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ABSTRACT
Based on the latest researches it has been shown that around the two third of the available

spectrum has not been efficiently utilised. This inefficiency led to shortage in frequency

which increased the price of occupying the bandwidth.

Wireless applications have become more popular and the available spectrum of radio
frequencies has become a precious asset. Research also shows that that the frequency
spectrum is not used completely at a given time. Some frequency bands are not used; some

bands are overutlised whereas other bands are underutilised.

Taking all the above into consideration cognitive radio has been considered the best solution
to overcome the problem of underutilisation of frequency bands. In cognitive radio systems
the 1dea of secondary user; who is not the main user of the spectrum has been introduced. The
secondary user can only use the spectrum when the primary user; the main user of the
spectrum is not using the spectrum. This requires sensing the spectrum to check for the

available spectrum bands and use them accordingly .

In this project the different spectrum sensing techniques will be discussed furthermore a

MATLAB simulation for the throughput will be illustrated.
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Chapter 1

1. Introduction

In the last couple decades the use of wireless applications has significantly increased which
increased the need of the radio spectrum. The strategy of assigning fixed spectrum band to
some applications led to some problems given the fact that those applications are not
efficiently using the spectrum assigned to them which led to having overutlised and

underutilised bands in the spectrum.

Cognitive radio concept that was introduced by Joseph Mitola has been accepted as an
innovative technology which will help to overcome the problem of efficiency using the
spectrum. In cognitive radio svstems users have the ability to adapt and use the radio

spectrum based on their surrounding environment’s conditions. [1]

The efficient use of spectrum has been an important aspect in radio communications, One of
the best ways of improving the utilisation of the spectrum at a given time is giving the
secondary users (SU) who are not serviced users the ability to use the unoccupied bands of
the spectrum which are not being used by the primary users (PU). This is the main concept

behind cognitive radio systems. [2]

1.1 Background

In the early decades of the 20" century when the radio communication became popular,
people were afraid that the new users will interfere with the existing users hence each user
obtained his own licence to avoid the interference. However, it became difficult afterwards
for other wireless applications to operate properly in the radio spectrum given the fact that
most of the spectrum has been used. Willham Kennard former chairperson of the United
States Federal Communication Commission (FCC) referred to this problem as *"Spectrum
Drought™” [3].
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Figure 1: Spectrum Utilisation Measurement at Berkeley Wireless Research Centre

From figure 1 above we can see that the lower frequencies are used more than the higher frequencies.
It is very difficult to reconfigure the use of spectrum hence cognitive radio will give us the ability to
establish an understanding and share the spectrum between the licensed users who are the main users
of the spectrum and the unlicensed users who can only use the spectrum when the licensed users are

notusing it,

1.2 History

In 1999 Joseph Mitola introduced the concept of cognitive radio in his paper *’Cognitive
Radio: Making Software Radios More Personal’” [4]. Mitola continued his research and
produced other papers where he described cognitive radio systems. Mitola’s research made
regulatory bodies in countries such as the United Stated and United Kingdom realise that the
radio frequency spectrum is used in an inefficient way. Hence, the regulatory bodies have

started considering the use of cognitive radio technique.

Moreover, the new emerging technology of cognitive radio systems have been included in
wireless standards such as [EEEB02.11k in which sensing information have been used in
order to detect to which network a wireless device needs to be connected. The wireless local
area network can be a good example to explain the use of cognitive radio; wireless devices in
the network tend to connect to the access point that provides the strongest signal which might
lead to having access points serving users over their capacity and other access points serving

none. With IEEE802.11k the user will check if the access point has reached its maximum

14




capacity it will choose another access point which hasn’t. Hence, the efficiency of the

network will increase.

1.3 Cognitive Radio Definition

To get an in-depth understanding about the cognitive radio we need to understand the concept
of cognitively. The encyclopaedia of Computer Science defines cognitively as mental states
and processes intervene between input stimuli and ouiput responses. Moreover, in his paper
Simon Haykin defines cognitive radio as “Cognitive radio is an intelligent wireless
communication system that is aware of its surroundings environment, and uses the
methodology of understanding-by-building to learn from the environment and adapt its
internal states to siatistical variations in the incoming RF stimuli by making corresponding
changes in certain operating parameters in real-time with iwo primary objectives in mind:
highly reliable conmunications whenever and wherever needed and efficient wiilisation of
radio spectrum’’. The rapid change in technology made the implementation of cognitive

radio systems more feasible. [2]

From the definition above we can sav that cognitive radio is an ntelligent system that can
make decisions about the efficient use of the radio spectrum based on the information
gathered from the surrounding environment. As we mentioned above the most important
aspect of cognitive radio is the coexistence of both the primary users and secondary users in
the system to make sure of the efficient use of the radio spectrum in which the secondary user
can only use the spectrum when the primary user is not using it. This requires the primary
user not to change its infrastructure m order fo give the ability to the system which in tum

will give access to the spectrum to the secondary user. [3]

Hence we can state that the main purpose of cognitive radio system is to increase the

efficiency of spectrum utilisation and to avoid the interference between the primary and

secondary users of the network.

1.4 Literature Review
During the preliminary work for this project a research has been conducted and some papers

have been checked and the following are examples of what were found:

In [4] the term cognitive radio has been used for the first time by Joseph Mitola. In his paper
Mitola also suggested using Radio Knowledge Representation Language (RKRL) which

provides a standard language to dynamically adopt for unanticipated data exchange.

———
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Simulation and analysis of cognitive radio systems have been discussed in Goutam Ghosh’s
article [3]. The reuse of unoceupied frequency bands in order to increase the efficiency of the

bandwidth allocated was already discussed in this paper.

Simon Hayken discussed the tasks that are meant to be accomplished by cognitive radio
systems and the emergent behaviour of the systems in his 2005 article [6]. His paper
discusses in details Mitola’s visionary ideas and gives detailed explanations by presenting
detailed expositions of signal processing which 1s one of the most important aspects of

cognitive radio systems.

Cognitive Radio technique Detect and Avoid (DAA) has been discussed by Prof. Sam
Reisenfeld in his 2009 paper [7]. The paper talks about the importance of DAA in providing

high reliable decision when a primary user is not using a particular frequency band.

The fundamentals, architecture and applications of cognitive radio networks were presented
in the 2011 paper [1] by Beibei Wang and K. I. Ray Liu. Important issues of dynamic

spectrum sharing have also been discussed in the paper.

The resource allocation for ad hoe cognitive radio networks has been discussed in the 2011
journal article [8] by Seung-Jun Kim. Few solutions have been suggested and numerical

results and simulation has also been presented in the document.

The physical, MAC and network layer of cognitive radio networks has been discussed in [9].
The paper can provide us with cross-layer overview when designing cognitive radio

networks.

The spectrum sensing techniques, challenges of cognitive radio networks and the methods

used to analyse resource allocation have been discussed in the 2016 article [10].

An i depth illustration of cognitive radio networks have been presented in the Ahmed

Khattab’s book [11].

Vanous spectrum sensing techniques have been discussed by the literature review paper
prepared by Scott Parson [12] .Energy detector based sensing, Coherent based sensing,
Matched filter sensing, cyclostationary based sensing and hybrid based sensing techniques

were explained thoroughly in the paper.
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Spectrum sensing, spectrum sharing and spectrum access have been discussed in [13].

1.5 This Project

After discussing the various techniques used in sensing the spectrum in cogmitive radio
networks and through simulating the throughput rate of cognitive radio systems we will be
able to simulate the throughput of the channel for three different sensing techniques which

will lead us to make the right decision and make an efficient use of the frequency spectrum.

As chapter one serves as an introduction for this paper and discusses the history, background
and literature review related to cognitive radio networks the second chapter discusses the
fundamentals of cognitive radio. Different spectrum sensing technigques have been discussed
in the third chapter. A system model for each of the spectrum sensing techniques have been
presented in chapter four whereas the Matlab code has been presented in chapter five. The

results have been discussed in the last chapter.
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Chapter 2

2. Fundamentals of Cognitive Radio

2.1 Characteristics of Cognitive Radio

Energy and bandwidth are considered to be the most important resources of communications,
Hence, to improve the quality and the capacity of the communication network the mentioned
resources need to be taken into consideration. Recently researches are trying to find new

resources that can efficiently improve the quality and the capacity of the service. [1]

Cognitive radio has been considered the technology that can efficiently utilise the available
resource in an intelligence and flexible way. The main difference between the cognitive radio
networks and other networks is that the devices in the cognitive radio networks can adapt and
change the parameters, by which they are participating in the network, based on their

environment. [1]

The two main characteristics of cognitive radio networks are cognitive capability and

reconfigurability. [1]

2.1.1 Cognitive Capability

Before adjusting their function based on the surrounding environment cognitive radios have
to collect information about the surrounding environment. This function where the cognitive
radio devices get information about the surrounding network parameters such as transmitted
waveform, geographical mformation and radio frequency 1s referred to as cognitive

capability. [1]

Cognitive capability characteristic can be divided into three sub-functions which are also
presented in figure 2. Those sub-functions will be described in more details in the next
sections. [1] [14]

Spectrum sensing — where the device gets the necessary information about the surrounding

network and detect of spectrum holes. [14]

Spectrum analysis — where characteristic estimation for the detected spectrum hole is done.
[14]
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Spectrum decision — where the most convenient spectrum is selected after checking important

parameters. [14]

&n;ing .
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Determine best
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Figure 2: Cognitive Capability Sub-Functions

2.1.2 Reconfigurability
Once the Cognitive radio devices gathered the necessary information about the surrounding
environment they will change their parameters based on the information gathered in order to

achieve the best performance. This characteristic is referred to as reconfigurability. [1]

2.2 Functions of Cognitive Radio

The duty cycle of a cognitive radio includes detecting the white space (spectrum hole) in the
spectrum, detecting the best frequency bands, managing spectrum access with the other users
of the network and leaving the network when primary users wants to use it. We can

summarise the steps mentioned above in the following three categories. [1]

2.2.1 Spectrum Sensing and Analysis

In this stage cognitive radio will detect pats of the frequency spectrum that is not being used
by primary user which is referred to as white space or spectrum hole. After detecting those
holes cognitive radio will try to make the best use of them. However, when the primary user
starts using the network again ie. the white spectrum is not available anymore, cognitive
radio can detect that and it will make sure that no interference between the primary and

secondary users will occur. [1]

2.2.2 Spectrum Management and Handoft
After sensing the spectrum and finding the spectrum holes, the secondary users of the
cognitive radio network will choose the best frequency bands and use them based on their

communication’s Quality of Service. This function 1s called spectrum management and
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handoff. When the primary user wants to use a band that is occupied by a secondary user, the

secondary user will hop in to the next preferred spectrum hole which ean be chosen based on

the parameters of the secondary user. [1]

2.2.3 Spectrum Allocation and Sharing

To achieve optimal spectrum efficiency a good spectrum allocation and sharing technique is
required given the fact that some of the spectrum could be shared amongst secondary users or
between primary and secondary users. When the secondary users are sharing the spectrum
with primary users there is a certain level of interference that i1s allowed to occur, anything
above that threshold requires the secondary user to leave the spectrum. When the spectrum is
shared amongst secondary users then cognitive radio will make sure to avoid collision and

interference between the secondary users. [1]

2.3 Network Architecture and Application
Figure 3 below shows the network architecture of a cognitive radio network that includes a

primary network and secondary network.
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sure an optimal efficiency is achieved. [1]
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The secondary network is defined as a network that consists of secondary users either with or
without a base station. The users in this network can access the licensed spectrum only if
there 1s no primary user using the spectrum. The access of the secondary users to the network
is usually managed by a secondary base station. All the components of the secondary network
are equipped with the functions of cognitive radio. In a network when more than one
secondary network is sharing a common spectrum band an entity called spectrum broker
might be used to manage and coordinate the usage of the spectrum. The spectrum broker gets

the mformation from each secondary network and distributes the network resources fo make

The primary network is defined as the network that consists of primary users and a primary
base station. The users in this network are the authorised users of the spectrum in the network

and the spectrum access is managed by the base station in the network. The transmission of




primary users should not be effected by the transmission of the secondary users. The users of
this network are not equipped with the functions of cognitive radio. Hence, when the
secondary network is using the bandwidth alongside the network it should not only sense the
spectrum, find the white space (spectrum hole) and utilise the best spectrum band but it
should also sense the presence of the primary network and leave the spectrum to the next

available spectrum band in order to avoid interference. [1]

Cognitive radio can be used in different applications. Cognitive radio systems can sense the
environment, detect any change in the radio frequency and reconfigure the characteristics to
adapt with the changes. All the above made the optimal use of the spectrum a reality.
Moreover, the decentralised decision making for spectrum sharing resulted in decreasing the

limitation of centralised spectrum management techniques. [1]

Cognitive radio systems can provide military with a secure and adaptive communications.
The military communication has a low capacity because of the shortage in the radio spectrum
given the fact that static assignments of bandwidth will result in some bands remaining
unused. With the dynamic spectrum assignment and access technique used in cognitive radio
systems the problem has been eliminated where cognitive radio can provide spectrum access

to make sure that the available bandwidth is used efficiently. [1]

Cognitive radio 1s also used in public safety and state emergency services. Communicating
the necessary information is an essential in case of a natural disaster or a terrorist attack
which sometimes might lead to destroying the available communication channels. Cognitive
radio can detect the available spectrum and direct the communication there in order to
achieve an efficient and reliable communication. More than one service type is also supported
by cognitive radio networks (video, voice, date) which make it have an essential role during

emergency situations. [1]

Rapidly growing wireless application needs to have an access to the spectrum. Cognitive
radio can provide the necessary spectrum access to those applications given the fact that it
can sense the spectrum and direct the communication fo the available spectrum slots in the
network. Another advantage of using cognitive radio in wireless applications is that it is very
casy to maintain the network specially when there is no need to update the hardware of the
network. The entire network can be maintained by upgrading the software of radio

management. [1]
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Chapter 3

3. Cognitive Radio Spectrum Sensing

The previous chapter described the main functions of cognitive radio networks from which
we have noticed that spectrum sensing is the most important step towards perfectly
completing the functions of cognitive radio. As spectrum sensing allow the user to know the

available spectrum in any given time. [12]

Spectrum sensing is defined as detecting the presence of signals. The unused frequency slots
in the spectrum will be used to accommodate for a new communication. The secondary users
of the network who are occupying the spectrum that are leased by the primary users should

detect the incoming primary user and move to another vacant slot in the spectrum [13].

Various methods are used to detect the use of the spectrum and make sure to make the most
usage of the spectrum. Spectrum sensing devices are used to achieve the maximum
throughput of the cognitive radio network. Some of the above mentioned devices are capable
of sensing the spectrum and others can make decision based on the information they gather

from the surrounding spectrum sensing units [15].

The spectrum sensing techniques are dependent on the application that the cognitive radio
network is being used for. Some applications might not need to have information about the
signal on air. Other applications need to know information about the specification of the
signal. Whereas other applications are more interested about the identification of a given

signal [15].

In this chapter three spectrum sensing techniques will be discussed. The advantages and

disadvantages of each technique will be briefly discussed in this chapter as well [15].

3.1 Energy Detection

Energy detection technique is considered to be the most common technique used in spectrum
sensing of cogmtive radio networks. The main reason for being the most common used
technique 1s the less amount of computation required and the low amount of information
needed about the possible signal. A threshold is established and the energy level that will be

detected will be compared to 1t [15].
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Energy detection can be implemented in time or frequency domain. The square of the signal
is being averaged while using the time domain. An FFT 1s required to implement energy
detection in the frequency domain and after that the signals will be averaged over the
observation time. The final stage of both implementation methods in comparing the results

with the threshold [15].

In energy detection it 1s very hard to distinguish between the orginal signal, noise and
interference which was one of the reasons that this method is not used in many cognitive

radio applications [15].

Despite bemg cheap, a very useful technique in some complex cognitive radio strategies and
a simple method its performance at lower SNR levels which might lead to false detection

made the use of this method very limited [13].

3.2 Matched Filter Detection

This spectrum sensing method provides us with the best signal to noise ratio and the reason
for that is because it matches a specific signal. In this method a demodulation of the signal 1s
required which will provide us with more information about the signal of the primary user
[15].

This method is considered to be a costly method of sensing the spectrum because detailed
information (modulation technique, bandwidth, frequency synchronisation, frame format)
about the signal needs to be stored in the spectrum sensing device hence implementing it has

been considered impractical [15].

Waveform detection can be considered as a simplified type of matched filter detection. In
waveform detection the implementation complexity and the security of the primary user has
been improved. The waveform detection also assumes that the secondary user will definitely

know and detect a pattern that exists in the primary user’s signal [16].

Although waveform detection requires less detection time and has a good detection
performance, it also can have synchronisation errors which can significantly decrease the

performance of the network [16].

3.3 Cyclostationary Detection
By definition any modulated signal will most probably have periodicity, Which means that

autocorrelation of the signal will produce a grade of periodicity as well [15].

e
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Given the fact that the noise is not correlated it is relatively easy to distinguish noise from
signals. Cyclic correlation function is used instead of power spectral density in the
cvlclostationary spectrum sensing method [15].

At the presence of eyclic frequency the peak of that frequency is usually presented in the
Cyeclic Spectral Density [15]. This 1s shown in the last chapter of this report.

Cyclostationary spectrum sensing technique is considered to be a very complicated method
given the fact that it needs more than one FFT calculation and correlation.

The above mentioned method are discussed and simulated in the next chapters of this report.

3.4 Cooperative Spectrum Sensing

In some radio systems such as hidden source, fading channels and local interference it is very
hard for the system to collect information about the surrounding environment which might
make data recovering an impossible task to achieve. However, the probability of detection
increases if multiple spectrum sensing devices share their information amongst each other in

the same network [15].

Cooperative spectrum sensing can be achieved by using a central unit which can manage the

frequency spectrum based on the information it gets from the surrounding environment [13].

Despite the fact that using cooperative spectrum sensing technique will be a good
communication strategy between the central device and the radio link, it will also consume a
lot of bandwidth [15].

3.5 Other Methods

Wavelet transform, radio identification and multitaper spectral estimation are considered to
be other methods of spectral sensing. It is also common to find a combination of more than
one technique used in spectrum sensing in order to improve the performance of the
communication link. However, it is better to find out the requirements of the application and
the sensing environment and choose the spectrum sensing technique and strategy based on

those two aspects [15].
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Chapter 4

4. System Model

The objective of cognitive radio svstems is the detection of the presence of signal in a heavily
noisy channel. Ideally, the radio must be able to detect the presence of primary user in case
the signal 1s present and report an available for use channel if the signal is not present.
However, since both signal and noise are of random nature, error is inevitable. Therefore, the
performance of the detection algorithm is measured based on the probability of missed
detection in the case of occupied channel and the probability of false detection when no

signal 1s present. High performance algorithms must ensure small probabilities for both

missed detection and false detection scenarios.

The performance of different detection schemes, including energy sending, waveform sensing
and cyclostationary detection algorithms under the presence of noise 1s analyzed in the
following sections. Furthermore, the criteria for achieving maximum likelihood (ie.,

probability of missed detection equal to probability of false detection) are discussed.
4.1 Energy Sensing

4.1.1 Formulation of energy sensing algorithm

Let’s denote the primary user signal, channel noise, and received signal with x, z and vy,
respectively. Also, let’s characterize the detection of primary user signal by the binary
hypothesis test H, where HO is the hypothesis of the channel being free and HI is the

hypothesis the primary user signal is present. So.
Hy: y(n) = z(n)
Hy: y(n) = x(n) + z(n)

In order to detect the availability of the channel, the receiver processes the channel to acquire
a series of samples of the complex envelope. The samples are put together to form a block
with length Ng. The energy of the received signal is then calculated by adding up the squared

magnitude of the complex samples, as follows:

5= Iyml?
n=1
e e




In which y(n) are the complex samples of the received signal. The radio then compares the

energy with a threshold St to decide if the channel is free or occupied by the primary user.

The statistical characteristics of energy metric S are defined as
Hso = E(S|Ho)
ey = E(S|Hy)
050 = Var(S|H,)
0.1 = Var(S|H,)
The SNR of the signal is defined as

E(lx()I*)
2

z

SNR =

The mean values are calculated as follows:

NE NEB
o = E(SIHo) = E]Zmnnz] = {Z Eﬂz(n)m} = N E{|z(m)I?} = Ngo?

n=1 n=1

independent;0

Hsy = E(S[H,) = }le('ﬂ) +Z(?1J|21 NgE [|x(n)|‘ + |z(n)]* + 2|x(n)||z(n) |
= NB{GJ:Z+522}

Us1 = Ng{SNRo} + 07} = Ngo/(SNR + 1)

The variance of S subject to HO is:

NEB NEB NE
0s0? = Var(S|Ho) = VAR}le(n) |2} = Y VAR(zm)?) = ) a0} = Nyai
n=1 n=1 n=1

— 2
Tg0 = NBO-Z

For the variance of S subject to H1, we have:
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g2 = Var(S|H,) = VAR

NE
D 1x) + 2() |2]
n=1

NB
= Z VAR(|x(n)|? + |z(n)|? + 2|x(n)]]|z(n)])
n=1

051° = Np{VAR(|x(n)|*) + VAR(|z(n)|*) + 2VAR(|x(n) ||z(n)])}

Os1

Os

2= Np{E(Ix(M) ") — E*(Ix()|*) + 07 + 2E(Ix(m)|)E(|z(n)|*)}

4
e, {(M 1) E2(1xG0)I?) + o + 2E(|xcn)|2)az}

E2(lx()?)

4
0,12 = Ng {(M 1) (6ZSNR)? + a + 2(0'§SNR)J§}

Defining a =

The parameter @ can change between 1 and 2 depending on the type of modulation technique

used. In case of OFDM modulation, the transmitted signal can be modelled as a Gaussian

E2(]x(n)[?)

' E(lx(m)1") ) ; }
0% = Nga}{| =—=———===—1|SNR? + 1 + 2SNR
51 B0z {(Edﬂx[n”z)
L o ——
) 'O We have:

05,2 = Nga2{(a — 1)SNR? + 1 + 2SNR)

051 = [Ngo2\/ (@ — 1)SNR? + 1 + 2SNR

random Process:

Where a(n) and b(n) are random variables with normal distribution. In this case. the value

x(n) = a(n) + jb(n)

of @ is equal to 2.

On the other hand, in case of constant envelope modulation, the transmitted signal is

modelled as:

_a() +jb(n)

*(n) r(n)
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Where r(n) =,/a(n)? + b(n)? is included to keep the absolute value of x(n) constant. In

this case, the the value of « is equal to 1.

4.1.2 Maximum likelihood analysis
In order to correctly detect both occupied and free channel conditions, the parameter ST
should be selected wisely. Too large values of ST will result in false detection of an occupied

channel and too small values will cause missing of a free channel.

False detection means that hypothesis Ho 1s correct but $=St so we wrongly detect the
presence of primary user. Missed detection means that hypothesis H; is correct but S<87 so
we think that the channel is free while the primary user has occupied the channel. The
maximum likelihood detection occurs when the probabilify of false detection is equal fo the

probability of missed detection:

Hs1 — Hso
Pro = Pup = SEF = @ (£22=2)
= el Oso G 51
in which SEF refers to sensing error floor. From above we can say that SEF can be

represented with the following equation:

SEF=Q (JE

SNR )
1+ /[(a —1)SNRZ+ 25NR + 1]

The ST corresponding with the maximum likelihood detection is calculated according to [7]:

- Hs0951 +& Hs1050
r=E———
gy + 04y

Substituting the mean and standard deviations into the above equation, we have

N30 |[\/Nso2/(@ — 1)SNR? + 1+ 2SNR| + [NgoZ(SNR + 1)}/ Npo?
i JNg02 + [Nyo2/(a — 1)SNR? + 1 + 25NR

(J(a — 1)SNR? + 1+ 2SNR + 1) + SNR
1++/(e — 1)SNR? + 1 + 2SNR

Sr = Nga?

’ SNR
Sy = Npo? (1 + )

1+ +/(a — 1)SNR? + 1 + 25NR
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4.2 Waveform sensing

4.2.1 Formulation of waveform sensing algorithm
The waveform sensing algorithm assumes the availability of the transmitted data at the
receiver. In this case, the detection algorithm uses the transmitted and received data to obtain

the detection statistic, S, according to:

NEB
S =Re y(n)x‘(n)]
2

According to the analysis detailed in [7], the probability of false detection is related to the

detection threshold (S7) as

Sr

PFD = Q N—
’-—fa}VSNR

Furthermore, the probability of missed detection 1s measured as

St
Q NBUZE
J(@—1)SNRZ + 0.55NR

N5SNR —

Pep =

4.2.2 Maximum likelihood analysis

Under the maximum likelihood condition, the SEF is calculated according to:

VSNR )
J(@—=1)SNR + 0.5 +05

SEF =@ (\,’N_B

Equating Pro and SEF, the maximum likelihood threshold is obtained as

St /i VSNR
. S
%o}v‘m V(@ —1)SNR + 0.5 ++05

VSNR
J(@—1)SNR + 0.5 + V05

’Ng :
St = |5 0VSNR\N;
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T J2@=-1DSNR+1+1

4.3 Cyclostationary detection

4.3.1 Cyclostationary feature

The received signal can be expressed in the form [17]
y(t) = x(£) + z(t) = a(t)e/@rfot+6®) 4 5(¢)

In which a and & are random variables and f; is the carrier frequency. Since the mean value
and the autocorrelation function of y(t) are periodic, the received signal is regarded as a
cyclostationary signal. The signal y(t) has some non-random information, which can be used
to discniminate the signal from noise. This information includes symbol period, modulation

type and carrier frequency.

The periodicity of the mean of the received signal can be shown by considering the mean of v

att+ Ty
E(y(t +Ty)) =E (a(t +Ty)elCrfo@+T)+8t+T0)) 4 4(p 4 TO)}
= E(a(t + Ty)e/(Zrfot+6@+T)) 4 E(z(t +T,))
= E(a(t + Ty)el @rfot+8E+To)))
= E(a(t)ef(zﬂfoﬁﬂ{t)})

=E(y(t))

Furthermore, the periodicity of the correlation function is expressed as

Ry(t, ) =E(y(t+1/2)y"(t —7/2)) =Ry (t + T, T + T)

Since the autocorrelation is periodic, it can be expressed as the following Fourier series:

R, (t,7) = Z RS (r)ezmat
o

In which @ = mf;, is the c¢ycle frequency.
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4.3.2 Cyclic power spectrum
Since the received signal has cyclic behavior, it can be detected from noise by computing its
cvelic power spectrum. The cyclic power spectrum is computed according to the following

algonthm [15]:

1- Compute signals & and v by according to
u=ys p—imat
=i ejrmc

2- A time window is selected. The length of the time window should be a fraction of the

length of the received signal.

3- A section of signals # and w is selected by using the time window.
u,, = u* Window
vy = v * Window

4- The Fourier transform of the selected signals is calculated.
U, (f) = FFT{u,}
Vo (f) = FFT{u,}

5- Cyclic power spectrum for the selected window is calculated as
CPS,(f)=U,V;

0- The time window is shifted forward and the steps 3-5 are repeated until the window

reaches the end of the received signal.

7- The cycelic power spectrum of the whole signal is caleulated as
CPS(f) = — > cPsu()
= ) o

In which N,, is the total number of windows.

The above algorithm computes the cyclic power spectrum as a function of spectral frequency
(f) for a specific value of @. By repeating the above procedure for various different values of

a. the cyclic power spectrum is obtained as a 2 variable function of f and a.
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Chapter 5

5. Simulation

5.1 Why simulation

Computer simulation is a useful technique for the study of engineering problems. They
enable emulating practical systems to study their performance without having to actually
build the real system. The main advantage of computer simulations is that they allow
practicing several different scenarios without spending large amounts of money and time for
building a real benchmark system. Furthermore, they enable changing the system

configuration and studving cnitical scenarios which cannot be done in actual experiments.

In particular, computer simulations have proven to be a useful tool for analysis, evaluation
and designing of the communication systems. In this project, computer simulations are
conducted to attest the performance of cognitive radio in terms of signal detection. In this
context, the objective of simulations is to analyze the performance of different detection
algorithms in terms of probability of missed/false detection under various different noise
powers and present appropriate plots to showcase the effect of additive noise on the accuracy
of detection algorithms. Simulations are repeated for different types of modulations as well as

different lengths of detection window.

The simulation results provide mnsightful information about the performance of the detection
algonthms under different scenarios. Furthermore, they can show that the actual performance
of the system is in accordance with the analytical formulations obtained from theory.
Additionally, they help the communication engineers design the detection parameters so as to
satisfy the design goals. For instance, if the desirable percentage of error should be smaller
than a specific value, simulations can be used to estimate the required length of data which

should be used for detection.

5.2 Simulation techniques

Since the primary user signal and noise are random processes, Monte Carlo simulation
techniques must be employed to study the performance of the detection method. In this
technique, the detection algorithm is tested several times and the success or failure of the

algonthm is determined for each test. The number of failures are then counted to determine

the performance of the algorithm.
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Each test involves the following stages:

1- In the first stage, the primary user signal and noise are generated as a series of random

numbers such that the ratio of the signal power over the noise power is in accordance with the

specified SNR.

2- Then, the detection algorithm is used to detect the presence or absence of the primary user

in the channel.

3- By comparing the outcome of the detection algorithm with the actual situation (signal

present or channel unoccupied), the success or failure of the algorithm is decided.

For each specific SNR, the tests are repeated numerous times, each time with a new series of
random primary user signal and random noise. The total number of failures are then counted
and divided by the total number of tests to detect the probability of missed/false detection.

Then, the probability of missed/false detection is plotted as a function of SNR.

The details of MATLAB programs for different detection algorithms are described in the

following subsections.

5.3 Energy sensing
The energy sensing algorithm and the MATLAB program used to simulate this technique are

detailed in the following.

1- Define the SNR as a vector of numbers. To test the algorithm for different values of SNR,
the SNR vector is defined as a vector starting from the minimum SNR and increasing with

steps of 2.5dB up to the maximum SNR:

SNR=-320:2.5:0;

2- Use a “for” loop to span over different values of SNR:

for j=1:length(SNR)

3- Reset the error counters. Two variables are used to count the number of missed and false
detection. It is important to reset those variables for each SNR since the number of errors

should be counted from zero.

i_fd=0;
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i md=0;

4~ The variance of noise (Az) and the magnitude of SNR are computed as:

Az=10"~(-SNR(j}/20):

snr=10"(SNR(j}/10);

5- Calculate the statistical features of the channel. According to the mathematical analysis

provided in Section 4.1.1, the variance (sig) and mean (mu) corresponding with scenarios S0

and S1 are computed as:

sig0=sqgrt (Nb) *Az"2;

mu0=Nb*RAz"2;

sigl=Nb*Az"~4*( (alpha-1)*snr"Z2+2*snr+l);
sigl=sqgrt{sigl);

mul=Nb* (snr+l) *Az"2;

6~ Compute the maximum likelihood threshold and the theoretical SEF. According to the

mathematical analysis presented in Section 4.1.2, the maximum likelihood threshold and the
theoretical SEF are obtained as:

ST=(mul*sigl+mul*sig0) /(sig0+sigl};

[Ts]

num=sgrt (Nb) *snr;
denom=1l+sqrt ( (alpha-1)*snr"2+2*snr+l);

SEF_theory(j)=gfunc(num/denom) ;

7- Use a while loop to conduct Monte Carlo simulations for the specified SNR:

while i md<Maxerr

8- Generate the signal and noise vectors. The noise is defined as a complex random process

with normal distribution and variance Az:

z=Az*sqrt (0.5) *(randn(l, blocklen)+

li.*randn(l,bklocklen));
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The primary user signal is defined as a Gaussian (a@ = 2) or constant envelope (@ = 1)

random process;

li.*randn(1l,blocklen));

9- Simulate scenario HO. In this scenario, the channel 1s unoccupied and hence the received
signal contains only noise. False detection occurs if the energy of the received signal is larger

than the detection threshold:

10- Simulate scenario Hl. In this scenario, the primary user signal is present. Missed

detection occurs if the energy of the received signal is smaller than the detection threshold:

11- After the number of missed detections reaches its maximum the “while” loop stops. At
this stage, the Monte Carlo experiment for the j' SNR is finished. The probability of false
(missed) detection is calculated as the ratio of total number of false (missed) detections to the

total number of tests:
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PEd(j)=i_fd/i;

Pmd (j)=1i_md/i;

12- The results are plotted.

5.4 Waveform sensing
The steps 1-4 for the waveform sensing algorithm are the same as the energy sensing

algonthm. The other steps are detailed below.

5- Compute the maximum likelihood threshold and the theoretical SEF. The maximum
likelihood threshold and theoretical SEF are obtained according to the mathematical analysis

presented in Section 4.2.2:

num=Nb*snr*Az"2;
denom=sgrt (2* (alpha-1) *snr+1)+1;
ST=num/denom;
num=sgrt (Nb) *sgrt (snr) ;
denom=sqrt ( (alpha-1)*snr+0.5)+sqrt(0.5);

SEF theory(j)=gfunc({num/denom) ;

6- Use a while loop to conduct Monte Carlo simulations for the specified SNR.
7- Generate the signal and noise vectors (similar with energy sensing method).

8- Simulate scenario H1. In this scenario, the primary user signal is present. Missed detection
occurs if S is smaller than the detection threshold:

V=X+2z;
S=sum{real{y.*conj(x}));
if S<ST

i md=i md+1;

end

11- After the number of missed detections reaches its maximum the “while” loop stops. At

this stage. the Monte Carlo experiment for the j* SNR is finished. The probability of missed

e
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detection is calculated as the ratio of total number of missed detections to the total number of

tests:

Pnd(j)=1 md/i;

12- The results are plotted.

5.5 Cyclostationary sensing

A MATLAB function namely “CalcCyecl” 1s used to compute the eyelic power spectrum fora
specific value of . The main program uses a “for” loop to span over the range of « and calls
“CaleCyel” to compute the evelic prefix for each value of a. In the following, the MATLAB

program is described.

5.5.1 Cyclic power calculation for a specific value of a
The eyclic power 1s calculated by function “CaleCycel”, which accepts two signals (x and vy)
as well as the value of o as input, and retumns the cyclic power spectrum for the specified o as

output. The calculations are performed in the following steps:

1-Define the window, While using a rectangular window is convenient, the detection
performance is not optimal in that case. To improve the detection performance, Hanning

window is used here. The window is defined as:

Window = hanning (Nwindow);

in which Nwindow is the length of the window.

2-As detailed in Section 4.3.1, the signals x and y are multiplied by e /"% and e/t

respectively:

y.*exp(-li*pi*alpha*t);

X.*exp(li*pi*alpha*t);

3- The indies which lie inside the window are defined as vector index. Initially, the window

lies at the beginning of data. So:

index = 1:Nwindow;
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4- a “for” loop is used to slide the window over the signal. The four loop is repeated K times,

where K is equal to K = (length of signal — Overlap length)/(Nwindow — Overlaplength)

5- The Cyclic power spectrum is calculated according to the procedure defined in Section

43.1:

xw = Window.*x({index);

Window.*y(index) ;
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6- To slide the window along time domain, the index vector is updated according to

index = index + (Nwindow - Noverlap):

7- After the window reaches the end of the data, the loop stops. Then, the cyclic power

spectrum is normalized:

CPS = CPS/ (K*norm(Window)~2);

5.5.2 Main program
The main program generates random signal, calculates cyclic power spectrum of the signal

and plots the results. These tasks are done through the following steps:

1- Define the primary user signal parameters as well as noise:
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f0=2/symlen;

Az=10"(-SNR/20) ;

=Az*randn (1,m) ;

]
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2- Generate the primary user signal. In this stage, the digital data 1s generated as a Gaussian

signal:

data=sqrt (0.5} * (randn (datalen,1)+ 1li.*randn(datalen,1)):;

During modulation process, each symbol is transmitted over two cycles of carrier. Therefore,

the amplitude and phase of the carner (specified by a) remains fixed during the symbol

period:
a=[];
for i=l:datalen
a=[a;ones(symlen,1l)*data(i}];
end

Then, the data is mixed with a sinusoidal carrier with frequency fo:

y=real (abs (a) .*exp(2*pi*f0*1li*tt+li*angle(al))};

3- Define the cyclostationary analysis paramters:

L = length(x);

Nwindow = 128;

nfft = 2*Nwindow;

f = (0:nfft/2-1)/nfft;
n=length(x);

o= (Qun=1)";

Noverlap=floor (2/3*Nwindow) ;

K = fix((n-Noverlap)/ (Nwindow-Noverlap)):; Numbe
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dela 1/L;

amin = 2;

amax =

4- Use a “for” loop to calculate the cyclic power spectirum over the full range of «.

for i=amin:amax

alpha=i/L;

j=i-amin+1;

1 (%,x,alpha);

5- Plot the results.

41




Chapter 6

6. Results, Discussions and Conclusion

6.1 Receiver operating characteristics for energy/waveform sensing algorithms

6.1.1 Simulation results

The receiver operating characteristic for energy/waveform sensing algorithms with
probability of false alarm changing from 0.01 to lis shown in Figure 4. In Figure 4 (a), the
SNR 1s -13dB and the spectrum sensing technique used is energy sensing. In Figure 4(b),

SNR is -20dB and the spectrum sensing technique used 1s waveform sensing.
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Figure 4 : The receiver operating characteristics for energy/waveform detection algorithm

6.1.2 Discussion

The probability of false alarm depends on the SNR value and the detection threshold. For a
specific SNR value, the probability of detection can be improved by increasing sensitivity of
the detector (reducing ST). However, the increased sensitivity worsens the performance of
the detector in terms of false detection, as shown in figure 4. The ROC curve for waveform
sensing algorithm rises faster than the energy sensing algorithm. Therefore, the waveform
sensing algorithm i1s more effective in the sense that it can maintain a higher probability of

detection for a specific probability of false alarm.

6.2 Energy / waveform sensing algorithms for Gaussian signal

6.2.1 Simulation results
The sensing error floor (SEF) performance for energy and waveform sensing algorithms are

with Gaussian signal (@ = 2) as a function of SNR is shown in Figures 4-6.
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6.2.2 Discussion

The energy sensing method is the simplest form of detection used in cognitive radio
application. On the other hand, the most complex form is waveform sensing which uses
complete details of the primary signal for detection. Therefore, these algorithms represent

two extreme cases, which exhibit the worst and best detection accuracy.

Figure 3 show the Simulated and theoretical SEF for sensing length Nb=1000. In case of
energy sending algorithm, both probability of false detection (Pfd) and probability of missed
detection (Pmd) are shown. It is seen that Pfd and Pmd closely match with each other. This
result proves that the ST is indeed adjusted according to maximum likelihood criteria. The
waveform sensing algorithm provides a much smaller SEF compared to the energy sensing
method. The difference between the two methods is smaller for low values of SNR but

drastically increases as SNR is increased towards 0dB,

Figures 4 and 5 show the SEF for sensing lengths Nb=100 and Nb=10, respectively. For both
energy sensing and waveform sensing algorithms, the decrease in sensing length causes the
SEF to rise. For example, if SNR=-10dB, the SEF of energy sensing method increases from
0.065 (Nb=1000) to 0.44 (Nb=10).
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For low SNR values, there is good agreement between simulation and theory but the

difference between the curves is escalated at higher SNR values due to the fact that the

detection statistics eventually deviate from Gaussian distribution.
6.3 Energy / waveform sensing algorithms for constant envelop signal

6.3.1 Simulation results
The SEF performance for energy and waveform sensing algorithms are for constant envelope

(@ = 1) is shown in Figures 7-9.
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Figure 8 : The SEF performance for energy/waveform sensing algorithms for Nb=1000
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Figure 9 : The SEF performance for energy/waveform sensing algorithms for Nb=100
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Figure 10 : The SEF performance for energy/waveform sensing algorithms for Nb=10

6.3.2 Discussion

The SEF performance for constant envelope modulation is similar with Gaussian modulation

except that the former has a smaller SEF. From Figures 7 and 4, it is seen that the SEF

performances are very similar for Nb=1000. The difference becomes larger at Nb=100 and

B e
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Nb=10, where the SEF performance of Gaussian signal drops quickly but the SEF
performance of constant envelope signal remains at acceptable levels. The reason for this
improvement is that the amplitude of constant envelope signal is not random, hence the

degree of randomness is reduced, which facilitates the discrimination of signal from noise.

6.4 Probability of Detection equals Probability of False Alarm

ST for probability of cete ctionzpebakility of falue alarm
T T T

Viirweiorn somiog

Figure 11 : ST for Probability of detection = Probability of False Alarm
The figure above shows the maximum likelihood threshold for energy sensing and
waveforms sensing algorithms with Nb=100 and «=2. The threshold for energy sensing
method is at 10° (ST/Nb=10 ) for SNR=-10dB and drops to around 18 (ST/Nb=0.18 ) at
SNR=10dB. These values are larger than energy of noise (10 at SNR=-10dB and 0.1 at
SNR=10dB) but less than the total energy of the noise and primary signal. The threshold for
waveform sensing method starts at around 47.72 at SNR=-10dB and drops to around 17.91 at
SNR=10dB. The smaller threshold for waveform sensing means more sensitive detection.
Therefore, waveform sensing method has a higher probability of detection and lower SEF

compared to the energy sensing algorithm,

6.5 Cyclostationary sensing algorithm

6.5.1 Simulation results
Figure 10 shows the zoomed in waveforms of primary user signal and the received signals for

SNR=0dB. The figure shows three symbols. The length of each symbol is 32 samples, the

e
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period of carrier is 16 samples and the sample rate is IMHz. So the carrier frequency is
IMHz/16=62.5kHz and the symbol rate is 1MHz/32=3125kHz. It 1s seen that during each

symbol, the phase and amplitude of the carrier remains unchanged.

Figure 11 shows the cyclic power spectrum for SNR=0dB. The cyclic power has peaks at
spectral frequency of 62.5kHz, which is equal to the carrier frequency. The Cyclic frequency
is related with the frequency components of data. which covers the frequency range OHz up

the symbol rate frequency (31.25kHz).

Figure 12 shows the average cyclic power spectrum as a function of spectral frequency.
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Figure 12 : The waveforms of primary user signal and received signal for SNR=0dB
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Figure 13 : The cyclic power spectrum of the received signal for SNR=0dB
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6.5.2 Discussion

Figures 12 and 13 show that the eyclostationary algorithm can discriminate the primary user
signal from noise. Additionally, this algorithm is capable of the detection of the carrier
frequency and cvclic frequency of the primary user signal. This information is helpful for
finding which channel is occupied by the primary user and which channel is free for use by

the secondary controller.

The advantages of cyclostationary algorithm are more evident when the primary user signal
includes pilots (for OFDM modulation). In reference [15] it is shown that the pilots will
appear as large peaks in the cyclic power spectrum, which let the secondary user detect the

presence of primary user signal more efficiently.

6.6 Comparison of the three algorithms

The energy sensing algorithm is the simplest form of detect and avoid, which processes the
energy of the received signal and compares it with a threshold to determine the presence or
absence of primary user signal. The waveform sensing method is highly reliable but since the
primary user signal is usually not available in practice, this method 1s only applicable n
theory and not in practice. The energy sensing method has a good performance when the

SNR 1s larger than 0dB. However, for lower SNR values, this method is no longer reliable.

The eyelostationary algorithm uses advanced processing techniques to mmprove the SEF
performance for lower SNR values. As shown in Figure 14, for -12.5dB<SNR<=-5dB the SEF
peirformance of the eyclostationary method is much better compared with the energy sensing

method. However, the performance of cvelostationary method is poor for very low values of

SNR (SNR=-10dB).
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Comparison of different detection and avoid algorithms
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Figure 15 : Comparison of different detection and avoid algorithms

6.7 Conclusion

The need for an efficient use of the radio spectrum has been considered to be one of the most
important topics that interests the communication industry, Cognitive Radio Networks are
considered to be the suitable solution to achieve the efficiency required. To increase the
throughput of cognitive radio network a suitable spectrum sensing technique should be
chosen depending on the requirements of the network.

In this project cognitive radio has been presented and three spectrum sensing techniques,
including energy sensing, waveform sending and cyclostationary sensing algorithms were
discussed and simulated. All methods detect the presence or absence of primary user signal in
a radio channel by examining a set of data samples. The energy sensing technique is the
simplest detection algorithm which detects the presence of primary user signal by comparing
the energy of the received signal with a threshold. Despite the simple implementation, energy
sensing algorithm is shown to be unreliable when the SNR is small. The waveform sensing
method uses the primary user signal and the received signal to obtain the parameter S. The

inclusion of the primary user signal reduces the vulnerability of the algorithm to noise and

e
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improves the SEF performance. The cyclostationary method uses the periodic feature of the
communication signals to discriminate the radio signals from the noise. This technique
improves the SEF performance at low SNR values. The main advantage of cyclostationary
method is that it is more practical compared to the waveform sensing algorithm because it
does not require the primary user signal for detection. However, the cyclostationary algorithm
is computationally complex and slower compared to the waveform sensing and energy
sensing techniques.

Monte Carlo simulations have been performed to test the SEF performance of the three
detection algorithms. The simulation results are in close agreement with the theoretical values
obtained from the literature.

Cognitive radio i1s a new topic and there are several areas to be explored i the future. One
area is to validate the performance of detection algorithms when the actual SNR is different
from the estimated value. All of the algorithms discussed in this thesis use the value of SNR
to obtain a suitable value for the detection threshold. The condition of maximum likelihood is
only achievable when the threshold is selected according to the estimated SNR. If the SNR of
the received signal is different from the estimated SNR. the SEF performance will degrade.
Another area is to incorporate the features of the primary user signal in the detection

algorithm.

53




Bibliography

[1]

[2]

3]

(4]

(5]

(6]

(7]

(8]

(]

B. W.a. K. J. R. Liu, “Advances in Cognitive Radio Networks: A Survey,” JEEE
JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, vol. 5, no. 1, pp. 5-23,
2011.

S. Haykin, “Cognitive Radio: Bram-Empowered Wirless Communications,” JEEE
JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, vol. 23, no. 2, pp. 201-
220, 2005.

X. Wu, “The Survey of Detection Methods and Testbeds For Cognitive Radio
Application,” University of Gavle, Sweden, 2009,

G. Q. M. J. Joseph Mitola, “Cognitive Radio: Making Software Radios More Personal.”
IEEE Personal Commumications, pp. 13-18, August 1999,

P.D. a. 8. C. Goutam Ghosh, “Simulation and Analysis of Cognitive Radio System
Using MATLAB.” International Journal of Next-Generation Networks (IJNGN), vol. 6,
no. 2, pp. 31-45, 2014.

L. F. I. Simon Haykin, “Cognitive Radio: Brain-Empowered Wirless Communications,”
TEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, vol. 23, no. 2, pp.
201-220, 2005.

S. Reisenfeld, “Performance Bounds for Detect and Avoid Signal Sensing.” in Second
Interational Workshop on Cognitive Radio and Advanced Spectrum Management
Aalborg, 2009,

G. B. G. Seung-Jun Kim, “Optimal Resource Allocation for MIMO Ad Hoc Cognitive
Radio Networks,” IEEE TRANSACTIONS ON INFORMATION THEORY, vol. 57, no. 5,
pp. 3117-3131, 2011.

K.-C.C.Y.L. M. Ying-Chang Liang, “Cognitive Radio Networking and
Communications: An Overview,” IEEE TRANSACTIONS ON VEHICULAR

54




TECHNOLOGY, vol. 60, no. 7, pp. 3386-3407. 2011.

[10] S. B. M. Zaid Abdul Samad Bardan, “Literature Review of Resource Allocation Methods
in Cognitive Radio Networks,” International Journal of Science and Research (IJSR),
vol. 5, no. 3, pp. 1056-1060, 2016.

[11] D. P. B. Ahmed Khattab, Cognitive Radio Networks From Theory to Practice, New
York: Springer, 2013.

[12] 8. Parsons, “Literature Review of Cognitive Radio Spectrum Sensing,” Stanford

University, California, 2014.

[13] P. K. W. 7. Konstantinos Pelechrinis, “Cognitive Radio Networks: Realistic or Not?,”
ACM SIGCOMM Computer Communication Review, vol. 43, no. 2, pp. 44-51, 2013.

[14] W. Ejaz, “SPECTRUM SENSING IN COGNITIVE RADIO NETWORKS,” National

University of Seiences and Technology, Pakistan, 2006,

[15] M. E. Castro, “Cyclostationary Detection for OFDM,” University of Nebraska,
Nebraska, 2011.

[16] K. Chang, “Spectrum Sensing, Detection and Optimisation in Cognitive Radio for Non-
Stationary Primary User Signals,” Queensland University of Technology, Queensland,
2012.

[17] A. G. Z. Jian Chen, “Cylcostationary Spectrum Detection in Cognitive Radios,” in JET

Seminar on Cognitive Radio and Software Defined Radios: Technologies and
Technigues, 2008.

[18] W. Wang, “Spectrum Sensing for Cognitive Radio.” in Third International Symposium
on Intelligent Information Technology Application Workshops, Lanzhou, China, 2009.

[19] F. A. A. K. M. U. S. Ahmad Al Tabassam, “Building Software-Defined Radios in
MATLAB Simulink - A Step Towards Cognitive Radio,” in UKSim 13th International

Conference on Modelling and Simulation, 2011.

[20] S. R. K. G. M. M. Quang Thai, “Energy-Efficient Spectrum Sensing Using

55




Cyclostationary,” Sydney, 2011,

[21] M. C. P. Angela Sara Cacciapuoti, “On the Route Priority for Cognitive Radio
Networks,” IEEE TRANSACTIONS ON COMMUNICATIONS, vol. 36, no. 9, pp. 3103-
3117, 2015.

[22] A. C. Muhammed Enes Bayrakdar, “Simulation Model of Spectrum Handoff Process for
Medium Access Control Protocols in Cognitive Radio Networks,” Duzec University,

Duzec, 2015.

[23]J.H.-S. a. M. 8. O. Le on, “Securing cognitive radio networks,” INTERNATIONAL
JOURNAL OF COMMUNICATION SYSTEMS, vol. 23, no. 1, pp. 633-652, 2010,

56




Appendix A

MATLAB Program

ROC Energy Sensing
clc;clear;close all;

Nb = 1000;
Maxfd=11;
snr = 10.~(-13/10);

Pfa = linspace(0.01,1,Maxfd):;

Nmonte=50000;

i det = 0;

for n=1:Nmonte

Zz = randn(l,Nb);
x = sgrti{snr).*randn(1,Nb);
y = X + z;

S = abs(y)."2;
=({1/Nb) .*sum(8) ;

w

W

Lo

=
I

{(gfuncinv(Pfa(m})./sgrt (Nb) )+ 1;

= ST(m)})

f
L i1
03]
|

i det = i_det+l;
end
end

Pdet (m}) = i det/Nmonte;

end

figure;

plot( Pfa,Pdet,'r');

hold

ST = (gfuncinv(Pfa)./sqgrt(Nb))+ 1;

Pdet the = ((ST - (snr + 1)).*sqrt(Nb))./(sqrt(2

Pdet the=gfunc(Pdet the});




ot
o
j= g
{
i

|

|
—

1])

title ('ROC Energy Sensing')
xlabel('probability of false alarm')
ylabel ('probability of detection')

plot (Pfa, Pde
0

axis ([0 1

legend ('Energy Sensing Simulation', 'Energy

ROC Waveform Sensing
clerclear;close all;

Nb = 1000;

Maxfd=11;

snr = 10.7(-25/10);

Pfa = linspace(0.01,1,Maxfd);
Nmonte=50000;

for m = 1:Maxfd

i det = 0;

=
=
L
=
or
1]

for n=1
zZ = randn(l,Nb):;
Xx = sgrt(snr).*randn(l,Nb);
¥y =X + Z;
S = real(y.*conj(x)):
S =(1/Nb).*sum(S);
m) = gfuncinv(Pfa{m))./sgrt(Nb/2).*(sgrt(snr
if (S »= ST(m))

i det = i det+l;

end
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plot( Pfa,Pdet,'r'});

hold

ST = gfuncinv(Pfa)./sgrt(Nb/2).* (sgrt(snr));
Pdet the = ((ST -
{(snr)).*sqrt(Nbk))./(sgrt{snr.”2+0.5*snr) ) /sqrt(2);
Pdet _the=gfunc(Pdet_the};

plot (Pfa, Pdet_the, 'b--")

title ('ROC Waveform Sensing')

axis ([0 1 0 1]}

xlabel('probability of false alarm')

ylabel ('probability of detection')

legend ('Waveform Sensing Simulation', 'Wavef

U U 1 LI 1
r k) - .II
[ []
’
U ) ]
r
[] [}
r
U U 1 1 1
’ T

Energy Sensing and waveform sensing program

clezclear;close all;

alpha=2;
blocklen=100;
Nb=blocklen;
SNR==-10:2.5:10;
iMax=1000;
Maxblock=20e3;

for j=l:length (SNR)
SNR(])
i fd=0;
i md=0;
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z=10"(-SNR(])/20);
sig0=sgrt (Nb) *Az"2;
mul=Nb*RAz"2;
snr=10"(SNR (j)/10);
sigl=Nb*Az"4* ( (alpha-1)*snr~2+2*snr+l);
sigl=sqgrt(sigl};

mul=Nb* (snr+l) *Az"2;

ST=(mul*sigl+mul*sig0)/(sigl+sigl);

93]

Tvecenergy (])=5ST;

num=sgrt (Nb) *snr;
denom=1l+sqrt ( (alpha-1) *snr*2+2*snr+l);
SEF _theory(j)=gfunc(num/denom) ;

i md=0;

i=0;

while 1 md<iMax

i=i+1;

z=Az*sqrt (0.5) *(randn(l,blocklen})+
li.*randn(1l,blocklen));

x=sqrt (0.5) * (randn (1, blocklen) +
li.*randn(l,blocklen));

if alpha==1

y=z;
sum{abs (y) ."2};

S=
Sz (i,j)=8;

if S>ST

i fd=i fd+l;
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f i>Maxblock

break

end

semilogy (SNR, Sy (3,:))

hold

8]
L)

semilogy (SNR, S
hold
semilogy (SNR, STvecenergy)
legend('Primary user is active', 'Primar
b T, Ty
r 4

L s ot f 1 el e 1= 1Y -

: [: - £ £ q )
title(['Energy Detection Method Nb="',num2str (Nb),"'

'ynumZstr (alpha)])

figure
o)

semilogy (SNR, Pfd, 'b')

hold
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semilogy (SNR, Pmd, 'g"')
held

semilogy (SNR, SEF theory, 'b--")

b

for j=1:length(SNR)
i_fd=0;
i md=0;

Rz=10"(-SNR (j)/20);
snr=10"(SNR(])/10);

f

num=sgrt (Nkb) *sgrt (snr) ;

denom=sqgrt ( (alpha-1)*snr+

(an ]
L
-
7]
L
-
i}
(an]
L

SEF _theory(j)=gfunc(num/denom);

i md=0;

z=Az*sqgrt (0.5) *(randn(l,blocklen)+
li.*randn(l,blocklen));
x=sqrt (0.5} * (randn (1,blocklen)+

li.*randn(l,blocklen));

if alpha==1
x=x./abs (%)

end
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i md=i md+1l;
end
if i»Maxblock

break

11}
=
[o 5

1]

nd

SEF(j)=i_md/i;
end
semilogy (SNR, SEF, 'r')
hold

semilogy (SNR, SEF th

(]

O

H

Lt
-

|

|

xlabel ('SNR in dB'):;

ylabel ('SEF

e

legend('Energy Sensing Simulation P £ 4d',

1 e e
' - - 1 LI ¥
| P
L] 1
’
i I v = A g - ! V= 1% Tt T
1l - Q| 1", 4 1L NWwWe )

ot
-
o+
-
i

figure
semilogy{SNR, STvecenergy)
hold

emilogy{SNR, STvecwaveform)

4]

{
L

/lim( [1

]

1,1

bt

legend('Energy sensing', 'Waveform sensing')

xlabel ('SNR in dB'}:

JnumZ2str (Nb), ' ‘alpha="',numZstr (alpha)])
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title('ST

Cyclostationary Program
clear;clc;close
global L Nwindow nfft t Noverlap K
fs=1leb;
datalen=100;
symlen=32;
m=symlen*datalen;
SNRE=0;
tt=(0:1:m-1)"';
f0=2/symlen;
RAz=10"(-SNR/20};

]

=Az*randn(1l,m);

L
Z=Z

data=sqrt (0.5)* (randn (datalen,1)+ li.*randn(datalen,l));

a=[a;ones (symlen,l)*data(i)];
end
y=real (abs (a) . *exp(2*pi*f0*li*tt+li*angle(a)));
X=Z+Y;
plot (v)
hold
plot (x)
®x1im( [0, 3*symlen]);
xlabel ('Smples')
legend('Primary user signal (x)}', 'Received signal (y)'}:

L = length(x):
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Nwindow = 128;

nfft = 2*Nwindow;

f = {(0:nfft/2-1)/nfft; %$Normalized frequency
n=length(x);

t = (0:n-1)";

Noverlap=floor (2/3*Nwindow) ;

K = fix((n-Noverlap)/ (Nwindow-Noverlap)):

dela

17L;

amin = 2;
amax = 120;

for i=amin:amax

alpha=i/L;

j=i-amin+1;
CPS(:,]J)=CalcCycl (x,x,alpha);

CPSz(:,j)=CalcCycliz, z,alpha);
a

CPS_lsided=CPS(l:nfft/2,:);
CPS lsidedz=CPSz(l:nfft/2,:):
aplot=[amin:amax]/L;

figure

meshz (f*fs/1e3, aplot*fs/le3, abs (CPS lsided'))

t, f,abs (CPS lsided)),
colormap(jet),colorbar,axis xy,title('Cyclic Power Spectrum')
ylabel('cyclic fregquency ‘\alpha [kHz]'),xlabel ('spectr

figure
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CPSavgz=sum(abs (CPS_lsidedz'})/amax;
CT=ones (length (CPSavyg), 1) *Az;

plot (f*fs/1le3,abs (CPSavg) )

hold

plot(f*fs/le3,abs (CPSavgz) )

xlabel ('spectral frequency f [kHz]')

title ('Average Cyclic Power Spectrum'):;

legend('Primary user signal present', 'primary
=1 } ;
figure

plot (abs(CPS_lsided(16,:)))
hold

plot (abs (CPS_1sidedz (16,:)))

function CPS= CalcCycl (x,v,alpha)

global nfft t Noverlap K Nwindow

Window = hanning (Nwindow) ;

y = y.*exp(-li*pi*alpha*t);

% = X.*exp(li*pi*alpha*t);
CPS = 0;
index = 1:Nwindow;

for i=1:K
®¥w = Window.*x (index);
yw = Window.*y(index);
Ywl = fft(yw,nfft);

w2 = fft(xw,nfft); Xwlif-a/2
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Appendix B

Project Plan

In semester one 2016 a project plan has been prepared based on the ENGG41 1 requirements

of the previous semester. The project plan and activities breakdown are shown in the table

below,

Start Date End Date Description
10-Jul 30-Sep Reading resources
25-Jul 05-Aug Project Specifications and Plan
10-Jul 15-Aug Develope of approach and Strategy
10-Aug 01-Sep Software Development
02-Sep 05-Sep Testing Software
06-Sep 10-Sep Running and Debuging Software
11-Sep 18-Sep Progress Report
20.Sep 30-Sep Analysing Results and Generating

Conculsions
01-Oct 20-Oct Final Report (First Draft)
21-Oct 25-Oct Presentation (First Draft)
26-Oct 30-Oct Poster (First Draft)
01-Nov 12-Nov Final Report (First Draft)
13-Nov 16-Nov Seminar Title and Abstract
17-Nov 20-Nov Poster
20-Nov 23-Nov Presentation
01-Jul 15-Nov Log Book
——
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The following Gantt chart was also prepared based on the activity breakdown mentioned in

the table above:

24-Jun

Reading resources
Project Specifications and Plan

Develope of approach and Strategy

Software Development
Testing Software

Running and Debuging Software _

Progress Report

Analysing Results and Generating..;
Final Report (First Draft)

Presentation (First Draft)
Poster (First Draft)
Final Report

Seminar Title and Abstract

Poster
Presentation

23-Aug 22-Sep 22-Oct

21-Nov 21-Dec

W Duration (Days)

However, based on the timetable presented in the second semester the activity breakdown and

Gantt chart have been modified to accommodate the changes mentioned in the new

guidelines of the unit.

It is worth to mention that most of the activities have stayed as they are and cairied out

according to the original plan. Dates, deliverables and assessment task have been modified in

the new plan.
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Appendix C

Consultation Meetings Attendance Form
Throughout the semester few meetings with my project supervisor have been scheduled and

the consultation meeting attendance form below shows the meetings date and topics

discussed in the meeting.

More in depth information about the meetings have been recorded in the logbook.

Consultation Meetings Attendance Form

Week Date Comments Student’s Supervisor’s |
(if applicable Signature Signature
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