MODELING SPEECH ANALYSIS WORKFLOWS IN VISTRAILS

Alec Scheuffele

Bachelor of Engineering
Software Engineering

]
Pg
ey

MACQUARIE
University

SYDNEY-AUSTRALIA

Department of Engineering
Macquarie University

September 3, 2017

Supervisor: Associate Professor Steve Cassidy

ACKNOWLEDGMENTS
I would like to acknowledge my academic supervisor, Associate Professor Steve
Cassidy, for his guidance on this thesis project. I also want to thank my par-
ents for their support and encouragement throughout my studies at Macquarie

University.

STATEMENT OF CANDIDATE

I, Alec Scheuffele, declare that this report, submitted as part of the require-
ment for the award of Bachelor of Engineering in the Department of Electronic
Engineering, Macquarie University, is entirely my own work unless otherwise ref-
erenced or acknowledged. This document has not been submitted for qualification

or assessment an any academic institution.

Student’s Name: Alec Scheuffele
Student’s Signature: Alec Scheuffele (electronic)

Date: September 4, 2017

ABSTRACT

Reproducibility of results is a fundamental component of conducting compre-
hensive research. When experimenting with data-analysis pipelines, time spent
managing low-level processes and juggling inconsistencies between tools is a bar-
rier to effective research. Rather than exclude persons who might not have a
strong technological /programming background to work-around these limits, uti-
lizing a “higher-level” workflow environment could be of great benefit in certain
domains — for this project, that domain is acoustic phonetics. This project is an
exploration into the effective use of the workflow software “VisTrails” for build-
ing acoustic phonetics workflows. VisTrails is a python-based application where
workflows can be visually constructed using a “drag-and-drop” interface of logic
modules and linked input/output ports. Users can test workflows under a vari-
ety of operational parameters without the need to modify low-level source-code.
Furthermore, users can create custom VisTrails packages tailored for particular
domains. These can be bundled and shared between colleagues for easily repeat-
able and extensible experiments. In this project, the core design elements of
workflows are investigated within the context of acoustic phonetics, and a target
analysis task (classifying phones using formant trajectory data) is implemented
at varying levels of module granularity. The benefits/drawbacks of each approach
are investigated, and assessments are made on the practicality of working with

VisTrails workflows, and their component modules, at these levels of abstraction.

Contents

Acknowledgments

Abstract

Table of Contents

List of Figures

1

Introduction

1.1 Project Goals

1.2 Planning e e
1.2.1 Development Strategy
1.22 Cost

1.3 Document Overview e

Background

2.1 Review of Relevent Literature
2.1.1 Acoustic Theory of Speech
2.1.2 Current Tools/Methods for Acoustic Phonetics Research, and Short-

COMUIMES . & v v v v v e e e e e e e e e e e e e e

2.1.3 Visual Programming and Workflow Systems
2.1.4 Exploring VisTrails for Acoustic Phonetics Research

VisTrails

3.1 Imtroduction

3.2 Workflows in VisTrails

3.3 Designing Workflow Modules

Building a Classifier for Recognizing Phones

4.1 Imtroduction Lo

4.2 OVEIVIEW o o v e e e e e e e
4.2.1 Analysis Task
422 KeyProcesses

4.3 Core functionalities and Libraries

iii

vii

11
11
11
14

19
19
20
20
20
22

CONTENTS

4.4 Design and Draft in Jupyter Notebook

VisTrails Implementations

5.1 Introduction
5.2 High Granularity Workflow
521 TImplementation
522 Observations
5.3 Low Granularity Workflow:
5.3.1 Implementation
532 Observations

Conclusions and Future Work

6.1 Conclusions

62 Putare Work e e
6.2.1 Building More Workflows
6.2.2 Testing Other Features of VisTrails
6.23 User Testing
6.24 A More “Comprehensive” set of Speech Analysis Tools
6.2.5 Testing Other Workflow Systems
6.2.6 Exploring Other Domains

Abbreviations

name of appendix A

A1 Output Visualizations, .
A2 Subworkflows

...... 46

List of Figures

2.1 Source-Filter. 5
2.2 Workflow Model 7
3.1 Execution e 12
3.2 Control Flow 13
3.3 Concise and Extensible L. 15
34 Table DataFlow 16
3.5 Average Spectrum for each Phone 0 L. 18
4.1 High-Level Visualization of Analysis Task 21
4.2 Output Confusion Matrix 29
5.1 Pandas-Op Modules 32
5.2 List-Op Modules 34
5.3 High Granularity Workflow 35
5.4 Remove Low LOD 36
5.5 Low-Granularity Modules 38
5.6 ‘“removelowLOD” DataFrame Visualization 39
57 Low Granularity Workflow, 42
A.1 Confusion Matrix 51
A.2 Get Phone Intervals. 52
A.3 Compute Formant Trajectories for Phones 53
A4 Remove Zero Values 53
A5 Remove Low-LOD Samples 54
A.6 Normalize Trajectories 54
A7 Compute DCT Coefficients 55
A.8 Round-Robin Training/Testing 55

xi

Chapter 1

Introduction

1.1 Project Goals

Acoustic phonetics analysis is the study of the quantifiable acoustic features of human
speech. Research in this field often involves passing large audio data-sets through purpose-
built computational pipelines, and analyzing outputs. Its a development process that
could heavily benefit from some degree of abstraction. Current tools/techniques make re-
producing past research unnecessarily difficult. Time spent managing low-level processes,
and navigating inconsistencies between tools is a barrier to effective research. Workflow
engines are a promising paradigm for addressing many of these issues. Investigating these
systems for building and acoustic phonetics analysis workflows would provide some useful
insight into the viability of performing such analysis tasks at this level abstraction, and
doing so in the most effective way.

VisTrails is a powerful python-based workflow system that facilitates the construction
of complex data-analysis pipelines without needing to make constant changes to low-level
source code. By linking together networks of draggable input/output modules within
a visual workspace, users can quickly investigate different workflows, tweak operation
parameters, render interactive output visualizations, and maintain a navigable tree of
provenance data for their projects. This project is an exploration into the effective use of
the software VisTrails for data analysis in the field of acoustic phonetics.

The goal for this project is to create some sample tools/packages for acoustic phonet-
ics research within VisTrails (located in project repository [25]), construct speech analy-
sis workflows using this package, and assess the benefits/drawbacks of various workflow
design decisions. In short, how can VisTrails be most effectively utilized for acoustic pho-
netics research (steering clear of low-level seripting), what are some of the key workflow
component design decisions, and how do these variables impact the efficiency /effective-
ness of data analysis tasks.

Key Goals:
e Investigate the effectiveness of VisTrails for building and executing “acoustic pho-

1

2 Chapter 1. Introduction

netics analysis” workflows. (Targeting users who have limited scripting knowledge).

o Create some exploratory acoustic phonetics package modules, build some example
workflows using the package, and execute these workflows over test data sets.

e Observe the benefits and drawbacks of various workflow design decisions (e.g. gran-
ularity, data-structures) and how they effect the effectiveness of resulting workflows
(maintainability, speed, readability, extensibility...etc) within the context of the Vis-
Trails environment.

1.2 Planning

Week: 0O 1 2 3 4 5 6 7 8 9 10 11 12
Prep Development Analysis
Phase: | | | I
|====== 0.1----==|
1--0.2—|
| 1.1 |
| 1.2 |
| 1.3 |
| ==m—— 2. 2-===== |
0 - Prep:

0.1 Reviev of Knowledge Areas
0.2 VisTrails Feature Exploration
1 - Development:
1.1 Developing Core Functicnalities, and Integrating Libraries
1.2 Design and build VisTrails Modules
1.3 Design and Implement Sample Workflows
2 - Analysis:
2.2 Analysis and Report

1.2.1 Development Strategy

This project was carried out in three sequential phases — Preparation, Development, and
Analysis. The majority partition is the development phase, where Acoustic Phonetics
workflows are implemented in VisTrails, and the various related modules/sub-workflows
are designed and tested. An agile approach was taken for this project phase, employ-
ing a flexible interpretation of feature driven development as the development strategy.
Features were iteratively implemented and improved upon throughout the development
phase as more information was gathered.

The chart above shows a high-level representation of the project schedule. The realization
of this schedule was quite flexible, and with some level of overlap. The “Development”
phase did not adhere strictly to any kind of development cycle, as iterative features/func-
tionalities were done in a more experimental fashion.

1.3 Document Overview 3

1.2.2 Cost

No costs were incurred with this project, as planned. Tools that were planned/used in
completing this project include:

- VisTrails (free)
- Jupyter Notebook (free)
- Text Editor (e.g. Notepad, Sublime Text) (free options)
- Source Control Software (BitBucket) (free)
- Development Computer (already own)

1.3 Document Overview

A brief overview of the research tasks performed in this project are deseribed below. These
also represent the major sections/topics covered in this paper.

A First Look at VisTrails:
This is an early investigation into the various intricacies of VisTrails. Here, some of the
following questions are answered:

e What is a VisTrails module? How do they work?

What default modules come shipped with VisTrails? What is missing?

e How is control flow handled?
e How are custom VisTrails modules/packages made?

e What are the key elements/variables for designing workflows in VisTrails (e.g. data
structures, granularity)?

e What additional (relevant) features/functionalities are included?

Drafting a Target Workflow in Jupyter Notebook:

First, a target acoustic phonetics workflow is chosen (building a classifier for recognizing
phones), and this analysis task is implemented in a Jupyter notebook. This scripted
workflow serves two main purposes:

e To serve as a testing-ground for integrating the various python speech-analysis li-
braries/packages into the workflow

e To better understand and debug some of the sub-workflow analysis tasks, having
direct scripting access to the data

4 Chapter 1. Introduction

This section provides a basic overview of the analysis task, and also includes an outline
of the Jupyter Notebook implementation.

High Granularity Workflow Implementation in VisTrails:

This is the first attempt at building a speech analysis workflow in the VisTrails environ-
ment. The goal was to construct the workflow in its entirety at the same abstraction level
as the default data and control-flow modules/packages that come shipped with VisTrails.
As a result, this workflow is intended to operate at the highest practical granularity that
VisTrails allows. Customized modules are built to integrate the speech analysis libraries,
and data libraries. Observations are made with regard to how effective this level of gran-
ularity is, how useful the data structures are, and what are (if any) the averall benefits of
this workflow implementation (e.g. usability, maintainability, readability, speed, ...etc).
From these observations, some insights can be made for the next implementation.

Low Granularity Workflow Implementation in VisTrails:

A workflow is constructed at a much lower granularity using custom speech analysis
modules designed to perform the various sub-workflow functionalities from the previous
workflow. The same analysis task is performed, but with this new granularity comes
certain benefits and pitfalls that merit discussion. These differences are observed and
documented.

Analysis and Conclusion:
This section reviews the tasks completed in this project, and draws specific conclusions
from the work accomplished. This includes answering questions like:

e What are the major factors that effect the practicality and efficiency of acoustic
phonetics workflows?

e What are the major benefits and drawbacks that arise [rom variances in these factors
(readability, maintainability, extensibility, efficiency...ete)?

e What might be the more “ideal” design elements for VisTrails modules/workflows
within the context of acoustic phonetics?

¢ What more could be done to further this research, and how these observations could
be applied?

Chapter 2

Background

2.1 Review of Relevent Literature

2.1.1 Acoustic Theory of Speech

The acoustic theory of speech explains how humans can create the extensive variation
of phonetic sounds that make up vocal languages. A key abstraction is the ‘source-filter’
decomposition of speech. This breaks speech sounds into two key components — a source
sound (vocal chord vibration), and a filter (resonants in the vocal tract). A speaker
actively adjusts this resonance filter by changing the shape of their mouth/throat and,
consequently, can create different phonetic sounds. [1]

2 2 2
@ @ @
[=4 [= c
o] & g
£ £ £
frequency frequency frequency
(a) source (b) filter (¢) resulting spectrum

Figure 2.1: Source-Filter

While the source vibrations may vary greatly, these differences are overshadowed by the
filter function (e.g. whispering vs speaking — phonetic information is retained). Source
variations will be noticeable, but have limited effect on the phonetic attributes of the
sound. This source-filter principal provides a reference point from which vocal attributes
can be measured, quantified, and analyzed.

6 Chapter 2. Background

Mapping quantified phonetic attributes for research cases can provide unique insight into
various aspects of human vocalization. These insights can be used in many real-world
applications like:

- speaker identification [2]

- speech synthesis

- accurate audio transcription
- speech therapy

- profiling regional dialects [3]

- measuring speech intelligibility [4]

2.1.2 Current Tools/Methods for Acoustic Phonetics Research,
and Shortcomings

Current methodologies commonly involve starting from a research question, collecting (or
producing) audio samples, extracting relevant information from these samples, and gen-
erating output analysis/visualizations. There are many existing tools that perform signal
analysis, and map phonetic characteristics. [5] One of the more popular modern tools,
‘Praat’, allows users to write scripts for data-analysis computations/visualizations utiliz-
ing the native functionalities of the application. [6] This approach is similar throughout
most audio analysis tools, to varying degrees. But these tools have shortcomings with
respect to reproducibility, approachability, and extensibility that could possibly be ad-
dressed using a different paradigm.

Native scripts are not ideal for sharing ideas — script execution is not intuitive to readers
with no prior exposure to the language, or the application running the script. Some less
extensible programs may not accomplish certain tasks, may support limited file formats,
require running specific releases on older machines, knowledge of deprecated scripts....etc.
Time spent managing the lower-level inconsistencies between tools is is a barrier to effec-
tive research, especially to those who lack the necessary technical knowledge. [7]

2.1.3 Visual Programming and Workflow Systems

Visual programming offers some promising solutions to the complications mentioned in
the previous section. Visual programming systems can be used in a vast number of appli-
cations — from gaming, to science, to application development. Unreal Engine (a main-
stream game-engine), for example, uses its own visual programming system for defining
object oriented classes, allowing users to build everything from surface features/textures

2.1 Review of Relevent Literature 7

Figure 2.2: Workflow Model

to choreographing in-game events. “GameSalad” [16] is an entirely visual-programming
based game-engine where users program 2D games using a drag-and-drop rule-based sys-
tem. In this paradigm, program execution isn’t specified “chronologically”, but instead
users assign rules to various “actors”, and can tweak the parameters of these rules to
achieve a desired behavior. It has shown a lot of promise in lowering the barrier-to-entry
for building and interacting with complex programs by non-technical users [17]. This
approach to programming works well for building games, because many of core processes
(e.g. movement, physics, sound, lighting...etc) are common components across a variety
of games with only small variations in key parameters. Similarly, many areas of research
also utilize a collection of commonly used analysis tasks, suggesting that applying this
method of programming to these domains could potentially be very beneficial.

Of particular interest for data-analysis are workflow systems, which can allow users to
construct their own tools for building and executing analysis pipelines. Workflows are a
sequence of tasks, that when executed from start-to-finish, will accomplish some desired
functionality. In visual programming, Workflows can be represented as a series of “mod-
ules” linked together through an assortment of input and output ports within a visual
workspace. Under the hood these modules may be executing complex processes, but users
only need to be concerned with providing an input, handling output, and tweaking spe-
cific execution parameters.

Workflow systems assist in interfacing different technologies, joining/extending existing
workflows, sharing workflows, outsourcing computationally intensive jobs to external clus-
ters, connecting with various data repositories...etc. Investigations into the effectiveness
of particular workflow systems in selected fields is an interesting research question. There
are many data-analysis workflow engines that currently exist. These all operate using
a similar paradigm, but have different approaches/specializations that might lend them-
selves better to various fields of research, or to different tiers of users. Some of the more
popular systems being developed/explored include:

8 Chapter 2. Background

- ‘Taverna’ — A ‘domain independent’ workflow engine in active development (part
of the Apache Incubator Project [8]. It has shown great promise for improving
portability and reproducibility of research [9], and has already been utilized in many
data-intensive research applications. [10]

- Galaxy — The Galaxy platform is a web-based workflow engine [11]. Alveo has
adopted galaxy to explore implementing a selection of workflow modules for Speech
Analysis. This tool has shown it is capable of building/executing acoustic phonet-
ics workflows, and producing conclusive results. [12] This could provide some initial
insight into what functionalities/operations might be useful, and how effective work-
flow platforms could be in this research area.

- VisgTrails — A powerful, open-source, python-based workflow engine. Users can
quickly investigate different workflows, tweak operation parameters, render inter-
active output visualizations, outsource computationally intensive jobs/processes to
external servers, and maintain a navigable tree of provenance data for their projects.
Everything is built from the ground-up in python, bringing with it library extensi-
bility, and cross-compatibility. VisTrails packages can be developed quickly in pure
pvthon, and imported into the platform to be used as workflow modules.

- Jupyter Notebook [24] — A python-script development environment where work-
flows can be created by building and executing a timeline of modular python scripts
and caching the output environment at each step. Jupyter Notebook also includes
mark-up tools for adding annotations and output visualizations at each step that
can be exported and shared it many readable formats. Jupyter Notebooks are not
visually programmed, but are instead scripted within sequential “cells” which are
executed in order.

2.1.4 Exploring VisTrails for Acoustic Phonetics Research

VisTrails is very promising candidate for exploring the advantages that such workflow
systems might provide to specific arcas of scientific research — especially in terms of
research reproducibility, and accessibility to users. Analysis tasks often involve passing
large sets of sample data (and related semantic information) through standard signal pro-
cessing algorithms, and analyzing the outputs. Such experimentation might be done more
effectively, and in a more approachable manner, using a visually programmed workflow
environment where a user doesn’t need to learn how to manage low-level source code
themselves. If a toolset of interoperable analysis tasks within a given domain could easily
be created, exported, and shared, it would offer many advantages in these facets over
traditional methods.

Developing and testing an acoustic phonetics package for the VisTrails platform is a
promising avenue for advancing tools in this field, improving research reproducibility, and
creating a more approachable environment for non-technical users. [13] Apart from the

2.1 Review of Relevent Literature 9

“Galaxy” project, there have been limited inquiries into the viability of modern workflow
platforms specifically within the context of acoustic phonetics research. A key question
that surfaced in the existing work is “what is the ideal granularity” of a workflow, and
how many modules should it take to perform any particular analysis task. This project
will be addressing that gap.

10

Chapter 2. Background

Chapter 3

VisTrails

3.1 Introduction

This section is a investigation into the fundemental compenents of VisTrails, how work-
flows are implemented in VisTrails, and some key design elements to consider when build-
ing workflows and workflow modules.

3.2 Workflows in VisTrails

The basic unit of a VisTrails workflow is the VisTrails * module’. This is the lowest
logical element within the context of a Workflow environment. A module consists of 3
basic components: input-ports, output-ports, and a compute function. When a module
is executed, it takes the data from the input ports, processes this data in the compute
function, and assigns resulting values to the output ports.

Building workflows in VisTrails is a process

of chaining together the wvarious input and

output modules, which represent the vari- 1
ous sequential operations in a computation
pipeline. There is no global “state” in- ‘
formation that is modified. Instead, all @.:“‘,

data is passed through the various input/out- SRR .

put ports as it makes its way down the def compute():
. . set_output(B, get_input{A))
pipeline. set_output(C, get_input(A)+1) |

A helpful way of thinking about the execution of w0 @
a workflow is to trace through starting from the -

last element. Figure 3.1 depicts this process. The ‘ ‘

last module will print the value of the element in 1 2
its input port. That value comes from the output

11

12 Chapter 3. VisTrails

port of the previous module, which is double (x2) the value of the element in it’s input
port. Once the constant at the top of the workflow is reached, this is the value that is
passed back down through the pipeline as the functions are executed.

Execution : Workflow
1
100 '
1

—) N
1
get set :
input output 1
i

[(--input--)*2 [(--100--)*2 1 StdOut

()) J

get‘ set :
input output 1
L 4 .

[print(—-inpul—-)] [prini(--200-)] ; Siaou
1

Figure 3.1: Execution

The diagrams in Figure 3.2 show some basic control-flow sub-workflows built in VisTrails.
These are built using VisTrails “basic modules” that come packaged with the program.
Sub-workflow 3.2b and sub-workflow 3.2¢ also contain “group” modules. These VisTrails
modules represent sub-workflows that have been encapsulated within a single logical con-
tainer. The input-ports and output-ports of this group will simply be the ports at the
top, and the base of the encapsulated pipeline. Using such modules would be required
less-often, or perhapse not at all when using a highly abstracted VisTrails a package.

When constructing a workflow at a very low logical level, the creation of looped /iter-
ating subworkflows will be a common necessity. In VisTrails, this consists of creating
a subworkflow grouping, and utilizing a VisTrails control-flow module to handle passing
and collecting input /output data for this grouping. Using the subworkflow in Figure 3.2¢
as an example, the diagram below shows what parameters are supplied to the Map mod-
ule to return “some_function” applied to all values in a list. In the context of VisTrails,
some_function is a subworkflow containing one input port (inValue), and one output port
(outValue).

input_port (ID: inValue) ----—- > [pipeline] --—--——- > output_port (ID: outValue)

MAP parameters:

inputPort =[’inValue’]
outputPort= ’outValue?
inputList = [val_1, val_2, va_13...val_n]
functionPort = (link to ’some_function’)

result = [some_function{val_1), some_function(val_2), some_function(val_3)....some_functionn(val_n)]

3.2 Workflows in VisTrails 13

5]
E=———=====5
some_operation
e condition (caps)
(InputPort)
>
StandardOutput
(a) For Loops (b) If Statements
ooo » (=]
inﬂfbﬂ_nlls;] ompu(tm,rname

(¢) Function Mapping

Figure 3.2: Control Flow

Building a complex workflow entirely from the basic-modules would likely be a very messy
business. As shown in Figure 3.2, even simple logical structures can require a fairly large
number of modules and connectors. Working with complex workflows at such a granu-
larity would be a nightmare to construct, maintain, read, debug...etc. For more complex
operations, VisTrails allows programmers to create their own custom modules within a
“python source” module. The programmer simply needs to specify the input /output ports
(and their data types), and they can define their own compute function in plain-python.
Using the python-source module, workflows can be created with almost eny level of gran-
ularity.

The basic python-source module is meant to be used as a one-time solution component
in a workflow. Reusable modules can be scripted outside of VisTrails, and then imported
into VisTrails as a package. This process also allows a programmer to define new data
types that can be passed between modules, or required by input/output ports. Once
imported into VisTrails, the modules within a package can be dragged into the workflow
from the “modules” pane of the VisTrails UL These custom packages/modules can be
useful in many scenarios — from simply interfacing between basic modules, to providing

14 Chapter 3. VisTrails

complex high-level functionalities for specific applications (e.g. acoustic phonetics analy-

The ability for a user to integrate both packaged modules, and script (if desired) is a really
powerful feature of VisTrails. The wasted hours spent implementing complex workarounds
to design restrictions in a toolset can be entirely avoided. If a user knows some basic script-
ing fundamentals, they have the freedom to use plain python at any point in the workflow.

This is possible because VisTrails is implemented entirely in python. All Modules in Vis-
Trails are simply python classes at their core. As a result, the extensibility of VisTrails is
enormous. Almost any pvthon package/library could be integrated with VisTrails. Any
VisTrails workflow could, technically, be considered a python program—but this program
includes a very heavy infrastructure/dependency stack that it always requires for exe-
cution (a.k.a. the VisTrails program). This is one of the more pronounced constraints
imposed by VisTrails — VisTrails workflows require a copy of VisTrails to run. The
exporting and sharing of workflows can be easily accomplished using an XML represen-
tation (generated by VisTrails), but a colleague receiving such a file would still need the
VisTrails software to import and execute the pipeline.

3.3 Designing Workflow Modules

There are two key workflow characteristics that have the largest impact on the practicality
and the effectiveness of a workflow, or any workflow system package: the underlying data
structure, and the module granularity.

High Granularity vs Low Granularity

Granularity — The granularity of a workflow defines the degree to which a workflow,
or a toolset, is composed of smaller sub-components. A high-granularity workflow uti-
lizes a denser collection of modules to perform some subworkflow task. Granularity is
determined, largely, by the design of modules in a toolset, and emerges as a direct result
of how these modules can be used together to perform analysis tasks. There are some
obvious trade-offs when it comes to workflow granularity. While it may be very concise to

3.3 Designing Workflow Modules 15

encapsulate a large sequence of logical steps within a single module, this places significant
restrictions on the flexibility /utility of modules, as the results of intermediate processes
are unaccessible.

Approaching an ideal granularity when designing workflow modules is a tricky task. The
less granularity there is, the more restricted the toolset becomes. But with increased gran-
ularity, a workflow can become chaotic. In a uniform toolset, as the number of required
modules for any subworkflow task increases, this increase is likely mirrored throughout all
logical structures of similar complexity Workflows should ideally utilize the least number
of modules necessary to perform a task, and the modules themselves should offer max-
imum functionality and interoperability. Finding a balance between maximum design
freedom, and conciseness, is a challenge.

Low granularity workflows would, in theory, be well suited for performing more special-
ized data-analysis tasks under a multitude of different parameter configurations. Modules
in these workflows may be designed with a large number of input ports for adjusting
these parameters and conducting numerous tests. High granularity is more versatile.
However, this versatility in design space comes at a cost. Because modules are less spe-
cialized, certain adjustments to workflow execution (done by simply toggling a parameter
for low-granularity workflows) may now require an entire rebuild of certain partitions of
the workflow. Also, the computational overhead should be considered for each module.
While iterative processes executed as scripts might compute very quickly, looping through
a large number of modules in VisTrails takes much longer.

Data Structure — A key element in the work-
flow design is the underlying data-structure (" audodaa
used to build, organize, and query sample
data. Designing modules that allow a user
to most eflectively interact with this struc-
ture (without using source-code) is a chal-
lenge.

When a workflow is executed, large collections of
data are processed in bulk as they pass through
the pipeline. The only interface a module has to
the data is through its input and output ports.
Sample data likely includes “meta” information
that must also pass through each module before
finally being utilized at some later stage (for ex-
ample: speaker, age, gender ...etc). This means
that the sample data needs to be stored in a struc-
ture that can contain (and retain) all the necessary Figure 3.3: Concise and Extensible
relational information during workflow execution,

plot
S

16 Chapter 3. VisTrails

and can do so in a way that is easily accessible to a user and is maximally compatible
will all other modules and python libraries.

A naive approach that does not address the desired characteristics mentioned above would
be to manage data in structured lists that are curated specifically for the function of any
particular module. For example, an input port may take a list of “phone trajectories” as
an input, which are stored like this:

[speaker, [phone, [[£1][£f2]([£3]]1]]

But this is a very BAD approach. What if your trajectory data only had the first two
formants (f1, 2)7 what if you needed to include extra tag information for each trajectory
(e.g. gender), or less — where would this information go? How could you properly query
such data in an sensible and extensible way, for any combination of meta information?

Tables provide a much more extensible may of managing data. Using tables, you can
store and query various attributes, perform table joins, interface with external table-
based tools, and have a “universal” structure for passing and operating over data. Entire
tables can be passed to a function module, and the name of relevant data columns can be
passed as parameters. Alternatively (but logically identical), the columns can be selec-
tively pulled from an external table outside of a module, and then can be passed to the
associated input ports. This concept can be visualized in figure 3.4.

Age

value

reslilts

Figure 3.4: Table Data Flow

3.3 Designing Workflow Modules 17

VisTrails has a native ‘tabledata’ package included that contains modules for performing
very basic table operations. However, the functionality provided from these modules is
very limited. Making advanced queries, complex joins...etc simply cannot be performed
within the workflow using these modules. To do so would require messy workarounds
that quickly make the workflow chaotic and difficult to maintain. Its clear that the
native table package was not designed to be constantly modified throughout a workflow.
Even using “python source”, the functionalities is not comprehensive, and are not concise.

The Pandas [15] library solves some of these problems. Pandas is a data-structures and
data-analysis toolset that includes a large suite of operations that can be used to build,
interact with, and manipulate table data very efficiently. For this project, Pandas will
be used under the hood for managing data within each module. If the VisTrails ‘table-
data’ package ever did need to be used (possibly for integrating other native VisTrails
elements utilizing the tabledata package), it would be trivial to convert between the Pan-
das ‘DataFrame’ object, and the VisTrails ‘“Table’ object.

However, while it offers a vast range of functionalities in the scripting realm, maintaining
the accessible versatility of this package without scripting could be a challenge. To an
experienced programmer with strong foundation of Pandas knowledge, layered data oper-
ations can be specified very concisely in a scripting environment, but implementing sets
of modules to perform these same functionalities might not be so concise. Certain tasks
in Pandas (such as applying a custom function to a group-by data object) can be done
with very few lines of code using the “apply” function. But without the ability to create a
passable function for Pandas, an opportunity for conciseness and efficiency is lost. “Sub-
workflow” processes can be constructed in VisTrails, and can be utilized by control-flow
modules (like “map”) by passing related input and output ports as parameters — but the
subworkflow itself does not exist as a callable “function”.

To illustrate this point, consider the example below. This subworkflow returns the aver-
aged spectrums of all spectrum data for each phone in a dataset. A user familiar with
Pandas can accomplish this with a few lines of code (in fact, its possible with just a single
line of code). However, a high granularity workflow implementation of this task shown in
Figure 3.5 must take a slightly different approach. Instead, it loops over nested subwork-
flows that query the Pandas DataFrame to group each “Phone”, and then calculate the
mean of the paired Spectrum data. This implementation may not as efficient or concise
as the scripted version shown in Figure 3.1, but was still possible to accomplish in its
entirely without needing to write a single script.

Related figure and script 3.5 and 3.1 can be seen on the following page.

18 Chapter 3. VisTrails

Figure 3.5: Average Spectrum for each Phone

oo »

(] »

Phone

Data Frame
(InputPort) (InputPort)

omoo
ConcatenateString

b

Query_dFrame

(PythonSource) oo »
slpsctrum
(InputPort)
] 3 F
4 Get_dFrame_Column
dFrame_Get_Unique “{PythonScurce)

(PythonSource) columnName
columniD Spectrum
Phana

get_mean
(PythonSource)}

[W[Li
OutputPort
i

»

Om
OutputPort
n

»
StandardOutput

Listing 3.1: Python-Source Implementation

def spectrumMean(spectrums):
return [np.mean(x) for x in zip(*map(list, spectrums))]

Result = result_dFrame.groupby(’Phone’) [?Spectrum’].apply(list).apply(spectrumMean)

Chapter 4

Building a Classifier for Recognizing
Phones

4.1 Introduction

Before building anything in VisTrails, it is important to make sure there is a solid foun-
dation “underneath the hood”. While the end-goal is to build and execute workflows
without the need for low-level scripting, the effectiveness of the data structures and the
interoperability of the libraries being used are more efficiently tested outside of VisTrails
in a more familiar environment. In this case, a target workflow (training and testing a
classifier to recognize spoken phones) is chosen as the primary analysis task.

This analysis task, taken from the paper “Dynamic Features in Children’s Vowels” [14]
was selected because it consists of some fundamental signal analysis and machine learn-
ing tasks, and requires effective management of sample data/meta-data throughout the
pipeline — both important for assessing the effectiveness of VisTrails within the context
of acoustic phonetics.

The scripted workflow will be constructed in a Jupyter Notebook. Jupyter Note-
book is a python-script development environment where workflows can be created using
a timeline of modular scripts, and the output environment is cached at each step. It also
includes mark-up tools for adding annotations and output visualizations. This is a useful
environment to draft the target workflow in a more traditional scripting approach, and
still offers some great features (e.g. caching, annotations, modularization) that can speed
up testing, and maintains the characteristics of a data-analysis “workflow”.

This section walks through the Jupyter Notebook implementation of the target-workflow,

and outlines the major logical processes at each stage. Abbreviated snapshots of the data
between each step in the workflow are also provided.

19

20 Chapter 4. Building a Classifier for Recognizing Phones

4.2 Overview

4.2.1 Analysis Task

The analysis task for this workflow is to train and test a classifier that will “classify spoken
phones using formant trajectory data”. Input data consists of WAV files and associated
label files (specifying the interval locations of phonetic attributes). There are numerous
WAV /label pairs of different phrases for each speaker, with a total of 8 speakers. The
output of this workflow will be a confusion matrix representing the performance of the
classifier. The confusion matrix of an effective classifier will have weights concentrated in
the cells running diagonally across the matrix (where the row index matches the column
index). Cell location represents the “expected value” vs the “output value”.

4.2.2 Key Processes

e Stepl: Convert label-file interval data into TextGrid files — Label files are
parsed and the TGT package is used to build a python TextGrid object. These
TextGrid objects can be passed around, or saved to the file system. This step is not
completely necessary, as the label files already contain all the desired information for
this workflow — However, because TextGrids are highly compatible and modifiable
thanks to the TGT package, this step has other potential use cases.

e Step2: Compute the first 3 formants of the WAV files using WRASSP —
The formant timeline for the entirety of each WAV file is calculated, and returned
as a formant object.

e Step3: Pull formant trajectories for each phone — Using interval information
specified in the TextGrid objects, the formant trajectories (formant time-line for a
specific interval) are pulled from the formant outputs of the previous step.

e Step4: Discard zero values, and normalize the trajectory data — Formants
that have been mis-tracked occasionally record false “zero-value” measurements
scattered throughout a timeline. These must be removed, and the ranges of all
trajectories are normalized, to prepare them for classification.

e Step5: Conduct round-robin classifier training and testing — First, the
first 3 DCT (discrete cosine transform) coefficients of the first 3 formants in the
trajectory data are calculated using SciPy Fast Fourier Transform (FFT) library.
These DCT coefficients retain the characteristic features of the trajectory data, but
represent them in a compact form that a classifier can more effectively work with.
Then, a series of round-based classification tests are conducted where each speaker
has a turn being the test-set while the rest of the speaker data is used as the training
set.

e Step6: Analyze results — Build a confusion matrix from the results of the
training/testing rounds, and analyze the accuracy of the classification results.

4.2 Overview

21

Calculate Formants ... [_][] |:[

Get Trajectories
Remove Zeros (mistrackings)
Remove Low L-O-D Samples

Normalize -0 D’"

Calculate DCT Coefficients

Classification Tests

train test

INPUT: QUTPUT
speakers: Spi Sp2 sp6	X Y	
		o —
		X 110
files: [phrase_1.WAV, phrase_1.LAB],	B	
[phrase_2.WAV, phrase_2.LAB],	Y o1 1	
e	[P S —,	
	it \	
	correct	
— 00 Audio (wav
—— - [I[J[] Labels (LAB) —
="} timeline)
. ,-/" phones | H# K| H a |
Create Textgrids -][] D = — |
Formants

Results
A{ L L]] u L] L) L [» o
- E3] 1 .ﬂ n 3] L] E- 4
B « « s . :
3 BaEm: (-
H T u M A = @ " u
Task

Figure 4.1: High-Level Visualization of Analysis

22

Chapter 4. Building a Classifier for Recognizing Phones

4.3 Core functionalities and Libraries

Wrassp: [19] An “R” wrapper around the c-library “libassp” (Advanced Speech
Signal Processor). This provides support for complex signal processing operations
currently not available in pure-python libraries. (e.g. formant tracking)

SciPy: [23] Useful modules for scientific calculations. Particularly pertinent is
SciPy.signal, which contains some signal processing functions (e.g. fit - Fast Fourier
Transforms).

NumPy: [22] Python implementations of multi-dimensional array structures, and
a suite of high-level operations to perform over these arrays, resulting in execution
times more closely resembling that of compiled code.

Pandas Data-structures and data-analysis toolset that includes a large suite of
operations that can be used to build, interact with, and manipulate indexed data.

Tgt: [20] Reads and writes Praat TextGrid files. Textgrid files will be used to
represent semantic and syntactic information about any audio data being analyzed.

SciKitLearn: [21] Scikit learn is a machine learning library. It will be used to
create, train, and test classifiers.

The libraries listed above provide many algorithms and data-structures for managing
audio data and attributes, as well as performing standard speech/signal analysis com-
putations (e.g. formant tracking). These will be used interoperability with each other
within the VisTrails workflow environment. Various interfaces and helper methods will
also need to be implemented to supplement these tools (e.g. normalizing data, pulling
phone trajectories, round-robin training/testing...etc)

4.4 Design and Draft in Jupyter Notebook

Setup

#matplotlib inline

import tgt as tgt

import matplotlib.pyplot as plt
import os

from scipy impert fftpack

from sklearn import svm

from sklearn.naive_bayes import GaussianNB
import subprocess

impoert pandas as pd

import numpy as np

from IPython.display import display

4.4 Design and Draft in Jupyter Notebook 23

workspacePath = "/Users/Alec/Desktop/children”
speakers = [uspln'uspzn'uspam'uqun'uspsu'uspsu’nsp?u’nspsu]
targetPhones = set([’u:’, *A', *ai’, ‘e:?’, *au’, V', U, ?i:*, *w?!, 'n?])

Stepl: Build Textgrids from label files

Here is where the label files will get converted into textgrid files. This is done simply by
walking through the tabbed label values and recording the specified intervals. Then, the
TGT package is used to build a python textgrid object that can be passed around, or
saved to the file system. This step is not completely necessary, as the lab files already
contain all the desired information. However, because TextGrids are highly compatible
and modifiable thanks to the TGT package, this step has its merits.

#ommm e funection to create tezxtGrid from label file----—-----—-
def labToTextgrid(labFile_fileObject, ID=""):
labFileData = [str(line).splitlines(}[0].split("\t") for line in labFile_fileObject.
~+ readlines ()]
newTextGrid = tgt.TextGrid(ID)
phnTier = tgt.IntervalTier(name="PHN")
startTimeIndex = 0
for stamp in range(3,len(labFileData)):
phnTier.add_annotation(tgt.Annotation(fleoat(startTimeIndex), float(labFileDatal
~+ stampl[1]), str(labFileDatal[stamp][3]1)))
startTimeIndex = labFileDatalstamp]([1]
neuTextGrid.add_tier (phnTier)
return(newTextGrid)

Fommmmm e execute creation of textGrids from label files------------
textgrid_dFrame = pd.DataFrame([], columns=[’ID’, ’Speaker’, ’TextGrid?®])
for speaker in speakers:
labFileDirectory = workspacePath+"/"+speaker+"/labels"
labelFileNames = [n[0)+"."+n[1]+"."+n[2] for n in [f.split(".") for f in os.listdir(
3 labFileDirectory}] if n[-1] == ’lab’]
for labFile in labelFileNames:
ID = labFile.split(’.lab?’)[0]
textGrid = labToTextgrid(open(labFileDirectory+"/"+labFile, "r"), ID)
textgrid_dFrame = textgrid_dFrame.append(pd.DataFrame ({’ID*:[ID], °’Speaker’:[
«+ speaker], *TextGrid’:[textGridl}))

display(textgrid_dFrame [:3])
print textgrid_dFrame [:3].to_latex()

1D Speaker TextGrid
0 spl.1249 spl ((Annotation(0.0, 1.9075, "H#"), Annotation(1....
0 spl.1457 spl ((Annotation(0.0, 1.68002, "H+#"), Annotation(1...
0 spl.2121 spl ((Annotation(0.0, 2.3801, "H#"), Annotation(2....

Step2: Track formants for each Wav file

In this stage, the first 3 formants are computed for every WAV file in the data set. “For-
mant Maps” containing the first 3 formants are currently stored in a Formant class shown

24

Chapter 4. Building a Classifier for Recognizing Phones

below. It also includes a method useful for pulling out formant slices between specified
intervals.

The getFormantsWRASSP() function utilizes the WRASSP library (through a subprocess
call to R) to compute the first three formants and return them as a Formant object.

class Formant (object):

#formantData; => [===-- - oo e e e e e e e mmmme e]
[--timestampl -=], [--=--- fili===== F; f===== f===== Ja===== £
vall, wal2...
#
def __init__(self, formantData):
self.timestamp = formantData[0]
self.f1 formantData[1]

self.f2
self.f3

formantData[2]
formantData[3]

wonon

def pulllntervalsFromTimeline(self, startTime, endTime):

f1_pulled = []

£2_pulled = []

£3_pulled = []

for i in range(0, len(self.timestamp)):

if (self.timestamp[il] > startTime and self.timestampl[i] < endTime):

fi1_pulled.append(self.f1[i])
f2_pulled.append(self.£f2[i])
£f3_pulled.append(self.£f3[i])

return [f1_pulled, £f2_pulled, £3_pulled]

def get_timestamp(self):
return self.timestamp
def get_fl(self):
return self.f1l
def get_f2(self):
return self .f2
def get_f3(self):
return self.f3

------------------------------ map formants —=--=---------ocemesesee——omoooo
getFormantsWRASSP (wavPath, startTime, endTime):

formantData = []

scriptDir = ?/Users/Alec/Documents/MacUniFiles/Thesis/PlainPython/R_Scripts/formTest.

3 R?
output = subprocess.check_output([’Rscript’,
scriptDir,
wavPath ,

str(startTime),
str(endTime)],
shell=False).split(’,’, 2)
numberOfFormantSlices = int(output [0])
formantSliceDuration = 1/float (output[1])
datalist = map(int, output[2].split())
nunberO0fFormants = 3
formantData.append ([formantSliceDuration*i + formantSliceDuration/2 for i in range (0,
3 numberO0fFormantSlices)])
formantData.extend ([datalist [i*number0OfFormantSlices : (i+1)*numberOfFormantSlices]
<+ for i in range(0, numberOfFormants+2)])
return Formant (formantData)

--------------- Ezecute: Compute Formants for each Wau-----===----=-----o-o-

formants_dFrame = pd.DataFrame([], columns=[*ID’, *Speaker’, *TextGrid’, ’Fermant_Map’])

4.4 Design and Draft in Jupyter Notebook 25

for index, row in textgrid_dFrame.iterrows():
textGrid = row[’TextGrid’]
wavPath = workspacePath+"/"+row[’ID’].split(’.’) [0]+"/"+"wavs"+"/"+row[’ID’]+" . wav"
formantMap = getFormantsWRASSP (wavPath, textGrid.start_time, textGrid.end_time)
formants_dFrame = formants_dFrame.append(pd.DataFrame({’ID’:row(’ID’], ’Speaker’:rowl[
) ’Speaker’], ’‘TextGrid’:row[’TextGrid’], ’Formant_Map’:[formantMapl}))
display(formants_dFrame [:3])

Formant_Map 1D Speaker TextGrid
0 __main__.Formant object spl.1249 spl ((Annotation(0.0, 1.9075, "H#"), Annot....
0 _main__.Formant object spl.1457 spl ((Annotation(0.0, 1.68002, "H#"), Annot...
0 __main__Formant object spl.2121 spl ((Annotation(0.0, 2.3801, "H#"), Annot....

Step3: Get formant trajectories of phones

Using the intervals specified in the TextGrid objects, and formant values calculated in the pre-
vious step, pull out the formant trajectories for each target phone present in the data.

#omm e getting phone formant trajectories--------------—-—------——-—-—-
def getPhonelntervals fromTextgrid(textgrid, target, phoneTier):
vowelTier = textgrid.get_tier_by_name(’PHN’)
vowelAnnotations = vaelTier.get_annotations_with_text(pattern=target, n=0, regex=
—s False)
intervals = [[float (annotation._start_time), float(annotation._end_time)] for
<3 annotation in vowelAnnotations]
return intervals

def getPhoneTrajectory fromTextgrid(textgrid, formantMap, target, phoneTier):
return [formantMap.pulllntervalsFromTimeline(interval[0], interval[1])
for interval in getPhonelntervals _fromTextgrid(textgrid, target, phoneTier)]

#-mmm—m Execute: Compute trajectories for each phone--------—------------
trajectories_dFrame = pd.DataFrame([], columns=[’ID’, ’Speaker’, °*Phone’, 'fl_traj’, ?
— f2_traj’, 'f3_traj’l)
for index, row in formants_dFrame.iterrows():
textGrid = row[’TextGrid’]
targetsPresent = list(set([str(interval.text) for interval in textGrid.
~s get_tier_by_name(’PHN’)]) & targetPhones)
wavPath = workspacePath+"/"+row[’ID*].split(’.?*) [0]+"/"+"wavs"+"/"+row[?ID*]1+".wav"
formantMap = row[’Formant_Map’]
for target in targetsPresent:
trajectories = map(list, zip(*getPhoneTrajectory_fromTextgrid(textGrid,
=+ formantMap, target, ’*PHN’)}))
ID_list = [row[’ID’] for trajectory in trajectories[0]]
phone_list = [target for trajectory in trajectories[0]]
speaker_list = [row[’'Speaker’] for trajectory in trajectories[0]]
trajectories_dFrame = trajectories_dFrame.append(pd.DataFrame({’ID’:ID_list, °’
«~+ Speaker’:speaker_list, ’Phone’:phone_list, ’fl_traj’:trajectories(0], ?’
«» f£2_traj’:trajectories[1], *f3_traj’:trajectories([2]}))
display(trajectories_dFrame[:3])

26 Chapter 4. Building a Classifier for Recognizing Phones

ID Phone Speaker fl_traj f2_traj f3_traj
0 spl.1249 spl [271, 327, 336 ... [0, 0, 2323... [2513, 2499, 2522...
0 spl.1249 ai spl [350, 389, 393 ... [1104, 1081, 1049... [2139, 2240, 1974...
0 spl.1249 n spl [361, 354, 348 ... [1299, 1444, 1354... [2451, 2454, 2454...

Step4: Discard zero values, and normalize the trajectory data.

This step goes through all of the calculated trajectories and “normalizes” them. This makes all
of the trajectory data fit within a fixed, uniform size, while maintaining the geometry of the
trajectory. Any zero values that have been mis-tracked are also removed.

The first 3 DCT coefficients are then calculated using the SciPy fit library — these values
will be used to train the classifier in the next step. These DCT coefficients allow for the char-
acteristics of the trajectory data to be represented in a more succienct form.

e function to normalize trajectories-------——---------"-"--"-"-"--"-—-"—"—"—-—-
def normalizeFormantTimeSeries_Interpolate(formantValues, factor):
result = []
offsetRatio = float(len(formantValues)-1)/float (factor-1)
for i in range(0,factor):
offsetIndex = i*offsetRatio
valueRange = formantValues[min(len(formantValues)-1,int(offsetIndex)+1)] -
«3 formantValues [int(offsetIndex)]

offsetAmount = offsetIndex - int(offsetIndex)
result .append (formantValues[int (effsetIndex)] + (valueRange*offsetAmount))
#value = ---indez--- + ---offset amount---

return result

Hommmm e m e mmm i m e normalize data and compute DCT coefficients------------coomoooon
normalizedTraj_dFrame = trajectories_dFrame.filter([’ID’, ’Speaker’, 'Phone’], axis=1)
normalizedTraj_dFrame[’f1_traj_normalized’] = trajectories_dFrame['fl_traj'].apply(lanmbda
“y x: normalizeFormantTimeSeries_Interpolate([y for y in x if y>0], 40))
normalizedTraj_dFrame[’f2_traj_normalized’] = trajectories_dFrame['f2_traj’'].apply(lambda
“+ x: normalizeFormantTimeSeries_Interpolate([y for y in x if y>0l, 40))
normalizedTraj_dFrame[’f3_traj_normalized’] = trajectories_dFrame[’f3_traj’].apply(lambda
«% x: normalizeFormantTimeSeries_Interpolate([y for y in x if y>0], 40))
normalizedTraj_dFrame[’dect’] =
normalizedTraj_dFrame[’f1_traj_normalized’].apply(lambda x: fftpack.dct(x)[0:3].
— tolist()) + \
normalizedTraj_dFrame[’f2_traj_normalized’].apply(lambda x: fftpack.dect(x)[0:3].
—+ tolist()) + A\
normalizedTraj_dFrame[’f3_traj_normalized’].apply(lambda x: fftpack.dct(x)[0:3].
—+ telist())

display(normalizedTraj_dFrame [:3])
print normalizedTraj_dFrame[:3].to_latex()

[§u] Speaker Phone fl_traj-normalized f2_traj-normalized f3.traj_normalized det
0 spl.1249 spl u [271.0, 335.53846,., [2323.0, 2202.56410256.. [2513.0, 2520.8205.. [37391.7435897, 438.69..
1] spl.1249 spl ai [350.0 38461,.. [1104.0, 1050.64102564.. [2139.0, 1987.6410.. 1615, -1846...

spl.1249 spl n [361.0, L0, 624944037 86..

61538,.. [1299.0, 1410.53846154.. [2451.0, 2453.3076..

4.4 Design and Draft in Jupyter Notebook 27

Step5: Train Classifier

In this step, “round robin” training and testing is performed on data set, where each
speaker has a turn being the test-set while the rest of the speaker data is used as the
training set. A classifier constructor is passed as a parameter to the round-robin func-
tion. With this, a classifier of any type is created for each speaker training/test group
and stored in “classifiers”. These classifiers are then trained for their respective roles in
the round-robin testing. This is illustrated below:

classifiers: [classifierl, classifier2, classifier2, ...]
ClassificationData = [speaker]
I
[inputs, outputs]
| |
| expected phone
|
[det(f1_traj) + dct(f2_traj), dct(£f3_traj)]

roundl:

classifier: «classifieril

train: [ClassificationDatal1], ... , ClassificationData[numOfSpeakers]]
test: ClassificationDatal[0]

round2:

classifier: classifier2

train: [ClassificationDatal[0], ... , ClassificationData[numOfSpeakers]]
test: ClassificationDatal[1]

f==s==s=s=s=s==s===== function to train classifier (round robbim)--------------------

def roundRobbin (dataFrame, factorID, dataln, dataOut, classifierConstructor):
factorValues = dataFrame[factorID].unique().tolist()
classifiers = [classifierConstructor for factor in factorValues]
results = []
for i in range(0,len(factorValues)):
trainingData = [list(dataFrame[dataFrame[factorID] != factorValues[i]][datalIn]),
~+ list(dataFrame [dataFrame[factorID] != factorValues[il][dataOut])]
testData = [list(dataFrame [dataFrame [factorID] == factorValues[i]] [dataIn]), list
«+ (dataFrame[dataFrame [factorID] == factorValues[i]][dataOut])]
classifiers[i].fit(trainingData[0], trainingData([1])
predictions = classifiers([i].predict(testDatal([0])
results.append ([predictions, testData[1]])
return results

28 Chapter 4. Building a Classifier for Recognizing Phones

Hom oo train over data-----------------------—o---o-ooo
predictions_bySpeaker = roundRobbin(normalizedTraj_dFrame, ’Speaker’, ’dct’, ’Phone’,
<+ GaussianNB())
allInputs = [item for sublist in [x[0] for x in predictions_bySpeaker] for item in
«+ sublist]

allOutputs = [item for sublist in [x[1] for x in predictions_bySpeaker] for item in
—+ sublist]
confusionMatrix = buildConfusionMatrix(alllnputs, allOutputs)

Step6: Analyze the classification results

Using a confusion matrix, the effectiveness of the classifier can be easily visualized, and
quantified. Confusion matrices, in particular, allow for possible patterns/relationships in
mis-classifications to be seen. The code below generates a confusion matrix (as a simple
2d array), and displays the results both numerically, and as a heat-map.

Fomm s s s s function to Generate a Confusion Matrig-------------—--------
def buildConfusionMatrix(result, expected):
predictionMatrixIndexing = {}
confusionMatrix = [[0 foer x in range(0, len(targetPhones))] for x in range(0, len(
~» targetPhones))]
targetPhoneslist = list(targetPhones)
for index in range(0, len(targetPhonesList)):
predictionMatrixIndexing [targetPhonesList [index]] = index
for i in range(0,len(result)):
confusionMatrix [predictionMatrixIndexing [expected[i]]] [predictionMatrixIndexing[
«» result[i]]] += 1
return [targetPhenes ,confusionMatrix]

e i generate confusion matriz, and render heat map------------------

plt.figure(figsize=(8, 8))

column_labels = list{confusionMatrix[0])

row_labels = list(confusionMatrix[0])}

plt.xticks (range(len(row_labels)), row_labels, size=’medium’)
plt.yticks(range(len(row_labels)), row_labels, size='medium’)

#annotations
for row in range(0, len(confusionMatrix[1])):
for col in range(0, len(row_labels)):
plt.text(col , row, confusionMatrix[1][row][col], horizontalalignment=’'center’,
~—+ verticalalignment='center’, size='medium’)
plt.imshow (confusionMatrix [1], cmap=’Reds’, interpolation=’nearest’)
plt.show()

4.4 Design and Draft in Jupyter Notebook

29

a{®8 o 3 ¥ s 5 5 00
] 2 . B o w o o 0 o

e 2 8 - 1w 2 2 o o
a{z2z o 1 @ B 5 4 2 4
{7 1 @ o - o o o o

w{ @ o o o 1 u 1 5 0
e{ 2 o 2 3 1 o U8 37
wl 2 0o & 0 & 0 I 0o 2
v4{ 21 0 0 21 10 14 T 57 5

ul o o 7 2 1 0o 15 1 6

A i u & on W o v oo

Figure 4.2: Output Confusion Matrix

Looking at the confusion matrix generated above, we can see that the classifier is accu-
rately classifying phones, and the workflow produces the expected output. At this stage,
the desired workflow has successfully been implemented in python-source, and the the
libraries/packages are functioning as desired. Now, the next step will be to recreate this
as a VisTrails workflow. The idea is to achieve identical functionality, but by using only
VisTrails modules, and not needing to write any python scripts. This task is covered in

the next section.

30

Chapter 4. Building a Classifier for Recognizing Phones

Chapter 5

VisTrails Implementations

5.1 Introduction

In the previous chapter, a target workflow was successfully built in Jupyter Notebook.
Now, the task is to translate this python-source pipeline into a VisTrails workflow. There
will be two major implementations — one will work at a high-granularity, and the other
will be at a low-granularity. By analyzing the strengths/drawbacks of cach workflow,
this exercise can provide insight into what an “ideal” granularity might be for acoustic
phonetics workflows, and also how the tools that VisTrails provides can be more effectively
utilized within these constraints. XML encodings of the final workflows, and the python-
package of their component modules can be found in the project repository [25].

5.2 High Granularity Workflow

5.2.1 Implementation

This is the first attempt at building a speech analysis workflow in the VisTrails environ-
ment. In this stage, the goal is to construct the workflow in its entirety using only the
default data and control-flow modules/packages that come shipped with VisTrails. As
a result, this workflow would be built at the highest practical granularity that VisTrails
allows. Observations can be made with regard to how effective this level of granularity
is, usefulness of data structures, what are the benefits of various workflow characteristics
(e.g. usability, maintainability, readability, speed, ...etc). From these observations, some
insights can be made for the next implementation.

In this first iteration, Custom “python source” modules are only used to create mod-
ules for interfacing with data and speech analysis libraries, and not for encapsulating any
major logical processes. Some of the necessary processes that these modules perform are
provided in the following list. Apart from these processes listed, the major control-flow
elements will be implemented using the default modules wherever possible, and will op-

31

32 Chapter 5. Vis'Trails Implementations

erate at the highest practical granularity.

e Interfacing with speech libraries —(reading/writing textgrids, querying text-grids
for interval data)

e OS call (for R) — This is necessary for utilizing the wrassp formant tracking al-
gorithm. This OS call executes an R script, which then runs the wrassp formant-
tracking algorithm. The output is returned, and this is made into a python object.

e Basic Pandas utilities —(building DataFrames, pulling/writing rows, columns, basic
querying)

e List operations — (zip, append, extend)

VisTrails comes shipped with a “table-data” library, but it was not utilized in this work-
flow. It provides some essential table operations (constructing tables, pulling column
lists, very basic arithmetic queries), but it is limited in functionality compared to Pandas.
Utilizing Pandas within the workspace was actually quite tricky. Working with Pandas
generally happens very concisely within a few lines of native python code, but one of
the goals for this task was to eliminate scripting entirely. This meant that some custom
modules for interacting with Pandas data had to be constructed.

O » m] b
PandasDataFrame PandasDataFrame
a O »
PandasDataFrame
a » ¥ [Li[w] >
dFrame_getUnique Query_dFrame
columniD [query_string
Speaker dFrama_toRows Speaker is 'sp1"
a 0]
(a) (b) (c)
m} 1 2 O 4
ma]n] »| [BOD b PandasDataFrame PandasDalaFrarrE
Column_Names Column_Values
(List) (List)
[‘Speaker', 'Gendear’) [['sp1'. 'sp2']. [M'. "F] ooo
Olg] merge_dFrame

3

Create_dFrame

(d) (e)
Figure 5.1: Pandas-Op Modules

5.2 High Granularity Workflow 33

Figure 5.1 shows some examples of some simple Pandas modules that were created for this
workflow. The intention for these modules was to provide access to the essential Pandas
operations through a simple, parameterized interface. This includes functionalities like:

- create DataFrame — construct a DataFrame from a list of column names, and a list
of column values

- query DataFrame — return a filtered DataFrame that contains only samples that
match the query string

- DataFrame to rows — return a list of all rows in the DataFrame. This list can
be passed through VisTrails control-flow modules to iterate over the samples in a
DataFrame

- get unique — return the unique values in a DataFrame column
- merge DataFrame — join two DataFrames together

Some of these implementations were more intuitive than others. The merge module
(Figure 5.1e), for example, translated quite well to VisTrails. Figure 5.2.1 shows how
this is traditionally accomplished using a script — the VisTrails version simply calls this
function using the parameter values it has been assigned.

merged_dFrame = pd.merge(dFrame_left,
dFrame_right,
left_on=left_on_index,
right_on=right_on_index,
how=mergetype)

The “create_dFrame” module also translates very well to VisTrails. This single module
can be used to very quickly construct a DataFrame within the workflow using only two
parameters.

column_names: [4, B, c]

colume_values: [[1,2,3], [4,5,61, [7,8,9]1 1

A B [
1 4 T
2 5 8
3 6 9

What does not translate very well to VisTrails are Pandas operations that can take func-
tions as parameters. This can be very useful for tasks like “query_dFrame”. Tradi-
tionally, Pandas can call some defined function in a query, but in VisTrails, this would
require hard-coding a function in a python source module and then passing this as output
to some target input port. There is no way to define a callable function without writing

34 Chapter 5. Vis'Trails Implementations

it as a script. Subworkflows can be constructed and can interface with VisTrails control-
flow modules, but these are not the same as a python function, and cannot be called by
Pandas. Consequently, the query.dFrame module is restricted to only Pandas.eval [18]
(string expression) queries.

|:|It (2 I_II_ILII-It 4 ooo » ooo e ooa »
nteger S
Op =[] LI% 2 Lislt:I List
Extend ! ’ R ’
en
distribute - o flatten o Length . ZipList

(b) (c) (d) (e) (f)
Figure 5.2: List-Op Modules

By default, VisTrails also doesn’t include any modules for performing some fairly funda-
mental list operations. This includes operations such as:

- append

- length

- zip

- fatten

- get element at index

These had to be constructed for this workflow. Some examples of how these may be uti-
lized within a workflow can be seen in Figure 5.2. The final set of modules was not entirely
“comprehensive”, but was sufficient to provide all of the necessary data-management func-
tionalities for this workHlow. Incorporating the more intricate functionalities of the Pandas
package would require further investigation, but this falls outside the scope of this project.

The final workflow consisted of a total of 130 VisTrails modules. This can be seen in
Figure 5.3. Subworkflow schematics for each of the core logical processes are also pro-
vided in appendix A2.

5.2 High Granularity Workflow

35

Construct Initial Dataframe

From Sample Data Get Phone Intervals

Compute Formant
Trajectories For
Each Phone

1
Remove Zero Values -
(Mistracking) :

Remove Low LOD
Phone Samples

Prepare Data for N —
Classification ' 1
. ﬁ ! Output Confusion Matrix

Figure 5.3: High Granularity Workflow

Round-Robin
Training/Testing

36 Chapter 5. Vis'Trails Implementations

]
dFrame_row_element dFrame_row_element
comname. coumeiiame

11_noZem 2 _pofers

Figure 5.4: Remove Low LOD

The “Remove Low LOD” subworkflow illustrates one of the challenges that was mentioned
earlier. Because it is not possible to pass a DataFrame query function using a Pandas.eval
string (in this case, a function that checks if all three recorded formant measurement have
a sample length greater than 5), this process is done iteratively instead. The resulting
logical steps that make up this subworkflow (pictured in Figure 5.4) are as follows:

- Stepl: The initial DataFrame is split into a list of it’s component DataFrame
rows

- Step2: Each row is passed through the mapped subworkflow, and an output
list containing the results of all iterations is sent to the output port of the “map”
module. For this subworkflow, the lengths of the three formants in a data-sample
are checked to see if they pass the threshold length of “5”. If all three formants
pass the test, then the output for that row is true.

- Step3: The list of Boolean outputs are added as a column to the original
DataFrame under the name “LOD_pass”

- Stepd4: Now, the DataFrame can be queried with a Pandas.eval string (“LOD _pass
== True”). The output DataFrame contains only samples that pass the LOD
threshold.

5.2 High Granularity Workflow 37

This was a re-implementation of the workflow completed in Jupyter Notebook. The result-
ing VisTrails output is, as expected, the same as the output from the Jupyter Notebook.
At a glance, clearly the design space offered at such a granularity is quite large, and any
number of possible workflows can be created with this set of modules. The question that
arises is weather working at this granularity is at all practical. It took a lot of modules
to construct the final workflow, and the mental gymnastics required for designing and
debugging the program structure at this level was not trivial. Does this approach (at this
granularity) hold any advantages at all over scripting in these areas, and would a lower
granularity possibly offer a more practical solution?

5.2.2 Observations

There are two clear benefits of building workflows at this granularity.

e Transparency — Looking at the resulting workflow, although not concise, It’s clear
how the entire program is being executed. Nothing is being “hidden” or “abstracted
away”. Sharing workflow schematics at this granularity would be an effective way
of demonstrating the fundamental workings of the entire program (high-level, and
low-level)

e Design Freedom — Because this granularity utilizes modules that operate at such a
low logical level, the design space that this toolset offers is extremely large. Although
they might be difficult to debug or maintain, the construction of almost any complex
workflow still remains possible

It’s hard to quantify the difficulty of constructing this workflow without performing proper
user-testing experiments, but what is clear is that it is not trivial. While the ability to
entirely visually program a workflow removes the barrier-to-entry from users who may
not have experience writing low-level source-code, many major complexities still remain.
Much of the lower-level programming logic still has to be explicitly defined within the
workflow, and this still (especially at this granularity) requires much of the same foun-
dational knowledge of programming concepts. There are no major improvements to the
maintainability, or the modifiability of the program. Clearly making a significant change
to the original analysis task, or to any of the major logical processes, would require major
refactoring. From this first implementation, it appears that a lower granularity solution
would probably be much more practical.

Resulting Workflow:

- Number of Modules: 130

- Execution Time: 35 minutes 24 seconds

38 Chapter 5. Vis'Trails Implementations

5.3 Low Granularity Workflow:

5.3.1 Implementation

The next experiment was to implement the same VisTrails workflow from the previous
section, but at a lower granularity. This will involve creating a collection of custom
modules that are specialized to execute the higher-level logical processes performed in the
workflow. Ideally these modules are not just useful for this analysis task, but are also
applicable to a large number of other speech analysis tasks. Ultimately, the goal is to
maintain the highest possible design space, but requiring the least number of modules to
construct workflows.

O 3 O 3
PandasDataFrame PandasDataFrame
O [m]
oo Y oooo
get_traj_dct_coefficients ~ roundRobin
targetindexList variable|D
j_noZeros_normalized”, "f3_traj_n Speaker
depth datalD_In
a dot
datalD_Out
D Phone
]|
O 1 O | 2
PandasDataFrame PandasDataFrame
CId]
[Li[a]s] b 'ﬁl:l (] b
remove_lowLOD normalize
threshald targetindexList
10 ["f1_traj_noZeros™,"f2_traj_noZerc
targetindexList factor
['fi_traj_noZeros","f2_traj_noZerc 40
] [m]m]

Figure 5.5: Low-Granularity Modules

Shown above are some examples of the low-granularity modules created for this new work-
flow, and the execution parameters that can be specified. Because DataFrames take the
role of “primary data-structure” in this toolset, simple and concise parameter options can

5.3 Low Granularity Workflow: 39

be given to each of the modules. The “remove_lowLOD” module, for example, does with
one module what took 17 modules in the higher granularity workflow, and requires only
2 input parameters. A user simply needs to know the DatalFrame key(s) of the data they
wish to operate over, and specify an integer for the threshold level-of-detail — (in this
case, determined by the length of a list). The module then outputs a DataFrame that
has filtered away any samples not above the threshold. The snippet found in Listing 5.1
shows the python code that makes up this module. Note that becaunse this module is
specialized for this sub-task using a hard-coded python script, the low_LOD samples can
be filtered out efficiently in a single line of this script.

[f1', 12, 3]

Age ! fl 12 3 :
value i | value value value :
Tt L :
remove_lowLOD
Age f1* f2* fa+ d
value value * value * value * o+

Figure 5.6: “remove_lowLOD” DataFrame Visualization

Listing 5.1: “remove_lowLOD” Python Code

class remove_lowLOD(Module):
_input_ports = [IPort(name="dataFrame", signature="PandasDataFrame"),
IPort (name="threshold”, signature="basic:Integer"),
IPort (name="targetIndexList", signature="basic:List")]
_output_ports = [OPort(name="df result", signature="PandasDataFrame")]

def __init__{=elf):
Module.__init__(salf)

def compute(self):
df _result = self.get_input("dataFrame")
for targetIndex in self.get_input("targetIndexList"):
df _result = df_result(df_result[targetIndex].map{len) > self.get_input("threshold")]
self.set_output ("df_result", df)

Another example, Figure 5.2, shows the python-source for the ‘roundRobin’ module. In
the high-granularity workflow, this process took 15 modules to construct, but now these
operations have been hard-coded into a single unit, and with easy-to-configure parameters.
The user doesn't need to concern themselves with the lower-level processes that make up
the logic within the module, yet they can still utilize these functionalities to full effect. All
the user needs to do is provide an input DataFrame, and specify which columns correspond
to each of the core round-robin parameters (input-data, output-data, group-hy).

40 Chapter 5. Vis'Trails Implementations

Listing 5.2: “roundRobin” Python Code

¢lass roundRobin{(Module):
_input_perts = [IPort(name="dataFrame", signature="PandasDataFrame"),
IPert (name="variableID", signature="basic:String"),
IPort(name="datalD_In", signature="basic:String").,
IPort (name="datalD_Dut", signature="basic:String"),
IPort {(name="classifierConstructor”, signature="PandasDataFrame")}]
_output_porte = [DPort(mame="resulta_byFactor", signature="basic:List"),
OPort (name="results_All", signature="basic:List")]

def __init__{self):
Module.__init__(self)

def compute(self):
dataFrame = azelf.get_input(*dataFrame®)
factorID = self.get_input("variableID")
dataln = self.get_input("dataID_In")
datalut = self.get_input("datalD_Qut")
factorValues = dataFrame [factorID].unique().tolist()
classifiers = [GaussianNB() for factor in factorValues]
results = []
for i in range(0,len(factorValues}):
trainingData = [list(dataFrame[dataFrame[facterID] != factorValues([i]][dataln]), list{dataFrame[dataFrame[
«+ factorID] != factorValues([i]][dataDutl))
testData = [list(dataFrame[dataFrame[factorID] == factorValues[i])(dataIn]), list(dataFrame[dataFrame[
% factorID] == factorValues[i)][dataOut])]
classifiers[i].fit(trainingData[0], trainingData(1])
predictions = classifiers[il.predict(testData[0])
results.append ([predictions, testDatal1]])

alllnputs = [item for sublist in [x[0] for x in results] for item in sublist]
allOutputs = [item for sublist in (x[1] for x in results] for item in sublist]
self . set_output("results_byFactor", results)

self . set_output("results_All", [alllnputs, allOutputs])

These modules are not hound to this particular analysis task. The round-robin module,
for example, can be used for classifying experiments in an entirely different workflow,
using entirely unrelated data-sets. It goes to show how properly utilizing a data-structure
(like a Pandas DataFrame) to serve as a kind of universal data-protocol is a powerful
way to make workflow modules more concise, interoperable, and extensible. The mod-
ule design itself isn’'t the major factor, but rather, the uniform data-structure that ALL
modules share that provides these desired characteristics.

The final workflow can be seen in Figure 5.7. It required a total of only 11 modules
(as opposed to 130 modules in the previous implementation).

5.3.2 Observations

Compared to the previous workflow, this low-granularity workflow is a much more prac-
tical implementation, and it showcases some clear benefits of utilizing workflow systems
within the domain of acoustic phonetics. Some advantages of working with speech-analysis
modules at this granularity include:

Reduced complexity — The logical complexity of finalized workflows are greatly re-
duced by working at this level of abstraction. Starting from a collection of modules
designed to operate at this granularity, implementing a data-analysis pipeline is as simple
as consecutively ordering each major sub-task. Management of major control-flow ele-
ments, and low-level data access, is all handled within the module.

5.3 Low Granularity Workflow: 41

Computational efficiency — Execution of this workflow, using the same sample data
from previous implementations, took only 19 minutes and 44 seconds. This is likely,
largely, because of the overhead required for the execution of each VisTrails module. The
computation of each module is cached, and logged, and requires extra steps to account
for the execution of the scripted infrastructure that underlies each module. In a low-
granularity workflow, most iterative processes occur within the module itself, and are not
subject to such an overhead

Readability — While a higher granularity workflow may offer full transparency, this
more abstracted implementation is much more clear and concise. Someone reading this
workflow can easily see important logical steps throughout the analysis pipeline, and is
not overwhelmed by extraneous control-flow elements that are of little concern

Modifiability — Making changes to the existing workflow, whether that be a funda-
mental change to the analysis task, or adding additional branches for further analysis
is as simple as dragging in the appropriate module, and supplying the appropriate data
parameters.

Easily configurable — Modules at this granularity, and workflows built with these
modules, are easily configurable by default. As discussed earlier, all adjustable parame-
ters can be modified through a simple interface on the module. In the previous workflow,
unless the workflow has been well-engineered from the ground up, changing these param-
eters is not trivial, and likely spread throughout the workflow.

There are also some drawbacks when working at this granularity. This includes:

Reduced transparecy — While the readability of a workflow might be greatly im-
proved by having modules represent only the high-level logical processes, the workflow
gives no indication of what lower-level processes are actually occurring.

Reduced design space — There are some limiting factors when using modules at this
granularity. A user gives up some control over the low-level logic happening within each
module, and only has control over the external parameters of the module. This means that
the number of possible workflows that can be constructed is restricted to the scope of the
toolset. If the library of modules is quite large, then this increases the design space, but if
a particular functionality is not offered, then a user is forced to implement it themselves
by writing a python-source “patch”, or construct a workaround using whatever modules
already exist.

Resulting Workflow:

- Number of Modules: 11

- Execution Time: 19 minutes 44 seconds

42

Chapter 5. VisTrails Implementations

0oa 12
preparelnputData
workspacePath
[Users/Alec/Deskiopichildren
speakers
2""sp3”,"spd" "sp5" "spb”,"sp7","s|
g
oom 4
getintervals
tier EI oo »
FHNL get_traj_dct_coefficients
e Colum targetindexList
Lot omalized”, "f3_noZeros_normalizy
] depth
— 3
~ m
Lifw] b —
ComputeFormantsWRASSP
intervals [Li]m] [4
Interval Filter_TargetPhones
1] (Cluery_dFrame)
query_string
~ [us, "A", 'ail, 'o, 'au’, V', "U", i, ‘W,
[LiJw] 3
removeZerosValues
targetindexList
(1112 13) f0000 >
po roundRobin
wvariablelD
Speaker O listPh >
datalD_In stPhones
meo > det (dFrame_getUnique)
remove_lowLOD datalD_Out columniD
threshold PHMN PHN
10
targetindexList |]
noZeros”,"f2_noderos”, *f3_noZen _______/
n ———
LiJLis] »
Mmoo 4 generateConfusionMatrix
normalize displayValuesOnChart
targetindexList
noZeros","f2_noZeros", "f3_noZen oo
factor
40

]

Vv

Figure 5.7: Low Granularity Workflow

Chapter 6

Conclusions and Future Work

6.1 Conclusions

After completing this project, it has become clear just how critical the underlying data-
structure is to the construction of an effective workflow, and component modules. Because
all data traveling through the pipeline is accessed purely through the input/output ports
of workflow modules, choosing an effective vessel for packaging and accessing this data
has a direct impact on the all aspects of the workflow, especially in terms of module in-
teroperability, extensibility, and flexibility. The Pandas DataFrame object utilized in this
project served as a kind of universal data-protocol that allowed all modules to be maxi-
mally interoperable at all granularities, and facilitated the smooth integration of various
module parameter options. Because this Data-Structure is shared between all modules,
future extensions and integrations with the tool-set can be made with minimal effort.

There are some clear trade-offs between implementing workflows using traditional script-
ing approaches, and using visual programming environments like VisTrails. An outline of
some key observations relating to prominent workflow characteristics are listed below:

Transparency — Traditional scripted workflows win hands-down in terms of workflow
transparency, as the entire execution of a program is explicitly defined in the workflow
script. In visually programmed workflows, lower-level processes are hidden away to vary-
ing degrees depending on the level of abstraction used in the toolset. The lower the
granularity of the workflow, the less transparency is available, as multiple intermediary
processes are hidden within a single module.

Readability — What traditional scripts gain in transparency, they lose in readability.
Visual workflows win in this arena, as they offer a more abstracted, much more familiar
visual representation of workflow structure. Readability of visual workflows is also effected
by workflow granularity. The clear-and-concise nature of the low-granularity workflows
provide a more naturally coherent representation of the analysis task being performed,
while tracing logic in low-granularity workflows is less immediately clear.

43

44 Chapter 6. Conclusions and Future Work

Design Space — The design space of a particular package/toolset depends on how
comprehensive and dynamic its component modules are. It appears that the design space
decreases with granularity, but realistically a package might feature a mixed-granularity
toolset that reduces these imposed restrictions. Clearly, a purely scripted workflow is
more versatile, but it is worth noting that VisTrails does allow the inclusion of hard-
coded python-source modules if necessary.

Extensibility — There are two ways to assess extensibility. The first relates to the
extensibility of specific workHows, and the second is extensibility of a package/toolset.
Concern is primarily on the “ease” of extensibility, not the extent (all can be extended
to an equal degree given enough resources). Extending a workflow in VisTrails, from the
perspective of both a technical and non-technical user, is much more intuitive than with a
scripted workflow. Given that a toolset is well-designed and comprehensive, it is as simple
as dragging extra modules into the workspace and linking them together. If a user wanted
to extend a traditionally scripted workflow, they might need to a reverse-engineer all parts
of the seript (and related libraries) in order to properly integrate new functionality. In
a VisTrails workflow, low level integrations are of no concern to the user, as maximum
compatibility is maintained by-design between each module.

As mentioned earlier, the ease of extending a VisTrails package is primarily dependent on
one element — the shared data structure. If all modules share a kind of “protocol” for data
representation, and passing this data between modules, then this allows any additional
modules added to a package to be more easily compatible throughout the entire workflow.

Efficiency — A VisTrails workflow requires a lot of extraneous overhead/infrastructure
for executing workflows. The assignment of input/output ports, the caching of module
outputs, and the logging of module executions make working with high-granularity work-
flows less efficient. Low-granularity workflows execute most of control-flow operations
within each module, so this is not felt as infrastructure-level overhead. Some simple tim-
ing analysis experiments (performed on the main analysis task implemented this project)
made this distinction quite clear.

e High-granularity execution time: 35min 24sec
e Low-granularity execution time: 19min 44sec
e Jupyter Notebook execution time: 4min 30sec

Approachability — VisTrails workflows, at any gramularity, are much more approach-
able from the standpoint of a non-technical user. The ability to program workflows
without writing source-code removes a large barrier-to-entry for many of these users. Af-
ter implementing VisTrails workflows at multiple granularities in this project, the clear
winner in terms of approachability is the low-granularity workflow — simply because it
eliminates the need for the user to construct computational process, and control-flow

6.1 Conclusions 45

structures themselves.

In Summary:

When comparing granularities within the context of acoustic phonetics research, and how
workflows can be applied to this domain with the goal of improving reproducibility and
approachability of data-analysis tools, “low granularity” workflows seem to be the most
applicable. This degree of abstraction narrows a users field of concern to the specific
high-level tasks in an analysis pipeline, so the barrier-to-entry imposed by management
of low-level logic is greatly reduced. In this environment, a user can modify the execution
a sub-workflow task simply adjusting the associated module parameters, instead of need-
ing to re-factor many different workflow modules throughout the schematic. This process
is much more approachable to the average “non-technical” user. It’s worth noting that
if the fundamental data-structure is shared between toolsets of different granularities, in
many instances these tools can still be used together. A sitnation where a low-granularity
workflow might be restricting in design space could be “worked-around” by introducing
some high granularity modules at these locations. Because granularity has such a large
effect on various workflow characteristics, modules in a mixed-granularity toolset should
be appropriately grouped so users can design workflows around this distinction accord-
ingly.

This project has shown that VisTrails is definitely viable tool for improving accessibil-
ity to data analysis tasks, and improving research reproducibility in acoustic phonetics
research. The paradigm lends itself very well to this type of research (particularly the
low-granularity workflows), and it is possible to reproduce real-world acoustic phonetics
analysis tasks in VisTrails using these packages of specialized domain-specific modules.
Some of the many advantages provided are:

e Clear and concise workflows and workflow schematics

e Fast development times

e Highly extensible, shareable, and modifiable workflows

e Improved accessibility /approachability, and reduced barriers-to-entry

Of course, there are trade-offs that come with these advantages. One of the more obvious
ones is the dependency on the VisTrails infrastructure for executing VisTrails workflows.
For someone experienced writing scripts, implementing smaller analysis tasks in VisTrails
might be less practical. Other drawbacks come in the form of minor performance issues
when saving, switching loading, copy/pasting large workflows (a rare-sight in a text-
editor). Also the lack of a large developer community makes it quite difficult to find
solutions to specific issues.

46 Chapter 6. Conclusions and Future Work

6.2 Future Work

6.2.1 Building More Waorkflows

This project focused primarily on creating multiple implementations of only a single anal-
ysis task. Future work could include constructing workflows for a large number of analysis
tasks, with special consideration placed on workflow adaptability through extensive pa-
rameter options. Perhaps with the goal of arriving at a suite of common workflows that
can be quickly-and-easily adjusted (or extended) to fit the requirements of a particular
analysis task.

6.2.2 Testing Other Features of VisTrails

This project surrounded the “workflow” components of VisTrails — e.g. building workflow
modules, constructing workflows, and analyzing the trade-offs of various workflow design
elements. This left many of the additional VisTrails features, and how they could be
effectively utilized, somewhat overlooked. Some of these features could be investigated in
future work.

- Outsorcing computational tasks to servers
- A closer look at the provenance system and its features

- Interactive data outputs

6.2.3 User Testing

All observations in this project related to “ease of use” and “complexity” were taken from
first hand experience. Assumptions had to be made on how approachable a workflow
might be from the perspective of a unexperienced user. But there is no substitute for or-
ganized user testing in assessing how intuitive a tool-set is to users with limited exposure.

User testing, in this case, might involve a more simplified rendition of the analysis task
that was performed as part of this project. This could resemble the following scenarios:

Case 1:

Step 1: User is provided with an existing workflow implementation in VisTrails

Step 2: User is asked to modify this this workflow slightly to experiment with a mildly
different approach to the analysis task using different parameters, rearranged modules, or
additional modules

Step 3: Observations are made on how intuitively the user can accomplish these tasks,
common sources of difficulty are recorded. User is asked for their feedback on the task,
and what they thought was, or wasn't, challenging.

6.2 Future Work 47

Case 2:

Step 1: User is assigned two speech analysis tasks to implement in VisTrails.

Step 2: User is provided with two VisTrails packages (consisting of a restricted set of
modules) designed at different granularities.

Step 3: The user attempts, to the best of their ability, to implement the target workflows
using the packages. They switch the package they start with for each task.

Step 4: Observations are made of the users actions, common avenues of difficulty or
frustration are recorded. The user is also specifically asked for their input on what they
thought about each workflow implementation.

6.2.4 A More “Comprehensive” set of Speech Analysis Tools

This project required that some custom modules be developed for the analysis task work-
flow — for the purposes of interfacing with data/speech libraries, and encapsulating major
logical processes. However, outside the context of this analysis task, the toolset is incom-
plete. A possible avenue for future work would be to develop a complete set of tools for
acoustic phonetics that would include a more extensive set of computation modules and
any necessary improvements to the exploratory modules written for this project.

6.2.5 Testing Other Workflow Systems

Other workflow systems, like Galaxy, have been explored for use in building and executing
acoustic phonetics workflows. VisTrails is only rendition of visually programmed workflow
systems, and there are many others that have yet to be explored. Some of the observa-
tions gathered from building workflows in VisTrails could serve as a reference point when
assessing if other systems might offer any major advantages for use in this domain.

6.2.6 Exploring Other Domains

This project was an exploration of VisTrails purely within the context of acoustic phonet-
ics research. But there are numerous areas that could that could highly benefit from this
type of abstracted data analysis pipeline. Put simply, if a domain might involve executing
any kind of data-pipeline, it could potentially benefit from exploring the role systems like
VisTrails might play in streamlining those tasks, and encouraging repeatable research —
areas like astronomy, biology, meteorology, finance, etc...

Future explorations with VisTrails could, similarly to this project, involve taking an anal-
ysis task within another domain, and constructing VisTrails workflows, and associated
packages. Borrowing ideas from the proof-of-concept packages created in this project,
and applying them to a different fields could provide good insight into how well paradigm
holds outside of the context of this project.

Chapter 7

Abbreviations

DCT
FFT
LOD
Ul
XML
0Ss

Discrete Cosine Transform
Fast Fourier Transform
Level of Detail

User Interface

Extensible Markup Language (file format)

Operating System

49

50

Chapter 7. Abbreviations

Appendix A

name of appendix A

A.1 Output Visualizations

al

au

8 | o 3 1w 9 5 5 0w 0
2 . B o0 ¥ 0o 0 o o
2 8 & 1 u 2 2 o o
2 0 T g 13 5 4 2 4
7 1 @ o0 . o 0 o o
s 0 o o 1 1 3 & o
2 o > 3 o | & 37
2 0 6§ 0 & 0 IS o 2
a o0 o A W B 7 57 s
o 0 7 2 1 o 15 1 6
A i u & n a0 v oo

Figure A.1: Confusion Matrix

52 Chapter A. name of appendix A

A.2 Subworkflows

s} ¥
dFrame_row_element

Temrd

List

P’ Inenar]

Figure A.2: Get Phone Intervals

A.2 Subworkflows

53

[] »
dFrame_row_slement
cohenetiama

o

Start
(PardasDataFramse)

Li
e, T ilers’. ‘0 neZen]

Figure A.4: Remove Zero Values

54

Chapter A. name of appendix A

] [a] B
dFrame_row_element dFrame_row_element

cohmrbiame cohumriama

1_moden

Query_dFrame

s
LOD_pass LOD._pass == T

1

dFrame_row_slement
columrhlame

12_noZarn

List

S, *_nomakzed, "3_normsia:

o

Figure A.6: Normalize Trajectories

A.2 Subworkflows 55

=]
HFI'!IHI _Tow_e llemlm fnmu Tow_t alamum
2, rets 5 reamsims

m mgnnm

dFrame_addColumn
coilarmn_name
DcT

Li[u]
dFrame_getColumn
colamniame

Figure A.8: Round-Robin Training/Testing

56

Chapter A. name of appendix A

References

1

(2]

(3]

[5]

(6]

(8]

(9]

Harrington, J. and Cassidy, S. (1999). Techniques in speech acoustics. Boston: Kluwer
Academic Publishers.

Andrews, W.D., Kohler, M.A. and Campbell, J.P., 2001, September. Phonetic speaker
recognition. In INTERSPEECH (pp. 2517-2520).

Clopper, C.G. and Pisoni, D.B., 2004. Some acoustic cues for the perceptual catego-
rization of American English regional dialects. journal of phonetics, 32(1), pp.111-140.

Bradlow, A.R., Torretta, G.M. and Pisoni, D.B., 1996. Intelligibility of normal speech
I: Global and fine-grained acoustic-phonetic talker characteristics. Speech communi-
cation, 20(3-4), pp.255-272.

Llisterri, J. (2017). Speech analysis and transcription tools. [online] Liceu.uab.es.
Available at: http://liceu.uab.es/~joaquim /phonetics/fon_anal _acus/herram_anal_
acus.html#Audiamus_N_Thieberger [Accessed 25 May 2017]. — licensed under a Cre-
ative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Fon.hum.uva.nl. (2014). Scripting. [online] Available at: http://www.fon.hum.uva.nl/
praat/manual /Scripting.html [Accessed 25 May 2017).

Cassidy, S. and Estival, D., 2017. Supporting accessibility and reproducibility in lan-
guage research in the Alveo virtual laboratory. Computer Speech & Language.

Wolstencroft, K., Haines, R., Fellows, D., Williams, A., Withers, D., Owen, S,
Soiland-Reyes, S., Dunlop, I., Nenadic, A., Fisher, P. and Bhagat, J., 2013. The
Taverna workflow suite: designing and executing workflows of Web Services on the
desktop, web or in the cloud. Nucleic acids research, 41(W1), pp.W557-W561.

Romano, P., Bartocci, E., Bertolini, G., De Paoli, F., Marra, D., Mauri, G., Merelli,
E. and Milanesi, L., 2007. Biowep: a workflow enactment portal for bioinformatics
applications. BMC bioinformatics, 8(1), p.S19.

[10] Taverna.incubator.apache.org. (2016). Apache Taverna - Taverna in use. [online]

Available at: https://taverna.incubator.apache.org/introduction/taverna-in-use/ [Ac-
cessed 25 May 2017].

58 REFERENCES

[11] Afgan, E., Baker, D., Van den Beek, M., Blankenberg, D., Bouvier, D., ech, M.,
Chilton, J., Clements, D., Coraor, N., Eberhard, C. and Grning, B., 2016. The Galaxy
platform for accessible, reproducible and collaborative biomedical analyses: 2016 up-
date. Nucleic acids research, p.gkw343.

[12] Cassidy, S. (2016). A Galaxy Workflow for Acoustic Phonetic Analy-
sis. [Blog] Available at: http://web.science.mq.edu.au/~cassidy /2016/10/18/
a-galaxy-workflow-for-acoustic-phonetic-analysis/ [Accessed 25 May 2017].

[13] Koop, D., Freire, J. and Silva, C.T., 2013. Enabling reproducible science with Vis-
Trails. arXiv preprint arXiv:1309.1784.

[14] Cassidy, S. and Watson, C., 1998, December. Dynamic features in children’s vowels.
In ICSLP.

[15] Software: Pandas Python Data Analysis Library. http://pandas.pydata.org/ (2017).
Wes McKinney.

[16] Software: GameSalad. (2017). GameSalad. https://gamesalad.com/

[17] Griffis, J. Matthew (2013). Platform Studies: GameSalad. [pdf] pp.34-35. Available
at: http://www . jmatthewgriffis.com /writing/Griffis_Game_Studies_Research_Paper.

pdf

[18] Pandas.pydata.org. (2017). pandas.eval pandas 0.21.0 documentation. [online] Avail-
able at: http://pandas.pydata.org/pandas-docs/stable/generated /pandas.eval.html#
pandas.eval

[19] Winkelmann, Raphael., WRASSP, Github Repository, https://github.com/
IPS-LMU /wrassp

[20] Buschmeier, Hendrik., TGT, Github Repository, https://github.com/hbuschme/
TextGridTools/

[21] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel. V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V. and Vanderplas, J., 2011. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research, 12(Oct),
pp.2825-2830.

[22] Walt, S.V.D., Colbert, S.C. and Varoquaux, G., 2011. The NumPy array: a struc-
ture for efficient numerical computation. Computing in Science & Engineering, 13(2),
pp.22-30.

[23] Jomes, E., Oliphant, T. and Peterson, P., 2014. SciPy: open source scientific tools for
Python.

REFERENCES 59

[24] Kluyver, T., Ragan-Kelley, B., Prez, F., Granger, B.E., Bussonnier, M., Frederic, J.,
Kelley, K., Hamrick, J.B., Grout, J., Corlay, S. and Ivanov, P., 2016, May. Jupyter
Notebooks-a publishing format for reproducible computational workflows. In ELPUB
(pp. 87-90).

[25] Scheuffele, Alec D., macspeech_vistrailsacousticphoneticsworkflows, (2017),
Bitbucket repository, https://bitbucket.org/AlecSchenffele/macspeech_
vistrailsacousticphoneticsworkflows

60

REFERENCES

Consultation Log

[Week |

Date

Comments
{if applicable)

2ol

3%

17f «

31 <

K

5[to

12[10

n3/io

'2@(!0

Sc){co

2|1

61

	Scheuffele_Alec_SOFT
	by Alec Scheuffele

