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Abstract 


The Ipswich Basin, an extensive Late Triassic basin that straddles the Queensland-New 

South Wales border in eastern Australia, contains a basal sequence of felsic and mafic 

volcanic rocks, which, together with the Agnes Water Volcanics, Aranbanga Beds , 

Mount Byron Volcanics, Muncon Volcanics, North Arm Volcanics, and numerous 

plutons, form a major igneous province. Volcanism in the Ipswich Basin was 

manifested in an older mafic- dominated (in parts bi-modal) belt on the west, and a 

younger, silicic belt to the east. An early phase of calc-alkaline rhyolitic lava in the sub­

surface is succeeded by exposed basaltic andesite lava flows and air-fall tuffs of the 

Sugars Basalt and Weir Basalt. Commencing in the westernmost sections, coarse clastic 

sedimentary rocks were deposited in fans along the West Ipswich Fault. Farther east 

near Brisbane and south to Mount Warning, extensive rhyolitic volcanism generated the 

ignimbrites of the Brisbane Tuff, the rhyo-dacitic air-fall tuffs and ignimbrites of the 

Mount Crosby Formation and Hector Huff, the rhyolitic lavas and pyroclastic rocks of 

the Chillingham Volcanics, and the isolated exposures of rhyolitic lavas on Moreton and 

Stradbroke Islands. The Brisbane Tuff is a valley-fill ignimbrite, with minor air-fall 

tuffs and ground surges, and at Carindale an ignimbrite outflow sheet. The Brisbane 

Tuff is a single cooling unit of flows continuously emplaced from a single vent. The 

coeval Chillingham Volcanics extend southward from Brisbane in an 80 km long belt of 

silicic volcanism. The Chillingham Volcanics follow a cycle of precursory pyroclastic 

eruptions and subsequent fissure-type lava effusion. In the south and centre, an earlier 

cycle of pyroclastic rock eruption and lava emplacement in domes also occurs. The 

northerly strike of vertically oriented zones of flow banding, thought to reflect feeder 

dykes, parallels the regional strike so the eruptive fissures may be related to deep basin-

forming structures. 

The chemistry of the Ipswich Basin mafic rocks differs from that of mafic rocks 

from volcanic-arc or within-plate settings, though sharing features of both. I interpret 

the "mixed" signature as reflecting the tectonic environment into which the mafic rocks 

were erupted, namely an area of back-arc extension. Rocks with chemical characteristics 

similar to the Ipswich Basin mafic rocks are present in the early stages of rifting in the 

Basin and Range Province of the western United States, the South Shetland Islands, and 

parts of the Central Andes. Geochemistry is consistent with the postulated tectonic 

setting of the Ipswich Basin in an area of back-arc extension associated with strike-slip 

faulting. 

Volcanism ceased later in the Late Triassic during the eastward migration of the 

heat source, and was followed by deposition of the thick coal measures around Ipswich. 
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