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Abstract

Dynamic community detection has been an efficient method to track the evolution of

communities in dynamic social networks, which can be treated as an optimisation problem.

Since evolutionary clustering (EC) was first proposed to optimise temporal data clustering,

many EC-based algorithms have been developed to detect evolving community structure

in dynamic social networks. However, there are two main drawbacks with existing EC-

based algorithms, which limit the efficiency and effectiveness of dynamic community

detection: the classic operators cannot efficiently search for community structures and

the general network presentation with an integer vector results in a limited search space.

For this study, we first review recent literature regarding dynamic community detection

using EC-based methods, and then develop two EC-based algorithms to efficiently detect

evolving community structure by designing a migration operator in tandem with genetic

operators and adopting a genome matrix-based representation for search space expansion.

Compared with state-of-the-art baselines, our algorithms perform better in terms of

clustering accuracy and temporal smoothness on both synthetic and real-world networks.
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1
Introduction

1.1 Motivation

In the real world, we are surrounded by complex systems, which are composed of different

entities and complicated interactions between them. For example, the electric power

transmission systems supply our modern technologies with energy [1]. Coherent activities

of neurons in our brains help us to comprehend the world [2]. Communications via mobile

phones help us to get closer to each other [3]. However, it is not easy to understand

network behaviours from these complex systems. As such, network science has emerged

as a field to meet the demand to study complex systems where entities are represented as

nodes and interactions between entities are represented as edges.

Some structural features of complex networks such as small-world property [4, 5]

and power-law degree distribution [6, 7], have drawn significant attention. Another

1



2 INTRODUCTION

common structural feature, community structure [8], also helps to understand the inher-

ent functions of these systems. Community structure represents the network partition

which naturally divides densely connected nodes into groups, and those groups are called

communities. For example, in a protein-protein interaction network, proteins with the

same function are inclined to be grouped together [9]. In the collaboration network of the

Santa Fe Institute where edges represent co-authorships between researchers in at least

one article, researchers are clustered into communities in accord with disciplinary lines

[8]. In online social network sites like Facebook, Twitter, Instagram, and LinkedIn, users

sharing common friends are likely to form communities [10, 11]. Therefore, community

detection can help us to infer the function of proteins, analyse collaborations between re-

searchers, and discover potential friends on social media. In addition to these applications,

in marketing, community detection helps to design efficient product recommendation

systems through identifying customers with similar interests or purchasing habits [12].

Communities are also used to create data structures so that query tasks can be handled in

a timely manner [13, 14].

The temporal dimension of networks conveys highly valuable information such as

human mobility [15] and collective behaviours [16], which enables us to better understand

the reality [17]. Early studies on community detection initially focused on static networks,

such as the Zachary’s karate club network [18], the dolphin social network [19], and

the American college football network [8]. However, for most networks derived from

complex systems, structural features change as nodes/edges are added or removed. For

example, changing collaborators for different projects in scientific collaboration networks

brings about the change of communities [20]. Similarly, communities of users in mobile

subscriber networks evolve due to some events like subscriber churn and handset adaption

[21]. Discovering useful evolving patterns of community structures can help to understand

the expansion and shrinking of research communities and help operators to identify the

subscribers who may leave or join. Therefore, dynamic community detection has become

a hot topic in network science [22–27].

The challenges of dynamic community detection are threefold. The first challenge is

to detect a high-quality community structure at each time step, which requires that nodes
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are densely connected within communities and sparsely connected between communities.

The second challenge is to ensure that the detected community structure of each network

snapshot is close to the real community structure over time. The third challenge is to take

into account the temporal evolution of communities. Faced with these challenges, finding

a proper way to deal with dynamic community detection has been a daunting task.

Evolutionary Clustering

A Dynamic Network with Evolving Communities 

… …

Community 2 Community 3Community 1 … 

t−2 t−1 t t+1 t+2

A Dynamic Network

t−2 t−1 t t+1 t+2

… …

FIGURE 1.1: Dynamic community detection via evolutionary clustering

Evolutionary clustering (EC) [28] was proposed as an efficient framework for cluster-

ing temporal data, and it can be used to cluster nodes in dynamic networks into evolving

communities (see Figure 1.1). EC emphasises the temporal smoothness of clusters which
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suggests no significant change of clustering in a short period. Although EC-based ap-

proaches can efficiently deal with dynamic community detection as an optimisation

problem, the following two drawbacks limit their effectiveness and efficiency.

• The classic operators such as crossover and mutation, cannot avoid the case that

there often exists an inter-community edge between nodes and most of their neigh-

bours. Hence, the overall quality of the new candidate solutions is not satisfactory.

• A popular network presentation based on an integer vector sets every existing edge

between nodes within communities to be an intra-community connection. The

quality of communities to optimise is evaluated under this setting, which limits the

search space.

Thus, we consider developing novel EC-based algorithms to address these two drawbacks

and achieve better clustering accuracy and temporal smoothness in dynamic community

detection.

1.2 Contributions of the Work

To solve the challenges facing dynamic community detection, we develop new EC-based al-

gorithms to solve dynamic community detection as a multi-objective optimisation problem.

The contributions of this thesis include:

• designing a migration operator in tandem with genetic operators to ensure that

nodes and most of their neighbours are grouped together, which improves the search

efficiency for optimal solutions;

• evaluating the quality of the community structure of each network snapshot directly

from genome matrix-based representation to expand the search space;

• applying different methods to generate the initial population;

• conducting a series of experiments on synthetic and real-world datasets to demon-

strate the superiority of our proposed methods in terms of clustering accuracy and

temporal smoothness.
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1.3 Organisation of the Thesis

The rest of this thesis proceeds as follows. Chapter 2 reviews the recent studies on

dynamic community detection using EC-based methods. Chapter 3 proposes our EC-based

algorithm by integrating a migration operator and applying the genome matrix-based

representation. The performance of the proposed algorithm is evaluated and discussed

through conducting experiments on synthetic and real-world networks. Based on our

proposed algorithm in Chapter 3, Chapter 4 proposes an improved algorithm by adjusting

the population generation strategy and employing a more efficient crossover operator.

Finally, Chapter 5 presents a conclusion to this thesis and outlines potential directions for

future work.
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2
Literature Review

Dynamic community detection has been one of efficient methods to study dynamic patterns

of networks. The literature on dynamic community detection is reviewed in this chapter.

Section 2.1 defines the community structure. Section 2.2 first elaborates on the temporal

smoothness framework to uncover the evolving community structure, then introduce

widely used metrics for dynamic community detection, and finally review recent work on

EC for dynamic community detection.

2.1 What is Community Structure?

There is no universal definition of community [24]. In principle, communities are clusters

within which nodes are densely connected and between which nodes are sparsely con-

nected. As a structural feature of complex networks, community structure is the partition

7



8 LITERATURE REVIEW

of networks into communities.

According to the internal and external degrees of nodes within communities, commu-

nities can be classified into two categories: strong communities and weak communities

[29, 30]. The internal degree of a node is the number of edges that connect the node

to other nodes within the same community, and the external degree of a node is the

number of edges that connect the node to nodes belonging to other communities. A strong

community is a subgraph with the internal degree exceeding the external degree for each

node. A weak community is a subgraph with the total internal degree of nodes exceeding

the total external degree.

Communities can also be divided into two categories, depending on the belonging

of nodes. The first category is disjoint communities where each node is allowed to join

only one community. For example, communities in football networks are disjoint for a

football team is allowed to join only one league [8]. The second category is overlapping

communities where a node can belong to multiple communities. For example, communities

in social media networks are overlapping because a user can join different groups in

social media [31]. Additionally, communities are hierarchical if communities can be

further divided into sub-communities [32–34]. This thesis focuses on disjoint community

detection in dynamic networks.

The community structures in dynamic networks can be modelled as follows. A

dynamic network G is a sequence of network snapshots which can be presented as

G = {G1, G2, ..., GT}. Each snapshot Gt = (Vt , Et) represents a temporal structure of G

at time step t, in which Vt and Et are a set of nodes and a set of edges at time step t,

respectively. Given a network partition Ct =
�

C1
t , C2

t , ..., C k
t

	

, it denotes a community

structure of G at time step t, in which each pair of communities from k communities in

Ct , C i
t 6= ; and C j

t 6= ;, do not share any nodes, i.e., C i
t ∩ C j

t = ;.

2.2 Dynamic Community Detection

In this section, we first introduce a popular framework, temporal smoothness, for dynamic

community detection. Then, we review recent studies on EC for dynamic community
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detection. Finally, we summarise the drawbacks of existing EC-based algorithms.

2.2.1 Temporal Smoothness

The structure of dynamic networks changes over time as nodes join or disappear and edges

form or fade, which causes the evolution of communities. To reveal evolving patterns of

communities in dynamic networks, a framework known as temporal smoothness [28] has

been proposed, which emphasises no great changes of clustering within a short period.

Through a linear combination of two conflicting criteria, snapshot cost (SC) and temporal

cost (TC) [35], a cost function is defined as

Cost= α · SC+ (1−α) · TC, (2.1)

in which SC evaluates the quality of a community structure at the current time step and

TC measures the similarity between community structures at the current and previous

time steps, i.e., Ct and Ct−1. Additionally, α ∈ [0, 1] is a parameter to adjust the degree of

SC and TC.

2.2.2 Metrics for Dynamic Community Detection

The results of dynamic community detection can be evaluated in different ways, depending

on whether the ground truth evolving community structure is known.

Without knowing the ground truth community structure, the quality of the detected

community structure is usually measured by quality functions. The modularity [36],

usually denoted as Q, is the most widely used quality function that quantify the quality

of a community structure. Given a network partition with k communities and m edges,

modularity is defined as

Q =
k
∑

s=1

�

ls
m
−
�

ds

2m

�2�

, (2.2)

in which ls and ds respectively denote the number of the edges and the sum of the degrees

of nodes in the s-th community. Generally, a network partition with a high value of Q
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corresponds to a high-quality community structure. Other quality functions not involved

in our work are summarized in [37, 38].

The normalised mutual information (NMI) [39] is used to measure the similarity

between community structures. Given two partitions of a network, A and B, an element

Mi j of a confusion matrix M counts the number of nodes shared by the i-th community of

partition A and the j-th community of partition B. NMI can be calculated by

NMI =
−2
∑kA

i=1

∑kB

j=1 Mi j log
�

Mi j · |V |/Mi. ·M. j

�

∑kA

i=1 Mi. log (Mi./ |V |) +
∑kB

j=1 M. j log
�

M. j · |V |
�
, (2.3)

in which kA and kB denote the number of communities in partition A and in partition B;

Mi. and M. j record the sum of the elements in the i-th row of M and the j-th column of

M , respectively; |V | counts the number of nodes in a network. The NMI value varies from

0 to 1 and a higher NMI value means a higher similarity between A and B. For dynamic

community detection, NMI can be used to calculate the similarity of community structure

between two successive time steps.

2.2.3 Evolutionary Clustering for Dynamic Community Detection

Chakrabarti et al. [40] proposed the concept of EC to cluster data over time. They

pointed out that the clustering at the current time step should be of a high quality and

more consistent with the clustering at the previous time step. On the basis of this idea,

they introduced a temporal smoothness framework (see Section 2.2.1), which requires

high quality of clustering with no dramatic changes within a short time. Therefore, to

discover the evolving community structure in dynamic networks, EC-based methods take

into account snapshot quality to measure the clustering quality, and the similarity of

community structure between current and previous time steps to measure the temporal

smoothness.

Inspired by the idea from [40], several studies [35, 41–43] developed techniques to

capture the evolution of communities in dynamic networks. Chi et al. [41] designed

evolutionary spectral clustering methods to capture the evolution of communities. They

defined a general cost function which consists of SC and TC. Lin et al. [35] designed an
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EC-based algorithm based on the temporal smoothness framework, called FacetNet, to

study evolving patterns of dynamic communities. Adopting a modified version of the

cost function in [41], FacetNet treated dynamic community detection as an optimisation

problem. However, the main limitations of FacetNet includes its requirement to be

initialised with the number of communities and its slow convergence. Moreover, Gong

et al. [42] proposed a multi-objective immune algorithm with genetic operators and

local search to improve the effectiveness and efficiency. Based on one of multi-objective

evolutionary algorithms (MOEAs), the non-dominated sorting genetic algorithm known as

NSGA-II [44], Folino and Pizzuti put forward a dynamic multi-objective genetic algorithm,

known as DYNMOGA, to deal with community detection in dynamic networks as a multi-

objective optimisation problem [43]. To lower the computational complexity of MOEAs, a

decomposition framework for multi-objective evolutionary algorithms called MOEA/D was

developed, which decomposes a multi-objective optimisation problem into several scalar

optimisation subproblems and optimises multiple objectives at the same time. Recently,

Ma et al. [45] and Gao et al. [46] have applied the frameworks of MOEA/D and temporal

smoothness to discover evolving communities in dynamic social networks.

Representation

According to a survey of EC [47], a chromosome representation based on an integer vector,

has been adopted for network representation in community detection [48]. To overcome

the problem that different chromosomes could correspond to the same network partition

as mentioned in [47], a renumbering procedure suggested in [49] was applied to the

chromosome representation. The details of this representation are provided here. Given

that an individual has only one chromosome, a chromosome is represented as a position

vector which implies a network partition. This presentation displays a community ID

for each node, and it has been used in recent particle swarm optimisation for dynamic

community detection [46] (see Figure 2.1). However, the chromosome representation

does not defines the specific partition attribute of each edge, which limits the search space

when optimizing a quality function.



12 LITERATURE REVIEW

5

7 6

1

24

3

1 1 1 1 2 2 2Label

Node 1 2 3 4 5 6 7

Community 1 Community 2

D
e

c
o

d
e

E
n

c
o

d
e

FIGURE 2.1: A chromosome representation based on a integer vector

Also, a network structure can be represented by an adjacent matrix [50]. Each

element in the matrix defines the partition attribute of each edge in a network. Because

this representation is applied in our algorithms, the details is provided in Section 3.2.

Operators

EC-based algorithms generally employ two genetic operators, i.e., crossover and mutation

operators, to generate new candidate solutions during the search process. Under a

certain network representation, the efficiency of the two genetic operators depends on

not only their design but also corresponding parameters. Generally, the crossover rate

and the mutation rate respectively determine the efficiency of crossover and mutation.

The selection operator is not always mentioned, but most EC-based algorithms select

high-quality solutions to form new populations, which can be regarded as the execution

of selection operators.



3
ECD: Evolutionary Community Detection

In this chapter, we propose a novel EC-based algorithm called ECD for dynamic community

detection. Section 3.1 provides an overview of ECD, followed by an explanation of the

core components of ECD. Section 3.2 elaborates on a genome matrix-based representation.

Section 3.3 details the process of population generation based on a bio-inspired model.

Section 3.4 presents ECD’s operators to generate new candidate solutions. Section 3.5

formulates dynamic community detection as a multi-objective optimisation problem

by optimising two objectives introduced in Section 2.2.2. Section 3.6 elaborates on

ECD’s parameter initialisation that is prepared for decomposition-based multi-objective

optimisation. Section 3.7 designs population updating rules for ECD to better search

for the optimal solution. Finally, Section 3.8 reports the experiments and evaluates the

performance of ECD by analysing and discussing experimental results.

13
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3.1 Framework of ECD

ECD is developed based on the MOEA/D framework to solve dynamic community detection

as a multi-objective optimisation problem, and it adopts the Physarum-based network

model (PNM) to generate the initial population and employs operators to search for the

optimal solution under temporal smoothness. An overview of ECD is provided as shown

in Figure 3.1.

 Generate new candidate 

solutions by executing operators

Generate the initial population 

based on PNM

Update the population

Calculate the fitness value(s) of 

candidate solutions

Last iteration?

Select the solution with the 

highest modularity value

N

N
Select the solutions with high 

modularity values

1st snapshot?Y N

Last snapshot?

Input  a dynamic network

G = {G1, G2, ..., GT}

Output the dynamic community 

strucutre  C = {C1, C2, ..., CT}

Update neighbors of 

subproblems

Updating the non-nominated 

solutions

Updating rules based on 

decomposition

Organization of operators

Execute the crossover 

operator

Execute the mutation or 

migration operator

Y

Y

FIGURE 3.1: Framework of ECD
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3.2 Genome Matrix-based Representation
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FIGURE 3.2: An illustration of the coding scheme for genome representation. A network is
coded as a genome matrix derived from an adjacent matrix whose element is 0 or 1, in which 1
stands for an edge existing between two corresponding nodes and 0 denotes that there is no edge.
Following the rule that connected nodes belong to the same community, a community structure
emerges through the decoding process after a series of operations on the genome matrix

Different from most EC-based algorithms using a chromosome representation, ECD

adopts a genome representation in a coding scheme (see Figure 3.2). An individual

representing a candidate solution is coded as an n-order matrix genomen×n, in which n

= |V |. An element of genomen×n, genomei, j, demonstrates the existence of an edge ei, j

between vi and v j and determines whether ei, j is an inter-community or intra-community

connection. In detail, genomei, j = 1 suggests that vi and v j are intra-connected within a

community; genomei, j = -1 means that vi and v j are inter-connected; genomei, j = 0 shows

the nonexistence of an edge connecting them. The coding scheme makes it convenient for
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operations like crossover and mutation and it identifies the partition attribute (i.e., inter-

community or intra-community) of each edge in a network. Following the decoding rule

that the maximum connected components in a network are communities, the community

structure of a network can be obtained.

3.3 Population Generation Based on PNM

PNM is a modified version of the Physarum-based mathematical model (PM) and its

capacity of distinguishing inter-community edges from intra-community edges has been

proved [51]. Several community detection algorithms [52–54] have showed an improved

performance applying PNM rather than a random way to generate the initial population.

Therefore, ECD generates the initial population based on PNM for a better performance.

The key mechanism of PNM is a feedback system between the fluxes and conductivities of

tubes based on Poiseuille’s law. Conductivities of tubes with lager fluxes are reinforced

and those with smaller fluxes degenerate. The detailed process of PNM is described below.

First, Di, j, Li, j and pi denotes the conductivity, length of an edge ei, j, and the pressure

of a node vi, respectively. The flux of ei, j, represented by Q i, j, can be calculated as

Qt
i, j =

Dt−1
i, j

Li, j

�

�

�pt
i − pt

j

�

�

� . (3.1)

∑

i

Dt−1
i, j

Li, j
|pt

i − pt
j|=











I0, if v j is an inlet

−I0

|V | − 1
, others

. (3.2)

Second, in contrast with only one pair of inlet and outlet being set in a Physarum

network in PM, PNM selects one node as an inlet and sets the rest as outlets. Under the

premise that the sum of the flux in a Physarum network is I0, the flux at an inlet or outlet

can be described in Eq. 3.2 based on the law of conservation. Therefore, a set of equations

based on Eq. 3.2 are constructed for each node being selected as an inlet once in each

iteration. The pressure of each node and the flux in each pipe connecting a pair of nodes

at time t are obtained by solving the equation set.
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Then, Dt
i, j is updated with its value from the previous iteration and Qt

i, j:

Dt
i, j =

Qt
i, j + Dt−1

i, j

k
. (3.3)

At the end of an iteration, the global conductivity Dt is updated by averaging the

conductivities:

Dt =
1
|V |

∑|V |

i=1
Dt(i). (3.4)

in which Dt(i) represents the local conductivity matrix when node vi is set as the inlet.

Once the final iteration is completed, R edges with the higher conductivities are set as

inter-community edges, noting that R is usually a constant between 10 per cent and 20

per cent.

3.4 Operators

3.4.1 Migration Operator

(a) (b) (c)

Or

C1

C3

C2

C1

C3

C2

C1

C3

C2

FIGURE 3.3: An illustration of migration using the example of one individual and its possible
connections within three communities. The solid lines connecting the nodes represent the intra-
community edges and the dotted lines represent the inter-community edges. Nodes of the same
colour belong to the same community. The single node circled by dotted line in (a) is a weakly-
neighbourhood node in community C3, because the other two communities C1 and C2 hold more
of its neighbours, i.e., 3 vs 2. To become a strongly-neighbourhood node, the node would be
guided to migrate into either C1 or C2. (b) and (c) display two possible results through migration
operated on the individual shown in (a)

A migration operator is designed to improve the quality of solutions for community

detection. The migration operator emphasises the inter- and intra-connection relationships
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between nodes [55]. Figure 3.3 provides an illustration of the migration operator on an

individual with two communities.

The migration operator works on the neighbourhood where a neighbourhood consists

of a rooted node and its directly connected nodes called neighbours. According to the

inter- and intra-connection relationships between nodes and their neighbours, each node

vi can fall into one of three groups as defined in [55]. Specifically, under the condition

that vi belongs to the same community with most of its neighbours, vi is a strongly-

neighbourhood node if there are no other communities holding most of vi ’s neighbours;

vi is a neutrally-neighbourhood node if there is at least one other community holding

the same number of neighbours as the community to which vi belongs. In the case

that most of the neighbours are clustered into a community different from vi ’s, vi is a

weakly-neighbourhood node.

Except for the community to which vi belongs, the candidate community of the node

vi is a community holding the most of vi ’s neighbours. For a neutrally-neighbourhood

node, a parameter pmi is introduced to determine whether the node will be migrated

into a candidate community that holds the same number of neighbours as the original

community. For a weakly-neighbourhood node, it will be directly migrated into a candidate

community. If there are multiple candidate communities from which to choose, the

weakly-neighbourhood node will be randomly migrated into one of them. For a strongly-

neighbourhood node, it will stay in its original community. As a node vi is migrated,

a random number (at least one) of edges between vi and its neighbours in the new

community are changed into intra-community connections, whereas edges connecting vi

and nodes in the original community are all converted to inter-community connections. In

practice, with a genome matrix-based representation (see Section 3.2), a node is migrated

by changing the values of the corresponding elements in a genome matrix.

3.4.2 Genetic Operators

In ECD, genetic operators cooperate with the migration operator to generate a new

population, which include:
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• Crossover: The crossover operator is executed in a random and uniform way. To

form a new population, individuals are randomly selected in pairs to generate new

individuals. For a pair of selected individuals x1 and x2, a varying number of nodes

are randomly selected to be crossover points. Then we exchange the partition

attributes (i.e., inter-community or intra-community) of the edges connecting any

of the crossover points between the selected individuals. Following the exchange, a

new individual x3 is generated from x1. The details on crossover operation on the

genome matrix-based presentation are presented in Figure 3.4.
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FIGURE 3.4: An illustration of one-way crossover on a pair of individuals adopting the genome
matrix-based representation. Individuals x1 and x2 are pairwise selected, and v7 is selected as a
crossover point. A new individual x3 is generated by replacing the elements in the seventh row
and the seventh column of x1’s genome matrix with the corresponding elements of x2’s genome
matrix

• Mutation: The mutation operator generates new individuals by randomly selecting

edges and changing their partition attributes. The number of selected edges is equal
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to pmu ·m, in which pmu denotes the mutation rate and m represents the number

of edges in a network. In practice, the values of the corresponding elements in a

genome matrix are converted from -1 to 1 or from 1 to -1. The detailed mutation

operation on the genome matrix-based presentation are provided as shown in Figure

3.5.
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FIGURE 3.5: An illustration of the mutation on an individual adopting the genome matrix-based
representation. Two edges, e1,4 connecting v1 and v4 and e2,7 connecting v2 and v7, are selected at
random. We change the values of corresponding elements genome1,4, genome4,1, genome2,7, and
genome7,2 of the genome matrix to the opposite

• Selection: To avoid the increment of computational cost caused by population

expansion, the selection operator eliminates candidate solutions of poor quality and

maintains a constant population size for all iterations. In practice, nc individuals

are eliminated based on the evaluation of candidate solutions where nc represents

the number of generated child individuals.

3.4.3 Organisation of Operators

The search process for the optimal solution proceeds as new candidate solutions are gen-

erated by executing operators. Figure 3.6 demonstrates how ECD organises the migration

operator to work in tandem with crossover and mutation operators by a parameter pmu/mi.
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FIGURE 3.6: Operators organised to generate new candidate solutions

3.5 Multi-objective Optimisation

Under the temporal smoothness framework (see Section 2.2.1), recent studies have

found that dealing with community detection in dynamic networks as a multi-objective

optimisation problem is a powerful method [43], which improves the effectiveness of

dynamic community detection. To this end, we apply two metrics for multi-objective

optimisation based dynamic community detection to measure SC and TC, respectively.

In solving the problem of dynamic community detection, two metrics mentioned

before (see Section 2.2.2) are going to be maximised at the same time as a multi-objective

optimisation. Jointly with modularity to evaluate the quality of a community structure and

NMI to measure the similarity of community structure between the current and previous

time steps, our multi-objective optimised solution to community detection in dynamic

networks is formulated as

C∗t =











argmax
Ct

{Q(Ct), NMI(Ct , Ct−1)}, t ≥ 2

argmax
Ct

{Q(Ct)}, t = 1
. (3.5)

At the first time step, i.e., t = 1, without a prior community structure to compare, C∗t

is a network partition that represents a community structure with the highest value of

modularity. In the following time steps, modularity and NMI are simultaneously optimised

with dynamic community detection algorithms.



22 ECD: EVOLUTIONARY COMMUNITY DETECTION

3.6 Initialisation of ECD

For community detection in dynamic networks, the first network snapshot is partitioned

with modularity-based optimisation without prior knowledge of the network partition at

the initial step. The snapshots in the following time steps are partitioned by simultaneously

optimising modularity and NMI.

Algorithm 1 The initialisation of ECD
1: Initialise a dynamic community structure C = {C1, C2, ..., CT} by setting Ct =∅ where

t ∈ {1,2, ..., T}

2: Initialise a non-dominated solution set EP=∅

3: Initialise a weight vector W =
�

w1, w2, ..., wpop

	

where wi =
�

w1
i , w2

i

	

and w1
i +w2

i = 1

4: Initialise a reference point Z∗ = (z∗1, z∗2) with z∗1 = max(Q(x t
i )) and z∗2 =

max(NMI(x t
i , x t−1

i )) where x i ∈ population X

5: Initialise a set of neighbour vectors B =
�

b1, b2, ..., bpop

	

where bi =
�

b1
i , b2

i , ..., bnn
i

	T
,

nn is the neighbour size for each subproblem

After generating the initial population based on PNM (see Section 3.3), for each net-

work snapshot at time step t ≥ 2, the multi-objective optimisation problem of community

detection can be decomposed into pop scalar objective optimisation subproblems [56]. For

the i-th subproblem, we generate a group of nn nearest neighbours bi =
�

b1
i , b2

i , ..., bnn
i

	

based on the Euclidean distances of a weight vector W =
�

w1, w2, ..., wpop

	T
, where nn

is the neighbour size of each subproblem; pop is the population size; the weight point

wi =
�

w1
i , w2

i

	

that represents the position of a neighbour satisfies w1
i + w2

i = 1 and

w1
i = (i − 1)/(pop− i). Then, applying the Tchebycheff approach [56], the i-th objective

optimisation can be expressed as Eq. 3.6, in which a reference point Z∗ = (z∗1, z∗2) satisfies

that z∗j =
�

max f j(x)|x i ∈ X
	

is the maximum value of the j-th objective function.

max g te(x i|wi, Z∗) = min
1≤ j≤2

w j
i

�

�

� f j(x i)− z∗j

�

�

� ,

subject to x i ∈ X .
(3.6)
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3.7 Updating Rules

The search process for the optimal solution to a multi-objective optimisation problem

not merely depends on the related operators but also is closely related to the population

updating rules and key parameters during the iteration process. To detect a community

structure of a network snapshot at time step t ≥ 2, ECD updates the population by updating

the neighbour bi (i ∈ {1,2, ...,pop}) for each subproblem based on the Tchebycheff

approach. For the j-th neighbour of the i-th subproblem, if g te(x
′

i |w j, Z∗)< g te(b j
i |w j, Z∗),

then ECD replaces the neighbour b j
i with x

′

i , in which x
′
is a new solution generated by

operators. Then those solutions dominated by x i ∈ X are cleared up from a non-dominated

solution set EP, and x i is added to EP if not dominated by any solution in EP. Finally, the

reference point Z∗ is updated by z∗1 =max(z∗1,Q(x t
i )) and z∗2 =max(z∗2,NMI(x t

i , Ct−1)).

3.8 Experiments

This section reports the experiments conducted to evaluate the performance of ECD.

Section 3.8.1 and Section 3.8.2 first give an brief introduction to datasets and baselines,

respectively. Then Section 3.8.3 demonstrates how we set the parameters in ECD. Finally,

Section 3.8.4 reports and analyses the experimental results.

3.8.1 Datasets

We conduct experiments on six synthetic networks and two real-word networks to evaluate

the performance of ECD and state-of-the-art baselines that will be introduced in Section

3.8.2.

The synthetic datasets involved in experiments include the SYN-FIX, SYN-VAR [57],

and SYN-EVENT [58] datasets, which are used to generate synthetic dynamic networks

with different parameter settings. The two real-world datasets involved in experiments

are the Cellphone Calls and the Enron Mail datasets, which are used to generate two real-

world dynamic networks. An brief introduction to all datasets and details on generating

dynamic networks are given as follows.
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SYN-FIX Dataset

The first synthetic dataset, SYN-FIX, consists of 128 nodes which are equally divided into

four communities. Each node has an average degree of 16 and shares zout edges across

communities over snapshots. A large zout means a high noise level of a network. The

community structure becomes less clear as zout increases. To characterise the evolution

feature of the community structure, three nodes in each community are randomly selected

and added into other communities at each time step. In our work, we set zout to 3 and 5

to generated two SYN-FIX networks for 10 time steps, respectively.

SYN-VAR Dataset

The second synthetic dataset, SYN-VAR, initially consists of 256 nodes which are evenly

divided into four communities. Contrasted with the SYN-FIX dataset, SYN-VAR datasets

involves the attachment and detachment of nodes and the formation and dissolution of

communities. Eight nodes per community at the current time step are randomly selected

to form a new community for the following time steps. To generate dynamic networks

with 10 consecutive snapshots, this change occurs during the first five time steps, and

then those selected nodes are returned to their original communities for the next five time

steps. Therefore, the number of communities for the 10 time steps is 4, 5, 6, 7, 8, 8, 7, 6,

5, and 4. Additionally, the average degree of each node is equal to half of the size of the

community to which the node belongs. At each time step, 16 nodes are randomly deleted

and another 16 nodes are refilled to the network. Analogous to the way to generate

SYN-FIX networks, we set zout to 3 and 5 to generated two SYN-VAR networks for 10

time steps, respectively.

SYN-EVENT Dataset

The last synthetic dataset, SYN-EVENT [58], is designed to simulate different evolution

events of dynamic networks. Two events are involved to generate two different dynamic

networks, and the rules are given as follows:

• i. Expansion and Contraction: 10 per cent of communities are randomly expanded
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or contracted by 25 per cent of their size. The new nodes are chosen at random

from the other communities for expansion.

• ii. Merging and Splitting: from the first time step, 10 per cent of communities are

split; 10 per cent of communities are chosen to be pairwise merged.

Based on these rules, two SYN-EVENT networks are generated for 10 time steps containing

250 nodes in each network, with the average degree of 10, the number of communities

between 5 and 10, and the mixing parameter of 0.2.

Cellphone Calls Dataset

The Cellphone Calls dataset developed from the VAST 2008 mini challenge 31 consists

of cell call phone records from the members of the fictitious Paraiso movement. In this

dataset, phone calls between 400 cellphones are recorded for a period of ten days in

June 2006. To construct a dynamic network, a node represents a cellphone, and an edge

represents the occurrence of a phone call between two cellphones. Each network snapshot

is constructed based on the records of phone calls made within one day.

Enron Mail Dataset

The other real-world dataset we used to evaluate our proposed algorithm is called Enron

Mail2 from a U.S. enterprise Enron with potential anomalous email communications in

2001. To construct a dynamic network, a node represents a user and an edge represents

message sending from a user to another. we split the dataset into 12 snapshots by month,

and each snapshot consists of 151 nodes.

3.8.2 Baselines

To evaluate the performance of ECD on dynamic community detection, we conduct a

series of experiments on synthetic and real-world networks and compared the results with

1http://www.cs.umd.edu/hcil/VASTchallenge08/
2http://www.cs.cmu.edu/∼enron/
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three state-of-the-art algorithms, sE-NMF [59], DYNMOGA [43], and FacetNet [35]. These

baselines use different ways to improve the clustering accuracy of dynamic community

detection.

• sE-NMF [59] is a semi-supervised evolutionary non-negative matrix factorisation

method for detecting dynamic communities, which integrates priori information

into the objective function.

• DYNMOGA [43] is a multi-objective genetic algorithm for dynamic community

detection which achieves temporal smoothness by maximising snapshot quality and

minimising TC.

• FacetNet [35] is a framework that analyses communities and their evolution through

a robust unified process. It uses SC rather than snapshot quality to evaluate the

clustering quality.

3.8.3 Parameter Setting

TABLE 3.1: Parameter setting for ECD

Parameter Value

maxgen 100

pop 100

pmu 0.20

pmi 0.50

pmu/mi 0.50

R 0.20

All experiments are repeated five times, and the averaged results are reported in

the following section. The parameter setting for ECD is displayed in Table 3.1. maxgen

represents the maximum number of iterations. pop denotes the population size, i.e., the

number of individuals or candidate solutions in the population. pmu and pmi represent the
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mutation rate and the migration rate, respectively. pmu/mi is a parameter that determines

whether to execute the mutation operator or the migration operator (see Section 3.4.3). R

is the fraction of edges PNM initialises as inter-community edges (see Section 3.3). Besides,

to reduce the computational cost for each subproblem in multi-objective optimisation, we

set the neighbour size nn= 5 for all synthetic networks and set nn= 10 for real-world

networks.

3.8.4 Results

The performance of algorithms is evaluated by comparing the similarity between detected

and ground truth community structures of corresponding snapshots in all time steps. The

similarity is measured by the averaged value of NMI [39] as described in Section 2.2.2.

Results on Synthetic Datasets

TABLE 3.2: NMI values returned by ECD and baselines on the SYN-FIX dataset with zout= 3.
The best results are highlighted in bold

Time step 1 2 3 4 5

ECD 1.0000 1.0000 1.0000 1.0000 1.0000

sE-NMF 1.0000 1.0000 1.0000 0.9275 0.9631

DYNMOGA 0.9537 0.9748 1.0000 1.0000 1.0000

FacetNet 0.4862 0.4786 0.4765 0.4710 0.4727

Time step 6 7 8 9 10

ECD 1.0000 1.0000 1.0000 1.0000 1.0000

sE-NMF 1.0000 1.0000 1.0000 1.0000 1.0000

DYNMOGA 1.0000 1.0000 0.9748 0.9748 1.0000

FacetNet 0.4739 0.4681 0.4709 0.4691 0.4722

The first set of experiments are carried out on synthetic networks generated from

the SYN-FIX and SYN-VAR datasets [57]. As shown in Tables 3.2 and 3.3, ECD shows a
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TABLE 3.3: NMI values returned by ECD and baselines on the SYN-VAR dataset with zout= 3.
The best results are highlighted in bold

Time step 1 2 3 4 5

ECD 1.0000 0.9818 1.0000 1.0000 0.9450

sE-NMF 0.9206 0.9518 0.9808 0.9802 0.8755

DYNMOGA 0.9746 0.9944 0.9699 0.9939 0.9252

FacetNet 0.5426 0.5567 0.5767 0.5985 0.5662

Time step 6 7 8 9 10

ECD 0.9450 1.0000 1.0000 1.0000 1.0000

sE-NMF 0.8761 0.9734 0.9764 0.9510 0.9164

DYNMOGA 0.9450 0.9825 1.0000 0.9935 0.9856

FacetNet 0.5640 0.5929 0.5618 0.5405 0.5092

better overall performance on the SYN-FIX and SYN-VAR datasets with zout= 3 than the

baselines. ECD consistently holds the highest NMI value of 1 at each time step on the

SYN-FIX dataset with zout = 3, and also achieves the highest NMI value in most time

steps on the SYN-VAR dataset with zout= 3, except for a value of 0.9818 which is lower

than 0.9944 returned by DYNMOGA at the second time step.

In contrast to the performance on the synthetic datasets with zout= 3, ECD does not

achieve a best performance among algorithms on the SYN-FIX and SYN-VAR datasets with

zout = 5. As observed from Table 3.4, ECD only holds the highest NMI value at time step

t = 4, whereas sE-NMF holds the highest NMI value in most time steps, i.e., t = 1, 3,

5, 7, 8, 9, and 10, and DYNMOGA achieves the highest NMI value for time steps t = 2

and t = 6. Table 3.5 demonstrates that ECD achieves the highest NMI value of 1 at the

first two and last two time steps while DYNMOGA achieves the highest NMI value in five

successive times steps, i.e., from t = 4 to t = 8. With zout = 5, ECD performs better

on the SYN-VAR dataset than on the SYN-FIX dataset. FacetNet performs worst on the

SYN-FIX and SYN-VAR datasets no matter zout is 3 or 5, because it always returns the
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TABLE 3.4: NMI values returned by ECD and baselines on the SYN-FIX dataset with zout= 5.
The best results are highlighted in bold

Time step 1 2 3 4 5

ECD 0.9143 0.9714 0.8857 1.0000 0.9429

sE-NMF 1.0000 0.9144 1.0000 0.9551 1.0000

DYNMOGA 0.9297 1.0000 0.9671 0.9748 0.9748

FacetNet 0.4505 0.4478 0.4584 0.4563 0.4552

Time step 6 7 8 9 10

ECD 0.8571 0.9714 0.8489 0.8857 0.8857

sE-NMF 0.9975 1.0000 1.0000 0.9314 0.9753

DYNMOGA 1.0000 0.9485 0.9794 0.9058 0.8444

FacetNet 0.4517 0.4511 0.4481 0.4427 0.4540

lowest NMI value at each time step.

TABLE 3.5: NMI values returned by ECD and baselines on the SYN-VAR dataset with zout= 5.
The best results are highlighted in bold

Time step 1 2 3 4 5

ECD 1.0000 1.0000 0.9507 0.8842 0.8023

sE-NMF 0.9221 0.9280 0.9804 0.9550 0.8628

DYNMOGA 0.9126 0.9738 0.9704 0.9825 0.9123

FacetNet 0.5323 0.5452 0.5674 0.5838 0.5549

Time step 6 7 8 9 10

ECD 0.8160 0.9295 0.9507 1.0000 0.9990

sE-NMF 0.8737 0.9442 0.9588 0.9309 0.9131

DYNMOGA 0.8932 0.9660 0.9720 0.9935 0.9844

FacetNet 0.5526 0.5773 0.5479 0.5251 0.4954

The second set of experiments are carried out on synthetic networks generated from

the SYN-EVENT datasets [58]. Figure 3.7 displays NMI values of in the form of symbol
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and line for all four algorithms on the two dynamic networks derived from the SYN-EVENT

dataset. As shown in Figure 3.7(a), ECD’s consistent NMI value of 1 on the Expansion and

Contraction network is always the highest for all time steps. Additionally, the NMI value

of 1 or very close to 1, returned by ECD on the Merging and Splitting network, is also the

highest at each time step.

(a) Expansion and Contraction (b) Merging and Splitting
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FIGURE 3.7: Comparison of NMI values among ECD and baselines on the SYN-EVENT dataset:
(a) Expansion and Contraction and (b) Merging and Splitting

Results on Real-world Datasets

The third set of experiments are carried out on two real-world networks. Due to the

unknown community structures of the real-world networks, we applied the first step of

DYNMOGA which does not require the number of communities as an input parameter, to

reveal the community structure of each snapshot as the ground truth.

Figure 3.8 displays the experimental results on the Cellphone Calls network and the

Enron Mail network through a comparison of NMI values returned by algorithms at each

time step. As Figure 3.8(a) shows, ECD only gets the highest NMI values at time steps t

= 2, 5, 6, and 7, which suggests that the evolving community structure detected by ECD

is not always the most similar to the ground truth on the Cellphone Calls network. As

demonstrated in 3.8(b), ECD has the highest NMI value at each time step, which suggests
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(a) Cellphone Calls (b) Enron Mail
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FIGURE 3.8: Comparison of NMI values among ECD and baselines on the real-world datasets:
(a) Cellphone Calls and (b) Enron Mail

that ECD performs better than the other three baseline algorithms in uncovering the

evolving community structure on the Enron Mail network.

3.8.5 Discussion

Comparing NMI values that measures the similarity between detected and ground truth

community structures at each time step, our proposed algorithm ECD does not have a

satisfactory performance on every dataset.

For the SYN-SIX and SYN-VAR datasets, ECD performs the best with zout= 3, but it

does not always achieve the highest NMI value with zout = 5. As described in Section 3.8.1,

the community structures in synthetic networks generated from two kinds of datasets

become less clear as zout increases. so ECD requires improvement to efficiently detect the

evolving community structure in networks with high noise levels.

For the real-world datasets, ECD performs much better on the Enron Mail network

than any baseline, but does not always detect the community structure most similar to

the ground truth on the Cellphone Calls network. Then we evaluate the performance of

ECD in terms of temporal smoothness. The temporal smoothness between community
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(a) Cellphone Calls (b) Enron Mail
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FIGURE 3.9: Comparison of modularity values between ECD and FacetNet on the real-world
datasets: (a) Cellphone Calls and (b) Enron Mail
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FIGURE 3.10: Comparison of temporal smoothness measured by NMI among ECD, sE-NMF, and
DYNMOGA on the real-world datasets: (a) Cellphone Calls and (b) Enron Mail

structures at the current and previous time steps is measured by NMI, which is evaluated

from the second time step. As reported in Figure 3.9, FacetNet achieves much lower

modularity values than ECD in all time steps, which corresponds to poor quality of

community structures detected by FacetNet. Therefore, we compare ECD with two other

algorithms on the real-world datasets. The results shown in Figure 3.10 indicate that ECD

achieves better temporal smoothness than sE-NMF and DYNMOGA in dynamic community
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detection.

3.8.6 Summary

To summarise the experimental results, ECD shows a better overall performance in dynamic

community detection. Although ECD performs much better than the baselines on five out

of eight networks generated from synthetic and real-world datasets, it still needs to be

improved.
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4
DECS: Detecting Evolving Community

Structure – An Improved ECD

As discussed in Chapter 3.8.5, our proposed algorithm, ECD, does not perform satisfactorily

on networks with high noise levels. Therefore, in this chapter, we develop an improved

ECD, called DECS, to improve the dynamic community detection results with respect

to clustering accuracy and temporal smoothness. Section 4.1 provides an overview of

DECS. Section 4.2 details the population generation process by simulating a process of

label propagation, and Section 4.3 describes the two-way crossover operator employed by

DECS to generate new individuals. Finally, Section 4.4 reports and analyses experimental

results to evaluate the performance of DECS.
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4.1 Framework of DECS

DECS is developed based on the framework of ECD to improve the clustering accuracy

and temporal smoothness. The network representation, selected objectives to optimise,

initialisation, operators except for the crossover operator, and updating rules in DECS are

the same as those in ECD.

Algorithm 2 DECS: Detecting the Evolving Community Structure
Input: A dynamic network G = {G1, G2, ..., GT}

Output: A dynamic community structure C = {C1, C2, ..., CT}

1: for time step t from 1 to T do

2: Initialise the population X =
�

x1, x2, ..., xpop

	

based on Algorithms 3 and 4

3: if t = 1 then

4: while iteration step iter does not reach the maximal generation maxgen do

5: Execute the organised operators described in Section 3.4.3

6: Calculate the value of a single objective function for each individual

7: Rank all individuals in descending order of the objective function value and

generate a new population with top pop individuals

8: end while

9: else

10: Initialise the related parameters for problem decomposition by Algorithm 1

11: while iteration step iter does not reach the maximal generation maxgen do

12: Execute the organised operators described in Section 3.4.3

13: Calculate the values of multiple objective functions for each individual

14: Generate a new population by following the updating rules described in Section

3.7

15: end while

16: end if

17: Select the best solution and update Ct

18: end for
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There are two main differences between DECS and ECD: DECS generates the initial

population by applying a label propagation process [60] in networks and adopts a two-way

crossover operator [61] to reduce the computational cost.

4.2 Population Generation Based on Label Propagation

Bagrow and Bollt studied label propagation through networks [62]. Label propagation is

similar to the process of the spread of an epidemic. Even if two nodes are not directly

connected by an edge, they will receive some message, like a viral infection, from each

other via a path between them. Nodes receiving the same latest message should be

clustered into the same cluster.

Algorithm 3 PGLP: Population Generation Based on Label Propagation
Input: The maximal label propagation iteration iterm

Output: The initialised chromosomes

1: for k from 1 to pop do

2: for i from 1 to iterm do

3: for j from 1 to |V | do

4: if neighbour size ns j of v j more than 1 then

5: Assign the label of the community containing most of v j ’s neighbours to v j

6: else

7: Assign the community label of the neighbour to v j

8: end if

9: end for

10: end for

11: end for

For community detection, each node vi in a network is initialised with a unique

community label li ∈ {1, 2, ..., |V |} which determines which community it belongs to. We

assume that a node tends to join the community to which most of its neighbours belong.

Driven by label propagation [62], densely connected nodes are evolutionarily clustered
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into communities. As the process is iteratively repeated, a network partition with a high

clustering quality will be obtained.

Algorithm 4 The transformation from chromosomes into genome matrices
Input: The initialised chromosomes generated by PGLP, an adjacent matrix A

Output: The initialised genome matrices

1: for Each chromosome in the population do

2: Set a genome matrix genome= A

3: for Each community i do

4: for Each node v j in community i do

5: for Each neighbour k of node v j do

6: if neighbour k is not in community i then

7: Set genomei, j = -1

8: end if

9: end for

10: end for

11: end for

12: end for

Using the information of neighbours’ labels, PGLP simulates the label propagation to

generate the initial population based on the chromosome representation, as described in

Algorithm 3. To speed up the convergence in our proposed algorithm DECS, after each

node vi is initially assigned with a unique label l(i) = i, the label of each node will be

updated by assigning the community label that most of its neighbours hold. This operation

is repeated iterm times in Algorithm 3 on each chromosome.

Further, for the successful operation of PGLP on DECS which represents a network

as a genome matrix, DECS transforms the chromosome representation into the genome

representation as shown in Algorithm 4. We assume that all the edges within communities

exist as intra-community connections, while edges across communities exist as inter-

community connections.
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4.3 Two-way Crossover

To reduce the computational cost, DECS employs a two-way crossover operator on genome

matrices, which is inspired by an ideal of crossover operation on chromosomes [61].

The two-way crossover randomly selects individuals in pairs and then randomly selects

a varying number of nodes as crossover points. Finally, the inter- and intra-community

attributes of the edges connecting to the crossover points are exchanged. The two-way

crossover operator which generates two child individuals by exchanging the roles of two

parent individuals, is more efficient than the one-way crossover operator employed by

ECD.

4.4 Experiments

Following the previous experiments in Section 3.8, we conduct experiments to evaluate

DECS’s performance on the same synthetic and real-world networks.

4.4.1 Parameter Setting

TABLE 4.1: Parameter setting for DECS

Parameter Value

maxgen 100

pop 100

pmu 0.20

pmi 0.50

pmu/mi 0.50

iterm 5

All experiments are repeated five times, and the averaged results are reported in the

following section. The parameter setting for DECS is displayed in Table 4.1. The maximum
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number of label propagation iterations iterm is set to 5, and other parameters are set the

same as ECD.

4.4.2 Results

Results on Synthetic Datasets

TABLE 4.2: NMI values returned by DECS and ECD on the SYN-FIX dataset with zout= 3. The
best results are highlighted in bold

Time step 1 2 3 4 5

DECS 1.0000 1.0000 1.0000 1.0000 1.0000

ECD 1.0000 1.0000 1.0000 1.0000 1.0000

Time step 6 7 8 9 10

DECS 1.0000 1.0000 1.0000 1.0000 1.0000

ECD 1.0000 1.0000 1.0000 1.0000 1.0000

TABLE 4.3: NMI values returned by DECS and ECD on the SYN-VAR dataset with zout= 3. The
best results are highlighted in bold

Time step 1 2 3 4 5

DECS 1.0000 1.0000 1.0000 1.0000 0.9450

ECD 1.0000 0.9818 1.0000 1.0000 0.9450

Time step 6 7 8 9 10

DECS 0.9450 1.0000 1.0000 1.0000 1.0000

ECD 0.9450 1.0000 1.0000 1.0000 1.0000

Comparing NMI values returned by DECS and ECD, Tables 4.2 and 4.4 demonstrates

that DECS achieves the same averaged NMI value of 1 as ECD in all time steps on the

SYN-FIX dataset with zout= 3 and the Expansion and Contraction network. As shown in
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Tables 4.3 and 4.5, DECS performs almost the same as ECD on the SYN-VAR dataset with

zout= 3 and the Merging and Splitting network.

TABLE 4.4: NMI values returned by DECS and ECD on the Expansion and Contraction network.
The best results are highlighted in bold

Time step 1 2 3 4 5

DECS 1.0000 1.0000 1.0000 1.0000 1.0000

ECD 1.0000 1.0000 1.0000 1.0000 1.0000

Time step 6 7 8 9 10

DECS 1.0000 1.0000 1.0000 1.0000 1.0000

ECD 1.0000 1.0000 1.0000 1.0000 1.0000

TABLE 4.5: NMI values returned by DECS and ECD on the Merging and Splitting network. The
best results are highlighted in bold

Time step 1 2 3 4 5

DECS 1.0000 1.0000 1.0000 1.0000 1.0000

ECD 1.0000 1.0000 1.0000 1.0000 1.0000

Time step 6 7 8 9 10

DECS 1.0000 1.0000 0.9984 1.0000 1.0000

ECD 0.9986 1.0000 1.0000 1.0000 0.9966

Because FacetNet performs much worse than other algorithms and it appears difficult

to determine which algorithm performs best on the SYN-FIX and SYN-VAR datasets with

zout = 5 (see Tables 3.4 and 3.5), we compare the performance of DECS with ECD,

sE-NMF, and DYNMOGA on these two networks. The results returned by DECS on the two

datasets with zout = 5 are accord with the results on these two datasets with zout = 3.

As shown in Figures 4.1(a) and 4.1(b), the NMI value returned by DECS is the highest

while ECD, DYNMOGA, and FacetNet always obtain lower NMI values at each time step.
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(a) SYN-FIX with zout = 5 (b) SYN-VAR with zout = 5
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FIGURE 4.1: Comparison of NMI values among DECS, ECD, and baselines on (a) the SYN-FIX
dataset with zout = 5 and (b) the SYN-VAR dataset with zout = 5

Results on Real-world Datasets

(a) Cellphone Calls (b) Enron Mail

1 2 3 4 5 6 7 8 9 10
0.60

0.64

0.68

0.72

0.76

 DECS

 ECD

 DYNMOGA

 FacetNet

 

 

N
M

I

Time Steps
1 2 3 4 5 6 7 8 9 10 11 12

0.70

0.75

0.80

0.85

0.90

0.95

1.00

 DECS

 ECD

 

 

N
M

I

Time Steps

FIGURE 4.2: Comparison of NMI values among DECS, ECD, and baselines on the real-world
datasets: (a) Cellphone Calls and (b) Enron Mail

Figure 4.2 reports the experimental results at nn= 10 on the two real-world datasets

through comparing NMI values returned by algorithms. As demonstrated in Figure 4.2(a),

DECS does not achieve the highest NMI value at each time step on the Cellphone Calls

dataset. Specifically, DECS achieves the highest NMI value at time steps t = 2, 5, 6, and
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7, which suggests that the evolving community structure detected by DECS is not always

the most similar to the ground truth. When compared to ECD, DECS gets a higher NMI

value in 6 out of 10 time steps, i.e., t = 2, 5, 6, 7, 9, and 10. Because ECD performs much

better than all baselines on the Enron Mail dataset, we compare DECS with ECD on this

dataset. As demonstrated in Figure 4.2(b), DECS has a higher NMI value than ECD at

each time step except for the first time step.

(a) Cellphone Calls (b) Enron Mail
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FIGURE 4.3: Comparison of the temporal smoothness measured by NMI between DECS and
ECD on the real-world datasets: (a) Cellphone Calls and (b) Enron Mail

Furthermore, as shown in Figure 4.3, we discuss the performance of DECS on temporal

smoothness. Similarly, we directly compare DECS with ECD which achieves a better

temporal smoothness than the baselines. Figure 4.3(a) demonstrates that DECS holds a

better temporal smoothness from time step t = 5 to time step t = 10 on the Cellphone Calls

dataset. In addition, Figure 4.3(b) shows that DECS holds a better temporal smoothness

at every time step except for time steps t = 3 and 7. In summary, DECS holds a better

temporal smoothness on the real-world datasets.

4.4.3 Summary

The experiments demonstrate that DECS proposed to detect dynamic community structure

overcome ECD’s shortcoming that ECD performs not well on networks with high noise
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levels. Additionally, DECS shows a better performance in terms of clustering accuracy

and temporal smoothness, contrasted with ECD and baselines.



5
Conclusion

The operators and network representation that EC-based algorithms use are closely related

to the efficiency and effectiveness of dynamic community detection. Following a review

of the literature on dynamic community detection via EC, it is clear that state-of-the-

art algorithms require further improvements in efficiency and effectiveness. Therefore,

we introduce a migration operator that works in tandem with classic genetic operators

to exploit the inter- and intra-connection relationships between nodes in networks. In

addition, we apply a genome matrix to represent a network snapshot and optimise the

modularity directly calculated from the genome matrix.

Then, treating dynamic community detection as a multi-objective optimisation prob-

lem, we develop a new EC-based algorithm, ECD, which applies a bio-inspired model for

population generation. The experimental results on both synthetic and real-world net-

works indicate the better overall performance of ECD with respect to clustering accuracy

45
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and temporal smoothness, compared with state-of-the-art baselines.

To further improve the performance of ECD on dynamic community detection in

networks with high noise levels, we develop a improved EC-based algorithm, DECS,

which is based on the basic framework of ECD. A two-crossover operator used to reduce

the computational cost and the PGLP applied to population generation help DECS to

better detect the evolving community structure in dynamic networks. The experimental

results demonstrate the superiority of DECS in terms of clustering accuracy and temporal

smoothness, contrasted with ECD and the baselines.

For future work, we will focus on the scalability of these algorithms to large-scale

real-world networks.



List of Symbols

The following list is neither exhaustive nor exclusive, but may be helpful.

EC evolutionary clustering

SC snapshot cost

TC temporal cost

NMI normalized mutual information

MOEAs multi-objective evolutionary algorithms

PNM Physarum-based network model

PM Physarum-based mathematical model
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