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Abstract

The universal property of the Yoneda embedding which exhibits the presheaf category C as
the free cocompletion of C is well-known to category theorists. On the other hand, restriction
categories are less well-studied (having only been introduced since the early 1990’s). In this
thesis, we describe free cocompletion within the restriction setting by introducing the notion
of restriction presheaf. We also motivate and give a definition of cocomplete M-category
and cocomplete restriction category.
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Introduction

The notion of restriction category was first introduced by Marco Grandis [1], and studied
extensively by Cockett and Lack [2] [3] [4] as a continuation of work done on categories of
partial maps. Informally, a restriction category is a category C where every arrow is assigned
an idempotent on its domain object which measures its degree of partiality. In the case where
C is the category of sets and partial functions, this idempotent gives precisely the domain of
definition of the partial function.

In the world of ordinary categories, we have a good notion of cocompleteness, and it is well-
known that for any small category C, the Yoneda embedding y: C — [C°P, Set] has the
universal property of exhibiting the presheaf category [C°P, Set] as the free cocompletion of
C. We would like to be able to define a notion of cocompleteness with respect to restriction
categories, as well as an analogue of free cocompletion in the restriction world. To address
these two questions, we begin by revising necessary background material from Cockett and
Lack [2]] in CHAPTER 2.

CHAPTERS 3 AND 4 are original work. In CHAPTER 3, we introduce the notion of resiriction
presheaf on any restriction category X. We define the restriction presheaf category X, and
give an embedding y,: X — X,. We show that this embedding y, is the same embedding
described in Cockett and Lack [2] (up to an equivalence).

In CHaPTER 4, we define cocomplete M-category and cocomplete restriction category, and
show that the embedding y, exhibits the restriction presheaf category X, as the free cocom-
pletion of any small restriction category X. We conclude by discussing possible continuation
of this work in relation to the notion of join restriction category [J3].
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Restriction categories

2.1 Restriction structures and total maps

Everything in this chapter is revision of material from Cockett and Lack [2]. A restriction
category 1s a category X together with a family of assignations {F4 g} (one for each pair of
objects A, B € X), where each F4 p is a map

Fip: X(A,B) 5 X(A,A), f f

and 7 satisfies the following conditions:

R1) fof=f

(R2) go f

70§f0rf:A—>B,g:A—>C

(R3) gof=gofforf:A—>B,g:A—C

(R4) hof=fohofforf: A— B,h: B—C

We call the family of assignations {Fa p}a pex the restriction structure on X, and call 7 the
restriction of f.

Example 1. Denote by Pfn the category of sets and partial functions. We can make Pfn into
a restriction category by defining the restriction of each partial function f: A — B to be an
another partial function f: A — A as follows:

7(a) _ {a; if f(a)isdefinedata € A

undefined; otherwise



4 Restriction categories

Example 2. Let M denote the one-object category whose arrows are the natural numbers
(including 0), and where composition is defined by m o n = max(m,n). Then M may be
given a restriction structure by defining n = n.

The restriction of any arrow in a restriction category has certain properties, and we list some
of them below.

Lemma 3. Suppose X is a restriction category, and f: A — Band g: B — C are arrows in
X. Then

(1) f is idempotent.

(2) fogof=gof

(3) gof=go

~

4) F=7

(5) If f is a monomorphism, then f = 14.

Proof. (1) Applying (R3)and (R1), we get fo f=fo f = f.

(2) Applying (R2) then (R3) and finally (R1) gives

fogof=gofof=gofof=gof

(3) Applying (R4) then (R3), and using the previous result gives

gof=fogof=fogof=gof

(4) By Lemma 3] (3),

F=Fola=fols=7

(5) By (R1), fo f = f = f o 1 4. Therefore, if f is monic, then f = 14. O

We say that a map f in X is a restriction idempotent if f = 7. So what maps in X are
of this form? By the previous result, maps of the form f = g (for some g) are restriction
idempotents. Hence, f is a restriction idempotent if and only if f = g (for some g).

Now we can also define a partial order on the set of restriction idempotents on a fixed object
in a restriction category. If e: A — A and ¢’: A — A are two such restriction idempotents,
then define e < ¢’ if and only if e = ¢’e. For example, in the restriction category of sets and
partial functions, the restriction idempotents e and ¢’ correspond with subsets of A, and the
ordering described correspond with the usual ordering of subsets. More generally, if X is a
restriction category and A, B are objects in X, we can define a partial order on X (A, B) by
f<gifandonlyif f=go f.

Definition 4. A map f: A — B in a restriction category X is called total if f = 14.
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So by LEmma 3| (5), all monomorphisms in a restriction category are total (and in particular,
the identity maps are total).

Proposition 5. Let X be a restriction category. Denote by Total(X) the structure containing
all objects of X and total maps in X. Then Total(X) is a subcategory of X.

Proof. We just need to check that Total(X) contains the identity maps and that the compo-
sition of two total maps is total. Certainly Total(X) contains the identities (as identities are
total). Now suppose f: A — Band g: B — C are total. Then by Lemma 3] (3),

gof=gof=f=la
and so g o f is total. Hence Total(X) is a subcategory of X. O

2.2 The 2-category of restriction categories

If X and Y are restriction categories, then a restriction functor F: X — Y is a functor
between the underlying categories such that F(f) = F(f) for all arrows f € X. Also,
we call a natural transformation between two restriction functors a: F = G a restriction
transformation if a4 = 1p4 for all A € X (components are total).

Restriction categories (objects), restriction functors (1-cells) and restriction transformations
(2-cells) form a 2-category which we denote by rCat. There is an obvious forgetful 2-functor
U: rCat — Cat.

2.3 Split restriction categories

Recall that an idempotent e: A — A in an ordinary category is said to be split if there exist
twomaps m: B - Aandr: A — B such that mr = e and rm = 1. Now let?: A—> A
be the restriction of some map f: A — B in a restriction category X, and suppose f splits.
Then there exist maps m: C — Aand r: A — C such that mr = ? and rm = 1¢ (for some
C € X). But this implies

F=mr=mr=f=f
by LemMma [3| (3) and the fact m is monic. In other words, split restriction idempotents must

be of the form 7 = mr for some m satisfying the condition rm = 1. We call m a restriction
monic if there exists an r such that mr = r and rm = 1.

If all restriction idempotents in a restriction category X split, we call X a split restriction
category. This gives a new 2-category rCat,; whose objects are split restriction categories,
1-cells are restriction functors and 2-cells are restriction transformations. Clearly, rCat; is a
full sub-2-category of rCat.

Now there exists a 2-functor K, : rCat — rCat, which takes any restriction category X to a

split restriction category K, (X) with the following data:

e Objects: An object of K, (X) is a pair (A, e4), where A is an objectin X and e4: A —
A is some restriction idempotent in X.
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e Arrows: An arrow (A, ey) to (B,ep) is a triple (ey4, f,ep), where f: A — B is an
arrow in X such that eg fes = f.

o Identity: The identity 14 ,) is given by 1(a.,) = (ea.ea, €a).

e Composition: The composite of (e4, f,ep): (A,es) — (B, ep) with
(ep,g,ec): (B,ep) = (C,ec) is given by (e, gf,ec): (A,es) — (C,ec).

e Restriction: The restriction on (ey4, f, ep) is given by (e4, f, ep) = (eA,?eA, ea).

It is clear that a structure with the above data is a category (as composition of arrows in X is
associative). Also, the definition of the restriction structure makes sense since

eafeaes = (eaf)eaea = (fea)eaea = fea

(both e4 and f are restriction idempotents). All that remains is to check that this definition
satisfies the restriction axioms; see [2, p. 242] for details. Now to see that all restriction idem-
potents split in K, (X), consider an arrow (e4, f,ep): (A,ea) — (B, ep), with restriction
given by (eqa, f,ep) = (ea, fea,ea). Then (ea, fea,en) = (fea, fea,ea) o (ea, fea, fea)

(ea.feaen)

(A,ep) ———— (A, eq)

(ea.fea ,?ekl /(?LA fea.e)

(A, fea)

and
(ea, fea, fea) o (fea, fea,en) = (fea, fea, fea) = 1,7,
So every restriction idempotent splits in K, (X).

There is a canonical embedding J: X — K, (X) which has the following data:

e Objects: Let A be an object in X. Then JA = (A, 14).
e Arrows: Let f: A — Bbe an arrow in X. Then Jf: (A, 14) — (B, 1p) is given by
Jf =14, f,1B).

Clearly J is a restriction functor since

J(F) = U fo1a) = (Ma, fla,10) = (g, fo 1) = I f

Proposition 6. Let X be a restriction category and & a split restriction category. Then the
functor (—) o J: rCaty (K, (X), &) — rCat(X, &) is an equivalence of categories.

Proof. We begin by showing that (—) o J is essentially surjective. So given H: X — &, we
must find some H,: K,(X) —» & with Hy o J = H. To define H), let (A,e4) € K, (X) be
given. By assumption, the restriction idempotent Hes: HA — HA splits in &; so choose
some splitting (below):



2.3 Split restriction categories 7

HA —2 y ga

’k& /’:A
Sea

And now define H,: K,(X) — & on objects by Hi(A, es) = S.,. Note that since splittings
of idempotents are unique up to isomorphism, we have H\JA = H|(A, 14) = HA.

Now let (ea, f,ep): (A,es) — (B, ep) be an arrow in K, (X). Since both S,, and S,, are
part of the splittings of He4 and Hep respectively, we get the commutative diagram below:

HA — " pyp
HV \I"Ii‘B
HA ma b HB

Ser il e e

So define H, on arrows by Hy(e4, f,ep) = rgo Hf omy. This may be checked to make H; a
functor, and in particular, H, o J = H. This shows that F' is essentially surjective; it remains
to show that F is fully faithful.

Suppose G, H: K,(X) — & are two restriction functors and a: GJ = HJ is a restriction
transformation. We require a unique restriction transformation @: G = H such that @ o J =
a. Given (A,e) € K,(X) (where e: A — A is a restriction idempotent), we define the
component of a at (A, ¢) by the arrow which makes the following diagram commute:

@(Ae)

F(A,e) --=> G(A,e)

F(e,e,l)i TG(I»e,e)

F(A,1) —— G(A, 1)

It is now easy to check that a is natural. However, it is also a restriction transformation since

E(A,e) = G(19 e, e) ° a,A © F(e9 e, 1)

:mo apoF(e,e, 1) (repeated use offactgzg)
=G(l,e,1)oay 0 F(e,e, 1) (G is a restriction functor)

=agoF(l,e,1)o0 F(e,e, 1) (a 1s natural)

=F(,e,1)o F(e,e, 1) (ay 1s total; F(1,e, 1) is restriction idempotent)

=F(e,e,1)=F(e,e,e) = lpa,e

This shows the existence of a; uniqueness follows by comparison with previous diagram.
Therefore (—) o J: rCat,(K,(X), &) — rCat(X, &) is an equivalence. O
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2.4 Stable system of monics and M-categories

In any category C, a system of monics M is defined to be a collection of monics in C such
that

e M contains the isomorphisms, and

o Ifm: A— Bandn: B — C are in M, then so is their composite n o m.

Such a system of monics M is said to be stable if for all m € M and f € C, the pullback of
m along f exists and is in M. That is, there is a pullback square of the following form:

A LA
J

w| I

B’T>B

We call the above pullback (A’,m’, f') of m along f an M-pullback. We define an M-
category to be a pair (C, M) of a category C and a stable system of monics M in C. If
(D, N) is also an M-category (with N being a stable system of monics in D), then an M-
functor (C, M) — (D, N) is a functor F: C — D with the following properties:

o Ifme M, then Fm € N, and

ALy Fa Ly pa
. -
o If ml \Lm is an M-pullback in C, then Fm,l \LFm is a pullback in
B T) B FB F—f) FB

D.
A natural transformation «: F = G between two M-functors is called an M-cartesian

natural transformation if for all m: X — Y in M, the following naturality square is a
pullback:

FX 25 Gx
-

wl o

FY —— GY

M-categories (objects), M-functors (1-cells) and M-cartesian natural transformations (2-
cells) form a 2-category, which we denote by MCat.

2.5 The category of partial maps

Given any M-category (C, M), we may construct a restriction category Par(C, M), called
the category of M-partial maps in C. Its objects are the same as those in C, and an arrow
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from A to B is an equivalence class of triples [(A’, m, f)], where m: A” — A is in M and
f+ A" > BisamapinC:

A/
YN
A B

We say (A", m, f) ~ (A”,m’, f") if there exists an isomorphism ¢: A” — A’ making the
following diagram commute:

A//
7N
Adm— A —— B

(From now on, we shall dispense with the bracket notation if the meaning is clear from the
context).

The identity arrow on A € Par(C, M) is given by (A, 14, 14), and the composite of an arrow
(A',m, f): A - B with (B’,m’, f’): B — C is defined to be (B, m’, ') o (A’',m, ) =
(A”,mm"”, f' "), where (A”, m”, ) is a pullback of m’ along f:

AI/
/N
A’ B’
YN YN
A B C

It is easy to see that composition is well-defined on equivalence classes, and the equivalence
relation ensures that this composition is strictly associative and unital.

Proposition 7. Suppose (C, M) is an M-category. Then Par(C, M) is a split restriction
category, with restriction given by (A’, m, f) = (A", m, m) for all arrows (A’,m, f): A — B,
and the total maps in Par(C, M) are of the form (A, 14,g): A — B.

Proof. The first step simply involves checking that the given restriction structure satisfies ax-
ioms (R1)-(R4) (see [2, p. 246-247]). Also, note that each restriction idempotent (A’, m, f)
is split since (A", m, 14:) o (A", 14,m) = (A", 14,14) and (A", 14,m) o (A", m, 1) =
(A’, m,m). Finally, suppose (A’, m, f) is total. Then (A’,m,m) ~ (A, 14, 14), implying
m: A’ — A is an isomorphism. Therefore, (A", m, ) ~ (A, lA,fm_l).

g

fm!
A< — B

m
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Hence, a map is total in Par(C, M) if and only if it is of the form (A, 14, g). O

Proposition 8. There exists a 2-functor Par: MCat — rCat; which, on objects, takes
(C, M) to Par(C, M).

Proof. We need to define a functor
Par: MCat((C, M), (D, N)) — rCat,(Par(C, M), Par(D, N))
Solet F: (C, M) — (D, N) be an M-functor and define Par(F’) as follows:

e Objects: Par(F)(A) = FA

e Arrows: Par(F)(A’,m, f) = (FA’, Fm, Ff)

Then Par(F) is a functor by the fact M-functors preserve M-pullbacks. But Par(F) is also
a restriction functor since

Par(F)(A',m,m) = (FA', Fm,Fm) = (FA’, Fm,F f) = Par(F)(A’, m, f)

Now let @: F = G be an M-cartesian natural transformation and define Par(«): Par(F) =
Par(G) componentwise by

Par(a)s = (FA, 1pa,ap): FA —> GA

It is straightforward to show that Par(«) is natural, and hence Par: MCat — rCat; is a
2-functor. U

2.6 The 2-functor MTotal

In fact, the 2-functor Par: MCat — rCat; just defined is an equivalence of 2-categories.
The 2-functor in the other direction, MTotal: rCat, — MCat, is defined as follows:

If X is a split restriction category, then
MTotal(X) = (Total(X), Mx)
where Myx are the restriction monics in X.

Proposition 9. MTotal(X) is an M-category.
Proof. See Cockett, Lack [2, p. 249] for full details. O

If F: X — Y is a restriction functor, define Total(F): Total(X) — Total(Y) to be the
restriction of F to Total(X). Then we may show that Total(F) is a restriction functor, and
moreover, that it preserves M-pullbacks. Therefore, defining MTotal(F) = Total(F) makes
MTotal(F): (Total(X), Mx) — (Total(Y), My) an M-functor. Finally, if «: F = G isa
restriction transformation, then we may show that Total(«) is Mx-cartesian. Hence, defining
MTotal(a) = Total(«) makes MTotal a 2-functor.
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Theorem 10. The 2-categories rCatg; and MCat are equivalent.

Proof. To show equivalence, we need to define natural isomorphisms ®@: 1.ca;, = Par o
MTotal and ¥: MTotal o Par = 15cat. First consider @, and let us define &x: X —
Par(Total(X), Mx) on objects by ®x(A) = A, and on arrows by Ox(f) = (A’,m, fm)
(where mr = ? and rm = 1, for some r: A — A’). Then ®x is a functor, and is in fact, a
restriction functor since

Dx(f) = (A", m, fm) = (A", m, (mr)m) = (A, m,m) = dx(f)

In addition, ®x is an isomorphism and @ is natural, making ® a natural isomorphism (see
[2, p. 250-251] for details).

On the other hand, define ¥(c m): (TotaI(Par(C, M)) , Mpar(C,M)) — (C, M) on objects
by ¥c.m)(A) = A and on arrows by Wc m)(A’, 14/, f) = f. Then clearly ¥c ) is an
isomorphism. Further, WV is natural and so W is a natural isomorphism. Hence, MTotal and
Par are part of an equivalence of 2-categories. O

2.7 New M-categories from existing ones

In this final section, we recall a way of creating a new M-category from an existing M-
category.

Let (C, M) be an M-category, and consider the presheaf category C C-= = [C°P, Set] on C. We
would like to give a stable system of monics in C, C, say M so that (C M) is an M-category.
We say that u: P = Q is in M (or u is an M- -map) if for all 6: yC = Q (where y is
the Yoneda embedding), there exists a D € C and a monic n: D — C in M such that the
following is a pullback:

To check tllgt /T/(\ is a system of monics in E, we first must check it contains all the isomor-
phisms in C. But if yg is any isomorphism, then for each 6: yC = Q, the following is a
pullback:

yC —>_ P

Y(IC)\L l“

yC¢ —— 0

Soue M. It s also easy to see that M is closed under composition, since if o: T = P and
u: P = Qarein M (with 6: yC = Q given), then the following outer square is a pullback
(by the standard pasting properties of pullbacks):
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vE L5 1

R

yD —L 5 P

g f I

yC¢ —— 0

Therefore it remains to show that M is stable. So let 7: R = O be an arrow in C. Then
because C is complete, there exists a pullback square:

S_IL>P
74 M
R — 0

We need to show y/’ is an M\-map. Soletd: yC = R be given. Now because u is an //\/(\-map,
this means given the composite 7 o 6: yC = Q, there is amap n: D — C making the outer
square a pullback:

T

yD S —— P
-

ynl u’J/ K

yC —— R ———— 0

But by the standard pasting properties of pullbacks, this 1mphes there i isa unique map yD =
S making the left square a pullback. Hence, ' is an M- -map and (C, M) is an M-category.

Note that M is not the smallest stable system of monics generated by the collection {ym |
m € M} (see Lemma 2.4 [3]]).



Restriction presheaves

3.1 Restriction presheaves

In the previous chapter, we recalled the notion of restriction category and saw there was an
equivalence between rCat; (the 2-category of split restriction categories) and MCat (the 2-
category of M-categories). Cockett and Lack [2, p. 252] uses this equivalence to describe an
embedding of any restriction category X into Par(TotaTKT(X)), M, K, (X)). The goal of this
chapter will be to reformulate this embedding in a more straightforward manner, in terms of
the following notion of restriction presheaf.

Definition 11. Let X be a restriction category. A restriction presheaf on X is a presheaf
P: (UX)® — Set together with a family of assignations {Fa} (one for each object A € X),
where each F4 is a map

F4s: PA—>X(A,A), x> Xx

and X is a restriction idempotent satisfying the following three axioms:

(Al) x - Xx=x

(A2) x- f =Xo f, where f: A— BinX

(A3) xog=gox-g whereg: B—> AinX

Here, the notation x - x denotes the element P(x)(x) (see Mac Lane and Moerdijk [6} p. 25]).
We call the family of assignations { F4} sex the restriction structure on P, and X the restriction
of x.

Lemma 12. Suppose P is a restriction presheaf on X, and x € PA (where A € X). Let
g: B — A bean arrow in X. Then

1. gox-g=x-g

09|
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2. Xog=Xx-g

Proof. 1. By (R2), (A2) and (R1),

gox-g=x-gog=(x-g)-g=x-(gog)=x-g¢

2. By (A3), (R3) and the previous result,

Xog=goXx-g=gox-g=x-8 O
Proposition 13. The restriction structure on any presheaf is unique, if it exists.
Proof. Let P be a presheaf on X, and let {F4}aex and {G 4}aex be restriction structures on

P. Let A € X, x € PA be arbitrary and let F4(x) = X, Ga(x) = X. Then using (A1), (A2)
and noting that X and X are restriction idempotents, we get

X=X - X=X0X=X0X=X-X=2X O

We make one more observation regarding the restriction structure of any restriction presheaf.

Let X be any restriction category and P a presheaf on X. Let A be an objectin X and x € PA.
Now denote by # the partially ordered set of restriction idempotents on A with ordering
given by e < ¢’ if and only if e = ¢’e. Suppose the restriction idempotent e: A — A satisfies
the condition x - e = x. Then this implies

X-e=xoe=eox=1x

or, x < e. Therefore, if # has a least element, then the restriction of x must be that least

element.

3.2 The category of restriction presheaves

Definition 14. Let X be a restriction category. We define a new restriction category X, with
the following data:

e Objects: Restriction presheaves on X

e Arrows: If P, Q are restriction presheaves on X, then an arrow is a natural transfor-
mation a: P = Q.

e Restriction: The restrictionon a: P = Q, @: P = P, is given componentwise by
@a(x) = x - aa(x)
for every A € X and x € PA. Note that « is natural since for every f: B — A,
ag(x-f)=x-(foap(x-f)) =x-(foaax)-f) =x-(aax)o f) =@alx) - f

(by axioms and naturality of ).



3.3 Total maps in the category of restriction presheaves 15

The identity arrow on P is the identity natural transformation 1p: P = P, and composition
is the usual composition of natural transformations.

Clearly ir is a category, so all that remains is to check it is a restriction category.
(R1) Let @: P = Q. Then aa = « if and only if a4 (@s(x)) = a@s(x) for all A € X and
x € PA. But
ax @a(x) = aa (x- @a(0) = @a(x) - @a(x) = @a(x)
by (Al) and naturality of @. Hence aa = a.
(R2) Leta: P=Qand B: P= R. Then forall A € X and x € PA,
@a (Ba(x) =@s (x- Ba(x)) =Ta(x) - Balx)
= (x-@a() - Ba(x) = x - (@a(x) 0 Ba(¥))
= x - (Ba(x) 0 @a(x)) = BA(@a(x))

Soap = Ba.
(R3) Let a, B be as before. We need to show ﬁ =afB. Now forall A € X and x € PA,
aBy(x) = x- (@Ba(x) = x-aa (Ba0))

=x-an(x Ba(0) = x-@a(x) - Bal®)

=Xx- (QA()C) o ,BA(x)) =aa (EA(X))

So E =ap.
(R4) Lety: Q = R. To show ya = aya, let A € X as before, and x € PA. Then
(Fa)a(x) = Ya(aa(x)) = @a(x) - yalaa(x) = aa (x - (ya)a(®))
= (Ya,(x)) = (@ya), (x)

Therefore ya = aya as required.

Hence, @ 4(x) = x-a4(x) gives a restriction structure on X, making X, a restriction category
which we call the category of restriction presheaves on X.

3.3 Total maps in the category of restriction presheaves

Let a: P = Q be total in 5(\,, where X is any restriction category. Then @ = 1p, or @4(x) =
Ipa(x) = xforall A € Xand x € PA. Thatis, x - @4(x) = x. But this implies X < a4(x)
since

X=x-aa(x) =Xoas(x) =as(x)ox

On the other hand, we have a4(x) < X as

ap(x) = apa(x-x) = as(x) - x = @a(x) ox = X o aa(x)

(by naturality of ). Therefore, a map « in X, is total if and onlyif ap(x) =xforallA e X
and x € PA. In other words, if and only if @ preserves restrictions.
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3.4 The restriction Yoneda embedding

We now describe a restriction functor y,: X — ir which is an analogue of the Yoneda
embedding within the restriction setting. On objects, we define y,(A) to be the representable
X (-, A) equipped with the restriction operations X(B, A) — X(B, B) from those of X. Itis
easy to see that the restriction presheaf axioms are satisfied.

To define y, on arrows, let f: A — B be in X. Then define y,(f): X(—,A) = X(-, B)
componentwise by (y,f)x = f o (—) for each X € X. All that remains is to show y, is a
restriction functor. Now for X € X and x € X(X, A), we have

rPx(x) =x-(y,Hx(x) =x- fox=(yA)(f ox)(x)
=xofox=fox=(y x(x)

by (R4). Therefore, y,f = y.(f), making y, a restriction functor. We call the restriction
functor y, the restriction Yoneda embedding.

We list one further property of X,.

3.5 The category of restriction presheaves is split

Proposition 15. Let X be a restriction category. Then X, is a split restriction category.

Proof. Suppose a: P = P is a restriction idempotent in ir. Since UX is complete, the
equaliser of 1p and @: P = P exists (which we denote by u: QO = P). Componentwise, for
every A € X, uy is the inclusion pgq: QA — PAand QA = {x € PA | @a(x) = x}.

Now let p: P = Q be the unique map which makes the following diagram commute:

lp

H —
— P EEP
p/

By definition, up = @, and precomposing both sides by u gives upu = a@u = u. Therefore,
pu = 1p (as pis monic) and @: P = P is split. So all that remains is to show « is a split
restriction idempotent (by giving Q a restriction structure). But because QA c PA for every
A € X, giving Q the same restriction structure as P does the job. (That is, every x € QA C
PA will satisfy axioms (A1)-(A3)). Therefore, X, is a split restriction category. O

Q

~

Before moving on to the main results of this chapter, let us recall the restriction category
K, (X) whose objects are pairs (A, e4) (with e4 a restriction idempotent), and whose arrows
are of the form (ey4, f,ep): (A,es) — (B, ep) (with f satisfying the condition ep fes = f),
and the restriction functor J: X — K, (X), given on objects by JA = (A, 14) and on arrows
by Jf = (14, f,1p) (with f: A — B € X).

Proposition 16. The categories ir and I{(Y), are equivalent.
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Proof. To show these categories are equivalent, we need a restriction functor F': K/r(\X)r -
X, which is fully faithful and essentially surjective. So let us define F in the following way:

KX, —

[

K.(X) et X

%24

It is well-known that the bottom arrow is an equivalence of categories. We aim to show that
it restricts back to an equivalence F' (as displayed) between the corresponding subcategories
of restriction presheaves.

On objects, we must have FP = P o J°. To see that this is a restriction presheaf on X,
we need to show for every A € X and x € (PJP?)(A) = P(A, 1,), there is a restriction
idempotent x: A — A in X satisfying axioms (A1)-(A3). But we know that P is a restriction
presheaf on K, (X). That is, for (A,14) € K,(X) and y € P(A, 14), there is a restriction
idempotent y: (A, 14) — (A, 14) of the formy = (14, f, 14) satlsfymg the relevant axioms
(where f € X). Note that f is a restriction idempotent in X since y = y implies (14, IANE
(14, f, 14). Therefore, taking x = f ensures that P o J°P is a restriction presheaf on X.

Now on arrows a: P = Q in E(Y),, we must have F(a) = a o J°P. To see that this makes
F arestriction functor, let A € X and x € P(A, 1,4) be arbitrary. Then

(@o Jop)A(x) — E(A,lA)(x) =x- CV(A,lA)(X) =x-(@oJP)y(x) = (a o JOP)A(X)

implies F(a) = F(a), and so F is a restriction functor.

Since K, (X) = X in Cat, such an F must be fully faithful. Hence, it remains to show
F is essentially surjective. That is, given a restriction presheaf P: X°? — Set, there is
aP:K, (X)°P — Set such that Po J = P. So define P on objects (A,eq) € K, (X)
by P(A eqg) = {x € PA| x-eyq = x}. [Note this implies P(A 14) = PA]. For an arrow
(ea, f,ep): (A,es) — (B, ep), weneed F(eA, f,ep) to be afunction F(B, ep) — F(A, ea).
Knowing that Pf: PB — PA and F(A, ei) C PA, define ﬁ(eA, f,ep) = Pf. We just need
to check for all x € P(B, ep), (Pf)(x) € P(A,es). But foeq = (epfea)es = f implies

(x-f)-ea=x-(foea)=x-f
Therefore (Pf)(x) € F(A, ea), making Pa presheaf on K, (X), with P o J% = P. If we can

define a restriction structure on P, then F would be essentially surjective.

To do this, let (A, ¢) € K, (X) and x € ﬁ(A, e) be arbitrary. Now because x € F(A, e) C PA
and P is a restriction presheaf, there exists a restriction idempotent x: A — A associated to
x. So define the restriction of x € P(A,e) to be x = (e, x, e). First, observe that X is an
idempotent. Second, x is an arrow in K, (X) since

exe=—eex=—ex=xe=x-e=x

Therefore, it remains to show that X = (e, X, e) satisfies the restriction presheaf axioms.
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Now x - x = x - (e, x,e) = F(e,i, e)(x) = P(x)(x) = x-x = x. Also, given an arrow
(ea, f.ep): (A,ea) — (B, ep) in K, (X), we have

—~—~— —_—~

x-(ea, f.ep) = x- (e, fea,ea) = x- fea = (ea,x- fea,ea) = (ea, (x-ea)f,en)

= (ea,x - frea) = (ea, X0 foeq) = (ea, %, ea) © (ea, fea)
=Xo(ea, fea,ea) =X o0 (ea, f,ep)
Finally, suppose (ep, g,e4): (B,ep) — (A, ea) is another arrow in K, (X). Then
Xo(ep,g,es) = (ea,Xx,ea) o (ep,g,ea) = (ep,X0g,e4) = (ep,goxX"g,e4)
= (ep,g,ea) o (ep, X - g,ep) = (ep,g,€a) 0 X" ¢
= (ep.g.ea) 0 x - (ep, 8. €a)
Iherefore, X defines a restriction structure on 13 making P a restriction presheaf. Hence,

O

X, ~ K, (X),.

<

3.6 An equivalence in Cat

Cockett and Lack [2, p. 252] describes the following chain of embeddings of any restric-
tion category X. First we take X to K, (X) via the functor J (taking objects A to (A, 14)).
Next, by the fact that MTotal and Par are part of an equivalence of 2-categories, there is an

isomorphism ®g (x) taking K, (X) to the restriction category Par(Total(K, (X)), Mk.x)).
p r(X) g gory r(X)

We then compose with the restriction functor Par(y) into Par(TotaTKT(X)), MK, (x)). This
yields the following composite embedding of X:

J Pk, (%) Par(y) . —
X — K,(X) — Par(Total(K, (X)), Mx,x)) — Par(Total(K, (X)), Mx,x))

However, we have already seen that the restriction Yoneda embedding y, gives an embedding
of any restriction category X into the restriction presheaf category X,. The remainder of this
chapter will therefore be devoted to showing that y, is the same embedding described by
Cockett and Lack (up to an equivalence). To do this, we prove two important results; the first
is an equivalence in Cat, and the second is an equivalence in MCat.

Theorem 17. Let C be any category and M a stable system of monics in C. Then
C =~ Total (Par@)r)

Proof. We begin by defining a functor F: C — Total (Parm)r) on objects P € C. Let
F(P) = P, where P: Par(C, M)°® — Set has the following data:

e Objects: If X is an object of Par(C, M), then f(X ) is the set of equivalence classes

P(X) = {[(¥,m, /)] | Y € Par(C, M),m € M, f € PY}

where (Y, m, f) ~ (Z, n, g) if there exists an isomorphism ¢: Z — Y such thatn = mg
and g = f - ¢. Alternatively, we may think of an element in P(X) as a span from X to
*
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X\H/YY[*

where % is some formal object outside of C. Again, we will write (Y, m, f) instead of
[(Y, m, f)] where the context is clear.

e Arrows: If (B,n,g): Z — X is an arrow in Par(C, M) and (Y, m, f) € F(X), then
define

(P(B.n,g))(Y,m, f) = (B xx Y,nm', f - &)
where (B Xx Y,m’, g’) is a pullback of m along g and f - g’ = (Pg")(f).

Z:/ Y‘Xy Y{*

Informally, we will sometimes denote (ﬁ(B, n, g))(Y, m, f)by (Y,m, f)-(B,n,g) for
notational purposes.

The restrigtion oneach (Y,m, f) € ﬁ(X) is to be given by (Y, m, f) = (¥, m, m). This makes
F(P) = P arestriction presheaf.

Now suppose a: P = Q is an arrow in C. Let F (o) = @, whose component at X €
Par(C, M) is defined as follows:

ax(¥.m, f) = (Y.m.ay(f))

(Note that ay(f) € QY). To show that « is natural, we need to show the following diagram
commutes:

PX 5 0x
F(B,n,g)l \Lé(B,n,g)

PZ — 0Z
az

(Y,m, f) | > (Y.m.av(f))

| [

(B xx Yonm', f - g") —— (B xx Y.nm', apxyy(f - &) = (B xx Y.nm',ay(f) - g')

But apx,y(f-g’) = ay(f)- g’ by naturality of , and so @ is natural. It remains to check that
a is total. That is, ax (Y, m, f) = (Y,m, f) for every X € Par(C, M) and (Y, m, f) € PX.
But

ax(¥,m, f) = (Y,m,ay(f)) = V,m,m) = (¥;m, f)
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Hence, F: C — Total (Parm)r) is a functor. (Checking that F' maps identities to
identities and preserves composition is trivial).

The next step is to define a functor G : Total (Par(/CW)r) — C in the other direction. So
let P be an object in Par(C, M), and let G(P) = P, where P has the following data:

e Objects: If X is an object of C (and hence an object in Par(C, M)), then
P(X) ={x|x € PX,X = ly € Par(C, M)}

Note that PX c PX.

e Arrows: If f: Z — X is an arrow in C, then

P(f)=P(Z 1z, f)

To see that P(f) is well-defined, first observe that P(Z, 1z, f) is a function from PX
to PZ. Now let x € PX. Then

P(Z’IZaf)(-x) :x'(Z’lZ9f) ZEO(Z,lz,f) = 1Z

and so P(f) is a function from PX to PZ.

Clearly P is a presheaf on C. To define G on arrows a: P = Q, let G(a) = & and define &
componentwise by

ax(x) = ax(x)

Note that ax(x) € QX since « total implies ax(x) = X = 1y (as x € PX). It is then easy to
check that G is a functor. We now show that F" and G are part of an equivalence of categories.
That is, there exist natural isomorphisms 77: 1z = GF ande: FG = lTotaI(Par(/(:,7M)r)'

First, to define n, we need to give its components np: P — GF(P) for every presheaf P.
This means we need to give natural isomorphisms (n7p)x: PX — PX for every X € C. But

PX = |{(Yom, f) | 0Wm. ) = (X, 1x. 1x). f € PX)} = {(X.1x. /) | f € PX]

So clearly (7p)x defined by (np)x(f) = (X, 1x, f) is an isomorphism (for every f € PX).

To show naturality of np, let P € C be given and suppose g: Z — X is an arrow in C.
Then because (X, 1y, f) - (Z,12,2) = (Z,14, f - g) in Par(C, M) (for any f € PX), the
following diagram commutes:

px % px f— (X, 1x, /)

Pgl lfg:(—»(z,lz,g) I l

PZ—)FZ fg—— (Z,1z,f-8)
(np)z

Therefore, n7p is natural in X for every presheaf P. To show that 7 is natural in P, we need
to show the following diagram commutes for all arrows @: P = Q in C:
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~
~

o a

Q)

np
no

Q

That is, for every X € C, we have (g o a)x = (@o np)x, or

mo)x (@x () = ax(mr)x (1))

forall f € PX. But

ax(me)x(H) = ax(mp)x () = @x(X. 1x. f) = (X. Ly, ax(f)) = (o)x (ax ()

Therefore, 7 is natural in P, and hence n7: 1 = GF is a natural isomorphism.

Likewise, to define &, we need to give components £p: FG(P) = P for every restric-
tion presheaf P: Par(C, M)®® — Set. That is, we need to give natural isomorphisms

(ep)x: PX — PX for every X € Par(C, M). By definition,

PX ={(Y.m,f)|Y €Par(C,M),me M, f € PY, f = 1y}

Now for every (Y, m, f) € FX, there is an arrow (Y, m,1ly): X — Y in Par(C, M) and
hence a function P(Y, m, ly): PY — PX. So define (¢p)x by

(8P)X(Y’m’ f) = f ' (Y’m7 1Y)

To define its inverse (8p);(1, let x € PX sothatx = (Z,n,n) forsome Z € Cand n € M.
This gives an arrow (Z,1z,n): Z — X in Par(C, M) and a function P(Z,1,,n): PX —
PZ. Since

x-(Z,1z,n)=x0(Z,1z,n) =(Z,n,n)o(Z,1z,n) =(Z,1z,n) =14
define (&;p);(1 : PX — F(X) by
(ep)x' (x) = (Z,n,x - (Z,12,m))
To see that (sp);(1 really is the inverse of (&p)yx, first note that for all (Y, m, f) € FX ,
as f = 1y, and so

(er)x' ((ep)x(Vom, 1)) = ()3 (f - Wom, 1)) = (Yom, (f - (Fom, 1y)) - (¥, 1y, m))
= (Yom, - ((Vom, 1y) o (Y, 1y.m))) = (Yom, f - (¥, 1y, 1y))
= (Y,m, f)
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Similarly, for x € PX and x = (Z, n, n),

(ep)x ((er)x' (1) = (ep)x(Zon.x - (Z1z,m)) = (x - (Z,12.m)) - (Z.n, 12)
=X- ((Z,lz,n) o(Z,n, 12)) =x-(Z,n,n)=x-%

=X

Therefore, (ep)x : ;X — PX is an isomorphism. To show naturality of £p in X, we need to
show the following diagram commutes for all arrows (B, n,g): Z — X in Par(C, M):

(ep)x,

PX —= PX
P(Bng)=(-)- (B,n,g)l lP(&mg)

PZ — PZ

(ep)z

Figure 3.1: Naturality of p

Solet (Y,m, f) € FIBX, and let (B xx Y, m’, g’) be a pullback of m along g:

BxyY —53vY
|

N
B—— X

Then the top composite from Ficure[3.1]is given by

f(m1y) o (B,n,g)) = f+ (BxxY,nm',g)

On the other hand, the bottom composite is given by

(ep)z(B xx Y,nm', (Pg)f) = (ep)z(B xx Y,nm', f - (B xx ¥, 1,¢"))
=f-((BxxY.1,8") 0 (B xxY,nm', 1))
=f-(BxxY,nm', g

Therefore, the square in FIGURE commutes and so £p is natural in X.

Finally, to show ¢ is natural in P, let @: P = Q be an arrow in Total (Par(/C,\M)r). We
need to show the following diagram commutes:

Py p

1]

0] e 0
That is, for all X € Par(C, M), (@ o ep)x = (g 0 @)x or

ax((ep)x(Y,m, f)) = (s0)x (@x(Y,m, f))
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for all (Y, m, f) € ;X. But

(e0)x (ax (Yom, £)) = (g0)x (Yom. v () = (e)x (Y. m. ay(f))
= ay(f)- (Y,m, 1y) = ax(f - (¥,m, 1y)) = ax((ep)x Y,m, [))

by naturality of a. Therefore, e: FG = 11, (Par© M), ) is a natural isomorphism and the
following categories are equivalent:
C = Total (Par(C, M),) D

3.7 An equivalence in MCat

The following lemma will be useful in proving our second equivalence.

Lemma 18. Let m: A — B be a monomorphism in some category C, and suppose the
pullback of m along f: C — B exists.

h

DJ—)A
n m
C — B

f

Then n is an isomorphism if and only if f = mg (for some unique g: C — A).

Proof. (=) If n is an isomorphism, define g = hn~!. Such a g is automatically unique since
m is monic.

(<) Suppose f = mg and consider the following diagram.
C 4

N n

pX

S
l (S
B

&

=
a<—

3

:

By definition, nn’ = 1¢, and precomposing by n gives nn’'n = n. But n monic implies
n’n = 1p, and so n is an isomorphism. O

Theorem 19. Let C be a category and M a stable system of monics in C. Then

(C. M) = MTotal (Par(C, M), )

Proof. To show equivalence, we need to give two M-functors (one in each direction). First
consider the functor F: C — Total (Par(C, M)r) defined in THEOREM If we can show
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F takes M\—maps to restriction monics in Par(/Cj\/[)r, then F is an M-functor. (Note that F
automatically preserves M-pullbacks since F is right adjoint to G).

Solet u: P = Q bean M\-map. To show F(u) = u: P = Q is a restriction monic, we need
to show g is an equaliser of 1 o and a: Q = Q for some restriction idempotent . To define

a,let X € Par(C, M) and (Z,n,g) € QX. Now g € QZ, and so by YONEDA, there exists
a corresponding natural transformation (g): yZ = (. By definition of an M-map, there
exists an arrow m, : B — Z in M making the following square a pullback:

yB —— P
.

| l“

yZ =57 @

So define a by its components a : 0X — 0X, where
CYX(Z, n, g) = (B’ nmg,g ' mg)

(Observe that nm, € M as both n,m, € M. Also, g - m, € QB since Q(m,): OQZ — QB).

To see that ax is well-defined (and hence «), we need to show that if mé : B’ — Z satisfies
the same condition as m,, then (B, nmg, g -mg) = (B, nm;,, g mig). This will be true if there
exists an isomorphism ¢: B — B’ such that mg; = mj, o ¢. By definition, ym, and ym;, are
both pullbacks of u along (g). Therefore, there exists an isomorphism ¢ : yB — yB’ such
that ymg = ymj oy. As'y is full and faithful, this implies the existence of an isomomorphism
¢: B — B’ such that my = mj, o ¢. Therefore @ is well-defined.

We now show that « is natural and is a restriction idempotent. To complete the proof that
is a restriction monic, we show u equalises 1 o and a.

1. Naturality of «

To see that « is natural, let (A, m, h): Y — X be an arrow in Par(C, M). We need to show
the following diagram commutes:

0X — 0X
O(Am,h)=(-)- (A,m,h)\L \L@(A,m,h)
QY —— 0Y

Figure 3.2: Naturality square of «

Let (Z,n,g) € QX, and consider Q(A,m, h)(Z,n,g) = (Z,n,g) - (A,m, h). Suppose
(A xXx Z,m’, g’) is a pullback of n along A:
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AXx Z
VN
A zZ
7NN
Y X *
Then Q(A, m, h)(Z,n,g) = (A Xx Z,mn’, g - g'). Applying ey gives
ay(AXx Z,mm’,g-g') = (B', mm'mg.qr, g - (g’mg.g/))
for some B’ and m,.,»: B — A Xx Z. Now since m, € M, we may consider a pullback of

m, along g’

(Axy Z)xz B —~3 B
-

4 m

AXXZT>Z

By the special pasting properties of pullbacks and the fact that the Yoneda embedding pre-
serves all pullbacks, the outer square below is a pullback:

y(A xx B) =2 yB S P
-

.
NN

(A Xx Z) yg,> yZ > O

But since (g) o yg’ = (g - g’) by naturality of the bijection QZ = E(yZ, Q) in Z, there is an
1somorphism ¢ making the following diagram commute:

y(A Xx By —— P

N

y(A Xx Z) m 0

And because y is full and faithful, there is a unique isomorphism d: B’ — A Xx B (with
yd = ¢) making the diagram below commute:
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Now consider the top composite in FIGURE By definition, ax(Z, n, g) = (B, nmg, g -myg)
and so applying Q(A, m, h) gives

(A xx B.mm'ni},, g - (mgg"))
due to the existence of a pullback square below:

A Xx B

A B
N N
Y X *

Therefore, to show that « is natural is to show there is an isomorphism B” — A Xy B making
the following diagram commute:

mm ;,/ \L \(g/lm& ")

Y%AXXBﬁ

Now d certainly makes the left triangle commute since mg.,» = myd (by definition). But it
also makes the right triangle commute since

g (gmgg) =g (g (myd)) =g ((meg”)d) = (g (meg”)) - d

as my, is the pullback of mg along g’. Therefore, as there is an isomorphism making both

triangles commute, « is natural.

2. « is a restriction idempotent

To show « is a restriction idempotent, let X € Par(C, M) and (Z,n, g) € QX . Then

aX(Z7nag) = (Zan’g) ' aX(Za n7g) = (Z’ nag) : (B7 nmg,g : mg)
=(Z,n,g) - (B,nmg,nmg) = (B,nmg, g - my)
=ax(Z,n,g)

by observing that (B, 15, my) is a pullback of n along nm,

B
VRN
B V4
nmi,/ Y[m& Z/ YIEQZ
X X *
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Therefore, « is a restriction idempotent.

3. u: P= Qisan equaliser of o and 1§

To show p is an equaliser of @ and IQ, we need to show uy is an equaliser of ay and 1 ox in
Set (for all X € Par(C, M)). This amounts to showing that:

e [y is injective, and

e (Zn,g) € OX satisfies (Z.n, g) = gx(Y.m, f) = (Y.m, uy(f)) for some (¥, m, f) €
PX if and only if ax(Z,n,g) = (Z,n, g)

To show uy is injective, suppose ux(Y,m, f) = ux(Y’,m’, f’). That is, there exists an
isomorphism ¢: Y’ — Y making the following diagram commute:

Y/
.V \Lgp\uj(f’)
Y

X< m .UY(f)> *

If we can show that this implies f - ¢ = f’, then (Y, m, ) = (Y',m’, f’). Now by naturality

of u, we have uy/(f - ¢) = py(f) - ¢. But by assumption, uy(f) - ¢ = uy-(f’), and so
wy (f - ) = uy (f'). Since w is monic, f - ¢ = f’, and therefore uy is injective.

To prove the second claim, let (Z,n,g) € QX, and suppose ax(Z,n,g) = (Z,n, g). That
is, (B,nmg, g - mgy) = (Z, n, g), or equivalently, m, is an isomorphism making the following
diagram commute:

B

X2 —= *

Since functors preserve isomorphisms and the Yoneda embedding is full and faithful, my is
an isomorphism if and only if ymy is an isomorphism. By Lemma [I8] ym, is an isomorphism
if and only if (g) = u o (h), for some (h): yZ = P.

yB —> P

A
ymgl (h) \Lﬂ
/

yZ =57 @

And by naturality of the Yoneda bijection a(yZ, P) = PZ in P, the condition (g) = puo(h)is
equivalent to the statement that g = uz(h) for some & € PZ. But this is the same as saying
that the following diagram commutes:
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Z
2
VA
X 45— Z —> *

for some h € PZ, or (Z,n,g) = (Z,n,uz(h)) = px(Z,n,h) (where (Z,n,h) € FX).
Therefore, ux is an equaliser of 1 ox and ay in Set, and hence y is an equaliser of 1 0 and a.

This makes u a restriction monic, and so F: C - Total ( Parm),) is an M-functor.

Now for a functor in the other direction, consider the functor G: Total (Parm)r) - C
defined in THeOREM[[7] Again, we will show that G is also an M-functor.

Solet u: P = Q be a restriction monic in Pa((?/\/()r. To show that 1: P = Q is an M-
map, we need to show given any (8): yC = Q, there is an object D, an arrow m: D — C in
M and a (6): yD = P making the following square a pullback:

yD %@ P
|

yml lﬂ
yC o 0

We make two observations. First, D, m and () must satisfy the condition 10 {5) = (6) o ym.
But naturality of the bijection QC = C(yC, Q) in C implies () o ym = (0 -m) (where
6 € OC), and naturality of C(yD, P)= PDin P implies 1o (6) = {fip(6)) (where 6 € PD).
So D, m and (&) must satisfy the following condition (in QD):

fip(6) = 6 - m = (Qm)(6) (3.1)
Second, D, m and (&) must make the following a pullback in Set (for all X € C):

C(X,D) = ypx 2x=%0) py
|

(ym)x =mo (—)l lﬂx

Note this amounts to showing that given any f € C(X,C) and x € PX with (Qf)(0) =
fx (x), there is a unique g € C(X, D) such that:

(Pg)(6) =6-(X,1x,g)=x, and mog=f (3.2)
Now to define D and m, we note that there is a p: Q = P such that up = p and pu = 1p

(as u is a restriction monic). Since & € QC < QC, applying pc: QC — PC to 6 gives an
element pc(6) € PC, and taking its restriction gives

pc(0) = (D,m,m) € Par(C, M)(C, C)

for some D € Cand m: D — C in M. This gives us our object D and arrow m.
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To define 6 € PD, consider the arrow (D, 1p,m) € Par(C, M). As P is a restriction
presheaf on Par(C, M), applying P to (D, 1p, m) gives a function P(D, 1p,m): PC —
PD. So define

§ = P(D,1p,m)(pc(8)) = pc(8) - (D, 1p,m)

We just need to show ¢ € PD, or alternatively, S = (D, 1p,1p). But

5: PC(H) : (D51D9m) :PC(9)° (D91D’m) = (D’m’m)o (D,lD,I’I’l)
=(D,1p,m) = (D, 1p, 1p)

Hence 6 € PD. All that remains is to show that D, m and ¢ satisfy (3.1)) and (3.2).

To see that D, m and § satisfy (3.1)), we substitute and get

() = up(pc(®) - (D, 1p,m)) = uc(pc(®)) - (D, 1p,m) = pc(6) - (D, 1p, m)
= (0 pc(®) - (D, 1p,m) =6 (pc(®) o (D, 1p,m)) = 0 (D, 1p,m)
= (D, 1p,m)(6) = (Om)(6)

using the fact that up = p.
To see that D, m and § also satisfy (3.2)), suppose 8- (X, 1x, f) = (Qf)(0) = pix(x) = ux(x)

for some f € C(X,C) and x € PX. Then applying px to both sides gives
pc(®) - (X, 1x, f) = px (0 - (X, 1x. f)) = px(ux(x)) = x

since pu = 1p. Now the condition ¢ - (X, 1x, g) = x is equivalent to

pc(8) - ((D, 1p,m) o (X, 1x,8)) = pc(0) - (X, 1,mg) = x

(after substitution). Therefore, to show that D, m and § satisfy (3.2)), it suffices to find a
g: X — D such that mg = f (as g will automatically be unique by the fact m is monic).

So consider the composite (D, m,m) o (X, 1x, f) = (E,m’,mf").

XH(/EY;D
NN

If m’ is an isomorphism (with inverse given by (m’)™1), then f” o (m’)~! will give a map X
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to D. Now

0-(E.m',mf")=0-((D.m,m)o (X, 1x.f))

=(0-pc(0) - (X, 1x, f) (definition of pc(6))
=pc(0) - (X, 1x, f) (definition of p)
=px (0 (X.1x. /) (naturality of p)

= px(ux(x)) (by assumption)

= ux (px(ux(x)))

= pux(x)

=6-(X,1x, f) (by assumption)

andso 6 - (E,m’,mf’) =6 - (X, 1x, f). Butsince 8 € QC c QC,

0-(E.m’',mf)=60o0(E,m',mf") = (E,m',mf") = (E,m’,m")

and
0-(X,1x,f)=00(X,1x, ) = (X, 1x, f) = (X, 1x, 1x)

as 0 = (C,1¢, 1¢). Thatis, (E,m’,m") = (X, 1x, 1x) and so by definition, m’ must be an
isomorphism. This gives a unique g = f” o (m’)~! in C(X, D) satisfying the condition

mg=mo f o(m) = (fo(m))om) " =f

Therefore, D, m and § satisfy (3.1) and (3.2). Hence, i: P = Q is an K/(\—map and so G is
an M-functor.

Finally, by the previous theorem, there exist isomorphisms n: 1z = GF and ¢: FG =
1TotaI(Par(/é,7\4),)' Therefore, all naturality squares must be pullback squares and so both

and € must be M-cartesian. Hence,

(C. M) = MTotal (Par(C, M), ) D

We now use the above result to derive the following fact.

Lemma 20. There is an equivalence of restriction categories
L: Par (C, M) — Par(C, M),

In addition, this equivalence L makes the following diagram commute:

Par(C. M) ———2__ Par (C, M)
Par(C, M),

That is, y, = L o Par(y).
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Proof. Since Par and MTotal are 2-equivalences, the following is an isomorphism of cate-
gories:

MCat((C, M), MTotal(Par(C., M),)) = rCat(Par(C, M), Par(C, M), )

Define L to be the unique transpose of F': (E, M\) — MTOtaI(Pa(C,\M),), where F is

the M-functor from THEOREM Likewise, define y,: (C, M) — MTotal (PaY(TM)r) to
be the unique transpose of y,. Explicitly, y, is the unique map making the diagram below
commute:

C -----= Total (Par(C, M), )

| [

Par(C, M) —— Par(C, M),

Now if the following diagram commutes in MCat, then y, = L o Par(y).

(C, M) - > (C.M)

o

MTotal (Par(C, M),)
But the above diagram will commute if the following diagram commutes in Cat:

C Y s C
(€. M),)

Total (Par(C, M),

So let A € C. Then by definition, y,(A) = Par(C, M)(—, A). On the other hand, FyA =
F(C(-, A)), which is defined on objects B € Par(C, M) by

F(C(=, A)(B) = {[(Y,m, )] | Y € Par(C, M), m: Y - B e M, f € C(Y, A)|

Alternatively, the elements of F(C(—, A))(B) are equivalence classes of the form
Y
"N\
B A

Clearly F(C(-, A))(B) = Par(C, M)(B, A) = (y;A)(B). Likewise, if (Z,n,g): C —> B
is an arrow in Par(C, M), then F(C(—,A))(Z,n,g) = (=)o (Z,n,g) = (y,A)(Z,n,g).
Therefore, y,(A) = FyA.
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Now let i: B — C be an arrow in C, so that yh: C(—,B) = C(—,C) is defined com-
ponentwise by (yh)p = h o (-=). Applying F to yh gives Fyh: Par(C, M)(—-,B) =
Par(C, M)(-, C), whose component at D € Par(C, M) is given by

(Fyh)p(Z,n,8) = (Zn,(yh)z(8)) = (Z,n, hg) = (B, 15, h) © (Z,n, )

(for some (Z,n,g) € Par(C, M)(D, B)). But y,(h) = y,(B, 1g, h), whose component at
D € Par(C, M) is also given by (y,(B, 1p, h))D = (B, 1p, h) o (=). Therefore, (Fy)(h) =
y(h), and so Fy =y, in Cat. Hence, y, = L o Par(y). m]

3.8 An embedding of restriction categories

Recall the following Cockett and Lack embedding of any restriction category X:

Pk, (x) Par(y)
X —> K, (X) — Par(Total(K, (X)), M, x)) — Par(Total(K, (X)), M, x))

However, we have seen that the restriction functor y,: X — ir is also an embedding of X.
We now show that the Cockett and Lack embedding and the restriction Yoneda embedding
are equal up to an equivalence (by using the fact L: Par (6, M) — Par(C, M), is an
equivalence). But first, we need the following lemma.

Lemma 21. Suppose X and Z are restriction categories, and H: X — Z is a fully faithful
restriction functor. Then the following diagram commutes up to isomorphism:

i

%M

That is, y, = ((—) o HOp) oy,oH.

Proof. Let A € X, sothaty,(A) = X(-, A) and ((~)oHP)oy,oH(A) = Z(H(-), HA). But

since H is fully faithful, 84: X(B, A) = Z(H B, H A) for all B € X, and this isomorphism is
clearly natural. As the following square commutes (for all f: A — B in X):

X(—A) “ Z(H-L.HA) jyip o

fo (—)\L \LHfO =) l l

X(~.B) 57 Z(H(-), HB) fh—— Hfh=HfoHh

it follows that y, = ((=) o H) oy, o H. O
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Theorem 22. The restriction Yoneda embedding y, is the same embedding given by Cockett
and Lack (up to an equivalence). That is, the following diagram commutes up to isomor-

phism:
Par(y) o qy \

Par C, M —> Par(C M), —> X

op
(=)o ‘I)Kr(X)OJ

where C = Total(K, (X)) and M = Mk, x), and the composite ((—) o ((DK,(X) o J)Op) oL

is an equivalence.

Proof. Consider the following diagram:

Dk, (x)° Par(y)

X % Par(C, M) ——— Par(C M)

yr\L l}’r \LL
X, «— Par(C, M), =—— Par(C, M),

op
()0 (@K, 07)

IR

The left square commutes up to isomorphism by LEMMa and the right square commutes
by LEMMA Also, ((—) o ((DKr(X) o J)Op) o L is an equivalence since L and (—) o J are

both equivalences, and @k, (x) is an isomorphism of categories. m]
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Free cocompletion

Itis a well-known fact that the Yoneda embedding exhibits the presheaf category C as the free
cocompletion of C (for C small). That is, for any cocomplete category &, the functor (—) o
y: Cocts(C, &) — Cat(C, &) is an equivalence of categories, where Cocts(C, &) denotes
the category of cocontinuous functors from C to & and their natural transformations. The
aim of this chapter will be to present an analogue of the above phenomenon for restriction
categories. To do this, we require a notion of cocompleteness with respect to M-categories
and restriction categories.

4.1 M-categories and their free cocompletion

To motivate our definition of cocomplete M-category, recall that the presheaf category C-=
[C°P, Set] is cocomplete for any small C. It therefore makes sense that for any M- -category
(C, M) (with C small), the M-category (C M) ought to be cocomplete. However, (C M)
has the additional property of belng a class1ﬁed M-category (see ProposiTiON 2.5 from [3]]).

That is, the inclusion C — Par(C, M) has a right adjoint. This leads to the following
definition.

Definition 23 (Cocomplete M-category). An M-category (C, M) is cocomplete if

o Cis cocomplete, and

e the inclusion E: C — Par(C, M) defined on objects by E(A) = A and on arrows by
E(f) = (14, f) preserves colimits.

Since M-functors are functors of their underlying categories, it makes sense to define a
cocontinuous M-functor as follows.
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Definition 24 (Cocontinuous M-functor). An M-functor G: (C, M) — (D, N) is cocon-
tinuous if the underlying functor UG: C — D is cocontinuous.

We denote by Cocts MCat, the 2-category of cocomplete M-categories, cocontinuous M-
functors and M-cartesian natural transformations. Now given M-categories (C, M) and
(D, N) (with (D, N') cocomplete), we would like to show that the functor

(=) oy: Cocts MCat((C, M), (D, N)) — MCat((C. M), (D, N))
is an equivalence of categories. The proof will require the following three lemmas.

Lemma 25. Let X be a restriction category and L: 1 — UX a functor whose colimit ex-
ists and the injections (p;: LI — colim L);cy are total. Suppose €: L = L is a natural
transformation such that g; is a restriction idempotent for every I € L. Then the unique map
0: colim L — colim L making the following diagram commute (for each I € 1):

LI L} colim L

A

LI T} colim L

is a restriction idempotent.

Proof. To show that 6 is a restriction idempotent, we just need to show 0 satisfies the same
property as 6 (by uniqueness). That is, 8 o p;y = py o £;. But

Qopr=profop =pjopoE[=pIOPIOE =PIOE=P[OE

since py is total for every I € I and ¢ is a restriction idempotent. Therefore, 6 is a restriction
idempotent. O

Lemma 26. Suppose (D, N) is a cocomplete M-category, H,K : I — D are functors, and
a: H = K is a natural transformation such that for each I € Land f: I — J, we have

e o;: HI — KI € N, and

HI s Hy
o , ,i" la , is a pullback square.

KI ——> KJ

Let (colim H, pj)jer and (colim K, g;)jer be colimiting cocones, and let 6: colimH —
colim K be the unique map making each square of the following form commute:

HI p% colim H

| I

KI T) colim K
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In this situation, the map 0 is in N and each of the above squares is a pullback.
Proof. Applying the inclusion E to the following commuting square

HI p% colim H

W

K1 T} colim K

we get the following commutative diagram in Par(D, N') (for every I € I):

1, .
HI % colim H

(l,dz)l i(lﬁ)

KI —— colimK
(Lgr)

Now there is a natural transformation 8: EK = EH whose component at [ € I'is (ay, 1).
To see this defines a natural transformation, let f: I — J be an arrow in I. We require the
following square to commute:

k1 LR kg

ﬁ1=((¥1,1)l \L(‘IJJ)
HI HJ

(LHf
Butas (HI,ay, Hf) is a pullback of a; along K f (by assumption), we have

(1L,Hf)o(ap, 1) =(ar, Hf) = (ay, ) o (1,Kf)

Hence, B: EK = EH is a natural transformation with 8; = (ay, 1). Since E(colimK) =
colim EK and E(colim H) = colim EH, the universal property of colimit induces a unique
map (n,g): colimK — colim H in Par(D, N') making the top square below commute for
every [ € I:

KI Lq’)) colim K

(al,l)l i(n,g)

1, .
HI ﬂ) colim H

(Ltn)l i(lﬁ)

KI —— colim K
(1,q1)

Figure 4.1: Commuting squares in Par(D, N)

The composite (1,aj) o (a7,1) = (a7, aj) is the component of a natural transformation
e: EK = EK atI. But since (aj,ay) = (aj,ay) and each of the maps (1, g;) is total,
the composite (1, 6) o (n, g) = (n, 6g) must be a restriction idempotent (by Lemma 25)). In
particular, this implies n = 6g since (n,0g) = (n,0g) = (n,n).
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Now stacking the bottom square on top this time, we get the following diagram, where the
composite (n, g) o (1, 0) is the unique arrow making the diagram commute:

1, .
HI ﬂ) colim H

(l,az)l l(lﬁ)

1, .
KI (—q’)> colim K

(al,l)l \L(n,g)

HI —— colim H
(lspl)

The composite (a7, 1) o (1,@;) = (1,1) is the component of a natural transformation
v: EH = EH at I, and is clearly a restriction idempotent. Since (1,1): colimH —

colim H makes the outer square commute, we must have (n, g) o (1,6) = (1, 1) by unique-
ness. That is, if (B, n’, §") is a pullback of n along 6,

N

colim H A

SN N

colim H colim K colim H

then n’ must be an isomorphism making the following diagram commute:

B
|
|

n’ gy’
n/
~

colim H ﬁ colim H ? colim H
A quick summary of the results so far gives
e 9 =nb'(n")"" (by pullback), and
e g0'(n’)~! = 1 (by commuting triangle), and

e Og = n (since (n, g) is a restriction idempotent)

But n0’(n’)"'g = 6g = n implies &'(n’)"'g = 1 (as n € N). Therefore, g must also be an
isomorphism (and so g~' € N). Hence, as @ = ng~' and n, g~! € N, we conclude that 6 is
in N. This proves the first claim of the lemma.

To prove the second part of the lemma, observe that the following diagram commutes:

A

I

colim K ? colim H —1> colim H
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(since #g = n and g is an isomorphism). That is, (n, g) = (6, 1). Replacing (n, g) with (6, 1)
in Ficure 4.1 gives the following commuting diagram for all / € I:

KI —ql)> colim K

(mJ)\L \L(G,l)

HI ﬁ colim H
DI

The bottom composite is (1, py) o (g, 1) = (ay, pr), and since this is required to be equal to
(0,1) o (1, qr)

B
2

colim H

/\/\

colim K colim H

we must have B = HI, 8” = ay, q; = py, and so the following square must be a pullback:

HI L) colim H

.
o]
KI T} colim K

(forall I €1). O

Lemma 27. Let (D, N') be a cocomplete M-category. Suppose functors H,K: 1 — D and
natural transformation «: H = K satisfy assumptions from LEmma |26|so that the following
is a pullback for every I € 1

HI L) colim H

S

KI T} colim K

and 6 € N. Let n: X — Y € N and suppose there exist maps x: coimH — X and
y: colim K — Y such that the following outer square is a pullback for all I € 1 and the right
hand square commutes:

HI 25 colimH —*3 X

oL

KI T) colim K T> Y

Then the right hand square is also a pullback.
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Proof. Applying the inclusion E: D — Par(D, N), we get the following diagram:

1, . ,
K1 (—q’)> colim K Ly)) Y

(al,l)l \L(O,l) \L(n,l)

1, ) ,
HI ﬂ) colim H M) X

-
(Lm)l (I,G)l \L(l,n)

Kl —— colimK —— Y
(1,qr) (1,y)

where all squares commute, except with the possible exception of the top right square. Fo-
cusing entirely upon this top right square, we see that the bottom composite is given by
(1,x) o (6,1) = (0, x), and the top composite is (n, 1) o (1,y) = (¢, x") (where (Z, 6, x")
is a pullback of n along y). So if we can show that this square commutes (that is, " = 6 and
x” = x), then the result follows.

Now both (6, x) and (n, 1)o (1, y) are maps out of colim K, and therefore, if (8, x)o (1, g;) =
(n,1)o(1,y)o(1,qp) for all I €I, then they must be equal.

(6,x)
1, . —3
KI M} colim K X

(n,1) o (1,y)
By commutativity of the top left square, we have

(0,x)o(1l,q1)=(,x)o(1,p;)o(as,1)=(,x)o(ay,pr) = (a, xpr)

But
(n,1) o (I,y)o(1,q97) = (n,1) o (1, yqr) = (ar, xpr)

since by assumption, the following square is a pullback square:

xp1

HI — X
.
(ZI\L \Ln
KI ——=Y
Therefore, the top right square commutes in Par(C, N') and
colimH — X
-
A
colim K — Y

is a pullback. O

We are now in a position to prove the following theorem.
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Theorem 28. Let (C, M) and (D, N') be M-categories, and suppose (D, N') is cocomplete.
Then

(=) oy: CoetsMCat((C, M), (D, N)) - MCat((C, M), (D, N))

is an equivalence of categories.

Proof. We begin by showing that (—) oy is essentially surjective. Recall that
(=) oy: Cocts(C,D) — Cat(C,D)

is an equivalence of categories, giving us a cocontinuous functor F: C — D such that
Fioy = F for every F: C — D. Therefore, if we can show F, is an M-functor for every
M-functor F, then (—) oy is essentially surjective.

1. F) takes K/(\-maps to N-maps

Let u: P — Q be an M\—map. Since every presheaf may be written as a colimit of repre-
sentables, let Q = colim(ynmp: el Q — C), where el Q is the category of elements of Q and
no: elQ — C is the obvious projection map. Now let K = ymp, so that our colimiting
cocone becomes (colim K, gr)jee1 o (Where each g is an arrow of the form yD; — Q for
some D; € C). By definition of an //\/(\—map, for every I € el Q, there is some m;: C; — Dy
in M making the following square a pullback:

ye ——— P
-

o | l“

KI=yD — Q

This gives a functor H: elQ — C, which on objects takes I to HI = yCy, and on arrows
takes f: I — J to the unique map H f making the following diagram commute and the left
square a pullback (by the pasting properties of pullbacks):

We can also define a natural transformation a: H = K whose component at [ is a; = ym;.
Since colimits in presheaf categories are stable under pullback, (P, pr)jeeio 1s a colimiting
cocone since (Q, gy) is, and so we may write P = colim H.

Recalling that the functor F, preserves colimits and that Fj oy = F, applying F; to the above
diagram yields:
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Fi(pr)
F/_\
Fc, <y F, S F\P = colim FH

F!(QI)EF’”I\L FmJ\L \LF!(ﬂ)

FD,; W FD_] ﬁ FvQ ECOIIH’IF!K

\V(QJ/(

Fi(qr)

Figure 4.2: Result of applying F

where fc: C; — Cj and fp: Dy — Dy are maps in C corresponding to f in el Q (and
(F\P, Fi(pr)) and (F\Q, Fi(qr)) are colimiting cocones). Since

HI =yCy ey yCy

a
yml\L ime

KI = yD] H yD J
yfp
is a pullback, the following must also be a pullback:

CIJL Cy

m,l i’"’

Dy —— Dy
fp

and is in fact an M-pullback. Therefore, as F is an M-functor, the left square in Figure 4.2]
must be a pullback, and Fm; € N forall I € el Q. Hence, as Fi(u): colim F{H — colim I\ K
is the unique map making Ficure .2 commute, Fi(u) € N by LEmma

Observe that by the same lemma, the right hand square in FIGURE is also a pullback for
all J € el Q, which means that F) preserves pullbacks of the form:

yCi —— P
.
S
yD; —— Q
forall / eelQ and u € M.

2. F) preserves /T/(\-pullbacks

Let P, P’,Q, Q' be presheaves on C and u, ' be /T/(\—maps. Suppose the following is an
M-pullback:
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p_s p

L)

Qr—Q>Q'

Then for all 1 € el Q, all squares below are pullbacks:

yC;=HI 25 p 2y p
1 -
N
yDr=KI ——= Q —— ¢’
Applying F, to the above diagram gives
Fc; 200 pp 200 g
_I
szl £ (#)\L \LFz (W) eN
/
FD; —— FiQ g 1310

where Fi(u) € N. In particular, as F) preserves pullbacks of the form

yCi —— P

| I

YDIT>Q

both the left hand square and the outer square are pullbacks. Therefore, by LEmma
the right hand square must also be a pullback and so F preserves M-pullbacks. Hence,
F: (C,M) —» (D, N) is an M-functor and so (—) oy is essentially surjective.

For the final part of the proof, we need to show () oy is full and faithful. That is, suppose
F,G: (C M) — (D, N) are cocontlnuous M-functors. Then for all M-cartesian a: Fy =

Gy, we must show there is a unique M-cartesian @: F = G such that @ o y = a. But this
condition holds if the following statement is true: for all natural transformations @: F = G,

if@oy: Fy = Gy is M-cartesian, then «a is M -cartesian.
[To see this, observe that @ o y: Fy = Gy being M-cartesian implying « is M -cartesian

amounts to the statement that the following is a pullback in Set:

MCat(F,G) ~°% McCat(Fy, Gy)
Nat(F, G) w Nat(Fy, GY)

However, because (—) o y: Nat(F, G) — Nat(Fy, Gy) is an isomorphism (by the universal
property of the Yoneda embedding), this implies the restriction of (—) o y to MCat(F, G)
and MCat(Fy, Gy) must also be an isomorphism].
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So suppose F,G: (E, M\) — (D, N) are cocontinuous M-functors, and @: F = G is a
natural transformation such that @ o y: Fy = Gy is M-cartesian. That is, for any m: A —
B € M, the following square is a pullback:

FyA <24 Gya

|
F ym\L \LGym

FyB —— B
B Gon @Y
We would like to show for any u: P = Q € M\, the following square is also a pullback

FP -5 Gp

Fu| Jon

FQ — GQ
@Q
Figure 4.3: Required to show above square is a pullback

where both Fu and Gu are in N (as F, G are M-functors). We saw previously that writing
Q = colimymp = colim K makes the left square below a pullback

FHI - colimFH = FP —*y GP

Fm,f Fu| |

for every I € el Q (as F is cocontinuous). Therefore, by LEmma [27] if we can show that the
outer square is also a pullback, then the square on the right will be a pullback. So consider
the following diagram:

FHI =% aur %P s Gp = colim GH

.| -
FmIJ/ Gm]J/ J/G,u

FKI — GKI —> GQ = colim GK

akr=(ay)p;

By assumption, the left square is a pullback, and so is the right square; therefore, the outer
square must be a pullback. But @p o Fp; = Gp; o @y and @g o Fq; = Gqp o aky as the
following square commutes

FHI -2y GHI

F PI\L \LGPI

FPE—p>GP
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for each I € el Q (by naturality of @). This shows the naturality square in FIGURE is a
pullback for each u: P = Q in M, and completes the proof that (—) oy is full and faithful.
Hence,

(=) oy: Cocts MCat((C, M), (D, N)) — MCat((C, M), (D, N))

is an equivalence of categories. O

4.2 Restriction categories and their free cocompletion

To motivate our definition of cocomplete restriction category, c0n51der the split restriction
category Par(C, M). Applying y, gives Par(C, M), = Par(C l\/() which ought to be
cocomplete with respect to restriction categories (in the same way C is cocomplete).

So what properties does Par(C M) have? First, it is a split restriction category, with
Total (Par(C M)) C. That is, its subcategory of total maps is cocomplete. Also, by

ProposiTion 2.5 of [3]], the M-category (C M) is classified, which means Par(C M) is a
classified restriction category. In other words, the inclusion C — Par(C M) has a right
adjoint. We therefore give the following definition.

Definition 29 (Cocomplete restriction category). A restriction category X is cocomplete if:

o X is split,
e Total(X) is cocomplete, and
e the inclusion Total(X) — X preserves all colimits

Example 30. Consider again the restriction category of sets and partial functions (Pfn)
where the restriction on each arrow f: A — B is given by the idempotent f: A — A defined
as follows:

if f(a) is defined at a € A
fla) = undeﬁned otherwise

Clearly Pfn is a split restriction category and Total(Pfn) = Set is cocomplete. Also, the
inclusion Set — Pfn has a right adjoint and so Total(X) — X preserves all colimits.
Therefore, Pfn is a cocomplete restriction category.

The following is an example of a split restriction category which is not cocomplete despite
the fact that its subcategory of total maps is cocomplete (as the inclusion fails to preserve all
colimits).

Example 31. Consider the split restriction category Par(Ab, M), where Ab denotes the
category of abelian groups and M is a stable system of monics in Ab containing all zero
maps and the diagonal A: G — G X G,g — (g,g). Clearly Par(Ab, M) is split and
Total (Par(Ab, M)) = Ab is cocomplete. Let Z denote the group of integers under addition
and O the trivial group. Now the inclusion Ab — Par(Ab, M) takes the coproduct (Z &
Z,11,12) in Ab to the diagram
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7 (111)} 7a7 E(llz) 7

in Par(Ab, M) (where 11,15 are the coproduct injections). However, (Z e Z,(1,11), (1, 12))
is not a coproduct in Par(Ab, M) as both the maps (0,0) and (A, 0) make the following
diagram commute:

7 (L) \ 77 < (L) 7

\O’O/)‘l \L(A,O)
(0,0) (0,0)
0

Therefore, Par(Ab, M) is not cocomplete as a restriction category.
Definition 32 (Cocontinuous restriction functor). A restriction functor F: X — Y is cocon-

tinuous if Total(F): Total(X) — Total(Y) is cocontinuous.

Denote by CoctsRCat the 2-category of cocomplete restriction categories, cocontinuous re-
striction functors and restriction transformations. We would now like to show the restriction
Yoneda embedding y,: X — X, exhibits the restriction presheaf category X, as the restric-
tion free cocompletion of X.

Theorem 33. Let & be a cocomplete restriction category. Then the functor
(=) o y,: CoctsRCat(X,, &) — rCat(X, &)

is an equivalence of categories.

Proof. We begin by proving the following equivalence
CoctsRCat(Par(a, /T/(\), &) ~rCat(X, &)

(where C = Total(K, (X)) and M = Mk, x)). We know from Proposrrion [6] that (-) o
J: rCat(K,(X),&) — rCat(X, &) is an equivalence of categories, and also that () o
Ok, (x): rCat(Par(C, M), &) — rCat(K (X) &) is an isomorphism. Therefore, if the

functor (-) o Par(y): CoctsRCat(Par(C M) &) — rCat(Par(C, M), &) is an equiva-
lence, then the following composite will also be an equivalence:

___ (=)oPar(y) (=) 0Ok, (x) (=)oJ
CoctsRCat(Par(C M), E) » rCat(Par(C, M), &) +» rCat(K,(X),E) » rCat(X, &)

Now the fact & = Par(D, N) (where D = Total(&) and N contains the restriction monics
in &) implies there is an isomorphism

CoctsRCat(Par(E, M\), &) = CoctsRCat(Par(E,/V(\), Par(D,N))

But since Par: MCat — rCat; and MTotal: rCat;, — MCat are 2-equivalences, the
following is also an equivalence:

cOctsRCat(Par(E, M), Par(D, N)) ~ CoctsMCat((E, M), (D, N))

Now consider the diagram below:
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(=) o Par(y)

CoctsRCat(Par(C, M), &) s rCat(Par(C, M), &)

—_ (—) o Par(y)
CoctsRCat(Par(C, M), Par(D, N)) - rCat(Par(C, M), Par(D, N))

:i Tz

Cocts MCat((C, M), (D, N)) —=— MCat((C, M), (D.N)

Therefore, (-) o Par(y): CoctsRCat(Par(C M) &) — rCat(Par(C, M), &) will be an
equivalence if (=) o y: CoctsMCat((C M) (D, N)) - MCat((C M), (D, N)) is an
equivalence. But this is true by Taeorem 28] and so

CoctsRCat(Par(C, M), &) ~ rCat(X, &)

Recall from the previous chapter that both the functors L: Par(C M) - Par(C M), and
(=)o (Pk, xy0 J)® : Par(C M), — X, were equivalences. Therefore, the following com-
posite is also an equivalence:

CoctsRCat(ir, &)
J) o (D)o Pxrx)0))
CoctsRCat(Paﬁé,\M)r, &)
J(-)oL
CoctsRCat(Par(E, /T/(\), &)
=) o Par(y)
rCat(Par(C, M), &)
() o Ok, (x)
rCat(K,(X), &)
J=)od
rCat(X, &)

But by Taeorem [22] there exists an isomorphism between y, and the following composite:

Dk, (X) Par(y) (=)o (D(I)f X) (=)ot _

X —> K,(X) — Par(C, M) — Par (C, M) —> Par(C, M), — K,(X), — X,
Hence, (—) oy, : CoctsRCat(ir, &) — rCat(X, &) is an equivalence of categories. O

A consequence of the above result is that for any cocomplete restriction category & and
restriction functor H: X — &, there is a unique cocontinuous restriction functor H;: X, —
& (up to isomorphism) such that Hyoy, = H
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ir # & =Par(D,N)
(=) oJP
K, (X),
() oD x;
Par(C, M),
~
Par(a, /W)
Par(yy|
Par(C, M) "
Pk, x>
K, (X)
A
X

yr

We say that the restriction Yoneda embedding exhibits the restriction presheaf category X,
as the restriction free cocompletion of X.



Conclusion

We introduced the notion of restriction presheaf and saw that the category of restriction
presheaves had a canonical split restriction structure. We then defined a notion of cocom-
pleteness in rCat, and showed that the restriction Yoneda embedding y, exhibited the re-
striction presheaf category X, as the free cocompletion of X (for small X).

A possible continuation of this work would be to extend this to involve join restriction cate-
gories. Recall that a join restriction category is a restriction category X such that for any two
objects A, B € X, the join of any compatible subset S C X(A, B) exists and satisfies certain
axioms [3)]. In the same way we defined restriction presheaf, cocompleteness and free co-
completion of restriction categories, we may repeat the same process but for join restriction
categories. Understanding colimits in the join restriction setting will give us another way of
understanding the meaning of assembling local pieces of data.
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Conclusion
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