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SUMMARY 

The increasing incidence of obesity is a major public health crisis worldwide. Obesity is 

linked to a number of poor health outcomes such as Type 2 Diabetes (T2D), cardiovascular 

disease and cancer. Thus, the obesity epidemic threatens to lower life expectancy and reduce 

health-related life quality of current and future generations. It places a significant economic 

burden on healthcare systems. A better understanding of the factors that contribute to the 

development of obesity and how fat tissue contributes to these adverse effects are essential to 

improve prevention and treatment strategies.  

In this thesis, I examined the potential role of epigenetics as a mediator of gene-environment 

interactions in manifesting functional changes in fat cells, and whether these processes could 

be targeted to prevent and treat obesity.  

Firstly, I investigated whether exposure of human fat cells (adipocytes) to high glucose 

induces physiological and metabolic changes (Chapter 1). I then examined whether nuclear 

processes such as the genomic landscape of transcriptional and epigenetic regulation were 

involved in the manifestation of these changes.  I used genome wide microarray analysis of 

both DNA methylation and transcription during the differentiation of human adipocytes in 

vitro. I showed that adipocytes grown in high glucose had significant changes in gene 

expression, particularly in mitochondrial and oxidative stress pathways, and that some of 

these changes were associated with epigenetic changes. 

Secondly, increased lipid storage in adipocytes is a major contributor to the increase in fat in 

humans, and these lipids are stored as lipid droplets within adipocytes (Chapter 2). I 

developed a novel label-free lipid droplet quantification technique (LipiD-QuanT) to monitor 

fat accumulation in live adipocytes. The current techniques used to quantify fat accumulation 

during in vitro studies are based on either enzymatic digest or lipophilic staining. However, 

LipiD-Quant is label free and applicable to live cells. Additionally, I demonstrated the 

application of LipiD-QuanT to measure the effect of four potential pro- or anti-obesogenic 
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substances during human pre-adipocyte differentiation: Docosahexaenoic acid (DHA), 

rosiglitazone, D-glucose and Zinc oxide (ZnO) nanoparticles.  

Thirdly, since I began my PhD, epigenetics analysis methods have continued to improve. 

While most common methods target locations of the genome where methylation occurs 

densely, there is growing evidence that methylation in less dense genomic locations is 

equally, if not more important. Hence, I developed a new genome wide reduced methylome 

method (COBRA-Seq) (Chapter 3). This method enriches methylated DNA fractions by 

digesting the genomic DNA with restriction enzymes that recognize potential methylation 

sites after bisulfite conversion. The genomic complexity is further reduced by removing DNA 

fragments without the enzyme recognition site using streptavidin coated magnetic beads.  

COBRA-seq samples the genome proportionally for the generation and analysis of genome-

scale DNA methylation profiles with nucleotide resolution. 

This proved an excellent method to study representative, genome wide DNA methylation 

profiles at reduced cost. I compared the functionality of our novel method with other 

methylome sampling methods and reviewed its other potential applications in the field.  

I co-authored a systematic review on the most recent findings in the research area of human 

epigenetics and obesity (Appendix 1). I defined critical transcriptional and epigenetic 

signatures of human visceral adipose tissue (VAT) and purified visceral adipocytes (VA) 

associated with key parameters of obesity. For this part of my research, I coordinated a 

clinical study and used biological samples from 26 females across a range of BMIs (19-50 

kg/m
2
) (Chapter 4).  In the context of a larger team (the EpiSCOPE project) I coordinated the 

collection of these samples. This research revealed that transcriptional profiles were best 

correlated with BMI, waist circumference and hip circumference among the range of 

anthropometric variables.  
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Additionally, I participated in the multi-institutional EpiSCOPE project to increase 

understanding of epigenetic changes in the emergence of obesity, and generated the first 

methylome maps of subcutaneous and visceral adipocytes in lean and obese individuals 

(Appendix 2).  I contributed to two more scientific publications during my PhD that were not 

directly related to my PhD (Appendices 3 and 4). 
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INTRODUCTION   

In this Chapter, I present the function of adipose tissue in human body, the key differences 

between adipose tissue types, consequently their cellular compositions and functions. I then 

introduce key factors that regulate adipose tissue distribution, along with health risks and 

complications associated with adiposity. I also present some fundamental concepts of 

epigenetics and its potential role in mediating gene and environmental interactions.  

1. Health impacts human adipose tissue 

As the largest endocrine organ in the human body producing hormones, adipose tissue 

influences almost every cell, organ and function in our bodies. Most people view adipose 

tissue as a passive reservoir for energy storage therefore it is the only disliked endocrine 

organ (1). It constitutes less than 10% of the body weight in some adults and over 60% in 

others. It carries out significant functions such as glucose homeostasis, energy metabolism, 

regulation of food intake and immune functions (2). Adipose tissue has also a relatively high 

turn-over rate, 10% of its adipocytes are renewed annually (3). Generally it is to blame for 

suboptimal body types and shapes.  Both excess and deficiency of adipose tissue have adverse 

health impacts.  

Obesity is manifested by progressive increase in adiposity, progressive loss of adipose tissue 

is known as lipodystrophy. These conditions are characterized by gain or loss of fat in either 

all body parts or only in specific parts.  It is interesting that obesity and lipodystrophy can 

occur simultaneously and their metabolic consequences are similar (4). 

The World Health Organisation (WHO) estimates that 2.8 million people die each year as a 

result of being overweight or obese (5) and 17.5% of Australians are classified as obese (6). 

Obesity has reached alarming rates in many countries, including Australia. Accumulation of 

excess fat tissue is a risk factor for various metabolic conditions, particularly impaired 

glucose tolerance which may proceed to Type 2 Diabetes (T2D). Although not all obese 

individuals develop T2D, dysfunction and excess of adipose tissue plays a role in the 
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predisposition to T2D. Hence, it is clear that obtaining a better understanding of how adipose 

tissue contributes to adverse health effects is essential in improving prevention and treatment 

strategies for both obesity and T2D.  

1.1.Obesity and associated complications 

Obesity, a condition of excess adiposity, develops due to the imbalance between food intake 

and caloric utilization. According to the WHO, obesity is defined by a body mass index 

(BMI) of ≥ 30 kg/m
2
 for both men and women (7). However, BMI is a measure of excess 

weight rather than excess adiposity. Therefore, two people with the same BMI may look 

different. On the other hand, fat distribution can be estimated by waist circumference alone or 

the ratio of waist to hip circumference (WHR). The waist circumference at which there is an 

increased metabolic complication risk is > 102 cm for men and >88 cm for women.  

Body fat percentage is the most accurate measure of adiposity. Specialised imaging 

instruments such as Computerized Tomography (CT) and Magnetic Resonance Imaging 

(MRI) can measure body fat distribution in specific depots, lean muscle mass and bone mass 

(8). However, these instruments are expensive to run, and therefore have not been used in 

large population studies.  

The clinical factors associated with the progression of obesity are listed below (9): 

 Elevated fasting glucose: higher than normal amount of circulating sugar in the blood 

before meals.  

 Glucose intolerance: impaired ability to reduce blood glucose levels into the normal 

range (≤5.5 mmol/L in the fasted state and under ≤7.8 mmol/L two hours after an oral 

glucose load) after eating; often known as prediabetes. 

 Insulin resistance: a condition in which cells of the body have a lowered level of 

response to secreted insulin. 

 Hypertension: high levels of blood pressure.  
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 Increased serum triglyceride: elevated levels of neutral fat in the blood. It is 

associated with heart disease risk. 

 Reduced high-density lipoprotein cholesterol (HDL-c):  HDL-c has protective effects 

such as decreased oxidation and low levels of HDL-c are associated with the 

progression of atherosclerosis. 

1.2.Type 2 Diabetes and associated complications 

Type 2 Diabetes (T2D) is a progressive disease in which individuals have high blood glucose 

levels due to impaired insulin sensitivity and secretion (10). It is diagnosed when blood 

glucose level is higher than the baseline of 7 mmol/L in the fasted state and 11.1 mmol/L two 

hours after an oral glucose load. 

T2D was thought to only occur after age 40. However, the rising prevalence of obesity in 

younger generations contributes to the growth of T2D incidence in young people and in 

children (11). The progression of T2D is associated with multiple clinical factors listed below 

(12, 13): 

 Insulin resistance: inability to reduce blood glucose levels into the normal range in the 

presence of insulin. 

 Hyperglycemia: in pre-diabetes there is a higher than normal amount of circulating 

sugar in the blood, defined as a fasting blood glucose concentration > 5.5 mmol/L or > 

7.8 mmol/L 2h after an oral glucose load. 

 Impaired beta-cell function: at the pre-diabetic stage, an increased rate of insulin 

secretion and C-peptide production by pancreatic beta-cells to compensate insulin 

resistance. This causes hyperinsulinemia (≥25 mIU/L in the fasted state), which often 

leads to beta-cell damage. Therefore, rate of insulin secretion is lowered as T2D 

progresses. 

 Hypertension: high levels of blood pressure. 
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 Dyslipidemia: abnormal concentrations of lipids and lipoproteins in the blood. 

Both obesity and T2D have been associated with serious health complications such as 

cardiovascular diseases, stroke, cancer, neuropathy and eyesight and kidney failure (14).  

These complications are presented in Figure 1.  

  

Figure 1: Health complications related to obesity and/or Type 2 Diabetes. The body scan 

image of woman (weight: 113 kg, height: 168 cm) is sourced from: (15). Obesity-only and 

Type 2 Diabetes-only associated health complications are shown in yellow and red 

respectively. 
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2. Cellular composition and classification of human adipose tissue 

2.1.Cellular composition of human adipose tissue 

Besides adipocytes, adipose tissue contains a variety of non-adipocyte cells including pre-

adipocytes, fibroblasts, extracellular matrix, nerve cells, endothelial cells, blood cells, 

mesenchymal stem cells and immune cells collectively known as the Stroma Vascular 

Fraction (SVF) (Figure 2). The immune cell content of adipose tissue is highly variable, 

including pro-inflammatory immune cells (neutrophils, dendritic cells, M1 macrophages, Th1 

cells, B cells, and mast cells) and anti-inflammatory immune cells (regulatory T cells, Th2 

cells, M2 macrophages, and eosinophils) (16). The key functions of adipocytes and pre-

adipocytes are discussed further below. 

 

Figure 2: Schematic representation of human adipose tissue cellular composition. 
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2.1.1. Key functions of adipocytes 

Triglyceride Storage and Release 

Adipocytes have an important role in energy homeostasis by storing triglycerides and 

releasing fatty acids and glycerol as a source of energy as needed (2). About 90% of the 

volume of white adipocytes is taken up by a single fat droplet.  

When the plasma glucose concentration is high, insulin regulates the transport of glucose into 

adipocytes by (17):  

 Stimulating the translocation of the facilitative glucose transporter (GLUT4) through a 

process called exocytosis (18).  

 Acting through its plasma membrane receptor leading to tyrosine phosphorylation of 

insulin receptor substrate proteins (IRS) and activation of well-documented PI3-kinase 

pathway that play an essential role in glucose uptake and GLUT4 translocation (19).  

Once taken up by the cells, glucose is converted into acetyl-CoA in the mitochondria and then 

used as a substrate for fatty acid synthesis. A study showed that glucose is the main carbon 

precursor for de novo lipogenesis: isotopically (
13

C)-labelled glucose contributed 70% of the 

carbons contained in triglycerides produced by human adipocyte cultures (20). In vivo, insulin 

also inhibits the breakdown of lipids in adipocytes (21). Hormones such as cortisol, atrial 

natriuretic peptide and growth hormone stimulate fat deposition (22).  

When plasma glucose levels are low, lipolysis is activated by hormonal and biochemical 

signals that act on lipases and membrane proteins in adipocytes (23). For instance, glucagon 

and catecholamines (adrenaline and noradrenaline) act through G-coupled receptors to elevate 

cyclic AMP levels. cAMP stimulates protein kinase A (PKA) which leads the activation of 

hormone-sensitive lipase via phosphorylation (21).  Triglycerides can be broken down by 

hormone-sensitive lipase into glycerol and free fatty acids and released to the circulation. 

These fatty acids then become substrate for oxidation in muscle and provide energy or 



7 
 

become substrate for re-esterification in liver and transform into lipoprotein (24). Dietary 

components such as calcium and caffeine have pro-lipolytic effects while alcohol has anti-

lypolytic properties (23). 

Adipokine Secretion 

Adipocytes regulate food intake and appetite by secreting peptide hormones called cytokines. 

Adipocyte-secreted cytokines are known as adipokines, and maintain the crosstalk with other 

organs. The adipokines; resistin, retinol binding protein-4 (RBP4), tumor necrosis factor α 

(TNFα) and interleukin-6 (IL-6) raise blood glucose levels, while leptin, adiponectin, visfatin 

and omentin maintain homeostasis by reducing blood glucose levels through their action on 

organs of metabolic importance such as muscle, liver and adipose tissue (2, 25).  

Adipokines affect lipid metabolism, fatty acid transportation, insulin responsiveness, 

angiogenesis, blood pressure and immune function, all of which can cause adverse health 

risks when perturbed (26). Although most adipokines have distinct steady state localization in 

adipocytes, they are released via vesicles through pathways that are not fully understood (27, 

28). 

Immune protection 

Similar to macrophages, adipocytes express genes encoding inflammatory molecules and 

scavenger receptors that have important roles in both innate and adaptive immune responses 

(25). Adipocytes have intrinsic inflammatory properties. For instance, TNFα is an 

inflammatory cytokine overexpressed in the adipose tissue of obese individuals (29).  

Adipocytes secrete several other inflammation biomarkers such as IL-6, interleukin-1 (IL-

1) and CC-chemokine ligand 2 (CCL2). The secretion of these inflammatory mediators is 

regulated by Nuclear Factor-κB (NF-Κb) signal transduction, c-Jun N-terminal kinases (JNK) 

signalling, and several other pro and anti-inflammatory signalling cascades (25). 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&amp;cmd=Retrieve&amp;dopt=full_report&amp;list_uids=3569
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&amp;cmd=Retrieve&amp;dopt=full_report&amp;list_uids=6347
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2.1.2. Key functions of pre-adipocytes 

Self-renewal 

New adipocytes are generated through the proliferation and differentiation of adipocyte pre-

cursor cells known as pre-adipocytes. These are derived from adipose-derived mesenchymal 

stem cells (ADSC) through processes called adipocyte lineage determination and commitment 

(30).  

ADSC have self-renewal and multipotency properties which make them an excellent source 

for regenerative medicine therapies (31, 32). ADSC can differentiate in vitro into adipocytes, 

but also into other cells such as osteoblasts, chondrocytes, neuronal-like cells and myocytes 

(33-35). This implies that in vivo, if ADSC can also be mobilized from adipose tissue to other 

organs, they may contribute to a pool for potential progenitor recruitment by other organs, 

perhaps following tissue injury.  

The proliferation and differentiation capacity of ADSC greatly varies depending on their 

depots of origin. ADSC isolated from different depots have distinct patterns of gene 

expression, differentiation potential, and response to growth factors (36). Pre-adipocytes 

exhibit intrinsic depot-of-origin memory in their metabolic activities, from lipolysis to 

adipokine secretion (37). They also have antimicrobial and antiviral properties (38, 39) and 

they can express several inflammatory genes that play a role in immune responses (25).  

Adipogenesis 

Adipogenesis, the process of pre-adipocytes becoming adipocytes, is orchestrated by several 

transcription factors, regulating the expression of hundreds of genes that have diverse 

biological effects on adipocytes. Several biological pathways have direct effects on the 

adipogenic differentiation of ADSC (40, 41). The main regulators are listed below: 
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 Peroxisome proliferator-activated receptor γ (PPARγ), CCAAT-enhancer-binding 

proteins α (C/EBPα), C/EBPβ, and C/EBPδ are the main inducers of adipogenesis, 

with C/EBPβ and δ acting early in terminal differentiation.  

 Insulin-like growth factor 1 (IGF-1) insulin signalling activates adipogenesis. 

 The WNT and hedgehog (HH) pathways represses adipogenesis by inhibiting 

expression of pro-adipogenic transcription factors such as PPARγ and C/EBPα. 

 Members of the transforming growth factor β (TGFβ), bone morphogenetic protein 

(BMP) superfamily, fibroblast growth factor (FGF) and Notch-signalling pathways 

have both pro- and anti-adipogenic functions. 

Especially, PPARγ and C/EBPα are the master regulators of adipogenesis and terminal 

differentiation and they regulate the expression of genes involved in key adipocyte functions 

such as insulin sensitivity, lipogenesis and lipolysis (Figure 3) (42). Some key examples of 

these genes are:  

 Glucose transporter type 4(GLUT4): is one of the 13 sugar transporters on the 

surface of human cells. It is the key regulator of whole-body glucose homeostasis by 

trafficking circulating blood sugar into adipocytes and muscle cells in the presence of 

insulin (43).  

 Fatty-acid-binding protein (FABP4): is an intracellular protein affecting lipid 

fluxes, metabolism and signalling within cells. It circulates in the bloodstream, 

therefore having a critical hormonal role in whole-body metabolism (44). 

 Lipoprotein lipase (LPL): plays a role in lipoprotein metabolism by its dual 

functions: breaking down triglycerides and acting as a coactivator for lipoprotein 

uptake. It is expressed in heart, muscle, and adipose tissue (45).  

 1-acylglycerol-3-phosphate acyltransferase 2 (AGPAT2): is involved in the 

synthesis of phospholipid and triglyceride in the endoplasmic reticulum of adipocytes. 

Mutations in AGPAT2 have been associated with lipodystrophy (46). 

https://en.wikipedia.org/wiki/Peroxisome_proliferator-activated_receptor
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 Leptin (LEP): an adipokine, which plays a major role in the regulation of body 

weight. Leptin can trigger immune responses and has been linked to obesity and T2D 

(47).  

 Adiponectin (ADIPOQ): is exclusively expressed in adipose tissue and encodes 

adiponectin, a molecule that regulates glucose levels and fatty acid breakdown and 

also has putative anti-inflammatory properties (48).  

 Perilipin (PLIN1): perilipin is the phosphoprotein that coats lipid droplets in 

adipocytes (49).
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Figure 3: The basic network of transcription factors that regulate adipogenesis (30).
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2.2.Classification of human adipose tissue 

Adipose tissue is found all around the body. There are two main adipose depots in humans 

classified based on the coloration: Brown Adipose Tissue (BAT) and White Adipose Tissue 

(WAT) (Figure 4). They have antagonistic functions: BAT burns energy to produce heat and 

maintain body temperature while WAT is responsible for triglyceride storage as an energy 

reservoir. A new, third class of adipose tissue has been ascertained due to its colour: Beige 

Adipose Tissue. Its functions slightly differs from both classical BAT and WAT (50). The 

location of adipose tissue and the heterogeneous lineages of its adipocytes can dictate the 

degree of its association with adverse health, as will be further described below for each fat 

depot.   

 

Figure 4: Adipose tissue depots in humans. White Adipose Tissue (WAT) is dispersed all 

over the body, with subcutaneous (blue) and visceral (orange) depots representing the main 
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compartments for fat storage. Other WAT sites are shown in green. Brown Adipose Tissue 

(BAT) (brown) is larger in infants than adults (adapted from (51)). 

  

2.2.1. Brown adipose tissue (BAT)  

BAT is characterized by rapid heat production due to its high mitochondrial content and 

expression of a unique protein: uncoupling protein-1 (UCP1). It is essential for non-shivering 

thermogenesis. In human foetuses and newborns, BAT is found largely around the blood 

vessels in the neck and in smaller quantity around kidneys (52). It has been hypothesized that 

this distribution maintains the body temperature by warming the blood in surrounding blood 

vessels before its delivery to the other organs, hence providing the optimal temperature for 

biochemical reactions (53). In rodents, the thermogenic potential of BAT has been estimated 

to be 300 times more than most other tissues (54). In fact in humans, 50 g of fully activated 

BAT can burn 20% of total daily energy expenditure (55). Therefore, BAT is an excellent 

resource to increase resting energy expenditure and maintain healthy weight.  

Brown adipocytes, constituting the majority of BAT, are characterized by multilocular lipid 

droplets and an extraordinary number of mitochondria which gives the tissue its colour 

(Figure 5). Lineage tracing studies show that both brown adipocytes and skeletal muscles 

originate from Myf5 (myogenic gene) expressing precursors and that browning is controlled 

by the expression of PR domain containing 16 (PRDM16) (56, 57), as shown in Figure 5. The 

key regulatory networks involved in browning are well explained in (58) and will not be 

discussed here.  
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Figure 5: The origin and types of human adipocytes. Based on (59) where more detailed 

mechanisms of the development of human adipocytes can be found. 

2.2.2. White adipose tissue (WAT) 

WAT stores excess dietary fat in the form of triglycerides, to then release free fatty acids 

under energy demand. It is located in two main compartments of the body: Subcutaneous 

Adipose Tissue (SAT) forms a layer beneath the skin while Visceral Adipose Tissue (VAT) 

surrounds the vital organs (Figure 4). There are also marginal deposits of WAT in other sites 

such as around the face, in bone marrow and on the surface of the heart. WAT is non-

homogenous in its cellular composition and metabolic characteristics. Unlike brown pre-

adipocytes, white pre-adipocytes originate from adipogenic precursors lacking Myf5 
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expression.  White adipocytes are commonly characterised by their unilocular lipid droplet 

morphology that maximizes their lipid storage capacity (Figure 5). They constitute the 

majority of the SAT and VAT and appear anatomically similar in both depots (60). Visceral 

white adipocytes are slightly smaller. Both SAT and VAT have been correlated with 

metabolic risk factors, but VAT is the more pathogenic fat depot (61). Additionally, 

VAT/SAT volume is highly sex-hormone dependent (62).   

2.2.2.1. Subcutaneous adipose tissue (SAT) 

SAT is found predominantly in the buttocks, thighs, and abdomen (Figure 4). Lower body 

SAT (in buttocks and thighs) is protective against metabolic risk factors (63). Tchoukalova et 

al. (64) showed that when both males and females gained weight, lower-body SAT increased 

adipocyte number (hyperplasia) while upper-body SAT increased adipocyte size 

(hypertrophy). Therefore, different SAT depots may function differently. 

2.2.2.2. Visceral adipose tissue (VAT) 

VAT is found in the abdominal cavity around the omentum, intestines, and perirenal areas 

(Figure 4). VAT is a more active secretory organ than SAT (37) and has a less capillary 

network density in lean individuals which is reversed in obesity (65). An excess of VAT is 

strongly associated with increased mortality. Moreover, the functional differences in VAT, 

especially within its immune cell component, is significantly associated with increased BMI 

(66). Post-menopausal women, aging men with lower testosterone levels and women in 

hyper-androgenic states all display a greater increase in VAT (reviewed in (62)), indicating 

that VAT is metabolically dynamic across the lifespan. 

There are depot-specific characteristics differences between SAT and VAT which are 

summarised in Table 1. 
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Table 1: Functional differences between SAT and VAT. 

 SAT VAT Reference 

Adipocyte size Large Small (60) 

Lipolysis Low High (67) 

Insulin receptor affinity and 

IRS1 expression  

High Low (68) 

Inflammation Low High (51) 

Cytokine Secretion Mostly Low 

(Leptin    ) 

High  (37) 

Turnover Fast Slow (69) 

Angiogenic capacity More Less (65) 

Adipose derived stem cell differentiation 

proliferation and differentiation 

capacity 

High Low (70) 

Developmental stage Early (14 

weeks) 

Late (71) 

Developmental genes Tbx15, Shox2, 

En1 and Sfrp2 

Gpc4, Hoxc8, 

Hrmt1/2, 

Hoxa5, Thb2 

and Nr2f1 

(72) 

 



17 
 

2.2.3. Beige adipose tissue 

The Myf5
- 
precursor cells, giving rise to white adipocytes, have the potential to differentiate 

into brown-like adipocytes under the exposure to beta-adrenergic agonists. These cells are 

often called beige adipocytes and its depots are called beige adipose tissue. Beige adipocytes 

exhibit multilocular lipid droplets and high mitochondrial activity yet still maintain some 

characteristics of white adipocytes (73).  

It is still unclear whether white adipocytes can transdifferentiate into beige adipocytes, 

especially under specific conditions such as exposure to cold. Cold exposure is a common 

method to activate non-shivering thermogenesis in BAT and it induces browning of WAT.  

There is a growing evidence for the trans-differentiation of white adipocytes into beige 

adipocytes in murine models (reviewed extensively in (60, 74)). In humans, the same 

phenomenon has been recently described with the possibility of having “inactive beige 

adipocytes” which have white adipocyte characteristics but can be re-activated under specific 

stimuli (40). Hence, the possibility of “trans-differentiation” or “re-activation” has been left 

open in the human adipose tissue context (Figure 5, dashed arrows).  

Most recent studies have showed a contribution of the lymphoid cells in SAT to generate and 

activate adipocyte browning (75, 76). Although SAT is known to have more browning 

potential, adaptive thermogenesis of VAT has also been reported in mice and in humans (77). 

Beige adipose tissue is one of the most active research areas, as both BAT and browning of 

WAT provide great potential for weight loss treatments. 

3. Use of in vitro systems to study human adipogenesis 

Adipogenesis has been well-studied since the establishment of the murine pre-adipocyte cell 

line 3T3L-1 in 1975 (78).  A human pre-adipocyte cell line, SGBS, was developed by the 

isolation of mesenchymal stem cells from the subcutaneous fat depot of a male infant with 

Simpson-Gobali-Behmel Syndrome in early 2000’s (79). The SGBS cell line has a high 

proliferation and differentiation capacity, providing unique advantages in studying human 
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adipogenesis (Figure 6) (80). During adipogenesis, fibroblast-like precursor cells undergo 

significant morphological changes and become lipid storing globular adipocytes. Chapter 1 

provides insight to the physiological, metabolic, transcriptional and epigenetic trajectories 

during human SGBS adipocyte differentiation, particularly under high glucose exposure. 

Unlike the unilocular in vivo white cells, cultured white adipocytes contain multiple lipid 

droplets (Figure 6). Accurate measurement of lipid storage capacity of the white fat cells is 

important for exploring lipid dynamics in vivo and in vitro. Chapter 2 describes a novel label-

free lipid droplet quantification technique (LipiD-QuanT) to monitor fat accumulation in live 

adipocytes.  

  

Figure 6: SGBS human adipogenesis in live cells. Lipids accumulate as adipocyte 

differentiation progresses.  



19 
 

4. In vivo adipogenesis and obesity 

The increase in the mass of body fat can arise from an increase in the size of developed 

adipocytes (hypertrophy) or an increase in their total number (hyperplasia) by the generation 

of new adipocytes (81). Particularly in morbid obesity, when developed adipocytes reach 

their maximum capacity, new adipocytes are needed for the storage of excess energy intake in 

the form of fat. This raises two questions: 

 What is the origin of new adipocytes in hyperplastic obesity?  

To begin with, hyperplasia of the subcutaneous adipose tissue (SAT) is found in both sexes 

and across all BMI classes (82). Hence, there is inter-individual variability within the adipose 

tissue regardless of body size. It appears that the number of fat cells within a human body can 

increase throughout life (64). In murine models, when adipocytes reach a critical volume they 

recruit new adipocytes (83). On a high fat diet, both obesity-prone and –resistant mice 

recruited new adipocytes (84). This expansion of adipose tissue occurred in under 10 weeks.  

Tang et al. (85) demonstrated that ADSC reside in the mural compartment of adipose tissue, 

which is involved in vascularisation. Using immunohistochemistry, Lin et al. (86) further 

narrowed the location of ADSC to the endothelium of capillaries and arterioles, excluding the 

endothelium of arteries surrounding the adipose tissue. Therefore, current understanding is 

that committed pre-adipocytes in the stromal vascular fraction of adipose tissue, and ADSC in 

the peri-vasculature are the main sources for new adipocytes. It is currently unknown whether 

ADSC give rise to other cell types in vivo. However, as discussed above, ADSC can 

differentiate into other cells such as osteoblasts, chondrocytes, neuronal-like cells and 

myocytes in vitro. However, are ADSCs the only pools? Until recently it was still unknown 

whether other sources of stem cells can infiltrate the adipose tissue and give rise to new 

adipocytes.  
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In a murine system, green fluorescent protein (GFP)-tagged bone marrow-derived cells were 

shown to contribute to adipose tissue with higher levels in visceral (gonadal) than 

subcutaneous fat (87).  

Two recent studies in humans showed that bone marrow may also serve as a reservoir for 

adipocyte progenitors in the surplus of energy (88, 89). Genetic tracking of transplanted bone 

marrow stem cells showed that they could contribute up to 10% of the total adipocyte number 

in lean individuals and up to 25% in obese individuals. Hence, adipocytes within the same 

depot are not necessarily from the same developmental origin.   

 What is the consequence of having large adipocytes due to hypertrophic obesity? 

Hypertrophy without hyperplasia leads to metabolically unhealthy adipose tissue, with local 

inflammation, impaired lipolysis and insulin resistance in both obese (90) and lean 

individuals (91). Moreover, hypertrophic obese individuals have a reduced rate of adipocyte 

turnover, requiring their adipocytes to expand further under excess energy flux (92).  

Recently, in humans, ~100 Single-nucleotide polymorphisms (SNPs) were found to estimate 

the variance in BMI and WHR (93, 94) and expression levels of some of these genes 

(CALCRL, CPEB4, FAM13A, HLA-DRA, MSC and PLCG2) was correlated with adipocyte 

size in an independent cohort (95). Most recently, lower expression of Early B-Cell Factor 1 

(EBF1) was closely linked to hypertrophy and consequently to altered lipid mobilisation and 

insulin resistance (96). Thus, adipocyte size is an important feature associated with pre-

disposition to T2D and dysfunctional adipose tissue, independent of BMI (91). 

5. Fat distribution in obesity 

Fat distribution has a serious impact on metabolic risk. Particularly, the expansion in VAT 

and upper-body SAT compartments increases metabolic risk as they contribute to central 

obesity.  
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Central obesity is characterised by an apple-shape body and is defined by a WHR above 0.90. 

It has been associated with higher risk of Type 2 Diabetes (T2D) and metabolic diseases 

(Figure 7).  On the other hand, obese individuals with low WHR have a pear shaped body and 

lower risk of metabolic complications (Figure 7). In fact pear shaped adiposity has been 

found to confer metabolic protection with improved metabolic profiles including lower 

fasting plasma glucose and triglycerides, and higher HDL-c (97, 98). 

One of the most popular explanations for the strong association between abdominal adiposity 

and obesity has been that VAT is highly vascularised and drains into the hepatic portal vein. 

Hence this adipose tissue releases free fatty acids (FFAs) and inflammatory cytokines directly 

to the portal circulation, which provides blood flow to the liver (99). 

 

Figure 7: Human fat distribution and associated metabolic risk levels (After (51)). 
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6. Epidemiology and impact of obesity and Type 2 Diabetes 

As of 2014, more than 1.9 billion adults aged 18+ years were overweight or obese, with over 

600 million classified as obese (100). Currently, over 60% of Australian adults are 

overweight or obese (35% overweight, 28% obese) (101). This places Australia’s rate of 

obesity as the fourth highest amongst the 34 countries members of Organisation for Economic 

and Co-operation and Development (OECD), behind the USA, Mexico and Hungary (102).  

The global prevalence of diabetes is estimated to be 9% (103). The prevalence of Type 2 

Diabetes (T2D) in Australia is about 4% according to 2011-2012 statistics (101). This places 

Australia’s rate of T2D higher than western European countries but lower than especially 

Middle Eastern and Asian countries (104). Within the Australian context, the longitudinal 

“AusDiab” study has estimated that obesity increases incidences of T2D five-fold (105). Both 

diabetes and obesity are among the six Australian National Health Priority research areas 

listed in 1997 and 2008 (106, 107).  

7. Drivers of obesity and Type 2 Diabetes  

There are three main drivers of obesity and T2D: lifestyle, environment, and genetics. 

However, the severity of these conditions is highly contingent on the complex interplay of 

these drivers, and is unique to every individual.  

Diet and physical activity greatly influence obesity and T2D (108). Frequent consumption of 

energy dense pre-processed foods and reduced levels of physical activity causes energy 

imbalance, resulting in increased storage of fat and increased risk of obesity and T2D. 

The heredity of obesity and T2D has been estimated to be 40–70% (109, 110) and 40-50% 

(111) respectively. On the other hand, most recent studies showed that ~100 known obesity 

associated genomic loci explain only 5-11% of the inherited predisposition to obesity (93). 

Similarly in T2D, heredity of the known ~20 gene variants explain less than 10% of the 

predisposition (112, 113). Obesity co-occurs with T2D, and 18% of the T2D associated 

genetic traits are also correlated with increase in BMI, perhaps due to shared genetic 
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influences (114). Figure 8 represents a list of genomic loci associated with T2D, obesity and 

related metabolic measures. 

 

Figure 8: Venn diagram of genomic loci associated with T2D and obesity (110). 

There is a great deal of effort to find the “missing link” connecting how lifestyle choices and 

environmental factors may be influencing the hereditary component of obesity and T2D. 

Epigenetic mechanisms regulate gene expression, and establish cell type specific gene 

expression profiles and epigenetic marks can be maintained through cell division. Hence, they 

may be involved in the regulation of depot-specific and obesity-associated gene expression 

profiles in the adipose tissue. Recent studies have shown that adipose tissue epigenetic 

signatures are altered with caloric restriction (115), exercise intervention (116) and following 

bariatric surgery (117-119). Hence its impact on the progression of obesity and T2D should 

be further investigated.  
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8. Key epigenetic mechanisms 

Epigenetics is the study of mitotically heritable changes in gene expression that are not due to 

changes on the DNA sequence (120). Epigenetic modifications are potentially responsible for 

long lasting changes in gene expression in response to environmental factors.  

There are four main mechanisms by which epigenetic signatures can be controlled (Figure 9):  

 Chromatin remodelling via post-translational modifications of the histone proteins 

 DNA methylation of the cytosine residues (CpGs in the mammalian context).  

 Transcription factors (sequence-specific DNA binding proteins) by strategically 

localizing proteins that modify histones or DNA methylation  at target regions via 

protein-protein interactions  

 Functional elements, such as non-protein coding RNA (ncRNA) that may also be 

involved in targeting epigenetic modifications 

Histone modifications and DNA methylation are relevant to the scope of this research, hence 

will be explained further below.   
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Figure 9: The main epigenetic mechanisms that control gene expression (Adapted from 

(121)). 

8.1. Histone modification 

Eukaryotic DNA is packed as chromatin, folded into repeating units of nucleosomes that are 

composed of roughly 147 bp of DNA wrapped around histone octamers. This structure allows 

the packaging of nearly 1.8 m of DNA into 1 micron of human nucleus. This compact 

packaging controls gene expression by the precise positioning of the nucleosomes. The tightly 

packed regions of the genome will be physically inaccessible while loosely packed regions 

will be accessible to transcriptional machinery (122). Also, covalent modifications of the 

histone tails and histone variants regulate the transcriptional machinery.  



26 
 

Some well characterised histone modifications, particularly acetylation (ac) and methylation 

(me) of lysine residues (K) on the tails of histone H3, and their known functions based on 

their location are presented in Figure 10. 

 

 

Figure 10: Known histone markers with known functions based on their location. A. At 

promoters histone modification can regulate the gene function from active to poised to an 

inactive state. B. At the gene body, histone modifications act as a switch from active to 

inactive states or vice-versa. C. At distal sites they correlate with enhancer activity (adapted 

from (123)). 
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8.2. DNA methylation 

Methylation of cytosine by a covalent modification of DNA is the best characterised 

epigenetic modification. It occurs on CpG dinucleotides and is mediated by DNA 

methyltransferase enzymes in mammalian cells (124). While DNA methyltransferase 1 

(DNMT1) is responsible for the maintenance of existing DNA methylation patterns, DNA 

methyltransferase 3A (DNMT3A) and DNA methyltransferase 3B (DNMT3B) are 

responsible for de novo DNA methylation, and they can repair errors made by DNMT1 

(Figure 11) (125). During DNA replication, lack of DMNT1 and DNMT3A activity will lead 

to passive DNA demethylation. Recently, the Ten-eleven translocation (TET) family proteins 

have been found to be responsible from oxidation of 5-methylcytosine to 5-

hydroxymethylcytosine and higher oxidative derivatives such as 5-formylcytosine and 5-

carboxylcytosine (Figure 11)  (126).  

Therefore, this provided a mechanistic route for active demethylation with 

hydroxymethylation as an intermediate state between methylated and unmethylated cytosine.  

In the mammalian genome context, non-CpG methylation (127) and 5-

hydroxymethylcytosines (128) have been observed in stem cells and may play a role in 

maintenance of the stem cell phenotype.  

 

 

 

Figure 11: Overview of enzymatic cytosine modifications observed in mammalian 

genome context (126). 
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The human genome contains over 28 million CpG sites most of which are not evenly 

distributed across the genome (129). As a consequence of CpG to TpG mutation across 

mammalian evolution, CpGs are under-represented in the mammalian genome. The 

remaining CpGs are enriched in GC rich regions of the genome known as CpG islands (130), 

mostly found in gene promoters. Methylated CpG islands located in the promoter region are 

associated with repression of gene expression while unmethylated CpG islands in promoters 

are typically associated with activation of the gene expression (129). Region of lower CpG 

density flanking CpG islands are known as CpG shores (131). Differential methylation is 

frequently observed in CpG shores and its regulatory role appears to be region specific (121, 

123).  

With the development of whole genome methylation analysis, methylation in GC poor 

regions covering gene bodies, distant enhancers and GC poor promoters has recently become 

of more interest (132). Enhancer regions are several kilobases upstream or downstream of a 

gene promoter, yet they still influence tissue-specific gene expression (131). Methylation of 

CpGs within the gene body is associated with activation of gene expression and is often 

inversely related to promoter methylation (129). 

9. Epigenetics and human obesity 

Epigenetic dysregulation has long been identified as contributing to human disease 

phenotypes, particularly most types of cancer (133). Due to the growing obesity epidemic in 

the last decade, a great deal of attention has been directed towards understanding the role of 

epigenetics in the development of obesity (134).  

Animal models provide unique opportunities for the assessment of epigenetic changes under 

specific dietary conditions. For instance, high fat diet induced changes in methylation pattern 

of genes that play important roles in body-weight regulation: the leptin gene (LEP) in rats 

(135) and melanocortin-4 receptor (MC4R) gene in B6 mice (136). Candidate gene 

approaches in humans have identified a large number of DNA methylation changes 

associated with obesity key parameters (109). Increased adiposity has been associated with 
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changes of the methylation pattern of metabolically important genes such as HIF3A, LIPE, 

CETP, TIMP4 and DOCK9 in the adipose tissue (137, 138). 

Additionally, epigenetic modifications mediate genomic imprinting which determines 

expression of either maternal or paternal allele of a gene. Several of the genomic imprinted 

genes are associated with metabolic functions involved in the development of obesity and 

T2D (139). The role of epigenetics in obesity is discussed in more detail a systematic review 

on “Epigenetics and Human Obesity” which I co-authored (Appendix 1), 

Chapter 4 provides insights into changes in the transcriptional signatures of human visceral 

adipose tissue (VAT) and purified visceral adipocytes (VA) across 26 females with a range of 

BMI (19-50 kg/m
2
). This work will be coupled with currently on-going study of epigenome 

profiling of visceral adipocytes (VA) across the same set of individuals for future publication.  

10. DNA methylome analysis methods 

The invention of bisulphite sequencing was pivotal for the field of epigenetics as it allowed 

scientists to pinpoint the positions of 5’ methyl cytosines. Bisulphite treatment replaces 

cytosines with uracil while 5’ methylcytosines are preserved (140, 141). Thus, sequencing 

reveals only the methylated cytosine residues. The possibility of massively parallel 

sequencing together with improvements in the computational techniques allowed researchers 

to produce single resolution epigenome maps (142). The gold standard technique for 

quantifying methylation is whole-genome bisulphite shotgun sequencing (WGBS) (127). 

At the time of starting my PhD, the cost of WGBS with 30X mean coverage was above 

30,000 $AU. Although WGBS gives nucleotide-base resolution across a genome, it is still 

prohibitively expensive for most laboratories, particularly when many replicates are required. 

There were only a few affordable alternatives, which are further explained and quantitatively 

compared in Table 2.   

Methods such as methylated DNA immunoprecipitation sequencing (MeDIP-Seq), methyl-

CpG binding domain-based capture (MBDCap-Seq) are based on affinity enrichment of the 
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methylated regions using antibodies or methylated DNA binding proteins respectively, 

aiming to reduce the sequencing cost (143, 144). However, their enrichment is biased towards 

CpG rich regions of the genome. Another common approach was genomic complexity 

reduction with the use of either methylation sensitive or insensitive restriction enzymes. The 

most common method was reduced representation bisulphite sequencing (RRBS). It involved 

fragmentation of DNA using MspI endonuclease, then the fragmented DNA was separated 

according to size using electrophoresis and only appropriately sized DNA fragments 

sequenced after bisulphite treatment. There were also a few similar approaches such as 

Methyl-Seq (145) and CHARM (131, 146).  

New epigenetic methods continue to be developed, particularly to improve genomic coverage 

in CpG-poor regions and also to reduce cost (DREAM (147) and SuBLiME (148)). More 

recently, methods that rely on capture of sequence-specific regions by hybridization have 

been developed (Agilent SureSelect (149) and Nimblegen SeqCap (150)).  

Throughout my PhD, I have directly used four methylome methods. Three were already 

established methods:  WGBS, Illumina Infinium HumanMethylation450 BeadChip array 

(450K array) (151, 152) and Nimblegen SeqCap (150) (Table 2, these are shown in bold). 

Additionally, I have developed a novel methylome method COBRAseq (Chapter 3).  

Chapter 3 introduces a genome wide methylome method inspired by the original COBRA 

method that quantifies DNA methylation in a specific gene using restriction digest of the PCR 

amplicons generated from bisulfite treated template (153). Our method reduces genomic 

complexity by enriching methylated fragments containing potential CpG sites. It is 

compatible with high-throughput genome sequencing platforms and it has two versions called 

Genome-Wide COBRA (GW-COBRA) and Linear Amplification COBRA (LA-COBRA). 

They provide unique advantages and perform well compared to the other methods. This is 

further discussed in Chapter 3. Although I was developing COBRAseq to investigate 

methylation patterns in visceral adipocytes collected from the cohort described in Chapter 4 at 
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a reduced, additional methods were developed throughout my PhD.  Particularly the 

development of customized Nimblegen SeqCap array allowed researchers to target specific 

regions of interest cell type and disease type specific manner (154).  

As part of a larger group, we generated the first WGBS profiles of subcutaneous and visceral 

adipocytes in 3 lean and 3 obese individuals (Appendix 2). I was also involved in the design 

of customized Nimblegen SeqCap arrays specific to obesity-associated and adipose specific 

genomic locations based on our initial WGBS results on lean vs obese comparisons and 

publically available obesity genome-wide association studies (GWAS) and epigenome-wide 

association studies (EWAS). This method is currently being applied to the same set of 

patients for whom we investigated transcriptional profiles in Chapter 4.  

The 450K array released just before the start of my PhD, has become the most popular and 

common method in human studies over the last five years. This method provides methylation 

quantification across ~480,000 (1.7%) CpG sites. The 450K array is known for robustness 

and has been a popular choice due to its affordable price and high precision. The majority of 

the publically-available methylation data on human cells has been generated using 450K 

arrays. Chapter 1 identifies the dynamics of changes in DNA methylation across human 

adipocyte differentiation in vitro and compares methylation profiles of in vitro grown human 

pre-adipocyte cell line to those of primary human pre-adipocytes and fibroblasts. Because of 

cost and the ability to compare directly with other datasets, I used 450K arrays for this work. 
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Table 2: Qualitative comparison of common methylome methods, chronologically arranged.  

 

Methylome Methods 

Complexity 

Reduction 

Type 

M or 

M+U 

Fraction 

Methylome 

Sampling 

(Yes/No) 

Favour of 

Enrichment 

Towards 

Comments 

 
WGBS (127) N/A M + U N/A N/A 

High cost, can detect non-CpG methylation,  

genomic input (0.05–0.1 g). 

MeDIP (143), MeDIP-

Seq (144) 
Affinity capture M No CpG-rich 

Bias towards 5mC-rich regions, Captures single-stranded DNA, prone to technical 

variability, coverage is read-depth dependent, input = 0.15–5 g. 

MBDCap-Seq (155, 

156),  

MIRA-Seq (157) 

Affinity capture M No CpG-rich 
Dependent on CpG density, effected by salt concentration, covers about 18%  

 of the CpGs (158), 28,500 CpG islands (156), DNA input = 0.2–1 g. 

Methyl-Seq (145), 

HELP-Seq (159) 

Restriction 

digest 
M + U Yes CpG-rich 

Assesses 0.25 to 1.3 million CCGG sites in human genome by difference in read fractions 

in HpaII vs. MspI libraries, input = 0.01–0.1 g. 

CHARM (131, 146) 
Restriction 

digest 
M + U Yes 

CpG-rich and 

poor 

Array-based and available for human, mice and rat, assesses 3.5 to 7 million CpG sites,  

input = 5 g. 

RRBS (160, 161) 
Restriction 

digest 
M + U Yes 

CpG-

rich/medium 
Can detect non-CpG methylation, input = 0.1–0.3 g. 

 
450K array (151, 152) Microarray M + U Yes CpG-rich 

Arrays comes in 12 per slide, available only for humans, not readily customized, 

input = 0.5–1 g. 
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Table 2. cont’d Qualitative comparison of common methylome methods, chronologically arranged. 

 

Methylome Methods 
Complexity 

Reduction Type 

M or 

M+U 

Fraction 

Methylome 

Sampling 

(Yes/No) 

Favour of 

Enrichment 

Towards 

Comments 

 

Agilent SureSelect 

(149) 

Hybridization 

capture 
M + U Yes 

CpG-rich and 

poor 
Available for human genome only, covers 3.7 million CpG sites, input = 0.5 g. 

DREAM (147) Restriction digest M + U Yes CpG-rich 
Assesses methylation at ~0.15 million sites in human genome by sequential SmaI/XmaI 

digestion and library sequencing, input = 5 g. 

SuBLiME (148) 
Methylated  

cytosine capture 
M Yes 

CpG-rich and 

poor 

Substitutes biotin-14-dCTP or biotin-14-dGTP at the position of the 5mC in bisulfite 

treated DNA, input = 2 g. 

 

Nimblegen SeqCap 

(150) 

Hybridization 

capture 
M + U Yes 

CpG-rich and 

poor 

“Off-the-shelf” version for human genome only/similar regions covered as 450K 

array, can be customized (150), can detect non-CpG methylation, input = 0.5–1 g. 
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CHAPTER 1: Hyperglycemia-induced epigenetic and transcriptional programming 

during human adipogenesis 

Diet-induced hyperglycemia is a hallmark of Type 2 Diabetes (T2D) and obesity. However, it 

is not known whether hyperglycemia in itself contributes to the altered fat cell morphology, 

metabolism and gene expression that are mediated by epigenetic mechanisms in obesity. 

This project focused on the physiological, metabolic, transcriptional and epigenetic 

trajectories during human adipocyte differentiation in vitro under low and high glucose 

exposures. 

One significant finding was that hyperglycemic exposure caused an increase in glucose 

uptake and in the rate of triglyceride accumulation during human adipogenesis. When grown 

in high glucose, adipocytes had significant changes in gene expression particularly in 

mitochondria and oxidative stress pathways and these changes were associated with 

perturbations in epigenetic signatures.  

This chapter is the product of a working collaboration between myself and members of the 

CSIRO Food and Nutrition Flagship and Genomics and the Epigenetics Division in the 

Garvan Institute of Medical Research. I was predominantly involved in the design of the 

study, optimization and conducting of the experiments, interpretation of the data and writing 

the manuscript. The other co-authors: Molloy, Clark, Gillings, Swarbrick and van Dijk 

contributed to the design of the study and to the interpretation of the data. They also edited 

the manuscript. Peters analyzed the DNA methylation and transcriptome array data. Vallotton 

designed the lipid quantification software. 

Detailed contributions: 

 Varinli H Co-authors 

Experimental Design 90% 10%  

Laboratory Experiments 100%  

Data Analysis 30% 70%  

Data Interpretation 80% 20% 

Writing 80% 20% 
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Abstract: 

Hyperglycemia is a hallmark of Type 2 Diabetes and obesity. However, its effect on 

adipocyte morphology, metabolism, gene expression and epigenetic processes is not fully 

understood. We compared the effect of exposure to high (30 mM) and low (7.5 mM) glucose 

concentrations on in vitro adipogenesis of the SGBS cell line (derived from a patient with 

Simpson-Gobali-Behmel Syndrome). Across adipogenesis, there are extensive changes in 

lipid production, glucose uptake and transcriptional changes. We found 94 genes 

differentially expressed during SGBS adipogenesis that were proximal to differentially 

methylated regions. These genes provide a window into the epigenetic regulation of adipocyte 

function. The SGBS methylation pattern showed similarities to that of subcutaneous 

progenitors and skin primary fibroblasts.  

Hyperglycemia led to an increase in glucose uptake and triglyceride accumulation, as 

observed in other studies. We identified 61 differentially methylated regions and 27 genes 

differentially expressed under hyperglycemic conditions; many of these are involved in 

mitochondrial function, adipose signalling, secretion, and inflammation. Some of these genes 

responsive to hyperglycemia might have health implications as evidenced by the gene 

enrichment analysis. In conclusion, this study combined genome-wide analysis of the 

transcriptome and epigenome of the human SGBS cell line under different glucose 

availability.  
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Introduction: 

Hyperglycemia, defined as a fasting blood glucose concentration > 5.5 mmol/L or > 7.8 

mmol/L at 2h after an oral glucose load, is a pre-diabetic condition associated with poor 

health outcomes. Hyperglycemia arises from either insufficient secretion of insulin or defects 

in insulin's actions, known as insulin resistance. Obesity is associated with fasting 

hyperglycemia (1), largely attributable to impaired insulin-mediated suppression of hepatic 

glucose production (insulin resistance). In the AusDiab longitudinal study, obesity (as 

measured by increased body mass index (BMI)) was associated with a five-fold increase in 

the incidence of Type 2 Diabetes (T2D) (2).  

The function of adipocytes in the pathogenesis of T2D is of considerable interest. They play a 

pivotal role in energy homeostasis by taking up glucose under the influence of insulin when 

glucose levels in the blood are high, and by releasing fatty acids as a source of energy when 

blood glucose levels are low (3). Additionally, adipocytes have a lipid-buffering function, by 

suppressing the release of non-esterified fatty acids into the circulation and increasing 

triglyceride clearance (4).  They also participate in endocrine signalling and regulate food 

intake and immune responses (5). While adipocytes are renewed in healthy adipose tissue 

through adipogenesis, in the surplus of energy, this process is also used for the expansion of 

adipose tissue (6). Understanding the process of human adipogenesis is of major importance 

for prevention and treatment of obesity and T2D. 

Changes to DNA methylation in adipose tissue have been identified in obese subjects, and 

there is compelling evidence that epigenetic modifications are linked with metabolic health 

and obesity outcomes (reviewed in (7)). Recently, hyperglycemia has been found to induce 

inflammatory responses in cardiac skeletal muscle cells (8), endothelial cells (9), and adipose-

derived mesenchymal stem cells (ADSCs) (10) and it has been proposed that this could be 

mediated by critical gene-activating epigenetic changes (9). We hypothesize that excess 

glucose availability due to hyperglycemia may modify the course of adipocyte differentiation, 
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which in turn may lead to perturbation in their epigenetic profile, and thus influence their 

phenotype and function. 

Murine 3T3-L1 cells have been used extensively for mechanistic studies of adipogenesis. 

More recently, a human in vitro model with high proliferation and differentiation capacity 

(11), the SGBS cell line, was developed from the subcutaneous fat depot of a male infant with 

Simpson-Gobali-Behmel Syndrome (12). The differentiation of human ADSCs (hADSCs) 

has also been used in genome-wide analyses of transcription and chromatin regulation across 

adipogenesis (13). A small number of studies have examined the effects of hyperglycemia on 

murine 3T3-L1 adipocytes and found that they accumulated more lipids (14), contained 

higher levels of reactive oxygen species (ROS) (15), had defective insulin signalling (16) and 

developed insulin resistance (15, 17). 

To investigate the potential hyperglycemia-induced adverse effects on human adipocytes, we 

differentiated SGBS pre-adipocytes into mature adipocytes under high (30 mM) and low (7.5 

mM) glucose concentrations over 14 days. Our aim was to identify the dynamics of changes 

in DNA methylation across human adipocyte differentiation, its relationship to transcriptional 

changes, and how these might be affected by exposure to hyperglycemic conditions. We then 

investigated the physiological, metabolic, transcriptional and epigenetic trajectories during 

SGBS adipocyte differentiation under the low and high glucose exposure.  We also compared 

transcriptional and DNA methylation profiles of SGBS cells with those of human primary 

adipocytes and hADSCs isolated from subcutaneous and visceral fat depots. In conjunction, 

we examined transcriptional regulation across SGBS adipogenesis by conducting genome-

wide integration analysis of DNA methylation profiles with recently published ChIP-seq for 

the H3K4me3 promoter mark and three transcription factors; Peroxisome proliferator-

activated receptor γ (PPARγ), CCAAT-enhancer-binding proteins α (C/EBPα), and liver X 

receptor (LXR) (18).  
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Methods: 

SGBS Cell Culture Conditions & Treatments 

SGBS cells were differentiated as previously described, with minor changes (19).  The SGBS 

cells were differentiated in DMEM, low glucose (Life Technologies, Carlsbad, CA, USA). D-

Glucose (Life Technologies, Carlsbad, CA, USA) was added to adjust the glucose 

concentrations to 7.5 mmol/L (LG0) and 30 mmol/L (HG). To test for a hyperosmolar effect, 

we also used 7.5 mmol/L glucose with 22.5 mmol/L D-Mannitol (Sigma, Saint Louis, MO, 

USA) (LG1). The LG concentration was chosen to be 7.5 mmol/L because the differentiation 

capacity of SGBS cells was reduced in lower (5 mmol/L) glucose concentrations (not shown). 

The progression of adipogenesis was compared on Day 0 (D0), Day 10 (D10 HG) and Day 14 

(D14 HG or D14 LG). 

The adipocyte differentiation rates for LG0 and LG1 were very similar and also no significant 

differences in any metabolic measures were observed between both conditions (data not 

shown). To ensure that any differences between the high and low glucose treatments were not 

due to differences in osmolarity, the HG treatment was compared to the LG1 treatment in all 

further analyses.  

ii. Lipid Content and Lipid Droplet Size Measurements  

The lipid content of differentiating adipocytes was measured on D0, D10 and D14 using a 

Triglyceride Accumulation Kit (Zen-Bio Inc., Durham, NC, USA).  Lipid droplet (LD) 

diameter size density distribution was measured on D10 and D14 using LipiD-QuanT 

software (19).  

iii. Glucose Uptake Measurement 

Glucose uptake was measured on D0, D10 and D14 and biological duplicates were used per 

treatment group and day. One hour prior to measurement, SGBS cells were washed with PBS 
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and transferred to additive-free DMEM, low glucose (Life Technologies, Carlsbad, CA, 

USA). Cells were washed again and incubated in DMEM, low glucose containing 2 µCi/mL 

14C-Glucose (Perkin Elmer, Waltham, MA, USA) for 1h. Additionally, insulin stimulated 

glucose uptake was similarly measured in the presence of 20 nmol/L insulin (Sigma, 

cat#I2643).  

After 1h, cells were washed with PBS and lysed in 200 µl RIPA buffer supplemented with 

protease and phosphatase inhibitors (Thermo Scientific, Carlsbad, CA, USA). The lysate was 

centrifuged at max speed for 15 min at 4⁰C and then, 50 µl of the supernatant was solubilized 

in 6 ml scintillation fluid. Disintegrations per minute (DPM) from 14C in the scintillation fluid 

were counted in a multi-purpose scintillation counter (Beckman Coulter Inc., LS650, Jersey 

City, NJ, USA). The readings were background corrected using the readings obtained from 

two empty wells treated with the 14C-Glucose media. DPM were extrapolated to the whole 

sample and divided by the total amount of protein in the well which was determined using a 

BCA Protein Assay as per the manufacturer’s instructions (Thermo Scientific, Carlsbad, CA, 

USA). Results were reported relative to D0 basal glucose uptake. 

iii. Gene Expression Analysis 

On D0, D10 and D14, total RNA was isolated using 500 µl TRI-reagent (Sigma, Saint Louis, 

MO, USA) as per the manufacturers’ instructions. We examined the transcriptome profiles 

during adipogenesis on a total of 16 RNA samples (1 μg each) using Affymetrix GeneChip® 

Human Gene 2.0 ST Array cartridges (D0, D10 HG, D14 HG and D14 LG1 (n=4)). Sample 

labelling, hybridization and array processing were performed at the Ramaciotti Centre for 

Genomics (UNSW, Sydney, Australia).   

Data were normalized using the Robust Multi-array Average (RMA) method from the R 

package oligo (20).  Core probesets annotated as “main” were retained for analysis (44,629 

probesets).  
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Differentially expressed (DE) genes were identified using the limma package (21). A linear 

model including all four sample types was constructed, and significant genes were extracted. 

Raw p-values were adjusted using the Benjamini-Hochberg method and significant DE 

probesets were identified based on a false discovery rate (FDR) q-value <0.05. Further 

interpretation of the data was done by Gene Set Enrichment Analysis (GSEA) (22) using an 

FDR q-value<0.05 for terms within 15≤x ≤500 range for term size x. 

Transcriptional profiles of SGBS adipocytes were compared against those of purified human 

visceral and subcutaneous primary adipocytes from 3 lean individuals (Bradford et al., 

unpublished). These data were also generated using the Affymetrix GeneChip® Human Gene 

2.0 ST Array. 

iv. DNA Methylation Analysis 

After cell lysis and proteinase K digestion, DNA was purified using a phenol-chloroform-

isoamylalcohol method. We quantified hypomethylation levels in long interspersed nuclear 

elements-1 (LINE-1) using the end-specific PCR (ESPCR) assay (23). Samples were run in 

triplicate and normalised relative to a reference DNA sample from human blood (Roche 

Applied Sciences, Sydney, Australia). Hypomethylation levels were compared using one-way 

analysis of variance or t-test as appropriate.  

We used Illumina Infinium HumanMethylation450 BeadChip (450k) arrays to map the 

genome-wide DNA methylation patterns. A total of 12 samples (D0 n=4, D10 HG n=2, and 

n=3 for both D14 HG and D14 LG1) were submitted to the Australian Genome Research 

Facility (Parkville, VIC, Australia), randomized across the array chip and processed 

following standard protocols. Three of the samples (one of D0, D14 HG and D14 LG1) did 

not meet quality criteria and were excluded from further analyses. There was high variation 

among the remaining duplicates of D14 HG. For the analysis of both DNA methylation and 
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gene expression changes during adipogenesis, irrespective of the treatment, all D14 data were 

combined and compared to D0. 

Data were normalized using the dasen method from the Bioconductor software package 

wateRmelon (24). 211 probes that failed in one or more of the nine remaining samples based 

on a detection p-value>0.05 were excluded from the analysis. Mean beta values per sample 

were calculated for all probes on the array, as well as for subsets of probes based on their 

genomic annotation according to the 450k manifest file. The Welch t-test was used for 

comparison of mean methylation levels between the groups and the time points. Differentially 

methylated (DM) sites (CpG dinucleotides) and DM regions were identified using the 

Bioconductor packages limma (21) and DMRcate v 1.4.2 (25) respectively, using FDR<0.05.  

To evaluate significant proximity of DM regions found in SGBS adipogenesis to publically 

available ChIP-seq data of three transcription factor binding sites on SGBS mature adipocytes 

(18), we applied the IntervalStats method (26), using an FDR threshold q-value<0.05 to 

evaluate individual significance for each DM regions, for each of the three transcription 

factor binding sites at D10 adipocytes and differential H3K4me3 peaks between D0 and D10. 

The DNA methylation profiles of in vitro SGBS adipocytes were plotted against those of 

visceral and subcutaneous primary adipocytes as well as their cultured or uncultured 

progenitors. For this comparison, we used 450k DNA methylation profiles from 15 paired 

samples of human primary adipocytes and 2 paired samples of hADSCs all isolated from 

subcutaneous and visceral fat depots as well as 3 samples of visceral adipose tissue (Bradford 

et al., unpublished). Additionally, since SGBS cells have fibroblast like morphology, we also 

compared their methylation profile with those of fibroblast cell lines: IMR-90 (GSM999340, 

GSM868008) and MRC-5 (GSM999345, GSM868027) arising from published studies (27, 

28).  
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Results: 

Hyperglycemia leads to differential lipid accumulation in adipocytes  

We hypothesized that excess glucose availability leads to altered adipocyte function. The 

SGBS pre-adipocyte differentiation was compared under two different conditions: 

osmolarity-adjusted Low Glucose (LG1) and High Glucose (HG) (Figure 1).  

The differentiation rate was 95% under all treatment conditions based on counts of pre-

adipocyte and mature adipocytes at D14. While adipogenesis appeared complete by D14 in 

both LG1 and HG (Figure 2A), a number of measures were indicative of differential lipid 

accumulation. The distribution of LD size (p=3.042e-11, Kolmogorov-Smirnov test) (Figure 

2B), average total LD area per cell and average LD size (Figure 2C) were all higher under 

HG treatment. The majority of the lipid production occurred in the first 10 days of SGBS 

adipogenesis, with triglyceride content increasing a further ~25% by D14 (D10 HG vs D14 

HG p=0.014, Welch t-test) (Figure 2D). HG treated mature adipocytes contained 1.7-fold 

more triglycerides than those grown in LG (p= 0.001, Welch t-test).  

Both basal and insulin-stimulated glucose uptake were higher in HG treated mature 

adipocytes in comparison to LG1. Relative insulin responsiveness (ratio of basal to insulin-

stimulated glucose uptake) was slightly lower under HG compared to LG1 (HG= 1.98 vs 

LG1=2.07) (Figure 2E). 

Expression of metabolic pathway genes are up-regulated across SGBS adipogenesis  

Gene expression profiles were measured at D0, D10 and D14. The pre-adipocyte (D0) 

transcriptional profiles showed a clear separation from adipocyte profiles of D10 and D14 in 

PC1 (Figure 3A). Nearly 25% of the genes on the Affymetrix Human Gene 2.0 ST array were 

differentially expressed (DE) between D0 and D14 (Table S1A). The number of DE genes 

and their direction of change are summarised in Table 1.   
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Gene set enrichment analysis (GSEA) of the D0 vs D14 comparison showed that cell cycle 

and nucleosome assembly pathways, that is functions associated with cell division, were 

among the most negatively enriched pathways. As expected, metabolic pathways such as 

oxidoreductase activity, lipid metabolic processes, fatty acid biosynthesis and 

gluconeogenesis were the most positively enriched pathways in mature adipocytes (Table 

S2A). Over 80% of the DE genes between D0 and D14 were also present between D0 and 

D10 (Table S1B) with similar enriched pathways (Table S2B) which indicated that the 

majority of the gene expression changes had occurred during terminal differentiation (from 

D0 to D10) and that these profiles were well-maintained during maturation (Figure 4A). From 

D10 to D14, transcriptional changes were minimal (Table S1C and S2C).  

We assembled the DE genes that were significantly different from D0 to D10 and then to D14 

into 4 modules based on their patterns of change and noticed that genes within each module 

functioned in similar pathways (Figure 5 and Table S3). Many of the genes in Figure 5A and 

B that show an overall increase in expression across time are central to adipocyte function. 

The drop in expression for some genes beyond D10 possibly relates to decreased need for on-

going synthesis in mature adipocytes (Figure 5B). In contrast, PTGS2 and DKK1, known to 

suppress adipogenesis and regulate self-renewal respectively, are among the genes that are 

expressed at D0 but continuously down-regulated across differentiation (Figure 5C). Across 

adipogenesis, expression of Tenascin C (TNC) was lowest at D10 (Figure 5D). It is associated 

with acute and chronic inflammation, known to be expressed in visceral adipose tissue of 

obese patients only (29).  

Vesicle formation pathway genes are among those differentially methylated across 

SGBS adipogenesis  

Next, we examined global levels of DNA methylation in pre-adipocytes and adipocytes at 

D10 and D14 using methylation of LINE-1 sequences as a surrogate. LINE-1 methylation 

levels showed a tendency to increase (decreased hypomethylation) across adipogenesis, with 
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this being more apparent in D10 HG than D14 HG (Figure 6A). Examination of methylation 

levels of the CpG sites on the 450k arrays showed that globally (all probes) and within the 

different genomic annotations the highest variation occurred in the body and 3’ ends of genes 

(Figure 6C, p-values are provided in Figure 6B). Among the top 10% most variable probes 

per annotation, there was a decrease in average DNA methylation level from D0 to D14 and 

D10 to D14  when all the 450k probes were combined (Figure 6D), and this was evident 

across most genomic annotations.  

The principal component analysis (PCA) of the 450k array DNA methylation data showed a 

similar trend to the transcription data, with pre-adipocytes separated from adipocytes in PC2 

(Figure 3B). When comparing the methylation profiles of pre-adipocytes to D14 mature 

adipocytes, we found 1,090 individual DM CpG sites and 160 DM regions, with ~90% 

reflecting decreased methylation (Tables S4A and S5A respectively). One-third of the DM 

regions had a Δ-me (delta methylation values) of >0.2 and all of these regions showed a loss 

of methylation (Table 1). The same comparisons were also made with D0 vs D10 (Tables 

S4B, S5B and S6) and D10 vs D14 (Table S5C). Similar to the changes in gene expression, 

most changes in DNA methylation occurred from D0 to D10 (Figure 4B and C). The 

methylation profiles of selected DM regions identified between pre-adipocytes and D14 

mature adipocytes are shown in Figure S1A. Gene ontology (GO) analysis of DM sites and 

their nearest protein-coding genes identified 6 significant terms, all related to regulation of 

extracellular membrane and vesicle formation. These terms included 15-19% (159-193) of 

DM sites (demethylated across adipogenesis) located in genes involved in production and 

transport of (extracellular) vesicles and exosomes such as: ACACA, ALCAM, ANO6, AP1G1, 

AP2B1, FASN, LBP, RBP4, TOLLIP, FGFR1, LRBA, SAR1B, WLS, GPC6 and several of the 

solute carrier family members as well as vesicular “cargo” molecules – i.e. the adipokine 

ADIPOQ and growth factors such as FGF1 and PDGFD (Table S6). Adiponectin encoded by 

ADIPOQ is exclusively secreted by adipocytes and regulates glucose levels and fatty acid 

breakdown and also has putative anti-inflammatory properties (30). Platelet-derived growth 
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factors (PDGFs) are autocrine growth factors known to regulate blood vessel development 

(31). 

Table 1: Summary results of differential gene expression and DNA methylation.  

 

Comparisons 

Total number 

of DE genes 

(|FC|>32)# 

Total number 

of DM sites  

(Δ-me of>0.2) # 

Total number 

of DM regions 

(Δ-me of>0.2) # 

Adipogenesis D14 vs D0 10,919  1,090  160 

UP: 5,037 (33) 112 11 

DOWN: 5,882 (9) 978 (208) 149 (58) 

Early 

Adipogenesis in 

High Glucose 

D10 HG vs D0 9,283  419 59 

UP: 4,163 (30) 16 0 

DOWN: 5,120 (8) 403 (123) 59 (30) 

Late 

Adipogenesis in 

High Glucose 

D14 vs D10 HG 422 0 14* 

UP: 184   10 

DOWN: 238  4 

Adipogenesis in 

High Glucose 

D14 HG vs D0 10,017 694  96  

UP: 4,508 (31) 47 7 

DOWN: 5,509 (10) 647 (200) 89(52) 

Adipogenesis in 

Low Glucose 

D14 LG1 vs D0 9,598 843 117 

UP: 4,371 (32)  69 6 

DOWN: 5,227 (9) 774 (214) 111 (58) 

Effect of High 

Glucose 

Exposure 

D14 HG vs D14 LG1 27 0 61* 

UP: 10   32 

DOWN: 17  29 

(#) DE genes with magnitude of |Fold Change| >32, and DM sites and DM regions with 

magnitude of Δ-me (delta methylation values) of>0.2 are shown in brackets. 

(*) DMRcate was run using relaxed parameters of all probes with Δ-me of> 0.1. 

The relationship of DNA methylation and gene expression across adipogenesis  

We first examined the overall relationship between the expression levels of individual genes 

and their profiles of DNA methylation. After binning genes into five equal-sized groups, 

ranked from low to high expression, we plotted mean methylation profiles across 10 kb 

flanking the transcription start site (TSS). For all sample groups (Figure 7A to D) and 

expression levels, methylation was lowest at the TSS and higher both upstream and in the 

gene body. There was a very clear gradation of decreasing methylation around the TSS (from 
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approximately -2 kb to + 2 kb) with increasing levels of expression with a converse increase 

in methylation further upstream or within the gene body.  

We examined the degree of association between changes in DNA methylation across 

adipogenesis and the expression of nearby genes. Table S7A shows the distance from each of 

the 160 DM regions to the nearest differentially expressed gene. While representing only a 

small fraction of the 10,919 DE genes, 52% (83) of DM regions overlapped or lay within a 

DE gene, and 59% (94) within a 1 kb window either side of a DE gene. Of these 94 DM 

regions, 6 were hypermethylated regions and the transcription of their proximal gene was 

always repressed across adipogenesis.  Of the 88 hypomethylated regions, 63 (72%) were 

associated with a proximal gene that was up-regulated across adipogenesis. Genes with 

critical involvement in adipocyte function, such as ADIPOQ, CIDEC, LBP, FASN, FAR2 and 

LIPE were all up-regulated and contained a hypomethylated region within the gene (Figure 

8A).  

The relationship of DNA methylation and transcription factor binding across 

adipogenesis  

Recently, Galhardo et al. (18) used ChIP-seq profiling for the binding sites for three 

transcription factors, PPARγ, C/EBPα and LXR in D10 SGBS adipocytes and for the 

H3K4me3 promoter mark between D0 and D10. We overlapped our identified 160 DM 

regions with this ChIP-seq data (Table 2).  We found 16 DM regions, all hypomethylated 

across adipogenesis, overlapped with either C/EBPα, LXR or PPARγ high occupancy binding 

sites but there was no significant overlap of our DM regions and the altered H3K4me3 marks 

across the differentiation (18). 

When hypomethylation of promoter regions overlapped with putative transcription factor 

binding site, it coincided with transcriptional activation of the gene in 8 of the 10 cases (Table 

2). Some of these genes are known to have adipocyte specific functions; THRSP, PFKFB1, 
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CIDEC ADIPOQ and ACSL1 expression increase by 28-fold or more across adipogenesis. 

Also, ACSL1 contained both LXR and PPARγ binding sites (Table 2) and its methylation 

profile has been found to be highly responsive to weight loss in human subcutaneous adipose 

tissue (32). Similarly, CORO2B, is among the top responsive genes to weight loss in the same 

study (32), is hypomethylated across a PPARγ binding region about 4.3 kb upstream of its 

TSS (Table 2). The other genes in Table 2 (i.e. TMEM184B, AHCYL1, ZNF22, PLEKHG6 

and HBP1) show significant responses and should be checked in the context of obesity. 
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Table 2: The regions of overlap between the identified DM regions in our dataset with the binding sites of three transcription factors published in (18).  

Gene Name 

Galhardo et al. (18) 
 

C/EBPα 

ChIP peaks 

(n=1,157) # 

LXR 

ChIP 

peaks  

(n=96) # 

PPARγ 

ChIP 

peaks  

(n=4,127) # 

DM regions in  

D14 vs D0 

DE genes in  

D14 vs D0 

Δ-me* FDR FC* FDR 

CYP1B1 Gene Body     -0.18 1.30E-22 -1.84 3.92E-08 

THRSP   Promoter   -0.28 8.98E-55 626.60 3.63E-23 

ACSL1   Promoter Promoter -0.25 4.19E-77 28.84 1.12E-17 

PFKFB1     Promoter -0.23 1.25E-43 36.04 1.26E-14 

HOXB2     Promoter -0.09 2.14E-14 -1.95 3.99E-08 

CIDEC      Promoter -0.08 3.70E-24 221.22 4.69E-19 

ADIPOQ     Promoter -0.16 8.62E-32 248.87 2.55E-18 

ZNF22     Promoter -0.10 5.63E-16    

PLEKHG6     Promoter -0.26 2.31E-39    

AHCYL1     Promoter -0.12 8.36E-18 1.52 4.12E-06 

TMEM184B     Promoter -0.13 3.83E-16 -1.43 1.96E-05 

HBP1     Promoter -0.18 2.39E-18 1.35 0.0008 

FGFR1     Gene Body -0.08 2.46E-14    

GPAM     Intergenic -0.28 8.98E-55 48.40 1.05E-19 

CORO2B     Intergenic -0.12 1.93E-15    

RRM1     Intergenic -0.21 4.42E-54 -1.73 3.86E-07 

(#) Transcription factor binding sites with high occupancy (> 30 ChIP peaks) were included to the analysis. (*) For genes with overlapping DM regions, the 

change in beta value is noted under Δ-me (delta methylation values) and for genes that are differentially expressed the magnitude of change is noted under 

FC (fold change). 
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SGBS adipocytes show transcriptional and epigenetic similarities to in vivo human 

adipocytes 

We investigated whether DNA methylation profiles of in vitro grown SGBS cells were 

similar to those obtained from human adipose tissue: human primary adipocytes and hADSCs 

either before or after cell culture. Since SBGS cells have fibroblast-like features, we also 

compared their methylation profile with those of fibroblast cells lines IMR-90 and MCF-5. 

The PCA of the DNA methylation data showed a distinct separation in the first component of 

uncultured hADSCs and tissues from those of a range of cultured cells, including cultured 

hADSC and their in vitro differentiated adipocytes, SGBS and fibroblast cells (Figure 9). On 

the PC2, both SGBS pre-adipocytes and mature adipocytes, segregated with other 

subcutaneous adipose tissue samples – isolated adipocytes, SVF fraction and cultured 

progenitor cells, reflecting their depot of origin, subcutaneous fat (Figure 9).  

We also compared the transcriptional profiles of SGBS cells to human primary adipocytes to 

ascertain whether in vitro grown SGBS cells were similar to those directly isolated from the 

human body. A heat map illustration of this comparison on selected DE genes is provided in 

Figure 10. Overall, some of the adipose-specific gene expression levels were consistent 

between SGBS adipocytes and in vivo subcutaneous adipocytes more than in vivo visceral 

adipocytes (Figure 10). For some genes clear differences were observed between SGBS and 

in vivo adipocytes (Figure 10). For instance, GLYAT, LEP, IGF1 and LPL are higher 

expressed while G6PD, FASN, RELA and FABP3 are lower expressed in SGBS adipocytes 

compared to in vivo adipocytes (Figure 10). 

Additionally, our results had a significant overlap with publically available transcription data 

of differentiating SGBS and hADSCs. Our observed DE genes included 87% of the 272 

unique DE genes associated with metabolic activity and 80% of the 75 unique DE genes 

associated with transcription factor binding sites identified across SGBS adipogenesis in (18) 
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as well as 69% of the 1670 differentially DE genes (with |Fold Change| >2) identified across 

adipogenesis of hADSCs (13). 

Transcriptional and epigenetic changes induced by hyperglycemia 

To investigate the extent of hyperglycemia-induced molecular changes in human adipocytes, 

we compared the transcription and methylation profiles of the mature adipocytes (D14) 

differentiated in the presence of 7.5 or 30 mmol/L glucose. 

Within the overall context of gene expression changes during adipogenesis, the effect of 

elevated glucose was modest, with the transcriptional profiles of D14 HG separated from the 

D14 LG1 in PC5 of the PCA plot (Figure 3A). We found 27 significantly DE genes between 

D14 HG and D14 LG (Table S1D, summarized in Table 1). A schematic illustration of these 

genes is provided in Figure 8B. Some of the downregulated genes in HG vs LG1 have been 

associated with obesity, glucose sensitivity and body weight regulation such as GLYAT, 

IGF1, ACAN, NDUFA9, LPL GREM1, MMP8 and TNC.  

By using gene set enrichment analysis (GSEA) we were able to examine the impact of 

elevated glucose at a pathway level (where transcriptional changes in individual genes might 

not reach significance). This analysis identified negative enrichment in 50 biological 

pathways when comparing between D14 HG and D14 LG1 samples (GSEA, Table S2D). The 

overwhelming majority of these were mitochondrial pathways, while the rest included signal 

transduction and extracellular stress-activated oxidative stress pathways (Table S2D). 

In the methylation dataset, separation between D14 HG and D14 LG1 samples was also 

evident in the fifth principal component. However, because of the higher variance between 

duplicates, no DM sites passed the 0.05 FDR threshold.  Hence, we ran DMRcate using all 

probes with Δ-me of > 0.1. This identified 61 DM regions with a maximum methylation 

change of 23% identified between HG and LG treatment (Table S4D). None of the DM 

regions was associated with a DE gene, but multiple regions were associated with genes that 
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may have a role in glycemic control, transport, secretion and inflammation in adipocytes, eg. 

DEPTOR, GNPNAT1, EIF4B, PRRC2A, RAB4A, PRRC2A, MTX3 and EP400NL. Figure 8B 

summarises the known function of hyperglycemia-responsive genes that were either 

differentially expressed or methylated in our study. Examples of methylation patterns across 

hyperglycemia responsive regions are shown in Figure S1B. 
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Discussion: 

The adipogenic transcription program occurs with minimal change in DNA methylation 

Widespread transcriptional changes were characterised across the process of differentiation of 

SGBS cells, encompassing 25% of genes measured.  These changes were in good agreement 

with publically available transcription data, including over 70% of the previously identified 

genes in both differentiating SGBS cells (18) as well as in vitro differentiation of hADSCs 

(13). As expected, metabolic pathways were up-regulated while cell cycle pathways were 

down regulated during adipogenic conversion (13, 18). On the other hand, the methylation 

changes during adipogenesis were modest, with a bias toward hypomethylation changes. 

Therefore, extensive changes in gene expression across adipogenesis occur without DNA 

methylation change; this indicates that the role of DNA methylation in providing an 

epigenome state permissive for the adipocyte expression program is largely established by the 

pre-adipocyte state. This is consistent with previous data on promoter methylation on adipose 

mesenchymal stem cells, pre- and post- differentiation in culture (33). While the PCA plot of 

DNA methylation profiles shows the likely effect of cell culture in the first dimension, SGBS 

cells cluster closely with both primary mature and progenitor subcutaneous adipocytes in the 

second dimension.  

During adipogenesis, genes associated with differentially methylated sites were enriched for 

pathways of extracellular vesicle formation and production of exosomes. This indicates a 

potential role for epigenetic signatures in regulation of extracellular vesicle formation in 

adipocytes and a role in intercellular communication between adipose tissue cell types. 

SGBS-secreted extracellular vesicles were previously reported to induce inflammation in 

macrophages, which reciprocally inhibits insulin signalling in SGBS cells (34). While small 

in number, nearly 60% of the DM regions were located within a 1 kb distance to a 

differentially expressed gene which indicates potential epigenetic regulation of gene 

expression. The majority of these regions were hypomethylated and resided in critical 
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adipogenic genes which were up-regulated. Additionally, all the DM regions that overlapped 

with either C/EBPα, LXR or PPARγ binding sites were hypomethylated across adipogenesis 

so that transcription could occur (Table 2). Across adipogenesis the DNA methylation 

changes occur in the absence of DNA replication; i.e. they must involve an active process. A 

recent study has shown that CCCTC-binding factor (CTCF) chromatin binding can promote 

PPARγ transcription binding and result in the activation of its target gene via active DNA 

demethylation pathway using TET methylcytosine dioxygenase (TET) enzymes (35). Hence, 

the transcription factor binding is either directly involved in the demethylation process or it is 

a subsequent event. In our data, 6 of the 10 regions where PPARγ binding sites overlapped 

with a demethylated promoter site of a gene, its expression was up-regulated across 

adipogenesis (Table 2). Additionally, differential methylation in a number of genes 

functioning in lipid metabolism coincided with PPARγ binding sites, and some of these 

overlaps (eg. ACSL1, GPAM, and ADIPOQ) were also observed across murine 3T3-L1 

adipogenesis (36). A number of small nucleolar RNAs (snoRNAs) showed variable 

expression levels due to high glucose exposure in adipocytes (Figure 8A). Their function is 

largely unknown but a recent review has reported that they regulate alternative splicing and 

post-transcriptionally modify other RNAs like small nuclear RNAs (snRNAs) and ribosomal 

RNAs (rRNAs) (37). 

Beige-like and other characteristics of SGBS adipocytes 

Like Murlholm et al. (38), our transcription data suggested that SGBS cells could also be used 

to study ‘beige-like’ adipocyte formation (UCP1 and UCP2). Thus, SGBS cells show 

potential to be used to discover new metabolic targets for metabolic disease (39). 

Simpson-Golabi-Behmel syndrome is commonly caused by mutational or deletion associated 

loss of activity of GPC3 and GPC4 genes (40). Glypicans promote growth factor signalling 

but mutation in these genes were not identified in SGBS cells.  Our transcription data showed 

that both the basal level of expression and the fold change of glypicans across SGBS 
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adipogenesis are reduced compared to hADSCs adipogenesis (13). One conclusion can be 

that the reduction in expression can be partially mimicking the loss of glypican function in 

SGBS cells. Along with these genes, GPC6 was slightly up-regulated during SGBS 

adipogenesis but down-regulated in hADSCs (13). Perhaps, mutations in GPC6 could be the 

third contributor to the complex clinical phenotype of this condition. 

Hyperglycemia treatment induced greater reliance to the breakdown of glucose for fatty 

acid synthesis rather than mitochondrial energy production 

Glucose concentrations for this experiment were chosen to reflect normal and high serum 

levels observed physiologically. While 7.5 mM is at the upper limit of healthy human 

physiological glucose concentrations, it is well below the glucose concentration of 17.5 mM 

that the SGBS cells have been maintained in culture and 30 mM is considered as higher end 

of what may be observed clinically in diabetic patients. 

SGBS adipocytes grown in high glucose were larger, had more lipids and reduced relative 

insulin responsiveness (but similar absolute responsiveness) compared to those grown in low 

glucose. During in vitro differentiation, fat can only be generated through de novo 

lipogenesis. Collins et al. (41) showed that isotopically (13C)-labelled glucose contributed 

over 40% of the carbons contained in triglycerides produced by hASDC during adipogenesis. 

In line with these observations, in our transcription data, hyperglycemic exposure suppressed 

expression of mitochondrial genes. Decreased mitochondrial activity is consistent with a 

greater reliance on glycolysis for energy production and ultimately conveys an inefficient 

production of energy from higher levels of glucose due to the diversion of intermediate of 

substrates, such as citrate and pyruvate into fatty acid synthesis pathway. This could be 

achieved by the release of citrate to the cytosol; which is used as a substrate in de novo 

lipogenesis. Additionally, SGBS adipocytes might be metabolising excess glucose via 

anabolic pathways such as de novo palmitate and oleate syntheses and a combination of 

oxidative phosphorylation and aerobic respiration just as they do when exposed to excess 
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fructose (42). Consequently, lactate production would inhibit lipolysis in adipocytes (43) and 

thus will also induce fat accumulation. Translation of our results into in vivo situation, 

adipocytes synthesise higher levels of fatty acid from additional glucose rather than 

increasing mitochondrial energy production.  However, there is need for detailed metabolic 

analysis, such as in (42) to characterize diversions of metabolites across pathways due to 

hyperglycemia treatment. 

Hyperglycemia-induced DNA methylation changes (and expression) were modest but this is 

partly due to high variation among the duplicates of the HG samples at D14. Our results 

suggest that this variation is likely to be a biological effect of the high glucose exposure. 

Firstly, the quality of the methylation data and bisulfite conversion percentages were 

comparable among all the samples, and secondly, among HG treated samples, the variation in 

the metabolic measurements was also higher. Additionally, SGBS cells were cultured in high 

glucose concentration (17.5 mM) for number of passages. It would be an interest to culture 

primary cells in low glucose prior to differentiation under hyperglycemic conditions. Even so, 

the identified 27 DE genes and 61 DM regions between high and low glucose exposure 

provide a list of putative genes whose association with obesity and T2D should be explored.  

Several of the DE genes responsive to hyperglycemic exposure were previously associated 

with adverse health risks. Perhaps paradoxically, IGF1 showed reduced expression under 

hyperglycemic conditions; however, its expression in adipocytes was also reduced in a mouse 

model of diet-induced obesity and it was suggested to play a homeostatic role against 

metabolic stress (44). Also, TNC was up-regulated along with MMP8 under hyperglycemic 

conditions; both are involved in acute and chronic inflammation and the same changes have 

been observed in visceral adipose tissue of obese humans (29). Hyperglycemia-responsive 

DM regions were found in DEPTOR, which is expressed higher in obese mice (45), and in 

PRRC2A (BAT2), which is at the vicinity of TNF-α regulates inflammatory process of insulin. 
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In conclusion, hyperglycemia induced perturbations in the expression and epigenetic 

signatures of key adipose tissue functions such as mitochondrial activity, anabolic and 

catabolic metabolism as well as inflammation response. A number of key gene targets have 

been identified as having a central role in sequestration of fat into adipocytes under high 

glucose flux, which will potentially provide insight into the co-existence of obesity and T2D.
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Figure 1: Schematic design of the experimental outline. SGBS cells plated on Day 0 and differentiated 
for 4 days in Quick differentiation medium. The cells maintained in Differentiation medium for the 
following 10 days.
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Figure 2: Physiological and metabolic measurements of SGBS adipogenesis progression. 
A. Representative microscopy images live and Oil Red o stained SGBS adipocytes at D14. 
B. Smoothed kernel distribution of LD diameter sizes of SGBS adipocytes treated with HG or LG1. 
The vertical lines indicate 95th percentile (Images n=6). There were a total of 98, 87 and 100 cells 
used in D10 HG, D14 HG and D14 LG1 groups respectively, C. Measurement of total LD area per cell 
and per lipid droplet, D. Quantification of total triglyceride content using enzymatic digest method. 
The total glycerol concentration is shown in μM. Data are shown as M±SD (n=3, technical n=2).  
E. Basal and insulin stimulated glucose uptake normalized to total protein levels of the cells relative 
to pre-adipocytes. Data are shown as M±SD (n=2).
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Figure 3:  The first five principal components of A. transcription and B. methylation profiles of 
Day 0 pre-adipocytes, HG treated Day 10 mature adipocytes as well as HG and LG1 treated 
Day 14 mature adipocytes.
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Figure 4: Venn diagram of A. and D. differentially expressed (DE) genes, B. and E. differentially 
methylated (DM) sites, and C. and F. DM regions in early vs complete SGBS adipogenesis and 
adipogenesis under HG vs LG1 conditions respectively. 
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Figure 6: A. DNA methylation changes across SBGS adipogenesis. White blood cells (WBC) and 
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variable probes per annotation. 
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Figure 7:  Mean methylation profiles flanking 5,000 bp either side of a transcriptional start site 
(TSS), after binning the corresponding genes into five equally-sized expression groups ranked on 
expression level. A. Day 0 pre-adipocytes, B. Day 10 HG adipocytes, C. Day 14 LG1 adipocytes 
and D. Day 14 HG adipocytes.
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Figure 8A: Key transcriptional and DNA methylation changes during in vitro SGBS 
adipogenesis. Differential genes with increased and reduced expression levels from D0 to 
D14 are shown in black and red respectively. Underlines indicate presence of DMRs within 
a distance of 10 kb distance from that gene in the same comparison (promoter, gene body). 
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Figure 8B: Key  transcriptional and DNA methylation changes between HG and LG1 treated 
adipocytes at D14. Differential genes with increased and reduced expression levels from 
D0 to D14 are shown in black and red respectively. Genes without a significant expression 
change is shown in gray. Underlines indicate presence of DMRs with a beta value difference 
more than 0.05 in the same comparison (promoter, gene body). 
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Figure 9: Two-dimensional principal component analysis of 450k methylation profiles of  human 
visceral adipocytes, visceral adipose tissue, visceral stroma vascular fraction (SVF), cultured 
visceral primary cells, subcutaneous adipocytes, subcutaneous SVF, cultured subcutaneous primary 
cells, SGBS cells, IMR-90 cells and MRC-5 cells (n=54, # of probes=422,184, 62.24% variance is 
explained). 
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Figure 10: Heat map illustration of samples and selected DE genes. Selected genes (N = 78) 
differentially expressed (high expression: shades of yellow and low expression: shades of red) in 
SGBS cells (4 samples of D0-PA and 3 samples of D10-HG, D14-LG1 and D14-HG) and human 
uncultured primary purified visceral and subcutaneous adipocytes (isolated from 3 lean patients 
shown as VA, SA respectively). 
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Figure S1A: Methylation profiles across DM regions between Day 0 pre-adipocytes and Day 14 
mature adipocytes treated in HG or LG1 conditions.

Figure S1B: Methylation profiles across DM regions between Day 14 mature adipocytes treated 
in HG vs LG1 conditions.
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CHAPTER 2: LipiD-QuanT: a novel method to quantify lipid accumulation in live cells 

In humans, increasing adiposity is directly proportional to increase in fat mass, which may 

lead to an increase in total number of fat cells and/or their lipid content. Assesment of lipid 

accumulation has been the most common practice to morphologically distinguish lipid storing 

fat cells from their fibroblast-like precursors in vitro. The most widely used lipid 

accumulation techniques are based on enzymatic digests or lipophilic staining, and they are 

either not quantitative or can be destructive to samples. 

This chapter describes a novel label-free lipid droplet quantification technique (LipiD-

QuanT) to monitor fat accumulation in live adipocytes. LipiD-QuanT is robust, time and cost 

effective compared to other triglyceride accumulation assays and it is the only tool available 

to study lipid droplet dynamics in live cells without the use of highly specialized equipment. 

We optimized the LipiD-QuanT method and validated the test using SBGS cells in vitro. In a 

LipiD-QuanT validation study to measure the effect of four potential pro- or anti- obesogenic 

substances, we found that Docosahexaenoic acid (DHA), D-glucose and Zinc oxide (ZnO) 

nanoparticles did not induce changes in the size of lipid droplets stored by adipocytes but 

prolonged exposure to rosiglitazone prevented the enlargement of lipid droplets. 

This publication presented in this chapter is the product of a working collaboration between 

myself, Osmond-McLeod, Molloy and Vallotton. I was predominantly involved in the design 

of the study, interpretation of the data and drafting the manuscript. Vallotton was involved in 

the design of the software. Osmond-McLeod was involved in quality testing of the 

nanoparticles and provided reagents. Molloy was involved in the design of the study, 

interpretation of the data and the drafting of the manuscript. 

This manuscript has been published in Journal of Lipid Research, November 2015. 

Detailed contributions: 

Varinli H Co-authors 

Experimental Design 60% 40% 

Laboratory Experiments 100% 

Software Design 100% 

Data Analysis 40% 60% 

Writing 90% 10% 
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ABSTRACT 

Lipid droplets (LD) are the main storage organelles for triglycerides. Elucidation of lipid accumulation mechanisms and 

metabolism are essential to understand obesity and associated diseases. Adipogenesis has been well-studied in murine 

3T3-L1 and human SGBS pre-adipocyte cell lines. However, most techniques for measuring LD accumulation are either 

not quantitative or can be destructive to samples. 

Here, we describe a novel label-free LD quantification technique (LipiD-QuanT) to monitor lipid dynamics, based on 

automated image analysis of phase contrast microscopy images acquired during in vitro human adipogenesis. We have 

applied LipiD-QuanT to measure LD accumulation during differentiation of SGBS cells. We demonstrate that LipiD-

QuanT is a robust, non-destructive, time and cost effective method compared to other triglyceride accumulation assays 

based on enzymatic digest or lipophilic staining. Further we applied LipiD-QuanT to measure the effect of four potential 

pro- or anti-obesogenic substances: DHA, rosiglitazone, elevated levels of D-glucose, and zinc oxide nanoparticles. Our 

results revealed that 2 μmol/L rosiglitazone treatment during adipogenesis reduced lipid production and caused a negative 

shift in LD diameter size distribution, but the other treatments showed no effect under the conditions used here. 

Keywords: adipocytes; obesity; lipid droplet; triglycerides; omega-3-fatty acids; glucose; SGBS; label-free image 

analysis; zinc oxide nanoparticles; rosiglitazone.
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INTRODUCTION 

Lipid droplets (LDs) are the main storage organelles for triglycerides in eukaryotic cells (1-3). They are found in several 

cell types, where they support membrane biosynthesis and aid lipid homeostasis. They also participate in the storage of 

toxic lipid species in hepatocytes, macrophages, cardiac myocytes, renal glomerular cells muscle and buccal cells (4, 5). 

Adipocytes are the main cell type that store the body’s energy reserves as triglycerides, and they do so in larger LDs that 

serve as highly specialized lipid reservoirs. However, excessive storage of triglycerides leads to obesity and metabolic 

syndrome, posing serious risks of diet-related non-communicable diseases such as diabetes mellitus, hypertension, 

cardiovascular disease and stroke (6). 

The use of animal model systems and comparison with human studies has contributed extensively to our understanding of 

processes of development of adipose tissue and obesity (reviewed (7)). Supplementing in vivo systems, in vitro models are 

invaluable for dissecting molecular mechanisms, including the formation of LDs (8). Adipogenesis processes have been 

well-studied since the establishment of both murine (9) and human (10) pre-adipocyte cell lines. These models enable 

controlled investigation of the regulators of adipogenesis and also provide mechanistic insight into obesity via the 

measurement of physiological and molecular responses of adipocytes to specific therapeutic compounds. Since the 

establishment of human pre-adipocyte SGBS cell line in 2001 (10), it has been used in more than 100 research articles and 

proven to be a reproducible model to biological mechanisms in pre-adipocytes and mature adipocytes in context of human 

adiposity (11). SGBS cells, are neither transformed nor immortalized, have high proliferation and differentiation capacity 

and provides unique advantages to study human adipogenesis (12). SGBS cells are easier to maintain and less costly than 

human primary cell lines. 

During adipogenesis, small LDs destabilize to increase storage capacity in two ways: coalescence by fusion of LDs or by 

Ostwald ripening, in which molecules from one LD diffuse to another (13). Quantification of LD accumulation is the most 

common measure of differentiation during in vitro adipogenesis. The three most widely used techniques are: 
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Lipid staining coupled with Optical Reading: Fixed cells are stained with lipophilic dyes, the most commonly used 

lipophilic dyes being Oil Red O, Sudan III, Nile Red, BODIPY 493/503 and 3,3’-dioctadecyloxacarbocyanine perchlorate 

(DiO) (14-16). The absorbed dye can be resolubilized and the intensity of the stain, measured via spectrophotometry, can 

be used as a proxy for cellular lipid content.  

Biochemical Analysis: Following cell lysis, lipolytic enzymes are used to digest triglycerides to glycerol and free fatty 

acids. Additional enzymatic reactions turn glycerol into a colored product, the concentration of which may be measured 

using spectrophotometry.

Fluorescence microscopy: Monoclonal antibodies are available against LD-associated proteins such as perilipin, 

adipophilin, TIP47 and caveolin-1 (17). Fluorescence microscopy after antibody staining makes LDs visible, enabling 

measurement of LD size and ultimately lipid content.  

These techniques are lengthy, require dedicated culture plates to measure the lipid content and do not permit reuse of cells 

for other biological or morphological measurements. Moreover, the staining-based methods comprise multiple steps 

including fixation, washing and dehydration, which occasionally result in detachment of cells and lysis of LDs. There is

also growing evidence that staining conditions such as dye concentration and fixation time affect the fluorescence intensity 

of lipophilic dyes resulting in incorrect correlation between fluorescence intensity and actual total lipid content (18).

Additionally, lipophilic dyes have high affinity towards hydrophobic surfaces which results in background staining when 

plastic culture dishes are used (19, 20). Finally, when using biochemical assays, a variable fraction of the lysed cells may 

be retained in the cell culture dishes, which may result in minor errors in the cellular lipid content calculation. Thus, 

existing assays tend to be more qualitative than quantitative. 

More recently, Coherent anti-Stokes Raman Scattering (CARS) microscopy showed great promise as a technique to study 

LD dynamics (21). It has been used to identify LDs in Caenorhabditis elegans (22), Drosophila melanogaster (23), murine 

fibroblasts (24) and human adipose-derived stem cells (25, 26).  However, it is currently only available in a handful of 

 by guest, on O
ctober 31, 2015

w
w

w
.jlr.org

D
ow

nloaded from
 

77



5 

research institutes with the appropriate equipment. Therefore a need still exists for a method of lipid accumulation 

quantification that is effective and reliable, suitable for use with live cells and uses common laboratory equipment.   

In this contribution, we describe LipiD-QuanT, an automated image analysis tool, to quantify LD accumulation in live cells 

under phase contrast microscopy. The LipiD-QuanT algorithm depends on the ability of phase contrast microscopy to 

reveal even small refractive index differences between LDs and the surrounding cytosol by exploiting destructive 

interference effects. LDs have a well-defined spherical shape hence the measurements of LD volume and surface area may 

be easily obtained on a per-cell basis. Therefore, we utilized LipiD-QuanT on the human SGBS pre-adipocyte 

differentiation model which provides the ease to study the effect of any treatment of interest on human adipogenic 

differentiation in short time-frame. 

We first evaluated the performance of LipiD-QuanT against benchmark Oil Red O staining and biochemical lipid 

accumulation techniques to monitor LD dynamics during in vitro differentiation of human SGBS pre-adipocytes over a 21 

day timeframe. We monitored the gene expression changes in selected adipogenesis genes to assure the reproducibility of 

SGBS pre-adipocyte differentiation. We then utilized LipiD-QuanT to sensitively detect changes in LD growth in response 

to four potential pro- or anti-obesogenic treatments: Docosahexaenoic acid (DHA), high glucose, zinc oxide (ZnO) 

nanoparticles and rosiglitazone.  
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MATERIALS AND METHODS 

Cell culture conditions 

We used the SGBS cell line, a human-derived pre-adipocyte cell line isolated from the stromal cell fraction of 

subcutaneous adipose tissue from an infant with Simpson Behmel Gobali syndrome (10). Proliferation and differentiation 

media were prepared as previously described (10), with minor changes.  In brief, cells were proliferated to 90% 

confluence in T75 or T150 flasks in DMEM/F-12, GlutaMAX™ (Life Technologies, cat#10565) supplemented with 10% 

FBS (Invitrogen, cat#10099-141), 10 U/ml penicillin-streptomycin (Invitrogen, cat#15070), 8 mg/L d-biotin (Sigma, 

cat#4639), and 4 mg/L d-panthothenic acid (Sigma, cat#P5155). Cells were then differentiated in 6-well plates at a 

concentration of 0.2 million cells/well. The experiments were undertaken with a minimum of three biological replicates at 

passage number 23. The cells were kept in serum free quick differentiation media, supplemented with 100 nmol/L cortisol 

(Sigma, cat#H0888), 0.01 mg/ml transferrin (Sigma, cat#T0665), 0.2 nmol/L triiodothyronine (Sigma, cat#T6397), 20 

nmol/L insulin (Sigma, cat#I2643), 2 μmol/L rosiglitazone (Sigma, cat#2408), 25 nmol/L dexamethasone (Sigma, 

cat#D4902) and 0.5 mmol/L 1-methyl-3-isobutylxanthine (IBMX) (Sigma, cat#I5879) for the first four days. After four

days, media was removed and replaced with differentiation media, further excluding rosiglitazone, dexamethasone and 

IBMX for 10 or more days. Media was changed every second day.

During adipogenesis, cells were exposed to the following pro- and anti-obesogenic treatments: 

1- DHA: A single ml of DHA oil emulsion contained 125 mg of DHA (C22:6), 8.5 mg of eicosapentaenoic acid

(C20:5, EPA), 9 mg of vitamin C and 0.19 mg of vitamin E (HiDHA™ oil emulsion: Nu-Mega Ingredients Pty.

Ltd.). Across the 14 day course of SGBS differentiation 10 μmol/L DHA oil emulsion was added, at each change

of media, a total of 7 times. LDs were monitored at the end of the differentiation period on Day 14.

2- D-glucose: SGBS cells were differentiated in 10 mM D-glucose (Sigma, cat#G7021), 10 mM D-glucose with 7.5

mM Sorbitol (Sigma, cat#S1876) for osmolarity control and 17.5 mM D-glucose. The low glucose concentrations

were maintained by changing the medium to DMEM, low glucose, GlutaMAX™, pyruvate (Life Technologies,

cat#11885) containing 5.5 mM D-glucose. The LDs were assessed at Day 7, 10 and 14.
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3- ZnO nanoparticles: The differentiated SGBS cells were treated with 1 μg/mL or 10 μg/mL ZnO nanoparticles

coated with a dimethoxydiphenylsilane/triethoxycaprylylsilane crosspolymer (Z-COTE MAX from BASF, batch#

FCHE1301) on Day 6 for 48 hours. We have described the extensive physicochemical characterization of Z-COTE

MAX elsewhere (27, 28); briefly, primary particle sizes were 36 ± 2 nm wide and 95 ± 5 nm length but formed

larger aggregates in water and cell culture medium. Non-cytotoxic concentrations to SGBS cells were selected on

the basis of previous work (27, 28). We monitored the change in LD size distribution immediately after the

treatment period at Day 8, as well Days 10 and 14.

4- Rosiglitazone treatment: SGBS cells received an additional of 2 μmol/L rosiglitazone from Day 4. The LDs were

measured on Day 10 and 14.

Biochemical measurement of lipid content with triglyceride accumulation assay 

SGBS cells were lysed using 200 μl Triglyceride Accumulation Lysis Buffer per well in 6-well plates (Zen-Bio Inc., 

cat#TG-1-NC). Biological triplicates were included for each assay point and the lysates were stored at -80°C until the 

completion of the differentiation process. Triglyceride esters were converted to glycerol and glycerol concentration was 

quantitated enzymatically and measured as per the manufacturer’s protocol, using 15 μL of lysate in technical duplicates. 

Staining based measurement of lipid content using Oil Red O  

Cells were fixed with 1 ml of 4% paraformaldehyde for 20 min in 6-well plates, washed with 1X PBS twice and stored at 

4ºC in 1X PBS supplemented with 0.02% (w/v) Sodium azide until processing. The fixed cells were washed with 100% 

propylene glycol (Astral, cat#CSPL010) prior to 1 ml of Oil Red O staining for 15 min at room temperature (Sigma, 

cat#O1516). Cells were washed 3X with 1 ml of PBS to remove excess dye, and images were acquired using an inverted 

microscope (Nikon ECLIPSE 90i fitted with a high definition, cooled colour digital camera DXM1200C (Nikon, Japan).

The Oil Red O dye was extracted from the stained cells using 500 μl of 100% isopropanol for each well and 2 aliquots of 

200 μl transferred to black 96-well plates. The O.D. reading of Oil Red O was measured at 520 nm using a plate reader 

(POLARstar Omega microplate reader, BMG Labtech, UK).
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Immunolabelling for LDs

Cells were differentiated on acid-treated coverslips for immunolabelling of the LD coating protein perilipin. The cells 

were fixed on coverslips with 1 ml of 4% paraformaldehyde for 20 min in 6-well plates, washed with 1X PBS twice 

before and after permeabilization in Triton X-100 solution (0.2 % Triton X-100 in PBS with 10% Goat serum (Cell 

Signaling Technology, cat#5425) for 10 min. Samples were blocked for 20 min in 10% Goat serum, 5% FCS and 0.5% 

BSA in PBS and stained with anti-Perilipin (D1D8) XP® Rabbit mAb (Cell Signaling Technology, cat#9349S) overnight 

at 4°C as per the manufacturer’s recommendations. Samples were washed with 1X PBS twice and re-blocked. The 

secondary antibody staining was completed using Alexa Fluor® 488 Goat Anti-Rabbit IgG (H+L) as per the 

manufacturer’s instructions (Invitrogen, cat#A-11034). A solution of 25 μg/ml DAPI (Sigma, cat#D9542) was added for 

nuclear staining. The coverslips were washed twice with 1X PBS and mounted on microscope slides using Fluoroshield 

mounting media (Sigma, cat#F6182).

RNA extraction 

SGBS cells were lysed in 500 μl TRI-reagent (Sigma, cat#T9424) on Days 0, 4, 7, 14 and 21 and the lysates were stored 

at -80 °C until completion of sample collection. Total RNA was isolated as described by the manufacturer’s manual. RNA 

concentration was determined by NanoDrop ND-1000 (USA) Spectrophotometer readings.

cDNA synthesis and quantitative Real-Time PCR  

Each sample of first-strand cDNA was synthesized from 600 ng of total RNA using QuantiTect Reverse Transcription Kit 

(Qiagen, cat#205313). Gene-specific primers (Supplementary Table 1) were used to amplify target genes using 10 ng of 

first-strand cDNA as template in a 15 μl SYBR-green based quantitative RT-PCR reaction performed under the following 

conditions: 95ºC for 2 min, 45 cycles at 95ºC for 10 sec, 60ºC for 30 sec, 72ºC for 10 sec with a melting curve from 65 ºC 

to 95 ºC. The gene expression levels were normalized to GAPDH housekeeping gene expression in each sample.

Image acquisition

Images were acquired on an Olympus IX81 microscope equipped with a 20X/0.40 LCPLANFl Ph1 phase contrast 

objective (USA) and a Roper Scientific CoolSNAP FX monochrome camera (USA), aligned for positive mode phase 
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contrast microscopy. The image intensity was optimized to span the full camera dynamic range while the focus was 

adjusted to maximize the LD morphology displaying sharp edges. Care should be taken in the microscope set-up to ensure 

that any “halo” effect is homogeneous, as inhomogeneity may interfere with the image analysis. Also, without care in set-

up, the smallest LDs may have dark boundaries that do not close entirely. A total of 6 images were taken per well. All the 

images were saved in uncompressed TIFF format. Pixel size in the object space was 0.3 μm. A comprehensive set of 

label-free images of human adipocytes were captured during adipogenesis (Supplementary File 1). 

On average there were 25 cells in a single image with a variation of 2-5 cells between image fields. However, larger 

variation will lead to incorrect assumptions about total lipid quantity. Therefore, lipid quantities should preferably be 

normalized by the cell number. The cells were stained with the nuclear fluorescent dye DAPI, and imaged with a DAPI 

fluorescence filter set immediately before acquiring the phase contrast image (example images are provided in Figure 1A, 

1B and 1C). Nuclei were counted using the Otsu threshold method available in MatlabTM (29). LD amounts per cell were 

calculated by matching nuclei numbers with the LD numbers produced by LipiD-QuanT (Figure 1). Although LipiD-

QuanT is designed for LD quantification in living cells to allow their further use for other biological measurements, we 

used images of fixed cells to check the effect of specific stimulants which were utilized to compare our method with Oil

Red O staining method on the same wells. More physiological nuclear stains may also be used such as Hoechst 33342 

(available to stain live cells in media as NucBlue® by Life Technologies).

LipiD-QuanT image processing and analysis 

LDs naturally adopt a spherical geometry -driven by their surface tension (30). LipiD-QuanT is based on the Laplacian 

edge detector, which we have previously employed to monitor bacteria under phase contrast microscopy (31). The 

Laplacian edge detector defines level sets (similar to level lines on topography maps), that automatically guarantees the 

formation of closed contours surrounding the target shapes (32). LipiD-QuanT detected contour lines closely 

corresponding to individual LDs in human adipocyte images. However, false positive contours are also formed in the 

background. These were eliminated on the basis that they are associated with low intensity variance along their contour.  
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Cytoplasmic spaces, surrounded by genuine LDs, tend to have a concave shape –being complementary to a set of limiting 

convex vesicles. We used the function TRACE_MooreNeighbourhood.m contributed by Adam H. Aitkenhead available 

on “Matlab Central” to trace the LD edges until it generated a closed contour circle (33). We then applied the 

LineCurvature2D.m function contributed by Dirk-Jan Kroon and available on “Matlab Central” to compute the curvature 

of the traces generated by the previous function (34).  

Analysis of the curvature at the outer boundary of the segmented regions and subsequent removal of regions with negative 

average curvature allowed us to eliminate the false positive LDs (see Figure 1E, red arrow). LDs often occur as clusters. 

Occasionally, fused LDs form dumbbell shapes. We have incorporated the watershed transform algorithm to LipiD-

QuanT to detect and divide dumbbell shaped LDs (35) and eliminated LDs external to cells. Additionally, a mask 

outlining the position of cells was constructed in order to avoid counting LDs in the background (36). The key steps of the 

LipiD-QuanT algorithm are presented in Figure 2. 

LipiD-QuanT data analysis and output 

LipiD-QuanT installer (Supplementary File 3) is available on the CSIRO Data Access Portal as well as on GitHub. The 

details are further explained in the instalment instructions included to Supplementary File 3. It will automatically process 

the images saved to the same directory, providing numeric outputs corresponding to LD diameter length in pixels as 

described in the LipiD-QuanT installer instructions. The script itself is provided in Supplementary File 4. LipiD-QuanT is 

fully automated and can be used even by potential users that are not familiar with MatlabTM. 

The result images produced by LipiD-QuanT correspond to binary images, where all the pixels of each identified LD are 

set to 1 and the background pixels are set to 0. We generated the size and shape information pertaining to LDs using the 

regionprops function in Matlab. LipiD-QuanT is applicable to both fixed and live cells because it uses “equivalent 

diameter” indicating the diameter of the disk that has the same area as the object as the absolute measure of LD diameter 

length in pixels. Based on the microscope set up, the measurements can be converted into μm. 

We used the smoothed kernel density distributions to visualize the distribution of LD sizes among treatments and 

characterize potential effects. The complete script for producing smooth LD diameter size distributions from LipiD-

 by guest, on O
ctober 31, 2015

w
w

w
.jlr.org

D
ow

nloaded from
 

83



11

QuanT output is given in Supplementary File 5. The LipiD-QuanT output can also be used to calculate total LD area as an 

indicative of LD content. We advise to normalize the total LD area for number of cells to remove any technical or 

biological variance due to cell number among wells.
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RESULTS 

SGBS pre-adipocyte differentiation 

SGBS pre-adipocyte cells were cultured and differentiated according to standard procedures (10). Undifferentiated SGBS 

cells exhibit a fibroblast-cell like structure. However, the cells initiate adipogenesis by pulling their longitudinal structures 

into more localized single globular structure with the influence of the adipocyte differentiation cocktail. By Day 4, tiny 

LDs, sparsely distributed within the cell, became more apparent. By Day 7, a high proportion of the cells appeared 

terminally differentiated containing multiple visible LDs. By Day 10, the majority of the differentiated cells matured and 

contained large quantities of lipids. Over the 14-day course of adipogenesis, 95% of the SGBS pre-adipocytes were 

differentiated into mature adipocytes. From Day 14 to 21, we observed LD enlargement by coalescence and growth.  

We monitored changes in the cellular morphology and expression profiles of a set of key genes such as CEBPB, PPARG,

GLUT4, ADIPOQ, PLIN and FABP4 during adipogenesis. All of these genes except ADIPOQ had the highest relative 

expression on Day 10 (Supplementary Figure 1). While the expression of CEBPB, PPARG and GLUT4 genes were higher 

in later stages of adipogenesis, ADIPOQ, PLIN and FABP4 expression levels were reduced by at least 2-fold 

(Supplementary Figure 1). The gene expression changes were consistent with previously published data confirming that 

SGBS pre-adipocyte differentiation is a reproducible model for the study of human adipogenesis (12, 37-40).  

Lipid-QuanT validation 

i. LipiD-QuanT algorithm validation against  manually segmented LDs

In Figure 1 we show the process of applying LipiD-QuanT. The first panel shows a phase contrast image of a field of 

differentiating adipocytes at Day 7, while panels B and C show the DAPI-stained image of the field and nuclei 

identification used to determine cell numbers per field. We present an example of a phase contrast image of a 

differentiated adipocyte in Figure 1D, and the processed LipiD-QuanT automated segmentation of LDs in Figure 1E. The 

shapes and sizes LDs measured automatically via LipiD-QuanT closely matched that in original images (compare Figure 

1D and 1E).  
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We generated ground truth data by manually creating LD outlines in randomly selected 2 cells in each of a total of 6 test 

images taken on Day 10 of human adipogenesis, using the region of interest selection tool in MatlabTM (imellipse), which 

allows precisely overlaying an ellipse shape onto each individual LD, by adjusting its centre and main axes. An example 

image where these ellipses were fitted manually is shown in Figure 1F. The same LDs were also detected by executing 

LipiD-QuanT on the same 6 images. LipiD-QuanT detected over 95% of LDs as determined by manual segmentation 

(Figure 1E and 1F). In total 1,048 LDs were analyzed by the two methods (Figure 1G). While there was a minor shift of 

larger sizes in LD diameter distribution using manual segmentation, the LD size distributions obtained using the two 

methods were not statistically different according to Chi-Square (X-square) and Kolmogorov-Smirnov Tests (KS.test) (p> 

0.05) (Figure 1G). The LipiD-QuanT algorithm requires an average of 1 min per image and detects LDs with a minimum 

diameter of 0.34 μm.  

i. Anti-perilipin stained LDs structures corresponded accurately with stain-free LipiD-QuanT detection

In order to confirm correspondence of LDs detected by LipiD-QuanT with fluorescence stained images, we stained mature 

adipocytes using an antibody against perilipin – a protein known to decorate the outer surface of LDs (Figure 1H). The 

appearance and size of the fluorescently stained LDs corresponded to those detected under phase contrast. We also 

acquired 3D widefield stacks of anti-perilipin stained human SGBS adipocytes. LDs tended to be approximately spherical 

and predominantly arranged in a single horizontal plane (Supplementary File 2).

ii. LipiD-QuanT robustness against small variations in focal plane selection

LipiD-QuanT, developed for in vitro studies, relies on the acquisition of a single image for lipid quantification, rather than 

a full 3D stack of images spanning the entire 3 dimensional cell volume. We tested LipiD-QuanT’s robustness against 

variations in focal plane selection by acquiring the same image field 5 times, each time independently refocusing to 

maximize the contrast of LD’s. The resulting LD size distributions corresponding to individual images were almost 

indistinguishable (Figure 1I). Thus, as long as image contrast is maximized by the operator, LipiD-QuanT is resilient 

against focus variations. The choice of focal plane does not interfere with the results because adipocytes are predominantly 

arranged flat in horizontal plane as shown in Supplementary File 5.  
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iii. LipiD-QuanT consistency across image fields in the same well 

While a certain biological variability in lipid content is expected for individual cells in the same well, cell specific 

variability is expected to be averaged out as images often contained multiple cells. We acquired 6 images from various 

locations of the same well in a total of 2 treatment groups.  The 12 images were analyzed by LipiD-QuanT separately. The 

separate LD diameter size distribution was produced for each image taken from the same well. The results were highly 

consistent and robust in each treatment group (Supplementary Figure 2A and 2B).   

Comparison of LipiD-QuanT with standard methods

We monitored lipid accumulation in differentiating SGBS cells on Days 0, 4, 7, 10, 14 and 21 via biochemical and lipid 

staining methods (Figure 3). We utilized LipiD-QuanT on images acquired from Day 7 and onwards as the LDs were too 

small to identify with a 20X objective before Day 7. A total of 5,670 LDs were characterized to assess the performance of 

LipiD-QuanT against staining and biochemical based triglyceride accumulation assays. 

Over the process of well-orchestrated adipogenesis, some pre-adipocytes trigger differentiation more quickly, rapidly 

reaching their maximum LD storage capacity whereas others contain a plethora of differentially sized LDs. Similarly both 

live and Oil Red O stained adipocyte images confirmed the structural changes in LDs as adipogenesis progressed (Figure 

3A). New LDs form while larger LDs merge and augment in size to increase lipid storage capacity until Day 21 (i.e. there 

are fewer but larger LDs as the cells mature) (Figure 3B). Figure 3A and 3B provide representative sections of images, 

more examples of label-free human adipocytes images during differentiation are provided in Supplementary File 1. 

The overall trend for LD accumulation obtained via the Oil Red O staining method differed from both LipiD-QuanT and 

triglyceride accumulation results (Figure 3C, 3D and 3E). The biochemical assay demonstrated linear increase in lipid 

content (Figure 3D) consistent with the previously published results (41). LipiD-QuanT measurements demonstrated a

sustained increase in lipid content across the entire differentiation time course (Figure 3E) while Oil Red O staining 

surprisingly indicated that total lipid content decreased after Day 10 (Figure 3C), possibly due to lysis or detachment 

during washing and staining procedures. Because LipiD-QuanT measurements are based on individual cells it is possible to 

discern features that are obscured in measurements of total lipid content.  

 by guest, on O
ctober 31, 2015

w
w

w
.jlr.org

D
ow

nloaded from
 

87



15

The LD size distribution obtained by LipiD-QuanT reflected LD coalescence and ripening as the mean of LD diameter size 

distributions shifted towards larger LDs as the adipogenesis progressed (Figure 3F). The total LD area increased 10 times 

while the average LD diameter size increased 118% from Day 7 to Day 21 (Figure 3E and 3F). Median LD diameter size of 

SGBS adipocytes increased from 1.72 μm to 2.95 μm from Day 7 to 21. As the size range of LDs is similar to that of 

SGBS cells (42, 43). LipiD-QuanT coupled with nuclear staining also allowed us to calculate the ratio of differentiated 

cells during adipogenesis. The proportion of differentiated cells increased from 75% to 96% from Day 7 to Day 21.  

LD size distribution in the presence of pro- and anti-obesogenic substances

Once we confirmed that LipiD-QuanT was accurately detecting LDs compared to the standard methods, we invoked LipiD-

QuanT to measure the response to four potential pro- or anti-obesogenic interventions during adipogenesis:

1- DHA: An important omega-3 long-chain polyunsaturated fatty acid, reported to have anti-obesogenic effects in

animal models (44); reduced plasma levels of omega-3 fatty acids have also been linked to obesity (45-47). Higher

omega-3 fatty acid levels has been shown to reduce fat cell size in overweight and obese individuals (48).

2- D-glucose: Glucose has been shown to act through SREBP-1c to induce de novo lipogenesis in vitro in rat muscle

satellite cells (49). Exposure of 3T3-L1 cells to high glucose conditions leads to insulin resistance (50, 51) and to

accumulation of significantly increased amounts of lipid compared to low glucose (52).

3- ZnO nanoparticles: zinc homeostasis is involved in dysfunction of insulin metabolism (53). Low levels of

erythrocytary zinc are linked to type-2 diabetes and metabolic syndrome outcomes (54-56). Since the therapeutic

effects of ZnO nanoparticles in treating lipid associated diseases show promise (57, 58), but are under-explored, we

tested their possible effect on LD dynamics in differentiating human pre-adipocytes.

4- Rosiglitazone treatment: The peroxisome proliferator-activated receptor gamma (PPARG) agonist is an insulin

sensitizer and triggers new LD formation during adipogenesis (59). However, prolonged treatment is known to be

anti-obesogenic, promote lipolysis and block LD fusion resulting adipocytes containing small LDs (60, 61).
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In Figure 4, we show the smoothed distributions of LD sizes and total lipid quantification obtained using LipD-QuanT and 

Oil Red O staining methods respectively with representative images of adipocytes corresponding to each treatment and 

control group. The distributions of LD diameter results obtained from independent experiments indicated that measurement 

of LD accumulation during SGBS adipogenesis was very robust (Figure 4A, 4D, 4G and 4J). Chi-Square and Kolmogorov-

Smirnov Tests indicated that DHA and ZnO nanoparticle treatments had neither positive nor negative effects on overall 

distribution of LD diameter size during adipogenesis (p-values > 0.05)  (Figure 4A and 4G). While elevated glucose 

concentration also did not result in a statistically significant change in LD size distribution or total lipid content, a

consistent slight shift to higher LD was seen (Figure 4D). The total lipid quantification using Oil Red O staining method 

was also unaffected in these treatments (t-test, p-values >0.05) (Figure 4B, 4E and 4H).

For example, under the effect of ZnO nanoparticles exposure (Figure 4G and 4H), the tail of LD diameter size distributions 

fattens indicating the increase in the proportion of larger LDs in adipocytes as the adipogenesis progress (Figure 3F, 4D, 

4G and 4J).  However these structural features are lost in measures of total lipid quantification is used (Figure 4E, 4H and 

4K).  

Rosiglitazone treatment is essential for the early stages of adipogenesis to promote LD formation and fusion however, 

prolonged stimulation is known to influence adipocyte morphology; leading to adipocytes containing small LDs scattered 

in the cytoplasm. We observed a statistically significant effect of rosiglitazone in LD diameter size distribution at both Day

10 (X-square p-value<2.2e-16 and KS.test p-value<2.2e-16) and Day 14 adipocytes (X-square p-value<8.62e-15 and 

KS.test p-value<2.2e-16). There was a negative shift in LD size distributions revealing an abundance of small LDs on both 

Day 10 and Day 14 (Figure 4J). The total lipid quantification using Oil Red O staining method also revealed that there was 

a significant reduction in the lipid content both in Day 10 and 14 in response to prolonged treatment with rosiglizatone (t-

test, p-values= 1.6e-5 and 1.9e-5 respectively)  (Figure 4K). Rosiglitazone treatment almost stopped LD fusion and 

enlargement while the increase in LD size was aberrant in the control group as there were fewer LDs under 3 μm diameter 

in Day 10 control group compared to Day 14 (Figure 4J). We observed the biggest effect of rosiglitazone on larger LDs. 

The 95th percentile LD diameter size was 0.6 and 1.8 μm smaller in rosiglitazone treatment compared to control group on 
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Day 10 and 14 respectively (vertical lines in Figure 4J). This indicated that prolonged treatment of rosiglitazone prevented 

LD enlargement during adipogenesis. The results are discussed further below.
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DISCUSSION 

There is growing public interest in pro- and anti-obesogenic substances to potentially combat the global obesity epidemic, 

yet little is known still about the effect of many substances on LD dynamics. Identification of specific interactions between 

fat storing cells and environmental signals will potentially delineate intrinsic mechanisms leading to fat depot expansion 

either through increase cell size or numbers (62). LipiD-QuanT provides a readily applicable method to monitor LD 

formation and growth during adipogeneisis and to study the impact of exogenous factors. We have demonstrated here that 

LipiD-QuanT is a suitable approach for measuring LD content and for determining whether a substance of interest can 

modulate LD accumulation, that it delivers a detailed picture of LD dynamics at the single LD/cell resolution and can

measure LDs down to a size of a single pixel. LipiD-QuanT generates highly reproducible results, and is sensitive enough 

to determine small differences in LD sizes and size distributions during in vitro human adipogenesis. It compares favorably 

with biochemical or staining based techniques (Figure 3 and 4), while the results of biochemical and staining based 

techniques can be dependent on fixation or lysis conditions and lack information about structural features of LDs 

(Supplementary Figure 2C, 2D and 2E).  

We have used LipiD-QuanT to monitor the impact of four treatments across adipogenesis. Anti-diabetic effects of ZnO 

nanoparticles had been observed in a diabetic rat model in which nanoparticles where they were absorbed by the fat tissue 

when consumed orally and reduced serum levels of free fatty acid and triglycerides over 40% (58). This prompted us to 

examine whether ZnO nanoparticles had a direct effect on LD formation and lipid accumulation. The lack of a significant 

effect, even at the relatively high dose used, suggests that the observed lowering serum free fatty acids and triglycerides is 

not due to a direct effect of ZnO nanoparticles on adipocytes.   

In a number of systems, including stem cells from bone marrow, muscle and adipose tissue, high glucose exposure has 

been found to stimulate adipogenenic differentiation of the stem cells (63). In vitro studies in 3T3-L1 cells and rat muscle 

satellite cells have also shown that hyperglycemic conditions lead to increased lipogenesis and lipid accumulation (52). 

Across differentiation of SGBS cells in the presence of high (17.5 mM), compared with low (5 mM) glucose we did not see 

a significant change in lipid accumulation measured using either LipiD-QuanT or Oil Red O staining, though a consistent 
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slight shift to higher LD size was seen.  It is possible that we may have seen greater effects, with a broader range of 

glycemic conditions, such as 4-25 mM glucose used in 3T3-L1 cells (52), but the lower concentration was chosen as SGBS 

cells do not reliably proliferate or differentiate below 5 mM glucose and 17.5 mM was chosen as being at the high end of 

the potential physiological range. 

We studied the effect of DHA on differentiating SGBS cells at a 10 μM concentration that is relatively low compared with 

physiological plasma levels (64), but higher levels were toxic to SGBS cells. Neither LipiD-QuanT nor Oil Red O 

measurements showed any significant effect of DHA supplementation. Although our results contrasts with a DHA induced 

dose-dependent decrease in LD numbers and area in 3T3-L1 cells at higher (25-200 μM) levels of DHA (65), a more recent 

study also found no change in lipid accumulation of 3T3-L1 cells due to 2-day treatments of either 100 μM EPA or 50 μM 

DHA (66).  

It has been shown in animal models that rosiglitazone lowers circulating triglyceride and free fatty acids hence improves 

insulin sensitivity (67, 68) as well as reducing adipocyte size and fat accumulation in muscle (59, 60). In cultured human 

subcutaneous adipocytes and in combination with insulin, rosiglitazone stimulated lipolysis in vitro (69). Moreover, on 

mature 3T3-L1 cells kept in high glucose, 2 day rosiglitazone treatment reduced the measured lipid content by 10% (70).

Consistent with this, we have demonstrated that prolonged exposure to rosiglitazone has an anti-adipogenic effect during 

human adipogenesis, and LipiD-QuanT measurements demonstrate that it prevents enlargement of LDs leading to smaller 

LD size distribution (Figure 4J). 

Although, the emphasis of this manuscript has been LD dynamics with the specific focus on human obesity, the application 

of Lipid-QuanT is not limited to a specific cell or organism. LDs contain well-conserved features among all organisms 

(71). Recently, commercial software has been used to measure LD dynamics in murine 3T3-L1 cells following fixation and 

Oil Red O staining (72). The size distribution of LDs in 3T3-L1 cells is very similar to that of SGBS cells measured using 

LipiD-QuanT.  Thus Lipid-QuanT should readily be able to be applied to the murine 3T3-L1 adipocyte cell line. 

Additionally, HepG2 cells are reported to contain LDs in range from 0.2 to 1.4 μm (73). Visualization of the smaller lipid 

droplets (<0.3 μm) is feasible but would require capturing of images at higher magnification (2X) than the microscopy set-
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up that is described. Thus, LipiD-QuanT adds further knowledge to previous research that investigated LD accumulation 

and lipid metabolism in the context of health and disease or due to the influence of various treatments during adipogenesis 

(74-76). 

LipiD-QuanT complements staining and biochemical methods for measurement of lipid content and LD dynamics. It has 

the advantages that can provide measures of LD content and size distribution on a per cell basis, it is non-destructive to 

cells as they do not need to be fixed and it is user-friendly. 

In addition, we believe LipiD-QuanT can be adapted to quantify lipid emulsions or lipid research in other systems where 

the contrast of LD contours is maximized and potentially be used for studies of LD biophysical characters such as stability, 

shape, and dynamics. 

 by guest, on O
ctober 31, 2015

w
w

w
.jlr.org

D
ow

nloaded from
 

93



21

ACKNOWLEDGEMENTS 

The study is part of the EpiSCOPE project supported by the Science and Industry Endowment Fund (Australia), grant 

RP03-064. In addition, HV is supported by iMQRES and CSIRO OCE Doctoral scholarships. We thank Stephen Bradford 

and David James’ lab at the Garvan Institute of Medical Research for providing the SGBS cell line, Musarat Ishaq for 

providing PCR reagents, Susan van Dijk and Jing Zhou for providing HiDHA™ tuna oil and last but not least to Penny 

Bean, Meg Evans and Vijay Vaithilingam for their assistance with their microscopes. We also thank Michael Gillings, Kim 

Fung, Wayne Leifert and Lance Macaulay for critical reading the manuscript.

CONFLICT OF INTEREST

The authors declare no conflict of interest. 

 by guest, on O
ctober 31, 2015

w
w

w
.jlr.org

D
ow

nloaded from
 

94



22

REFERENCES

1. Brown, D. A. 2001. Lipid droplets: Proteins floating on a pool of fat. Curr Biol 11(11): R446-R449.

2. Haemmerle, G., Zimmermann R., and Zechner R. 2003. Letting lipids go: hormone-sensitive lipase.

Curr Opin Lipidol 14(3): 289-297. 

3. Londos, C., Sztalryd C., Tansey J. T., and Kimmel A. R. 2005. Role of PAT proteins in lipid

metabolism. Biochimie 87(1): 45-49. 

4. Francois, M., Leifert W., Hecker J., Faunt J., Martins R., Thomas P., and Fenech M. 2014. Altered

cytological parameters in buccal cells from individuals with mild cognitive impairment and Alzheimer's disease. 

Cytometry A 85(8): 698-708. 

5. Fujimoto, T., and Parton R. G. 2011. Not Just Fat: The Structure and Function of the Lipid Droplet. Cold

Spring Harb Perspect Biol 3(3). 

6. Miller, M., Stone N. J., Ballantyne C., Bittner V., Criqui M. H., Ginsberg H. N., Goldberg A. C.,

Howard W. J., Jacobson M. S., Kris-Etherton P. M., Lennie T. A., Levi M., Mazzone T., Pennathur S., Nursing 

C. C., and Dis C. K. C. 2011. Triglycerides and Cardiovascular Disease A Scientific Statement From the

American Heart Association. Circulation 123(20): 2292-2333. 

7. Lutz, T. A., and Woods S. C. 2012. Overview of Animal Models of Obesity. Current protocols in

pharmacology / editorial board, SJ Enna (editor-in-chief)  [et al] CHAPTER: Unit5.61-Unit65.61. 

8. Poulos, S. P., Dodson M. V., and Hausman G. J. 2010. Cell line models for differentiation:

preadipocytes and adipocytes. Exp Biol Med (Maywood) 235(10): 1185-1193. 

9. Green, H., and Kehinde O. 1975. An established preadipose cell line and its differentiation in culture. II.

Factors affecting the adipose conversion. Cell 5(1): 19-27. 

10. Wabitsch, M., Brenner R. E., Melzner I., Braun M., Moller P., Heinze E., Debatin K. M., and Hauner H.

2001. Characterization of a human preadipocyte cell strain with high capacity for adipose differentiation. Int J 

Obes 25(1): 8-15. 

11. Allott, E. H., Oliver E., Lysaght J., Gray S. G., Reynolds J. V., Roche H. M., and Pidgeon G. P. 2012.

The SGBS cell strain as a model for the in vitro study of obesity and cancer. Clin Transl Oncol 14(10): 774-782. 

 by guest, on O
ctober 31, 2015

w
w

w
.jlr.org

D
ow

nloaded from
 

95



23

12. Fischer-Posovszky, P., Newell F. S., Wabitsch M., and Tornqvist H. E. 2008. Human SGBS cells - a

unique tool for studies of human fat cell biology. Obesity facts 1(4): 184-189. 

13. Thiam, A. R., Antonny B., Wang J., Delacotte J., Wilfling F., Walther T. C., Beck R., Rothman J. E., 

and Pincet F. 2013. COPI buds 60-nm lipid droplets from reconstituted water-phospholipid-triacylglyceride 

interfaces, suggesting a tension clamp function. Proc Natl Acad Sci U S A 110(33): 13244-13249. 

14. Fukumoto, S., and Fujimoto T. 2002. Deformation of lipid droplets in fixed samples. Histochem Cell 

Biol 118(5): 423-428. 

15. Gan, W. B., Grutzendler J., Wong W. T., Wong R. O. L., and Lichtman J. W. 2000. Multicolor 

"DiOlistic" labeling of the nervous system using lipophilic dye combinations. Neuron 27(2): 219-225. 

16. Listenberger, L. L., Ostermeyer-Fay A. G., Goldberg E. B., Brown W. J., and Brown D. A. 2007. 

Adipocyte differentiation-related protein reduces the lipid droplet association of adipose triglyceride lipase and 

slows triacylglycerol turnover. J Lipid Res 48(12): 2751-2761. 

17. Robenek, H., Robenek M. J., and Troyer D. 2005. PAT family proteins pervade lipid droplet cores. J

Lipid Res 46(6): 1331-1338. 

18. Cirulis, J. T., Strasser B. C., Scott J. A., and Ross G. M. 2012. Optimization of staining conditions for 

microalgae with three lipophilic dyes to reduce precipitation and fluorescence variability. Cytometry Part A

81A(7): 618-626. 

19. Kacmar, J., Carlson R., Balogh S. J., and Srienc F. 2006. Staining and quantification of poly-3-

hydroxybutyrate in Saccharomyces cerevisiae and Cupriavidus necator cell populations using automated flow 

cytometry. Cytometry Part A 69A(1): 27-35. 

20. Loudet, A., and Burgess K. 2007. BODIPY dyes and their derivatives: Syntheses and spectroscopic 

properties. Chem Rev 107(11): 4891-4932. 

21. Hellerer, T., Axang C., Brackmann C., Hillertz P., Pilon M., and Enejder A. 2007. Monitoring of lipid 

storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy. Proc Natl 

Acad Sci U S A 104(37): 14658-14663. 

22. Le, T. T., Duren H. M., Slipchenko M. N., Hu C. D., and Cheng J. X. 2010. Label-free quantitative 

analysis of lipid metabolism in living Caenorhabditis elegans (vol 51, pg 672, 2010). J Lipid Res 51(4): 875-875. 

 by guest, on O
ctober 31, 2015

w
w

w
.jlr.org

D
ow

nloaded from
 

96



24

23. Dou, W., Zhang D. L., Jung Y., Cheng J. X., and Umulis D. M. 2012. Label-Free Imaging of Lipid-

Droplet Intracellular Motion in Early Drosophila Embryos Using Femtosecond-Stimulated Raman Loss 

Microscopy. Biophys J 102(7): 1666-1675. 

24. Wong, C. S. Y., Robinson I., Ochsenkuhn M. A., Arlt J., Hossack W. J., and Crain J. 2011. Changes to 

lipid droplet configuration in mCMV-infected fibroblasts: live cell imaging with simultaneous CARS and two-

photon fluorescence microscopy. Biomedical Optics Express 2(9): 2504-2516. 

25. Mouras, R., Bagnaninchi P. O., Downes A. R., and Elfick A. P. D. 2012. Label-free assessment of 

adipose-derived stem cell differentiation using coherent anti-Stokes Raman scattering and multiphoton 

microscopy. Journal of Biomedical Optics 17(11). 

26. Jungst, C., Klein M., and Zumbusch A. 2013. Long-term live cell microscopy studies of lipid droplet 

fusion dynamics in adipocytes. J Lipid Res 54(12): 3419-3429. 

27. Osmond-McLeod, M. J., Osmond R. I. W., Oytam Y., McCall M. J., Feltis B., Mackay-Sim A., Wood S. 

A., and Cook A. L. 2013. Surface coatings of ZnO nanoparticles mitigate differentially a host of transcriptional, 

protein and signalling responses in primary human olfactory cells. Part Fibre Toxicol 10. 

28. Osmond-McLeod MJ, O. Y., Osmond RIW, Sobhanmanesh F, McCall MJ 2014. Surface Coatings 

Protect against the In vitro Toxicity of Zinc Oxide Nanoparticles in Human Hepatic Stellate Cells. J Nanomed 

Nanotechnol 5: 232. 

29. Ostwald, W. 1897. Studien uber die Bildung und Umwandlung fester Korper. Z Phys Chem 22: 289. 

30. Ollila, O. H. S., Lamberg A., Lehtivaara M., Koivuniemi A., and Vattulainen I. 2012. Interfacial Tension 

and Surface Pressure of High Density Lipoprotein, Low Density Lipoprotein, and Related Lipid Droplets. 

Biophys J 103(6): 1236-1244. 

31. Vallotton, P. 2013. Size Matters: Filamentous Bacteria Drive Interstitial Vortex Formation and Colony 

Expansion in Paenibacillus vortex. Cytometry Part A 83(12): 1105-1112. 

32. Kimmel, R., and Bruckstein A. Regularized laplacian zero crossings as optimal edge integrators. 2001. 

33. Aitkenhead, A. H. 2010. Boundary tracing using the Moore Neighbourhood. Matlab Central File 

ExchangeRetrieved April 3, 2012. 

 by guest, on O
ctober 31, 2015

w
w

w
.jlr.org

D
ow

nloaded from
 

97



25

34. Kroon, D.-J. 2011. 2D Line Curvature and Normals. Matlab Central File ExchangeRetrieved April 3,

2012. 

35. Soille, P. Morphological Image Analysis: Principles and Applications: Springer-Verlag New York, Inc.;

2003. 391 p. 

36. Otsu, N. 1979. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern

9(1): 62-66. 

37. Lahnalampi, M., Heinäniemi M., Sinkkonen L., Wabitsch M., and Carlberg C. 2010. Time-Resolved

Expression Profiling of the Nuclear Receptor Superfamily in Human Adipogenesis. PLoS One 5(9): e12991. 

38. Lindroos, J., Husa J., Mitterer G., Haschemi A., Rauscher S., Haas R., Gröger M., Loewe R.,

Kohrgruber N., Schrögendorfer K  F., Prager G., Beck H., Pospisilik J  A., Zeyda M., Stulnig T  M., Patsch W., 

Wagner O., Esterbauer H., and Bilban M. 2013. Human but Not Mouse Adipogenesis Is Critically Dependent on 

LMO3. Cell Metabolism 18(1): 62-74. 

39. Murholm, M., Isidor M. S., Basse A. L., Winther S., Sorensen C., Skovgaard-Petersen J., Nielsen M. M.,

Hansen A. S., Quistorff B., and Hansen J. B. 2013. Retinoic acid has different effects on UCP1 expression in 

mouse and human adipocytes. BMC Cell Biol 14: 41. 

40. Weaver, R. E., Donnelly D., Wabitsch M., Grant P. J., and Balmforth A. J. 2008. Functional expression

of glucose-dependent insulinotropic polypeptide receptors is coupled to differentiation in a human adipocyte 

model. Int J Obes (Lond) 32(11): 1705-1711. 

41. Calzadilla, P., Sapochnik D., Cosentino S., Diz V., Dicelio L., Calvo J. C., and Guerra L. N. 2011. N-

Acetylcysteine Reduces Markers of Differentiation in 3T3-L1 Adipocytes. International Journal of Molecular 

Sciences 12(10): 6936-6951. 

42. Paar, M., Jungst C., Steiner N. A., Magnes C., Sinner F., Kolb D., Lass A., Zimmermann R., Zumbusch

A., Kohlwein S. D., and Wolinski H. 2012. Remodeling of Lipid Droplets during Lipolysis and Growth in 

Adipocytes. J Biol Chem 287(14): 11164-11173. 

43. Suzuki, M., Shinohara Y., Ohsaki Y., and Fujimoto T. 2011. Lipid droplets: size matters. J Electron

Microsc (Tokyo) 60: S101-S116. 

 by guest, on O
ctober 31, 2015

w
w

w
.jlr.org

D
ow

nloaded from
 

98



26

44. Buckley, J. D., and Howe P. R. C. 2009. Anti-obesity effects of long-chain omega-3 polyunsaturated 

fatty acids. Obes Rev 10(6): 648-659. 

45. Burrows, T., Collins C. E., and Garg M. L. 2011. Omega-3 index, obesity and insulin resistance in 

children. Int J Pediatr Obes 6(2-2): e532-539.

46. Micallef, M., Munro I., Phang M., and Garg M. 2009. Plasma n-3 Polyunsaturated Fatty Acids are 

negatively associated with obesity. Br J Nutr 102(9): 1370-1374. 

47. Saito, E., Okada T., Abe Y., Kuromori Y., Miyashita M., Iwata F., Hara M., Ayusawa M., Mugishima 

H., and Kitamura Y. 2011. Docosahexaenoic acid content in plasma phospholipids and desaturase indices in 

obese children. Journal of atherosclerosis and thrombosis 18(4): 345-350. 

48. Garaulet, M., Hernandez-Morante J. J., Lujan J., Tebar F. J., and Zamora S. 2006. Relationship between 

fat cell size and number and fatty acid composition in adipose tissue from different fat depots in 

overweight/obese humans. Int J Obes (Lond) 30(6): 899-905. 

49. Guillet-Deniau, I., Pichard A. L., Kone A., Esnous C., Nieruchalski M., Girard J., and Prip-Buus C. 

2004. Glucose induces de novo lipogenesis in rat muscle satellite cells through a sterol-regulatory-element-

binding-protein-1c-dependent pathway. J Cell Sci 117(10): 1937-1944. 

50. Lu, B., Ennis D., Lai R., Bogdanovic E., Nikolov R., Salamon L., Fantus C., Le-Tien H., and Fantus I. 

G. 2001. Enhanced sensitivity of insulin-resistant adipocytes to vanadate is associated with oxidative stress and 

decreased reduction of vanadate (+5) to vanadyl (+4). J Biol Chem 276(38): 35589-35598. 

51. Tang, S., Le-Tien H., Goldstein B. J., Shin P., Lai R., and Fantus I. G. 2001. Decreased in situ insulin 

receptor dephosphorylation in hyperglycemia-induced insulin resistance in rat adipocytes. Diabetes 50(1): 83-90. 

52. Lin, Y., Berg A. H., Iyengar P., Lam T. K., Giacca A., Combs T. P., Rajala M. W., Du X., Rollman B., 

Li W., Hawkins M., Barzilai N., Rhodes C. J., Fantus I. G., Brownlee M., and Scherer P. E. 2005. The 

hyperglycemia-induced inflammatory response in adipocytes: the role of reactive oxygen species. J Biol Chem

280(6): 4617-4626. 

53. Saper, R. B., and Rash R. 2009. Zinc: An Essential Micronutrient. Am Fam Physician 79(9): 768-772. 

54. Mateo, M. C., Bustamante J. B., and Cantalapiedra M. A. 1978. Serum, zinc, copper and insulin in 

diabetes mellitus. Biomedicine 29(2): 56-58. 

 by guest, on O
ctober 31, 2015

w
w

w
.jlr.org

D
ow

nloaded from
 

99



27

55. Melchior, T., Simonsen K. W., Johannessen A. C., and Binder C. 1989. Plasma Zinc Concentrations 

during the 1st 2 Years after Diagnosis of Insulin-Dependent Diabetes-Mellitus - a Prospective-Study. J Intern 

Med 226(1): 53-58. 

56. Zargar, A. H., Shah N. A., Masoodi S. R., Laway B. A., Dar F. A., Khan A. R., Sofi F. A., and Wani A. 

I. 1998. Copper, zinc, and magnesium levels in non-insulin dependent diabetes mellitus. Postgrad Med J

74(877): 665-668. 

57. Alkaladi, A. A., A.M .; Afifi, M. 2014. Antidiabetic activity of zinc oxide and silver nanoparticles on 

streptozotocin-induced diabetic rats Int J Mol Sci 15(2 ): 2015-2023. 

58. Umrani, R. D., and Paknikar K. M. 2014. Zinc oxide nanoparticles show antidiabetic activity in 

streptozotocin-induced Type 1 and 2 diabetic rats. Nanomedicine 9(1): 89-104. 

59. Albrektsen, T., Frederiksen K. S., Holmes W. E., Boel E., Taylor K., and Fleckner J. 2002. Novel genes 

regulated by the insulin sensitizer rosiglitazone during adipocyte differentiation. Diabetes 51(4): 1042-1051. 

60. Johnson, J. A., Trasino S. E., Ferrante A. W., and Vasselli J. R. 2007. Prolonged decrease of adipocyte 

size after rosiglitazone treatment in high- and low-fat-fed rats. Obesity 15(11): 2653-2663. 

61. Molero, J. C., Lee S., Leizerman I., Chajut A., Cooper A., and Walder K. 2010. Effects of rosiglitazone 

on intramyocellular lipid accumulation in Psammomys obesus. Biochim Biophys Acta 1802(2): 235-239. 

62. Feve, B. 2005. Adipogenesis: cellular and molecular aspects. Best Pract Res Clin Endocrinol Metab

19(4): 483-499. 

63. nanoparticles, W. h. u. L.-Q. t. m. t. i. o. f. t. a. a. A.-d. e. o. Z. n. h. b. o. i. a. d. r. m. i. w., Leo S., Zavan 

B., Vindigni V., Rimessi A., Bianchi K., Franzin C., Cortivo R., Rossato M., Vettor R., Abatangelo G., Pozzan 

T., Pinton P., and Rizzuto R. 2008. High glucose induces adipogenic differentiation of muscle-derived stem 

cells. Proc Natl Acad Sci U S A 105(4): 1226-1231. 

64. Maki, K. C., Reeves M. S., Farmer M., Griinari M., Berge K., Vik H., Hubacher R., and Rains T. M. 

2009. Krill oil supplementation increases plasma concentrations of eicosapentaenoic and docosahexaenoic acids 

in overweight and obese men and women. Nutrition research (New York, NY) 29(9): 609-615. 

65. Kim, H. K., Della-Fera M., Lin J., and Baile C. A. 2006. Docosahexaenoic acid inhibits adipocyte 

differentiation and induces apoptosis in 3T3-L1 preadipocytes. J Nutr 136(12): 2965-2969. 

 by guest, on O
ctober 31, 2015

w
w

w
.jlr.org

D
ow

nloaded from
 

100



28

66. Prostek, A., Gajewska M., Kamola D., and Balasinska B. 2014. The influence of EPA and DHA on 

markers of inflammation in 3T3-L1 cells at different stages of cellular maturation. Lipids Health Dis 13: 3. 

67. Oakes, N. D., Kennedy C. J., Jenkins A. B., Laybutt D. R., Chisholm D. J., and Kraegen E. W. 1994. A 

new antidiabetic agent, BRL 49653, reduces lipid availability and improves insulin action and glucoregulation in 

the rat. Diabetes 43(10): 1203-1210. 

68. Yki-Jarvinen, H. 2004. Thiazolidinediones. N Engl J Med 351(11): 1106-1118. 

69. McTernan, P. G., Harte A. L., Anderson L. A., Green A., Smith S. A., Holder J. C., Barnett A. H., Eggo 

M. C., and Kumar S. 2002. Insulin and rosiglitazone regulation of lipolysis and lipogenesis in human adipose 

tissue in vitro. Diabetes 51(5): 1493-1498. 

70. Wang, P., Renes J., Bouwman F., Bunschoten A., Mariman E., and Keijer J. 2007. Absence of an 

adipogenic effect of rosiglitazone on mature 3T3-L1 adipocytes: increase of lipid catabolism and reduction of 

adipokine expression. Diabetologia 50(3): 654-665. 

71. Thiel, K., Heier C., Haberl V., Thul P. J., Oberer M., Lass A., Jackle H., and Beller M. 2013. The 

evolutionarily conserved protein CG9186 is associated with lipid droplets, required for their positioning and for 

fat storage. J Cell Sci 126(Pt 10): 2198-2212. 

72. Rizzatti, V., Boschi F., Pedrotti M., Zoico E., Sbarbati A., and Zamboni M. 2013. Lipid Droplets 

Characterization in Adipocyte Differentiated 3T3-L1 Cells: Size and Optical Density Distribution. European 

Journal of Histochemistry : EJH 57(3): e24. 

73. Hur, W., Kim S. W., Lee Y. K., Choi J. E., Hong S. W., Song M. J., Bae S. H., Park T., Um S. J., and 

Yoon S. K. 2012. Oleuropein reduces free fatty acid-induced lipogenesis via lowered extracellular signal-

regulated kinase activation in hepatocytes. Nutrition research (New York, NY) 32(10): 778-786. 

74. Koves, T. R., Sparks L. M., Kovalik J. P., Mosedale M., Arumugam R., DeBalsi K. L., Everingham K., 

Thorne L., Phielix E., Meex R. C., Kien C. L., Hesselink M. K., Schrauwen P., and Muoio D. M. 2013. 

PPARgamma coactivator-1alpha contributes to exercise-induced regulation of intramuscular lipid droplet 

programming in mice and humans. J Lipid Res 54(2): 522-534. 

 by guest, on O
ctober 31, 2015

w
w

w
.jlr.org

D
ow

nloaded from
 

101



29

75. Robciuc, A., Hyotylainen T., Jauhiainen M., and Holopainen J. M. 2012. Hyperosmolarity-induced lipid

droplet formation depends on ceramide production by neutral sphingomyelinase 2. J Lipid Res 53(11): 2286-

2295. 

76. Russell, T. D., Palmer C. A., Orlicky D. J., Fischer A., Rudolph M. C., Neville M. C., and McManaman

J. L. 2007. Cytoplasmic lipid droplet accumulation in developing mammary epithelial cells: roles of adipophilin

and lipid metabolism. J Lipid Res 48(7): 1463-1475. 

 by guest, on O
ctober 31, 2015

w
w

w
.jlr.org

D
ow

nloaded from
 

102



30

FIGURES LEGENDS AND FIGURES  

Figure 1: LipiD-QuanT validation. 

A- Image of 4% paraformaldehyde fixed SGBS human pre-adipocytes on Day 7, stained with DAPI to 

localize nuclei.

B- Nuclei in Figure 1A were segmented automatically via LipiD-QuanT in order to derive per-cell statistics 

for lipid accumulation. 

C- The same image field as in Figure 1A was acquired under phase contrast microscopy. 

D- A representative image of differentiated SGBS cells acquired under phase contrast microscopy showing 

well-contrasted LD boundaries. 

E- A representative image of differentiated SGBS cells representing LDs segmented by LipiD-QuanT. A 

region of negative curvature cytoplasmic space between LDs is indicated by a red arrow. 

F- A representative image of differentiated SGBS cells representing LDs segmentation by manual counting 

(The lower cell was not analyzed). 

G- Comparison of smoothed distribution of LD diameter sizes obtained from automated LipiD-QuanT

measurements and manual segmentation (n= 1,048 LDs). Pixel size in object space is 0.3 μm.

H- The LD identity was confirmed at the molecular level using anti-perilipin fluorescence staining of the 

protein (green channel) decorating their periphery. 

I- Size distributions are not sensitive to focus choice. Smoothed distribution of LD diameter sizes of 

mature human adipocytes is reproduced reliably after re-setting the focus in independent trials (n=1,165 

LDs).

Figure 2: Flowchart presenting the key steps of LipiD-QuanT algorithm 

Figure 3: Performance of LipiD-QuanT in monitoring LD accumulation during adipogenesis, compared 

to Oil Red O staining and Triglyceride accumulation protocols 

A- Representative images of Oil Red O stained SGBS cells over the adipogenesis time-course of 21 days. 

As expected Oil Red O is seen to partition predominantly in LDs. 
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B- Representative images of label-free differentiating SGBS cells as observed by phase contrast microscopy 

over a period of 21 days. The average LD’s diameter is seen to increase spectacularly over this period.

C- The Oil Red O dye extractions were measured spectrophotometrically at 520 nm (OD520nm) over a period 

of 21 days. Data are shown as mean±standard deviation (M±SD) (n= 3 biological replicates with 2 

technical replicate per sample).  

D- Quantification of total triglyceride accumulation using enzymatic digest method during adipogenesis.

The total glycerol concentration is shown in μM. Data are shown as M±SD of experiment performed in 

triplicate wells (2 technical replicate per sample).

E- Total LD area calculated on Day 7, 10, 14 and 21 of human adipogenesis using LipiD-QuanT divided to 

total number of differentiated cells using per DAPI stained nuclei images coupled with phase contrast 

images. On day 7, 10, 14 and 21 there were a total of 99, 104, 96 and 132 cells respectively (6 images 

were used per differentiation time point).

F- Smoothed distribution of LD diameter sizes obtained using the LipiD-QuanT software during 

adipogenesis (n=5,670 LDs). A systematic shift towards larger LD sizes is measured.

Figure 4: The effect of pro- and anti-obesogenic treatments on LD formation and accumulation during 

adipogenesis

A- Smoothed distribution of LD diameter sizes in terminally differentiated SGBS cells in the presence and 

absence of 10 μmol/L DHA treatment over a 14 day period (n= 7,444 LDs in 8 images).

B- The Oil Red O dye extractions were measured spectrophotometrically at 520 nm (OD520nm) in terminally 

differentiated SGBS cells in the presence and absence of 10 μmol/L DHA treatment over a 14 day 

period. Data are shown as M±SD (n= 3 biological replicates with 2 technical replicates per sample).

C- Representative microscopy images of control and 10 μmol/L DHA treated SGBS cells on day 14. For

these and panels F, I and L, images are only representative of a small portion within a single image.

D- The change of smoothed distribution of LD diameter sizes in differentiating SGBS cells in low and high 

glucose concentrations for a total of 14 days (n=5,955 LDs).
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E- The Oil Red O dye extractions were measured spectrophotometrically at 520 nm (OD520nm) in

differentiating SGBS cells in low and high glucose concentrations for a total of 14 days. Data are shown

as M±SD (n= 4 biological replicates with 2 technical replicates per sample).

F- Representative microscopy images of SGBS cells fed in low and high glucose concentrated media up to

day 14.

G- The change of smoothed distribution of LD diameter sizes in differentiating SGBS cells on day 8 and 12,

following a 48h treatment with or without the 10 μg coated ZnO nanoparticles on day 6 (n=33,626 LDs).

H- The Oil Red O dye extractions were measured spectrophotometrically at 520 nm (OD520nm) in

differentiating SGBS cells on day 8 and 12, following a 48h treatment with or without the 10 μg coated

ZnO nanoparticles on day 6. Data are shown as M±SD (n= 2 biological replicates with 2 technical

replicates per sample).

I- Representative microscopy images of SGBS cells at day 14 following a 48h treatment with or without a

48h treatment the 10 μg coated ZnO nanoparticles on day 6.

J- Smoothed distribution of LD diameter sizes in SGBS cells differentiated in the presence and absence of

2 μmol/L Roziglitazone until day 14 (n=33,749 LDs). Vertical lines indicate 95th percentile; full lines,

day 10 and dashed lines, day 14.

K- The Oil Red O dye extractions were measured spectrophotometrically at 520 nm (OD520nm) in SGBS

cells differentiated in the presence or absence of 2 μmol/L Roziglitazone until day 14. Data are shown as

M±SD (n= 3 biological replicates with 2 technical replicates per sample).

L- Representative microscopy images of SGBS cells in the presence and absence of 2 μmol/L

Roziglitazone for a total of 14 days.
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Figure 1: LipiD-QuanT validation
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Figure 2: Flowchart presenting the key steps of LipiD-QuanT algorithm

Detection of candidate LD regions

Eliminiation of false positive regions 

1. Removal of candidate regions featuring low intensity variance along their perimeter
2. Removal of cytoplasmic spaces surrounded by genuine LDs

Detection and splitting of dumbell shaped LDs

Nuclei Detection

Elimination of “LDs” external cell

Reporting of LD size statistics
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Figure 3: Comparison of LipiD-QuanT performance in monitoring LD accumulation during adipogenesis 

compared to widely used other protocols.
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Figure 4: The effect of pro- and anti-obesogenic treatments on LD formation and accumulation during adipogenesis
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Figure 4: The effect of pro- and anti-obesogenic treatments on LD formation and accumulation during adipogenesis
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Supplementary Figure 1: Relative expression of CEBPB, PPARG, GLUT4, ADIPOQ, PLIN and FABP4 during 21 days of adipogenesis 

in SGBS cells. Expression levels of target genes were determined by quantitative RT-PCR and are normalized to the control GAPDH gene. 
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Supplementary Figure 2: LipiD-QuanT performance on synthetic images with LDs and drawbacks of Oil Red 

o staining method for monitoring adipogenesis. 

A- The LD diameter size density distribution is consistent between images taken from different parts of the same 
well containing 2 µmol/L Rosiglitazone treated cells on day 14 (n=4,572 LDs in 6 images).

B- The LD diameter size density distribution is consistent between images taken from different parts of the same 
well containing untreated cells on day 14 (n =1,679  LDs in 6 images).

C- Oil Red O stained SGBS adipocytes with a few burst LDs and high background staining under phase contrast 
microscopy.

D- Oil Red O stained SGBS adipocytes with a few burst LDs with three dimensional mapping using Cytoviva 
microscopy.

E- Phase contrast image of well-fixed and Oil Red O stained mature SGBS adipocytes. This illustrates the variability 
of Oil Red O staining, as apparent by the variability in staining intensities of LD’s of similar sizes.
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Gene Name (Human) Gene Bank ID  Amplicon (nt) Primer Name Length Sequence 

Glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH)  

NM_002046.3 66 
GAPDH-Forward 19 AGCCACATCGCTCAGACAC 

GAPDH-Reverse 19 GCCCAATACGACCAAATCC 

CCAAT/enhancer binding 
protein (C/EBP), beta (CEBPB) 

NM_005194.2 65 
CEBPB -Forward 18 CGCTTACCTCGGCTACCA 

CEBPB -Reverse 19 ACGAGGAGGACGTGGAGAG 

Peroxisome proliferator-
activated receptor gamma 
(PPARG) 

NM_138712.3 96 
PPARG-Forward 24 GACAGGAAAGACAACAGACAAATC 

21 GGGGTGATGTGTTTGAACTTG 

Adiponectin, C1Q and collagen 
domain containing (ADIPOQ)  

NM_004797.3 61 
ADIPOQ- Forward 21 GGTGAGAAGGGTGAGAAAGGA 

21 TTTCACCGATGTCTCCCTTAG 

Perilipin 1 (PLIN) NM_002666.4 101 
PLIN-Forward 24 ACATTAAAGGGAAGAAGTTGAAGC 

 19 GCAGCACATTCTCCTGCTC 

Solute carrier family 2 
(facilitated glucose transporter), 
member 4 (SLC2A4/GLUT4)  

NM_001042.2 62 
GLUT4-Forward 20 CTGTGCCATCCTGATGACTG 

GLUT4-Reverse 20 CGTAGCTCATGGCTGGAACT 

Fatty acid binding protein 4, 
adipocyte (FABP4) 

NM_001442.2 70 
FABP4-Forward 23 CCACCATAAAGAGAAAACGAGAG 

FABP4-Reverse 20 GTGGAAGTGACGCCTTTCAT 

1

Supplementary Table 1: Sequence of PCR primers used in quantitative RT-PCR.

ADIPOQ- Reverse

PPARG-Reverse

PLIN-Reverse
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CHAPTER 3: COBRA-Seq: sensitive and quantitative methylome profiling 

Epigenetics is among the fastest moving areas in molecular biology, shedding light on how 

environmental factors affect disease manifestation in humans. Most common methods for 

measuring DNA methylation target locations of the genome where methylation occurs 

densely, however there is growing evidence that less dense methylation in other genomic 

locations is equally, if not more important.  

This paper describes a new genome-wide reduced methylome method (COBRA-Seq). 

The method enriches methylated DNA fractions by digesting the genomic DNA with 

restriction enzymes that recognize potential methylation sites after bisulfite conversion. The 

genomic complexity is further reduced by removing DNA fragments without the enzyme 

recognition site using streptavidin coated magnetic beads.  COBRA-seq samples the genome 

proportionally for generation and analysis of genome-scale DNA methylation profiles with 

nucleotide resolution at a reduced cost. We compared the relative methylation measures 

generated with this novel method to other methylome sampling methods. This paper also 

reviews other widely used methylome methods.  

The publication presented in this chapter is the product of a working collaboration between 

myself, Ross, Statham and Molloy. I designed the experiments, carried out all the laboratory 

experiments and wrote the manuscript. Ross and Statham analysed the genomic data. Ross, 

Molloy and Clark contributed to the experimental design and writing of the manuscript. 

This manuscript has been published in Genes, October 2015. It was the 4th most 

downloaded manuscript in 2015 published by Genes. 

Detailed contributions: 

 Varinli H Co-authors 

Experimental Design 60% 40% 

Laboratory Experiments 100%  

Data Analysis 10% 90% 

Writing 70% 30% 
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Abstract: Combined Bisulfite Restriction Analysis (COBRA) quantifies DNA methylation at 
a specific locus. It does so via digestion of PCR amplicons produced from bisulfite-treated 
DNA, using a restriction enzyme that contains a cytosine within its recognition sequence, such 
as TaqI. Here, we introduce COBRA-seq, a genome wide reduced methylome method that 
requires minimal DNA input (0.1–1.0 μg) and can either use PCR or linear amplification to 
amplify the sequencing library. Variants of COBRA-seq can be used to explore CpG-depleted 
as well as CpG-rich regions in vertebrate DNA. The choice of enzyme influences enrichment 
for specific genomic features, such as CpG-rich promoters and CpG islands, or enrichment 
for less CpG dense regions such as enhancers. COBRA-seq coupled with linear amplification 
has the additional advantage of reduced PCR bias by producing full length fragments at high 
abundance. Unlike other reduced representative methylome methods, COBRA-seq has great 
flexibility in the choice of enzyme and can be multiplexed and tuned, to reduce sequencing costs 
and to interrogate different numbers of sites. Moreover, COBRA-seq is applicable to non-model 
organisms without the reference genome and compatible with the investigation of non-CpG 
methylation by using restriction enzymes containing CpA, CpT, and CpC in their recognition site. 
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Keywords: COBRA; DNA methylation; reduced representation; non CpG; non-model 
organism; restriction enzymes; next generation sequencing; enhancer; CHH 

1. Introduction

Extensive effort has been devoted to mapping the methylome of various human tissues [1–3].
Genome-wide methylation is also widely studied in plants, Arabidopsis thaliana [4–9], Oryza sativa 
(rice) [5,8,10], and several model species ranging from fungi [8,11–13], Drosophila melanogaster  
(fruit fly) [14,15], Apis mellifera (honey bee) [16], Danio rerio (zebrafish) [5,17,18] and Mus musculus 
(mouse) [5,19,20]. Methylome analysis is also beginning to be applied to livestock species such as 
sheep [21]. Moreover, there is a growing interest in understanding the molecular bases of epigenetic 
inheritance in non-model organisms [22], including organisms of ecological and economic importance 
(i.e., root-knot nematodes [23]). 

The gold standard technique for quantifying methylomes is whole-genome bisulfite sequencing 
(WGBS) [1,6,24]. Bisulfite treatment converts cytosines to uracil while 5-methylcytosines (5mC) are 
preserved [25,26]. Thus, in subsequent sequencing of bisulfite-treated DNA the 5mC are read as cytosines, 
and unmethylated cytosines as thymines at a single base resolution. Although WGBS gives nucleotide-base 
resolution across the entire genome, in humans, only about 20% of the CpGs are reported as being dynamic 
(varying by more than 30%) among various human tissues [27]. WGBS is currently too expensive to 
generate large-scale data on multiple cell types or large sample sets. It is even more challenging in systems 
biology research that involves longitudinal sampling of multiple tissue and cell types in large cohorts, 
particularly in the case of biomarker discovery. 

While methylation can occur in a variety of sequence contexts in plants and other organisms, vertebrate 
genomes are methylated predominantly at the dinucleotide CpG [28]. Empirically, it has been shown 
that 65% of 100 bp WGBS reads of mammalian DNA contain no CpG sites [27]. Consequently, much of 
the sequencing bandwidth of WGBS is wasted. Further, methylomes with low levels of 5mC, such as those 
from insect taxa [29] demonstrate an even more pronounced waste of sequencing bandwidth. For example, 
less than 1% of the CpGs are methylated in the honeybee genome [16]. There is a growing interest in profiling 
only a representative subset of cytosines across the genome to limit cost, and increase cohort size, regardless 
of the choice of organism. 

A wide number of microarray and sequence-based DNA methylation detection and analysis methods have 
been developed that target portions of the genome and reduce genomic complexity [30–39]. Each method 
targets a different subset of the methylome, revealing methylation profiles across a different distribution of 
genomic features (i.e., CpG rich and/or poor regions) [40]. There are three main approaches that exploit 
next-generation sequencing to derive methylome data: bisulfite conversion, affinity enrichment and 
enzymatic restriction using methylation sensitive endonucleases. 

The traditional Combined Bisulfite Restriction Analysis (COBRA) method quantifies DNA methylation 
in a specific gene region by PCR amplification from bisulfite-treated DNA. This is followed by digestion 
of the PCR amplicon with a restriction enzyme such as TaqI (5'-T/CGA-3') that contains a CpG site in 
its recognition sequence. The methylation status of a particular CpG site within an enzyme recognition 
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site can then be determined. The proportions of cut vs. uncut DNA can be used to determine the level of 
methylation [41]. 

Here, we have optimized the original COBRA method for high-throughput genome sequencing platforms 
and refer to the method as COBRA-seq. COBRA-seq enriches methylated DNA fractions by digesting the 
genomic DNA with restriction enzymes recognizing potential methylation sites after bisulfite conversion. 
The genomic complexity is further reduced by removing DNA fragments without the enzyme recognition 
site using streptavidin coated magnetic beads. Therefore, COBRA-seq provides single base pair resolution 
data within multiple regions of interest containing methylated sites. COBRA-seq is compatible with 
various restriction enzymes allowing the user to explore 5mC in any sequence context (CpA, CpT, CpC 
as well as CpG). 

We describe two versions of COBRA-seq: First, Genome-Wide COBRA (GW-COBRA) that uses PCR 
to exponentially amplify the sequencing library fragments after linker ligation. Second, Linear Amplification 
COBRA (LA-COBRA) that relies on T7 RNA polymerase-mediated transcription yielding many RNA 
transcripts of the library fragments generated in a linear manner which are subsequently converted to cDNA. 
The COBRA-seq library protocol is largely adapted to provide robust coverage of the human genome, 
however, all of the steps are applicable to both model and non-model organisms. 

We prepared GW-COBRA and LA-COBRA sequencing libraries from the colon carcinoma (HCT116) 
cell line and analyzed the methylome with 100 bp single-end sequencing using Illumina HiSeq2000 
chemistry. We also compared, in silico, the quantitative, qualitative and genome coverage specifications 
of COBRA-seq with other common DNA methylome technologies. 

2. Materials and Methods 

2.1. Cell Culture and Genomic DNA Isolation 

HCT116 colon cancer cells were cultured in McCoy’s 5A media (Life Technologies, cat#16600-082, 
Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (Life Technologies, cat#10099-141). 
Genomic DNA was isolated using a Gentra Puregene Cell Kit (Qiagen, cat#158745, Redwood City, CA, 
USA) as per manufacturer’s instructions. Purified genomic DNA was quantified with a Nanodrop  
ND-1000 (Thermo Scientific, Carlsbad, CA, USA). 

2.2. Annealing Oligonucleotides to Construct COBRA-Seq Adapters 

A final concentration of 50 μM annealed adapter stocks were prepared using the corresponding 
oligonucleotide pairs described below in 1× Quick Ligation™ Reaction Buffer (NEB, supplied in 
cat#M2200S, Ipswich, MA, USA). The reactions were heated to 95 °C for 5 min then cooled down 
gradually as follows: 72 °C for 5 min, 60 °C for 5 min, 50 °C for 3 min, 40 °C for 3 min, 30 °C for 3 min, 
20 °C for 3 min, 10 °C for 3 min and 4 °C for forever. The annealed adapter stocks were stored in �20 °C. 

GW-COBRA and LA-COBRA Adapter 2 (A2). A2, has a T-3' overhang, composed of A2-LowerStrand 
and A2-UpperStrand oligonucleotide pair provided in Table 1, were modified from the original TruSeq 
Illumina Y-shaped Adapter 2 oligonucleotides. All the cytosines were changed to 5mCs in the lower 
strand (A2-LowerStrand), hence the sequence were maintained post-bisulfite treatment. On the upper strand 
most cytosines in the flanking end were changed to 5mCs. Thus after bisulfite treatment, sequences in 
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the stem of the adapters are no longer complementary. After bisulfite treatment the sequence on the 
fragment ending with A2-LowerStrand oligonucleotide sequence is appropriate for next-generation 
sequencing flow cell amplification. 

Table 1. Details of oligos used in constructing GW-COBRA and LA-COBRA methylome 
libraries. The less common sequence abbreviations are: 5 (5mC), b (5' two biotin groups) and 
p (5' phosphorylation). 

Primer Name Primer Sequence (5'–3')* 
Purification 
Method 

A2-UpperStrand TGT 5A5 5G5 TGG T5A T5C GCT GCT CTT CCG ATC T PAGE and HPLC 
A2-LowerStrand pGAT 5GG AAG AG5 T5G TAT G55 GT5 TT5 TG5 TTG PAGE and HPLC 
GW-A1-
UpperStrand 

CTA CAC TCT TTC CCT ACA CGA CGC TCT TCC GAT CT PAGE and HPLC 

GW-A1-
LowerStrand 

CGA GAT CGG AAG AGC GTC GTG TAG GGA AAG AGT 
GTA G  

PAGE and HPLC 

LA-A1+P5-
UpperStrand 

AAT GAT ACG GCG ACC ACC GAG ATC TAC ACT CTT 
TCC CTA CAC GAC GCT CTT CCG ATC T 

PAGE and HPLC 

LA-A1+P5-
LowerStrand 

CGA GAT CGG AAG AGC GTC GTG TAG GGA AAG AGT 
GTA G AT CTC GGT GGT CGC CGT ATC ATT 

PAGE and HPLC 

GW-A2-FwdP CAA GCA GAA GAC GGC ATA CGA GCT CTT CCG ATC T  PAGE  
COBRA-A2-
RevP 

bTGT CAC CGC TGG TCA TCT GTT GTT T HPLC 

LA-A2+T7-
FwdP 

GAA TTT AAT ACG ACT CAC TAT AGG GAC AAG CAG 
AAG ACG GCA TAC GAG C 

PAGE 

FlowCell-FwdP 
AAT GAT ACG GCG ACC ACC GAG ATC TAC ACT CTT 
TCC CTA CAC GAC GCT CTT CCG ATC T 

HPLC 

FlowCell-RevP CAA GCA GAA GAC GGC ATA CGA GCT CTT CCG ATC T HPLC 
LADS P5 AAT GAT ACG GCG ACC ACC GA HPLC 
LADS P7 CAA GCA GAA GAC GGC ATA CGA HPLC 

GW-COBRA Adapter 1 (GW-A1). GW-A1, has a 5'-CG overhang, composed of GW-A1-UpperStrand 
and GW-A1-LowerStrand oligos in Table 1. 

LA-COBRA Adapter-1 (LA-A1). LA-A1, composed of LA-A1+P5-UpperStrand and LA-A1+P5-
LowerStrand oligos in Table 1, also has a 5'-CG overhang and contains an addition of the P5 primer 
region that allowed reverse transcription and cDNA synthesis. Both GW-A1 and LA-A1 contained the 
appropriate end for flow cell amplification when paired with A2. 

2.3. Library Construction and Bisulfite Treatment 

Fragment Preparation. The genomic DNA was resuspended in 300 μL low TE (10 mM Tris, 0.1 mM 
EDTA, pH 7.5) to a final concentration of 16.66 ng/μL and fragmented using a Bioruptor UCD-200 
sonicator (Diagenode) at a power setting of “high” for sets of 30 cycles of 15 s on/off with 15 min intervals 
on ice in between each set. The fragmented DNA, 100–500 bp, was concentrated using ethanol precipitation. 
Each replicate containing 2 μg DNA was end repaired using the End-It™ DNA End-Repair Kit (Epicentre 

118



Genes 2015, 6 1144 

Biotechnologies, cat#ER0720, Madison, WI, USA), repurified with the standard phenol:chloroform: 
isoamyl alcohol extraction, A-tailed using Klenow Exo- (NEB, cat#E6053S) as per manufacturer’s 
protocol then the reaction was inactivated at 75 °C for 20 min. 

Ligation of A2. Ligation was performed using a Quick Ligation™ kit (NEB, cat#M2200S) in the 
presence of a 10-fold excess of A2 (310 pmol for 2 μg of genomic library with average fragment size of 
200 bp) as per the manufacturer’s instructions. The DNA was cleaned up with a QiaQUICK PCR purification 
kit (Qiagen, cat#28104), eluted in 84 �L of elution buffer (EB). 

Bisulfite Conversion. The bisulfite treatment of ligated genomic DNA was carried out with the EZ 
DNA Methylation Kit (Zymo Research, cat# D5001, Irvine, CA, USA) following the manufacturer’s 
protocol with minor modifications. The bisulfite conversion reaction was incubated at 99 °C 5 min, 
60 °C 25 min, 99 °C 5 min, 60 °C 85 min, 99 °C 5 min, 60 °C 175 min and 22 °C 5 min. Yeast tRNA 
were added to low levels of genomic DNA (<0.5 μg) to minimize sample loss. 

Limited PCR Amplification. Single-stranded bisulfite DNAs were used as PCR templates at a final 
concentration of 1 ng/μL in 25 μL using GoTaq colorless master mix (Promega, cat#M7133, Madison, WI, 
USA) [25]. The reverse primer contained 5' double biotin (COBRA-A2-RevP in Table 1). In addition to 
GW-COBRA forward primer shown as GW-A2-FwdP in Table 1, LA-COBRA forward primer 
(LA-A2+T7-FwdP in Table 1) had an overhang of T7 promoter region that allowed linear amplification 
of the library fragments via in vitro transcription in the later steps. The temperature cycles for the PCR 
were: 98 °C 3 min; 98 °C for 15 s, 56 °C for 30 s and 72 °C for 1 min, for 6 cycles; a final extension of 
72 °C for 2 min. A Wizard SV PCR Clean Up System (Promega, cat#A9281) was used to remove the 
enzymes and excess primers as per the manufacturer’s instructions. 

Restriction Digestion and Enrichment of Methylated DNA Fragments. PCR amplified and 
purified 2 μg library material was then digested overnight with 100 U of TaqI (NEB, cat#R0149S) in 
NEB buffer 4 in a final volume of 100 μL at 65 °C. After TaqI digest, there are three main fragment 
types in the libraries; uncut biotinylated fragments (no internal TaqI site containing 5' double biotin), the cut 
fragments containing 5' double biotin and the other part of the cut fragments which are non-biotinylated. 
Dynabeads® M-280 Streptavidin beads (Life Technologies, cat#11205D) were used to capture the 
biotinylated fragments as per manufacturer’s instructions, hence enriching the non-biotinylated 
fragments in the eluate [42]. The eluate was ran through QIAquick PCR purification column (Qiagen, 
cat#28104) and resuspended in water for the following ligation step. The biotinylated fragments were 
released from the beads with an incubation step for 15 min in 30 mM d-biotin (Sigma, cat#47868, Saint 
Louis, MO, USA) then heating to 80 °C for 15 min. A similar approach was used to release biotinylated 
proteins previously [43]. We compared the non-biotinylated fragment and biotinylated fragments on an 
agarose gel for QC. 

Ligation of GW-A1 or LA-A1 (5'-CG Overhang). The eluate containing 1 μg non-biotinylated, cut 
fragments were ligated to A1. The ligation was performed using a Quick Ligation™ (NEB, supplied in 
cat#M2200S) in the presence of 2-fold excess of GW-A1 or LA-A1 (16 pmol for 1 μg of genomic 
library with average fragment size of 200 bp), as per the manufacturer’s instructions. The excess A1 and 
fragments less than 100 bp were removed with Agencourt AMPure XP Bead system (Beckman Coulter, 
cat# A63880, Brea, CA, USA) using the TruSeq DNA sample preparation guide with minor modifications:  
a ratio of 125 μL of well mixed beads with 135 μL of sample. 
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GW-COBRA Library PCR Amplification. Library fragments containing A1 and A2 were PCR 
amplified, with FlowCell-FwdP and FlowCell-RevP primers (Table 1), in a final concentration of 
1 ng/μL in 25 μL using GoTaq colorless master mix (Promega, cat#M7133). The temperature cycles 
for the PCR were: 98 °C 3 min; 98 °C for 15 s, 65 °C for 30 s and 72 °C for 1 min, for 7 cycles; a final 
extension of 72 °C for 2 min. 

LA-COBRA Library Linear Amplification. Ligated library fragments were in vitro transcribed to 
RNA using T7 RNA Polymerase Kit (NEB, cat#E2040S) at 37 °C for 16 h, then cleaned up with 
RNeasy MinElute Clean up kit (Qiagen, cat# 74204) and quantified using Quant-iT RNA assay (Life 
Technologies, cat#Q-33140) respectively as per manufacturers’ protocol. The cDNA library was 
constructed using 600 ng RNA using the SuperscriptIII first-strand synthesis kit (Life Technologies, 
cat#18080-051) and the LADS P5 primer. Following treatment with RNase H, cDNA was made double 
stranded using the Klenow fragment of DNA Polymerase 1 and the P7 primer as described in [44]. 

Library Clean-up. Agencourt AMPure XP Beads (Beckman Coulter, cat# A63880) at a ratio of 125 μL 
of well mixed beads with 135 μL of sample were used to remove short fragments from both GW-COBRA 
and LA-COBRA libraries. Finally, the size distribution was visualized using Agilent DNA 1000 Assay 
in 2100 Bioanalyzer (Agilent Technologies, Los Angeles, CA, USA) using the manufacturer’s protocol. 
Throughout the COBRA-seq library construction, appropriate products were ran on either 3% low range 
ultra-melting agarose gel (Bio-rad, cat# 161-3107, CA, USA) or a 4%–20% Criterion precast 
polyacrylamide TBE gel (Bio-rad, cat#345-0059) and stained with SYBR gold (Life Technologies, 
cat#S-11494). 

Library Sequencing. GW- and LA-COBRA libraries of HCT116 DNA were sequenced with the 100 bp 
single-end Illumina HiSeq 2000 technology in a single lane each at the Australian Genome Research 
Facility. The COBRA library sequencing results are deposited in the CSIRO Data Access Portal which 
are accessible with the manuscript title search [45]. 

2.4. Bioinformatics and Statistics 

Alignment. FASTQ reads were inspected for adaptor contamination and a set identified. This set, with 
the specification of at least an 8 base overlap, were subsequently removed using the fuzzy 
matching functionality of cutadapt [46]. Reads were also quality trimmed and length filtered by cutadapt 
using a quality setting of “-q 8” and minimal read length of 40 bases. The cutadapt processed reads were 
aligned with bwa-meth [47], a bisulfite-treated DNA tuned wrapper for the BWA-MEM aligner [48]. 

Clean up and Count Statistics. The alignments were further processed using a Python script. This 
script examined each alignment and excluded any alignment (by setting the alignment as unmapped; bit 
flag 4) if the alignment was identified as being a secondary alignment, did not have the expected three 
remaining bases of the TaqI restriction site, or did not align to an in silico identified TaqI site. 
Recognising the error-prone nature of sequencing, the three base TaqI site match was relaxed to 
a Levenshtein distance of 1. This fuzzy matching allowed a one base mismatch between the first 
three bases of a forward strand read and a “CGA” trimer, or the last three bases of a reverse strand read 
and the “TCG” trimer sequence. Forward alignments that started, or reverse alignemnts that ended on 
the exact genome coordinate of an in silico determined TaqI cut site were kept and tallied by TaqI site. 
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A record of the counts per TaqI site were exported as a bedGraph file. The file was used for visualisation 
in the IGV genome browser and was also imported into R for further analysis. The read cleaning 
procedure is provided in Figure S1. 

In silico Analyses. Mapping of CpG sites, in silico bisulfite DNA treatment and in silico restriction 
enzyme digests on both strands of bisulfite-converted DNA were written in R using the functionality of 
the Bioconductor Biostrings and GenomicRanges libraries and the BSgenome.Hsapiens.UCSC.hg19 
genome build library. Annotations were from the TxDb.Hsapiens.UCSC.hg19.knownGene library or 
downloaded from the UCSC web server via rtracklayer. Selection was further restricted to fragments 
greater than 70 bp as small fragments will be selected against through the library preparation process. 

CpG island locations used were those in the “CpG Islands” UCSC table. CpG Shores were defined 
as the area flanking 2 kb of an island. There were 2,089,538 and 2,089,538 CpGs located in CpG  
Islands and shores respectively. The remaining CpGs were classified as CpG Ocean (24,105,864 CpGs). 
CpGs within 4 kb distance to transcription start sites were determined to be located in promoters 
(3,619,885 CpGs). The gene body CpGs was defined as those in the area between gene start and end 
coordinates (12,121,165 CpGs). Intergenic CpGs are those CpGs not within the genebody or TSS 
category (12,476,398 CpGs). Enhancer sites (205,740 CpGs) were defined as those within the start and 
end coordinates of FANTOM5 permissive enhancers [49]. 

Comparison to Other Data. The HCT-116 450K array was processed and beta values called  
using the R minfi library. All bioinformatics analysis scripts are deposited to the repository, along with 
a tutorial outlining their use [50]. 

3. Results and Discussion 

3.1. COBRA-Seq Library Construction 

The procedure for preparation of COBRA-seq libraries is outlined in Figure 1, described in detail in 
the Materials and Methods and Supplementary Materials and Methods. The oligonucleotides used  
are shown in Table 1 and Figure S2. We applied the method to prepare COBRA-seq libraries from HCT116 
cell line DNA (Figure 2). Briefly, genomic DNA was fragmented and end-repaired as for normal genomic 
library construction. Sonicated HCT116 genomic DNA ranged between 150–500 bp (Figure 2A). After 
bisulfite treatment of the ligated DNA, the libraries were subjected to a minimal number of PCR cycles 
in order to replace uracils in the original DNA with thymines (some restriction enzymes do not cut  
uracil-containing DNA efficiently). The A2 reverse primer, used in the PCR step, contains two biotin 
groups sequentially placed on the 5' end. While the ligation of Adapter-2 did not generate a visual shift in 
the sonicated library size, ligation was verified by amplification with the GW-A2 Fwd and COBRA-A2-RevP 
or LA-A2+T7 Fwd and COBRA-A2-RevP primers pairs (Figure 2B). 
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Figure 1. Flowchart of key steps in constructing COBRA-seq libraries with minor steps omitted 
for clarity. The common steps in both methods are shown on light yellow background. The 
GW-COBRA and LA-COBRA specific steps are on light blue and pink backgrounds respectively. 
The less common sequence abbreviations are: mC (5mC), b (two biotin groups sequentially 
placed on the 5'-end) and p (5' phosphorylation). 
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Figure 2. GW-COBRA and LA-COBRA library construction results. (A) Sonicated 
genomic DNA isolated from HCT116 cell line (lane 1), 50 ng of Adapter-2 ligated library material 
(lane 2). Column purified Adapter-2 ligated library material (lane 3); (B) PCR amplification 
test of bisulfite treated library materials. Lane 1, 2, 3 and 4 are produced by 6, 7, 8 and 9 cycles 
of PCR using GW-A2-FwdP and COBRA-A2-RevP primers from Table 1 with GW-COBRA 
library material as the template respectively. Lane 5, 6, 7 and 8 are produced by 6, 7, 8 and 
9 cycles of PCR using LA-A2+T7-FwdP and COBRA-A2-RevP primers from Table 1 with 
LA-COBRA library material as the template, respectively; (C) Final library products: 
GW-COBRA and LA-COBRA methylome libraries of HCT116 DNA amplified using flowcell 
or LADS primer pairs respectively (Lane 2 and 4). Lane 1 and 3 are negative controls for 
GW-COBRA and LA-COBRA libraries, respectively; (D) Bioanalyzer results of GW-COBRA 
and LA-COBRA methylome sequencing libraries, respectively, prepared from HCT116 cell 
line DNA. The final library fragments ranged between 150–500 bp with an average size of 
257 and 360 bp for GW-COBRA and LA-COBRA, respectively. 

For the pilot study, we chose TaqI (5'-T/CGA-3') for complexity reduction as it has historically 
widespread usage in the traditional COBRA method. TaqI and a number of other enzymes contain CG 
within their recognition sequences and are therefore suitable for use with mammalian DNA that is principally 
methylated at CpG sites. COBRA-seq with TaqI covers nearly 16% of the CpG sites in the human genome. 
After digestion of the dual biotin-labelled material with TaqI, cut fragments will have one of the pair tagged 
with a dual biotin while the other cleaved fragment will not; all uncut molecules will contain a dual biotin 
tag at one end. Streptavidin-coated magnetic beads are then used to remove biotin-labelled material, the uncut 
molecules as well as one end of the cut fragments. The remaining fragments, containing a –CG overhang, 
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are ligated with Illumina Adapter 1 (GW-A1 and LA-A1) linkers, modified with a –CG extension. Therefore, 
COBRA-seq libraries contain only methylated CpG sites and give relative methylation level based  
on read counts. 

For GW-COBRA, the ligated products are amplified by PCR and quantified prior to sequencing.  
In LA-COBRA, the Adapter 2 (A2) is modified to include a phage T7 RNA polymerase promoter site (right 
hand side of Figure 1). After ligation of LA-A1, T7 RNA polymerase is used to make RNA copies of the 
ligation products. Reverse transcriptase is used in combination with the P5 primer to copy these into cDNA. 
After RNaseH digestion, copies are made double-stranded using the P7 primer and the Klenow fragment 
of DNA polymerase 1. LA-COBRA produces full length fragments at high abundance via in vitro transcription 
and importantly removes PCR bias, which is a common side effect of amplifying bisulfite-treated DNA [51]. 
The final GW-COBRA and LA-COBRA library products are checked using Illumina Flowcell primer 
pairs or Linear Amplification for Deep Sequencing (LADS) primer pairs published in [44] (Figure 2C). 

The final library fragments is ranged between 150–500 bp with an average size of 257 and 360 bp in 
GW-COBRA and LA-COBRA, respectively (Figure 2D). The amount of library material is recovered 
for each protocol averaged 450 ng for LA-COBRA and 50 ng for the PCR based GW-COBRA. 

During COBRA-seq method development, we also examined the effect of limited amounts of starting 
material. Both GW-COBRA and LA-COBRA libraries were prepared with as little as 0.1 μg of genomic 
DNA of HCT116 cells which did not restrict the success of the library preparation protocol. The size 
distribution of the COBRA-seq library fragments was the same when the starting material was either  
0.1 or 1.0 μg (Figure S3). 

3.2. Number of GW-COBRA and LA-COBRA Reads and Mapping to Genome 

Libraries were sequenced in a single lane each, on a 100 bp single-end in Illumina HiSeq2000 run, 
generating 115,097,029 and 142,245,797 million reads for GW-COBRA and LA-COBRA, respectively, 
with 83.1% and 84.1% of the reads mapped uniquely (Table S1). The bisulfite conversion rate was near 
complete (99.4%, FastQC) (Table S1). Consistent with T7 RNA polymerase having a higher nucleotide 
misincorporation rate than Taq polymerase [52], we observed LA-COBRA reads contained more sequence 
errors but this did not interfere with the mapping; 92.34% of the LA-COBRA library reads were mappable 
compared with 92.53% for GW-COBRA (Table S1). The FASTQC summary results are provided in 
Figure S4. Median read coverage for TaqI sites with at least one read were 8 and 9 for GW-COBRA and 
LA-COBRA, respectively. Density plots of the CpG site coverage in the HCT-116 GW-COBRA and 
LA-COBRA libraries and public RRBS and WGBS libraries are provided in Figure S5. 

The empirical results demonstrate that representation of different DNA fragments was highly similar 
for LA-COBRA and GW-COBRA (Figures 3A and S4). Frequencies of read counts at specific sites were 
highly concordant between the two methods (Figure 3A, R2 = 0.905). Because of this high concordance, 
we joined the datasets for comparisons with other methods (below). 
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Figure 3. Empirical comparison of HCT116 COBRA-seq methylome with RRBS and 450K 
array data. (A) Comparison of the GW-COBRA and LA-COBRA log transformed read counts 
aligning to the same genome position (5,756,193 TaqI sites, R2 = 0.905); (B) Venn diagram 
comparing coverage of CpG sites by the 3 methods; (C) Combined methylome sequencing 
data of GW-COBRA and LA-COBRA (Joint-COBRA; median coverage of 17 reads per strand) 
compared with HCT116 cell line WGBS data (902,990 shared CpG sites, R2 = 0.384); (D) with 
HCT116 cell line 450K array data (31,988 shared CpG sites, R2 = 0.439) and (E) with HCT116 
cell line RRBS data (95,766 shared CpG sites; median coverage of 82.14 reads per strand, 
R2 = 0.443); (F) Population mean (�) coverage of 24.6 in M fraction only using simulated data; 
(G) Comparison of methylation scores of WGBS with 450K (463,300 shared CpG sites);  
(H) WGBS wish RRBS (978,735 shared CpG sites); (I) RRBS with 450K (46,374 shared  
CpG sites).  
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3.3. Comparison of HCT116 COBRA-Seq with RRBS and 450K Array Data 

We compared our HCT116 COBRA-seq methylome data with WGBS data on HCT-116 cells and 
data obtained from two widely used methods that also sample a proportion of the genome: Illumina Infinium 
HumanMethylation450 BeadChip arrays (450K arrays) [30] and Reduced Representation Bisulfite 
Sequencing (RRBS) [53]. Each method targets a different subset of the methylome, with some overlapping 
CpG sites (Figure 3B). On microarrays, a very large number of molecules bind to each array feature, giving 
an analogue estimation of the population mean. In particular, the 450K array is known for robustness 
and has been a popular choice due to its affordable price and high precision. The 450K beta (proportion 
of methylation) values can be considered as an accurate quantification across ~480,000 (1.7%) CpG sites. 
HCT116 450K methylation data is made available in our repository [50]. 

RRBS is an efficient high throughput methylome method that samples a population of restriction 
fragments isolated following digestion with the methylation-insensitive enzyme, MspI. This DNA 
population, encompassing 16.7% of CpG sites, is then bisulfite-treated and sequenced, and so provides 
reads of both methylated and unmethylated sequences. We used HCT116 cell line WGBS and RRBS 
methylation data (GSM1465024 and GSM919980) arising from published studies [54,55]. 

We also considered simulated data to provide an overview of the expected data distribution and 
concordance at different levels of sequence coverage with two types of methylome methods: one that samples 
both methylated (M) and unmethylated (U) fractions of the genome such as RRBS (M + U method in 
Figure S6, left panel) and methods that enrich for methylated (M) fractions like COBRA-seq (M only method 
in Figure S6, right panel). 

We used empirical COBRA-seq over-dispersion estimates and 450K CpG site beta distribution data 
to inform the simulation. Across different depths of hypothetical sequencing coverage, 200,000 sample 
read counts were modelled, conditional upon the distribution of beta values from an HCT-116 450K 
array (Figure S6). For M + U methods, as read coverage increases, the ratio of methylated to unmethylated 
read counts will become more accurate and estimated beta will converge to the true beta. As beta is a ratio, 
at low coverage, under- or over-sampling of the M or U fraction will result in high imprecision in beta value 
estimation near the top (1.0) and bottom (0.0) of the beta value range. For the M only method, the read 
count will increase conditionally on both coverage and methylation rate, except where the CpG site is 
completely unmethylated; in this instance, increased coverage will not yield increased read counts. So, 
instead of the beta-binomial distribution of M + U methods, a zero-inflated count-based distribution will 
be observed, which is analogous to RNA-seq count data. CpG site state is not independent of other sites, 
so the distribution is not Poisson, but a family of Poisson distributions (negative binomial). Details of 
the modeling process and data are discussed in more detail in Supplementary Methods and Materials 
and Figure S6. In summary, we find that M + U methods have poor estimates at betas near 0 or 1 with low 
read coverage, but estimated beta rapidly forms a good correlation with true beta with increased read 
coverage. For M only methods, read coverage and methylation rate are confounded so estimates of partial 
or complete methylation are difficult. Instead, M only methods are best suited to situations where there 
are biological replicates. This allows modelling the within-group variance and the effects of library size, 
allowing coverage and methylation rate to be decoupled. The simulation suggests M only methods, like 
COBRA-seq, may have advantages over M + U methods in detecting lack of methylation between 
replicated experimental groups at low read coverage. 
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When considering read coverage requirements, our simulations suggest a 10 to 15-fold coverage with 
M + U methods is sufficient for reasonable beta estimates. An empirical comparison mapping 200,000 
HCT-116 450K array beta values to WGBS beta values gives much the same estimate (Supplementary 
Figure S7). For M-only methods, we suggest a 10 to 15-fold coverage is sufficient and for extra sensitivity 
the addition of extra samples should be considered over additional read coverage. 

We also wished to make an empirical comparison between COBRA-seq and other methods. For this, 
we plotted data for CpG sites shared between Joint-COBRA and WGBS data (902,990 shared CpG sites 
with at least 10-fold WGBS coverage), 450K array data (31,988 shared CpG sites) and RRBS data (95,766 
shared CpG sites) (Figure 3C–E). The empirical data was a good fit with our simulated expectation 
(Figure 3D compared with 3F). Higher COBRA-seq read counts were associated with higher methylation 
rate (as determined by the comparison method). In particular, it should be noted that sites determined to 
be unmethylated by WGBS, RRBS or 450K array did not yield COBRA-seq reads, demonstrating the 
underlying principle of our method is sound. 

For a closer inspection across individual genome locations, we visualized the HCT116 cell line 
methylation profiles determined by GW-COBRA, LA-COBRA, WGBS, RRBS and 450K methods 
using the integrated genome viewer (IGV). Profiles of methylation across two genes, BCAT1 and EHD3, 
which have been previously identified as biomarkers for colorectal cancer [42,56], are shown in Figure 4A,B. 
These regions are zoomed in to display a number of bases only in Figure S8. Additionally, more examples 
of the comparative methylation profiles across panel of genes (SEPT9, MGMT, SLC6A15 and FGF5), 
highly methylated in colorectal cancer [57], are provided in Figure S9. 

The methylation profiles generated by GW-COBRA and LA-COBRA have high concordance 
(Figure 4A,B; ii. and iii.), and also correlated highly with WGBS, RRBS and 450K array data 
(Figure 4A,B; i.) exemplified at the CpG rich promoter region of the BCAT1 gene (Figure 4A). COBRA-seq 
provides a more even genomic distribution, compared to the bias towards CpG rich transcription start 
sites observed in 450K arrays and the RRBS method (Figures 4 and S8; iv). The difference in locality of 
cutting between TaqI (COBRA-seq) and MspI (RRBS) can be explained by the GC-richness of the 
restriction site. 

3.4. COBRA-Seq Features 

As COBRA-seq fragments should start with the 3' end of the enzyme recognition site and should align 
to restriction sites in the genome, these factors can be used to clean up the quality of the sequencing data 
and alignments. The read cleaning procedure is visualized in IGV and reported in Figure S1 with 
a brief description of the procedure in the Materials and Methods. The cleaning procedure was conservative, 
keeping only reads that aligned to in silico predicted TaqI sites and requiring the reads started with TaqI 
site nucleotides, with a one base mismatch tolerance. We saw evidence that around half of the discarded 
reads were of high quality and had a TaqI site start (Table S2), but they aligned to TaqI sites not predicted 
in the reference genome. We also only considered methylation of the CpG site at the start of the read 
although it is possible to consider methylation at CpG sites within the read. 
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Figure 4. IGV screenshots on the selected colon cancer associated genes: (A) BCAT1 and  
(B) EHD3. i. Methylation levels determined by WGBS, 450K arrays, RRBS GW-COBRA and 
LA-COBRA respectively; ii. Genome coverage and stacking of cleaned GW-COBRA reads; 
iii. Genome coverage and stacking of cleaned LA-COBRA reads; iv. Genomic locations of 
accessible COBRA TaqI sites, 450K array probes and accessible RRBS sites. 

As COBRA-seq reads arise from bisulfite-treated DNA, it is possible to examine methylation  
at cytosines sites within a COBRA-seq read, however this has caveats. By design, reads depend of methylation 
of a cytosine within the enzyme recognition sequence. Therefore any observations at cytosines sites 
within reads are conditional upon methylation within the enzyme recognition sequence. While this 
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confounds conventional methylation estimation, it is useful for examination of detailed methylation profiles, 
heterogeneity and of local co-methylation, which is a well-documented property of DNA methylation. 
Also, understanding the methylation status of cytosines within reads may be used qualitatively as evidence 
for determining the best sites for biomarker assay (primer) design. 

One of the features of COBRA-seq is that a variety of enzymes can be used to assess 5mC in different 
contexts. Table S2 provides a selection of restriction enzymes that are suitable for employing COBRA-seq 
in different sampling depths and contexts. This table includes examples of 4 and 6-base cutter enzymes 
that cleave to leave a CG 5' overhang and are particularly useful for studies of CpG methylation (AclI, BstBI, 
ClaI, HpyCH4IV and TaqI). Enzymes containing CNG within their recognition sequence such as HpyCH4III 
and Hpy188I are potentially useful for studies of plant CpNpG methylation. 

Some enzymes contain a cytosine at the end of their recognition site and hence can be used to 
monitor methylation independent of the nature of the neighboring nucleotide. For instance, Sau3AI, with 
the 5'-/GATC-3' recognition site, is a 4-base cutter. However, in the context of COBRA-seq, Sau3AI 
acts like a 5-base cutter as the recognition site can only be preserved if the 3' cytosine is methylated. In 
vertebrate DNA, this would typically be in a CpG context, whereas in plants, insects or any other genome, 
it can identify adjacent methylation in any context (CpN methylation). Similarly, CviQI and EcoRI, with 
the 5'-G/TAC-3' and 5'-G/AATTC-3' recognition sites respectively, are good choices for CpN 
methylation profiling in organisms such as insects. There are also enzymes that contains multiple CpG 
sites at their recognition sites such as HinP1I (5'-G/CGC-3') and Hpy99I (5'-CGACG/-3'). Their 
recognition sites can only be preserved if both of the CpGs are methylated therefore the number of sites 
observed in the actual sequencing results can be lower than the in silico digest estimations. These enzymes 
would be a good selection for discovery of highly methylated regions, or for co-methylation studies. 

The number of potentially addressable methylation sites within a genome is dependent on the cutting 
frequency of the enzyme(s) used. Estimates of addressable CpG sites with COBRA-seq ranges from 
1.4% to 16% of the sites in the human genome are provided in Table S3 and explained further in Materials 
and Methods. Among COBRA-seq compatible enzymes; HpyCH4IV reaches the highest proportion of CpGs 
(Tables S2 and S3). It is important to note that linkers for ligation to the restriction enzyme-cut ends must 
be modified as necessary to provide complementarity to the fragment overhangs. Fortunately a number 
of useful enzymes provide a CG-5' overhang (Table S2). COBRA-seq libraries can be multiplexed to 
increase the percentage of accessible sites, or alternatively tuned to reduce sequencing costs with the use 
of 6-base cutters instead of 4-base cutters to interrogate fewer sites. A typical 6-base cutter will have 
around 1/8 of the sites of a 4-base cutter. It is possible to prepare libraries using more than one enzyme, 
but we recommend the users perform separate digestions for each enzyme of choice before pooling and 
ligating to generate libraries as concurrent multi-enzyme digests will result in small fragment sizes which 
may cause loss of potential CpG sites during purification steps targeting removal of excess Adapters. 

Additionally, for organisms without a reference genome, COBRA-seq is complementary for use with 
Restriction-site associated DNA sequencing (RADseq), a restriction enzyme-based method which reduces 
genome complexity across target genomes for SNP discovery [58]. It is possible to use the same restriction 
enzyme sites, RADseq for SNP discovery and COBRA-seq for methylation quantitation, thereby providing 
a convenient platform for allele-specific methylation discovery on non-model organisms. 

The COBRA-seq variation utilizing TaqI (5'-T/CGA-3') examined here has limited genomic bias due 
to the recognition site GC content and this in turn, yields relatively unbiased distribution across genomic 
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annotations in human DNA: 4% and 6% coverage of CpG islands and shores respectively (Figure 5B 
and Table S3). It covers approximately 11.9% of genome-wide CpG sites within promoters and also 
similar coverage for features with fewer CpGs, such as enhancers (12.3%) and DNaseI hypersensitive 
(12.9%) sites (Figure 5 and Table S3). 

In the COBRA-seq protocol described here we have used the standard protocol of ligation of adapters 
to sheared double-stranded DNA. However, it is also possible, and may be advantageous, to adapt library 
preparation methods that used single-stranded bisulfite-treated DNA as a starting point, e.g., Swift 
Accel-NGS-Methyl-Seq or Illumina EpiGnome/Tru-seq Methylation libraries. This could be particularly 
the case for DNA such as isolated from formalin-fixed tissue samples where DNA may be damaged or 
isolated single-stranded. Pre-treatment to repair damaged DNA (Illumina Restoration kit, Illumina, San 
Diego, CA, USA) may also improve the quality of such libraries. 

3.5. Comparison of COBRA-Seq Features with Other Methods of Methylome Sampling 

A range of different technologies for studying DNA methylation on a genome scale have become 
available, each with inherent differences in resolution, coverage and biases [59,60]. COBRA-seq quality 
control, read alignment and data visualization are the broadly the same as any WGBS or RRBS 
protocol [61]. However, methylation scoring is by counts and the determination of differentially 
methylated cytosines bears strong resemblance to the analysis of RNA-seq data. 

In Table 2, we provide comparative summaries of features of COBRA-seq and a number of other 
methylome sampling methods for DNA methylation analysis. 

Specifications such as complexity reduction type and whether they enrich for methylated fractions 
were compared (Table 2). Genome complexity is reduced by affinity capture (MBDCap-Seq and MeDIP-Seq), 
restriction digest (COBRA-seq, RRBS, Methyl-Seq, HELP-Seq, CHARM and DREAM) and hybridization 
capture (Nimblegen SeqCap and Agilent SureSelect). MBDCap-Seq, MeDIP-Seq and COBRA-seq are 
the only methods that enrich for methylated fragments and hence reduce the sequencing cost, (by yielding  
a high ratio of CpG information per read sequenced), with the caveat that absolute methylation level 
estimation is traded for relative methylation level estimation. However, COBRA-seq has an advantage over 
these other enrichment methods, as the digestion-based enrichment step does not show the same 
dependence on methylation and CpG density. Therefore, COBRA-seq capture is more uniform across the 
genome, making it a suitable choice for interrogating regions or genomes of low methylation density. 
Another system for affinity-based capture of methylated DNA that we have described previously is 
SuBLiME [42]. Here capture is done after copying of bisulfite-converted DNA to incorporate biotin-dG 
opposite unconverted meC bases (or biotin-dC in a subsequent copying round). SuBLiME can efficiently 
capture methylated cytosines in different sequence contexts and can be tuned to different levels of genome 
coverage [42]. It should be noted that copy number variation in a sample has a multiplicative effect on input 
DNA. This is observed as a local change in the number of sequenced reads or probe signal intensity on  
a microarray. With methylation enrichment-based methods, methylation estimates are confounded with 
copy number and it is only possible to mathematically deconvolute methylation from copy number across 
large genomic regions. 
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Figure 5. Comparison of CpG coverage of COBRA-seq with WGBS and commonly used 
methylome sampling methods by genomic regions, as pie charts or bar diagram for proportion 
of enhancer sites (WGBS covers a total of 205,740 CpGs in enhancers). (A) WGBS covers 
28,217,448 CpG sites; (B) COBRA-seq with TaqI, HpyCH4IV, BstuI and CviQI covers 15.9%, 
16.9%, 4.3%, and 5.2% of the total CpG sites respectively; C. 450K arrays, RRBS, SuBLiME 
and DREAM cover 1.7%, 16.7%, 75.8%, and 1.8% of the total CpG sites respectively. 
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Table 2. Qualitative comparison of selected methylome methods (*are the preferred genomic input, low input will increase variation due to sampling). 

Methylome Methods 
Complexity 

Reduction Type 

M or M + U 

Fraction 

Methylome 

Sampling 

(Yes/No) 

Favour of 

Enrichment 

Towards 

Comments 

WGBS [1] N/A M + U N/A N/A 
High cost, can detect non-CpG methylation,  

genomic input* (0.05–0.1 μg). 

MBDCap-Seq [34,62],  

MIRA-Seq [38] 
Affinity capture M No CpG-rich 

Dependent on CpG density, effected by salt concentration, covers about 18%  

 of the CpGs [24], 28,500 CpG islands [34], DNA input = 0.2–1 μg. 

MeDIP [63], MeDIP-Seq [36] Affinity capture M No CpG-rich 
Bias towards 5mC-rich regions, Captures single-stranded DNA, prone to technical 

variability, coverage is read-depth dependent, input = 0.15–5 μg. 

SuBLiME [42] 
Methylated  

cytosine capture 
M Yes CpG-rich and poor 

Substitutes biotin-14-dCTP or biotin-14-dGTP at the position of the 5mC in 

bisulfite treated DNA, input = 2 μg. 

COBRA-seq Restriction digest M Yes CpG-rich and poor 
Provides relative methylation levels like MeDIP/MBD-Cap, 1%–17% of the  

CpGs for single digest, can detect non-CpG methylation, input = 0.1–1 μg. 

Nimblegen SeqCap [39] 
Hybridization 

capture 
M + U Yes CpG-rich and poor 

“Off-the-shelf” version for human genome only/similar regions covered as 450K 

array, can be customized [39], can detect non-CpG methylation, input = 0.5–1 μg. 

Agilent SureSelect [64] 
Hybridization 

capture 
M + U Yes CpG-rich and poor Available for human genome only, covers 3.7 million CpG sites, input = 0.5 μg. 

450K array [30,65] Microarray M + U Yes CpG-rich 
Arrays comes in 12 per slide, available only for humans, not readily customized, 

input = 0.5–1 μg. 

RRBS [35,53] Restriction digest M + U Yes CpG-rich/medium Can detect non-CpG methylation, input = 0.1–0.3 μg. 

Methyl-Seq [33], HELP-Seq 

[66] 
Restriction digest M + U Yes CpG-rich 

Assesses 0.25 to 1.3 million CCGG sites in human genome by difference in read 

fractions in HpaII vs. MspI libraries, input = 0.01–0.1 μg. 

CHARM [32,67] Restriction digest M + U Yes CpG-rich and poor 

Array-based and available for human, mice and rat, assesses 3.5 to 7 million CpG 

sites,  

input = 5 μg. 

DREAM [37] Restriction digest M + U Yes CpG-rich 
Assesses methylation at ~0.15 million sites in human genome by sequential 

SmaI/XmaI digestion and library sequencing, input = 5 μg. 
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In samples with a heterogenous cell population, for example, solid tumour tissue with a high degree 
of non-neoplastic cells, COBRA-seq presents the same concerns as other methods. For example, with 
an absolute methylation method, a 70% pure tumour will appear as having a maximum beta of 0.7 (given 
sufficient read coverage), while for COBRA-seq or other enrichment methods, this will translate to 
a reduced rate (lambda). Unmethylated regions will still have no reads, but methylated regions will have 
a reduced rate. 

To sequence formalin-fixed paraffin embedded (FFPE) samples, we recommend that researchers 
optimize the initial sonication step to have fragments between 100–500 bp. FFPE-induced DNA adducts 
are not a concern for enzyme cutting due to the preceding PCR pre-amplification step. This is further 
explained in the step-by-step protocol submitted as Supplementary Methods. 

The relative coverage of different sequence features by COBRA-seq and selected methylome 
sampling methods is shown in Figure 5 and Supplementary Table S3. It can be seen that COBRA-Seq 
using enzymes containing one CpG site provides relative coverage that is very similar to the overall 
distribution of features in the human genome—CpG islands, CpG shores, promoters, gene bodies and 
intergenic regions as well as enhancer regions. Use of enzymes containing two CpG sites such as BstUI 
focuses COBRA-Seq toward more CpG rich regions, islands, shores and promoters. RRBS and DREAM 
are both strongly biased toward coverage of CpG-rich regions and promoters, but notably, RRBS also 
covers a high proportion of enhancers. Recently a large in silico survey was used to characterise the 
properties of the RRBS method with other methylation insensitive enzymes [68]. Also, a dual-enzyme 
RRBS method (dRRBS) using ApeKI (5'-G/CWGC) as well as MspI has been described [69]. The addition 
of ApeKI offers more representative coverage in low-CG regions without overly fragmenting CpG-rich 
DNA. The increased coverage by dRRBS is characterized from an in silico and empirical standpoint. 
Because of their current designs, methods relying on hybridization selection of targets, such as 450K arrays 
and Agilent and Roche/Nimblegen capture systems, are strongly biased toward promoter and CpG-rich 
regions. However, such capture systems offer the opportunity for designs to evolve and to be specifically 
targeted to regions of high interest. 

4. Conclusions

Building upon the previously described COBRA method, the COBRA-seq method described here
makes it possible to measure DNA methylation at a large number of specific sites distributed across the 
genome. Methylome sampling methods broadly utilize two approaches to select the genomic fraction to 
be analysed. Some methods sample independently of methylation status and measure both unmethylated 
and methylated cytosines at each CpG site (e.g., 450K array, SeqCap, RRBS and others mentioned in Table 2). 
Alternatively, other methods specifically enrich the methylated fraction and determine the relative 
number of reads or level of methylation at different sites across the genome (e.g., MeDIP-Seq, MBDCap-Seq, 
COBRA-seq). This latter approach is advantageous to reduce cost with less wasted sequencing space 
and is suited to identification of differences between different samples. Its main drawback is that methylation 
levels determined are relative, rather than absolute, and can be influenced by the relative efficiency of 
capture and amplification of different target regions. Because capture of methylated DNA in COBRA-seq 
is based on restriction digestion and ligation at individual sites, it does not show the same dependence on 
methylation density as MeDIP-Seq and MBDCap-Seq. making it a suitable choice for interrogating regions 
or genomes of low methylation density. 
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In this study, we demonstrated the feasibility of COBRA-seq for generation and analysis of genome-scale 
DNA methylation profiles at nucleotide resolution and compared the relative methylation measures of 
COBRA-seq with other methylome sampling methods. COBRA-seq data shows high concordance with 
WGBS, RRBS and 450K array data, although, these methods vary in the proportions of the genome 
sampled. TaqI-based COBRA-seq does not disproportionally enrich specific genomic features such as 
promoters and CpG islands and compared to 450K probe density and RRBS MspI restriction sites, 
COBRA-seq TaqI sites are uniformly distributed across the genome. Moreover, COBRA-seq is highly 
adaptable as the principle is compatible with various enzymes, which provides choice for the efficient 
mapping of 5mCs in any genomic context, including low methylation genomes such as those of insects. 
The count data produced by COBRA-seq is not well suited for examining methylation within a single 
sample, instead it is best suited for examining the differences between groups of samples and with modelling 
of the variance and distribution, p-values may be generated in much the same manner as RNAseq count data. 

In conclusion, COBRA-seq method has proven to be highly sensitive and samples uniformly across 
the genome giving better coverage for biomarker discovery studies. COBRA-seq is a unique alternative 
method to study methylation in low CpG regions such as in enhancers and CpG poor promoters providing 
unique advantage to the users to finetune the project costs according to budget. 
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1. Supplementary Figures 

 

Figure S1. Cont. 
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Figure S1. IGV screenshots of (A) GW-COBRA cleaning process presented in 11 kb 
window CRNDE gene; (B) GW-COBRA cleaning process presented in 183 bp window near 
CRNDE gene; (C) LA-COBRA cleaning process presented in 11 kb window CRNDE gene; 
(D) LA-COBRA cleaning process presented in 183 bp window CRNDE gene. 
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Figure S2. Cont.
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Figure S2. Extended COBRA-seq scheme for constructing both GW-COBRA and LA-COBRA sequencing libraries. 
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Figure S3. COBRA-seq library construction with minimal starting genomic DNA material. 
3% low melting agarose gel and stained with SYBR gold. Adapter-2 ligated and bisulfite-treated 
genomic DNA amplified as described in limited PCR amplification step. 0.1 and 1 �g of starting 
genomic DNA material amplified using GW-A2 Fwd and Rev primers respectively (lane 2 
and 4). Lane 1 and 3 are negative controls for the limited PCR amplification step. 

 

Figure S4. Cont.  
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Figure S4. FastQC summary reports of sequencing reads. (A) and (B) Quality scores across 
all bases for GWCOBRA and LA-COBRA sequencing results respectively; (C) and (D) Quality 
score distribution of overall GW-COBRA and LA-COBRA sequences respectively; (E) and 
(F) GC distribution of overall GW-COBRA and LA-COBRA sequences respectively. 

 

Figure S5. Cont. 
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Figure S5. Density plots of the CpG site coverage in the HCT-116 GW- and LA-COBRA 
libraries and public RRBS and WGBS libraries. Coverage has been transformed by Log2 as 
each method has a small fraction of CpG sites with factors of magnitude more coverage than 
the median coverage. (A) GW-COBRA; (B) LA-COBRA; (C) RRBS and (D) WGBS. 

Figure S6. Cont. 
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Figure S6. Simulation of methylome sampling methods that targets methylated (M) only or 
both M and unmethylated (U) fractions. (A) Population mean (�) coverage of 5 in M+U 
fractions; (B) Population mean (�) coverage of 8.2 in M fraction only (C) � coverage of 8;  
(D) � coverage of 13.1; (E) � coverage of 15; (F) � coverage of 24.6; (G) � coverage of 30 
and (H) � coverage of 49.1. 
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Figure S7. An empirical comparison mapping 200,000 HCT-116 450K array beta values to 
WGBS beta values.
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Figure S8. Cont.
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Figure S8. IGV screenshots are to the selected colon cancer associated genes to display read stacks: (A) BCAT1; (B) EHD3. i. Methylation 
levels determined by WGBS, 450K arrays, RRBS, GW-COBRA and LA-COBRA respectively; ii. Genome coverage and stacking of cleaned 
GW-COBRA reads; iii. Genome coverage and stacking of cleaned LA-COBRA reads; iv. Genomic locations of accessible COBRA TaqI sites, 
450K array probes and accessible RRBS sites. 
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Figure S9. Cont. 
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Figure S9. Cont. 
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Figure S9. Cont. 
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Figure S9. IGV screenshots of methylation profiles on selected colon cancer associated genes: (A) SEPT9; (B) MGMT; (C) SLC6A15 and 
(D) FGF5. i. Methylation levels determined by WGBS, 450K arrays, RRBS, GW-COBRA and LA-COBRA respectively; ii. Genome coverage
and stacking of cleaned GW-COBRA reads; iii. Genome coverage and stacking of cleaned LA-COBRA reads; iv. Genomic locations of
accessible COBRA TaqI sites, 450K array probes and accessible RRBS sites.
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2. Supplementary Tables 

Table S1. GW-COBRA and LA-COBRA sequencing read statistics. 

Stage Statistic GW-COBRA LA-COBRA 
Raw file Read Counts 115,097.029  142,245,797 
BAM file Total BAM file entries 117,215,649 145,687,410 
 Unique Read IDs 97,410,988 122,495,417 
 %Unique entries 83.1 84.1 
Mapping Original Mapped 108,463,362 134,521,871 
 Original Unmapped 8,752,287 11,165,539 
 Forward 62,852,260 78,337,754 
 Reverse 54,363,389 67,349,656 
 % Mapped 92.53% 92.34% 
Filtering Converted to Unmapped Total 55,043,953 73,715,118 
 Reason   
 Secondary alignment 11,052,374 12,026,454 
 Start Sequence not TaqI site 27,499,711 44,507,174 
 Not within in silico reference 53,219,488 71,705,146 
 Not in reference, but could rescue   
 Not in ref, has TaqI site 31,633,261 33,795,306 
 Not in ref, has TaqI site and primary 28,761,986 30,945,333 
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Table S2. Complexity reduction statistics. 

Methylation Context Enzyme Recognition Site (5'-3') Overhang Restriction Sites Total Fragments 
Sequenceable 
Fragments 

Total CpG 
Coverage 

CpG HpyCH4IV A/CGT CG-5' 5,192,248 7,343,344 6,506,928 4,776,485
TaqI T/CGA CG-5' 4,977,110 6,489,977 5,756,193 4,486,417
AclI AA/CGTT CG-5' 692,617 855,037 840,839 683,730
ClaI AT/CGAT CG-5' 388,259 473,628 467,368 384,128
BstBI TT/CGAA CG-5' 866,821 972,174 953,489 850,949
PvuI CGAT/CG 3'-AT 46,118 58,497 57,392 90,550
BstuI CG/CG Blunt 725,727 1,451,454 1,058,938 1,209,854
MluI A/CGCGT CGCG-5' 75,894 97,019 93,919 147,648
BsiWI C/GTACG GTAC-5' 90,219 101,772 96,998 172,337
Hpy99I CGWCG/ 3'-CGWCG 555,835 710,425 556,444 863,001

CpG and CpN HinP1I G/CGC CG-5' 490,520 537,572 426,631 802,697
CpN CviQI G/TAC TA-5' 1,493,098 1,504,651 1,444,102 1,476,629

BfuCI/Sau3AI /GATC GATC-5' 1,295,990 1,308,369 1,269,237 1,294,261
EcoRI G/AATTC AATT-5' 368,461 369,242 366,551 375,916

CnG HpyCH4III ACN/GT 3'-N 1,497,255 1,497,255 1,444,743 1,444,743
Hpy188I TCN/GA 3'-N 1,371,760 1,371,760 1,298,590 1,212,237

Other Methylome 
Methods 

SuBLiME (CviQI) 5,047,091 10,094,182 8,702,060 21,388,229 
DREAM (XmaI) 374,921 749,842 51,046 497,412 
RRBS (MspI) 2,297,221 4,594,442 1,528,440 4,724,246 
450K array - - - 484,022 
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Table S3. Complexity reduction statistics cont’d. The % of genome coverage per genomic location by COBRA-seq and other genome sampling methods. 

Transcript Exon TSS (4 kb) Genebody Intergenic CpG Island CpG Shore CpG Ocean 5' UTR 3' UTR DNaseI HS Enhancer Repeat Total CpGs 

Genome-wide 52.3 7.5 12.8 43.0 44.2 7.4 7.2 85.4 1.8 1.4 26.5 0.7 52.3 28,217,448 

HpyCH4IV 50.4 4.8 8.2 44.6 47.3 2.5 5.7 91.8 0.8 1.3 21.8 0.7 52.0 4,776,485

TaqI 50.9 6.2 9.6 43.9 46.5 3.5 6.3 90.2 1.1 1.3 21.5 0.6 55.2 4,486,417

AclI 49.2 5.1 8.2 43.3 48.5 2.2 5.8 92.0 0.8 1.5 23.2 0.7 41.1 683,730

ClaI 48.4 6.5 7.8 42.6 49.7 2.3 5.1 92.6 0.9 1.4 20.9 0.5 43.2 384,128

BstBI 50.9 5.6 9.1 44.3 46.6 2.7 6.2 91.1 0.9 1.2 18.6 0.5 56.6 850,949

PvuI 57.9 17.7 28.6 36.4 35.0 24.8 9.8 65.4 5.7 1.8 44.4 1.1 36.2 90,550

BstuI 56.9 13.1 27.1 37.3 35.6 24.0 10.4 65.7 4.7 1.6 38.9 1.1 52.4 1,209,854

MluI 57.4 13.0 24.5 39.8 35.7 21.4 10.1 68.5 3.9 1.9 40.4 1.2 43.7 147,648

BsiWI 58.2 14.1 23.5 41.1 35.4 20.5 9.6 70.0 3.9 1.8 40.5 1.1 42.5 172,337

Hpy99I 59.6 20.7 31.9 35.6 32.5 30.2 10.6 59.3 6.6 2.1 49.9 1.3 33.0 863,001

HinP1I 56.8 12.3 28.6 36.5 34.8 25.6 9.6 64.8 5.1 1.3 35.9 1.0 61.4 802,697

CviQI 52.7 6.6 10.3 45.1 44.6 4.8 6.4 88.7 1.1 1.5 25.0 0.7 51.9 1,476,629

BfuCI/Sau3AI 52.1 6.7 11.0 44.0 45.0 5.0 6.6 88.4 1.4 1.3 21.9 0.6 59.3 1,294,261

EcoRI 51.0 4.3 9.2 44.5 46.3 3.0 6.4 90.6 0.8 1.0 14.6 0.4 72.9 375,916

HpyCH4III 51.9 6.7 9.3 44.9 45.7 3.5 6.5 90.1 1.0 1.5 25.7 0.7 47.2 1,444,743

Hpy188I 52.3 9.7 14.0 41.9 44.1 7.4 8.2 84.4 2.1 1.7 32.6 0.9 40.8 1,212,237

SuBLiME 52.5 7.4 11.7 43.8 44.4 6.1 6.6 87.2 1.6 1.5 24.8 0.7 53.0 21,388,229 

DREAM 63.5 24.8 53.5 24.1 22.4 54.2 13.6 32.2 11.3 1.7 64.4 1.5 32.8 497,412

RRBS 59.4 17.8 33.4 34.7 31.9 30.4 12.7 56.9 6.4 1.9 46.7 1.2 44.9 4,724,246

450K array 61.6 23.1 51.2 29.8 19.0 31.1 23.2 45.6 8.4 4.6 66.8 1.7 15.8 484,022 
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3. Supplementary Materials and Methods 

3.1. COBRA-Seq Library Preparation Protocol in Detailed 

Part 1: Construction of Adapters 

Each Adapter was made using two oligonucleotides dissolved in sterile water with a final concentration 
of 500 μM (Table 1). The Adapter-2 oligonucleotides partially complement each other therefore the 
adapter has a “Y” shape. Particularly after bisulfite treatment Adapter-2 upper strand remains unconverted 
and non-complementary to Adapter-2 lower strand On the other hand all the Adapter-1 combinations 
were designed using fully complementary oligonucleotides. 

P1.1. Mix the matching oligonucleotides with 1× NEB Quick Ligation Buffer in a final 
concentration of 50 μM each and in a final volume of 100 μL. 

P1.2. Hybridize the oligonucleotides with the following temperature cycles on a PCR machine: 
95 °C 5 min, 72 °C 5 min, 60 °C 5 min, 50 °C 3 min, 40 °C 3 min, 30 °C 3 min, 20 °C 3 min 
and 10 °C 3 min. Upon hybridisation the adapters were stored at �20 °C. 

P1.3. Store them in a cool rack at �20 °C. 

Part 2: Sequencing Library Preparation Protocol 

Part 2-1. DNA Fragmentation 

P2-1.1. Resuspend genomic DNA in 300 μL low TE to a final concentration of 16.66 ng/μL. 
P2-1.2. Fragment the genomic DNA using a Bioruptor UCD-200 sonicator (Diagenode, Belgium) 

at a power setting of “high” for four sets of 30 cycles of 15 s on/off with 15 min intervals 
on ice in between each set. 

P2-1.3. For visualisation, run 5 μL of the sonicated material on 3% Biorad Low Range Ultra 
Agarose gel. 

P2-1.4. The fragments range should be between 100–500 bp. 

Part 2-2. DNA Precipitation 

P2-2.1. To precipitate the fragmented DNA, add 600 μL volumes of cold, absolute ethanol, 30 μg 
of GlycoBlue and 100 μL of 3 M sodium acetate. 

P2-2.2. Vortex the samples, quickly spin at full speed and incubate at �20 °C for 20 min. 
P2-2.3. Centrifuge the samples at full speed (16,000 g) for 15 min at 4 °C. 
P2-2.4. Decant the supernatant and wash the blue pellet with 70% cold ethanol. 
P2-2.5. Air dry the residual ethanol for 5 min and samples. 
P2-2.6. Resuspend the pellet in 36 μL low TE. 
P2-2.7. Measure the DNA concentration was measured using 1 μL in NanoDrop 1000 

Spectrophotometer. 
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Part 2-3. End Repair 

The End-It Repair reaction kit (Epicentre, Wisconsin) was used to convert DNA with incompatible 
overhangs such as 5'-protruding and/or 3'-protruding ends to blunt-ended, 5'-phosphorylated DNA by 
exploiting the 5' to 3' polymerase and 3' to 5'exonuclease enzymes. 

P2-3.1. The sonicated and precipitated library material was used with 5 μL 10× End-Repair Buffer, 
5 μL dNTP mix, 5 μL ATP and 1 μL Enzyme mix, in a final volume of 50 μL. 

P2-3.2. Incubate the reaction at room temperature for 45 min then heat activate the enzymes at  
70 °C for 10 min. 

Part 2-4. Reaction Clean up 

P2-4.1. Increase the volume of the End Repair reaction to 200 uL using sterile water. 
P2-4.2. Add an equal volume of phenol: chloroform: isoamyl alcohol. 
P2-4.3. Vortex the samples for 15 s and spin at 16,000 g for 5 min. 
P2-4.4. Transfer the upper aqueous phase to a new 2 mL microfuge tube. 
P2-4.5. Add Sodium acetate to have a final salt concentration of 0.3 M. 
P2-4.6. Add three volumes of cold, absolute ethanol, together with 2 μL of GlycoBlue. 
P2-4.7. Invert the samples, quickly spin and incubate at �20 °C for 20 min. 
P2-4.8. Centrifuge the samples at full speed (16,000 g) for 15 min at 4 °C. 
P2-4.9. Decant the supernatant and wash the blue pellet with 70% cold ethanol. 
P2-4.10. Air dry the residual ethanol for 5 min and samples. 
P2-4.11. Resuspend the pellet in 42 μL low TE. 
P2-4.12. Measure the DNA concentration was measured using 1 μL in NanoDrop 1000 

Spectrophotometer. 

Part 2-5. A-Tailing 

A single adenine nucleotide was added to the 3' ends of the blunt fragments to facilitate ligation with 
adapters that have T overhang, and to limit ligating to one another during the adapter ligation reaction. 

P2-5.1. Mix the end repaired library material with 5 μL of 10× NEBNext dA-Tailing reaction buffer 
(10 mM Tris-HCl, 10 mM MgCl2, 50 mM NaCl, 1 mM DTT, 0.2 mM dATP pH 7.9) and 3 μL 
of 3' to 5' exonuclease. 

P2-5.2. Incubate at 37 °C for 30 min, then heat inactivate the enzyme at 75 °C for 20 min and cool 
on ice prior to ligation. 

Part 2-6. Adapter-2 Ligation 

Adapter-2 were designed to contain a corresponding single thymine nucleotide on the 3' end which 
provides a complementary overhang to ligate to the genomic library fragments (Figure S1). 

P2-6.1. Prepare the Ligation reaction with 2 μg of fragmented DNA, 10 molar excess Adapter-2 in a 
50 μL reaction containing 2000 U T4 Ligase Enzyme and 25 μL Quick Ligation Buffer. 

P2-6.2. Incubate the reaction at room temperature for 20 min and cool the samples on ice. 

Note: The ten molar excess can be calculated considering the library fragments average 200 bp and 
contain two ligatable ends. 
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There are X moles of ligatable ends in the sonicated material, 

X = 2 μg DNA × 2 (two ends)/(650 Da/bp × 200 bp) = 3.1 × 10�5 = 31 pmol 

Adapter-2/Fragment = 10:1    31 pmol × 10 = 310 pmol 

Therefore, 10 molar excess is 6.2 μL of the 50 μM Adapter-2 stock for 2 μg library material. 

Part 2-7. Removal of Excess Adapter-2 

P2-7.1. Mix one volume of ligation reaction with 5 volumes of Buffer PB supplied in Qiagen Quick 
PCR purification kit. 

P2-7.2. Apply the mixture into a MinElute column and centrifuge at full speed for 1 min. 
P2-7.3. Run the flow-through through the MinElute column again before discarding. 
P2-7.4. Wash the column with 750 μL Buffer PE and centrifuged for 1 min. 
P2-7.5. Wash the column again with 500 μL Buffer PE and centrifuge for 1 min. 
P2-7.6. To remove the residual ethanol, place the column into an empty collection tube and spin 

when the lid is open at full speed for 1 min. 
P2-7.7. Elute the library material twice in 42 μL Elution Buffer with 1 min centrifugation. 

Part 2-8. Check point: PCR Reaction 

Although this step was not necessary for the GW-COBRA and LA-COBRA library preparation,  
it was designed as a control point to determine the efficiency of Adapter-2 ligation step which is crucial 
to have a well distributed library in the range of 200–500 bp. The library material is expected to contain 
Adapter-2 in both ends, therefore the single primer was employed as a forward and reverse primer  
during this amplification step. 

P2-8.1. Perform the PCRs in 25 μL volume using GoTaq white (Promega) in the buffer supplied 
with the enzyme, with the addition of 0.2 μM final concentration of a single primer 
targeting one strand of the Adapter-2. 

P2-8.2. The temperature cycles for the PCR are: 95 °C for 3 min; 95 °C for 15 s, 60 °C for 30 s 
and 72 °C for 1 min, 8 cycles; a final extension of 72 °C for 2 min. 

P2-8.3. Run the PCR product to access the success of Adapter-2 ligation on 3% Low Range Ultra 
Agarose (Biorad). 

Note: Figurative representation of Check point PCR step is provided in Figure S10. 

It is likely that, short fragments (100–200 bp) may form a hairpin structure or ligate to one another 
(Figure 2). Over amplification will create library artefact and resulting higher MW bands on an agarose 
gel. It is recommended to use maximum of 10 PCR cycles. 
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Figure S10. Schematic representation of products generated by the minimal PCR step. 

Part 2-9. Bisulfite Treatment 

Bisulfite treatment, also known as bisulfite conversion, is a gold standard method for DNA 
methylation analysis. Bisulfite deaminates unmethylated cytosine to produce uracil whereas methylated 
cytosines are protected. The locations of unmethylated cytosines and 5-methylcytosines can be 
determined at single-nucleotide resolution via sequencing. 

P2-9.1. Ligated fragments containing Adapter-2 in both ends were bisulfite treated using an EZ 
DNA Methylation-Gold Kit (Zymo Research). 

P2-9.2. Prepare aliquots of the 10 μg/μL library material in a final volume of 20 μL in PCR tubes 
and add 130 μL of the CT Conversion Reagent for the bisulfite treatment step. 

P2-9.3. Incubate the bisulfite conversion reaction at 99 °C 5 min, 60 °C 25 min, 99 °C 5 min, 60 °C 85 
min, 99 °C 5 min, 60 °C 175 min and 22 °C 5 min. 

P2-9.4. Wash the reaction and desulphonate as per manufacturer’s instruction. 
P2-9.5. Elute the final product twice in 16 μL. 
P2-9.6. Quantify Single stranded DNA concentration using 1 μL in NanoDrop 1000 

Spectrophotometer with RNA settings. 

Post-bisulfite treatment, the Adapter-2 oligonucleotides are not complementary. At this step, the library 
material is single stranded. 

Part 2-10. Minimal PCR Amplification (Biotin Tagging) 

Single stranded bisulfite treated library materials are used as templates with a final concentration  
of 1 ng/μL in 25 μL using GoTaq white (Promega, Madison, WI, USA) enzyme and buffer mixture. The 
primers are used in the final concentration of 0.1 μM. The reverse primer contains 5' double biotin 
whereas the LA-COBRA forward primer had an overhang of T7 promoter region that is used to generate 
RNA copies via in vitro transcription that are subsequently reverse-transcribed in the later steps. 
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P2-10.1. The temperature cycles for the PCR are: 98 °C 3 min; 98 °C for 15 s, 56 °C for 30 s and 
72 °C for 1 min, for 6 cycles; a final extension of 72 °C for 2 min. 

P2-10.2. Visualize the PCR products on a 3% Low Range Ultra Agarose Gel. 

Part 2-11. Reaction Clean-Up 

A Wizard SV PCR Clean Up System (Promega) was used to remove the enzymes and excess primers. 
The manufacturer’s instructions were followed with minor modifications at the elution step. Samples 
were eluted twice in 44 μL of sterile water. 

*The reaction clean up step is critical to remove the polymerase enzyme which may fill the enzyme 
restriction sites after digestion. Moreover, it is also needed to remove the excess the 5' double biotin 
primers as they would bind the streptavidin beads with high efficiency and interfere with the streptavidin 
purification step. 

Part 2-12. Enzyme Digestion 

P2-12.1. Digest the PCR amplified and purified library material overnight at 65 °C with 20–100 U 
Taq1, 100 μg/mL BSA and 1× NEB 4 Buffer in a final volume of 100 μL. 

P2-12.2. Use a top layer of sterile mineral oil to prevent evaporation and maintain the enzyme 
concentration steady. 

Part 2-13. Streptavidin Purification 

The GW and LA-COBRA libraries are biotin tagged at the amplification step. After Taq1 digest, 
there are three main fragment types in the libraries; uncut biotinylated fragments (no internal Taq1 site), 
the cut fragments containing 5' double biotin and the other part of the cut fragments which are  
non-biotinylated. In this step, Dynabeads® M-280 Streptavidin beads, which are ideal for purification of 
biotinylated molecules, were used to capture the biotinylated fragments, hence enrich for the  
non-biotinylated fragments. 

P2-13.1. Resuspend the Dynabeads to obtain a homogenous suspension by shaking the vial. 
P2-13.2. Transfer 100 μL of the beads into non-sticky microfuge tubes for each sample. 
P2-13.3. Place the aliquots on a magnetic rack for 2 min to ensure all the beads are collected on the 

tube wall and remove the supernatants. 
P2-13.4. Wash the beads twice in 100 μL 2× Binding and washing (B&W) Buffer (2×) with addition 

of 0.2% Tween 20 (10 mM Tris-HCl pH 7.5, 1 mM EDTA, 2.0 M NaCl and 0.2% Tween 20). 
P2-13.5. Resuspend the beads in 100 μL 2× B&W Buffer with 0.2% Tween 20 and mix with an equal 

volume of Taq1 digested biotinylated library material. 
P2-13.6. Gently mix the samples with a pipette and agitate at 300 rpm for 20 min at  

room temperature. 
P2-13.7. Separate the beads coated with biotinylated library fragments using a magnet for 2 min. 
P2-13.8. Remove the supernatant containing enriched non-biotinylated fragments and transfer into 

another tube. 

The streptavidin beads can be uncoated from the biotinylated fragments with few additional steps. 
Although this is not a necessary step for GW and LA-COBRA library preparations, it is a good practice 
to visualize the discarded fragment on an agarose gel. 
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P2-13.9. Wash the beads twice with 1× B&W Buffer with addition of 0.1% Tween 20 (5 mM Tris-HCl 
pH 7.5, 0.5 mM EDTA, 1.0 M NaCl and 0.1% Tween 20). 

P2-13.10. Resuspend the beads in 1× B&W Buffer containing 30 mM d-biotin and incubate at room 
temperature with gently mixing for 15 min 

P2-13.11. Heat treat the samples are heated to 80 °C for 15 min. 
P2-13.12. Place the samples on a magnet for 2 min and aspirate the supernatant containing the 

biotinylated fragments as soon as the magnetic beads were cleared from solution. 

Part 2-14. Adapter-1 Ligation 

Following digestion, the cut ends of DNA fragments are ligated to Adapter-1. This adapter has  
a 5'-CG-3' overhang and is not phosphorylated to reduce Adapter-1 to Adapter-1 ligation. The LA-COBRA 
Adapter-1 sequence incorporated an addition of P5 primer region that allows priming and reverse 
transcription on the T7 RNA polymerase-generated RNA transcripts. 

P2-14.1. Prepare the ligation reaction with 1 μg of fragmented DNA with 2-fold molar excess of 
Adapter-1 in a 50 μL reaction containing 2000 U T4 Ligase Enzyme and 25 μL Quick 
Ligation Buffer. 

P2-14.2. Incubate the reaction mixture at room temperature for 20 min and cool on ice. 

The two-fold molar excess is calculated considering the library fragments contain two ligatable ends 
with an acceptance that average library fragments are 200 bp. 

There are X moles of ligatable ends in the sonicated material, 

X = 1 μg DNA × 1 (single end)/(650 Da/bp × 200 bp) = 7.8 × 10�6 = 7.8 pmol 

Adapter-1/Fragment = 2:1    7.8 pmol × 10 = 15.6 pmol 

Therefore, 0.32 μL of the 50 μM Adapter-1 stock is used for 1 μg library material. 

Part 2-15. Adapter-1 Clean up 

Adapter dimerization creates significant noise in the sequencing results, therefore purification steps 
are extremely important to remove any excess adapters. Ampure XP Bead Purification system is utilized 
to remove the fragments that have a size less than 100 bp using TruSeq DNA sample preparation guide 
with minor modifications. 

P2-15.1. Cool down the Ampure XP beads to room temperature. 
P2-15.2. Combine 25 μL of well mixed beads with 35 μL PCR water and 100 μL Sample. 
P2-15.3. Gently mix the mixture via pipetting and incubate at room temperature for 15 min. 
P2-15.4. Place the samples on a magnetic rack until the beads are collected to the tube wall. 
P2-15.5. Remove the supernatant containing the fragments less than 100 bp. 
P2-15.6. Wash the beads with 200 μL of 80% ethanol twice while the tubes are on the  

magnetic rack. 
P2-15.7. Air dry the residual ethanol and resuspend the beads in 50–100 μL low TE for 2 min. 
P2-15.8. Capture the beads on a magnetic rack. 
P2-15.9. Transfer the solution containing the library material above 100 bp into a clean eppendorf. 
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Part 2-16. Check Point PCR 

To test the presence of adapters in library fragments, perform PCRs in 25 μL volume using GoTaq 
white (Promega) in the buffer supplied with the enzyme, with the addition of 0.1 μM final concentration 
of Illumina flow cell primers on a fraction of the library. 

P2-16.1. The temperature cycles for the PCR are: 98 °C for 5 min; 98 °C for 15 s, 65 °C for 30 s 
and 72 °C for 1 min, 8 cycles; a final extension of 72 °C for 2 min. 

P2-16.2. Visualize the amplification products by electrophoresis on 3% Low Range Ultra  
Agarose (Biorad). 

After the confirmation that library fragments contain Adapter-1 and Adapter-2 on the ends, GW-COBRA 
libraries are amplified using PCR whereas LA-COBRA libraries are amplified using in vitro transcription 
followed by cDNA synthesis. 

Part 2-17. GW-COBRA: PCR Amplification 

P2-17.1. Adapter 1 and 2 ligated GW-COBRA library fragments are used as templates with a final 
concentration of 1 ng/μL in 25 μL using GoTaq white (Promega) enzyme and buffer mixture. 

P2-17.2. The Illumina flow cell primers are used in the final concentration of 0.1 μM. 
P2-17.3. The temperature cycles for the PCR are: 98 °C 3 min; 98 °C for 15 s, 65 °C for 30 s and 

72 °C for 1 min, for 7 cycles; a final extension of 72 °C for 2 min. 

Note: It is important to use minimum number of PCR cycles to reduce PCR amplification bias 
towards CpG poor regions. 

Part 2-18. LA-COBRA: In vitro Transcription 

The LA-COBRA library is in vitro transcribed to RNA using T7 RNA Polymerase. 

P2-18.1. Prepare the reaction buffer using 600 ng of library with 2 μL of 10 mM of ATP, 2 μL of 
10 mM of GTP, 2 μL of 10 mM of UTP and 2 μL of 10 mM of CTP with 2 μL of T7 RNA 
Polymerase Mix in a total volume of 20 μL. 

P2-18.2. Incubate the reaction in 37 °C overnight. 
P2-18.3. Clean up using RNeasy MinElute Clean up kit. 
P2-18.4. Quantify RNA concentration using NanoDrop 1000 Spectrophotometer with RNA settings 

as well as Quant-iT RNA assay as per manufacturer’s protocol. 

Part 2-19. cDNA Synthesis 

P2-19.1. Mix approximately 600 ng (8 μL) of LA-COBRA transcripts with 1 μL of 100 μM P5 
primer at 70 °C for 10 min then cool on ice for 2 min. 

P2-19.2. Add the mixture to the SuperscriptIII first-strand synthesis reaction mix containing  
a final concentrations of 1× First strand buffer, 10 mM DTT, 1 mM dNTP mix with 40 U 
RNasin RNase inhibitor with 400 U SuperscriptIII enzyme in a final volume of 20 μL 
(QuantiTect® Reverse Transcription Kit). 

P2-19.3. Incubate the reaction at 42 °C for an hour. 
P2-19.4. Add RNase H (5 U) and RNase A (0.5 μg) into the reaction and further incubate at 37 °C for 

15 min. 
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P2-19.5. Mix the first-strand synthesis reaction with a final concentration of 1× NEBuffer 2,  
667 nM P7 primer and 0.3 mM dNTP mix in a final volume of 169 μL. 

P2-19.6. Denature the final reaction mixture at 96 °C for 3 min and cool the reaction at 37 °C  
for 5 min. 

P2-19.7. Add 5 units of Klenow fragment of DNA polymerase1 (exo-minus) and incubate the 
reaction at 37 °C for an hour. 

Part 2-20. Size Selection by Ampure XP Bead Purification 

The size selection is necessary to remove any adapter dimers and excess primers for two main reasons: 
the excess nucleotides will contribute to the library concentration quantifications and they may with the 
sequencing step, as the short fragments will amplify efficiently and populate the sequencing reads. 

Use the Ampure XP Bead purification on both GW-COBRA and LA-COBRA final library materials 
as described earlier in Adapter-1 Clean Up step. 

Part 2-21. Final Quantifications 

DNA concentration in PCR amplified GW-COBRA and linear amplified LA-COBRA libraries  
post size exclusion is initially quantified using 1 μL of the samples on a NanoDrop 1000 Spectrophotometer 
(Thermo Fisher Scientific, Carlsbad, CA, USA). Considering the libraries contain small amounts of 
DNA, for accurate measurement, Quant-iT Picogreen dsDNA Reagent was used and the DNA 
concentrations are calculated according to a standard curve made using the Kit’s control sample. Finally, 
the size distribution is visualized using Agilent DNA 1000 Assay in 2100 Bioanalyzer (Agilent 
Technologies, Los Angles, CA, USA) using the manufacturer’s protocol. 

3.2. Supplementary Materials and Methods Cont’d 

Simulation Data 

For a reasonable simulation we based the model on estimates from empirical data. The distribution 
of COBRA-seq read count data is zero-inflated negative binomial; some CpG sites are fully unmethylated 
so no amount of additional sequencing will raise read counts above zero, while for the rest of the CpG 
sites, read counts are proportional to a combination of sequencing depth and methylation rate. To model 
this distribution, the negative binomial parameters, mu (�) and size, were estimated from Joint-COBRA 
data for sites with counts. In addition, the relationship between Joint-COBRA sites with 0 counts and 
450K array beta value was examined and the correlation was found to be negatively exponential in nature. 

As beta values are bimodal (most are near 0 or 1) we used empirical data as a source of “true” beta 
values for the simulation. In total, 200,000 beta values were sampled from 450K array data of HCT116 
and these were considered true population means for CpG sites. Mean population methylated read counts 
were modelled as beta × coverage per site and unmethylated read counts as (beta-1) × coverage per site. 
These per site read count population means (�) were used to derive 200,000 random Poisson samples for the 
methylated (M) and unmethylated (U) fractions and beta was constructed as beta (estimated) = M/(M + U). 
The estimated betas were plotted against true beta. For the COBRA-seq like, M only simulation, the 
same set of 200,000 random true betas were used to derive random negative binomial read counts using 
the parameters estimated from the empirical COBRA-seq data. To represent the additional CpG site 
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coverage possible when sequencing only the methylated genome fraction, the read coverage was 
moderated by divided by the mean beta value. Next, some counts were converted to 0. A total of 15.75% 
of CpG sites shared between the 450K array and Joint-COBRA had 0 counts and we used this as the 
fraction of CpG sites which are unmethylated—so we would expect no COBRA-seq counts even with 
high coverage. So, 15.75% of the 200,000 simulated read counts were randomly converted to 0, with  
a chance weighted by (beta + 0.02)�2. The addition of 0.02 was to moderate the chance of selection of 
beta values very near 0 and beyond the distribution peak at approximately 0.03. 

3.3. Supplementary Results and Discussion 

Simulation Data 

For absolute DNA methylation estimation it is usual to quantitate the methylated (M) fraction and 
unmethylated (U) fraction of a biological sample and to divide the methylated fraction by the sum  
of both fractions (M/(M + U)), to derive the beta value—the proportion of M. With low coverage 
bisulfite sequencing, this estimate of beta is granular and inaccurate. For example, with a 5-fold coverage 
at a CpG site, it is only possible to estimate methylation in steps of 20% and often the sampling of 
methylated and unmethylated reads will highly diverge from the true rate. As coverage increases, 
precision, accuracy and trueness slowly converge from low to high. If the unmethylated fraction (U) is 
removed, as in COBRA-seq and other methylated DNA enrichment methods, we observe a count, with 
the count proportional to M and the library size. While the ability to estimate the true rate of absolute 
methylation is lost, the property of accuracy and precision increasing with coverage is retained and 
proportionally, far more reads (than with WGBS) contribute DNA methylation information. We wished 
to examine this trade-off between absolute methylation estimation (M + U scenario) and more reads 
contributing methylation information (M-only scenario). 

As read coverage increases in the M + U scenario, accuracy in beta estimation (emergence of  
a diagonal trend between 0 and 1) appears early, with the precision (the decrease in the breath of the 
line) improving slowly. As beta is ratio-based, over- or under-sampling of the M or U fraction will yield 
this imprecision. In the M-only case, accuracy and precision are a function of the population methylation, 
with accuracy and precision decreasing as the methylation rate increases. Very high counts are likely to 
represent a population methylation rate of 0.8–1.0, however the converse statement cannot be made. 
High True betas are captured as a wide range of count values. 

Collectively, the simulation suggests the M-only case has higher precision than the M + U case for 
hypomethylated CpG sites and considerably worse precision for hypermethylated sites. However, the 
increasing imprecision for the M-only case, a dependence of the variance on the mean, can be dealt with 
by using a variance stabilizing transformation (VST), or similar techniques like those for RNA-seq count 
data [54]. This suggests COBRA-seq is well suited for finding methylation differences between groups 
of replicates (where variance can be modelled). 

Methylation beta and count estimates are analogous to the FPKM and count-based methods in  
RNA-seq. It is reasonable to use a RNA-seq count software such as EdgeR to examine differences in 
methylation between groups of samples. Increasing variance with count is recognized as a property of 
RNA-seq count data and software such as EdgeR, DESeq2 and Voom will model the distribution and 
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moderate the counts. Like RNA-seq count-based methods, COBRA-seq is best suited to inter-sample 
comparisons and not intra-sample comparisons. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/4.0/). 
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CHAPTER 4: Transcriptome profiling of visceral adipose tissue and visceral adipocytes 

from 26 females with a range of BMI 

Visceral adipose tissue (VAT) displays strong associations with metabolic risk factors. In this 

study, we characterized the transcriptional signatures of human visceral adipose tissue (VAT) 

and purified visceral adipocytes (VA) across 26 females with a range of BMI (19-50 kg/m2). 

We identified a set of genes and pathways associated with obesity. The main outcome of this 

study was that BMI, waist girth and hip girth were best correlated with transcriptional 

profiles. Additionally, we have shortlisted genomic regions of interest as potential biomarkers 

to improve obesity prevention and treatment strategies. 

I was predominantly involved in sample collection, laboratory experiments, interpretation of 

data and writing the manuscript. Bradford, Clark, Molloy, Ross and myself designed the 

experiments. Lord, Samaras, Bradford and myself were involved in sample collection and 

patient selection. Molloy, Ross and myself designed the Roche Nimblegen’s SeqCap Epi 

Target Enrichment Array. Nair undertook the DNA methylation library preparation and 

sequencing. Anwar, Luu, Ross, Peters, van Dijk, Buckley and Bauer analysed the genomic 

data.  

Detailed contributions: 

 Varinli H Co-authors 

Experimental Design 50% 50% 

Sample Collection  60% 40% 

Laboratory Experiments 70% 30% 

Data Analysis 20% 80% 

Data Interpretation 60% 40% 

Writing 90% 10% 
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Notes: In this Chapter I present gene expression data (stranded RNA-seq) on purified VA and 

on VAT obtained on the cohort of 26 subjects. These data will be combined with analysis of 

DNA methylation profiles on the same set of subjects. As indicated in Figure 1, the DNA 

methylation data comprises targeted bisulphite sequencing of DNA from purified VA of 

regions covering about 1% of the genome. DNA methylation data using Illumina 450K arrays 

has also been obtained on peripheral blood leukocyte and buccal cell DNA from these 

subjects. Analysis of these data is ongoing. 

My contributions to the epigenome and SNP profiling are stated below: 

Epigenome Profiling: 

 I contributed to the design of Roche Nimblegen’s SeqCap Epi Target Enrichment. 

 I isolated VA from VAT and isolated DNA from VA samples for the epigenome 

component of this project and planned the batching of samples to avoid technical 

biases in the analysis of Nimblegen’s SeqCap Epi Target Enrichment. 

 I isolated DNA from buccal cells for the epigenome component of this project and 

planned the batching of samples to avoid technical biases in the analysis of 450K 

array. 

SNP profiling: 

 I contributed to the optimization of laboratory protocols for DNA isolation from buffy 

coat samples.  

 On surgery days, I pre-processed the buffy coat samples and documented them on a 

database.  

Data Analysis and Interpretation: 

 I contributed to the data collection, processing, analyses and discussion. 

 I contributed to the manuscript planning and review. 
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ABSTRACT   

Adipose tissue is a key driver of metabolism, energy homoeostasis and inflammation. 

Perturbations in the amount and distribution of adipose tissue have serious adverse health 

consequences.  We characterised visceral adipose tissue (VAT) and purified adipocytes (VA) 

of 26 females across a range of BMI (19-50 kg/m2) to understand at what point in the obesity 

spectrum molecular signatures change from healthy to unhealthy. Genome-wide 

transcriptional changes associated with indices of obesity were explored using linear 

regression analysis. We further examined how these changes relate to changes in DNA 

methylation in purified visceral adipocytes by undertaking targeted methylome mapping from 

the same set of subjects using Roche Nimblegen’s SeqCap Epi Target Enrichment approach 

(covering 30 Mb). We observed a clear trend in gene expression in accordance with the 

severity of obesity. In particular, we noted a transition in the gene expression profiles of VA 

in individuals with a BMI of 32 kg/m2 or higher. This might be indicative of a metabolic 

threshold for potential health risks. Greater numbers of differentially expressed (DE) genes 

were seen for all obesity measures in VA compared to VAT. This is perhaps due to 

heterogeneous cellular composition of VAT. Additionally, many of the previously identified 

genes in VAT are intrinsic to adipocytes. In VA, obesity DE genes were enriched in vesicle 

transport and cellular organisation pathways while, in VAT, DE genes were enriched in 

catabolic pathways and leukocyte proliferation among others. The gene lists provided in this 

study are useful resources for exploration of metabolic changes in obesity that may relate to 

adverse health outcomes.  
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1. INTRODUCTION 

White adipose tissue (WAT) stores excess energy in the form of triglycerides. WAT is 

metabolically active and carries out significant functions such as glucose homeostasis, energy 

metabolism, regulation of food intake and immune function (1). WAT is divided into regional 

depots with differences in biological function. In humans, the main classes of WAT depots 

are subcutaneous adipose tissue (SAT) located beneath the skin and visceral adipose tissue 

(VAT) surrounding the inner organs (2). SAT and VAT have distinct features, and vary in 

their potential for metabolic risk. Specific differences in gene expression profiles (3) lead to 

differences in the release of fatty acids and secretion of adipokines, thereby affecting the 

function of other tissues (4). The functional differences between SAT and VAT are not 

limited to differences in their adipocytes.  

WAT is a loose connective tissue containing mostly adipocytes but also non-adipocyte cells 

which are collectively termed the stromal vascular fraction (SVF). SVF includes 

mesenchymal stem cells, fibroblasts, immune cells, endothelial cells and red blood cells (5). 

SVF is a critical player in the adipose secretome (6) and displays differences in gene 

expression profiles compared to those of adipocytes from the same depot (7). Additionally, 

SVF derived from SAT display differences in their proteome (8), gene expression (9) and 

adipogenic capacity (10) compared to those derived from VAT.  

During the development of obesity, adipose tissue expands through both increased cell size of 

adipocytes (hypertrophy) and increased numbers of adipocytes. Excessive enlargement of 

adipocytes is believed to contribute to adipose dysfunction through release of pro-

inflammatory adipokines and fatty acids (11). Obesity is also associated with an increased 

number of adipocytes (12) and recent data have shown that this may occur through 

recruitment of stem cells from other sites, including bone marrow (13; 14). 

With the global rise in obesity rates, the anatomical distributions of fat and unique functions 

of VAT and SAT have assumed considerable medical significance. There are substantial 
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differences in gene expression in both depots in obese compared with normal weight subjects 

(15-19). Some of the obesity associated changes are down-regulation of lipolysis genes and 

up-regulation mitogen-activated protein kinases and inflammation genes which implies that 

obesity causes dysfunction in adipose tissue. Additionally, some studies have identified 

associations between DNA methylation and parameters of obesity in functionally important 

genes mainly in more accessible sample types such as blood, SAT or both (20-27). Most 

studies to date have been on whole tissue, and mostly on SAT, because VAT is 

accessible only through surgery under general anesthesia. However, adipocytes from different 

depots themselves also have distinct characteristics.  

Recently, we characterized the differences in gene expression (RNA-seq) and DNA 

methylation (Whole Genome Bisulfite Sequencing, WGBS) in purified subcutaneous and 

visceral adipocytes (SA and VA) from a core set of three lean (BMI 19.1 – 25.4)  and three 

obese (BMI 37.7 – 42.1) females (Bradford et al., unpublished). Comparing SA and VA of 

lean and obese subjects, transcriptional differences were primarily associated with 

extracellular matrix components and cell migration, angiogenesis, immune/inflammatory 

function, cytokine production and lipid metabolic processes. Extensive differences in DNA 

methylation between depots were associated with metabolic functions and a subset of 

differentially-expressed (DE) genes, but the strongest differential methylation was found at 

genes encoding transcription factors, particularly of developmental genes such as members of 

the homeobox (HOX) and T-box (TBX) families. This reflects the recent finding that visceral 

adipocytes (VA) arise, at least in part, from different developmental origins than 

subcutaneous adipocytes (SA) (28).  

Focusing on visceral tissue, we also identified major changes within the adipocyte 

populations of the core set of three obese compared with three lean subjects (Bradford et al., 

unpublished). The major transcriptional changes were associated with lipid metabolic 

processes, lipoprotein particle components, extracellular matrix, cell migration, angiogenesis 
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and growth factors. Again the strongest DNA methylation changes were associated with 

transcription factor and developmental genes.  

While the lean vs. obese comparison is powerful for delineating significant changes between 

the two extreme groups, obesity is a progressive phenotype, with greater health risks as one 

heads towards the higher-end of the scale. This raises the interesting question: Where along 

the obesity distribution do molecular signatures change from healthy to unhealthy in purified 

adipocytes or in adipose tissue?  

In this study, we explored genome-wide transcriptional changes associated with indices of 

obesity in VAT and VA of 26 females across a range of BMI (19-50 kg/m2) using linear 

regression analysis. These data allowed us to identify extensive differences in expression 

profiles and to distinguish those intrinsic to adipocytes from those reflecting changes in other 

cells in the tissue, particularly immune cells. We further explored how these changes relate to 

changes in DNA methylation in purified visceral adipocytes by undertaking targeted 

methylome mapping from the same set of subjects using Roche Nimblegen’s SeqCap Epi 

Target Enrichment approach (covering 30 Mb) (29). A schematic illustration of the study is 

provided in Figure 1. 
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2. METHODS 

2.1.Subjects 

26 female subjects meeting the selection criteria were recruited from February 2012 to 

November 2013 (Figure 2). All subjects underwent abdominal surgery at either St Vincent’s 

Hospital or Macquarie University Hospital located in Sydney. This study was approved by 

the Human Research Ethics Committee at both St. Vincent’s Hospital (H06/151 and 

SVH12/20) and Macquarie University Hospital (Ref: 5201300002). All subjects gave 

informed written consent to participate. The anthropometric and metabolic measurements of 

final subjects are summarized in Table S1. Because of potential impacts on the epigenome, 

we excluded subjects who were post-menopausal, current or recent smokers, those using anti-

depressant medication or who had undergone previous weight loss surgery. 

2.2.Sampling 

Blood and saliva samples were collected at the beginning of the surgery while visceral (VAT) 

and subcutaneous (SAT) adipose tissue was collected from the greater omental region and 

from the site of surgical incision respectively and snap frozen in liquid nitrogen.  Additional 

samples of SAT and VAT were weighed and minced with surgical scissors. For each gram of 

minced tissue, 2 mL of HEPES buffer containing 1.25 mg/ mL of Collagenase I (Sigma 

Aldrich, cat#C6885-1G) was added immediately. This was incubated for 30 – 45 min at 37ºC 

before being diluted 1:9 with additional HEPES buffer. The mixture was passed through a 

250 micron mesh before being centrifuged at 300 rcf for 6 minutes at room temperature. The 

top lipid layer was removed and the purified visceral and subcutaneous adipocytes (VA and 

SA) were collected for snap-freezing in liquid nitrogen. 

Blood was collected at the beginning of the surgery into 10 mL K2EDTA vacutainers (BD, 

cat#367525). Following centrifugation at 1,300 rcf for 10 minutes at room temperature, the top 

plasma layer was removed and the buffy coat layer collected. Cells were washed three times, 

with vigorous resuspension, in 10 mL Tris-EDTA buffer (100 mM Tris-HCl, 0.1 mM EDTA), 
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with pellets collected after centrifugation at 10,000 rcf for 10 minutes. The final pellet was 

resuspended in 500 µL of buffer and stored at -80ºC. 

2.3.RNA isolation 

VA or VAT samples (200-500 mg) were transferred into ice cold 3 mL of TRI-reagent 

(Sigma, cat#T9424), homogenized using a tissue disruptor (Kinematica AG, cat# PT120E) 

with 5mm probe (Kinematica AG, cat#PT-DA1207/2EC-E) at maximum speed. The 

homogenized samples were transferred to 2 mL tubes in aliquots of 1 mL and total RNA 

extraction was done as per the manufacturer’s protocol. On-column DNase digestion was 

performed on the eluate using the RNeasy Lipid Tissue Mini Kit (Qiagen, cat#74804). RNA 

quantity was determined by the Qubit RNA HS Assay using a Qubit Flurometer (Thermo 

Scientific, Carlsbad, CA, USA). RNA quality was determined by the Agilent RNA Nano 

Assay using 2100 Bioanalyzer (Agilent Technologies, Los Angeles, CA, USA). 

2.4.Whole Transcriptome Sequencing and Analysis 

Per subject, 500 ng of RNA (per each VAT and VA samples) was used to prepare RNA-seq 

libraries with rRNA depletion using Illumina TruSeq Stranded Total RNA Library Prep Kit 

by the Australian Genome Research Facility (AGRF). In total 54 libraries were multiplexed 

then run on 11 lanes of paired-end Illumina HiSeq2500 chemistry4 by the AGRF.  Two 

libraries prepared from VAT samples did not meet quality criteria and were excluded from 

further analyses. On average we obtained 25,362,601 and 19,744,199 reads per VA and VAT 

library respectively. 

The fastq files of all samples were processed using the NGSANE RNA-seq pipeline (30). We 

first used trimmomatic to remove potential adapter contamination (31). We then mapped the 

read to the reference genome UCSC_hg19 using TopHat (32) and annotation of known genes 

from gencode.v14. Reads were then counted for each gene using HTSeq-count (33). The 

differential expression analysis was performed using edgeR analysis pipeline (34). Statistical 

analysis to identify differentially-expressed (DE) genes was performed using a linear 
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regression model. Genes with a count per million (CPM) value less than 1 in half or more of 

the samples were filtered from the analysis. 

2.5.DNA isolation 

DNA from the VAT samples was extracted using the DNeasy Blood and Tissue Kit (Qiagen, 

cat#69504) following an amended protocol for total DNA from animal tissue. Briefly, 30 mg 

pieces of tissue were homogenised in 360 µL of ALT buffer using a Mini- beadbeater (Bio 

Spec Products, OK, USA) set at full speed for 2 minutes with a 5 mm stainless steel bead 

(Qiagen, cat#69989). 40 µL of Proteinase K (20 mg/mL) was added and the solution 

incubated at 56ºC overnight with constant shaking (350 rpm). Then, 400 µL of Buffer AL 

was added and this mixture was passed through a DNeasy Mini spin column. The adherent 

DNA was then washed with Buffers AW1 and AW2 and then eluted in 200 µL of Buffer AE. 

DNA from the VA samples was extracted using an in-house method. For every 200 – 500 µg 

of frozen sample, 1 mL of TP lysis buffer (Tris 50mM pH 7.5, NaCl 0.1M, SDS 0.5%, EDTA 

5mM) and 100 µL of proteinase K (20 mg/ mL, Promega, cat#V3021) was applied. This 

solution was then incubated 1.5 hours at 55ºC with constant shaking (350 rpm). The next day, 

after centrifugation at 2,000 rpm, the lipid layer was discarded and an equal volume of 

phenol: chloroform: isoamyl alcohol was applied. After centrifugation the aqueous phase was 

collected, 50 µg Glycoblue (Life Tech, cat#AM9515) added into 1 ml and DNA ethanol 

precipitated. After washing in 75% ethanol DNA was resuspended in 100 µL milliQ water. 

DNA quantity was determined by the Qubit DNA Assay using Qubit Flurometer (Thermo 

Scientific, Carlsbad, CA, USA). DNA was extracted from buffy coat extracts following the 

Gentra Puregene Blood Cell Kit (Qiagen, cat#158445). No RNase digestion was performed 

on the samples prior to SNP array library preparation. 

DNA was extracted from buccal cells following an in-house method. Approximately 3 ml of 

saliva was mixed with 7 ml of Listerine and dispersed via shaking. After centrifugation at 

2,700 rcf for 15 min, the pellet of cells were lysed in 2 ml of TP lysis solution (Tris 50mM 
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pH 7.5, NaCl 0.1M, SDS 0.5%, EDTA 5mM) and 100 µL of proteinase K (20 mg/ mL, 

Promega, cat#V3021) was applied. From this point on DNA samples were processed exactly 

as DNA isolated from VA samples. 

2.6.SeqCap Epi Target Enrichment Array Design 

We designed a 30 Mb capture system targeting specific genomic regions, based on our depot 

or obesity-associated Differentially-Methylated Regions (DMRs) and publically available 

studies.  SeqCap Epi Target Enrichment array probes (60 – 70 bases) were designed against a 

set of regions covering ~1% of the genome. The selection of regions is listed in Table 1 and a 

full list is available as separately downloadable supplementary file. 

2.7.SeqCap Epi Target Enrichment Array Sequencing and Analysis 

1 µg DNA derived from the VA samples was sheared to range between 180-220 bp. Barcoded 

genomic libraries were prepared using the Kapa LTP Library prep kit (KAPA Biosystems, 

cat#KK8230, Boston, MA, USA) from 21 subjects of varying BMI. After bisulphite-

treatment of libraries with EZ DNA Methylation-Lightning Kit (Zymo Research, cat#D5030, 

Irvine, CA, USA), the single-stranded bisulfite DNAs were amplified in low-melting PCR 

reaction for 13 cycles using KAPA HiFi HotStart ReadyMix (provided in the library kit) as 

per manufacturer’s instructions. SeqCap Epi Target Enrichment Array was carried out as per 

the Roche Nimblegen’s SeqCap Epi Target Enrichment protocol. Along with 21 samples, 

DNA isolated from LNCaP and PreC cell lines were prepared as control sample libraries. The 

size distribution of the final libraries was visualized using Agilent DNA 1000 Assay in 2100 

Bioanalyzer (Agilent Technologies, Los Angeles, CA, USA) using the manufacturer’s 

protocol.  Libraries were multiplexed in groups of 4 and sequenced as a 100bp paired end 

Rapid run on a V1 flow cell on HiSeq2500. On average 50% of reads obtained were on target 

with coverage ranging between 150-250x for different subjects.  

Table 1: Summary of final SeqCap Epi Target Enrichment Array design for obesity 

associated Differentially-Methylated Regions (DMRs). 
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Description: Min 

Length 

(bp): 

Final 

Size 

(Mbp): 

Relevant studies or 

databases: 

DMRs identified using DNA methylation array (450K) data: 

1. VA vs SA in 3 lean individuals 500 2.89 (Bradford et al., 

unpublished) 

2. Lean VA vs obese VA (5 vs 5 individuals) (Bradford et al., 

unpublished) 

3. D0 pre-adipocytes vs D14 mature 

adipocytes across SGBS adipogenesis 

(Varinli et al 2017, 

unpublished) 

4. BMI associated DMRs in buccal cells  (Varinli et al., 

unpublished) 

DMRs identified using WGBS data: 

1. VA vs SA in 3 lean individuals: DMRs 

with a stringent t-stat=4 and Δ-me > 0.4 

500 0.24 (Bradford et al., 

unpublished) 

2. Lean VA vs obese VA:  

DMRs with t-stat=3 and Δ-me > 0.1  

500 11.59 

Adipocyte distal enhancer elements as low-methylated regions (LMRs) identified using 

WGBS data: 

1. LMRs overlapping with FANTOM5 

enhancers (35) or co-ordinates from open 

chromatin regions of Transposase 

Accessible Chromatin with Sequencing 

(ATAC-seq) performed on lean and obese 

visceral and subcutaneous progenitor cells  

400 9.59 (Bradford et al., 

unpublished) 

2. LMRs with no overlap 200 10.02 

Obesity associated Differentially Methylated 

Probes (DMPs) identified in adipose tissue 

200 2.29 EWAS studies (36-39)  

2,248 unique SNPs identified in GWAS 

associated with obesity parameters 

200 0.45 NHGRI-EBI SNP 

Catalog (40) 
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2.8.450K Methylation Array Library Preparation and Analysis 

We used Illumina Infinium HumanMethylation450 BeadChip (450k) arrays to map the 

genome-wide DNA methylation patterns of DNA from buccal cells or white blood cells. A 

total of 26 buffy coat and 27 buccal cell samples were submitted to the Australian Genome 

Research Facility (Parkville, VIC, Australia), randomized across the array chip and processed 

following standard protocols. 

Data were normalized using the dasen method from the Bioconductor software package 

wateRmelon (41). Probes that failed in one or more of the nine remaining samples based on a 

detection p-value>0.05 were excluded from the analysis. Mean beta values per sample were 

calculated for all probes on the array, as well as for subsets of probes based on their genomic 

annotation according to the 450k manifest file. The Welch t-test was used for comparison of 

mean methylation levels between the groups. Differentially Methylated Probes (DMPs) and 

differentially Methylated Regions (DMRs) were identified using the Bioconductor packages 

limma (42) and DMRcate v 1.4.2 (43) respectively, using FDR<0.05.  

2.9.SNP Array Analysis 

Using DNA derived from the buffy coat samples of each subject, Genome-wide human SNP 

array 6.0 (Affymetrix, cat#901182) were carried out as per the Affymetrix protocol and run 

on GeneChip Fluidics Station 450.  
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3. RESULTS 

3.1.Anthropometric and metabolic characteristics of the study cohort 

Clinical characteristics, anthropometric or metabolic indices of obesity of the subjects 

included in the current study are shown in Table 2. Anthropometric measures included 4 

measurements: BMI; waist circumference; hip circumference; and waist to hip ratio (WHR). 

Seven metabolic measures included: level of total cholesterol; triglyceride; fasting glucose; 

insulin; glycated hemoglobin (HbA1c); low-density lipoprotein cholesterol (LDL); and 

homeostatic model assessment of insulin resistance (HOMA-IR). The participants in the 

study were aged between 21 and 54 with broad ranges of anthropometric and metabolic 

indices (Table 2). 

3.2. BMI associated gene expression differences in purified visceral adipocytes (VA) 

Whole transcriptome RNA-seq (30-60 million reads per sample) was done on VA and VAT 

RNA from a total of 26 and 24 female subjects respectively across the BMI range (Table S2 

and S3).  Table 3 summarises the number of significant DE genes associated with 

anthropometric and metabolic measures. We first explored the overall gene expression 

changes associated with BMI in purified VA, using component analysis (CA). The CA plot 

showed that there was a strong association with BMI for gene expression in purified VA, with 

a clear trend in the first two CA dimensions (Figure 3A). Linear regression analysis showed 

that expression of a surprisingly high number of genes (5,984) was significantly associated 

with BMI (FDR<0.05) (Table S2) and nearly all were up-regulated with increasing BMI 

(Table 3). Comparison with the 402 DE genes identified in the core 6 subjects showed that 

342 (85%) were validated in our expanded dataset. A plot of regression coefficients (B-value) 

of these overlapping genes against their log fold change (logFC) in the earlier comparison of 

VA of three normal weight and three obese subjects (Bradford et al., unpublished), shows 

high concordance with the expanded number of subjects (R2= 0.89, Figure 3B). 
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A heat map illustration of top 40 genes with the highest change in expression in VA is shown 

in Figure 4A. The top differentially-expressed (DE) genes were involved in secretory 

functions (GREM1, LEP, SCUBE1, CCND1, SELE and IGSF1). While lean subjects have 

similar expression profiles, class I and II obese subjects (30<BMI<38) have more variable 

expression profiles (Figure 4A). At the upper end of the scale, severely obese subjects have 

similar expression profiles in VA (Figure 4A). Of the most differentially-expressed genes, 

Tenomodulin (TNMD), expressing a putative angiogenesis inhibitor, had the highest change 

in gene expression (B-value=0.205, FDR=6.74e-9) (positively associated with BMI) across 

the cohort. The regression coefficient (B-value) of 0.205 translated to The regression 

coefficient (B-value) of 0.205 translated to a difference in gene expression between the top 

and bottom third ranging from 4.8 to 122.7 rpkm (reads per kilobase per million reads). To 

avoid the effect of outliers we report the range between 3rd lowest and 3rd highest expressing 

individuals. Notably a single gene in the top list of DE genes, carbonic anhydrase 3 (CA3), 

showed clearly reduced expression even in moderately obese subjects (B-value= -0.164, 

range= 16.8-976.7 FDR=2.47e-7) (Figure 4A). 

Table 2: Obesity associated anthropometric and metabolic characteristics of the study 

participants.  

Key Parameters Mean Range 

Anthropometric indices (n=26): 

BMI (kg/m2) 33.55 19.1-49.8 

Waist circumference (cm) 111.58 77-149.5 

Hip circumference (cm) 120.17 89.5-146.5 

WHR 0.92 0.8-1.0 

Metabolic indices (n=24): 

Total cholesterol (mmol/L) 4.38 3.4-6.7 

Triglyceride (mmol/L) 1.15 0.4-2.3 

Fasting Glucose (mmol/L) 5.05 3.8-8.1 

Insulin (mU/L) 8.15 0.5-23.0 

HbA1c (%) 5.20 4.4-6.6 

LDL (mmol/L) 2.53 1.7-4.6 

HOMA-IR 1.98 0.1-8.2 

Other measures:   

Age (yrs) 41 21-54 
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Table 3: Summary results of differentially expressed genes associated with obesity 

parameters in VA and VAT. (*) Correlation is calculated as the slope of the regression fit per 

gene. It is reported as DE genes were significant at FDR<0.05. 

Key Parameters  

VA VAT 

# of 

Subjects 

Total number of 

DE genes* 

# of 

Subjects 

Total number of DE 

genes* 

BMI (kg/m2) 

26 

5,984 

24 

572 

UP: 5,836 (1) 443 (4) 

DOWN: 148 129 (0) 

Waist (cm) 

26 

5,419 

24 

337 

UP: 5,292 (0) 245 (0) 

DOWN: 127 (0) 92 (0) 

Hip (cm) 

26 

6,467 

24 

418 

UP: 6,362 (0) 328 (0) 

DOWN: 105 (0) 90 (0) 

WHR 
26 

 

15 
24 

 

24 

UP: 9 (9) 13 (13) 

DOWN: 6 (6) 11 (11) 

Total cholesterol 

(mmol/L) 
24 

1 

23 

2 

UP: 1 (1) 0 

DOWN: 0 2 (2) 

Triglyceride 

(mmol/L) 
24 

1 

23 

0 

UP: 1 (1) 0 

DOWN: 0 0 

Fasting Glucose 

(mmol/L) 
24 

46 

23 

12 

UP: 21 (21) 2 (2) 

DOWN: 25 (25) 10 (10) 

Insulin (mU/L) 

24 

25 

23 

6 

UP: 24 (0) 2 (0) 

DOWN: 1 (0) 4 (0) 

HbA1c (%) 

24 

78 

23 

5 

UP: 54 (54) 3 (3) 

DOWN: 24 (24) 2 (2) 

LDL (mmol/L) 

23 

1 

22 

0 

UP: 1 (1) 0 

DOWN: 0 0 

HOMA-IR 
24 

 

87 
23 

 

0 

UP: 75 (67) 0 

DOWN: 12 (12) 0 

3.3. General analysis of GO pathways in BMI related genes found in VA 
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In VA, Gene Ontology (GO) analysis found 653 terms associated with BMI using cut-off of 

FDR<0.05 for terms with a size range of 15≤x≤500 genes (Tables 4 and S4). Pathways 

involving vesicle formation, vesicle transport, cell migration and cellular organisation were 

among the most enriched terms associated with BMI in VA (Table S4). We then applied 

REViGO (44) to remove the redundant GO terms and summarise to major classes.  The 

unique categories (with low dispensability and frequency) were antigen processing (log10p = 

-10.2), Golgi vesicle transport (log10p = -3.9), angiogenesis (log10p = -7.8), tissue migration 

(log10p = -7.8) and response to virus (log10p = -7.3) (Figure 5A). Multiple signalling and 

stress pathways such as Wnt, Notch, MAPK, NF-κB, oxidative stress and DNA damage 

pathways were categorised under actin cytoskeleton organization by REViGO because it 

relies on semantic relationship for clustering. These pathways have strong regulatory 

functions in adipocytes. Surprisingly, immune pathways such as antigen processing and T-

cell mediated cytotoxicity were also enriched in isolated VA (Figure 5A). This might be 

indicative of reduced purity of the VA samples perhaps more so in those isolated from obese 

donors. In summary, these findings suggest an enrichment of GO processes involving 

transport of products, tissue functions and immune response and reflect our gene level finding 

that top BMI associated genes in VA are involved in secretory functions (Figure 5A). 

Table 4:  Summary results of GO terms associated with obesity parameters in VA and VAT. 

(*) FDR<0.05 was applied for terms with a size range of 15≤x≤500 genes. (**) GO terms 

unique to VAT were determined by using DE genes unique to VAT compared to VA. 

 

Key Parameters 

Total number of GO terms* 

VA VAT VA specific* VAT specific** 

BMI (kg/m2) 653 75 555 0 

Waist (cm) 473 163 419 5 

Hip (cm) 546 38 489 4 
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3.4. Correlations and differences between genes associated with BMI and other 

obesity-related measures in VA 

3.4.1. Other anthropometric measures 

Anthropometric measures correlate with increased adiposity. Linear regression analysis 

showed that expression of high number of genes, were also significantly associated with waist 

(5,419) and hip circumference (6,467) in VA (Table 3 and S2). SPP1 and GREM1 were the 

top DE genes associated with hip and waist circumference in VA respectively. Over 96% of 

the genes associated with BMI were also associated either with waist or hip circumference 

(Figure 6A). In fact, the similarity was also prominent in the ranking of DE genes (Table S2). 

Additionally, significant overlap was observed between BMI associated GO-terms and their 

waist or hip circumference associated counterparts (473/653 and 546/653 respectively) (Table 

S4). The highest number of unique genes was associated with hip circumference (607) 

(Figure 6A).  

A much smaller number of genes (15) were found to be associated with WHR in VA (Table 3 

and S2). All of them were also correlated with the other anthropometric indices obtained in 

the study. Interestingly some were among the top genes in our study (i.e. CISH, C6, ISL1, 

BMP and SELE) and they were previously found to be associated with obesity related 

outcomes (Table 5). 

3.4.1. Metabolic measures  

Metabolic indices indicate elevated cardio-metabolic risk (45). Among the seven metabolic 

indices obtained in this study, four were directly related to glucose metabolism (HOMAIR, 

fasting glucose, insulin, HbA1c) while others were related to lipid metabolism (triglyceride, 

LDL and total cholesterol) (Table 3 and S2).  

The highest number of genes (87 genes in VA) was associated with HOMAIR, an indicator 

for insulin resistance which included the 35 genes associated with either HbA1c or fasting 

glucose (Table 3 and Figure 6B). Most of these genes were clusters of differentiation 

molecules such as CD14, CD163, CD28, CD33 and CD248. Three genes (VIPR2 also known 
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as VPAC2, MUC16 and C4A), expressed in VA, were associated with all four glucose 

metabolism indices. VIPR2 encodes a receptor and involved in cAMP pathway was among 

the most highly expressed genes associated with metabolic indices. 

There was a single gene associated with blood triglyceride levels: thyroid peroxidase (TPO), 

a membrane glycoprotein which plays a central role in thyroid gland function, and its 

expression (B-value= 1.30, FDR= 0.044) was positively associated with serum triglyceride 

levels. Additionally, B4GALT6, the only gene positively associated with increased blood 

levels of LDL and total cholesterol, encoded a membrane glycoprotein that is important for 

glycolipid biosynthesis.  

Table 5: Genes that were associated with WHR and other anthropometric indices in VA 

which have previously been linked to obesity. 

Gene ID: B-value: FDR Associations: Reference: 

ITGA8 0.124 5.17 e4 

Highly repressed in  differentiated human 

adipocytes  

(46) 

CISH -0.133 5.47e-7 

Expression of CISH is decreased with 

diabetes in mice 

(47) 

C6 -0.129 7.66e-7 

Up-regulated under very low caloric intake 

and down-regulated under fast food diet 

(48) 

ISL1 -0.088 9.15e-4 Inhibitory effect on BMP4  (49) 

BMP3 -0.112 2.15e-3 

BMP3 expression was up-regulated in rat 

model of hyperplasic visceral adiposity 

(50) 

SELE 0.143 2.32e-4 

In extreme obese individuals, SELE 

expression was found to be higher in SAT 

than VAT 

(3) 

IL-6 0.132 8.78e-5 

Increased in obesity and strong predictor of 

abnormalities in adipocyte metabolism: i.e. 

Trans-signalling recruits macrophages to 

adipose tissue 

(51; 52) 

ICAM4 0.134 7.37e-5 

Expression decreased with weight loss in 

women 

(53) 

HOXB9 0.115 1.41e-6 

Used as a negative control chromosomal 

location for LMNA binding site study 

(54) 

 

 

3.5. Obesity associated gene expression differences in visceral adipose tissue (VAT) 
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This study comprises of transcriptional profiles of VA and VAT from the same individuals. 

This allowed us to examine the unique roles of adipose tissue as a whole and non-adipocyte 

component of VAT. The non-adipocyte component of VAT is dynamic including cells such 

as mesenchymal stem cells, fibroblasts, immune cells, endothelial cells and red blood cells. 

These cell types have significantly different gene expression profiles than adipocytes and 

both their expression profiles and their relative proportions in the tissue may vary with 

obesity. 

Component analysis showed that there was an association with BMI for gene expression in 

VAT, with a detectible trend in the first two CA dimensions (Figure 3C). However, this was 

not as pronounced as for purified adipocytes (Figure 3A and 3C). Similar to VA, linear 

regression analysis showed the highest number of DE genes, over 500 genes, associated with 

BMI, waist and hip circumference in VAT (Table 3 and S3). There was a significant overlap 

(76%) between BMI and waist or hip circumference associated genes (Figure 6C). The 

majority of the DE genes in VAT (82-78%) associated with BMI, waist and hip 

circumference were in common with VA (Figure 7A, B and C). Therefore, adipocytes are the 

main contributor to the gene expression profiles of VAT. 

A heat map illustration of top 40 genes with the highest change in expression in VAT shows 

more variable expression, especially among overweight individuals when compared with that 

of VA (Figure 4B). The transcriptional profile of visceral adipose tissue (VAT) varies greatly 

among individuals, probably due its heterogeneous cellular composition. For most genes, 

expression increased with BMI, with only 6 in the top list of DE genes (ANKRD20A8P, 

C12orf39 (Spexin), RP11-61I13.3, SLC27A2, C6 and CA3) showing clearly reduced 

expression with increasing BMI (Figure 4B). 

We compared the regression coefficients with respect to BMI of all genes that reached the 

minimum read count threshold in VA and VAT (Figure 3D). This plot shows that the 

majority of the genes showed similar BMI-related changes in tissue and isolated adipocytes; 
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notably, however, a subset of genes (shown in green) showed much greater changes in VAT. 

In VAT, GO analysis found 75 terms associated with BMI, 163 with waist circumference and 

38 with hip circumference (Tables 4 and S4). There was a significant similarity between BMI 

associated GO-terms and its waist or hip circumference associated counterparts (Table S4). 

When the redundant GO-terms associated with BMI were reduced using REViGO, small 

molecule biosynthetic processes, response to substances such as steroid hormones and 

alcohol, circulatory system processes and leukocyte proliferation (oxidative stress, cell 

migration) were among the unique pathways associated with obesity measures in VAT 

(Figure 5B). 

Among metabolic measures, the highest number of genes (12 genes in VAT) was associated 

with fasting glucose levels in the blood (Table 3 and S3). Of these genes, SAA2 and TUBB2A 

had increased expression associated with increased levels of fasting glucose. GSDMB was the 

only gene associated with fasting glucose and HbA1c (Figure 6D). No genes were 

significantly associated with triglyceride, LDL and HOMA-IR levels in VAT (Table 3). 

3.6. Unique signatures of VAT that may not be contributed by VA 

To understand the relative significance of genes that are predominantly contributed by the 

non-adipocyte cells in VAT, we made two comparisons. Firstly, we applied a direct 

comparison of mean gene expression values between VA and VAT to identify genes that are 

expressed significantly higher in VAT. We have identified 641 genes that were enriched 5-

fold or higher in VAT (Table S5). GO analysis of these highlights functions of the immune 

system (phagocytosis, B- and T-cells function), as well as extracellular matrix organisation, 

neurogenesis and circulatory system development Of the 641 genes, 38 were significantly 

associated with BMI in VAT (Table 6). These genes were heavily represented by genes of the 

immune system (monocyte and macrophage lineages). 

Secondly, we compared DE genes identified in VAT to those found in VA. When DE genes 

associated with BMI, waist or hip circumference or WHR were cross-compared between the 
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two sample types, we found genes unique (varying between 19-128 genes per parameter) to 

VAT (Figure 7A, B, C and D). We conducted GO analysis on DE genes unique to VAT 

(Table 4 and S4). There were no significant GO pathways associated with BMI and specific 

to VAT. However, catabolic processes were associated with both waist and hip circumference 

and also specific to VAT (Table S4). To highlight differences in biological pathways 

associated with anthropometric measures of obesity, we summarised the genes expressed in 

VA and only in VAT using WebGestalt and illustrated the results in Figure 8A and 8B 

respectively. Most of the genes highlighted in these figures have been previously associated 

with obesity. 
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Table 6: List of 38 genes that have mean gene expression level (MGEL) 5-fold or higher in 

VAT compared to VA. This indicates a list of genes potentially expressed by non-adipocyte 

cells.  Regression coefficient (B-value) and FDR are reported from BMI association in VAT. 

Gene ID: 

MGEL in 

VAT:  

MGEL in 

VA: Ratio: 

BMI  

B-value: FDR: 

IGKV4-1 24.481 1.070 23.559 10.049 0.0002 

IGHM 20.154 1.710 14.563 8.535 0.0007 

IGHA1 32.340 2.781 14.161 6.909 0.0013 

WIF1 18.004 1.685 13.209 11.381 0.0017 

IGKV1-5 11.653 1.083 11.366 7.349 0.0011 

IGJ 77.745 9.002 10.595 5.884 0.0068 

IGLC2 20.370 2.274 10.233 6.638 0.0181 

IGHG3 12.732 1.526 10.125 4.474 0.0223 

IGHGP 6.616 0.813 9.708 6.406 0.0016 

IGHA2 3.558 0.362 9.518 6.001 0.0166 

IGKV3-11 9.109 0.927 9.409 5.327 0.0233 

IGHG2 26.728 3.576 9.299 5.134 0.0100 

IGHG1 108.443 14.837 9.242 4.355 0.0166 

IGKV3-20 12.832 1.538 9.006 6.535 0.0035 

IGLC3 15.809 2.073 8.733 5.889 0.0062 

KCNH5 2.588 0.400 7.998 4.668 0.0438 

IGHV1-18 3.034 0.180 7.502 9.773 0.0030 

IGLV2-14 4.499 0.481 7.283 5.299 0.0160 

IGHV4-39 2.956 0.232 7.170 7.094 0.0145 

IGHV4-34 2.334 0.134 6.956 9.367 0.0026 

IGKV1-27 3.013 0.237 6.916 7.219 0.0260 

PRR15L 2.306 0.405 6.699 4.068 0.0475 

IGHV1-2 3.467 0.413 6.653 10.307 0.0006 

IGLV3-21 2.006 0.219 6.566 6.882 0.0168 

IGHV3-7 5.191 0.768 6.544 6.485 0.0076 

TRPA1 3.621 0.584 6.104 6.029 0.0004 

DIAPH3 4.075 0.902 5.830 4.773 0.0389 

FENDRR 1.498 0.236 5.634 3.445 0.0429 

KRT7 23.179 5.295 5.567 3.531 0.0195 

FAM196B 1.920 0.406 5.563 3.845 0.0318 

IGLV1-44 2.217 0.283 5.552 5.829 0.0270 

MZB1 2.083 0.342 5.471 5.024 0.0172 

IGHV3-23 6.328 1.252 5.238 5.057 0.0082 

IGLV3-19 2.834 0.413 5.235 5.688 0.0372 

IGKV1-9 2.763 0.419 5.226 6.160 0.0164 

NAPSB 2.247 0.471 5.132 3.071 0.0163 

MPZL2 6.965 1.635 5.131 2.434 0.0456 

COL17A1 2.476 0.523 5.070 5.049 0.0264 

189



 

DISCUSSION 

The majority of the obesity indices used in this study were highly associated with gene 

expression changes, particularly in purified VA. BMI, waist and hip circumference, WHR, 

HbA1c and HOMA-IR were all strongly associated with gene expression in VA. There were a 

surprisingly high number of genes associated with BMI in VA. This study showed that gene 

expression profiles of VAT and changes with obesity are mainly contributed by the 

adipocytes. Linear regression analysis of VAT gene expression profiles only identified 1/10th 

of the number of statistically significant DE genes as in VA. The number of significant DE 

genes in VAT might be low due to greater variability between individuals. This might be 

indicative of heterogeneity in cellular composition of VAT (ratio of different cell types). 

Hence, purification of adipocytes provided significant advantages to the study outcomes. In 

particular, we noted a significant transition in the gene expression profiles of VA in 

individuals with a BMI of 32 kg/m2 or higher. This might be indicative of a metabolic 

threshold for potential health risks. 

Many of the differentially expressed genes, such as GREM1, ISL1 LEP, TNMD and 

B4GALT6, are already recognized in the literature. These genes are involved in adipogenesis, 

vesicle transport and signalling pathways (insulin, leptin, inflammatory and TNF) (Figure 

8A). Previously, TNMD expression has been reported to be significantly higher in obese 

subjects compared to lean subjects in both subcutaneous and visceral adipose tissue (55). 

PITX2 has been reported to be highly expressed in adipose stem cells of obese individuals 

(56). Additionally, expression of both TNMD and B4GALT6 were previously found to be 

down-regulated with weight loss (57). Our study showed that both TNMD and PITX2 

expression in adipose tissue is largely contributed by adipocytes.  We also found that 

B4GALT6 expression in VA was positively associated with increased blood levels of LDL 

and total cholesterol.  
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Additionally, we identified some genes that have been recently discovered such as Spexin, a 

peptide hormone that is highly down-regulated in human visceral and subcutaneous fat in 

obesity (58). This study showed that its expression is mainly contributed by the adipocytes. 

These findings provide additional support for the potential role of adipocyte secretion and 

signalling in the pathogenesis of obesity, in agreement with previously published studies (59-

61). In summary, our data are highly concordant with previously published studies. 

Therefore, it is worth examining the top genes that have not been previously considered in the 

context of obesity and metabolic diseases.  

In conclusion, the gene expression data establish that purification of adipocytes allowed 

identification of adipocyte specific expression signatures. This provides a resource for better 

understanding metabolic changes in obesity that may relate to adverse health outcomes. 

Further studies on transcriptional regulation of the non-adipocyte component of VAT will be 

important for understanding the mechanism by which immune cells manifest metabolic 

alterations in adipose tissue. 
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Figure 1: Schematic design of the study. In total, 26 females across a range of BMI (19-50 
kg/m2) who were undergoing abdominal surgery were recruited for the study. Visceral 
adipose tissue (VAT), visceral adipocytes (VA), peripheral blood and saliva samples 
were collected.
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 Figure 2: Selection process of individuals included to the study.
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Figure 3: A. Component  Analysis (CA) plot of RNA-seq transcription profiles of 26 VA 
from females across a range of BMI*, B.  A plot of regression coefficients of the 342 DE 
genes against their logFC in the core 6 subjects (Bradford et al., unpublished) and our 
comparison of VA  in 24 subjects, C. CA plot of RNA-seq transcription profiles of 24 
VAT from females across a range of BMI* and D.  A plot of regression coefficients of all the 
genes in our comparison of VA in 26 subjects and VAT in 24 subjects.
*The colour gradient from red to purple is indicative of BMI increase.
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Figure 4: Heat map illustration of differences in gene expression of top 40 DE genes with highest 
change in A. 26 VA samples and B. 24 VAT in lean and obese donors (left to right respectively).
Red/green scale is from highest to lowest expression scaled separately for each gene.
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Figure 5A: REVIGO Treemap illustration of biological processes of GO terms significantly associated with BMI in VA. In total there were 
653 GO terms significantly associated with BMI in VA. The distribution was as follows: 510 in Biological Processes, 88 in Cellular 
Component and 55 in Molecular Functions.
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Figure 5B: REVIGO Treemap illustration of biological processes of GO terms significantly associated with BMI in VAT. In total, there 
were 75 GO terms significantly associated with BMI in VAT. The distribution was as follows: 67 in Biological Processes, 2 in Cellular 
Component and 6 in Molecular Functions.
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Figure 6: Venn diagrams of differentially expressed (DE) genes associated with A. BMI, waist 
and hip circumference in VA, B. HOMA-IR, HbA1c and fasting glucose in VA, C. BMI, waist 
and hip circumference in VAT and D. Insulin, HbA1c and fasting glucose in VAT. The number 
of genes that are not DE in any of the comparisons are indicated in right bottom corner.
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Figure 7: Venn diagrams of differentially expressed (DE) genes in VA and VAT, associated 
with A. BMI, B. waist circumference, C. hip circumference and D. WHR. The number
of genes that are not DE in any of the comparisons are indicated in right bottom corner.
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Figure 8A: Summary of 6,811 VA unique DE genes associated with anthropometric 
measures of obesity contributing to enriched pathways determined by WebGestalt 
Wikipathways analysis  (FDR<0.05). In total 145 pathways were significantly enriched.
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Figure 8B: Summary of 170 VAT unique DE genes associated with anthropometric measures 
of obesity contributing to enriched pathways determined by WebGestalt Wikipathways 
analysis  (FDR<0.05). In total 21 pathways were significantly enriched.
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DISCUSSION AND CONCLUSION 

The worldwide prevalence of obesity and Type 2 Diabetes (TD2) has continued to rise 

rapidly. Obesity threatens to shorten the life expectancy and reduce health-related life quality 

of current and future generations. It places a significant economic burden on healthcare 

systems. A better understanding of factors contributing to the development, growth and 

regulation of fat cells may help us to understand triggers for the progression of obesity and 

regulation of lipid storage. These are also essential to improve prevention and treatment 

strategies of obesity.  

Primary cause of obesity is excessive total body fat due to excessive lipid storage and altered 

lipid mobilization by fat cells. Accurate measurement of lipid storage capacity of fat cells is 

important for exploring lipid dynamics. My PhD thesis describes a novel label-free lipid 

droplet quantification technique to monitor fat accumulation in live adipocytes (Chapter 2). 

This tool also provides an ease to determine the effect of anti-obesogenic therapeutics on 

adipocytes. 

Obesity is associated with hyperglycemia, likely due to impaired suppression of hepatic 

glucose production in response to insulin (insulin resistance). This thesis investigates the 

potential role of epigenetics as a mediator of gene-environment interactions, manifesting 

functional changes in fat cells that might be targeted to improve obesity prevention and 

treatment strategies. Chapter 1 provides insight to the physiological, metabolic, 

transcriptional and epigenetics trajectories during human adipocyte differentiation, 

particularly under high glucose exposure. 

Adipose tissue is an accessible and rich source of multipotent stem cells. Adipose-derived 

stem cells (ADSCs) can be isolated from subcutaneous adipose tissue via minimally invasive 

procedures (32, 162). Therefore, they are good resources for studying adipocyte 

differentiation in vitro. In fact, some commercial companies provide vials of human ADSCs 

and proprietary medium. Commercially available ADSCs are, however expensive, and 

difficult to source visceral and subcutaneous ADSCs from the same individuals or even from 
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individuals with similar health records. Additionally, there is no standard in vitro culture for 

ADSCs and often they are exposed to various culture conditions with varying durations of 

exposure to adipogenic agents (163). Human ADSCs tend to lose proliferative response in the 

later passages (>14 passages) (164). When needed in large quantities (i.e. for drug testing), 

primary adipocytes do not provide a useful model system (165). Additionally, their 

abundance and capacity for differentiation greatly vary among fat depots and donors with 

different adiposity level and sex (62, 166, 167).  

On the other hand, the human SGBS pre-adipocytes derived from subcutaneous adipose tissue 

are relatively homogeneous with high differentiation capacity yet they are not immortalized 

(80). Therefore I used these cells as an adipocyte differentiation model. 

1. Novel method to quantify lipid accumulation  

My initial work focused on measuring physiological response of SGBS human pre-adipocyte 

cells to external stimuli during in vitro differentiation. In particular, I investigated changes in 

lipid accumulation due to potential anti-obesogenic (docosahexaenoic acid (DHA) and 

rosiglitazone) and pro-obesogenic substances (D-glucose and zinc oxide nanoparticles). This 

was achieved by the development of a novel method named LipiD-QuanT published in 

Journal of Lipid Research (168). 

Accurate measurement of lipid accumulation in vitro permits insights into physiological and 

pathological processes. LipiD-QuanT is a label-free lipid droplet (LD) quantification 

technique to monitor lipid dynamics, based on automated image analysis of phase contrast 

microscopy images. It does not require dedicated culture plates to measure lipid content and 

hence permits reuse of cells for other biological or morphological measurements. 

Furthermore, its application is not limited to a specific cell or organism and it can be adapted 

to quantify lipid content in tissue sections and emulsions.  

In Chapter one, I demonstrated that LipiD-QuanT is a robust, non-destructive, time and cost 

effective method compared to other triglyceride accumulation assays used for in vitro 

differentiation studies. Therefore, LipiD-QuanT is an improvement for quantifying lipids, not 
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necessarily only in adipocytes.  To date, this is the only label-free and freely available 

software to study lipid droplet dynamics. The major limitation of the current version of 

LipiD-QuanT is that it is applicable to quantify lipid droplet size in images of cells in culture, 

but not in images of tissue sections. It would be worthwhile to extend its application to tissue. 

This would require optimising parameters to determine the lipid droplet edges when their 

shapes are not round, but would allow droplet analysis on sections prepared for techniques 

such as immunofluorescence and immunohistochemistry. 

2. Perspectives on in vitro human adipogenesis studies  

2.1. SGBS pre-adipocyte cellular model 

Chapter 1 also demonstrated that Simson-Gobali-Behmel Syndrome (SGBS) pre-adipocytes 

provide an excellent and easy-to-use in vitro model to study human adipogenesis. SGBS 

adipogenesis was highly reproducible and provided an inexpensive model to study the 

potential effects of substances with anti-obesogenic (docosahexaenoic acid (DHA) and 

rosiglitazone) and pro-obesogenic (D-glucose and zinc oxide nanoparticles) properties. I 

showed that 2 μmol/L rosiglitazone treatment during adipogenesis reduced lipid production 

and caused a negative shift in lipid droplet diameter size distribution, while other treatments 

showed no effect under the conditions used.  

In addition to the easy-to-use properties of SGBS pre-adipocytes as a model, Chapter 2 

demonstrated that human SGBS pre-adipocyte cells had similar gene expression 

characteristics to isolated primary human adipocytes. Chapter 2 was the first comprehensive 

study on human SGBS cell lines to date, combining comprehensive genome-wide analysis of 

both transcriptome and DNA methylome.
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2.2. Other available human adipocyte cellular models 

Experimental alternatives to SGBS pre-adipocytes are scarce. Unfortunately, there are only a 

handful of human cell lines that are available to study adipogenesis in vitro (Table 3). These 

cells are derived from either subcutaneous or brown adipose depots or cancerous tissue types. 

Among subcutaneous adipose tissue-derived human pre-adipocyte cell lines, the SGBS cell 

line is the only one that is neither transformed nor immortalized. Its capacity for sustained 

culture does suggest that the underlying mutation in the child from whom the cells were 

derived partially relieves growth constraints. There are a few connective tissue derived pre-

adipocyte cells lines, however all these originated from adults with liposarcoma (LS14, Lisa-

2 and SW872).  

Table 3: Available models to study human adipogenesis in vitro. 

Cell line name: Depot origin: Details: Reference:  

SGBS Subcutaneous 

adipose tissue 

Infant with Simpson-Gobali-

Behmel Syndrome 

Pre- and post-natal overgrowth 

(169) 

Chub-S7 Subcutaneous 

adipose tissue 

Immortalization via retroviral 

infection (TERT and HPV E7) 

Darimont, 2003 

#202} 

FTO-deficient 

SGBS 

Subcutaneous 

adipose tissue 

Complete knockdown 

of FTO in SGBS cells 

(170) 

LS14 cells Connective tissue 52-yr-old man with a recurrent 

liposarcoma 

(171) 

Lisa-2 Connective tissue 53-yr-old man with 

retroperitoneal liposarcoma 

(172) 

SW872 Connective tissue 36-yr-old man with a recurrent 

liposarcoma 

ATCC 

(Rockville, MD) 

HPB-AML-I Peripheral blood 

mononuclear cells  

A patient with acute myeloid 

leukaemia 

(173) 

PAZ6 Brown adipose 

tissue 

From an infant 

Immortalization via simian 

virus 40 t and T antigen gene 

injection 

(174) 

Shingo Brown adipose 

tissue 

From supraclavicular of 30 and 

43-yr-old lean subjects. 

Immortalized as for PAZ6. 

(175) 
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2.3. Advantages of the establishment of SGBS pre-adipocyte like model 

derived from visceral adipocytes 

While visceral adiposity is linked with metabolic alterations, including insulin resistance, 

subcutaneous adiposity is known to be benign and to protect against metabolic dysfunctions. 

Visceral and subcutaneous adipocytes, so-called “bad and good fat cells”, have different 

developmental origins (71) and exhibit physiological and functional differences according to 

their depot of origin (176). As indicated in Table 3, there is no equivalent of SGBS pre-

adipocytes derived from visceral adipose tissue.  

Establishment of pre-adipocyte cell lines derived from human visceral tissue could become an 

essential tool to address these questions:  

 What conditions could maintain/reverse the “bad and good” phenotype of 

adipocytes? 

 What are the unique and similar responses of subcutaneous and visceral adipocytes 

to external stimuli? 

 What signalling pathways are involved in “good” functions of adipocytes? Can 

these be stimulated? 

 What factors stimulate/reduce nutrient catabolism by fat cells? 

 Can adipocyte expansion be regulated under excessive nutrient availability? 

 Are there therapies that can tackle obesity in a depot specific manner? 

3. Hyperglycemic exposure conveys significant risks for adipocyte functions 

Hyperglycemia, defined as elevated fasting blood glucose, is a pre-diabetic condition 

associated with poor health outcomes. Obesity is associated with fasting hyperglycemia 

(177), likely due to impaired suppression of hepatic glucose production in response to insulin 

(insulin resistance). Increased BMI was associated with a five-fold increase in the incidence 

of Type 2-Diabetes (T2D) in the AusDiab longitudinal study (178). In Chapter 2 of this PhD 
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thesis, I focused on the identification of the dynamics of changes in DNA methylation across 

human adipocyte differentiation, its relationship to transcriptional changes, and how these 

might be affected by elevated glucose exposure.  

In response to hyperglycemia, SGBS adipocytes grew larger and had reduced relative insulin 

responsiveness. There were 27 genes differentially expressed and 61 differentially methylated 

regions due to high glucose exposure. Nearly all differentially methylated sites showed 

reduced methylation. Hyperglycemia-induced gene expression changes were modest when 

genes were assessed individually, however gene set enrichment analysis defined gene sets 

that were collectively affected by the glycemic exposure.  In fact, the overwhelming majority 

of the down-regulated genes due to hyperglycemia were enriched in mitochondrial, signal 

transduction and extracellular stress-activated oxidative stress pathways. The results indicate 

reduced mitochondrial function and oxidative phosphorylation, and suggest a greater reliance 

on glycolysis in the presence of elevated glucose levels. Hence, produce energy inefficiently 

via a combination of oxidative phosphorylation and aerobic glycolysis. The recourse of 

aerobic glycolysis is a Warburg-like effect such as observed in fast-growing cancer cells and 

also in murine adipocytes exposed to hyperglycemia under abundant oxygen availability 

(179).  

4. Epigenetic regulation of gene expression during human adipogenesis 

Chapter 2 also demonstrated that the transcriptional profiles are distinctly different while the 

methylation profiles are profoundly similar between pre-adipocytes and mature adipocytes. A 

total of 83 genes had differential expression and overlapping differential methylation at their 

transcription start site. In fact, 67 of these were up-regulated during adipogenesis and had 

reduced methylation at their transcription start site. Some of these genes were key 

adipogenesis regulators, and obesity or inflammation associated genes such as ADIPOQ, 

CIDEC, LIPE, FASN and CH13L1. The integration of our work with a publically available 

SBGS study (180) established potential genomic locations where methylation signatures 

might be controlled by transcription factors during human adipogenesis.  
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5. Published studies on the SGBS pre-adipocyte model throughout my PhD 

Since its establishment in 2001, SGBS has become a popular cellular model system to study 

various aspects of human adipogenesis in vitro.  It has been used in nearly 100 research 

articles and proven to be a reproducible model to biological mechanisms in pre-adipocytes 

and mature adipocytes in context of human adiposity. These studies were examining 

biological processes in adipocytes or response of adipocytes to external stimuli. In order to 

summarise the use of these cells lines and the contribution of Chapter 2 in this field,  

I reviewed the findings of the research studies on SGBS published throughout my PhD. 

The PubMed database was searched for studies using the SGBS pre-adipocyte cellular model, 

that were published between 15 December 2011 and 15 October 2016, using search terms 

SGBS in title or abstract. From the 94 articles identified, 61 studies were included and 

reviewed. We also identified additional 6 studies on SGBS published within the period but 

missed out by the search criteria (165, 170, 181-185). These were included to the review. 

From the 94 articles identified by the search strategy, 33 were excluded; 13 were conducted 

on humans with Simpson-Gobali-Behmel Syndrome (SGBS), 19 used SGBS as an 

abbreviation for another term (i.e. stellate ganglion block) and one was not a full article.  

Of the 67 studies included and reviewed; 42 were on adipose biology, 2 were methodology 

papers and 23 studies assessed the effect of certain exposures such as diet (9 studies), 

potential drugs (6), environmental exposure (4) and hormones (4) in human adipocytes.  

In a nutshell, among the published studies that used SGBS model, few looked into adipocyte 

metabolism or gene regulation in SGBS adipocytes similar to Chapter 1.  The two studies 

investigated the perturbations in glucose metabolism when SGBS adipocytes were exposed to 

low glucose conditions (≤1 mM for 4 days) and found reduction in inflammatory phenotypes 

(186, 187). Additionally, a comprehensive analysis of transcript-level metabolism regulation 

including genome-wide ChIP-seq profiles for PPARγ, CEBPα, LXR and H3K4me3 and 

micro RNA (miRNA) target identification for miR-27a, miR-29a and miR-222in SGBS 

adipocytes was published (180). In fact, Chapter 1 examined transcriptional regulation across 
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SGBS adipogenesis by conducting genome-wide integration analysis of DNA methylation 

profiles with recently the ChIP-seq for the H3K4me3 promoter mark and three transcription 

factors; PPARG, CEBPA and LXR published in this study (180). The key studies and their 

main findings are summarised in Table 4. This comparison provides a unique set of genes that 

their function should be studied in further in the context of obesity.
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Table 4: Key studies on SGBS cells that are published during the course of my PhD. 

Objective Summary Reference 

Diet 

Effect of pre-exposure to oleic acid and 

hydroxytyrosol on TNFα-induced decrease of 

adiponectin secretion in adipocytes 

TNFα induced reduction in the adiponectin protein expression and release in SGBS 

cells. However, when pre-treated with 10 µm oleic acid and 10 µm hydroxytyrosol 

the adiponectin expression level was not changed.   (188) 

Effect of short chain fatty acid (SCFA) 

exposure on fat storage 

SCFA, functions as PPARγ agonist thus stimulate ANGPTL4 expression and 

secretion in colon adenocarcinoma cells but not in SGBS cells. (189) 

Identification of Vitamin D Receptor-binding 

sites 

At the sites of DUSP10, NRIP1, and THBD a treatment of the cells for 1 and 2 h 

with active vitamin D metabolite led to a statistically significant increase of VDR 

binding over 2-fold in SGBS adipocytes. (190) 

investigated the effect of resveratrol on 

mitochondrial mass increase and remodelling 

during n murine and human adipogenesis 

Resveratrol induced lipid accumulation (Oil Red o) and mitochondrial mass increase 

during murine and human adipogenesis (mitochondrial protein expression and 

citrate synthase activity). (191) 

Metabolism of fructose by SGBS cells 
Fructose induced anabolic processes in differentiated SGBS cells: de novo palmitate 

and oleate syntheses and extracellular secretion of palmitate.  

(192) 

 

The effect of caloric restriction (96h low-

glucose ≤1 mM) on secretion profile of SGBS 

adipocytes 

Lipolysis was induced; SIRT1 expression was significantly upregulated via caloric 

restriction. Secretome changes associated with caloric restriction indicated reduced 

inflammatory phenotype in adipocytes. (186) 

The effect of resveratrol exposure on lipid 

mobilization in adipocytes 

After 24 h of treatment with 100 μM of resveratrol, ATGL expression was enhanced 

in both 3T3-L1 and SGBS adipocytes. (193) 

The effect of resveratrol exposure on 

expression of the plasminogen activator 

inhibitor-1 (PAI-1) in inflammation-induced 

human adipocytes 

Used the inflammation model descripted in (165).  Resveratrol exposure (in 

concentrations ≥30 μM) significantly reduced PAI-1 expression in inflammation-

induced human adipocytes. Additionally, when SGBS cells were exposed to 

macrophage secreted factors, they didn't induce ROS generation.  (194) 

The effect of resveratrol exposure on the  

secretion profile of SGBS adipocytes 

Resveratrol exposure induced lipid accumulation, induced upregulation of ADIPOQ 

and APOE with downregulation of PAI-1 and PEDF. (195) 
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Table 4: cont’d Key studies on SGBS cells that are published during the course of my PhD.  

Objective Summary Reference 

Hormone 

Effect of hydroxycholesterol on lipid and 

glucose metabolism in metabolically active cells 

Glucose uptake, de novo lipogenesis and also the expression of lipid metabolism 

genes (SREBF1, FASN, ACACA and DGAT1) were increased with 

hydroxycholesterol exposure in SGBS cells. (196) 

Effect of testosterone in adipogenesis miR-375 expression was  downregulated after testosterone (100 mM) treatment (197) 

Identification of how testosterone exposure 

induces phosphorylation of AMPK 

Testosterone exposure for a day (10-1000 nM) had significantly increased the 

expression of LKB1 in SGBS adipocytes.  (198) 

Potential effects of fibroblast growth factor-1 

(FGF1) during adipogenesis 

FGF1 treatment induced lipid accumulation, and increased the expression of 

PPARγ, G3PDH, GLUT4 and ADIPOQ. (199) 

Potential Drug 

Characterisation of the inflammatory regulatory 

roles of aleglitazar in SGBS adipocytes 

Aleglitazar inhibited the expression of TNFα mediated cytokines (MCP1, CXC-

L10 and IL6) and induced the expression of adiponectin. (200) 

Effect of antidepressant substances on SGBS 

pre-adipocytes and adipocytes 

The therapeutic concentrations of imipramine and lithium stimulated triglyceride 

accumulation but did not affect gene expression in SGBS cells. (185) 

Effect of quercetin exposure on the expression of 

adipokine and glycolysis genes in human SGBS 

adipocytes 

Under normoxic cultivation quercetin inhibited the expression of ANGPTL4, 

Adipsin, PAI-1 and PFKP. (201) 

Elvitegravir is a integrase inhibitor used for HIV 

infection treatment; the study looks into 

characterising the role of elvitegravir in lipid 

metabolism 

Elvitegravir impaired adipogenesis and adipocyte metabolism in human SGBS 

adipocytes in a concentration-dependent manner (delaying acquisition of adipocyte 

morphology and reducing the expression of adipogenesis marker genes such as 

PPARγ, glucose transporter GLUT4, lipoprotein lipase, and the adipokines 

adiponectin and leptin).  (202) 

Retinoic acid treatment effects 

UCP1 expression increased in response to low concentrations of retinoic acid in 

3T3-L1 but not in SGBS adipocytes. Study suggested that SGBS is brown-like and 

expresses UCP1 in response to culture media containing rosiglitazone. 

(184) 
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Table 4: cont’d Key studies on SGBS cells that are published during the course of my PhD.  

Objective Summary Reference 

Environment 

2-day co-culture of hypoxia-induced SGBS 

cells with breast tumour cells (MCF7) 

Hypoxia was induced with the transfection of HIF1α siRNA in SGBS cells. When 

HIF1α transfected SGBS cells co-cultured with breast tumour cells, the expression and 

secretion of ESR1 were repressed in breast tumour cells. (203) 

Effect of CoCl2, a hypoxia mimetic, on 

the secretome of human SGBS cells 

In SGBS adipocytes, CoCl2 resulted in an up-regulation of collagens and a down-

regulation of specific functional classes of ECM proteins.  (204) 

Identification of hypoxia-induced gene 

expression changes 

Hypoxia-regulated genes are involved in the regulation of obesity, T2D, and metabolic 

syndrome (ADM, ANKRD37, DDIT4, KDM3A, PFKFB4, PPP1R3C, VEGFA, WDR73 

and ZNF395). 

(183) 

The influence of reduced oxygen supply on 

gene expression of SGBS adipocytes 

When SGBS adipocytes were cultured with 1% O2 for 3h or more, glycolytic genes 

(ENO2, PFKP, PFKFB4 and ALDOC) were significantly upregulated. (205) 

Methodology 

Pro- and anti-adipogenetic drug testing 
Treatment with 2 μmol/L rosiglitazone reduced lipid droplet size while 10 μM DHA, 

17.5 mM glucose and 10 μg zinc oxide nanoparticles treatments made no change. 
(168) 

Validation of SBGS human cell line against 

primary adipocytes and 3T3-L1 murine cell 

line 

Adipogenenic genes are more expressed in SGBS compared to 3T3-L1. Additionally, 

SGBS had higher expression of LPL, GLUT4, PPARg and FABP4 and lower 

expression of LEP compared to primary adipocytes. 

(206) 

Adipose Biology 

A comprehensive analysis of transcript-level 

metabolism regulation in adipocytes 

Gene expression, genome-wide ChIP-seq profiles for PPARγ, CEBPα, LXR and 

H3K4me3 and miRNA target identification for miR-27a, miR-29a and miR-222 on 

SGBS cells. 

(180) 

Characterisation of the roles of all lipin 

family members in human adipose tissue 

and SGBS adipogenesis 

Depletion of every lipin family member in SGBS pre-adipocytes, alters expression 

levels of adipogenic transcription factors and lipid biosynthesis genes in early stages of 

differentiation. (207) 

Effect of myostatin on energy metabolism in 

muscle cells and SGBS adipocytes 

Myostatin expression induced increase in basal glucose update in primary human 

muscle cells but not in SGBS cells. (208) 
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Table 4: cont’d Key studies on SGBS cells that are published during the course of my PhD.  

Objective Summary Reference 

Adipose Biology 

Expression of stress proteins during weight 

loss and maintenance and comparison to the 

findings with SGBS adipocytes 

When SGBS adipocytes were starved for 4 days, in low glucose (0.55 mM). Levels of 

stress proteins were altered: significant increased expression was observed in β-actin 

and HSP60.  (187) 

Function of Atrial natriuretic peptide (ANP) 

and insulin on lipolysis 

ANP stimulated lipolysis in human adipocytes (SGBS and primary visceral adipocytes) 

which is inhibited by insulin in a glucose-dependent manner. (209) 

Generating cell line with browning capacity SGBS induce expression of UCP1 in response to genetic manipulation. (170) 

Identification of expressional and 

secretional differences between omental and 

subcutaneous adipose tissue 

GREM1, PTN and SLP1 are all expressed significantly higer in omental adipose tissue 

compared to subcutaneous adipose tissue. All three were also expressed by cultured 

SGBS adipocytes.  (210) 

Immunomodulatory effect of adipocyte-

derived extracellular vesicles 

Both SGBS and in vivo secreted extracellular vesicles induced inflammation signal 

production in macrophages and reciprocally inhibit insulin signalling in SGBS cells. 
(182) 

Impact of TRAIL (TNF-related apoptosis-

inducing ligand) on human adipogenesis.  

Incubation of SGBS cells in TRAIL during adipogenesis, inhibited adipogenic 

differentiation in a dose-dependent manner. It activated the cleavage of caspase-8 and -

3, which in turn resulted in a downregulation of the key adipogenic transcription 

factors C/EBPα, C/EBPδ, and PPARγ.  (211) 

Model to study the inflammatory process in 

adipose tissue 

SGBS cells are exposed to macrophage-secreted factors or co-cultured with THP-1 

monocytic cells: this induced insulin resistance, inhibited insulin-stimulated Akt 

phosphorylation and induced apoptosis in SGBS cells. 

(165, 181) 

Role of defective VPS13B gene expression 

in SGBS cells 

Designed as a as a model for Cohen Syndrome associated truncal obesity, siRNA 

silencing of VPS13B accelerated differentiation rate, increased expression of specific 

adipogenic and lipid metabolism genes. (212) 

Role of EP3-mediated signalling during 

adipogenessis under the influence of 

hypertrophy and hypoxia 

Demonstrated that EP3 was up-regulated in the obese human primary visceral 

adipocytes isolated and human SGBS adipocytes during the development of adipocyte 

hypertrophy and hypoxia. (213) 
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Table 4: cont’d Key studies on SGBS cells that are published during the course of my PhD.  

Objective Summary Reference 

Adipose Biology 

Role of expression of certain miRNAs in 

obesity  

Among the identified obesity related miRNAs: miR-148a-3p and DNMT1 are up- and 

down-regulated respectively in SGBS adipocytes. 
(214) 

Role of human adenine nucleotide 

translocase isoforms (hANT2) in cell 

proliferation status 

SGBS pre-adipocytes (are growth-arrest-sensitive cells), hANT2 mRNA levels 

decreased. This was not observed in HeLa or HepG2 cells. (215) 

role of miR-192 expression in triglyceride 

storage of obese VAT and SGBS 

Overexpression of miR-192 in SGBS cells, induced 25% reduction in the cellular 

triglyceride content and reduction in GLUT4 expression. (216) 

The involvement of invadolysin, a 

metalloprotease, in lipid storage The level of invadolysin increased during human SGBS adipogenesis. (217) 
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6. Gene expression changes in visceral adipocytes associated with obesity 

Chapter 4 examined transcriptional profiles of visceral adipose tissue (VAT) and purified 

adipocytes (VA) of 26 females across a range of BMI (19-50 kg/m2) to understand at what 

point in the obesity spectrum molecular signatures change from healthy to unhealthy. We 

observed a clear trend in gene expression in accordance with the severity of obesity. There 

were a surprisingly high number of genes associated with BMI in VA. Additionally, this 

study showed that gene expression profiles of VAT are mainly contributed by the adipocytes 

and there was a clear transition in the gene expression profiles of VA in individuals with a 

BMI of 32 kg/m2 or higher. Many of the differentially expressed genes associated with 

obesity measures were involved in signalling, metabolic, cellular stress and inflammatory 

response pathways. The findings were highly concordant with previously published studies 

and also provided resource for further investigation. For instance, it is worth examining the 

top genes that have not been previously considered in the context of obesity and metabolic 

diseases. 

The immediate future work will be to integrate gene expression data with DNA methylation 

profiles of visceral adipocytes in the same cohort. Additionally, we will investigate whether 

methylome data support the model, we developed using WGBS of VA in the core set of three 

lean and these obese individuals (Bradford et al., unpublished). This model predicts that 

obesity is accompanied by recruitment or differential expansion of population of progenitors 

of different developmental origin. This model is based on methylation signature of 

development-associated genes such as:  Paired like Homeodomain (PITX) and T-box (TBX) 

families. DNA methylation data will allow interpretation of gene expression changes in light 

of this model. 
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7. Final remarks and future directions 

The future of understanding the molecular nature of obesity is bright. Costs of genomic 

analysis (sequencing and library preparation) have reduced dramatically. Population level 

epigenomics studies have become feasible with technical advances including the Illumina 

Infinium HumanMethylation450 (450K arrays) and MethylationEPIC (EPIC arrays) 

Beadchip arrays. This thesis provides a novel methylome method COBRAseq with unique 

advantages and perform well compared to the other methods (Chapter 3). As part of the 

EpiSCOPE study (Chapter 4), I have contributed to the establishments of a cohort to study 

epigenetic mechanisms in human fat in Australia. 

In recent years, there have been a few epigenome wide association studies (EWAS) aimed at 

understanding epigenetic modifications associated obesity. Most of these studies examined 

associations between the DNA methylation profiles of biologically relevant samples (i.e. 

blood and subcutaneous adipose tissue) and obesity. They used measures such as BMI, waist 

circumference, HOMA-IR and blood levels of triglyceride, cholesterol and insulin of in 

cohorts containing over 600 individuals (137, 218-224). 

Additionally, in 2015, there was a significant initiative to integrate the analysis of 111 

reference epigenomes including the first reference adipocyte epigenome (225). 

7.1. International perspective: 

There are number of global and country based initiatives to assemble cohorts for population 

level epigenetics studies. Recently, Athlome Consortium has been established that links 10 

cohorts across the world to understand complex interactions between genome, epigenome and 

proteome in elite athletic performance (226). There are also number of cohorts initiated by 

countries that provides unique advantages to study epigenetics. These include: 

 United Kingdom:  

o MuTHER Consortium reports an analysis of the genetics of gene expression in 

three tissues from approximately 850 mono- and dizygotic twins (227). 
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o The Newcastle Thousand Families 1947 birth cohort which is a 

transgenerational cohort (228).  

o ARIES, a population-based resource of DNA methylation data from 1000 

mother-child pairs at three time points (229).  

 Netherlands:  

o Famine transgenerational cohort (n= ~1000) (230). 

 United States of America:  

o Normative Aging Study (n= 700) (231). 

 Mexico:  

o Early Life Exposure in Mexico to ENvironmental Toxicants (ELEMENT) 

longitudinal cohort in kids (n=250) (232). 

7.2. Australian perspective: 

Major initiatives are being taken in Australia through investments in infrastructure and 

establishment of high quality biobanks and study cohorts. For instance, in New South Wales, 

as part of the 2012-2022 Health and Medical Research Strategy, the Genomics Collaboration 

has been established in Garvan Institute which has 10 HiSeq X Ten sequencing platforms. 

There are also funding schemes to allow researchers across the country to access these 

sequencing platforms. The NSW Biobank Registry has been established to provide high 

quality biospecimens for research. This initiative has allowed standardisation of biospecimen 

storage across pathology units in public hospitals. 

Population level studies were initiated such as the 45 and Up Study, led by the Sax Institute. 

It is the largest ongoing study for healthy ageing in southern Hemisphere with 250,000 

participants (233). One of the priority areas of this study is: Health effects of obesity, 

overweight and physical activity. Moreover, there are also incentives to tie these individual 

initiatives to generate larger impacts in the genomics field. For instance, in 2015, the Garvan 

Institute, in collaboration with the Sax Institute, has committed to sequence 2000 of the 45 

and Up study participants’ blood samples, which will form the Medical Genome Reference 
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Bank in Australia. A major advantage of this study is that medical records of the participants 

can be utilized for data linkage by The Centre for Health Record Linkage (CHeReL) (234). 

This study will significantly contribute to our understanding of molecular mechanisms in the 

development of obesity.  

Two Australian cohorts, DOMInO and the Barwon Infant Study, have already been used for 

epigenome-wide analyses: for example, the DOMInO cohort for analysis of the impact of ω-3 

fatty acid supplementation on the epigenome of children at birth and 5 years (109, 134). In 

addition to cohort sampling in adults, a few cohorts have been established to sample 

newborns such as the NSW based BABY 1000 Study, the Victoria based Generation Victoria, 

the Queensland based MUSP project and the Western Australia based the ORIGINS project. 

These cohorts provide unique advantages for studying the effect of prenatal stressors on 

epigenetic mechanisms and their association with later life obesity.  

Perhaps future challenges in the epigenomics field lie in the integration and interrogation of 

large datasets for possible discovery of biomarkers. Change in methylation levels detected in 

the tissues of lean and obese individuals are significantly less than those detected in the 

tissues of cancer vs normal individuals. When changes in methylation levels are subtle, 

verification of potential markers might be prohibitively expensive, and instead of a single 

biomarker approach, a set of biomarkers might be used for accurate measure.  

Lastly, as part of the EpiSCOPE study, a list of candidate genes as biomarkers for obesity has 

been developed (Appendix 1 and 2). The team aims to develop this knowledge further in 

other cohorts with the view of developing an obesity biomarker panel in the near future. 
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APPENDIX 1: Epigenetics and human obesity 

Recent technological advances in epigenome profiling have led to an increasing number of 

studies investigating the role of the epigenome in obesity. An electronic literature search for 

relevant articles, published between September 2008 and September 2013 was performed. 

From the 319 articles identified, 46 studies were included and reviewed. The studies provided 

no consistent evidence for a relationship between global methylation and obesity.  

I have summarized the main findings in the articles identified using the search criteria, and 

constructed the tables in the manuscript.  

This manuscript has been published in International Journal of Obesity, January 2015, 

Cited 75 times (at November 2016) and listed as highly cited by Thompson ISI. 

Detailed contributions: 

 Varinli H Co-authors 

Literature Review 20% 80% 

Data Interpretation 10% 90% 

Writing 10% 90% 
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APPENDIX 2: Human adipocytes have unique epigenetic signatures based on their 

origin: an effect exacerbated by obesity 

Adipose tissue plays an important role in metabolism and homoeostasis. Perturbations in the 

nature and amount of adipose tissue have serious health consequences for individuals and 

society. An increase in visceral adipose tissue (VAT) is associated with diseases ranging from 

Type 2 Diabetes to cancer, while subcutaneous adipose tissue (SAT) may have a protective 

effect.  Several genes are differentially expressed between these two adipose depots, however 

the mechanisms controlling this differential expression remain poorly understood.  

Our aims were to characterize potential functional and developmental differences between 

adipocytes from the two fat depots in lean individuals, then distinguish the methylation and 

transcriptional differences between visceral adipocytes of normal weight and obese 

individuals. We have achieved so in two stages. Firstly we analysed both the transcriptomes 

and methylomes of adipocyte cells purified from SAT and VAT of 3 lean female subjects. 

Then we extended our analysis of methylome and transcriptome of visceral adipocytes to a 

total of 14 subjects (7 lean and 7 obese). 

Methylomes were mapped using both whole genome bisulfite sequencing (WGBS) and 

Illumina 450k arrays and transcriptomes were characterized using RNA-seq.  

This manuscript is under preparation for Nature Genetics.  

Detailed contributions: 

 Varinli H Co-authors 

Experimental Design 10% 90% 

Sample Collection  60% 40% 

Laboratory Experiments 30% 70% 

Data Analysis 10% 90% 

Data Interpretation 20% 80% 

Writing 10% 90% 
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To demonstrate the contribution of this study to the field, I have summarised the 

significant outcomes and my detailed contributions below:  

1. This study provides first complete maps of primary adipocyte methylomes from both normal 

weight and obese subjects. 

2. We found that methylation profiles of each sample type were highly consistent between lean 

individuals and clearly segregated visceral adipocytes (VA) from subcutaneous adipocytes 

(SA). The distinct methylation patterns in VA and SA are indicative of different 

developmental origins.  

3. The transcriptional differences between SA and VA reflected known functional differences 

between their tissue origins. Particularly, gene ontology analyses revealed that the observed 

methylation differences signify the separate developmental origins of SA and VA, while 

differential expression of lipid metabolism and inflammatory response genes may reflect 

functional and environmental differences, respectively, between SAT and VAT.  A total of 

4,868 regions were identified as differentially methylated (Δ-beta methylation >0.1). 

4. The methylome profiles of visceral adipose tissue (VAT) and purified adipocytes (VA) from 

lean individuals were highly concordant but the transcriptome profiles of the same samples 

types were more distinct. This indicates that non-adipocyte component of VAT contributes to 

the transcriptome profile of the tissue. 

5. The methylation of visceral adipocytes (VA) from obese subjects largely differed from those 

of lean subjects.  

6. In general, there was higher inter-individual variation in methylation profiles of visceral 

adipocytes (VA) from obese individuals.  

7. HOX genes are transcription factors and important in cell type specification. There are clear 

patterns in the differential methylation of HOX genes which is indicative of expansion of a 

subpopulation of adipocytes of different developmental lineage accompanying depot expansion 

in response to body fat increase. 

8. A total of 402 genes were differentially expressed in visceral adipocytes of lean vs obese 

individuals. In fact, nearly 50% of these changes were also identified between SA and VA of 

lean individuals.  
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9.  Integration of transcriptome and methylome data identified key loci involved in adipocyte 

biology. For instance, we observed increase in expression of genes encoding pro-

inflammatory cytokines in visceral adipocytes are associated with reduced methylation. We 

also identified key points of epigenetic regulation that are intrinsic to adipocyte specific 

functions such as lipid metabolism and inflammation related pathways. 
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My contributions were:  

Donor Recruitment and Sample Collection: 

 I conducted pre-surgery patient interviews. This involved documenting medical and 

family history and also taking the body measurement of the subjects.  

 I attended most of the surgeries and collected biological samples (Blood, saliva and 

adipose tissue).  

Sample Processing: 

 I contributed to the optimization of laboratory protocols used in this study. 

Particularly to:  

- Human adipocyte isolation from adipose tissue  

- RNA isolation from human adipose tissue and human adipocytes 

 I pre-processed the biological samples and documented them on a database. This 

specifically involved: 

- Human adipocyte purification from visceral and subcutaneous adipose 

tissue for most of the subjects.  

- White blood cell isolation and/or buccal cell isolation from blood and 

saliva samples respectively for some of the subjects. 

 I isolated RNA for the transcriptome component of this project and planned the 

batching of samples to avoid technical biases in the analysis of RNA-seq results. 

Project Operation and Manuscript: 

 I contributed to the data collection, processing, analysis and discussions. 

 I contributed to the manuscript planning and review. 
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APPENDIX 3: Atmospheric gas plasma–induced ROS production activates TNF-ASK1 

pathway for the induction of melanoma cancer cell apoptosis 

Atmospheric gas plasmas (AGPs) are able to selectively induce apoptosis in cancer cells, 

offering a promising alternative to conventional therapies that have unwanted side effects 

such as drug resistance and toxicity. However, the mechanism of AGP-induced cancer cell 

death is unknown.  

In this manuscript, AGP is shown to up-regulate intracellular reactive oxygen species (ROS) 

levels and induce apoptosis in melanoma, but not normal melanocyte cells. By screening 

genes involved in apoptosis, we identified tumor necrosis factor (TNF)-family members as 

the most differentially expressed cellular genes upon AGP treatment of melanoma cells. TNF 

receptor 1 (TNFR1) antagonist-neutralizing antibody specifically inhibits the AGP-induced 

apoptosis signal, regulating apoptosis signal-regulating kinase 1 (ASK1) activity and 

subsequent ASK1-dependent apoptosis. Treatment of cells with the intracellular ROS 

scavenger N-acetyl-l-cysteine also inhibits AGP-induced activation of ASK1, as well as 

apoptosis. Moreover, depletion of intracellular ASK1 reduces the level of AGP-induced 

oxidative stress and apoptosis. The evidence for TNF-signaling dependence of ASK1-

mediated apoptosis suggests possible mechanisms for AGP activation and regulation of 

apoptosis-signaling pathways in tumor cells. 

I contributed to the experimental design of the molecular biology experiments and the 

interpretation of the results. 

This manuscript has been published in Molecular Biology of the Cell, February 2014 and 

cited 42 times (at November 2016). 

Detailed contributions: 

 Varinli H Co-authors 

Laboratory Experiments 20% 80% 

Data Analysis 20% 80% 

Data Interpretation 20% 90% 

Writing 10% 90% 
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ABSTRACT Atmospheric gas plasmas (AGPs) are able to selectively induce apoptosis in can-
cer cells, offering a promising alternative to conventional therapies that have unwanted side 
effects such as drug resistance and toxicity. However, the mechanism of AGP-induced cancer 
cell death is unknown. In this study, AGP is shown to up-regulate intracellular reactive oxygen 
species (ROS) levels and induce apoptosis in melanoma but not normal melanocyte cells. By 
screening genes involved in apoptosis, we identify tumor necrosis factor (TNF)–family mem-
bers as the most differentially expressed cellular genes upon AGP treatment of melanoma 
cells. TNF receptor 1 (TNFR1) antagonist–neutralizing antibody specifically inhibits AGP-in-
duced apoptosis signal, regulating apoptosis signal–regulating kinase 1 (ASK1) activity and 
subsequent ASK1-dependent apoptosis. Treatment of cells with intracellular ROS scavenger 
N-acetyl-L-cysteine also inhibits AGP-induced activation of ASK1, as well as apoptosis. More-
over, depletion of intracellular ASK1 reduces the level of AGP-induced oxidative stress and 
apoptosis. The evidence for TNF-signaling dependence of ASK1-mediated apoptosis sug-
gests possible mechanisms for AGP activation and regulation of apoptosis-signaling path-
ways in tumor cells.

INTRODUCTION
In recent decades, there has been significant progress in the devel-
opment of new therapies to treat human cancers. However, funda-
mental problems related to chemotherapeutic drug delivery—resis-
tance and toxicity to normal cells—remain. An ideal anticancer 

treatment should selectively kill cancer cells with limited side effects 
on normal cells and minimal drug resistance. Selective induction of 
apoptosis in target cancer cells would be an ideal treatment 
(Nagata, 1997; Kaelin, 1999).
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259



1524 | M. Ishaq et al. Molecular Biology of the Cell

out affecting normal control cells. Moreover, AGP treatment activates 
TNF and ASK1 pathways to increase downstream activity of JNK 
and p38 kinases and stimulate caspase-3/7–dependent apoptosis. 
Thus AGP shows selective induction of apoptosis in cancer cells 
by stimulating the oxidative stress–induced TNF-ASK1-JNK/p38–
caspase-3/7 apoptotic pathway.

RESULTS
Selective apoptotic response to AGP is ROS dependent
We quantified the effect of AGP (presented and briefly described 
in Materials and Methods, Figure 1, and Supplemental Methods) 
on the cellular ROS level in melanoma cancer cells (Mel007 and 
Mel-RM) using the redox-sensitive fluorescent probe 2 -,7 -dichlo-
rofluorescein diacetate (CM-H2DCFDA). Treatment with AGP 
caused a significant increase in ROS level in melanoma cells. AGP 
did not increase ROS level significantly in normal control cells 
(primary human epidermal melanocytes and human fetal lung fi-
broblasts (Figure 2a). Cotreatment with the intracellular ROS inhibi-
tor N-acetyl-L-cysteine (NAC) fully reversed the AGP-induced in-
crease in ROS in melanoma cells (Figure 2b). It has been shown 
that an increase in ROS production can lead to decrease in reduced 
glutathione (GSH) levels in cancer cells (Estrela et al., 2006). GSH is 
an important intracellular antioxidant that protects cells from dam-
age caused by ROS. It is able to remove O2  and provide elec-
trons for glutathione peroxidase to reduce H2O2 to H2O. Because 
AGP has been shown to induce ROS production and modulate re-
dox homeostasis (Graves, 2012), we tested whether AGP can lead 
to a decrease in GSH levels. This was found to occur in melanoma 
cells. However AGP-mediated GSH depletion was inhibited by ad-
dition of the reducing agent NAC (Figure 2c). Parallel counting of 
viable cells showed that AGP-induced cell death in melanoma cells 
correlated with decrease in cellular GSH contents (Supplemental 
Table S1). We also found that nitric oxide was among the ROS spe-
cies induced by AGP in melanoma cells but not in normal control 
cells (Figure 2d). Supplemental Figure S1 demonstrates the optical 
emission spectrum of the AGP plume over the range from 300 to 
800 nm, further confirming that excited species of OH, N2, N2

+, 
He, and O exist in the AGP plume.

We next examined the effect of AGP on the viability of several 
cultured melanoma cells (Mel-RM, Mel007, and Mel-JD) and 
normal control cells (primary human epidermal melanocytes and 

Two pathways of apoptosis have been described for mammalian 
cells: the intrinsic mitochondrial pathway that is activated in re-
sponse to cellular stress, and the extrinsic death receptor pathway 
that is activated at the cell surface by the binding of tumor necrosis 
factor (TNF)–family cytokines to their cognate death receptors 
(TNFR1, Fas/CD95, DR4/5). The extrinsic and the intrinsic pathways 
converge in a caspase cascade that results in cellular shrinkage and 
DNA fragmentation, culminating in apoptosis (Micheau and 
Tschopp, 2003; Kamata et al., 2005).

Cellular oxidative stress can induce apoptosis by initiating the 
activation of a specialized group of mitogen-activated protein ki-
nase (MAPK) cascades. Apoptosis signal–regulating kinase 1 (ASK1) 
is a MAPK kinase kinase (MAPKKK)–family member that plays a ma-
jor role in stress-induced apoptosis. ASK1 is activated by various 
stress-related stimuli, including oxidative stress, reactive oxygen 
species (ROS), genotoxic agents, serum withdrawal, endoplasmic 
reticulum stress, and tumor necrosis factor (TNF; Ichijo et al., 1997; 
Nishitoh et al., 1998; Liu et al., 2000). The activated ASK1 phospho-
rylates and activates the downstream kinases MKK4/MKK7 and 
MKK3/MKK6. These are in turn required to activate c-Jun N-termi-
nal kinase (JNK) and p38 MAPK kinase, respectively, before cas-
pase-3 activation and apoptosis. The knockdown of ASK1 inhibits 
ROS (H2O2)- and TNF-induced apoptosis (Noguchi et al., 2005, 
2008). Overexpression of a constitutively active form of ASK1 in can-
cer cells induces caspase-3–dependent apoptosis (Ichijo et al., 
1997). ROS such as H2O2 activate ASK1 by dissociation of thiore-
doxin (Trx), a reduction/oxidation (redox) regulatory protein that in-
hibits the kinase activity of ASK1 (Saitoh et al., 1998). It has also 
been proposed that ROS generated by cytokines like TNF  or stress 
may oxidize and consequently dissociate Trx to activate ASK1 and 
subsequent ASK1-dependent apoptosis-signaling cascades (Saitoh 
et al., 1998; Liu et al., 2000; Nadeau et al., 2009). These findings 
demonstrate that ASK1 plays an important role in stress-induced 
apoptosis.

Recently atmospheric gas plasmas (AGPs) delivered in a plume 
have shown the potential to be a safe anticancer therapy that can kill 
selectively a variety of cancer cells, such as melanoma (Keidar et al., 
2011; Kim et al., 2011a), neuroblastoma (Walk et al., 2013), glioma 
(Koeritzer et al., 2013), and colorectal (Vandamme et al., 2012), pan-
creatic (Partecke et al., 2012), breast (Kalghatgi et al., 2011), liver 
(Yan et al., 2012), ovarian (Iseki et al., 2012), leukemia (Thiyagarajan 
et al., 2012), and lung (Huang et al., 2011) cancers. AGP delivered 
as a plume has also shown significant effects in in vivo animal mod-
els by decreasing the size of tumors (Vandamme et al., 2010, 2012; 
Keidar et al., 2011; Partecke et al., 2012; Walk et al., 2013). It has 
been proven effective against drug-resistant brain tumor (glioblas-
toma) in combination with temozolomide (Koeritzer et al., 2013). 
The AGP plume generated by an electrical discharge in a gas gener-
ates reactive oxygen species (e.g., H2O2, O3, OH, NO), ions, and 
free electrons (Sensenig et al., 2008; Liu et al., 2010; Weltmann 
et al., 2010; Keidar et al., 2011; Graves, 2012; Ostrikov et al., 2013). 
AGP leads to the formation of reactive oxygen species, including 
H2O2, in liquids that simulate cellular fluids (Winter et al., 2013). 
Despite early promising results obtained using AGP as an antitumor 
treatment to kill cancer cells, little effort has been made to translate 
this into clinical applications. This is possibly due to a lack of under-
standing about the underlying cellular mechanisms and the means 
by which AGP can selectively kill cancer cells by inducing apoptosis 
without affecting normal cells.

In this study, we find that AGP treatment enhances the produc-
tion of intracellular ROS. This elevated level of intracellular ROS in-
duces oxidative stress, leading to apoptosis in melanoma cells with-

FIGURE 1: (a) Schematic of the atmospheric gas plasma jet device. 
(b) Digital photo of the generated gas plasma jet for cell treatment.
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TNF is involved in AGP-induced 
apoptosis
Next we examined the mechanism by which 
AGP specifically induces apoptosis in mela-
noma cells. To find the specific cellular fac-
tors involved in selective AGP-induced 
apoptosis, we screened >90 genes involved 
specifically in prosurvival or proapoptotic 
pathways by using real-time quantitative 
PCR (qPCR). We found that TNF family 
members are the cellular factors that most 
frequently showed differential expression in 
AGP-treated melanoma cells relative to con-
trol untreated cells (Supplemental Figure 
S2). We confirmed our qPCR gene expres-
sion screening data by measuring the gene 
expression of TNF-receptor family member 
1 (TNFR1) in melanoma cells treated with 
AGP for different time intervals (5, 15, and 
30 s) by qPCR and Western blotting. How-
ever, this AGP-induced TNFR1 expression 
was inhibited by the ROS scavenger NAC 
(Figure 4, a and b). This shows the involve-
ment of ROS in AGP-induced TNF signal-
ing. Moreover, we also observed increase in 
the production of TNF signaling ligand 
(TNF ) in AGP-treated melanoma (Mel007) 
cells but not in normal melanocytes (Figure 
4c). Outcomes showed increased activity of 
stress response target protein -H2AX in the 
AGP-treated melanoma cells but no signifi-
cant activity in melanoma cells pretreated 
with anti–TNFR1-neutralizing antibody 
(Figure 4d). Determination of cell viability 
and caspase 3/7 activity demonstrated that 
AGP-induced apoptosis and cytotoxicity 
was inhibited by cotreatment of AGP with 
antagonistic anti–TNFR1-neutralizing anti-
body, the caspase inhibitor Z-VAD-FMK, the 
inhibitor of nitric oxide synthetase diphe-
nyleneiodonium chloride (DPI), or the H2O2 
depleter catalase (Figure 4, e and f). These 

results indicate that selective AGP-induced apoptosis in melanoma 
cells is dependent on intracellular ROS production. Moreover, cell 
death induced by AGP is mediated by TNF-receptor pathways by 
activating caspase 3/7 activity.

ASK1 is required for AGP-induced apoptosis
We next sought to explore the downstream signaling factors in-
volved in the AGP-induced TNF apoptosis pathway. It was shown 
that ROS (e.g., H2O2) induced by the TNF pathway plays a role in 
programmed cell death signaling mediated by ASK1 (Noguchi 
et al., 2005). We examined whether ASK1 is involved in AGP-in-
duced apoptosis in melanoma cells. AGP induced ASK1 activity at a 
similar level to H2O2. However, this ASK1 activation was inhibited by 
the ROS scavenger NAC (Figure 5a). This shows that AGP-induced 
ASK1 activation is ROS dependent. We further determined that 
AGP activated the ASK1-activity–dependent downstream-signaling 
kinases p38 and JNK at a level similar to H2O2, whereas this activa-
tion was strongly reduced by NAC (Figure 5, b and c).

ASK1 and JNK/p38 kinases play important roles in DNA damage 
responses by inducing cyclin-dependent kinase inhibitors, and 

human fetal lung fibroblasts). AGP treatment significantly induced 
apoptosis in the melanoma cells. When primary cultures of normal 
cells were treated with AGP, there was little effect on cell growth 
and proliferation. This indicated that AGP selectively induces cell 
death in melanoma cells (Figure 3a). As shown earlier (Figure 2, a 
and d), AGP induced intracellular ROS, so we next tested to see 
whether the selective cytotoxic effect of AGP on melanoma cells 
was ROS dependent or independent. Cotreatment of AGP and 
NAC completely reversed the toxic effects of AGP in melanoma 
cells (Figure 3b). AGP induced apoptosis and DNA damage in mel-
anoma cells, as observed by increased activity of caspases 3/7 and 
stress response target protein -H2AX in AGP-treated melanoma 
cells, with no significant activity in normal cells (Figure 3, c and d). 
Taken together, this different response of cancer and normal cells 
to AGP treatment indicates that AGP targets cancer cell redox ho-
meostasis, which results in both a stress response and DNA dam-
age, leading to apoptosis in cancer cells. This selective induction of 
ROS in cancer cells indicates that the AGP-specific apoptotic re-
sponse in melanoma cells is mediated by perturbation of cellular 
redox homeostasis.

FIGURE 2: AGP enhances ROS accumulation in melanoma cells. (a) AGP enhances ROS levels in 
melanoma cells (Mel-RM, Mel007) but not normal cells (melanocytes, human fetal lung 
fibroblasts). Cells were treated with AGP (5, 15, 30 s). ROS level was quantified by the 
fluorescent dye CM-H2DCFDA and is shown as a fold change relative to control cells treated 
only with He gas flow. Data were normalized to ROS levels in control melanocyte cells. 
(b) Mel007 or melanocyte cells were treated with AGP (5, 15, 30s) or pretreated with NAC 
(1–2 h) followed by AGP treatment (5, 15, 30 s). ROS level was determined as in a. (c) Mel007 or 
melanocyte cells were treated with AGP or pretreated with NAC (1–2 h), followed by AGP 
treatment. GSH level was quantified as described in Materials and Methods. (d) Mel007 or 
melanocyte cells were treated with AGP (5, 15, 30 s) or pretreated with NAC (1–2 h), followed 
by AGP treatment (5, 15, 30 s). Nitric oxide was quantified after cells were labeled with DAF-FM 
diacetate. All values are mean  SD of three independent experiments performed in triplicate. 
*p  0.01, **p  0.001; ANOVA.
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involvement of ASK1 and downstream ki-
nases p38 and JNK in AGP-induced apopto-
sis in melanoma cells and clearly reveal that 
ASK1 plays a critical role in selective AGP-
dependent signal transduction and apopto-
sis in melanoma cells.

TNF pathway involved in AGP-induced 
activation of ASK1 signaling and 
apoptosis
From the results already presented, it is 
plausible to conclude that ASK1 is an AGP 
effector that activates JNK and p38 kinases. 
However, the mechanism of ASK1 activation 
by AGP is still unclear. Previous studies show 
that TNFR family members are involved in 
the activation of stress-activated protein ki-
nases (SAPKs) and MAPKs (Natoli et al., 
1997). The similarity between AGP- and 
H2O2-induced changes in the ASK1 signal-
ing complex (Figure 5), together with the 
findings that TNF-induced activation of 
ASK1 depends largely on ROS, prompted 
us to examine whether TNF signaling may 
also be involved in AGP-induced activation 
of the ASK1 pathway (Natoli et al., 1997). 
Tumor necrosis factor 1 (TNFR1) blocking 
antibody was used to neutralize the TNFR1 
or inhibit the TNF signaling pathway (Defer 
et al., 2007; Moh et al., 2013).

AGP stimulates the production of ROS 
and TNF, and both ROS and TNF activation 
of ASK1 can be inhibited on depletion of 
ROS by using free radical scavenger NAC 
and the TNFR1-antagonist-neutralizing anti-
body (Figure 6a). Similarly, AGP-induced 
activation of p38 and JNK signaling were 
suppressed in melanoma cells pretreated 
with NAC or antagonist anti-TNFR1 anti-
body (Figure 6, b and c). ASK1, p38, and 
JNK kinases were found in the inactive form 
in normal melanocytes and melanoma 
(Mel007) cells at basal level. Moreover, AGP 
treatment did not activate ASK1, p38, and 
JNK kinases in melanocytes (Figure 6d)

These results suggest that the TNF pathway is required for AGP-
induced activation of ASK1 signaling and apoptosis pathways.

DISCUSSION
Recent literature reviews show that AGPs are being studied with 
great interest for cancer treatment (Graves, 2012; Ishaq et al., 2014). 
It has been shown that AGPs increase intracellular ROS production 
(Vandamme et al., 2012), induce senescence (Arndt et al., 2013), 
cause cell cycle arrest (Volotskova et al., 2012), and induce oxidative 
stress, DNA damage, and apoptosis (Keidar et al., 2011; Iseki et al., 
2012; Kalghatgi et al., 2012). A major obstacle in the development 
of this tool for clinical application as an anticancer therapeutic is the 
lack of understanding of the mechanisms underlying the intercellu-
lar response to AGP exposure. For cancer treatment, knowledge of 
the specific intra cellular signaling pathway factors involved in tumor 
sensitivity and resistance is critical to successful therapy. This re-
quires exploration of the intracellular mechanisms involved in the 

depletion of ASK1 significantly attenuates p38 activation and DNA 
damage response (Thornton and Rincon, 2009). ASK1 is also required 
for H2O2 (ROS)-induced DNA fragmentation and apoptosis. It was 
shown that depletion of the ROS scavenger NAC as well as of ASK1 
strongly reduced DNA fragmentation and apoptosis (Noguchi et al., 
2008). To determine the specific role of ASK1 in AGP-induced apop-
tosis, we knocked down the ASK1 gene in melanoma cells by RNA 
interference (RNAi; Figure 5d). First, we tested the effect of AGP on 
caspase 3/7 activity in ASK1-knockdown melanoma cells. The results 
showed that activation of caspases 3/7 induced by AGP was inhib-
ited in ASK1-depleted melanoma cells, as in cells pretreated with 
intracellular ROS scavenger NAC (Figure 5e). We also observed that 
pretreatment of melanoma cells with either NAC or knockdown of 
ASK1 by RNAi inhibited the toxic effects of AGP in melanoma cells 
(Figure 5f). Our results also showed that AGP-induced activation of 
stress response protein (H2AX) was inhibited in ASK1-knockdown or 
NAC-pretreated melanoma cells (Figure 5g). These results show the 

FIGURE 3: AGP selectively induces apoptosis in melanoma cells, and this is ROS dependent. 
(a) AGP treatment induced cell death in melanoma cells but not normal cells. Melanoma cells 
(Mel-RM, Mel007, Mel-JD), melanocytes (MC), and human fetal lung fibroblasts (MRC5) were 
cultured in 96-well plates overnight, treated with AGP for 5–30 s, and grown for 18–24 h before 
analysis. Cell viability was measured by cell titer nonradioactive cell proliferation assay. 
(b) AGP-induced cell death in melanoma cells was reversed by NAC. Mel007 or Mel-RM cancer 
cells or melanocytes were treated with AGP (5, 15, 30 s) or pretreated with NAC for 1–2 h, 
followed by AGP treatment (5, 15, 30 s) for 18–24 h. Cell viability was measured by cell titer 
nonradioactive cell proliferation assay. (c) Mel007, Mel-RM, and melanocytes were treated with 
AGP or pretreated with NAC. Caspase 3/7 activity was measured by Caspase-Glo 3/7 assay. 
(d) The effect of AGP on stress response targets was determined by Western blot analysis of 
H2AX and -H2AX protein in normal (melanocytes) and melanoma cells (Mel007). GAPDH 
expression was used as a loading control. In all experiments, control cells were mock treated 
with He gas flow only. All values are mean  SD of three independent experiments performed in 
triplicate. *p  0.01, **p  0.001; ANOVA.
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2011; Vandamme et al., 2012). Here we 
found that AGP selectively induces increased 
ROS levels in melanoma cells compared 
with normal control cells, which are blocked 
by the endogenous ROS scavenger NAC. 
We also demonstrated that AGP-induced 
ROS are responsible for selective apoptosis 
of cancer cells but that this does not occur in 
normal control cells (Figure 3). This is the first 
report to show that AGPs induce ROS in 
cancer cells but not normal cells.

It has been suggested that ROS are in-
volved in apoptosis of cancer cells by the 
TNF-dependent signaling pathway (Natoli 
et al., 1997). We also found in our apopto-
sis-related gene screening study that TNF 
family members are differentially expressed 
in AGP-treated melanoma cells. We ob-
served that blocking TNFR1 inhibits the ac-
tivity of AGP-induced caspases 3/7 and re-
duces activation of stress response protein 
H2AX (Figure 4). This indicates the involve-
ment of the TNF-apoptotic pathway in AGP-
induced apoptosis in melanoma cells.

Several reports have shown that ROS 
(H2O2) induced by the TNF pathway partici-
pates in the apoptosis of cancer cells in 
ASK1-dependent signaling (Hatai et al., 
2000; Liu et al., 2000; Nishitoh et al., 2002; 
Kamata et al., 2005). ASK1 is required for 
ROS-induced activation of JNK and p38. 
We also found that AGPs, similar to H2O2, 
activate the ASK1 pathway, which results in 
downstream activation of JNK and p38 sig-
naling. The AGP-induced activation of en-
dogenous JNK and p38 is lost by blocking 
with NAC. Moreover, intracellular depletion 
of ASK1 by RNAi inhibits AGP-induced cas-
pase 3/7 activity, cell viability, and stress re-
sponse (Figure 5). These results suggest the 
involvement of ASK1 in the AGP-induced 
apoptosis pathway.

Stimulation of the TNF pathway and in-
ducement of ROS production for the activa-
tion of ASK1 by AGPs are believed to be 
involved in this selective cell death process. 
Although TNF is known to stimulate the pro-
duction of ROS, and activation of the SAPKs 
can be partially reversed with free-radical 
scavengers (Natoli et al., 1997), AGP-in-
duced and TNF-mediated production of 
ROS had not been demonstrated. We found 
that AGP-induced ROS production and 

ASK1 activation was mediated by the TNF pathway. Pretreatment 
with antioxidant NAC and antagonist anti-TNFR1 antibody attenu-
ated AGP-induced ASK1, p38, and JNK phosphorylation (Figure 6). 
These results reveal that AGP-induced production of cellular ROS is 
upstream of the ASK1 and p38/JNK signaling pathway.

Our results provide a plausible mechanisms for AGP-induced 
apoptosis in cancer cells. Extracellular ROS generated by AGP acti-
vates TNF signaling and TNF-dependent intracellular ROS genera-
tion. This high intracellular level of ROS activates caspases 3/7 via 

interaction of AGP with the localized cellular environment. This 
knowledge gap motivated our examination of the intracellular path-
ways involved in the sensitivity to AGP of cancer cell death, as 
shown in Figure 7.

The AGP-produced ROS, such as H2O2 and NO, are the main 
factors that form a system of oxidizing or nitrosylating species, which 
activate several signaling pathways. Excessive ROS inside cells re-
sults in oxidative stress, which leads to DNA damage and apoptosis 
by unknown mechanisms (Landino et al., 1996; Kalghatgi et al., 

FIGURE 4: TNF-apoptotic pathway is involved for AGP-induced selective apoptosis in cancer 
cells. (a, b) Mel007 cells were treated with AGP (5, 15, 30 s), and gene expression for TNFR1 was 
measured by quantitative real-time PCR and Western blotting. (c) Effect of AGP on the 
activation of TNF ligand in Mel007 and melanocytes was determined by enzyme-linked 
immunosorbent assay. Cells were treated with AGP (5, 15, 30 s) for 48 h. The concentration of 
TNF  was measured in cell culture supernatant. (d) Effect of AGP pretreated with or without 
TNFR1-neutralizing antibody on stress response targets were determined by Western blot 
analysis of H2AX and -H2AX protein in melanoma cells (Mel007). Mouse IgG1 isotype antibody 
was used as negative control. GAPDH expression was used as loading control. (e, f) Mel007 cells 
were treated with AGP or pretreated with anti-TNFR1 antibody, caspase inhibitor zVAD, 
H2O2-depleting-agent catalase, and nitric oxide synthesis inhibitor DPI, followed by AGP 
treatment. Cell viability was measured using a cell titer nonradioactive cell proliferation assay, 
and caspases 3/7 activity was measured by Caspase-Glo 3/7 assay. In all experiments, control 
cells were mock treated with He gas flow only. All values are mean  SD of three independent 
experiments performed in triplicate. *p  0.01, **p  0.001; ANOVA.
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results clearly demonstrate that ASK1 is 
strongly activated in AGP-treated cancer 
cells, similar to those treated with H2O2,and 
this may provide a useful model system to 
understand the AGP-ROS–dependent sig-
naling pathway leading to apoptosis.

In summary, the present work demon-
strates that activation of ASK1 through TNF 
signaling is required in AGP-induced apop-
tosis. This suggests the importance of TNF 
signaling and subsequent activation of ASK1 
in AGP- and/or ROS-induced programmed 
cell death of melanoma cells. Further stud-
ies are required to elucidate the physiologi-
cal functions of the AGP-TNF-ASK1 pathway 
in resistant tumor treatment.

MATERIALS AND METHODS
Atmospheric gas plasma jet device
All cells were treated with atmospheric 
gas plasma plume, which was generated 
using a custom-designed atmospheric 
gas plasma jet device (Figure 1). The de-
vice consists of a fused quartz tube 
equipped with two conducting electrodes. 
One electrode is a metal wire placed in-
side the tube along the axis and 1.8 cm 
before the nozzle exit. The second elec-
trode is a metal ring attached to the outer 
wall of the tube near the nozzle exit. The 
distance between the two electrodes is 

1.0 cm. On helium gas flow (2 l/min) 
through the quartz tube, a nonequilibrium 
plasma discharge is produced between 
the two electrodes by an applied AC high 
voltage. The high voltage was generated 
by RF power source coupled with RF 
voltage amplifier. The discharge voltage 
and operating frequency were kept at 
1.1–1.8 kV and 230–270 kHz, respectively, 
during cell treatment. The plasma dis-
charge produced at the end of the metal 
wire electrode was located in two differ-
ent spatial regions. One part of the dis-
charge was located entirely inside the 
tube, from the end of the metal wire elec-
trode to the ring electrode, and part of 
the discharge from the ring electrode 
propagated along with the gas flow and 
extended out of the tube through the 
nozzle as a collimated plasma jet. The 
length of the plasma jet was 2.5 cm. 
The end diameter of this collimated 
plasma jet was 500 μm and is referred as 
a cold plasma due to the measured low 

gas temperature ( 35–40°C). During the discharge process, elec-
trical parameters of the plasma, such as discharge voltage and 
current, were measured using high- and low-voltage probes, re-
spectively. The discharge current between the metal wire and 
the ring electrodes was 10 mA. However, only 5–10% of this cur-
rent is likely to extend out of the discharge tube, which was used 
for cell treatment (Keidar et al., 2013).

activation of ASK1 and subsequent p38/JNK pathway and eventu-
ally leads to apoptosis (Figure 7).

The precise mechanisms by which AGP increases intracellular 
ROS production and activate caspase-3–induced apoptosis need to 
be elucidated. It was reported that AGP induced apoptosis via cas-
pase-3–dependent mechanisms (Kim et al., 2011b; Sensenig et al., 
2011), but the upstream mechanisms remained unknown. Our 

FIGURE 5: AGP stimulates ASK1-mediated p38, and JNK activation is ROS dependent and 
reversed with NAC. (a–c) Mel007 cancer cells were treated with AGP or H2O2 with or without 
pretreatment with NAC. Western blot analysis was performed on cell lysate using different 
antibodies as indicated (p-ASK1, S83 phosphospecific antibody for ASK1; p-JNK, 
phosphospecific antibody for JNK; p-p38, phosphospecific antibody for p-38). GAPDH antibody 
was used as a loading control. (d) Knockdown of ASK1 leads to decreased activation effect of 
AGP in melanoma cells. Mel007 cancer cells were transfected with small interfering RNA (siRNA) 
for ASK1 or control siRNA. The cells were analyzed 36–48 h after transfection to determine 
ASK1 protein levels. GAPDH was used as protein loading control. (e, f) At 24 h after treatment 
of ASK1 siRNA or control siRNA, Mel007 cells were treated with AGP (30 s) with or without 
pretreatment with NAC. Caspase 3/7 activity was measured by Caspase-Glo 3/7 assay, and cell 
viability was measured by cell titer nonradioactive cell proliferation assay. All values are mean  
SD of three independent experiments performed in triplicate. *p  0.01, **p  0.001; ANOVA. 
(g) 2At 4 h posttreatment of ASK1 siRNA or control siRNA, Mel007 cells were treated with AGP 
(30 s) with or without pretreatment with NAC. The effects of AGP on stress response targets 
were determined by Western blot analysis of H2AX and -H2AX protein levels in cancer cells. 
GAPDH expression was used as a loading control. In all experiments, control cells were mock 
treated with He gas flow only.
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ROS detection assay
Cells were cultured in 96-well plates at 2  104 cells/well overnight 
and treated with AGP for the indicated time periods. ROS genera-
tion was detected with CM-H2DCFDA (C6827; Invitrogen, Grand 
Island, NY) following the manufacturer’s instructions. Briefly, 1–2 h 
after AGP treatment, cells were incubated with 10 μM of CM-H2D-
CFDA for 30 min at 37°C in the dark. ROS were measured by a 
FLUOstar Omega fluorescence plate reader at excitation and emis-
sion wavelengths of 485 and 530 nm, respectively. Assays were per-
formed in triplicate.

Caspase 3/7 activity assay
Cells were plated in 96-well plates at 2  104 cells/well, incubated 
for 24 h, and then treated with AGP for the indicated time periods. 
After 4–8 h of AGP treatment, caspase 3/7 activity was quantified by 
adding Caspase Glo 3/7 reagent (G8091; Promega). In some experi-
ments the caspase inhibitor zVAD-FMK (50 μM), NAC (3 mM), 
TNFR1-neutralizing antibody (50 μg/ml), catalase (2000 U/ml), 

Cell culture and reagents
The human melanoma cell lines Mel-RM, Mel-007, and Mel-JD and 
control human epidermal melanocytes were a kind gift of Peter Her-
shey, Melanoma Institute, University of Sydney, Sydney, Australia 
(Jiang et al., 2010), and were maintained in DMEM (Invitrogen) plus 
10% fetal bovine serum (FBS). Melanocytes were grown in special 
melanocyte growth medium 254 plus with human melanocyte 
growth supplement (S-002-05; Invitrogen, Grand Island, NY). 
Human fetal lung fibroblasts (MRC5) were purchased from the 
American Type Culture Collection (ATCC, Manassas, VA) and grown 
in MEM plus 10% FBS. H2O2 (216763), caspase inhibitor Z-VAD-
FMK (G7231), NAC (antio xidant and ROS scavenger; A0737), DPI 
(inhibitor of nitric oxide synthetase; D2926), and catalase (H2O2 de-
pleter; C-30) were purchased from Sigma-Aldrich (St. Loius, MO). 
TNFR1-neutralizing antibody (Defer et al., 2007) and mouse immu-
noglobulin (Ig) G1 isotype control antibody were purchased from 
R&D Systems (Minneapolis, MN).

Cell viability assay
All cells were cultured in 96-well plates at 2  104 cells/well over-
night, treated with AGP for indicated time periods, and incubated 
for 18–24 h. Cell viability was measured using CellTiter 96 Aqueous 
Non-Radioactive Cell Proliferation (MTS) Assay (G5421; Promega, 
Madison, WI) following the manufacturer’s protocol. In some experi-
ments the caspase inhibitor zVAD-FMK (50 μM), NAC (3 mM), 
TNFR1-neutralizing antibody (50 μg/ml), catalase (2000 U/ml), or 
DPI (10 μM) was added 1–2 h before AGP treatment. Assays were 
performed in triplicate.

FIGURE 6: TNF signaling involved in the activation of ASK1, p38, and 
JNK by AGP. (a–c) Mel007 cancer cells were treated with AGP with or 
without pretreatment with TNFR1- neutralizing antibody or NAC. 
Western blot analysis was performed on cell lysate using different 
antibodies as indicated (p-ASK1, S83 phosphospecific antibody for 
ASK1; p-JNK, phosphospecific antibody for JNK; p-p38, 
phosphospecific antibody for p-38). GAPDH antibody was used as a 
loading control. (d) The basal protein expression levels for ASK1, p38, 
JNK, ASK1-phos, p38-phos, and JNK-phos were quantified in normal 
melanocytes and Mel007 cells by Western blot analysis. GAPDH 
antibody was used as a loading control.

FIGURE 7: Model for the regulation of TNF-receptor–mediated 
apoptosis pathway induced by AGP. The induced production of ROS 
and TNF pathway activation by cross-talk (direct or indirect 
interaction), which leads to activation of ASK1 and stimulation of 
downstream p38  MAPK or JNK to induce caspase-3/7–dependent 
cancer cell apoptosis.
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control shRNA expression vector by Lipofectamine (Invitrogen) 
according to the manufacturers’ instructions. After 24 h of shRNA 
transfection, cells were treated with AGP. Cells were harvested 
and lysed in RIPA lysis and extraction buffer (89901), halt protease 
inhibitor cocktail (87786), and halt phosphatase inhibitor cocktail 
(78420; Thermo Scientific, Pittsburgh, PA) by incubating on ice for 
30 min, as described previously (Ishaq et al., 2009). Protein con-
centration was determined by BCA Protein Assay Kit (23227; 
Thermo Scientific). After adding 2  SDS loading buffer, the sam-
ples were subjected to SDS–PAGE (MP TGX 4–20%; 4561094; 
Bio-Rad). Protein was then transferred onto immunoblot poly-
vinylidene fluoride membrane (Millipore, Billerica, MA) and 
probed with the primary antibodies as specified and horseradish 
peroxidase (HRP)–conjugated secondary antibodies. The bonded 
proteins were visualized with a chemiluminescence detection kit 
(Clarity Western ECL substrate; Bio-Rad, 170-5060) using 
ImageQuant LAS400 (GE Technology, Little Chalfon, United 
Kingdom). Antibodies used included phospho-p38 MAPK 
(Thr-180/Tyr-182; 4511), p38 MAPK (8690), phospho-SAPK/JNK 
(Thr-183/Tyr-185; 4668), SAPK/JNK (9258), phospho-ASK1 
(Thr-845; 3765), ASK1 (8662), H2AX (2595), phospho-histone 
H2A.X (Ser-139; 2577) and GAPDH from Cell Signaling Tech-
nology (Danvers, MA) and goat anti-rabbit IgG HRP (170-6515) 
and goat anti-mouse IgG HRP (170-6516) from Bio-Rad. In some 
experiments the antioxidant NAC (3 mM), TNFR1-neutralizing an-
tibody (50 μg/ml), or mouse IgG1 antibody as negative isotype 
control were added 1–2 h before AGP treatment.

Statistical analysis
All values are presented as mean  SD of three independent ex-
periments. Statistical differences between controls and treated 
groups were determined by one-way analysis of variance (ANOVA) 
or Student’s t test where applicable. Differences were considered 
statistically significant for p  0.05 (*p  0.01, **p  0.001).

or DPI (10 μM) was added 1–2 h before AGP treatment. Triplicate 
samples were run in standard 96-well plates to quantify the apop-
totic response. Luminescence values were then determined using a 
LUMIstar Omega plate reader.

Total cellular glutathione assay
Cells were cultured in six-well plates overnight and treated with 
AGP, in some cases after pretreatment with NAC, for the indicated 
time periods. A total of 1  106 cells were collected and lysed in 
100 μl of ice-cold lysis buffer for 10 min. At 1–2 h after the AGP 
treatment, supernatant was collected by centrifugation of lysate 
for a glutathione assay performed with a glutathione (GSH/GSSG/
Total) assay kit (K264-100; BioVision Research Products, Milpitas, 
CA) following the manufacturer’s instructions. The total amount of 
GSH was measured using a FLUOstar Omega fluorescence plate 
reader at excitation and emission wavelengths of 340 and 420 nm, 
respectively. Trypan blue stain was used in parallel, and the viable 
cells were counted.

Nitric oxide measurement
Cells were cultures in 96-well plates at 2  104 cells/well, incubated 
for 24 h, treated with AGP, and in some cases pretreated with NAC 
(3 mM), for the indicated time periods. Nitric oxide production was 
measured with 4-amino-5-methylamino-2 ,7 -difluofluorescein diac-
etate (DAF-FM diacetate) following the manufacturer’s protocols 
(D23844; Invitrogen). At 1–2 h after AGP treatment, cells were 
labeled with 10 μM DAF-FM diacetate for 30 min at 37°C. Nitric 
oxide radical was measured using a FLUOstar Omega fluorescence 
plate reader at excitation and emission wavelengths of 485 and 
520 nm, respectively.

Quantitative real-time PCR
Cells were cultured in six-well plates at 5  105 cells/well overnight 
and treated with AGP for the specified time periods. At 18–24 h af-
ter AGP treatment, total cell RNA was extracted using TRIzol re-
agent (15596-026; Invitrogen) and reverse transcribed into single-
stranded cDNA as explained previously (Ishaq et al., 2008). 
Quantitative relative gene expression was determined by using 
SsoAdvanced SYBR Green SuperMix (172-5265; Bio-Rad, Hercules, 
CA) with a Roche LightCycler 480 qPCR system. Data were analyzed 
with LightCycler 480 software. The human apoptosis PCR array 
primers library (HPA-1; RealTimePCR.com, Elkins Park, PA) was used 
to quantify relative gene expression of 90 genes involved in intrac-
ellular prosurvival and proapoptotic pathways. glyceraldehyde-3-
phosphate dehydrogenase (GAPDH), actin-b, GUS-b, B2M, HPRT1, 
PPIA, and RPL13A were used as internal controls to normalize data. 
Relative quantification of gene expression after AGP treatment was 
obtained by using the CT method compared with fold change of 
untreated (He gas flow only) control cells.

Enzyme-linked immunosorbent assay
Cells were cultured in six-well plates and either untreated or treated 
with AGP for the specified time period. After 48 h of treatment, cell 
culture supernatants were harvested, and the concentration of TNF  
was measured by using the TNF  human enzyme-linked immuno-
sorbent assay kit (ab46087) from Abcam (Cambridge, United King-
dom) as per the manufacturer’s instructions.

RNA interference and Western blot
Cells grown to a density of 70% confluence with antibiotic-free 
media were transfected with the ASK1 short hairpin RNA (shRNA; 
sc-29748; Santa Cruz Biotechnology, Santa Cruz, CA) and negative 
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Supplementary data 

Supplementary Methods 

Identification of reactive species 

The reactive species produced by the plasma jet were identified by collecting the emission 

spectra using a high-resolution emission spectroscopy (Princeton Instruments, Acton SP 

2500, equipped with Pixis 256 CCD detector). The spectra (one of them is shown in Sup. Fig. 

2) were collected during the cells treatment at the applied discharge voltage, Helium flow rate 

and RF frequency of 1.8kV, 2 L/min and 230 kHz, respectively. The wavelength calibration 

was performed with Hg and Ne/Ar light source prior to the collection of spectra. The 

spectroscope with the grating (1200 g/mm) and slit width (100 m) were used in our 

experiments. Spectrum in Sup. Fig. 1 reveals that the excited species such as O, OH, He, N2 

and N2
+
 were generated in the plasma jet.  
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Supplementary Figures 

Supplementary Fig. 1. An optical emission spectrum of the plasma jet in the wavelength 

range of 200-800 nm.
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Supplementary Fig. 2. TNF signaling pathway family members up-regulated after AGP 

treatment. (a, b) Apoptosis-related intracellular differential gene expression pattern was 

quantified by using >90 different genes involved in apoptosis.  The Mel007 cells were treated 

with AGP (30 sec) and relative gene expression was measured by quantitative real-time PCR 

after 24 hrs following the AGP treatment. Gene expression was normalized by internal genes 

(Actin-b, GAPDH and GUSB) and quantified as fold change compared to He gas-treated 

control cells. All values are mean ± s.d. of three independent experiments. 
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Table-1:  Intracellular glutathione content of melanocytes and melanoma cells 

 

Melanocytes and melanoma (Mel007) cells were treated with AGP (5, 15 and 30 sec). Total 

glutathione content was determined as described in materials and methods. The viable cells were 

counted by staining with trypan blue. The results represent the means + s.d. of three independent 

experiments performed in triplicate. *p  0.01, **p  0.001; ANOVA. 

 

 

              Melanocytes Mel007 
 Control AGP 

      5s                15s               30s 

Control AGP 

      5s                15s               30s 

GSH 

(% of control) 

100  

 

93.12 + 1.1 96.1 + .23 92.8 + 1.8  100  67.2 + .23*  45 + 1.8**  18.93 + 2*  

% Viability 91.2 + .93  88.34 + 2.2 90.1 + 2.33 86.6 + 3.1 94.2 + 1.3 70.2 + 1.2*  42.1 + 1.2* 17.51+ 2.4*  

Total viable 

cells (10
5
) 

8.87 + 2.0  8.67 + 1.61  9.03 + 1.53 8.03 + 2.41 9.12 + 2.02 6.8 + 3.14*  4.36 + .69* 2.17 + 1.56* 
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APPENDIX 4: Identification of the rainbowfish in Lake Eacham using DNA sequencing 

The Lake Eacham rainbowfish (Melanotaenia eachamensis) was once thought to be confined 

to its type locality within the Lake Eacham World Heritage National Park. M. eachamensis 

disappeared from the lake following the translocation of several species into the lake and the 

species was pronounced extinct in the wild in 1987.  

In a 2007 survey we noticed that rainbowfish were present in the lake once again. We used a 

molecular marker to identify these fish and the likely source population. Analysis of the D-

loop region of mitochondrial DNA revealed that the species now present in the lake is 

Melanotaenia splendida, and is most closely related to several M. splendida populations in 

the immediate vicinity.  
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