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Abstract 

The thermal structure of continental crust is a critical factor for geothermal 

exploration, hydrocarbon maturation and crustal strength, and yet our understanding 

of it is limited by our incomplete knowledge of its geological structure and thermal 

properties. One of the most critical parameters in modelling upper crustal 

temperature is thermal conductivity, which itself exhibits strong temperature 

dependence. In this study, finite-element geothermal models of the Sydney Basin are 

generated through the use of deal.II finite element libraries. Basin geometry and 

structure is adapted from Danis, et al. (2011), which quantified the extent of Triassic 

sediment, Permian coal measures, Carboniferous volcanics and Basement 

thickness. We find that temperature-dependent thermal conductivity result in lower 

lateral variation in temperature, compared to constant thermal conductivity models. 

However, the average temperatures at depth are significantly higher when 

temperature-dependent thermal conductivity effects are included. A number of 

regions within the Sydney Basin demonstrate temperatures above 150oC at depths of 

less than 2000m in these models, for instance NW of Singleton exhibits a strong 

thermal anomaly, demonstrating the potential for geothermal prospectivity of the 

region from experimentally-constrained thermal parameters. Future work will address 

the repeatability and application of this type of thermal model in areas of varying 

geology and stratigraphy.  
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1. Introduction 

In this study, temperature dependent thermal conductivity measurements are 

implemented in thermal models to constrain the temperature distribution in the 

Sydney Basin at depth.  

Variables used to set-up the model have been adapted from Danis et al. (2012), who 

has produced thermal models of the Sydney Basin, based on constant thermal 

conductivity values. These thermal models were constrained using equilibrated 

borehole temperature measurements from shallow groundwater in the Sydney Basin. 

However, large scale effects of temperature dependent thermal conductivity have yet 

to be implemented in current models regarding the Sydney Basin.  

This study aims to assess how much of an effect variable thermal conductivity has on 

the large scale temperature distribution of the Sydney Basin, particularly when 

compared against constant thermal conductivity models. 

To do this, finite element simulations were performed which result in a model of the 

temperature distributions of the Sydney Basin at depth, incorporating the effects of 

the basin stratigraphy, heat producing values and variations in thermal conductivity.  

The thermal conductivity of Sydney Basin sediments (incorporating sandstone and 

coal) and basement (consisting of Lachlan Fold Belt granitoids) have a significant 

temperature dependence based on the measurements used in this study. It is 

currently thought that the addition of temperature dependent thermal conductivity 

data in geothermal simulations will result in significantly different temperature 

distributions at depth. For example, a drop in the thermal conductivity of sediments 

with increasing temperature, could result in greater simulated temperatures at depth, 

this constitutes critical information on the distribution of potential high temperature 

domains that may be prospective for geothermal energy.  
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1.1 Relevance and objectives 

The need for better understanding of heat distribution at depth in the Sydney Basin 

was encouraged by previous models relying on non-equilibrated borehole 

temperature measurements conducted by Geoscience Australia (Gerner et al. 2010). 

It was found by Danis et al. (2012) that groundwater temperature re-equilibration can 

be a slow process, and has a far reaching impact on the true temperature of the 

surrounding aquifers directly post-drilling. Geoscience Australia’s initial models 

showed large temperature anomalies with large differences (of >100°C) between 

each maximum and minimum temperature at 5km depth. On re-inspection of the 

original drilling reports, Danis et al. (2012) suggested that many of these 

discrepancies were due to non-equilibrated borehole measurements. As a result, 

there was a strong requirement for accurate temperature estimates of the Sydney 

Basin, in order to better assess and identify potential geothermal targets. Predictions 

and qualitative models heavily rely on the accuracy and precision of equilibrated 

borehole temperature measurements as well as the material constants used.  

The geothermal potential of pre-extensional basins such as the Great Artesian Basin 

and extensional basins such as the Sydney Basin, have been relatively well studied. 

The recent study by Danis et al. (2011) has developed new methodologies to 

constrain the geothermal structure of the Sydney Basin, and its potential as an 

unconventional geothermal resource. The work discussed in this thesis largely builds 

on Danis et al. (2011) and (2012)’s work by incorporating temperature-dependent 

thermal conductivities based on laboratory measurements, rather than constant 

thermal conductivities previously used.  

As a result, a compilation of datasets are used to construct and constrain the model 

design of the large scale finite element numerical models developed here through the 

integration of the deal.ii finite element libraries as the foundation of this model. 
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1.2 Study Aims 

The aims of this project are listed as: 

 To compile both existing datasets and new data, to construct a model of the 

temperature-dependent thermal conductivity of the Sydney Basin, including 

Lachlan Fold Belt granites (Evans 2013), the Sydney Basin Triassic sediments 

and Permian coal measures (used in this study). 

 Incorporation of internal heating coefficients for both heat-generating 

sedimentary and volcanic units (Facer 1980) and basement rocks (Blevin 

2010). 

 To compile the raw gravity models of Danis et al. (2011) to constrain the 

geological structure of our deal.ii models, and facilitate the incorporation of this 

data into the deal.ii framework. 

 Implementation of relevant deal.ii base code (Bangerth 2007) and 

methodologies such as 3rd order interpolation and Newton’s method to solve 

non-linear, temperature-dependent thermal models. 

 Implementation of Monte Carlo simulations in order to retrieve 1D geotherms 

and uncertainties from thermal models, with uncertain input parameters, and 

outline basin temperature distribution based on those geotherms.  

 Compare temperature-dependent and constant thermal conductivity thermal 

models and address relevance of temperature dependent values on model.  

 Interpret thermal models for their impact on the thermal structure of the 

Sydney Basin.  
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2. Geological background 

The Sydney Basin can be described by a two-phase stratigraphic model for foreland 

basin development. The Sydney Basin formation process consisted of a foreland-

basin deposition component - a result of tectonic loading (the syn-orogenic phase), 

and a basin response to thrust-belt erosion (post-orogenic phase) (Heller et al. 1988).  

The Sydney Basin is located between the New England and Lachlan Fold belts, and 

consists of Permian-Triassic sedimentary sequence of at least 4km thick (Middleton 

et al. 1982). At its thickest point, the Sydney Basin is cross-cut by the north-easterly 

dipping frontal thrust fault of the Tamworth Arc of the New England Fold belt, and 

gradually thins towards the south (Conaghan et al. 1982). This trend is evident in the 

compiled gravity profiles sourced from Danis et al. (2011) used to define basin 

geometry at a relatively high spatial resolution. The Sydney Basin is essentially 

comprised of a succession of Permian to Triassic sedimentary and scattered volcanic 

rocks as a result of basin extension, outcropping in a NW to SE trend. 

Fore-arc basin sedimentation and orogenic recession via crustal thinning has 

resulted in thermal subsidence, accumulating large coal reserves - among some of 

the largest in the world (Casareo 1996). These large coal reserves mostly consist of 

the Northern Sydney Basin Permian Coal Measures. Local bioturbations have been 

found to protrude the Newcastle coal measures, while the Newcastle coal measures 

have a predominantly dominant fluvial signature, containing plant fragments and 

upward fining sandstone and overbank sediments such as claystone (Hunt et al. 

1984). The Newcastle coal measures appear as lenses within a large suite of 

terrigenous sediment (Herbert 1995). Therefore for the purposes of this work, the 

Newcastle and Tomago coal measures are grouped as one major coal layer with 

their terrigenous components reflected in their bulk thermal conductivity. Figure 1.2 

shows the configuration of Newcastle and Tomago coal lenses.  

The Tomago and Newcastle coal measures lay at the base of the Waratah 

Sandstone (Conaghan et al. 1987). Thick conglomerates of the upper Newcastle coal 

measures contain acid volcanic pebbles, with high pebble to sandstone ratios, hence 

preserving high portions of the primary protolith which represents a large bulk of the 

conglomeritic sequences (Hunt et al. 1984). The conglomerates likely originate from 
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braided alluvial fan deposits in the north east section of the basin. The likely source 

of sediment is the New England fold belt and Carboniferous mafic volcanics at the 

top of the basement, which was first identified from a positive gravity ridge between 

Bathurst and the Dural vicinity (Qureshi 1989). Sulphur content has been measured 

to be between 0.55 and 1%. Relative to the Sydney, Gunnedah and Bowen Basins 

this is characteristic of seams formed in deltaic (mainly lower delta plains) 

depositional environments (Hunt et al. 1984).  

The Waratah sandstone sequence denotes a period of extended transgression and 

has signs of re-working indicating evidence of basin-wide shoreline re-working shown 

by angular disconformities at the contact between the Tomago and Newcastle coal 

measures (Conaghan et al. 1987). The Waratah sandstone marks a geological point 

separating organic rich coal sequences and largely terrigenous material, the Triassic 

sediments.  

2.1 Basin framework 

The thermal structure of sedimentary basins is complex in nature. A basin’s 

geometry, geology, and geophysical attributes affect its geodynamic behaviour and 

characteristics (Danis et al. 2012). Thus it is a fundamental requirement to 

understand a basin’s geometry when dealing with unconventional geothermal 

modelling.  

Finlayson et al. (1981) used seismic arrival times to constrain the crustal structure of 

the Sydney Basin, and suggested that the top of the basement in the Northern 

quadrant of the Sydney Basin was much closer to the surface than the Southern 

quadrant (Figure 1.1). Seismic surveys indicate that Singleton sediments have very 

low seismic velocities (around 5km/s) which may be up to 2km thick. Low seismic 

velocities are associated with the abundance of coal measures in the Singleton 

vicinity.  
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Figure 2.1: Seismic record travel-time section between Singleton and Marulan 

(extracted from Finlayson et al. 1981) 

A seismic study by Greenhalgh et al. (1986) utilized a surface reflection profiling 

method to map the shallow coal seam structure of Hunter Valley coal seams. 

However they found in regions of thick Triassic sandstone cover, coal seams are 

undifferentiable. Another method is needed to effectively spatially define coal 

measures.  

Early stage interpretations contributed by Finlayson et al. (1981) provide useful large 

scale spatial data, but the top 2km consisting of sediment is undifferentiated. Coal 

measures have a significant effect on basin heat distribution due to its naturally low 

thermal conductivity (Clauser et al. 1995; Danis et al. 2012). Understanding where 

coal is and how thick coal measures are is crucial to realistically depicting the crustal 

component of the Sydney Basin. 

A paper released by Herbert (1995) provided high resolution sequence stratigraphy 

of the Sydney Basin (the top 1200m), identifying major coal seam (Figure 1.2). Coal 

measures are depicted as thin lenses alternating with other sediments. Although coal 

measures may be accurately displayed, a broader differentiation between coal-

bearing sequences and other sediments, is needed for large-scale basin models.  
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Figure 2.2: Sequence stratigraphy linearly interpolated between West Newcastle and 

West Campbelltown. Green box shows scale, red lines show coal measures (extracted 

from Herbert, 1995) 

Large scale geological and structural interpretations are increasingly based on 

geophysical inversion methods (Quenette et al. 2012). Therefore, combining 

geophysical techniques and stratigraphic reconstructions would be, in that regard, 

highly effective. Danis et al. (2011) in essence combines large scale structures with 

fine enough resolution to construct a representative large scale geological model of 

the Sydney Basin through gravity and magnetic modelling methods.  

2.2 Heat flow  

Heat flow data can be used to infer independent heat production rate estimates of 

uranium and thorium in the continental crust (Jaupart et al. 2004). The energy that is 

produced from the radioactive decay of these elements accounts for a large 

proportion of the heat flow at the surface of continents (Jaupart et al. 2004).  

The vertical scale of variation in heat production has been investigated through the 

KTB borehole in Germany, showing a variation in heat production between <0.5 to ~3 

μWm-3
 with no systematic trend with depth (Jaupart et al. 2004). Variation in heat 

production is hence highly dependent on the geology. Additional variables such as 
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groundwater circulation and large scale metamorphic alteration seem to have limited 

effects on the distribution of heat production with depth.   

However, surface heat flow amplitude as a function of heat production variation can 

show trends that are characteristic at certain depths. Surface heat flow variation is 

much greater than heat flow variation at 10, 20 or 30km (Jaupart et al. 2004). 

Temperature variation at 10km depth or more would hence exhibit much less 

variation than near the surface. This is an important control in geothermal modelling 

when considering what the boundary conditions should be. Selecting a uniform 

bottom temperature at 12km ensures that the amplitude of heat flow variation is low 

enough to put a constraint on the bottom temperature boundary condition, which in 

this study is 350°C, as per Danis et al. (2012) thermal models.   

2.3 Thermal conductivity measurements 

The Earth’s interior heat is propagated by three main processes: radiation, advection 

and conduction (Clauser et al. 1995).  

While radiation and advection play an important role in heat propagation, conduction 

is thought to be the dominant heat propagation mechanism in sedimentary basins, 

alongside advection of heat through groundwater motion (Clauser et al. 1995). 

Conduction itself is dependent on the composition of the medium (thermal 

conductivity), its temperature (in the case of temperature-dependent thermal 

conductivity), and the temperature gradient across a system.  

A rock may be regarded as isotropic or anisotropic with regards to thermal 

conductivity. The thermal conductivity of volcanic and plutonic rocks is largely 

isotropic (Clauser et al. 1995). On the other hand, the thermal conductivity of 

sedimentary and metamorphic rocks is often anisotropic.  Anisotropy found in 

sedimentary and metamorphic rocks is due to several factors including the 

microstructure of a rock - where its mineral assemblage may be intrinsically 

anisotropic, grain orientation and rock texture (Clauser et al. 1995). Sedimentary and 

metamorphic rocks may still be isotropic should anisotropic minerals be orientated 

randomly across a sample, or if a rock’s texture, such as bedding, has little impact on 

the bulk thermal conductivity (Clauser et al. 1995).  
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The thermal conductivity of a specimen may be measured in situ or in the laboratory. 

In situ measurements accounts for a larger volume or rock, while it is easier to 

control temperature, pressure and pore-fluid variables with laboratory measurements 

(Clauser et al. 1995).   

A rock’s thermal conductivity isn’t constant throughout.  Statistical quantities such as 

histograms, median, mean and standard deviations are used to effectively 

understand a rock’s thermal conductivity range and uncertainty (Clauser et al. 1995).  

In addition to a rock’s isotropy or anisotropy, thermal conductivity is a function of 

temperature (Clauser et al. 1995). Generally, thermal conductivity reduces with 

temperature, as differential expansion can lead to contact resistances between 

grains boundaries.  

2.4 Thermal modelling 

Thermal modelling of the Sydney Basin has recently been undertaken by Danis et al. 

(2012), as part of the large-scale study of the wider Sydney-Bowen-Gunnedah Basin 

(Danis et al. 2010). Thermal models of Danis et al. (2012) were developed using a 

finite element code, named “Underworld” designed by Moresi et al. (2007). The 

model applies a constant top and bottom conditions of 15°C and 350°C respectively, 

with reflecting side conditions. The top temperature of 15°C was adopted from Cull’s 

(1979) yearly average surface temperature measurements of the Gunnedah Basin. 

The bottom temperature of 350°C was constrained through extrapolation of 

groundwater borehole temperature measurements, taken across the Sydney Basin, 

and this boundary condition was modified to optimise the fit between the steady-state 

models, and observed geotherms.  

Numerical models by Danis et al. (2012) incorporate the effects of basin architecture 

and geology with known temperature conditions in order to predict the thermal 

structure of the Sydney Basin. Additional emphasis was put on the refraction of heat 

around insulating coal layers and their seemingly decisive control on thermal profiles. 

As a result, the impact of coal in thermal models warrants further examination. The 

thermal models of Danis et al. (2012) also took into account the topography of the 

thermal profile, through ground surface elevation measurements. Topographic 

surface variations result in localised additions or deficiencies of sedimentary cover, 
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which can have a significant effect on subsurface temperatures, and shallow heat 

flow directions (Danis et al. 2012). 

Figure 1.3 is a thermal model generated by Danis et al. (2012). Irregular basin 

geometry (basement refraction on the far west side of the model) and distance to top 

of basement result in isotherm retreat in some areas of low sedimentary cover. 

Inversely, the local isotherm in areas of thick sedimentary cover increases quite 

significantly. This model illustrates the 150°C isotherm beneath 4km of sedimentary 

cover with a high topography (circled in figure 2.3). 

 

 

Figure 2.3 Thermal model extracted from Danis et al. (2012) 

3. Methods 

The ultimate aim of this thesis is to understand how temperature-dependent thermal 

conductivities, derived from new laboratory measurements, impact models of the 

thermal structure of the Sydney Basin. As such this work has two main prongs: i) to 

introduce new temperature-dependent conductivity measurements for the Sydney 

Basin, compile existing measurements, and collate related data, and ii) develop 2D 

deal.II finite element models for the thermal state of the Sydney Basin.  

 

A number of datasets have had to be compiled in order to realistically characterise 

the model. The parameters which have been used to constrain the model include: 

 Spatial information (large scale geology and elevation at a fine enough 

resolution) 

 Equilibrated temperature extrapolations (extracted from borehole 

measurements at various depth) 
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 Temperature dependent thermal conductivity of the geology and internal 

precision / standard deviation of thermal conductivity measurements 

 Heat production values (radiogenic heating) 

 

3.1 Thermal conductivity measurements 

Thermal conductivity values are based on measurements taken from a thermal 

conductivity tester, (Anter model 2022 – guarded heat flow apparatus) which are 

calibrated using standard calorimeters (stainless steel calorimeter: 19.05mm thick, 

small vespel calorimeter: 3.175mm thick, medium sized vespel calorimeter: 9.525mm 

thick). The Anter model 2022 has an effective accuracy range of 3 to 8% as 

described by The Anter Manual, accuracy is said to be largely affected by the thermal 

resistivity of the sample.  

 

Figure 3.1Sketch of the interior set up of the guarded heat flow apparatus (TA 

instruments & Anter Corporation 2011 Manual) 

At thermal equilibrium, the Fourier heat flow equation applied to the test stack 

becomes (Anter Manual 2011): 

𝑅𝑠 = 𝐹 ∗ [
𝑇𝑢 − 𝑇𝑙

𝑄
] − 𝑅𝑖𝑛𝑡 
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Rs is thermal resistance of the sample, F is the heat flow transducer calibration 

factor, Tu is the upper plate surface temperature, Tl is the lower plate surface 

temperature, Q is the heat flow transducer output and Rint is the interface thermal 

resistance. The sample thermal conducitivty λ, is calculated from (Anter Manual 

2011) by dividing sample thickness by its measured thermal resistance from the 

previous equation. 

𝜆 =
𝑑

𝑅𝑠
 

The pneumatic load is set at a constant 20MPa throughout thermal conductivity 

measurements. 

Internal precision values and calibration 

A set of calorimeters were used in the thermal conductivity measurement process, of 

sandstone, coal, and granite in the laboratory. The most recent calibration done on 

the samples measured is shown in the form of a calibration curve in figures 3.5 and 

3.6.  

Calibration specimens were repeatedly measured to constrain instrument internal 

precision values. Each calibration specimen was measured a total of three times, 

excluding the initial calibration process. These measurements were compared to 

initial calibration values, and their deviation from original measurements was 

recorded.  Internal precision measurements were only done for low temperature set 

points, as the uncertainty in thermal conductivity is highest at low temperatures. The 

following plots show thermal conductivity variation of calibration specimens with 

repeated measurements. 
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Figure 3.2 Internal precision values for the stainless steel calorimeter (19.05mm), three 

sets of measurements were made relative to initial calibration measurements, error 

bars are not representative of true uncertainty, and instead capture the largest 

recorded uncertainty for each temperature set point

 

Figure 3.3 Internal precision values for vespel 1 calorimeter (3.175mm), three sets of 

measurements were made relative to initial calibration measurements, error bars are 

not representative of true uncertainty, and instead capture the largest recorded 

uncertainty for each temperature set point 
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Figure 3.4 Internal precision values for vespel 2 calorimeter (9.525mm), three sets of 

measurements were made relative to initial calibration measurements, error bars are 

not representative of true uncertainty, and instead capture the largest recorded 

uncertainty for each temperature set point 

As the internal precision measurement plots suggest, uncertainty between 

measurements reduces greatly with temperature. Therefore, internal precision for 

high temperature set points tests did not seem imperative, instead the uncertainty 

associated with the 100°C temperature set point can be used for high temperature 

measurements and still provide an uncertainty range for temperatures between 150 

and 300°C.  

Thermal conductivity tests of samples were done at pre-determined temperature 

intervals, of 20, 50 and 100 degrees for low temperature tests; and 100, 150, 200, 

250 and 300 degrees for high temperature tests. Low and high temperature tests are 

performed separately, as they each require different spacers manufactured from 

copper and polymide respectively. Each spacer is selected for its affinity to retain a 

relatively stable thermal conductivity within a low and high temperature range. 

Minimum standard deviations were assigned to each specimen which were 

calculated based on the repeated thermal conductivity measurement of calibration 

specimens. Standard deviation values were derived from one calibration only, the 
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same calibration used for the coal thermal conductivity measurements. Low and high 

temperature calibration plots are shown below.  

 

Figure 3.5 Low temperature calibration plot for coal samples, thermal resistivity is 

plotted against the ratio between the difference in specimen temperature and 

reference temperature 

 

 

Figure 3.6 High temperature calibration plot for coal samples, thermal resistivity is 

plotted against the ratio between the difference in specimen temperature and 

reference temperature 

 

Standard deviation values attributed to the thermal conductivity measurements of our 

samples were calculated by finding the standard deviation of internal precision values 

at each temperature set point. Internal precision measurements were made with 

three different calorimeters, which all have different thermal conductivities. Therefore, 
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an average of all standard deviation at each specific temperature was made. This 

standard deviation was then taken as a percentage of the initial calibration value. 

This percentage was then used to provide a standard deviation by percentage to the 

thermal conductivities of coal, sandstone and granite samples. Thermal conductivity 

measurements made on the sediment and granite samples however used different 

calibrations. For simplicity, internal precision values were taken from one instrument 

calibration, and its associated uncertainties were used for all samples, including the 

sandstone and granite samples. 

 

As previously stated, respective standard deviations were applied by percentage of 

the original internal precision test. Thus, the higher the thermal conductivity, the 

higher the error is, based on this methodology. This observation is congruent with 

high uncertainties associated with the stainless steel calorimeter, which has a very 

high thermal conductivity. It was found that the lowest calibrated temperature set 

point (20 degrees) has by far the highest uncertainty. This is an instrumentation 

effect, caused by a counter balance of induced cooling and ambient heating required 

to attain thermal equilibration at low temperatures. As a rule, uncertainties gradually 

reduce with higher temperature set points (>50 degrees).  

 

Thermal conductivity tests are designed in such a way that, low and high temperature 

thermal conductivity tests overlap at the 100 degree temperature mark. This 

effectively provides a basis for thermal conductivity variation at a single temperature 

set point without the requirement for internal precision tests. As a result, it was 

decided that the 100 degrees set point overlap was going to be used as the most 

reliable calculated standard deviation for all samples used as reference. It must be 

stated that the standard deviation used for the 20 degree set point, is directly 

calculated from the percentage standard deviation from the internal precision test. In 

order comply with the previous observation that the uncertainty associated with 

thermal conductivity measurements decrease with temperature, an average is made 

at the 50 degrees set point between the 20 degree and 100 degrees set points. This 

was opted for as opposed to directly taking the standard deviation percentage of the 

internal precision test as uncertainty values were lower than that of the 100 degree 

set point. It would therefore seem appropriate to opt for an average with higher 

uncertainty when running Monte Carlo simulations.  
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3.2 Finite element thermal modelling 

3.2.1 Thermal modelling 

Governing equations 

While the target area is a stable basin, the present sedimentation rate is low 

(approximately ~65m/Ma, determined by Gulson et al. (1990)), and the temporal 

evolution and convection effect due to sedimentation is ignored in this study. As a 

result, we solve a stable heat conduction problem as the following form:  

𝛻 ∙ [𝑘(𝑇)𝛻𝑇] + 𝐻 = 0 (1) 

Newton’s Method 

As thermal conductivity is temperature dependent, a non-linear scheme has to be 

implemented to solve this problem. Although convergence may be achievable using 

direct iteration, while thermal conductivity is weakly dependent on temperature. In 

this study, the partial derivative of thermal conductivity as a function of temperature is 

simple to approximate, instead we use a more complicated but faster converging 

Newton scheme.  

The initial thermal field for the Newton iteration is found by solving Eq. 1 using 

thermal conductivity calculated from a constant temperature. Then, while the 

temperature T of the previous Newton step is known, the thermal conductivity 

expressed as K relative to the temperature used for the next step, 𝑇 + 𝛿𝑇 can be 

approximated as: 

𝑘(𝑇 + 𝛿𝑇) = 𝑘(𝑇) +
𝜕𝑘(𝑇)

𝜕𝑇
𝛿𝑇 (2) 

The temperature change between steps 𝛿𝑇 are solved as (T is known from the 

previous Newton step): 

𝛻 ∙ (
𝜕𝑘

𝜕𝑇
𝛿𝑇𝛻𝑇) + 𝛻 ∙ [𝑘(𝑇)𝛻𝛿𝑇] + 𝛻 ∙ [𝑘(𝑇) ∙ 𝛻𝑇] + 𝐻 = 0  (3) 

This solving scheme normally give convergence within ~10 iterations for an error 

residual of 2.90655x10-6 (for thermal profile 1).  
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Deal.II libraries 

To build our own code, an open source finite-element library – deal.ii 

(https://www.dealii.org) is used. It takes care of the details of most finite element 

codes, such as handling of grid, degrees of freedom, sparse matrices and provides 

support for different solvers, which helps keep our code manageable. Its 

dimensionally independent concept and excellent support for adaptive mesh 

refinement and massively parallel architectures gives great potential for easier future 

expansion of our code to more complicated 3D thermal models.  

3.2.2 Computation grid 

When running simulations, the 2D computation domain is 60-180km in length, 

depending on profile location. Model depth is uniformly set to 12km, and the top 

surface is based on topography. The mesh is build based on a divided rectangular 

triangulation (divided to make each mesh cell close to a square), and further globally 

refined and transformed to fit the topography of the surface.  So a global refinement 

value defines the model resolution. Through trial and error, a global refinement value 

of 6 (4,096 cells) to 7 (16,384 cells) was decided as it provided an effective 

compromise for simulation speed and resolution. Simulations with a global 

refinement value of 6 have a cell size of approximately 200mx200m, while 

simulations with a global refinement of 7 have a cell size of approximately 

100mx100m, effectively quadrupling the resolution, however requiring more time to 

compute. In practice, an increased resolution rendered by a global refinement value 

of 7 doesn’t seem to have noticeable changes on the results. Simulation time for a 

global refinement of 6 is very rapid may only take a few seconds, the same goes for 

a global refinement of 7, usually taking a minute to solve.  

 

Here are two examples of lower global refinements for thermal profile 2, showing the 

subdivided grid and its impact on the resolution of the model. 

https://www.dealii.org/
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Figure 3.7 Thermal profile 2 with global refinement of 2, low resolution still captures 

temperature variation. 

 

Figure 3.8 Thermal profile 2 with global refinement of 4, higher resolution showing 

more detailed temperature variation. 

 

3.2.3 Monte Carlo Method 

Monte Carlo simulations were performed utilising a python script. An initial script was 

written to create directories with respect to the root configuration file, and data files 

(which contain H and K values, with standard deviations). A total of one thousand 

directories were generated, all of which have randomly selected thermal conductivity 

values, from a Gaussian distribution with measured means, and standard deviations. 

Once a simulation suite has completed, the output from all one thousand directories 

is compiled into singular plot files. Each plot file shows the mean, while adding and 

subtracting one standard deviation to show the uncertainty range. A geotherm is 

taken every 10km along each profile. Extracted geotherms provide a quantitative 

temperature range useful for determining the thermal arrangement of each profile. 

Increased iterations (10,000) per simulations are used to determine whether more 

iterations necessarily mean increased accuracy, as large simulations are 

computationally expensive and are a time consuming process.  
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3.3 Physical model set-up 

The full geological model is constructed as a series of 12 geological profiles, which 

define the geometry of the major lithological units for all modelled profiles. Heat 

production values, and variable conductivity are provided for each layer used in the 

individual models.  

 

3.3.1 Boundary conditions 

A surface temperature of 15°C is used, as indicated by Danis et al. (2012). This value 

is taken form Cull (1989) measurements. A bottom temperature of 350°C at 12km is 

used, which is the modelled temperature used by Danis et al. (2012) in their models. 

Side conditions of the model have no heat flow, meaning that boundary temperatures 

are all accounted for at the top and bottom of the model. Excluding heat flow from 

side conditions ensures that the model is internally consistent by minimizing edge 

effects.  

 

3.3.2 Interpolation method 

The Lagrange interpolation helps finding the exact value between known data points. 

Assuming a global refinement value of 6 is used for all simulations, the mesh would 

be defined by an approximately 200x200m cell size, while a global refinement of 7 

would mean a cell size of approximately 100x100m, slight variations would depend 

on initial profile dimensions. In order to reliably predict fine resolution basin geometry 

with an adequate lateral resolution, an interpolation method was required. The 

Lagrange high order interpolating polynomial in this case is used to get a complete 

distribution between data points for multiple datasets. As a result, the ‘void’ between 

real data points is reduced by estimating intermediate data points through 3rd order 

Lagrange interpolation. A polynomial that passes through and interpolates n+1 

coordinates is constructed for all following data points (x0, y0), (x1,y1)…(x3,y3). A 

sequential list of values (x0, x1, x2, x3) starting from the beginning of the profile are 

used to define interpolating polynomials, where for instance: 

 

y = jx3 + kx2 + mx + c 
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In this case: j, k, m, and c are constants associated with initial values the polynomial 

was calculated from. This polynomial would intersect all points defined by the 

interpolating functions.  

 

3.3.3 Spatial information 

The basin geometry used to characterise the geothermal models generated in this 

study has been taken from the raw data component of the gravity modelling 

undertaken by Danis et al. (2011). The model is divided into a total of 12 profiles, 

which extend laterally W-E along the length of the Sydney Basin. As a result, all 

profiles vary in size. This method was opted for as it retains consistency with models 

constructed by Danis et al. (2011/2012) and serves as a useful platform for direct 

comparison. The traverse length of each profile was extracted from published figures 

in Danis et al. (2011/2012) by digitizing each respective longitude and latitude. Once 

the traverse length is established, the following equation is used to provide the 

distance in meters from the western most point of the Sydney Basin to the eastern 

most point, which would be determined by its coastal outline. 

All profiles have known latitudes, which is transformed into 2D Cartesian form. We 

calculate the horizontal coordinate as: 

x = Re cos (
lat

180
∗ π) ∗

lon1 − lon0

180
∗ π 

Re is the radius of the earth, lat is the latitude of the profile, lon0 and lon1 are the 

longitude of the target and starting points respectively.  

3.3.4 Profile geometry 

 

All profiles have 4 layers consisting of a Triassic sedimentary layer, a Permian coal 

layer, a Carboniferous volcanics layer and a Carboniferous Basement layer. Profiles 

1-6 have the most complex geometry with one additional ‘Greta’ coal layer overlain 

by the Permian coal layer. The base of the sedimentary layer is defined down to the 

top of the volcanics layer, and coal layer(s) intermittently reside within the 

sedimentary layer. Bottom of the basement is not depicted in following profiles; 

however simulations assume a basement limit of 12 km. The following figures 

(Profiles 1 to 12) are orientated in an EW fashion. 
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Map 1: Plan view of the Sydney Basin with coordinates, showing location of profile 

lines 1 to 12, adapted from Danis et al. (2012). Blue, yellow and green lines show the 

outline of different basement types, including Gulgong, Bathurst and Wyangala 

respectively. Red circles show coal sampling locations, and the red line shows the 

sediments sampling locations. 
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Figure 3.9 Profile 1: latitude -32.15, longitude 149.70-150.90 

 

Figure 3.10 Profile 2: latitude -32.45, longitude 149.75-151.15 

 

Figure 3.11 Profile 3: latitude -32.70, longitude 149.85-151.35 
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Figure 3.12 Profile 4: latitude -32.80, longitude 149.95-151.95 

 

Figure 3.13 Profile 5: latitude -32.90, longitude 149.85-151.80 

 

Figure 3.14 Profile 6: latitude -33.15, longitude 149.95-151.45 
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Figure 3.15 Profile 7: latitude -33.30, longitude 149.95-151.40 

 

Figure 3.16 Profile 8: latitude -33.55, longitude 150.20-151.20 

 

Figure 3.17 Profile 9: latitude -33.65, longitude 150.20-151.25 
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Figure 3.18 Profile 10: latitude -33.85, longitude 150.20-151.10 

 

Figure 3.19 Profile 11: latitude -34.25, longitude 150.30-150.95 

 

Figure 3.20 Profile 12: latitude -34.45, longitude 150.15-150.85 
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3.3.5 Heat production values 

Heat production values have been taken from two prominent sources. Facer (1980) 

provides a short list of packages from the Southern Coalfields in NSW and Blevin et 

al. (2010). Vila et al. (2010) offers a range of values for common lithological groups, 

but does not offer site specific values that are provided by Facer (1980) and Blevin 

(2010). Approximated heat production values of Triassic sedimentary rocks, igneous 

intrusions / dykes that have been identified as intrusions of coal measures, and 

Permian coal measure sedimentary rocks were sampled by Facer (1980). A number 

of the Permian samples have been recognised as inter-seam clastic rocks with 

varying heat production values, as a result, this represents an average between the 

organic and non-organic component of Permian sedimentary packages.  

Although reported values are based on a limited number of samples and that it is 

assumed heat production values remain constant within defined layers or packages, 

they provide a general idea of the large scale heat production of pre-defined 

lithological packages studied in this project. Heat production values were collected 

via XRF (X-ray fluorescence) analysis of K and Th and U via NAA (Neutron activation 

analysis).  

 

A more recent study by Vila et al. (2010) explores the radiogenic heat production 

variability of common lithological groups. A large compilation of heat production 

measurements were provided, showing a mean and percentile difference of heat 

production values. Reported values vary significantly with standard deviations in 

some instances exceeding the mean. It was shown by Vila et al. (2010) that it is 

difficult to approximate and nominate specific values to a group of lithologies. Heat 

production values vary with location, and in order to keep value distributions 

manageable - taking the mean is established to be the most effective approximation, 

and provides a relatively realistic representation of true values.  

 

Blevin et al. (2010), is dealing with a relatively large dataset, consisting of a highly 

specific set of basement rocks. Measured heat production values of the Sydney 

Basin basement, the igneous groups measured, classified by age, are the Gulgong, 

Bathurst and Oberon Granites which represent a large number of the Lachlan Fold 
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belt Carboniferous granitoids. At the current resolution of simulations, heat 

production is averaged across all layers for simplicity, including basement values.  

 

Facer’s (1980) referenced specimens are close to our area of interest, so we adopt 

these estimates, taking into account the uncertainty in the measurements. As a 

result, the following values have been used, in conjunction with Blevin’s et al. (2010) 

basement estimates.  

 

Layer number Heat production value (μWm-3) 

Layer 0 (sediment) 1.1 

Layer 1 (volcanics) 0.87 

Layer 2 (basement) 3.3 

Coal layer 1 2.1 

Coal layer 2 3.1 

 

4. Results 

 

4.1 Thermal conductivity measurements 

Thermal conductivity values used for this study are shown in table 4.1 and 4.2. These 

include basement thermal conductivities, compiled from Evans’s (2013) Lachlan Fold 

Belt Granites measurements, and new measurements on Sydney Basin sediments. 

The Lachlan Belt Granites are representative of a number of granitic bodies which 

extend down to the Sydney Basin basement (Evans 2013). The thermal conductivity 

of each profile was calculated by taking the average of surrounding granites 

corresponding to the latitude of each thermal profile. The thermal conductivity, for a 

given temperature, of the Triassic sediment, coal measures and volcanics was 

assumed to remain constant across all thermal profiles as these measurements do 

not possess the same degree of coverage as the granites.  

Temperature dependent thermal conductivity of sediment and coal measures 

measurements were taken in 2014 as part of this study. Volcanics thermal 

conductivities are taken as recommended temperature dependent estimates taken 

from Danis et al. (2012).  
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Table 4.1 Thermal conductivity measurements with standard deviations 
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The values used for constant thermal conductivities are shown in the following table: 

Geological layer Thermal conductivity (W/mK) 

Sediments 2.0 

Volcanics 3.0 

Basement 3.0 

Permian coal 0.3 

Greta coal 0.3 

 

Table 4.2 Thermal conductivity values used for constant thermal conductivity thermal 

models, values used by Danis, et al. (2012) 

Basement thermal conductivity values, compiled from Evans (2013) 

 

Figure 4.1.1 Basement layer thermal conductivity for profiles 1 and 2, with standard 

deviation shown. Values depict the Gulgong granite. Figure 4.1.2 Basement layer 

thermal conductivity for profiles 2 and 3, with standard deviation shown. Values depict 

the Gulgong granite. 
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Figure 4.1.3 Basement layer thermal conductivity for profiles 6 and 7, with standard 

deviation shown. Values depict the Bathurst granite. Figure 4.1.4 Basement layer 

thermal conductivity for profile 8, with standard deviation shown. Values depict the 

Bathurst granite. 

 

 

Figure 4.1.5 Basement layer thermal conductivity for profile 9, with standard deviation 

shown. Values depict the Bathurst granite. Figure 4.1.6 Basement layer thermal 
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conductivity for profile 10, with standard deviation shown. Values depict the Bathurst 

and Oberon granite. 

 

Figure 4.1.7 Basement layer thermal conductivity for profile 11, with standard 

deviation shown. Values depict the Wyangala granite. Figure 4.1.8 Basement layer 

thermal conductivity for profile 12, with standard deviation shown. Values depict the 

Oberon granite. 
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Sediment, coal measures and volcanics thermal conductivity measurements 

 

Figure 4.1.9 Sediment (fine to coarse grained Triassic sandstone) thermal conductivity 

with standard deviation shown. Figure 4.1.10 Permian coal thermal conductivity with 

standard deviation shown. 

 

Figure 4.1.11 Greta coal thermal conductivity with standard deviation show. Figure 

4.1.12 Volcanics thermal conductivity with standard deviation shown. This layer 

represents Carboniferous rift volcanics in the models.  
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Thermal conductivity of basement values all follow a reducing trend, where 

measurements reveal a decrease in thermal conductivity with temperature. Coal and 

sediment values also have quite well constrained standard deviations based on 

internal precision values. The volcanics layer on the other hand, displays the largest 

uncertainties. Thermal conductivity of the Sydney Basin Carboniferous volcanics 

were estimated by Danis et al. (2010), so we attributed the volcanics a large 

uncertainty range as those thermal conductivities were not experimentally obtained, 

as no Carboniferous volcanics of the Sydney Basin have been experimentally studied 

in terms of their thermal conductivity. As previously stated by Clauser (1995), thermal 

conductivity generally decreases with temperature. This rule is consistent with values 

presented here, except for the thermal conductivity of coal. It has been demonstrated 

by Rezaei et al. (2000) that the thermal conductivity of coal ash actually increases 

with temperature from 200 to 800°C. Thermal conductivity measurements in this 

study are taken from 20 to 300°C, however this increasing trend correlates with high 

temperature measurements (200-300°C).  The Permian and Greta coal measures 

have been given different thermal conductivity values, as Permian coal seams 

appear as lenses within sediments, as described in the geological background 

section (Figure 1.2). Permian coal thermal conductivity values were averaged 

between the Newcastle, Tomago and Whittingham coal measures and the Triassic 

Sydney Basin sediments, while the Greta coal thermal conductivity is purely 

representative of coal. 

A benchmark test is used to confirm that our thermal models work by applying very 

simple constraints. A linear geometry and a uniform thermal conductivity of 1W/mK 

(any number would do) on the entire profile is used to create a linear geotherm. The 

resulting temperature distribution is hence entirely dependent on the presence and 

absence of internal heating rates and boundary conditions. A global refinement of 7 

is used. 
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 Figure 4.1.13 Benchmark test with boundary conditions – 15°C and 350°C for top and 

bottom respectively. Here the temperature distribution is entirely dependent on 

boundary condition without any internal heating. 

 

Figure 4.1.14 Benchmark test with boundary conditions – 15°C and 350°C for top and 

bottom respectively. Here the temperature distribution is both dependent on boundary 

conditions and internal heating.  

 

Benchmarks tests show a response to boundary conditions and internal heating rate. 

Since this response is linear, a difference in the thermal field is going to be due to 

thermal conductivity variation and profile geometry.  

 

4.2 Constant thermal conductivity model 

Temperature dependent thermal profiles and non-temperature dependent thermal 

profiles are independently shown with a 150°C isotherm for direct comparison. These 

profile locations are displayed on Figure 3.9 to 3.20, and the constant thermal 

conductivity values are from Table 4.1. 
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Figure 4.2.1 Thermal profile 1 (non-temperature dependent): featuring 150°C/423°K 

isotherm, temperature scale in degrees Kelvin.  

 

Figure 4.2.2 Thermal profile 2 (non-temperature dependent): featuring 150°C/423°K 

isotherm, temperature scale in degrees Kelvin.  

 

Figure 4.2.3 Thermal profile 3 (non-temperature dependent): featuring 150°C/423°K 

isotherm, temperature scale in degrees Kelvin  
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Figure 4.2.4 Thermal profile 4 (non-temperature dependent): featuring 150°C/423°K 

isotherm, temperature scale in degrees Kelvin  

 

Figure 4.2.5 Thermal profile 5 (non-temperature dependent): featuring 150°C/423°K 

isotherm, temperature scale in degrees Kelvin  

 

Figure 4.2.6 Thermal profile 6 (non-temperature dependent): featuring 150°C/423°K 

isotherm, temperature scale in degrees Kelvin  
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Figure 4.2.7 Thermal profile 7 (non-temperature dependent): featuring 150°C/423°K 

isotherm, temperature scale in degrees Kelvin  

 

Figure 4.2.8 Thermal profile 8 (non-temperature dependent): featuring 150°C/423°K 

isotherm, temperature scale in degrees Kelvin  

 

Figure 4.2.9 Thermal profile 9 (non-temperature dependent): featuring 150°C/423°K 

isotherm, temperature scale in degrees Kelvin  
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Figure 4.2.10 Thermal profile 10 (non-temperature dependent): featuring 150°C/423°K 

isotherm, temperature scale in degrees Kelvin  

 

Figure 4.2.11 Thermal profile 11 (non-temperature dependent): featuring 150°C/423°K 

isotherm, temperature scale in degrees Kelvin  

 

Figure 4.2.12 Thermal profile 12 (non-temperature dependent): featuring 150°C/423°K 

isotherm, temperature scale in degrees Kelvin  

4.3 Temperature dependent thermal conductivity model 

The following thermal profiles are for the same locations as the preceding section, as 

shown in Figures 3.9 to 3.20. However, here we are utilizing the temperature-

dependent conductivity curves derived experimentally from section 4.1, fitted with a 

fourth-order polynomial. 
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Figure 4.3.1 Thermal profile 1 (temperature dependent): featuring 150°C/423°K 

isotherm, temperature scale in degrees Kelvin  

 

Figure 4.3.2 Thermal profile 2 (temperature dependent): featuring 150°C/423°K 

isotherm, temperature scale in degrees Kelvin  

 

Figure 4.3.3 Thermal profile 3 (temperature dependent): featuring 150°C/423°K 

isotherm, temperature scale in degrees Kelvin 
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Figure 4.3.4 Thermal profile 4 (temperature dependent): featuring 150°C/423°K 

isotherm, temperature scale in degrees Kelvin 

 

Figure 4.3.5 Thermal profile 5 (temperature dependent): featuring 150°C/423°K 

isotherm, temperature scale in degrees Kelvin 

 

Figure 4.3.6 Thermal profile 6 (temperature dependent): featuring 150°C/423°K 

isotherm, temperature scale in degrees Kelvin 
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Figure 4.3.7 Thermal profile 7 (temperature dependent): featuring 150°C/423°K 

isotherm, temperature scale in degrees Kelvin 

 

Figure 4.3.8 Thermal profile 8 (temperature dependent): featuring 150°C/423°K 

isotherm, temperature scale in degrees Kelvin 

 

Figure 4.3.9 Thermal profile 9 (temperature dependent): featuring 150°C/423°K 

isotherm, temperature scale in degrees Kelvin 
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Figure 4.3.10 Thermal profile 10 (temperature dependent): featuring 150°C/423°K 

isotherm, temperature scale in degrees Kelvin 

 

Figure 4.3.11 Thermal profile 11 (temperature dependent): featuring 150°C/423°K 

isotherm, temperature scale in degrees Kelvin 

 

Figure 4.3.12 Thermal profile 12 (temperature dependent): featuring 150°C/423°K 

isotherm, temperature scale in degrees Kelvin 

Non-temperature dependent thermal profiles are much more susceptible to 

temperature variation with depth than temperature dependent thermal profiles. Each 

geological layer is attributed a single thermal conductivity value which remains 

constant with temperature and therefore depth. As a result, geology and profile 

geometry are the main controls of temperature variation in non-temperature 

dependent thermal profiles. The 150°C isotherm shown in temperature dependent 
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thermal profiles are much more linear and instead gradually respond to geology and 

geometry. The temperature distribution in temperature dependent thermal profiles is 

by comparison smoother. Non-temperature dependent thermal profiles persistently 

have thermal anomalies in close proximity to the surface as demonstrated by the 

150°C isotherm, most considerably in profiles 1 to 6. Thermal anomalies in profiles 1 

to 6 may be due to the nature of the coal measures, where they are thickest in the 

north and reduce in thickness as it progresses south.  The highly thermally resistive 

nature of the Greta coal could also significantly contribute to this in non-temperature 

dependent thermal profiles.  

Additionally, thermal profile three interestingly shows that approximately ~35km along 

the profile line, the effect of topography can be seen where a local increase in 

sedimentary cover provides further insulation, as well as coal providing additional 

insulation. The top of the basement in the Western half of thermal profile three is very 

shallow in comparison with the Eastern half. Although as seen in profile 2, high 

temperatures are associated with sediment and coal thickness, but also distance to 

the top of the basement from heat generation through radioactive decay of heat 

producing elements. Although there is prominent topographic variation in profile 3, 

the resulting incongruence in topography, sedimentary cover, coal thickness and 

distance to basement ensues little disparity in temperature laterally, across the 

thermal profile. This profile is an example of the effect of complex geometry on the 

thermal structure of the Sydney Basin, and highlights the requirement for the 

understanding of large scale geology.   

In sum, temperature dependent and non-temperature dependent thermal profiles 

distinctively vary from each other. Temperature field variation between temperature 

dependent and non-temperature thermal profiles are sufficiently significant to infer 

that temperature dependent thermal conductivity has an important impact in the way 

heat is distributed in the Sydney Basin. 
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4.4 Geotherms 

In order to assess the uncertainty in our calculated downhole temperature, we 

utilised a Monte Carlo approach. We assigned Gaussian distributions to our 

temperature-dependent conductivity, based on the means and standard deviations of 

the temperature-dependent conductivity curves shown in Section 4.1. This method 

randomly sampled each distribution for each Monte Carlo simulation, for each layer 

for every temperature interval from 20 to 300°C. The output statistical variation is 

shown on geotherm plots, extracted from temperature dependent thermal profiles. A 

preliminary test was made with 100 iterations for profile 1. 100 iterations seem to 

show extremely large uncertainties at depth (greater than 6km) but show that the top 

2km have very constrained geotherms with little variation. In order to determine if 100 

iterations are enough to determine statistical uncertainty, we also tested 1000 

iterations to considerably constrain statistical variation. A series of geotherms at 1000 

iterations were plotted showing uncertainties in temperature with depth (Figure 4.4.1 

to 4.4.8).  

As shown in the table below, each point is a 1D geotherm with an uncertainty range 

at 150°C. Point 0 starts at 0km along the thermal profile and progress sequentially at 

10km intervals. Beside the profile number the uncertainty range average of that 

profile is given. The range in uncertainty in the depth to the 150°C isotherm ranges 

between 99 and 389 meters across all profiles (Table 4.2). Profile points highlighted 

in red show minimum uncertainties within 2km from the surface and may be areas of 

interest regarding the potential for geothermal energy in the Sydney Basin.  
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Table 4.3 Geotherm uncertainty range at 150°C and average uncertainty for each 

profile (points highlighted in red show minimum depth uncertainty is <2000m). 

 Point 0 3156 - 3466m  Point 0 3993 - 4303m  Point 0 3063 - 3166m

Point 1 3116 - 3400m Point 1 3838 - 4096m Point 1 2934 - 3063m

Point 2 3027 - 3337m Point 2 3734 - 3993m Point 2 2779 - 2908m

Point 3 3002 - 3260m Point 3 3476 - 3708m Point 3 2546 - 2701m

Point 4 2924 - 3105m Point 4 3176 - 3460m Point 4 2494 - 2649m

Point 5 2959 - 3140m Point 5 2882 - 3166m Point 5 2572 - 2701m

Point 6 3063 - 3269m Point 6 3011 - 3347m Point 6 2391 - 2546m

Point 7 3037 - 3295m Point 7 2779 - 3192m Point 7 2598 - 2779m

Point 8 2804 - 3037m Point 8 2365 - 2830m Point 8 2804 - 3037m

Point 9 2830 - 3063m Point 9 2184 - 2675m Point 9 2779 - 3063m

Point 10 2779 - 3114m Point 10 1952 - 2494m Point 10 2882 - 3140m

Point 11 3089 - 3399m Point 11 1926 - 2520m Point 11 3311 - 3543m

Point 12 1926 - 2443m Point 12 3046 - 3305m

Point 13 1823 - 2339m Point 13 3192 - 3450m

Point 14 3476 - 3708m

 Point 0 3114 - 3250m  Point 0 3095 -3173m  Point 0 3192 - 3605m

Point 1 2934 - 3063m Point 1 3093 - 3190m Point 1 2934 - 3373m

Point 2 2675 - 2779m Point 2 3073 - 3170m Point 2 2753 - 3179m

Point 3 2210 - 2417m Point 3 2804 - 2934m Point 3 2275 - 2688m

Point 4 2469 - 2727m Point 4 2598 - 2675m Point 4 2017 - 2417m

Point 5 2572 - 2830m Point 5 2494 - 2649m Point 5 1810 - 2004m

Point 6 2804 - 3373m Point 6 2753 - 2856m Point 6 1952 - 2159m

Point 7 3037 - 3502m Point 7 2882 - 3089m Point 7 1926 - 2120m

Point 8 3140 - 3683m Point 8 2753 - 3062m Point 8 2042 - 2210m

Point 9 2986 - 3502m Point 9 2946 - 3063m Point 9 2030 - 2223m

Point 10 2959 - 3269m Point 10 2895 - 3037m Point 10 2055 - 2456m

Point 11 2624 - 2908m Point 11 3321 - 3411m Point 11 2068 - 2469m

Point 12 2649 - 2934m Point 12 3437 - 3541m Point 12 2042 - 2456m

Point 13 3037 - 3399m Point 13 3269 - 3386m Point 13 2197 - 2391m

Point 14 3424 - 3889m Point 14 2262 - 2533m

Point 15 3295 - 3734m Point 15 1862 - 1978m

Point 16 3063 - 3450m Point 16 2559 - 2624m

Point 17 3011 - 3192m Point 17 2804 - 2908m

Point 18 3218 - 3347m Point 18 2817 - 2946m

 Point 0 3657 - 4006m  Point 0  2456 - 2533m  Point 0 2391 - 2456m

Point 1 3192 - 3618m Point 1 1913 - 2094m Point 1 1849 - 1926m

Point 2 1939 - 2494m Point 2 1926 - 2133m Point 2 1965 - 2042m

Point 3 1448 - 1862m Point 3 2236 - 2430m Point 3 2210 - 2262m

Point 4 1500 - 1876m Point 4 2391 - 2723m Point 4 2443 - 2559m

Point 5 1732 - 2030m Point 5 2585 - 2895m Point 5 2572 - 2792m

Point 6 1978 - 2146m Point 6 2662 - 2946m Point 6 2546 - 2675m

Point 7 2107 - 2301m Point 7 2611 - 2817m Point 7 2417 - 2520m

Point 8 2301 - 2456m Point 8 2533 - 2675m Point 8 2404 - 2486m

Point 9 2314 - 2469m Point 9 2714 - 2843m Point 9 2598 - 2662m

Point 10 2301 - 2443m

Point 11 2197 - 2365m

Point 12 2120 - 2288m

Point 13 2262 - 2430m

 Point 0 1913 - 2029m  Point 0 2959 - 3192m  Point 0 3024 - 3101m

Point 1 2146 - 2223m Point 1 2249 - 2507m Point 1 2469 - 2611m

Point 2 2004 - 2107m Point 2 2030 - 2262m Point 2 1875 - 2068m

Point 3 2210 - 2327m Point 3 2094 - 2417m Point 3 1862 - 1939m

Point 4 2378 - 2598m Point 4 1965 - 2185m Point 4 1978 - 2055m

Point 5 2469 - 2649m Point 5 1849 - 1978m Point 5 2120 - 2223m

Point 6 2430 - 2572m Point 6 2365 - 2456m

Point 7 2482 - 2585m

Point 8 2546 - 2637m

Profile 7 (av. 271m) Profile 8 (av. 206m) Profile 9 (av. 99m)

Profile 10 (av. 128m) Profile 11 (av. 233m) Profile 12 (av. 109m)

Profile 1 (av. 255m) Profile 2 (av. 389m) Profile 3 (av. 193m)

Profile 4 (av. 317m) Profile 5 (av. 132m) Profile 6 (av. 318m)
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Only a small number of geotherms can be included due to the large number of them. 

One geotherm per profile of geothermal interest will be shown. 

 

Figure 4.4.1 Geotherm plot with s.d. of profile 2 point 13 generated at 1000 iterations. 

This geotherm is associated with temperature dependent thermal profile 2 (Figure 

4.3.2) at 130km along the profile line. Figure 4.4.2 Geotherm plot with s.d. of profile 6 

point 5 generated at 1000 iterations. This geotherm is associated with temperature 

dependent thermal profile 6 (Figure 4.3.6) at 50km along the profile line. 

 

Figure 4.4.3 Geotherm plot with s.d. of profile 7 point 4 generated at 1000 iterations. 

This geotherm is associated with temperature dependent thermal profile 7 (Figure 

4.3.7) at 40km along the profile line. Figure 4.4.4 Geotherm plot with s.d. of profile 8 

point 1 generated at 1000 iterations. This geotherm is associated with temperature 

dependent thermal profile 8 (Figure 4.3.8) at 10km along the profile line. 
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Figure 4.4.5 Geotherm plot with s.d. of profile 9 point 1 generated at 1000 iterations. 

This geotherm is associated with temperature dependent thermal profile 9 (Figure 

4.3.9) at 10km along the profile line. Figure 4.4.6 Geotherm plot with s.d. of profile 10 

point 0 generated at 1000 iterations. This geotherm is associated with temperature 

dependent thermal profile 10 (Figure 4.3.10) at 0km along the profile line. 

 

Figure 4.4.7 Geotherm plot with s.d. of profile 11 point 5 generated at 1000 iterations. 

This geotherm is associated with temperature dependent thermal profile 11 (Figure 

4.3.11) at 5km along the profile line. Figure 4.4.8 Geotherm plot with s.d. of profile 12 

point 3 generated at 1000 iterations. This geotherm is associated with temperature 

dependent thermal profile 12 (Figure 4.3.12) at 30km along the profile line. 
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Geotherm plots consistently display two major geothermal gradients, the first being a 

surface gradient and the second major geothermal gradient manifests itself at the top 

of the basement. Basement thermal conductivity values are not constant throughout 

all thermal profiles, accounting for the variation in uncertainties between geotherm 

plots. However, the uncertainties associated with surface layers (sediment, coal and 

volcanics) are largely constant.  

In summary, a number of geotherm plots have indicated that certain locations may be 

viable for geothermal potential. 1D geotherm plots suggest a range of potential sites 

such as North West Singleton with critical temperatures of 150C at depths ranging 

from 1823 to 2339m, Wollemi National Park vicinity showing potential from 1810 to 

2004m, and central area of the Blue Mountains show potential from 1448 to 1862m. 

The Katoomba region has potential from 1913 to 2094m, as well as South Katoomba 

from 1849 to 1926m, along the East coast within the Stanwell Park vicinity there is 

potential from 1849 to 1978m, and finally North East of Moss Vale where there may 

be potential from 1862 to 1939m. The site located North West of Singleton may be 

most appropriate for possible future testing and modelling or even perhaps 

reconnaissance surveys to assess its real world potential, considering proximity to 

existing mining infrastructure.  
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5. Discussion 

5.1 Importance of temperature dependent thermal conductivity 

Constant and temperature-dependent thermal profiles indicate that thermal 

conductivity has an important impact on subsurface temperature distributions. 

Thermal profiles using constant thermal conductivity respond very closely to basin 

geometry, while temperature dependent thermal profiles display a gradual change in 

geothermal gradient with depth.  

While the effect of additional variables such as pressure and pore size is not 

accounted for in our thermal models, the effect of thermal conductivity in geothermal 

modelling seems to be of great importance (Abdulagatova et al. 2009). 

Crustal thermal modelling at relatively extensive depths (eg. down to the moho 

discontinuity, which is approximately 35km) would especially require representative 

thermal conductivity values (Vosteen et al. 2003), and given the sensitivity we have 

seen in the range of 20-300°C, representative values may not currently exist. The 

crust is host to a large variety of rock types which all have very different thermal 

conductivities (Clauser 1995), where mineralogical and structural complexities can 

lead to discrete crustal structures (Goff et al. 2012). 

For instance, temperature dependent thermal profile 2 exhibits a very distinct 

temperature distribution mainly caused by the insulating thermal properties of the 

Permian and Greta coal measures (Figure 4.3.2). While, constant thermal 

conductivity thermal profiles have irregular temperature distribution and shallower 

150°C isotherms, as portrayed in Figure 4.2.2; incorporating constant thermal 

conductivities in thermal models has highlighted the disparity between constant and 

temperature dependent thermal models. Thermal anomalies associated with constant 

thermal conductivity thermal models could lead to misleading interpretations of the 

thermal structure of the Sydney Basin. Figure 5.1, demonstrates the temperature 

variation between constant and temperature dependent thermal profiles, beneath a 

thick sequence of the Greta coal measures. The constant thermal conductivity curve 

(in black) infers a temperature 150°C at less than 1km, whereas the temperature 

dependent thermal conductivity curve infers a temperature of 150°C at approximately 
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4km. This large offset is a strong example of the relevance of temperature dependent 

thermal conductivity. 

 

Figure 5.1 Geothermal plot of profile 3 constant (black line) and temperature 

dependent (red line) thermal models (110km along the profile line). 

It is assumed in this project that pressure effects have minimal repercussions on 

thermal conductivity and temperature at <5km, however it is worth noting that a study 

led by Abdulagatova et al. (2009) measured the thermal conductivity of dry 

sandstone using a guarded parallel plate apparatus, which is the same type of device 

that our measurements were made with. Their measurements indicate that the 

thermal conductivity of dry sandstone linearly increases with temperature from 275 to 

523°K, while also showing a linear increase with pressure from 0.1 to 400 MPa. In 

parallel, Petrini et al. (2000), report pressures of 30MPa at 5km depth in the crust. 

Interestingly, the effect of pressure as demonstrated by Abdulagatova et al. (2009) is 

most prominent at the lowest pressures from 0.1 to 20MPa, which would then have 

an effect on sedimentary rocks buried <5km from the surface, as opposed to 

pressures from 100 to 400MPa which show a slow and gradual increase in thermal 

conductivity. The variation in thermal conductivity from 0.1 to 20MPa is approximately 

4%, the change is quite small and may be within error; however incorporating 

pressure effects in future models and investigating the role of pressure in crustal 

systems may well prove useful in order to further constrain the thermal structure of 

sedimentary basins.  The thermal conductivity of Triassic sediments incorporated in 
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this study were however hydrated and not dried during measurements in order to 

somewhat stay true to natural conditions, where sedimentary rocks have generally 

high water content.  While thermal conductivity measurements may not be directly 

comparable, it is worth noting that there is a large difference in values between dried 

and hydrated sandstone.  

Drying the sandstone before measuring its thermal conductivity is perhaps not 

representative of the local geological conditions; however groundwater and fluid 

saturation are factors that should be taken into account in basin thermal modelling 

(Alishaev et al. 2012). Danis (2014) had previously showed that advective effects due 

to groundwater flow are only important in the Sydney Basin shallow Triassic 

sequences, such as the Hawkesbury Sandstone. Such effects are negligible in the 

low-permeability Permian sequences.  

5.2 Importance of coal 

The role of coal in basin thermal structure is not well understood. Danis et al. (2012) 

and Danis (2014) identify that coal-bearing sedimentary basins have initially been 

ignored for potential geothermal resources, because of a lack of understanding of the 

extrapolation temperature method, to address the geological structure and the 

thermal properties of basin materials such as coal. Coal’s insulating properties need 

to be included in foreland basin thermal models, because of the large quantities of 

coal measures that we know are there (Jones et al. 1987). The presence of thick coal 

measures indeed seems to have a significant impact on the thermal structure of the 

Sydney Basin, as shown in Danis et al. (2012), and in results presented here. Danis 

et al. (2012) and Rawling et al. (2014) both present models which demonstrated that 

coal bearing formation provide thermal insulation, which increases temperature 

underneath the coal measures, despite these areas exhibiting low surface heat flux. 

However, the unusual behaviour of coal’s thermal conductivity with depth qualifies 

these conclusions.  
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Figure 5.2 Profile 5 extracts. Red line represents sediments, purple lines represent the 

Permian coal measures, orange lines represent the Greta coal measures, the green 

line represents the Carboniferous volcanics, and the blue line represents the top of 

the basement. This collage shows the effect of the thick Greta coal measures on 

subsurface temperatures. A) Lithological model, as described in chapter 3, top 

topography is 1050m and deepest point for top of basement is 5605m B) Subsurface 

temperatures for temperature dependent thermal conductivity within each geological 

unit, from table 4.1. C) Subsurface temperature for constant thermal conductivity 

within each geological unit, from table 4.1. 

The second, fourth and fifth thermal profiles are great example of the disparity in 

temperature distribution between a region of very low sedimentary cover  with no 

coal, and a region of very thick sedimentary cover (up to 3000m) with thick Permian 

coal layers, and a very thick Greta coal layer which has extremely insulating thermal 

conductivities (~0.3 W/mK). Thermal profile 2 provides a direct correlation between 

B 

C 
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thick sedimentary cover and coal measures, and a shallow 150°C isotherm. The lack 

of sedimentary cover at the beginning of the profile (up to 80km along the profile 

line), results in basement heat being refracted up to this low-conductivity pathway. 

Thermal profile 4 exhibits two comparatively low temperature geotherms (at 80km 

and 145km along the profile line), which correlate with reduced coal thickness and 

increased distance to top of basement.  

The 150°C isotherm is elevated beneath thick coal measures, as demonstrated in 

Figure 5.2. However, another significant effect is the thickness of the basin 

sediments, and the relative depth to the top of the basement. As seen in Figure 5.2, 

basement highs are associated with elevated 150°C.  

Profile 5 has especially high geotherm temperatures beneath the coal (600m beneath 

surface) at 140km along the profile line, where the Greta coal measures is at its 

thickest (approximately ~750km thick). This thermal anomaly is directly caused by 

the presence of insulating coal, where the temperature profile is otherwise relatively 

linear.  

However, in the model with temperature-dependent conductivities, the insulating 

effect of the coal is mitigated by its increasing conductivity for temperatures beyond 

150°C. The decreasing thermal conductivity of sediments (Figure 4.1.9) over this 

temperature range contrasts markedly with this behaviour of coal, and the net effect 

is a much more subdued contrast at depth.  

5.3 Effect of basin and basement geometry on thermal model 

The model is defined by basin and basement geometry, and the physical properties 

bound to the geology. Variation of basin and basement geometry in turn affect the 

subsurface variation in thermal conductivity itself as a function of depth and 

temperature. Therefore geometry, and corollary topography has a significant effect 

on the thermal structure of the Sydney Basin (Danis et al. 2012).  
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Figure 5.3 Profile 3 extracts. Red line represents sediments, purple lines represent the 

Permian coal measures, orange lines represent the Greta coal measures, the green 

line represents the Carboniferous volcanics, and the blue line represents the top of 

the basement. Effect of topography and thick Permian coal measures on subsurface 

temperatures. A) Lithological model, as described in chapter 3, top topography is 

1113m and deepest point for top of basement is 3027m B) Subsurface temperatures 

for temperature dependent thermal conductivity within each geological unit, from 

table 4.1. C) Subsurface temperature for constant thermal conductivity within each 

geological unit, from table 4.1. 

Thermal profile 3 addresses the importance of basin geometry through topography, 

where at approximately ~35km along the profile line, high topography has resulted in 

a local increase in sedimentary cover, together with coal providing additional 

insulation. The top of the basement in the Western half of thermal profile three is very 

shallow in comparison with the Eastern half. Again, elevated 150°C isotherms are 

associated with both sediment and coal thickness, and distance to the top of the 

basement. The latter effect is a function of both the high concentration of radiogenic 

A 

B 

C 
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elements in the basement rocks, generating significant heat (Blevin et al. 2010), and 

the relatively high conductivity of crystalline basement.  

Although there is prominent topographic variation in profile 3, the competing effects 

of topography, sedimentary cover, coal thickness and distance to basement ensues 

little disparity in temperature laterally, across the thermal profile. This profile is an 

example of the effect of complex geometry on the thermal structure of the Sydney 

Basin, and highlights the importance of understanding of large scale geology of a 

basin.   

5.4 Additional implications: Effect of geothermal gradient on crustal 

structure, rigidity and viscosity 

Mechanisms for deformation within a continent are numerous and range from viscous 

ductile flow in the lower crust, to brittle deformation in the upper crust. The net 

rheology of a continent can be rather intricate Regenauer-Lieb et al. (2006) Turcotte 

et al. (2014).  

Ideally, the viscous flow mechanism associated with mantle to crustal material is 

highly temperature-dependent. The seismicity and degree of brittle failure in the crust 

is also dependent on crustal temperatures, and high temperature isotherms affect the 

ductility of material in the shallow crust. As a result, the rigidity of the crust is very 

sensitive to the temperature at depth and geotherms Regenauer-Lieb et al. (2006).  
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Figure 5.4 Strength profile of the lithosphere (Simplified Brace-Goetze strength profile) 

extracted from Regenauer-Lieb et al. (2006). 

 

Figure 5.4 illustrates the stress factor of different stages of the Earth’s crust and 

upper mantle. As a generalisation, the crust is assumed to be largely brittle, but as 

temperature dependent thermal models have shown, some areas such as east of 

thermal profile 2 have shallow 150°C isotherms lingering beneath thick Permian coal 

measures, and increasingly thermally resistive sediment with depth. Thermal 

anomalies detected in the shallow crust could also be a response to mantle 

convection patterns, where crustal heat essentially emanates from. This could have 

implications on the viscosity on the upper mantle and possible understanding of local 

convection cells directly below temperature anomalies detected in the shallow crust.  
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6. Conclusion 

The initial aims of this study have been to compile and incorporate the basin 

geometry and  temperature dependent thermal conductivity measurements and 

constant thermal conductivity values in thermal models of the Sydney Basin, and 

assess their relevance in terms of their effect on thermal structure.  

It was found, that temperature dependent thermal models have much more 

restrained isotherms than non-temperature dependent thermal models. This is 

primarily thought to be due to the presence of coal measures, insulating heat 

generating basement, as well as the reduction in thermal conductivity of the 

sediments with temperature. Basement architecture and proximity to surface also 

impacts the results, where the lack of sediment in some cases leads to thermal 

refraction patterns found in profile 7.  

Geotherm plots were used to show the uncertainty range of thermal gradients in 

order to confidently estimate temperatures at depth. However, the main findings of 

this research consist of the highly temperature dependent nature of thermal models 

and the impact of thermal conductivity variation on the thermal structure of the 

Sydney Basin.  

Geotherm plots indicate the apparent viability for geothermal potential in the Sydney 

Basin. 1D geotherm plots suggesting the appearance of 150°C isotherms at relatively 

shallow depths, which are ideal as exploration targets. The range of potential sites 

include the North West Singleton, Wollemi National Park, Central Blue Mountains, 

South Katoomba and Stanwell Park vicinity, showing potential at 2km or less. North 

West of Singleton is thought to be the most appropriate site for possible geothermal 

exploration, localised thermal models would help to further constrain geothermal 

potential.   

New understanding of the Sydney Basin thermal structure could lead to new 

research targets regarding geothermal potential of the Sydney Basin. The Sydney 

Basin may be used as a proxy for the understanding of other sites that share similar 
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geology. This could also perhaps prompt future interest in investing in geothermal 

energy both in Australia and elsewhere.  



i 
 

References 

Abdulagatova, Z., Abdulagatov, I. M., & Emirov, V. N. (2009). Effect of temperature 

and pressure on the thermal conductivity of sandstone.International. Journal of Rock 

Mechanics and Mining Sciences, 46(6), 1055-1071. 

Alishaev, M. G., Abdulagatov, I. M., & Abdulagatova, Z. Z. (2012). Effective thermal 

conductivity of fluid-saturated rocks: experiment and modeling. Engineering 

Geology, 135, 24-39. 

Bangerth, W., Hartmann, R., Kanschat, G. (2007). Deal.II – a general purpose object 

orientated finite element library. ACM Transactions on Mathematical Software 

(TOMS), 33(4), 1-24. 

Blevin, P.; Chappell, B.; and Jeon, H. (2010). Heat generating potential of igneous 

rocks within and underlying the Sydney Basin: some preliminary observations. 

Proceedings of the 37th Symposium of the geology of the Sydney Basin. 

Casareo, F. (1996). Geochemical and petrographic studies of coals in the upper 

Permian Whittingham coal measures, Northern Sydney Basin, NSW, Australia. North 

Ryde: Macquarie University. 

Clauser, C., & Huenges, E. (1995). Thermal conductivity of rocks and minerals. Rock 

physics & phase relations: A handbook of physical constants, 105-126. 

Conaghan, P. J., Jones, J. G., McDonnell, K. L., & Royce, K. (1982). A dynamic 

fluvial model for the Sydney Basin. Journal of the Geological Society of Australia, 

29(1-2), 55-70.  

Conaghan, P., Jones, G., & McDonnell, K. (1987). Coal measures of an orogenic 

recess: Late Permian Sydney Basin, Australia. Paleogeography, Paleoclimatology, 

Paleoecology, 58(3-4), 203-219. 

Danis, C., & O’Neill, C. (2010). A static method for collecting temperatures in deep 

groundwater bores for geothermal exploration and other applications.Proceedings of 

Groundwater. 

Danis, C., O’Neill, C., Lackie, M., Twigg, L., Danis, A. (2011). Deep 3D structure of 

the Sydney Basin using gravity modelling, Australian Journal of Earth Sciences: An 

International Geoscience Journal of the Geological Society of Australia, 58(5), 517-

542. 

Danis, C., O’Neill, C. Lee, J. (2012). Geothermal state of the Sydney Basin: 

assessment of constraints and techniques, Australian Journal of Earth Sciences: An 

International Geoscience Journal of the Geological Society of Australia, 59(1), 75-90. 



ii 
 

Danis, C. (2014). Use of groundwater temperature data in geothermal exploration: 

the example of Sydney Basin, Australia. Hydrogeology Journal,22(1), 87-106. 

Evans, M. (2013). Thermal conductivity database of Paleozoic instrusives of 

Basement to the Sydney Basin. Department of Earth and Planetary Sciences, 

Macquarie University. 

Facer, R. A.; Cook, A. C.; and Beck, A. E. (1980). Thermal properties and coal rank 

in rocks and coal seams of the Southern Sydney Basin, NSW: a palaeogeothermal 

explanation of coalification. International Journal of Coal Geology, 1(1), 1-17. 

Finlayson, D. M.  & H. M. McCracken, H. M. (1981) Crustal structure under the 

Sydney Basin and Lachlan Fold Belt, determined from explosion seismic studies, 

Journal of the Geological Society of Australia: An International Geoscience Journal of 

the Geological Society of Australia, 28(1-2), 177-190. 

Gerner EJ, Holgate FL (2010) OzTemp Interpreted temperature at 5 km depth image. 
Available via Geoscience Australia. http:// www.ga.gov.au/energy/geothermal-
energy-resources.html,. Accessed 4 May 2011 
 
Goff, J. A., & Holliger, K. (Eds.). (2012). Heterogeneity in the crust and upper mantle: 

nature, scaling, and seismic properties. Springer Science & Business Media. 

Gulson, B. L., Diessel, C. F. K., Mason, D. R., & Krogh, T. E. (1990). High precision 

radiometric ages from the northern Sydney Basin and their implication for the 

Permian time interval and sedimentation rates. Australian Journal of Earth 

Sciences, 37(4), 459-469. 

Greenhalgh, S. A.; Suprajitno, M.; & King, D. W. (1986). Shallow seismic reflection 

investigation of coal in the Sydney Basin. Geophysics, 51(7), 1426-1437. 

Heller, P. L., Angevine, C. L., Winslow, N. S., & Paola, C. (1988). Two-phase 

stratigraphic model of foreland-basin sequences. Geology, 16(6), 501-504.  

Herbert, C. (1995) Sequence stratigraphy of the Late Permian Coal Measures in the 

Sydney Basin, Australian Journal of Earth Sciences: An International Geoscience 

Journal of the Geological Society of Australia, 42(4), 391-405. 

Hunt, J., Anderson, A., Benett, A., Brakel, A., & Whithouse, J. (1984). Petrography 

and geochemistry of the coals and depositional environments of the sediments in the 

late Permian Tomago and Newcastle coal measures from the bore Strevens Terrigal 

1 - Northern Eastern Sydney Basin, NSW. North Ryde: CSIRO - Institute of Energy 

and Earth Resources. 

Jones, J. G., Conaghan, P. J., & McDonnell, K. L. (1987). Coal measures of an 

orogenic recess: late Permian Sydney Basin, Australia. Palaeogeography, 

palaeoclimatology, palaeoecology, 58(3), 203-219. 



iii 
 

Petrini, K., & Podladchikov, Y. (2000). Lithospheric pressure-depth relationship in 

compressive regions of thickned crust. Journal of Metamorphic Geology,18(1), 67-78. 

Jaupart, C., & Mareschal, J. C. (2005). Production from Heat Flow Data. The 

Crust, 3, 65. 

Quenette, S., Moresi, L., O‘Neill, C., & Danis, C. (2012). The effects of temperature 

dependent thermal conductivity on basin heat flow. Thirty-Seventh Workshop on 

Geothermal Reservoir Engineering. 

Qureshi, I. R. (1989) Positive gravity anomaly over the Sydney Basin. Exploration 

Geophysics, 20(1-2), 191-193. 

Rawling, T.J., Sandiford, M., Beardsmore, G.R., Quenette, S., Goyen, S.H. and 

Harrison, B.: Thermal insulation and geothermal targeting, with specific reference to 

coal-bearing basins, Australian Journal of Earth Sciences, 60, (2014), 817–829. 

Regenauer-Lieb, K., Weinberg, R. F., & Rosenbaum, G. (2006). The effect of energy 

feedbacks on continental strength. Nature, 442(7098), 67-70. 

Rezaei, H. R., Gupta, R. P., Bryant, G. W., Hart, J. T., Liu, G. S., Bailey, C. W., ... & 

Endo, Y. (2000). Thermal conductivity of coal ash and slags and models 

used. Fuel, 79(13), 1697-1710. 

Turcotte, D. L., & Schubert, G. (2014). Geodynamics. Cambridge University Press. 

Vila, M.; Fernandez, M.; Jimenez-Munt, I. (2010). Radiogenic heat production 

variability of some common lithological groups and tis significance to lithospheric 

thermal modelling. Technophysics, 490(5), 152-164. 

Vosteen, H. D., & Schellschmidt, R. (2003). Influence of temperature on thermal 

conductivity, thermal capacity and thermal diffusivity for different types of 

rock. Physics and Chemistry of the Earth, Parts A/B/C, 28(9), 499-509. 

 

 

 

 

 



iv 
 

Appendix 

The thermal model code: 

#include <deal.II/grid/tria.h> 

#include <deal.II/dofs/dof_handler.h> 

#include <deal.II/grid/grid_generator.h> 

#include <deal.II/grid/grid_tools.h> 

#include <deal.II/grid/grid_refinement.h> 

#include <deal.II/numerics/error_estimator.h> 

 

#include <deal.II/grid/tria_accessor.h> 

#include <deal.II/grid/tria_iterator.h> 

#include <deal.II/dofs/dof_accessor.h> 

 

#include <deal.II/fe/fe_q.h> 

 

#include <deal.II/dofs/dof_tools.h> 

 

#include <deal.II/fe/fe_values.h> 

#include <deal.II/base/quadrature_lib.h> 

 

#include <deal.II/base/function.h> 

#include <deal.II/numerics/vector_tools.h> 

#include <deal.II/numerics/matrix_tools.h> 

 

#include <deal.II/lac/vector.h> 

#include <deal.II/lac/full_matrix.h> 

#include <deal.II/lac/sparse_matrix.h> 

#include <deal.II/lac/compressed_sparsity_pattern.h> 

#include <deal.II/lac/solver_cg.h> 

#include <deal.II/lac/precondition.h> 

 

#include <deal.II/numerics/data_out.h> 

#include <deal.II/numerics/data_postprocessor.h> 

#include <fstream> 

#include <iostream> 

 

#include <model_data.h> 

#include <data_interpolation.h> 

#include <thermal.h> 

 

using namespace dealii; 

model_data model; 

 

Thermal::Thermal (const std::string &dir) 

  : 

  fe (1), 

  dof_handler (triangulation), 

  //model("data",3), 

  dir(dir)   

/*, 

  bottom(-8.0e3), 

  x_start(0.e3), 

  x_end(140.e3), 

  top_temp(300.), 

  bottom_temp(500.)*/ 

{ 

  read_config(dir); 

  model.bottom = this->bottom; 

  model.read_data(dir,n_layers,n_coals); 

  std::cout<<"Main class initialzed."<<std::endl; 
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} 

 

void Thermal::read_config(const std::string &dir) 

{ 

  std::string filename = dir; 

  filename += "/config.dat"; 

  FILE *fp=fopen(filename.c_str(),"r"); 

  if(fp==NULL) 

  { 

    printf("Can't open file %s to read!\n",filename.c_str()); 

    exit(1); 

  } 

  else 

    printf("Reading config file %s ...\n",filename.c_str()); 

  char *temp; 

  size_t temp_i; 

  temp=(char *)malloc(sizeof(char)*256); 

  getline(&temp,&temp_i,fp); 

  fscanf(fp,"%lf\n",&bottom); 

  getline(&temp,&temp_i,fp); 

  fscanf(fp,"%lf\n",&x_start); 

  getline(&temp,&temp_i,fp); 

  fscanf(fp,"%lf\n",&x_end); 

  // Automatically make this grid close to square  

  n_y=1; 

  n_x=(unsigned)((x_start-x_end)/bottom); 

  getline(&temp,&temp_i,fp); 

  fscanf(fp,"%u\n",&n_refine); 

 

 

  getline(&temp,&temp_i,fp); 

  fscanf(fp,"%lf\n",&top_temp); 

  getline(&temp,&temp_i,fp); 

  fscanf(fp,"%lf\n",&bottom_temp); 

  getline(&temp,&temp_i,fp); 

  fscanf(fp,"%d\n",&n_layers); 

  getline(&temp,&temp_i,fp); 

  fscanf(fp,"%d\n",&n_coals); 

  getline(&temp,&temp_i,fp); 

  // Loop to get all the x coords for output profiles 

  while(!feof(fp)) 

  { 

    double profile_x; 

    if(fscanf(fp,"%lf",&profile_x)!=1) 

      break; 

    x_profiles.push_back(profile_x); 

  } 

   

  fclose(fp); 

  //Show setting sumary 

  { 

    printf("Model depth            %8.1f km\n"            , bottom/1.e3); 

    printf("Model x range          [%8.1f,%8.1f] km.\n"   , x_start/1.e3, 

x_end/1.e3); 

    printf("Cell size at [x,y]     [%8.1f,%8.1f] m.\n"    , (x_end-

x_start)/(n_x*pow(2,n_refine)) 

                                                          , (0.-

bottom)/(n_y*pow(2,n_refine))); 

    printf("Top/Bottom temperature [%8.1f,%8.1f] K\n"     , top_temp, 

bottom_temp); 

    printf("Number of layers       %d\n"                  , n_layers); 

    printf("Number of coal layers  %d\n"                  , n_coals); 

    printf("Number of profiles     %lu\n"                 , x_profiles.size()); 

  } 

} 
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Point<2> grid_transform (const Point<2> &in) 

{ 

  Point<2> out; 

 

  out(0) = in(0); 

  out(1) = in(1) + model.get_topo(in(0)) * (1.0-in(1)/model.bottom); 

  //printf("[%8.2e,%8.2e]->[%8.2e,%8.2e]\n",in(0),in(1),out(0),out(1)); 

  return out; 

} 

 

void Thermal::refine_grid () 

{ 

  Vector<float> estimated_error_per_cell (triangulation.n_active_cells()); 

  KellyErrorEstimator<2>::estimate (dof_handler, 

                                      QGauss<1>(3), 

                                      typename FunctionMap<2>::type(), 

                                      solution, 

                                      estimated_error_per_cell); 

  GridRefinement::refine_and_coarsen_fixed_number (triangulation, 

                                                   estimated_error_per_cell, 

                                                   0.3, 0.03); 

  triangulation.execute_coarsening_and_refinement (); 

} 

 

 

 

void Thermal::make_grid () 

{ 

  //GridGenerator::hyper_cube (triangulation, -1, 1); 

  //Triangulation<2>::cell_iterator cell=triangulation.begin(); 

  //cell->face(0)->set_boundary_indicator(1); 

  //cell->face(1)->set_boundary_indicator(2); 

  Point<2> p1(x_start,0); 

  Point<2> p2(x_end,bottom); 

  std::vector< unsigned int > repetitions(2); 

  repetitions[0]=n_x; 

  repetitions[1]=n_y; 

  

GridGenerator::subdivided_hyper_rectangle(triangulation,repetitions,p1,p2,true)

; 

   

  triangulation.refine_global (n_refine); 

  GridTools::transform(grid_transform, triangulation); 

  /* 

  std::cout << "Number of active cells: " 

            << triangulation.n_active_cells() 

            << std::endl; 

  std::cout << "Total number of cells: " 

            << triangulation.n_cells() 

            << std::endl; 

  */ 

  std::cout << "Grid is made."<<std::endl; 

} 

 

 

void Thermal::setup_system_0 () 

{ 

  dof_handler.distribute_dofs (fe); 

  std::cout << "Number of degrees of freedom: " 

            << dof_handler.n_dofs() 

            << std::endl; 

 

  CompressedSparsityPattern c_sparsity(dof_handler.n_dofs()); 

  DoFTools::make_sparsity_pattern (dof_handler, c_sparsity); 
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  sparsity_pattern.copy_from(c_sparsity); 

 

  system_matrix.reinit (sparsity_pattern); 

 

  solution.reinit (dof_handler.n_dofs(),true); 

  for(unsigned i=0;i<dof_handler.n_dofs();i++) 

    solution[i]=400.; 

  solution_dT.reinit (dof_handler.n_dofs()); 

  system_rhs.reinit (dof_handler.n_dofs()); 

} 

 

void Thermal::setup_system () 

{ 

  system_matrix.reinit (sparsity_pattern); 

  solution_dT.reinit (dof_handler.n_dofs()); 

  system_rhs.reinit (dof_handler.n_dofs()); 

} 

 

void Thermal::assemble_system_0 () 

{ 

  QGauss<2>  quadrature_formula(2); 

  FEValues<2> fe_values (fe, quadrature_formula, 

                         update_values | update_gradients | update_JxW_values  

                         | update_quadrature_points); 

  const unsigned int   dofs_per_cell = fe.dofs_per_cell; 

  const unsigned int   n_q_points    = quadrature_formula.size(); 

 

  FullMatrix<double>   cell_matrix (dofs_per_cell, dofs_per_cell); 

  Vector<double>       cell_rhs (dofs_per_cell); 

 

  std::vector<types::global_dof_index> local_dof_indices (dofs_per_cell); 

 

  DoFHandler<2>::active_cell_iterator 

  cell = dof_handler.begin_active(), 

  endc = dof_handler.end(); 

  for (; cell!=endc; ++cell) 

    { 

      fe_values.reinit (cell); 

 

      cell_matrix = 0; 

      cell_rhs = 0; 

 

      std::vector<double> T(n_q_points); 

      fe_values.get_function_values(solution, T); 

 

      for (unsigned int i=0; i<dofs_per_cell; ++i) 

        for (unsigned int j=0; j<dofs_per_cell; ++j) 

          for (unsigned int q_point=0; q_point<n_q_points; ++q_point) 

          { 

            Point<2> Q=fe_values.quadrature_point(q_point); 

            //double K=get_K(Q,400.); 

            double K=model.get_K(Q[0],Q[1],T[q_point]); 

            cell_matrix(i,j) += (fe_values.shape_grad (i, q_point) * 

                                 fe_values.shape_grad (j, q_point) * 

                                 fe_values.JxW (q_point))* K; 

          } 

 

      for (unsigned int i=0; i<dofs_per_cell; ++i) 

        for (unsigned int q_point=0; q_point<n_q_points; ++q_point) 

        { 

          Point<2> Q=fe_values.quadrature_point(q_point); 

          cell_rhs(i) += (fe_values.shape_value (i, q_point) * 

                          model.get_H(Q[0],Q[1]) * // H * 

                          fe_values.JxW (q_point)); 

        } 
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      cell->get_dof_indices (local_dof_indices); 

 

      for (unsigned int i=0; i<dofs_per_cell; ++i) 

        for (unsigned int j=0; j<dofs_per_cell; ++j) 

          system_matrix.add (local_dof_indices[i], 

                             local_dof_indices[j], 

                             cell_matrix(i,j)); 

      for (unsigned int i=0; i<dofs_per_cell; ++i) 

        system_rhs(local_dof_indices[i]) += cell_rhs(i); 

    } 

         

 

  std::map<types::global_dof_index,double> boundary_values; 

   

  VectorTools::interpolate_boundary_values (dof_handler, 

                                            2, 

                                            ConstantFunction<2>(bottom_temp), 

                                            boundary_values); 

  VectorTools::interpolate_boundary_values (dof_handler, 

                                            3, 

                                            ConstantFunction<2>(top_temp), 

                                            boundary_values); 

 

  MatrixTools::apply_boundary_values (boundary_values, 

                                      system_matrix, 

                                      solution, 

                                      system_rhs); 

        } 

 

void Thermal::assemble_system () 

{ 

  QGauss<2>  quadrature_formula(2); 

  FEValues<2> fe_values (fe, quadrature_formula, 

                         update_values | update_gradients | update_JxW_values 

                         | update_quadrature_points); 

  const unsigned int   dofs_per_cell = fe.dofs_per_cell; 

  const unsigned int   n_q_points    = quadrature_formula.size(); 

 

  FullMatrix<double>   cell_matrix (dofs_per_cell, dofs_per_cell); 

  Vector<double>       cell_rhs (dofs_per_cell); 

 

  std::vector<types::global_dof_index> local_dof_indices (dofs_per_cell); 

 

  DoFHandler<2>::active_cell_iterator 

  cell = dof_handler.begin_active(), 

  endc = dof_handler.end(); 

  for (; cell!=endc; ++cell) 

    { 

      fe_values.reinit (cell); 

 

      cell_matrix = 0; 

      cell_rhs = 0; 

      cell->get_dof_indices (local_dof_indices); 

      std::vector<Tensor<1, 2> > solution_gradients(n_q_points); 

      std::vector<double> T(n_q_points); 

      fe_values.get_function_gradients(solution, solution_gradients); 

      fe_values.get_function_values(solution, T); 

 

      for (unsigned int i=0; i<dofs_per_cell; ++i) 

        for (unsigned int j=0; j<dofs_per_cell; ++j) 

          for (unsigned int q_point=0; q_point<n_q_points; ++q_point) 

          { 

            Point<2> Q=fe_values.quadrature_point(q_point); 

            //double K=get_K(Q,T[q_point]); 



ix 
 

            //double dK_dT=get_dK_dT(Q,T[q_point]); 

            double K=model.get_K(Q[0],Q[1],T[q_point]); 

            double dK_dT=model.get_dK_dT(Q[0],Q[1],T[q_point]); 

            cell_matrix(i,j) += (fe_values.shape_grad (i, q_point) * 

                                 fe_values.shape_grad (j, q_point) *  

                                 fe_values.JxW (q_point)) * K 

                              + (fe_values.shape_grad (i, q_point) * 

                                 solution_gradients [q_point] * 

                                 fe_values.shape_value (j, q_point) * 

                                 fe_values.JxW (q_point)) * dK_dT ; 

            cell_rhs(i) += - (fe_values.shape_grad (i, q_point) * 

                              solution_gradients [q_point] * 

                              fe_values.JxW (q_point)) * K 

                           + (fe_values.shape_value (i, q_point) * 

                              fe_values.JxW (q_point)) * model.get_H(Q[0],Q[1]) 

// Can replace 0.0 with heat production rate 

                           ; 

          } 

 

      for (unsigned int i=0; i<dofs_per_cell; ++i) 

        for (unsigned int j=0; j<dofs_per_cell; ++j) 

          system_matrix.add (local_dof_indices[i], 

                             local_dof_indices[j], 

                             cell_matrix(i,j)); 

 

      for (unsigned int i=0; i<dofs_per_cell; ++i) 

        system_rhs(local_dof_indices[i]) += cell_rhs(i); 

    } 

  std::map<types::global_dof_index,double> boundary_values; 

 

  for(unsigned i=2;i<4;i++) 

    VectorTools::interpolate_boundary_values (dof_handler, 

                                              i, 

                                              ConstantFunction<2>(0.), 

                                              boundary_values); 

 

  MatrixTools::apply_boundary_values (boundary_values, 

                                      system_matrix, 

                                      solution_dT, 

                                      system_rhs); 

} 

 

 

 

void Thermal::solve_0 () 

{ 

  SolverControl           solver_control (3000, 1e-12); 

  SolverCG<>              solver (solver_control); 

 

  solver.solve (system_matrix, solution, system_rhs, 

                PreconditionIdentity()); 

} 

 

void Thermal::solve () 

{ 

  SolverControl           solver_control (3000, 1e-12); 

  SolverCG<>              solver (solver_control); 

 

  solver.solve (system_matrix, solution_dT, system_rhs, 

                PreconditionIdentity()); 

} 

 

 

 

template <int dim> 
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class Thermal::Postprocessor : public DataPostprocessor<dim> 

{ 

  public: 

    Postprocessor(const class Thermal *this_parent): 

      this_parent(this_parent) 

    { 

    }; 

    virtual 

    void 

    compute_derived_quantities_scalar (const std::vector<double >              

&uh, 

                                       const std::vector<Tensor<1,dim> >       

&duh, 

                                       const std::vector<Tensor<2,dim> >       

&dduh, 

                                       const std::vector<Point<dim> >          

&normals, 

                                       const std::vector<Point<dim> >          

&evaluation_points, 

                                       std::vector<Vector<double> >            

&computed_quantities) const 

    { 

      const unsigned int n_quadrature_points = uh.size(); 

      Assert (computed_quantities.size() == n_quadrature_points,  

ExcInternalError()); 

      for(unsigned int q=0;q<n_quadrature_points;++q) 

      { 

        computed_quantities[q](0) = uh[q]; 

        //computed_quantities[q](1) = this_parent-

>get_K(evaluation_points[q],uh[q]); 

        //computed_quantities[q](2) = this_parent-

>get_dK_dT(evaluation_points[q],uh[q]); 

        computed_quantities[q](1) = /*this_parent-

>*/model.get_K(evaluation_points[q][0],evaluation_points[q][1],uh[q]); 

        computed_quantities[q](2) = /*this_parent-

>*/model.get_dK_dT(evaluation_points[q][0],evaluation_points[q][1],uh[q]); 

        computed_quantities[q](3) = /*this_parent-

>*/model.get_H(evaluation_points[q][0],evaluation_points[q][1]); 

        computed_quantities[q](4) = /*this_parent-

>*/model.get_material(evaluation_points[q][0],evaluation_points[q][1]); 

      } 

    }; 

 

    virtual std::vector<std::string> get_names () const 

    { 

      std::vector<std::string> solution_names(1,"T"); 

      solution_names.push_back ("K"); 

      solution_names.push_back ("dK_dT"); 

      solution_names.push_back ("H"); 

      solution_names.push_back ("Material_ID"); 

      return solution_names; 

    }; 

    virtual unsigned int n_output_variables() const 

    { 

      return 5; 

    }; 

 

    virtual 

    std::vector<DataComponentInterpretation::DataComponentInterpretation> 

    get_data_component_interpretation () const 

    { 

       std::vector<DataComponentInterpretation::DataComponentInterpretation> 

            interpretation 

(1,DataComponentInterpretation::component_is_scalar); 



xi 
 

       

interpretation.push_back(DataComponentInterpretation::component_is_scalar); 

       

interpretation.push_back(DataComponentInterpretation::component_is_scalar); 

       

interpretation.push_back(DataComponentInterpretation::component_is_scalar); 

       

interpretation.push_back(DataComponentInterpretation::component_is_scalar); 

       return interpretation; 

    }; 

 

    virtual UpdateFlags get_needed_update_flags () const 

    { 

       return update_values | update_q_points; 

    }; 

  private: 

    const class Thermal *this_parent; 

}; 

 

 

void Thermal::output_results (const std::string &dir) const 

{ 

  DataOut<2> data_out; 

  data_out.attach_dof_handler (dof_handler); 

  //data_out.add_data_vector (solution,"T"); 

  Postprocessor<2> postprocessor(this); 

  data_out.add_data_vector (solution, postprocessor); 

  data_out.add_data_vector (solution_dT,"dT"); 

  data_out.build_patches (); 

 

  std::string filename = dir+ "/output"; 

  //if(cycle==0)system(("mkdir "+filename).c_str()); 

  filename += "/solution"; 

  filename += ".vtk"; 

  std::ofstream output (filename.c_str()); 

  data_out.write_vtk (output); 

  // Output thermal profiles 

   

  for(unsigned i=0;i<x_profiles.size();i++) 

  { 

    char profile_name[256]; 

    sprintf(profile_name,"%s/output/profile.%u",dir.c_str(),i); 

    printf("Outputing profile %u...\n",i); 

    output_profile(std::string(profile_name),x_profiles[i]); 

  } 

} 

 

void Thermal::output_profile(const std::string &filename, double x) const 

{ 

  //printf("Start outputing profile\n"); 

  //const std::vector<Point<2> >    support_points 

  //  = fe.get_unit_support_points(); 

  Quadrature<2>                   support_points(fe.get_unit_support_points()); 

  std::vector<bool>               point_mark(dof_handler.n_dofs(),false); 

  std::vector<struct Data_point>  data_points; 

  FEValues<2> fe_values (fe,support_points, 

                         update_values            | 

                         update_quadrature_points | 

                         update_JxW_values); 

  //printf("Before the loop\n"); 

  const unsigned int                      dofs_per_cell = fe.dofs_per_cell; 

  std::vector<types::global_dof_index>    local_dof_indices (dofs_per_cell); 

  typename DoFHandler<2>::active_cell_iterator    cell = 

dof_handler.begin_active(), 

                                                  endc = dof_handler.end(); 
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  const double critial_dist = 0.5*(x_end-x_start)/(n_x*pow(2,n_refine)); 

  for (; cell!=endc; ++cell) 

  { 

    fe_values.reinit(cell); 

    //printf("Loop over cell\n"); 

    const std::vector<Point<2> > vertex_points 

      = fe_values.get_quadrature_points(); 

    //printf("%d points\n",vertex_points.size()); 

    //printf("Trying to get temperature from %d temperature 

solutions\n",solution.size()); 

    std::vector<double> cell_temperature(dofs_per_cell); 

    fe_values.get_function_values(solution, cell_temperature); 

    //printf("%d cell temperatures get.\n",cell_temperature.size()); 

    cell->get_dof_indices (local_dof_indices); 

    for(unsigned i=0;i<dofs_per_cell;i++) 

    { 

      //printf("Loop over dofs of the cell\n"); 

      //printf("Checking point %8d [%8.1f,%8.1f] distant/critial 

[%8.1f,%8.1f].\n", 

      //       local_dof_indices[i], vertex_points[i][0], vertex_points[i][1], 

      //       fabs(vertex_points[i][0]-x), critial_dist); 

      if(fabs(vertex_points[i][0]-x)<=critial_dist) 

      { 

        if(point_mark[local_dof_indices[i]]==false) 

        { 

          //Add point into array 

          //printf("Add a point\n"); 

          struct Data_point data_point; 

          data_point.id          = local_dof_indices[i]; 

          data_point.point       = vertex_points[i]; 

          data_point.temperature = solution[local_dof_indices[i]]; 

           

          data_points.push_back(data_point); 

          point_mark[local_dof_indices[i]]=true; 

        } 

      } 

    } 

  } 

  printf("%8lu points found in this profile (%8d vertial grid 

points).\n",data_points.size(),n_y*(int)pow(2,n_refine)+1); 

  //Sort array 

  std::sort(data_points.begin(),data_points.end()); 

  

  //Save into file 

  FILE *fp=fopen(filename.c_str(),"w"); 

  if(fp!=NULL) 

  { 

    //Write the header 

    fprintf(fp,"%18s %18s %18s %18s\n","Y","T","X","ID"); 

    for(unsigned i=0;i<data_points.size();i++) 

    { 

      fprintf(fp,"%18e %18e %18e %18lu\n", data_points[i].point[1] 

                                         , data_points[i].temperature 

                                         , data_points[i].point[0] 

                                         , data_points[i].id); 

    } 

    printf("Temperature profile wrote into %s\n",filename.c_str()); 

    fclose(fp); 

  } 

  else 

  { 

    printf("Can't open file %s to write temperature 

profile.\n",filename.c_str()); 

  } 

} 
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double Thermal::compute_residual (const double alpha) const 

{ 

  Vector<double> residual (dof_handler.n_dofs());  

  Vector<double> evaluation_point (dof_handler.n_dofs());  

  evaluation_point = solution;  

  evaluation_point.add (alpha, solution_dT);  

  const QGauss<2>  quadrature_formula(2);   

  FEValues<2> fe_values (fe, quadrature_formula, 

                           update_values            | 

                           update_gradients         | 

                           update_quadrature_points | 

                           update_JxW_values);     

  const unsigned int           dofs_per_cell = fe.dofs_per_cell; 

  const unsigned int           n_q_points    = quadrature_formula.size(); 

  Vector<double>               cell_residual (dofs_per_cell); 

  std::vector<Tensor<1, 2> > gradients(n_q_points); 

  std::vector<double> T(n_q_points); 

  std::vector<types::global_dof_index>    local_dof_indices (dofs_per_cell); 

  residual = 0; 

  typename DoFHandler<2>::active_cell_iterator    cell = 

dof_handler.begin_active(), 

                                                  endc = dof_handler.end(); 

  for (; cell!=endc; ++cell) 

  { 

    cell_residual = 0; 

    fe_values.reinit (cell); 

    fe_values.get_function_gradients (evaluation_point, 

                                      gradients); 

    fe_values.get_function_values(evaluation_point, T); 

    for (unsigned int q_point=0; q_point<n_q_points; ++q_point) 

    { 

      Point<2> Q=fe_values.quadrature_point(q_point); 

      //double K=get_K(Q,T[q_point]); 

      double K=model.get_K(Q[0],Q[1],T[q_point]); 

      for (unsigned int i = 0; i < dofs_per_cell; ++i) 

        cell_residual(i) +=   (fe_values.shape_grad(i, q_point) 

                            * gradients[q_point] 

                            * K 

                            * fe_values.JxW(q_point) 

                          -   fe_values.shape_value(i, q_point) 

                            * model.get_H(Q[0],Q[1]) //H 

                            * fe_values.JxW(q_point)); 

    } 

    cell->get_dof_indices (local_dof_indices); 

    for (unsigned int i=0; i<dofs_per_cell; ++i) 

      residual(local_dof_indices[i]) += cell_residual(i); 

  } 

  //hanging_node_constraints.condense (residual); 

  std::vector<bool> boundary_dofs (dof_handler.n_dofs()); 

  DoFTools::extract_boundary_dofs (dof_handler, 

                                   ComponentMask(), 

                                   boundary_dofs); 

  for (unsigned int i=0; i<dof_handler.n_dofs(); ++i) 

    if (boundary_dofs[i] == true) 

      residual(i) = 0; 

  return residual.l2_norm();   

} 

 

double Thermal::compute_residual () const 

{ 

  double residual=0.,volume=0.; 

  const QGauss<2>  quadrature_formula(3); 

  FEValues<2> fe_values (fe, quadrature_formula, 

                           update_values            | 
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                           update_quadrature_points | 

                           update_JxW_values); 

  const unsigned int           dofs_per_cell = fe.dofs_per_cell; 

  const unsigned int           n_q_points    = quadrature_formula.size(); 

  std::vector<Tensor<1, 2> > gradients(n_q_points); 

  std::vector<double> dT(n_q_points); 

  std::vector<types::global_dof_index>    local_dof_indices (dofs_per_cell); 

  typename DoFHandler<2>::active_cell_iterator    cell = 

dof_handler.begin_active(), 

                                                  endc = dof_handler.end(); 

  for (; cell!=endc; ++cell) 

  { 

    fe_values.reinit (cell); 

    fe_values.get_function_values(solution_dT, dT); 

    for (unsigned int q_point=0; q_point<n_q_points; ++q_point) 

    { 

        residual += fabs(dT[q_point] * fe_values.JxW(q_point)) ; 

        volume   += fe_values.JxW(q_point); 

    } 

  } 

  //hanging_node_constraints.condense (residual); 

  return residual / volume; 

} 

 

void Thermal::run () 

{ 

  double relaxation_factor = 0.3; 

  int n_iterations = 15; 

   for (unsigned int cycle=0; cycle<n_iterations; ++cycle) 

   { 

     std::cout << "Cycle " << cycle << ':' << std::endl; 

     if (cycle == 0) 

     { 

       make_grid (); 

     } 

     //else 

     //refine_grid (); 

 

     std::cout << " Number of active cells: " 

               << triangulation.n_active_cells() 

               << std::endl; 

     if (cycle ==0) setup_system_0(); 

     std::cout << " Number of degrees of freedom: " 

               << dof_handler.n_dofs() 

               << std::endl; 

     if(cycle==0) 

     { 

       //output_results (dir,cycle); 

       std::string filename = dir+ "/output"; 

       system(("mkdir "+filename).c_str()); 

       assemble_system_0 (); 

       solve_0 (); 

       output_results (dir); 

     } 

     setup_system (); 

     assemble_system (); 

     solve (); 

     /* 

     std::cout << "Average temperature change for Non-linear steps: " 

               << compute_residual() 

               << std::endl; 

               */ 

     double nonlinear_residual = compute_residual(relaxation_factor); 

     std::cout << "Non-linear residual: " 

               << nonlinear_residual 



xv 
 

               << std::endl; 

     solution.add(relaxation_factor,solution_dT); 

     if(nonlinear_residual<1.e-5) 

     { 

        printf("Converged in %d steps.\n",cycle); 

        break; 

     } 

 

   } 

   output_results (dir); 

   //Varify solutions 

   /* 

   { 

     Vector<double> old_solution = solution; 

     setup_system (); 

     assemble_system_0 (); 

     solve_0 (); 

     for(unsigned i=0;i<solution.size();i++) 

       solution_dT[i] = solution[i] - old_solution[i]; 

     std::cout << "Average temperature change when varifying the solution: " 

               << compute_residual() 

               << std::endl; 

   }*/ 

   //output_results (dir,n_iterations); 

} 

 

 

int main (int argc, char *argv[]) 

{ 

  std::string dir; 

  if (argc >= 2) 

    dir = argv[1]; 

  else 

  { 

    printf("Usage: Thermal data_directory.\n"); 

    exit(1); 

  } 

  //model.read_data(dir); 

  Thermal thermal_problem(dir); 

  std::cout<<"Starting main programe."<<std::endl; 

  thermal_problem.run (); 

 

  return 0; 

} 
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