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Abstract

Empirical Likelihood is a useful tool for parameter estimation and inference as it does not

require knowledge about where the data comes from. A large strength is its applicability with

different methods, it can be extended in many ways including regression or adding constraints

using estimating equations. The positivity constraint of pi has often been overlooked or

ignored but this means existing methods may experience difficulties for some problems. This

thesis looks at enforcing this constraint by applying the Karush–Kuhn–Tucker conditions

together with a multiplicative iterative optimization method of updating parameters which

ensures movement towards the constrained maximum. For other equality constraints, we

apply Augmented Lagrange to the Empirical Likelihood maximisation. We demonstrate

our method using simulation examples in linear regression and estimating equations on raw

moments.

Keywords: Empirical Likelihood, Augmented Lagrange, Multiplicative Iterative Algorithm
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1
Introduction

Empirical Likelihood (EL) has been applied to numerous problems and areas since gaining

popularity. It is particularly useful since it is a nonparametric method, meaning we do not

need to know or assume the data comes from a known distribution, which can then be used

to perform analysis such as hypothesis testing and construction of confidence intervals. Data

may be multivariate, come from multiple distributions or be censored, all of which are able

to be handled by EL.

The basis of empirical likelihood as a tool for inference was established by Owen (1988).

Many others have provided significant contributions allowing empirical likelihood to handle

regression, estimating equations and smoothing problems by incorporating them in the form

of constraints on the likelihood. A major review by Hall & La Scala (1990) summarizes key

properties of Empirical Likelihood up to the time while the Owen (2001) book provides a

broad overview of the subject.

Empirical likelihood’s ability of combining with existing methods and incorporating

information as constraints in the likelihood allows EL to be flexible in terms of handling
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problems which can take advantage of the asymptotic properties of EL to perform inference.

Constraints containing information about parameters are usually applied to EL in the form of

estimating equations to link the parameters with the maximization problem. A Lagrangian

multiplier approach can be used to find the optimal solution for the EL ratio function with

theses constraints.

Parametric likelihood methods are very popular for inference on data but require the

knowledge of the kind of distribution the data comes from. For example, we have observed

data X , known to come from a normal distribution. We know the probability density function

f (x) is of the form 1√
2πσ2

exp− (x−µ)2

2σ2 , where we have parameters µ and σ2. For a known

σ2 and unknown µ we are able to conduct hypothesis tests on values of µ and to construct

confidence intervals. However, we may encounter a set of data which we do not know the

distribution of, particularly in a parametric form. If an incorrect distribution is chosen for the

data, this misspecification may lead to inefficient likelihood based estimates and incorrect

tests and confidence intervals. Empirical likelihood does not suffer from this problem and

does not require the assumption of data following a known distribution. Other nonparametric

methods for hypothesis testing or inference include the jacknife and types of bootstrap but

are less flexible when compared to empirical likelihood.

1.1 Parametric and Nonparametric models

Owen (2001) uses the example of earthworm somite data from Pearl & Fuller (1905) to

demonstrate the advantages of empirical likelihood. The dataset contains the No. of somites

on each of 487 worms gathered near Ann Arbor in 1902. A histogram gives an idea of the

shape of distribution skewness. Here the data is left skewed. Naturally the next step is to

quantify this in some way. We have general terms ‘mildly’ and ‘extremely’ to describe the

amount of skewness but a numerical quantity may provide a better description. For a random

variable X the coefficient of skewness is

γ =
E((X − E(X ))3)

E((X − E(X ))2)3/2

The coefficient of skewness is 0 for symmetric data whenever E(|X |3) exists such as a normal

distribution.

Kurtosis, given in the formula below describes the weight of the distribution’s tails
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compared to a normal distribution (0 kurtosis). Positive kurtosis indicates heavier (fatter)

tails than normal while negative indicates lighter tails (thinner) than normal.

κ =
E((X − E(X ))4)
E((X − E(X ))2)2 − 3

Using these formulae we obtain the skewness and kurtosis of this sample. Confidence regions

for the true γ and κ can be constructed using empirical likelihood.

Parametric likelihood methods must make an assumption about the distribution to be

able to construct confidence regions for γ and κ. Most common methods involve a Normal

distribution, which will be quite reliable for inferences on the mean µ as asymptotically the

sample mean will tend towards a normal distribution due to the central limit theorem, for

finite variance. However, for other statistics of parameters, a normal distribution may not

be suitable and we may be unable to find a parametric family distribution which reliably

fits the data. Rather than having to assign a distribution which we know does not fit the

data, nonparametric methods are able to account for larger generalization of distributions

but usually at a loss of power. Power is a useful tool for comparing competing tests on

the same hypothesis. Owen (2001) argues the loss of power in empirical likelihood tests is

insignificant.

It is logical to compare empirical likelihood to other nonparametric methods. Bootstrap-

ping is an alternative nonparametric option which may also be able to handle data for which

we do not have the distribution in a parametric form. Owen (2001) considers bootstrap anal-

ysis on the earthworm somite data stating it may be more reliable than parametric options.

Bootstrapping is achieved by resampling the data. The results can be plotted and confidence

regions can be created by looking at the central 100(1-α)% points. However, this would still

require us to make an assumption on the shape and orientation of this region. Attempts have

been made to solve this problem but have not proven successful, such as that by Owen (1990)

for constructing polygonal regions.

The likelihood nature of Empirical likelihood is the cause of its advantages and disadvan-

tages when compared with bootstrapping methods. In addition to creating data-determined

confidence regions EL is able to take into account constraints on parameters and handle

biased or incomplete data as well combine data from different sources. DiCiccio et al. (1991)

show EL has improved inference accuracy over bootstrap via Bartlett correction. However, it
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can be difficult and computationally challenging to optimize likelihood functions over some

nuisance parameters, with other parameters fixed at test values. Estimating equations are

used to reduce the optimization problem to a convex problem, the solution of which can be

found using iterated least squares.

It is also possible for EL to be used in conjunction with bootstrap. For example, EL can

be used to determine a nested family of confidence regions, bootstrap can then be used to

select the region for a given confidence level. Another way is to resample from a distribution

which maximizes the empirical likelihood subject to some constraints.

1.2 Aim

While much has been written on the various methods and applications empirical likelihood

can handle as well as comparisons with alternative methods. This dissertation draws attention

to the positivity constraint of pi’s which has often been overlooked or ignored by existing

methods giving way for difficulties to arise for certain problems. Chen et al. (2008) provide

an adjustment to the EL function to handle this problem. We develop an alternative method

of updating the pis which will maintain the positivity constraint and incorporate constraints

using an augmented Lagrange method. MATLAB code has been used to run simulations for

specific examples to demonstrate how our model works.
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Empirical Likelihood Methods

2.1 Empirical likelihood

Empirical likelihood is formedusing a nonparametric likelihood function. Let X = (X1, . . . , Xn)T

be a random sample from an unknown distribution f .

L(F) =
n∏

i=1
f (xi)

Note: Here we have not assumed any parametric distribution for f . In practice we observe the

data Xi = xi, for i = 1, . . . , n.. By using the notation pi = f (xi)∆xi which is the probability

for xi ≤ Xi ≤ xi + ∆xi, we have constraints pi such that pi ≥ 0 and
∑n

i=1 pi = 1. Since Xi’s

are independent the likelihood for observations x1, . . . , xn is:

L(p1, . . . , pn; X) =
n∏

i=1
pi

This is called the empirical likelihood. Note that here we have the same number of parameters
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as observations n.

Maximum empirical likelihood estimation can now be directly applied allowing us to

estimate the parameters pi , which can be shown to be 1
n . That is, an equal probability mass

for each of the n observed values x1, . . . , xn. Kiefer & Wolfowitz (1956) first showed this

result. Owen (2001) has shown that the Xi’s do not need to be distinct, that is when there

are ties in the data (e.g. Xi = X j for i , j) we get that same likelihood function. Empirical

likelihood can also handlemultivariate data, that is when Xi is a randomvector. The EL is now

defined on Rd rather than R. Transformations can be applied to parameters or data for easier

interpretation or making the data easier to visualize. EL maintains transformation invariance

in the same way parametric likelihood are invariant under one to one transformations. This

means the empirical likelihood ratio is the same for transformations of parameters.

As with parametric likelihood, empirical likelihood ratios form a basis for hypothesis tests

and confidence intervals. The use of empirical likelihood ratios for hypothesis testing was

demonstrated by Thomas & Grunkemeier (1975) for use in survival probabilities estimated

by the Kaplan-Meier Curve. EL allowed hypothesis testing to be conducted for particular

values of survival probabilities at the α level of significance for censored data. This required

the use of Wilks’s theorem (Wilks (1938)), which states under mild regularity conditions, a

hypothesis test testing a nested model, the likelihood ratio test statistic −2L(θ0)/L(θ̂)) tends

to a χ2
q distribution as n → ∞. Where q, the degrees of freedom, is the difference in the

dimensionality of Θ under the null compared to alternative hypothesis. This also allows for

confidence intervals to be constructed.

Following the definition that empirical likelihood is maximized by pi =
1
n . We can

obtain a likelihood ratio function R(F) which can be used to test hypotheses and construct

confidence intervals:

R(F) =
L(F)
L(Fn)

=

n∏
i=1

npi (2.1)

For univariate data, such as the censored survival data, -2logR follows a χ2
1 distribution.

Owen (1988) studied an example of an empirical likelihood ratio for the univariate mean.

Following the definition of the likelihood ratio R(F), the EL ratio function for the univariate

mean is obtained as follows.
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R (µ) = max



n∏
i=1

npi |

n∑
i=1

pi xi = µ, pi ≥ 0,
n∑

i=1
pi = 1




The method of Lagrange multipliers can be used to solve this optimization problem. See

section 2.4.1 for a brief description of Lagrange multipliers. A hypothesis test for µ = µ0

can then be constructed using the property that empirical likelihood admits a nonparametric

version of Wilks’s theorem. For X1, . . . , Xn, i.i.d. and µ = E[X1], the EL ratio test statistic

is:

T =
max L(p1, . . . , pn)

maxH0 L(p1, . . . , pn)
=

(1/n)n

L(µ0)
=

n∏
i=1

1
npi (µ0)

=

n∏
1

(1 −
γ

n
(Xi − µ0))

where γ is the Lagrange multiplier for the constraint on the mean
∑n

i=1 pi xi = µ If we let

E[X1] < ∞ then under H0 as n → ∞

−2logT = 2
n∑

i=1
log(1 −

γ

n
(Xi − µ0)) → χ2

1

and (1 − α)% Confidence Interval is:

{
µ| − 2log{L(µ)nn} < χ2

1,1−α

}
=



µ|

n∑
i=1

log{npi (µ)} > −0.5χ2
1,1−α




For multivariate X , -2logT tends to a chi-square distribution with degrees of freedom equal

to the dimension of X .

Owen (2001) noted the critical value for−2logR should accordingly be χ2,1−α
d , but Bartlett

correction has been shown to reduce coverage error compared to using χ2 or F calibrations.

For some small data sets χ2 calibration will not be reasonable and Bartlett correction will

give little improvement and bootstrap calibration may obtain better results.

2.2 Estimating Equations

Estimating equations describe how parameters are related to corresponding statistics. They

can be used to tell a model how to estimate the parameters use the sample data. This

allows prior information about parameters to be added to the model. As shown by Qin

& Lawless (1994), estimating equations are easily applied to Empirical Likelihood in the

form of constraints on the likelihood. We define our estimating function h(X, θ)) for i.i.d.

random variables X1, . . . , Xn be ∈ Rd , a parameter θ ∈ Rp and our vector-valued function
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h(X, θ) ∈ Rs. Suppose that

E(h(X1, θ)) = 0

then θ can be estimated by:
1
n

n∑
i=1

h(Xi, θ̂) = 0 (2.2)

and is known as the estimating equation. For example an estimating equation for themeanwill

be written as: h(X, θ) = X − θ, then equation (2.2) gives θ = X̄ . Other examples include (i)

the k-th moment θ = E(X k
1 ) where h(x, θ) = xk − θ, (ii) indicator function, θ = P(X1 ∈ A)

where h(x, θ) = I (x ∈ A) − θ. Note θ is the α–quantile if h(x, θ) = I (x ≤ θ) − α.

The estimating equations are unbiased if

E[
1
n

n∑
i=1

h(Xi, θ̂)] = 0

In the case F is a parametric family and h is the score function, θ̂ is the ordinary

maximum likelihood estimator. When s = p, this is called the determined case, θ̂ can be

uniquely determined by the estimating equation. For the underdetermined case, where s < p,

solutions may form a (p − s) dimensional set. However in some cases where h(x, θ) is

a poor choice or we have an unfortunate distribution of F, θ may not be estimable. The

overdetermined case, s > p, may not have a solution for θ from E[(h(X, θ)] = 0 in some

cases. The generalized method of moments which is very popular in econometrics looks for

an approximate θ .

The empirical likelihood ratio with estimating equations h(X, θ) takes the form:

R (θ) = max



n∏
i=1

npi |

n∑
i=1

pih(Xi, θ) = 0, pi ≥ 0,
n∑

i=1
pi = 1




By using estimating equations this way, empirical likelihood can handle quantiles,

likelihood-based estimating equations and robust estimators such as M-estimates. Empirical

likelihood with estimating equations as constraints greatly increases the amount of problems

empirical likelihood can handle.
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2.3 Regression

Regression is one of the most widely used statistical methods. It is very useful as a tool for

inference to describe relationships between variables. Though it is usually performed using

parametric models it can also be applied to semi-parametric and nonparametric models. In

addition to complete data, regression is able to handle censored or missing data. Empirical

Likelihood can be used in conjunction with regression. Chen&VanKeilegom (2009) provide

a review of empirical likelihood regression methods.

The simplest case of regression is simple linear regression, where data has two variables:

y the dependent variable and x the independent variable. There are two parameters β0

relating to y-intercept on an x − y plane and β1 relating to the slope. For a set of data of size

n. The model can be written as follows:

yi = β0 + β1xi + ε i, i = 1, 2, ..., n.

where ε i is the error term, the amount the i-th observation differs from its expected value. The

population parameters of the model are estimated using the sample data. The fitted model is:

ŷi = β̂0 + β̂1xi

The estimates ŷi, β̂0 and β̂1 may be obtained using estimation techniques such as ordinary least

squares. The residual ei = yi − ŷi is the difference between the dependent variable predicted

by the model with the true value. Similarly, for multiple regression, we have observations

(Yi,Xi), i = 1, . . . , n, where Xi = (Xi1, . . . Xid)T , and covariate matrix X = (X1, . . . , Xd)T ,

with corresponding vector of coefficients β = (β1, . . . βd)T ∈ Rp. We have the model:

Y = XT
1 β1 + . . . XT

d βd + ε

and the fitted model:

Ŷ = X β̂

where β̂ can be obtained by least squares:

min
n∑

i=1
(Yi − Xi β)2
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The solution is:

βLS = E(XT X )−1E(XTY )

The sample lease squares estimate for βLS is

ˆβLS = (
1
n

n∑
i=1

Xi XT
i )−1(

1
n

n∑
i=1

XiYi)

This definition for βLS is equivalent to

E(XT (Y − X βLS)) = 0

and ˆβLS is equivalent to
1
n

n∑
i=1

Xi (Yi − XT
i

ˆβLS) = 0

The empirical likelihood ratio function for β becomes

R (β) = max



n∏
i=1

npi |

n∑
i=1

pih(Xi, θ) = 0, pi ≥ 0,
n∑

i=1
pi = 1




where hi = Xi (Yi − XT
i β)

Often our predictors are known, not random, so we are modelling the mean of Y given

X = xi, E[Y |Xi = xi]. The model requires several assumptions: The mean of the response

variable E[Y ]is a linear combination of the parameters β and the predictor variables X . Errors

ε must be independent, have constant variance and follow a normal distribution.

Alterations to linear regression can allow it to handle more complex problems. Predictor

variables can be transformed to have a linear relationship with the dependent variable. For

example, a log or square root transformation when the relationship is non-linear or perhaps

polynomial terms may be added. The effect of interactions between predictor variables may

be added to the model for interpretation.

2.3.1 Generalized Linear Models

Generalized Linear models first developed byMcCullagh (1984) is a popular extension which

allows the response variables to have non-Normal distributions. They may be continuous,
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discrete or categorical. They require the data to come from an exponential family distribu-

tion. Following the notation of McCullagh & Nelder (1989), the distribution belongs to an

exponential family if the probability density function is of the form:

f (y; θ, φ) = exp
{
yθ − b(θ)

a(φ)
+ c(y, φ)

}

for particular functions a(.), b(.) and c(.). θ is canonical the parameter and φ is a nuisance

parameter or dispersion parameter. Some examples are the Poisson distribution, binomial

distribution and gamma distribution. The canonical GLM takes the form:

θ = XT β

where θ = g(µ) (with µ = E[Y ]) and g(.) is a known monotone function called the

link function. Model parameters are updated using the iteratively reweighted least squares

algorithm for maximum likelihood using the Newton-Raphson method or Fisher’s scoring

method.

Empirical likelihood handles regression by adding estimating equations in the form of

constraints to the empirical likelihood ratio function. The empirical likelihood ratio function

for β becomes

R (β) = max



n∏
i=1

npi |

n∑
i=1

pih(Xi, θ) = 0, pi ≥ 0,
n∑

i=1
pi = 1




where hi (β) = xi (Yi − g(xT
i β)) and independent predictor variables are known (Xi = xi).

2.3.2 Density estimation and nonparametric regression

Consider the nonparametric regression model;

Yi = m(Xi) + ε i

where m(.) is a smooth function.

m(X ) may be estimated using nonparametric methods such as splines and kernel smooth-

ing. Kernel methods are a popular choice with empirical likelihood since they can be written

in the form of estimating equations and incorporated accordingly. Wand & Jones (1994)
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and Fan & Gijbels (1996) provide thorough overviews of kernel regression. Kernel re-

gression uses local averaging to form a smooth function based on noisy observations. The

Nadaraya–Watson estimator is the simplest kernel regression estimator for m(X ) defined by:

m̂(x) =
∑n

i=1 Kh(x − Xi)Yi∑n
i=1 Kh(x − Xi)

where Kh(.) is a kernel function with bandwidth h. Commonly used kernel functions are the

Gaussian kernel, Epanechnikov kernel and the Tri-cube kernel.

The above kernel estimator can be obtained by minimizing the following locally weighted

sum of least squares:
n∑

i=1
Kh(x − Xi)(Yi − m(x))2

with respect to m(x). This can be rewritten in the form of the estimating equation:

max∑
min

Kh(x − Xi)(Yi − m(x)) = 0

allowing it to be incorporated in empirical likelihood.

Semi-parametric regression is a mixture of parametric and nonparametric regression. So

it may look like

Yi = XT
i β + g(Zi) + ε i

for i = 1, . . . , n. Where we have the parametric part XT
i β and nonparametric part g(Zi) and

g(Zi) is a smoothing function. This type of regression can also be incorporated into empirical

likelihood as a constraint in the form of estimating equitations. Wang & Jing (2003) show

that asymptotically, the empirical likelihood ratio tends to a χ2
p distribution where p is the

number of parameters β. This is the same as the parametric case, showing the unknown

nonparametric function has no effect on the asymptotic limit. This result allows us to obtain

empirical likelihood confidence regions for β without estimating any variance.

EL can be combined with regression in many different ways allowing it to handle a wide

range of cases. Improvements and alterations can be made to handle specific problems.

Zhang & Gijbels (2003) explore an alteration called sieve empirical likelihood for cases

where empirical likelihood cannot be used directly when an infinite dimensional parameter

of interest is involved.
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2.4 Constrained Optimizations

2.4.1 Equality constraints by Lagrange Multipliers

The method of Lagrange multipliers is very useful for finding the local maxima and minima

of a function subject to equality constraints. Such as those problems we found in empirical

likelihood. The method allows maximization problems to be rewritten in an unconstrained

format which can then be solved. Consider the following optimization problem: Maximize

g(x) subject to f (x) = 0. Provided g and f are both continuously differentiable, the

optimization problem can be rewritten in the form:

L(x, λ) = g(x) + λ. f (x)

where λ is a Lagrange multiplier and L called the auxiliary function.

The method can be visualized by thinking in terms of contours. Here we have one contour

when our constraint f (x) = 0 is satisfied, call this space C. We then consider contours of g,

g(x) = d, for various values of d. If we move along the contour line f = 0, we look for points

where g is at a maxima. At the maximum, g will be reduced if we continue to move along

f = 0. This means the contour for g, at this point must be parallel to f .Since the gradient of

a function is perpendicular to the contour lines, the contour lines of g and f are parallel if

and only if the gradients of g and f are parallel. Therefore we require:

∇g = −λ∇ f

for some λ, where λ is a constant which determines the magnitude in which the gradients are

parallel. Note: This formula may also be written without the negative sign. Also, this is only

a necessary condition for constrained optimization. The second case is the special case when

λ = 0. As if g is level, then its gradient is zero, and setting λ = 0 is a solution regardless of

g.

The interpretation of the Lagrange multiplier λ can be learned by noting the ∂L
∂ f = λ. λ

can be thought as the rate of change of L with respect to f .The minimum of a function can

be found in the same way as maximizing g(x) is equivalent to minimizing −g(x).

The method of Lagrange multipliers can handle multiple constraints. This takes the form:
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f j (x) = 0 for j = 1, . . . , k. The necessary condition is

∇ f (x) = −
k∑

j=1
λ j∇ f j (x)

where we have k Lagrange multipliers λ j .

2.4.2 Inequality constraints by KKT condistions

The Karush–Kuhn–Tucker (KKT) conditions generalize the method of Lagrange multipliers,

allowing it to be extended to inequality constraints (Kuhn & Tucker (1951)). This is a

requirement of the constraints seen in empirical likelihood pi ≥ 0. KKT lists first order

necessary conditions for a solution in nonlinear programming to be optimal, provided that

some regularity conditions are satisfied. These conditions are listed below.

For a function we wish to maximize g(x) =
∑

ci xi constrained by m linear inequalities,

fh(x) ≥ 0, h = 1, . . . ,m

Using themethod of Lagrangemultiplierswe canwrite the constrainedmaximization problem

in the form:

φ(x, λ) = g(x) +
m∑

h=1
λh fh(x)

where λ (vector of λh) is a set of m non-negative Lagrange multipliers. Denote partial

derivatives at a particular point, (x0, λ0)

φ0
x =

∂φ(x0, λ)
∂xi

, φ0
λ =

∂φ(x, λ0)
∂λh

Here φ0
x is an n-vector and φ0

λ an m-vector.

Then, a particular vector x0 maximizes g(x) subject to the m constraints if, and only if,

there is some vector λ0 with nonnegative components such that the KKT conditions:

φ0
x ≤ 0, φ0

x
′
x0 = 0, x0 ≥ 0

φ0
λ ≥ 0, φ0

λ

′
λ0 = 0, λ0 ≥ 0

Note these are only necessary conditions, we also need the Second Order Sufficient
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Conditions for assuring a solution is optimal.

Owen (1988) makes use of the method of Lagrange multipliers to maximize the empirical

likelihood ratio function. For the example for the univariate mean:

R (µ) = max



n∏
i=1

npi |

n∑
i=1

pi Xi = µ, pi ≥ 0,
n∑

i=1
pi = 1




L =
n∑

i=1
log(npi) − nγ

n∑
i=1

pi (Xi − µ) + λ(
n∑

i=1
pi − 1))

Set partial derivatives to 0 and solve:

∂L
∂pi
=

1
pi
− nγ(Xi − µ) + λ = 0

By applying the KKT conditions,

0 =
n∑

i=1
pi
∂L
∂pi
= n + λ

so λ = −n

pi =
1
n

1
1 + γ(Xi − µ)

(2.3)

where γ can then be found by numerical search. However, this does not guarantee pi ≥ 0.

Existing methods simply assume pi > 0. This problem will occur when 0 is not in the convex

hull of the estimating equation function h(Xi, θ). In the case of the mean h(Xi, θ) = Xi − µ.

This positivity constraint problem for pi’s leads to a need for a new method which can

guarantee pi ≥ 0. Chen et al. (2008) notices this problem and suggests a solution by

adjusting the empirical likelihood function while maintaining the asymptotic properties of

EL. We develop a method in section 3 using a Multiplicative Iterative (MI) algorithm (see

section 2.5.3) for details, which can also guarantee pi ≥ 0.

To solve γ, Owen considers the estimating equation:

n∑
i=1

pi (Xi − µ) = 0

By assuming pi > 0 and so every pi < 1, and by substituting (2.3) for pi in the estimating
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equation we get
1
n

n∑
i=1

Xi − µ

1 + γ(Xi − µ)

Now by noticing this function is monotonic in γ, a bracketing interval known to contain γ(µ)

can be found and search conducted:

1 − n−1

µ − X(n)
< γ(µ) <

1 − n−1

µ − X(1)

The algorithm then refines the interval until endpoints agree to a high degree e.g. 10−6. The

monotonic nature of γ suggests a bisection method may not be feasible. Safeguarded search

methods such as Brent’s method or a type of Newton method may be preferred.

The method of Lagrange multipliers can be combined with other methods to handle more

complex problems which neither method can solve alone. Bellman (1956) demonstrates this

by combining the method of Lagrange multipliers with the theory dynamic programming.

The optimization problem can be difficult to be solved by hand. Computers use algorithms

to solve this problems. Strong computational power allows the use of large amounts of data

and numerical solutions to optimization problems can be found within a reasonable amount

of time.

2.4.3 Augmented Lagrange Methods

Augmented Lagrange methods were first discussed by Hestenes (1969) and Powell (1969)

to suggest a method which could find the minimum of a function f (x) subject to some

constraints g(x) = 0. It differs from the method of Lagrange multipliers by adding a penalty

term designed to enforce the constraint more strongly. Rockafellar (1973) and Powell (1973)

extended this method to include inequality constraints.

For a constrained minimization problem:

min f (x)

subject to

gi (x) = 0, i = 1, . . . ,m,

where f and all gi, i = 1, . . . ,m, are continuous functions, X ∈ Rn.
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The augmented Lagrangian method uses the following unconstrained objective:

minLk (x) = f (x) −
m∑

i=1
λigi (x) +

αk

2

m∑
i=1

g2
i (x)

At each iteration of solving this problem α and λ are updated and used to re-solve the

problem. λ is updated by the rule below.

λi ← λi − αkgi (xk )

where xk is the solution to the unconstrained problem at the k-th step, i.e. xk = argminLk (x).

The penalty coefficient αk is increased in each iteration by some constant factor. A similar

method called the penalty method requires less computational cost but requires the condition

α → ∞, hence the augmented Lagrange method is preferred. Nocedal & Wright (2006) has

been proven, when exact Lagrange multiplier vector λ∗ is known, the solution of x is a strict

minimizer of Lk (x, λ∗, α) for all α sufficiently large. This suggests minimizing Lk (x, λ, α)

will give a good estimate of x even when α is not particularly close to infinity, even when we

do not know λ∗ provided that λ is a reasonable of λ∗.

2.5 Algorithms, nonlinear programming

Algorithms are used to solve optimization problems such as those posed by empirical likeli-

hood. These types of problems can be complicated to calculate as they can include statistics

defined through estimating equations, nuisance parameters and side information. There are

many different methods for computing these problems with advantages and disadvantages for

each. Some methods may be better suited for certain situations. There is often a trade-off

between speed and reliability. Luenberger &Ye (2008) provides a wide overview covering the

concepts of optimization techniques for linear and nonlinear problems. We consider Newtons’

method, the Levenberg-Marquardt algorithm and a Multiplicative Iterative Algorithm.

For function L(θ) we wish to maximize, an iterative algorithm has the form:

θ (k+1) = θ (k) + τ(k) (2.4)

where θ (k) is the estimate for θ at the k-th iteration and τ(k) is the increment, the amount

which θ changes at the k-th iteration.
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Iterative methods require an initial starting value θ (0) to be chosen for the iterative formula

to start to update from. The increment is determined with a formula defined by the algorithm

method. This equation is continually updated until convergencewhich can be defined by some

convergence criterion such as absolute difference |θ (k+1) − θ (k) | < ε . When the initial value

θ (0) is poorly selected, this algorithm may not converge. A relaxation parameter ω ∈ (0, 1)

called the step-size can alter the increment to prevent this. This parameter can be determined

by a line search method.

2.5.1 Newton’s Method

Newton’s method is developed from the Taylor series expansion of L(θ) at θ (k) :

L(θ) = L(θ (k)) + (θ − θ (k))T ∂L(θ (k))
∂θ

+
1
2

(θ − θ (k))T ∂
2L(θ (k))
∂θ∂θT (θ − θ (k)) + . . .

where derivatives are evaluated at θ (k), ∂L(θ (k) )
∂θ =

∂L(θ)
∂θ

��θ=θ ( k),
∂2L(θ (k) )
∂θ∂θT

=
∂2L(θ)
∂θ∂θT

��θ=θ ( k).

When θ (k) is close to the maximum likelihood estimator θ̂, higher order terms ≈ 0. Thus

∂L(θ̂)
∂θ

≈
∂L(θ (k))

∂θ
+
∂2L(θ (k))
∂θ∂θT (θ̂ − θ (k))

As we are solving ∂L(θ̂)
∂θ = 0, the above equation becomes

θ̂ ≈ θ (k) −

[
∂2L(θ (k))
∂θ∂θT

]−1
∂L(θ (k))

∂θ

This is in the form of equation (2.4).

2.5.2 Levenberg-Marquardt Algorithm

The Levenberg-Marquardt algorithm (Marquardt (1963)) also known as the damped least

squares method, interpolates between the Taylor series method and the gradient descent

methods to overcome problems suffered by each individually. The updating algorithm has

the form

θ (k+1) = θ (k) + A−1 (k) ∂L(θ (k))
∂θ
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where

A =
n∑

i=1
(Bi BT

i + δdiag(Bi BT
i ))

with Bi defined from
∂L(θ)
∂θ

=

n∑
i=1

∂Li (θ)
∂θ

=

n∑
i=1

Bi

where δ is a damping factor which is adjusted at each iteration. If the change in L(θ) is large,

δ can be reduced, bringing the algorithm closer to a Guass-Newton algorithm. If the change

is small δ can be increased giving a larger step alike the gradient descent method.

2.5.3 Multiplicative Iterative Algorithm

Multiplicative iterative algorithms (Ma (2006)) are an updatingmethodwhich are particularly

useful for a parameter which is strictly positive. The multiplicative iterative algorithm has

the form

θ (k+1/2)
j = θ (k)

j

[ ∂L(θ (k) )
∂θ j

]+

[ ∂L(θ (k) )
∂θ j

]−

where [a]+ = max(a, 0) and [a]− = min(a, 0) such that a = [a]++[a]− This can be rearranged

to the common format seen earlier.

θ (k+1) = θ (k) + ω(k)diag *.
,

θ j

[ ∂L(θ (k) )
θ j

]−
+/
-

∂L(θ (k))
∂θ

where ω(k) ∈ (0, 1) is the line search step size and can be found using Armijo rule.

2.5.4 Line search: Armijo Rule

Line search methods work to determine a step-size which can increase reliability in finding

convergence from algorithms but sacrifices computation time. The Armijo rule (Armijo et al.

(1966)) is an inexact line search method which is quick and has sufficient accuracy. For the

function we wish to maximize L(θ) we have:

θ (k+1) = θ (k) + ω(k)τ(k)
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This is updated as us usual for steps L(θ (k+1)) > L(θ (k)). When L(θ (k+1)) < L(θ (k)) the

step size ω is decreased by some factor σ > 0 to become 1
σω and L(θ (k+1)) > L(θ (k)) is

rechecked. This repeats until we reach convergence.



3
Method

3.1 Augmented Lagrange on Empirical Likelihood

Thismethod stems from the idea of enforcing the pi positivity constraint by updating pi’s using

a Multiplicative Iterative algorithm. Using an augmented Lagrange method should improve

convergence times by penalizing ill fitting solutions. Estimating equations are incoporated

into empirical likelihood in the form of constraints as follows.

When we have k estimating equations

h(Xi, θ) =



h1(Xi, θ)
...

hk (Xi, θ)



the empirical likelihood ratio has the form:

R (θ) = max
pi,θ




n∏
i=1

pi |

n∑
i=1

pih(Xi, θ) = 0, pi ≥ 0,
n∑

i=1
pi = 1




(3.1)
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To solve this we take the log-likelihood and apply an augmented Lagrange method.

Lα =

n∑
i=1

logpi − λ(1 −
n∑

i=1
pi) − γT

n∑
i=1

pih(Xi, θ) −
α

2
| |

n∑
i=1

pih(Xi, θ) | |2 (3.2)

where γT =

[
γ1, . . . , γk

]
, | |a| | is the Euclidean norm of a =

√
a2

1 + . . . + a2
n and α > 0.

To solve this we differentiate first with respect to pi. Then use the KKT conditions to

solve λ. The solution can be directly substituted back into our optimization equation. We

can then update our pi estimates using a multiplicative iterative algorithm.

∂Lα
∂pi
= 1/pi + λ − γ

Th(Xi, θ) − α{
k∑

j=1
(

n∑
t=1

pt h j (Xt, θ)h j (Xi, θ))}

For optimal λ set
∂Lα
∂λ
= 0

we get:
n∑

i=1
pi = 1

Karush–Kuhn–Tucker conditions state: For pi ≥ 0

∂Lα
∂pi
= 0 if pi > 0 and

∂Lα
∂pi

< 0 if pi = 0

Thus pi
∂Lα

∂pi
= 0 follows for all pi ≥ 0 and so the sum will also be 0:

n∑
i=1

pi
∂Lα
∂pi
= 0

We can solve this for λ as

n∑
i=1

pi
∂Lα
∂pi
=

n∑
i=1

1 +
n∑

i=1
λpi − γ

T
n∑

i=1
pih(Xi, θ) − α{

k∑
j=1

(
n∑

t=1
pt h j (Xt, θ)

n∑
i=1

pih j (Xi, θ))}.

By substituting
∑n

i=1 pi = 1 we get

λ = −n + γT
n∑

i=1
pih(Xi, θ) + α{

k∑
j=1

(
n∑

t=1
pt h j (Xt, θ)

n∑
i=1

pih j (Xi, θ))}
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and noting the last term can be simplified to

α{

k∑
j=1

(
n∑

t=1
pt h j (Xt, θ)

n∑
i=1

pih j (Xi, θ))} = α{
k∑

j=1
(

n∑
t=1

pt h j (Xt, θ))2} = α | |

n∑
t=1

pth(Xt, θ) | |2

so we get

λ = −n + γT
n∑

i=1
pih(Xi, θ) + α | |

n∑
t=1

pth(Xt, θ) | |2 (3.3)

By substituting this λ we get:

∂Lα
∂pi
= 1/pi−n+γT

n∑
i=1

pih(Xi, θ)+α | |
n∑

t=1
pth(Xt, θ) | |2−γTh(Xi, θ)−α{

k∑
j=1

(
n∑

t=1
pt h j (Xt, θ)h j (Xi, θ))}

pi can now be updated using the MI algorithm,

p(k+1/2)
i = p(k)

i

[ ∂L
(k)
α

∂pi
]+

−[ ∂L
(k)
α

∂pi
]−

(3.4)

where [a]+ = max(a, 0) and [a]− = min(a, 0) such that a = [a]+ + [a]−, p(k)
i denotes the

solution for pi on the k-th iteration and ∂L (k)
α

∂pi
=

∂Lα

∂pi
��pi=p(k)

i
For this we separate ∂Lα

∂pi
into

positive and negative parts:

[
∂Lα
∂pi

]+ = 1/pi + [γT
n∑

i=1
pih(Xi, θ)]+ + α | |

n∑
t=1

pth(Xt, θ) | |2 − [γTh(Xi, θ)]−

− α[{
k∑

j=1
(

n∑
t=1

pt h j (Xt, θ)h j (Xi, θ))}]−

and

[
∂Lα
∂pi

]− = −n + [γ′
n∑

i=1
pih(Xi, θ)]− − [γ′h(Xi, θ)]+ − α[{

k∑
j=1

(
n∑

t=1
pt h j (Xt, θ)h j (Xi, θ))}]+

This forms our MI algorithm updating method for pi given in equation (3.4).

One full iteration of the MI algorithm follows the formula:

p(k+1)
i = p(k)

i + w
(k) (p(k+1/2)

i − p(k)
i ) (3.5)

where ω(k) ∈ (0, 1) is the line search step size and can be found using Armijo rule. This
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guarantees Lα (p(k+1)
i ) ≥ Lα (p(k)

i ).

Then we can update our θ using a number of options. We can first try to solve ∂Lα

∂θ = 0

and update accordingly. If the solution to this is hard to obtain we can use a Newton or

Quasi-Newton method. A general formula for ∂Lα

∂θ is provided below.

∂Lα
∂θ
= γT

n∑
i=1

pi
∂h(Xi, θ)

∂θ
− α(

n∑
i=1

pih(Xi, θ))T
n∑

i=1

∂h(Xi, θ)
∂θ

= (−
n∑

i=1
pi
∂h(Xi, θ)

∂θ
)T (γ + α

n∑
i=1

pih(Xi, θ)) (3.6)

Some methods require the second derivative:

∂2Lα

∂θ∂θT = −γ
T

n∑
i=1

pi
∂2h(Xi, θ)
∂θ∂θT − α(

n∑
i=1

pi
∂h(Xi, θ)

∂θ
)T

n∑
i=1

pi
∂h(Xi, θ)

∂θ

− α(
n∑

i=1
pih(Xi, θ))T

n∑
i=1

pi
∂2h(Xi, θ)
∂θ∂θT (3.7)

The second derivative may be difficult to calculate. To avoid this difficultly, we may use the

Levenberg-Marquardt algorithm to update θ which only requires ∂Lα

∂θ

θ (k+1) = θ (k) + ω(k)
2 A

−1 (k) ∂Lα (p(k+1)
i , θ (k))
∂θ

(3.8)

where

A =
n∑

i=1
(Bi BT

i + δdiag(Bi BT
i ))

with

Bi = (pi
∂h(Xi, θ)

∂θ
)T (γ + α

n∑
i=1

pih(Xi, θ))

We also need to obtain and update an estimate for γ. γ can be updated by a number of ways,

we use the standard method to update after we have found pi and θ

γ (k+1) = γ (k) + α

n∑
i=1

p(k+1)
i h(Xi, θ

(k+1)) (3.9)
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3.2 Asymptotic Properties

The asymptotic properties of Empirical Likelihood has been stated by Owen (2001). Our

method does not alter this Empirical Likelihood function, therefore the asymptotic properties

of EL remain intact. Of particular importance are the results of Qin & Lawless (1994) which

proved the asymptotic properties for EL with estimating equation constraints.

Theorem 1 The empirical likelihood ratio statistic for testing H0 : θ = θ0 is

−2L(θ0) − 2L(θ̂) ∼ χ2
p as n → ∞

when H0 is true, where p is the dimension of θ and L(θ) is the log-likelihood.

Corollary 2

−2L(θ0) − 2L(θ̂) ∼ χ2
(r−p) as n → ∞

for r estimating equations, if E[h(Xi, θ)] = 0.

Corollary 3 Let θT = (θ1, θ2)T , where θ1andθ2 are q×1 and (p−q)×1 vectors, respectively.

For H0 : θ = θ0
1,

−2L(θ0
1, θ̂

0
2) − 2L(θ̂1, θ̂2) ∼ χ2

q as n → ∞]

under H0, where θ̂0
2 minimizes logL(θ0

1, θ2) with respect to θ2.

See Qin & Lawless (1994) for full details.

3.3 Examples

This section demonstrates how to apply our method to specific situations for the overdeter-

mined case. We show how to include these constraints in the empirical likelihood maxi-

mization function in the form of estimating equations. The first case is the scenario where

we wish to apply empirical likelihood with linear regression to obtain parameter estimates

for a set of data. In our example we wish to test the hypothesis of a particular covariate

coefficient in a linear regression, this alters the problem to an overdetermined case when we

substitute in the parameter under the null hypothesis. The second example shows how to
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apply estimating equations of moments for parameters we wish to estimate. The simplest

scenario for the overdetermined case is 2 estimating equations with one parameter. We use

the example where the mean is equal to the variance such as for a Poisson distribution.

3.3.1 Example: Linear regression with test for a particular covariate

coefficient

For linear regression we have: Y = X β + ε where

Y =



y1
...

yn



X =



xT
1
...

xT
n



=



x11 . . . x1p
...
. . .

...

xn1 . . . xnp



β =



β1
...

βp



, ε =



ε1
...

εn


We can write the Empirical Likelihood maximization function subject to constraints.

R (θ) = max
pi,θ




n∏
i=1

pi |

n∑
i=1

pi, hi (Xi, yi, β) = 0, pi ≥ 0,
n∑

i=1
pi = 1




where hi (Xi, yi, β) = xi (yi − xT
i β) This is in the same form as (3.1) and so we can rewrite

this as a an augmented Lagrange as in (3.2).

Lα =

n∑
i=1

logpi − λ(1 −
n∑

i=1
pi) − γT

n∑
i=1

pihi (Xi,Yi, β) −
α

2
| |

n∑
i=1

pihi (Xi, yi β) | |2

Wemay be interested in testing a hypothesis about particular values of β. For example we

wish to test: H0 : β1 = β10 We can substitute this value of β10 into our estimating equation

matrix.

To incorporate the assumption H0, β1 = β10 into our estimating equation matrix we
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define: Xr as the X covariates related to coefficient β we are not testing for. e.g. All xi other

than x1. Xnr as the X variables related to coefficient we are testing for: e.g. β1 and x1. Now

hi (Xi, yi, θ) = xi (yi − xT
nr,i β10 − xr,i β∗)

where β∗ is a vector of β without β1. We update pi using the MI Algorithm equations (3.4)

and (3.5).

To estimate β∗, we need ∂Lα

∂ β∗
. We know the first derivative of L from equation (3.6).

Note: We are testing for β10 under H0 so do not need to estimate β1, we substitute this value

into our equation. Here we have

∂Lα
∂ β∗

= (−
n∑

i=1
pi
∂hi (Xi, yi, β)

∂ β∗
)T (γ + α

n∑
i=1

pihi (Xi, yi, β∗))

We can simply solve ∂Lα

∂ β∗
= 0 to update β1 as it is linear in terms of β1. We have:

∂hi (Xi, yi, β)
∂ β∗

= −XT
i Xr,i

By substitution:

∂Lα
∂ β
= (

n∑
i=1

pi XT
i Xr,i)T (γ + α

n∑
i=1

pi XiT (yi − Xr,i β∗))

= (
n∑

i=1
pi XT

i Xr,i)T (γ + α
n∑

i=1
pi XiT yi − α

n∑
i=1

pi XT
i Xr,i β∗) = 0

Therefore

α(
n∑

i=1
pi XT

i Xr,i)T (
n∑

i=1
pi XT

i Xr,i β∗) = (
n∑

i=1
pi XT

i Xr,i)T (γ + α
n∑

i=1
pi XiT yi)

β∗ = [α(
n∑

i=1
pi XT

i Xr,i)T (
n∑

i=1
pi XT

i Xr,i)]−1(
n∑

i=1
pi XT

i Xr,i)T (γ + α
n∑

i=1
pi XiT yi)

The multipliers vector γ is updated simply by equation (3.9)

γ (k+1) = γ (k) + α

n∑
i=1

p(k+1)
i hi (Xi, yi, β

(k+1)
1 )
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3.3.2 Example: Estimating equations on Poisson mean

For a set of data we suspect belongs to a Poisson distribution, we can use our knowledge of

µ and σ2 to form estimating equations to improve our estimates of pi and θ. We have the

empirical likelihood

R (θ) = max
pi,θ




n∏
i=1

pi |

n∑
i=1

pi, hi (Xi, θ) = 0, pi ≥ 0,
n∑

i=1
pi = 1




where we have estimating equations h1(Xi, θ) = Xi − µ and h2(Xi, θ) = X2
i − µ − σ

2 where

µ = θ and σ2 = θ. Thus

h(Xi, θ) =


h1(Xi, θ)

h2(Xi, θ)


=



Xi − θ

Xi − θ − θ
2



This is in the general form, so pi can be updated using MI Algorithm equations (3.4) and

(3.5) In order to update θ we try to solve ∂Lα

∂θ = 0 from equation (3.6)

∂Lα
∂θ
= (−

n∑
i=1

pi
∂h(Xi, θ)

∂θ
)T (γ + α

n∑
i=1

pih(Xi, θ))

where
∂h(Xi, θ)

∂θ
=



∂h1
∂θ

∂h2
∂θ


=



−1

−1 − 2θ



which means ∂Lα

∂θ is a cubic in terms of θ which can be solved. Alternatively, we can use

equation (3.8), the Levenberg-Marquardt algorithm to update θ. This algorithm is chosen

since it does not require calculation of the second derivative.

θ (k+1) = θ (k) + ω(k)
2 A

−1 (k) ∂Lα (p(k+1)
i , θ (k))
∂θ

where

A =
n∑

i=1
(Bi BT

i + δdiag(Bi BT
i ))

with

Bi = (pi



−1

−1 − 2θ


)T (γ + α

n∑
i=1

pi



−1

−1 − 2θ


)
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The multipliers vector γ is updated simply by equation (3.9)

γ (k+1) = γ (k) + α

n∑
i=1

p(k+1)
i



Xi − θ
(k+1)

Xi − θ
(k+1) − (θ (k+1))2


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4
Simulation

Simulations for the examples in section 3.3 have been conducted to demonstrate our method

works. MATLAB program was used, the relevant codes are attached in the appendix. In this

section we explain the type of data used, the choices of initial starting values of parameters we

wish to estimate and discuss the results and accuracy of our simulation. We obtain estimates

for pi and parameter θ for each simulation as well convergence information and likelihood

values. In the simulation, 500 repetitions have been run with a single sample size n = 30 for

each example.

4.1 Linear regression with test for a particular covariate

coefficient

The linear regression example from section 3.3.1 was designed to show how our method

can handle regression being incorporated into the empirical likelihood while also testing a
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hypothesis. Data was generated so that

yi = xib + ε i i = 1, . . . , 30

for known true β, b = [2, 3, 5]T , ε ∼ 10N (0, 1), xi = [xT
i0, xT

i1, xT
i2], where x0 is a vector

of 1’s relating to the intercept coefficient. x1 was generated from a Binomial distribution

with 30 trials and a 0.2 probability of success and x2 was generated from a uniform(−5, 5)

distribution.

The method requires initial starting values for pi, β and γ to be chosen. p(0)
i = 1/n is

chosen as it is the maximum likelihood estimate of the empirical likelihood estimator. It puts

equal probability mass 1/n on the n observed values y1, y2, . . . yn. We used the least squares

solution as a starting point for β. With the hypothesis test β10 = 2 this becomes

β(0) = (XT Xr )−1XTY − 2Xnr

where Xr is [X2, X3] the X covariates for coefficients we are not testing, β2 and β3. Xnr

is [X1], the covariate for which we are testing the coefficient of β1. Initial value for γ was

chosen to be 0 i.e. γ (0) = 0

Box plots have been used to check if our constraints are satisfied. As shown in figure

4.1
∑n

i=1 pi ≈ 1 in most cases with some repetitions having a
∑n

i=1 pi >> 1. Note: we have

suggested an adjustment to our method to more strongly account for this constraint but due

to time limitations it has yet to be implemented. Our constraint on the estimating equations∑n
i=1 pihi = 0 has been much better maintained, though there are still some repetitions where

the constraint is not satisfied.

We also wish to compare our β estimates β̂2 and β̂3 with the true values b2 = 3 and

b3 = 5. Figures 4.3, 4.4 , 4.5,4.6, 4.7 and 4.8 show the distribution of our estimates. We

notice both β̂2 β̂3 have underestimated the true parameter value, with β̂2 being close to 2.4

and β̂3 close to 4. β̂2 appears slightly right skewed while β̂3 appears quite symmetric.

The likelihood plot in figure 4.9 shows how the method with the likelihood converging

towards a maximum value.
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Figure 4.1: Box plot of
∑n

i=1 pi. The median is close to 2, with some very large outliers.

Figure 4.2: Box plot of the estimating equations,
∑n

i=1 pihi. The medians are very close to 0
with low variance.
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Figure 4.3: Box plot of β̂2. The me-
dian is slightly lower than 2.4.

Figure 4.4: Plot for β2 estimate ver-
sus repetition.

Figure 4.5: Histogram of the β̂2. The
distribution is slightly right skewed.

Figure 4.6: Histogram of the β̂3. The
distribution is roughly symmetric.

Figure 4.7: Box plot of the β̂3. Me-
dian is close to 4.

Figure 4.8: Plot of the β̂3 versus rep-
etition.
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Figure 4.9: Likelihood until convergence for the first repetition.
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4.2 Estimating Equations on Poisson mean

The example from section 3.3.2was designed to showhowourmethod incorporates estimating

equations into the empirical likelihood in an overdetermined case. The simplest case is that

of two estimating equations for one parameter. Data from a Poisson distribution would be

suitable here as we have one parameter for both mean and variance. Accordingly data was

generated from a Poisson distribution with rate λ = 3 i.e. X ∼ Poisson(3). Initial starting

values for pi and γ are the same as in the previous example for the same reasons. The sample

mean was used as a the initial starting value for θ i.e. θ (0) = mean(X ).

Box plots 4.10 and 4.11 evaluate the success of our constraints. We can see these

constraints are more strongly satisfied here than in the previous example but we still have

some problem points. From figure 4.10 we can see there are some of repetitions with∑n
i=1 pi > 1. Figure 4.11 shows most repetitions have the estimating equations constraints

satisfied and there are also some outliers with constraints up to -0.1.

Figures 4.14, 4.12, 4.13 show our estimates for θ are reasonable, with a mean close to the

true parameter 3. Variance in our estimates is also not too large. The histogram figure 4.13

shows our estimates are slightly right skewed.

The likelihood plot figure 4.15 shows the likelihood converges properly to a maximum

point.
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Figure 4.10: Box plot of
∑n

i=1 pi. The median is slightly larger than 1 with some outliers
larger than 1.3.

Figure 4.11: Box plot of the estimating equations,
∑n

i=1 pihi. The figure shows the constraint
has been fairly well satisfied.
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Figure 4.12: Plot of θ̂ versus repeti-
tion.

Figure 4.13: Histogram of θ̂. Slight
right skewness is seen in the distribu-
tion.

Figure 4.14: Box plot of θ̂. The median is quite close to the true parameter 3. Variance is
not too large.
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Figure 4.15: Likelihood until convergence of the first repetition.
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5
Conclusion

This thesis has outlined the key areas of the extensive theory of empirical likelihood. From the

development of the empirical likelihood function, likelihood ratio for asymptotic properties

allowing confidence regions to be constructed as well as how to apply estimating equations

and incorporate regression into empirical likelihood. Existing methods of solving the max-

imization empirical likelihood function along with optimization algorithms were compared.

The problem with existing methods occurring from the assumption pi ≥ 0 was discussed and

a working method which ensures this constraint is satisfied has been demonstrated. Simula-

tion results from MATLAB code demonstrate how the method is implemented and obtains

its estimates with working examples.

Simulations show our method struggled to enforce the constraint
∑n

i=1 pi = 1 through the

use of Lagrange multipliers. This problem calls for alterations to be made to improve our

method’s accuracy of the constraint. One method may be to transform the pi such that our

variable pi guarantees the sum is 1 rather than enforcing the constraint through Lagrange.
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This could be done by rescaling pi. We can transform pi by

pi =
ξi∑n

t=1 ξt

to incorporate the constraint
∑n

i=1 pi = 1. Using this transformationwill guarantee
∑n

i=1 pi = 1

in the multiplicative iterative algorithm, which we allow our method to maintain this result.

It would interesting to see how the method performs with different sample sizes n and

to consider how the likelihood ratio compares to the asymptotic result for different values of

n. Exploration of how the method compares against other methods such as Owen’s method

(Owen (1988)) and Chen’s method (Chen et al. (2008)) particularly with specific examples

when Owen’s method fails. Research for how our method can be altered to handle problems

which are determined or undetermined is required. We have shown this method is useful

for problems which are overdetermined, where we have more estimating equations than the

number of parameters we wish to estimate. If the number of estimating equations is equal to

the number of parameters we wish to estimate, this method will return the same solution as

the method of moments. This can be seen from the MI algorithm equation (3.4), given initial

starting values for pi =
1
n , γ = 0 and θ as the method of moments estimate, the numerator

and denominator are equal and the likelihood is already at a saddle point. Further work could

involve writing an R package to run the code of this method for greater accessibility.

Empirical likelihood is an exceptional tool for inference due to the nonparametric nature

of the empirical likelihood ratio asymptotic properties. This is source of its strengths and

weaknesses compared with other methods. The ability to be adjusted to handle a wide

variety of problems in conjunction with existing methods such as estimating equations is the

greatest strength of the method and have allowed empirical likelihood to have far reaching

applications.
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Appendix

A.1 MATLAB Code

A.1.1 Example: Linear regression with test for a particular covariate
coefficient

Name

ELAugregt

Description
The program calculates estimates for pi and β given a set of data with response variable Y ,
covariates X = [X1, . . . , Xn] and a hypotheses on the true level of β. It uses a multiplicative
iterative algorithm to update pi and an augmented Lagrange method to include the estimating
equation regression constraints.

Code

function [p_ih, beta, other] = ELAugregt(X, Y, tIdxVal,
varargin) % give theta (mu, sigma)

%
%ELAugregt Hypothesis test on beta for empirical

likelihood regression using Augmented Lagrange
%
%Usage: [p_i, beta, other] = ELAugregt(y, X, tIdxVal,

varargin)
%
%Inputs:
% X = covariates obs vector
% Y = response obs vector
% tIdxVal = 2-element vec for test parameter index and its

test value under H0
%Default values in "varargin":
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% 'maxiter' = maximum iteration number
% 'p_i0' = initial p_i value
% 'beta0' = initial beta value
% 'lam0' = initial lam2 (I call gamma)
% 'allrho' = vector of alpha values (usually in 1 - 150)
% 'hmat' = estimating equation matrix
%
%Outputs:
% p_ih = p_i estimate
% beta = beta estimate

% other = struct array for other estimates, including
% other.cvg = list of [outiter, inneriter, penalized

likelihood]
% other.score = score function values at convergence
% other.lam = Lagrange mutiplier gamma for score function

constraints

p = size(X,2);
tIdx = tIdxVal(1); tVal = tIdxVal(2);
rX = X(:,1:end~=tIdx);% remove covariate related to

coefficient beta we are testing e.g. beta_1 and x_1
nrX = X(:, tIdx);
rp = size(rX,2);%reduced num of beta's
%default values; can be changed in inputs
maxiter = 1000;
allrho = 2.^(1:10); %alpha values
%rho1 = 100;
n=length(Y); %n1=(n-1)/n;
p_i0 = ones(n, 1)/n; %nonrescaled pi, initial =1/n
%p_i0=rand(n,1); %inital p_i is rand
%p_i0=ones(n,1); %inital p_i is 1/n
%p_i0=p_i0/sum(p_i0); %rescaled pi
lam0 = zeros(p, 1);
%lam0=[1;2];
%lam10 = 0;
%damp = 5e-1;

XtY = zeros(p,1,n);
for i = 1:n

XtY(:,:,i) = X(i,:)'*Y(i);
end

beta0 = X'*rX\X'*(Y-tVal*nrX);

hmat=zeros(n,p);
resi = Y-nrX*tVal-rX*beta0;
for i=1:n
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hmat(i,:)=resi(i)'*X(i,:);
end

varglen = length(varargin);
if varglen ~= 0

numvarg = varglen/2;
t = 1;
for k = 1:numvarg

eval([varargin{t} '=varargin{t+1};'])
t = t+2;

end
end
cvg = [];

%rename variables
oldp_i = p_i0;
lam = lam0; %lam1 = lam10;
oldbeta=beta0;

%%%%%%%%%%%%%
% main part %
%%%%%%%%%%%%%

for outiter = 1:length(allrho)
rho = allrho(outiter);
pthmat = repmat(oldp_i,1,p).*hmat;
sph = sum(pthmat);
%alval0 = sum(log(max(eps, oldp_i)))-0.5*rho*sum(sph.^2)

-0.5*rho*(1-sum(oldp_i))^2;
alval0 = sum(log(max(eps, oldp_i)))-0.5*rho*sum(sph.^2);

%-lam1*(1-sum(oldpi))-sph*lam

%estimate all the parameters for this given rho (alpha)
for iter = 1:maxiter

%lam1 = -n+sph*lam+rho*sum(sph.^2);
%%update pi
f1 = hmat*lam;
f2 = hmat*sph';
num = 1./oldp_i- min(0,f1) - rho*min(0,f2)+max(0,sph*

lam)+rho*sum(sph.^2); %-lam
den = n +max(0,f1) + rho*max(0,f2)-min(0,sph*lam);
gradp_i = num-den;
ss = oldp_i./den;
incp_i = ss.*gradp_i;
newp_i = oldp_i+incp_i;
pthmat = repmat(newp_i,1,p).*hmat;
sph = sum(pthmat);
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%alvalp = sum(log(max(eps, newp_i)))-0.5*rho*sum(sph
.^2)-0.5*rho*(1-sum(newp_i))^2;

alvalp = sum(log(max(eps, newp_i)))-0.5*rho*sum(sph
.^2); %-lam1*(1-sum(newp_i))-sph*lam

ome = 0.6;
%Armijo line search
while alvalp < alval0 %this occurs when step size was

too large (jumped too far, in that case try step
size ome)
newp_i = oldp_i+ome*incp_i;
pthmat = repmat(newp_i,1,p).*hmat;
sph = sum(pthmat);
%alvalp = sum(log(max(eps, newp_i)))-0.5*rho*sum(

sph.^2)-0.5*rho*(1-sum(newp_i))^2;
alvalp = sum(log(max(eps, newp_i)))-0.5*rho*sum(

sph.^2); %-lam1*(1-sum(newpi))-sph*lam
if ome >= 1e-2

ome = ome*0.6;
elseif ome < 1e-2 && ome >= 1e-5

ome = ome*5e-2;
elseif ome < 1e-5 && ome >= 1e-20

ome = ome*1e-5;
else

break;
end

end

%%update regression coef beta using quasi-Newton
%first compute derivative of h matrix with respect to

beta
%resi = Y-nrX*tVal-rX*oldbeta;
dhmat = zeros(p,rp,n); %3d matrix: pxrpxn
ptdhmat = dhmat;

%computes terms for updating beta
for i = 1:n

dhmat(:,:,i) = -X(i,:)'*rX(i,:);
ptdhmat(:,:,i)=newp_i(i)*dhmat(:,:,i);
ptXtY = newp_i(i)*XtY(:,:,i);

end
spdh = sum(ptdhmat, 3);
spXtY = sum(ptXtY, 3);

newbeta = rho*(spdh)'*spdh\spdh'*(lam+rho*spXtY);
incb = newbeta-oldbeta;
resi = Y-nrX*tVal-rX*newbeta;

for i=1:n
hmat(i,:)=resi(i)'*X(i,:);

end
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pthmat = repmat(newp_i,1,p).*hmat;
sph = sum(pthmat);
%alvalt = sum(log(max(eps, newp_i)))-0.5*rho*sum(sph

.^2) -0.5*rho*(1-sum(newp_i))^2;
alvalb = sum(log(max(eps, newp_i)))-0.5*rho*sum(sph

.^2); %-lam1*(1-sum(newpi))-sph*lam
ome = 0.6;
%Armijo line search
while alvalb < alvalp

newbeta = oldbeta+ome*incb;
resi = Y-nrX*tVal-rX*newbeta;
for i=1:n

hmat(i,:)=resi(i)'*X(i,:);
end

pthmat = repmat(newp_i,1,p).*hmat;
sph = sum(pthmat);
% alvalt = sum(log(max(eps, newp_i)))-0.5*rho*sum(sph

.^2)-0.5*rho*(1-sum(newp_i))^2;
alvalb = sum(log(max(eps, newp_i)))-0.5*rho*sum(

sph.^2); %-lam1*(1-sum(newpi))-sph*lam
if ome >= 1e-2

ome = ome*0.6;
elseif ome < 1e-2 && ome >= 1e-5

ome = ome*5e-2;
elseif ome < 1e-5 && ome >= 1e-20

ome = ome*1e-5;
else

break;
end

end

%%update Lagrange multpliers vector gamma
lam = lam+rho*sph';
%lam1 = lam1+1e-3*rho*(1-sum(newp_i));

if all(abs(newp_i-oldp_i)<1e-5)&&all(abs(newbeta-
oldbeta)<1e-5)&&all(rho*sph'<1e-3);
%all(abs([newp_i;newbeta]-[oldp_i;oldbeta])<1e-5)

&&all(rho*sph'<1e-3);
break

else
oldp_i = newp_i;
oldbeta = newbeta;
alval0 = alvalb;
%lam = newlam;

end
cvg = [cvg; [outiter, iter, alval0, sum(log(max(eps,

newp_i))), sum(newp_i)]]; %#ok<*AGROW>
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end
if all(abs(sph)<1e-6)

break;
end

end
p_ih = newp_i;
beta = newbeta;
other.cvg = cvg;
other.score = sph;
other.lam = lam;

A.1.2 Example: Estimating Equations on Poisson first and second mo-
ments

Name

ELAug2eeLM

Description
The program calculates estimates for pi and θ given a set of data points X . It uses a
multiplicative iterative algorithm to update pi and an augmented Lagrange method to include
the estimating equation constraints on the first and second moments.

Code

function [p_ih, theta, other] = ELAug2eeLM(X, varargin) %
gives theta

%
%sp_augl Saddle point test for GEE linear model using

Augmented Lagrange
%
%Usage: [p_i, theta, lam, other] = ELAug2eeLM(X, varargin)
%Inputs:
% X = response obs vector
%
%Default values in "varargin":
% 'maxiter' = maximum iteration number
% 'p_i0' = initial p_i value
% 'theta0' = initial theta value
% 'lam0' = initial gamma
% 'allrho' = vector of alpha values (usually in 1 - 150)
% 'hmat' = estimating equation matrix
%
%Outputs:
% p_ih = p_i estimate
% theta = theta estimate

% other = struct array for other estimates, including
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% other.cvg = list of [outiter, inneriter, penalized
likelihood]

% other.score = score function values at convergence
% other.lam = Lagrange mutiplier gamma for score function

constraints

%default values; can be changed in inputs
maxiter = 1000;
allrho = 2.^(1:10); %alpha values
n=length(X);
p_i0 = ones(n, 1)/n; %nonrescaled pi, initial =1/n
%p_i0=rand(n,1); p_i0=p_i0/sum(p_i0); %rescaled pi
%p is number of rows on h matrix
%lam0 = zeros(p, 1);
lam0 = zeros(2, 1);
%lam0=[1;2];
%lam10 = 0;
damp = 5e-1;

theta0=mean(X); %or Var(X)
h1 = X - theta0;
h2 = X.^2-theta0^2-theta0;
hmat=[h1,h2];

varglen = length(varargin);
if varglen ~= 0

numvarg = varglen/2;
t = 1;
for k = 1:numvarg

eval([varargin{t} '=varargin{t+1};'])
t = t+2;

end
end
cvg = [];

%rename variables
oldp_i = p_i0; oldtheta = theta0;
lam = lam0; %lam1 = lam10;

%%%%%%%%%%%%%
% main part %
%%%%%%%%%%%%%

for outiter = 1:length(allrho)
rho = allrho(outiter);
pthmat = repmat(oldp_i,1,2).*hmat;
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% make variable cols in p-mat since must be equal to rows
in hmat i.e. =d1=p

sph = sum(pthmat);
%alval0 = sum(log(max(eps, oldp_i)))-0.5*rho*sum(sph.^2)

-0.5*rho*(1-sum(oldp_i))^2;
alval0 = sum(log(max(eps, oldp_i)))-0.5*rho*sum(sph.^2);

%-lam1*(1-sum(oldpi))-sph*lam

%estimate all the parameters for this given rho
for iter = 1:maxiter

%lam1 = -n+sph*lam+rho*sum(sph.^2);
%%update pi
f1 = hmat*lam;
f2 = hmat*sph';
num = 1./oldp_i- min(0,f1) - rho*min(0,f2)+max(0,sph*

lam)+rho*sum(sph.^2); %-lam
den = n +max(0,f1) + rho*max(0,f2)-min(0,sph*lam);
gradp_i = num-den;
ss = oldp_i./den;
incp_i = ss.*gradp_i;
newp_i = oldp_i+incp_i;
pthmat = repmat(newp_i,1,2).*hmat;
sph = sum(pthmat);

%alvalp = sum(log(max(eps, newp_i)))-0.5*rho*sum(sph
.^2)-0.5*rho*(1-sum(newp_i))^2;

alvalp = sum(log(max(eps, newp_i)))-0.5*rho*sum(sph
.^2); %-lam1*(1-sum(newp_i))-sph*lam

ome = 0.6;
%Armijo line search
while alvalp < alval0

newp_i = oldp_i+ome*incp_i;
pthmat = repmat(newp_i,1,2).*hmat;
sph = sum(pthmat);
%alvalp = sum(log(max(eps, newp_i)))-0.5*rho*sum(

sph.^2)-0.5*rho*(1-sum(newp_i))^2;
alvalp = sum(log(max(eps, newp_i)))-0.5*rho*sum(

sph.^2); %-lam1*(1-sum(newpi))-sph*lam
if ome >= 1e-2

ome = ome*0.6;
elseif ome < 1e-2 && ome >= 1e-5

ome = ome*5e-2;
elseif ome < 1e-5 && ome >= 1e-20

ome = ome*1e-5;
else

break;
end

end
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%update theta by using Levenberg-Marquardt
%first compute derivative of h matrix with respect to

theta;
dhmat = zeros(2, 1, n); %3d matrix: 2x1xn
ptdhmat = dhmat;
%computes hessian matrix Sb
for i = 1:n

dhmat(:,:,i) = [-1; -1-2*oldtheta];
ptdhmat(:,:,i)=newp_i(i)*dhmat(:,:,i);
lmai = ptdhmat(:,:,i)'*(lam+rho*sph');
tmps = lmai*lmai';
%damp = 1./min(diag(tmps)+1e-1);
Sbi(:,:,i) = tmps+damp*diag(diag(tmps));

end
spdh = sum(ptdhmat, 3);
gradt = -spdh'*(lam+rho*sph');
Sb = sum(Sbi, 3);
inct = Sb\gradt;

newtheta= oldtheta + inct;
h1= X-newtheta;
h2= X.^2-newtheta^2-newtheta;

hmat=[h1 ,h2 ];
pthmat = repmat(newp_i,1,2).*hmat;
sph = sum(pthmat);
%alvalt = sum(log(max(eps, newp_i)))-0.5*rho*sum(sph

.^2) -0.5*rho*(1-sum(newp_i))^2;
alvalt = sum(log(max(eps, newp_i)))-0.5*rho*sum(sph

.^2); %-lam1*(1-sum(newpi))-sph*lam
ome = 0.6;
%Armijo line search
while alvalt < alvalp

newtheta = oldtheta+ome*inct;
h1= X-newtheta;
h2= X.^2-newtheta^2-newtheta;

hmat=[h1 ,h2 ];
pthmat = repmat(newp_i,1,2).*hmat;
sph = sum(pthmat);
% alvalt = sum(log(max(eps, newp_i)))-0.5*rho*sum(sph

.^2)-0.5*rho*(1-sum(newp_i))^2;
alvalt = sum(log(max(eps, newp_i)))-0.5*rho*sum(

sph.^2); %-lam1*(1-sum(newpi))-sph*lam
if ome >= 1e-2

ome = ome*0.6;
elseif ome < 1e-2 && ome >= 1e-5

ome = ome*5e-2;
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elseif ome < 1e-5 && ome >= 1e-20
ome = ome*1e-5;

else
break;

end
end
lam = lam+rho*sph';
%lam1 = lam1+1e-3*rho*(1-sum(newp_i));

if all(abs([newp_i;newtheta]-[oldp_i;oldtheta])<1e-5)
&&all(rho*sph'<1e-3);
%all(abs(newp_i-oldp_i)<1e-7)&&all(rho*sph'<1e-3)
break

else
oldp_i = newp_i;
oldtheta = newtheta;
alval0 = alvalt;
%lam = newlam;

end
cvg = [cvg; [outiter, iter, alval0, sum(log(max(eps,

newp_i))), sum(newp_i)]]; %#ok<*AGROW>
end
if all(abs(sph)<1e-6)

break;
end

end
p_ih = newp_i;
theta = newtheta;
other.cvg = cvg;
other.score = sph;
other.lam = lam;
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