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Abstract

Text summarisation helps to manage the growth of digitally stored textual information,

by allowing users to learn key information from reading short summaries. This research

project focuses on query-based multi-document extractive summarisation, which con-

structs a summary made of sentences extracted directly from multiple source documents

and based on a user query. Much of the past research in extractive summarisation is based

on supervised machine learning approaches, which requires converting target human sum-

maries into explicit annotations of the input sentences. In contrast, our research focuses

on reinforcement learning, which can incorporate the target human summaries directly

into the learning process. We explore the impact of various key aspects of reinforcement

learning. First, we compare several variants of the Proximal Policy Optimization (PPO)

approach with baseline reinforcement learning approaches. Second, we investigate pre-

training our policy using supervised approaches. We report our results on data provided by

the BioASQ Challenge. We observe that PPO penalises changes to the policy as mentioned

in literature. However, there is no significant improvement to our summarisation quality

when using PPO or pre-training.
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1
Introduction

Text is a valuable means of communicating information, whether it is conveyed using

paper, computers, mobile devices, or any other means. More and more textual information

is being stored digitally, and new information is uploaded to the internet all the time.

However, too much information can cause difficulties for users, and can make key infor-

mation harder to find. One of many examples is a doctor who wants to find references

related to their diagnosis, in order to conduct Evidence Based Medicine. Another example

is a reader who wants to find a particular news story. In both of these cases, it is inefficient

for the user to read every piece of information relevant to their topic to find what they

are looking for.

Text summarisation helps to manage this growth of digitally stored text [38]. Text

summarisation provides a short summary of the source texts, which allows the user to

quickly identify key information about the texts. Text summarisation approaches can be

1
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divided into extractive summarisation and abstractive summarisation. This thesis focuses

on extractive summarisation — where sentences from the source document are re-used

directly in the summary, as opposed to abstractive summarisation where the summary

text is different from the original sentences.

Past research in text summarisation includes Pre-Machine Learning, Machine Learning,

and Deep Learning approaches (See Section 2.2). Instead, our research project uses

reinforcement learning approaches with the goal of generating human-like summaries.

One well known application of reinforcement learning is AlphaGo, which was developed

by the Google DeepMind team to achieve superhuman performance in the board game

Go [70]. Another application is the OpenAI reinforcement learning library which we

use in this thesis, where robots are trained to walk using the OpenAI Gyms [3, 68].

These applications of reinforcement learning aimed to either mimic or outperform human

behaviour.

Reinforcement learning has also been applied to extractive summarisation in past

research [22, 30, 47, 60, 82]. Reinforcement learning is used instead of supervised

machine learning approaches because it can incorporate the target human summaries

directly into the learning process. In contrast, supervised approaches require explicit

annotations of which sentences are the correct ones to extract and use in the summary.

Reinforcement learning is also an approach which can predict the long-term outcome of

choosing a sentence. These benefits make reinforcement learning an attractive research

topic for summarisation tasks. However, many past reinforcement learning summarisation

systems use only the vanilla reinforcement learning approaches with minimal modifications

(See Section 2.3).

We apply a new reinforcement learning approach known as Proximal Policy Optimiza-

tion (PPO) [68], which has not yet been applied to query-based multi-document extractive

summarisation to our knowledge. We use PPO because it performs well for Atari games,

and can be applied to vanilla policy gradients with only a few lines of code change [68].

We address the research questions described in Section 1.1, and make the contributions

described in Section 1.2.
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1.1 Aims

Our long-term aim is to improve the summary quality of our reinforcement learning

summarisation system by changing the policy it uses. However, the short-term aim of

this thesis is to firstly understand the policy used in Proximal Policy Optimization (PPO)

reinforcement learning, and then to discover the impact of applying PPO and pre-training

approaches to our summarisation task. In doing so, we discover if PPO can improve our

summarisation quality, and what modifications have an impact on the performance of the

PPO approach.

We consider the following 2 research questions in this thesis.

1. Can PPO be used to improve the summarisation quality of our query-based multi-

document extractive summarisation task?

2. Does pre-training reinforcement learning to avoid learning random sequences also

improve the summarisation quality?

We divide our first research question into three necessary parts. The necessary parts to

answer this question are a PPO implementation, a measure of summarisation quality

and a summarisation task. After obtaining the necessary parts (described in Chapter 3),

we perform experiments to answer our first research question (described in Chapter 4).

We compare our PPO implementation with several baseline systems including a vanilla

REINFORCE policy-based reinforcement learning approach [78]. We observe that PPO

penalises changes to the policy as mentioned in literature [68]. However, we do not

observe a significant improvement in summarisation quality when using PPO.

For our second research question we use the same three necessary parts, and add a pre-

training stage to our existing systems. Chapter 5 describes the results of our experiments

using pre-training for PPO, and our baseline REINFORCE approach. Pre-training does

not significantly improve our results either, and we can investigate ways to improve our

pre-training approach in future research.



1.2 CONTRIBUTIONS 4

1.2 Contributions

This thesis applies the Proximal Policy Optimization (PPO) Actor-Critic reinforcement

learning approach to our text summarisation task. Past research in summarisation applies

vanilla reinforcement learning approaches to text summarisation, but few of the Actor-

Critic approaches have been applied to text summarisation. PPO was published in 2017

[68], and has not yet been applied to query-based multi-document extractive summarisa-

tion to our knowledge. Our contribution includes applying PPO to this summarisation

task, and applying modifications and pre-training to our PPO implementation.

In addition, I contributed to a paper submitted to the BioASQ Workshop 2019 [48].

In the paper, I contributed to the training of Neural Regression and Neural Classification

systems for Batch 1-3 only of the BioASQ competition 2019. I also contributed to adding

word embeddings to the REINFORCE approach for Batch 2 only. I also contributed to the

scraping of human evaluations from the BioASQ results page, and calculating the Pearson

correlation only for evaluation of the ROUGE-SU4 F1 metric. We explain our contribution

to the BioASQ competition in 2019 in Section 3.2.

1.3 Outline

The rest of this thesis is organised as follows. Chapter 2 performs a literature review

of reinforcement learning approaches used for summarisation. Chapter 3 describes our

baseline reinforcement learning system which we submitted to the BioASQ shared task.

Chapter 4 describes the PPO system which we compare with our baseline system. Chapter 5

describes the pre-training stage which we add to PPO and REINFORCE to begin training

with a high-scoring model. Chapter 6 reports our results in all the systems that we

explored. Chapter 7 concludes this thesis and suggests future research directions.



2
Literature Review

The communication of information using text has changed and developed throughout

history, and originated from spoken languages [8]. Today, text is commonly used for

electronic communication, and contributes to the rapid growth of information on the

internet. Text Summarisation aims to deal with the wealth of textual information on the

internet [38], by reducing large texts into smaller more readable summaries.

This chapter performs a literature review of text summarisation for query-based multi-

document datasets. This is not a systematic review, and only covers some aspects of text

summarisation which are relevant to this thesis. Chapter 32 of The Oxford handbook of

computational linguistics (page 584) describes summarisation as follows [43]:

Definition: a summary is a text that is produced from one or more texts, that

contains a significant portion of the information in the original text(s), and

that is no longer than half of the original text(s).

5



2.1 TEXT SUMMARISATION 6

This definition includes both summarisation by machines, and by humans. How-

ever, the scope of this thesis is limited to machine learning and reinforcement learning

approaches, and the summarisation tasks which they could be applied to.

The rest of this chapter is as follows. Section 2.1 describes the different types of sum-

marisation, with specific focus on query-based multi-document summarisation. Section 2.2

describes the history of summarisation methods. Section 2.3 describes reinforcement

learning, which is the focus of this thesis. Finally, Section 2.4 discusses the areas of rein-

forcement learning which can be applied to future research in query-based multi-document

summarisation.

2.1 Text Summarisation

In this section, we discuss the different types of text summarisation, according to their

inputs and outputs [38]. The inputs of a summarisation system can be categorised as

either single documents or multiple documents. This thesis also includes query-based

multi-document summarisation so that we can discuss this area in detail. The outputs of

a summarisation system can be categorised as extractive, abstractive, or a hybrid of both

[55, 82]. We define each of these categories below, and discuss the different research for

each.

2.1.1 Single-document Input

Figure 2.1 shows what single-document extractive summarisation does. This summari-

sation approach takes a single document containing multiple sentences as input, and

outputs a "summary" derived from the important information in the document. There

are many single-document datasets which are listed on Ruder’s GitHub Page1, and in

Dernoncourt et al. [9]. This subsection reviews only 3 examples of single-document

datasets for Gigaword, CNN / Daily Mail, and arXiv / PubMed.

1https://github.com/sebastianruder/NLP-progress/blob/master/english/

summarization.md

https://github.com/sebastianruder/NLP-progress/blob/master/english/summarization.md
https://github.com/sebastianruder/NLP-progress/blob/master/english/summarization.md
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FIGURE 2.1: A diagram of single-document extractive summarisation. Important sentences in
the document (shown in red) are extracted to create a shorter summary.

The Gigaword dataset contains 4,111,240 newswire text documents collected in

English by the Linguistic Data Consortium [18]. At the time of writing, there are 18

papers using the Gigaword dataset on Ruder’s GitHub Page2. Li et al. [31] uses the

Gigaword dataset for their reinforcement learning model.

The CNN / Daily Mail dataset contains 312,084 news reports as single documents

[5]. Originally the CNN dataset and Daily Mail dataset were two separate datasets [23],

but Nallapati et al. [50] combines these two datasets and publishes anonymized and non-

anonymized versions. At the time of writing, there are 12 papers using the anonymized

dataset and 25 using the non-anonymized dataset listed on GitHub2. Zhang et al. [82]

uses the CNN / Daily Mail dataset for their reinforcement learning model.

Cohan et al. [7] introduces a dataset which takes scientific papers from the arXiv3 and

PubMed4 scientific repositories to be summarised. The arXiv dataset contains 215,000

documents, and the PubMed dataset contains 133,000 documents. This dataset is another

example which can be used for single-document summarisation models.

2https://github.com/sebastianruder/NLP-progress/blob/master/english/

summarization.md
3https://arxiv.org/
4https://www.ncbi.nlm.nih.gov/pubmed/

https://github.com/sebastianruder/NLP-progress/blob/master/english/summarization.md
https://github.com/sebastianruder/NLP-progress/blob/master/english/summarization.md
https://arxiv.org/
https://www.ncbi.nlm.nih.gov/pubmed/
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2.1.2 Multi-document Input

Multi-document summarisation takes input sentences from multiple documents, and

produces one summary for all of the documents. Summarisation for multiple documents

comes with its own set of challenges. For example, having multiple documents means

that there are more sentences that can be chosen for extraction, and there is a greater

chance of disfluency between unrelated sentences [54]. Some approaches to multi-

document summarisation include clustering, maximal marginal relevance, and graph-

based approaches [65]. One of the earliest systems for multi-document summarisation

was SUMMONS (1998) [58]. We review several multi-document datasets below, with

specific focus on the TAC / DUC dataset.

The Document Understanding Conference (DUC) datasets were released as a shared

task from 2001 to 2007 [54]. The datasets published by DUC are widely used for multi-

document summarisation [4]. In 2008, DUC was replaced by the Text Analysis Conference

(TAC), which is still ongoing. The content of DUC and TAC datasets changes every year

[9], however most include a multi-document summarisation challenge. Nallapati et al.

[51] uses the DUC 2002 dataset to compare their results with other summarisation models

using this dataset. The more recent datasets are only available to track participants.

The Text Summarisation Challenge (TSC) is another shared task which includes

both single and multi-document datasets. [16] This dataset was part of a workshop at

NTCIR (NII Test Collection for Information Retrieval Project), and contains newspaper

articles in Japanese.

Multi-document datasets can also be generated from publicly available comments.

The TGSum dataset is one example which collects tweets about a topic to gather more

data than the DUC dataset [4]. The Opinosis dataset is another example which contains

multiple reviews from users about certain topics [17].
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FIGURE 2.2: A diagram of query-based multi-document extractive summarisation. Summary
sentences (shown in red) are extracted from multiple documents, and can be based on a question.

2.1.3 Query-based Multi-document Input

Figure 2.2 shows an example of what query-based multi-document summarisation does,

where an input question is provided with multiple documents that may contain an an-

swer. The summarisation system is expected to answer the provided question using key

information from the documents. Below we describe the BioASQ dataset, which is used

for both Question Answering and query-based multi-document summarisation.

BioASQ is a shared task which publishes query-based multi-document datasets [74].

The BioASQ challenge started in 2013, and includes biomedical questions and documents

[46]. The BioASQ training data which we use is publicly available, but the human anno-

tated answers for the test data are not released until after the competition is completed.

Participating systems receive results on the test data by uploading the machine generated

summaries to the BioASQ website.

Summarisation techniques perform well in the BioASQ competitions [46]. This is be-

cause the gold standard human answers released by BioASQ contain both an ideal answer

and an exact answer. The exact answer is generally one word, and can be generated

using Question Answering techniques [84]. The ideal answer contains several sentences,

and often repeats the same sentences that are in the source documents. Summarisation

techniques are more geared to generating ideal answers, and perform well for this task

[46].
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2.1.4 Extractive and Abstractive Outputs

This subsection briefly describes the outputs of a summarisation system. The outputs

of a summarisation system can be categorised as extractive, abstractive, or a hybrid of

both [55, 82]. Extractive summarisation re-uses sentences that already exist in the source

document again in the summary paragraph. Abstractive summarisation creates a new

paragraph that doesn’t exist in the document but is like the correct summary which was

annotated by a human. Generally, extractive summarisation has been more successful

than abstractive summarisation — which is not guaranteed to generate legible sentences

[51]. There is also a risk that abstractive summarisation will introduce false or irrelevant

information which was not included in the original text.

Extractive summarisation is used by some papers to produce results [22, 30, 52, 60,

82]. Narayan et al. [52] report their results using a purely extractive summariser with

reinforcement learning. This thesis only performs extractive summarisation, and we

consider abstractive summarisation a possible direction for future research.

Abstractive models are also becoming increasingly popular, and are sometimes com-

pared with similar extractive approaches [82]. Rush et al. [62] uses an attention model

to generate abstractive summaries from a Neural Network. Zhang et al. [82] uses a

Sequence-2-Sequence model to generate abstractive summaries. Hybrid models can also

be used to combine extractive and abstractive approaches into a single model [12]. Future

research into these approaches could be used to further improve text summarisation

models.

2.2 Past Approaches

There are many methods used to perform extractive and abstractive summarisation. We

divide these approaches into Pre-Machine Learning, Machine Learning, Deep Learning,

and then Reinforcement Learning (Section 2.3). More detail on early approaches to

summarisation can be found in the literature review by Lloret and Palomar [38]. This thesis

focuses on the reinforcement learning approach to extractive summarisation (Section 2.3).



2.2 PAST APPROACHES 11

2.2.1 Pre-Machine Learning

Before Machine summarisation, Luhn [40] proposed using word frequency in a document

to find sentences to summarise it. Edmundson [14] also proposed an early method of

summarising before machine learning techniques. This was termed as the Edmundsonian

Paradigm, in which sentences are ranked for extraction based on a linear function.

Edmundson proposed that using the cue method, key method, location method and

title method aid the identification of good summary sentences. Newer summarisation ap-

proaches build on this idea that sentence content, location and/or headings are important

features for the summarisation of a document. Machine Learning approaches are one

such example which has gained inspiration from these early summarisation approaches.

2.2.2 Machine Learning

This subsection describes some machine learning approaches used for summarisation. The

machine learning approaches can be divided into supervised and unsupervised machine

learning (however we only discuss supervised machine learning here). Supervised machine

learning can be further divided into Regression and Classification approaches. Some

Regression approaches include Linear Regression, Logistic Regression and Regression

Trees. Some Classification approaches include Naive Bayes, K-Nearest Neighbours and

Support Vector Machines. There are many other examples of machine learning approaches

which have been used for summarisation [38], which we will not list exhaustively. Below

we describe some early examples of machine learning used in summarisation.

The Naive Bayes Classifier was used by early papers to perform summarisation [29, 65].

Ouyang et al. [53] applies Regression techniques to a query-based multi-document sum-

marisation dataset (DUC 2005) to gain an improvement over Classification approaches.

Graph-based approaches have also been used for query-based multi-document summarisa-

tion [83]. We do not provide an exhaustive list of Regression and Classification approaches,

but provide these only as examples of machine learning summarisation approaches.

It is also possible to rank each word in a sentence and find the best one. This approach

has been applied to query-based multi-document summarisation [49, 53, 66]. Words
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can be ranked using Term Frequency-Inverse Document Frequency (TFIDF), which ranks

each word based on how often each word occurs in one document compared to other

documents [64]. Alternatively, word features can be trained using a word embedding

vector based on the meaning of each word [36, 42].

2.2.3 Deep Learning

This subsection describes the use of Deep Learning for summarisation tasks. Deep Learning

has been applied to the field of summarisation, and involves training a neural network.

Early neural network approaches were inspired by the network of neurons in the brain

[41]. Neural Network models can be fit to complex non-linear functions, and the input

features do not need to be specified in advance [37]. This means that deep learning can

be used for a wide range of datasets, and can also be applied to unsupervised machine

learning which does not require labels [27, 59]. Dong [13] performs a recent survey of

deep learning models used for summarisation. This subsection briefly lists some Deep

Learning models used for extractive summarisation.

Deep learning performs well for extractive summarisation as reported by SummaRuN-

Ner [51] and Latent [82]. SummaRuNNer [51] performs extractive summarisation using

GRU-RNNs (Gated Recurrent Unit — Recurrent Neural Networks) at the word and sen-

tence layer. Latent [82] uses LSTM-RNNs (Long-Short Term Memory — Recurrent Neural

Networks) for extractive summarisation, and performs reinforcement learning with a

pre-trained neural network to avoid random sequences in their latent model. RBMs

(Restricted Boltzmann Machines) are also shown to work for query-based multi-document

extractive summarisation [35, 85]. Convolutional layers can be added to Neural Networks

as well, and Narayan et al. [52] uses a Convolutional Encoder in their neural network to

perform extractive summarisation.

2.3 Reinforcement Learning

This section describes the different types of reinforcement learning, and their applications

to summarisation. The standard reinforcement learning framework follows a Markov
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decision process [72, 73], in which an agent explores the environment it is in. This process

involves knowing the current state, performing an action, and then repeating actions to

observe a delayed (long-term) reward.

State (s) Action (a) Reward (r)

Value Function

V(s) = - Expected Future Reward

Q(s,a) = - Future Reward After Action a

Policy Function

π(s) = Predicted Action (Deterministic) -

π(a|s) = Probability of Action a (Stochastic) -

TABLE 2.1: The value function and policy function notations, highlighting that a value function
outputs a reward, and a policy function outputs an action (or probability).

Reinforcement learning approaches can be divided into Value-based, Policy-based and

Actor-Critic. Table 2.1 briefly compares the common value and policy functions. Value

based approaches use only a value function which predicts the future reward for a state,

whereas policy-based approaches use only a policy function which predicts the action to

take in a state. Actor-Critic approaches combine both value and policy functions, so that

the policy function is trained by incorporating the value function in its loss.

Reinforcement learning is known to work well for Atari Games [1, 44], the board

game GO [70, 75], and OpenAI Robot Gyms [32, 67, 68]. Atari Games are simulated

video game environments, and OpenAI Gyms [3] are simulated real world environments

which a robot learns to move in. Reinforcement learning has also been applied to both

single-document summarisation [52, 55, 63, 82] and multi-document summarisation

[47, 60].

Our project uses reinforcement learning for extractive summarisation, because it can

optimize a summarisation system based on the target human summary. When using

supervised machine learning approaches, an extractive summarisation system can only

be trained to extract a sentence which has been annotated as a gold (correct) sentence.
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However, by using reinforcement learning the system can be trained to extract different

sentences — which will still have been the best choice after comparing all other extracted

sentences with the human annotated summary.

In this section we describe the different types of Reinforcement Learning, and whether

they have been applied to summarisation or not. Table 2.2 provides an overview of the

individual approaches we discuss.

Type Approach Used For

Value-Based Q-Learning (1989) [77] Robots [34]

Summarisation [22]

Value-Based DQN: Deep Q Network Atari Games [44]

Summarisation [30]

Value-Based CDQN: Continuous DQN OpenAI Gym [19]

Policy-Based REINFORCE (1992) [78] Atari Games [6]

Summarisation [82]

Actor-Critic SARSA: State-Action-Reward-State-Action OpenAI, Atari [71]

Summarisation [60]

Actor-Critic DDPG: Deterministic Policy Gradient Add to Policy [69]

Actor-Critic TRPO: Trust Region Policy Optimization OpenAI, Atari [67]

Actor-Critic PPO: Proximal Policy Optimization OpenAI, Atari [68]

Actor-Critic A3C: Asynchronous Advantage Actor-Critic Atari Games [45]

Actor-Critic DDPG: Deep Deterministic Policy Gradient OpenAI Gym [32]

Actor-Critic ACER: Actor-Critic with Experience Replay Atari Games [76]

Actor-Critic SAC: Soft Actor-Critic OpenAI Gym [21]

Actor-Critic ACKTR: Actor-Critic using Kronecker- OpenAI Gym [79]

factored Trust Region

TABLE 2.2: List of reinforcement learning approaches we reviewed, and citations to papers
which apply them to Atari Games, OpenAI Gyms or Summarisation. Papers without Summarisation
listed in the Used For column have not been used for Summarisation tasks yet to our knowledge.
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2.3.1 Value-Based

V (s) = Expected Future Reward (2.1)

A Value function (Equation 2.1) predicts the expected future reward of being in the

current state. Every time the agent receives a reward, it trains the value function (which

for DQN is a neural network) to output the reward that it got. In a value-based approach,

the next action is chosen by considering the future reward for each possible action the

agent can take, and choosing the action which has the highest predicted reward. Table 2.1

shows some common notations for value and policy functions.

Value-Based methods usually choose the action which results in the highest value at

each step. As more actions are taken, the predictions of the value function (Equation 2.1)

become more accurate, and the best action to take becomes clearer. We describe some

value-based approaches to reinforcement learning below.

Q-Learning (1989) [77] is a model-free value-based approach, which usually uses an

array to store values. Q-learning adds a Q value function to the value-based approach

(See Table 2.1), which returns the value (future reward) based on the current state, and

an action that can be taken in the current state. At each step, Q-learning considers all

possible actions in the current state, and chooses the action with the highest value of

Q(s, a). Q-Learning has been applied to single-document and multi-document extrac-

tive summarisation [22]. Q-Learning has been applied to other tasks as well, such as

programming robots [34].

Deep Q Networks (DQNs) improve Q-learning by using a Neural Network instead of

an array, which allows more states to be approximated with less memory. Q-Learning

and Deep Q Networks are most commonly used for video game environments [44]. DQN

has also been applied to single-document extractive summarisation [30]. However, Q-

Learning and DQN do not perform well in OpenAI Gyms, and are poorly understood

[68].

Continuous DQN (called CDQN or NAF) is another approach which improves Deep

Q Networks. This approach adds a Normalized Advantage Function (NAF) to Q-Learning
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so that it has continuous state and action spaces. Gu et al. [19] uses the Normalized

Advantage Function in a Q-Learning approach to learn OpenAI Robot Gyms. Continuous

DQN has not yet been applied to summarisation to our knowledge.

2.3.2 Policy-Based

π(s) = Action (2.2)

A policy function predicts the action to take in the current state. A policy can be either

deterministic — meaning that it outputs only a single action, or stochastic — meaning that

it outputs a probability distribution which the next action is sampled from. Equation 2.2

is a simplistic interpretation of a deterministic policy, which is trained to directly output

a single action to take. Stochastic policies have a different notation, and are trained to

output the probability of the action instead. Table 2.1 shows the common notations for

deterministic and stochastic policies.

Policy-Based approaches train the policy function (Equation 2.2) to map a state to an

action that should be taken [1]. Approaches which use a policy function can be either

on-policy or off-policy, depending on whether the action that is chosen comes directly from

the policy function’s predicted action or not [72] (DDPG and SAC are example off-policy

Actor-Critic approaches). A loss function is used when training the policy function, which

specifies how good the predictions made by the model are. Policy-Based approaches use

the discounted future reward in the loss function to determine how good an action is which

leads to that reward. In Mollá [47] the un-discounted final reward is back propagated to

the loss function of each action, meaning that all actions are equally impacted by the final

reward. Actor-Critic approaches also include the output of a value function in the loss

function. We describe the vanilla REINFORCE policy-based algorithm below.

REINFORCE is a simple on-policy policy-based approach to reinforcement learning

[78]. It is a vanilla policy-based approach with poor data efficiency and robustness [68].

For stochastic policies REINFORCE usually uses the Monte Carlo method to choose random

actions from the probability distribution. REINFORCE is sometimes used as an Actor-Critic
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approach as well, simply by incorporating a value function baseline into the loss of the

policy function. REINFORCE has been used for playing Atari Games [6], and for extractive

summarisation [47, 82]. An Actor-Critic version of REINFORCE has also been used for

single-document abstractive summarisation [31].

2.3.3 Actor-Critic

Actor-Critic approaches combine the policy gradient used in policy-based approaches with

a value function similar to a value-based approach. As the name suggests, they include

an "actor" part which updates the policy with the best actions, and a "critic" part which

critiques how good the policy is using a value function. The value function is incorporated

into the loss of the policy function, which allows it to penalise bad policies when it is

trained well. This subsection describes some of the Actor-Critic approaches from Table 2.2.

Trust Region Policy Optimization (TRPO) [67] is an Actor-Critic approach published

by John Schulman to learn OpenAI Robot Gyms. TRPO uses trust regions to prevent the

model from learning policies which are too different from a trusted policy. Generative

Adversarial Imitation Learning (GAIL) [25] is a method that improves the TRPO algorithm.

Proximal Policy Optimization (PPO) [68] improves the TRPO algorithm by adding

clipping to the probability ratios. PPO has not been applied to summarisation tasks yet

to our knowledge, but could be applied because it simply adds limits to the probability

ratios of the policy function. We apply PPO to query-based multi-document extractive

summarisation in this thesis.

State-Action-Reward-State-Action (SARSA) is an on-policy actor-critic version of Q-

Learning, which updates the policy after taking each action. Rummery and Niranjan [61]

first introduced SARSA as a footnote. Sutton [71] applies SARSA to several tasks from

Puddle Games to OpenAI Gyms. SARSA has been applied to multi-document extractive

summarisation as well, using the Temporal Difference (TD) method [60].

Asynchronous Advantage Actor-Critic (A3C) is another Actor-Critic approach [45].

A3C is used to solve Atari Games, Car Simulators and Physics Simulators. The Synchronous

Advantage Actor-Critic (A2C) is an update on A3C to make it synchronous, which is faster
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and requires less runs. This has not been applied to summarisation yet to our knowledge.

Deep Deterministic Policy Gradient (DDPG) is an off-policy Actor-Critic approach

that is based on Q-Learning, and is used in OpenAI Robot Gyms [32]. Distributed Distri-

butional DDPG (D4PG) further improves DDPG to make it run in a distributed fashion

[2]. Multi-agent DDPG (MADDPG) also improves DDPG [39]. Twin Delayed Deep Deter-

ministic (TD3) applies the same techniques as DDPG, based on Q-Learning [15].

Actor-Critic with Experience Replay (ACER) is an Actor-Critic approach, used in

Atari Games in the original paper [76]. So is Actor-Critic using Kronecker-factored Trust

Region (ACKTR) [79], and Soft Actor-Critic (SAC) [21], which are both used in OpenAI

Robot Gyms in the original papers. These methods have not been applied to summarisation

tasks yet to our knowledge.

2.3.4 PPO

This subsection describes the Actor-Critic approach of PPO in more detail, as it is a major

part of this thesis. Proximal Policy Optimization (PPO) was published in 2017 [68] by the

author of TRPO [67]. We choose the PPO Actor-Critic approach for this thesis because it

can be applied to a vanilla policy gradient implementation, with only a few lines of code

change [68]. We know from past research that the REINFORCE policy-based approach

can be applied to our summarisation task [47], so PPO could be applied to the same task.

We therefore apply PPO to our query-based multi-document summarisation task, which

has not been done before to our knowledge. We also applied the ACER approach to our

task, but we were not able to adapt other Actor-Critic approaches (such as TRPO). In

future research, we would like to apply the other Actor-Critic approaches in Table 2.2 to

our summarisation task as well.

PPO performs clipping on the probability ratios similar to TRPO in order to prevent

large changes to the actions predicted by the policy. Unlike TRPO, PPO imposes a CLIP

function within the neural network, which is learned and adjusted to suit the model. The

CLIP function simply adjusts the probability ratios output by a policy function, and can

be applied to a vanilla policy gradient implementation [68]. We use the stable-baselines
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implementation of PPO [24], which uses a TensorFlow neural network to add the CLIP

function.

We use the default settings for PPO as much as possible, and treat the original system

as a black box for most of our experiments. We also make some small modifications to

the PPO algorithm which we describe in Section 4.2.2. All our other results follow the

original PPO algorithm, as presented in Schulman et al. [68].

2.4 Discussion

Table 2.2 lists the reinforcement learning approaches we discussed. Many Actor-Critic

approaches listed in Table 2.2 have not yet been applied to summarisation tasks (with the

exception of SARSA). The Deep Q Network value-based approach has only been applied to

a single document dataset in Lee and Lee [30], and could be applied to query-based multi-

document datasets. The PPO Actor-Critic approach could be applied to summarisation,

because the CLIP function used in PPO can be applied to the a vanilla policy gradient

implementation, with only a few lines of code change [68]. The vanilla REINFORCE

approach has already been applied to extractive summarisation [47, 82], so PPO could

be applied to the same task. In addition, many other Actor-Critic approaches could be

applied to summarisation, which have not yet been attempted to our knowledge.

Several new Actor-Critic approaches have emerged since 2015 [21, 32, 45, 67, 68,

76, 79], showing that there is no single Actor-Critic approach which guarantees success.

Instead, different approaches work for different problems, and applying these approaches

to summarisation could improve our results. However, the Actor-Critic approach of

combining Policy and Value functions seems to improve model performance over earlier

approaches. We focus on the PPO Actor-Critic approach in this thesis, and could investigate

other Actor-Critic approaches in future research.



3
Approach

This thesis aims to address two main research questions. The first research question we

address is whether Proximal Policy Optimization (PPO) can improve the summarisation

quality of reinforcement learning for a query-based multi-document extractive summari-

sation task. PPO has outperformed other policy gradient methods for Atari games [68],

but has not yet been applied to summarisation to our knowledge. The second research

question we address is whether pre-training reinforcement learning to avoid learning

random sequences (similar to Zhang et al. [82]) also improves the summarisation quality.

In this chapter we describe our approach to answering both of our research questions.

We address our first research question pertaining to PPO by implementing three necessary

parts which we list below. The three parts below are also needed to answer our second

research question, which includes a pre-training stage which we will describe in Chapter 5.

1. A query-based multi-document extractive summarisation task (Section 3.1)

20
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2. A measure of summarisation quality (Section 3.3)

3. A Proximal Policy Optimization (PPO) reinforcement learning implementation

(Section 3.4)

The remainder of this chapter describes our approach to prepare each of the three

parts needed to address our research questions. Section 3.1 describes the BioASQ shared

task, which is our extractive summarisation task. Section 3.2 describes our participation

in the BioASQ shared task using our baseline REINFORCE approach. Section 3.3 describes

the ROUGE-SU4 F1 metric which we use to evaluate summarisation quality. Section 3.4

describes the stable baselines implementation of PPO which we use.

3.1 BioASQ Dataset

The dataset we use has been provided to us by the organisers of the BioASQ competition

[74]. The BioASQ competition is a shared task, which started in 2013 and organises annual

challenges. The 2019 BioASQ challenge consists of 3 individual tasks. Task 7a requires

participants to classify new PubMed documents. Task 7b-PhaseA requires participants

to submit snippets or RDF triples from PubMed documents which relate to a query. Task

7b-PhaseB requires participants to submit answers (ideal or exact) to a query, which can

be based on the snippets provided.

Our system generates ideal answers to the queries in the BioASQ Task 7b-PhaseB

dataset. Some example data from the BioASQ dataset is shown in Table 3.1. The dataset

contains queries, snippets from documents, ideal answers and exact answers. Our system

generates answers similar to the ideal answers in this dataset by extracting sentences

from the snippets provided. We choose extractive summarisation for this task because we

observe that the gold (correct) human summaries tend to contain the same text used in the

source snippets [46]. Also, the results of this BioASQ task are reported using the ROUGE

metrics [33], which is a common metric for summarisation approaches. We therefore

treat this BioASQ Task 7b-PhaseB as an extractive summarisation task.

The dataset that we use consists of 2,747 questions, and 36,006 snippets shared
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between the questions. We divide the data into a training set (2,289 questions) and a

testing set (458 questions) in order to train and evaluate our systems. We also submit our

baseline systems to the BioASQ competition, which consists of further test data where the

human annotated answers are only available to the BioASQ organisers. The competition

organisers evaluate the results of the systems we submit, and provide the ROUGE scores

and human evaluations of our results.

question Are long non coding RNAs spliced?

type yesno

ideal answer Long non coding RNAs appear to be spliced

through the same pathway as the mRNAs

exact answer yes

snippet 1 Our analyses indicate that lncRNAs are generated ...

snippet 2 For alternative exons and long noncoding RNAs, ...

snippet 3 bosome-mapping data to identify lncRNAs of Caenorhabditis ...

snippet 4 We introduce an approach to predict spliced lncRNAs ...

snippet 5 Owing to similar alternative splicing pattern to mRNAs ...

snippet 6 Our synthesis of recent studies suggests that neither size, ...

TABLE 3.1: Example Data from BioASQ Task 7b-PhaseB Training Dataset. Ideal answers contain
sentences which are sometimes similar to the snippets, and exact answers give a more direct
answer based on the question type.

3.2 REINFORCE BioASQ Submission

Our submission to the BioASQ task in 2019 [48] consists of 5 baseline systems. Our

systems are First-N (MQ-1), Support Vector Classifier (MQ-2), Neural Regression (MQ-

3), Neural Classification (MQ-4), and REINFORCE (MQ-5). I contributed to creating

and training the Neural Regression model (For MQ-3, Batch 1-3), training the Neural

Classification model (For MQ-4, Batch 1-3), and training the REINFORCE algorithm
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using word embeddings (For MQ-5, Batch 2 only). Further details of this submission are

published in Mollá and Jones [48].

Table 3.2 shows the human evaluations for these systems in the BioASQ competition

in 2019. First-N (MQ-1) is a strong baseline which simply takes the first N sentences to

be used to answer the question. The value of N changes depending on the question type,

which is shown in Table 3.3. Neural Regression (MQ-3) and Neural Classification (MQ-

4) apply the deep learning approach using the supervised regression and classification

techniques described in Mollá [47]. REINFORCE (MQ-5) is a simple implementation of

the REINFORCE algorithm [78] which we use as a baseline in this thesis. We include

our results from the BioASQ shared task because this thesis compares our REINFORCE

(MQ-5) implementation with the PPO reinforcement learning approach. We also include

ROUGE-SU4 F1 scores of the First 3 batches in Appendix A.

Table 3.2 shows that the REINFORCE (MQ-5) approach produces the best results

in 3 batches, and is very close to the best results in the other 2 batches. This shows

that reinforcement learning approaches can outperform supervised machine learning

approaches, as observed in past research [55]. This also supports our decision to focus on

reinforcement learning in this thesis.

Batch Batch1 Batch2 Batch3 Batch4 Batch5

First-N (MQ-1) 4.195 4.318 4.213 4.260 4.405

Support Vector Classifier (MQ-2) 4.223 4.285 4.213 4.258 4.393

Neural Regression (MQ-3) 4.195 4.318 4.213 4.260 4.405

Neural Classification (MQ-4) 4.160 4.300 4.208 4.285 4.395

REINFORCE (MQ-5) 4.208 4.300 4.223 4.375 4.428

TABLE 3.2: This table shows the mean human evaluation score for each of our submissions to
the BioASQ Competition. The results in bold are the highest average human evaluation for that
batch. The runs that I contributed to were MQ-3 (Batch 1-3), MQ-4 (Batch 1-3), and MQ-5 (Batch
2 only).
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Type summary factoid yesno list

First-N 6 2 2 3

TABLE 3.3: The number of sentences chosen by the First-N (MQ-1) system, based on Question
Type.

Our submission to the BioASQ competition in 2019 [48] uses a slightly modified

version of the REINFORCE algorithm described in Mollá [47]. The REINFORCE (MQ-

5) implementation is based on the original REINFORCE algorithm [78], and trains a

policy that predicts actions using the final reward directly in the loss function. This

REINFORCE approach does not subtract any baseline (value function) from the policy

gradient, and does not discount the future reward. Instead, the reward from the final

action is back propagated and used in the gradient for all previous actions that were taken.

We use our own version of REINFORCE, because REINFORCE is not implemented in the

stable-baselines library that we use for PPO. Section 3.4 describes the unmodified PPO

stable-baselines implementation, which discounts the future reward and subtracts a value

function baseline in its loss function. We also report our results using a modified version

of PPO (PPO-mod) which directly incorporates the future reward in the loss function,

because this is what our REINFORCE baseline does (See Subsection 4.2.2).

The policy function that we use for REINFORCE is stochastic, and uses a Keras neural

network [20] to predict the probability of choosing a sentence. The neural network design

is shown in Figure 3.1. The inputs to the neural network are taken from the sentences in

the current environment which are to be summarised by the system. The first 300 words

from each sentence are mapped to an embedding representation for that word which

comes from the word2vec embedding matrix. The mean of the word-level embeddings is

taken as the representation of each sentence, and concatenated into a single input layer.

We then use 2 hidden layers, each of size 200 and using the ReLU activation function.

Two output nodes are then applied for the value function and policy function, each with

different weights. The value function is only used for PPO, whereas the policy function is

used for both PPO (using linear activation) and REINFORCE (using sigmoid activation).

The final summary comes directly from the sentences chosen based on the policy function
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FIGURE 3.1: A diagram of our neural network for PPO and REINFORCE. The REINFORCE neural
network only outputs a policy function, whereas the PPO implementation outputs both a policy
function and a value function after the second hidden layer (where each output layer has different
weights).

outputs — meaning that if the policy doesn’t choose any sentences then the final summary

will be empty.

The state observations fed into the neural network are made up of the 6 feature types

listed below. Our environment returns these same observations for PPO, REINFORCE,

and all other approaches we use in this thesis. These feature types are the same for the

REINFORCE (MQ-5) algorithm we submitted to the BioASQ competition as well [48].

1. Document — word2vec embeddings for the whole document

2. Sentence — word2vec embeddings for the current sentence

3. Next Sentences — word2vec embeddings for the remaining sentences that are yet

to be considered

4. Question — word2vec embeddings for the query text

5. Summary — word2vec embeddings for the summary generated so far

6. Summary Length — The length of the summary generated so far



3.3 ROUGE METRICS 26

3.3 ROUGE Metrics

We evaluate our summaries using the ROUGE algorithm [33], which compares the system

outputs with the gold standard answers. We choose ROUGE to evaluate our system’s

performance because it is commonly used to evaluate other Summarisation methods [52].

It is also used by the organisers of the BioASQ shared task. However, human evaluations

are a more accurate measure of the usefulness and human-readability of the summary that

was generated, and are useful in evaluating summarisation methods. In future research

we would like to perform human evaluations of our system as much as possible, however

it was not feasible to obtain human evaluations for all of our systems within the timeline

of this Masters Project.

We also performed an investigation of the ROUGE metrics [33] which are used in

scoring the BioASQ summarisation task. Our results were published in Mollá and Jones

[48]. I contributed to scraping the human evaluation results from the BioASQ Results page,

and calculating the Pearson correlation only. Mollá and Jones [48] compares ROUGE

Precision, Recall and F1 with the human annotated results, and shows that Precision has

the highest correlation with human evaluations, followed by F1. Given that Precision

may favour short summaries, we choose F1 to train our models, and report all our results

using the Perl ROUGE-SU4 F1 metric. This thesis provides human annotations where

possible, and uses the mean ROUGE-SU4 F1 score for all our other results.

3.4 PPO Implementation

This section introduces the Proximal Policy Optimization (PPO) algorithm library that we

use, which comes from the OpenAI open source libraries.

Our PPO algorithm is based on the OpenAI implementation of PPO. OpenAI baselines

[11] is a GitHub repository containing a number of reinforcement learning algorithms

which are designed to work for OpenAI Gyms [3], and for Atari Games. The OpenAI

Gym environments simulate real world environments in which a robot can be trained to

move and perform tasks, and the Atari Game environments simulate Atari video games.
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Applying the OpenAI version of PPO to another environment is difficult, and requires

complex changes1.

Stable-Baselines [24] is a GitHub repository forked from the OpenAI baselines repos-

itory. Stable-Baselines simplifies the OpenAI reinforcement learning code so that it is

easier to create new environments. The reinforcement learning algorithms implemented

by Stable-Baselines are listed in Table 3.4. We use the stable-baselines implementation of

the Proximal Policy Optimization (PPO) algorithm, and apply it to a new environment

that performs query-based multi-document extractive summarisation.

We create a new environment similar to an OpenAI Gym environment [3], but which

interacts with our BioASQ dataset shown in Table 3.1. The environment operates using

states, actions and rewards as described by the Markov decision process. Each state

observation includes the word2vec embeddings of the feature types described in Sec-

tion 3.2. The actions possible in the environment are ‘0’ to add the current sentence to

the summary, or ‘1’ to not use the sentence in the summary. The reward is based directly

on the Perl ROUGE-SU4 F1 evaluation which compares the machine generated summary

to a gold (correct) human annotated summary.

We then use the stable-baselines PPO implementation to train an actor for our new

environment. We use the default stable-baselines actor-critic MLP model for our policy

and value functions. Figure 3.1 shows the design of our PPO and REINFORCE models.

We note that the stable-baselines PPO model outputs both a policy function and value

function using a linear activation layer, both with an output size of 2 for the 2 possible

actions. This is because the PPO stable-baselines implementation requires the model to

have a specific output layer (which can handle environments with more than 2 actions as

well).

In future research, we would like to implement the other stable-baselines reinforcement

learning approaches listed in Table 3.4. We did not have time to implement all of these

during the course of this Masters Project, or to adapt our system to use the TRPO approach.

We compare our results with the DQN and ACER approaches in this thesis, but we did not

1https://towardsdatascience.com/stable-baselines- a-fork-of-openai-baselines-reinforcement-learning-

made-easy-df87c4b2fc82

https://towardsdatascience.com/stable-baselines-a-fork-of-openai-baselines-reinforcement-learning-made-easy-df87c4b2fc82
https://towardsdatascience.com/stable-baselines-a-fork-of-openai-baselines-reinforcement-learning-made-easy-df87c4b2fc82
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parameter tune or optimize these approaches for our summarisation task either.

A2C Actor-Critic (Improved A3C)

ACER Actor-Critic

ACKTR Actor-Critic

DDPG Actor-Critic (Off-Policy)

DQN Value-Based

GAIL Actor-Critic (Improved TRPO)

HER Apply to: DQN, DDPG or SAC

PPO Actor-Critic

SAC Actor-Critic (Off-Policy)

TRPO Actor-Critic

TABLE 3.4: List of Reinforcement Learning algorithms implemented in the stable-baselines
repository [24]. Proximal Policy Optimization (PPO) is in bold because we use the stable-baselines
implementation of this algorithm in our experiments.



4
Proximal Policy Optimization

In Chapter 3, we described the approach we use to answer both of our research questions,

including the PPO library we use. In this chapter we describe the experiments which we

run in order to answer our first research question of whether PPO can be used to improve

the summarisation quality of a query-based multi-document extractive summarisation

task. We also describe the baseline systems which we use to compare our PPO approach

performance with. Our results indicate that although PPO does not outperform our

REINFORCE baseline in terms of ROUGE-SU4 F1 score, the PPO CLIP function penalises

changes to the policy [68], resulting in a more stable learning curve.

The layout of this chapter is as follows. Section 4.1 describes the baseline systems

which we use to compare our PPO results. Section 4.2 describes the PPO algorithm that

we test, and the parameters we choose for it. Section 4.3 describes our results using

several batch sizes for PPO.

29
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4.1 Baselines

This section describes the baseline systems we use to compare with PPO. Subsection 4.1.1

describes our results using the First-N baseline, and other basic baselines. Subsection 4.1.2

describes our results using the REINFORCE algorithm from Mollá [47] as a baseline.

Subsection 4.1.3 describes our results using the DQN and ACER approaches implemented

in the stable-baselines repository [24].

4.1.1 First-N

This subsection describes the First-N baseline which we compare with PPO. First-N was

included in our submission to the BioASQ task in 2019 [48], and was described in

Section 3.2. In this subsection, we compare First-N with some other basic baseline

approaches, and report our results on our test data set.

Table 4.1 lists our results using 4 basic baseline approaches. The baselines we compare

are First-N, Last-N, Random and All. All of our results are reported using the same test

data set, and the results reported here are comparable to our REINFORCE and PPO results.

We briefly describe each baseline below.

First-N is a strong baseline which simply takes the first N sentences to be used to

answer the question. The number of sentences it takes is dependent on the question type,

as we showed in Section 3.2 Table 3.3 [48].

Last-N takes the same number of sentences as First-N, but takes the last sentences

instead of the first ones. We observe that this baseline is very similar to randomly choosing,

which suggests that the position of the sentences is important, and the first sentences

are more likely to correspond to the human annotated summary than the last sentences

(despite choosing the same number of sentences from a different position).

Random takes every sentence at random with a 50 percent probability. This baseline

represents the score that our model should be able to achieve without any learning.

Table 4.1 shows the mean result running Random 10 times.

All takes every sentence, and includes them all in the summary. This baseline also

performs poorly, which shows that simply choosing all of the sentences does not produce



4.1 BASELINES 31

a good ROUGE score.

Baseline (On Test Data) ROUGE-SU4 F1

First-N 0.247

Last-N 0.196

Random 0.195

All 0.189

TABLE 4.1: Mean ROUGE-SU4 F1 scores for our basic baseline systems, using consistent test
data for all experiments. The Random result is the mean of running 10 separate runs with a
standard deviation of 0.007.

4.1.2 REINFORCE

This subsection describes the REINFORCE baseline which we implement based on Mollá

[47], and was submitted to a shared task [48]. We include REINFORCE as a baseline so

that we can compare PPO with a purely policy-based reinforcement learning approach. We

use the same neural network architecture as described in Section 3.2, with only a policy

function output. We run this REINFORCE baseline 3 times over 500,000 timesteps, and

record the maximum training data result for each run (which represents the maximum

point on the REINFORCE learning curve, taken from the average ROUGE-SU4 F1 score

received for each question in the training dataset). Table 4.2 reports the average of the 3

maximum training data results which were received on the 3 different runs. We observe

that REINFORCE outperforms FIRST-N, and is a strong baseline. We also include the

baseline learning curve graph of our REINFORCE approach in Figure 4.1. We observe that

the REINFORCE learning curve goes up and down on the test data, and that the training

data results are generally low because of the model exploring alternative actions.
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FIGURE 4.1: Graph of the REINFORCE learning curve for 3 runs over 500,000 timesteps, using
ROUGE-SU4 F1 score as the reward. The training results (black) tend to score either the same or
worse than the test data (red, green, and blue) because of REINFORCE exploring different actions
stochastically.

4.1.3 DQN and ACER

We also include results from the stable-baseline [24] implementations of the Deep Q

Network (DQN) and Actor-Critic with Experience Replay (ACER) approaches. We include

DQN as a baseline because it is a purely value-based reinforcement learning approach

which we can compare our results with. Actor-Critic approaches such as PPO generally

perform better than purely value-based approaches, and this is reflected in our results in

Table 4.2. We also include the results using the ACER stable-baselines approach, which

performs similarly to PPO in Atari Games but is more complex [68]. We could only make

minor adjustments to the parameters for these algorithms, and can continue tuning the

parameters of these algorithms in future research. For ACER we use a horizon of 20 (the

default horizon) and 1000 (the best horizon for PPO) and observe that a horizon of 20

works better for ACER. Subsection 4.2.1 describes the horizon (n-steps) parameter in

more detail for the PPO approach. Our results for these baselines are included in Table 4.2.

The learning curve for both approaches is included in Appendix B.
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Model Horizon ROUGE-SU4 F1 S.D.

FIRST-N - 0.247 -

REINFORCE - 0.253 0.001

DQN - 0.214 0.003

ACER 20 0.247 0.003

ACER 1000 0.211 0.001

PPO-mod 1000 0.252 0.002

PPO 100 0.250 0.002

PPO 1000 0.251 0.001

PPO 10000 0.248 0.001

TABLE 4.2: List of PPO experiments using different horizon values, and a modified PPO version
(PPO-mod), compared to the baseline reinforcement learning approaches. The scores shown are
the average of the highest ROUGE-SU4 F1 scores across 3 runs for each approach. S.D. is the
standard deviation of the 3 runs.

4.2 PPO

This section describes our experiments using the PPO stable-baselines implementation.

Proximal Policy Optimization (PPO) was published in 2017 [68], and has not been applied

to the task of summarisation previously to our knowledge. We apply PPO to query-

based multi-document summarisation, and compare our results to the baseline algorithms

described in Section 4.1.

We use the default parameters for PPO wherever possible, and make only minor

changes to the PPO algorithm. The changes we make to the PPO algorithm are described

in the subsections below. Subsection 4.2.1 describes our parameter tuning, using the

horizon parameter of PPO. Subsection 4.2.2 describes our modified version of PPO (PPO-

mod), which uses a different policy gradient. Table 4.2 lists the results of our experiments.
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FIGURE 4.2: Comparison of the PPO learning curve with Horizon at 100 and Horizon at 1000
(each 3 runs using ROUGE-SU4 F1 as reward). The Horizon 1000 model is more consistent and
does not unlearn good models.

4.2.1 Parameter Tuning

This subsection describes the horizon parameter that we tune to improve the performance

of our PPO algorithm. The horizon (n-steps) parameter controls the number of steps

taken before the policy gradient is updated. The reason we tune the horizon parameter

is because parameters which relate to step size (like horizon) are known to impact the

performance of reinforcement learning approaches, and the horizon parameter had the

biggest impact out of the parameters we tested. Increasing the horizon reduces the

impact of a single good summary, and incorporates a range of summaries in different

environments into a single update to the neural network. The default horizon for Atari

games is 128 (As stated in Schulman et al. [68], and implemented in stable-baselines),

but we experiment with 100, 1000, and 10000 horizon sizes.

Figure 4.2 provides a comparison between the PPO learning curve at 100 and 1000

horizon sizes. The results of 3 runs over 500,000 timesteps are overlayed in different

colours for both graphs. We observe that the learning curve for a horizon size of 1000 is

more stable, and changes to the policy are penalised as intended [68]. We also report

the best results from each learning curve averaged across the 3 runs in Table 4.2. We

observe that there is very little difference between the best results of each horizon size.

The learning curve for 10000 horizon size is included in Appendix B.
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4.2.2 Policy-Based PPO Modification

This subsection describes our modification to the PPO policy gradient in PPO-mod. We

implement a modified version of PPO for two reasons. The first reason is that our

REINFORCE implementation uses the reward directly in the loss function (instead of

a discounted reward) for its policy gradient, so we modify our PPO implementation to

do the same thing so that we can better compare PPO with our REINFORCE baseline.

The second reason we modify our PPO implementation is to better understand how PPO

works, and to find out whether modifying the algorithm will improve our results. The

remainder of this subsection describes the changes we made to the PPO algorithm, and

the results that we received with our modified version.

The PPO paper [68] describes the advantage function used in the original PPO algo-

rithm using Equation 4.1.

At = δt + (γλ)δt+1 + ...+ ...+ (γλ)T−t+1δT−1,

where δt = rt + γV (st+1)− V (st)
(4.1)

At each timestep t the reward rt is offset by subtracting a baseline which utilizes

the state value function V (s). The resulting offset reward δt is then discounted at each

timestep using the discount factors gamma (γ) and lambda (λ). This advantage function

(A) is based on Advantage Actor-Critic approaches [45], which incorporate the value

function V (s) as the critic.

We create a modified version of PPO (PPO-mod) using the advantage function in

Equation 4.2, which is the same as the policy gradient for our REINFORCE algorithm

described in Section 3.2.

At = rt + rt+1 + ...+ ...+ rT−1 (4.2)

Simply, PPO-mod removes the value function baseline which offset the reward, and

removes the discount factors applied to future rewards. The resulting algorithm is a

policy-based approach (as it doesn’t use a value function), similar to our REINFORCE

implementation, which applies clipping to the probability ratios based on the PPO CLIP

algorithm. We can remove the discount factors from our rewards because the reward
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FIGURE 4.3: The learning curve for PPO-mod run 3 times over 500,000 timesteps. Reward uses
the ROUGE-SU4 F1 metric.

of all actions except for the final action is 0. The results of PPO-mod represent the

impact that the PPO CLIP function alone has when compared to our baseline REINFORCE

approach. We report the results of PPO-mod in Table 4.2, and observe that this approach

performs similarly to the unmodified PPO implementation, and does not outperform

the REINFORCE baseline approach. We also report the learning curve of PPO-mod in

Figure 4.3.

4.3 Results and Discussion

Our results in this chapter showed that PPO does not improve the ROUGE score for our

query-based multi-document extractive summarisation task. There is very little difference

between our results for PPO and REINFORCE in Table 4.2, and we do not receive any

human evaluations which we can report. Our First-N baseline is outperformed by the PPO

and REINFORCE approaches, by a ROUGE difference of 0.004 and 0.006 respectively.

In Figure 4.2 we observe that the PPO learning curve is consistent, and our training

results (black) are evenly spread on either side of our testing results (red, green and blue).

Our REINFORCE Baseline (Figure 4.1) has an uneven learning curve and updates the
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policy gradient every time the environment is done. However, the PPO CLIP function

penalises changes to the policy, resulting in a more consistent learning curve with little

variation in the test data results [68]. We also observe that using a larger horizon size

ensures that a good policy is not unlearned, because more steps are considered before

each update to the policy gradient. As a result, the PPO learning curve appears to be more

consistent than our REINFORCE baseline implementation.

We also observed that our modification to PPO (PPO-mod) appears slightly more

competitive with REINFORCE than the unmodified PPO algorithm. However the difference

between the PPO and PPO-mod ROUGE-SU4 F1 scores is 0.001, which is not a significant

difference for the ROUGE metric. The learning curve for PPO-mod is also very similar

to the original PPO implementation, which confirms that the PPO clipping approach still

works when it is applied to a vanilla policy gradient approach [68]. This also suggests

that the value function we are using for PPO does not improve our model, as removing it

does not make much difference.

Overall, the PPO algorithm does not provide any improvement to the baseline RE-

INFORCE algorithm results. However, we observe that the learning curve for the PPO

algorithm is more steady, and it does not unlearn good models when using a large horizon.



5
Pre Training

In Chapter 4 we described the experiments we ran to answer our first research question

pertaining to PPO. In this chapter we describe the experiments we run in order to answer

our second research question of whether pre-training reinforcement learning to avoid

learning random sequences improves the summarisation quality. The reason we load a

pre-trained model is to start with a strong baseline and avoid learning random sequences

when training our model, similar to Zhang et al. [82]. We then test whether this pre-

training step results in an improvement to the summarisation quality. The rest of this

chapter describes the deep learning approach which we use for our pre-trained model,

and the reinforcement learning systems which we apply the pre-trained model to.

The remainder of this chapter is as follows. Section 5.1 describes how we pre-train

our neural network. Section 5.2 describes how we load the pre-trained model into PPO

and REINFORCE. Section 5.3 discusses our results, and the probability of choosing the

38



5.1 PRE TRAINING 39

first sentences after pre-training.

5.1 Pre Training

This section introduces our approach which pre-trains the neural network using supervised

deep learning approaches on our BioASQ dataset. Pre-training can be applied to word

vectors, language models, or to the neural network. Pre-trained word vectors such as

GLOVE are commonly used for summarisation tasks [56, 80]. Pre-trained language models

such as BERT and ELMo have also been used in recent works [10, 57]. Our approach

involves pre-training the weights of our neural network to avoid random label sequences

while training, similar to Zhang et al. [82].

We perform pre-training on the same dataset, using the same split of training and

testing data each time. We do not perform any transfer learning on our neural network.

First, we label the top N sentences using the approach in sub-section 5.1.1. Next, we train

the neural network to predict the labels using the deep learning classification approach

with binary cross entropy loss and the Adam Optimizer [28]. We adjust the weights for

the classes using the approach in sub-section 5.1.2. Finally, we report the ROUGE score

for the sentences predicted by the model with a threshold of 0.5 (ie. the sentences with

a probability over 50 percent are chosen to be in the summary). Table 5.1 shows these

ROUGE results after pre-training alone. We do not report the classification precision or

accuracy for the classifiers.

The highest ROUGE value we get for our classification model is 0.247. We use this best

pre-trained model for all of our experiments that load a pre-trained model in Section 5.2.

We also include the results of this model as our pre-training baseline in Table 5.2. We

note that this classification model uses the same architecture as our REINFORCE neural

network from Section 3.2. This is so that the pre-trained classification model can be loaded

into our REINFORCE model to continue training. As a result, the classifier architecture we

use is different to the classifier reported in Mollá and Jones [48] (MQ-4, using LSTMs).

Because the classifier reported in Mollá and Jones [48] gives a better ROUGE score in

the final summaries, we consider incorporating this classifier’s neural network into our
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reinforcement learning approach in future work.

Weight N = 2 N = 3 N = 4 N = 5 N = 6

1 0.118 0.128 0.152 0.183 0.181

5 0.229 0.237 0.244 0.242 0.234

10 0.230 0.241 0.245 0.241 0.234

25 0.238 0.242 0.246 0.241 0.233

50 0.237 0.244 0.247 0.241 0.233

100 0.236 0.244 0.247 0.238 0.228

500 0.236 0.244 0.245 0.220 0.189

TABLE 5.1: Results from pre-training our neural network to classify sentences. Results are shown
using the average ROUGE evaluation of the summary generated for each query in the test dataset
when choosing sentences using the classification model. The result in bold is the result that we
choose to pre-train our reinforcement learning models with, where the weight is 50, and the best
Top N labels is 4.

5.1.1 Top N Labels

Before Pre-Training the neural network model, we label the gold (correct) sentences

which the classifier will be trained to predict. To do this, we choose the first N sentences

which have the highest ROUGE score compared to the human annotated summary, and

class those sentences to be selected for the machine summary. Once we have labels for

the gold sentences, we can then train the neural network to identify those gold sentences

without prior knowledge of the human annotated summary. We try a range of values for

N when choosing our top N labels, and report our results in Table 5.1. We identify 4 as

the best value for Top N based on Table 5.1.

5.1.2 Class Weights

This subsection describes the class weights that we apply when training our deep learning

classifier using the Adam Optimizer [28]. We train our classification model using the
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binary cross entropy loss function as provided by keras. We also apply class weights,

which are used for weighting the loss function during training time only. Please see the

keras documentation1 for more information about the class weight parameter for the

model fit function. We apply a weight of 1 to the non-summary sentence class, and vary

the weight of the summary sentence class according to the weights in Table 5.1. We assign

weights because our summary and non-summary sentences are not evenly distributed,

and because our classification model performs better when it is more likely to include

sentences in the summary.

Table 5.1 shows our results using different weights for the training of the summary

sentences. Intuitively, when choosing more sentences for the Top N, there will be more

instances of that class, and the optimal weight will be smaller. Despite this, the optimal

weight values are much larger than we expected. For example, when N = 4 there are 2.75

non-summary sentence instances for every 1 summary sentence instance, but we observe

that the best weight at N = 4 is closer to 50 or 100 (in favour of predicting summary

sentences).

5.2 Loading Pre Trained Model

In Section 5.1 we explained how we choose the best pre-trained model for our neural

network. This section describes how we use our pre-trained model to improve our

reinforcement learning results. As previously mentioned, we use a pre-trained model in

order to avoid learning random sequences similar to Zhang et al. [82], and so that we can

determine the impact that pre-training has on our summarisation quality. We train the

REINFORCE and PPO algorithms starting with our best pre-trained model (N = 4, Weight

= 50), and report the results in Table 5.2. The rest of this section describes our individual

experiments for REINFORCE and PPO.

1https://keras.io/models/sequential

https://keras.io/models/sequential
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Model ROUGE-SU4 F1 S.D.

Pre-Training 0.247 -

REINFORCE 0.253 0.001

REINFORCE + Pre-Training 0.251 0.001

PPO 0.251 0.001

PPO + Pre-Training 0.250 0.000

TABLE 5.2: Results of Pre-Training reinforcement learning approaches compared to the original
runs. The scores shown are the average of the highest ROUGE-SU4 F1 scores across 3 runs for
each reinforcement learning approach. S.D. is the standard deviation of the 3 runs. The baseline
REINFORCE result is shown in bold because it has the highest score.

5.2.1 REINFORCE + Pre-Training

This subsection describes our experiments using the REINFORCE + Pre-Training system.

The pre-trained network has the same design as our REINFORCE neural network model,

so we load the pre-trained model directly and perform reinforcement learning with it.

Figure 5.1 shows the learning curve when running the REINFORCE algorithm for 200,000

timesteps after pre-training with N = 4 and Weight = 50. Our results show that the

pre-trained model does not significantly improve on the baseline REINFORCE model. We

also observe a similar learning curve to the normal REINFORCE model despite starting

with a pre-trained model. We discuss these results further in Section 5.3.

5.2.2 PPO + Pre-Training

This subsection describes our experiments using the PPO + Pre-Training system. Our PPO

neural network is different to the pre-trained neural network as it contains linear policy

and value function outputs, both of size 2. Section 3.2 Figure 3.1 shows the differences

between the REINFORCE output layer, and the PPO output layers. Because the output

layers for the policy functions are not compatible, we insert the sigmoid output layer of

size 1 before the linear output layer of size 2, so that we can return the probability for

both actions as required by the stable-baselines PPO implementation. We then initialize
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FIGURE 5.1: The learning curve for REINFORCE run on a pre-trained model with N = 4 and
Weight = 50 for 3 runs over 200,000 timesteps.

the weights of the output layer to -6 and 6 (for actions 0 and 1 respectively), so that the

linear output layer returns an action based on the sigmoid output layer. The resulting

model directly returns the predictions from the pre-trained model to start with, and does

not appear to explore different models.

Figure 5.2 shows our results running the PPO algorithm after pre-training. We again

observe that our PPO implementation train results (black) are distributed evenly on both

sides of the test results (red, green and blue), which is not the case for REINFORCE. We

believe that CLIP function for PPO adjusts the probability ratios when choosing each

sentence, as it is intended to do [68], which gives it some variance in the sentences that

are chosen. We also observe that the learning curve starts much higher than our previous

experiments, but does not appear to increase above its initial results. Section 5.3 discusses

our results in more detail.

5.3 Results and Discussion

Table 5.2 shows that there is no significant improvement in ROUGE score when Pre-

Training our PPO or REINFORCE models. The rest of this section analyses the results we
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FIGURE 5.2: The learning curve for the pre-trained PPO model for 3 runs. The training data score
(black) is distributed on either side of the testing data (red, green and blue). For this experiment
the pre-trained sigmoid layer is fed into a linear output layer node with weights -6 and 6.

get during pre-training.

Pre-Training: We observe that our best pre-training model (before applying reinforce-

ment learning) gets a ROUGE score of 0.247, which is the same as out First-N baseline

from Subsection 4.1.1. On further investigation, we observe that our pre-trained model is

choosing the first 4 sentences with a high probability, and not choosing the remaining

sentences. Figure 5.3 shows that the probability of choosing each sentence in our pre-

trained model is extremely biased, but becomes closer to 0.5 after running REINFORCE on

the same model. These strong probabilities suggest that our pre-trained model acts very

similarly to our First-N baseline, in that it is more likely to choose the first 4 sentences.

REINFORCE: In contrast, the probability of choosing sentences after running REIN-

FORCE is closer to 0.5, which means that there will be a 50 percent chance of selecting

those sentences when training (Figure 5.3). There are 2 changes that we could make to

our post-training REINFORCE model to prevent the probability distribution from becoming

too random. The first change we could make is to reduce the impact of a single policy

gradient update on the model. PPO already does this by performing only one gradient

update for each horizon, but we could modify REINFORCE to make smaller changes
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FIGURE 5.3: These graphs compare the average probability of choosing each sentence across
all 458 test questions, for Pre-Training, REINFORCE + Pre-Training and PPO + Pre-Training. The
pre-training probabilities of the first 4 sentences are strongly skewed towards 0, but become closer
to 0.5 after applying reinforcement learning.

as well by reducing the learning rate or adding a horizon to the model. We report the

learning curve after changing the Pre-Trained REINFORCE Horizon and learning rate

(LR) in Appendix B, and there is no significant improvement in the results. The other

change we could make is to reduce the amount of noise applied to the probability ratios.

Our REINFORCE implementation uses Equation 5.1 to vary the noise N over multiple

timesteps, where t is the current timestep and T is the total number of timesteps.

N = 0.2
T

(T + t)
(5.1)

Currently we reduce the noise from 0.2 to 0.1 over time. Making the noise smaller

may help our model to exploit good actions that it finds. Finding a good balance between

exploring (choosing randomly) and exploiting (following the policy) is a central issue in
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reinforcement learning [26], and is a possible topic for future research. Table 5.2 reports

our REINFORCE + Pre-Training results using our unmodified REINFORCE implementation

which includes noise. Our results indicate that REINFORCE + Pre-Training does not

improve on our original REINFORCE experiment without pre-training.

PPO: Our PPO model only updates the policy gradient every 1,000 steps (based on

horizon size), and has a more consistent learning curve (Figure 5.2) than our REINFORCE

implementation. As in Chapter 4, we observe that the training data results (black) are

evenly distributed on either side of the testing data (red, green and blue). PPO does

not add any noise to the probability ratios, but instead applies the CLIP function to the

probability ratios, which we do not adjust. For this reason, we observe that PPO still

chooses sentences based on the probability distribution.

We observe that the PPO learning curve does not improve much when using a pre-

trained model (Figure 5.2). The PPO CLIP function prevents any large changes to the

pre-trained model, which means that running PPO on a strongly pre-trained model does

not make any difference compared to just performing the pre-training stage. We also

observe that the probability of choosing each sentence after running PPO is similar to the

sentence probabilities in the original pre-training model (Figure 5.3). This suggests that

applying PPO to a strongly pre-trained model does not allow for any improvement, as

PPO will rarely choose a different action for a sentence which is already biased towards

taking a certain action. However, Zhang and Wang [81] reports an improvement when

pre-training PPO for a mobile robot, and in future research we could investigate ways of

making pre-training effective for our PPO summarisation approach (Such as using smaller

weights for the output node, which gave a lower ROUGE score as shown in Appendix B).

In this chapter we pre-trained the weights of our neural network in order to avoid

random label sequences while training, similar to Zhang et al. [82]. We observe that

REINFORCE does not perform any better, and the PPO learning curve starts from a

good position but does not learn any better policies. We do not observe any significant

improvement in our results from pre-training the neural network.
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Results and Discussion

This section discusses the results of our experiments reported in this thesis, which were

based on two research questions. Our first research question is whether Proximal Policy

Optimization (PPO) can improve the summarisation quality of our query-based multi-

document extractive summarisation task. Our second research question is whether pre-

training reinforcement learning to avoid learning random sequences also improves the

summarisation quality.

Table 6.1 lists the results from each of our reinforcement learning experiments. We

observe that PPO does not significantly improve the ROUGE-SU4 F1 metric compared

to our REINFORCE baseline. However, we do observe that the PPO learning curve is

more consistent than REINFORCE when we use a high horizon value (See Section 4.2),

as PPO penalises changes to the policy [68]. We do not receive human evaluations

of our summarisation quality. Overall, we report no significant improvement to the
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summarisation quality for our first research question.

We also observe that pre-training does not improve our results for PPO or for REIN-

FORCE. PPO struggles to learn any better policies because it penalises changes to the policy.

In contrast, REINFORCE diverges from the pre-trained policy quickly, and performs the

same as it does without pre-training. Overall, we observe no benefit in using pre-training

for our second research question, and could investigate ways of making pre-training more

effective in future research.

All of the approaches listed in Table 6.1 use the word2vec word embeddings, except

for where TFIDF is specified. In Mollá and Jones [48], I contributed to adding word

embeddings to REINFORCE, and observed that there is no major improvement when using

word embeddings instead of TFIDF. In Table 6.1, we show that the difference between

the maximum ROUGE-SU4 F1 score for REINFORCE and REINFORCE + TFIDF is 0.005.

Our word embeddings approach does not appear to majorly improve on the REINFORCE

results using TFIDF reported in Mollá and Jones [48].

Type Model ROUGE-SU4 F1 S.D.

Baseline FIRST-N 0.247 -

Baseline Pre-Training 0.247 -

Policy-Based REINFORCE 0.253 0.001

Policy-Based REINFORCE + Pre-Training 0.251 0.001

Policy-Based REINFORCE + TFIDF 0.248 0.001

Policy-Based PPO-mod 0.252 0.002

Actor-Critic PPO 0.251 0.001

Actor-Critic PPO + Pre-Training 0.250 0.000

Actor-Critic PPO + TFIDF 0.247 0.006

Actor-Critic ACER 0.247 0.003

Value-Based DQN 0.214 0.003

TABLE 6.1: Comparison of all Reinforcement Learning experiments run on the BioASQ text sum-
marisation dataset. The PPO Actor-Critic approach does not outperform our original REINFORCE
algorithm.



7
Conclusion

This thesis investigated two research questions. First, we investigated whether PPO can

improve the summarisation quality of query-based multi-document extractive summarisa-

tion tasks. Second, we investigated whether pre-training reinforcement learning to avoid

random sequences also improves the summarisation quality.

We observe that there is no significant difference between the summarisation quality

of the PPO and REINFORCE approaches, based on the maximum ROUGE-SU4 F1 score for

each. We also observe that there is no significant improvement in results when pre-training

our reinforcement learning approaches. We only report our results using the BioASQ

dataset, and could use additional datasets and human evaluations in future research.

We performed several experiments using PPO with different horizon sizes, and using a

modified version which we called PPO-mod. Our experiments confirm that PPO penalises

changes to the policy [68], but show that it reaches the same global maximum as our
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REINFORCE implementation. We did not observe any benefit from using PPO-mod, but

report that it performs similarly to the original PPO algorithm.

We also reported the distribution of sentence probabilities after pre-training, and after

running REINFORCE and PPO with the pre-trained model. We observed that REINFORCE

quickly diverges from the pre-trained model and chooses most sentences with a proba-

bility close to 0.5, and that PPO chooses sentences with the same probabilities as in the

pre-trained model because it penalises changes to the model and struggles to learn an

alternative model. In future research, we could adjust these models further so that the

pre-trained model better assists our reinforcement learning approaches (such as using a

different noise or learning rate).

In future research, we would like to apply more Actor-Critic approaches, as there are

still several approaches which have not yet been applied to summarisation in Section 2.3

Table 2.2. In addition, we could add an abstractive stage to the summarisation process,

which has been explored in past research [51, 82]. We would also like to investigate

using LSTMs in our neural network in future research, as our classifier in Section 5.1 was

outperformed by a past classification approach which used LSTMs [48]. Finally, future

research could investigate different features to use as inputs to the policy function, as

our current features (and word embeddings) may not be the best representation of the

sentences we extract.
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Appendix A: BioASQ ROUGE F1 Results

This appendix includes our ROUGE-SU4 F1 scores in the 2019 BioASQ competition. Only

the F1 scores for the first 3 batches were provided by the BioASQ organisers.

Batch Batch 1 Batch 2 Batch 3

MQ-1 0.312 0.336 0.248

MQ-2 0.344 0.336 0.262

MQ-3 0.312 0.336 0.248

MQ-4 0.343 0.346 0.276

MQ-5 0.329 0.326 0.264

TABLE A.1: ROUGE-SU4 F1 scores for the first 3 batches of the 2019 BioASQ competition. Only
the F1 scores for the first 3 batches were sent to us by the BioASQ organisers. Human evaluations
are reported in Section 3.2. Mollá and Jones [48] reports the ROUGE Recall scores we received.
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Appendix B: Learning Curves

This appendix includes the Learning Curve graphs of 16 experiments reported in this

thesis. The Learning Curve Graphs start on the next page, and continue for 2 pages.
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FIGURE B.1: Learning curves for the reinforcement learning algorithms using different settings.
Runs on the left side use baseline systems (eg REINFORCE), and runs on the right side use PPO
(except for the final REINFORCE one). TFIDF and Pre-Training graphs are on the second page.
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