta]_, nI_, nM_, rad_, k_, M_] :=

Abs[ETE[r, \[Theta], nI, nM, rad, k, M][[2]]]

AbsETE\[Phi][r_, \[Theta]_, nI_, nM_, rad_, k_, M_] :=

Abs[ETE[r, \[Theta], nI, nM, rad, k, M][[3]]]

Next, functions are defined to approximate the mode volume, quality factor, light-matter

coupling strength gi, inter-mode coupling strength gm, maximum number of modes Nmodes

and the cQED parameters discussed in Section 2.4.

Mode Volume;

Vmode[n1_, n2_, a_, \[Lambda]_] :=

3.4 Pi^(3/2) ((\[Lambda]*10^-9)/(2 Pi n1))^3 Mmode[n1, n2, 1,

a, \[Lambda]]^(11/6) (* Approximation *)

WGM Quality Factor and Loss Rate;

Qscat[nI_, nM_, nScat_, q_, rad_, radscat_, \[Lambda]_,

Nscat_] := (6 Pi nI Vmode[nI, nM,

rad, \[Lambda]])/(8 Pi Nscat (\[Lambda] 10^-9) (kTM[nI, nM, q,

rad, Mmode[nI, nM, q,

rad, \[Lambda]], \[Lambda]] 10^6)^4 nM (radscat 10^-9)^6 ((

nI/nScat - 1)/(nI/nScat + 2))^2)

Q[nI_, nM_, rad_, \[Lambda]_, \[Alpha]_, \[Sigma]_, L_, nScat_,

radscat_, q_,

Nscat_] := (((\[Lambda]*10^-9) \[Alpha])/(2 \[Pi] nI 4.3 10^3) + (
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8 \[Pi]^2 (\[Sigma]*10^-9)^2 (L*10^-9)^2)/(

3 (\[Lambda]*10^-9)^4 Mmode[nI, nM, 1, rad, \[Lambda]]^(1/3)) +

Qscat[nI, nM, nScat, q, rad, radscat, \[Lambda], Nscat]^-1)^-1

gM[nI_, nM_, nScat_, \[Lambda]_, radscat_, rad_] := (

4 Pi (radscat 10^-9)^3 ((nI^2 - nScat^2)/(nI^2 + 2 nScat^2)))/(

2 Vmode[nI, nM, rad, \[Lambda]]) (2 Pi c)/(\[Lambda] 10^-9)

\[Kappa]appa[nI_, nM_, q_, rad_, \[Lambda]_, \[Alpha]_, \[Sigma]_, L_,

nScat_, radscat_, Nscat_] :=

2 Pi \[Omega]kTM[nI, nM, q, rad,

Mmode[nI, nM, q, rad, \[Lambda]], \[Lambda]]/

Q[nI, nM, rad, \[Lambda], \[Alpha], \[Sigma], L, nScat, radscat, q,

Nscat]

cQED Parameters;

gi[nI_, nM_, q_,

rad_, \[Lambda]_] := \[Mu] Sqrt[\[Omega]kTM[nI, nM, q, rad,

Mmode[nI, nM, q, rad, \[Lambda]], \[Lambda]]/(

2 hbar \[Epsilon]0 Vmode[nI, nM, rad, \[Lambda]])]

Nmodes[r_] :=

N[2*\[Pi]*

Sqrt[Mmode[nIn, nMed, 1, r, \[Lambda]zpl]]/(2*Sqrt[2*Log[2]])]

gE[nI_, nM_, q_, rad_, \[Lambda]_] :=

Sqrt[Nmodes[rad]] gi[nI, nM, q, rad, \[Lambda]]

Coop[nI_, nM_, q_, rad_, \[Lambda]_, \[Alpha]_, \[Sigma]_, L_, nScat_,

radscat_, Nscat_] := gE[nI, nM, q, rad, \[Lambda]]^2/(

2 \[Kappa]appa[nI, nM, q, rad, \[Lambda], \[Alpha], \[Sigma], L,

nScat, radscat, Nscat] \[Gamma]dia) (* Cooperativity *)

P[nI_, nM_, rad_, \[Lambda]_, \[Alpha]_, \[Sigma]_, L_] :=

3*((\[Lambda]*10^-9)/nI)^3 Q[nI, rad, \[Lambda], \[Alpha], \[Sigma],

L]/(4 \[Pi]^2 Vmode[nI, nM, rad, \[Lambda]])(* Purcell Factor *)

n0[nI_, nM_, q_, rad_, \[Lambda]_] := \[Gamma]dia^2/(

2 gE[nI, nM, q, rad, \[Lambda]]^2) (* Saturation photon number*)

LineSep[nI_, nM_, q_, rad_, \[Lambda]_, \[Alpha]_, \[Sigma]_, L_,

nScat_, radscat_, Nscat_] := ((
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2 gE[nI, nM, q, rad, \[Lambda]])/(\[Kappa]appa[nI, nM, q,

rad, \[Lambda], \[Alpha], \[Sigma], L, nScat, radscat,

Nscat] + \[Gamma]dia))

Finally, code for the generation of a sample figure is provided. The fundamental mode

number lmax is first determined and used to calculate the resonant wavenumber of the mode.

These parameters are then used to generate a plot of the WGM electric field components.

M = Mmode[nIn, nMed, 1, a, \[Lambda]zpl];

ktm = kTM[nIn, nMed, 1, a, M, \[Lambda]zpl];

kte = kTE[nIn, nMed, 1, a, M, \[Lambda]zpl];

Plot[{AbsETMR[r, Pi/2, nIn, nMed, a, ktm, M]/3.2,

AbsETM\[Phi][r, Pi/2, nIn, nMed, a, ktm, M]/3.2,

AbsETE\[Theta][r, Pi/2, nIn, nMed, a,

zTE[nIn, nMed, 1, a, \[Lambda]zpl]/a, M]/3.24}, {r, 32, 33.2}]
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Appendix C

Evolution of the MITM Model

C.1 Dynamics of the MITM Model

In order to analytically analyse the dynamics of the MITM model in the high/low opacity

regimes it was stated in Section 3.2.2 that the system was evolved in the Heisenberg picture.

In this section the Heisenberg equations of motion will be derived and solved in both opacity

regimes. The high opacity regime will first be considered. Recall that in this regime (J �
g,Ω) the interaction picture Hamiltonian is given by,

Ĥ
(1)
I = ~Ωb̂†b̂− ~g0

(
b̂† + b̂

)
∆̂. (C.1)

As ∆̂ is conserved in this regime,
[
Ĥ

(1)
I , ∆̂

]
= 0, it can be treated as time independent.

Evolution of the mechanical annihilation operator, b̂, through the use of the Heisenberg

equations of motion gives,

˙̂
b =

i

~

[
Ĥ

(1)
I , b̂

]
= −iΩb̂+ ig0∆̂. (C.2)

As ∆̂ is conserved, Eq.(C.2) is just a separable first order ordinary differential equation with

the solution,

b̂(t) =
(
b̂(0)− g0

Ω
∆̂
)
e−iΩt +

g0

Ω
∆̂. (C.3)
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The expectation value of the membrane’s position can now be calculated,

〈x̂〉 = xZPF 〈b̂(t) + b̂†(t)〉 (C.4)

= xZPF 〈βM , αL, αR|b̂(t) + b̂†(t)|βM , αL, αR〉

=
4g0xZPF

Ω
∆ sin2

(
Ωt

2

)
+ xZPF

(
βM
∗eiΩt + βMe

−iΩt) .
Next the dynamics in the transmissive membrane regime will be solved for. Here recall

that the interaction picture Hamiltonian is,

Ĥ
(2)
I = −~J

(
â†LâR + â†RâL

)
. (C.5)

The Heisenberg EOMs for the cavity mode operators, âL/R, in this regime are,

˙̂aL,R =
i

~

[
Ĥ

(2)
I , âL,R

]
= iJâR,L. (C.6)

Taking the derivative of this equation gives,

¨̂aL,R =
i

~

[
Ĥ

(2)
I , âL,R

]
= iJ ˙̂aR,L, (C.7)

which can be reduced to a second order differential equation by substitution of Eq.(C.6),

¨̂aL,R = iJ2âL,R. (C.8)

Thus the solutions to the Heisenberg equations of motion for the cavity mode operators are,

âL,R(t) = âL,R(0) cos(Jt) + iâR,L(0) sin(Jt), (C.9)

where the initial conditions ˙̂aL,R(0) = iJâR,L(0) have been applied. The expectation values

of the cavity mode number operators are then,

〈â†L,RâL,R〉 = 〈βM , αL, αR|â†L,R(t)âL,R(t)|βM , αL, αR〉

= |αL,R|2 cos2 (Jt) + |αR,L|2 sin2 (Jt) .
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Figure C.1: The dynamics of a BEC’s position when the system is initialised in the state
|ψ(0)〉 = |0M , 2, 0〉 using several cavity dampening rates, κc. The simulations were performed in
units of Ω with g0 = 32.8Ω and NFlips = t/τFlip = tΩ

π .

C.2 Simulations

The simulations performed throughout Chapter 3 were performed through the use of the

MATLAB qotoolbox package. This package was used to evolve the MITM system by solving

the full master equation. While simulations were also performed in QuTip, the successor

of qotoolbox, it was found that the QuTip’s time dependant Hamiltonian solver was not

completely compatible with the fast alternation between the high opacity regime Hamiltonian

and the transmissive regime Hamiltonian. The code is structured in the following manner: all

relevant parameters are first defined, operators are then constructed and integration settings

selected then finally integration is performed using qotoolbox’s master equation solver.

The first segment of code is dedicated to defining all relevant parameters for the system.

Here the simulations were performed by rescaling the system with respect to the mechanical

frequency. A further scaling of the optomechanical coupling rate was required to significantly

reduce the size of the membrane’s Hilbert space, allowing for efficient simulations and the

ability to calculate the Wigner function of the final state. The only effect this scaling has

on the dynamics is to reduce the magnitude of the membrane’s displacement by the scaling

factor. For this reason, this scaling is reversed in the calculation of the zero point fluctuation



94 Evolution of the MITM Model

amplitude to give the unscaled displacement.

% Input system parameters Realistic parameters from BEC paper:

greal = 2*pi*0.5*10^6; % Optomechanical coupling rate

wmreal = 2*pi*15.2*10^3; % Mechanical frequency

kappareal = 2*pi*2.6*10^3; % Cavity Damping Rate

% Rescale the model in units of wm:

kappa = kappareal/wmreal;

g = greal/wmreal/100; % Scale by 100 for simulation

wm = 1;

% Input physical parameters

hbar = 1.055*10^-34;

nRb = 1.2*10^5; % Number of Rb87 atoms

massRb = 86.9; % mass of Rb87 in amu

amutokg = 1.6605*10^-27; % convert amu to kg

m=nRb*massRb*amutokg; % mass in kg

xzpf = sqrt(hbar/(2*m*wmreal));

xnm = xzpf/10^-9;

xnmreal = xnm*100; % Undo scaling g by 100

pzpf = sqrt(m*hbar*wmreal/2); % in kg m/s

pg = pzpf*1000; % in g m/s

pnm = pg*10^18; % in ng nm /s

% Setting up size of Hilbert spaces and # of photons in cavity:

Nmax = 3; % Number of photons in the entire cavity

NL=3; % Number of photons in the left - 1

NR=1; % Number of photons in the right - 1

Nt=40; % Size of membrane Hilbert space

J=30*pi; % Membrane transmision rate

Next the membrane and cavity operators are constructed and a coherent state generating

function is introduced. The operators are then used to construct the two Hamiltonians and

the Liouvillian operators for the consideration of dissipative effects. In this segment of code

the projection operator is also constructed through the use of the make projector function.

% Setting up the identities
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% Identity for the cavity modes:

id_cav=identity(Nmax);

% Identity of membrane:

id_mem=identity(Nt);

% Cavity mode operators

aL = tensor(id_mem, destroy(Nmax), id_cav);

aR = tensor(id_mem, id_cav,destroy(Nmax));

% The membrane annihilation operator

b=tensor(destroy(Nt),id_cav,id_cav);

% The membrane’s position operator

x = (b’+b);

% Introduce a function which can be used to generate coherent states

coh = destroy(Nt);

coherent =@(a)expm(a*coh’-a’*coh);

% The Hamiltonian in the high opacity regime (opaque)

Ho = wm*(b)’*b-g*(b + b’)*(aL’*aL - aR’*aR);

% The Hamiltonian in the low opacity regime (transmissive)

Ht = -J*(aL’*aR+aR’*aL);

% Set up the flipping operator for the disentanglement projector

Hflip = (pi/2)*(-aL’*aR + aL*aR’);

Uflip = expm(Hflip);

% The disentanglement projector

[neg_proj,pos_proj]=make_projector(Nt);

projector =Uflip*tensor(pos_proj,id_cav,id_cav)+...

tensor(neg_proj,id_cav,id_cav);

% Start setting up the operators to solve the full master equation
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% The collapse operators

CL = sqrt(kappa)*aL;

CR = sqrt(kappa)*aR;

CLdCL = CL’*CL;

CRdCR = CR’*CR;

% The Liouvillian

% In the unitary case:

LHo = -1i * (spre(Ho) - spost(Ho));

LHt = -1i*(spre(Ht) - spost(Ht));

% With the consideration of dissipation:

LL = spre(CL)*spost(CL’)-0.5*spre(CLdCL)-0.5*spost(CLdCL);

LR = spre(CR)*spost(CR’)-0.5*spre(CRdCR)-0.5*spost(CRdCR);

LHoD = LHo+LL+LR;

LHtD = LHt + LL +LR;

With the system parameters prepared and the operators constructed the integration settings

are defined and initial conditions selected. As two evolutions are performed simultaneously,

one to generate a cat state and the other to determine its size for the fidelity calculations,

two separate initial conditions are required.

% Set up equation solver options

options.lmm = ’ADAMS’;

options.iter = ’FUNCTIONAL’;

options.reltol = 1e-8;

options.abstol = 1e-8;

% Set up an integration loop

Nflips = 1; % Number of flips (Uflip applications)

dt = 0.05; % Integration timestep

tlist1 = 0:dt:pi/wm; % Ho Propergation time

tlist2 = 0:dt:30*pi/(2*J); % Ht Propergation time

tlist3 = 0:dt:pi/wm+dt; % Final Ho prop time

xvec = -10:0.1:10; % Dimensions for Wigner function

Nfid = length(tlist1)+length(tlist2);

fid1 = 0.*(0:Nflips*(length(tlist1)+length(tlist2))+length(tlist3)-1);

fid2 = fid1;
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as = fid1;

% Here the type of evolution is selected

% Switch to LHo and LHt for unitary evolution

Lo = LHo;

Lt = LHt;

% Setup the initial states which will be used

% Initialise the cavity modes in a NOON state and the membrane in its

% ground state - this is for creating a cat state.

psisup = sqrt(0.5)*tensor(basis(Nt,1),...

tensor(basis(Nmax,NL),basis(Nmax,NR))...

+tensor(basis(Nmax,NR),basis(Nmax,NL)));

% Initialise the cavity modes in number states and the membrane in its

% ground state - this is for simulating the membrane’s displacement.

psiclean = tensor(basis(Nt,1), basis(Nmax,NL),basis(Nmax,NR));

% Set initial condition:

psi0 = psisup;

% Initial state for cat state creation

rho0=psi0*psi0’;

% Initial state for membrane displacement

rhoclean = psiclean*psiclean’;

The next segment of code is dedicated to evolving the system. As qotoolbox is not compatible

with time dependant Hamiltonians the evolution is made by sequentially evolving under each

of the Hamiltonians. The repeated application of flips is achieved through the use of a loop

where at the end the system is finally evolved in the high opacity regime. Within this loop

the results are stored within appropriately labelled arrays. The final segment concludes with

the calculation of the Wigner function of the final state.

% Evolve the system

for i = 0:Nflips-1

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% Simulation of the membrane’s displacement %%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Evolve the system under Ho
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ode2file(’file1.dat’,Lo,rhoclean,tlist1,options);

odesolve(’file1.dat’,’file2.dat’);

fid = fopen(’file2.dat’,’rb’);

rhoa1 = qoread(fid,dims(rhoclean),size(tlist1));

fclose(fid);

% Calculate the membrane’s coherent amplitude under this evolution

for ns = 1:length(tlist1)

as(i*Nfid +ns) = trace(b*rhoa1{ns});

end

rhoa1end = rhoa1{length(tlist1)};

% Evolve the system under Ht

ode2file(’file1.dat’,Lt,rhoa1end,tlist2,options);

odesolve(’file1.dat’,’file2.dat’);

fid = fopen(’file2.dat’,’rb’);

rhoa2 = qoread(fid,dims(rhoa1end),size(tlist2));

fclose(fid);

% Calculate the membrane’s coherent amplitude under this evolution

for ns = 1:length(tlist2)

as(i*Nfid +length(tlist1)+ns) = trace(b*rhoa2{ns});

end

rhoclean = rhoa2{length(tlist2)};

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%% Simulation of cat state generation %%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Evolve the system under Ho

ode2file(’file1.dat’,Lo,rho0,tlist1,options);

odesolve(’file1.dat’,’file2.dat’);

fid = fopen(’file2.dat’,’rb’);

rho = qoread(fid,dims(rho0),size(tlist1));

fclose(fid);
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% Save the evolved state

rhobf=rho{length(tlist1)};

% Calculate the fidelity of the membrane’s state with a cat state

for alphas = 1:length(tlist1)

% Generate odd and even cat states

alpha = as(i*Nfid +alphas);

cat1 = tensor(coherent(alpha)*basis(Nt,1)+...

coherent(-alpha)*basis(Nt,1),basis(Nmax,NL),basis(Nmax,NR));

norm = cat1’*cat1;

norm = full(norm(:,:));

cat1 = cat1/sqrt(norm);

cat2 = (tensor(coherent(alpha)*basis(Nt,1)+...

coherent(-alpha)*basis(Nt,1),basis(Nmax,NR),...

basis(Nmax,NL)))/sqrt(norm);

% Calculate the fidelity

fid1(i*Nfid+alphas)=cat1’*projector*rho{alphas}*projector’*cat1;

fid2(i*Nfid+alphas)=cat2’*projector*rho{alphas}*projector’*cat2;

end

% Evolve the system under Ht

ode2file(’file1.dat’,Lt,rhobf,tlist2,options);

odesolve(’file1.dat’,’file2.dat’);

fid = fopen(’file2.dat’,’rb’);

rhoaf = qoread(fid,dims(rhobf),size(tlist2));

fclose(fid);

% Calculate the fidelity of the membrane’s state with a cat state

for alphas = 1:length(tlist2)

% Generate odd and even cat states

alpha = as(i*Nfid +length(tlist1)+alphas);

cat1 = tensor(coherent(alpha)*basis(Nt,1)+...

coherent(-alpha)*basis(Nt,1),basis(Nmax,NL),basis(Nmax,NR));

norm = cat1’*cat1;
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norm = full(norm(:,:));

cat1 = cat1/sqrt(norm);

cat2 = (tensor(coherent(alpha)*basis(Nt,1)+...

coherent(-alpha)*basis(Nt,1),basis(Nmax,NR),...

basis(Nmax,NL)))/sqrt(norm);

% Calculate the fidelity

fid1(i*Nfid+length(tlist1)+alphas)=cat1’*...

projector*rhoaf{alphas}*projector’*cat1;

fid2(i*Nfid+length(tlist1)+alphas)=cat2’*...

projector*rhoaf{alphas}*projector’*cat2;

end

% Save rho after flip

rho0 = rhoaf{length(tlist2)};

end

% Propergate under Ho for a bit longer for beta’s:

ode2file(’file1.dat’,Lo,rhoclean,tlist3,options);

odesolve(’file1.dat’,’file2.dat’);

fid = fopen(’file2.dat’,’rb’);

rhoa1 = qoread(fid,dims(rhoclean),size(tlist3));

fclose(fid);

% Calculate the membrane’s coherent amplitude under this evolution

for ns = 1:length(tlist3)

as(Nflips*Nfid +ns) = trace(b*rhoa1{ns});

end

% Evolve under Ho for fids:

ode2file(’file1.dat’,Lo,rho0,tlist3,options);

odesolve(’file1.dat’,’file2.dat’);

fid = fopen(’file2.dat’,’rb’);

rho = qoread(fid,dims(rho0),size(tlist3));

fclose(fid);
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% Calculate the fidelity of the membrane’s state with a cat state

for alphas = 1:length(tlist3)

% Generate odd and even cat states

alpha = as(Nflips*Nfid+alphas);

cat1 = tensor(coherent(alpha)*basis(Nt,1)+...

coherent(-alpha)*basis(Nt,1),basis(Nmax,NL),basis(Nmax,NR));

norm = cat1’*cat1;

norm = full(norm(:,:));

cat1 = cat1/sqrt(norm);

cat2 = (tensor(coherent(alpha)*basis(Nt,1)+...

coherent(-alpha)*basis(Nt,1),basis(Nmax,NR),...

basis(Nmax,NL)))/sqrt(norm);

% Calculate the fidelity

fid1(Nflips*Nfid+alphas)=cat1’*projector*rho{alphas}*projector’*cat1;

fid2(Nflips*Nfid+alphas)=cat2’*projector*rho{alphas}*projector’*cat2;

end

% Calculate the Wigner function of the final state

rhomemz = ptrace(projector*rho{32}*projector’,1);

Wigzcalc = wfunc(rhomemz,xvec,xvec,2);

The code which defines the make projector function is presented below. This function takes

the dimension of the membrane’s Hilbert space and produces the eigenstates of the position

operator.

function [nneg_proj,ppos_proj]=make_projector(Nt)

b=destroy(Nt);

x=(b+b’)/2;

xx=full(x(:,:));

[mat1,eig1]=eig(xx);

diageig=diag(eig1);

[sorteig,ii]=sort(diageig);

vecs=zeros(size(mat1));

[nn,mm]=size(vecs);
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for j=1:mm,

vecs(:,j)=mat1(:,ii(j));

end

identity1=zeros(size(mat1));

neg_proj=zeros(size(mat1));

pos_proj=zeros(size(mat1));

for j=1:(Nt),

identity1=identity1+vecs(:,j)*vecs(:,j)’;

end

icut=find(sorteig>0,1)-1;

for j=1:icut,

neg_proj=neg_proj+vecs(:,j)*vecs(:,j)’;

end

for j=icut+1:Nt,

pos_proj=pos_proj+vecs(:,j)*vecs(:,j)’;

end

ppos_proj=qo(pos_proj);

nneg_proj=qo(neg_proj);
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The following list is neither exhaustive nor exclusive, but may be helpful.

Chapter 2
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~ . . . . . . . . . . . Planck constant.
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E0 . . . . . . . . . . electric field normalisation constant.
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∆D . . . . . . . . . atom/cavity detuning.

ΩR . . . . . . . . . . Rabi-frequency.

κ . . . . . . . . . . . cavity damping rate of a cavity mode.
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ζq . . . . . . . . . . . qth root of the Airy function.

lmax . . . . . . . . . polar mode number of the fundamental WGM.

εs . . . . . . . . . . . eccentricity of the spherical resonator.

Vmode . . . . . . . the mode volume.
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Q . . . . . . . . . . . quality factor.

σnp . . . . . . . . . classical cross section of a spherical nano-particle.
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â . . . . . . . . . . . . cavity mode annihilation operator.

â† . . . . . . . . . . . cavity mode creation operator.

σ̂z . . . . . . . . . . Pauli z spin operator.

d̂ . . . . . . . . . . . atomic dipole operator.

Ê . . . . . . . . . . . cavity mode electric field operator.

Î . . . . . . . . . . . . identity operator.

σ̂+/σ̂− . . . . . . atomic raising/lowering operators.

Σ̂± . . . . . . . . . . collective spin raising and lowering operators.

Â . . . . . . . . . . . collective mode annihilation operator.



105

ρ̂ . . . . . . . . . . . . density operator.

H . . . . . . . . . . . magnetic vector potential.

D . . . . . . . . . . . electric displacement vector.

B . . . . . . . . . . . magnetic field vector.

Chapter 3

Ω . . . . . . . . . . . mechanical frequency of the membrane.

J . . . . . . . . . . . transmission rate of the membrane.

xZPF . . . . . . . . zero point fluctuation amplitude.

g0 . . . . . . . . . . . optomechanical coupling strength.

∆ . . . . . . . . . . . difference between the left/right cavity photon numbers.

βM . . . . . . . . . . coherent amplitude of the membrane.
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∆̂ . . . . . . . . . . . photon number difference operator.

B̂ . . . . . . . . . . . Beam Splitter operator.

Ŝ . . . . . . . . . . . Squeezing operator.

P̂ . . . . . . . . . . . disentanglement projector.
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