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Abstract 

The advancement of next-generation proteomics methodologies has led to an explosion in 

proteomics data. However, the analysis and interpretation of this data remains a challenge, 

as several proteins remain unannotated and uncharacterised for many organisms. Despite 

the presence of the large volume of mass spectrometry (MS) data in various datasets, over 

10% human proteins are still considered ‘missing’. Bioinformatics techniques can be used 

to provide comprehensive annotations for entire proteomes to provide valuable information 

regarding putative functions of proteins that can be validated and or supplemented with 

experimental data.  

The aims of this thesis are to tackle some of these challenges, firstly to develop a generic in 

silico bioinformatics pipeline to identify homologues and map putative functional 

signatures, gene ontology terms and biochemical pathways of novel organisms, or 

“missing’’ proteins. This pipeline was used to identify homologues for 2,587 proteins and 

functional annotation for 2,486 proteins from black Périgord truffle (Tuber melanosporum 

Vittad), followed by MS-based shotgun proteomics to validate 836 proteins. The same 

pipeline was then used to annotate the human “missing” pro te in  sequences  on  each 

human chromosome available through the ProtAnnotator web portal, with homologues 

from the mammalian kingdom for 2538 (66.2%, based on September 2013 data). 

ProtAnnotator also functionally annotated 1945 (50.8%) “missing” human proteins. 

ProtAnnotator 2.0 automated the process and provides an update to the annotation of the 

truffle proteome. 

The lack of coherency between the proteomics data submitted to various databases, 

processed by different search engines has limited their integration in the quest for 

uncovering human “missing” proteins. To this end, a scheme was worked out for 

comparing proteomics data from different sources, looking at proteotypicity and search 

engine scores, with guidelines on spectral quality analysis as well. 

Finally, ProtAnnotator and the proteomics data integration strategy above were integrated, 

to create a novel integrated web platform (MissingProteinPedia) to define, collate and 

make serviceable all available data (including single proteotypic MS spectra) from various 

databases and web platforms for human “missing” proteins. The MissingProteinPedia 

(MPP) platform comprises a freely available web interface for datamining, collaboration 

and validation of MS and publication data. MPP permits protein-level identification of 
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proteins that have very short tryptic peptides, such as interleukin-9, proteins traditionally 

known but without proteomic or antibody data as well as those that are carefully identified 

by our integrated computational workflow followed by expert spectral analysis. 

The tools developed in this thesis provide data integration to accelerate the annotation of 

novel proteomes and the discovery of human missing proteins. 
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Chapter 1: Introduction  

1.1 Overview 

The genome of an organism is composed of deoxyribonucleic acid (DNA) that contains the 

biological instructions for life. These instructions form the blueprint for protein production 

that determines how the cell will function. The genetic information encoded in DNA is 

translated to proteins via the transcription and translation machinery [1]. These proteins then 

fold to acquire unique three-dimensional structures to perform specialized functions [2, 3] in 

the cell involving one or more proteins. Proteins are considered to be the ‘building blocks’ of 

the cells and play a central role (as molecular machines) to carry out tasks inside the cell [4, 

5]. In other words, proteins are the parts of the engine of the cell - if the genetic coding is the 

roadmap, protein is the vehicle. The proteome, or the complete products of genes, is much 

more dynamic compared to its counterpart genomics or even transcriptomics [6], and contains 

specific information such as cell-type- and time-dependent expression patterns and post-

translational modifications [7]. Thus, identifications of the proteins and decoding its 

underlying biological functions are the key to understand life within the cell, tissue or 

organisms.  

Proteomics is the study of a proteome whereby all the protein complement of an organism, 

tissue or cell (or fraction) are studied in a high throughput manner [8-10].  Mass spectrometry 

(MS) is the most commonly used technique of choice [11] for the analysis (identification and 

quantitation) of proteins. The scalability, speed, ease of use and, more recently, accuracy of 

the data obtained from MS instruments has contributed to this rapid rise [12]. The recent 

publications of draft human proteomes have also assisted in bringing proteomics into the 

limelight  [7, 13]. The use of mass spectrometry in the biological context extends not only to 

all corners of the research arena, but indeed to drug development, diagnostics, quality control 

and personalised medicine [14-16] necessitating a larger number of people having to analyse 

often very complex data sets. Although this is a very positive sign, it has come attached with 

some significant challenges, primarily around the storage and dissemination of these vast 

swathes of data obtained from various MS instruments [17] and concurrently the analysis and 

interpretation of this data [18].  

For example, following the two draft releases of the human genome in 2001 [19, 20] the near-

complete or 'finishing' euchromatic human genome sequence was published in 2004. It was 

expected to encode 20,000–25,000 protein-coding genes [21]. Since 2008, the Human 
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Proteome Project (HPP) has aimed to identify and functionally characterize the proteome 

comprehensively [22-25]. It launched the International Chromosome-centric Human 

Proteome Project (C-HPP) in 2012 [26] with baseline metrics [22] in a bid to accelerate the 

identification and annotation of the human proteome.  The project validated 13,664 out of 

20,128 proteins in neXtProt [27] at protein evidence level 1 (i.e. confirmed by mass 

spectrometry, antibody-capture, Edman sequencing, or 3D structures) [22].  

Worldwide efforts were then made to identify and characterize the rest o f th e p ro tein s an d 

1982 proteins were added to neXtProt [27] in the following year with high-quality 

identifications, and at the same time 638 genes were removed from th e d en omin ato r as 

"uncertain" or "dubious" [28] resulting in a revised target of 3844 proteins (i.e. the defined 

"known unknown") to be identified and annotated. Two draft human proteomes [7, 13] were 

then published in 2014, and 17,294 proteins were identified using liquid chromatography-

tandem mass spectrometry (LC-MS/MS) and in-depth bioinformatics analyses [29]. However, 

64% of the peptide mass spectra (out of 25 million) did not match to any of the human 

proteins [30]. An advanced search identified 2,535 novel protein-coding genes from the 

previously defined non-protein coding regions of the DNA sequences (i.e. the "unknown 

unknowns"). The remaining unidentified peptides from various studies including this can 

provide further clues (with better algorithms and techniques) to identify 'missing' human 

proteins. Despite the significant progress, these draft proteomes remain incomplete and as per 

the HPP Mass Spectrometry (MS) Data Interpretation Guidelines 2.1 [31], with up to 15% of 

the predicted human proteins yet to be identified by high confidence mass spectrometry or 

other experimental methods [32]. This is a common phenomenon for other novel or less 

studied species [33, 34], and limits the capabilities in understanding proteome and utilizing 

such information for the improvement of human life. However, the example highlights some 

interesting challenges and opportunities, such as (i) technological improvements can not only 

help us to find the ‘known unknowns’ and but also discover ‘unknown unknowns’ (ii) New or 

improved methods and pipelines are required to deal with new technologies and or ‘unknown 

unknowns’ (e.g. identification and annotation of novel proteins) (iii) As new datasets are 

added to the repositories, new analysis tool or pipelines are required to predict functions more 

accurately from multiple data sources (discovering the ‘unknown knowns’). 

This thesis demonstrates the benefit of data integration, collaboration, reusable workflows and 

pipelines to identify and annotate proteomes using existing knowledge. The specific aims of 
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this thesis and how they have been addressed forms the rest of the thesis, followed by 

conclusions and future direction. 

1.2 Mass spectrometry (MS)-based proteomics 

Mass spectrometry is an analytical tool that can provide information about the qualitative and 

quantitative composition of both organic and inorganic analytes including their structures in 

complex mixtures based on mass-to-charge (m/z) ratio. It is the most commonly used 

technique in proteomics to calculate molecular mass to charge ratios (m/z) to identify and 

quantify ions [35] generated from proteins.  

1.2.1 Brief history and the basics of Mass Spectrometry 

1.2.1.1 History 

Although the term 'proteomics' was introduced in the 1990s [10], the history of mass 

spectrometry goes beyond a century (see Figure 1.1). Physicist J.J. Thomson is attributed for 

the invention of mass spectrometry for his work on the 'negatively charged cathode ray 

particles' [36] and ‘mass spectrograph’ [37]. As the technology continued to develop [38, 39] 

in the 1940s, it was used by the physicists to discover new isotopes, purify and asses the 

enrichment of the fissionable  235U isotope in World War II  and by the chemists to monitor 

petroleum refinery system [40, 41]. Following the development of gas chromatography 

(GC)/MS [42, 43] and tandem mass spectrometry (MS/MS) [44], and the introduction of the 

“soft” mode chemical ionization [45] in the 1960s, mass spectrometry became the common 

analytical tool for  the analysis of organic compounds [40]. However, due to the limitations of 

ionization techniques, it could not be used to analyse relatively large biomolecules, which 

became the catalyst for a series of improvements over the next couple of decades. These were, 

fast atom bombardment (FAB) [46], electrospray ionization (ESI) [47], and matrix-assisted 

laser desorption/ionization (MALDI) [48, 49]. It was the latter two methods that set the 

ground for modern mass spectrometry, and both made it possible to detect and sequence  (and 

hence identify) polypeptides [50-52].  

1.2.1.2 Basics of mass spectrometry 

In the past decade, proteomics and mass spectrometry have taken tremendous strides forward, 

spurred on by rapid advances in technology, computing and new applications in biological 

and biomedical sciences.  
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Figure 1.1: A timeline showing important advances in MS based proteomics discovery 

over the last century. 
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Although a number of new high-throughput machines were developed for proteomics [53-55], 

the basic steps to identify proteins are as follows [40, 56] 

 Prepare and isolate samples and digest using trypsin or similar enzyme

 Produce ions from the sample by adding or removing of protons or electron from

analyte molecules.

 Separate various ions based on their mass-to-charge ratio (m/z), and then fragment the

selected ions (in the case of hybrid systems).

 Detect fragmented ions from the previous step, measure their abundance, and convert

the ions into electrical signals.

 Detect and process the transmitted signals on a computer, amplify and display them as

a spectrum.

The basic components of MS spectrometer are shown in Figure 1.2. 

Figure 1.2: Basic components of mass spectrometer. 

A basic mass spectrometer has the following components to perform the above tasks: 

 An inlet system to introduce the sample to the ion source (e.g. gas chromatograph,

direct insertion probe)

 An ion source to convert the substance into gas-phase ions using ionization

techniques. The electron ionization [57] and chemical ionization [45] are commonly

used for gas, whereas nanoelectrospray (nESI) [58] and MALDI [59] are commonly

used to ionize large biomolecules in solid and liquid samples in shotgun proteomics.

 A mass analyzer to separate the ions into their characteristics mass components based

on their mass-to-charge ratio. Commonly used mass analyser for proteomics
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experiments are (i) trapping type instrument such as - quadrupole ion trap (QIT), 

linear ion trap (LIT), fourier transform ion cyclotron resonance (FT-ICR), and 

Orbitrap (ii) quadrupole (Q) (iii) time of flight (TOF) instruments [5]. A mass 

spectrometer can have one or more analyzers in tandem (usually called hybrid or 

fusion machines). 

 A detector to detect fragmented ions from the last analyzer, then measure their

abundance and convert the ions into electrical signals. These signals are then passed

onto the data system.

 A data system to record, store and process the transmitted signals on a computer. It

amplifies the signals and creates the MS spectrum.

The ion source, analyzer, and detector are controlled by a vacuum system to maintain the 

integrity of the sample during the transfer, and to keep the system free from gas molecules to 

maintain absolute paths for the ion.   

1.2.2 Protein identification and characterisation techniques 

Despite the rapid advances in mass spectrometry in terms of its accuracy, sensitivity, and 

throughput we still lack a single technique that can identify all predicted proteins produced by 

the genome annotation from a sample. Although a combined liquid chromatography (LC) 

separation and MS method (known LC-MS) can analyse thousands of proteins and peptides 

from a complex sample, a significant number of the peptide mass spectra remains unidentified 

[13, 60]. There are two major approaches for mass spectrometry-based protein deification and 

characterization, namely top-down and bottom-up. The bottom-up approach deals with 

peptide level information from a digested sample, whereas top-down approach uses intact 

protein molecules without the proteolytic cleavage [5, 40]. The difference between these two 

approaches are shown in Figure 1.3. How these two methods are applied in proteomics studies 

will be discussed first followed by a discussion of the pros and cons of each of these 

approaches. 

Top-down proteomics is used to characterise intact protein molecules. The first step is the 

gas-phase ionization of intact proteins. Samples are then separated (and/or fractionated) into a 

single protein or less complex mixtures to calculate the accurate mass measurement of the 

intact proteins ions using high-resolution mass spectrometry and searched against a molecular 

mass database. The peptide mass fingerprinting is used for protein identification, or proteins 

can be separated further and confirmed using on-line tandem mass spectrometry. 
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Figure 1.3: Strategies for bottom-up and top-down MS-based protein identification and 

characterisation. Adapted from Sokolowska, 2013. 

In the bottom-up approach peptides are used as the analytes to deduce the presence of proteins 

from highly complex samples. The most commonly used bottom-up techniques are “sort-then-

break” and “break-then-sort” approach. In the first approach, samples are separated and 

fractionated offline first, then digested into peptides. These peptides are then either analysed 

by peptide mass fingerprinting (PMF) or further separated and analysed in a tandem mass 

spectrometer. 
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However, in the "break-then-sort" method also known as “shotgun proteomics” [61], proteins 

are first digested into peptides using a protease (trypsin being the most commonly used [62]). 

These peptides are then separated using single or multi-dimensional chromatography and 

analysed using tandem mass spectrometer (MS/MS) [63]. The tandem MS detects single 

peptide ions or a set of ions for further fragmentation and finally the peptide sequences are 

derived from the resulting fragment ions [64, 65].  

The potential advantage of top-down approach is its ability to detect  protein isoform and 

post-translational modifications (PTM) more accurately as it analyses the whole sequence 

instead of a digested pepetide (i.e shotgun/bottom-up approach) [63]. It has been used to 

measure intact proteins up to 200 kDa using “prefolding dissociation” [66] and to identify 

over 1000 proteins from complex samples using a "four-dimensional separation" system [67]. 

However, the approach has significant limitations in protein fractionation, ionization, and 

fragmentation in the gas phase [62]. Proteins are less soluble under LC-MS compared smaller 

peptides. Complex protein samples require multiple separation techniques (e.g. combining LC 

with electrospray ionization (ESI)) [68]. Ionic detergents such as sodium dodecyl sulfate 

(SDS) are often used to solubilize large proteins. However, ESI is not compatible with SDS. It 

is difficult to disrupt the tertiary structure of proteins with higher molecular weight. The 

sensitivity of a mass spectrometer for proteins are lower than peptides[69].  

On the other hand, shogun proteomics uses digested peptides (smaller than the whole 

sequence) therefore it is easier to ionize and the fragment ion spectra is less complex for 

interpretation. Advances in peptide separation techniques [70-73] make it possible to reduce 

complex protein into simpler fractions for analysis. Hence shotgun proteomics, despite some 

limitations, are widely used for proteomic analysis.  

It is worth mentioning that, a complementary hybrid bottom-up and top-down approach 

known as middle-down proteomics is also intoroduced to analyse larger peptides (>6.3 kDa) 

to gain better detection of  protein isoform and PTM without the complexity top-down intact 

protein analysis [74]. 

1.2.2.1 Shotgun proteomics for peptide and protein identification 

As discussed in above, shotgun proteomics is preferred over other MS techniques for 

proteomics studies and is predominantly used in proteomics experiments. In this thesis 



9

therefore, the shotgun proteomics approach is the primary focus. The technological 

advancement in MS instrumentations, mass resolution [75, 76], and separation techniques 

such as chromatography [70, 73] to reduce complex samples have enabled protein detection 

with higher sensitivity. A brief overview of a generic shotgun proteomics workflow (see 

Figure 1.4) to identify protein and peptide will be presented below.  

Figure 1.4: Generic shotgun proteomics workflow. Adapted from Sokolowska, 2013. 

Most proteomics experiments follow a very similar procedure where the biological protein 

sample is purified (and/or fractionated), digested typically with trypsin and the peptides either 

subjected to further peptide fractionation through nano-LC followed by electrospray 

ionisation in tandem or subjected to MALDI (with or without peptide fractionation). The 

technologies used to detect the charged protein masses and the accuracy and speed of 

instruments differ (Ion traps, TOF and others) but the result is nearly identical where a 

precursor ion mass is obtained in the first MS.  

The top (most abundant) precursor masses are usually then subjected to additional 

dissociation (CID, ETD, HCD) to break up the peptides into individual amino acids. 

Typically, the resulting raw data obtained from a MS instrument is analysed by searching 

against a database using a search engine which considers numerous variables including, 

intensity, error, instrument, mass modifications (in form of posttranslational modifications or 

introduced experimental peptide modifications as consequence of sample preparation (such as 
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oxidation of the methionine residues) or an inherent part of the experiment (e.g. isobaric 

tagging).   Identified proteins can be subject to further computational analysis (i.e. functional 

annotation). A wide range of algorithms and computational techniques are available to 

perform protein and peptide identification in shotgun proteomics.   

1.2.3 Algorithms and computational protein and peptide identification techniques for 

shotgun proteomics

Over the past decade significant efforts were made to accurately identify and 

characterise proteins [22-25] including the release of two mass spectrometry based draft 

human proteomes in 2014 [7, 13]. There are two common techniques to identify proteins in 

shotgun/bottom-up proteomics [77], they are (i) Peptide mass fingerprint (PMF) 

techniques, where observed peptide masses are matched with theoretical mases of peptides 

from a protein mass sequence database (ii) Tandem MS based technique where the 

predicted peptide sequences from the experimental spectrum are either matched against 

theoretical fragmentation (in silico) of amino acids or cleaved peptides (in silico 

digestion) of a protein sequence from a protein database.

A typical Peptide mass fingerprint (PMF) workflow is to separate the proteins by 2D 

polyacrylamide gel electrophoresis (2D-PAGEThen use MALDI-MS to analyase and digest 

selected gel spots to produce one spectrum per spot. Then use MALDI-MS to digest 

analyse selected gel spots to generate a single spectrum per spot. Peptide masses are 

calculated from these spectra and compared to the masses from the digested peptide 

sequence (in silico) from a protein sequence database using various algorithms (described 

later in this section). This method has some advantages such as less instrumental 

overheads, better throughput, and its ability to eliminate the protein inference problem. 

However, it cannot differentiate peptides with identical masses, therefore less accurate than 

the tandem MS technique [77]. 

There are various software packages and algorithms available for protein identification using 

PMF (listed in Table 1.1). Aldente [78] and GPMAW [79] are a set of bioinformatics tools 

that allows protein identification using PMF. The MOWSE [80-82] score algorithm is based 

on statistical significance and is used by  MASCOT [81] . In addition MASCOT also used 

MS-FIT [83] an extended probability-based MOWSE score. A complimentary tool, ProFound 

[84] is based on the Bayesian probability scoring system .  
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Tandem MS is one of the most commonly used shotgun proteomics methods that analyses 

m/z values from the MS/MS to infer proteins present in a sample by assigning peptide 

sequence to a spectrum either by database search or de novo searching method [85].  

The de novo approach is database independent, as it uses the mass differences from MS/MS 

spectra to calculate the peptide sequence directly [86-88]. It is a very useful technique to 

identify proteins for organisms where genome sequence is not available or partially 

sequenced. Since this method doesn't rely on a protein database,  it can potentially identify 

new peptides [89]. However, this method requires lot of compute resource and high-quality 

MS/MS spectra [90]. In most cases, MS spectra do not contain all fragment ions, and the 

method provides incomplete sequences and low sensitivity with high false positives [89, 91]. 

Hence, the database search methods preferred over de novo search [92]. 

The database search method is used more widely in shotgun proteomics [93, 94]. In this 

method, every experimental MS/MS spectrum from the peptide fragmentation is compared 

against theoretical fragmentation patterns of the peptide spectrum from the search database to 

identify the best possible match. Protein sequences from the search database are first digested 

using the input protease, then theoretical m/z spectra for the cleaved peptides are created 

using the monoisotopic mass of their individual amino acids. 

A scoring algorithm based on the search tool used (described later in the section) is used to 

score the matches and the best scoring spectrum is reported as the origin of the spectrum [95]. 

The basic database search workflow is shown in Figure 1.5, it shows how a peptide is 

identified using database search method. A range of parameters and techniques are used to 

maintain the quality of the result [90, 96] and proteins are inferred by mapping filtered high-

quality peptides to protein sequences [90, 97]. For example, spectra for the identified peptides 

are searched against 'decoy' protein databases [33,34] to avoid random matches. This search 

result is used to calculate the false discovery rate (FDR). The final peptide match results are 

filtered based on the set FDR value to maximise sensitivity and specificity [98-101]. 
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Figure 1.5: Tandem mass spectrometry (MS/MS) database searching. Adapted from 

Nesvizhskii et al., 2007. 

The scoring algorithm is one of the key components of the database search method.  In 

general, all algorithms take the experimental spectra as input and match it against the spectral 

library from a protein database to assign a matching score. Then apply a statistical algorithm 

to infer the protein with maximum significance [98].  The key differentiators are the scoring 

function and the search databases. SEQUEST [93] is one of the first  algorithms used for 

protein identification. It applies a cross-correlation (X-Corr) method to compare an 

experimental spectrum with the theoretical spectrum from the database. MASCOT [81] was 

originally built on the probability-based MOWSE score to identify proteins using peptide 

mass fingerprinting (PMF) though it was later extended for tandem MS identification using a 

proprietary algorithm. Later on X!Tandem [95], was produced as a free web based tool which 

calculates e-value using a hyper-geometric model for peptide spectrum match (PSM) ranking. 

ProbID [102] uses a Bayesian model-based probability algorithm, and OMSSA [103] uses 

Poisson scoring model to calculate PSM scores. MaxQuant [104] uses the integrated 

Andromeda [105] peptide search engine for identification. MassWiz [106] scoring function 

uses the number and continuity of matched fragment ions, associated intensity, and instrument 

specific fragmentation pattern to evaluate PSMs.  
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Table 1.1 Examples of software tools and databases for MS-based proteomics  

Category Tool URL 

PMF 

Packages 

Mascot http://www.matrixscience.com/search_form_select.html 

MS-Fit 
http://prospector.ucsf.edu/prospector/cgi-

bin/msform.cgi?form=msfitstandard 

ProFound http://prowl.rockefeller.edu/prowl-cgi/profound.exe 

GPMAW http://www.gpmaw.com/html/gpmaw.html 

Aldente http://www.expasy.org/tools/aldente 

De novo 

sequencing 

GutenTag https://code.google.com/archive/p/gutentag 

InsPecT 
http://proteomics.ucsd.edu/software-tools/inspectms-

alignment 

Lutefisk http://www.hairyfatguy.com/lutefisk 

PEAK http://www.bioinfor.com 

MS-Blast http://genetics.bwh.harvard.edu/msblast/ 

FASTA http://www.ebi.ac.uk/Tools/sss/fasta/ 

PepNovo http://proteomics.ucsd.edu/software-tools/531-2 

DeNovoGUI http://compomics.github.io/projects/denovogui.html 

pNovo+ http://pfind.ict.ac.cn/software/pNovo/index.html 

UniNovo http://proteomics.ucsd.edu/software-tools/uninovo 

MRUniNovo http://bioinfo.hupo.org.cn/MRUniNovo/index.php 

Database 

search 

SEQUEST http://thermo.com 

SpectrumMill http://www.agilent.com/home 

Mascot http://matrixscience.com 

ProteinPilot http://www.absciex.com 

ProteinPilot http://www.absciex.com 

Protein-

Prospector 
http://prospector.ucsf.edu 

Proteinlynx 

GlobalServer 

http://www.waters.com/waters/en_AU/ProteinLynx-

Global-SERVER-
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Category Tool URL 

%28PLGS%29/nav.htm?cid=513821&locale=en_AU 

ProbID 
http://tools.proteomecenter.org/wiki/index.php?title=So

ftware:ProbID 

X!Tandem http://www.thegpm.org/tandem 

MS-GF+ http://proteomics.ucsd.edu/software-tools/ms-gf 

MS-GFDB http://proteomics.ucsd.edu/software-tools/ms-gfdb 

Morpheus https://sourceforge.net/projects/morpheus-ms 

MetaMorpheus https://github.com/smith-chem-wisc/MetaMorpheus 

MS Amanda http://ms.imp.ac.at/?goto=msamanda 

Andromeda 
http://www.coxdocs.org/doku.php?id=maxquant:andro

meda:start 

MyriMatch 
https://medschool.vanderbilt.edu/msrc-

bioinformatics/software 

MaxQuant http://www.coxdocs.org/doku.php?id=maxquant:start 

OMSSA ftp://ftp.ncbi.nlm.nih.gov/pub/lewisg/omssa 

MassWiz https://sourceforge.net/projects/masswiz 

Sequence tag 

and 

combined 

approach 

 

InsPecT 
http://proteomics.ucsd.edu/software-tools/inspectms-

alignment/ 

MSblender http://www.marcottelab.org/index.php/MSblender 

COMPID http://users.utu.fi/lanatr/compid. 

Popitam https://code.google.com/archive/p/popitam 

TagRecon 
https://medschool.vanderbilt.edu/msrc-

bioinformatics/software 

DirectTag 
https://medschool.vanderbilt.edu/msrc-

bioinformatics/software 

ByonicTM http://www.proteinmetrics.com/products/byonic 

Spectral 

library 

search 

SpectraST http://www.peptideatlas.org/spectrast 

X!P3 http://p3.thegpm.org/tandem/thegpm_ppp.html 

Bibliospec skyline.gs.washington.edu 
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Category Tool URL 

Multi-

platform 

search 

engine and 

unified 

scoring 

iProphet 
https://www.systemsbiology.org/resources/software-

downloads/ 

Scaffold http://www.proteomesoftware.com/products/scaffold/ 

PepArML http://peparml.sourceforge.net/ 

MSblender http://www.marcottelab.org/index.php/MSblender 

FDRAnalysis http://code.google.com/p/web-based-multiplesearch 

Spectra 

quality 

MassWiz https://sourceforge.net/projects/masswiz 

MaXIC-Q 
http://ms.iis.sinica.edu.tw/COmics/Software_MaXIC-

Q.html 

IDEAL-Q 
http://ms.iis.sinica.edu.tw/COmics/Software_IDEAL-

Q.html 

MS data 

management 

and spectral 

libraries 

PeptideAtlas www.peptideatlas.org 

Proteios www.proteios.org 

SBEAMS http://www.sbeams.org/project_description.php 

CPAS www.labkey.org/ 

PRIDE www.ebi.ac.uk/pride/ 

MASPECTRA

-S2 

http://genome.tugraz.at/maspectras/maspectras_descript

ion.shtml 

Proteom-

Xchange www.proteomexchange.org 

Analytics 

platforms 

and pipelines 

MaxQuant  www.biochem.mpg.de/en/rd/maxquant/ 

Trans-

proteomic 

pipeline 

http://tools.proteomecenter.org/wiki/index.php?title=So

ftware:TPP 

Chorus https://chorusproject.org/pages/index.html 

Galaxy-P https://usegalaxyp.org/static/welcome.html 

Firmiana http://www.firmiana.org/ 

Labkey https://www.labkey.org 
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Category Tool URL 

Collection of 

tools and 

databases 

OMICtools https://omictools.com/proteomics-category 

Expasy tools  http://www.expasy.org/tools/ 

EBI tools and 

databases  https://www.ebi.ac.uk/services 

NCBI data-

bases and tools  https://www.ncbi.nlm.nih.gov/guide/data-software/ 

Uniprot www.uniprot.org 

neXtProt  www.uniprot.org, www.nextprot.org 

SPC-Prote-

omics tools http://tools.proteomecenter.org/software.php 

This thesis focusses on the results from the algorithms, not detailing the efficacy or utility of 

each algorithm as most are proprietary, are already established in proteomics laboratories or 

have been extensively reviewed and therefore beyond the scope of this study. 

Some hybrid software platforms have also been developed in a bid to improve the algorithms 

to identify more peptides. InsPecT [107] uses a hybrid tag based approach to identify best 

matching peptide for a spectrum. MSBlender [108] converts PSM scores from multiple search 

engines into a probability score for all possible matches (PSM) while considering the 

correlation between search scores to maximise the number of identified PSMs. COMPID 

[109] integrates Mascot [81] and Paragon [110] algorithms. 

The availability of this wide range of free and commercially available search engine software 

each with their own unique algorithms and search parameters for matching spectra meant that 

an accurate assessment of the quality of search results can be very difficult in a highly 

collaborative environment. This aspect is also a significant part of determining the accuracy 

of an entire proteomic assessment and subsequent downstream analyses. In recent years 

though, there is a significant preponderance to the use of commercially available search 

engines primarily due to ease of use and often intuitive interface. Although proteomics data 

analysis can contain a significant amount of specialised data (including modifications, 

transitions etc.) the majority of users of proteomics technologies utilise it for identification of 

proteins [111] or increasingly quantitation of protein [112] upon successful identification. 
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Increasingly, most users, though having access to raw data, rely on search engine processed 

data to draw conclusions and make inferences on the nature and quality of the biological 

sample [112]. This could be due to several reasons ranging from lack of expertise to poor or 

no access to proprietary software for reanalysing or reprocessing raw MS files. In many cases, 

the data produced by these machines can contain noise/bias. This can lead to incorrect 

identification if the searches are not conducted carefully with correct search engine specific 

parameters. So, it is important to (a) use an optimised set of parameters (depending on the 

search engine) for the database search (b) have a good understanding on how to interpret the 

various engine scores to identify the proteins correctly. As there are no standard sets of 

parameters for all search engines, users must optimise the key parameters to obtain best 

possible results. Some of the key parameters are the enzyme, parts-per-million (ppm) value of 

mass tolerance, the number of miss cleavages, choice of PTMs. Some published guidelines 

[90] and a detailed review [92] of the parameters for various search engines are also available 

online. Several quality scoring methods such as false discovery rate (FDR), P value, Q-value, 

E value, posterior error probability (PEP) have been developed to add confidence to the 

statistical scores from various search engines. Many software tools like iProphet[113], 

Scaffold [114], PepArML [115], MSBlender [108] and FDRAnalysis [116]  provide a 

platform to merge data from various search engines and reprocess them to give a unified 

score. This however comes at the cost of increased complexity, computational time 

requirement and ability to interpret yet another set of scores [117]. Although ideally, a 

reanalysis of raw data through a standard protocol would yield the best indicators of data 

quality, this may not be practical for all studies especially for smaller studies.  

 

A major further compounding factor is that most freely available and proprietary search 

engine software do not take into consideration the quality of mass spectra. Most, if not all 

algorithms rely on matching theoretical spectral masses (or m/z) to those obtained from an 

experiment and provide a confidence score of the similarities based on a user defined error 

margin. This often means that poor spectra (for instance, those with a high ratio of noise to 

sample, low-intensity spectra, etc.) could potentially get high scores. Incorrect sequence 

assignments often arise due to deficiency in scoring schemas, low spectral quality, 

fragmentation of multiple peptide ions, presence of homologous peptides, incorrectly 

determined charged state or peptide mass, restricted databases for searching and variation in 

sequence of peptides [118]. More recently, the recognition that confidence scores and identity 

scores for peptide identification being insufficient have sparked interest in determining quality 

checks of actual raw spectra. Several methods are developed to assess the quality of the 
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PSMS, such as single spectrum methods, multiple spectra methods, and target-decoy analysis 

methods [98, 101]. A few review articles have been published to compare these methods as 

well defining some criteria for assessing the quality of the PSMs [96, 119, 120]. Indeed, 

several more sophisticated software (Manual Analysis Emulator (MAE) [121], MaXIC-Q 

Web[122], IDEAL-Q [123], MassWiz [106]) do exist to automate this effort but they require 

a re-analysis/reprocessing of the data, downloading and installing software which is not only 

cumbersome but often not possible for most proteomics labs.  Many peer reviewed journal 

articles including large studies [7, 13] now add a manual spectral validation step but often 

refer to spectra being analysed by ‘expert or experienced mass spectrometrists’ without clear 

defining criteria. These manual validation methodologies are often subjective with criteria 

either undefined or varying between groups. Furthermore, such validation is not feasible for 

most non-specialists or educational purposes without appropriate guideline or method. 

 

The database search method is dependent on the protein sequences available in the database. 

Unlike de novo sequencing, a protein or peptide cannot be identified if it is not available in 

the target database [92] even if the protein is present in the sample. The protein database 

comprises a set of protein coding genes of an organism that are derived using a gene 

prediction tool as part of the genome annotation process. The most common gene prediction 

techniques are ab initio gene prediction using a gene model and sequence similarity of genes 

[124, 125]. A wide range of software and tools are available to predict genes for prokaryotes 

and eukaryotes. These include, but are not limited to Glimmer [126], Prodigal [127], 

GeneMark [128], GENSCAN [129], AUGUSTUS [130] and MAKER2 [131]. With the 

advent of next generation sequencing technology, there has been a rapid increase in the 

number of completely sequenced genomes as well as the public databases that store these 

genomes. Despite the advances, genome annotations are not free from errors. Some of the 

examples include incorrect assignment of gene start site [132], translation of a gene 

incorrectly annotated as pseudogene [133], and unannotated new genes [134, 135]. Accurate 

annotation of protein-coding gene boundaries is essential for protein identification as well as 

downstream functional annotations. The predicted sequences generated from these 

annotations can then be further analysed functionally.  

 

1.3 In silico protein identification and functional annotation 

This section will briefly outline some of the in silico annotation techniques using existing 

information from various databases. 
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1.3.1 Database similarity searches 

Sequence homology technique is commonly used for functional annotation. Sequences are 

considered homologous if they share common ancestors, therefore share similar biological 

functions. In silico sequence alignment tools such as Basic Local Alignment Search Tool 

(BLAST) [3, 136] can be used to determine the similarity between a query sequence and the 

subject sequence ignoring any evolutionary changes. The sequence identity score is a key 

indicator of similarity. A query sequence can be considered strongly homologous if it matches 

with a subject sequence with at least 50% identity with an expect value 1e-05 [137, 138]. 

BLAST offers specific tools for various sequence types. For example, Translated BLAST 

(BLASTX) to search gene sequences and Protein BLAST (BLASTP) protein sequences 

against a protein sequence database, and Nucleotide BLAST (BLASTN) to search gene 

sequences against nucleotide sequence database. Several other alignment tools offer similar 

functionalities such as HHblits [139], BLAT [140], and MGAlignIt [141]. Any protein 

sequence database can be used for the searches including some of publicly available databases 

such as UniProtKB [142], TrEMBL [143, 144], PDB [145, 146] (described later in section 

1.4). Although almost every database provides some annotations, it is important to use one or 

more closely related protein sequence database to identify homologous sequences. Where 

possible, a reviewed protein sequence database with experimental evidence is preferred to 

avoid matches against unannotated or translated coding regions [138, 147]. Although the 

similarity searches identify similar or homologous proteins, further functional analysis can be 

carried out to get a better understanding of their functions.  

1.3.1 Functional annotation 

One of the common techniques to identify biological functions of a gene or protein is to 

identify the over-represented functional categories from a set of differentially expressed genes 

or proteins with common biological properties [148]. Gene Ontology (GO) [149, 150] 

provides hierarchically controlled vocabularies (CV) to classify gene function and provides a 

unified description of biological, cellular and molecular functions across genomes. There are 

three high-level categories in GO annotation - the biological process that defines a series of 

events, the molecular function describes activities at the molecular level, and the cellular 

component describes locations on the subcellular structures and macromolecular complexes. 

Each of these categories is then further expanded with various evidence codes. These 

controlled vocabularies are a good candidate for functional annotation and has been widely 

used by many annotation tools for example, BLAST2GO [151], PANNZER [152] , 

FunFHMMer [153, 154], dcGOR [155], and AgBase-Goanna [156]  to annotate protein 
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sequence. Several other tools have been developed by the members of the Gene Ontology 

Consortium, and are listed in the Gene Ontology website [157]. Another method is to scan 

protein or gene sequences against predicted protein signature models to identify domain, 

motifs and associated GO terms.  The InterPro [158] database integrates such predicted 

signature models from 14 member databases including the two recently added database SFLD 

[159, 160] and CDD [161]. InterProScan [162] annotation package combines all protein 

signature method to a native form to look up corresponding InterPro and GO annotation.  

 

Table 1.2. List of InterPro member databases 

 

Database Description Reference 

CATH-

Gene3D 

Predicted structural fold, protein family and domain 

organisation of proteins. 

[163, 164] 

CDD A collection of well-annotated multiple sequence alignment 

models for ancient domains and full-length proteins. 

[161] 

 

MobiDB A centralised resource of manually curated, indirect and 

predicted annotations of intrinsic protein disorder. 

[165, 166] 

HAMAP A high-quality annotation database with manually curated 

profiles for protein sequence family classification and 

expert-curated rules for functional annotation of family 

members. 

[167] 

PANTHER A large annotation database of protein families and function 

of protein-coding genes from 104 completely sequenced 

genome using human expertise. 

[168] 

Pfam A large collection of protein families primarily based on the 

UniProtKB reference proteomes derived by multiple 

sequence alignment and hidden Markov models. 

[169] 

PIRSF A comprehensive resource for comparative analysis of 

protein function and evolution providing multiple levels of 

sequence diversity from superfamilies to subfamilies 

reflecting the evolutionary relationship of full-length 

proteins and domains. 

[170, 171] 
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Database Description Reference 

PRINTS A collection of groups of conserved motifs used to 

characterise a protein family also known as fingerprints. 

[172] 

ProDom A protein domain families database produced by clustering 

homologous segment from the UniProt Knowledge 

Database. 

[173] 

PROSITE An annotation database of protein domains, families and 

functional sites including their identification patterns and 

profiles. 

[174] 

SFLD A hierarchical classification of functionally diverse enzymes 

superfamilies that relate to homologous sequence-structure 

to specific chemical capabilities. 

[159, 160] 

SMART A resource for identification and extensive annotation of 

genetically mobile protein domains and the exploration of 

domain architectures. 

[175] 

SUPER-

FAMILY 

A library of structuraland functional annotation of genes and 

proteins based on a collection hidden Markov models. 

[176, 177] 

TIGRFAMs A protein family database containing multiple sequence 

alignments, Hidden Markov Models (HMMs) for protein 

sequence classification. 

[178] 

A complete list of InterPro member databases is provided in Table 1.5. Although there are 

some overlaps between the databases (as well as the tools), each of them is developed for the 

specific purpose so the software and databases must be selected carefully to the research goal 

[179]. The InterProScan package can also detect pathways. 

1.3.2 Pathway analysis 

A biological pathway is a series of interactions between various biochemical compounds like 

gene, protein, protein complex, and metabolites within a cell that creates a change in the cell.  

Therefore, understanding which protein and genes are involved in a pathway of interest can 

provide vital information about protein functions and overall biology. The Kyoto 

Encyclopedia of Genes and Genomes (KEGG) [180-182] is an integrated database that was 

developed to establish links between genes and high-level functions of the cell of the 

organism. It comprises of 16 different databases in four categories. These categories include 
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systems information, genomic information, chemical information and health information. 

KEGG LIGAND integrates all chemical information and KEGG MEDICUS acts as the 

reference point for all information under the health category and extends KEGG's application 

programming interface (API) for computational data analysis [180].  

Table 1.3. List of KEGG resources.  

Category Database Content URL 

KEGG http://www.genome.jp/kegg/ 

System 

information 

PATHWAY KEGG pathway maps ../pathway.html 

BRITE 

BRITE functional 

hierarchies and BRITE 

tables 

../brite.html 

MODULE 
KEGG modules 

../module.html 

Genomic 

information 

ORTHO-

LOGY 

KEGG Orthology (KO) 

groups ../ko.html 

GENOME KEGG organisms (complete 

genomes) 
../genome.html 

GENES 
Gene catalogs of KEGG 

organisms, viruses, plasmids 

and addendum category 

../genes.html 

SSDB GENES sequence similarity ../ssdb/ 

Chemical 

information 

(KEGG 

LIGAND) 

COMP-

OUND 

Metabolites and other small 

molecules 
../compound/ 

GLYCAN Glycans ../glycan/ 

REACTION Biochemical reactions ../reaction/ 

RPAIR Reactant pairs 
../document/help_bget_rpair.

html 

RCLASS Reaction class ../reaction/ 
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Category Database Content URL 

ENZYME Enzyme nomenclature ../annotation/enzyme.html 

Health 

Information 

(KEGG 

MEDICUS) 

DISEASE Human diseases ../disease/ 

DRUG Drugs ../drug/ 

DGROUP Drug groups ../drug/ 

ENVIRON 
Crude drugs and health-

related substances 
../drug/environ.html 

A complete list of KEGG resources is provided in Table 1.6. Some of the pathway mapping 

tools include, KEGG Orthology Based Annotation System (KOBAS) [183] which is a KEGG 

orthology (KO) based pathway identification web server, KEGG Automatic Annotation 

Server (KASS) [184] performs BLAST against KEGG GENES database for annotation, 

InterProScan [162] annotation also provides pathway annotation, and PathFinder [185] 

identifies signaling pathways in protein-protein interaction networks. 

1.4 Proteomics databases  

The advances in proteomics technologies complemented by the growth of the genomics 

technology (including the increase of genome sequences data) created an unprecedented 

growth the number of publicly available proteomics data repositories.  The focus of these 

databases ranges from the mere repository of raw data to being a knowledgebase. The sharing 

of experimental proteomics is becoming a norm, as some scientific journals either require 

[186] or recommend [187, 188] researchers to submit their raw proteomics data. The shotgun 

proteomics experiments can produce three types of data in its life cycle. These are (a) raw 

data (i.e raw MS files), (b) processed results (i.e. identification and quantification 

information), (c) the research findings [17]. Each of these category can also contain various 

metadata such as quality information (QC), instrument parameters, etc. Since these datasets 

come from a wide range of instruments and vendors storing, analyzing and sharing these 

datasets without some a) common or standard data format b) overarching submission and 

discovery platform is a big challenge. Several data standards were developed, such as the 

Proteomics Standards Initiative (PSI) (led by HUPO-PSI [189]) over the years to address the 

first problem. For example, mzML [190] for MS data, mzIdentML [191]for MS identification, 
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mzTab [192] for identification and quantification, mzQuantML [193]for quantification, and 

TraML [194] transition lists for targeted proteomics studies [195]. To address the second 

issue, the ProteomeXchange (PX) consortium [196] was formed in 2011 to standardise the 

submission process and to store and sharing data using unique identifiers (PXD number). 

Currently, users can submit data using any of the ProeomeXchange member repositories 

(PRIDE [197], PeptideAtlas [198], PASSEL [199], MassIVE [200] and jPOSTrepo [201]). 

Other commonly used databases are UniProt [142], neXtProt [27], GPMDB [202], 

ProteomicsDB [7],  MaxQB [203],  MOPED [204, 205], PaxDb [206], Human Proteinpedia 

[207], and the human proteome map (HPM) [13]. Typically, proteomics databases focus on 

storing data for one or more of the three categories mentioned earlier in this section. The next 

section will provide brief descriptions of some of the key databases.  

1.4.1 ProteomeXchange (PX) consortium databases 

The ProteomeXchnge [196] provides an overarching platform to submit and share data using 

community standard data format to its member repositories. It stores the standard 

experimental and technical metadata from member repositories using the PX XML format and 

assigns a unique and universal PXD identifier to all dataset. Depending on data and workflow, 

users can either make a "Complete" or "Partial" submission to any of its member repositories 

(refer to Figure 1.6 for more information). The key difference between the two submissions 

are if the protein/peptide identifications information is submitted in a standard format, the 

host repository can link the MS spectra directly to the submitted identification results. 

However, for partial submission, the unlinked search engine results are made available for 

download. All submission receives a PXD id, but a full submission with peak lists receives a 

Digital Object Identifier (DOI). Irrespective of the host repository, it provides a federated data 

search and discovery via the ProteomeCentral portal. All host repositories store metadata and 

raw data for both “complete” and “partial” submissions. All PX nodes allow users to embargo 

their data until publication and provide private access to the journal reviewers.  

The PX host repository also have specific functions and features which will be outlined 

below.  
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1.4.1.1 PRIDE 

PRoteomics IDEntification (PRIDE) [197] is one of the most matured, comprehensive, and 

founding node of the PX consortium. It stores both raw and processed data (i.e. identification, 

PTMs, expression). In addition to the standard ProteomeXchange submission platform, 

PRIDE also provides a high-speed command line submission tool for larger datasets [208].  

For the "complete" submission, PRIDE requires users to submit identification data using 

PRIDE XML, or PSI mzIdentML (with the corresponding peak lists) format. It provides an 

open source tool [209] to convert data from the non-standard format.  The "partial" 

submission system doesn't have this requirement and is suitable other MS techniques such as 

SWATH -MS (DIA), and search engine results that are not supported by any conversion tool. 

PRIDE provides a web-based data discovery portal [210]  [PRIDE Archive] to search and 

download data. Users can search data and access data at various level: project, protein, 

peptide, assay. It provides File Transfer Protocol (FTP) and command line access to the data. 

Complete submissions are processed in a way that end users can download the files, and 

inspect the spectra using PRIDE Inspector tool [211]. It also provides RESTful web services 

[212] for programmatic access to the data. In addition to this, PRIDE also provides 

reprocessed "spectrum-clustering" data via the PRIDE cluster web interface [213].  

1.4.1.2 PeptideAtlas 

PeptideAtlas [198] is a widely used curated data repository for protein expression data for 

shotgun proteomics. Data can be submitted to one of the PX nodes or via the PeptideAtlas 

online submission portal [214]. PeptideAtlas then re-analyses the raw LC–MS/MS spectra and 

organises them into various builds (data from single proteome or subproteome). The 

reanalysis pipeline first searches the spectra against a comprehensive proteomics database 

(UniProtKB/Swiss-Prot [142], Ensembl [215] and International Protein Index (IPI) [216]), 

then processed using Trans-Proteomics Pipeline (TPP) [217]. The TPP pipeline leverages a 

range of protein and peptide identification tools – PeptideProphet [218], InterProphet [113], 

ProteinProphet [219] to assign probability of the identification. MAYU [220] was developed 

to control the protein FDR when various databases are combined for identification. Finally, 

the proteins are annotated with supporting information such as genome mappings 

proteotypicity, etc. to make the final build of a release. The reanalysed datasets are assigned 

with RPXD identifiers to link them with the original PX dataset. The PeptideAtlas webserver 

acts as the discovery portal. It also provides a "Chromosome Explorer" [221] to provide a 

chromosome centric view of the information, and a customised dedicated discovery portal 

[222] to assist the HUPO - CHPP ‘missing’ protein identification initiative [23]. 
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1.4.1.3 PASSEL 

PASSEL [199] stores targeted proteomics quantification data. It is the Selected reaction 

monitoring (SRM) experiment library (both experimental and raw data) of the PeptideAtlas. 

Users can submit data using the online data submission portal [223]. Users are required to 

provide transition list for SRM data in mProphet [224] format as PASSEL reprocesses all data 

using mQuest/mProphet to maintain consistency throughout. The PASSEL reprocessing 

workflow also incorporates the measured transitions into the SRMAtlas [225]. A submission 

template along with supported data formats are also available online [214], and each 

submission also receives a ‘PASS’ identification number. These submitted files along with 

the reprocessed data are made available to the wider scientific community portal via the 

PASSEL data discovery portal [226]. The portal provides two discovery services to access 

SRM experimental data (raw and reprocessed) and transition results. "PASSEL Experiments” 

service allows users to search experimental and raw data using available filters for a single 

experiment [227]. The "PASSEL Data" service [228] also known as "Transition Group 

Browser" lets users identify the best performing assays from the entire database instead of a 

single experiment. Users can apply filters like protein, peptide, and various MS parameters to 

find SRM transitions and chromatograms from available experiments [229]. It also provides 

links to links to any available PeptideAtlas [198] and SRMAtlas [225] data.  

1.4.1.4 MassIVE 

 MassIVE [200] is another node of ProteomeXchange that allows users to submit and access 

MS experimental data and associated files. Unlike other repositories, MassIVE provides a 

social or community science platform that lets users add new data, or reanalyze existing data 

and comment on new or renalysed datasets to enrich the original submission. The data 

submission is a two-step process; all registered users are assigned with an FTP account via the 

ProteoSAFe web interface [230]. It recommends users use their preferred FTP client to upload 

data. MassiVE dataset files are organised into ten categories, such as license file, spectrum 

files, etc. [231]. Hence users are recommended to name and organise datasets into various 

folders according to the main dataset categories during the upload process. Once the datasets 

are uploaded, users can log into the ProteoSAFe web interface [230]  to link their files to 

specific groups and invoke the submission workflow for these files. Users are also required to 

submit necessary metadata for each dataset via the ProteoSAFe web page. It is recommended 

to provide raw spectrum and search engine files for all submissions however, a complete 

submission must include peak lists and result files. A detailed submission guideline along 

with the requirements for complete submission is available at the ProteoSAFe web page 

[231]. 
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Once the data is submitted, users can either make it public or provide password protected 

access to other users. MassIVE ProteoSAFe [230] provides two discovery options i) browse 

[232] ii) search [233]. The browse page allows users to sort and filter data from a tabular web 

page, and search page provides a range of search criteria to find a dataset. Users can then 

invoke renalysis workflow for selected datasets. MassIVE onsite renalysis workflows use 

wide a range of bioinformatics tools [234] to allow users to reanalyse their own or other data. 

Users can then comment on or submit the reanalysis to enrich the original submission. 

1.4.1.5 jPOSTrepo 

jPOSTrepo [201] is the most recent member of ProteomeXchange consortium that enables 

users to share and reuse data generated from various proteomics project. It provides an easy-

to-use flexible file management platform with high-speed file uploading mechanism. The 

jPOSTrepo submission workflow [235] requires users to create "preset" as the first step to 

document experimental procedures and wet lab protocols. Currently, the workflow offers four 

"presets." These are ‘Sample’, ‘Fractionation’, ‘Enzyme/Modifications’, and ‘MS mode’.  In 

the next step, users can create a ‘profile’ using a combination of the four presets and link it to 

their raw proteomics data. The same ‘profile’ can be attached to multiple files using 

submission portal. The platform supports raw MS files as well as the peak list files. Upon the 

meta-data profile linkage, users can upload the files from their computer using the web 

browser. The upload protocol uses a parallel transfer protocol to chunk individual files to 

maximise bandwidth over high latency connections.  All complete submissions are subject to 

a validation process. After a successful validation, the workflow allows the user to "lock" the 

submission process to obtain a PX and jPOST identifier. The jPOSTRepo data discovery 

portal [236] lets users search public projects by ontology terms and controlled vocabulary 

(CVs). Users can also search a project by principal investigator names listed in presets and 

projects [201]. The discovery portal also offers a "quick" and "detail" view options. The quick 

view allows users to view high-level information on the same page, and users can also select 

the detailed view mode for more information.  

1.4.2 Other Proteomics Databases 

In this section, some of the proteomics databases will be discussed that are not part of the 

ProteomeXchange consortium but provide valuable proteomics experimental data to the 

community. Some of these databases reuse data from ProteomeXchange repositories and 

provide further information.  
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1.4.2.1 GPMDB 

GPMDB [202] is a widely used database platform to analyse and validate tandem MS data 

using the X!Tandem [95] search engine. Users can go to the submission page [237] directly or 

navigate the page through the boutique proteomes option to select a species-specific database. 

Users can then upload a file to run X!Tandem [95] search using the Ensembl [215] database. 

Currently, the platform supports common, mzXML, mzData, DTA, PKL and MGF files. The 

identification information is stored in XML files, and these files are then indexed in a MySQL 

database [17]. Upon a successful search, users can opt in to submit the data to the GPMDB 

repository. The platform also allows both restricted and anonymous contributions. 

Additionally, the search portal also offers two other algorithms X!P3 [238] and X!Hunter 

[239] to analyse data. The X!P3 algorithm uses a list of a frequently detected proteotypic 

peptides for identification whereas the X!Hunter takes the experimental spectra and compares 

it with the consensus mass spectra from the GPMDB. The GPMDB data discovery portal also 

provides both a keyword and ontology-based search engine. Users can leverage a range data 

visualization tools (e.g. gene view, protein and observed peptide sequence view, and 

X!Tandem view) to view selected dataset as well as annotated spectra.  

1.4.2.2 ProteomicsDB 

ProteomicsDB [7] is an MS-based protein expression database of the draft human proteome. 

It stores protein and peptide identification and quantification information. It is underpinned by 

the SAP HANA platform and offers high-throughput in-memory data analysis and 

visualisation capabilities.  In May 2017, the repository contained protein identification 

information covering 80% of the human proteome (15721 of 19629 proteins) from 78 projects 

comprising 418 experiments [240].  Although the platform used to offer various ways to 

upload data to the repository in the past, has discontinued the data repository service from 25 

January 2017 and encouraging the users to submit or resubmit their data to one of the 

ProteomeXchange consortia. The ProteomicsDB team will continue to support the central part 

of the database.  The site aims to link all published datasets to the ProteomeXchange dataset 

to maintain consistency. The data discovery portal allows users to browse human proteome 

and associated information (e.g. function, expression, identification). It also provides users an 

option to browse proteins by chromosome. Once a protein is selected, users are directed to the 

protein view.  The protein view page offers a range of information tabs (e.g. summary, FDR 

estimation, proteotypicity, expression, biochemical assays, etc.). The expression tab of the 

protein view also allows users to visualise expressions across the complete human body 
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1.4.2.3 HPM 

Like ProteomicsDB [7], HPM [13] is another database that was developed as a result of draft 

human proteome release. The database contains protein identification and expression 

information for 84% (17, 294 protein) of the protein coding genes of the near complete human 

genome. The information provided in the database was derived from 30 histologically normal 

human tissue samples from fetal tissues/adult tissues/hematopoietic cells using high-

resolution MS (high-high mode). The MS/MS data was then searched against the human 

RefSeq database using MASCOT [81], and SEQUEST [93], search engines, and identification 

results stored in a MySQL database for public sharing [13]. The HPM database doesn't allow 

users to contribute their data. However, using the public data discovery portal users can 

search and visualise protein expressions and identification evidence based on protein, specific 

pathway, and gene family. Users can also restrict the search results to specific tissue or cell. 

Once a protein is selected, users can navigate to the peptide tab to view identified sequences, 

associated modification, mass-to-charge ratio, charge and visualise the best available high-

resolution MS spectrum. The MS-based proteomics data is available via PRIDE, a member of 

the ProteomeXchange consortium and the PXD identifier for the dataset is PXD000561. 

1.4.2.4 MaxQB 

MaxQB [203] is a repository for high-resolution MS-based proteomics experiments. It stores 

protein and peptide identification and quantification information along with their spectra (high 

or low resolution) and allows joint analysis and comparison across project data. The project 

specific cutoff scores are adjusted to maintain the database-wide false discovery rate. 

Although only the Mann group contributes these datasets, the research community can access 

the public datasets using the data discovery portal. The identification workflow is tightly 

integrated with MaxQuant, and the private data submitters are prompted with an option to 

submit data at the end of the analysis. MaxQB also offers a manual private submission 

mechanism to the Mann group users. The MaxQB data discovery portal provides a basic and 

an advanced search function to query the database using search terms like protein or gene 

name, organism, etc. to view protein and peptide identification information. The portal also 

provides protein expression information within a proteome. It uses spectral count based iBAQ 

algorithm [241] to estimate protein quantification.   

1.4.2.5 MOPED 

MOPED [204, 205] is a multi-omics expression data repository from several model organisms 

including human. It provides protein-level expression, quantitative data from standard 
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analysis and links genes, proteins, pathways, and external data sources. The platform is no 

longer maintained since 1 October 2015 and provided on an 'as is' basis to the community. 

Although the database is not updated, all datasets submitted to MOPED included a minimum 

set of standard metadata. The MOPED pipeline [242] renalysed MS data using public 

repository using the SPIRE [243] environment.  MOPED discovery portal offers seven 

options to search and visualise and compare data. These are  (i) protein absolute expression 

tab; to compare protein concentrations within and across various expression (ii and iii) 

relative gene/protein expression tab; to explore ratios of gene/protein concentration in 

comparative experiments iv) pathways tab; to show  expression across experiments, 

conditions, tissues, and localizations v) experiment tab; to browse recently added experiments 

vi) disease tab; shows the gene-disease co-appearance in published article vii) visualisation

tab; allows users drill down proteins by organism, tissue, localisation, and cell and display the 

absolute or relative matrix of identified proteins based on the condition. 

1.4.2.6 PaxDb 

PaxDb [206] is a comprehensive meta-resource containing whole genome protein abundance 

information across organisms and tissues. It aims to collect proteome-wide protein abundance 

information, irrespective of the underlying measurement technique. It uses information from 

publicly available repositories (mostly from PRIDE and PeptideAtlas) and maps them onto a 

common namespace and reprocesses the MS data using a standardized spectral counting 

pipeline. This pipeline uses the PeptideAtlas scoring and cutoffs to count the number of 

identification of peptides across the whole PeptideAtlas build. Each protein abundance data 

set is then remapped to a reference model organism genome/proteome sequence database that 

is imported from the STRING database [244]. For MS/MS data the pipeline remaps each 

peptide to the corresponding protein sequence from the database. The protein abundance 

values are converted for each dataset into protein abundance estimates using "parts per 

million" (ppm) value. The PaxDb discovery portal allows users to query single protein across 

all organism and multiple proteins for a single organism. For single protein search, the results 

page shows the abundance information from all available datasets, abundance (in ppm), and 

the ranking. The abundance information can be filtered further to narrow down the results. 

Users can also view the abundances in other organisms from this page as well the interaction 

network provided by STRING. For multiple protein search, related datasets and abundances 

are listed in a tabular form. Users can download the results as a tab-delimited file or click on 

individual proteins to navigate to the single protein view. The download data page allows 

users to download all datasets or per-species abundance file in a compressed format.   
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1.4.2.7 Human ProteinPedia 

Human Proteinpedia [207] is a public web platform for sharing and integration of human 

protein expression and annotation information from multiple experimental platforms. It 

derives data from various experimental platforms, which include co-immunoprecipitation and 

mass spectrometry-based protein-protein interaction or western blotting based protein-protein 

interaction, fluorescence based experiments, immunohistochemistry, MS analysis data, 

protein and peptide microarray, western blotting and yeast two-hybrid-based protein-protein 

interaction. Besides experimental platforms, its annotation platform covers a diverse range 

annotation features. These include post-translational modifications, subcellular localization, 

protein-protein interactions, enzyme substrates, and tissue, cell line, and disease tissue 

expression. Registered users can log into the submission portal to submit annotation for any 

of the above mention features. Annotations must be submitted using the defined format [245]. 

Users can also leverage the 'batch upload' feature to provide large datasets. Unlike other 

proteomics databases, Human Proteinpedia doesn't mandate users to submit all raw data. 

However, it doesn't accept any in silico annotation and recommends users to provide raw data 

where possible. The database enriches human protein reference data (HPRD) [246] using 

these community annotations. The data discovery portal allows users to search and access 

data using three different ways. These are i) using gene symbol, protein name or protein 

accession numbers ii) by datasets and iii) by experimental platform. It also provides a data 

download page to browse and download any public dataset. 

1.4.2.8 UniProt 

 UniProt is one of the most comprehensive and widely used protein sequence and annotation 

databases. UniProt provides four different databases to addresses different scientific use cases. 

These resources are developed and maintained by the UniProt Consortium. The consortium 

was formed in 2002 to combine the databases, resources, and expertise of its member 

institutes - the European Bioinformatics Institute (EBI), the Swiss Institute of Bioinformatics 

(SIB) and the Protein Information Resource (PIR). Swiss-Prot [247-249] and TrEMBL [247] 

were developed and maintained by EMBL-EBI and SIB jointly. The PIR managed the PIR-

PSD and related databases [143, 144, 250].  

The UniProt Knowledgebase (UniProtKB) is the central repository that provides high-quality 

sequences for many species. It has two components - i) UniProtKB/Swiss-Prot contains non-

redundant protein sequence data that are manually annotated by the UniProt curators. The 

information is curated by various computational analysis as well as extracting information 
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from scientific literature. (ii) UniProtKB/TrEMBL contains protein sequences that are 

computationally analysed and subject to automatic classification and annotation. These 

records are manually annotated and integrated to UniProtKB/Swiss based on ‘defined 

annotation priorities’ [247]. The UniProt Archive (UniPrac) acts as a non-redundant 

unannotated archive of publicly available protein sequence databases. UniParc merges all 

sequences with 100% identity match over their entire length from various databases 

regardless of their species. It cross-references each sequence to their source including all 

versions of each sequence to avoid redundancy during the data retrieval [251]. The UniProt 

Reference Clusters (UniRef) provides clustered set of UniProtKB sequences, selected UniPrac 

records as well as Ensembl [215] protein translations from selected species.  It contains three 

databases - UniRef100, UniRef90 and UniRef50, and are produced by clustering various 

sequence records by percentage of sequence identity [252]. The UniProt Metagenomic and 

Environmental Sequences DB (UniMes) includes predicted metagenomic sequences derived 

from and environmental samples. The dataset is further enriched by InterPro annotation [162] 

to show protein families, domains and functional sites [253].  

The UniProt resources also use information from previously mentioned publicly available 

proteomics databases to enrich the annotation. The UniProtKB protein existence [254] 

annotation uses protein/peptide identification information from publicly available databases 

and literature. It captures post-translational modifications (PTMs) from these databases. The 

UniProtKB also provides a direct link to some of the databases in the protein annotation page 

such as PaxDb, PRIDE, PeptideAtlas, MaxQB, iPTMnet [255] and PhosphoSitePlus [256]. 

1.4.2.9 neXtProt 

neXtProt [27] is a web-based protein knowledgebase that aims to provide updated information 

on human proteins. It takes the annotated information from UniProtKB and compliments it 

further by offering manual curation, developing tools for various research use cases, and 

providing use case centric views of the data.  Users can download the annotations from the 

neXtProt FTP site as XML or PSI Extended Fasta Format (PEFF) file. It also sources or 

integrates data from a wide range of other databases including previously mentioned 

PeptideAtlas and SRMAtlas to capture various information such as protein expression, micro-

array, and cDNA, subcellular localization, information from MS experiments data, Gene 

Ontology (GO), etc. More recently it started to capture information on the phenotypic effect 

of genetic variations from the scientific literature and provides a 'phenotypic view' to 

interrogate any possible phenotypic impact of genetic variation [27]. It also provides a web 
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tool 'unicity checker’ [257] to identify proteotypic peptide from a protein sequence. Like 

UniProtKB, it also provides protein existence level (PE) annotation and considered to be the 

primary repository of the C-HPP initiative. The neXtProt PE level 2 to 4 are classified as the 

'missing proteins.' The platform also provides a periodic release of the PE status to facilitate 

the C-HPP project [25, 26, 28].  

1.4.2.10 GeneCardsSuites 

 The GeneCardsSuites [258] provides a suite of databases that include gene-centric 

annotations and information that are automatically mined from 150 databases[259]. Among 

them, the GeneCards [258] is a wiki-like service that provides annotation information from 

these data sources in a single web page per gene (also known as cards) or provides a link the 

resource if the data is not captured. Users can use the GeneALaCart the web-based service 

generate an annotation file for a list of genes. The PathCards [260] contains integrated 

information of human pathways. The MalaCards [261] is a database of the human maladies, 

and the GeneLoc [262] uses the computation algorithm to provide an integrated map of 

human chromosomes.  The GeneAnalytics tool [263] can analyse data from GeneCards and 

MalaCards to provide an interactive view of highly enriched annotations such as gene 

associations to disorders, pathways, GO terms, expression, and compounds. 

1.4.2.11 PubMed 

PubMed [264] is an online service that provides free access to bibliographic information, 

abstract, and some full articles (via PubMed Central) from MEDLINE, PreMEDLINE, and 

various life science journals. It also provides publisher supplied citations, and all indexed or 

archived journals are subject to a quality assurance check. It also contains links to full texts.  

PubMed also provides programmatic access to its database. PubMed can be queried using 

Medical Subject Headings (MeSH) terms as well as keywords such as title, author name, 

journal name, etc.  

In addition to the standard search, PubMed provides purpose-built clinical query service [265] 

to search literature related to medical genetics, disease, and treatment, etc. and its LinkOut 

service [266] gives access to biological databases, research tools, etc. 
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Table 1.4. List of proteomics databases 

Database Category1 URL Accept 

Public 

data2 

ProteomeXchange Raw and 

processed data 

http://www.proteomexchange.org Yes 

PRIDE Raw and 

processed data 

https://www.ebi.ac.uk/pride Yes 

MassIVE Raw data https://massive.ucsd.edu Yes 

jPOST Raw and 

processed data 

https://repository.jpostdb.org Yes 

PASSEL Raw and 

processed data 

http://www.peptideatlas.org/passe

l 

Yes 

PeptideAtlas (Re)Processed 

data 

http://www.peptideatlas.org Yes 

GPMDB Processed data http://gpmdb.thegpm.org Yes 

ProteomicsDB Processed data https://www.proteomicsdb.org No 

HPM Processed data http://www.humanproteomemap.

org 

No 

MaxQB Processed data http://maxqb.biochem.mpg.de/mx

db 

No 

MOPED Processed data https://www.proteinspire.org/ No 

PaxDb (Re)Processed 

data 

http://pax-db.org No 

Human 

ProteinPedia 

Processed data http://www.humanproteinpedia.or

g/ 

Yes 

UniProt Knowledgebase http://www.uniprot.org Yes 

neXtProt Knowledgebase https://www.nextprot.org/ No 

GeneCards Knowledgebase http://www.genecards.org No 

PubMed Knowledgebase https://www.ncbi.nlm.nih.gov/pu

bmed/ 

No 

PDB Knowledgebase  https://www.wwpdb.org/ Yes 

1 Category – Raw data = raw proteomics data, process data = peptide identification and 
quantification data, knowledgebase = scientific knowledges or research outputs 
2 Does the repository allow end users to upload or contribute data directly? 
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1.4.2.12 Protein Data Bank (PDB) 

PDB is the most widely used and largest global dataset for experimentally derived three-

dimensional (3D) structures of proteins, DNA and RNA molecules [145, 267, 268]. The 

dataset provides community supplied annotated and validated primary, secondary and tertiary 

structural data obtained by X-ray crystallography or Nuclear magnetic resonance (NMR) 

spectroscopy. The platform is managed by the Worldwide Protein Data Bank Organization 

[267] with three regional data centers or nodes. These are RCSB Protein Data Bank (RCSB 

PDB) [145, 146], Protein Data Bank Japan or (PDBj) [269] and Protein Data Bank in Europe 

(PDBe) [270]. Among them, the RCSB PDB provides a broad range of analysis, visualisation 

and validation tools for research and education purposees. The 'NGL [271] viewer' enables 

users to view the structure from the web interface without installing any software. The 

‘Structural View of Biology’ integrates PDB data with other primary and community-derived 

data resources to decipher the biological processes and mechanisms. It also provides a 

mapping of the Protein Modification (PMS) to the RESID database [272]. The PDB resources 

have been used to create many other databases [273]. The PDB sequences are useful resources 

for database similarity searches for in silico annotation, as proteins can be considered 

homologous with structural identity match 25% or more [33, 274].  

1.4.3 Database challenges  

In the previous section, I have highlighted a large number proteomics centric databases and 

their contribution to the community. The growth of proteomics data is on the rise, and the 

community is more openly sharing data [275]. The ProteomeXchange initiative has 

significantly eased the raw data storage problem. However, the opportunity to make the best 

use of these datasets are not free from challenges. Although all repositories provide their own 

data discovery portal, finding all datasets related to a topic from various databases is far from 

trivial. Each of these databases has their own implementation platform, controlled 

vocabularies, and they are purpose built for specific types of data. Proteomics experiments are 

more complex as they come from various instruments and experimental conditions, data 

format and quality metrics. So, finding all datasets related to a topic of interest is not enough, 

one must know how to integrate or harmonise data from heterogeneous sources and platforms.  

For example, a user may be interested in the search for all information about some human 

'missing' proteins.  

To get the most out the vast public knowledge, the user needs first to identify all the databases 

that have some information (including how to search them in each database). Then the user 
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needs to understand the quality metrics for each of the datasets to filter and extract all 

information in human/machine readable formats, which often requires multi-domain skills as 

well as storage and compute resources, and finally, the user needs to run further analysis to 

combine data from various sources (more compute, and complex multi-domain skills). This is 

even more complex for multi-omics research. For example, data from a proteogenomics study 

may have been partially submitted to a proteomics database (proteomics data) and genomics 

database (for genomic data and findings). So, linking information from various sources and 

the ability to integrate and interpret data from diverse biological domains pose significant 

challenges. Although some of the database platforms support basic data sharing, they do not 

provide enhanced collaboration facilities between research groups to conduct complex 

studies.  

Several databases such as UniProt, neXtProt and GeneCards act as knowledgebases (instead 

of raw data provider), and ProteomeXchange offers some common standards for storing and 

sharing data, the generalised nature of these platforms often does not meet the needs of 

domain-specific research. On the other hand, platforms like Chorus and Firmiana offer data 

storage, sharing, and analysis facility under a single platform. However, they work in silos 

and do not provide integration with the public knowledgebase. Hence, data discovery and 

integration of data from various sources continue to challenge the scientific community 

(including the proteome bioinformatics community).  

The National Science Foundation (NSF) surveyed 704 Biological Sciences Directorate 

principle investigators (BIO PIs) in 2016 to identify the current and future priorities to enable 

big data research.  The survey report (preprint version - February 2017) [276] showed over 

95% PIs are either sharing data with the community or will continue to share data in future. 

90% of them indicated that they are currently or will be analysing big data. However, 89% of 

them reported that they need training on integration of multiple data types and 78% indicated 

the need for training in data management and metadata (see Figure 1.7 (a) and 1.7 (b)). All 

survey participants are considered "competitive researchers" in their field as each of them has 

secured at least one peer-reviewed grant. Hence, the outcome of the study further highlights 

the need for integrating data from heterogeneous experiments and computing platform.  

A recent article published around the same time by Martens et al. discussed some data use and 

reuse examples along with potential opportunities and challenges. The article called this the 

'Golden Age' to work publicly shared proteomics resources. However, it concurs that 
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integrating data generated from the multi-omics study is a challenging task and so far, have 

been achieved by two large consortia with their own data repository (The Clinical Proteomic 

Tumor Analysis Consortium (CPTAC) [277, 278])  or organism specific resources 

(‘Saccharomyces’ Genome database [279] ) [275].  

Omics Discovery Index (OmicsDI) [280] has been developed recently to index multi-omics 

datasets. It links and indexes 11 data repositories with host repository supplied shared 

metadata. OmicsDI offers three types of metadata submission options- (i) mandatory, (ii) 

recommended, and (iii) additional fields. The mandatory information contains basic collection 

administration level information. The recommended fields aim to collect basic sample 

protocol, omics type, tissue and instrument details. The additional fields aim to capture PTM, 

chromatographic protocol, quantification method, taxonomy and protein/metabolite identifier. 

While keeping the mandatory data simple makes is easier to link the database, the OmicsDI 

system will potentially index large number of datasets without the protein identifier (and other 

key information). While it is an excellent starting point to identify datasets from various 

sources, researchers may not be able to find all datasets by searching them with their protein 

identifier (even if the datasets are already indexed) and will eventually have to go to the 

source repository to (a) perform another search to ensure a comprehensive coverage of the 

dataset (b) collect additional information (e.g. search engine, identification etc.).  

One solution is to create new platforms or extend some of the current platforms to integrate 

data from various sources in a reusable format. As the community matures, it will drive new 

metadata standards, and science will demand new types data or metadata for new discoveries. 

Therefore, the platform needs to be able to adapt to community needs (not the opposite). At 

the same time, the focus should be complementing any existing efforts rather than duplicating 

resources or data, and increase collaboration where possible (especially for targeted studies).  
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Figure 1.7 (a) Percentage of affirmative responses, current and future data needs of BIO 

PIs. Yellow highlighting indicates a statistically significant chi square result between groups 

(bioinformaticians versus others; large research groups versus small). (b) Unmet data needs 

of BIO PIs. Percent responding negatively (318 ≤ n ≤510). Source Barone et al., 2017  
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1.5 Aims and objectives 

Identifications of proteins and decoding their underlying biological functions are the key to 

understanding life within the cell, tissue or organisms. Bioinformatics techniques can be used 

to find putative functions of proteins using publicly available databases. In-house 

experimental or publicly available proteomics data can be used to supplement the annotation. 

Mass Spectrometry techniques have been widely used for proteomics studies. Many free and 

commercially available search engine software and algorithms is available to analyse data. 

However, the interpretation and quality assessment of MS search engine results and mass 

spectra remain a challenge. Some guidelines are required for non-specialist users to assist 

them in interpreting such data. While there is a rapid growth in the number proteomics 

databases (including the volume of data) accessible to the community, the lack of integration 

between these heterogeneous datasets creates further challenges to analyse and interpret 

information to study any proteome comprehensively. An overarching platform can be 

developed to i) integrate data or metadata from various sources ii) provide a collaborative 

platform to share data and knowledge between research groups to analyse complex data or 

facilitate large studies. Specific aims are listed below, with 6 publications presented in this 

thesis: 

Aim 1 

Develop a generic in silico bioinformatics pipeline to identify homologues and map putative 

functional signatures, gene ontology terms and biochemical pathways of relatively less 

studied or novel organisms, or “missing’’ proteins using existing resources and share the 

annotations with the scientific community. 

Objectives: 

1. Develop a generic in silico bioinformatics pipeline to functionally annotate the

relatively less studied black Périgord truffle proteome from the 2010 T. melanosporum

genome comprising 12,771 putative non-redundant proteins. Conduct a shotgun

proteomics study (using a combined 1D PAGE and high accuracy LC-MS/MS) to

validate and supplement the annotation (Publication 1).

2. Demonstrate the application of the bioinformatics pipeline to annotate the human

“missing” protein sequences for each human chromosome and develop a web portal to

share the annotations with the scientific community (Publication 2).

3. Develop a fully automated, robust and generic functional annotation platform to

annotate any given proteome (Publication 3).
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Aim 2 

Develop protocols for functional annotations using existing knowledgebase and guidelines to 

complement the annotations using publicly available MS datasets derived from various MS 

instruments and search engines. 

 

Objective 

4. Develop in silico function annotation protocol, and guidelines for comparing 

proteomics data from different sources, search engine scores, identifying 

proteotypicity as well as guidelines on spectral quality analysis (Publication 4). 

 

Aim 3 

Develop an integrated data capture, deposition and sharing and collaboration platform for a 

domain specific research need using existing and community contributed datasets to fast track 

the research process. 

Objectives 

 

5. Apply the guidelines from objective #2 and extend the previously developed web 

portal to provide a single platform to automatically capture and integrate available 

information about human ‘missing’ proteins from various databases, including a data 

deposition and secure sharing interface to capture unpublished, draft or laboratory data 

via citizen science contribution (Publications 5, 6).  
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Chapter 2: Methods and applications 

 

Methods and applications that were developed and used in this study are summarised in Table 

2.1. The related publications have also been listed and included in the relevant chapter. 

 

Table 2.1: Methods, applications and publications 

Methods/Applications Chapter 
Thesis 

Publication(s) 

Unlocking the Puzzling Biology of the Black Périgord 

Truffle 
3 1 

Protannotator: A Semiautomated Pipeline for 

Chromosome-Wise Functional Annotation of the 

"Missing" Human Proteome 

4 2 

ProtAnnotator 2.0: An automated pipeline for in silico 

protein functional annotation 
5 3 

A systematic bioinformatics approach to identify high 

quality MS data and functionally annotate proteins and 

proteomes 

6 4 

MissingProteinPedia for accelerating the search for the 

missing proteins in the human proteome 
7 5,6 
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Chapter 3: Unlocking the Puzzling Biology of the Black 

Périgord Truffle 

3.1 Summary  

Proteins are responsible for almost every activity and processes within the cell, hence 

understanding the functions of protein is the key to uncovering the biology of any organism. 

The advances in next generation sequencing technology and the reduced cost of the genome 

sequencing are the catalysts for the rapid growth in genome sequences. Protein sequences are 

mostly predicted, from genome annotation phase. Only 1% of these proteins have 

experimental functional annotations [281]. The databases are growing at a much faster rate 

than our biological understanding of these sequenced organisms. Hence, there is a clear need 

for accurate and high-throughput in silico annotation methods for functional annotation of 

proteins, for novel and less studied proteins.  

In this chapter, I carried out functional annotations of publicly available black Périgord truffle 

(Tuber melanosporum Vittad) proteome sequences [34], a highly prized and relatively less 

studied organism. Only 14 out of 12,771 T. melanosporum proteins sequences had been 

reviewed and manually annotated in UniProt, with no experimental evidence. I developed an 

in silico functional annotation technique using proteins sequences from existing knowledge 

base (UniProt) to identify homologous, and functionally annotate proteins based on GO, 

pathways, and protein domain mapping. Details of the annotation pipeline, tools, and 

proteomics validation are described in publication 1. 

3.2 Publication 1 

Reprinted with permission from: Mohammad Tawhidul Islam, Abidali 
Mohamedali, Gagan Garg, et al (2013) Unlocking the Puzzling Biology of the 
Black Périgord Truffle Tuber melanosporum. Journal of Proteome Research. vol. 
12, no. 12, pp. 5349-5356.

Copyright 2013 American Chemical Society. 
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ABSTRACT: The black Peŕigord truffle (Tuber melanosporum Vittad.) is a highly
prized food today, with its unique scent (i.e., perfume) and texture. Despite these
attributes, it remains relatively poorly studied, lacking “omics” information to
characterize its biology and biochemistry, especially changes associated with
freshness and the proteins/metabolites responsible for its organoleptic properties.
In this study, we have functionally annotated the truffle proteome from the 2010
T. melanosporum genome comprising 12 771 putative nonredundant proteins.
Using sequential BLAST search strategies, we identified homologues for 2587
proteins with 2486 (96.0%) fungal homologues (available from http://biolinfo.
org/protannotator/blacktruffle.php). A combined 1D PAGE and high-accuracy
LC−MS/MS proteomic study was employed to validate the results of the
functional annotation and identified 836 (6.5%) proteins, of which 47.5% (i.e.,
397) were present in our bioinformatics studies. Our study, functionally annotating
6487 black Peŕigord truffle proteins and confirming 836 by proteomic experiments, is by far the most comprehensive study to
date contributing significantly to the scientific community. This study has resulted in the functional characterization of novel
proteins to increase our biological understanding of this organism and to uncover potential biomarkers of authenticity, freshness,
and perfume maturation.

KEYWORDS: black truffle, organoleptic, proteome, functional annotation, fungal proteomics

■ INTRODUCTION

Truffles are fungi that produce subterranean fruiting bodies
through the establishment of an ectomycorrhizal symbiotic
relationship with the roots of host plants,1 usually in a
mutualistic fashion utilizing animals in their lifecycle to
distribute spores. Among the different indigenous truffle
species described, many have very pronounced organoleptic
properties that are capable of attracting animals (including
man) to the fruiting body. Collectively, these organoleptic
properties also have accorded some truffle species their high
economic importance.2 The fruiting body of the black Peŕigord
truffle (Tuber melanosporum Vittad) is one of the most prized
delicacies in any gourmet food repertoire as evidenced by the
exorbitant prices they fetch in world markets (≥$2,000 USD/
kg).3 This rare ‘black diamond’ of the kitchen has long
intrigued distinguished chefs and biologists alike, due to its
combination of smooth texture, pungent odor/perfume, and
musty earthy flavor. In addition, its unique and often cryptic
symbiotic relationship with oak and hazelnut trees has thwarted

numerous efforts at routine cultivation.4 In the past decade, the
harvest of the black Peŕigord truffle has plummeted in Europe
due to the effects of climate change, and loss of suitable arable
land, encroachment of introduced species, and other factors.5

This scarcity, coupled to increased awareness and demand for
truffles has led to increasing prices and hence the inevitable
replacement by similar black truffles (e.g., the Chinese black
truffle Tuber himalayensis6 or members of the Tuber indicum
group7) into significant markets. For these reasons, a more
focused study on the ecology, biology, and behavior of the
black Peŕigord truffle has become increasingly necessary. To
this end, the 2010 publication of the genome4 of the black
Peŕigord truffle has resulted in an understanding, on the
genomic level, of its carbohydrate metabolism,8 transcription,9

mating behavior,10 volatiles that produce aroma,11 and other
aspects of transcriptional and genomic control. Despite this,
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only 14 proteins have “reviewed” annotations in UniProt12 (v
2013_05): “reviewed” data sets contain proteins entries that are
all manually annotated and reviewed in UniProtKB/Swiss-Prot
database. Clearly, the full utility of the published genome in
terms of the proteome remains to be realized.
To have a comprehensive understanding of the biology of

this organism, it is imperative that a systems biology approach
(bioinformatics and proteomics) is employed. Bioinformatics
can provide compressive annotations for entire proteomes,
providing valuable information regarding putative functions of
proteins. Fungal proteomics over the past years has led to
numerous advancements in biological understanding of the
unique behaviors of filamentous fungi that have resulted in
commercial gain,13 control of pathogenic fungi,14 and the
discovery of biomarkers of freshness and authenticity15 as well
as ecology.4 The differences between the unique biochemistries
of different economically important truffle species (e.g., white
truffle Tuber magnatum Pico, summer truffle Tuber aestivum,
and winter truffle Tuber brumale) are yet to be determined
comprehensively. A recent study has attempted to utilize
proteomics to decipher differences in the growing conditions of
the Tuber family with the successful identification of only 17
proteins from T. magnatum matched to the T. melanosporum
gene database.16 It is beyond doubt that the proteome of the
fruiting body of the black Peŕigord truffle would yield a
significant and useful data set for understanding this and related
organisms with bioinformatics studies accelerating and guiding
the complex proteomics studies.
In this study, we applied a “sequential BLAST” method

previously adopted to functionally annotate the “missing”
proteins of Human Chromosome 7.17 In this approach, data
similarity searching was carried out sequentially against
carefully selected reference databases instead of repeated
searches against the same database, as implemented in PSI-
BLAST, a variant of the standard BLAST search engine,18 to
overcome the limitation of matches to predominantly “hypo-
thetical” proteins (11 870), as reported in the Supporting
Information (TuberGM_annot.xls) of the T. melanosporum
genome.4 This study is a combined bioinformatics and
proteomics study to characterize the truffle proteome. Putative

biological functions of the truffle proteome are assigned
primarily by identifying homologues from well-annotated
experimentally validated yeast and fungal proteins. We have
also used bioinformatics analyses to ascribe functional
annotations in terms of protein domains, gene ontology, and
biochemical pathways. We have then attempted to validate the
proteome using shotgun proteomic analysis of the fruiting
body, which has provided a list of potential proteins involved in
the production of the truffles’ aroma profile.

■ MATERIALS AND METHODS

1. Bioinformatics Analysis

Data Sources. Black Peŕigord truffle (T. melanosporum
Vittad.) protein sequences were extracted from the MycorWeb
database [http://mycor.nancy.inra.fr/IMGC/TuberGenome/
download.php?select=fast]4 in FASTA (a special file format
generated by the ‘FAST-All’ software package) format.4 Of the
12 826 coding DNA sequences (CDS, predicted Genoscope
gene models) obtained, the truffle proteome comprised 12 771
nonredundant proteins after removing duplicate entries,
although the T. melanosporum genome publication4 reported
only 7496 as “protein coding genes.” Reviewed proteins with
protein level experimental evidence are the best source of
functional information, followed by reviewed proteins. Since
yeast (Saccharomyces cerevisiae) is the most studied fungal
species, our first choice for seeking truffle homologues was the
set of reviewed yeast proteins with experimental evidence,
followed by fungal proteins with experimental evidence and
then reviewed fungal proteins. To carry out the functional
characterization of the T. melanosporum proteins, we down-
loaded and set up local databases for BLAST18 similarity
searches. These databases included yeast proteins with
experimental evidence (7503 sequences), fungal proteins with
experimental evidence (9450 sequences), and reviewed fungal
proteins (31 031 sequences). In addition, another search was
conducted against all Protein Data Bank (PDB) proteins (236
604 sequences) to assign homologues from proteins with
structure, as 3D structures are known to be evolutionarily
conserved even under very low amino acid sequence

Figure 1. Summary of the pipeline used to annotate the truffle proteome. Proteins were passed through a series of databases to determine homology
(sequential BLAST) as well as databases to confer annotations based on gene ontology, protein functional domains, and motifs as well as
biochemical pathways.
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similarity.17 Protein data sets for the sequential BLAST searches
were extracted from the UniProt/SwissProt database (v
2013_05, release 01-05-2013).12

Database Similarity Searches. Database similarity
searches for the truffle proteome were conducted using
BLASTP.18 A match was deemed a strong indicator of
homology if the query sequence matched a database sequence
with high significance (i.e., very low E value: < 1 × 10−5) and
sequence identity of at least 50%. Sequential BLASTP runs
were performed against the four data sets (including PDB)
described above (using default parameters) for mapping a
known protein sequence against a database of protein
sequences. Sequences that did not have any match from the
first run were passed to the next round of BLASTP to search
the second data set, then the third and the fourth. As reviewed
sequences with protein level experimental evidence are
considered the most reliable source of homologues, these
were used as the first database for BLASTP similarity searches.
These proteins were also subjected to further in silico analyses,
as described later.
Functional Annotation. Protein functional annotation in

terms of protein domains, motifs, and signatures provides vital
clues to biological function for experimental validation.
InterProScan19 comprises 14 programs for matching a query
sequence against 13 protein domain and functional site
databases and represents the most comprehensive protein
functional annotation software currently available. All black
Peŕigord truffle proteins were initially characterized through
InterProScan19 domain/motif analyses. InterProScan also
provides gene ontology (GO) annotations. Pathway mapping
for all of these proteins was carried out using KOBAS (KEGG
Orthology-Based Annotation System, KOBAS-2.0).20 All
results from domain/motif analyses, GO annotation, and
KEGG pathway mapping were used for preliminary functional
annotation of these proteins.
The different bioinformatics analysis steps used for

annotating the truffle proteome were integrated into a pipeline,
illustrated in Figure 1.
Proteomics Studies. Proteomic studies were carried out to

validate our bioinformatics approach. Freshly harvested
Australian black Peŕigord truffles (T. melanosporum Vittad.)
were kindly donated by Terra Preta Truffles (NSW, Australia).
Truffles were stored on ice overnight for transport to the
laboratory, and the best sample was selected as “representative”
of the mature fruiting body. Approximately 50 mg of the inner
tissue of the selected sample was freeze-crushed in liquid N2,
and the resulting powder was dissolved in 1 mL of 4× LDS
buffer in the presence of both protease and phosphatase
inhibitors. The sample was probe-sonicated (3 × 10 pulses,
output 3) (Branson sonifier 450) until the solution was
homogeneous and was centrifuged at 10 000g for 10 min to
remove insoluble particulate matter, acetone-precipitated over-
night at −80 °C, and centrifuged for 20 min at 10 000g . The
pellet was then resuspended in 4× LDS buffer and protein-
quantified using a BCA assay (Thermo-Pierce, Rockford, IL)
according to the manufacturer’s instructions.
1D Gel Electrophoresis and Slice-and-Dice Proteo-

mics. Resuspended protein (100 μg) was run on precast 4−
12% linear gradient SDS polyacrylamide gel (Invitrogen, USA)
under reducing conditions as per the manufacturer’s
instructions. The gel was then fixed in 40% ethanol (v/v),
10% acetic acid (v/v) for 2 h and stained overnight with
Flamingo Pink (BioRad, Hercules, USA) and imaged on the

Typhoon Trio Variable Mode Laser Imager (GE Healthcare,
Uppsala, Sweden) with photomultiplier tube (PMT) voltage set
to 5 V below saturation of the most intense spot. The entire gel
lane was divided into 16 fractions, digested using trypsin, and
extracted using standard procedures described elsewhere.21

LC Coupled to Mass Spectrometry. The digested
peptides (10 μL) were injected onto a peptide chromatography
trap (Michrome peptide Captrap) on an Eksigent Ultranano
LC system for preconcentration. Desalting is a standard
procedure prior to LC as salt usually produces aberrant peaks
on the spectrum, depending on the conductance values of the
solution. Peptides were desalted using 0.1% formic acid, 2%
ACN, at 5 μL/min for 10 min. The peptide trap was then
switched online with an analytical column (SGE ProteCol C18,
300 Å, 3 μm, 150 μm × 10 cm). Peptides were eluted from the
column using a linear solvent gradient, consisting of 0.1%
formic acid as mobile phase A and 90% ACN/0.1% formic acid
as mobile phase B, at 600 nL/min, starting from 2% B and
going to 40% B over 140 min. After peptide elution, the column
was cleaned with 80% buffer B for 19 min and then equilibrated
with buffer A for 15 min before the next sample was injected.
The reverse-phase nanoLC eluent was subject to positive ion
nanoflow electrospray analyses in an information-dependent
acquisition mode (IDA) on a Triple TOF 5600 (ABSciex,
Toronto, Canada) at 15 kV acceleration voltage. MS data were
collected using an ion spray voltage of 2.4 kV, curtain gas of 20
PSI, nebulizer gas of 15 PSI, and an interface heater
temperature of 150 °C. In IDA mode, a TOFMS survey scan
was acquired (m/z 350−1500, 0.25 s), with the 15 most intense
multiply charged ions (counts >150) in the survey scan
sequentially subjected to MS/MS analysis. MS/MS spectra
were accumulated for 50 ms in the mass range m/z 100−1500
with the total cycle time 1.05 s, with a mass accuracy 1 ppm.

Database Searching of Proteomic Data. The exper-
imental nanoLC−ESI−MS/MS data were submitted to Mascot
after raw files were converted to .mgf format and searched
against the T. melanosporum database (called here BT_Prot)
which was derived from the 12 771 nonredundant sequences of
the truffle proteome. The 16 fractions were processed
individually with output files for each fraction, then merged,
and a nonredundant output file was generated for protein
identifications with loge scores < 1. Search parameters included
MS and MS/MS tolerance of ±100 ppm and ±0.2 Da,
respectively. Carbamidomethyl was considered a fixed mod-
ification. In addition, variable modifications of methionine,
threonine, and deamidation of asparagine and glutamine were
also considered. Additional searching was performed against the
decoy database in Mascot to evaluate false discovery rates
(FDRs). Peptide FDR of a list is 2 × total numbers of peptides
representing reversed protein hits in the list/total number of
peptides representing all proteins in the list × 100. Protein
FDR was calculated for each list of proteins using number of
reversed protein hits in the list/total number of proteins in the
list × 100.22

■ RESULTS AND DISCUSSION

Bioinformatics Analysis

The “sequential BLAST” approach we used involved repeated
similarity searching against different select databases (Figure 1).
Reviewed sequences (from UniProt) with protein level
experimental evidence were used as the first database for
BLASTP similarity searches. To identify the optimal sequence
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identity for this study, we ran our workflow with very high
sequence identity cutoff for BLAST, then reduced it by 5% on
each run and compared the results against the 836 proteins that
were identified by proteomics in a single preliminary shotgun
approach.
At 50% sequence identity we were able to find homologues

for 2486 proteins (19.5% of 12 771). Reducing the threshold to
a sequence identity ≤50% yielded 7447 (58.31%) out of 12 771
proteins. The black Peŕigord truffle is a relatively under-studied
organism with unique features and biochemistry. It was
therefore expected that most of the black Peŕigord truffle that
is homologous to other sequences will have a lower coverage
(i.e., sequence identity). Although sequence identity ≤50%
yielded many more protein matches, to retain high-quality
results, we have only considered results with sequence identity
≥50% for this study.

Sequential-BLAST Similarity Search

In the first round of our sequential-BLAST approach, we
assessed the 12 771 proteins against yeast protein sequences
with experimental protein evidence. Of these 1794 (14.0%)
black Peŕigord truffle proteins showed significant matches, with
3 hits having ≥99% sequence identity, 11 hits with 90−95%
sequence identity, and 8 hits with 85−90% sequence identity.
The coverage ranged from 50 to 99.2% with E values of 8.00 ×
10−6 to 0. No significant matches with coverage >50% were
reported for the remaining sequences (Supporting Information,
Supplementary Table S1). The second BLAST search against
fungal protein sequences with experimental protein evidence
for the remaining 10 977 black Peŕigord truffle proteins showed
matches for 109 sequences (0.85%) with 50−89.6% sequence
coverage and E values of 2.00 × 10−6 to 0, with two hits having
≥85% sequence identity (Supporting Information, Supplemen-
tary Table S2). The third BLAST search against reviewed
fungal protein sequences for the remaining 10 868 proteins
yielded significant results for 583 sequences (4.6%). For these
matches, the coverage ranged from 50 to 100%, with E values
ranging from 9.00 × 10−6 to 0. Of these, seven had 100%
sequence identity, one with 95.5% sequence identity and 10
with sequence identities between 85 and 90% (Supporting
Information, Supplementary Table S3). The remainder of these
proteins (10 285) were matched against solved protein
structures from the PDB. 101 proteins showed matches with
coverage ranging from 50 to 80% with E values of 9.00 × 10−20

to 0 (Supporting Information, Supplementary Table S4). Since
structures of homologous proteins show functional conserva-
tion up to sequence identities as low as 25%,23 the knowledge
of homologous structural information for these truffle proteins
provides important functional clues.
The results clearly indicate that the black truffle’s unique

biology in the context of its evolution shows only a distant
relationship to any other commonly studied fungus (such as
yeast). The proteins that matched with very high similarity
(identity >70%) were proteins known to be evolutionarily
conserved24 in most eukaryotic organisms and accounted for a
very small proportion of the total protein complement (552
proteins). A significant proportion of the unique biology of this
organism thus lies in the 10 184 putative proteins that had very
low similarity to any known proteins

Functional Annotation

InterProScan for the 12 771 T. melanosporum proteome
provided annotations for 6487 proteins (50.8%) with 1369
unique GO annotations (Supporting Information, Supplemen-

tary Table S5), while 1309 genes were manually curated by the
genome consortium but are not publicly available for
comparison.4 Our analysis on GO biological processes revealed
that the majority of the proteins were involved in dUTP
metabolic processes (674), oxidation−reduction process (482),
metabolic process (276), translation (184), and protein
phosphorylation (184). A similar analysis on GO molecular
function revealed that ATP binding (763), hydrolase activity
(414), and catalytic activity (335) were the most common
annotations. Protein domain and family mapping provided
InterPro domains for 946, family for 910, active sites for 46,
conserved sites for 162, and repeats for 18 proteins compared
with only protein family annotations provided for the genome.4

Analysis by KEGG pathways revealed a large proportion of
proteins identified from metabolic pathways (961), while
proteins involved in the production of secondary metabolites
were also seen (239 proteins) (Supporting Information,
Supplementary Table S6). The top KEGG pathways are listed
in Table 1. These findings suggest that the truffle is very

metabolically active, possessing a cohort of biochemical and
enzymatic activity that may explain to some degree its ability to
produce over 90 volatiles25 that modulate its flavor profile as
well as its complex lifecycle.
Mass Spectrometric Evidence for T. melanosporum
Proteins

Mass spectrometry analyses of the T. melanosporum proteome
identified 836 proteins (Supporting Information, Supplemen-
tary Table S7) that were assigned to the BT_Prot database
(Mascot version 2.3.0). Analyses of the 836 proteins showed
that 91% were identified by peptides ranging between 1 and
100 per protein, with the other 9% between 101 and 1010 hits
(results not shown). A protein was positively identified if it had
a minimum of one unique peptide with at least 99% confidence.
Numerous mass spectra (65 260) were not assigned to any

protein as the stringency of the cutoff scores for accepting a
peptide match was set quite high (99%) and the peptide
tolerance window for experimental results was set low (±0.2
Da); this meant that numerous spectra did not pass high
stringency tests. This meant that the data used were of
sufficient quality to justify accuracy of the results. The spectra
obtained were matched against the predicted translations of
open reading frames from the genome. Undoubtedly, there
would be a degree of mismatch between experimental and
predicted results. There is a possibility that the unmatched
peptides may have come from cross-contamination from
peptides of other organisms/species.26 The truffle, being in a
symbiotic relationship, may indeed be sharing a significant

Table 1. Top 5 KEGG Pathways for Bioinformatics and
Proteomics Analyses

proteins from bioinformatics
analysis proteins from MS/proteomics analysis

description
total
match description

total
match

metabolic pathways 961 metabolic pathways 158
pyrimidine metabolism 399 biosynthesis of secondary

metabolites
75

biosynthesis of secondary
metabolites

239 ribosome 50

cell cycle - yeast 161 glycolysis/gluconeogenesis 21
meiosis - yeast 96 protein processing in

endoplasmic reticulum
19
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amount of its structure with its host (hazelnut and oak trees).
Additional investigations into potentially finding proteins in the
unmatched peptide data were considered beyond the scope of
this study, and future studies are planned to investigate this
further.
The discovery of a total of 836 proteins (from a potential

total of 12 771) by proteomics in a single preliminary shotgun
approach in this study was higher than expected, as previous
studies performed in unrelated fungal species identify a far
lower proportion of nonredundant matches.27−29 The
proteomic coverage could still be increased using more
sophisticated separation technologies such as PROOF fractio-
nation,30 which involves passing the sample through a tandem
cation and anion exchange column, followed by peptide IPG-
IEF prefractionation prior to MS analysis, which has been
shown to significantly increase proteome coverage.31 A more
sophisticated information-independent SWATH-type analysis32

could also be employed to ensure that any future findings can
be quantitatively analyzed.

Comparison between Bioinformatics Analysis and Mass
Spectrometry Evidence

Comparing the proteomics findings with our bioinformatics
studies, in the first round of our BLASTP similarity search of
these 836 proteins against reviewed yeast proteins with
experimental evidence, 315 proteins (37.7%) were found to
have significant matches (with 1 hit having ≥99% identity and 7
hits with ≥90% identity). In the second round of our BLASTP
similarity search (against reviewed fungal proteins with
experimental evidence), 18 proteins (2.15%) were found to
have matches, with hits ≥85% identity. The third round of
BLASTP similarity search (against reviewed fungal proteins)
resulted in 55 proteins (6.58%; including one match with 100%
identity and two matches with ≥90% identity). Nine proteins
matched 3D structures in the PDB. Yeast is one of the most
widely studied organisms/fungi over the years, and not
surprisingly >50% of all matches found were to yeast proteins
with experimental evidence. Of the T. melanosporum proteins
identified by our proteomics study, 439 (52.5%) had no
matches in our bioinformatics results with sequence identity
>50%. The results have been summarized in Table 2, with
details of the BLASTP matches for these 836 proteins provided
as Supporting Information (Table S8).
Furthermore, we compared our findings with the 14 UniProt

proteins identified in T. melanosporum (strain Mel28) that have

been previously reviewed but not verified experimentally
(Supporting Information, Supplementary Table S9). Out of
these 14 reviewed proteins, three were identified by mass
spectrometry with protein coverage ranging from 16 to 40%
(Supporting Information, Supplementary Table S10). These
proteins include a probable amino/metallo-peptidase (Gene
ID: AMPP1; UniProt ID: D5GAC6), a nuclear- and cytoplasm-
residing dioxygenase involved in L-methionine salvage (Gene
ID: MTND; UniProt ID: D5GE59), and an integral membrane
catalytic subunit of a signal peptidase complex found in the ER
membrane (Gene ID: SEC11; UniProt ID: D5GNC3) that was
deduced to be involved in proteolysis and signal peptide
processing. In addition, of the 17 proteins reported in the
recent proteomics study of T. magnatum,16 we have identified
T. melanosporum homologues to 12 proteins, of which three
were found only by bioinformatics analysis and one uniquely in
our proteomics data.
Overall, at least 105 of the 836 proteins could not be

assigned any putative function. These proteins could be used as
putative candidate markers of truffles. Alternatively, a
proportion of these might be species-specific biomarkers for
the black Peŕigord truffle (T. melanosporum). Further
proteomics studies using single or multiple reaction monitoring
experiments (SRM/MRM)33 can quantitatively be used to
study this cohort of proteins to discern markers of authenticity,
a study beyond the scope of this report.
Functional annotation for the 836 proteins (Supporting

Information, Supplementary Table S11) provided GO
annotations for 698, InterPro domains for 768, and enzyme
codes (ECs) for 225. The ECs were related to 90
corresponding KEGG biochemical pathways. Our analysis of
the GO terms for the 836 proteins revealed that the majority
were involved in binding (436), catalytic activity (350),
localization within cells (288), and cell organelles (151) or
with taking part in metabolic biological processes (416) or
cellular (232) processes (Figure 2). Analysis by KEGG
pathways revealed a large proportion of proteins identified
from metabolic pathways (158), while proteins involved in the
production of secondary metabolites (75 proteins) were also
noted (Table 1). In all, 731 (87.4%) of the 836 proteins were
successfully annotated with either GO, InterPro domains, or
KEGG pathways. However, with the currently available
biological knowledge, 105 proteins could not be annotated at
all. These findings reflect those obtained from the bio-
informatics studies and suggest that the proteomic assessment
was representative of the currently annotated data.

Proteins from Truffle That Confer Aroma

The enzymes that catalyze the production of volatiles that
confer the unique aroma of the black truffle were analyzed from
the pathway relating to the production of secondary
metabolites (including the sulfur and methane metabolism
pathways) in the KEGG database. A comprehensive analysis of
the functionally annotated proteins found by proteomics and
bioinformatics revealed that the proportion of proteins involved
in the production of secondary metabolites in the fruiting body
of the black truffle (from proteomics) (9.6%) was similar to
that found in silico (9%). This list of proteins involved in
secondary metabolism was matched against enzymes known to
be involved in pathways that produce volatiles found in truffles
from previous biochemical studies.25,34−37 A total of nine
proteins were identified (Table 3).

Table 2. Comparative Summary of Bioinformatics Analysis
and Mass Spectrometry Evidences

description
bioinformatics

analysis
proteins from mass spectra
(validated by bioinformatics)

total number of proteins 12 771 836
reviewed yeast protein
sequences with
experimental protein
evidence

1794 315

reviewed fungal protein
sequences with
experimental protein
evidence

109 18

reviewed fungal protein
sequences

583 55

protein data bank (PDB) 101 9
functional annotation
(GO, InterPro, KEGG)

2486 731
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The organoleptic properties, particularly the unique aroma,
of the truffle are arguably its most valuable asset, not only
biologically in attracting animals for sporulation38 but
economically for gastronomists and food lovers. It has been
previously shown from the analysis of the genome that the
truffle possesses much of the machinery required for synthesiz-
ing its aroma. In this preliminary study, for the first time, we
were able to potentially identify nine proteins responsible for
part of the aroma profile of truffles, although more biochemical
analyses need to be carried out to confirm the findings. Of
these, only one (GSTUMT00006862001) has been identified
as involved in secondary metabolism by the 2010 genome
publication.4

Two compounds, DMS and 2-methylbutanal, when mixed in
the right proportions, mimic the aroma of the black Peŕigord
truffle, T. melanosporum.39 The latter mixture has been used for
standardly by the food industry to imitate black truffle aroma.
The interesting discovery from bioinformatics with proteomics
evidence of the enzyme potentially responsible for the
metabolism of 2-methyl butanal validates the approaches taken.

A large proportion of the proteins annotated form secondary
metabolite pathways that have proteomic as well as
bioinformatics evidence did not match to known pathways of
volatile synthesis. This, compounded by the fact that the
enzymes involved in the production of some volatiles remain to
be discovered, suggests that a more comprehensive biochemical
study of the enzyme components of the T. melanosporum is
warranted. It is hardly surprising that such low numbers of
enzymes were shown to be involved in the production of over
90 volatiles considering over 70% of the proteome is yet to be
annotated. The potential to discover novel enzymes that could
be of economic, medicinal, or other uses remains a tantalizing
possibility.

■ CONCLUSIONS

Only 14 black truffle proteins have been reviewed in UniProt.
The remainder, although recently annotated, are not yet
reviewed and await curation, while 1309 genes were manually
curated by the truffle genome consortium.4 We have provided
high-quality bioinformatics annotations for 2587 sequences and

Figure 2. Pictorial representation of GO distributions for the 836 T. melanosporum proteins. Pie charts depicting the distributions are shown with
respective molecular functions, cellular components, and biological processes labeled and number of proteins involved shown in parentheses.

Table 3. List of Previously23,32−35 Identified Volatiles and the Enzymes Involved in Their Synthesis Matched to Proteins
Obtained from the T. melanosporum Proteins Annotated with Bioinformatics and Substantiated with Proteomic (MS) Evidence
(indicated with *)

volatile

KEGG
compound

code enzymes truffle protein annotation

acetaldehyde C00084 ribose-5-phosphate transaldolase,
or fluorothreonine transaldolase

GSTUMT00000035001* transaldolase

acetaldehyde C00084 aldehyde dehydrogenase GSTUMT00003865001* aldehyde/histidinol dehydrogenase

acetaldehyde C00084 alcohol dehydrogenase GSTUMT00006862001*,a alcohol dehydrogenase

anisole and methoxybenzene C01403 phenol O-methyltransferase GSTUMT00004489001* sterol methyltransferase

2-methyl butanal C02223 branched-chain-2-oxoacid
decarboxylase

GSTUMT00001753001*,
GSTUMT00000274001,
GSTUMT00003265001

2-oxoacid dehydrogenase acyltransferase

propanal C00479 propanediol dehydratase GSTUMT00010247001 dihydroxy-acid/6-phosphogluconate dehydratase

phenylacetaldehyde C00601 amine oxidase
(pyridoxal containing)

GSTUMT00008176001 pyridoxal phosphate-dependent transferase

aProteins identified as associated with volatiles in the genome publication.4
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proteomic evidence of 836 truffle proteins. Using selected high-
quality protein databases for similarity searches using BLAST
sequentially, we identified homologues with experimental
evidence for 14.9% of the black Peŕigord truffle proteome,
with a further 4.6% mapping to reviewed fungal proteins and
another 0.8% mapping to protein structures, totalling 2587
proteins (20.2% of the T. melanosporum 12 771 proteins). The
acquisition of functional experimental evidence of these
proteins is quite possible, as most matches were to a well-
characterized fungus, S. cerevisiae. Additionally, using a suite of
bioinformatics tools, we have assigned putative biological
functions in terms of gene ontology, biochemical pathway,
and domain/motif signatures for 2486 of these 2587 sequences.
Using a proteomics approach, we have provided proteomic
evidence of 836 proteins, none of which have been reported
experimentally to date, including three of the 14 UniProt
reviewed proteins that lacked proteomics evidence. Using a
combination of computational strategies, we were able to
identify nine proteins responsible for part of the aroma profile
of truffles and for the first time suggest a potential enzymatic
pathway for the production of one of the primary volatiles in
black truffle. Approximately 20% of the 12 771 proteins have
been assigned putative biological functionality, providing
valuable clues for experimental validation and future work.
We have described a generic framework that is validated by our
proteomics studies and can be used to annotate the proteome
of any novel organism.
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3.3 Conclusions 

In this study, using the sequential similarity search technique with high-quality protein 

sequences databases we identified homologous for 2486 proteins (UniProt databases). 

Additionally, we identified structural similarity to 101 proteins with the Protein Data Bank 

(PDB) sequences. Our approach identified functional annotations for 96% of these 

proteins. The shotgun proteomics identified 836 proteins, and 47% of these proteins were 

also identified by the in silico approach. Furthermore, a deeper computational analysis on 

the functional annotation provided by our approach revealed nine proteins, responsible for 

the aroma profile and a potential enzymatic pathway to produce one of the primary 

volatiles of the black truffle. This demonstrates that our approach (validated and 

complemented by the proteomics study) can functionally annotate proteins with high 

confidence which can lead to biological understandings of organisms.  Our approach 

described here provides a generic functional annotation framework and that can be applied 

to other novel or less studied organisms. To demonstrate the reusability and generic nature 

of the framework, we applied this technique to functionally annotate the human 'missing' 

proteins (described in Chapter 4).  
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Chapter 4: Protannotator: A Semiautomated Pipeline for 

Chromosome-Wise Functional Annotation of the 

"Missing" Human Proteome  

4.1 Summary 

In this chapter, we show the application of the generic annotation strategy outlined in the 

earlier section. The Human Proteome Project (HUPO) launched the Chromosome-centric 

HPP (C-HPP) project [23] with 25 member institutes [26] across the world to accurately 

identify and characterise all human proteins (chromosome by chromosome) using strict 

baseline metrics [282]. On behalf of C-HPPP, neXtProt classifies all human proteins to 

five protein existence (PE) levels based on the information available according to its 

guideline. Proteins identified by mass spectrometry, immunohistochemistry, 3D structure, 

and or amino acid sequencing are classified as PE1, whereas proteins identified without 

protein expression evidence, but detected by transcript expression, homology, and 

predicted gene models are categorised as PE2, PE3, and PE4 respectively. Proteins with 

protein existence level PE2-PE4 are classified as 'missing' protein. neXtProt reported 19% 

of the human proteins as 'missing' (current at the time of the study, September 2013 

release). In other words, very little information is available for these proteins. Identifying 

homologous proteins and functional annotations from the most up to date information can 

not only uncover the unknown biology of these proteins but also accelerate the 

identification of these proteins. 

4.2 Publication 2 

Mohammad T. Islam, Gagan Garg, William S. Hancock, Brian A. Risk, Mark S. 
Baker, and Shoba Ranganathan (2014) Protannotator: A Semiautomated Pipeline 
for Chromosome-Wise Functional Annotation of the “Missing” Human 
Proteome. Journal of Proteome Research, vol. 13, no.1, pp. 76-83. DOI: 
10.1021/pr400794x

Copyright 2014 American Chemical Society. 
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Matching these proteotypic peptides to ENCODE proteogenomic data resulted in proteomic evidence for 107 (2.8%) of the
3831 “missing proteins, while evidence from a recent membrane proteomic study supported the existence for another 15
“missing” proteins. The chromosome-wise functional annotation of all “missing” proteins is freely available to the scientific
community through our web server (http://biolinfo.org/protannotator).

KEYWORDS: Human Proteome Project, human chromosome, missing proteins, sequential BLAST, functional annotation,
proteotypic peptides, proteogenomics

■ INTRODUCTION

The interpretation of the human genome depends on detailed
annotation, usually at the nucleotide level, the protein level, and
the process level,1 for which the functional annotation of
proteins is crucial at the process level. Since 2008, the Human
Proteome Organization (HUPO) has pursued the comprehen-
sive identification and functional characterization of the human
proteome via the Human Proteome Project (HPP),2 of which
the chromosome-centric HPP (C-HPP) approach seeks to
catalog the human proteome on the basis of chromosomes.3−5

The International Chromosome-centric Human Proteome
Project (C-HPP), launched in 2012, marks the first step
toward the genome-wide chromosome by chromosome
characterization of the human proteome.6 Such an approach
would address a key aim of the human genome project, viz.

personalized medicine, by providing sensitive and highly
specific protein biomarkers for early onset diagnosis, prognosis
and treatment of several diseases, providing clinical and
translational proteomic solutions.7

The three pillars of HPP are mass spectrometric proteomics,
antibody/affinity capturing agents, and a knowledgebase,2

embodied by the neXtProt database,8 where detailed
information on the human proteome is collated, curated, and
organized for rapid access of information on a query protein.
Our group carried out the functional annotation of missing
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proteins of human chromosome 7 (hChr7),9 developing a
sequential BLAST homology search approach, with the
neXtProt8 data available at the time. A list of missing proteins
was also compiled and investigated for chromosome 17,10

where proteins having no proteomic identifications from
sources including PeptideAtlas11 or GPM (http://www.
thegpm.org/) were considered “missing.” Currently, for the
entire human genome, neXtProt (as of September 2013) lists
20 128 proteins, by extending their data sources to incorporate
all peptides from PeptideAtlas Human builds (August 2013) as
“GOLD” (i.e., <1% error) as well as 20 other studies
(unpublished data). Thus, 3831 proteins (∼19%; excluding
unmapped and redundant sequences) are considered “missing,”
based on the currently available C-HPP standard metrics table,
developed with neXtProt data (http://www.c-hpp.org/
gnuboard4/bbs/board.php?bo_table=public).
The UniProtKB/Swiss-Prot database12 (release 2013_10)

with >541 000 entries of reviewed and annotated proteins
serves as the highest quality database for bioinformatics studies.
Homologous sequences often display identical or similar
biological functions. The biological knowledge available in
this database can be mined by similarity searches to identify if
any of these missing proteins are homologous to similar
proteins in higher mammals or other species. BLAST13,14

programs are widely used for sequence similarity searches,
using the default nonredundant (NR) data sets, which include
putative, unannotated, or translated coding regions. Thus, a
similarity search against NR data sets may result in matches to
large numbers of unreviewed or unannotated proteins.
Previously, we have annotated less studied organisms such as
helminth parasites and fungal pathogens15−19 by combining
similarity searches and functional annotations including gene
ontology (GO), biochemical pathways, and functional domains
and motifs. Following a targeted BLAST approach, labeled
“sequential BLAST search” from our previous hChr7 “missing”
protein annotation,9 where we have run repeated BLAST
searches against selected databases providing high-quality
reviewed annotations, we now present a semiautomated
pipeline for the annotation of “missing” proteins. This is a
generic approach and can be adopted for the annotation of any
novel proteome, for example, black Peŕigord truffle (Tuber
melanosporum).20 Using this approach, we have annotated the
entire set of “missing” proteins in the human proteome. Out of
3831 “missing” proteins, 1271 sequences (33.2%) were
homologous to nonhuman reviewed mammalian proteins
with proteomic evidence, while 703 proteins (18.4%) had
nonhuman reviewed mammalian homologues. 1945 (50.8%) of
the “missing” proteins were assigned putative GO and domain/
motif annotations, using strict parameters (detailed in Materials
and Methods), while 1250 (32.7%) “missing” proteins were
mapped to biochemical pathways. We have also generated
proteotypic peptides to facilitate proteomic identification of the
“missing” proteins. These proteotypic peptides enabled us to
garner proteomic evidence for 107 “missing” proteins, using
proteogenomic data accurately matching the peptides from the
ENCODE project.21−23 Also, a recent in-depth proteomic
study of breast cancer tissues by Muraoka et al.24 has reported
851 membrane proteins that currently lack evidence by mass
spectrometry in the neXtProt database. From this study, we
have identified 15 additional “missing” proteins, which together
with the ENCODE proteogenomic data have provided
proteomic evidence for 122 “missing” proteins. The annotated

data for the human proteome have been compiled into a
database, which is freely available to the scientific community.

■ MATERIALS AND METHODS

1. Data Sources

Chromosome reports for each human chromosome were
downloaded from the neXtProt database8 (release September
2013). From these reports, sequences for “missing” proteins
were extracted in FASTA format. A number of protein data sets
were downloaded from UniProtKB/Swiss-Prot database12 to
our local Linux server for database similarity search. These
include nonhuman reviewed mammalian proteins with
experimental evidence (14 910 sequences), nonhuman re-
viewed mammalian proteins (45 926 sequences), human-
reviewed proteins (23 515 sequences), and Protein Data Bank
(PDB)25 proteins (260 382 sequences), as in our hChr7 study.9

We used the PDB to obtain possible matches against proteins
with known structures from nonmammalian organisms.
Verification data sets used for this study comprise the set of
all mammalian proteins (1 155 455 sequences) and the
nonmammalian protein set with protein evidence (70 830
sequences).
2. Database Similarity Search

Database similarity search technique is used to identify if a
novel sequence is homologous to sequences that are already
available in existing databases. BLAST13,14 is A widely used tool
for sequence similarity search. A query sequence is considered
to be strongly homologous if it matches against a subject
sequence with high significance (E value: 1 × 10−5, compared
with 1 × 10−3)26 and sequence identity of at least 50%.27

We ran BLASTP searches sequentially against the data sets
previously described using default parameters with a minimum
E value of 1 × 10−5. Those sequences that yielded no matches
against the first data set were matched against the next data set,
then the third, and so on. Missing proteins were also
functionally annotated based on GO, pathways, and protein
domain mapping. This is described in detail in Section 5
(Protannotator bioinformatics pipeline).
3. Functional Annotation of Missing Proteins

“Missing” proteins are provided putative functional annotation
by mapping to protein domain, motif, and families. Functional
annotations were further strengthened by assigning GO terms
to the proteins. InterProScan28 is widely used for protein
functional annotation. It scans the protein sequences using the
different protein signature recognition methods (Hidden
Markov Model and BLAST) in its 13 protein domain and
functional site databases combined in InterPro29 database.
To obtain the best results, we ran InterProScan with default

programs, described in detail in our previous paper,9 while
KOBAS30 (KEGG Orthology-Based Annotation System,
KOBAS-2.0) results provided pathway mapping. The program
identifies statistically significantly enriched pathways by first
mapping the proteins to genes in KEGG GENES based on
BLAST searches followed by mapping against the whole human
genome as the background. These programs have been
successfully employed for the comprehensive annotation of
novel and uncharacterized sequences15−18 and in recent
genome projects of less studied organisms.31,32

4. In Silico Tryptic Digestion

Protein Digestion Simulator33 was used with default parameters
(fragment mass range of 400−6000 Da; pI range of 0−14; mass
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tolerance of 5 ppm; Hopp and Woods34 hydrophobicity mode)
to computationally digest the “missing proteins” with trypsin, to
identify proteotypic peptide sequences. Input sequences were
validated, and duplicates were removed. These peptide
sequences were then matched against ENCODE proteoge-
nomic data,20 generated on the basis of peptide spectrum
scoring system23 using the Peppy software.22

5. Protannotator Bioinformatics Pipeline

We have developed a semiautomated pipeline, called
Protannotator, for the “missing” human proteome annotation
based on the workflow reported in our previous hChr7 study.9

All programs and tools used in this study were installed on a
Linux cluster running on Ubuntu server operating system. The
data are served using the Apache webserver with a PHP front
end. The different components of the workflow system are
linked using Perl, Python, and bash shell scripts into a
workflow. The top-level architecture of the pipeline is
illustrated in Figure 1.
In the first step, Protannotator extracted the proteome details

of each chromosome from neXtProt, available as chromosome
reports. Human proteins were then sorted based on the
availability of protein evidence. The system then identified
proteins characterized as “missing” proteins based on accession
numbers provided for protein evidence level 2−4 (consistent
with the recent C-HPP standard metrics table) and extracted
their sequences in FASTA format from UniProt using Linux’s
wget utility.
The protein sequence files thus extracted were processed by

the Database Similarity Search (DSS) module of the pipeline.
DSS uses a series of sequential BLAST searches to identify
high-quality matches. The “missing” proteins are first searched
against reviewed nonhuman mammalian proteins with exper-

imental evidence, with the unmatched sequences then searched
against nonhuman reviewed mammalian proteins. The
unmatched sequences from the second search are then
searched against all human reviewed proteins and finally PDB
proteins. “Missing” proteins were also searched for sequence
similarity against all mammalian proteins and all nonmamma-
lian proteins with proteomic evidence database, for verification.
The Protannotator system then employs InterProScan to

characterize “missing” proteins with high-quality annotations
based on protein functional domains and motifs along with GO
terms. Pathway mapping was then carried out using KOBAS.
InterProScan results were processed using IPRStats35 for
compiling statistics from InterProScan results as well as
visualization of the output information.
All annotation information was then uploaded to a static

webpage for the scientific community to view or download, by
chromosome, permitting different C-HPP research groups
across the globe to search the information on “missing”
proteins for their respective chromosomes.

■ RESULTS AND DISCUSSION

All 20 128 human proteins were sorted based on the availability
of protein evidence. 3831 proteins (∼19%) were identified as
“missing” based on protein evidence level 2−4 (consistent with
the recent C-HPP standard metrics table and available as
Supporting Information: Table S1). The number of “missing”
proteins across the human proteome is steadily decreasing due
to the large-scale proteomic effort across the globe. In our
previous study of hChr7, 170 proteins were reported as
“missing” as compared with 186 “missing” proteins in the
current study.

Figure 1. Top-level architecture of the pipeline for annotating human “missing” proteins. Proteins were passed through a series of databases to
determine homology (sequential BLAST) as well as annotation databases based on GO, protein functional domains, motifs, and biochemical
pathways.
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1. Sequential-BLAST Similarity Search

The first sequential-BLAST run, against reviewed nonhuman
mammalian protein sequences with proteomic evidence,
resulted in 1271 “missing” proteins (33.2%) with significant
matches, with >50% identity and E values of 0 to 1 × 10−05

(available from Supporting Information: Table S1). All top hits
were selected, and matches with sequence identity ≥50% are
considered as significant for this study. The remaining 2560
proteins were then searched against nonhuman reviewed
mammalian protein sequences, using BLAST, with significant
results for 703 sequences (18.4% of the 3831 “missing”
proteins, available from Supporting Information: Table S2). For
these matches, E values ranged from 0 to 2.00 × 10−6. The
third BLAST search against reviewed human proteins reported
matches for 564 sequences (14.7% of the 3831 “missing”
proteins, Supporting Information: Table S3), with E values
ranging from 0 to 2.00 × 10−6. In the final round of BLAST
search, the remaining 1857 sequences were searched against
PDB to check for similarity against sequences of known protein
structures, with no match identified. Mapping all the “missing”
proteins to the validation databases (results not shown)
comprising all mammalian proteins and all nonmammalian
proteins with experimental protein evidence also yielded a null
result. The results from the sequential BLAST searches are
shown in Table 1. Compared with the 127 “missing” proteins
annotated using the sequential BLAST strategy in our previous
hChr7,9 134 have been annotated in the current study, possibly
as a consequence of the larger BLAST search databases in the
current analysis and also due to the increased number of
“missing” proteins, according to C-HPP standard metrics table.

The organism-wise distribution of the first two rounds of
BLAST matches is shown in Figure 2, with the largest number
of homologues in mouse, followed by rat and cow. Primates are
not well-represented in this study, unlike in our previous report
on hChr7.9

2. Functional Annotation

Functional annotation was carried out for all 3831 “missing”
proteins, unlike the novel “missing” proteins alone in our
previous study of hChr7.9 InterProScan annotated 1945
“missing” proteins with GO annotation results in mapping of
missing proteins to 2269 biological process (BP), 2059 cellular
component (CC), and 3731 molecular function (MF) terms.
Several GO terms such as protein binding and membrane
reported in recent hChr7-centric proteomic analysis of human
colon carcinoma cell lines36 were also found among the hChr7
“missing” proteins. These 1945 “missing” proteins also mapped
to 3019 domains, 4783 families, 162 repeats, 82 conserved sites,
9 binding sites, and 4 active sites. Recently published
annotations of male specific chromosome Y proteins37 were
also reflected in chromosome Y “missing” protein mapping.
DAZ proteins bind RNA in germ cells and are involved in
primordial germ cell population maintenance.38 The top 15
InterPro codes identified for the human “missing” proteins are
shown in Table 2.
“Missing” proteins were also mapped to KEGG biochemical

pathways using KOBAS, with 642 proteins annotated with
pathway information. Olfactory receptor (IPR000725), the
second InterPro hit, was listed as the top hit in the KEGG
pathway mapping (Olfactory transduction). Out of 366 proteins
mapped to the Olfactory receptor family, 360 were also mapped
to the G-protein-coupled receptor family (IPR000276). Olfactory
receptors were also reported recently in p13.2 and p13.3
regions of chromosome 17.10 These receptors are associated
with the biological process of G-protein-coupled receptor signaling
pathway and the molecular function of olfactory receptor activity.
G-protein-coupled receptor signaling pathway and olfactory
receptor activity have been reported in genes clustered largely
in a localized domain of chromosome 11.39 Zinc f inger domains
(IPR013087, IPR001841, and IPR007087) comprise another
important protein domain, in which zinc plays a structural role
for the stability of the small domain. These protein domains are
structurally diverse and are present among proteins responsible
for a broad range of cellular functions, such as replication and

Table 1. Sequential BLAST Matches for Human “Missing”
Proteins

chromosome

number of
missing
proteins

reviewed mammalian
proteins with

experimental evidence

reviewed
mammalian
proteins

reviewed
human
proteins

Chr1 412 79 89 55
Chr2 190 55 51 25
Chr3 179 50 43 30
Chr4 130 53 28 10
Chr5 160 69 28 14
Chr6 176 52 31 28
Chr7 186 78 35 21
Chr8 108 36 26 22
Chr9 162 45 35 32
Chr10 152 53 21 41
Chr11 354 89 47 25
Chr12 169 60 35 17
Chr13a 53 17 12 13
Chr14 105 22 17 10
Chr15 111 44 22 11
Chr16 139 49 24 31
Chr17 191 50 46 35
Chr18 44 19 6 8
Chr19 369 230 30 25
Chr20 96 24 27 23
Chr21 59 9 8 27
Chr22 87 29 14 20
ChrX 182 52 28 40
ChrYa 17 7 0 1

aneXtProt Chr13 has one more protein and ChrY one less protein that
the C-HPP standard metrics table.

Figure 2. Significant BLAST hits grouped by organism. Blue bars
represent the outcome of the first round of sequential BLAST against
reviewed nonhuman mammalian proteins with experimental evidence,
while the red bars represent the second round of BLAST against
reviewed nonhuman mammalian proteins.
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repair, transcription and translation, metabolism and signaling,
cell proliferation, and apoptosis.40 The homeobox domain noted
in our results (Table 2) was also recently reported in q21.32
region of chromosome 17.10

The sensory system was the main category of KEGG
biochemical pathways reports for the “missing” proteins, with
390 proteins mapped to Olfactory transduction (372) and Taste
transduction (18) pathways. Another 13 human “missing”
proteins were mapped to pathways involved in Huntington’s
disease (HD), a neurodegenerative genetic disorder. This result
indicates their involvement in human diseases, which needs
further proteomic investigation. The top 10 KEGG pathway
mappings are shown in Table 3. Recently, chromosome 19

genes/proteins have been related to 80 human diseases.41 We
mapped missing proteins from chromosome 19 to Alzheimer’s,
Parkinson’s, and Huntington’s diseases. The details of
InterProScan and KEGG mapping are documented in the
Supporting Information: Tables S4 and S5.
The functional annotation of the 3831 “missing” proteins is

summarized in Figure 3, with 608 (15.9%) proteins having GO,
InterPro domains as well as biochemical pathway annotations,
1337 (34.9%) proteins have InterPro domains and GO
annotations alone, while 642 (16.8%) proteins have only
KEGG biochemical pathway annotations. 1244 (32.5%)
proteins could not be assigned any functional annotation with
the currently available biological knowledge and may be
considered novel.

3. In Silico Tryptic Digestion and ENCODE Proteogenomic
Data

The Protein Digestion Simulator28 was used to generate in silico
proteotypic peptides, with trypsin selected as the proteolytic
enzyme. Monoisotopic masses, pI, and hydrophobicity values
for the tryptic peptides were computed (results not shown).
These digested peptides were matched against the high-quality
proteogenomic peptide data (58 601 records, based on the
criteria described elsewhere23 using the Peppy software22) from
the ENCODE project21 for proteomic evidence for the entire
set of “missing” proteins. We found 245 peptides that matched
the ENCODE data, with 1−44 peptides per protein. We have
used the criteria of at least one or more peptide matching
accurately (i.e., 100% identity) to the proteogenomic peptides,
as we are matching protein sequences, to emulate the false
positive discovery rate of Risk et al.,22 who have set the
threshold at >1 peptide matching to six-frame translations of
genomic DNA. The peptides provide proteomic evidence of
107 “missing” proteins (with at least one peptide) for review
and integration into the neXtProt chromosome summary lists.
These peptides were found in 571 locations, with 316 in the
positive orientation and 255 in the reverse orientation, that is,
coded by the complementary strand. The genomic locations for
two proteins (NX_Q9Y5G0 and NX_Q9Y5G1) on hChr5
could not be determined from neXtProt. The mapping results
have been summarized in Table 4, and details of the mapping as
well as the mapping regions are documented in Supporting
Information: Table S6.
We have validated the ENCODE data mapping with

neXtProt assigned genomic coordinates for each protein. Of
the 571 locations, 202 matched the genomic coordinates

Table 2. Top 15 InterProScan Hits for Human “Missing” Proteins

InterPro code description number of missing proteins mapped chromosome(s) mapped

IPR000276 G protein-coupled receptor, rhodopsin-like (family) 445 Chr10
IPR000725 olfactory receptor (family) 366 Chr10
IPR013087 zinc finger C2H2-type/integrase DNA-binding domain 129 Chr6
IPR001909 Krueppel-associated box (domain) 80 Chr6
IPR009057 homeodomain-like (domain) 68 Chr3
IPR001356 homeobox domain 62 Chr3
IPR002110 ankyrin repeat (repeat) 51 Chr8, Chr22
IPR007087 zinc finger, C2H2 (domain) 48 Chr7
IPR002126 cadherin (domain) 45 Chr4
IPR015919 cadherin-like (domain) 45 Chr4
IPR002494 high sulfur keratin associated protein (family) 32 Chr16
IPR001841 zinc finger, RING-type (domain) 31 Chr10
IPR015943 WD40/YVTN repeat-like-containing domain 29 Chr19
IPR011598 Myc-type, basic helix−loop−helix (bHLH) domain 29 Chr19
IPR011992 EF-hand domain pair (domain) 25 Chr19

Table 3. Top Ten KEGG Pathways for Human “Missing”
Proteins

pathway description no. of proteins

olfactory transduction 372
neuroactive ligand−receptor interaction 70
metabolic pathways 66
taste transduction 18
GABAergic synapse 17
glutamatergic synapse 16
calcium signaling pathway 16
natural killer cell mediated cytotoxicity 14
retrograde endocannabinoid signaling 14
antigen processing and presentation 13
Huntington’s disease 13

Figure 3. Summary of functional annotations for the “missing”
proteins. Gene ontology (GO), functional domains/motif (InterPro)
annotations were obtained for 1945 (50.8%) proteins. KEGG
pathways (KEGG) annotations were obtained for 1250 (32.6%)
proteins. 608 proteins had GO, Interpro domains, and KEGG pathway
annotations. 1244 proteins remain unannotated.

Journal of Proteome Research Article

dx.doi.org/10.1021/pr400794x | J. Proteome Res. 2014, 13, 76−8380

59



assigned by neXtProt for 107 proteins, as two proteins
(NX_Q9Y5G0, NX_Q9Y5G1) on Chr5 without genomic
coordinates in neXtProt were excluded. 98 peptides were
found in both orientations, that is, the coding regions covering
one ENCODE peptide as well as at least one reverse peptide,
requiring further experimental validation. These peptides can
be used for the synthesis of antibodies and for future in vitro
studies that could lead to proteomic identification of the
proteins.

4. Membrane Proteomics “Missing” Protein List
Comparison

We have compared the 3831 “missing” proteins with the 851
“missing” proteins identified by Muraoka et al.24 and found that
a total of 17 proteins have been provided proteomic evidence
from this study. The chromosome-wise results are presented in
Table 5.
Furthermore, we have summarized the proteomic evidence

from the ENCODE project21 and the membrane proteomic
study of Muraoka et al.24 (detailed in Supporting Information:
Table S7). Two “missing” proteins (NX_P0CK97 and

NX_Q9H0R5) have proteomic evidence from both exper-
imental studies, with 105 “missing proteins uniquely supported
by ENCODE data and 15 proteins by membrane proteomic
data alone. In all, 122 (3.2%) “missing” proteins now have
proteomic evidence

■ CONCLUSIONS

We have compiled the chromosome-wise set proteins from the
human proteome for 3831 “missing” proteins, as listed in the
C-HPP standard metrics table, for in silico analysis and
annotation. Using selected high-quality protein databases,
similarity searches running BLAST sequentially identified
homologues with experimental evidence for 33.2% of the
“missing” proteins, with another 18.4% mapping to reviewed
nonhuman mammalian proteins. As our study has used existing
information to identify homologous proteins, further exper-
imental work is required to confirm the existence of the
proteins that are not identified by Protannotator, which is
outside the scope of the work. However, with homologues
identified from higher mammals, these proteins have a high
probability of acquiring experimental evidence in the near
future. Using a suite of bioinformatics tools, we have assigned
putative biological functions in terms of GO and domain/motif
signatures for 1945 (50.8%) and biochemical pathways for 1250
(32.6%) of the “missing” sequences. Despite the current level of
biological knowledge in the databases, 1244 sequences (32.5%)
remain unannotated by our sequential BLAST and computa-
tional annotation strategy.
By using a combination of computational tools, close to 50%

of “missing” proteins in the human genome have been assigned
putative biological functionality, providing valuable clues for

Table 4. Summary of ENCODE Data Mapping of Peptides from Human “Missing” Proteins

chromosome
number of
proteins

number of
peptides positive negative

number of peptides on
both strands

total matched with neXtProt
coding region

total unmatched with nextProt
coding region

Chr1 7 17 17 18 2 17 18
Chr2 7 27 66 57 21 27 96
Chr3 2 2 1 1 0 2 0
Chr4 3 3 2 1 0 3 0
Chr5a 17 29 20 7 0 27 0
Chr6 9 44 72 55 24 3 124
Chr7 9 16 15 17 7 16 16
Chr8 1 1 1 1 1 1 1
Chr9 6 13 15 26 8 13 28
Chr10 5 8 21 3 2 8 16
Chr11 3 4 3 2 1 4 1
Chr12 5 7 4 5 0 7 2
Chr13 3 4 1 3 0 4 0
Chr14 1 1 1 0 0 1 0
Chr15 1 2 2 0 0 2 0
Chr16 3 27 50 27 26 27 50
Chr17 5 8 11 8 4 10 9
Chr18 1 1 0 1 0 1 0
Chr19 6 11 4 10 1 12 2
Chr20 1 1 1 0 0 1 0
Chr21 0 0 0 0 0 0 0
Chr22 3 4 0 1 0 1 0
ChrX 8 14 8 12 1 14 6
ChrY 1 1 1 0 0 1 0
Total 107 245 316 255 98 202 369

aFor NX_Q9Y5G0 and NX_Q9Y5G1, the genomic location on chromosome 5 is not available in the neXtProt database, although ENCODE
proteogenomic data mapped to these proteins.

Table 5. Summary of Membrane Proteomic Evidence for
Human “Missing” Proteins

chromosome number of proteins chromosome number of proteins

Chr1 3 Chr11 2
Chr6 1 Chr12 3
Chr7 2 Chr16 1
Chr9 1 Chr17 1
Chr10 2 Chr19 1
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experimental validation assays. In silico tryptic digestion
generated proteotypic peptides with which we were able to
ascribe proteomic evidence for 107 (2.8%), thereby linking
genomics and proteomics via bioinformatics. Additionally,
proteomic evidence for another 15 “missing” proteins was
provided by the recent membrane protein study of Muraoka et
al.,24 bringing the total of neXtProt “missing” proteins with
proteomic evidence to 122. Our results, available freely through
Protannotator, will benefit proteomic identification of the
human “missing” proteome. The computational approach we
have described is generic and can be used to annotate the
proteome of any novel organism, such as the black Peŕigord
truffle.20 We plan to further automate the system (wherever
possible) and provide updated information via the Protanno-
tator web portal, to track proteomic or bioinformatics evidence
for the unannotated set of “missing” proteins.
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4.3 Conclusions 

We devised a set of sequential blast search databases (from the mammalian kingdom, 

described in the publication) tailored for human proteome based on our annotation 

framework. We developed ProtAnnotator, a semi-automated pipeline using these datasets 

to perform the functional annotation for these sequences. We then obtained the missing 

protein sequences for all chromosomes from UniProt and processed them through this 

pipeline. Our workflow identified homologues for 66.2% and functional annotation for 

50.8% of these human 'missing' proteins. As the C-HPP Project is a worldwide 

collaboration, we developed a web portal to share the updated annotation results freely to 

the community. However, neXtProt updates the PE status with frequent releases, meaning 

an automated pipeline is needed to (i) annotate any newly listed proteins (ii) provide up to 

date annotations in line with database and software update as these can lead to new 

annotations and enhance our knowledge about the proteins. Besides the C-HPP initiative, 

an automated platform is also necessary to annotate vast swathes of newly sequenced or 

novel genomes or targeted annotation studies. 
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Chapter 5: ProtAnnotator 2.0: An automated pipeline 

for in silico protein functional annotation 

5.1 Summary  

As discussed in the previous chapter, the human missing protein sequences are 

regularly updated with proteins being added or removed from the list. So, there is a 

clear need for an automated annotation system to provide updated annotation 

information to the C-HPP community. At the same time, the low cost, but high 

throughput next generation sequencing technology is allowing the community to publish 

new genomes at a rapid rate. That makes it practically impossible to annotate these 

proteomes experimentally. High accuracy and high throughput annotation strategies are 

needed to keep up with this influx of the new genomes. 

In this study, we extended our ProtAnnotator platform to incorporate a more generic, easy 

to use automated annotation platform. The cloud-based platform offers end users to 

execute the previously mentioned workflows (Chapter 3 and Chapter 4) by simply 

uploading a sequence file in FAST-All (FASTA) format. Most importantly, it offers 

users an authenticated secure portal to create their own annotation pipeline using 

their own reference sequence databases to match their experiments. It provides an 

industry standard high-speed data transfer mechanism to upload data into the 

environment with latest software and databases to perform the annotation (detailed in 

Publication 3). 

5.2 Publication 3 
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ABSTRACT 
The functional annotation of a proteome uncovers biological functions of all its proteins. The 

rapid growth in protein sequence databases provides an excellent opportunity to predict 

putative functions of the unknown or relatively less studied proteins by mining the knowledge 

from well-studied proteins from these databases. Re-annotation has been recognized to be 

efficacious but tedious.  Various constantly evolving computation tools and databases are 

available for annotation but have not been cohesively used in an automated fashion to 

streamline annotation.  Here we present ProtAnnotator 2.0, an updated version of our 

previously published semi-automated in silico functional annotation that automates the entire 

process under a single web platform. The platform is underpinned by several freely available 

annotation tools and allows users to design custom pipelines and import their sequences 

databases for more accurate and targeted studies according to their needs.  
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INTRODUCTION 

Annotation of proteins or genes is a critical step in elucidating the biological relevance of any 

biomolecule. This annotation can be at a nucleotide, protein or process level, with the process 

or functional annotation usually the most useful [1]. Experimental validation and annotation 

of gene function accounts for less than 1% of annotated proteins [2] and therefore there exist 

over 126 methods of predicting functional annotations in silico [3]. This is particularly 

relevant in the context of next generation sequencing where multiple new eukaryotic species 

are being sequenced at an increasing frequency [4] with increasingly distant phylogenetic 

divergence. This rapid rise in full genome sequencing has posed numerous challenges aside 

from the data challenges with annotation of proteins using older methodologies becoming 

limited.  

The most common bioinformatics based annotation methodologies rely on evaluating 

sequence or structural homology search to a single database [5] with the premise that proteins 

with high sequence similarity will have similar functions. This approach is sufficient where 

genomes are phylogenetically close, or abundant experimental data is available. Often though 

this approach in itself is practically relatively limited for numerous reasons and hence, a 

significant development was, in addition to sequence homology, a search against protein 

domain family resources (such as Pfam [2, 5]. Although this approach circumvented many of 

the pitfalls of new genome annotation, some problems such as bias in functional annotations 

and mis-annotations still remain [6].  

In proteomics, the in silico representation of proteins is almost wholly reliant on some form 

of genomic database or knowledgebase such as UniProt [7]. One of the standard methods is to 

align query sequences against a target sequence database to identify similar sequences. 

Although the UniProt non-redundant (NR) database has been widely used for this purpose, it 

is important to use targeted high quality (such as experimentally validated sequences, 

reviewed sequences) and or closely related database for several reasons. Searching against NR 

database may lead to matches against un-reviewed or unannotated proteins [8] that may not be 

useful for downstream annotations. Experimentally validated and or reviewed protein 

sequences from closely related species yield more accurately identified homologues for novel 

and/or less studied or complex proteomes. For example, the less studied Truffle fruiting body 

is believed to contain bacteria, yeasts, and filamentous fungi [9]. So, a targeted annotation 

strategy is required to understand its complex biology.  Although most of the sequences are 

annotated in the public databases, as new genome and proteomes are published there is a need 
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to re-annotate proteins for specific studies. The updates and new developments of methods, 

database, software, and tools necessitate on demand annotation platform, as re-annotation of 

the entire repository may not always be practical. 

In a quest to annotate the ‘missing’ proteins from the human proteome, we had developed a 

semi-automated protein annotation pipeline, which integrated not only sequence homology 

(sequential BLAST approach) and protein family resources, but also gene ontology and 

biochemical pathways [8, 10, 11]. This novel approach tapped into novel datasets and 

annotating proteins based on the best available evidence.  

One of the most significant outcomes was the uncovering of a range of ‘missing’ proteins [12] 

as part of HUPO’s human proteome project (HPP) objective of characterizing the functions of 

all proteins in the human [13]. A wider ranging and interesting use of the methodology was 

the ability to annotate the proteins derived from the fruiting body of the black Périgord truffle 

[10]. This application and the clear gap in the functional annotation of proteins from other 

species led us to develop an updated version of the first iteration of the tool. Here we present a 

fully automated version 2.0 of ProtAnnotator (ProtAnnotator 2.0), the key features of which 

include the ability of a user to input their sequences to annotate proteins based on original 

pipeline published, and to seamlessly develop their own unique pipelines based on user-

supplied databases. This automation will not only assist in efficient annotation of new 

genomes, it will significantly assist in re-annotation efforts. We demonstrate here the re-

annotation of our original truffle data to arrive at significantly different results than just a few 

years ago.  

MATERIALS AND METHODS 

1. Overview

ProtAnnotator 2.0 is a web platform with integrated annotation pipelines based on our 

previously published method and workflows [8, 10, 11]. The core of this is the annotation 

workflow. The platform offers two types of workflows, public and private (i.e. authenticated) 

workflows. The public workflows are our previously published workflows [8, 10, 11] the 

‘sequential BLAST’ databases for these workflows are fixed (periodically updated) and users 

can upload their protein sequences in FASTA format to run any of the available workflows 

without an account.  
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Figure 1. Top-level architecture of ProtAnnotator 2.0. 

These workflows are provided on an as is basis, the search databases are updated monthly but 

it does not allow users to bring their own search databases. The private workflows are 

dynamic, and allow researchers to bring their own (BYO) databases and build custom 

sequential BLAST pipelines. Users are required to follow a simple registration process to be 

able to run the dynamic private workflows. Both public and private workflows offer users to 

identify domain/motif analyses, GO annotation and pathway mapping using the InterProScan 

[14] annotation tool. The basic flow (as depicted in Figure 1) is, the user selects a workflow 

published or private (upon successful registration), the user then uploads the query sequence 

file and builds the sequential BLAST [15] pipeline by uploading database files for each 

BLAST run (for private BYO database workflow only, see Figure 2), then selects the 

annotation options and submits the job. The user can visit the public portal to run a published 

workflow by adding the contact details and uploading a sequence file. The BLAST databases 

for published workflows are updated monthly. To design a custom workflow, the user needs 

to login to the portal, then create a workflow, and upload all BLAST databases. Files are 

uploaded using Aspera FaspTM protocol. A work node then processes jobs.  
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Once the job is submitted, the user receives a confirmation email with the job ID and selected 

parameters with the job being sent to a queue. An available ProtAnnotator work node then 

picks up the job, processes it and upon completion, sends an email to the user to allow result 

download over an Aspera connection.  

2. Cloud platform

The web interface is developed using the Ruby on Rails open source software. The annotation 

pipeline along with all pre and post-processing steps are developed in Python, which 

integrates the BLAST sequential alignment tool, and InterProScan annotation tool to create 

cohesive annotation pipeline. The web platform, software tool, databases and associated 

compute work nodes are hosted on an OpenStack research cloud platform [16]. The 

webserver is build on Ubuntu (16.04 LTS x86_64) and the work nodes are built on (CentOS 

6.7 (Final) x86_64) Linux operating system with open-source Sun Grid Engine (SGE) 

scheduler to manage the compute resources efficiently. The pipeline uses the Distributed 

Resource Management Application API (DRMAA) [17] bindings for Python to interact with 

SGE scheduler to process jobs. Each work node is built with 16 CPUs and 64 gigabytes of 

memory. Processed results are kept for two weeks after the job is completed and raw data files 

are deleted after successful completion of a job to maximise the utilization of the resource. 

The system is designed in a way that additional work nodes can be added to manage excessive 

workloads without code modifications.  

3. Authentication and authorization

All users must be registered and authorised by an administrator to run the BYO database 

workflows. The ProtAnnotator 2.0 system is designed to provide simple access to the 

researchers as well as minimizing the number of accounts managed by the system (where 

possible). As such it offers two types of authentication model for end users (see Figure 2). 

The system is integrated with the Australian Access Federation (AAF)[18], a leading identity 

broker that offers federated identity management service for the education and research 

services. The researchers from all Australian universities and leading research organization 

can log into the system using their institutional login accounts. The users are provisioned in 

the ProtAnnotator system upon first successful login (Just-in-Time Provisioning). The 

international users are required to register using the sign-up service of ProtAnnotator. In both 

cases, users must be authorised by an administrator to access and create any workflow. When 

a user logs in for the first time (using AAF) or sign-up using the form, an email is sent to the 

administrator to approve the request.  Protannotator applies a role based authorisation model, 
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and workflows are associated with roles. An administrator can assign a role using the admin 

interface. Once an appropriate role is assigned to the user, the system sends an email to the 

user. The user can then log into the system to create and execute workflows.  

Figure 2. Proannotator2 authentication methods. (a) Australian researchers first select the 

AAF button, then select their institution and use their university credential to access the 

system. (b) International users first sign up using the form then uses the non-AAF log in 

option to access the system. 

3. Workflow and pipeline

The basic concept of the workflow is to offer a sequential sequence similarity search against a 

set of user-defined databases as well as identifying domain/motif analyses, GO annotation and 

pathway mapping for the same. The query sequences are searched against the first database 
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(user defined), then the unmatched sequences are used as the input for the next round of 

similarity search and so on. The pipeline currently uses BLAST (version 2.6.0+) for sequence 

similarity search. End users can select the E-value and percentage identity as the cut-off value 

for the sequential BLAST (default value is 1e-05, and 50% respectively).  

Figure 3. User interface for public (published) and private (BYO database) workflows. 

(a) Published workflow- Users can select a published workflow and simply upload a protein 

sequence file for annotation. (b) Private (BYO database) workflow – users need to log into 

the system, and then create a workflow. Multiple search database files can be uploaded using 

the Add next BLAST file option. 

InterProScan (InterPro 63.0 and InterProScan 5.24-63.0) is used for the functional annotation 

and pathway analysis (cross-links to KEGG, MetaCyc, Reactome, and UniPathway) of the 

proteins. The registered users can also log into the system to check the status of the BYO 

workflows and download results (Figure 4). 
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Figure 4. ProtAnnotator 2.0 job status and download page for authenticated users 

5. Data sources

We previously applied our semi-automated ProtAnnotator pipeline to annotate human 

‘missing’ proteins[8] and Black Périgord truffle proteins[10]. Since the ‘missing’ proteins 

sequences are regularly updated [19] we have used the static 12,771 non-redundant Black 

Périgord truffle (T. melanosporum Vittad) protein sequences from our previous proteomics 

and annotation study to demonstrate the platform and its applicability.  These sequences were 

downloaded from the MycorWeb database [http://mycor.nancy.inra.fr/index.html] in FASTA 

format. We also download the following databases for sequence similarity search, reviewed 

yeast proteins with experimental protein evidence (7,740 sequences, previously 7,503), 

reviewed fungal proteins with experimental protein evidence (9,634 sequences, previously 

9,450), reviewed fungal proteins (32,674 sequences, previously 31,031) and Protein Data 

Bank (PDB) protein (402,312 sequences, previously 236,604) sequences. 

RESULTS AND DISCUSSION 

To demonstrate the applicability of the automated ProtAnnotator 2.0 platform, we have 

reanalyzed the sequences we had previously reported using the newly updated platform 

against updated blast databases mentioned in the data source section. As shown in the 

previous section, the recent versions of all of the BLAST databases have more sequences than 

previously reported. The underlying tools for the pipeline are also updated. Our previous 

analysis pipeline used BLAST (+ 2.2.27) and InterproScan 4.8. 
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One of the biggest challenges for any cloud platform is the speed of the data transfer;  

users often spend more time moving data between local computers and the cloud instance 

than the actual time to process the jobs. Many standard transfer protocols such as FTP, 

GridFTP, RSYNC, WebDAVs, and HTTPS either do not provide resume transfer option or 

offers slow transfer speed especially with high latency (long distance transfer). So if a transfer 

is interrupted for any reason, users often need to transfer the whole file again. The sequences 

files, especially for the BYO database workflow, can be hundreds of gigabytes. To address 

this issue, ProtAnnotator is integrated with the Aspera FASPTM transfer protocol using Aspera 

Connect Server API [20]. The Aspera FASP transfer protocol is hundreds of times faster than 

FTP and HTTP protocol [20]. Its client side connect plugin (free to users) provides options to 

end users to select their own bandwidth to transfer data. The ProtAnnotator cloud platform is 

hosted in a research cloud infrastructure[16] that utilises Australia’s Academic and 

Research Network (AARNet) [21] with a 10Gbps connection. ProtAnnotator users are 

required to install the Aspera Connect Plug-in (freely available at http://

downloads.asperasoft.com/connect2/) for the first time. If the plug-in is not installed, the web 

interface will prompt the user to download the plugin with a link. 

Despite the increase in the number of sequences in target databases, the sequential BLAST 

workflow identified homologous for 2,468 proteins (see Supplementary Table S1) as opposed 

to 2,486 proteins from our previous study (see Table 1). The ProtAnnotator 2.0 workflow 

identified homologues for 111 proteins that were not identified by our previous study. 

However, homologues for 129 previously identified were eliminated by the new analysis due 

to low percentage identity (refer to Supplementary Table S4). We used updated protein 

sequence databases for the similarity search, so the results are expected to vary.  Besides, our 

previous study was conducted using BLAST+ 2.2.27. Since then BLAST tool underwent 

numerous improvements. In the latest iteration (version 2.6.0) the gapped alignment starting 

point was changed to minimize sub-optimal alignments [22]. Both of these factors may have 

contributed to the variation of the percentage identity scores for the 129 proteins. However, 

the pipeline identified a significantly large number of similarities (1,393 proteins) with the 

PDB sequences (see Supplementary Table S2) compared to our previous analysis of 101 

proteins (see Table 1). The number of PDB sequences has almost doubled since our last 

study, so the increased identification was expected.  

In our previous study, the annotation pipeline identified functional annotations and pathways 

for 20% of the black Périgord truffle sequences, however the updated pipeline identified at 

least one functional annotation or pathway for 82% proteins. This significant increase in 
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annotations suggests that reference databases are constantly evolving and growing, it is 

imperative that before embarking on novel studies or interpreting results, that sequences be 

run through such pipelines and updated.  

Table 1 Significant BLAST hits from the sequential BLAST pipeline. A comparative 

summary of previous bioinformatics analysis and recent bioinformatics analysis using 

ProtAnnotator 2.0 

Description 

Previously 

published 

results 

ProtAnnotator 2.0 

results with updated 

tools and databases 

Total Number of proteins 12,771 12,771 

Reviewed yeast protein sequences with 

experimental protein evidence 1,794 1,753 

Reviewed fungal protein sequences with 

experimental protein evidence  109 131 

Reviewed fungal protein sequences  583 584 

Protein Data Bank (PDB) 101 1,393 

Functional Annotation (GO, InterPro, Pathway) 2,587 10,511 

Until now although recognized as a significant need [23], this has largely been a cumbersome 

process [23, 24] which meant that most scientists likely rely on previously annotated 

genomes. The efficacy of the disparate results obtained from re-annotation using updated 

databases and a more efficient methodology (keeping the same principles) is not more stark 

than as demonstrated in Table 2.  The top 5 major pathways identified do not even resemble 

the previous results (with many pathways previously identified showing now much lower in 

the current analysis) and therefore the possibility of understanding and deciphering the 

biology and biochemistry of the organism is greatly improved.  

The huge disparity could be that we used InterProScan 4.8 for our previous study. The 

software has been updated, and several new InterPro databases have also been added to 

InterProScan version 5 [14]  . In addition to KEGG, the InterProScan version 5 also provides 

pathway identification from MetaCyc, Reactome, and UniPathway all of which contributed to 

a significantly high number of functional annotations compared to our previous study.  
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Table 2- Top five pathways identified by previous pipeline and current analysis using the 

updated platform. 

Previously published pathways Pathways from ProtAnnotator 2.0 analyses  

#Term Total 

Match 

#Term Total 

Match

Metabolic pathways 961 Major pathway of rRNA processing in 

the nucleolus and cytosol 

444 

Pyrimidine metabolism 399 SRP-dependent cotranslational protein 

targeting to membrane 

361 

Biosynthesis of 

secondary metabolites 

239 L13a-mediated translational silencing 

of Ceruloplasmin expression 

336 

Cell cycle - yeast 161 Formation of a pool of free 40S 

subunits 

318 

Meiosis - yeast 96 Selenocysteine synthesis 302 

The efficacy of re-annotation of protein function was highlighted even further when analyzing 

the results from the GO analysis (Figure 5). We used REVIGO [25] treemap to identify the 

representative non-redundant subset of GO terms to show the differences in representative 

GO terms for the two analyses (Figure 5) and the differences between the top 5 pathways are 

shown in Table 2. We note that the RISC complex for example is highly overrepresented by 

our new annotation results. It is almost as if two separate organisms are being studied. It is 

clear that the basic biochemical processes in the T. melanosporum revolve around core 

cellular processes unlike our previous conclusions that suggest a greater preponderance on the 

processes that produce secondary metabolites. An in-depth analysis of the newly uncovered 

biology of the black truffle from this analysis, although beyond the scope of this study, needs 

to be carried out, especially in light of the new evidence. Indeed, a deeper analysis and 

appreciation of the role of complex biochemical pathways [26], biological functions to 

understand the enigmatic life cycle of this fungus its complex relationship not only with it 

symbiont host but also to other microorganisms [27]  and the biology of its aroma [28] can 

greatly assist in not only developing cultivation programs [29] but in harnessing the 

organism’s hereto unknown processes.  
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Figure 5. Treemap of the representative non-redundant GO terms, (a) results from the 

previous study, (b) annotations from the ProtAnnotator 2.0 pipeline 

It is evident from the results that, the new analysis can provide us further insight into 

understanding the biology of this organism that was not possible from the previous tools and 

or databases. 

CONCLUSIONS 

The ProtAnnotator automated annotation platform is generic, and its custom workflow and 

'bring your own database' feature can be used to annotate proteins from any novel or less 

studied organism. The reanalysis of the black Périgord truffle data using the platform 

demonstrates that the platform is capable of providing updated insights into pro te in  

funct ions  and  can  be  tailored for targeted annotation studies.  
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AVAILABILITY  

The web platform can be accessed at https://protannotator.biolinfo.org  
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5.3 Conclusions 

The reanalysis of the black perigord truffle data using this newly developed platform 

shows our platform can leverage updated knowledge base and database to provide more 

accurate as well as new annotations of the query proteins. For example, the platform 

identified homologous for 111 new proteins (with E-value 1e-05, and with at least 50% 

identity) compared to our previous study. At the same time, another 129 proteins that were 

identified previously (with the same criteria) were assigned a lower identity and removed 

from the annotation list. It also identified structural similarities for 1,393 proteins with 

PDB sequences as opposed to 101 proteins from our previous study.  The platform also 

identified functional annotation for a significantly large number of proteins (82%) 

compared to our previous study (20%). While the automated platform is an information 

technology enabler to empower the researchers, users need to select their search databases 

carefully to match their studies to get the best output from this pipeline. Besides, many 

proteomics databases are available (as discussed in Chapter 1) that can be utilised to 

complement these annotations with experimental evidence (especially for the human 

missing protein identification). However, the datasets within each of these proteomics 

databases are generated using various MS platforms and search engines with various 

platform and search engine specific parameters. This coupled with the lack of integration 

between different databases, create further challenges for the researchers to analyse or 

interpret data. A guideline is needed for researchers to identify protein sequence and 

proteomics database as well as how to interpret data from heterogeneous MS data sources 

to annotate and complement the annotations accurately. 
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Chapter 6: A systematic bioinformatics approach to 

identify high quality MS data and functionally annotate 

proteins and proteomes 

6.1 Summary  

In the previous chapter, we presented the ProtAnnotator 2.0 automated platform to use 

existing knowledge to identify functional annotations of proteins. A large number of 

proteomics databases (described in section 1.4) are available to uncover the biology of a 

target proteome. A set of carefully selected high-quality protein sequence databases 

(closely related, experimentally validated and or reviewed) can be used to significantly 

increase the quality of the similarity search. The processed MS results or raw MS data 

(after reprocessing) from various proteomics databases can then be used to complement the 

annotation by providing identification or experimental validation. The reuse of such 

databases is crucial for large collaborative or community efforts such as the 'missing' 

protein identification initiative of the C-HPP consortium to fast-track the identification 

process without duplicating the experiment or efforts. However, the consolidated analysis 

and interpretation of proteomics data from various sources is a complicated task as the 

datasets come from a wide range of MS platform, search engine software and platform-

specific parameters. Scientists often rely on the results from the automatic search engine of 

the MS platform (without checking the quality of the MS spectra) to identify proteins that 

can lead to incorrect identifications. Although some automated software and tools are 

available to automate the quality check (described in section 1.2.3), they are compute 

intensive and or rely on reprocessing data that may not always be practical. 
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6.3 Conclusions 

In this study, we developed a simple protocol for the scientific community to functionally 

annotate protein using our previously described method as well as an MS evidence 

workflow to identify and mine publicly available (or individual lab) MS data to 

complement the annotation. We used walk-through examples from the missing human 

proteins to demonstrate the annotation protocol and the MS evidence workflow. The MS 

evidence workflow provides a guideline to interpret cross-platform MS search results to 

identify high-quality peptides, check their proteotypicity and finally check the quality of 

the MS spectra to detect and annotate a protein accurately. This combined annotation and 

evidence workflow can be used in any proteomics laboratory with minimal computational 

resources to annotate and interpret data. The automated annotation platform (underpinned 

by the annotation protocol) described in the previous chapter can be integrated with the MS 

evidence workflow to develop a cohesive identification and annotation pipeline to capture 

information from cross-platform sources to provide annotation and evidence for larger 

studies, such as the missing human protein identification project with high stringency 

identification and evidence criteria. 
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Chapter 7: Accelerating the search for the missing 

proteins in the human proteome 

7.1 Summary  

In the previous chapter, we discussed that our automated protein functional annotation 

platform can be integrated with the MS evidence workflow to build an automated protein 

identification and characterisation (both public and private source) pipeline to underpin 

extensive studies. In Chapter 1, we provided a comprehensive literature review on 

proteomics knowledge bases, tools, and algorithms. We then demonstrated that these 

databases could indeed be used for protein characterisation and identification (Chapter 3-6) 

of the novel, unknown and 'missing' proteomes. However, despite the advances in 

proteomics technologies and considerable growth of proteomics knowledge base, the 

questions that baffle us are, why are ~10% of the human proteins are still considered 

missing and what can be done to accelerate the identifications to uncover unknown human 

biology eventually? In this study, we comprehensively review the current HPP metrics and 

approaches to identify the challenges and possible solutions in finding these missing 

proteins. 
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Human Proteome Project (HPP) goals and progress
Science is rapidly becoming a global endeavour, with high-quality
curation and annotation of data becoming the responsibility of
the whole scientific community. Despite the Delphic maxim
‘know thyself’ being inscribed on the forecourt of the Temple of
Apollo in ancient Greece during the sixth century BC, we still do
not have a comprehensive description of what it means to be
human in strictly molecular terms (that is, genome þ epigenome
þ transcriptome þ proteome þ peptidome þ metabolome).
In 2010, the Human Proteome Organization (HUPO) formally
initiated a flagship project called the Human Proteome Project
(HPP). This ambitious project contributes to humans knowing
themselves by collecting credible, high-stringency MS and other
evidence for the B20,000 or so proteins coded by human genes.
The long-term aims of HPP are twofold. First, it aims to complete
the protein ‘parts list’ of Homo sapiens by identifying and
characterizing at least one protein product and as many post-
translational modifications, single amino acid polymorphisms
and splice variant isoforms as possible for each protein-coding
gene. Second, it aims to transform proteomics so it becomes
complementary to genomics across clinical, biomedical and life
sciences, through technological advances and creation of knowl-
edgebases for the identification, quantitation and characterization
of the functionally networked human proteome.

In order to ensure all encoded proteins would be revealed
and that all important biology and diseases would be
represented, the HPP was amalgamated under two distinct
but overlapping streams called the chromosome-centric
(C-HPP) and Biology/Disease (B/D-HPP) Human Proteome
Projects3. These are underpinned by three resource pillars;

(i) MS, (ii) Affinity Reagents (for example, Abs), and
(iii) a Knowledgebase. In addition to re-analysing and reporting
HPP data, a number of complementary groups (PeptideAtlas;
http://www.peptideatlas.org, neXtProt; http://www.neXtProt.org,
GPMDB; http://www.gpmdb.org and Human Protein Atlas
(HPA); http://www.proteinatlas.org) work cooperatively to
provide annual HPP updates, present chromosome-by-
chromosome tabulations, evolve high-stringency HPP data
analysis metrics4,5, and supply HPP data deposition guidelines
for all researchers6. Critically, the HPP consortium encourages
concurrent raw data deposition through standardized MS portals
(for example, ProteomeXchange; shown as a schema in Box 2).
The HPP also undertakes critical, annual re-analyses and
reporting of the growing MS dataset with accompanying
metadata using community-approved, high-stringency metrics.

The desire to build a reproducible, definable, metrics-driven,
annotated HPP of the highest quality necessitated the imposition
of terms defining the categories of evidence obtained. To enable
this, it was communally agreed that the protein-centric knowl-
edge platform neXtProt7,8 would classify HPP proteins by protein
existence (PE), based on partial/complete Edman sequencing,
identification by MS, 3D structure (X-ray/NMR), good quality
protein–protein interaction data and/or detection of a protein by
validated Abs (for example, in the HPA9). Metrics, guidelines
and/or PE categories have been agreed on and revised through
community forums, facilitated by HUPO. Since the HPP was
launched in 2010, we have learned many lessons. The importance
of ‘speaking the same language’ with regard to MS analysis
metrics and data submission guidelines has been prominent.
Kim et al.10 and Wilhelm et al.11 proposed drafts of the human

Box 1 | neXtProt protein evidence (PE) definitions and 2013-2016 PE data comparison.

neXtProt assigns every one of the 20,055 human proteome proteins as either PE1-5, using evolving communal metrics that have become stricter to
improve identification confidence. HPP PE status from 2013-2016 is shown below (with protein numbers indicated top left and right of boxes).

Missing Proteins = PE2 + PE3 + PE4 proteins only 
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15,649 PE1 16,518
Evidence at protein level:  Strong evidence of detection by MS or other 

methods (detected by antibodies and/or sequenced by Edman 

degradation, or that its 3D structure has been resolved).  

In 2016, PE1 defined as ≥ 2 highly confident, uniquely mapping peptides 

of ≥ 9 residues (not nested) by MS. Criteria for other sources of evidence 

were not provided. In 2013, PE1 defined as ≥ 2 highly confident, uniquely 

mapping peptides ≥ 7 residues by MS. Criteria for other sources of 

evidence were not provided. 

3,576 PE2 2,290
Evidence at transcript level only: evidence at the transcript level, but no 

clear experimental evidence at the protein level (as above).

198 PE3 565
Evidence in homologous species only: inferred from homology only, no 

evidence at transcript or protein level (as above). 

94 PE4  94
Evidence at theoretical level only: protein predicted to be expressed by 
a gene, no homology, transcript or protein expression evidence (as above).

635 PE5  588
Evidence is dubious: due to lack of essential features for transcription 

and/or mutations of the sequence in the numerous cases of 

pseudogenes. 

The PE2-4 proteins are now considered as the missing proteins since insufficient evidence has been produced as per the HPP metrics. The criteria for
categorizing PE status, using data other than MS, remains to be communally defined. neXtProt protein data are constantly updated, so PE numbers vary
with each version release.
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proteome in 2014. These studies challenged the imposition of
communal metrics, including previously agreed consensus
regarding protein target-decoy false discovery rates (FDRs) and
requisite minimum proteotypic peptide length (Z7 amino acids
in 2014). The term proteotypic in this context refers to a human
peptide sequence of any length found by MS that is uniquely
derived from a single known human protein expressed by the
genome. The term is often used interchangeably with
the commonly used terms, uniquely expressed and unitypic. In
the HPP, proteotypic peptides (that is, two proteotypic peptides
of suitable length) are employed to identify the expression of
a human protein by MS methods. Discussion around the impact
of single amino acid variation on application of the term
proteotypic are currently underway.

Conclusions from both the human proteome drafts10,11 were
considered contentious12,13 because they chose to interrogate
MS findings using different metrics to those established by the
HPP after communal agreement. Because of debate around
these publications, large-scale heterogeneous datasets were
recognized as raising questions related to assumptions around
FDR protocols12. Encouragingly, positive, collaborative,
communal efforts (for example, revised data deposition

guidelines and clear diagrammatic representations of data
re-analysis workflows and metrics) are underway and will
resolve many of the issues raised. In response, the HPP Know-
ledgebase pillar proposed more rigorous metrics for substa-
ntiating claims of the identification of previously unobserved
proteins (that is, PE2-5 proteins; Box 1). It has been proposed
that datasets should be culled at 1% protein FDR with additional
estimates of peptide and peptide spectral match (PSM) level
FDRs and notification of the numbers of proteins, peptides and
spectra passing/failing these thresholds. In late 2015, PeptideAtlas
proposed increasing the minimum thresholds to two proteotypic
peptides of Z9 amino acids with raw spectra to be made publicly
available (downgrading 432 previously validated PE1 proteins)4.
Some exceptions included predicted proteins that are unable to be
cleaved to form at least two tryptic proteotypic peptides of
required length4. While neXtProt initially retained less stringent
criteria thresholds of two proteotypic peptides of Z7 amino
acids or one proteotypic peptide of Z9 amino acids (that is, with
consequent downgrading of 20 PE1 proteins), in February 2016
they aligned with the more stringent PeptideAtlas metrics. These
developments were incorporated into both the 2016 HPP metrics
and HPP guidelines for data submission that have been recently

Box 2 | Integration of MissingProteinPedia with HPP.

The MissingProteinPedia is a publicly available protein data and information sharing web system that aims to collate any relevant data pertaining to any
PE2-4 protein. At its core is a flexible schema-based database-driven web system allowing captures of all PE2-4 protein PubMed data, based upon gene
and protein including synonyms. The database also allows unpublished, preliminary or proprietary data (for example, antibody, MS, cell biology and
genetic studies) to be shared with collaborators via a protected interface.

Collaboration

Non-HPP data

Missing proteins
Other input

Public
Sharing

MissingProteinPedia
WEB INTERFACE

API

nextProt

Human Protein
Atlas

MS data
PE1-5 assignment

PeptideAtlas

ProteomeXchange

PASSEL MasslVE PRIDE

gpmDB

Individual lab-based MS data

PubMed
GeneRifs
UniProt

GeneCards
ProtAnnotator

Other
non-HPP data

MaxQB

ProteomicsDB

Schema 1: The MissingProteinPedia collates and displays protein information from existing databases using various web services and application
programming interfaces. Furthermore, the web interface allows researchers to collaborate and share data not available through other databases. The
schema includes the recent illustration of the high-stringency HPP metrics engine9.
MissingProteinPedia facilitates HPP cross-disciplinary collaboration by providing a complementary, unfiltered, lower stringency perspective to both the

HPP metrics and guidelines approaches, enabling community evaluation and scrutiny. MissingProteinPedia incorporates text mining technology to fetch
and search accumulated UniProt, GeneCards, GeneRifs, PubMed and ProtAnnotator PE2-4 data. In addition, MissingProteinPedia summarize publicly
available MS data from PRIDE, GPMDB, ProteomicsDB and MaxQB for relevant PE2-4 proteins. It also allows community users to annotate data and
administrators to curate information before web publication.
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published5,6. It should be noted that while the observation of
two Z9 amino acid proteotypic peptides by highly accurate
MS dramatically reduces statistical uncertainty, it does not make
the putative identification of any protein unequivocal.

What is known about missing proteins
On behalf of the HPP, neXtProt curates, integrates and computes
PE (PE1-5) scores based on experimental information from
multiple types of enquiry (see Box 1). In this review, we focus
solely on those proteins that are classified as being either
PE2 (evidence only at transcript level), PE3 (inferred from
homology) or PE4 (proteins inferred to exist). These three
PE groups have been collectively and colloquially defined as the
HPP ‘missing proteins’1,2 (Box 1), although a recent study
erroneously mentions missing proteins include PE5s14, which
are highly unlikely to be translated. Definitions for PE1-5 (ref. 4 )
proteins are released by neXtProt before annual HUPO
Congresses.

The HPP endorses open, community-wide use of standardized
re-analysis pipelines, with attention to the evolving HPP guide-
lines for researcher data submission6 and metrics used for global
concatenated communal data re-analyses4,5. It also encourages
confirmation of novel findings with advanced MS methods
(for example, selected reaction monitoring (SRM) and
data-independent acquisition, including new methods such as
SWATH-MS15). This process implies that PE2-4 proteins need to
be re-classified regularly (that is, upgraded or downgraded) after
agreed, metrics-driven, communal re-analysis, preferably with
publication of the rationale for their re-assignment. This high-
stringency approach is crucial for quality assurance and is
favoured over any individual laboratory MS data analysis,
that can result in potentially contestable claims that regularly
arise for ‘finding’ suites (sometimes hundreds) of PE2-4 missing
proteins.

It should be stressed that the PE2-4 proteins only represent
a list of proteins currently not fulfilling HPP metrics, and that
these lists have evolved since the launch of the HPP. Recent
HPP questions involved issues around assessing MS quality,
validating automated findings and considering potential alter-
native protein assignments for specific PSMs. Due to the
evolution of HPP data submission guidelines and data re-analysis
metrics, we have a higher baseline of proteins at PE2-4 levels from
which ongoing discovery and transition to PE1 status continues.
Current metrics for a protein to be PE1 are based on statistical
calculations minimizing the risk that any peptide can be
randomly mapped to multiple genes products.

Of the 20,055 currently allocated proteins in the human
proteome (neXtProt 12 February 2016), only 16,518 were PE1,
with a further 588 considered at best to be hypothetical (PE5).
This means that at present 2,949 proteins are PE2-4; composed of
2,290 PE2 (transcript only), 565 PE3 (inferred from homology)
and 94 PE4 (predicted). While only 2,949 PE2-4 proteins remain
to be confirmed by high-stringency HPP metrics, our current
approach takes little account of the potential goldmine of
valid data available from other sectors of the scientific commu-
nity. We argue that collectively alternative sources of comple-
mentary data provide clues that may facilitate the discovery of
additional PE2-4 proteins by subsequent HPP MS metrics.
Recognizing this fact, we acted upon comments made by
researchers outside the proteomics community who argued that
in order to be functional or biologically relevant a protein did not
need to be reduced to any statistically required number of
proteotypic peptides of any predefined length. As an example,
they noted the many highly bioactive secretory peptides, such as
neuropeptides, which were crucial to human biology. Several of
these peptides are very short (o9 amino acids) secreted
proteoforms that perform essential functions as intercellular
signals. However, such peptides do not fall within the currently
accepted thresholds in bottom-up HPP MS experiments. These
constraints (that is, two uniquely mapping proteotypic peptides at
least nine amino acids long) preclude discovery and annotation of
these peptides as PE1, as well as incorporation into high-
stringency datasets. Thus, short peptide proteoforms, such as the
orexigenic neuropeptide QRFP, continue to be ‘missing’ in
HPP databases, annotated as known only at the transcript level
(https://www.nextprot.org/entry/NX_P83859/sequence). Similar
arguments have been made about proteins unable to be cleaved
by trypsin to produce two uniquely mapping proteotypic peptides
of at least nine amino acids.

Analysis of Box 1 data reveals significant HPP progress. Over
the period 2013–16, PE1 assignments have increased by 5% from
15,649 to 16,518 (78-82% of the estimated human proteome),
with 1,079 PE2-5 entries re-assigned as PE1. This has occurred
despite deliberate efforts to increase stringent MS metrics, leading
to 432 PE1 proteins being downgraded to PE2-5 proteins.
Interestingly, the data demonstrate that 22 new PE1 proteins
were listed, which were previously not present at any PE level
(for example, UMAD1, SULT1A4, MYH16).

Unfortunately, as can occur when ‘big data’ is not endorsed
through annual community jamboree/forums, experimental
evidences and detailed rationales for such re-classifications
are not currently made public nor are they easily accessible to
non-experts. We therefore encourage establishing annual
PE annotation/assignment jamborees, analogous to how the
human genome project dealt with similar challenges.

Applying best fit linear extrapolations to all available
PE re-assignment data5 (Fig. 1), it appears that with current
neXtProt high-stringency metrics, the HPP will likely reach
completion of Z95% parts list coverage (PE1 status) near the
close of the current decade (that is, 2020). As the final arbitrators
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Figure 1 | Extrapolation of linear best-fit rate equations demonstrates

the rate at which various HPP input databases and GPMDB are currently

‘finding’ PE2-4 proteins. Data required for this analysis (2012-2014) was

extracted from Omenn et al.4 , with additional (2015 and 2016) statistics

obtained from neXtProt, Peptide Atlas and GPMDB. Note: GPMDB data are

not currently captured by neXtProt as part of the data input into the

HPP (see Box 2), but GPMDB plays a role in defining annual HPP metrics.
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Figure 2 | Top 20 missing protein families to determine protein families enriched in the February 2016 neXtProt PE2-4 report list. According to these

data, olfactory receptors (ORs; marked with a red asterisk *) represent the largest family of PE2-4 proteins. The olfactory receptors also show the largest

increase between 2013 and 2016 (that is, 15% in 2016 from 10% in 2013) when compared to the other families. The scale ‘0–70’ represents a magnified

axis scale for protein descriptors havingo70 missing proteins. Blue and green colours represent PE2-4 proteins from 2013 whereas orange and red colours

represent 2016 missing proteins.

Top twelve UniProt PE1 protein families Top twelve UniProt PE2–4 protein families

Krueppel C2H2-type zinc-finger protein family
Krueppel C2H2-type zinc-finger protein familyG-protein coupled receptor 1 family
G-protein coupled receptor 1 family

MHC class I family, Intermediate filament family Beta defensin family
Small GTPase superfamily Rab family PRAME family
Peptidase S1 family G-protein coupled receptor T2R family
Cytochrome P450 family NPIP family
TRIM/RBCC family Humanin family
Mitochondrial carrier (TC 2.A.29) family LCE family
Short-chain dehydrogenases/reductases (SDR) family MS4A family
Peptidase C19 family NBPF family
TRAFAC class myosin-kinesin ATPase superfamily Peptidase C19 family USP17 subfamily
Myosin family Peptidase type-B retroviral polymerase family, HERV Class-II

K(HML-2) sub family

Figure 3 | Most prolific PE1 and 12 PE2-4 UniProt protein families represented in the HPP neXtProt February 2016 release. The most represented PE1

families (left hand side) are the Krueppel zinc-finger protein family followed by the G-protein coupled receptor 1 family. These two families are also at the

top of the PE2-4 category (right hand side) with the order reversed.
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of HPP PE1 calls, the statistical analysis of neXtProt is
particularly telling, with a recent lag/hiatus evident. Equally,
extrapolating PeptideAtlas data alone suggests 95% completion
somewhere around 2030–40.

Orthogonal efforts to find missing proteins
A major outcome from the C-HPP effort to date has been that
researchers have been made to consider possible reasons why
PE2-4 proteins have not been found by MS, Ab-based or other
methods. This has now inspired the development of novel
strategies to find the PE2-4 proteins, or understand why they are
missing. Some approaches, envisaged to date, include subcellular
enrichment of families, groups, clades or classes (for example,
membrane proteins); more extensive protein and peptide
fractionation before MS; increased MS accuracy, sensitivity
and throughput; more reliable, specific and accurately validated
Ab technologies, which are currently underway with collaborative
efforts by the HPP Ab technology pillar; scrutiny of proteins
not amenable to tryptic digestion, those failing to yield ‘flying’
tryptic peptides or those outside observable mass range detection
settings14; analysis of cross-linked or otherwise insoluble proteins;
examination of rare human tissues/cells under differing
spatiotemporal conditions or differentiation states; exposure
of tissues to pathophysiological and/or environmental cues,
and finally; broadening the capture of data from solely MS and
Ab-based data streams.

Bioinformatics efforts to understand missing proteins
Given the current scientific and protein informatics data detailed
in Supplementary Table 1 and with a view to finding more PE2-4
proteins, we additionally undertook bioinformatics analyses of all

PE2-4 proteins according to their families, sub-families, clades,
groups, ontologies, pathways and networks. Figures 2–4
summarize these analyses with increasing depth across neXtProt
descriptors (Fig. 2), comparison of protein biologies between
PE1 and PE2-4 (Fig. 3), and PE2-4 G protein-coupled receptor
(GPCR) family (Fig. 4, left) and OR* (Fig. 4, right) clade
phylogenetic tree analyses, focussing on the most populous
protein families from Figs 2 and 3.

Analyses of major descriptors (that is, protein subfamilies,
classes, domain-type) for neXtProt 2016 PE2-4s indicated that
five groups of proteins were highly represented. The PE2-4
groups with greater than 50 members in decreasing order are:
olfactory receptors (red * in Fig. 2), zinc finger proteins,
non-GPCR transmembrane proteins, coil-coil domain proteins
and homeobox proteins (Fig. 2). Encouragingly, our analysis
demonstrates a decrease in the percentage of HPP PE2-4 proteins
assigned as ‘uncharacterized’ by neXtProt over the 2013–16
period. These data also demonstrate the substantial success
made across all major (that is, the top 20) protein groups,
with the sole exception of the enigmatic olfactory receptors.
In agreement with these data, Panther Protein Class analysis of
2,491 classifiable genes confirmed the major PE2-4 protein types
were: receptors (PC00197), transcription factors (PC00218),
transferases (PC00220), transporters (PC00227), membrane
traffic proteins (PC00150), enzyme modulators (PC00095) and
signalling molecules (PC00207), with other groups represented at
low percentages.

Analysis of the top 12 UniProt families found in the 2016
PE2-4 and the PE1 lists (Fig. 3) demonstrates a highly significant
enrichment of GPCR type 1 family missing proteins, and
a reduction in the % of zinc finger proteins in the PE2-4 proteins
list. Furthermore, we note that when the highest 12 families are

PE2-4 ORs with only 1 peptide > 9 aa
PE2-4 ORs with only 1 peptide 7-8 aa

PE2-4 ORs with current agonists
Current PE1 ORs (neXtProt; February 2016)

Glutamate (15)
Frizzled (24)
Rhodopsin (701)
Adhesion (24)
Secretin (15)

Figure 4 | Phylogenetic analysis of PE distribution across GPCRs and olfactory receptors. In this composite figure, GPCR (left) family branches

(largest ‘receptor’ subset of all human and the PE2-4 proteins) are shown in an unrooted phylogenetic tree from Panther analyses with PE2-4 GPCRs

highlighted inside red clouds, and an unrooted GCPR subset phylogenetic tree showing olfactory receptors (right) was produced using iTOP56, from

neXtProt February 2016 PE1 olfactory receptors or best available, manually validated proteotypic MS evidence for olfactory receptor was retrieved. olfactory

receptors with functional activity (known agonists) are shown in red in the left figure, as from Mainland et al.16. GPCR figure modified with permission from

Macmillan Publishers Ltd: Nature Reviews. Drug Discovery, Stevens et al.57 copyright 2013.
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examined in the PE2-4 list, the vast majority of those families’
members are found to be ‘missing’, with relatively few
PE1 representatives. Only three families (that is, Kruppel
C2H2-type zinc finger, GPCR type 1 and Peptidase C19 protein
families) were common to both the major PE1 and the major
PE2-4 families. Interestingly, PE1 assignments account for
only 22% of all GPCR type 1 proteins while it accounts for
59% of the Kruppel zinc finger proteins. If one considers only
the PE2-4 ‘missing’ proteins, GPCR type 1 members represent
25% and zinc finger family members 9%. On a family-by-family
basis, apart from Kruppel zinc finger (34%) and peptidase
C19 (31%) proteins, the remainder of the top 12 families are
noticeably composed of missing proteins (that is, range 50–95%
of the total family membership). This implies that when a major
family is ‘missing’ by current HPP metrics, extremely limited
high-stringency MS knowledge exists for any member of that
protein family (for example, of 22 known PRAME proteins 19,
86% are assigned as PE2-4 and re-analysis of olfactory receptor
MS data summarized in Supplementary Table 2 shows all (100%)
are currently missing).

The olfactory receptor family missing proteins
Subsequently, we examined the largest PE2-4 family, namely
human GPCRs (shown in dark blue in Fig. 3). These are
responsible for cellular responses to everything from protons and
photons to hormones of 430 kd, metals, nutrients, small
molecules including volatiles and neurotransmitters through
many of our major senses (that is, sight, olfaction and taste).
GPCRs also are the most important pharmaceutical drug target
and largest family (4800) in the human proteome, as well as the
largest membrane receptor family. They instigate signalling
through nucleotide exchange involving heterotrimeric G-proteins
and can be classified into five major families and subdivided
into subfamilies based on sequence homology, to (1) rhodopsin
(class A), (2) secretin, (3) adhesion (class B), (4) glutamate
(class C), and (5) Frizzled/taste receptor 2 (TAS2). Phylogenetic
analysis of GPCR PE2-4 proteins demonstrates that although
singleton representatives and a few clusters are distributed across
all five major subfamily branches/classes (Fig. 4), by far the
highest proportion of missing proteins (n¼ 400; B15% of all
human PE2-4 proteins) emanate from the rhodopsin branch of
the unrooted GPCR phylogenetic tree where the olfactory
receptors reside. Note that family members with determined
crystal structures are highlighted on the phylogenetic tree in
coloured ovals (including ADORA2A, which has been recently
re-classified by neXtProt as PE1).

Discovering functionality of the complete missing human
olfactory receptor repertoire has proved difficult with only
49/B400 human olfactory receptors having known ligands before
the recent studies of Mainland et al.16. Using high-throughput
screens of human olfactory receptors against 73 potential
ligands they identified agonists for 27 receptors (coloured red
in Fig. 4, right), including 18 that were previously orphan
receptors. Their dataset addressed a bottleneck in research
around functionality of human olfactory receptors by
showing how physical olfaction stimuli can signal post-receptor
activation. Correlating odorant ligands to olfactory receptors
provides a valuable database, identifying functional olfa-
ctory receptors with potential to be strategically targeted
through proteomic approaches and subsequent conversion to
PE1 proteins.

The recent studies by Kim et al,10 and Wilhelm et al.11

generated intense interest in MS evidence for the expression
of the chemosensory olfactory receptor family, as they claimed
to have ‘unearthed’ a surprisingly high number of 108 and

200 PE2-4 olfactory receptors, respectively. Of the human
genome’s 480 olfactory receptor genes in the latest version of
neXtProt, 12 are considered hypothetical or putative (PE5). The
remaining 468 olfactory receptor genes code for 411 unique
proteins, with only two classified as PE1, and the remaining 409
classified as PE2-4. The claims for finding missing olfactory
receptors by the draft human proteome papers above were rapidly
critiqued by Ezkurdia et al.12 and Deutsch et al,13 on the basis of
marginal spectral quality, deficiency of stringent protein/peptide
1% FDR criteria, use of short peptides, and erroneous or
potentially ambiguous peptide identification, with the
suggestion that these claims represent ‘the cream of false
positives’. Collectively, these errors led Ezkurdia et al.12 and
Deutsch et al.13 to conclude that there was little evidence for even
a single olfactory receptor (including the two listed in previous
releases of PeptideAtlas). Incidentally, 10 olfactory receptors were
considered ‘found’ by Choong et al.17 in the 2015 release of
neXtProt with MS and Ab evidence. However, this evidence was
considered insufficient for all these 10 olfactory receptors,
suggesting that currently known olfactory receptor proteins
may not possess sufficiently documented protein evidence in
neXtProt.

From the amazing repertoire of 411 unique olfactory receptor
proteins, only two are currently considered PE1 in the neXtProt
2016 release (namely, OR2AG1 and OR1D2; coloured black in
Fig. 4, right). For OR1D2, no MS or Ab evidence is available, with
three publications cited as functional evidence. For OR2AG1,
neXtProt reports a single peptide 7 amino acids long, with no
Ab evidence and functional evidence from two publications18,19.
One of these studies18 equally reports function for another
olfactory receptor, namely OR1F12 but this remains classified by
neXtProt as PE4, whose status is based upon sequence homology.
Thus, it appears that both these PE1 olfactory receptor proteins
do not actually conform to HPP MS-based metrics and require

Box 3 | Accelerating discovery of the complete human proteome.

We recognize the tremendous achievement the Human Proteome
Project has made since its 2010 launch by making available high-quality,
communal MS (and other) data for B82% of the human proteome
(February 2016).
To accelerate discovery of the 15% of the human proteome defined as

the missing PE2-4 proteins, we recommend and encourage the
following:

1. All proteomics practitioners, human researchers and human
biology/medicine journals renew their efforts to observe
current high-stringency HPP re-analysis metrics and
researcher data submission guidelines.

2. All MS data should be incorporated into a single database
(for example ProteomeXchange), including MS databases not
currently captured, where data are provided transparently for
any claim for a current PE2-4 protein.

3. The HPP should communally develop metrics and guidelines
for processes by which they deal with all non-MS data
sources. In particular, transparency around how protein
evidence scoring for non-MS data needs to be communally
accepted and reported.

4. An annual jamboree to evaluate and approve both MS and
non-MS protein evidence reclassification proposals.

5. All possible biological data concerning the PE2-4 missing
proteins to be comprehensively captured in Missing-
ProteinPedia.
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closer community examination (Box 3), as does the way we
consider functional/biological data as evidence for PE.

Olfactory receptors are involved under most physiological
situations with odour recognition but have recently been shown
to be expressed in multiple epithelial tissues with many potential
chemosensory roles20–22. Criticisms of olfactory receptor
restriction to nasal epithelial tissue are ill-advised11 and appear
erroneous12,20–22. Given these data and the comprehensive
olfactory receptor functional studies conducted by Mainland
et al.16, we believe that a systematic capture of non-MS data and a
communal re-assessment of all olfactory receptor PE assignments
would be timely. To bring additional perspective to the olfactory
receptor mêlée and to emphasize the challenges we face in finding
the missing olfactory receptors by high-stringency MS, we
undertook an analysis of all currently available raw olfactory
receptor spectra from public repositories. This re-analysis
reinforces that the best available MS data fail to provide high-
stringency PE1 level proof for any GPCR olfactory receptor
members using current metrics (Supplementary Fig. 1 and
Supplementary Table 2). Despite 2,361 manuscripts revealed by
an ‘olfactory receptor and human’ PubMed keyword search, only
piecemeal MS evidence for any human olfactory receptor is
currently available.

To verify the status quo, we trawled public MS proteomic
repositories (including GPMDB, PRIDE, ProteomicsDB, MAXQB
and Human ProteinPedia), and aggregated 122,717 peptide
MS entries (PSMs of length Z7 aa), including many with
multiple PE2-4 olfactory receptor observations. This collective
dataset was processed through a semi-automated workflow
(Supplementary Fig. 1), including manual spectral validation
to filter reliable peptide assignments, with consideration of
leucine/isoleucine ambiguity and BLAST analysis to account for
possible single amino acid variations coding for peptides, as
detailed elsewhere23. Briefly, the data (using Batch Peptide
Match) identified 4,751 proteotypic olfactory receptor peptides
(3.9%), following removal of non-proteotypic and decoy peptides.
Of the proteotypic peptides, only 286 (6%) were tagged
with a high search engine confidence value score by either
SEQUEST, Mascot or MaxQuant. Finally, manual spectral
validation (taking into consideration, noise, error rates
(to matched peptide sequence), the run of B and Y singly

charged ions, unassigned peaks and relative intensity of the
spectrum) allowed us to sift out 64 high quality spectra for
24 peptides. As two overlapping peptides could be merged for
a single olfactory receptor, this culminated in 23 unique
olfactory receptor peptides. In summary, this analysis
provided MS evidence for 23 of 409 missing olfactory receptors
(5.6%).

The best available MS evidence for these 23 olfactory receptors
is shown in Supplementary Table 2, and it includes peptides
from GPMDB (1 green, 1 yellow and 5 red peptides), PRIDE
(10 peptides) and ProteomicsDB (7 peptides). It should be noted
that 14 PSMs represent a single 7–8 amino acid peptide, while
9 possess a single PSM of 49 amino acids. Proteins derived
from matches were cross-referenced against HPA with no (zero)
olfactory receptors found in the current (May 2016) high
confidence HPA premium dataset. In addition, 13 peptides
(Supplementary Table 2) were found to have complete or partial
matches with 14 SRM peptides listed in the current version of
SRMAtlas.

In summary, we demonstrate that many missing PE2-4
olfactory receptors possess single high-confidence PSM evidence,
although best available MS spectra are insufficient to meet current
HPP metrics. These could be considered as PE2-4 proteins
‘waiting in the wings’, requiring confirmatory proteotypic
PSM identifications at the required length to reach high-
stringency requirements.

Chromosome 7 example missing proteins
Under the C-HPP, the proteomic information found across
chromosomes 1-22, X, Y and mitochondrial DNA are being
studied by country-based or regional cluster teams. Australia and
New Zealand undertook analysis of the proteins coded by human
chromosome 7 (Chr 7)24,25. As part of our ongoing efforts, we
demonstrate that current PE2-4 proteins are located across the
length of the long and short arms, approximately equally
dispersed across the length of Chr 7 (Fig. 5). This holds true
for the majority (but not all) chromosomes examined to date. At
one chromosomal location, namely 7q35, a significantly greater
number of PE2-4 proteins (18/25) were found than
PE1 proteins (7/25). Interestingly, however, when Giemsa

Human chromosome 7 PE2–4 and PE1 protein locations
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Figure 5 | Positional mapping of the PE1 (757) and PE2-4 (139) proteins along human Chr 7. The data show random distribution of both along the

complete length of human Chr 7. However, Giemsa banding patterns of light (GC-rich) and dark (GC-poor) bands are shown that debatably correspond to

regions of gene density from light (higher gene density) to dark (lower gene density)58.
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(that is, reported relative gene richness) staining patterns along
Chr 7 were compared for PE2-4 and PE1 distribution,
we observed that 56% PE2-4s emanate from high gene density
Chr 7 regions, 12% from moderate, 25% from low-moderate and
only 1.5% from regions of low gene density. PE1 proteins
generally distribute across Chr 7 locations with PE2-4 proteins,
with few regions (only p22.2, p21.3, p21.2, p15.1, q21.11, q31.2
and q31.31) not having both PE classifications represented.
Chr 7 PE2-4 proteins do not emanate from gene-poor regions
and hence it is reasonable to suspect that other factors
(for example, low spatiotemporal expression) are more likely to
explain why they have not been found by high-stringency MS to
date. These observations need to be replicated for all
chromosomes by other C-HPP teams.

Of the 134 Chr 7 PE2-4 proteins, 27 are known to be GPCRs.
The majority of these encode olfactory (15) or taste-related (six)
receptors, with only four ‘orphan’ GPCRs and two well-described
GPCRs (5-HT5A and mGluR8). There are many reasons
why these proteins may still be considered missing. First, they
all have restricted anatomical expression. In particular, the
receptors for odours and ingested chemicals, which are likely
expressed in only a few cells in specific regions of the body.
Further, many missing proteins may be localized to a few discrete
cells and/or difficult to access cellular compartments, like axon
terminals, inner/outer hair cells (OHCs) or cilia on olfactory
sensory neurones. Second, receptor expression may be extremely
low even where they are physiologically active. Finally, it is
possible that gene products are not translated/transcribed under
normal physiological situations, or indeed at all. Their absence
from proteomic databases suggests they are not highly abundant
but it does not mean they are not important or not expressed.
Indeed, a cursory examination of Chr 7 PE2-4 GPCR
proteins reveals many non-proteomic studies show these
GPCRs represent a very active part of the human proteome.
Using the BPS/IUPHAR Concise Guide to Pharmacology
(http://www.guidetopharmacology.org/index.jsp)26 as a starting
point for analysis, we provide some examples. First, HTR5A is
part of the large family of receptors for the neurotransmitter
serotonin (5-HT). When expressed, 5-HT5A receptors stimulate
G protein activity resulting in inhibition of adenylyl cyclase27,
indicating it is a functional GPCR. mRNA for 5HT5A receptor has
been detected in the human brain by in situ hybridization28 and
PCR29. However, our search shows no reports of protein
localization by immunohistochemistry or identification by
western blot in any human tissue. Mice with a 5-HT5A receptor
deletion have altered behaviour and a distinct response to the
serotonin receptor ligand LSD30, indicating the protein is
functional. It is likely that low levels of protein and restricted
anatomical localization preclude identification of 5-HT5A

receptors by MS.
A second receptor we considered is GRM8 (metabotropic

glutamate receptor 8, mGlu8), which is part of the large family of
receptors for the prominent neurotransmitter glutamate. In
a heterologous expression system, activation of mGlu8 receptors
results in inhibition of adenylyl cyclase31, indicating it is
a functional GPCR. In situ hybridization reveals discrete
but low levels of mRNA in human brain32,33, while mGlu8
mRNA has been reported in cancer cell lines34, hippocampal
cells35, astrocytes36 and in patient tissue in epilepsy or multiple
sclerosis. Murine deletion of mGlu8 affects hippocampal synaptic
transmission37, suggesting function under physiological
conditions. Low levels and restricted anatomical localization
may preclude identification of mGlu8 receptors by MS, although
the receptor is also large and has a complex genetic structure,
which probably leads to alternatively splice transcripts, and
potentially several protein species33,38.

Finally, GPR22 (Probable G-protein coupled receptor 22) is
a class A GPCR, with mRNA expressed in human heart and
brain39–42. Interestingly, GPR22 has an unusually AT-rich
mRNA, and only when enrichment is artificially rectified by
introduction of G-C bases can signalling be restored in
heterologous expression systems (Gi/o-mediated stimulation of
G protein activity and constitutive inhibition of AC activity41).
No ligand has been identified for GPR22, and GPR22 knockouts
seem physiologically unremarkable. However, GPR22 mRNA is
significantly reduced by aortic banding, a procedure that mimics
cardiac hypertrophy produced by high blood pressure, and in
GPR22 knockouts heart failure follows more rapidly than in wild
type animals, implying a role for responses to cardiac stress41.
There is no peer-reviewed report of GPR22 immunoreactivity in
human tissues, although several corporate sites show neurons and
other cells displaying putative GPR22 immunoreactivity. Sera
from mice immunized against a human GPR22 peptide label cells
in rat heart, although staining suggests GPR22 is restricted to
subsets of myocytes41. The lack of an identified ligand for GPR22
has dampened enthusiasm for further pursuing functional studies
through conventional biochemistry, and coupled with lack of
neuronal phenotype in GPR22 null mice, it is not surprising no
further attention has been paid to it. Unlike 5HT5A and
mGlu8 receptors, which likely have roles in normal physiology
(even if understudied), there is little evidence to speak for or
against function of GPR22, despite mRNA being detected
by multiple investigators. However, for even the most obscure
(non-olfactory) PE2-4 GPCRs, some evidence exists, suggesting
that they are expressed in some tissues under certain conditions.

While we can learn much from an analysis of the Chr 7 PE2-4
GPCR proteins, the reasons for other proteins apparently ‘falling
through the cracks’ and having PE2-4 assignments may be legion.
Below, we examine two current PE2-4 examples that appear to
have strong biological non-HPP evidence that, combined with the
olfactory receptor data above, argue for a broader, community-
based, open data base strategy. We propose that opening up the
HPP to consider other sources of data might concomitantly
accelerate re-classification of PE2-4 proteins to PE1 status
through the existing high-stringency HPP workflow.

In an orthogonal approach to understand the Chr 7 PE2-4
proteins, an example was randomly selected. Prestin (gene name
SLC26A5) retrieved 91 peer-reviewed PubMed manuscripts,
with the oldest in 2000 entitled ‘Prestin is the motor protein
of cochlear outer hair cells’43, while another was a recent review
of structural and functional properties44. Antibodypedia
unearthed 83 anti-prestin Abs from 15 different vendors
(http://www.antibodypedia.com/explore/prestin). Though not
listed on the Therapeutic Target database, Drugbank or Binding
DB, prestin’s substrates are listed as Cl� and HCO�

3 by the
IUPHAR-DB (pharmacological targets) database45. Additionally,
the Human Gene Mutation Database lists two prestin missense/
nonsense mutations that produce deafness/autism phenotypes
(CM075015 and CM124551), with one splice-variant linked with
deafness (CS030995). Furthermore, the gene is known to have
15 transcripts. Equally, 12 patients with overlapping copy number
variants are listed in DECIPHER: Database of Genomic variants
and phenotype in Humans Using Ensembl Resources.
Additionally, zebrafish studies captured in ZFIN include several
CRISPR targeting agents (http://zfin.org/ZDB-GENE-030131-
1566) directed against prestin. In conclusion, this randomly
selected Chr 7 PE2-4 protein shows there is copious public
functional evidence at the protein level available, despite there
being zero high-stringency MS or acceptable Ab evidence.

Particular physiological, cell and molecular factors make
prestin intractable to being found by MS. First, it is a bullet-
shaped membrane protein that is localized only on the OHCs of
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the mammalian inner ear46. This presents three challenges; highly
specific tissue of origin, low copy number and membrane
localization. OHCs are relatively few in number and are in the
minority of the cells of the cochlea47, requiring specialized
techniques such as laser capture microdissection to capture cells
from very thin tissue sections. Each cochlear microdissection
performed by Anderson et al.47 found only 200–300 OHCs per
human being, far below the number required for routine
proteomic analysis, let alone those involving OHC plasma
membrane preparations. Equally, we know that membrane
proteins are notoriously resistant to purification and
identification by traditional techniques; requiring specialized
enrichment strategies due to low copy number per cell, high-
hydrophobicity and potential shielding of tryptic cleavage sites
by either co-localized membrane proteins or the lipid
bilayer itself. It is understandable why prestin is currently
a PE2 (transcript evidence only) protein, even though
10 synthetic 10-28mer proteotypic peptides have been reported
in neXtProt45, but no endogenous peptides have yet been
captured experimentally by MS.

Interleukin 9 an example missing protein
A number of small biologically active secretory proteins risk being
overlooked primarily because of their typical low abundance

in vivo (in particular relative to the extremely high level
of extracellular ‘background’ proteins), in combination with
a specific spatiotemporal expression/secretion profile, a very
limited number of predicted potential proteotypic peptides
and a relatively high ratio of post-translationally modified
residues. One obvious example is the MS detection of
interleukin-9 (IL-9) in secretome analysis of post-activation
primary cultured T cells. Previous studies of the secretome of cells
ex vivo had never identified IL-9, as they typically involve only
short culture times. To facilitate secretome analysis, typical
studies analyse cells grown in serum-free media, inevitably
generating considerable cellular stress (with many stress- and
apoptosis-related proteins detected). When we analysed cells
grown for several days in the presence of foetal bovine serum
(described in Supplementary Note 1), a very high percentage
(E95%) of detected tryptic peptides from the conditioned media
proteins are evidently of bovine serum origin. After exclusion of
bovine proteins and human T cell secretory proteins released
from control ‘resting’ (non-activated) cells, many other secretory
proteins (for example, missing interleukins) are now exclusively
detected from activated cells. Among these is the 125 amino acid
residue, currently PE2 protein, IL-9. MS analyses reveal that
IL-9 generates two proteotypic peptides of 7 and 8 residues,
respectively (Fig. 6). Subsequent deposition of this and similar
data into ProteomeXchange with annual communal re-analysis
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with stringent criteria will result in the re-classification of IL-9 as
PE1. Similar discoveries accompanied with appropriate MS data
deposition are expected to result in the re-classification of PE2-4
missing proteins that are unable to generate any proteotypic
peptides acceptable to the HPP metrics, yielding a dramatic
increase in the rates of discovery of missing proteins.

Complementary efforts to characterize missing proteins
At present, there are also unrelated efforts (for example,
Antibodypedia) to capture standardized, non-HPA affinity
reagent data. Abs represent the main thrust one of the three
pillars of the HPP initiative, and Ab-based techniques
(for example Ab-enrichment, immunohistochemistry, western
blot) support the search for the PE2-4 missing proteins48.
However, issues around validity of Ab data have recently been
raised across many forums, including this journal49. Key
problems revolve around selectivity, acceptability and suitability
for a given specific application. To facilitate resolving these issues,
efforts are being made (for example, Antibodypedia, HPA) to
collect, in searchable databases, detailed information concerning
Ab validation and their use, and in some cases, literature
performance review. Clearly, careful validation of all Abs is
mandatory to allow researchers to make informed choices about
suitable reagents with the knowledge that they are specific,
selective, fit-for-purpose and reproducible in the context for
which they are required50. Such validation should include western
blot, immunohistochemistry, immunofluorescence, flow
cytometry and microarrays, and ideally also Surface Plasmon
Resonance data with detailed kinetic information. Where
possible, the use of gene knockout/gene silencing (for example
RNAi, CRISPR/Cas9) to confirm specificity has also been
proposed51. Both polyclonal Abs (ideally affinity-purified) and
monoclonal Abs have their advantages and disadvantages in the
search for the PE2-4 missing proteins. Multiple epitopes,
accessible by polyclonal Abs, can facilitate targeting specific
proteins in complexes where some epitopes may be masked. They
do, however, often have higher non-specific background and
cannot be replaced once stocks are depleted. Monoclonal Abs, by
contrast, are a renewable resource and typically have high affinity,
high specificity and reduced non-specific binding52, while binding
only a single epitope. Furthermore, monoclonal Ab libraries
against target proteins can be readily generated53. For the missing
proteins, a further dilemma is how to obtain an appropriate
antigen for immunization. A potentially generic approach is the
use of a proteospecific recombinant protein fragment and Protein
Epitope Signature Tags (PrESTs)54. In a recent study, this
approach has successfully generated a panel of monoclonal
Abs and affinity purified polyclonal Abs against a number of
targets, including some missing proteins48.

MissingProteinPedia
The availability of large volumes of published, peer-reviewed,
credible scientific data for PE2-4 proteins outside of high-
stringency PE1 MS and Ab-based evidence (for example, IL-9 and
prestin) struck us as a resource we could further exploit. Given
the need to accelerate the HPP, we contend that the acquisition of
such additional data streams concerning the biology of all PE2-4
proteins is self-evident. This has inspired us to explore, create and
launch a communal database called MissingProteinPedia. This
database assembles in one repository the vast amounts of publicly
available, complementary data about all the current PE2-4
proteins that sit outside of the well-justified, high-stringency
HPP pipeline. We contend that the knowledge captured by
MissingProteinPedia will accelerate the communal HPP effort, as
we seek strategies to allow the generation of high confidence

MS evidence for as many PE2-4 proteins as possible. In addition,
by providing an assembly of all available biological clues in one
repository about every single current PE2-4 protein, it is likely
that the MissingProteinPedia database may assist C-HPP
chromosomal teams that have accepted the ‘Top 50 Missing
Protein Marathon Challenge’ launched recently at the 15th
HUPO 2016 World Congress in Taipei to successfully identify an
additional 50 PE2-4 proteins per chromosome to those already
found by high stringency methods.

MissingProteinPedia is an open, comprehensive, communal,
evidence-based, searchable and sortable (by chromosome, tissue
and keywords) community knowledgebase, addressing the HPP’s
PE2-4 proteins. The launch of MissingProteinPedia aims to
capture the broadest level of scientific data necessary to increase
the rate at which PE2-4 proteins are validated. MissingProtein-
Pedia represents a new community-based proteomics tool,
analogous to human genome annotation jamborees55, where
open big data contributions are invited from the broader scientific
community regarding evidence for the existence of any missing
protein. Unlike the high-stringency HPP data re-analysis,
MissingProteinPedia makes no attempt to edit or judge the
quality of submitted data, rather utilizing data to expose hidden
possibilities not deposited into the current HUPO-accredited
databases, including legacy lab books, unpublished works and
data found in commercial/protected environments. It is
anticipated that MissingProteinPedia collation will reveal clues
that will contribute to an acceleration of high quality MS and
qualified Ab data that allow confirmation beyond reasonable
doubt of many of the current PE2-4 missing proteins. We believe
MissingProteinPedia can cooperate and be easily integrated with
high-stringency HPP data re-analysis, assisting the completion of
the first phase of the HPP on schedule.

In summary, MissingProteinPedia aims to define, summarize
and discuss all available data (including single proteotypic
MS spectra) for the so-called missing proteins, emphasizing
why they may be currently difficult to observe/find, using
standard proteomics MS and Ab-based techniques.

Conclusions and the way forward
The HPP was launched in 2010 and since then has grown
organically with a general initial phase aimed at providing
knowledge about the human proteome parts list. Progress has
entailed the formation of a two-pronged strategy (C-HPP and
B/D-HPP) culminating in the creation of guidelines and
repositories (for example, ProteomeXchange) for MS and
Ab-based (for example, HPA) data deposition; metrics for
communal, annual MS re-analysis (for example, PeptideAtlas);
categorization of the B20,000 basal components of the human
proteome into PE levels (PE1-5; neXtProt); and forums
for discussion and communication between research teams
(for example, annual HUPO Congresses and HHP workshops).

The controversial release of the two draft human proteome
papers10,11 has compelled researchers to recognize that the
HPP is still in its infancy and much remains to be done. This is
especially so with regard to the absence of a universally agreed
long-term strategy for piloting the project into the future
the capture of high-stringency data from all potential MS and
Ab sources, capture of the breadth of other scientific human
protein data to searchable knowledgebases, and finally the
dissemination of the impact and success of the HPP to the public.

Of 20,055 human proteins (neXtProt, February 2016), 16,518
are PE1 (known), a further 2,949 are currently PE2-4 proteins
(missing), while 588 PE5 proteins are considered only to be
hypothetical. Current PE1-5 assignment strategies do not take
into account all other alternative data streams available from the
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broader scientific community, preferentially relying on high-
stringency MS data.

Analysis undertaken herein demonstrates that the rate of
progress of the HPP in finding PE1 proteins needs to be
accelerated in order to meet proposed HPP decadal plans. To
hasten the progress of the current high-stringency HPP engine,
we propose to capture other credible scientific data focussing on
the PE2-4 missing proteins. This complementary engine is called
the MissingProteinPedia and provides clues in the search for
missing proteins, learning more about proteins that fall through
the cracks of current data re-analysis. It is our hope that the
communal MissingProteinPedia tool will allow researchers to
better understand where, how, when and why PE2-4 proteins can
be found. Capture of high-stringency data will populate the pool
of PE1 proteins more readily and efficiently, building our
knowledge of what it is to be human in strictly molecular terms.

Data availability
The mass spectrometry proteomics data have been deposited to
the ProteomeXchange Consortium via the PRIDE partner
repository with the dataset identifier PXD005656.
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We present ‘Missing ProteinPedia’ web-based protein knowledgebase, a purpose-built  

community-driven integrated nexus. It offers automatic data capture from various public 

databases, and user driven data deposition, validation, secure sharing and community 

annotation or curation service to capture all available evidence for human ‘missing proteins’. 

We demonstrate that the platform can complement existing C-HPP ‘missing protein’ 

identification efforts by connecting information from various public and community sources, 

with sufficient data currently available to even find substantive protein level evidence. 

The international Chromosome-centric Human Proteome Project (C-HPP) aims to identify 

and characterise human proteome with strict baseline metrics1,2. Proteins are classified into 

five protein existence (PE) levels based on any credible experimental information collected by 

the neXtProt classification workflow, starting with known proteins (PE1) to hypothetical 

proteins (PE5). Proteins classified as PE2-PE4 (with evidence only at transcript level, inferred 

from homology and proteins inferred to exist, respectively) are considered the 'missing 

proteins' 2 a term originally coined by Hancock and colleagues.  

The exponential growth of scientific data in the past decade has been unprecedented and 

extremely challenging not only in terms of accessibility but more so in interpretation. Several 

high quality genomic and proteomic databases exist but with little or no significant cross 

integration to allow any meaningful comprehensive interpretation of these vast datasets. This 

fact is especially stark when, despite the volume of data available worldwide, over 2500 

human proteins (~10%) are still considered ‘missing’. The ProteomeXchange initiative3 to 

standardize the submission and dissemination of data has been very effective and now 

consists of 5 member repositories. At present PeptideAtlas and GPMDB reanalyse all major 

MS datasets from the ProteomeXchange member repositories using the highly stringent 

guidelines metrics1. However, a significant number of datasets are available4 with great 

potential5, and if studied together with other complementary evidences, can increase our 
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understanding of spatiotemporal biology6 to identify human 'missing' proteins. However, 

identifying the relevant datasets from various databases as well as accessing and analysing the 

data from different platforms, experimental protocols, metadata standards, and omics platform 

is a highly challenging task5,7. The recently developed Omics Discovery Index8 (OmicsDI) 

provides an index of datasets from 11 repositories. It also maintains a minimum metadata 

requirement and provides a template for recommended and additional metadata submission 

for flexibility.  This is indeed an excellent resource to identify related datasets, and enables 

users to shortlist these datasets. However, users are still required to access and analyse data 

from the source repositories directly. Besides, the protein and metabolite identifiers (i.e. a list 

of identified proteins per dataset) are non-mandatory additional fields of the metadata 

template, meaning OmicsDI may contain datasets that are related to some ‘missing’ proteins 

but without specific protein identifiers, making it very difficult for users to find them. Often 

repositories have to make the tough decision to balance capturing detailed information and 

making submission easier for the users. However, it is crucial to identify as many datasets as 

possible and disseminate them in their most reusable/interpretable format to the community to 

accelerate the discovery process. While some databases provide basic collaboration features, 

they rarely support integration with other databases. As the C-HPP ‘missing’ protein 

identification is a worldwide initiative, advanced scientific collaboration and database 

crosstalk are key to its success.  

‘Missing ProteinPedia (MPP)’ is a web platform (missingproteins.org) that is designed to 

harmonise very disparate data sets from various disciplines and databases by automatic data 

integration and community contribution to provide a single interface for users to find 

information about ‘missing’ proteins. It provides a public discovery portal and an 

authenticated data submission portal. It is designed as a multi-community based platform 

(Figure 1) where each research group has access to their dedicated portal, and the community 

administrators manage user registration and authorisation processes. Available authorisation 

levels are admin or read and write or read only. This authorisation layer is implemented to 

empower the community and is opaque to the MPP system administrators. Community users 

can log in to the portal and contribute information/evidence (e.g. putative/known functions 

and inhibitor studies) in free text format for any of the information blocks (see supplementary 

data for the available data blocks). Each block of information can be kept private or shared 

with other research group or made open to the wider community using the publish data 

option. This gives the flexibility to keep data private until its ready to be shared (e.g. journal 

publication, etc.). MPP provides separate user interface according to the permission level (see 
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supplementary file for more information). The interface also offers an approval before 

publishing feature to allow lab heads to curate the data before it is shared with the wider 

community via the public portal. In a highly collaborative environment, it is important to 

acknowledge authors’ contributions to maintain the credibility of the information as well as 

incentivising the author9. To make the citation easier, we implemented a metadata snippet 

with predicted search function that allows users to cite any work using the “Crossref metadata 

search API” within MPP (shown in supplementary figures). Users can just perform a free text 

search, and select one or more references and cite them using few clicks. If the article or 

dataset is not indexed in CrossRef, users can add the manually.  

MPP captures data from various MS specific databases, protein knowledgebases and other 

complimentary sources. At present, it integrates information from four proteomics databases 

to capture peptide identification information for all available proteins. The databases are the 

PRoteomics IDEntifications (PRIDE), the Global Proteome Machine Database (GPMDB), 

ProteomicsDB, and the MaxQuant DataBase (MaxQB). The MPP then applies our previously 

published guidelines10 to check the proteotypicity of each peptide, and filter and sort the 

peptides based on their search engine scores and provides a community annotation interface 

for manual spectral quality analysis to validate or rank spectra via a collaborative community 

effort. It allows three annotations per peptide spectrum to provide the best available 

identification information from each of these databases. The peptide identification and 

annotation results can be viewed from the public interface of MPP. In addition, it provides an 

interface to assist researchers mine their own MS search results to identify any missing 

proteins in their data, and rank them. Researchers can submit a list of identified protein IDs 

(instead of full search engine results for confidentiality), and MPP then searches for possible 

‘missing’ proteins and provides the user with options to contribute their data. MPP stores 

relevant results in reusable formats and doesn’t replicate or store any raw data.  

Currently MPP captures non-MS information from GeneCards11, UniProt12, GeneRIF13, and 

functional annotations from ProtAnnotator14. We chose to use information from GeneCards as 

it sources information from 150 databases. MPP collects relevant publications from PubMed 

and also indexes the MeSH terms for all publications. It provides an interactive browser for 

users to search, sort and filter publications using MeSH terms and various controlled 

vocabularies. The PubMed annotation interface allows users to annotate citations based on 

their relevance to human missing proteins. Expert annotations and verified citations using this 

interface are given a higher rank. MPP also indexes and provides an interactive browser for 
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all relevant datasets for each protein that are indexed in OmicsDI. In order to accommodate 

diverse metadata needs, MPP has been developed with a flexible metadata platform. 

Community administrators can design a new information block or metadata form and submit 

it to the MPP administrator for approval. Unlike neXtProt, MissingProteinPedia is a low-

stringency public database that aims to collect information that is not deposited in C-HPP 

accredited databases and lets the community judge the quality of the data. MPP is designed to 

be a community-centric portal. Besides community contributed data and annotation, it also 

allows an administrator to create a community science campaign and tag proteins under that 

campaign.   

Based on an analysis of PubMed references in MPP, we noticed that a 2015 paper (Chick et 

al.15) mapped to several missing proteins. Furthermore, as required as evidence by C-HPP, the 

data accruing from that publication had been deposited in ProteomeXchange 

(http://www.ebi.ac.uk/pride/archive/projects/PXD001468). We then applied our guidelines10 

to check the proteotypicity of each peptide, then to filter and sort the peptides based on their 

search engine scores followed by manual validation of the spectra to provide the best 

available identification information for each missing protein. High quality MS results were 

identified for 18 proteins (listed in Table 1), with two entries (NX_A6NJT0 and 

NX_Q9Y2G7) having MS evidence got PE1 status compliant with HPP high‐stringency 

metrics (≥ 2 uniquely mapping peptides ≥ 9 residues). Ten more proteins have 1 uniquely 

mapping peptide ≥ 9 residues. Of these, NX_O15391 has two overlapping peptides of length 

9 and 8 residues, which have been merged in Table 1. The spectra for peptides ≥ 9 residues is 

available in the supplementary data file. Another six have 1 or more uniquely mapping 7‐8 

residue peptides. Nine of these peptides are supported by identical SRM peptides (some as 

short as 8 residues) while another two peptides have partial overlap with SRM data. In 

summary, two proteins currently qualify for PE1 status according, while 16 others have some 

high quality MS evidence, from a single ProteomeXchange entry.  

We demonstrate that high-quality data on missing proteins exists in publicly available 

databases and combining the information captured or contributed via this platform with the 

information available in other proteomics databases may give clues to discovering them. 

Furthermore, scientists can use their own datasets in MPP and demonstrate that either by 

using very high resolution MS, or analysing difficult to access tissues (e.g. ovary, brain, etc.) 

to accurately identify missing proteins. This platform focuses the collaborative efforts of the 
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proteomics community to complement the existing C-HPP effort to accelerate the discovery 

of missing proteins. 
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Table 1: Currently assigned PE2‐4 missing proteins with manually‐curated, best 

available proteotypic peptide MS spectra. 

Details of neXtProt identifier (ID), chromosome (Chr) number, peptide identified, with its length 

and start and end positions on protein sequence, number of MS observations (Obs.) and SRM peptide 

positions(s) if any, at the peptide position. 

# neXtProt 

ID 

Chr Gene 

Name 

Peptides identified Peptide 

length 

Peptide 

position 

Obs. SRM peptide 

position(s) 
Proteins that currently qualify as PE1 proteins according to neXtProt Feb 2017 HPP high‐stringency metrics 

(≥ 2 uniquely mapping peptides ≥ 9 residues) 
1 NX_A6NJT 7 UNCX DAASCGPGAAVAA 16 306-331 7 306-321; 329-344 

GGAGLEPAPK 10 398-407 2 - 

TNFTGWQLEELEK 13 110-122 2 110-122 

2 NX_Q9Y2G 19 ZFP30 ECGQAFLCSTGLR 13 302-314 1 302-314 

IFTCGSDLR 9 222-230 3 - 

Proteins that previously qualified as PE1 proteins according to 2015 HPP neXtProt metrics (≥ 2 uniquely 

mapping peptides ≥ 7 residues or 1 uniquely mapping peptide ≥ 9 residues) 
1 NX_O15391 9 YY2 KFAQSTNLK 9 351-359 2 352-359; 351-359

2 NX_Q8IUZ 1 LRRC49 LLNFQHNFITR 11 116-126 1 116-126 
3 NX_Q7Z6R 6 TFAP2D LGLNLPAGR 9 272-280 2 - 
4 NX_Q12999 2 TSPAN31 SQSPTCQMCGEK 12 152-163 6 152-163 
5 NX_Q8NEK 19 ZNF548 LVCSMNVGNSLAK 13 504-516 2 504-516 
6 NX_Q8N8J 19 ZNF615 LYTCSECGK 9 399-407 2 - 

7 NX_Q5T5D 1 ZNF684 SYTVENAYECSECG 15 152-166 1 - 

8 NX_Q9UC0 22 ZNF70 GLEQMAVIYK 10 40-49 1 40-49 
9 NX_Q03936 7 ZNF92 GGYNGLNQCLTTT 16 128-143 1 128-143 

10 NX_A6NGE X DCAF8L1 FVYEACGAR 9 172-180 2 - 

Proteins that did not previously and do not currently qualify as PE1 proteins according to 2016 HPP 

neXtProt high‐stringency metrics (i.e., only 1 uniquely mapping 7‐8 residue peptide) 
1 NX_Q9C09 3 DCLK3 LADFGLAK 8 497-504 2 - 

LLVVDPK 7 593-599 6 - 

2 NX_P0C091 4 FREM3 SLWLDPLR 8 76-83 1 - 

3 NX_P50391 10 NPY4R ALEFLADK 8 191-198 2 191-198 

4 NX_A6NKT 2 RGPD3 ILQNYDNK 8 1384-1391 4 1384-1391 

5 NX_P17025 X ZNF182 STLIIHQR 8 387-394 1 - 

6 NX_Q3MJ6 6 ZSCAN23 SLIQVLGK 8 208-215 1 - 

* overlapping peptides with overlap underlined
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Figures 

Figure 1: The MissingProteinPedia (MPP) collates and displays protein information from existing 

databases using various web services. The MPP web interface allows researchers deposit data, 

annotate information and to collaborate and share data that are not available C-HPP endorsed 

databases.  
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1 MissingProteinPedia data and metadata 

MissingPeoteinPedia (MPP) is designed to automatically capture both MS and non-MS 

information related to human missing proteins from various public databases. In addition, it 

also allows end users to contribute both MS identification and non-MS (orthogonal) 

information about missing proteins. MPP does not store any raw data, it only aims to store 

processed results and metadata related to missing proteins (see Table S1). MPP strongly 

recommends users to submit raw data directly into the relevant community standard 

repositories such as ProteomeXchange [1]. At present MPP data capture services are 

configure to mine (i) orthogonal information from  GeneCards [2], UniProt[3], GeneRIF [4] 

and PubMed [5] including MeSH terms pertaining to each publications; (ii) MS identification 

information from the PRoteomics IDEntifications (PRIDE) [6], the Global Proteome Machine 

Database (GPMDB)[7], ProteomicsDB[8], and the MaxQuant DataBase (MaxQB) [9]; (iii) 

and indexes multi-omics metadata related to the datasets from eleven different repositories 

using the Omics Discovery Index [10] service, these datasets are PRIDE, PeptideAtlas [11], 

MassIVE [12] and GPMDB for proteomics datasets; MetaboLights [13], Global Natural 

Products Social Molecular Networking (GNPS) [14], the Metabolomics Workbench [15]; 

ArrayExpress [16] and Expression Atlas [17] for transcriptomics datasets, and Metabolome 

Express[18] for metabolomics datasets; and European Genome-Phenome Archive (EGA) [19] 

for genomics and phenotypic data.  

Table S1: List of information sources for MissingProteinPedia (MPP) 

 

                                                            
iData type is the type of information stored in MPP. MS identification includes protein and 
peptide identification data including MS search engine results. Metadata includes information 
about available datasets, including the experimental conditions, tissue/cell type, related 
citation etc.  
ii At present MPP is capturing the data monthly to match various update schedules for each of 
these databases. We aim to provide more regular updates for some of the databases in near 
future. 

Source iData type Omics type Update Frequencyii 

PRIDE MS identification, metadata Proteomics Monthly 

GPMDB MS identification Proteomics Monthly 

ProteomicsDB MS identification Proteomics Monthly 

MaxQB MS identification Proteomics Monthly 

PeptideAtlas Metadata Proteomics Monthly 

MassIVE Metadata Proteomics Monthly 
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iiiData type is the type of information stored in MPP. MS identification includes protein and 
peptide identification data including MS search engine results. Metadata includes information 
about available datasets, including the experimental conditions, tissue/cell type, related 
citation etc.  
iv At present MPP is capturing the data monthly to match various update schedules for each of 
these databases. We aim to provide more regular updates for some of the databases in near 
future. 
v Aligned with neXtProt missing protein release 

Source iiiData type Omics type Update Frequencyiv 

MetaboLights Metadata Metabolomics Monthly 

GNPS Metadata Metabolomics Monthly 

Metabolomics 

Workbench 

Metadata Metabolomics Monthly 

Metabolome 

Express 

Metadata Metabolomics Monthly 

EGA Metadata Genomics Monthly 

Expression 

Atlas 

Metadata Transcriptomics Monthly 

ArrayExpress Metadata Transcriptomics, genomics,  

metabolomics 

Monthly 

UniProt Metadata Orthogonal Fortnightly 

GeneCards Metadata Orthogonal  Quarterlyv 

GeneRIF Metadata Orthogonal  

PubMed Metadata Orthogonal Fortnightly 
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2 Data discovery and visualization 

MPP offers a public and private data discovery service via the missingproteins.org web portal. 

It offers a simple filter, search and browse option to view protein data. Users can filter 

proteins by chromosome, or any tag (i.e. community campaign, or other tags) then search for 

proteins using the available controlled vocabularies (see Figure S1). Users need to login to 

view any privately shared data (see section 3.2).  

Figure S1 MissingProteinPedia data discovery options 

MPP offers a mix of tabular view and interactive visualisation options to present complex 

data or metadata to the users. See Figure S2 for an example of a tabular view, and Section 2.1 

for some examples of interactive data visualisations 

. 

Figure S2: Tabular view of an information block 
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Data visualisation 

2.1.1 Orthogonal information and metadata browser 

MPP offers several data visualisation options to the end users to easily view and interpret the 

available data. The interactive PubMed (Figure S3) Citation and multi-omics metadata 

browser (Figure S4) were developed using Keshif browser [20] underpinned by a Data-Driven 

document (D3) [21] JavaScript library. These browsers allow users to interact with data, use 

complex filter to view the specific entries for individual protein entries.   
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2.1.2 MS peptide identification browser 
 

Each protein can have hundreds of peptide evidence entries from various databases (see 

Figure S5). It is extremely challenging for users to scroll through these entries in a tabular 

view.  

 

 

Figure S5 Number of peptide identification entries in MPP at the launch (only 
proteotypic peptides are shown here) from each of the MS data repositories (in different 
colour). All collected peptides are filtered first for proteotypicity then, for acceptable 
search scores, then open for the community to annotate and score the spectra.   

 

MPP combines peptide entries for each protein from all available databases and provides a 

tabular and an interactive weighted tree view of the aggregated data. The weighted tree graph 

is created using D3 JavaScript library. A user selects a protein and an interactive weithed 

graph is generated dynamically. The graph provides an easy to navigate interface to view all 

available proteins by their proteotypicty, followed by the quality of the search engine score 

based on our previously published method [22].  The spectra for the shortlisted peptides with 

high search engine confidence scores can be further validated and annotated by multiple 

community members or users (refer to section 4.1).  
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Figure S6: Interactive weighted tree graph view of MS peptide identification information- E
mouse click on each node reveals more of the tree  
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3 User management, data deposition and sharing 
3.1 Authentication, authorization 

MPP's authentication and authorisation model are based around the research community. Each 

research community is assigned to one or more administrators by a system administrator. The 

community administrator is responsible for user management of the respective community 

and this is opaque to the system administrator (see Figure S7).  

MPP currently permits the following roles: admin, read only, read and write, and super admin.   
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3.2 Data deposition and Sharing 
 

MPP allows secure data deposition and collaboration. The sharing permission applies to each 

information block which means each information blocks (Table S2) can be shared between 

different users within or outside the community.  Users can enter data using rich text editor 

(Figure S8), add citations for the added information (Figure S9), then save the data as private 

or share it with another community. Users can leave the information with “Not Published” 

status to allow a senior researchers or administrators to approve the change before publishing 

it.  

Table S2: Available information blocks (MS or orthogonal) and the data entry options 

 

3.2.1 Data citation 
It is important to credit the original author for the information added in the system.  MPP is 

integrated with "Crossref metadata search API"[23] to make this easier for the end users. A 

reference snippet is available on each information block for the user to simply use the 

predictive search function to search for an article, then select and cite it (see Figure S9). If the 

article or dataset is not indexed in CrossRef, users can add the manually via the interface. 

Information block 
Auto 
capture 

Manual 
entries 

Community 
annotation 

Basic protein informatio (gene name, alternate name, 
descriptions etc) Yes Yes 

Gene Reference Into Function (GeneRIF) Yes 
Relevant citations within the PubMed literature Yes Yes Yes 
Putative/known Functions (generic, biological, 
molecular, primary secondaty, etc. Yes Yes 
Localisation Yes 
Homologues, Orthologues, Paralogues and Family Yes 
Sequence Similarity and Functional Annotation Yes 
Post Translational Modifications Yes 
Protein Protein Interactions Yes 
Best Available Mass Spectra without FDR (PRIDE, 
GPMDB,ProteomicsDB and MaxQB) Yes Yes 

Lab specific MS data Yes 
Yes (if 
shared) 

Structural Studies Yes 
Disease Databases Yes 
Behavioural Studies Yes 
Chemical Proteomics  Yes  
Knockout Databases  Yes  
Drug Studies  Yes  
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Figure S8 Sample rich text editor data entry form 

Figure S9: Adding a reference using cross ref metadata search in 3 steps. Step 1 is to 

search an article, step 2 is selecting the relevant one (or multiple) from the list and finally step 

3 is adding relevant articles.  
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3.3 Flexible metadata schema 
MPP allows a wide range of metadata entry with flexible form and information blocks. The 

MPP aims to collate as much information as possible. Hence it has been developed with a 

flexible metadata platform to allow the addition of new information blocks. Community 

administrators can design a new information block using the dynamic form designer within 

MPP (Figure S10) and send it to the MPP Administrator for approval and implementation. 

Figure S10: Dynamic metadata form designer 

4 Community science and collaboration 

MPP aims to provide all available information about a protein in a non-judgemental way. It 

doesn't apply metrics to the data. Instead, it intends to equip the scientific community with 

relevant information and tools to allow them to make their own judgment or enrich and 

annotate the data in a collaborative environment.  
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4.1 MS peptide identification spectra annotation 
MPP sorts all peptide identification data from various databases and provides an interface to 

filter MS peptide identification data (section 2.1.2, Figure S6), then annotate them using the 

spectra annotation interface (Figure S11). It allows three curators to annotate a single 

spectrum and sorts the results based on a simple algorithm where if one annotators feedback 

is vastly differently form the other 2, the average of the other 2 is taken, whereas if the 

feedback is widely different for all three, the spectrum is referred to the administrator to 

arbitrate. The annotated spectra can be viewed via both public and private interface (Figure 

S12).  

Figure S11: MS spectra annotation interface 

4.2 PubMed citation annotation 

MPP mines relevant citations for a proteins using the PubMed API using gene name, protein 

name, and synonyms. It then filters out any that are incorrectly returned by the API (e.g. 

keyword matches) and ranks the citation based on the frequency of the keywords (whole 

words) used for the search. The user can view the abstract on screen, then select the annotate 

option to annotate a citation. (Figure S13).  
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4.3 Community campaign and protein tagging 

A tagging system is created within MPP that allows the system administrator to create a new 

campaign (such as the "Top 50 Missing Protein Challenge"), and then tag proteins for the 

specified campaign. This allows the contributing members to track the progress of the 

campaign. The tagging can also be used for other generic purposes. 

Figure S14: MPP tag a protein for a specific community campaign 

5 Best available spectra for the identified MS peptides  

5.1 Representative Spectra 

1. A6NJT0

1.1 - DAASCGPGAAVAAVER 
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1.2- GGAGLEPAPK 

 

1.3- TNFTGWQLEELEK 

 
 
2. Q9Y2G7 

2.1-ECGQAFLCSTGLR 
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2.2 - IFTCGSDLR 

3. O15391

3.1- KFAQSTNLK 

3.2- FAQSTNLK 

141



20 
 

4. Q8IUZ0 

4- LLNFQHNFITR 

 
 
 
 
5. Q7Z6R9 

5- LGLNLPAGR 
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6. Q12999

6- SQSPTCQMCGEK 

7. Q8NEK5

7- LVCSMNVGNSLAK 
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8. Q8N8J6

8- LYTCSECGG 

9. Q5T5D7

9- SYTVENAYECSECGK 
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10. Q9UC06 

10- GLEQMAVIYK 

 
 
 
 
11. Q03936 

11- GGYNGLNQCLTTTDSK 
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12. A6NGE4

12- FVYEACGAR 
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7.4 Conclusions 

We extended our bioinformatics pipeline to incorporate the MS evidence workflow from 

the previous Chapter. The extended pipeline was used to programmatically capture peptide 

identification data from a mix of HUPO and non-HUPO preferred databases (GPMDB, 

PRIDE, ProteomicsDB, MAXQB) for all olfactory receptors family proteins (largest 

protein family with 409 missing proteins). We also collected data from Human 

ProteinPedia manually. The pipeline captured 122,717 peptide MS entries with at least 

seven amino acids length. The proteotypicity checker identified and retained 4,751 

peptides as proteotypic peptides. The pipeline then compared the search engine confidence 

scores and retained 6% (286) of these entries having acceptable search engine ratings. 

After manually analysing the spectra for these 286 peptides using the guideline described 

in the previous chapter, we identified MS evidences for 23 olfactory proteins (see 

publication 5). The extended pipeline demonstrated many single high-confidence peptide 

MS evidence are available in the public domain. Although best available peptide MS and 

the associated MS spectra are insufficient to meet current HPP metric, storing such 

evidence in a public repository and frequently updating the repository automatically 

including any community contributed data can lead us to find the missing pieces of the 

puzzle. However, there are some proteins when cleaved by trypsin may not produce two 

uniquely mapping proteotypic peptides of at least nine amino acids. Many biologically 

important highly bioactive secretory peptides are very short secreted proteoforms. These 

peptide proteoforms will remain undetected as per the current HPP guidelines [283]. By 

using the bottom up MS data for interleukin-9 (IL-9) from our collaborators lab, we 

demonstrated that IL-9 indeed contains two proteotypic peptides of 7 and 8 residues with 

high-quality MS spectra (see Publication 5), and our approach can lead to the identification 

of other proteins with short peptides. 

We then applied an orthogonal approach to identify complementary evidence from various 

databases using a randomly selected protein (Prestin/SLC26A5) from chromosome 7 

missing proteins. We identified 91 peer-reviewed manuscripts in PubMed for Prestin and 

its alternate names. One study determined Prestin is expressed in outer hair cells and 

classified it as the 'motor protein of the cochlear outer hair cell' [284].  The search also 

picked up a recent review article of Prestin's structural and functional properties [285]. 

Some other evidence includes 83 anti-prestin Abs in Antibodypedia [286], two 

missense/nonsense mutations responsible for deafness/autism in Human Gene Mutation 
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Database [287] and more (at the time of the study). Details of other complementary 

findings are available in Publication 5. A recent search (4 June 2017) on the Antibodypedia 

reveals 95 antibodies from 18 providers for Prestin [288]. This highlight, although some 

missing proteins do not contain high-stringency MS or acceptable Ab evidence, various 

public and communal databases contain protein level functional evidence that needs to be 

captured (on a regular basis) and considered to identify and characterise missing proteins.  

It was evident from our study that a public platform capable of capturing mainstream 

MS/AB evidence as well as other orthogonal information from various sources and 

providing deep analyses of such information can accelerate the identification of missing 

proteins and uncover the hidden biology. Therefore, I integrated ProtAnnotator 2.0 and the 

extended proteomics data integration strategy used in this study to create a novel integrated 

web platform (MissingProteinPedia) to mine various MS/AB and other orthogonal 

information from different databases and web platforms for human “missing” proteins. The 

key components for the integrated MissingProteinPedia (MPP) web platform are, a web 

interface for users to mine and rank MS data from individual labs, an automatic data 

capture tool to collect orthogonal information from various databases, and an MS data 

capture service to collate and integrate mass spectrometry data from different databases 

with a community annotation module to validate shortlisted peptide spectra via 

collaborative community effort. At the launch, the platform captured over 5 million peptide 

identification records from different databases. Of these, 272, 831 peptides were 

proteotypic (at least 7 aa long), 38% of which contained acceptable search engine scores 

that are ready for the scientific community to annotate or validate via the community 

annotation module. The purpose-built community platform offers a single public data 

discovery platform as well as a secure sharing platform where the data, as well as the user 

authentication and authorisations are entirely controlled by the community administrators. 

Some other feature includes interactive PubMed data browser, interactive MS peptide 

quality browser, semi-automated dynamic form builder, etc. (see publication 6 for other 

features). Following the launch at 2016 HUPO World Congress, the platform was 

presented and discussed with the community at the Bioinformatics Hub at the HUPO 2016 

World Congress [289, 290] to receive feedback. Some of the MPP features resulted from 

this consultation include PubMed annotation module, filtered and or ranked view of MS 

peptide information. To demonstrate the applicability of the platform, we used MS data 

from our collaborator's lab and identified MS evidence for 9 proteins of which 2 comply 

with HPP guidelines and can be considered candidates for PE1 status (see publication 6). 
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Chapter 8: Conclusions and future directions 

8.1 Summary, Significance and contributions 

Proteins are responsible for almost every action within the cell, hence understanding the 

protein function is the key to uncovering the biology of every living organism. Naturally, 

the identification of a protein becomes the precursor for its functional study. The 

advancement of next-generation sequencing and high-throughput proteomics technology 

enable us to conduct large-scale protein prediction and confirm their identification via 

experiments respectively. Despite the progress in both techniques, a significant number of 

proteins remain unidentified by experimental method, and 1% of the protein functions are 

experimentally validated [281]. The unprecedented growth in genome sequences means it 

is almost impossible for experimental proteomics strategies to catch up with the backlog of 

identification and characterization. Hence, there is an opportunity for improved 

computational methods to close this gap. 

In chapter one, I carried out a detailed review to obtain a better understanding of the end-

to-end workflow of protein identification and characterisation to understand the gaps and 

opportunities. At first, all available proteomics techniques, algorithms, and associated tools 

were studied. A brief review of genome annotation (gene and protein prediction) was 

conducted, followed by a detailed study of the in silico functional annotation strategies and 

as well as current proteomics databases. It became apparent that one of the solutions to 

close the gap of identification and characterisation is, in fact, lies within the problem. In 

other words, knowledgebase created by the vast growth of sequencing and technologies 

can be used to identify and or characterise proteins. Based on this literature review, the 

objective for this thesis was formed, with results presented as publications (listed in 

Chapter 2). The review provides a baseline for similar studies. 

A novel in silico sequence homology and functional annotation strategy was developed for 

novel or less studied proteomes (Chapter 3). The black Périgord truffle (Tuber 

melanosporum Vittad), one of the highly prized but less known proteomes concerning its 

biological functions. The genome was sequenced in 2010 [34] with only 14 reviewed 

proteins with no experimental evidence in UniProt database, became an excellent candidate 

to apply our methodology. Fresh fruiting bodies were also collected from our 
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collaborator’s truffle field in Australia to validate and complement our method using a 

shotgun proteomics experiment. The bioinformatics approach successfully identified 

homologous for 2486 proteins (UniProt databases), structural similarity of 101 proteins 

with the Protein Data Bank (PDB) sequences, and functional annotations for 96% of these 

proteins. The shotgun proteomics identified 836 proteins, 47% of which were also detected 

by the bioinformatics method. The computational analysis on the functional annotation 

provided by our approach identified nine proteins, responsible for the aroma profile and a 

potential enzymatic pathway to produce one of the primary volatiles of the black truffle. 

Given that the UniProt database contains only 14 reviewed proteins to date, this study 

made a significant contribution in identifying black truffle proteins and uncovering its 

biology.  

To determine the generic nature of this approach as well as assisting the C-HPP initiative 

to identify and characterise the missing human proteins, a semi-automated pipeline was 

developed using the previously mentioned annotation strategy. The pipeline was used to 

annotate human missing proteins (3831 sequences) for all chromosomes (Chapter 4) for the 

first time. It identified homologues from the mammalian kingdom for 66.2% of the missing 

human proteins and functional annotations for 50.8% of the missing human proteins. The 

ProtAnnotaor web portal was also created to regularly update and share the annotation 

results with the scientific community. This demonstrates that the annotation strategy can 

identify functional annotation for any novel or less studied organism. However, another 

challenge and opportunity of the technological advancement were the protein databases get 

regularly updated with new information means repeated analyses of the annotation can 

provide annotations for previously unannotated proteins and or updated annotation for 

previously annotated proteins. Our study in chapter 3 and 4 demonstrated that sequential 

blast using high-quality protein sequence datasets for closely related organism provides 

high-quality annotations. That means the target blast databases will vary for different 

species. On the other hand, neXtProt regularly updates the missing protein list, which 

means the human protein annotation needs a regular update too. Hence, the ProtAnnotator 

pipeline was extended and developed to be an entirely automated, generic cloud-based 

protein functional annotation platform for functional annotation (Chapter 5). The platform 

allows users to customise their annotation workflow using their own databases. The 

platform was used to reanalyse the data from black Périgord truffle study. The platform 

identified homologous for 111 new proteins, and structural similarity with PDB sequences 

for 1,393 proteins compared to 101 proteins from the previous study. The platform culled 
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129 previously identified homologous as they were below the percentage identity threshold 

based on the new analysis (with updated tools and databases). It identified functional 

annotation for 82% of the black Périgord truffle proteins compared 20% proteins from the 

earlier study. This demonstrates that the new platform underpinned by updated tools and 

database can provide more accurate annotation, as well as the need for renalyses of protein 

annotations to detect new and accurate annotation. The automated ProtAnnotaror 2.0 

cloud-based annotation platform is available for the community to annotate any proteomes 

functionally using their own datasets. The platform also underpins the functional 

annotation knowledgebase of the MissingProteinPedia [283]. 

 

However, the quality of the annotation relies on end users selecting closely related, high-

quality target sequence databases. Moreover, coupling the bioinformatics approach with 

experimental proteomics (i.e. pan 'omics' approach) can complement the annotation 

considerably. A broad range of proteomics techniques, platform, tools, and algorithms are 

available for proteomics study (described in Chapter 1), and most of the proteomics 

databases offer minimum to no integration between cross-platform information. Hence, it 

is very difficult for general users to analyse or interpret proteomics data. To address this 

issue, a protocol for functional annotation and guideline to analyse and interpret 

proteomics data was developed using walkthrough examples (Chapter 6) that can not only 

be useful for general users, but also for the advanced users to develop high-throughput 

pipelines for large scale studies. 

 

The automated platform (Chapter 5), and the protocol and guidelines for MS evidence 

workflow (Chapter 6) were used to develop an automated pipeline to capture data for the 

missing protein review study (Chapter 7). The study highlighted the need to capture MS 

evidence from both HPP and non-HPP databases, orthogonal information from the public 

and private domain, as well as increased community collaboration to accelerate the 

identification of human missing proteins. Hence, an integrated web platform was 

developed to mine both MS and orthogonal information from various sources on a regular 

basis and provide a purpose-built community portal for secure collaboration. The study 

itself provided best available MS (39) and orthogonal information (2) for 41 missing 

proteins during the implementation phase, of which 2 proteins met the high stringency HPP 

PE1 (protein level 1) criteria for them to be classified as identified. The platform also 

provides a range of community science features to fast track the missing protein 

identification and characterisation. The broad range of data compiled by the MPP will 
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contribute to the validation or identification of the missing proteins. The platform can be 

integrated with the existing high-stringency HPP data reanalysis as a complementary 

resource. 

To summarise, all high-throughput protein annotation and charecterisation methods, 

protocols, and platforms developed in this thesis can be used individually or collectively to 

study proteomes and their functions.  

8.2 Innovations 

The highlights of the thesis are the development of the in silico functional annotation, MS 

evidence workflow, and development of the integrated MissingProteinPedia web platform 

to uncover the human missing proteins. The generic functional annotation strategy can be 

used to annotate proteins from any novel or less studied proteomes. The MS evidence 

workflow provides a guideline to interpret and analyse proteomics data from multiple 

platforms. The integrated MissingProteinPedia web platform is the first of its kind that not 

only integrates data from various sources but also conducts in-depth analyses of the data, 

and facilitates community science and collaboration. Although the platform described here 

is used for human missing proteins, the platform can be used for similar studies or other 

proteomes.  

8.4 Future directions 

The literature review (Chapter 1) of the proteomics method was limited to Data-dependent 

acquisition (DDA). The Data-independent acquisition (DIA), and post-translational 

modifications were excluded from the review to limit the scope of this thesis. This section 

can be extended in future. Subsequently, Chapter 6 can be extended with additional 

protocols and or guidelines to include analysis and interpretation data generated by the 

DIA method. To this end, we have started exploring the use of de novo sequencing 

approaches for peptide identification (Appendix 1: Publication 7).  

The MissingProteinPedia (MPP) is designed in a way that it can be extended in many 

different directions. At present, it captures data from four proteomics databases. It can 

vertically extend to capture data from various other databases described in Chapter 1. The 

platform currently integrates with the recently published (May 2017) Omics Discovery 
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Index (OmicsDI) service that aims to index datasets from multi-omics platforms. At 

present, MPP captures the index and available metadata for all human missing proteins and 

provides a per protein-based interactive browser to navigate the metadata. OmicsDI 

currently indexed 48,213 proteomics datasets (human studies) that are related to human 

missing proteins. MPP can be extended to identify any new datasets indexed by the 

OmicsDI and then capture the peptide identification information directly from the source 

database (as OmicsDI does not store this information). Although OmicsDI captures multi-

omics datasets, at present it does not have any multi-omics dataset indexed for missing 

proteins. However, the current MPP integration allows us to identify any new multi-omics 

(as they are added) databases and incorporate them into the data capture service. The MPP 

analysis platform can then be extended horizontally to include multi-omics data.  
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Pages 181-196 of this thesis have been removed as they contain published 
material under copyright. Removed contents published as: 

Islam M.T., Mohamedali A., Fernandes C.S., Baker M.S., Ranganathan S. (2017) 
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