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ABSTRACT

With the adoption of Phased Array Feeds on telescopes such as the Australian
Square Array Pathfinder comes problems in processing data coming from the
array. One such problem is the calculation of beam weights for heam formers.
A need has been identified for a fast matrix inversion algorithm capable of sup-
porting these data rates. A hardware implementable algorithm addressing the
matrix inversion problem will be presented along with it limitations and advan-
tages. Several other algorithms were also tested for suitability with the results

presented.
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Chapter 1

Introduction

In recent years there has been a move by the radio astronomy community to adopt Phased
Array Feeds for receiving radio signals. A number of engineering test beds have been com-
missioned, with some currently being used for astronomical science [1]. Phased arrays were
first demonstrated as far back as 1905 by Karl Ferdinand Braun. Phased array antenna
technology was pioneered by RADAR users starting as early as World War II. Phased
array feeds are now present in most RADAR and SONAR systems used by both civilian
and military RADAR today. The motivation for the adoption of PAF technology comes
from the ability for a PAF to have any arbitrary beam shape, and for that beam to be
electronically steered across the Field of View. This design has many advantages over
traditional fixed beam antenna.

Traditional fixed beam antenna consisted of a dipole(or similar) antenna, with a shaped
reflector, and wave guide that provided high gain, and a good impedance matching be-
tween free space and a Low Noise Amplifier. The LNA which in some cases is cryogenicly
cooled to minimize system noise [2], provides the first stage amplification. The quality
of the LNA and the beam optics are critical factors in determining the Signal to Noise
Ratio of the receiver. Due to the low power of the Signals Of Interest a high gain reflector
and antenna is needed. A single dipole antenna is non directional resulting in a large
amount of unwanted signal being present from other Radio Frequency Interfering sources,
in the case of radio astronomy this includes aircraft, satellites, CB radio and mobile phone
towers as well an electrical noise from sources such as microwaves [3].

While the fixed beam antenna used in radio astronomy provide high gain, they suffered
from having a limited Field Of View resulting in a large number of pointing’s to be taken
to form a picture of the sky as part of a process called Mosaic [4]. The Parkes multi beam
receiver [5] was developed to help address this issue. It consisted of 13 dipole antenna
with a feed horn forming the beam shape allowing for 13 pointing’s to be conducted at
the same time. However the multi beam receiver still required a shaped reflector to move
the beams into position.
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Telescopes such as the Australian Telescope Compact Array use a different technique
call interferometry [6]. Informatory is another form of radio astronomy that takes an
array of single fixed beam antenna, and electronically joins their signals together to form
an image at much higher resolution. This gave two advantages, firstly a high signal gain
as stated previously. Secondly it provided a higher resolution image through line delays
form each receiving element and correlation of signals. Fixed beam interferometers survey
speed is still limited by the slew rate of the antenna. The slew rate is determined by the
size of the telescope. Large telescopes such as the ones used at the ATCA take some
time to move the 350 tonne antennas into position. The accuracy needed in pointing also
effects the speed of slew, A telescope requiring high accuracy pointing’s is slower then
a communication antenna which just needs to point roughly where the signal is. This
limitation made interferometry using fixed beams unsuited to applications such as radar
and sonar however were well suited to radio astronomy. Complexity associated with tele-
scopes requiring good pointing accuracy adds significant cost and design challenges when
implementing fixed beam antenna [7]

\ SN

‘ ‘ - ‘

Figure 1.1: Fixed beam interferometer receiving signal form SOI. The outputs of each
receiver will pass through a correlation algorithm

To obtain a high degree of pointing accuracy as well as having a fast slew rate required
the use of Phased Array Feeds to be deployed for RADAR and SONAR systems. A PAF
consists of several non-directional antenna placed in a 1D or 2D array. The output of each
antenna is fed into beam former which applies weights to each antenna’s output then sums
the outputs. This electronically generated beam can be changed by simply changing the
values for the weights. This means that beams can be moved electronically across the sky
at speeds limited only by the speed at which the weights can be calculated.

The radio astronomy community has began to adopt the PAF technology on telescopes
such at the Australian Square Kilometer Array Pathfinder project [8]. The objective for
the PAF technology being implemented in radio astronomy is to generate up to 9 elec-
tronic beams on each antenna to allow for an optimized FOV though the use of mosaic
processes. The optimized FOV will have several features such as higher sensitivity on
sources of interest, mosaic beams for large sky coverage provide an ability for fast sky
surveyvs to be conducted. RFI mitigation can be achieved by moving nulls in the beams
FOV to the position of strong sources of RFI resulting in the RFI signals having a low
gain applied to them when compared to the gain applied to the SOI.
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Figure 1.2: Early prototype PAF antenna patches for the CSIRO ASKAP
project [image: Aaron Sanders]

1.1 Motivation

As FPGA technology improves, the ability to perform more complex mathematical pro-
cesses on signals open up opportunities for radio astronomers to implement new signal
processing techniques. Several techniques have been proposed for active RFI mitigation,
or removal using new signal processing techniques [3]. Active RFI mitigation and removal
is becoming more important as the microwave spectrum become more congested due to
the increased demand for wireless communications at higher and higher bandwidths and
frequencies.

These new techniques, designed to combat RFI, require fast mathematical operators
capable of being integrated into existing, or new telescope architecture. The motivation
for this thesis starts here. For these new techniques to be implemented in the ASKAP
and other similar telescopes, a range of mathematical operators need to be developed for
implementation in FPGA based environments, and be capable of operating on the large
data sets generated by these telescopes.

The goal of this project is to start the process of developing a fast beam former weight
calculation algorithm for implementation in a FPGA architecture such as the one used
in ASKAP. This is quite a large project and would be to large for an undergraduate
engineering research thesis scope in it’s entirety.

1.2 Project Goals

Several goals for this project have been identified based on communication with the client,
CSIRO Astronomy and Space Science group. These goals have been selected as they offer
a problem of suitable size for a thesis. The goals have also been selected based on the
need and potential impact to current and future system development.
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The goal of the project is to research and develop an algorithm for matrix inversion
suitable for deployment in an FPGA based environment. A break down of the goals
include

o Identify potential algorithms to perform fast matrix inversion

e Verify the identify algorithms are numerically acceptable

e Develop and test the algorithms in MATLAB

e Develop and test the algorithms suitability for FPGA based deployment

The remainder of this report will be structured as follows. The remaining of this
chapter will be the project plan, scope and budget. Chapter two a review of the litera-
ture associated with the proposed project will be presented. Chapter three will present
information regarding the system design and algorithm verification process. The system
testing and verification is presented in chapter four. A review of the results will be pre-
sented in chapter 5. The recommendation of this report will be presented in chapter 6.
The conclusion will be presented in chapter 7.

1.3 Project Plan

1.3.1 Scope

Due the the size of the problem it is not practical to develop the full beam former weight
calculator during the 13 week engineering thesis program. It was decided through con-
sultation with the CSIRO astronomy and spaces sciences division, CASS, to focus the
matrix inversion problem for the ENGG411 project. This particular problem was chosen
as it has the ability to be integrated into existing systems and offer improvements without
having to develop the rest of the system. It is also a fundamental mathematical function
that is require for use in other more advanced algebraic and statistical operators used in
signal processing.

The project will involve the development of a mathematical algorithm that can be tested
for initial performance verification. If time permits a test version of the algorithm will be
developed for deployment on the Zynq MicroZED development board from AVNET.

1.3.2 Time Management

The project evolved from the initial project plan during the course of the Thesis. As more
potential algorithms were found and problems were encountered with some algorithms it
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was decided to re-focus the project. After some consultation with CSIRO the main priority
of the project was determined to be a survey of existing matrix inversion algorithms.
From the research into existing methods a new or ideal method suitable for use with
the ASKAP antenna would be identified and proposed for development. The gantt chart
in 1.4 represent the original time line for the project.

Project Planner
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Figure 1.3: Gantt summary of progress on project as of 4/9/17
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Figure 1.4: Gantt summary of progress on project as of 6/11/17

It was important to have flexibility during this project as many different avenues of
research were explored with many leading to dead ends. As it can be seen the project
plan changed quite a bit during the course of the project. This was planed for so did not
cause any problems for the project.

1.3.3 Budget

As this project is primarily a simulation and coding problem the cost is expected to
be minimal. The development board was provided by CASS. All the software tools are
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already licensed by the university and are freely available to students. All the remaining
parts and tools needed were already purchased as part of past projects or university
courses and so contribute no cost to this project. A full breakdown of cost is shown in
table 1.1.

Table 1.1: Project cost breakdown

| Item | Reason | Provider \ Cost | Cost to project
Computer Running simulations Personal  $2500 $0
Matlab Simulations and modeling University  $3000 S0
Vivado FPGA design Personal FREE $0
Zynq FPGA/ARM test bench CSIRO $199 S0

JTAG bugger Programing/debugging FPGA  Personal  $160  $0

The cost of the project did not change during the course of the project. There were no
added expenses that were incurred.




Chapter 2

Background and Literature Review

Beam forming and matrix inversion are two large and very complex field with research
going back hundreds of years in come cases. With this in mind it would be impractical for
an in depth coverage of all relevant theory to be presented here. The following chapter will
provide the fundamental knowledge relating to this thesis. The overview will start with
an detailed description of beam forming practices on the ASKAP array. Then a overview
of matrix inversion will be presented as well as methods of estimating the inverse of a
matrix. Finally a survey of existing approaches to performing matrix inversion in FPGA'’s
will be presented.

2.1 Beam Forming

In adaptive beam forming systems such as the Phased Array Feed in the ASKAP project,
an array of N antenna are spaced in either a 1D or 2D arrangement separated by some
distance d. Each antenna has a non-directional beam shape allowing it to have a large
FOV with a fairly stable gain across the FOV. The SOI will arrive as a wave front as-
suming the distance from the array to SOI is much greater then the distance between
elements in the array.

The output of each of the N antenna are sampled at an appropriate frequency for the
Signal Of Interest and produces a N x 1 vector of amplitudes x[n] where n is the time
index. The signal will consist of two parts V, which is the normalized array response to
a far field SOIL. The second part is the noise associated with the system and signal from
sources out side the field of interest n.

x[n| = V,s[n| + n[n| (2.1)

To produce a single output signal all of the N outputs are multiplied by a weight and
then added to give the output signal y[n] = wz[n]. The weight values w is a N x 1 vector

7
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Figure 2.1: Wavefront delay from a point source on PAF receiver

of predetermined weights. The weights enable the system to add and cancel signals from
set antenna allowing for constructive and destructive addition of signals and thus forming
a electronically controlled heam.

Many methods of weight calculation exist including

e Least Mean Squared Algorithm

Sample Matrix Inversion Algorithm

Recursive Least Square Algorithm

Conjugate Gradient Method

Max Signal to Noise Ratio Method

Constant Modulus Algorithm

Numerically Optimized Method

All methods are computationally expensive and often are not practical for large arrays
needing real time processing. Several approaches such as the maxSNR, Recursive Least
Square Algorithm and Sample Matrix Inversion Algorithm require matrix inversion as
part of the algorithm.

2.2 Beam Weight Calculation

The CSIRO ASKAP project performance requirements specified that the maxSNR method
was being used to calculate the beam former weights [9]. As the end goal for this project
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is to design a algorithm suitable for hardware based implementation of algebraic opera-
tors for ASKAP the focus will be on algorithms suitable for implementation on ASKAP
hardware. The algorithm must also offer comparable results to the maxSNR method.
The target end user platform for the project is the "Redback DSP Board” shown in the
figure below. The read back board consists of 6 Xilinx FPGA’s currently able to process
48MHz bandwidth(8MHz per FPGA). There is a total of 288 of these units in use in the
ASKAP array.

Figure 2.2: The Redback DSP board source:John Tuthill, CSIRO

2.2.1 maxSNR

The maximum Signal to Noise Ratio algorithm is currently the algorithm of choice in the
PAF Radio Astronomy community as it easy to implement and offers a simple method
for calibration [10]. It relies on a single on-source and a single off-source measurement
to calculate the required beam weights for the PAF. This calibration procedure has
the advantage of providing the optimal SNR for the system, eliminating system related
noise(assuming minimal short term variances of noise). The maxSNR method is refereed
to as a fixed-adaptive beam as the beam pattern will remain fixed for days to months
at a time. The maxSNR method does not adapt easily to fast changing sources of noise
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such as aircrafts. The ASKAP array being designed by CASS currently uses the maxSNR
method for beam former weight calculations [8]. For future PAF designs it is desired to
develop a new type of beam former that is capable of combating RFI though techniques
such as null point steering that are currently not possible with the maxSNR method.

2.3 Matrix Inversion

The inverse of a square matrix A with dimensions n x n is a matrix B of the same
dimensions of A. The inverse matrix has the properties AB=I and BA=I where I is the
identity matrix. A square matrix is not required to have a inverse, but in cases where it
does then the inverse in unique [11].

2.3.1 LU-Decomposition

One of the most common methods of performing a matrix inverse in a digital computer
is the LU-Decomposition where LU stands for Lower and Upper. For a square matrix A
a LU-Decomposition is performed by first defining

LU=A

where L and U are the upper and lower triangle of the matrix A. The linear set

Ax = (LU)x=L(Ux) =b

can then be solved using forward and backward substitution which is known to be an
efficient process.

v = L
= all
1 i—1
yi = —[bi - ; a;y;)i = 2,3,.., N (2.2)
Un
T =
= fnn
l mn
T = E[y,- - Z Bizili=n—1,N-2, .1 (2.3)

j=itl

This method offers similar performance for finding A~' when compared to the Gauss-
Jordan method. The reason for the LU-Decomposition methods dominance comes in
solving linear equations such as A~'B which requires one less matrix multiplication and
is more accurate. For the LU method the total number of executions in the summation
loop is in? for the forward substitution and in? for the backwards substitutions [12].
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2.3.2 Sherman-Morrison-Woodbury formula

The Sherman-Morrison-Woodbury formula is a special case of the Woodbury identity.
The Woodbury identity states

+ AT AT “lrvAa~lu)- - 2.4
A4+UCV)t=A"1— A 'UCt+vATIU) VAL

Where A is a n X n matrix, U is a n x k matrix, C is a k x k matrix and Visa k x n
matrix. This identity can be applied to the case where A~ is already known and it is
desired to update it with (A+UCV)~!. For the special case where C is a 1 x 1 unit
matrix is know as the Sherman-Morrison formula. The Sherman-Morrison formula

(A+UVT) 1= A1 - AT'U(I+VTIA U TVTA ! (2.5)

where A € R™*" and U, V are n x k. The update of the inverse by a rank % correction
will result in a rank k correction to the inverse [13].

In 1950 Sherman and Morrison presented a special case of the Woodbury identity [14].
In their paper a method for a rank-1 update was presented. For a;;, i = 1,2,...,n,
j=1,2,...,n giving a square matrix a of size n. by = a~'. A;; denotes the elements of A
which differ from a in only one element Agg. B;; is the elements of the inverse of A.

It was shown that the B could be computed from Aags and b.

Aps = a5 + Aags
h‘i“"{ij AQI{S

B’v-l — (7..' —_—
3= Brd 1+ bspAags

r=12,..,nj=12,..,n (2.6)

which can be split into three cases r = S, j = R, and all others

bs; .
Bgj=—"2—3=12.., 2.7
55 l + bSJ{AG-HSJ 1 y 1T ( )

br’R :
=—9j=12,...0 2.8
1+ (’SRA‘IHSJ ' ' (28)
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using 2.8 we get 2.6 in the following form

B, =b;—BpbgjAapsr=1,2,...,.85-1,5+1,..,nj=12 .., R—1,R+1,..,n
(2.9)

which shows that the elements of B contained in the Sth row and Rth column are directly
proportional to the corresponding elements of b. It was also commented that should
a matrix change by more than one element that repeated applications of this technique
could be applied to get to the correct result. This technique was then adapted and applied
to a matrix with rank-n updates required [15]. The updated algorithm was designed for
use of a Cray super computer and so was designed for parallel computations.

2.4 Existing methods and implementations

Given an input autocorrelation matrix of the form

N
R.. =l + Z uiuy (2.10)
i=1

Where o2 is the noise power and u is the input vector from an array of N elements and
¢! is the transpose-conjugate of the input vector form. The Sherman-Morrison formula
can then be expressed in terms that match our application

(A" 'uvP AT

A vuv)y T =A"" - 2.11
( ) 1+vPAlu (2.11)
and by using the same notation as (2.6) we get
R; LuufR;}
R = (R7, + wuf)! = R - Biout Riy) (2.12)

1+ul’R;u
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It can be seen that this form of the formula will present a computational problem due to
the division. This has been overcome by the introduction of a scaling factor a such that

el
-1 _ ¢ H -1 -1 il
aR7 = (o) +uy R wg) (iR + . )
i—1

=Ry (@1 + wi' i R W) — (iR w0 RE) (2.13)

where «a takes the following definitions. ap = 1 and

N1 = Cti(ﬂ'g + uﬁ_l(};R;lu,;_H) (214)

It has been shown that using this result, that a matrix inversion algorithm could be im-
plemented without the use of operators such as division and square roots, dramatically
reducing the circuitry complexity of an FPGA implementation [16]. This is a critical re-
sult allowing for the development of an efficient FPGA based matrix inversion algorithm.

For implementation in a FPGA based environment it is important to optimize the al-
gorithm to reduce complexity and system usage. One method of optimization involves
converting the floating point arithmetic into fixed point arithmetic. Determining fixed
point values that are suitable as replacements for floating point values can be a diffi-
cult and tedious process, with a lot of trial and error. A method has been developed to
address this problem for use with the Sherman-Morrison method [17]. The method pre-
sented develops a simulation based approach to defining the fixed point values by solving
an overdetermined problem using least squares approximations.

Further simplifications can be achieved by reducing the number of multiplication steps
required for performing complex multiplication. It has been shown that a complex multi-
plication can be achieved with as little as 3 multiplications of real numbers, as opposed to
4 multiplications used in previous methods [18]. This will reduce the resources required
for the final implementation in the FPGA based hardware. However in the original paper
by Sherman-Morrison it was only specified that real values could be used. It is unknown
at this point if any work has been done on complex valued matrix inversion [14].
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Chapter 3

System Design and Testing

To find an algorithm suitable for use in a hardware based environment several different
algorithms were tested. Each algorithm was chosen for a particular advantage or feature
that it contained that made it a candidate for hardware implementation. Each candidate
algorithm was tested and characterized for its suitability for the desired application on
the ASKAP array.

The remainder of this chapter will describe each algorithm and why it was chosen. Finally
the test procedures will be outlined with an explanation on how the tests were performed
and what their purpose was.

3.1 Algorithms tested

A survey and exploration of several techniques for matrix inversion were performed. Each
algorithm was chosen because it showed potential for offering a mathematical method for
inversion that was suited to efficient implementation in a FPGA.

The first algorithm was suggested by CSIRO as a potential candidate. [t was based
on a Sherman-Morrison algorithm which was well suited to performing continual updates
on an mverse based on a new input vector.

The second method was a modification of the first method. It proposed the removal
of the matrix matrix division through the introduction of a scaling factor.

The third method was not found in literature but was developed from the original re-
search paper by Sherman-Morrison [14]. The approach was fully designed around efficient
implementation in an FPGA environment but was tested numerically in MATLAB

For the final method was originally designed to run on a Cray Super computer [15].
As it was already set up for parallel computing it presented as an ideal candidate for
testing.
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All the algorithms were tested using the approaches set out in the test and evaluation
section of the chapter.

3.1.1 Haykin implementation

In Radio Astronomical observations, a telescope user will have a collection of points on
the sky that they plan to observe, called pointing’s. Each pointing could last a few sec-
onds or up to a hour. The properties of a SOI, such as the SNR and flux density, will
change for each pointing. Further, for each pointing there will be a contribution of fast
changing RFI sources present in the FOV. For an inversion algorithm where the output
calculated previously is updated each cycle this presents a problem. The inversion will
treat all data as being equally relevant to the current calculation. This means that as
the telescope changes direction, the inversion of the ACM will still include data from a
previous pointing. If we are to generate an inverse autocovarience matrix that is relevant
to the SOI for a particular moment of time, a forgetting factor term will need to be intro-
duced to the Sherman-Morrison formula, to ensure the more recent data is treated with
more importance than older data. To this end it is proposed that the forgetting factor A
be introduced where A can take a value between 0 and 1 and would typically be around
0.95.

An existing algorithm had been developed by CASS in MATLAB which is an imple-
mentation of the Sherman-Morrison-Woodbury formula that included the A term. A copy
of the code can be found in appendix A.1. This algorithm acted as a starting point for
the testing and optimization.

The approach used to solve the inverse matrix problem is based off equation 2.8. Eqn 2.8
was extended to include the forgetting factor resulting in eqn 3.1.

(R juiufR;))

(3

R'= (R +uu)y' =R -
( i—1 n) i—1 1+uiHRJ__1lu

(2.11)

I 1 (R wufR)
R—l = —R‘_l _ - i—1" i—1 3.1
AN 1+ ufR (31)

The following block diagram explains the flow of data and some aspects of the control
structure in this algorithm.

The Den unit takes the =1 inverse calculated from the previous cycle. It produces a new
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Figure 3.1: Block diagram of the Woodbury implementation developed by CSIRO

DEN

Figure 3.2: Detailed explanation of existing DEN block

matrix, Den. The gain block takes Den and divides R~! by it. This is a matrix matrix
division. The updater then brings all the terms together with some adjustments.

Figure 3.1-3.4 show the sections of the existing Sherman-Morrison-Woodbury implemen-
tation. The counter is a control process that causes the system to loop N times. The
looping of the algorithm is used to test the stability as a function of time. In an continuous
system N would loop forever or until the system is reset. To save time with simulations
the matrix size was set to be a square matrix of size 20.

This algorithm was hypothesized as being able to perform the update to an inverse with-
out having to re-compute the ACM and then find the difference with the old ACM. Some
literature did show that this algorithm could result in a increasing error in the inverse
calculated. It was also stated that the error may converge after a number of cycles.
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Gain

den

Figure 3.3: Detailed explanation of existing Gain block

Update

R‘l—%*‘gain*x[n]‘1 Ras

&
a

Figure 3.4: Detailed explanation of existing update block
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To test this algorithm several scripts were developed in MATLAB. To test the response
to input data type two data types were generated. The first one was random numbers of
double precision floating type. The results of tests with the random numbers were then
compared to the results of the algorithm with a band limited source set at an angle to
the array.

Using a band limited signals as the input to the matrix inverter the output error was
measured. This test was also used to determine if the error converged to a stable point.

3.1.2 Modified Haykin algorithm

Using the results found in eqn 2.13 and eqn 2.14 a novel approach to solving the inverse
matrix problem for radio astronomy is presented as a potential solution that is less re-
source intensive than the method presented in eqn 3.1 [16].

This approach involves the re-arrangement of the equation used in eqn 2.8 in order to
remove the division. The removal of the division was achieved by the introduction of a
scaling factor a resulting in the equation becoming
Rl _ -l H -1 -1 H -1
R =R (i — 1+ uw'a R w) — (0 R uu o R (2.13)

@ir1 = oi(a; + uit iR uiy) (2.14)

Implementation of the algorithm required some modifications to the original design. The
algorithm was fully implemented in MATLAB for testing and characterization. The same
input data used on the original equation was used to the modified algorithm. The output
of the algorithm was observed and compared to the outputs of the original and also to
the LU method. The goal of the test was to determine if the new method gives similar
results to the original method.

This algorithm was selected for testing as it offered significant advantages due to it re-
duced complexity of implementation in a hardware based environment. The removal of
the division significantly reduced the complexity of the implementation, even though it
did result in extra a term being added into the equation.

3.1.3 Sherman-Morrison original method

The paper that first introduced the Sherman-Morrison algorithm proposed a method for
performing a rank-1 update of a inverse matrix based on a difference matrix [14]. This
approach was originally discounted as it would involve the calculation of an ACM and
a difference matrix. It also required 4 matrix of size N, where N is the umber of input
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elements to a system, to be stored potentially taking up large portions of system memory.
This approach was however latter re-introduced as it was discovered that the ASKAP
telescope already computes an ACM and this method would therefore be achievable.

Input from telescope

ACM update

Previous
ACM

k J

Output

Figure 3.5: Sherman-Morrison inspired algorithm developed
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This approach was investigated as it had the potential for large scale efficient implemen-
tation in hardware. It does however require one division operation to be performed before
any updates can begin. However the division is a single 16 bit number and would be
easily achievable in a DSP slice or through bit shifting if it is a quantized number.

3.1.4 Vectorized method

The final method that was explored was an algorithm developed for use of a Cray super
computer [15]. This method was chosen as it was design for a parallel architecture and
was expected would be suitable for implementation in Hardware. The algorithm is a
adaptation of the original method presented by Sherman-Morrison [14]. This particular
algorithm was written so that it would handle changes to the ACM larger then a rank-1
change. This provided the opportunity to feed real data into the algorithm without hav-
ing to condition it.

The algorithm worked by looping through the matrix from the first column through to
the last column updating the matrix based on the differences between elements in each
column.

3.2 Algorithm testing and evaluation

Several methods were developed to test and evaluate each algorithm or method. For
all of the tests developed, the method of evaluating the results involved comparing the
output of the inverse of the matrix to a standard method for inverse calculation, such
as LU-decomposition, which is a typical industry standard approach along with the QR-
decomposition.

3.2.1 Random Vs Real

Some methods tested were designed for use on a stream of continuously generated data
from a real world situation. An example of a real world situation would be a radio tele-
scope or mobile phone base station sending data from the receiving array as a vector
of numbers, where each number represents the sampled amplitude of a signal at that
element at that point in time. Each vector would have a small relation the the vector
before it and the vector to come after it. To understand the relation between real signals
when compared to randomly generated signals a test was developed to compare the error
between the output inverse of both data types to the standard LU-decomposition method.

In order to compare the matrix the maximum and minimum values were taken from
the difference matrix. The difference matrix in this test involved comparing the random
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data to LU data and comparing Real data to LU data. By taking the minimum and
maximum difference it is possible to see if the variance of method is effected by the input
data. The error was measured after running the method for 100000 input sample vectors.
This length was chosen as it represents a quick pointing length. Visual inspections were
performed to see if any artifacts could be seen in the output indicating there is a problem
or feature of a particular method 3.7.

Inverse covariance matrix Inverse covariance matrix

LU method . Woodbury ;
0.5
210 =
;:C: 15 0 §
20
10 20 10 20

Port Number Port Number

Figure 3.6: The two inverse matrix produced. left: 100000 iteration then LU decompo-
sition, right: 100000 iterations of Woodbury method. Both are normalized

The difference matrix was also able to be visualized as shown in 3.7 and is made by sub-
tracting the two plots in fig 3.6.
The code used to generate the real signal can be seen in appendix A.2.

3.2.2 Error convergence

Another aspect of an algorithms performance is its stability with time. The error of an
algorithm will vary over time depending on the input data, rounding and other factors
depending on the implementation. An important characteristic of an algorithm will be
its ability to remain stable with time. Rather then taking the max and min values for
stability with time the Euclidean norms of each matrix were taken and then subtract the
value of one norm from the other. This method has been used in previous studies into
matrix inversion [19]. An example plot is shown in fig 3.8 showing the error as a function
of iterations.
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Figure 3.7: Error Matrix of normalized and subtracted gauss and Woodbury methods
after 100000 iterations
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Figure 3.8: Sample of Norms difference as a function of iteration length

3.2.3 SNR dependent error

For an algorithm to correctly invert a matrix of astronomical data correctly it must be
immune to variances in the SNR of a signal. To test for this the SNR was varied by
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dropping the noise power. The angle of the signal source was also tested to determine if
there was any change relating to the SOI angle of arrival.

3.2.4 Numerical precision dependent error

Due to the nature of the math operations, when adding or multiplying numbers the re-
sulting number will often be of a larger word size compared to the two original numbers
operated on. This can cause significant problems for a hardware implementation of the
algorithm. In a hardware based environment all the resources need to be allocated before
the program is run. This requires a set size for all the data buses and memory to be de-
cided upon. Further due to limitations of available resources in a fixed hardware system,
it is often not practical to allocate enough resources to correctly store the resulting values
for numerical operations.

The effects and pitfalls of this problem will be explored in two different areas. The
first area will be focusing of the word size and fractional length. For convenience it was
decided to use a 16 bit word size as this reflected the word size of the data coming in
from the ADC’s. In standard Xilinx FPGA hardware there are numerical processing slices
refereed to as DSP48. These slices can operate on numbers up to 48 bits for all functions
implemented in these slices. This gives an upper maximum for an individual calculation
in a DSP48 slice. To fully understand the requirements of the algorithm various points
of the algorithm will be probed and the data size and values read to gain a better picture
of how it works and what its requirements are. This test will only be performed on the
Vector method, but the information gained will be transplantable to any of the algorithms
presented.

The second approach will be to test different rounding and enumeration methods. This
will be required information for implementation in hardware, as rounding will be required
as part of the implementation to ensure numbers do not overflow and cause numerical
instability. This will be tested by using a set word, fraction size and testing different
options such as convergent, Floor, Zero, Ceiling and Nearest. MATLAB summaries the
information of these types based on cost(cpu time), bias and possibility of overflow tab 3.1.
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Table 3.1: Rounding types and trade offs credit:mathworks

| Mode | Cost | Bias | Possibility of overflow |
Ceiling Low Large positive Yes
Convergent  High Unbiased Yes
Zero Low large for (-) small for (+) No
Floor Low Large negative No
Nearest Moderate Small positive Yes

Round High large for (+) small for (-) Yes
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Chapter 4

Results

This chapter presents the findings form experiments and simulations conducted on the
various algorithms presented in the previous chapter. The chapter splits the results into
sections based on the type of testing undertaken.

4.1 Effects of Real vs Random Data

In order to correctly evaluate the effectiveness of an algorithm it was important to know
what the effect of the different types of input data had on the algorithms.

4.1.1 Real Vs Random

Using the Haykin's algorithm two test scripts were developed in MATLAB (see appendix
A.1 and A.2). Both scripts processed the data the same way. The algorithm was set to
run for 100000 iterations. The two results were compared showing that the difference was
lower for real data when compared to randomly generated data.

Table 4.1: Comparing range of difference matrix bhetween random numbers and band
limited signals

Random Real
min max min max |
-1.19E-15 4.22E-15 -6.34E-13 4.75E-13
-2.4425E-15 1.9984E-15 -8.3100E-13 6.7465E-13
-1.5543E-15 1.9984E-15 -4.6663E-13 4.1867E-13

This experiment was repeated three times to ensure that the data followed the same trend
was shown for all ranges. If the trends were not consistent more simulations would have
been run to find a more accurate average.

27
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4.1.2 SNR

The effect of SNR was observed and the results tabulated in table 4.2. The error was
calculated by comparing the norm to the norm of the LU-method. The signal was set to
0dB and the noise was swept from -10dB down to -80dB. The simulated real band limited
signal was used for this test.

Table 4.2: Results from changing the SNR with the SOI set to 0dB

I Signal level dB I Noise level dB I Angle of arrival deg | Error |

0 -10 70 -8.022E-13
0 -20 70 -1.1147E-12
0 -30 70 -1.17E-10

0 -40 70 -1.16E-10

0 -50 70 -3.57E-9

0 -60 70 -1.125E-7

0 -70 70 -3.468E-6

0 -80 70 -6.69E-5

4.1.3 Angle of Source

To determine if the angle to a SOI from the array face had an effect on the error the angle
of the SOI was changed and the error measured. Te results were tabulated in table 4.3.
The simulated real band limited signal was used for this test.

Table 4.3: Effect of changing arrival angle on the inversion algorithm

| Signal level dB | Noise level dB | Angle of arrival deg | Error |

0 -10 70 -1.04E-12
0 -10 60 -7.7E-14

0 -10 50 -3.20E-13
0 -10 40 -6.36E-13
0 -10 30 -7.69E-13
0 -10 20 2.97E-13
0 -10 10 5.92E-13

4.2 Stability with Time

Testing the Haykin’s model for stability using random data as in input gave the results
plotted in the fig 4.1 below. It can be seen that as the mumber of iterations increases
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the error converges to a maximum level. This level remains constance for longer iteration
lengths such as 100000
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Figure 4.1: The error of the Haykin's model as a function of iterations
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Figure 4.2: The error of the Haykin’s model as a function of iterations over a long
number of iterations
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The modified Haykin's algorithm was tested using the same test script used on the
Haykin’s algorithm. After several re-designs of the algorithm to implement it in a way
that would work mathematically the results in fig 4.3 were generated. It can be seen that
this is not a good result.

% 10105
T

35 \\ g

Error found using norm(), (LU-Woodbury)

as : ‘ . ‘ s .
1 15 2 25 3 35 4 45 5

Number of iteration used
Figure 4.3: The error of the modified Haykin’s model as a function of iterations over
long number of iterations

After much debugging and following the equation stepping through and monitoring the
numbers it was found that the o term would start at 1 and then guickly explode out
towards infinity.

4.3 Word Size and Fractional Length

The effects of word size and fractional length were tested on the vectorized method.
To start with the script was ran with all numbers set a double precision floating point
resulting in fig 4.4. The code for the test can be seen in A.3 and the algorithm in A.5.
During the tests on the function as floating point functions were replaced with fixed point
functions several numerical properties were noticed.
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Figure 4.4: The error of double precision Vector method

1. Selection of correct data type(word size and fractional length) is important to reduce
error

2. Data types must be consistent in the algorithm or inconsistent results were obtained
3. Correct rounding algorithms were needed or an offset in the numbers was noticed

A 16 bit word size was chosen for testing. This word size was chosen because it was the
same size as the data coming from the ADC in the ASKAP telescope. Also 16 bit is a
standard size and nicely fits into all the DSP slices in a FPGA. The size could be changed
but different word sizes are not explored in this paper.

The fractional length of the data was changed at several points to explore the effects.
In the first experiment all the word size and fractional lengths were set to be the same i.e
16,0, for all parts of calculation. This resulted in the following result 4.5. The simulation
was run by putting a 20X20 matrix of random 16 bit signed integers into the algorithm
and comparing the output to the LU decomposition method.

Several mathematical operators including addition, subtraction and multiplication were
replaced with fixed point enabled operators. These operators enabled numbers with two
different formats, for instance 16,4 and double float to operate on each other. The op-
erators would then cast the numbers back into the preferred format. The operators also
provided the option of handling overflow and rounding. This aspect will be addressed in
the next section.
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Figure 4.5: The error associated with word/fractional format 16,0

Setting the size to be 16,15 resulted in the error shown in fig 4.6.
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Figure 4.6: The error associated with word/fractional format 16,15
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It was hypothesized that there would be some point in between 16,0 and 16,15 that would
result in a good solution. However the previous two results showed that 16,0 seamed to
be the best configuration. This was not what was expected so the word configuration was

sweep from 16,0 to 16,15 resulting in the plot shown in fig 4.7.
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Figure 4.7: The error associated with word/fractional format 16,0 through to 16,15

This results matched with what was hypothesized.

4.4 Rounding

When running the fixed point vectorized method probes were placed at the output of par-
ticular operations to observe the size of the resulting munbers. At the output of various
multiplications the word size of the numbers was reaching 52 bit. Due to the limitations
of 48 bit for a compact implementation in hardware processes for reducing theses numbers
were explored. To start with a base line was obtained for a fixed point with no limitation

to the word size resulting from an operation. The results can be found in fig 4.8. This
result gave a baseline for comparing the effects of number rounding and limiting.
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Figure 4.8: The unlimited word size results for the vectorized algorithm. Iterations are
along the bottom axis and error is along the vertical

Fixing all operations too 16,15 signed numbers using convergence and wrapping oper-
ators resulted the results of fig 4.9.

There appears to be no difference in the error for rounded and no rounded values. this
was observed for all types of rounding tested.

4.5 Numerical verification

The algorithm developed from the original paper by Sherman-Morrison was tested using
double precision float numbers. The algorithm was able to handle rank-1 updates to
the matrix with now errors using the double precision float type. This method was also
tested by stepping through the algorithm to ensure that each element in the array was
not effected by others during the update procedure. It was found that this method while
only handling rank-1 updates, it could be implemented in parallel so each element in the
matrix was updated at the same time. To do rank-2 or higher updates successive runs of
the algorithm were required.
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Figure 4.9: The limited word size results for the vectorized algorithm using convergent
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Chapter 5

Discussion

During the course of this project several observations were made on the behavior of the
various algorithms. In this section these observations will be discussed.

During investigation into the operation of the Haykin method it was noticed that it
operated at a matrix level rather then matrix element level. This can be seen in eqn 2.12
where the R™! terms, the U and U¥ terms multiply or divide.

_ (R uufR; )

R'= R +uu/)!' =R
( i—1 i 1) i—1 1+U§IIR‘-__IIU

(2.12)

This led to some investigation into the operation and effectiveness of this approach. Two
conclusions were drawn. Either this is the way the algorithm operates in which case a
work around needed to be developed, as performing a matrix division requires the inverse
of the matrix to be calculated making a circular problem. Alternatively the method that
this algorithm uses had been misinterpreted. The second option was the most likely how-
ever was also the most problematic.

Further testing on an algorithm that was developed to overcome the short fall associ-
ated with the division proved to produce errors in its output 4.3. This re-enforced the
idea that a misinterpretation of the process had occurred. It was found that the terms in
the a and B~! matrix’s were trending towards infinity.

Rather than spend an unknown amount of time trying to determine where the misin-
terpretation was, a new approach was decided upon. The new approach involved going
back to the original paper and developing an algorithm from scratch. This was achieved
with results showing the algorithm gave better results than first thought. The algorithm
however could only handle a rank-1 update. There was an approach developed that per-
formed up to rank-k, where k is size of the square matrix, updates by successive repeats
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of the rank-1 update [15].

It was found through much experiment and testing that both the algorithm developed
from the original paper and the expanded version that allowed for updates for k& > 1 pro-
vided stable solutions with little or no error. It was also identified with some modifications
a algorithm could be written that to detect only the changes above a set threshold level
and perform an update on those parts. This would reduce the problem from a rank-k to
a rank-(1 < < k) problem.

Testing the effects of rounding showed no differences between the different types of round-
ing. This could be the fractional part of the number having to small of a value to be
noticeable on the test scale that were used on these experiments. With longer run times
like those found on a telescope a bias might become noticeable in those areas.




Chapter 6

Conclusions

In order to solve the matrix inversion problem a algorithm has been developed that builds
on the work presented in the original Sherman-Morrison paper on matrix inversion. It is
proposed that an algorithm using this approach with a modified update filter would effec-
tively solve the inversion problem. It was found through testing that the rank-1 method
proposed by Sherman-Morrison was in fact the most efficient algorithm for matrix update
for a rank-1 update. Further it was also shown to be the most accurate if appropriate
selection of word and fractional size was used. This approach is well suited to implemen-
tation in a FPGA based environment.

To over come the limit of rank-1 updates a second algorithm was tested that assumed
a rank-k update is always required, where k is the size of square matrix. This method
proved to have slightly higher error level, however the overall error was much lower when
compared to other methods tested. This method did also require the ACM to be com-
puted and a difference matrix generated. This initially scamed to be a draw back of
this method however the ACM update was found to be performed as part of the other
algorithms. This points to comparable execution time for the two different approaches.

It is believed with an appropriate filter on the update matrix the overall execution time
could be reduced further for this algorithm. This filter would employ a threshold based
detector and would only perform updates to the inverse for elements in the ACM for
which a change higher then the threshold have occurred. This would remove unnecessary
calculations from being performed.

It was found through numerical and simulation based investigation that the both the
Haykin and modified Haykin algorithms are not suitable for implementation in a hard-
ware based environment such as a FPGA. This was due to performing division of matrix
operators and several terms trending towards infinity.

Real data was shown to have an effect on the Haykin algorithm offering lower error level
when compared to randomly generated data. With use of real data the SNR was observed
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to have an effect. A higher SNR value will result in a lower error. Angle of signal arrival at
an array was found to have no effect which is what would be expected for a PAF. Random
data was used for the remaining algorithms as they were developed to handle random data.

The method developed from the Sherman-Morrison paper was shown to remain stable
with time. The Haykin’s method however did don remain stable for the first 2000 iter-
ation buy converged to a point in a roughly linear fashion. After 2000 iterations it was
shown to be stable but had a large error. The modified Haykin’s method showed no
stability but was found to tend toward infinity within a few iterations.

Word size and fractional length were shown to play a major role in minimizing error.
Moving to fixed point numbers did result in an error increases in all algorithms. For the
Sherman-Morrison and Vectorized algorithms this error was able to be controlled through
correct selection of fractional length. The type of rounding used for converting data types
has not been measured as having an effect however there could still be a aver error intro-
duced that was not found with the short runs used to test all the different methods.

It was also found during the course of this project that no research has been conducted
into performing inversion updates for complex numbers. It is therefore unknown at this
point in time if this algorithm could be applied to a matrix of complex numbers.




Chapter 7

Future work

This project was part of a much larger project with the goal of implementing a near real
time adaptive beam former for the CSIRO PAF’s on the ASKAP array in the MRO. In
order to implement an adaptive beam former a method for determining beam weights
was required. Several potential methods were identified with one of the more promising
methods using matrix inversion updates to perform a fast update of the Eigenvalue prob-
lem [20]. The findings of this project have demonstrated a method for performing the
update of the matrix inversion. Using the updated inverse it is now possible, with some
more research, to implement an Eigenvalue update.

With a method of performing a matrix inverse up date presented and a simple algo-
rithm for performing a Eigenvector update found in literature it is now paossible to start
development on a fast, hardware based beam former. This beam former is potentially
capable of performing real time null point steering of a PAF. This makes it now possible
to implement real time RFI mitigation techniques that have previously been impractical.

The next step in this line of research comes in two parts. The first part will involve
further research and optimization of the Eigenvalue problem. The approach developed
in this project would be highly applicable to solving the Eigenvector problem and it is
recommended that the methods are considered for future use.

The second progression form this project will be to target the presented findings to a
hardware based system. This is a critical step in ensuring the methods developed in this
project are simulating real word applications correctly.

It is believed that with further research and implementation of the findings of this project
and future similar projects it will be possible to implement a real time active RFT mitiga-
tion beam former for techniques such as null point steering. This would result in a better
SNR in the signals from the beam former entering the correlator. This would reduce
the required integration time on the telescope which in tern will increase the amount of
science that is capable of being produced. The amount of time that astronomers lose to
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blocking out bad data from RFI sources would also be significantly reduce resulting in
astronomers being able to achieve more productive goals.

As with all new technology it will take time to demonstrate to the astronomical com-
munity that these techniques will result in correct data and are worth the time and effort
to implement. Several more in-depth research projects will need to be carried out to
independently verify the proposed algorithm presented in conclusion of this project.

Further research could also explore aspects of the algorithm associated with the pro-
cessing of complex numbers.

The next phase of work for the authors of this paper will be to implement the pro-
posed algorithm in an FPGA environment. The target platform with be either the Xilinx
Zynq or Artix 7 platforms.
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Abbreviations

AMBA Advanced Microcontroller Bus Architecture
ARM Acorn RISC Machine/Advanced RISC Machine
ASKAP Australian Square Kilometer Pathfinder Project
AXI Advanced eXtensible Interface protocol

CASS CSIRO Astronomy and Space Science

CSIRO Commonwealth Scientific and Industrial Research Origination
DDR Double Data Rate

DSP Digital Signal Processing

FOV Field Of View

FPGA Field Programmable Gate Array

JTAG Joint Test Action Group

LMS Least Mean Square

LNA Low Noise Amplifier

PAF Phased Array Feed

PL Programmable Logic

PS Processor Segment

RAM Random Access Memory

RISC Reduced Instruction Set Computer

RF Radio Frequency

SKA Square Kilometer Array

SOC System On Chip

S0I Signal Of Interest
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Appendix A
MATLAB scripts

A.1 Haykin method 1

The following file was the file provided by CASS as a starting point for the project. It pro-
duces a covariance matrix and inverse of the covariance matrix through LU-decomposition
and through the use of the Haynkin Woodbury implementation

K
N = toc run the upd for
lambda or the recur: update

R = eye(K);
inv_.lambda = 1/lambda;

R.inv = eye(K); % initialise the inverse matrix to be updated
for 1lp = 1:N
xvec = randn(K,1l); % new measurement vector

R = lambda.*R + (l-lambda).* (xvec*xvec'); % update the cov

% Use Woodbury's identity to update the inverse covariance matrix
den = 1 + inv.lambda*xvec'*R.inv+xvec;

gain.vec = inv_.lambdaxR_invsxvec./den;

R.inv = inv_lambda+R_inv - inv_lambdaxgain_vecsxvec'xR_inv;

end

R.inv.calec = inv(R);

normalise to the largest element to make comparison by subtraction
% possible

R_inv = R_inv/max (max(R_inwv));

R_inv_calc = R.inv.calc/max(max(R-inv_.calc));
% compute the difference matrix (error matrix)
diff_inv = R_inv - R_inv_calc;

disp (max (max(diff_inv)))

disp (min(min(diff_inv)))
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figure (3)
clf

subplot (1,2,1)
imagesc (R.inv)

colorbar
axis sguare

title ({'Inverse covari

xlabel ('Port
ylabel ('Port

ance matrix','LU nﬁ;hod'})
Number') %

2

Number') % vy

label

label

x—axis

axis

subplot (1,2,2)
imagesc(R.inv_calc)

axis square
colorbar

title ({'Inverse covaria

xlabel ('Port
ylabel ('Port

figure (4)
clf

imagesc(diff.

axis square
colorbar

title('Error
xlabel ('Port
ylabel ('Port

ce matrix', 'Woodbury'})

Number') % x-axis label
Number') % y-axis label
inwv)

matrix"')

Number') % x—-axis

Number') % y-axis
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A.2 Haykin method 2

This program modified the original Haykin implementation to include a signal source
rather than random numbers. The signal source was a band limited signal produced from
the simulated response of 20 receiving nodes on a linear array.

¥X-coordinates of
Y-coordinates of

(number of array elements)
number of iterations to run the update for
forgetting factor for the recursive update

to array end-fire)

array phase centre

spacing (half wavelength)
the elements

the elements

%% Initialise wariables

K 20; % measurement vector length

N = 100000; %

lambda = 0.995; %

fe = 1.0; %centre frequency

Fs = 4xfc; % sampling frequency

omega = 2.0xpixfc; % define the angular frequency
vel = 1.0; % propagation velocity

sdir = 70; % source directicn (relative
sp = 0.0; % Source power

np = -10.0; % element self noise
%% Array set-up

% Linear Array

org = [0.0 0.0]; %

spac = vel/(2«fc); % element
X = spac* (—(K-1)/2:(K-1)/2); %

vy = zeros (1l,K); %
sensorpos = [x' y'];

figure (1)

clf

plot (sensor_pos(:,1),sensor_pos(:,2),'
axis square

grid on
%% Generate the element voltage signals
% Convert source powers to W

sp = 10" (sp/10);
np = 10" (np/10);

.'",'MarkerSize', 20}

% Compute the sensor delay vector for the given source direction

aga =
source_vec =
% tau =
tau =

sdir/180«pi; % angle-of-arrival
[cos (aca) sin(aoca)l;

(xxcos(angle) +
(sensor_pos*source_vec') /vel;

limited
of sinusocids

% Simulate a band
Ns = 100; %number
t = (0:N-1)*1/Fs;
src_phs = rand(1l,Ns) * 2+pi; %
src-freq = linspace(fc+0.9, fcx1.1,Ns);
src = zeros(K,N);

for element = 1:K

source

generate a vector of

y*sin(angle) ) /vel;

£

random phases between 0 and 2Pi
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for 1lp = 1l:Ns
src(element,:) = src(element,:) + sqrt(sp)+cos(2xpi+src_freq(lp)x*(t+tau(element)) + ¢
end
end

% add element self-noise
meas_mat = src + sgrt(np)+randn (K,N};

pwr.spect.l = 20xlogl0(abs (fftshift (fft (measmat(1l,:)))));
figure (2)

clf

plot (pwr_spect.1(1:N/2-1))

%% compute the array covariance matrix
R = eye({K);
inv.lambda = 1/lambda;
R_.inv = eye(K); % initialise the inverse matrix to be updated
for 1lp = 1:N
xvec = measmat(:,lp); % new measurement vector

o

R = lambda.*R + (l-lambda) .+ (xvec*xvec'); % update the covariance matrix
% Use Woodbury's identity to update the inverse covariance matrix

den = 1 + inv.lambdaxxvec'+R_inv+xvec;

gain_.vec = inv_lambda*R_invsxvec./den;

R.inv = inv_lambdaxR_inv - inv_lambdaxgain_vecxxvec'xR_inv;
end

R.inv_calc = inv(R});

% normalise to the largest element to make comparison by subtraction
% possible

R.inv = R_inv/max (max(R-inwv));

R.inv_calc = R.inv_calc/max(max (R_inv_calc));

% compute the difference matrix (error matrix)
diff_inv = R.inv - R.inv_calc;

figure (3)

clf

subplot (1,2,1)

imagesc (R_inv)

colorbar

axis square

title({'lnvcrse covariance matrix', 'LU mc:hod'})
xlabel ('Port Number') % x-axis label

ylabel ('Port Number') % y-axis label

subplot (1,2, 2)

imagesc (R-inv_calc)

axis sguare

colorbar

title({'lnvcrse covariance matrix‘,'Woodbury'b
xlabel ('Port Number') % x-axis label

ylabel ('Port Number') % y-axis label
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figure (4)
clf
imagesc{diff_inv)
axis square
colorbar
title('Error
xlabel (']
ylabel ('E
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A.3 Tteration error measurement

This script was used to measure the error from the Haynkin method as a function of the

number of iterations.

%itteration vs error test script

%% set-up

N=100000; %maximum number of itterations for update
results=[]; %error value stored in here

K = 20; % measurement vector length (number of array elements)
lambda = 0.995; % forgetting factor for the recursive update
feo = 1.0; %centre frequency

Fs = 4xfc; % sampling frequency

omega = 2.0xpixfc; % define the angular frequency

vel = 1.0; % propagation velocity

sdir = 70; % source direction (relative to array end-fire)
sp = 0.0; % source power

np = -10.0; % element self noise

errorvalue=zeros (1,N);

%% Array set-up

% Linear Array

org = [0.0 0.0]; % array phase centre

spac = vel/ (2«fc); % element spacing (half wavelength)
x = spacx(-(K-1)/2:(K-1)/2); % X-coordinates of the elements
y = zeros(l,K); % Y-coordinates of the elements
sensor_pos = [x' y'];

figure (1)

clf

plot (sensor_pos(:, 1), sensor_pos(:,2}),'."', 'MarkerSize',20)
axis sguare

grid on

%% Generate the element wvoltage signals

% Convert source powers to W

sp = 10" (sp/10);
np = 107 (np/10);
% Compute the sensor delay vector for the given source
aca = sdir/180+pi; % angle-of-arriwval

source_vec = [cos(aoca) sin(aoca)l;

% tau = (x*cos(angle) + y*sin(angle))/vel;

tau = (sensor_pos*sourcevec')/vel;

direction

% Simulate a band-limited source

Ns = 100; %number of sinusoids

t = (0:N-1)x1/Fs;

src.phs = rand(1,Ns) * 2xpi; % generate a vector of random phases
src_freq = linspace(fc*0.9,fcx1.1,Ns);

src = zeros(K,N);

between 0 and 2Pi
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for element = 1:K
for 1p = 1:Ns
srcielement, :) = src(element,:) + sqgrt{sp)=*cos(2+*pirsrc_.freg(lp)=(t+tau(lele
end
end
% add element self-noise
meas_mat = src + sgrt(np)s*randn(K,N});

pwr_spect_1 = 20%x1ogl0(abs(fftshift (fft (measmat(1l,:})))));
figure(2)

clf

plot (pwr_spect_1({1:N/2-1))

%% compute the array covariance matrix
R = eye(K);
inv_lambda = 1/lambda;
R.inv = eye(K); % initialise the inverse matrix to be updated
for 1lp = 1:N
xvec = measmat(:,1lp); % new measurement vector
R = lambda.*R + (l-lambda).* {xvec+*xvec'); % update the covariance matrix
% Use Woodbury's identity to update the inverse covariance matrix
den = 1 + inv_lambdaxxvec'xR_invxxvec;
gain_vec = inv_lambdaxR_inv=*xvec./den;
R-inv = inv.lambda*R.inv - inv.lambdar*gain.vecs*xvec'+R_inv;
E_inv_calc = inv(R);

% normalise to the largest element to make comparison by subtraction
a
]

%

% possible

% R.inv = R_inv/max (max(R_inv));

% R_inv_calc = R.inv_calc/max (max(R_inv_calc));

2

% compute the difference matrix (error matrix)
errorvalue(lp) = norm(R_.inv) - norm{R_inv_calc});
end

disp('Done"});

figure (5)

plot {errorvalue);

xlabel ('Number of iteration used') % x-axis label
yvlabel ('Error found using norm()') % y-axis label
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A.4 Vector Method First test script

This script was the first script used to test the vectorized method. latter this was replaced
with a version that was able to handle fixed point arithmetic.

rerman-Morrsicns T er 01

sts the algorythims to be implemented in HDL

$%setup

clear

N=20; fmatrix size

n=1000; $number of itterations

lu method fixed point

B=rand (M) ;

%disp('Original A');

¥disp('LU-method B'");
C=inv (A);

$%Testing

B=eye (N) ;

B=vectorInvert0l (A, B,N);

%disp('fixed sherman-morrison method B');
D{i)=norm(C)-norm(B) ;

$disp('diffrence matrix');

end
plot (D)
disp (sumi{D} /n)
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A.5 Vector Method Second test script

This script represents the vectorized method. This is the last version of the script and

was used to verify the changes to accuracy as a function of fraction size.

%%Sherman-Morrsions Tester 01

%tests the algorythims to be implemented in HDL

%%setup

clear
N=20; itrix size
n=25; tnumber of itterations

F = fimath('OverflowhAction', 'Saturate’, 'RoundingMethod', 'Convergent');

frac=15;

D=zeros{n,1l};

$%test run setup

$first pass for lu method fixed point

parfor i=l:n
tfrac=frac+l;
datatypel=fi([],1,16,0);
datatypeZ=£fi([],1,16,frac);
disp (i)
A=randi ([-32768,32767],N);
$disp('Original A'");

tdisp ('LU-method B');
C=inv (A);

$%$Testing convergent

A=cast (A, 'like',datatypel);

Bl=eye (N, 'like',datatypel);
Bl=vectorInvert06 (&, Bl,N,F, frac);
Bl=double (B1);

tdisp('fixed sherman-morrison method B');
D1 (i)=norm(C)-norm{Bl);

%disp('diffrence matrix');

end

plot (D1)

hold on

xlabel ('number of erations') % x-axis label

o

yvlabel ('error') % y
disp (sum (D) /n)

xis label




54 Chapter A. MATLAB scripts

A.6 Vector Algorithm 1

This was the original script first script taken from the previous research [15].

function [B] = vectorlInvertO0l( A, B,n)
$UNTITLED cell b 1 sherman

morrison matrix inversion

ere

2—calculation
V=A-B;

alculation
for k=1l:n
r{k)=1+V(k,:)+B(:,k);
B(k,k)=1/r(k);
for i=1l:k-1
Bi(i,k)=B(k,k)*B(i,k);
end
for j=1:k-1
esc=-V(k,:)*B{:,J);
for i=1:k
B(i, J)=B(i, j)+escxB (i, k);
end
end
for j=k+l:n
esc=-V(k, :}*B{:, j);
for i=1:k
B(i, j)=B(i, j)+esc*B(i,k);
end

end
end

end




A.7 Vector Algorithm 5 55

A.7 Vector Algorithm 5

This script was the final form of the algorithm that had been optimized for implementation
in a FPGA environment.

function [B] = vectorInvert05( A, B,n, F,frac)
$UNTITLED c

o

1 by cell sherman-morrison matrix inversion

convert for fixed point operations

%%setup

$%Pre-calculation
V=accumneg (&, B, 'Convergent', 'wrap');
negl=£fi(-1,1,16, frac);
%$%Calculation
for k=1:n
a=fi{0,1,16, frac);
for i=l:n
tmp=mpy (F,V(k,1),B(i,k));
¥a=a+tmp;
a=accumpos (a, tmp, 'Convergent’', "wrap');
end
tmp=£fi(l,1,16, frac);
disp{'tmp"')
disp (tmp)
disp('a")
disp(a)
r=accumpos (tmp, a, 'Convergent', "wrap');
disp('c"}
dispi(r)
s=quantize(r,1,16,frac);
disp('s")
disp(s)
if s~=0
B(k,k)=1l/s;
end
for i=1:k-1
B(i,k)=mpy(F,B(k,k),B(i,k));
end
for j=l:k-1
esc=0;
for i=l:n
tmp=mpy (F,V(k,1),B(i,3));
tmp=mpy (F, negl, tmp) ;
esc=fi (accumpos (esc, tmp, 'Convergent ', "wrap'), 1,16, frac);
end
for i=1l:k
B (i, j)=accumpos (B(i, j),mpy(F,esc,B{i, k)), "Convergent', 'wrap');
end
end
for j=k+l:n




56 Chapter A. MATLAB scripts

esc=0;
for i=1:n
tmp=mpy (F,V(k,1),B (i, 3));
tmp=mpy (F, negl, tmp) ;
esc=fi (accumpos (esc, tmp, 'Convergent
end
for i=1:k
B(i, j)y=accumpos(B{i, j),mpy (F,esc,B(i,k)), 'Convergent', "wrap');
end
end
end

, 'wrap'),1,16, frac);

end




A.8 Modified Haykin method

57

A.8 Modified Haykin method

This script was for the modified Haykin method.

%$huthor:Raron Sanders

$Date:5/9/17

$Purpose: To test a given function for the error associated with its
%calculation of the matrix inverse. It will compare to the typical inwv({()
$function built into matlab based off the LU-Decompisition

$% Setup

clearvars

N=1000; %maximum number of itterations for update
$results=[]; %error value stored in here

K = 20; % measurement vector length (number of array elements)
lambda = 0.995; % forgetting factor for the recursive update
fc = 1.0; %centre frequency

Fs = dxfc; % sampling frequency

omega = 2.0xpixfc; % define the angular fregquency

vel = 1.0; % propagation velocity

sdir = 70; % source direction (relative to array end-fire)

sp = 0.0; % source power

np = -10.0; % element self noise
errorvalue=zeros (1,N);

%% Array set-up

% Linear Array

org = [0.0 0.0];

% array phase centre

spac = vel/(2%fc); % element spacing (half wavelength)
x = spac*{—(K-1)/2:(K-1)/2); % ¥X-coordinates of the elements
y = zeros(l,K}; % Y-coordinates of the elements
sensor_pos = [x' y'];

figure(l)

clf

plot (senscor_pos(:,1),sensor_pos(:,2),"'."', 'MarkerSize"', 20}
axis sgquare

grid on

%% Generate the element voltage signals

% Convert source powers to W

sp = 107 (sp/10);
np = 10" (np/10);

2

% Compute the sensor delay vector for the given source direction

aoa = sdir/180xpi; % angle-of-arrival
source.vec = [cos(aoca) sin(aoca)l;
% tau = (x»coslangle) + y+*sin(angle))/vel;

tau = (sensor_pos*source_vec')/vel;
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% Simulate a band-limited source

Ns = 100; %number of sinusoids
t = (0:N-1)~1/Fs;
src_phs = rand(1l,Ns) * 2Zxpi; % generate a vector of random phases between 0 and 2Pi

src_freq = linspace(fc*0.9,fcx1.1,Ns);
src = zeros(K,N);
for element = 1:K
for 1p = 1:Ns
src{element,:) = src(element,:) + sgrt(sp)*cos(2+«pi*src_freqg{lp)=(t+ttau(element)} + ¢
end
end
% add element self-noise
meas_mat = src + sqgrt(np)+randn(K,N);

pwr_spect_1l = 20«logl0(abs (fftshift (fft (measmat (1,:)))));
figure(2)
clf
plot (pwr_spect_1 (1:N/2-1))
%% compute the array covariance matrix
R = eye(K);
R_.inv = eye(K); % initialise the inverse matrix to be updated
a{l:K,1:K)=1;
Xvec = meas.mat;
for 1p = 2:(N-1)
R = R + (xvec*xvec'); % update the covariance matrix
R_.inv_calc=inv (R);
Riinv(:, :,1lp)=R_inv(:,:,lp-1)*(a(:, :,1lp-1l)+xvec(:,1lp) "*R_.inv{:, :,lp-1l)*xvec(:, 1lp-1)) - (R_ir
al(:,:,1py=al:,:,1p-l)x{al:,:,lp-1l)+xvec(:,1lp+l) '*a(:, :,1p-1)+*R_inv{(:, :, 1p) xxvec(:, lp+l));

errorvalue testl(lp)=norm(R_inv_calc)- norm(R_inv(:,:,1p));
end

R = eye(K);

inv_.lambda = 1/lambda;

R_.inv = eye(K); % initialise the inverse matrix to be updated
for 1lp = 1:(N)

xvec = measamat(:,1lp); % new measurement vector
R = lambda.*R + (l-lambda).* (xvecxxvec'); % update the covariance matrix
% Use Woodbury's identity to update the inverse covariance matrix
den = 1 + inv_.lambdaxxvec'"«R_inv+xvec;
gain.vec = inv_lambda+R.inv+xvec./den;
R.inv = inv_lambda*R_inv - inv_lambda*gain_vecxxvec'xR_inv;
errorvalue.CASS(lp) =norm{R.inv.calc)- norm(R_.inv);
end
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figure (5)

plot (errorvalue_testl);
hold on

3plot (errorvalue_CASS)
hold off
xlabel ("M
yvlabel ('E

label
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Records of meetings
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Figure B.1: scan of document of attendance for ENGG411 meetings
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