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1 Abstract

This PhD thesis analyzes the predictive power entailed in the term structure
of interest rates and interest rate differentials. It consists of three key chap-
ters based on three research papers.

The first research paper titled ’Forecasting the Term Structure of Interest
Rates near the Zero Bound - a New Era? ’ investigates the forecasting per-
formance of popular dynamic factor models of the yield curve after the global
financial crisis (GFC). This time period is characterized by a low and non-
volatile interest rate environment in most major economies with short rates
close to the zero bound. We focus on two popular factor models which ex-
ploit the information contained in the cross-section of the term structure – the
dynamic Nelson-Siegel model and regressions on principal components – to
show that subsequent to the GFC both models are significantly outperformed
by a random walk no-change forecast. Especially for short and medium term
yields, the random walk is up to ten times more accurate. Interestingly, these
results are not picked up by traditional global forecast evaluation metrics.
We further show that combining forecasts mitigates model uncertainty and
improves the disappointing forecasting accuracy especially after the GFC.

The research work ’Factors of the Term Structure of Sovereign Yield Spreads ’
investigates the term structure of sovereign yield spreads for five advanced
economies against the US and provides novel insights into the key drivers of
the spread term structure. We show that the spread term structure dynam-
ics are driven by three latent factors which can be labeled as spread level,
slope and curvature, similar to common interpretations found in the yield
curve literature. We further show that these estimated spread factors have
predictive power for exchange rate movements and excess returns above the
predictability of an uncovered interest rate parity approach. As the yield
curve contains information about expected future economic conditions, we
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conjecture that these yield spread factors reflect expected macroeconomic
differentials which in turn drive exchange rates. Using the information con-
tent of yield spread curves may thus be a promising approach to improve the
forecasting accuracy of exchange rate models.

The third research paper titled ’Exchange Rates and Unobservable Funda-
mentals: A New Approach to Out-of Sample Forecasting ’ builds on the key
findings of the previous paper and suggests applying the empirical sovereign
yield spread level and slope to forecast exchange rates out-of-sample. Tra-
ditional exchange rate models are usually based on differences in observable
macroeconomic fundamentals such as output and inflation. However, while
being well grounded in economic theory, these fundamental models have a
rather poor out-of sample forecasting record. This empirical failure may be
a result of the overly restrictive choice of macroeconomic fundamentals. We
thus apply the empirical sovereign yield spread level and slope as unobserv-
able proxies of the market’s expectations for current and future fundamentals.
Our approach outperforms traditional exchange rate models in forecasting ac-
curacy and profitability for all applied forecasting evaluation metrics. It is
also superior to a random walk in terms of direction of change forecasts and
profitability of the forecasts.
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2 Introduction

This thesis deals with potentials and limitations of the predictive power en-
tailed in the term structure of interest rates and interest rate differentials.
This introduction describes the concept of the term structure and discusses
the different approaches applied in the literature to investigate the predictive
content comprised in the term structure. It concludes with the describing the
structure of this thesis and the contributions made by each of the research
papers to the discipline.

2.1 The Term Structure of Interest Rates and

Interest Rate Differentials

The term structure of interest rates denotes the relation between an interest
rate and the time to maturity of the underlying instrument. While a term
structure theoretically exists for any financial instrument that is available for
different maturities, it is often equated with the yields of government bonds
(’yield curve’) which serve as a benchmark for the interest rate level in an
economy.1

The term structure of interest rates is an important financial and macroe-
conomic variable. The shape of the yield curve is a central input factor
for monetary policy decisions and denotes the cost of funding for individ-
uals and corporations. Accurate forecasts of the term structure of interest
rates are crucial in bond portfolio management, derivative pricing and risk
management. The yield curve is therefore subject to an enormous body of
literature that deals with modeling (Ang and Piazzesi, 2003; Diebold et al.,
2005; Gürkaynak et al., 2007; Chen and Niu, 2014) and forecasting (Duf-

1In line with existing research, this thesis also uses government bonds zero yields, which
are generally referred to when discussing the term structure of interest rates, to proxy
interest rates and uses the terms ’yield ’ and ’interest rate’ interchangeably.
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fee, 2002; Diebold and Li, 2006; Christensen et al., 2011; Laurini and Hotta,
2014) the term structure.
The difference between two government yields of equal maturity is denoted
the ’sovereign yield spread ’ or ’sovereign spread ’. As sovereign spreads can
be calculated for any maturity, they exhibit a term structure or ’sovereign
spread curve’ of their own.
Sovereign yield spreads reflect a government’s creditworthiness and are key
indicators for expected exchange rate movements within the uncovered in-
terest rate parity (UIRP) approach, see, e.g. Sarno (2005); Engel (2013) for
recent surveys of the enormous UIRP literature. As they offer a clear pic-
ture of the underlying trade-offs for investors, research on sovereign spreads
has grown significantly in the past years. These studies mainly focus on the
determinants of spreads for emerging economies against the US (Rocha and
Garcia, 2005; Hilscher and Nosbusch, 2010) and, recently, spreads within the
Eurozone following the advent of the recent European debt crisis (Bernoth
and Erdogan, 2012; Maltritz, 2012; Oliveira et al., 2012). However, studies
investigating the term structure of sovereign spreads are relatively scarce as
the above mentioned research on UIRP and sovereign spreads usually focuses
on certain maturities and disregards the dynamics of the term structure.
For both variables – yield curves and yield spread curves – the predictive con-
tent entailed in the term structure is of particular importance to academics,
market participants and policy makers alike. As the yield curve summarizes
expectations about future paths of short interest rates (’expectations hypoth-
esis ’), it contains information about expected future economic fluctuations
(Chinn and Kucko, 2010). The shape and movements of the yield curve have
thus long been used to provide readings of market expectations about future
macroeconomic fundamentals and the development of financial market. In
turn, the term structure of sovereign spreads – being the difference between
individual yield curves – naturally contains valuable long term information
about expected cross-country differentials which play an important role in
exchange rate determination.
This has naturally led to three streams of research investigating the pre-
dictive, forward-looking content entailed in the term structure. First, the
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yield curve forecasting literature uses the information embodied in the cross-
section of the yield curve to forecast individual maturities (Duffee, 2002;
Diebold and Li, 2006; Pooter et al., 2010; Exterkate et al., 2013). As the
different maturities are often influenced by the same factors, exploiting the
cross-sectional information entailed in the term structure with dynamic fac-
tor models is by now the most popular approach to forecast interest rates
(Christensen et al., 2011; Favero et al., 2012; Xiang and Zhu, 2013).
In the second stream, macroeconomic forecasting studies explore the pre-
dictive power of the yield curve for macroeconomic variables, in particular
output (Ang et al., 2006), recessions (Erdogan et al., 2015), inflation (Rude-
busch and Wu, 2008), monetary policy (Heidari and Wu, 2010) and financial
crises (Guidolin and Tam, 2013).
The third, relatively young, stream of research investigates the relation be-
tween the term structure interest rate differentials and exchange rates. This
relation is traditionally expressed in the uncovered interest rate parity (UIRP)
condition (Sarno, 2005; Backus et al., 2010; Engel, 2013), which only uses the
information content up to a certain maturity. However, the exchange rate
is now commonly modeled as an asset price (Mark, 1995; Engel and West,
2005), and thus depends heavily on expected long term macroeconomic fun-
damentals. Recent studies (see in particular Chen and Tsang (2013) and Bui
and Fisher (2016)), argue that these future fundamentals may be reflected
more accurately in the entire term structure of interest rate differentials.
This thesis focuses on the first stream of literature – interest rate forecasting
– in Chapter 3 as well as the third stream – relation to exchange rates – in
Chapters 4 and 5 to investigate the predictive power of the term structure
from different perspectives with a special focus on the impact of the recent
global financial crisis (GFC) in 2007-2009.
The outbreak of the global financial crisis in 2007 has shaken not only finan-
cial institutions, but also long-held beliefs and theories on the behaviour of
financial markets (Caprio et al., 2014). It has deteriorated bond markets,
both in the US and internationally, where persistently high, often histori-
cally abnormal yields and yield spreads have been observed (Contessi et al.,
2014; Choudhry, 2015). The GFC thus has had a significant effect on the
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term structures of interest rates and yield spreads around the globe. It has
also triggered sharp and unexpected currency movements, with the US dollar
appreciating significantly against virtually all currencies (Fratzscher, 2009).
Any research conducted with financial time series encompassing the crises
period should therefore carefully take into account the impact of the crisis
on results and conclusions. We consider this in particular in Chapters 3 and 5.

2.2 Investigating the Predictive Power of the Term

Structure

Predictive power of financial and macroeconomic variables in academic re-
search is usually assessed through in-sample analysis or out-of-sample fore-
casting exercises.
In-sample analysis means to estimate a model using the entire sample and
then comparing the model’s fitted values to the actual realizations. It is
commonly applied to identify useful predictors with tests of statistical signif-
icance which require the common assumptions and restrictions of regression
analysis for external validity.
For out-of sample forecasting the sample is split into an estimation period and
a forecasting period. The forecasted values of the latter are then compared
to the actual realizations and the resulting forecasting errors are used to get
an estimate of the model’s forecasting accuracy. Out-of sample forecasting
exercises are usually implemented to assess whether predictors provide ac-
curate forecasts in environments that mimic the one faced by forecasters in
practice as closely as possible and demand a careful selection of appropriate
forecasting evaluation methods (Rossi, 2013).
Forecast evaluation generally requires two main choices: which loss function
to use, and which test statistic to apply in order to assess the significance of
the results. Regarding the choice of loss function, researchers typically eval-
uate models out-of-sample forecasting performance according to their mean
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squared forecast error (MSE), the root mean square forecast error (RMSE)
or, less frequently, the mean absolute error (MAE), all of which give differ-
ent weight to the deviations of the forecast from the target. For example,
the MSE gives equal weight to over- and underpredictions of the same mag-
nitude. The significance of superior forecast performance is then typically
assessed via out-of-sample predictive ability tests such as the tests proposed
by Diebold and Mariano (1995), West (1996), Giacomini and White (2006)
or Clark and West (2006). Recent studies (Cheung et al., 2005; Moosa and
Burns, 2014) have also suggested that the use of criteria based solely on the
loss function may not always be appropriate to measure forecasting accuracy.
Minimizing the forecasting error based on the global loss function is not nec-
essarily required from an economic standpoint and can miss out on impor-
tant aspects of forecasts. These aspects may be revealed, for instance, with
dynamic forecasting evaluation measures, which expose time-varying fore-
casting accuracy such as the fluctuations test developed by Giacomini and
Rossi (2010). Depending on the predicted variables, alternative approaches
to forecast evaluation may also target (Clark and McCracken, 2013): (i) the
direction accuracy of the forecast, (ii) the predictive density or interval of the
forecast as an indication for the uncertainty associated with the prediction,
(iii) utility-based measures or (iv) the profitability of the forecast.
Considering the different underlying assumptions and objectives, the choice
between in-sample and out-of-sample forecasting remains a debatable topic.
The empirical literature points towards a tendency to find significant evi-
dence of in-sample predictability but not so in out-of sample predictability.2

Out-of-sample forecasting is thus considered to be a more challenging ex-
ercise as predictors which pass in-sample test may still not have predictive
ability in a truly out-of-sample forecasting exercise.
Nevertheless, both approaches provide important insights and are used for
different objectives depending on the field of research. The yield curve fore-
casting literature, for example, predominantly uses out-of sample forecasting

2This outcome is often caused by overfitting a model – including irrelevant regressors,
which improve the in-sample fit of the model but penalize the model in an out-of-sample
forecasting exercise.
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as external predictors are rarely used and models usually derive the term
structure based on the short rate by eliminating arbitrage opportunities or
utilize the cross-sectional dependence of the term structure. The exchange
rate forecasting literature uses in-sample as well as out-of-sample forecasting
techniques alike, as the objective may be either to identify useful explanatory
variables or to assess the forecasting accuracy of the predictors.
In this thesis, both in-sample (Chapter 4) and out-of sample (Chapters 3 and
5) forecasting methods are applied to investigate the potential and limita-
tions of the predictive power of yield curves and spread curves. For Chapters
3 and 5 this thesis also carefully considers the impact of different evaluation
metrics.

2.3 Content, Structure and Contributions of the

Thesis

As indicated, this thesis consists of three key chapters (Chapters 3–5) based
on three research papers. These chapters investigate the predictive content
of the term structure from different perspectives and contribute to the liter-
ature as follows:

Chapter 3 titled ’Forecasting the Term Structure of Interest Rates near the
Zero Bound - a New Era? ’ investigates the forecasting performance of pop-
ular dynamic factor models of the yield curve after the global financial crisis
(GFC) – a time period, which is characterized by a low and non-volatile in-
terest rate environment. The results illustrate that subsequent to the GFC
period these models are significantly outperformed by a random walk no-
change forecast for short and medium term yields. We further demonstrate
that these results are not picked up by traditional global forecast evaluation
metrics and that this disappointing forecasting performance can be mitigated
by combining the forecasts.
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The paper thus contributes to the literature in several dimensions. To be-
gin with, it is the first paper to systematically document and explain the
poor relative forecasting performance for medium and short term US yields
associated with the popular class of dynamic factor yield curve models in
the current low interest rate environment. Second, it shows how sensitive
the forecasting performance is to the choice of evaluation metrics. This is
an important point to consider for future yield curve forecasting studies that
will most likely include the unique period after the GFC. Finally, it provides
further evidence that combining different models can significantly improve
the forecasting accuracy, especially in the current low interest rate environ-
ment, where many of the individual models perform rather poorly.

Chapter 4 titled ’Factors of the Term Structure of Sovereign Yield Spreads ’
investigates the term structure of sovereign yield spreads which has not been
thoroughly studied in the literature yet. We therefore apply principal compo-
nent analysis (PCA) to examine the latent factors driving the term structure.
We then proceed with investigating the predictive power of these factors for
exchange rates in-sample. We show that the factors extracted from the term
structure of sovereign spreads have predictive power for movements in the
exchange rate and excess returns in line with economic intuition and further
illustrate that the extracted factors provide additional predictive power in
comparison to the traditional UIRP approach.
This research paper contributes to the literature as follows: To start with,
this is the first study to thoroughly explore the dynamics of the term struc-
ture of yield spreads for advanced economies which has received only limited
attention in previous research. Second, it provides novel insights on latent
key factors driving the term structure of sovereign spreads. Third, it pro-
vides further evidence that the spread term structure reflects macroeconomic
fundamentals applied in exchange rate determination and confirms the view
that the exchange rate can be modeled as an asset price.

Chapter 5 titled ’Exchange Rates and Unobservable Fundamentals: A New
Approach to Out-of-Sample Forecasting ’ is built on two main insights of the
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previous Chapter 4. First, factors driving the term structure of sovereign
yield spreads have predictive power for exchange rates. Second, these factors
are highly correlated with the empirical level and slope of the spread term
structure. We therefore suggest using the empirical sovereign yield spread
level and slope as proxies of the market’s expectations for current and future
fundamentals in exchange rate out-of-sample forecasting. We find promis-
ing results when we investigate the forecasting accuracy of our approach.
Applying the yield spread level and slope as a set of proxies for unobserv-
able fundamentals, our model outperforms traditional exchange rate models
based on macroeconomic fundamentals such as output and inflation for all
considered evaluation metrics. It is also superior to a random walk in terms
of direction of change forecasts and profitability.
With this study we contribute to the literature of exchange rate forecasting
in the following dimensions: First, we present an innovative, parsimonious,
market-driven approach to exchange rate forecasting based on readily and
easily available data. This makes it a promising proposition in particular
for market practitioners. Second, we provide further evidence that financial
variables are useful indicators to be considered in exchange rate forecasting
as they are naturally forward looking variables and susceptible to the same
macroeconomic risk as exchange rates. Finally, we confirm that the random
walk is beatable by models using observable and unobservable models if ap-
propriate statistical and economic evaluation measures are applied.

To conclude, Chapter 6 summarizes the main results, describes the major
overall contributions of the thesis to the discipline and identifies a number
of directions for future research.
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Abstract
We investigate the forecasting performance of popular dynamic factor models
of the yield curve after the global financial crisis (GFC). This time period is
characterized by an low and non-volatile interest rate environment in the US
and most major economies. We focus on the dynamic Nelson-Siegel model
and regressions on principal components and use a dataset of monthly US
treasury bond yields to show that subsequent to the GFC both models are sig-
nificantly outperformed by the random walk no-change forecast. Especially
for short and medium term yields the random walk is up to ten times more
accurate. Interestingly, these results are not picked up by traditional global
forecast evaluation metrics. We show that combining forecasts mitigates the
model uncertainty and improves the disappointing forecasting accuracy es-
pecially after the GFC.
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3.1 Introduction

The global financial crisis (GFC) in 2007-2009 has caused major eruptions in
bond and interest rate markets, rendering many traditional yield and bond
pricing models useless (Bianchetti, 2010; Walker and McCormick, 2014). The
GFC has also led to an prolonged period of low interest rates in several ad-
vanced economies subsequent to the crisis. The US is a prime example of
this development. Following the expansive monetary policy of the Federal
Reserve during the GFC and thereafter, US short and medium term yields
have been close to zero since 2009. We test the forecasting accuracy of popu-
lar dynamic factor models in this unique interest rate environment and show
how interest rates close to the zero bound severely challenge the forecasting
accuracy for short and medium yields.
Forecasting the yield curve generally is a strenuous task. Despite major
advances in yield curve modeling (Vasicek, 1977; Cox et al., 1985; Nelson
and Siegel, 1987; Dai and Singleton, 2000) and forecasting (Diebold and Li,
2006; Exterkate et al., 2013), the high persistence of yields makes it typically
hard for any model to outperform a simple random walk no-change forecast
(Ang and Piazzesi, 2003; Moench, 2008; Carriero et al., 2012; Xiang and Zhu,
2013). We illustrate in this study how the current interest rate environment
further aggravates this challenge.
After the GFC, short and medium yield forecasts of popular dynamic factor
models not only fail to beat the random walk but are clearly outperformed in
relative terms, with a random walk model being up to ten times more accu-
rate. We also show that the poor forecasting performance in this time period
is not reflected in traditional, global forecast evaluation metrics such as the
root mean squared error (RMSE) that are typically applied to measure the
forecasting performance (Diebold and Li, 2006; Carriero et al., 2012). Hence,
this outcome may not be perceived in comprehensive forecasting studies and
potentially distort future results and interpretations. Finally, we suggest
forecast combination strategies as a mitigating measure and show that com-
bining forecasts significantly improves the forecasting accuracy when indi-
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vidual models perform poorly in the near zero environment.
The unique interest rate environment has already led to an increased interest
in modeling the term structure of interest rates near the zero bound. Kim
and Singleton (2012) have shown that a quadratic yield curve model better
fits the yield curve close to the zero bound than affine term structure mod-
els. Krippner (2013) has developed an adjustment to Gaussian models for
use in near-zero environments. Christensen et al. (2015) introduce shadow-
rate arbitrage-free Nelson-Siegel models designed for nonlinearities near the
zero lower bound. Christensen and Rudebusch (2015) apply a shadow-rate
arbitrage-free model to U.S. Treasury yields since 1985 and study its perfor-
mance in both normal times and near the lower bound. Monfort et al. (2015)
introduce a novel class of affine term structure models that can generate pro-
longed spells with the short rate stuck at its lower bound. Filipović et al.
(2016) introduce a class of linear-rational term structure models that respect
a lower bound and allow for unspanned stochastic volatility.
While this growing stream of literature focuses predominantly on yield curve
modeling, the impact of the current interest rate environment on the fore-
casting accuracy of term structure models has, surprisingly, not thoroughly
been investigated and documented in previous research yet. To the best of
our knowledge, the only paper focusing on the out-of-sample forecasting ac-
curacy in the recent low interest rate environment thus far is Steeley (2014)
who examines several term structure models for UK yields. He finds that
a slope regression and the Nelson-Siegel model did rather well before the
crises and a simple AR(1) model performs best when short-term rates are
near zero, especially for longer horizons. Our study thus aims to contribute
to a deeper understanding of the forecasting performance of term structure
models in the new interest rate environment near the zero bound.
To investigate the forecasting performance before and after the crisis, we
study a dataset of monthly US Treasury bond zero-coupon yields for the
time period from January 1995 to December 2013, focusing on the class of
dynamic factor models. While they may lack the theoretical foundations of
no-arbitrage models, they promise to deliver the most accurate forecasting
results as suggested by Duffee (2002, 2011); Chen and Niu (2014)), just to
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name a few. They are thus also the class predominantly used in recent fore-
casting studies (Yu and Zivot, 2011; Hautsch and Yang, 2012; Xiang and
Zhu, 2013; Laurini and Hotta, 2014; Chen and Niu, 2014). We focus on
different variations of the Nelson-Siegel model which imposes a parametric
structure on factor loadings, as well as regressions on principal components
which extract factors and factor loadings directly from the data. We bench-
mark the forecasting performance of these models against a random walk
no-change forecast. We also include a simple autoregressive AR(1) model as
an additional benchmark, since this approach has been reported to forecast
the yield curve surprisingly well (Diebold and Li, 2006; Pooter et al., 2010;
Steeley, 2014).
The forecasting accuracy is measured with the commonly used root mean
squared error (RMSE) and Diebold-Mariano statistics (DM). We also ap-
ply innovative dynamic forecast evaluation metrics, such as dynamic relative
RSMEs or Giacomini and Rossi’s (2010) fluctuation test, which reveal the
development of the forecasting accuracy throughout the entire forecasting
period.
In our analysis, we use an in-sample period from 1995:1 to 2003:12 to fore-
cast the period from 2004:1 to 2013:12. As we are mainly interested in the
forecasting performance when interest rates are close to the zero bound, we
investigate the forecasting accuracy for two subsamples. The first one in-
cludes the pre-crisis and crises periods (2004:01-2008:12) and the second one
comprises the crucial post crises period (2009:01-2013:12).
For the first subsample we find results similar to other pre-crisis forecasting
studies such as Pooter et al. (2010) or Yu and Zivot (2011). The selected
factor models perform relatively well in terms of the RMSE, especially for
short maturities and long forecast horizons. Nevertheless, all models fail to
consistently beat the random walk.
However, in the low interest rate environment subsequent to the GFC, the
forecasting accuracy for short and medium yields in the second subsample
worsens dramatically relative to the random walk. For nearly all maturities
below five years the random walk is many times more accurate across all
forecasting horizons. For six and twelve-months ahead forecasts the random
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walk is even up to ten times more accurate. Similar results are also found
when comparing the performance of the applied dynamic factor models rel-
ative to an AR(1) model.
In addition, Diebold-Mariano statistics show that these results are also sta-
tistically significant. In other words, since the end of the GFC, when interest
rates dropped to the zero bound, the random walk and a simple AR(1) pro-
cess have significantly outperformed popular yield curve forecasting models
in predicting short- and medium term yields. In the presence of exceptional
central bank interference, this crucial time period dominated by low and
non-volatile yields obviously favors a random walk model. Nevertheless, the
extent of our results is still striking over such a prolonged period.
We find several possible explanations for these results. First, we argue that
the cross-sectional structure of popular dynamic factor models, which in-
cludes information of the entire term structure to forecast individual yields,
fails in an environment with short rates close to the zero bound. As the
short yields become more segmented from the rest of the yield curve, the
forecasting accuracy for all maturities declines. Furthermore, the applied
dynamic models are typically calibrated over a period that also includes sig-
nificant changes in interest rates as well as in the term structure of the yield
curve. As a result, these models are outperformed by a random walk no-
change forecast in a low yield environment with hardly any fluctuations for
the observed interest rates. Moreover, the models were also estimated dur-
ing periods when interest rates were significantly higher than during the post
GFC period so that forecasts created by the applied models may not only
overstate the dynamics of the interest rate term structure but also interest
rate levels.
Interestingly, the poor forecasting performance of the applied term structure
models in the low interest rate environment is not picked up by commonly
used global forecast evaluation metrics, when these are calculated for the
entire out-of-sample period. This is a surprising finding, since the critical
time period subsequent to the GFC makes up half of the entire forecasting
period. Nevertheless, the poor forecasting performance is not reflected in
the full sample RMSE’s. Further analysis reveals that the forecasting errors
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during the critical period become relatively small in absolute terms, espe-
cially for short and medium term yields and therefore contribute relatively
little to the global average. Thus, without a thorough subsample analysis or
dynamic forecast evaluation, we may have arrived at entirely different con-
clusions about the predictive abilities of factor models in the current interest
rate environment. This is an important issue to consider for future yield
curve forecasting studies and highlights one of the most crucial points of this
paper: investigating the global average forecasting performance may fail to
reveal important information about the relative forecasting performance over
time.
Considering these results, a natural question to be asked is how to approach
the unique yield curve dynamics subsequent to the GFC in future forecasting
exercises. Different approaches have been developed to account for structural
instability in yield curve forecasting. Ang and Bekaert (2002) or Xiang and
Zhu (2013), for example, suggest applying regime-switching models that may
capture the different interest rate environment. Exterkate et al. (2013) have
also shown that including macroeconomic factors may improve the forecast-
ing performance especially in volatile time periods, while gains in the fore-
casting performance are clearly less significant when volatility is low. Also,
the recently developed term structure models for interest rates near the zero
bound such as Filipović et al. (2016); Christensen et al. (2015); Christensen
and Rudebusch (2015); Monfort et al. (2015) may help to achieve better re-
sults for the current low yield environment when applied in future yield curve
forecasting studies.
In this study, we suggest the use of forecast combination techniques (Tim-
mermann (2006); Guidolin and Timmermann (2009); Pooter et al. (2010)) as
a possible strategy to mitigate the model uncertainty and improve the dis-
appointing forecasting accuracy, especially for the crucial time period after
the GFC. We find that simply combining all applied factor models already
significantly improves the forecasting accuracy compared to the individual
models, albeit this strategy is still outperformed by a random walk. We also
combine two diametrically biased variations of the Nelson-Siegel model and
a principal component model with an AR(1) model and find that this strat-
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egy is able to further improve the poor forecasting performance for shorter
maturities after the GFC. It is also interesting to note, that a random walk
forecast can be further improved, by combining it with forecasts from selected
dynamic factor models. Generally, our results also indicate that performance
weighted forecast combination schemes may lead to more accurate forecasts
than the equally weighted performance schemes in particular for the more
recent low interest rate environment.
With these results, we contribute to the literature on yield curve forecasting
in several dimensions. To begin with, this is the first paper to systemat-
ically document and explain the poor forecasting performance for medium
and short term US yields associated with the popular class of dynamic factor
yield curve models in the current low interest rate environment. While we
focus on the most popular variations of these models, further research may be
required to fully understand how other models perform in this time period.
Second, we show how sensitive the forecasting performance is to the choice
of the evaluation metrics. It is still common to select the model with the
best global forecasting performance, which in practice amounts to selecting
the model that forecasts best on average over the entire out-of-sample period.
However, in the presence of time-varying yield curve dynamics, averaging the
results over time will result in a significant loss of information. This is an
important point to be considered for future yield curve forecasting studies
including the unique period after the GFC.
Finally, we provide further evidence that combining different models can sig-
nificantly improve the forecasting accuracy, especially in the current low in-
terest rate environment, where many of the individual models perform rather
poorly. While the forecasting accuracy of the selected models varies heavily
over time, forecast combinations are less affected by structural instability
than either of the individual models.
The remainder of this chapter is organized as follows: Section 2 provides a
review of the relevant yield curve forecasting literature. Section 3 reports
descriptive statistics and illustrates the dynamic behavior of yields during
the considered sample period. In Section 4 we introduce the selected models,
while Section 5 describes the forecasting framework and discusses the out-of-
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sample forecasting results. In Section 6 we apply different forecast combina-
tion strategies and examine whether results can be improved in comparison
to using individual models only. Finally, Section 7 concludes and provides
suggestion for future work in the area of research.

3.2 Related Literature

The numerous existing term structure models can typically be divided into
two streams of literature (Chen and Niu, 2014). The first stream consists of
models deriving the term structure based on the short rate, by eliminating ar-
bitrage opportunities between current and future interest rates under various
assumptions about the risk premium. Building on the work of Vasicek (1977)
and Cox et al. (1981), seminal contributions to the development of these no-
arbitrage and affine equilibrium models include Hull and White (1990); Duffie
and Kan (1996) and Dai and Singleton (2000). More recent contributions to
this stream of literature also relate the short rate to macroeconomic vari-
ables (Ang and Piazzesi, 2003; Dewachter and Lyrio, 2006; Rudebusch and
Wu, 2008; Moench, 2008). Unfortunately, no-arbitrage and affine-equilibrium
models often exhibit poor empirical forecasting performance as pointed out
by Duffee (2002, 2011).
The second stream of literature consists of reduced-form models based on
more data-driven statistical approaches. This stream has evolved from uni-
variate to multivariate time series models to the class of empirical factor
models predominantly used today. Popular univariate models are, for exam-
ple, the slope regression model, the Fama-Bliss forward rate regression model
(Fama and Bliss, 1987) or simple autoregressive processes. The multivariate
class includes in particular vector autoregressive (VAR) models and error
correction models (ECMs). Unlike univariate models, these models are also
able to utilize the cross-sectional dependence structure and cointegration of
observed yields at different maturities.
In this study we mainly focus on the class of empirical dynamic factor models
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that recently have been extensively applied to the modeling and prediction of
the yield curve (Christensen et al., 2011; Favero et al., 2012; Exterkate et al.,
2013; Xiang and Zhu, 2013). Dynamic factor models allow to model and fore-
cast the term structure based on low-dimensional, latent factors which are
extracted from the entire yield curve while retaining the dependence struc-
ture of different maturities. The latent factors are usually either estimated by
imposing a parametric structure on the factor loadings or extracted directly
from the term structure, e.g., by means of a principal component analysis
(PCA). While these models may lack the theoretical foundation of the first
stream, the empirical literature suggests that they typically provide more
accurate forecasts of the yields (Duffee, 2002; Diebold and Li, 2006; Pooter
et al., 2010).
Most of the parametric factor models build on the ground-breaking work
of Nelson and Siegel (1987) and Diebold and Li (2006). Nelson and Siegel
(1987) introduced a parsimonious three-factor model to fit the term structure
by using flexible, smooth parametric functions. They demonstrate that their
model is capable of capturing most of the typically observed shapes assumed
by the yield curve over time. Among the various extensions that have been
proposed to incorporate additional flexibility, the most popular one is prob-
ably the Svensson (1994) four-factor model. Both, the Nelson-Siegel as well
as the Svensson model are heavily used by market practitioners and central
banks to construct zero-coupon yield curves, see, for example, Gürkaynak
et al. (2007); Coroneo et al. (2011).
Diebold and Li (2006) have extended Nelson-Siegel’s initial approach into a
dynamic framework enabling the Nelson-Siegel model to be successfully ap-
plied to term structure forecasting. Since their seminal study, the literature
on forecasting yield curves has grown significantly and in particular their
dynamic Nelson-Siegel model has been extended in various ways. Diebold
et al. (2006) integrate the initial Diebold and Li (2006) two-step forecasting
approach into a single dynamic factor model by specifying the Nelson-Siegel
weights as an unobserved vector autoregressive process. Diebold et al. (2008)
further extend the initial dynamic Nelson-Siegel model to a global context
in which modeling a large set of yield curves allows for global and country
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specific factors. Almeida and Vicente (2008) explore the role of no-arbitrage
restrictions for the forecasting performance and Christensen et al. (2011)
develop an arbitrage-free version of the Nelson-Siegel model. Yu and Zivot
(2011) include the evaluation of a state-space approach and nine different
ratings for corporate bonds. Hautsch and Yang (2012) allow for stochastic
volatility of the estimated yield factors, while Xiang and Zhu (2013) develop
a regime-switching Nelson-Siegel model. Most recently, Laurini and Hotta
(2014) and Chen and Niu (2014) integrate Bayesian estimation methods and
adaptive forecasting techniques into the dynamic factor framework.
An alternative non-parametric forecasting approach based on factor dynam-
ics is to apply a PCA to extract the factors directly from the term structure.
PCA works best with correlated time series (Duffee, 2012) and is therefore
a natural and popular choice to reduce the dimensions of highly correlated
yield curve datsets. A small number of orthogonal and uncorrelated factors
or principal components can usually already account for a high fraction of
variability in relatively high-dimensional datsets. Following Litterman and
Scheinkman (1991), several studies apply PCA and find that the variation
in interest rates can already be explained by the first three principal compo-
nents, see, e.g., Bikbov and Chernov (2010); Leite et al. (2010). These three
common factors also have an intuitive interpretation as level, slope and cur-
vature1 based on their effect on the yield curve (Afonso and Martins, 2012)
and can be successfully applied in forecasting exercises. Reisman and Zohar
(2004), for example, use their forecasting results in bond portfolio selection
and suggest that frequent rebalancing leads to substantially higher returns.
Blaskowitz and Herwartz (2009) successfully apply PCA to the prediction of
the term structure of Euribor swap rates, while Carcano and Dall’O (2011)
use error-adjusted principal component analysis to hedge yield curve risk.
While some of the studies described above report superior forecasting results
for particular datsets and dynamic factor models are considered to be the
most promising class of yield curve forecasting models, the near unit root

1The correlations between the first, second and third component and the empirical level,
slope and curvature of the US yield data applied in this paper are .99, .77 and .45
respectively and thus confirm these interpretations.
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behavior of the yields generally makes it hard for any model to consistently
outperform the random walk. As Pooter et al. (2010) show in an exten-
sive forecasting study of US yields, no model clearly performs well across all
maturities or different sample periods. Moreover, the forecasting ability of
individual models considerably varies over time.
Recent studies have shown that combining the forecasts of different models
may mitigate this model uncertainty (Guidolin and Timmermann, 2009). A
different approach may also be to include macroeconomic variables into the
forecasting procedure. Amongst others, Koopman and van der Wel (2013)
and Exterkate et al. (2013) have demonstrated that including macroeconomic
variables can significantly improve the forecasting performance for yield term
structures, especially during periods of poor forecasting accuracy.
Nevertheless, despite these recent advances, forecasting the yield curve re-
mains a challenging task. In this study we show that forecasting short and
medium yields becomes even more arduous in the current low-interest rate
environment after the GFC. Modelling the yield curve in this environment
has recently been addressed by Kim and Singleton (2012) who analyze the
in-sample fit of affine and quadratic yield curve models for Japanese yields
and Krippner (2013) who adjusts Gaussian models to be applied in near
zero-environments. More recently, Christensen et al. (2015); Christensen
and Rudebusch (2015); Monfort et al. (2015); Filipović et al. (2016) have also
suggested term structure models specifically designed to capture interest rate
dynamics near the zero bound. However, none of these studies considers the
out-of-sample forecasting performance of the proposed models. So far, only
Steeley (2014) investigates the forecasting ability of different term structure
models for UK government yields before and after the crises. He finds that
there is little difference in the forecasting accuracy prior to the GFC, espe-
cially for short horizons, while a simple AR(1) process is found to be the
most accurate after the crisis.

26



3.3 Data

For our analysis, we use the end-of-month zero-coupon rates of US Trea-
sury bonds obtained from Bloomberg for the sample period January 1995 to
December 2013.2 Selecting US yields is an obvious choice as they have pre-
dominantly been used in the literature due to their supreme data quality and
availability. The US also is a prime example of an extended period of low
and non-volatile interest rates after the GFC. Using monthly observations
(n=228), we construct the term structure with 12 maturities ranging from 3,
6, 12, 24, 36, 48, 60, 72, 84, 96, 108 up to 120 months.
Table 3.1 provides the descriptive statistics of the considered dataset. The

Maturity
(months)Mean St Dev Min Max ρ̂(1) ρ̂(12) ρ̂(30) α̂(2) α̂(12) ADF

3 2.85 2.26 0.02 6.47 0.99 0.74 0.25 -0.27 -0.05 -1.25
6 3.00 2.32 0.04 6.74 0.99 0.74 0.25 -0.35 -0.05 -1.36
12 3.12 2.32 0.11 6.88 0.99 0.75 0.27 -0.27 -0.10 -1.29
24 3.33 2.22 0.22 7.48 0.98 0.76 0.33 -0.18 -0.07 -1.28
36 3.55 2.11 0.28 7.59 0.98 0.77 0.37 -0.16 -0.06 -1.42
48 3.77 2.00 0.44 7.68 0.98 0.77 0.40 -0.12 -0.06 -1.66
60 3.95 1.85 0.62 7.72 0.97 0.76 0.40 -0.10 -0.05 -1.80
72 4.12 1.76 0.79 7.79 0.97 0.75 0.41 -0.10 -0.05 -1.90
84 4.31 1.67 0.97 7.86 0.97 0.74 0.42 -0.10 -0.05 -2.02
96 4.44 1.58 1.17 7.87 0.97 0.74 0.42 -0.10 -0.06 -2.07
108 4.54 1.50 1.37 7.89 0.97 0.73 0.41 -0.10 -0.08 -1.89
120 4.60 1.42 1.60 7.90 0.97 0.70 0.39 -0.08 -0.07 -2.30

Table 3.1. Descriptive statistics for the term structure of US yields for the time period 2000:01 to
2013:12. For each maturity we report (from left to right) mean, standard deviation, minimum, maximum,
autocorrelations (ρ̂) at displacements of 1, 12, and 30 months, partial autocorrelations (α̂) at displacements
of two and 12 months and augmented Dickey-Fuller (ADF) test statistics. For the ADF, the critical values
for a rejection of the unit root hypothesis are -3.45 at the 1% level (indicated by ***), -2.87 at the 5%
level (**) and -2.57 at the 10% level (*). SIC is applied to determine the lag length.

reported characteristics are in line with the stylized facts commonly found in
yield curve data, see e.g Diebold and Li (2006); Pooter et al. (2010) or Koop-
man and van der Wel (2013). The average yield curve during the sample
period is upward sloping and concave, volatility is decreasing with maturity
2All Bloomberg zero yield curves are constructed daily with government bonds that have
Bloomberg Generic (BGN) and/or supplemental proprietary contributor prices. The
bonds are adjusted for embedded options and the curve is estimated using a piecewise
linear function.
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and autocorrelations are very close to unity. The ADF statistics confirm that
yields are indeed all but non-stationary. The partial autocorrelation function
suggests that autoregressive processes of limited lag order may fit the data
well. Correlations between yields of different maturities are not reported here
but are typically high, especially for adjacent maturities.
In Figure 3.1, we plot the dynamic behavior for yields of selected maturi-
ties. The plot confirms that the yield curve is mostly upward sloping (as
indicated by long yields being consistently higher than short yields) with
only two short periods of inverted yield curves preceding the two recessions
(March - November 2001 and December 2007 - June 2009) after the burst-
ing of the dotcom bubble and the GFC period. These periods also reveal
that short and long maturities react quite differently to economic shocks,
as both recessions are characterized by a sharp decline in short yields and,
thus, an increase in the spread between short and long yields. While this
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Figure 3.1. Time series of selected US yields. We plot yields for three-month (bold —), 12-month (–
–), 36-month (– ·), 60-month (· · ·) and 120-month maturities (—) for the time period 1995:01 – 2013:12.

term spread is generally known to remain rather large for quite some time
after a recession, the behavior of short and medium term interest rates, e.g.,
three months up to 36 months, after the GFC is unprecedented for the US.
Following the Federal Reserve Bank’s expansive monetary policy in response
to the crisis, short yields have remain flat and non-volatile for more than five
years up until the end of the sample period. Medium-term yields behave sim-
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ilar, reflecting the Fed’s strong commitment to maintaining the expansionary
policy as long as required for economic recovery.3 Assisted by several pro-
grams of ’quantitative easing’4 this has led to an unprecedented, prolonged
period of low, non-volatile short and medium US yields. This unique interest
rate environment is expected to favor a random walk no-change forecast and
we expect that it will pose a peculiar challenge for the forecasting models
introduced in the subsequent section.

3.4 Models

In Section 3.2 we have described the numerous empirical factor models that
have been developed to model and forecast the yield curve in recent decades.
To keep the number of models tractable, we focus on a representative subset
of basic models which are commonly used in the academic literature and by
practitioners.
In particular we include the dynamic Nelson-Siegel model as one model im-
posing a parametric structure on factor loadings and regressions on principal
components as a model that extracts the loadings and factors directly from
the observed term structure. For both models, we apply AR(1) and VAR(1)
factor dynamics. While the jointly specified VAR(1) process has the ad-
vantage of capturing the interdependence between the derived factors, both
approaches have been reported to work well in forecasting exercises, see, e.g.
Diebold and Li (2006); Pooter et al. (2010). Furthermore, we include an
AR(1) model directly applied on yield levels. AR(1) models can be consid-
ered as simple workhorse models and have been reported to fit and forecast
yield levels quite well. Thus, the models applied in our empirical analysis
are specified as follows:
3See, for example, chairman Bernanke’s famous quote "The Federal Reserve has done,
and will continue to do, everything possible within the limits of its authority to assist in
restoring our nation to financial stability", when speaking at the National Press Club in
2009.

4The acquisition of financial assets from commercial banks to lower longer yields while
simultaneously increasing the monetary base.
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Dynamic Nelson-Siegel Model
The Nelson and Siegel (1987) model is a parsimonious three-factor model,
based on the three parametric loadings [1, (1−e−λtτ )/λtτ, ((1−e−λtτ )/λtτ)−
e−λtτ ]. In the dynamic Nelson-Siegel model (Diebold and Li, 2006) the yield
yt for maturity τ is thus modeled as

yt,τ = β1,t + β2,t

(
1− e−λtτ

λtτ

)
+ β3,t

(
1− e−λtτ

λtτ
− e−λtτ

)
, (3.1)

where β1,t, β2,t, β3,t denote the three latent factors, and the parameter λ con-
trols the exponential decay rate of the second and third loading. In line with
Diebold and Li (2006), Diebold et al. (2008) and Chen and Tsang (2013) we
fix λ at 0.0609.
To forecast the term structure, we follow Diebold and Li’s (2006) two-step
approach.5 First, the Nelson-Siegel factors β1,t, β2,t, β3,t are estimated for the
in-sample period applying ordinary least squares. Then the factors are fore-
casted as autoregressive processes, i.e. for the AR(1) approach each β̂k,t+h/t6

is forecasted as
β̂k,t+h/t = ĉk,h + φ̂k,hβ̂k,t, (3.2)

where ĉk,h and φ̂k,h are obtained by regressing β̂k,t on an intercept and β̂k,t−h.
For VAR(1) factor dynamics, the three β̂t+h/t are forecasted accordingly as

β̂t+h/t = ĉh + Φ̂hβ̂t. (3.3)

For both approaches, each individual yield forecast for maturity τ is then
given by

ŷt+h/t,τ = β̂1,t+h/t+ β̂2,t+h/t

(
1− e−λτ

λτ

)
+ β̂3,t+h/t

(
1− e−λτ

λτ
− e−λτ

)
. (3.4)

5Note that we do not apply the one-step state-space framework developed by Diebold
et al. (2006) since previous studies, see, e.g., Pooter et al. (2010); Steeley (2014), report
no substantial improvement in forecasting accuracy. As the initialization of the one-step
state-space estimation further reduces the in-sample size, the two-step approach may even
offer a gain in efficiency.

6The notation t + h/t denotes that the forecast is made in period t to forecast the value
in period t+ h
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In the following we will denote the two approaches by NSAR and NSVAR.
Regression on principal components
For the PCA approach, each yield is given by the following dynamic latent
factor model:

yt,τ = γ1,τβ1,t + ...+ γK,τβK,t + εt,τ , (3.5)

where the γK,τ describe the K factor loadings and βK,t represent K vectors
of latent factors.7 The factors and loadings are estimated with a principal
component analysis on the full set of yields for every forecasting iteration.8

The PCA effectively decomposes the yield covariance matrix as Σ = ΓΛΓ′,
where the diagonal elements of Λ = diag(λ1, ..., λK) are the eigenvalues and
the columns of Γ are the associated eigenvectors. The eigenvectors are ar-
ranged in decreasing order of the eigenvalues and the first K eigenvectors of
Γ denote the factor loadings [γ1, ..., γK ]. The K latent factors [β1, ..., βK ] are
then constructed by βk,t = γ′kYt, where Yt is a vector of yields for all maturi-
ties at time t.9 In line with previous research, we decide to use the first three
latent factors (K = 3), which have been found to be already sufficient to
explain a high fraction of the variance in yields (Litterman and Scheinkman,
1991; Bikbov and Chernov, 2010).10 We apply the two-step forecasting pro-
cedure outlined above, forecasting the latent factors β̂[1,2,3],t as AR(1) and
VAR(1) processes. Thus, h-step ahead yield forecasts for maturity τ are
given by

ŷt+h/t,τ = γ1,τ,tβ̂1,t+h/t + γ2,τ,tβ̂2,t+h/t + γ3,τ,tβ̂3,t+h/t. (3.6)

In the following, we will refer to these models as PCAAR and PCAVAR.
Autoregressive (AR(1)) model on yield levels
We also apply an AR(1) model to individual yields of maturity τ directly,

7Please note that we use the terms ’factor ’ and ’principal component ’ interchangeably
throughout this analysis.

8Note that we standardize the yields with zero mean and unit variance for the PCA.
9See also Chapter 4, Section 4.4.1, for a detailed description of the PCA and derivation of
the factors.

10We also find that for the applied dataset the first three components explain more than
99% of the variation in the term structure.
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determining h-step ahead forecasts as

ŷt+h/t,τ = ĉτ,h + φ̂hyt,τ , (3.7)

where ĉk and φ̂k are obtained by regressing yt,τ on an intercept and yt−h,τ .
We denote this model as AR1.
Random Walk
As the main benchmark model throughout the forecasting exercise we use a
random walk model. In this model any h-step ahead forecast is simply equal
to the value observed at time t. Hence the forecast is always ’no change’ and
can be denoted by

ŷt+h/t,τ = yt,τ . (3.8)

In the following we will refer to the random walk benchmark model as RW.

3.5 Out-of-Sample Forecasting

3.5.1 Forecasting Framework and Evaluation

In the following we thoroughly investigate the performance of the applied
econometric models in forecasting the US yield curve against a random walk
benchmark. For the forecasting exercise, the sample of size T is divided into
an in-sample period of length R and an out-of-sample period of length P . We
use an initial in-sample period from 1995:1 to 2003:12 to forecast the period
from 2004:1 to 2013:12. Thus, the in-sample period includes the bursting
of the dotcom bubble and the subsequent recession and recovery, while the
out-of-sample period includes the GFC as well as pre- and post crisis peri-
ods. The considered sample period allows us to have enough observations
to estimate the parameters of the models with sufficient accuracy and still
evaluate the forecasting performance over sufficiently long (sub)periods with
different yield curve dynamics. As we are mainly interested in the forecast-
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ing accuracy in the low interest rate environment after the GFC, we also cut
the forecasting period in half for the forecast evaluation. This provides us
with two subsamples, 2004:01-2008:12 (including the pre-crisis and the crises
period) and 2009:01-2013:12 (the crucial post crises period).
We apply a recursive window such that in each time step the in-sample period
is extended by one observation to calculate the forecasts for t+h. In partic-
ular, we create one-month (h = 1), six-months (h = 6) and twelve-months
(h = 12) ahead forecasts whereas all models are forecasted iteratively.11

To assess the forecasting accuracy, we report the commonly applied root
mean squared error (RMSE) and Diebold-Mariano (DM) statistic.12 The
RMSE is a measure of global forecasting performance and summarizes the
forecasting errors over the entire forecasting period. For each considered
model m, maturity τ and forecasting horizon h the RMSE for the forecasting
period P is calculated as

RMSEm
τ,h =

√√√√ 1

P

P∑
t=1

(ŷmt+h/t,τ − yt+h,τ )2. (3.9)

The lower the RMSE the more accurate the forecast. However, a smaller
RMSE in a particular sample of forecasts does not necessarily mean that
the corresponding model is truly better in population. Diebold and Mariano
(1995) address this concern and propose a test to assess the statistical sig-
nificance of predictive superiority. The Diebold-Mariano (DM) test statistic

11It is still being debated whether iterated or direct forecasts are more accurate. Carriero
et al. (2012), for example, find that the iterated approach produces more accurate fore-
casts in yield curve forecasting. Comparing both approaches we also find better results
for the iterated approach, albeit not by much, and henceforth apply it throughout the
analysis. We also note that our main results and conclusions do not change when a
rolling instead of a recursive window approach is applied.

12While theoretically the mean average error (MAE) or mean error (ME) could also be
applied, the RMSE is the main forecasting evaluation metric used in the yield curve
forecasting literature (see, e.g., Diebold and Li (2006); Diebold et al. (2008); Chen and
Tsang (2013); Koopman and van der Wel (2013). We thus follow the literature and focus
on the RMSE to make the results comparable with past and future forecasting studies.
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is calculated as

DMm
τ,h =

d̄√
L̂RV d̄/P

, (3.10)

where d̄ is the average difference d between the loss functions of two com-
peting forecast models m = 1, 2 given as

d̄ =
1

P

P∑
t=1

dt =
1

P

P∑
t=1

L(ε1,t)− L(ε2,t), (3.11)

with an applied loss function L(εm,t) = (εm,t)
2 = (ŷmt+h/t,τ−yt+h,τ )2 for model

m, maturity τ and forecasting horizon h.13 L̂RV d̄ denotes the HAC estimator
of the asymptotic (long-run) variance of d̄ given by

L̂RV d̄ = γ0 + 2
∞∑
j=1

γj, (3.12)

where γ0 = var(d̄) and γj = cov(dt, dt−j) and the lag length being h − 1.
The null hypothesis is equal predictive accuracy of the considered models.
Note that we will conduct two-sided tests, since we are interested in both,
statistically significant superior and inferior forecasting performance of the
selected models against a random walk benchmark.

3.5.2 Forecasting Results

Table 3.2 presents the forecasting results for the two subsample periods. In
the first line of each table, we report the RMSE of the random walk expressed
in basis points. We then report the RMSEs of all models relative to the ran-
dom walk. Hence, numbers smaller than one (reported in bold) indicate
that a model outperforms the random walk. The significantly better fore-
casting performance of a model against the random walk benchmark based
on conducted DM tests is indicated by (”), while we indicate the significantly

13Note that in our analysis we apply the commonly used quadratic loss function. However,
theoretically Diebold and Mariano (1995) do not limit the loss functions that could be
used.
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inferior performance of a model against the random walk by (∗).14

For the first subsample from 2004:01-2009:12 results are reported in the upper
panel of Table 3.2. We find roughly similar outcomes to previous comprehen-
sive forecasting studies, see, e.g., Pooter et al. (2010); Yu and Zivot (2011):
in relative terms, the applied factor models perform relatively well, especially
for shorter maturities. Nevertheless, all models fail to consistently beat the
random walk - not a single model clearly performs well across all maturities
and forecast horizons. The Diebold-Mariano statistics reported in Appendix
A.3 confirm that, despite two exceptions, no model is able to significantly out-
perform the random walk at any maturity. In absolute terms the RMSEs are
usually smaller for longer term maturities and the forecasting performance
worsens with longer forecasting horizons. Generally, the absolute RMSEs of
the subsample are relatively high, as all models and the random walk struggle
to predict the sudden drop in yields during the GFC. Comparing the different
models, we find no compelling difference in forecasting accuracy between the
factor models. The AR(1) process performs surprisingly well and is on par
with the factor models for most maturities and forecast horizons.
Results for the crucial subsample period after the GFC (2009:01-2013:10)
are reported in the lower panel of Table 3.2 and indicate striking differences
between the forecasts generated by the examined models. In absolute terms,
the RMSE drops notably for all models and maturity horizons. In relative
terms, the forecasting accuracy of the selected dynamic factor models for
short and medium term yields worsens significantly compared to the random
walk. For some of the models, calculated RMSEs are even more than ten
times higher than for the random walk forecasts. The poor forecasting per-
formance of the considered models relative to the random walk is particularly
pronounced for shorter and medium maturities, i.e. three-month, six-month
and twelve-month yields.
Moreover, the conducted Diebold-Mariano tests show that the outperfor-
mance by the RW are statistically significant for many maturities and fore-
casting horizons, often even at the 1% level. Further analysis confirms that

14Tests are conducted at the 5% level of significance. Detailed results and test statistics
for the conducted DM tests are reported in Appendix A.3.
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similar results are obtained when the forecasting performance of the factor
models is compared to the performance of the simple AR(1) models applied
directly to the yield levels.15 In other words, after the GFC the random
walk and a simple first order autoregressive process are able to significantly
outperform all considered dynamic factor model variations.
We further explore this outcome by investigating the intertemporal develop-
ment of the forecasting accuracy throughout the forecasting period. There-
fore, we construct sequences of local relative RMSEs. We define a dynamic
relative RSME as the sequence of local relative RMSEs over centered rolling
windows of size r (we choose r = 24) for p∗ = R+ r/2, ..., T − r/2 + 1. The
intention of this measure is to examine the evolution of the models’ relative
forecasting performance through time.
For each model, the local RMSE for the respective rolling window is given
by

RMSEm,local
p∗,τ,h =

√√√√1

r

p∗+r/2−1∑
j=p∗−r/2

(ŷmj+h/t,τ − yj+h,τ )2. (3.13)

We then express the sequence of local RMSEm,local
p∗,τ,h for all models relative to

the random walk local RMSERW,local
p∗,τ,h sequence. As indicated above, values

smaller than one indicate that a model outperforms the random walk, while
values larger than one indicate inferior forecasting performance against the
random walk. In Figure 3.2 we plot the series of local relative RMSEs for
a 12-months forecasting horizon and selected short (3-months; 12-months),
medium (60-months) and long term (120-months) maturities. The dynamic
forecast evaluation confirms that prior and during the GFC all models com-
pete relatively closely, with the random walk for all maturities with some pe-
riods of superior and some periods of inferior performance. For the medium
and long term yield, the dynamic relative RMSE also remain relatively close
together throughout the entire forecasting period. However, for the short
and medium term yields, things change dramatically subsequent to the GFC
period (also note the different scale of the y-axis for the top and bottom
plots). The forecasting accuracy worsens significantly in relative terms for

15Detailed results are not reported here, but are available upon request to the authors.
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Figure 3.2. Dynamic relative three-month, twelve-month, 60-month and 120-month yield RMSEs for all
models against the random walk for a h = 12 months forecast horizon. The dynamic RMSEs are calculated
as follows: For each model and the random walk we calculate sequences (p∗ = R + r/2, ..., T − r/2 + 1)
of local RMSEs for rolling windows of size r=24 throughout the the forecasting period from 2004:01 -
2013:12. We then calculate the dynamic relative RMSE by expressing the sequence of local RMSEmp∗,τ,h
for each model relative to the random walk local RMSERWp∗,τ,h sequence. Hence, values smaller than
one indicate that a model outperforms the random walk, while values larger then one indicate inferior
forecasting performance against the random walk. Note the different scale of the y-axis for top
and bottom plots.

all factor models. The Nelson-Siegel model with AR(1) factor dynamics per-
forms particularly badly. While the AR(1) process performs better than the
factor models, it is still consistently dominated by the random walk from
2010 onwards.
We thus take a closer look at a time series of short term yields forecasts in
Figure 3.3, where we provide an illustrative plot of the h = 12 months ahead
forecasts for 3-months yields.16 For ease of presentation we focus on the ran-
dom walk, the NSAR, PCAAR and the AR1 model. The plot confirms that

16We note that plots and conclusions are similar for other short and medium term yields
up to 36 months. We also present additional plots for twelve-month, 60-month and
120-month yield forecasts in Appendix A.1.
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the selected dynamic factor models produce rather poor forecasts for the pe-
riod after January 2010. While the AR(1) model and the random walk adapt
rather quickly to the changed environment, both factor models, in particular
the parametric Nelson-Siegel model with AR(1) factor dynamics, continu-
ously over- or under-predict the actual yields. Only the PCAAR model picks
up the new interest rate environment towards the end of the period. It is also
important to note that at times all models predict negative yields when the
actual yield is close to the zero bound. This is a highly undesired effect for
many pricing and hedging purposes and confirms that models of interest rate
dynamics may need to be revised in the current environment as suggested
by, e.g., Krippner (2013); Christensen et al. (2015); Monfort et al. (2015);
Filipović et al. (2016). Overall, we obtain quite different results for the two

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
−1

0

1

2

3

4

5

6

Years

Y
ie

ld
s 

(in
 %

)

 

 

Actual
RW
NSAR
PCAAR
AR1

Figure 3.3. 3-months yield forecasts for random walk, NSAR, PCAAR and AR1 model. We plot the
actual three-months yields together with the forecasts of the selected models for a forecasting horizon of
h = 12 months.

subsample periods. While the forecasting accuracy for the first subsample
period is in line with results reported in earlier studies, factor models perform
rather poorly, when short rates are close to the zero bound.
Given the different interest rate regimes during the two subsample periods
this outcome is not entirely surprising. Obviously, periods with hardly any
volatility in interest rates will favor random walk no change forecasts. How-
ever, the dimension of relative outperformance of a random walk model over
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the applied factor models over such an extended period is still striking.
Our results also point towards methodological problems of the applied econo-
metric factor models, when short and medium yields are relatively constant
and close to the zero bound. Due to the cross-sectional structure of dynamic
factor models, these models consider information based on the entire yield
curve for forecasting individual yields. However, during the post GFC low
yield environment, short yields become more segmented from the rest of the
curve and this will worsen the predictive accuracy of such models.
Another reason for the striking difference in forecasting performance may
be that the models are calibrated over a time period that also includes a
dynamic behavior of the term structure of the yield curve as well as signif-
icant changes in interest rates for given maturities. The estimated models
may then overstate the dynamics of individual yields as well as for the entire
yield curve during the unique low interest rate period from 2009 to 2013.
Further, since the models are estimated during periods when short-term in-
terest rates were significantly higher than after the GFC, created forecasts
may not only overstate the dynamics of the interest rate term structure but
possibly also the level of short-term interest rates.17

Finally, the poor forecasting performance in the second subsample may also
be due to increased government interventions during this period of market
turmoil. This would obviously be difficult to be picked up by any forecasting
model.

17As a robustness check we also implemented the forecasting exercise with rolling windows,
However, we do not find a significant change in results and conclusions.
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3m 6m 12m 2y 3y 5y 7y 10y

2004:01 - 2008:12

RW 30.8 30.1 30.5 31.4 32.3 30.8 32.7 27.9

NSAR 1.26* 0.92” 0.91 1.04 1.08 1.11 1.07 1.01
NSVAR 1.06 0.83 0.93 1.04 1.05 1.09* 1.05 1.00

h=1 PCAAR 1.14 0.95 0.99 1.09* 1.05 1.02 1.04 1.01
PCAVAR 0.98 0.82” 0.96 1.07 1.03 1.02 1.06 1.02
AR1 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.02

RW 113.0 114.0 108.5 97.8 92.3 72.9 65.9 53.7

NSAR 1.02 0.95 0.93 1.00 1.01 1.09 1.10 1.08
NSVAR 0.92 0.92 0.96 1.04 1.05 1.11 1.10 1.07

h=6 PCAAR 0.97 0.98 1.00 1.03 1.00 1.00 1.00 0.97
PCAVAR 0.92 0.97 1.02 1.07 1.05 1.07 1.10 1.06
AR1 1.04 1.04 1.03 1.00 0.99 0.98 1.02 1.04

RW 207.0 204.3 186.6 156.8 136.5 100.0 83.9 63.6

NSAR 0.97 0.93 0.92 0.99 1.01 1.10 1.15 1.21
NSVAR 0.90 0.90 0.95 1.05 1.08 1.16 1.17 1.21

h=12 PCAAR 0.87 0.90 0.93 0.98 0.98 0.99 1.00 0.98
PCAVAR 0.92 0.96 1.01 1.08 1.10 1.14 1.18 1.19
AR1 1.05 1.05 1.03 0.98 0.96 0.96 1.02 1.08

2009:01 - 2013:12

RW 4.1 4.7 7.4 12.9 18.0 24.6 28.1 28.7

NSAR 5.83* 2.22* 1.16 1.06 1.31* 1.35* 1.09 1.04
NSVAR 2.95* 2.34* 2.45* 1.30* 1.06* 1.19* 1.03 1.07

h=1 PCAAR 1.93* 1.25 1.28* 1.30* 1.10* 1.03 0.99 0.99
PCAVAR 1.82* 2.22* 1.69* 1.21* 1.03 1.05 1.01 0.98
AR1 1.11 1.08 1.02 1.01 1.01 1.01 1.00 1.00

RW 7.9 9.4 9.9 22.4 38.9 63.7 75.9 76.2

NSAR 9.19* 6.74* 5.87* 2.91* 2.10* 1.47 1.18 1.03
NSVAR 4.35* 3.40* 2.67* 0.92 1.04 1.04 0.95 0.89

h=6 PCAAR 3.57* 3.07* 3.19* 1.84* 1.34* 1.04 0.95 0.91”
PCAVAR 4.32* 3.59* 2.87* 1.05 0.98 0.96 0.94 0.89
AR1 1.59 1.33 1.04 1.07 1.09 1.07 1.06 1.04

RW 8.9 10.5 11.9 26.2 43.8 74.5 92.7 93.6

NSAR 13.15* 10.65 9.41 4.76 3.24* 2.03* 1.55* 1.31
NSVAR 5.43 4.27 3.14* 1.37 1.36* 1.18 1.02 0.92

h=12 PCAAR 5.28* 4.71* 4.47* 2.33* 1.65* 1.17 1.00 0.91
PCAVAR 5.46* 4.52* 3.43* 1.42 1.24 1.08 1.00 0.91
AR1 2.50* 2.00 1.10 1.19 1.28* 1.27* 1.24 1.20

Table 3.2. Subsample forecasting results for h=1, h=6 and h=12 months ahead forecasting horizons and
three-month, six-month, twelve-month, two-year, three-year, five-year, seven-year and ten-year maturities.
We report the root mean squared error (RMSE) for the subsample periods from 2004:01-2008:12 and
2009:01-2013:12. The first line reports the RMSE for the random walk (expressed in basis points). The
RMSEs of all other models are expressed relative to the random walk. Hence, numbers smaller than one
(reported in bold) indicate that models outperform the random walk. Numbers larger than one indicate
inferior performance. (") indicates statistical significant forecasting superiority of the respective models
against the random walk measured by the DM-statistic on a 5% or smaller significance level. (*) indicates
statistical significant forecasting inferiority against the random walk. The DM-statistics are reported in
Appendix A.3. See Section 3.4 for a description of the selected models.
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3.5.3 Sensivity of Results Towards Forcast Evaluation

Metrics

We are also interested in how the dismal forecasting performance of the sec-
ond subsample period is reflected in the forecasting accuracy calculated over
the entire out-of-sample period. As the time period of the GFC and its af-
termath make up nearly half of the forecasting period, we would also expect
a rather poor overall forecasting performance of the applied dynamic Nelson-
Siegel and PCA models.
Table 3.3 presents the forecasting results for the entire out-of-sample forecast-
ing period from 2004:01 to 2013:12. To our surprise, we find results broadly
in line with the first subsample period and previous research. The selected
factor models perform relatively well in terms of the RMSE, especially for
short maturities and long forecast horizons. Nevertheless, all models fail to
consistently beat the random walk.
These results obviously raise the question why the poor relative forecasting
performance for short and medium term yields subsequent to the GFC is not
fully reflected in the results reported for the entire forecasting period. After
all, the crucial time period makes up nearly half of the out-of-sample period.
This will also be highly important for future yield curve forecasting studies
which will most likely comprehend the time period subsequent to the GFC.
The answer can be found in the decreasing magnitude of forecasting errors
caused by the low interest rate environment after the GFC. Not surprisingly,
with low short and medium yields close to the zero bound, forecasting errors
and the RMSE drop significantly in absolute terms. This is illustrated in Fig-
ure 3.4 where we plot forecasting errors for three-month yields for a h = 12

months forecast horizon for the random walk as well as for the NSAR and
PCAAR model. Usually, forecast errors for shorter maturities are relatively
large as interest rates for shorter maturities are rather volatile. Figure 3.4
confirms that this is also observable in the forecasting errors at the beginning
of the forecasting period. The plot also illustrates how the forecasting errors
for short and medium yields become rather small in absolute terms subse-
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3m 6m 12m 2y 3y 5y 7y 10y

RW 21.9 21.5 22.1 24.0 26.1 27.7 30.0 27.9

NSAR 1.47* 0.97 0.92 1.04 1.14* 1.21* 1.07 1.03
NSVAR 1.12 0.90 1.07 1.08* 1.06 1.13* 1.04 1.04

h=1 PCAAR 1.16* 0.95 1.01 1.13* 1.06* 1.02 1.01 1.00
PCAVAR 1.00 0.88 1.02 1.09* 1.03 1.03 1.04 1.00
AR1 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01

RW 81.1 82.6 79.8 72.7 72.4 70.4 72.5 66.9

NSAR 1.23 1.11 1.08 1.20 1.26* 1.28* 1.16 1.06
NSVAR 0.99 0.97 0.98 1.05 1.06 1.09 1.02 0.97

h=6 PCAAR 1.03 1.03 1.04 1.09 1.07 1.03 0.98 0.94”
PCAVAR 0.98 1.01 1.03 1.07 1.05 1.04 1.02 0.96
AR1 1.04 1.03 1.03 1.01 1.01 1.04 1.05 1.05

RW 145.0 144.0 133.4 112.5 100.7 86.7 85.7 78.1

NSAR 1.17 1.12 1.14 1.30 1.43 1.55* 1.42 1.31
NSVAR 0.95 0.95 0.98 1.08 1.14 1.20 1.12 1.04

h=12 PCAAR 0.95 0.97 1.00 1.06 1.09 1.09 1.02 0.94
PCAVAR 0.96 0.99 1.03 1.10* 1.13 1.15 1.11 1.03
AR1 1.05 1.04 1.03 1.00 1.02 1.12 1.18 1.20

Table 3.3. Forecasting results for h = 1, h = 6 and h = 12 months ahead forecasting horizons and three-
month, six-month, twelve-month, two-year, three-year, five-year, seven-year and ten-year maturities. We
report the root mean squared error (RMSE) for the out-of-sample period 2004:1 - 2013:12 (N = 96).
The first line reports the RMSE for the random walk (expressed in basis points). The RMSE of all
other models is expressed relative to the random walk. Hence, numbers smaller than one (reported
in bold) indicate that models outperform the random walk. Numbers larger than one indicate inferior
performance. (") indicates statistical significant forecasting superiority of the respective models against
the random walk measured by the DM-statistic at a 5% level of significance, while (*) indicates statistical
significant forecasting inferiority against the random walk. The DM-statistics are reported in Appendix
A.3. See Section 3.4 for a description of the selected models.

quent to the GFC. Thus, the poor relative forecasting performance after the
GFC vanishes in global forecast evaluation measures averaged over the en-
tire forecasting period. The RMSE being based on a quadratic loss function
further aggravates this effect.
Interestingly, the unique behaviour of yields after the GFC also poses a chal-
lenge for dynamic forecasting measures relying on absolute differences in
forecasting errors. As an additional evaluation metric we apply the inno-
vative fluctuation test developed by Giacomini and Rossi (2010). This test
allows to examine the statistical significance of the forecasting performance
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Figure 3.4. Forecasting errors (3-months actual yield - 3-months forecasted yield) for the random walk,
NSAR and PCAAR model. We plot the difference between actual three-month yields and h = 12 months
horizon forecasts for the time period from 2004:01-2013:12.

over time. The sequence of local test statistics is calculated based on a local
loss function differential ∆Lj computed over centered rolling windows of size
r and given as

Fm
p∗,τ,h = σ̂−1r−1/2

p∗+r/2−1∑
j=p∗−r/2

∆Lj(ŷ
RW
j+h/j,τ , ŷ

m
j+h/j,τ ), (3.14)

where σ̂2 is a HAC estimator of the asymptotic (long-run) variance. The test
statistic Fm

p∗,τ,h is equivalent to the one proposed by Diebold and Mariano
(1995) computed over rolling windows. Giacomini and Rossi (2010) also pro-
vide critical values to test the null hypothesis of equal predictive accuracy.
In Figure 3.5 we plot the fluctuation test statistics for the three-month,
twelve-month, five-year and ten-year yields and a forecast horizon of h = 12

months based on rolling windows of size r = 24 with corresponding two-sided
critical values.18 The fluctuation test correctly reflects the direction of the

18Note that unlike the forecasting exercises conducted in previous sections that were based
on a recursive window estimation, fluctuations tests were conducted based on a rolling
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superior and inferior performance of the models relative to the random walk.
However, none of the local test statistics for the short term maturities τ = 3

and τ = 12 months post the GFC indicates a statistically significant outper-
formance of the other models by the random walk. This is surprising given
the statistically significant superior performance of the random walk for the
second subsample period reported in the lower panel of Table 3.2 and the
illustration of these results in Figure 3.2. Further analysis reveals that the
decreasing loss functions post the GFC distort the local test statistics cal-
culated based on the global estimator of the asymptotic (long-run) variance
L̂RV d̄. This confirms the observation of Martins and Perron (2012) who find
power problems of the fluctuation test in the presence of instabilities in the
differences of the loss functions.
Overall, these findings indicate that typically applied performance mea-

sures such as RMSE or Diebold-Mariano tests may entirely fail to reflect
the superior or inferior forecasting performance of a model during a certain
subsample period. In our study, the RMSE does not provide any valuable
insights for which particular time periods the models perform well, since
it only measures the global forecasting performance over the entire out-of-
sample period. Thus, information about the dynamic performance of the
models throughout the forecasting period is lost. Our findings also illustrate
that even tests designed to examine the dynamic forecasting performance of
competing models over time, e.g. the fluctuation test proposed by Giacomini
and Rossi (2010), will not necessary detect the extent of the inferior perfor-
mance of a subset of the applied models.
This highlights one important point of this paper: In the presence of time-
varying yield curve dynamics, averaging the results over time in global fore-
casting measures such as the RMSE may result in a significant loss of infor-
mation and may lead to false conclusions with regards to the true forecasting
capabilities of a model. This is an important point to consider for future
yield curve forecasting studies most likely including the unique period after
the GFC.

window estimation as proposed by Giacomini and Rossi (2010). As noted above, the
forecasting results do not differ much for rolling and recursive windows.
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Figure 3.5. Fluctuations test statistics for all models against the random walk for three-month, twelve-
month, five-year and ten-year maturities and h = 12 month forecast horizon. The p∗ = R+r/2...T−r/2+1
sequence of fluctuations test statistics is calculated based on rolling windows of size r=24 throughout the
the forecasting period from 2004:01 - 2013:12. Values smaller than zero zero indicate that models
outperform the random walk. Values larger then zero indicate inferior forecasting performance against
the random walk. Values larger/smaller than the critical values indicated statistically significance on a
5% level. The critical values [3.01;−3.01] are obtained from Giacomini and Rossi (2010).
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3.6 Forecast Combinations

3.6.1 Methodology and Strategies

A natural question to ask is how to best approach the instability in the
relative performance of the selected models. Previous research discusses sev-
eral interesting measures to approach unstable forecasting environments, for
example adaptive forecasting techniques (Chen and Niu, 2014) or regime
switching models (Xiang and Zhu, 2013). A promising approach advocated
in the recent literature is also to combine the forecasts of individual models.
Several studies (Guidolin and Timmermann, 2009; Pooter et al., 2010) have
shown that combining multiple forecasts may increase the forecasting accu-
racy for interest rates. This approach is particularly promising in our case,
since the forecasting accuracy of our selected models heavily varies over time,
often diametrically. Thus, combined forecasts are likely to be more robust to
structural instability than either of the individual models.
In this section, we therefore investigate different combinations of individual
forecasts in order to improve the forecasting accuracy particularly for the
crucial time period after the GFC. We consider three different forecast com-
bination strategies. The first simply includes all four factor models (NSAR,
NSVAR, PCAAR, PCAVAR) and is denoted as ’factor’. The second in-
cludes the NSAR, PCAAR as well as the AR1 forecasting models and is
labeled ’far1’. This strategy is motivated by the graphical analysis in Fig-
ure 3.3, which illustrates that the NSAR and PCAAR models seem to be
diametrically biased in their forecasts of short and medium term yields after
the GFC. Combining both models should thus improve the individual fore-
casts. Including the AR1 forecasts is an obvious choice as the AR(1) process
performs rather well during the post GFC period in comparison to the ap-
plied factor models. For the third strategy we combine forecasts generated
by a random walk with the forecasts of the second combination approach
(’far1RW’). Given the superior forecasting performance of the random walk
in particular after the GFC, it will be interesting to see, whether the combi-
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nation with other forecasts will be able to improve the results for the random
walk.
For each strategy we consider two forecasting combination schemes: equal
weights (FCEW) and performance weights (FCPW). With M models and
hence M individual forecasts for a τ -maturity yield at time t a linear combi-
nation of the forecasts based on weights wτt,m is generally given by

ŷFCt+h/t,τ =
M∑
m=1

wτt,mŷ
m
t+h/t,τ , (3.15)

where the M × 1 vector of weights wτm is time-varying. For equal weights,
the weight for each model is then simply given by

wτt,m =
1

M
. (3.16)

For performance weights each forecast is weighed by the inverse of its MSE
(Mean squared error)19 over the previous v = 24 months. 20 The MSE for
each model m and maturity τ at time t is calculated as

MSEτ
t,m =

1

v

t∑
j=t−v

e2
j+h/j,m, (3.17)

where e2
j+h/j,m is the squared forecast error of model m at point in time j.

Each weight is then given by

wτt,m =
1/MSEτ

t,m∑M
m=1 1/MSEτ

t,m

. (3.18)

This way, a model with a previously lower MSE is given a relatively larger
weight than a model with a previously higher MSE.
Combining the three forecast combination strategies with the two combina-

19Note that we follow Timmermann (2006) in using the MSE to construct the weights
instead of the RMSE that has been previously reported in Table 3.2 and 3.3.

20We choose 24 months as a compromise between increasing forecast accuracy (which
would require a long training period) and limiting forecast uncertainty over time (which
would require a shorter time period.
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tion schemes leaves us with six forecast combination strategies. We denote
these strategies by FCEWfactor, FCPWfactor, FCEWfar1, FCPW-
far1, FCEWfar1RW and FCPWfar1RW.

3.6.2 Forecasting Performance of Combined Forecasts

Table 3.4 presents the results of these six forecasting strategies for the two
subsample periods.21 For the first subsample period from 2004:01 to 2008:12,
results are reported in the upper panel of Table 3.4. We observe that combin-
ing individual forecasts slightly improves the forecasting accuracy, as most
strategies perform better than the individual dynamic factor models. For
several short term yields and in particular for a h = 12-month forecasting
horizon the superior performance of the models over a random walk is even
statistically significant. All three strategies fare comparably well while in-
cluding the random walk into the combination strategy does not significantly
improve the performance. Interestingly, for the first subsample there is also
no notable difference between equally weighted and performance weighted
combination schemes.
For the crucial second subsample period after the GFC (2009:01 to 2013:12),
combining different models significantly improves the forecasting performance,
albeit most of the strategies are still being dominated by the random walk.
For example, the relative RMSE for a three-month yield forecast over a six-
month horizon decreases to 1.88 relative to the forecasting error of a random
walk for the performance weighed combination of all factor models (FCPW-
factor). Recall that the initial relative RMSEs for the individual models in
Table 3.2 range from 3.57 to 9.19 for the same maturity and forecasting hori-
zon. In particular the FCPWfar1 strategy performs comparably well with
relative RMSEs being significantly smaller than the individual RMSEs for
this period. Obviously, this is partly due to the relatively good performance
of the simple AR(1) approach.

21We also report the RMSE calculated over the entire forecasting period in Appndix A.2
while the all corresponding Diebold-Mariano statistics are reported in Appendix A.4.
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3m 6m 12m 2y 3y 5y 7y 10y

2004:01 - 2008:12

RW 30.8 30.1 30.5 31.4 32.3 30.8 32.7 27.9

FCEWfactor 1.08 0.86” 0.93 1.05 1.04 1.05 1.05 1.01
FCPWfactor 1.05 0.85” 0.92 1.04 1.04 1.04 1.05 1.00

h=1 FCEWfar1 1.08 0.95 0.95 1.03* 1.03 1.03 1.04 1.01
FCPWfar1 1.05 0.94” 0.94 1.02* 1.02 1.03 1.03 1.00
FCEWfar1RW 1.05 0.96 0.96 1.02* 1.02 1.02 1.02 1.00
FCPWfar1RW 1.01 0.95 0.95 1.02* 1.01 1.02 1.02 1.00

RW 113.0 114.0 108.5 97.8 92.3 72.9 65.9 53.7

FCEWfactor 0.92 0.92 0.95 1.01 1.01 1.05 1.06 1.03
FCPWfactor 0.88 0.89 0.91” 0.98 0.98 1.03 1.05 1.02

h=6 FCEWfar1 0.98 0.97 0.97 0.99 0.98 1.01 1.03 1.01
FCPWfar1 0.92 0.93 0.93” 0.95 0.95 0.99 1.02 1.00
FCEWfar1RW 0.98 0.98 0.98 0.99 0.98 1.00 1.01 1.00
FCPWfar1RW 0.93 0.94 0.94 0.95 0.95 0.98 1.01 0.99

RW 207.0 204.3 186.6 156.8 136.5 100.0 83.9 63.6

FCEWfactor 0.89” 0.90” 0.93” 1.00 1.02 1.08 1.11 1.13
FCPWfactor 0.86” 0.87” 0.90” 0.96 0.97 1.04 1.09 1.10

h=12 FCEWfar1 0.94” 0.94 0.95 0.96 0.97 1.00 1.04 1.07
FCPWfar1 0.89” 0.90” 0.90” 0.92 0.92 0.96 1.03 1.04
FCEWfar1RW 0.95 0.95 0.96 0.97 0.97 0.99 1.02 1.03
FCPWfar1RW 0.91 0.92 0.92 0.93 0.92 0.94 1.00 1.02

2009:01 - 2013:12

RW 4.1 4.7 7.4 12.9 18.0 24.6 28.1 28.7

FCEWfactor 2.19* 1.33* 1.43* 1.14* 1.07 1.12 1.02 1.01
FCPWfactor 1.27 1.05 1.22 1.10 1.05 1.09 1.01 1.00

h=1 FCEWfar1 2.26* 1.20* 1.07 1.06 1.07 1.07 1.00 0.99
FCPWfar1 1.01 0.98 1.00 1.03 1.05 1.04 0.99 0.99
FCEWfar1RW 1.82* 1.11 1.03 1.04 1.05 1.04 0.99 0.99
FCPWfar1RW 0.97 0.94 0.96 1.01 1.03 1.02 0.97 0.99

RW 7.9 9.4 9.9 22.4 38.9 63.7 75.9 76.2

FCEWfactor 2.78* 2.18* 1.99* 1.30* 1.24* 1.08 0.98 0.91
FCPWfactor 1.88* 1.69* 1.69* 0.94 1.05 1.02 0.95 0.90

h=6 FCEWfar1 3.13* 2.49* 2.43* 1.62* 1.35* 1.12 1.03 0.97
FCPWfar1 1.19 1.09 1.07 1.27* 1.22 1.09 1.00 0.96
FCEWfar1RW 2.49* 2.04* 2.02* 1.43* 1.23* 1.07 1.00 0.97
FCPWfar1RW 0.98 0.95 1.00 1.14 1.11 1.03 0.97 0.96

RW 8.9 10.5 11.9 26.2 43.8 74.5 92.7 93.6

FCEWfactor 4.12* 3.50* 3.34* 2.09* 1.74* 1.32* 1.11 0.99
FCPWfactor 2.73* 2.47* 2.35* 1.41* 1.37 1.17 1.03 0.94”

h=12 FCEWfar1 4.34* 3.73* 3.72* 2.44* 1.90* 1.42* 1.22 1.11
FCPWfar1 1.42 1.29 1.01 1.55* 1.55* 1.30 1.15 1.04
FCEWfar1RW 3.39* 2.98* 3.00* 2.05* 1.64* 1.28 1.14 1.06
FCPWfar1RW 0.93 0.80 0.82 1.27* 1.27* 1.15 1.06 1.00

Table 3.4. Subsample forecasting combination results for h=1, h=6 and h=12 month-ahead forecasting
horizons and three-month, six-month, twelve-month, two-year, three-year, five-year, seven-year and ten-
year maturities. We report the root mean squared error (RMSE) for the out-of-sample periods 2004:1
- 2008:12 and 2009:1 - 2013:12. The first line reports the RMSE for the random walk (expressed in
basis points). The RMSEs of all other models are expressed relative to the random walk. Hence, numbers
smaller than one (reported in bold) indicate that models outperform the random walk. Numbers larger
than one indicate inferior performance. (") indicates statistical significant forecasting superiority of the
respective models against the random walk measured by the DM-statistic on a 5% or smaller significance
level. (*) indicates statistical significant forecasting inferiority against the random walk. The DM-statistics
are reported in Appendix A.4. See text for a description of the selected forecast combination strategies.
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Not surprisingly, the most promising strategy turns out to be the perfor-
mance weighted forecast combination of the NSAR and PCAAR model with
both the AR(1) model and the random walk (FCPWfar1RW). This strategy
even outperforms the simple random walk forecast for most forecast horizons
and maturities, in particular for three-month, six-month and 12-month yields
as well as for yields with longer maturities such as seven or 10 years.
For the second subsample, the results of Table 3.4 also indicate that weighing
the individual models based on their previous performance generally makes
a remarkable difference compared to the equally weighted forecast combina-
tions. We have a closer look at this finding by investigating the weights allo-
cated to each of the included models, when the performance based weighting
technique is applied to create forecast combinations. Figure 3.6 displays the
development of the weights for the two most promising strategies, FCPWfar1
and FCPWfar1RW. The figure illustrates how the AR(1) process (for FCP-
Wfar1) and the random walk (for FCPWfar1RW) receive increasing weights
in the combined forecasting scheme due to their superior relative forecasting
performance. While forecasts created by the PCA and Nelson-Siegel based
factor models still obtain relatively high weights at the beginning of the fore-
casting period, from 2010 onwards the AR(1) process and the random walk
respectively become the dominant models and crowd out the factor models.
Overall, our results clearly illustrate that forecast combinations are able

to improve predictions for the term structure of interest rates made by in-
dividual econometric models. As especially during separate regimes of yield
curve behavior, different models will provide the most appropriate forecasts
and weights allocated to the individual models change dramatically, forecast
combination strategies may adapt quicker to changes in the interest rated
environment. In particular during the transition from a more volatile be-
havior of the yield curve to the current low interest rate regime with only
minor fluctuations, our results thus strongly encourage the use of forecast
combination schemes.
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Figure 3.6. Development of forecast combination weights. We plot the weight dynamics of the FCPWfar1
(top plot) and FCPWfar1RW (bottom plot) strategy for the three-months yield forecasts and h=12 forecast
horizon. The FCPWfar1 strategy encompasses the NSAR, PCAAR and AR1 model. The FCPWfar1RW
additionally includes the random walk. The weights are calculated based on the inverse MSE of the
previous v=24 months. See Section Appendix3.6.1 for a more detailed description of the selected forecast
combination strategies.

3.7 Conclusion

This paper provides a pioneer study in documenting the challenge which the
current low interest rate environment poses to popular dynamic factor yield
curve forecasting models. To examine the forecasting accuracy during this
unique time period, we apply a dataset of monthly US Treasury yields with
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maturities ranging from three up to 120 months for the time period January
1995 to December 2013. We focus on the popular class of dynamic factor
models and investigate variations of the parametric dynamic Nelson-Siegel
model and regressions on principal components (PCA).
We are particularly interested in the forecasting performance subsequent to
the GFC that is dominated by relatively low and non-volatile short and
medium term interest rates. While results for the pre-crisis and crisis peri-
ods are in line with findings from other comprehensive forecasting studies, the
forecasting accuracy of the applied econometric models worsens dramatically
with short rates close to the zero bound. The investigated dynamic factor
models not only fail to beat the random walk but are clearly outperformed
in relative terms. Diebold-Mariano statistics show that the outperformance
of the models by a simple random walk no-change forecast is also statis-
tically significant, often at the 1% level. Dynamic forecasting metrics and
graphical analysis of the forecasted time series further reveal that the AR(1)
model and random walk adapt rather quickly to the changed environment
while factor models continuously over- or under-predict the actual level of the
yields. While one would naturally expect the low, non-volatile interest rate
environment to favor a random walk no-change forecast, the extent of the
outperformance by the random walk in comparison to the applied dynamic
factor models is still striking, also compared to previous studies which report
differences in forecasting results for different subsample periods (Moench,
2008; Pooter et al., 2010; Steeley, 2014).
We identify several potential reasons for these results. First, we suspect
that the cross-sectional structure of the dynamic factor models, which also
includes additional information of other maturities, worsens the forecasting
accuracy as the short end of the yield curve becomes more segmented from
the rest of the curve. Further, the applied dynamic factor models are typ-
ically calibrated over a sample period that also includes significant changes
in interest rates as well as volatile periods for the term structure of the
yield curve. Therefore, these models may overstate the dynamics of indi-
vidual yields and the entire yield curve during the unique low interest rate
period from 2009 to 2013. Moreover, the models were also estimated during
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periods when interest rates were significantly higher than during the post
GFC period, such that forecasts created by the applied models will not only
overstate the dynamics of the interest rate term structure, but possibly also
interest rate levels, which is also evidenced by our results. Finally, the cru-
cial time period has been subject to significant market interventions by the
Fed (’Quantitative Easing’) which may further hamper the performance of
traditional yield currve forecasting models.
With regards to modeling, our results indicate a need for approaches that
are specifically designed to also capture term structure dynamics for interest
rates near the zero bound. Therefore, recently developed models by, e.g.
Kim and Singleton (2012); Krippner (2013); Christensen et al. (2015); Chris-
tensen and Rudebusch (2015); Monfort et al. (2015); Filipović et al. (2016)
are more likely to appropriately describe and potentially forecast the behav-
ior of interest rates in the current low yield environment.
Another important finding of this study is that the poor forecasting perfor-
mance of the applied term structure models in the low interest rate environ-
ment is not reflected in commonly used global forecast evaluation metrics
such as the RMSE when calculated over the entire forecasting period. When
we investigate the forecasting performance for the entire forecasting period
from January 2004 to December 2013, we surprisingly find that all models
perform rather well and in line with results reported in previous research.
Additional analysis reveals, that the forecasting errors during the critical pe-
riod after the GFC become relatively small in absolute terms, especially for
short and medium term yields, and therefore contribute relatively little to the
global average. Therefore, investigating only the global forecasting perfor-
mance may fail to detect important information about the relative forecasting
performance of competing models through time and may lead to entirely dif-
ferent conclusions about the predictive accuracy of econometric models. As
the current interest rate environment may well last for some more time into
the future,22 this finding has important implications for current and future

22Fed chair Janet Yellen only recently confirmed there will be ’considerable time’ before
the central bank may raise its benchmark rate. See the transcript of Chair Yellen’s Press
Conference on 19 March, 2014.
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yield curve modeling and forecasting exercises. Not considering the unique
behavior of short and medium yields in this time period may distort future
results and interpretations.
With regards to forecast evaluation, it is thus crucial to carefully examine
the dynamic behavior of the term structure and conduct subsample analysis
accordingly. It is still common to measure forecasting accuracy predomi-
nantly with RMSEs computed over the entire sample period and select the
model with the best global forecasting performance. However, a thorough
subsample analysis and dynamic forecasting measures are crucial to truly
expose a model’s predictive abilities. Dynamic forecast evaluation measures
should thus be applied to identify periods of superior or inferior forecasting
accuracy. However, as illustrated in our study, even tests specifically de-
signed to evaluate the dynamic performance of forecasting models, such as,
e.g. the fluctuation test suggested by Giacomini and Rossi (2010), may have
difficulties in detecting significant performance differences in the presence of
structural instabilities of the loss functions (Martins and Perron, 2012).
Finally, it is important to develop mitigating measures to improve the relative
forecasting accuracy in periods of low and non-volatile interest rates. As a
potential approach we identify forecast combination strategies in this study.
Simply combining all factor models already notably improves the inferior
performance relative to the random walk. Strategically combining forecasts
from a Nelson-Siegel, a PCA model, an AR(1) model further improves the
results. This is particularly true when the forecast combination weights are
based on the recent forecasting performance of the individual models. It is
also interesting to note, that combining the random walk with other models
further improves the random walk no change forecast. Overall, these results
show that combining forecasts has the potential to significantly improve the
forecasting accuracy, especially for a time period where many of the individ-
ual models perform rather poorly.
Our results also point towards the benefits of using adaptive forecasting tech-
niques or regime switching models to predict the yield curve in different eco-
nomic environments as they have recently been suggested by Xiang and Zhu
(2013); Chen and Niu (2014). Such models may be more suitable to identify

54



different phases of interest rate and yield curve behavior and may capture
the change between volatile or quiet regimes also in their forecasts. Recent
results, see, e.g., Koopman and van der Wel (2013); Exterkate et al. (2013)
have also shown that including macroeconomic variables can significantly im-
prove the forecasting performance of yield curve models. Finally, the recently
developed models by Kim and Singleton (2012); Krippner (2013); Filipović
et al. (2016); Christensen et al. (2015); Christensen and Rudebusch (2015);
Monfort et al. (2015) for interest rate dynamics near the zero bound should
also help to achieve better term structure forecasts in the current environ-
ment. We recommend to thoroughly investigate the forecasting performance
of these models in future research.
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Appendix A

A.1 Yield forecasts plots for additional maturities
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Figure A.1. Yield forecasts for random walk, NSAR, PCAAR and AR1 model. In addition to the
three-month maturity (on which we have also focused in Figure 3.3 above), we plot the twelve-month,
five-year and ten-year actual yields together with the forecasts of the selected models for a forecasting
horizon of h = 12 months.
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A.2 Forecasting combination performance - Full sample

3m 6m 12m 2y 3y 5y 7y 10y

2004:01 - 2013:12

RW 21.9 21.5 22.1 24.0 26.1 27.7 30.0 27.9

FCEWfactor 1.08 0.86” 0.93 1.05* 1.04 1.05* 1.05 1.01
FCPWfactor 1.05 0.85” 0.92 1.04* 1.04 1.04* 1.05 1.00

h=1 FCEWfar1 1.11* 0.95 0.96 1.04* 1.04 1.05 1.02 1.00
FCPWfar1 1.05 0.94 0.95 1.03* 1.03 1.03 1.01 0.99
FCEWfar1RW 1.07 0.96 0.96 1.03* 1.03 1.03 1.01 1.00
FCPWfar1RW 1.02 0.95 0.95 1.02* 1.02 1.02 1.00 0.99

RW 81.1 82.6 79.8 72.7 72.4 70.4 72.5 66.9

FCEWfactor 0.92 0.92 0.95 1.01 1.01 1.05 1.06 1.03
FCPWfactor 0.88 0.89 0.91 0.98 0.98 1.03 1.05 1.02

h=6 FCEWfar1 1.02 1.00 1.00 1.05 1.06 1.08 1.04 1.00
FCPWfar1 0.95 0.95 0.95 1.00 1.02 1.06 1.03 0.99
FCEWfar1RW 1.01 1.00 0.99 1.03 1.04 1.04 1.02 0.99
FCPWfar1RW 0.95 0.96 0.96 0.99 1.00 1.02 1.01 0.98

RW 145.0 144.0 133.4 112.5 100.7 86.7 85.7 78.1

FCEWfactor 0.89 0.90 0.93 1.00 1.02 1.08 1.11 1.13
FCPWfactor 0.86 0.87 0.90 0.96 0.97 1.04 1.09 1.10

h=12 FCEWfar1 0.99 0.98 1.00 1.07 1.13 1.21 1.18 1.13
FCPWfar1 0.93 0.94 0.95 1.00 1.04 1.14 1.13 1.07
FCEWfar1RW 0.99 0.98 0.99 1.04 1.08 1.14 1.11 1.07
FCPWfar1RW 0.94 0.95 0.95 0.98 1.00 1.06 1.06 1.03

Table A.1. Forecasting combination results for h = 1, h = 6 and h = 12 month-ahead forecast horizons
and three-month, six-month, twelve-month, two-year, three-year, five-year, seven-year and ten-year matu-
rities. We report the root mean squared error (RMSE) for the out-of-sample period 2004:1 - 2013:12 (N
= 96). The first line reports the RMSE for the random walk (expressed in basis points). The RMSEs of
all other models are expressed relative to the random walk. Hence, numbers smaller than one (reported
in bold) indicate that models outperform the random walk. Numbers larger than one indicate inferior
performance. (") indicates statistical significant forecasting superiority of the respective models against
the random walk measured by the DM-statistic at the 5% level of significance, (*) indicates statistical
significant forecasting inferiority against the random walk. The DM-statistics are reported in Appendix
A.4. See text for a description of the selected forecast combination strategies.
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A.3 Diebold-Mariano test statistics - Individual Models

3m 6m 12m 2y 3y 5y 7y 10y

2004:01 - 2013:12

NSAR 4.97* -0.76 -1.45 1.82 2.57* 3.77* 1.54 0.99
NSVAR 1.84 -1.11 0.80 2.70* 1.66 3.20* 0.98 1.25

h=1 PCAAR 2.13* -1.06 0.23 4.20* 2.13* 1.24 0.47 0.12
PCAVAR 0.00 -1.51 0.23 2.30* 1.42 1.48 1.06 -0.11
AR1 1.93 1.80 1.49 1.45 1.23 0.85 0.71 0.62

NSAR 1.74 1.26 0.99 1.94 2.39* 2.15* 1.31 0.78
NSVAR -0.10 -0.39 -0.32 0.93 1.01 1.06 0.29 -0.60

h=6 PCAAR 0.30 0.27 0.45 1.66 1.81 1.06 -0.47 -2.17”
PCAVAR -0.24 0.07 0.53 1.52 1.00 0.57 0.25 -0.58
AR1 0.88 0.80 0.66 0.39 0.53 0.94 0.93 0.78

NSAR 1.08 0.91 1.01 1.64 1.94 2.15* 1.89 1.93
NSVAR -0.61 -0.68 -0.36 1.43 1.45 1.52 0.97 0.50

h=12 PCAAR -0.48 -0.31 -0.04 0.82 1.42 1.42 0.35 -1.74
PCAVAR -0.54 -0.11 0.47 2.10* 1.71 1.35 0.89 0.37
AR1 0.63 0.54 0.38 0.08 0.49 1.30 1.52 1.53

Table A.2. Diebold-Mariano forecast accuracy test statistics of all investigated models against the
random walk. We report the results of the period from 2004:01 to 2013:12 for one-month, six-month
and twelve-month forecast horizons and three-month, six-month, twelve-month, two-year, three-year, five-
year, seven-year and ten-year maturities. Note that negative values indicate superiority of the
investigated models against the random walk. (") denotes a significantly superior performance
against a random walk relative to the asymptotic null distribution at the 5% level of significance. (*)
denotes significance of the inferior performance against the random walk relative to the asymptotic null
distribution at the 5% level. See section 3.4 for a description of the selected models.
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3m 6m 12m 2y 3y 5y 7y 10y

2004:01 - 2008:12

NSAR 2.57* -2.07” -1.68 1.54 1.24 1.92 1.05 0.48
NSVAR 0.85 -1.78 -0.79 1.30 1.24 2.01* 0.89 0.15

h=1 PCAAR 1.85 -1.23 -0.12 2.81* 1.38 1.03 0.80 0.39
PCAVAR -0.35 -2.24” -0.43 1.56 1.11 1.02 1.20 0.82
AR1 1.67 1.55 1.35 1.28 1.08 0.81 0.99 1.03

NSAR 0.19 -0.77 -1.31 -0.05 0.15 0.83 1.05 0.97
NSVAR -1.07 -0.98 -0.64 0.80 0.74 0.99 1.00 0.88
PCAAR -0.33 -0.15 0.05 0.50 0.15 0.19 0.03 -0.91

h=6 PCAVAR -1.12 -0.43 0.27 1.43 0.98 0.82 0.99 0.72
AR1 0.86 0.83 0.69 0.03 -0.67 -0.69 0.37 0.56

NSAR -0.22 -0.75 -0.75 -0.09 0.06 0.41 0.64 1.05
NSVAR -1.80 -1.29 -0.84 0.80 0.71 0.75 0.72 0.85
PCAAR -1.24 -0.86 -0.58 -0.29 -0.45 -0.19 0.01 -0.21

h=12 PCAVAR -1.12 -0.46 0.16 1.62 1.12 0.81 0.74 0.77
AR1 0.64 0.57 0.40 -0.32 -1.65 -0.77 0.19 0.60

2009:01 - 2013:12

NSAR 11.53* 6.46* 1.43 1.15 3.32* 3.33* 1.14 0.86
NSVAR 6.11* 4.81* 6.06* 2.95* 2.08* 2.51* 0.54 1.24

h=1 PCAAR 4.51* 1.85 2.60* 4.04* 2.25* 0.78 -0.25 -0.17
PCAVAR 4.02* 5.06* 3.51* 2.31* 1.47 1.10 0.18 -0.77
AR1 1.51 1.20 0.70 1.08 0.65 0.42 0.11 0.02

NSAR 6.65* 6.67* 6.38* 7.89* 4.51* 1.90 0.85 0.25
NSVAR 4.81* 3.31* 2.70* -0.43 0.27 0.22 -0.37 -1.49
PCAAR 3.12* 2.83* 3.35* 3.99* 2.59* 0.71 -0.85 -2.37”

h=6 PCAVAR 2.78* 3.01* 3.26* 0.27 -0.18 -0.27 -0.47 -1.13
AR1 1.90 1.21 0.44 1.68 1.49 0.86 0.61 0.39

NSAR 17.73* 0.00 0.00 0.00 8.85* 3.62* 2.09* 1.71
NSVAR 0.00 0.00 9.92* 1.37 4.68* 1.42 0.16 0.00
PCAAR 2.50* 2.34* 2.38* 3.13* 3.45* 1.64 0.00 0.00

h=12 PCAVAR 4.18* 6.90* 7.11* 1.62 0.00 1.19 -0.05 0.00
AR1 3.94* 0.00 0.50 1.84 2.10* 2.08* 1.63 1.25

Table A.3. Diebold-Mariano forecast accuracy test statistics of the random walk against all selected
models and the AR(1) model against all selected models. We report the results for the subsample periods
2004:01-2009:12 (upper table) and 2009:01-2013:12 (lower table) for one-month, six-month and twelve-
month forecast horizons and three-month, six-month, twelve-month, two-year, three-year, five-year, seven-
year and ten-year maturities. Note that negative values indicate superiority of the random walk.
(") denotes a significantly superior performance of the models against a random walk relative to the
asymptotic null distribution at the 5% level. (*) denotes significance of the inferior performance against
the random walk relative to the asymptotic null distribution at the 5% level. See Section 3.4 for a
description of the selected models.
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A.4 Diebold-Mariano test statistics - Forecast Combina-

tion

3m 6m 12m 2y 3y 5y 7y 10y

2004:01 - 2013:12

FCEWfactor 1.56 -2.02” -0.51 2.76* 1.47 2.29* 0.91 0.35
FCPWfactor 0.94 -2.23” -0.85 2.31* 1.28 1.98* 0.84 0.19

h=1 FCEWfar1 2.12* -1.57 -0.99 3.41* 1.48 1.72 0.63 -0.15
FCPWfar1 1.06 -1.89 -1.29 2.67* 1.20 1.35 0.53 -0.42
FCEWfar1RW 1.79 -1.75 -1.21 3.16* 1.30 1.29 0.31 -0.31
FCPWfar1RW 0.50 -2.10 -1.55 2.45* 0.99 0.92 0.17 -0.61

FCEWfactor -0.41 -0.76 -0.79 1.14 1.30 1.06 0.35 -0.67
FCPWfactor -0.85 -1.18 -1.36 0.18 0.47 0.79 0.20 -0.85

h=6 FCEWfar1 0.34 -0.03 -0.08 1.28 1.40 1.19 0.59 -0.03
FCPWfar1 -0.70 -0.96 -1.16 0.00 0.39 0.98 0.51 -0.22
FCEWfar1RW 0.19 -0.16 -0.21 1.13 1.16 0.89 0.31 -0.29
FCPWfar1RW -0.91 -1.09 -1.28 -0.30 -0.10 0.56 0.17 -0.53

FCEWfactor -0.84 -0.93 -0.51 1.35 1.54 1.63 1.17 0.80
FCPWfactor -1.21 -1.33 -1.10 0.30 0.62 1.08 0.89 0.31

h=12 FCEWfar1 -0.24 -0.33 -0.03 0.98 1.29 1.54 1.36 1.27
FCPWfar1 -1.02 -1.10 -0.95 -0.04 0.41 1.13 1.20 0.97
FCEWfar1RW -0.36 -0.44 -0.16 0.86 1.16 1.36 1.12 0.97
FCPWfar1RW -1.11 -1.18 -1.04 -0.28 0.00 0.60 0.80 0.53

Table A.4. Diebold-Mariano forecast accuracy test statistics of the forecast combination strategies
against the random walk. We report the results of the forecasting period 2004:01-2013:12 for one-
month, six-month and twelve-month forecast horizons and three-month, six-month, twelve-month, two-
year, three-year, five-year, seven-year and ten-year maturities. Note that negative values indicate
superiority of the investigated models against the the random walk. (") denotes a significantly
superior performance of the models against a random walk relative to the asymptotic null distribution at
the 5% level. (*) denotes significance of the inferior performance against the random walk relative to the
asymptotic null distribution at the 5% level. See Section 3.6 for a description of the selected combination
strategies.
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3m 6m 12m 2y 3y 5y 7y 10y

2004:01 - 2008:12

FCEWfactor 1.10 -2.22” -0.97 1.93 1.00 1.39 0.97 0.32
FCPWfactor 0.81 -2.35” -1.12 1.57 0.90 1.26 0.95 0.17

h=1 FCEWfar1 1.50 -1.78 -1.12 2.88* 0.94 1.12 0.90 0.36
FCPWfar1 0.93 -2.00” -1.38 2.27* 0.75 0.94 0.86 0.04
FCEWfar1RW 1.31 -1.91 -1.28 2.78* 0.86 0.96 0.77 0.31
FCPWfar1RW 0.42 -2.20 -1.59 2.19* 0.63 0.73

FCEWfactor -1.52 -1.39 -1.17 0.33 0.19 0.58 0.76 0.44
FCPWfactor -1.92 -1.86 -1.97” -0.58 -0.30 0.41 0.65 0.24

h=6 FCEWfar1 -0.63 -0.82 -0.80 -0.42 -0.83 0.12 0.45 0.19
FCPWfar1 -1.37 -1.72 -2.00” -1.63 -1.55 -0.18 0.40 0.08
FCEWfar1RW -0.69 -0.88 -0.85 -0.52 -1.10 -0.06 0.26 -0.01
FCPWfar1RW -1.50 -1.77 -2.04 -1.73 -1.76 -0.54 0.12 -0.17

FCEWfactor -5.33” -2.73” -2.58” 0.02 0.23 0.44 0.53 0.62
FCPWfactor -4.08” -3.39” -3.31” -0.60 -0.22 0.19 0.45 0.52

h=12 FCEWfar1 -4.27” -1.89 -1.63 -1.42 -0.64 -0.03 0.27 0.45
FCPWfar1 -2.85” -2.73” -2.59” -1.73 -1.06 -0.33 0.20 0.30
FCEWfar1RW -4.30 -1.94 -1.68 -1.47 -0.69 -0.10 0.17 0.28
FCPWfar1RW -2.66 -2.67 -2.53 -1.68 -1.13 -0.53 0.02 0.14

2009:01 - 2013:12

FCEWfactor 4.84* 2.86* 3.14* 2.54* 1.86 1.84 0.30 0.21
FCPWfactor 1.54 0.39 1.77 1.95 1.29 1.48 0.16 0.09

h=1 FCEWfar1 5.72* 2.19* 1.00 1.86 1.61 1.33 0.03 -0.42
FCPWfar1 0.18 -0.14 0.04 0.97 1.10 0.89 -0.28 -0.56
FCEWfar1RW 4.65* 1.52 0.51 1.51 1.33 0.91 -0.26 -0.57
FCPWfar1RW -0.58 -0.59 -0.57 0.60 0.78 0.46 -0.67 -0.73

FCEWfactor 2.32* 2.23* 2.19* 4.04* 2.14* 0.54 -0.17 -1.17
FCPWfactor 2.56* 2.24* 2.42* -0.47 0.47 0.13 -0.37 -1.35

h=6 FCEWfar1 3.63* 2.89* 2.65* 2.82* 2.32* 0.95 0.23 -0.35
FCPWfar1 0.94 0.54 1.04 2.00* 1.78 0.77 0.04 -0.55
FCEWfar1RW 3.23* 2.59* 2.59* 2.64* 1.99* 0.67 0.02 -0.55
FCPWfar1RW -0.39 -0.73 -0.05 1.76 1.34 0.36 -0.27 -0.81

FCEWfactor 2.26* 2.14* 2.22* 4.18* 6.14* 2.00* 0.74 -0.15
FCPWfactor 3.02* 3.44* 4.21* 2.27* 0.00 1.32 0.24 -2.85”

h=12 FCEWfar1 4.40* 3.18* 2.55* 2.91* 3.07* 2.15* 1.28 0.93
FCPWfar1 1.40 1.39 0.03 2.13* 2.46* 1.86 0.98 0.50
FCEWfar1RW 4.42* 3.08* 2.48* 2.78* 2.79* 1.81 1.01 0.63
FCPWfar1RW -3.09 -2.47 -1.60 2.12* 2.37* 1.48 0.52 0.00

Table A.5. Diebold-Mariano forecast accuracy test statistics of the forecast combination strategies
against the random walk. We report the results for the subsample periods 2004:01 to 2009:12 (upper
table) and 2009:01-2013:12 (lower table) for one-month, six-month and twelve-month forecast horizons
and three-month, six-month, twelve-month, two-year, three-year, five-year, seven-year and ten-year ma-
turities. Note that negative values indicate superiority of the investigated models against the
the random walk. (") denotes a significantly superior performance of the models against a random
walk relative to the asymptotic null distribution at the 5% level. (*) denotes significance of the inferior
performance against the random walk relative to the asymptotic null distribution at the 5% level. See
Section 3.6 for a description of the selected combination strategies.
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Abstract
We investigate the term structure of sovereign yield spreads for five advanced
economies against the US and provide novel insights on the key drivers of the
term structure. We show that the spread term structure dynamics are driven
by three latent factors, which can be labeled as spread level, slope and cur-
vature similar to common interpretations found in the yield curve literature.
We further show that these estimated spread factors have predictive power
for exchange rate movements and excess returns, above the predictability
of an uncovered interest rate parity approach. As the yield curve contains
information about expected future economic conditions we conjecture that
these yield spread factors reflect expected macroeconomic differentials which
in turn drive exchange rates. Using the information content of yield spread
curves may thus be a promising approach to improve the forecasting accu-
racy of exchange rate models.
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4.1 Introduction

Sovereign yield spreads denote the difference between two government yields
of equal maturity. They are important variables for investment practition-
ers, risk management and policy makers as they reflect the relative economic
position against other economies and are key input factors for exchange rate
forecasts and carry trade strategies. Commonly used as proxies for the dif-
ference in interest rate levels between economies, they play a crucial role in
one of the cornerstones of the academic finance literature – the uncovered
interest rate parity (UIRP) hypothesis.
Interestingly, the dynamic behavior of yield spreads, in particular the term
structure of these spreads has received only limited attention in previous
research. The class of literature decomposing the credit-risk driven deter-
minants of sovereign spreads for emerging economies usually focuses on se-
lected long term maturities (Rocha and Garcia, 2005; Hilscher and Nosbusch,
2010). The same holds for a recent stream of literature exploring the drivers
of sovereign spreads within the Eurozone area (Bernoth and Erdogan, 2012;
Maltritz, 2012; Eichler and Maltritz, 2013; Monfort and Renne, 2014). The
large number of studies testing the UIRP, see, e.g., McCallum (1994); Chinn
and Meredith (2004); Backus et al. (2010) or Sarno (2005); Engel (2013)
for recent surveys, usually apply spreads between short term interest rates
and naturally disregard the dynamics of the entire spread term structure.
However, these term structure dynamics may be worth exploring as the in-
formation provided by yield spreads at various maturities may be different.
We investigate the term structure of sovereign yield spreads and provide novel
insights on the latent factors driving the term structure. We further show
that these latent factors can predict exchange rate changes and excess returns
up to 24 months ahead. We conclude that the spread factors proxy expected
fundamental differentials in price levels, output and monetary policy.
For our analysis we investigate the term structure of yield spreads of six
advanced economies (Australia, Canada, Switzerland, Japan, UK and the
US) with highly liquid markets of bonds issued in their own, free floating
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currency and little to no credit or default risk. The spreads are calculated
as the difference between end-of-months zero-bond yields of equal maturity
and the term structure is constructed with 12 maturities ranging from three-
months, six-months, 12-months and 24-months up to 120-months for the time
period from January 1995 to December 2013. In line with previous research
(Dungey et al., 2000; Boudoukh et al., 2005; Sarno et al., 2012) we calculate
all spreads against US yields.1 This leaves us with five datasets of sovereign
spread curves - US-AU, US-CA, US-CH, US-JP and US-UK.
To identify the drivers of the sovereign spreads term structure we derive la-
tent factors by means of principal component analysis (PCA). This allows
us to extract market expectations directly from the data. PCA is a common
technique to describe dynamic term structure behaviour in a parsimonious
manner and has been applied successfully to various financial assets, includ-
ing, for example, the term structure of interest rates (Barber and Copper,
2012), swap spreads (Cortes, 2006) or CDS spreads (Longstaff et al., 2007).
Note that we apply PCA directly to the yield spreads and thus differ from
the class of studies modeling the co-movement of government yields to derive
common global factors (Driessen et al., 2003; Martell, 2007; Pérignon and
Smith, 2007; Afonso and Martins, 2012; Juneja, 2012).
Our analysis of the yield spread term structure dynamics shows that the vari-
ation in the entire term structure can be explained through a relatively small
number of three factors. For the considered economies, the three estimated
factors explain approximately 99% of the entire variation in the term struc-
ture of spreads between US interest rates and yields in Australia, Canada,
Japan, Switzerland and United Kingdom. Interestingly, similar to interpre-
tations found in yield curve models (Litterman and Scheinkman, 1991; Leite
et al., 2010), the identified latent factors can be labeled as spread level, spread
slope and spread curvature. These findings are stable across all investigated
sovereign spreads.
We further test the ability of the extracted latent spread factors to predict
exchange rate movements and excess returns. The yield curve is well known

1We note that the results and conclusions presented in this paper also hold for other
combinations of these economies not including the US.
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to provide valuable information about future macroeconomic conditions in
particular output, inflation and monetary policy. Differences between these
same fundamentals are commonly used to determine and forecast exchange
rates (Rossi, 2013). We thus argue that latent factors derived from the term
structure of yield spreads – the cross-country differences between yield curves
– may serve as a natural measure to the fundamental aspects of exchange
rate determination.
Results for in-sample predictive regressions confirm that the spread factors
can explain and predict bilateral exchange rate movements and excess re-
turns three month up to two years ahead. The predictive content seems to
be highest for the ’safe haven currencies ’2 Swiss franc and Japanese yen as
well as the Australian dollar and to a lesser extent for the Canadian dollar
and the British pound. We find that in particular the derived spread level
and the spread slope factor are significant.
The negative coefficients for these two factors indicate that an increase in the
yield spread level or slope factor (i.e. the entire home yield curve shifts up or
becomes flatter relative to the foreign yield curve) predicts an appreciation of
the home currency and increase in excess returns. These negative coefficients
are consistent with economic intuition and findings in previous literature, in
particular Chen et al. (2012); Chen and Tsang (2013).3

We further find additional explanatory power for the extracted factors com-
pared to the UIRP approach for most currencies and horizons. These results
make intuitive sense when the exchange rate is understood as an asset price
and relies more on long term expectations than on current fundamentals.
Other than the UIRP approach - which only uses the information content up
to a certain maturity - the spread factors take advantage of the information
embodied in the entire spread term structure. The estimated latent spread

2A safe haven currency provides hedging benefits to investors in particular in times of
market turbulence (Ranaldo and Soderlind, 2010)

3Note that while the Dornbusch (1976) overshooting model would rather suggest the op-
posite pattern, i.e. an immediate appreciation and subsequent depreciation in response
to a higher interest rate, more recent empirical studies (Eichenbaum and Evans, 1995;
Gourinchas and Tornell, 2004; Clarida and Waldmann, 2008; Chen and Tsang, 2013)
find that higher interest rates in a country may lead to a persistent appreciation of its
currency.
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factors can thus be interpreted as augmenting the single horizon UIRP rela-
tion with the information in spreads of additional maturities.
Overall, these results indicate that the obtained spread factors can be inter-
preted as an alternative set of latent fundamentals incorporating expected
differences in observed macroeconomic fundamentals. This confirms the
conclusions of Engel and West (2005), Bacchetta and van Wincoop (2013)
and Balke et al. (2013) who find an important role of unobserved and ex-
pected fundamentals to explain exchange rate fluctuations. Considering the
widespread forecasting failure of empirical exchange rate models based on ob-
served macroeconomic fundamentals (Meese and Rogoff, 1983; Molodtsova
and Papell, 2009; Rossi, 2013), the estimated spread factors may thus be
helpful in future forecasting studies.
With these findings, we contribute to the macro-finance literature in several
dimensions. First, this is the first study to thoroughly explore the dynamics
of the entire term structure of yield spreads for advanced economies. Sec-
ond, we provide key insights on latent key factors driving the term structure
of sovereign spreads between advanced economies. Third, we show that the
factors extracted from the term structure of sovereign spreads have predic-
tive power for movements in the exchange rate and excess returns in line
with economic intuition. We also illustrate that the extracted factors pro-
vide additional predictive information in comparison to the traditional UIRP
approach.
The remainder of this chapter is organized as follows. The subsequent sec-
tion describes the relation between yield spread curves, macroeconomic fun-
damentals and exchange rates as found in the previous literature. Section
4.3 reports descriptive statistics and investigates the dynamic behavior of the
applied yield spread data. In Section 4.4 we estimate and interpret the latent
yield spread factors, while Section 4.5 investigates the predictive ability of
these factors for exchange rate movements and excess returns. Section 4.6
concludes and provides suggestions for future work in this area of research.
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4.2 The Relation between Yield Curves, Yield

Spreads, Macroeconomic Fundamentals and

Foreign Exchange Rates

4.2.1 Yield Curves and the Term Structure of Yield Spreads

The yield curve or the term structure of interest rates describes the rela-
tionship between yields and their time to maturity. Yield curves exist for
numerous instruments and securities, theoretically for any interest bearing
instrument that is available for different maturities. However, the term yield
curve or term structure of interest rates in an academic sense is mainly used
to describe the term structure of government bond yields which are com-
monly considered to reflect a benchmark for the level of interest rates in an
economy.
The yield curve summarizes expectations about future paths of short interest
rates (’Expectations Hypothesis’) and perceived future uncertainty expressed
in the term premiums (Bulkley et al., 2011). Consequently it also contains
information about expected future economic conditions such as output, re-
cessions inflation and monetary policy (Ang et al., 2006; Rudebusch and Wu,
2008; Favero et al., 2012; Erdogan et al., 2015). The shape and movements
of the yield curve have thus long been used to provide readings of market
expectations and they are common indicators for central banks to receive
timely feedback on their policy actions.
Research on the term structure of interest rates suggests that the variation in
the term structure can be explained by a small number of underlying factors,
see, e.g. Litterman and Scheinkman (1991) or more recently Bikbov and
Chernov (2010). Typically, three factors already capture more than 99% of
the variation in yields and are reflected in the entire term structure of interest
rates and its dynamic behavior over time. They have an intuitive interpre-
tation as level, slope and curvature related to the economically meaningful
shift, rotation and butterfly moves of the yield curve which describe how

73



the yield curve changes in response to macroeconomic changes and monetary
policy.
These yield curve factors also have the power to predict fluctuations in fu-
ture economic conditions. Diebold et al. (2006) find that an increase in the
US level factor raises capacity utilization, the US fund rate and inflation.
Dewachter and Lyrio (2006) estimate an affine model for the yield curve
with macroeconomic variables and suggest that the level factor reflects long
run inflation expectations, the slope factor captures the business cycle, and
the curvature represents the monetary stance of the central bank. Rudebusch
and Wu (2007) also contend that the level factor incorporates long-term in-
flation expectations, and the slope factor captures the central bank’s dual
mandate of stabilizing the real economy and keeping inflation close to its
target. They show that when the central bank tightens monetary policy,
the slope factor rises, forecasting lower growth in the future. Moench (2012)
analyzes the economic underpinnings of level, slope, and curvature and finds
that a rising slope factor is associated with a future decline of output while
surprise surges of the yield curve level are followed by a strong and persistent
increase of inflation rates.
The difference between two government yields of equal maturity – the ’sovereign
yield spread ’ or ’sovereign spread ’ 4 - is also of particular importance to mar-
ket participants and policy makers. Sovereign yield spreads reflect a govern-
ment’s creditworthiness and are heavily used by investment practitioners in
exchange rate forecasting and carry trade strategies as these yield spreads re-
flect interest rate differentials which are key indicators for expected exchange
rate movements.
As sovereign spreads can be calculated for any maturity, they exhibit a term
structure or spread curve of their own. This term structure of sovereign
spreads naturally contains valuable long term information about expected

4Note that the academic literature uses various terms to denote the difference between
government yields. Sovereign yield spreads are also commonly referred to as ’government
bond spreads’ (Dungey et al., 2000), ’sovereign credit spreads’ (Sueppel, 2005; Oliveira
et al., 2012), ’sovereign risk premia’ (Haugh et al., 2009) or ’relative yield curves’ (Chen
and Tsang, 2013). We use the terms ’sovereign yield spreads’ and ’yield spreads’ or just
’spreads’ throughout the course of the analysis.
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cross-country differentials in the economic conditions reflected in the indi-
vidual yield curves. These are the same macroeconomic differentials which
play an important role in exchange rate determination.

4.2.2 Yield Spreads, Macroeconomic Fundamentals and

Exchange Rate Determination

The relation between differences in interest rates and exchange rates is tra-
ditionally expressed in the uncovered interest rate parity (UIRP) condition.
Under the assumptions of risk neutral and rational market participants, the
UIRP links expected changes in the exchange rate to interest rate differences
over the same horizon:

∆st+h = iτt − i
∗,τ
t + ρt, (4.1)

with ∆st+h being the change in the logarithm of the nominal spot exchange
rate (home currency price per unit of foreign currency) between time t and
t+h, iτt and i∗,τt the monthly domestic and foreign interest rates at maturity
τ with τ = h and ρt being the risk premium of holding foreign relative to
home currency investments.5

This relationship naturally builds on interest rate differentials or sovereign
spreads of a certain maturity. A τ -month spread accordingly only embod-
ies information up until the underlying instrument matures. However, the
literature predominantly suggests to consider the exchange rate as an asset
price (Mark, 1995; Engel and West, 2005), where the nominal exchange rate
is determined as the present value of the discounted sum of current funda-
mentals ft and expectations about fundamentals in future periods Et(ft+j),

5Empirically, this hypothesis has mostly been rejected, see Sarno (2005); Engel (2013) for
recent surveys.
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given information available at time t:

st = (1− ω)ft + (1− ω)
∞∑
j=1

ωjEt(ft+j), (4.2)

with ω being a discount factor less than one.
Based on this approach the exchange rate not only relies on information up
to a certain maturity but depends heavily on expected long term fundamen-
tals. These may be reflected more accurately in the entire term structure
of sovereign spreads, capturing market expectations of future cross-country
differentials, such as output, inflation, money supply and monetary policy,
which are commonly used in traditional exchange rate models.
The traditional monetary model, for example, describes exchange rate behav-
ior in terms of relative demand for and supply of money in the two economies.
Assuming purchase price parity (PPP) only holds in the long run (i.e. a sticky
price version of the monetary model), the fundamental ft then becomes:6

fmont = (mt −m∗t )− η(yt − y∗t ). (4.3)

where mt and m∗t are the domestic and foreign money market supply, yt and
y∗t denote the domestic and foreign income and η the income elasticity.
The frequently used model based on Taylor rule fundamentals builds on the
view that two central banks set interest rates in response to changes in the
output gap and deviations from target inflation rates, and the bilateral ex-
change rate will reflect their relative interest rates through UIRP. For a
symmetric Taylor rule with homogeneous coefficients, the fundamentals ft
become:

fTRt = (1 + φ)(πt − π∗t ) + γ(ygapt − ygap∗t ). (4.4)

where πt and π∗t are the domestic and foreign inflation rates and ygapt and
ygap∗t are the domestic and foreign output gaps.
However, these standard fundamental models have a rather poor forecasting

6See Molodtsova and Papell (2009) and Rossi (2013) for a more detailed derivation of the
most common exchange rate models based on observable macroeconomic fundamentals.
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performance. In a large body of empirical forecasting studies, the random
walk model has proven to be almost unbeatable by models with traditional
economic predictors.7 This empirical failure may also be a result of using
inappropriate proxies for market expectations of future fundamentals, rather
than a failure of the models themselves. Engel and West (2005), for example,
find that the exchange rate is not explained only by observable fundamen-
tals. Balke et al. (2013) also show that it is difficult to obtain sharp inferences
about the relative contribution of fundamentals, using only data on observed
fundamentals. Bacchetta and van Wincoop (2013) conclude that the reduced
form relationship between exchange rates and fundamentals is driven not by
the structural parameters themselves, but rather by expectations of these
parameters. Properly measuring expectations thus becomes especially im-
portant in empirical testing. Latent or unobservable factors, summarizing
market expectations contained in the term structure of yield spreads, may
therefore serve as a natural measure to the fundamental aspects of exchange
rate determination. Ang and Chen (2010) and Chen and Tsang (2013), for
example, show that yield curve factors based on portfolio strategies and a
Nelson-Siegel model can explain foreign exchange rate returns.
These insights highlight two important points. First, the term structure of
sovereign spreads is a highly relevant economic variable and it is crucial to
understand the dynamics of sovereign spread curves. We will further in-
vestigate these dynamics as well as driving factors of the dynamics in the
subsequent sections. Second, the latent factors driving the term structure of
sovereign spreads may be helpful to predict exchange rates as they summa-
rize information about long term differences in macroeconomic fundamentals.
We further explore this assertion in Section 4.5.

7Rossi (2013) provides an excellent overview of the empirical exchange rate forecasting
literature since the seminal paper by Meese and Rogoff (1983). See also Section 5.2.2.
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4.3 Yield Spread Data

4.3.1 Source and Calculation

For our analysis of sovereign yield spreads we choose the five most advanced
markets of government bonds issued in their own currency8 and little to no
credit risk (US, UK, Japan, Canada and Switzerland). We also consider
yields in Australia that have gained particular interest in the recent liter-
ature on carry-trades and foreign exchange risk premiums (Darvas, 2009;
Christiansen et al., 2011; Lustig et al., 2011; Sarno et al., 2012). The gov-
ernment bond zero yield data is directly obtained from Bloomberg for the
time period from January 1995 (the first availability of the time series) up
to December 2013.9

The monthly sovereign yield spreads ∆syτt are calculated as the difference
syτt − sy

∗,τ
t between sovereign yields of equal maturity τ at the end of each

month. The term structure is constructed with 12 maturities ranging from
three-months, six-months, 12-months, 24-months, 36-months up to 120-months.
Following the existing literature, all spreads are calculated against US yields.
This leaves us with five datasets of sovereign spreads: US-AU, US-CA, US-
CH, US-JP and US-UK.10

8We thus have to exclude Euro countries, because these bonds are issued in a currency
which reflects the macroeconomic prospects of the entire Euro area instead of the indi-
vidual economies. This will become crucial for our analysis in Section 4.5. Using e.g.
German yields as a proxy does not seem reasonable for our approach, especially as our
sample includes the recent Euro crisis.

9Bloomberg yields have the advantage that they are consistently available for all considered
economies in this study. All Bloomberg zero yield curves are constructed daily with
government bonds that have Bloomberg Generic (BGN) and/or supplemental proprietary
contributor prices.

10We note that the results and conclusions presented in this paper also hold for other
combinations of the economies not including the US.
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4.3.2 Statistical Properties

We summarize selected statistical properties of all sovereign spread data sets
in Table 4.1. Note that sovereign spreads can be either positive or negative
depending on the respective yield being lower or higher than US yields. The
negative mean for the US-Australian, US-British and US-Canadian sovereign
yield spreads, for example, indicates that the respective yields have on av-
erage been higher than US yields. The opposite holds for Switzerland and
Japan, where yields have been significantly lower than US yields throughout
the sample period. It is also interesting to note that calculated against US
yields all average spread curves, indicated by the mean spreads of the differ-
ent maturities, are upward sloping. This implies that throughout our sample
period from 1995-2013, for economies with yields mostly higher than US
yields (Australia, UK and Canada) the average spread narrows with longer
maturities, while for economies with yields mostly lower than US yields (the
two safe haven currencies Japan and Switzerland), the average spread widens
with longer maturities. The mean spreads for different maturities also indi-
cate that the slope of the average spread curve is relatively small.
The standard deviations point towards a difference in volatility between
short-term and long-term maturities. We observe that yield spreads for
longer maturities have far lower standard deviations for all currency pairs.
For example, the shortest maturity (three-months) has a standard deviation
as high as 2.16 for the US-JP series and 1.66 for US-AU. In contrast, the 120-
months series for the same pair of countries is characterized by a standard
deviation of just 0.90 for US-JP and 0.72 for US-AU. Calculated coefficients
of correlation reveal that sovereign spreads at different maturities are highly
correlated. As could be expected, correlation coefficients are typically the
highest for adjacent maturities. The correlation between the 3-months and
60-months spread ranges from 0.85 to 0.95 for example. For the US-CH
and US-JP series, even correlations between the 3-months and 120-months
spreads are still relatively high (around 0.8), while they are significantly lower
for the US-UK and US-CA series, ranging from 0.3 to 0.46.
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Maturity
(months) Mean St Dev Min Max Skew Kurt Corr(3) Corr(12) Corr(60) Corr(120)

US-AU Spread
3 -2.17 1.66 -5.50 0.94 0.11 1.96 1.00
12 -2.02 1.66 -5.19 1.15 0.16 1.92 0.98 1.00
60 -1.68 1.06 -3.89 0.47 0.11 1.99 0.94 0.98 1.00
120 -1.33 0.72 -3.20 0.14 -0.36 2.61 0.67 0.74 0.81 1.00

US-CA Spread
3 -0.24 0.98 -2.59 2.32 0.48 3.11 1.00
12 -0.25 0.95 -2.43 2.34 0.38 2.85 0.97 1.00
60 -0.31 0.61 -1.83 0.80 -0.22 2.52 0.92 0.96 1.00
120 -0.22 0.58 -2.02 0.66 -1.07 3.78 0.46 0.49 0.62 1.00

US-CH Spread
3 1.64 1.59 -1.09 4.52 0.18 1.44 1.00
12 1.72 1.61 -1.03 4.66 0.19 1.42 0.98 1.00
60 1.81 1.00 -0.13 4.09 0.28 2.09 0.95 0.98 1.00
120 1.85 0.58 0.15 3.37 0.22 2.71 0.80 0.84 0.90 1.00

US-JP Spread
3 2.63 2.16 -0.46 6.28 0.00 1.38 1.00
12 2.83 2.17 0.01 6.75 -0.01 1.44 0.99 1.00
60 3.00 1.40 0.36 5.77 -0.28 2.03 0.95 0.97 1.00
120 2.91 0.90 0.76 4.79 -0.46 2.76 0.78 0.81 0.90 1.00

US-UK Spread
3 -1.03 1.06 -3.40 0.89 -0.59 2.18 1.00
12 -0.88 0.98 -3.23 0.65 -0.66 2.31 0.95 1.00
60 -0.60 0.64 -2.47 0.88 -0.08 2.52 0.83 0.90 1.00
120 -0.29 0.67 -2.39 1.39 -0.45 4.04 0.30 0.33 0.59 1.00

Table 4.1. Descriptive statistics of sovereign yield spreads at monthly frequency for the time period
from 1995:01 - 2013:12. For each spread and selected maturities (3-months, 12-months, 60-months and
120-months) we report (from left to right) mean, standard deviation, minimum, maximum, skewness,
kurtosis and correlations between the reported maturities.
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Overall we find that the different yield spread curve data sets share some
common characteristics:

• The short end of the spread curve is more volatile than the long end;

• Average spread curves are upward sloping;

• Yield spreads at different maturities are highly correlated.

These properties are relatively similar to characteristics also commonly found
in yield curve datasets, see, for example, Pooter et al. (2010) or Koopman and
van der Wel (2013). However, yield curves usually exhibit a steeper and more
concave sloping average curve and higher volatility at different maturities.
Furthermore, yields are usually not negative, while the sovereign spreads
considered in this study are typically negative for three of the currency pairs
(US-AU, US-CA, US-UK).

4.3.3 Dynamic Behaviour

The aggregated descriptive statistics should also not hide the fact that spread
curves may differ significantly from characteristic yield curve shapes. We pro-
vide illustrative plots of sovereign spread curves on selected days during the
sample period in Figure 4.1. Apparently they can take on a wide range of
shapes through time, including upward and downward sloping, but other
than yield curves, they are generally rather flat. This reflects the fact that
in a highly connected global economy, advanced economies often face sim-
ilar economic conditions and consequently often simultaneously experience
an upward or downward sloping yield curve. Rather uncommon for yield
curves, spread curves may also regularly contain several bumps. In Figure
4.2 we plot the dynamics of spreads for selected short (3-months), medium
(36-months) and long (120-months) maturities for the considered sample pe-
riod. The difference in the level of the different spreads is obvious: the US-JP
spread is typically the highest, while the US-AU spread is usually the most
negative, indicating the substantially higher interest rates in Australia. Nev-
ertheless the different spreads move surprisingly coherent throughout time.
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Figure 4.1. Representative sovereign spread curves for selected spreads and dates thoughout the sample
period. The curves present the US-Japanese spread curve on 31 Aug 2000 (upper left panel), the US-
British spread curve on 31 Dec 2008 (upper right panel), US-Swiss spread curve on 30 April 2010 (lower
left panel) and the US-Australian spread curve on 31 Jan 2007 (lower right panel).

All spreads decrease for example after the bursting of the dotcom bubble in
2001 when US yields dropped more in relative terms than other advanced
economies’ yields. In particular spreads for short-term but also for medium-
term maturities exhibit a characteristic drop during earlier periods of the
global financial crisis (GFC) in 2007-2008, when the US significantly reduced
short term interest rates to nearly zero. Towards the end of the crisis we
observe an upwards shift of spreads for Australia, Canada and the UK, since
also these countries started to significantly reduce interest rates.
After the GFC, especially short term spreads exhibit a striking behavior.
While prior to the crisis period, there is a large temporal variation in the
short term spreads, in its aftermath all spreads - except the US-Australian -
narrow and remain flat until the end of the sample period in December 2013.
This is obviously a direct consequence of the unprecedented expansive mone-
tary policy of the major central banks. During the financial crisis the major
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central banks (except the Australian RBA, as Australia had been impacted
less by the GFC) decreased their policy rate close to the zero bound and
also directly intervened in the markets to bring yields down.11 The central
banks’ long term commitment to these policies and the rather dire economic
prospects have led to a prolonged period of low and non-volatile short and
medium yields in most advanced economies. This unique interest rate envi-
ronment is naturally reflected in short and less distinctively in medium term
sovereign spreads as well.
Comparing short, medium and long term maturities, the difference in volatil-
ity mentioned above is clearly noticeable. While short term spreads are quite
volatile, long term spreads remain rather stable throughout the sample pe-
riod as the underlying long term structural differences between economies do
not change as quickly as short term economic fluctuations.

11The most prominent example is, of course, the controversial quantitative easing of the
US Federal Reserve.
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Figure 4.2. Time series for sovereign spreads of selected short term (three-month), medium term (36-
month) and long term (120-month) maturities. We plot US-Australian, US-Canadian, US-Swiss, US-
Japanese and US-British sovereign yield spreads for the sample period 1995:01 – 2013:12.

4.4 Latent Yield Spread Curve Factors

4.4.1 Estimating the Latent Factors

Our main objective is to identify and investigate the underlying factors driv-
ing the term structure of sovereign spreads. To derive these factors we con-
duct a principal component analysis (PCA). Principal component analysis is
a statistical method that reduces the dimensionality of a data set by com-
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pressing the information it contains into a limited number of components
or factors.12 These factors thus summarize the main features of the origi-
nal term structure of sovereign yield spreads in parsimonious form. PCA is
a common approach applied to term structure dynamics (Longstaff et al.,
2007; Blaskowitz and Herwartz, 2009; Barber and Copper, 2012) and works
best with correlated time series, see, e.g., Duffee (2011). The approach there-
fore seems a natural choice to reduce the dimension of the highly correlated
sovereign spreads. Practitioners may also benefit from the flexibility of fac-
tors that are not postulated a priori, but are rather derived from actual
market data. Note that we apply PCA directly to the sovereign spreads and
use standardized spreads with zero mean and unit variance.
To derive the orthogonal factors F1,...,K that can account for the variability in
the term structure, assume S to be a TxN matrix of standardized sovereign
spreads ∆syτt , where T is the number of maturities and N is the number of
observation dates. To extract loadings γK and factors FK a PCA seeks an
orthogonal KxT matrix Γ which yields a linear transformation

ΓS = Φ, (4.5)

where Φ is a KxN -dimensional matrix of latent factors F .
The matrix Γ is constructed using an eigenvector decomposition. Let Σ

denote the TxT covariance matrix of S that can be decomposed as

Σ = ΓΛΓ′, (4.6)

where the diagonal elements of Λ = diag(λ1, ..., λT ) are the eigenvalues and
the columns of Γ are the eigenvectors. Arranging the eigenvectors in de-
creasing order of the eigenvalues, the first K eigenvectors of Γ denote the
factor loadings [γ1, ..., γK ]. Then the K latent factors [F1, ..., FK ] are defined
by Fk,t = γ′kSt, where St is a T -dimensional vector of the term structure of
sovereign yield spreads at time t. Given the wealth of literature detailing
the use of PCA for examining term structure dynamics, we refer to Jolliffe

12Note that in the following we will use the terms factors and components interchangeable
throughout the analysis.
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(2002); Lardic et al. (2003) or Barber and Copper (2012) for further details.

4.4.2 Factor Dynamics

Applying PCA allows for a data-driven selection of the K most important
latent factors. Table 4.2 displays the variance explained by the first three
principal components extracted by the applied PCA.

US-AU US-CA US-CH US-JP US-UK

F1 91.8 84.2 94.3 93.4 77.5
F2 7.1 13.9 4.6 6.0 19.9
F3 0.7 1.1 0.6 0.4 1.7

Total 99.6 99.2 99.5 99.8 99.1

Table 4.2. Explained variance of first three principal components (F1, F2, F3) in percent extracted by
principal component analysis (PCA) for US-Australian, US-Canadian, US-Swiss, US-Japanese and US-
British sovereign yield spread curves over the time period 1995:01 – 2013:12.

For all spreads the three leading principal components already account
for about 99% of the variance in the term structure, with the first principal
component playing the most dominant role. The first factor already explains
more than 90% of the variance for three out of the five spreads. For US-UK
and US-CA sovereign spreads the explanatory power of the first component
is slightly lower, but still explains 84.2%, respectively 77.5%, of the variance.
The second factor explains a further 4.6% up to 19.9% and the third factor
an additional 0.4% to 1.7%. Including the first two factors in our analysis is
an obvious choice. Note that we decided to also include the third factor, as
this allows us to interpret the factors in line with common yield curve models
in the subsequent sections.
We plot the time series of the first three estimated factors F1, F2, F3 in Figure
4.3, which reveals that the three factors behave quite differently.13 The first
factor is the most volatile and seems to be relatively persistent. It also seems
to mirror the dynamic behavior of the yield spreads relatively closely. Most

13Note that, as the PCA extracts orthogonal factors the correlation between the first,
second and third factor is zero. All factor series have a zero mean.
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prominent is the characteristic drop at the beginning of the GFC. The second
factor is relatively noisy. It also exhibits a distinctive spike towards the end
of the GFC. The third factor is the least volatile and also relatively small
in magnitude. Comparing the factors of the different spread pairs, it is also
interesting to note that the respective time series of the different spread pairs
move together relatively closely through time. This holds especially for the
first factor.
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Figure 4.3. Time series of the first three Factors (F1, F2, F3) estimated by principal component analysis
(PCA) for US-Australian, US-Canadian, US-Swiss, US-Japanese and US-British sovereign yield spread
curves for the time period 1995:01 – 2013:12.
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4.4.3 Interpreting the Factors as Level, Slope and Cur-

vature

Our methodological framework allows us to further analyze and interpret the
estimated latent factors. To start with, we present the shape of the loadings
γ1, γ2, γ3 on the first three estimated latent factors as a function of maturity
in Figure 4.4. The loadings are surprisingly similar for all sovereign spread
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Figure 4.4. Loadings as a function of maturity for all spreads against US yields. We plot the loadings
derived by PCA for the first three factors for US-Australian, US-Canadian, US-Swiss, US-Japanese and
US-British sovereign spreads. Note that principal components are not unique up to sign, i.e. multiplying
a principal component by (-1) has no effect on the explanatory power of the component.

pairs. Given the differences in sign and magnitude of the different spreads,
one could have expected different shapes in the loadings. Interestingly, the
shape of the factor loadings is also quite similar to those found in other works
where PCA has been applied the term structure of interest rates (Litterman
and Scheinkman, 1991; Dai and Singleton, 2000; Afonso and Martins, 2012).
The first loading is almost constant across all maturities and does not decay
with longer maturities - hence the first component can be interpreted as a
level factor. The loading is responsible for parallel shifts of the spread curve.
The second loading has opposite signs at both ends of the spread term struc-
ture so it affects short-term and long-term spreads differently. Thus, it can
be interpreted as a slope factor, determining variations in the slope of the
spread curve. The third loading has equal signs at both ends of the maturity
spectrum, but an opposite sign for medium-term maturities mainly affecting
changes in the curvature of sovereign spreads. Therefore, the observed shape
of the loadings allows us to interpret the components as spread level, slope
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and curvature factors.
We verify this interpretation by investigating the relationship between the
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Figure 4.5. Time series of the first three estimated latent factors (F1, F2, F3 —) against the empirical
level, slope and curvature (- - -) for US-Canadian sovereign spreads. In line with existing literature, we
calculate the empirical level as the average of the longest (120-months), the shortest (3-months) and a
medium-term maturity (we chose 36-months); the empirical slope as the difference between the longest
and shortest maturity and the curvature as twice the medium-term maturity minus the sum of the shortest
and longest maturity. Note that the second and third factors are negatively correlated, thus the estimated
factor series have been multiplied with (-1) for illustrative purposes.

estimated factor time series and the empirical spread level, slope and curva-
ture. In line with the existing literature, see, e.g, Diebold et al. (2006); Afonso
and Martins (2012), we calculate the empirical spread level as the average of
the longest (120-months), the shortest (three-months) and a medium-term
maturity (we chose 36-months), the spread slope as the difference between
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the longest and shortest maturity and the spread curvature as twice the
medium-term maturity minus the sum of the shortest and longest maturity.
Figure 4.5 provides an illustrative plot of the relationship between estimated
and empirical factors for the US-Canadian spread.14 For all three factor se-
ries the relation between the latent and empirical factors is visually apparent
confirming a close relationship between estimated factors and their empirical
proxies.
This also holds for all other investigated spread pairs. Table 4.3 summa-
rizes the correlations between the empirical and estimated factor series for
all spreads. The correlations are compellingly high especially for the first
factor and confirm our interpretation that the three estimated latent factors
correspond to level, slope and curvature of the yield spread curves. These

US-AU US-CA US-CH US-JP US-UK

F1 / level 0.99 0.99 0.99 0.99 0.97
F2 / slope -0.71 -0.87 -0.57 -0.66 -0.94
F3 / curv. -0.76 -0.83 -0.69 -0.62 -0.96

Table 4.3. Correlation between the time series of the first three estimated factors (F1, F2, F3) and
the empirical level, slope and curvature for US-Australian, US-Canadian, US-Swiss, US-Japanese and
US-British sovereign spreads over the time period 1995:01-2013:12.

interpretations also make intuitive sense with regards to the shape of the
spread curves and the percentage of the variation in yield spreads they ex-
plain. As spread curves are often rather flat, the slope factor plays a relatively
smaller role than the level factor in explaining the variance. Interpreting the
first factor as a level factor also helps to understand, why the first factors
of the US-CA and especially the US-UK spread explain a relatively smaller
fraction in the variance compared to the other spreads. As indicated, all
datasets exhibit high correlation between the maturities - they are driven by
the same ’level ’ factor. As illustrated in Table 4.1, for the US-UK spread
and to a lesser extent for the US-CA spread, the correlation between yield
spreads at different maturities is less pronounced than for the other spread
datasets. The correlation between the three-months and 120-months US-UK

14Corresponding plots for the remaining spread pairs are reported in Appendix B.1.
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spread, for example, is only 0.3. Thus, a level factor explains less variance
for the spreads between US and UK yields than for the other spreads.
Overall, the conducted analysis suggests that the dynamics of the entire
term structure for sovereign spreads can be decomposed by using a small
number of three latent factors. Further, the three factors can be suitably
labelled as spread ’level (FL)’, ’slope (FS)’ and ’curvature (FC)’ and are
highly correlated with empirical measures of the factors. Our results are ro-
bust across sovereign spreads between advanced economies, namely spreads
between the US and Australia, Canada, Japan, Switzerland and United King-
dom sovereign yields.

4.5 Exchange Rate Predictability

4.5.1 Rationale and Previous Findings

Section 4.2 concluded that the latent factors estimated from the term struc-
ture of yield spreads may serve as natural measures of exchange rate deter-
mination. The term structure of sovereign yield spreads contains information
about expected cross-country differentials in economic fundamentals that are
known to drive exchange rates. As the latent spread factors summarize this
information they may also possess predictive power for the expected path of
exchange rates.
In this regard, previous literature has produced some encouraging results.
Clarida et al. (2003) provide evidence that the term structure of forward
premiums contains valuable information for forecasting future spot exchange
rates using a regime-switching vector equilibrium correction model. Bekaert
et al. (2007) advocate that risk factors driving the premiums in the term
structure of interest rates may drive the risk premiums in currency returns.
Ang and Chen (2010) use the domestic empirical level and slope factors of
the term structure together with interest rate volatility to predict FX rate
returns in a cross-sectional setting based on portfolio strategies. They find an
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economically and statistically significant ability of changes in interest rates
and slopes of the yield curve to predict foreign exchange returns, above the
predictability of carry. Chen and Tsang (2013) examine the predictive power
of cross-country yield curve factors constructed with the parametric Nelson-
Siegel Model for exchange rates. They find that Nelson-Siegel factors ex-
tracted from two countries’ relative yield curves can predict future exchange
rate movements and excess currency returns up to 24 months ahead. Bui
and Fisher (2016) confirm their findings for the relative yield curves of the
US and Australia.
These results suggest that the macroeconomic information contained in the
latent spread factors may be useful in exchange rate determination. To verify
this assumption, we examine the ability of the extracted yield spread factors
to capture the variation in exchange rate changes and excess returns in the
subsequent sections.

4.5.2 Exchange Rate Data

For the analysis we retrieve the AUD, CAD, CHF, JPY and GBP end-of-the-
month exchange rates against the USD from Bloomberg. We consider the US
as the home country, thus, the exchange rate is measured as the USD price
per unit of foreign currency. Therefore, a rise in the exchange rate represents
a depreciation of the USD and a lower value an appreciation of the USD.
Figure 4.6 plots the time series of the log exchange rates for the considered
sample period. The majority of exchange rates are relatively erratic and
volatile with only the JPY and GBP being relatively stable throughout the
entire time period and mainly fluctuating around a long-term equilibrium
value. The bursting of the dotcom bubble in 2001 does not seem to be
clearly reflected, but all currencies except the JPY experience a characteristic
depreciation against the USD throughout the GFC period in 2008. This is
followed by a relatively quick and sharp recovery.
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Figure 4.6. Time Series of log exchange rates for AUD, CAD, CHF, JPY (×100) and GBP against the
USD for the sample period 2005:01 - 2013:12. The exchange rate is measured as the US dollar price per
unit of foreign currency. Thus, an increase in the exchange rate represents a depreciation of the USD.

4.5.3 Estimation Specifications

To test the predictive ability of the latent yield spread factors we regress
exchange rate movements and excess returns on the extracted factors for
horizons h = 3, 6, 12, 2415 months:

∆st+h = α∆s
h + β∆s

h,LFL,t + β∆s
h,SFS,t + β∆s

h,CFC,t + ut+h; (4.7)

xst+h = αxsh + βxsh,LFL,t + βxsh,SFS,t + βxsh,CFC,t + vt+h. (4.8)

The exchange rate return ∆st+h for horizon h is defined as the annualized
change of the log exchange rate s. Annualized excess returns xst+h are cal-
culated by adjusting the exchange rate change of horizon h with the cor-
responding yield spread of equal maturity τ , see, e.g., Christiansen et al.
(2011),

xst+h = ∆st+h + i∗,τt − iτt , (4.9)

where iτt and i∗,τt are the monthly domestic and foreign interest rates at ma-
turity h = τ .

15We start with h = 3 as the the shortest available maturity to calculate the excess returns
xs is m = 3−months. We note, that for Equation 4.7 the results for h = 1 months are
consistent with the forecasting horizons presented in this analysis.
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FL, FS, and FC are the three latent spread factors extracted from the PCA
above.16 The predictive ability is evaluated by estimating β∆s

h,[L,S,C] and
βxsh,[L,S,C] over the entire sample. If the yield spread factors contain rele-
vant information, these coefficients should be different from zero.
Regressions using longer time horizons need to address an inference bias due
to overlapping observations (Harri and Brorsen, 2009). Since the horizon h
for exchange rate movements and excess returns is longer than the frequency
of data (one month in this case), the left hand side variable overlaps across ob-
servations and the error terms ut+h and vt+h will be moving average processes
of order h − 1. In this case OLS parameter estimates would be inefficient
and hypothesis tests biased (Hansen and Hodrick, 1980). One way to deal
with this problem is to only use non-overlapping observations. This would
eliminate the autocorrelation problem, but is obviously highly inefficient as
it dramatically reduces the number of observations and dismisses valuable
information. An alternative and more efficient approach is to account for the
moving average error term in hypothesis testing. Thus, we use heteroskedas-
ticity and autocovariance consistent (HAC) estimators developed by Newey
and West (1987) for the OLS estimation.17

Further, it is well known that the finacial crisis period in 2007-2009 has
caused major eruptions in bond and foreign exchange markets. Bianchetti
(2010), for example, finds that standard yield curve no-arbitrage relations are
no longer valid. Fratzscher (2009) reports that the GFC has caused sharp
movements in global exchange rate markets.
Thus, we first run equations (4.7) and (4.8) with the latent spread factors
and their interaction with a GFC dummy (2007:08 to 2009:05).18 We find
significant coefficients19 on the interaction terms for most of the spread pairs
and horizons and conclude that the crisis period differs significantly from the
rest of the sample. We thus drop the time period from 2007:08 to 2009:05
16We note that the null of a unit root is generally rejected for exchange rate movements,
excess returns and the factor time series.

17Following Schwert (2002)’s method, we determine the number of lags of the residual
autocorrelations as 12.

18Guidolin and Tam (2013) provide an extensive overview of the crisis dating literature
and provide a conservative consensus dating centered around August 2007 - May 2009.

19Results for these regressions are reported in Appendix B.2.
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for the predictive regressions.

4.5.4 Regression Results

The results of the predictive regressions are reported in Tables 4.4 – 4.8. We
find predominantly negative coefficients on the yield spread level and slope
factors for nearly all investigated horizons and currencies. For example, a
1% increase in the US-Australian yield spread level factor (i.e. the entire
yield curve of the US shifts up by 1% relative to the Australian yield curve)
predicts a 1.82% (annualized) depreciation of the Australian dollar against
the US dollar and a 2.28% (annualized) drop in AUD excess return in the
next quarter. Likewise, an 1% increase in the US-Swiss yield spread slope
factor (i.e. the US yield curve becomes steeper relative to the Swiss one)
predicts a 5.16% (annualized) depreciation of the Swiss franc over the next
three months. The same 1% increase in the relative slope factor predicts an
5.84% drop in CHF (annualized) excess returns for the next three months.
There is no clear pattern for the sign and magnitude of the curvature factor
and its estimated coefficients are often insignificant. Therefore it does not
seem to play an important role in determining exchange rate movements and
excess returns.20 This is not entirely surprising, as it also only explains a rel-
atively small amount of the variation in the term structure of yield spreads
and has not clearly been linked to economic variables in previous literature.21

The negative coefficients on spread level and slope factors are in line with
economic intuition and previous findings in the literature, see, in particular
Chen and Tsang (2013). The yield curve literature described in Section 4.2
suggests that the level factor can be seen as a long-run inflation expectation
factor, while the slope factor reflects business cycle and output growth dy-
namics. A higher yield curve level in a country thus indicates that the market

20Omitting the spread curvature factor from the regressions (results are not reported here)
confirms that the additional explanatory power of including the third factor is indeed
rather limited.

21Moench (2012) for example suggests a more indirect interpretation with innovations of
the curvature factor announcing changes in the slope factor.
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expects rising inflation and a flat yield curve points to the market expecting
a forthcoming economic downturn. In these situations, a country’s currency
may be less desirable and will potentially face depreciation pressure. As Bui
and Fisher (2016) describe, the currency will appreciate and recover towards
its long-run equilibrium value. An increase in the yield spread level or slope
factor (the home yield curve shifts up or the foreign yield curve becomes
steeper) thus indicates a decrease in the nominal exchange rate equivalent to
an appreciation of the USD or a depreciation of the foreign currency.
A similar logic applies to the spread level and slope factor coefficients in the
excess return regressions. As noted above, excess foreign currency returns
can be considered as risk premiums associated with holding a currency. An
increase in the yield spread level and slope factors indicates higher expected
foreign growth and lower expected foreign inflation. Thus, investors may
demand smaller risk premiums for holding the foreign currency.
Note that these findings are contrary to the classic Dornbusch (1976) over-
shooting model but in line with recent empirical studies, see, e.g. Clarida
and Waldmann (2008). The Dornbusch (1976) model would suggest an initial
appreciation and subsequent depreciation of the home currency in response
to a higher interest rate. However, there is empirical evidence indicating
that quite regularly currencies of high interest rate countries tend to appre-
ciate subsequently, rather than depreciate. Eichenbaum and Evans (1995)
find that a rise in the U.S. federal funds rate can lead to persistent appre-
ciation of the dollar for two years or longer. Gourinchas and Tornell (2004)
also demonstrate that when investors systematically underestimate the per-
sistence in the interest rate process, high interest rates in a country may lead
to the subsequent appreciation of its currency. This is in line with our finding
that an upward shift in the spread level or a flatter spread slope predict sub-
sequent home currency appreciation and a high home risk premium. Since
these movements are typically considered a signal for an economic slow-down
or rising inflation, Chen and Tsang (2013) convincingly argue that in accor-
dance with the present value relation, the home currency consequently faces
depreciation pressure as investors pull out, and ceteris paribus, appreciates
back up over time towards its long-term equilibrium value.
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We obtain mixed results with regards to the significance of the coefficients for

US-Australian Spread

FX Rate Change (∆st+h) Regression Excess Return (xst+h) Regression

h=3 h=6 h=12 h=24 h=3 h=6 h=12 h=24

FL
-1.82*** -1.71*** -1.52*** -0.84** -2.28*** -2.19*** -2.00*** -1.27***
(-2.94) (-3.03) (-3.02) (-2.17) (-3.69) (-3.88) (-3.95) (-3.28)

FS
-2.23 -2.21 -2.86* -3.63*** -2.90* -2.81* -3.38** -3.99***
(-1.35) (-1.41) (-1.75) (-2.66) (-1.76) (-1.78) (-2.05) (-2.90)

FC
-3.23 -3.04 -1.80 -1.69 -4.10 -3.66 -1.89 -1.33
(-0.48) (-0.68) (-0.40) (-0.39) (-0.61) (-0.81) (-0.42) (-0.30)

nob 200 194 182 158 200 194 182 158
adj R2 0.08 0.17 0.26 0.29 0.13 0.25 0.37 0.40

Table 4.4. Results for regressing USD/AUD exchange rate changes ∆st+h (equation (4.7) and excess
returns xst+h (equation 4.8) on latent US-AU spread factors FL, FS , FC over the sample period 1995:01
- 2013:12. Newey-West robust t-statistics are reported in parantheses. *,** , *** indicate significance of
the coefficients on a 10%, 5%, 1% level, respectively. Nob denotes number of observations, h denotes the
forecasting horizon in months. Note that we omit the estimates of the constant. The time period from
2007:08 to 2009:05 (GFC) has been dropped from the sample.

US-Canadian Spread

FX Rate Change (∆st+h) Regression Excess Return (xst+h) Regression

h=3 h=6 h=12 h=24 h=3 h=6 h=12 h=24

FL
-0.60 -0.63 -0.67** -0.63** -0.87** -0.90** -0.94*** -0.88***
(-1.37) (-1.57) (-2.12) (-2.44) (-1.98) (-2.27) (-2.98) (-3.36)

FS
-0.40 -0.38 -0.87 -1.12* -0.73 -0.71 -1.19** -1.36**
(-0.55) (-0.58) (-1.58) (-1.86) (-1.01) (-1.08) (-2.15) (-2.24)

FC
-1.72 -2.58 -2.79 -1.81 -2.27 -2.97 -2.89 -1.57
(-0.73) (-1.10) (-1.12) (-1.10) (-0.95) (-1.27) (-1.16) (-0.95)

nob 200 194 182 158 200 194 182 158
adj R2 0.01 0.06 0.20 0.30 0.04 0.12 0.32 0.43

Table 4.5. Results for regressing USD/CAD exchange rate changes ∆st+h (equation (4.7) and excess
returns xst+h (equation 4.8) on latent US-CA spread factors FL, FS , FC over the sample period 1995:01
- 2013:12. Newey-West robust t-statistics are reported in parantheses. *,** , *** indicate significance of
the coefficients on a 10%, 5%, 1% level, respectively. Nob denotes number of observations, h denotes the
forecasting horizon in months. Note that we omit the estimates of the constant. The time period from
2007:08 to 2009:05 (GFC) has been dropped from the sample.

the examined currency pairs. The derived latent yield spread factors seem
to exhibit the most significant predictive power for the safe haven currencies
Swiss franc and Japanese yen.22 For the Swiss franc both spread level as well
as spread slope factor are statistically significant in predicting exchange rate
movements and excess returns for three to 24 months, while for the Japanese

22Amongst others Ranaldo and Soderlind (2010) find that the Swiss franc and to a smaller
extent the Japanese yen have significant safe-haven characteristics.
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US-Swiss Spread

FX Rate Change (∆st+h) Regression Excess Return (xst+h) Regression

h=3 h=6 h=12 h=24 h=3 h=6 h=12 h=24

FL
-1.21* -1.18* -1.20** -1.18*** -1.64*** -1.64*** -1.67*** -1.60***
(-1.93) (-1.94) (-2.35) (-4.02) (-2.63) (-2.69) (-3.23) (-5.42)

FS
-5.16*** -4.91*** -4.67*** -4.11*** -5.84*** -5.58*** -5.20*** -4.41***
(-2.59) (-3.50) (-3.19) (-3.79) (-2.94) (-3.99) (-3.51) (-4.03)

FC
3.91 5.60 2.62 -4.64 3.18 5.01 2.63 -4.23
(0.58) (0.97) (0.41) (-0.99) (0.47) (0.87) (0.41) (-0.89)

nob 200 194 182 158 200 194 182 158
adj R2 0.07 0.15 0.28 0.42 0.11 0.22 0.39 0.53

Table 4.6. Results for regressing USD/CHF exchange rate changes ∆st+h (equation (4.7) and excess
returns xst+h (equation 4.8) on latent US-CH spread factors FL, FS , FC over the sample period 1995:01
- 2013:12. Newey-West robust t-statistics are reported in paranthesis. *,** , *** indicate significance of
the coefficients on a 10%, 5%, 1% level,respectively. Nob denotes number of observations, h denotes the
forecasting horizon in months. Note that we omit the estimates of the constant. The time period from
2007:08 to 2009:05 (GFC) has been dropped from the sample.

US-Japanese Spread

FX Rate Change (∆st+h) Regression Excess Return (xst+h) Regression

h=3 h=6 h=12 h=24 h=3 h=6 h=12 h=24

FL
-0.05 -0.16 -0.20 0.16 -0.65 -0.78 -0.82 -0.42
(-0.09) (-0.28) (-0.39) (0.31) (-1.02) (-1.33) (-1.61) (-0.82)

FS
-8.01*** -8.07*** -6.96*** -5.19*** -8.89*** -8.96*** -7.74*** -5.68***
(-5.32) (-5.90) (-5.87) (-5.49) (-5.88) (-6.57) (-6.53) (-5.98)

FC
2.24 5.95 9.58 5.07 1.32 5.24 9.42 5.63
(0.23) (0.88) (1.56) (1.09) (0.14) (0.77) (1.54) (1.21)

nob 200 194 182 158 200 194 182 158
adj R2 0.08 0.19 0.34 0.30 0.11 0.24 0.42 0.39

Table 4.7. Results for regressing USD/JPY exchange rate changes ∆st+h (equation (4.7) and excess
returns xst+h (equation 4.8) on latent US-JP spread factors FL, FS , FC over the sample period 1995:01
- 2013:12. Newey-West robust t-statistics are reported in parantheses. *,** , *** indicate significance of
the coefficients on a 10%, 5%, 1% level, respectively. Nob denotes number of observations, h denotes the
forecasting horizon in months. Note that we omit the estimates of the constant. The time period from
2007:08 to 2009:05 (GFC) has been dropped from the sample.

yen the slope factor seems to play the most dominant role.
We also find equally promising results for the Australian dollar. The US-AU
spread level factor has significant explanatory power for exchange rate move-
ments and excess returns across all horizons, while the US-AU spread slope
factor is mostly significant for long horizons.
For the Canadian dollar we find significant results only for longer horizons.
We assume that these results are mainly due to the Canadian dollar’s com-
modity currency status, as characterized by Chen and Rogoff (2003). The
currency responds mainly to the world price of the country’s primary com-
modity exports and thus appears to be dominated by factors that are not
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US-British Spread

FX Rate Change (∆st+h) Regression Excess Return (xst+h) Regression

h=3 h=6 h=12 h=24 h=3 h=6 h=12 h=24

FL
-0.50 -0.49 -0.61 -0.57** -0.76 -0.76* -0.88** -0.82***
(-1.03) (-1.08) (-1.50) (-2.00) (-1.57) (-1.68) (-2.16) (-2.87)

FS
-0.82 -0.75 -0.42 -0.38 -1.22 -1.15 -0.79 -0.62
(-0.97) (-0.93) (-0.64) (-0.70) (-1.46) (-1.43) (-1.18) (-1.13)

FC
-0.11 -1.44 -1.33 0.92 -0.67 -1.82 -1.35 1.12
(-0.03) (-0.48) (-0.69) (0.52) (-0.21) (-0.61) (-0.70) (0.64)

nob 200 194 182 158 200 194 182 158
adj R2 0.01 0.03 0.09 0.14 0.03 0.08 0.18 0.26

Table 4.8. Results for regressing USD/GBP exchange rate changes ∆st+h (equation (4.7) and excess
returns xst+h (equation 4.8) on latent US-UK spread factors FL, FS , FC over the sample period 1995:01
- 2013:12. Newey-West robust t-statistics are reported in parantheses. *,** , *** indicate significance of
the coefficients on a 10%, 5%, 1% level, respectively. Nob denotes number of observations, h denotes the
forecasting horizon in months. Note that we omit the estimates of the constant. The time period from
2007:08 to 2009:05 (GFC) has been dropped from the sample.

directly related to its macroeconomic fundamentals in the short term. Kripp-
ner (2006) also found that the USD/CAD exchange rate is rather unrelated
to the difference in interest rates due to the cyclical component of Canadian
interest rates.
The results for the British pound appear to be the weakest among all cur-
rency pairs. We do not find consistently significant predictive power in any
of the yield curve factors for the GBP. As indicated by the low correlation
between distant maturities in Section 4.3, the US-UK spread term structure
seems to be somewhat disconnected. Thus, the different yield spread matu-
rities are presumably not driven by common factors related to fundamentals
and exchange rates to the same extent as for the other currency pairs exam-
ined in this study.
For all currencies, the explanatory power indicated by the adjusted coefficient
of determination increases with lengthening horizon. This also agrees with
previous findings that the relation between differences in interest rates and
exchange rate dynamics seems to be more pronounced for longer horizons
(Chinn and Meredith, 2004; Rossi, 2013).
One may argue that in the longer term exchange rate movements seem to
be less affected by risk and more affected by the fundamental differentials
incorporated in the yield spreads. Note, however, that as pointed out by
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Boudoukh et al. (2008) higher levels of predictability with widening horizons
are to be expected in longer term horizon regressions. As the sampling error
that is almost surely present in small samples shows up in each regression,
both the estimator and R2 are proportional to the horizon. Therefore, better
results for long horizons in the form of higher βs and increasing R2s generally
provide little if any evidence for a better forecasting performance over and
above the one month horizon results. From this perspective, the increasing
explanatory power of the applied models for longer horizons should be inter-
preted with care.
Overall, our predictive regression results show that the extracted yield spread
factors can help to explain and forecast bilateral exchange rate movements
and excess currency returns three month to two years ahead.23 Most domi-
nant are the spread level and slope factor, while the spread curvature factor
seems to have no consistent explanatory power. The negative signs of the
coefficients for the level and slope factors are consistent with economic theory
and previous findings. These results provide strong evidence for the linkage
between the term structure of yield spreads, macroeconomic fundamentals
and exchange rates.

4.5.5 Comparison with the UIRP

Based on the insights described in Section 4.2, one way to understand the
estimated latent spread factors in relation to exchange rate movements, is
to interpret them as augmenting the traditional h-horizon UIRP approach
with the information in spreads of additional maturities. Both latent spread
factors and UIRP relate differences in interest rates between economies to
changes in exchange rates. However, while the UIRP relation only uses the
information content up to a certain maturity, the latent spread factors sum-
marize the information embodied in the entire term structure of sovereign

23We also examine the assertion that US factors may drive the spread (with a negative
sign) as an alternative explanation. However, except for the US-Japanese spread we
mainly find small correlations between US yield and yield spread factors. US factors
are also inferior in their explanatory power compared to the yield spread factors. See
Appendix B.3.

100



yield spreads.
To formally test whether the latent spread factors provide additional, valu-
able information for predicting exchange rate movements, we apply a likeli-
hood ratio (LR) test24 between the traditional UIRP regression model

∆st+h = α∆s
h,UIRP + β∆s

h,UIRP (iht − ih∗t ) + εt+h (4.10)

based on the UIRP relation in equation (4.1) and an extended UIRP regres-
sion model which also includes the three latent spread factors FL, FS, and
FC :

∆st+h = α∆s
h,UIRP + β∆s

h,UIRP (iht − i
∗,h
t ) + β∆s

h,LFL,t + β∆s
h,SFS,t + β∆s

h,CFC,t + εt+h.

(4.11)
The LR test is commonly used to evaluate the difference between two nested
models, e.g. when the simpler model is a special case of the more complex
model. It is based on a comparison of the maximum likelihood of the two
models.25 If LUIRP is the likelihood of the simple UIRP model in equation
(4.10) and LUIRPext is the likelihood of the more complex model in equation
(4.11) the LR test statistic (LRT) is calculated as

LRT = −2 log
LUIRP
LUIRPext

. (4.12)

Asymptotically, the test statistic follows a chi-square distribution, with the
degrees of freedom equal to the difference in the number of parameters be-
tween the two models.
We present the results of the conducted LR tests in Table 4.9. The LRT-
values indicate that using the information of the entire yield spread term
structure summarized in the latent spread factors clearly provides additional
explanatory power in comparison to a simple UIRP regression. We find sig-
nificant LR test statistics, often at the 1% level, for nearly all currencies and
24We note that applying an F-Test leads to similar conclusions.
25Adding additional parameters will always result in a higher likelihood score. However,
the LR test provides an objective criterion whether the difference in likelihood scores
among the two models is statistically significant considering the loss of degrees of freedom
for the more complex model.
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horizons except for the British pound (h = 3 and h = 24) and the Canadian
dollar (h = 3 and h = 6). Not surprisingly, we find the strongest results for
the two safe haven currencies Swiss franc and Japanese yen.
These results make intuitive sense when the exchange rate is understood as

LR Test Statistic

Horizon
Spread h=3 h=6 h=12 h=24

US-AU 7.00* 0.57 26.50*** 51.53***
US-CA 0.26 2.26 6.85* 21.36***
US-CH 12.99*** 24.94*** 41.34*** 61.52***
US-JP 21.59*** 42.69*** 70.55*** 64.48***
US-UK 2.50 9.87** 7.46* 1.12

nob 198 192 180 156

Table 4.9. Results of a likelihood ratio (LR) test between the simple UIRP model based on equation
(4.10) and an extended UIRP model also including the three latent spread factors FL, FS , FC in equation
(4.11). We present the LR test statistics and p-values for all considered sovereign spread pairs and horizons
h=3, h=6, h=12, h=24. *, ** , *** indicates a significantly superior performance of the extended model
at the 10%, 5%, 1% level, respectively.

an asset price. A specific maturity, such as a 12-month yield only embod-
ies information for the time period until the underlying instrument matures.
However the exchange rate as an asset price is determined to a large extent
by the expected long term future values of the fundamentals. While these can
obviously not be reflected in a short or medium term yield, they are reflected
in the yield spread factors which summarize the information embodied in
the entire term structure up to 120 months. Thus, our results strongly sup-
port the additional predictive power of the extracted latent factors from the
term structure of sovereign yield spreads over a standard UIRP relationship.
These findings also suggest that it may be useful to apply these factors in
future empirical exchange rate forecasting studies.
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4.6 Conclusion

This paper provides a novel analysis of the term structure of sovereign yield
spreads. We focus on the yield spreads of advanced economies with highly
liquid markets of bonds issued in their own currency, little to no credit or de-
fault risk and free floating exchange rates (Australia, Canada, Switzerland,
Japan, UK and US). Using a monthly frequency, we investigate all yield
spreads against the US for the time period from January 1995 to December
2013.
Our main objective is to derive and examine latent factors driving the term
structure of sovereign yield spreads that, to the best of our knowledge, has
not been thoroughly studied in the literature yet. We apply principal com-
ponent analysis on each of the five sovereign spread data sets. Our analysis
shows that the term structure of all sovereign spreads is driven by similar
factors and the first three estimated factors are already sufficient to explain
more than 99% of the variation in the entire spread term structure. Inter-
estingly, the identified factors show a very similar shape to those reported
in studies analysing the term structure of interest rates, see, e.g., Litterman
and Scheinkman (1991); Bikbov and Chernov (2010), and can be labeled as
spread level, spread slope and spread curvature.
We further find that the extracted yield spread factors can explain and pre-
dict bilateral exchange rate movements and excess returns three months to
two years ahead. Most dominant are the spread level and spread slope factor.
The negative signs of the predictive regression coefficients on these factors
indicate that an increase in the spread level or spread slope factor, i.e. when
the foreign yield curve shifts down or becomes steeper relative to the US,
predicts a depreciation and smaller excess returns of the foreign currency
against the US dollar. Our results are also consistent with recent empirical
findings in related studies (Chen and Tsang, 2013; Bui and Fisher, 2016).
With regards to economic theory, in contrast to the pattern suggested by
Dornbusch (1976)’s overshooting model, our results rather suggest an imme-
diate depreciation and subsequent appreciation of a currency in response to
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a higher interest rate. However, these results are consistent with more recent
empirical studies, see, e.g., Eichenbaum and Evans (1995); Gourinchas and
Tornell (2004); Clarida and Waldmann (2008), where it is proposed that an
increase in interest rates in a country may lead to a persistent appreciation
of its currency.
When we test the additional explanatory power of the extracted spread fac-
tors in comparison to the traditional UIRP approach, we find significant
results for most currencies and horizons. We therefore infer that using the in-
formation of the entire spread curve summarized in the spread factors clearly
adds valuable information.
This finding make intuitive sense when the exchange rate is understood as
an asset price. Within a present value framework, exchange rates rely more
on future than on current fundamentals. In other words, the exchange rate
as an asset price is determined to a large extent by the long term expected
values of fundamentals. While the UIRP relation only reflects information up
to a limited horizon, these long term fundamentals are reflected in the yield
spread factors which summarize the information of the entire term structure
up to 120 months ahead. Thus, the term structure of yield spreads may
provide more accurate information for expected fundamentals.
Our results have several important implications for future studies in this area.
To start with, our results highlight the importance of the term structure
of yield spreads as a factor containing valuable macro-financial information.
While the spread between certain maturities is subject to the enormous body
of UIRP-literature, the term structure of spreads has been widely neglected
so far. We have identified and successfully labeled the latent driving forces of
the spread term structure, but more research is required to fully understand
the fundamental information it contains. Furthermore, we provide additional
evidence of the link between interest rates, macroeconomic fundamentals and
exchange rates and confirm the view that the exchange rate can be modeled
as an asset price. Considering the widespread forecasting failure of empiri-
cal exchange rate models based on observable macroeconomic fundamentals
(Meese and Rogoff, 1983; Rossi, 2013), the estimated latent spread factors
may be particularly helpful in future forecasting studies. Recent results point
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out that this empirical failure may also be a result of using inappropriate
proxies for the market expectations of future fundamentals rather than the
failure of the models themselves (Bacchetta and van Wincoop, 2013; Balke
et al., 2013). Including the fundamental information embodied in the la-
tent factors of sovereign yield spreads may thus be a promising approach to
improve the forecasting accuracy of traditional exchange rate models.
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Appendix B

B.1 Additional Plots of Estimated and Empirical Factors
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Figure B.1. Time series of the first three estimated latent factors (F1, F2, F3 —) against the empirical
level, slope and curvature (- - -) for US-Australian sovereign spreads. In line with existing literature, we
calculate the empirical level as the average of the longest (120-months), the shortest (3-months) and a
medium-term maturity (we chose 36-months); the empirical slope as the difference between the longest
and shortest maturity and the curvature as twice the medium-term maturity minus the sum of the shortest
and longest maturity. Note that the second and third factors are negatively correlated, thus the estimated
factor series have been multiplied with (-1) for illustrative purposes.
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Figure B.2. Time series of the first three estimated latent factors (F1, F2, F3 —) against the empirical
level, slope and curvature (- - -) for US-Swiss sovereign spreads. In line with existing literature, we
calculate the empirical level as the average of the longest (120-months), the shortest (3-months) and a
medium-term maturity (we chose 36-months); the empirical slope as the difference between the longest
and shortest maturity and the curvature as twice the medium-term maturity minus the sum of the shortest
and longest maturity. Note that the second and third factors are negatively correlated, thus the estimated
factor series have been multiplied with (-1) for illustrative purposes.
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Figure B.3. Time series of the first three estimated latent factors (F1, F2, F3 —) against the empirical
level, slope and curvature (- - -) for US-Japanese sovereign spreads. In line with existing literature, we
calculate the empirical level as the average of the longest (120-months), the shortest (3-months) and a
medium-term maturity (we chose 36-months); the empirical slope as the difference between the longest
and shortest maturity and the curvature as twice the medium-term maturity minus the sum of the shortest
and longest maturity. Note that the second and third factors are negatively correlated, thus the estimated
factor series have been multiplied with (-1) for illustrative purposes.
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Figure B.4. Time series of the first three estimated latent factors (F1, F2, F3 —) against the empirical
level, slope and curvature (- - -) for US-British sovereign spreads. In line with existing literature, we
calculate the empirical level as the average of the longest (120-months), the shortest (3-months) and a
medium-term maturity (we chose 36-months); the empirical slope as the difference between the longest
and shortest maturity and the curvature as twice the medium-term maturity minus the sum of the shortest
and longest maturity. Note that the second and third factors are negatively correlated, thus the estimated
factor series have been multiplied with (-1) for illustrative purposes.
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B.2 Regression Results with GFC Interaction Terms

US-Australian Spread

FX Rate Change (∆st+h) Regression Excess Return (xst+h) Regression

h=3 h=6 h=12 h=24 h=3 h=6 h=12 h=24

FL
-1.84*** -1.73*** -1.48*** -0.75* -2.29*** -2.21*** -1.96*** -1.18***
(-2.84) (-2.86) (-2.61) (-1.74) (-3.56) (-3.64) (-3.44) (-2.75)

FS
-2.20 -2.09 -2.65* -3.83*** -2.86* -2.68* -3.17** -4.18***
(-1.37) (-1.41) (-1.69) (-2.81) (-1.79) (-1.81) (-2.00) (-3.06)

FC
-1.50 -0.55 2.39 -2.88 -2.37 -1.17 2.28 -2.50
(-0.23) (-0.11) (0.45) (-0.69) (-0.37) (-0.24) (0.43) (-0.59)

FL x GFCd 5.33*** 7.03*** 5.61*** 0.71 5.30*** 7.03*** 5.65*** 0.71
(2.71) (5.30) (3.80) (0.81) (2.70) (5.31) (3.83) (0.81)

FS x GFCd 25.48*** 18.64** 7.28 6.51 25.44*** 18.69** 7.32 6.42
(4.40) (2.01) (0.76) (1.12) (4.37) (2.02) (0.76) (1.12)

FC x GFCd 62.91*** 59.29*** -15.64* 5.50 63.07*** 59.17*** -15.76* 5.55
(3.36) (6.01) (-1.66) (1.14) (3.37) (5.99) (-1.67) (1.15)

nob 225 222 216 204 225 222 216 204
adj R2 0.20 0.38 0.27 0.21 0.22 0.40 0.32 0.30

Table B.1. Results for regressing USD/AUD exchange rate changes ∆st+h (equation 4.7) and excess
returns xst+h (equation 4.8) on latent US-AU spread factors FL, FS , FC and their interactions with a GFC
dummy (from 2007:08-2009:05) over the sample period 1995:01 - 2013:12. Newey-West robust t-statistics
are reported in parantheses. *,** , *** indicate significance of the coefficients at the 10%, 5%, 1% level,
respectively. Nob denotes number of observations, h denotes the forecasting horizon in months. Note that
we omit the estimates of the constant.
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US-Canadian Spread

FX Rate Change (∆st+h) Regression Excess Return (xst+h) Regression

h=3 h=6 h=12 h=24 h=3 h=6 h=12 h=24

FL
-0.51 -0.42 -0.39 -0.51* -0.78* -0.70 -0.66* -0.75***
(-1.15) (-0.96) (-1.07) (-1.94) (-1.76) (-1.59) (-1.81) (-2.86)

FS
-0.65 -0.70 -1.18* -1.22** -0.98 -1.02 -1.50** -1.45**
(-0.81) (-0.92) (-1.96) (-2.06) (-1.22) (-1.34) (-2.48) (-2.44)

FC
-1.14 -2.26 -3.01 -2.55 -1.68 -2.65 -3.10 -2.31
(-0.46) (-1.06) (-1.36) (-1.37) (-0.68) (-1.24) (-1.41) (-1.23)

FL x GFCd 2.79 -2.10 1.18 -0.14 2.78 -2.11 1.21 -0.10
(0.62) (-0.85) (0.93) (-0.15) (0.61) (-0.85) (0.96) (-0.11)

FS x GFCd 10.43*** 11.88*** 11.18*** 3.51*** 10.39*** 11.89*** 11.25*** 3.53***
(3.75) (6.67) (6.34) (3.68) (3.74) (6.68) (6.39) (3.67)

FC x GFCd 21.85** 15.97 -17.47*** -4.57 21.84** 16.01 -17.47*** -4.67
(2.32) (1.58) (-3.93) (-1.57) (2.32) (1.59) (-3.95) (-1.60)

nob 225 222 216 204 225 222 216 204
adj R2 0.10 0.22 0.31 0.23 0.11 0.24 0.35 0.33

Table B.2. Results for regressing USD/CAD exchange rate changes ∆st+h (equation 4.7) and excess
returns xst+h (equation 4.8) on latent US-CA spread factors FL, FS , FC and their interactions with a GFC
dummy (from 2007:08-2009:05) over the sample period 1995:01 - 2013:12. Newey-West robust t-statistics
are reported in parantheses. *,** , *** indicate significance of the coefficients at the 10%, 5%, 1% level,
respectively. Nob denotes number of observations, h denotes the forecasting horizon in months. Note that
we omit the estimates of the constant.

US-Swiss Spread

FX Rate Change (∆st+h) Regression Excess Return (xst+h) Regression

h=3 h=6 h=12 h=24 h=3 h=6 h=12 h=24

FL
-1.22* -1.19* -1.12** -0.85** -1.66*** -1.65*** -1.59*** -1.27***
(-1.92) (-1.93) (-2.14) (-2.14) (-2.61) (-2.68) (-2.99) (-3.17)

FS
-4.89** -4.44*** -3.87** -3.08** -5.57*** -5.12*** -4.40*** -3.37**
(-2.43) (-3.07) (-2.33) (-2.37) (-2.78) (-3.54) (-2.61) (-2.58)

FC
4.79 7.22 7.50 5.27 4.05 6.64 7.56 5.74
(0.73) (1.35) (1.31) (1.14) (0.62) (1.25) (1.31) (1.23)

FL x GFCd 0.78 2.19 1.86 0.72 0.74 2.20 1.94 0.73
(0.61) (1.45) (1.31) (0.87) (0.58) (1.46) (1.39) (0.87)

FS x GFCd 14.53** 19.31*** 8.91*** 6.99*** 14.48** 19.33*** 9.06*** 6.98***
(2.53) (2.85) (3.36) (2.87) (2.51) (2.86) (3.47) (2.85)

FC x GFCd 41.36** 18.63 -2.73 -3.72 41.66** 18.50 -3.20 -3.71
(2.14) (1.38) (-0.25) (-0.57) (2.16) (1.37) (-0.29) (-0.57)

nob 225 222 216 204 225 222 216 204
adj R2 0.08 0.16 0.23 0.28 0.11 0.22 0.32 0.40

Table B.3. Results for regressing USD/CHF exchange rate changes ∆st+h (equation 4.7) and excess
returns xst+h (equation 4.8) on latent US-CH spread factors FL, FS , FC and their interactions with a GFC
dummy (from 2007:08-2009:05) over the sample period 1995:01 - 2013:12. Newey-West robust t-statistics
are reported in parantheses. *,** , *** indicate significance of the coefficients at the 10%, 5%, 1% level,
respectively. Nob denotes number of observations, h denotes the forecasting horizon in months. Note that
we omit the estimates of the constant.
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US-Japanese Spread

FX Rate Change (∆st+h) Regression Excess Return (xst+h) Regression

h=3 h=6 h=12 h=24 h=3 h=6 h=12 h=24

FL
-0.03 -0.14 -0.16 0.12 -0.63 -0.76 -0.78 -0.46
(-0.05) (-0.24) (-0.30) (0.20) (-0.97) (-1.26) (-1.42) (-0.75)

FS
-7.72*** -7.57*** -5.97*** -3.23** -8.61*** -8.47*** -6.75*** -3.71**
(-5.02) (-5.41) (-4.52) (-2.20) (-5.57) (-6.06) (-5.11) (-2.52)

FC
5.41 10.81 15.62** 11.02** 4.48 10.10 15.47** 11.62**
(0.56) (1.42) (2.28) (1.96) (0.47) (1.32) (2.26) (2.06)

FL x GFCd -0.27 -1.77 -1.70** -2.19** -0.30 -1.76 -1.67** -2.18**
(-0.16) (-1.59) (-2.51) (-2.49) (-0.18) (-1.59) (-2.47) (-2.46)

FS x GFCd -7.32 8.83 5.96* 4.45 -7.47 8.86 6.09* 4.50
(-0.49) (1.19) (1.71) (1.32) (-0.50) (1.20) (1.77) (1.33)

FC x GFCd 44.66** 15.35 14.01 10.65 44.78** 15.23 13.92 10.69
(2.54) (1.14) (1.48) (1.40) (2.54) (1.13) (1.47) (1.40)

nob 225 222 216 204 225 222 216 204
adj R2 0.09 0.17 0.33 0.23 0.12 0.22 0.40 0.33

Table B.4. Results for regressing USD/JPY exchange rate changes ∆st+h (equation 4.7) and excess
returns xst+h (equation 4.8) on latent US-JP spread factors FL, FS , FC and their interactions with a
GFC dummy (from 2007:08-2009:05) over the sample period 1995:01 - 2013:12. Newey-West robust t-
statistics are reported in parantheses. *,** , *** indicate significance of the coefficients at the 10%, 5%,
1% level, respectively. Nob denotes number of observations, h denotes the forecasting horizon in months.
Note that we omit the estimates of the constant.

US-British Spread

FX Rate Change (∆st+h) Regression Excess Return (xst+h) Regression

h=3 h=6 h=12 h=24 h=3 h=6 h=12 h=24

FL
-0.51 -0.49 -0.55 -0.42 -0.77 -0.76 -0.82* -0.66**
(-1.05) (-1.06) (-1.30) (-1.38) (-1.58) (-1.65) (-1.92) (-2.19)

FS
-0.81 -0.73 -0.39 -0.47 -1.21 -1.13 -0.75 -0.71
(-0.96) (-0.90) (-0.57) (-0.77) (-1.45) (-1.39) (-1.09) (-1.16)

FC
0.10 -1.17 -1.00 -1.08 -0.46 -1.55 -1.04 -0.87
(0.03) (-0.38) (-0.54) (-0.47) (-0.14) (-0.51) (-0.56) (-0.38)

FL x GFCd 6.05*** 4.99*** 3.47*** 2.23*** 6.02*** 4.98*** 3.51*** 2.25***
(3.12) (4.91) (4.17) (5.34) (3.10) (4.90) (4.21) (5.37)

FS x GFCd 9.57** 12.45*** 7.63*** 3.64*** 9.58** 12.47*** 7.62*** 3.58***
(2.40) (4.32) (4.23) (5.39) (2.41) (4.32) (4.25) (5.29)

FC x GFCd 3.55 11.28 -4.68 0.13 3.71 11.21 -4.86 0.15
(0.34) (1.40) (-0.82) (0.05) (0.36) (1.39) (-0.86) (0.06)

nob 225 222 216 204 225 222 216 204
adj R2 0.23 0.47 0.39 0.26 0.22 0.46 0.39 0.27

Table B.5. Results of regressing USD/GBP exchange rate changes ∆st+h (equation 4.7) and excess
returns xst+h (equation 4.8) on latent US-UK spread factors FL, FS , FC and their interactions with a
GFC dummy (from 2007:08-2009:05) over the sample period 1995:01 - 2013:12. Newey-West robust t-
statistics are reported in parantheses. *,** , *** indicate significance of the coefficients at the 10%, 5%,
1% level, respectively. Nob denotes number of observations, h denotes the forecasting horizon in months.
Note that we omit the estimates of the constant.
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B.3 Correlation of Yield Spread Factors with US Factors

US-AU US-CA US-CH US-JP US-GB

Level 0.63 0.33 0.86 0.96 0.01
Slope 0.19 -0.07 0.59 0.78 0.20

Curvature 0.48 0.46 0.35 0.73 0.42

Table B.6. Correlation of yield spread factors with US yield factors over the sample period 1995:01 -
2013:12.
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Abstract
Traditional exchange rate models are based on differences in macroeconomic
fundamentals. However, despite being well grounded in economic theory they
have a rather poor out-of-sample forecasting record. This empirical failure
may be a result of the overly restrictive choice of macroeconomic fundamen-
tals. We suggest using the sovereign yield spread level and slope as proxies
of the market’s expectations for current and future fundamentals and find
promising results when we investigate the out-of-sample forecasting accuracy
of these variables. Using the yield spread level and slope as a set of unob-
servable fundamentals, our approach outperforms traditional exchange rate
models for most considered currencies and horizons. It is also superior to a
random walk in terms of direction of change forecasts and profitability.
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5.1 Introduction

Traditional exchange rate models, e.g. the monetary model or the purchasing
power parity approach, are based on differences in macroeconomic fundamen-
tals such as monetary supply, inflation and output. However, these standard
fundamental-based models have a rather poor out-of-sample forecasting per-
formance. Starting with the seminal contribution of Meese and Rogoff (1983),
a vast body of empirical research finds that models based on macroeconomic
fundamentals cannot outperform a naive random walk model in terms of the
root mean squared error (RMSE), see e.g., Cheung et al. (2005); Molodtsova
and Papell (2009); Rossi (2013).
The literature has put forth several reasons for this dismal record. Exist-
ing structural models may, for instance, be overly restrictive in their choice
of macroeconomic fundamentals (Engel and West, 2005; Balke et al., 2013).
The empirical failure may also be a result of using inappropriate proxies for
the market expectations of future fundamentals which become highly impor-
tant when the exchange rate is understood as an asset price (Mark, 1995;
Bacchetta and van Wincoop, 2013).
Instead of applying traditional observable fundamentals, we therefore suggest
using the level and slope of sovereign yield spread curves between economies1

as market-based proxies for current and future macroeconomic fundamentals
to forecast exchange rates. We find that this approach delivers promising
forecasting results based on statistical and economic evaluation measures
when compared against the random walk and commonly used fundamental
exchange rate models.
The motivations for our innovative approach are twofold. First, interpreted
as an asset price, exchange rates are now commonly considered to equal the
sum of discounted future macroeconomic fundamentals. The yield spread
level and slope are forward-looking financial indicators which summarize

1Sovereign yield spreads are the difference between two sovereign bond yields of equal
maturity. The sovereign yield spread level L∆sy is defined as an average of short, medium
and long term spreads and the spread slope S∆sy denotes the difference between long
and short term yield spreads.
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the long-term macroeconomic information contained in the term structure
of yield spreads – the difference between the yield curves of two different
economies. Thus, these variables naturally contain unobservable information
about the same expected macroeconomic differentials that drive exchange
rates (Chen and Tsang, 2013; Bui and Fisher, 2016). Chapter 4 has further
confirmed that the yield spread level and slope factors have predictive power
for exchange rate changes and excess returns in an in-sample analysis. Sec-
ond, because bond yields and foreign exchanges are susceptible to the same
macroeconomic risk, the expected risk premiums that investors require for
holding these assets might closely relate to each other.
Our approach has several further advantages compared to traditional funda-
mental models. The yield spread approach is market based, as the expecta-
tions about future economic fundamentals reflect the view of a large number
of market participants in highly liquid sovereign bond markets. Yield data
is also readily and easily available on a daily basis as opposed to monthly
and quarterly macroeconomic data which is often published with a consid-
erable time lag and revised afterwards. Finally, our parsimonious models
are straightforward to implement and therefore an appealing approach for
investment practitioners.
To assess the out-of-sample forecasting accuracy of our approach we conduct
an extensive forecasting exercise for forecasting horizons of one, three and
six months against the random walk and several traditional fundamental ex-
change rate models based on interest rate, price, monetary and Taylor rule
fundamentals. We use major currencies of advanced countries with free float-
ing exchange rates and highly liquid bond markets with little to no credit
risk (Australian Dollar, the Canadian Dollar, the Swiss Franc, the Japanese
Yen and the British Pound) against the US Dollar.2

We assess the forecasting accuracy of the investigated models based on sev-
eral different forecasting evaluation methods. Previous research has shown
that the sole focus on the traditional RMSE metric may not be entirely ap-
propriate for exchange rates (Cheung et al., 2005; Moosa and Burns, 2014).
In addition to the RMSE, we therefore apply further evaluation measures
2We note that our findings also hold for other cross exchange rates.
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to provide a multifaceted assessment of the forecasting performance of our
approach and the benchmark models. In particular, we also apply a measure
of direction accuracy and assess the forecasting uncertainty based on density
forecasts.
Since statistical evidence of superior exchange rate forecasting accuracy does
not necessarily guarantee an investor to make a profit when exploiting this
predictability, the ultimate test of forecasting power is the economic viability
(Abhyankar et al., 2005; Corte et al., 2009; Moosa and Burns, 2014). We thus
also implement a period-by-period trading strategy to assess the profitability
of the forecasts produced by the implemented models.
Considering all of the applied statistical and economic evaluation metrics,
we find promising results for our yield spread approach. Using the spread
level or slope is generally superior in terms of the RMSE and direction accu-
racy, when being compared to traditional fundamental models. The approach
typically also provides better results in terms of its density forecasts. While
neither our approach nor the benchmark models are able to consistently beat
the random walk in terms of the RMSE – which should hardly be surprising
given the findings in previous literature – the suggested yield spread ap-
proach clearly outperforms the random walk in forecasting the direction of
exchange rate changes. We also find that our approach consistently yields
higher (lower) risk-adjusted profits (losses) than the considered fundamental
benchmark models and also outperforms the random walk in terms of prof-
itability for several currencies.
As the global financial crisis (GFC) from 2007-2009 lies within our forecasting
period, we also investigate the impact of this period on exchange rate fore-
casting accuracy and trading profitability. While we generally find a strong
impact on foreign exchange markets, the impact on RMSE, direction accu-
racy and profitability seems rather limited. However, as could be expected
we do find that the GFC significantly increases the uncertainty of all model’s
exchange rate forecasts.
Taken together, these results drawn from different statistical and econom-
ical evaluation measures provide an encouraging view with regards to the
forecasting ability of our approach. The promising out-of-sample results also
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confirm previous studies which have investigated the predictive power of fi-
nancial variables for exchange rates. Guo and Savickas (2008), for example,
show that financial variables that have been commonly used as predictors
of stock returns, or bond returns also have the ability to forecast exchange
rates. Evans and Lyons (2007) and Rime et al. (2010) show that order flow
forecasts exchange rates because it contains information about future funda-
mentals. Overall, our results support the view that financial variables may
be an intuitive and promising forecasting approach when exchange rates are
understood as an asset price and equal the sum of expected future funda-
mentals.
It is important to note that our results do not imply that the macroeconomic
fundamentals applied in traditional models cannot forecast exchange rates.
Quite the opposite, our results are consistent with the view that the principal
drivers of exchange rates are standard macro fundamentals. The difference
between our approach and traditional fundamental models is that we apply
the spread level and spread slope as proxies for unobservable macro funda-
mentals instead of using selected, often restricted observable macroeconomic
variables directly in the forecasting equation.
With this study, we thus contribute to the literature of exchange rate fore-
casting in several dimensions. First, we present an innovative, parsimonious,
market driven approach to exchange rate forecasting based on readily and
easily available data. This makes it a promising proposition in particular
for market practitioners. Second, we provide further evidence that financial
variables are useful indicators to be considered in exchange rate forecasting
and thus hope that the results inspire a renewed interest in exchange rate
forecasting models based on financial variables. Third, we thoroughly investi-
gate the impact of the GFC on foreign exchange markets and the forecasting
accuracy of exchange rate models. Nevertheless, further research is required
to fully understand the impact of the GFC on foreign exchange markets and
models. Finally, we confirm that the random walk is beatable by models us-
ing observable and unobservable models if appropriate evaluation measures
and trading profitability are applied. The difference in conclusions for the
implemented evaluation metrics also further highlights the importance of ap-
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plying different measures to provide a conclusive assessment of a model’s
forecasting ability. As Rossi (2013) has put it, "the choice of the evaluation
method matters, and matters a lot."
The remainder of this chapter is structured as follows. The next section
provides an overview of traditional exchange rate models and their empiri-
cal forecasting performance. Section 5.3 introduces our forecasting approach
based on the empirical sovereign yield spread level and slope. In Sections
5.4 and 5.5 we conduct the out of sample forecasting exercise against several
popular benchmark models and discuss the results. In Section 5.6 we im-
plement the trading strategy to investigate the profitability of our forecasts.
Section 5.7 concludes.

5.2 Exchange Rate Determination and Forecast-

ing

5.2.1 Traditional Fundamental Exchange Rate Models

Economic theory states that the exchange rate is determined by differences
between macroeconomic fundamentals such as money supply, inflation, out-
put and interest rates. This relationship between the exchange rate and its
fundamentals can be described by different models based on varying eco-
nomic variables and econometric techniques such as error correction models
(ECM), time-varying parameter (TVP) models and – still most commonly
applied – linear models, see Rossi (2013) for an excellent recent overview.
For expositional3 purposes, let the basic model be linear with a constant
term. Assume that st denotes the log of the nominal exchange rate (home
currency price per unit of foreign currency) and ft the (potentially multivari-
ate) fundamental(s) of the exchange rate. The general relationship can then
be expressed as:

st = α + βft. (5.1)

3Theoretically, also non-linear models could be used.
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This framework gives way for the most commonly used models tying floating
exchange rates to differences in interest rates and macroeconomic fundamen-
tals:
Interest Rate Differentials
Traditionally, the relation between differences in interest rates and exchange
rates is expressed in the uncovered interest rate parity (UIRP) condition. The
UIRP relates exchange rate changes to interest rate differentials between two
economies over the same horizon:

∆st+h = α + β(iτt − i
τ,∗
t ), (5.2)

where ∆st+h is the h-horizon exchange rate change and iτt and iτ,∗t are the
domestic and foreign interest rates of maturity τ where τ = h. If uncovered
interest rate parity holds, α and β should be 0 and 1 respectively.
Price Level Fundamentals
According to Purchasing Power Parity (PPP), the real price of comparable
commodity baskets in two countries should be the same. Thus, the price
level in the home country should equal the price level of the foreign country
converted to the currency of the foreign country. It follows that a unit of
currency in the home country will have the same purchasing power in the
foreign country. Accordingly, PPP implies that

st = α + β(pt − p∗t ), (5.3)

where pt and p∗t denote the logarithm of the price index in the home and
foreign country, respectively.4

Monetary and Output Fundamentals
The frequently used monetary model builds upon PPP and UIP but assumes
additional restrictions. It models exchange rate behavior in terms of relative
demand for and supply of money in the two economies. To start with, real

4PPP does imply α = 0 and β = 1. However in empirical forecasting this relationship is
usually estimated.

128



money demand is viewed as a function of income and interest rates:

mt − pt = ηit + φyt, (5.4)

where mt is the log of nominal money demand, it denotes the interest rate,
yt is the logarithm of real output and η and φ are coefficients. Assuming
that a similar equation holds for the foreign country with symmetric (equal)
coefficients and taking the difference between the two gives the relative money
demand equation:

mt −m∗t − (pt − p∗t ) = η(it − i∗t ) + φ(yt − y∗t ). (5.5)

The ’flexible price version’ of the monetary model (valid if prices and ex-
change rates are completely flexible) assumes that PPP holds at every point
in time. Substituting the PPP relation into the relative money demand equa-
tion we get

st = η(it − i∗t )− φ(yt − y∗t ) + (mt −m∗t ). (5.6)

In the presence of sticky price adjustment, either the relative price level or
inflation differentials are included to obtain the ’sticky price version’ of the
monetary model:

st = η(it − i∗t )− φ(yt − y∗t ) + (mt −m∗t ) + (pt − p∗t ). (5.7)

In this case it is assumed that PPP holds in the long run but does not hold
in the short run.
Taylor Rule Fundamentals
Recently, studies have proposed fundamentals based on a Taylor rule for
monetary policy (Engel and West, 2005; Molodtsova and Papell, 2009). At
the core of models using Taylor rule fundamentals is the idea that if two
economies set interest rates based on a Taylor rule, their bilateral exchange
rate will reflect their relative interest rates through UIRP.
Consequently, this approach assumes that both central banks adjust the tar-
get rate iTt according to a Taylor rule in response to changes in the output
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gap and deviation from target inflation:

iTt = πt + φ(πt − πT ) + γygapt + r, (5.8)

where πt is the inflation rate, πT is the target level of inflation, ygapt is the
output gap5 and r is the equilibrium level of the real interest rate.
Assuming that a similar condition applies to the foreign country with equal
coefficients φ and γ (symmetric Taylor rule with homogeneous coefficients)
and further assuming that UIRP and PPP hold leads to:6

∆st+h = (1 + φ)(πt − π∗t ) + γ(ygapt − ygap∗t ). (5.9)

Hence, under this basic Taylor rule approach, the fundamentals that deter-
mine the exchange rate are the country differentials in inflation and output
gap.7

5.2.2 Empirical Evidence

The empirical validation for these theoretical frameworks remains rather elu-
sive. In a large body of empirical out-of-sample forecasting studies the ran-
dom walk model has proven almost unbeatable by models with traditional
macroeconomic predictors. Meese and Rogoff (1983) first established this
result in their seminal paper. They evaluated the out-of-sample fit of several
exchange rate models in the short run and concluded that a random walk
predicts exchange rates better than macroeconomic models in terms of the
RMSE.
Many studies have subsequently claimed to find success for various versions

5The output gap is the difference between actual output and potential output ygapt = yt−ȳt
at time t, where yt is the logarithm of real output and ȳt is the logarithm of potential
output measured e.g. by a linear time trend.

6See Giacomini and Rossi (2010) for a more detailed derivation.
7Under different assumptions, e.g heterogenous coefficients or central banks also consider-
ing the real exchange rate, other fundamentals such as the country differentials in interest
rates and price levels may be included as well. Molodtsova and Papell (2009) provide a
comprehensive overview of different approaches applying Taylor rule fundamentals.
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of fundamentals-based models. Kilian and Taylor (2003), for example, find
that exchange rates can be predicted from economic models at horizons of two
to three years after taking into account the possibility of nonlinear exchange
rate dynamics. Bjørnland and Hungnes (2006) combine the purchasing power
parity condition with the interest rate differential in the long run and show
that their approach outperforms a random walk in an out-of-sample forecast-
ing exercise for several horizons. Molodtsova and Papell (2009) investigate
the predictability of models that incorporate Taylor rule fundamentals and
provide evidence of short-run exchange rate predictability.
However, the success of these models has not proven to be universally reli-
able and robust. Models that work well in one period or for one currency
do not necessarily work well in another period or for other currencies. The
study by Cheung et al. (2005) examines the out-of-sample performance of
several popular fundamental based models and finds that none of the models
consistently outperforms the random walk. More recently, Rossi (2013) also
concludes in a recent comprehensive survey that forecasting success largely
depends on the choice of predictor, forecast horizon, sample period, model,
and forecast evaluation method. Thus, even after more than 30 years, the
Meese and Rogoff (1983) results have not yet been convincingly overturned.
Several reasons have been put forward for the empirical out-of-sample fore-
casting failure of traditional exchange rate models. The poor forecasting
performance may for example reflect, at least in part, econometric issues. In
their original paper, Meese and Rogoff (1983) attribute the failure to under-
lying econometrics such as a simultaneous equations bias, sampling errors,
stochastic movements in the true underlying parameters, misspecification
and nonlinearities. Moosa (2013) also demonstrates that failure to outper-
form the random walk should be the rule rather than the exception due to
the characteristics of the underlying processes.
The empirical failure may further be a result of using inappropriate proxies
for the market expectations of future fundamentals rather than the failure of
the models themselves. It has long been suggested, see, e.g., Frenkel (1983)
for an early survey, that exchange rates should be viewed as an asset price
determined in financial markets, similar to stock, bond and commodity mar-
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kets, in which current prices reflect the market’s expectations about present
and future. Following Mark (1995) and Engel and West (2005), the exchange
rate is now commonly modeled as an asset price, where the nominal exchange
rate is determined as the present value of the discounted sum of current and
expected fundamentals:

st = (1− ω)ft + ωEt(st+1), (5.10)

where ω is a discount factor less than one. Iterating this equation forward
then leads to

st = (1− ω)ft + (1− ω)
∞∑
j=1

ωjEt(ft+j). (5.11)

This approach implies that the exchange rate is determined by the weighted
average of fundamentals such as economic growth, inflation or money sup-
ply which are determined by the chosen model. It also follows that within
the present value framework exchange rates rely more on expectations about
the future than on current fundamentals. Properly measuring expectations
thus becomes especially important in empirical studies (Bacchetta and van
Wincoop, 2013). Standard empirical approaches, however, often reduce the
sum of expected future fundamentals to equal current fundamentals (Chen
and Gwati, 2014).
Existing structural models grounded in economic theory may also be overly
restrictive in their choice of observable macroeconomic fundamentals. Engel
and West (2005), for example, argue that exchange rates are not only affected
by observable fundamentals. Balke et al. (2013) also show that it is difficult
to obtain sharp inferences about the relative contribution of fundamentals
using only data on observed fundamentals.
Finally, it has been suggested that the use of the RMSE and similar statisti-
cal criteria solely based on minimizing the loss function may not be entirely
appropriate to measure exchange rate forecasting accuracy. A correct pre-
diction of the direction of change can often be more important than the
magnitude of the error (Cheung et al., 2005), for example when it comes to
hedging decisions. Researchers have also suggested that the ultimate test
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of forecasting power is the ability to make profits based on the predicted
exchange rate changes (Corte et al., 2009). Moosa and Burns (2014), for ex-
ample, demonstrate that the conventional monetary model can outperform
the random walk in out-of-sample forecasting if forecasting power is mea-
sured by direction accuracy and profitability. Several studies also argue that
it is important to asses the uncertainty of exchange rate forecasts (Diebold
et al., 1999; Rapach and Wohar, 2006). Wang and Wu (2012), for example,
find that Taylor rule models can outperform the random walk, especially at
long horizons, based on interval forecasting criteria.
We take these arguments into account and judge the forecasting accuracy in
this analysis based on several different statistical measures. We further im-
plement a trading strategy to asses the profitability of the derived forecasts.

5.2.3 Alternative Approaches

The perceived failure of traditional fundamentals-based exchange rate mod-
els in empirical out-of-sample forecasting has motivated numerous alternative
approaches to model and forecast the exchange rate. Engel et al. (2007), for
example, include expectations of fundamentals drawn from survey data and
demonstrate that the predictive power of the models can be greatly increased
by using panel techniques. Engel et al. (2012) construct factors from a cross-
section of exchange rates and use the idiosyncratic deviations from the factors
to beat the random walk benchmark.
One recent stream of literature also investigates financial variables as predic-
tors for exchange rates. Evans and Lyons (2007) and Rime et al. (2010) for
example show that order flow forecasts exchange rates because it contains
information about future fundamentals. Christiansen (2011) use a smooth
transition model to show that typical FX carry trade strategies have a high
exposure to the stock market. Molodtsova and Papell (2012) incorporate in-
dicators of financial stress to improve the forecasting performance of models
based on Taylor rule fundamentals. Ferraro et al. (2015) further document
the relationship between commodity prices and exchange rates.
We follow a similar path by applying the level and slope of cross-country
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yield spread curves as forward-looking financial variables which reflect ex-
pectations of future and unobservable macroeconomic fundamentals. This
approach is further described in the subsequent section.

5.3 AMarket Driven Approach using the Sovereign

Spread Level and Slope

5.3.1 Financial Variables and Exchange Rates

One of the main findings of the previous Section 5.2 suggests that the failure
of empirical exchange rate forecasting models may be due to using inappro-
priate proxies for market expectations of future and non-observable funda-
mentals. The fact that plausible models now consider the exchange rate as
an asset price means that short-run movements in exchange rates are pri-
marily determined by changes in expectations and that unobservable funda-
mentals play a significant part in this process. However, future expectations
and unobservable fundamentals both are difficult to capture with traditional
empirical models which commonly reduce the sum of expected future funda-
mentals to equal current fundamentals (Chen and Gwati, 2014) and are too
stylized to be successfully applied to forecast exchange rates (Rossi, 2013).
In this context, financial variables may be an intuitive, promising resolution.
Through their forward-looking character many financial variables incorpo-
rate market expectations of future economic conditions (Stock and Watson,
2003). Share and bond prices, for instance, reflect discounted future cash
flows based on expectations about the firm level and macroeconomic envi-
ronment. When exchange rates are understood as an asset price and equal
the sum of expected future fundamentals, financial variables may thus natu-
rally have predictive power for exchange rates.
Furthermore, financial variables such as stock or bond returns might also be
related to exchange rates because the expected risk premiums that investors
require for holding stocks, bonds, and foreign currencies might closely relate
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to each other. Guo and Savickas (2008) investigate whether financial vari-
ables that have been commonly used as predictors of stock or bond returns
also forecast exchange rates. They document in particular a strong relation
between idiosyncratic stock volatility and exchange rates.

5.3.2 Yield Curves and Macroeconomic Fundamentals

While the exchange rate literature has so far focused more on the relation
between stock prices and exchange rates (Evans and Lyons, 2007; Rime et al.,
2010; Cenedese et al., 2015), bond yields are another obvious choice. Yield
curves are well known to summarize expectations about future paths of short
interest rates and thus contain information about expected future economic
conditions such as output, inflation, recessions and monetary policy (Stock
and Watson, 2003; Ang et al., 2006; Rudebusch and Wu, 2008; Favero et al.,
2012; Erdogan et al., 2015).
Findings in previous studies suggest that this macroeconomic information
entailed in the yield curve is summarized in the level, slope and curvature
of the term structure. Estrella and Mishkin (1998), for example, argue that
the yield curve slope is a serious candidate as predictor of output growth
and recessions. Diebold et al. (2006) find that an increase in the US yield
curve level factor raises capacity utilization, the US fund rate and inflation.
Dewachter and Lyrio (2006) suggest that the level factor reflects long run
inflation expectations. Rudebusch and Wu (2007) also contend that the level
factor incorporates long-term inflation expectations and the slope factor cap-
tures the business cycle. Moench (2012) finds that a rising yield curve slope
factor is associated with a future decline of output while surprise surges of
the yield curve level are followed by a strong and persistent increase of infla-
tion rates.
The shape and movements of the yield curve have therefore long been used to
provide readings of market expectations about the same fundamentals whose
differentials are commonly used to model and forecast exchange rates (see
Section 5.2).
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5.3.3 Macroeconomic Fundamentals and Sovereign Spread

Factors

We thus argue that the term structure of sovereign yield spreads – the differ-
ence between two economies respective yield curves – can be considered as a
natural candidate for exchange rate forecasting.
Sovereign yield spreads are the difference between two government bond
yieldsof equal maturity. The τ -maturity sovereign yield spread ∆symt is thus
calculated as:

∆syτt = syτt − sy
τ,∗
t , (5.12)

where syτt and sy
τ,∗
t are τ -maturity home and foreign country sovereign yields

respectively.
As sovereign spreads can be calculated for any maturity, they exhibit a term
structure – or spread curve – of their own. We conjecture that this spread
curve naturally contains valuable information about the market expecta-
tion of the differences in macroeconomic conditions that determine exchange
rates. The findings in the yield curve literature described above further sug-
gest that the information about macroeconomic differentials entailed in the
sovereign spread curves will be reflected in the spread level, spread slope and
spread curvature.
Recent research comprising the term structure of sovereign yield spreads con-
firms this suspected link between spread curve factors and exchange rates. In
a cross-country setting based on portfolio strategies, Ang and Chen (2010)
find an economically and statistically significant ability of the yield level
and slope factors of the term structure to predict exchange rate profitability.
Chen and Tsang (2013) find in-sample that cross-country Nelson-Siegel fac-
tors which are related to the sovereign spread level, slope and curvature can
predict future exchange rate changes and excess currency returns. Bui and
Fisher (2016) support their findings for the relative yield curves of the US
and Australia. The results of Chapter 4 have also confirmed that in particu-
lar the spread level and slope are capable of predicting exchange rate changes
and excess returns in-sample.
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5.3.4 Using the Sovereign Spread Level and Slope to

Forecast Exchange Rates

Encouraged by these promising results we propose to exploit the fundamental
information contained in the sovereign yield spread curve between economies
to forecast exchange rates out-of-sample. To make this information applica-
ble within a parsimonious forecasting model, we build on the two main in-
sights of the previous Chapter 4. First, latent factors derived from the term
structure of sovereign spreads have predictive power for exchange rates. Sec-
ond, these factors are highly associated with the empirical sovereign spread
level and slope. We thus suggest using the empirical sovereign yield spread
curve level L∆sy

t and slope S∆sy
t from Chapter 4 as a set of financial proxies

which summarize the information of the spread curve and reflect the market
expectations of future and unobservable fundamentals.8

Following the common approach in the yield curve literature (Diebold et al.,
2006; Afonso and Martins, 2012), the sovereign spread level L∆sy

t is defined
as an average of short, medium and long term spreads:

L∆sy
t =

∆syshortt + ∆symediumt + ∆sylongt

3
, (5.13)

and the spread slope S∆sy
t denotes the difference between long and short term

spreads:
S∆sy
t = ∆sylongt −∆syshortt . (5.14)

Note, that we do not use the spread curvature which is commonly identi-
fied as a third factor in yield curve literature (Diebold and Li, 2006; Moench,
2012). We opt not to include it in our approach because the in-sample results

8We decide to use the empirical rather than the factors estimated in Chapter 4 because
applying the empirical factors in an out-of-sample forecasting framework is intuitive and
less computationally extensive. It is thus straightforward to apply in practice. Robustness
tests comparing the forecasting accuracy between empirical and estimated factors (results
available upon request) also indicate that there is no considerable difference in the overall
forecasting accuracy.
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in Chapter 4 indicate that the additional predictive power of the curvature
factor for exchange rates is rather limited. Robustness tests with the spread
curvature (results available upon request) also confirm that the overall fore-
casting accuracy is not very promising.
Our innovative approach has several advantages compared to traditional fun-
damental models. First, the sovereign yield spread level and slope are driven
by the sentiment of highly liquid financial markets. Sovereign bond markets
are amongst the largest and most liquid financial markets in the world and
therefore summarize the expectations of a large number of market partici-
pants. This also means that changes in expectations about future economic
fluctuations are quickly incorporated into the variables. Second, yield data is
readily and easily available on a daily basis as opposed to monthly or quar-
terly macroeconomic data which is often published with a significant delay
and revised in hindsight. Finally, our approach is parsimonious, which makes
it straightforward to apply in practice.
Naturally, our approach is somewhat related to the UIRP inspired funda-
mental model based on interest rate differentials described in Section 5.2.1.
However, while the interest rate differential model only uses yield spreads of
one specific maturity, the spread level and slope naturally exploit forward-
looking information contained in the entire spread curve and thus seem to
better reflect the idea that exchange rates are now considered as asset prices.
Purists may further criticize a lack of a clear theoretical foundation. The
results from the yield curve literature described above suggest that the level
factor can be seen as a long-run inflation expectation factor while the slope
factor reflects business cycle and output growth dynamics, see also Chen and
Tsang (2013). Still, the factors cannot clearly be tied to specific macroeco-
nomic variables as they may reflect a range of latent, unobservable funda-
mentals. However, in empirical forecasting, this should rather be considered
as an advantage as it allows for parsimonious yet flexible modeling compared
to often overly restrictive structural models and is therefore less prone to the
omitted variable bias.
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5.4 Out-of-sample Forecasting Framework

5.4.1 Forecating Specifications

To investigate the forecasting accuracy of our approach, we conduct an exten-
sive out-of-sample forecasting exercise using the major currencies of advanced
countries with free floating exchange rates and highly liquid bond markets
with little to no credit risk. We thus include the Australian Dollar, the Cana-
dian Dollar, the Swiss Franc, the Japanese Yen and the British Pound (all
measured against the US Dollar following the convention in the exchange
rate literature, see, e.g., Molodtsova and Papell (2009); Giacomini and Rossi
(2010); Rossi (2013)).9 We do not include the Euro because there is no Euro
yield curve which reflects the macroeconomic prospects of the entire Euro
area. Using, e.g. German yields as a proxy does not appear to be reasonable
for our approach, especially as our sample includes the recent Euro crisis.
Our analysis covers the time period from 1995:01 to 2014:12. To evaluate
the out-of-sample forecasting ability, the sample of size T = 240 monthly
observations is split into an in-sample period, consisting of observations from
t = 1 to R, and an out-of-sample portion of size P = T − R. We adopt the
convention, see, e.g., Wang and Wu (2015), in the empirical exchange rate
forecasting literature of implementing ’rolling windows’10 and use a rolling
window of size R = 60. This means that the models are estimated over an
initial in-sample window from 1995:01-1999:12 to produce h-months ahead
forecasts and then the in-sample window is moved up or ’rolled’ forward one
observation before the procedure is repeated. We thus produce h-months
ahead forecasts for the period R+h−1, ..., T for the forecast horizons h = 1,
h = 3 and h = 6 months.11

9We note, that our findings also hold for other cross exchange rates.
10While the rolling regressions do not incorporate the possible efficiency gains of ’recursive
windows’ as the sample moves forward through time, the procedure has the potential
benefit of alleviating parameter instability effects over time, which is a commonly con-
ceived phenomenon in exchange rate forecasting.

11Note that, different to the in-sample analysis in Chapter 4, we focus on forecasting
horizons up to six months which are commonly applied in exchange rate out-of-sample
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5.4.2 Forecasting Models

Empirically, the most common approach to evaluating exchange rate models
out of sample (following Mark (1995)) is to represent a change in the log of
the nominal exchange rate as a function of its deviation from its fundamental
value (see also Molodtsova and Papell (2009); Giacomini and Rossi (2010)).
Thus, the h-period-ahead change in the log exchange rate can be denoted as:

ŝt+h − st = α + βzt + εt+h, (5.15)

where ŝt+h is the h-period forecast of the log exchange rate s and zt = ft− st
with ft being the long-run equilibrium level of the nominal exchange rate
determined by its fundamentals. The choice of fundamentals ft is then de-
termined by the respective model.
Yield Spread Model
As described in the previous section, our approach considers the empirical
yield spread level L∆sy

t and spread slope S∆sy
t as market driven indicators

reflecting unobservable fundamentals. Treating these variables as unobserv-
able fundamentals, we can state the long-run equilibrium level of the nominal
exchange rate as

fSPRDLEVt = (Lit − Li∗t ) + st = L∆sy
t + st (5.16)

for the yield spread level factor, and as

fSPRDSLt = (Sit − Si∗t ) + st = S∆sy
t + st, (5.17)

for the slope factor, where (Lit − Li∗t ) and (Sit − Si∗t ) are the differences in
yield curve level and slope between home and foreign country. Following
the convention in the yield curve literature (see, e.g., Diebold et al. (2006);
Afonso and Martins (2012)), we calculate the empirical spread level L∆sy

t as

forecasting, see e.g. Moosa and Burns (2014).
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the average of the 3-months, the 36-months and the 120-months yield spread:

L∆sy
t =

∆syτ=3
t + ∆syτ=36

t + ∆syτ=120
t

3
, (5.18)

and the empirical spread slope S∆sy
t as the difference between the 120-months

and 3-months yield spread:

S∆sy
t = ∆syτ=120

t −∆syτ=3
t . (5.19)

We denote these models as L∆sy and S∆sy or SPRDLEV and SPRDSL
respectively.
Macroeconomic Benchmark Models
We are particularly interested in how the yield spread level and slope mod-
els performs against traditional exchange rate models and thus include one
prominent version for any of the major fundamental models described in Sec-
tion 5.2:12

Interest Rate Differentials: To apply differences in interest rates, the
UIRP relation is often directly used in forecast equations. However, empirical
evidence indicates that, while exchange rate movements may be consistent
with UIRP in the long-run, it clearly does not hold in the short-run, see,
e.g., Sarno (2005); Engel (2013). Following Clark and West (2006), we thus
implement a more flexible specification with:

f IRDt = (iht − ih∗t ) + st, (5.20)

and do not restrict α = 0 and β = 1 in the forecasting equation (5.15). Note,
that this approach yields the standard h-period ahead forecasting equation

∆st+h = α + β(iτt − i
τ,∗
t ) + εt+h (5.21)

12With the wide variety of these models being applied in the literature one necessarily has
to be selective with respect to model choice in order to keep the results manageable.
Molodtsova and Papell (2009) for example test 48 variations of the model based on
Taylor rule fundamentals.
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for maturity τ = h. We denote the interest rate differential model as IRD.
Price Fundamentals: If market participants believe that the future ex-
change rate is formed in line with PPP, the fundamental ft is specified as:

fPPPt = (pt − p∗t ). (5.22)

This model is denoted as PPP.
Monetary Model: We follow Molodtsova and Papell (2009) and apply
a version of the flexible-price monetary model. The fundamental ft thus
becomes:

fMON
t = (mt −m∗t )− η(yt − y∗t ). (5.23)

We fix η = 3 which is successfully applied by Molodtsova and Papell (2009)
and denote the model as MON.
Taylor Rule Fundamentals: We consider a symmetric Taylor rule with
homogeneous coefficients, see Giacomini and Rossi (2010). Assuming that
UIRP and PPP hold leads to

fTRt = (1 + φ)(πt − π∗t ) + γ(ygapt − ygap∗t ) + st. (5.24)

The model based on Taylor rule fundamentals is indicated as TR.
Random Walk
The traditional benchmark model for exchange rate forecasts is the random
walk. We therefore also include the commonly used random walk without
drift which stipulates that the best predictor of next period’s exchange rate
is the current exchange rate. Thus, the random walk always predicts ’no
change’ in the h-months horizon exchange rate:

ŝt+h − st = 0. (5.25)

The random walk is denoted as RW.
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5.4.3 Data

To construct the yield spread level L∆sy
t and slope S∆sy

t we use τ = 3,
τ = 36 and τ = 120 months sovereign bonds zero-coupon yields available
from Bloomberg. The sovereign yield spreads ∆syτt are then calculated as the
difference between yields of equal maturity τ . Bloomberg yields are available
from January 1995 onwards, so we use the time period from 1995:01-2014:12
for our analysis.
The corresponding nominal spot exchange rates are also taken from Bloomberg.
We consider the US as the home country and thus the exchange rate is mea-
sured as the USD price per unit of foreign currency (USD/foreign currency).
Therefore, a rise in the nominal exchange rate represents a depreciation of
the USD and a lower value an appreciation of the USD.
The primary source of data used to construct the macroeconomic fundamen-
tals for the benchmark models is the IMF’s International Financial Statistics
(IFS) database. We follow Molodtsova and Papell (2009) in selecting the
data and calculating the fundamental differentials. We use the seasonally
adjusted industrial production index as a proxy for output since GDP data
is available only at the quarterly frequency.13 The output gap is calculated
as a percentage deviation of actual output from a linear trend. We use the
money market rate as a measure of the short-term (τ = 1 months) interest
rate required to implement the 1- month ahead forecast for the IRD ap-
proach. The price level is measured by the consumer price index (CPI).14

The inflation rate is the annual inflation rate, measured as the 12-month
difference of the CPI. Finally, we use M1 to measure the money supply for
all countries.15

We provide descriptive statistics of the yield spreads, foreign exchange rates
13Industrial production data for Australia and Switzerland are also only available at quar-
terly frequency and hence are transformed from quarterly to monthly observations using
the quadratic-match average method as applied by Molodtsova and Papell (2009).

14Australian CPI data is also only available at quarterly frequency, and hence transformed
from quarterly to monthly observations applying the same quadratic-match average in-
terpolation.

15M1 data for the UK is not provided by the IMF so we use M1 data provided by Datas-
tream.
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and macroeconomic variables applied in this analysis in Appendix C.1.
The time period for our analysis also entails the global financial crisis from
2007 - 2009 which is well known to have caused major eruptions in finan-
cial markets (Guidolin and Tam, 2013; Fratzscher, 2009). To illustrate the
impact on foreign exchange markets, we first provide an illustrative plot of
the USD/AUD nominal exchange rate changes for all considered forecasting
horizons in Figure 5.1.16 The strong impact of the GFC on the exchange rate
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Figure 5.1. Time series of h=1, h=3 and h=6 months USD/AUD exchange rate changes with two
standard deviation bands for the time period 1995:01 – 2014:12. The vertical lines indicate the GFC
period from 2007:08-2009:05.

is clearly obvious, with abnormally large exchange rate changes during the
crises period from August 2007 - May 2009.17

In order to provide more comprehensive insights to which extent all currencies
have been affected by the GFC, we further calculate the standard deviation
of the exchange rate changes during the GFC period against the standard
deviation of the remaining sample. Table 5.1 summarizes the results. Val-

16For illustrative purposes and to save space, we focus on one exchange rate (USD/AUD)
here. Plots for other currencies provide similar conclusions and are available upon re-
quest.

17Guidolin and Tam (2013) provide an extensive overview of the crisis dating literature
and provide a conservative consensus period from August 2007 - May 2009.
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horizon USD/
AUD

USD/
CAD

USD/
CHF

USD/
JPY

USD/
GBP

1 2.06 2.22 1.64 1.29 1.74
3 2.53 2.12 1.33 1.43 2.70
6 3.05 2.41 1.47 1.04 2.89

Table 5.1. Ratios of the standard deviation of h=1, h=3 and h=6 months exchange rate changes during
the GFC period (2007:08-2009:05) against the standard deviation of the remaining sample. Values larger
than one indicate that the standard deviation of exchange rate changes during the GFC is higher than in
the remaining sample.

ues larger than one indicate that the standard deviation of exchange rate
changes during the GFC is higher than in the remaining sample. The results
confirm that all currencies have been highly affected by the GFC with all of
the ratios being significantly larger than one. Severely impacted have been in
particular the USD/AUD, USD/CAD and USD/GBP currency pairs, where
the standard deviation of exchange rate changes has been more than twice
as high during the GFC as otherwise. We will therefore also consider the
impact of the GFC on the forecasting accuracy in our analysis.

5.4.4 Forecasting Evaluation Measures

As indicated in Section 5.2, we examine the predictive power of the various
models along different criteria. Each of the selected evaluation metrics has a
different focus and we thus consider the use of these criteria as complemen-
tary. Taken together, they provide a multifaceted picture of the forecasting
performance of the tested models. Naturally, depending on the purpose of a
specific exercise one may favour one metric over the other.
RMSE The most commonly used measure of predictive ability in the out-
of-sample exchange rate forecasting literature is the root-mean-square error
(RMSE). The RMSE is a measure of global forecasting performance and sum-
marizes the forecasting errors of a specific modelM over the entire forecasting
period P:

RMSEM =

√√√√ 1

T −R− h

T∑
t=R+h

(∆̂s
M

t+h/t −∆sMt+h)
2. (5.26)
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The lower the RMSE, the more accurate the forecast. To facilitate com-
parison between the yield spread models and the benchmarks models, we
report the relative forecasting accuracy with the ratio of the RMSE from the
respective yield spread model and the benchmark model M:18

RMSE ratioM =
RMSEY LDSPRD

RMSEM
. (5.27)

Accordingly, if RMSE ratioM < 1, forecasts from the yield spread model are
more accurate than the benchmark model.
Direction Accuracy From a market timing perspective it is often more
important to correctly predict the direction of the exchange rate change.
We therefore also apply a measure of direction accuracy (DA). The DA is
computed as the number of correct predictions of the direction of change over
the total number of predictions:

DAM =
1

T −R− h

T∑
t=R+h

at, (5.28)

where at = 1 if the direction of change in period t is forecasted correctly and
at = 0 otherwise. The higher the DA the better the model correctly predicts
the direction of change.19

Density Forecasts Researchers have also started to realize that it is im-
portant to asses the uncertainty around point forecasts (Sarno et al., 2006;
Rapach and Wohar, 2006; Inoue and Rossi, 2008; Hong et al., 2007). One
way to achieve this is to use density forecasts. A density forecast is an esti-
mate of the probability distribution of the point forecast, conditional on the
information available at time t and thus represents a complete characteriza-
tion of the uncertainty associated with the forecast (Rossi, 2015).
To evaluate density forecasts, Diebold et al. (1999) have pioneered the use of
probability integral transforms (PIT). A PIT is the cumulative probability
18Note that this ratio is often reported reciprocal as the ratio of a model against the
random walk.

19Compared to a random walk, a value above (below) 0.5 indicates a better (worse) fore-
casting performance than the naive RW model which has an equal chance of going up
or down.
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evaluated at the actual, realized value of the forecasted variable (Rosenblatt,
1952). Diebold et al. (1999) demonstrate that the PIT is uniform20 and i.i.d.
if the density forecast is correctly specified. In practice, density evaluation
is thus implemented with formal tests measuring whether an observed PIT
is U(0,1). Assume, we are interested in the distribution of the exchange rate
change ∆sMt+h which is being forecasted at time t. If the probability density
of ∆sMt+h is f(∆sMt+h) then the associated distribution function is

F (∆sMt+h) =

∫ ∆sMt+h

−∞
f(x)dx. (5.29)

Following Rossi (2015), we determine the unknown variance of the forecast
error with the estimated variance of the in-sample fitted errors and then test
for violations of independence and uniformity of F̂ (∆sMt+h) with a Berkowitz
test.21

5.5 Out-of-sample Forecasting Results

5.5.1 RMSE

Table 5.2 reports the RMSEs for all investigated currencies and forecast hori-
zons. The first line shows the results of the yield spread model in absolute
terms. As we are mainly interested in the forecasting performance relative

20The uniformity property means that the probability that the realized value is higher
(lower) than the forecasted value is the same (on average over time) no matter whether
we consider high realizations or low realizations of the variable we are forecasting.

21Berkowitz (2001) suggests transforming the PIT series using the inverse of the standard
normal cumulative distribution function. If the PITs are i.i.d. uniformly distributed, the
transformed PITs then are normally distributed and i.i.d. The test for normality and
independence of this transformed PIT sequence is then achieved through a likelihood-
ratio test based on the estimated coefficients of an AR(1) process for the transformed
PITs. The test examines the null hypothesis of the mean of the transformed PITs being
equal to zero, the variance being equal to one, and the autocorrelation coefficient being
equal to zero. Note that the test statistic is approximately χ2 distributed with three
degrees of freedom. See Berkowitz (2001) for further details.
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to our yield spread models, we present the RMSEs of the other models be-
low as a ratio against both approaches.22 Hence, numbers smaller than one
(reported in bold) indicate a smaller RMSE and accordingly superior fore-
casting performance of the yield spread model.
The table shows that our approach predominantly outperforms the fun-

Spread Level L∆sy Spread Slope S∆sy

AUD CAD CHF JPY GBP AUD CAD CHF JPY GBP

h = 1
L∆sy/S∆sy 0.038 0.026 0.032 0.028 0.025 0.039 0.026 0.032 0.029 0.026

IRD 0.983 1.006 0.982 0.988 1.010 0.991 0.988 0.985 1.004 1.034
PPP 0.997 1.004 1.000 0.992 0.954 1.004 0.986 1.003 1.008 0.977
Mon 0.999 1.007 0.991 0.959 0.973 1.007 0.989 0.994 0.975 0.996
TR 0.973 0.994 0.974 0.988 0.955 0.980 0.976 0.977 1.004 0.978
RW 1.014 1.016 1.019 1.015 1.005 1.021 0.998 1.022 1.032 1.029

h = 3
L∆sy/S∆sy 0.074 0.045 0.055 0.053 0.048 0.074 0.043 0.057 0.056 0.050

IRD 0.992 1.020 0.978 0.955 1.001 0.986 0.970 1.001 1.019 1.044
PPP 1.009 1.009 1.015 0.965 0.901 1.003 0.959 1.039 1.030 0.940
Mon 1.021 1.032 0.991 0.837 0.951 1.015 0.981 1.015 0.893 0.992
TR 0.920 1.021 0.968 0.927 0.862 0.915 0.971 0.991 0.989 0.899
RW 1.069 1.039 1.077 1.046 1.025 1.063 0.988 1.103 1.117 1.070

h = 6
L∆sy/S∆sy 0.122 0.071 0.085 0.074 0.078 0.116 0.065 0.082 0.087 0.081

IRD 1.007 1.025 0.949 0.908 0.998 0.950 0.946 0.908 1.070 1.048
PPP 1.033 1.032 1.103 0.868 0.986 0.975 0.953 1.055 1.023 1.036
Mon 1.055 1.040 1.039 0.634 0.943 0.996 0.959 0.994 0.747 0.990
TR 0.844 1.025 0.909 0.719 0.887 0.797 0.946 0.869 0.847 0.931
RW 1.186 1.080 1.190 1.016 1.067 1.120 0.997 1.138 1.198 1.121

Table 5.2. Root mean squared errors (RMSEs) for the time period from 1995:01 – 2014:12 and h=1,
h=3 and h=6 months-ahead forecasting horizons. The first line reports the RMSE for the yield spread
models L∆sy and S∆sy . The RMSEs of all other models and the random walk are expressed as the
ratio against the yield spread model. Hence, numbers smaller than one (reported in bold) indicate
a smaller RMSE and accordingly superior forecasting performance of the yield spread model. Numbers
larger than one indicate inferior forecasting performance in terms of the RMSE. See Section 5.4.1 for a
detailed description of the models.

damental models with the majority of the RMSE ratios being smaller than
one. These results hold across all considered forecasting horizons and cur-
rencies, except for the USD/CAD pair for the spread level approach and
the USD/JPY for the spread slope approach. Our approach seems to work

22Note that this is reciprocal to studies that focus only on the forecasting performance
compared to the random walk and thus express the RMSE relative to the random walk.
It is thus also reciprocal to Chapter 4.
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particularly well for the Australian Dollar and British Pound. It is also in-
teresting to note that both models seem to work well for different currencies,
e.g. the spread level approach works rather well for the Japanese Yen and the
British Pound and spread slope approach for the Australian and Canadian
Dollar.
However, neither our yield spread model nor the traditional models are able
to consistently beat the random walk in terms of the RMSE. Except for a few
occasions, the random walk consistently yields the lowest RMSE (reflected
in RMSE ratios larger than one). These results are not entirely surprising
based on the findings of previous literature described in Section 5.2 and pro-
vide further evidence to the well documented failure of exchange rate models
to outperform the random walk in terms of the RMSE (Cheung et al., 2005;
Rossi, 2013). However, this conclusion changes when we turn to additional
statistical evaluation measures and profitability.

5.5.2 Direction Accuracy

Our first alternative evaluation metric is the direction of change statistic.
Table 5.3 reports the proportion of forecasts that correctly predict the direc-
tion of the exchange rate movement over horizon h. The first line reports the
direction accuracy of the yield spread models. Below, we report the results
for the benchmark models. The higher the proportion of correctly forecasted
directions of change, the better. Superior direction accuracy of the yield
spread models is indicated in bold.
In terms of direction accuracy, we find that our model is able to consistently
beat the random walk with the DA statistics being predominantly larger than
0.50 except for the USD/CAD (spread level model) and the USD/GBP ex-
change rate (spread slope model). These results hold across all considered
forecasting horizons.
Comparing the yield spread model to the traditional fundamental models, we
also find promising results. Our model is consistently among the models with
the highest proportion of forecasts that correctly predicted the direction of
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Spread Level L∆sy Spread Slope S∆sy

AUD CAD CHF JPY GBP AUD CAD CHF JPY GBP

h = 1
L∆sy/S∆sy 0.54 0.51 0.52 0.56 0.56 0.61 0.66 0.55 0.56 0.45

IRD 0.54 0.51 0.51 0.52 0.55 0.58 0.51 0.58 0.62 0.54
PPP 0.51 0.47 0.49 0.51 0.43 0.45 0.44 0.55 0.53 0.43
MON 0.53 0.56 0.49 0.51 0.49 0.49 0.58 0.58 0.40 0.45
TR 0.51 0.48 0.54 0.53 0.54 0.51 0.48 0.54 0.53 0.54
RW 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

h = 3
L∆sy/S∆sy 0.54 0.47 0.61 0.57 0.56 0.59 0.57 0.56 0.57 0.53

IRD 0.56 0.53 0.57 0.54 0.56 0.56 0.53 0.57 0.54 0.56
PPP 0.44 0.43 0.47 0.55 0.43 0.44 0.43 0.47 0.55 0.43
MON 0.55 0.52 0.51 0.40 0.47 0.55 0.52 0.51 0.40 0.47
TR 0.51 0.58 0.50 0.49 0.53 0.51 0.58 0.50 0.49 0.53
RW 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

h = 6
L∆sy/S∆sy 0.56 0.45 0.57 0.58 0.53 0.61 0.66 0.55 0.56 0.45

IRD 0.58 0.51 0.58 0.62 0.54 0.58 0.51 0.58 0.62 0.54
PPP 0.45 0.44 0.55 0.53 0.43 0.45 0.44 0.55 0.53 0.43
MON 0.49 0.58 0.58 0.40 0.45 0.49 0.58 0.58 0.40 0.45
TR 0.49 0.55 0.46 0.49 0.57 0.49 0.55 0.46 0.49 0.57
RW 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Table 5.3. Direction accuracy (DA) for the time period from 1995:01 – 2014:12 and h=1, h=3 and h=6
months-ahead forecasting horizons. The DA-statistic reports the proportion of forecasts that correctly
predict the direction of the exchange rate movement over horizon h. The higher the proportion the better
the direction accuracy. The first line reports the direction accuracy of the yield spread models. Direction
accuracy smaller than the yield spread model’s indicating a superior forecasting performance is indicated
in bold. A value above (below) 0.5 indicates a better (worse) forecasting accuracy than a random walk.
See Section 5.4.1 for a detailed description of the models.

change for all currencies except for the USD/CAD (spread level model) and
the USD/GBP (spread slope model) currency. Similar to the RMSE, the
direction accuracy seems to be particularly high for the Australian Dollar
and Japanese Yen. The z-scores of a conventional test of the significance of
proportions reported in Apendix C.2 also indicate that the superior direction
accuracy of our approach is statistically significant for many cases, especially
for the longer forecasting horizons.
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5.5.3 Density Forecasts

We present the results of the evaluation of the density forecasts in Tables
5.4 and 5.5. Table 5.4 summarizes the results of the Berkowitz test for h=1
months forecasting horizon. The first line reports the Berkowitz test statistic
for the yield spread models. The results for the benchmark models are re-
ported below. Recall that a greater value of the χ2(3) test statistic indicates
a more likely rejection of the null hypothesis of an appropriate density fore-
casts for the model. Test statistics that are larger for the benchmark models
than for SPRDLEV and SPRDSL therefore indicate a superior forecasting
performance of the spread level and slope models and are highlighted in bold.
Note that we focus on fundamental models, as for the random walk we can-
not proxy the unknown variance of the forecast errors with the estimated
variance of the in-sample fitted errors.
We find strong evidence that our approach yields more appropriate density

Spread Level L∆sy Spread Slope S∆sy

AUD CAD CHF JPY GBP AUD CAD CHF JPY GBP

h = 1
L∆sy/S∆sy 10.91* 7.52 3.28 2.29 6.50 11.76* 6.57 3.41 2.02 6.75

IRD 11.54* 6.98 3.89 1.03 6.04 11.54* 6.98 3.89 1.03 6.04
PPP 13.37* 9.66* 5.01 4.17 13.73* 13.37* 9.66* 5.01 4.17 13.73*

MON 11.78* 6.41 2.86 2.97 6.67 11.78* 6.41 2.86 2.97 6.67
TR 19.39* 11.39* 7.52 0.54 9.48* 19.39* 11.39* 7.52 0.54 9.48*

Table 5.4. Berkowitz test statistics for the time period from 1995:01 – 2014:12, all considered currencies
against the USD and h=1 months-ahead forecasting horizons. The larger the test statistic, the more likely
it is that the density forecasts are not correctly specified. The first line reports the Berkowitz test statistic
for the yield spread models L∆sy and S∆sy . The results for the benchmark models are reported below.
Test statistics larger than for the yield spread models are indicated in bold. Rejection of the null of
uniformity of the PITs at the 5% level is indicated with (*). See Section 5.4.1 for a detailed description
of all models.

forecasts than the traditional fundamental models. Overall, the spread factor
models deliver smaller Berkowitz statistics than the benchmark models for
most of the currencies and forecasting horizons. In absolute terms, the null
of uniformity of the PITs based on our model forecasts is only rejected for
the USD/AUD exchange rate. Note, however, that for this currency pair the
null of an appropriately specified density forecast is also rejected for all other
models.
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For longer forecasting horizons the validation techniques of the one period
ahead density forecasts are no longer reliable. While one-period forecasts are
i.i.d. under the null hypothesis of model adequacy and can therefore be vali-
dated using standard statistical techniques, multiple-period density forecasts
and PITs are subject to common shocks which create temporal dependence
and undermine the i.i.d. assumption. We therefore follow the bootstrap
approach described in Dowd (2007) and construct i.i.d. resamples from the
original PITs. For each PIT we create 10,000 resamples and then examine
how often we end up with p-values below the adjusted significance level of
5%.
The results are summarized in Table 5.5. This table shows the number of
rejections of the null of uniformity indicated by a Berkowitz test at a 5% level
of significance based on the 10,000 resamples. Thus the smaller the number
of rejections, the more appropriately are the density forecasts specified. Su-
perior density forecasts of the respective yield spread model is indicated in
bold.
Similar to the short-term results (h = 1) we find that for most currencies the

Spread Level L∆sy Spread Slope S∆sy

AUD CAD CHF JPY GBP AUD CAD CHF JPY GBP

h = 3
L∆sy/S∆sy 8,634 8,153 4,805 1,815 9,336 8,568 6,910 6,522 4,817 9,657

IRD 8,818 7,440 6,862 2,246 9,465 8,868 7,453 6,828 2,262 9,469
PPP 9,644 9,297 8,342 5,985 9,964 9,623 9,308 8,316 5,944 9,950

MON 8,952 7,430 4,077 8,899 9,778 8,929 7,569 4,076 8,961 9,775
TR 10,000 9,571 6,804 6,283 9,886 10,000 9,571 6,804 6,283 9,886

h = 6
L∆sy/S∆sy 9,998 9,977 9,999 7,893 9,996 9,993 9,918 9,992 9,974 10,000

IRD 10,000 9,956 10,000 9,149 9,999 9,999 9,962 10,000 9,183 10,000
PPP 10,000 10,000 9,999 9,998 10,000 10,000 9,999 9,998 9,999 10,000

MON 10,000 9,988 9,960 10,000 10,000 10,000 9,986 9,951 10,000 10,000
TR 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000

Table 5.5. Number of rejections at the 5% level of significance for the null hypothesis of uniformity of
the PITs based on 10,000 created i.i.d. bootstrap resamples and application of the Berkowitz test (with
p-values adjusted following Dowd (2007)). Tests are applied for the time period 1995:01 – 2014:12 and h=3
and h=6 months-ahead forecasting horizons. The smaller the number of rejections, the more likely it is that
the density forecasts of the model are correctly specified. The first line reports the number of rejections
for the yield spread models L∆sy and S∆sy . Results for the benchmark models with more rejections
than for the yield spread models are highlighted in bold. See Section5.4.1 for a detailed description of the
models.

yield spread models yield more appropriate density forecasts than traditional
models also for longer forecasting horizons. For a h = 3 months forecasting
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horizon the number of rejections of the null hypothesis at the 5% level is
the smallest for nearly all currencies. In relative terms, our model also does
well for a h = 6 months forecasting horizon. In absolute terms however, the
generally high number of rejections indicate that the density forecasts are
not correctly specified for all assessed models.
We advocate two potential explanations. First, as described in Section 5.2,
empirical exchange rate forecasting generally is a cumbersome task, especially
over long horizons. It is not entirely surprising that the forecasting perfor-
mance of the applied models deteriorates with the length of the forecasting
horizon. Furthermore, as described in section 5.4.3, our forecasting period
encompasses the global financial crisis (GFC) which had significant impacts
on foreign exchange markets. We suspect that this will also impact the fore-
casting uncertainty as measured by tests of uniformity, as the exchange rates
with the highest forecasting uncertainty (AUD, CAD and GBP) have been
previously identified as severely impacted by the GFC in Section 5.4.3.

5.5.4 Impact of the GFC

To provide an intuitive indication of the impact of the GFC on the general
forecasting accuracy, we first provide an illustrative plot of the forecasted
6-months USD/AUD exchange rate changes against the corresponding fore-
casting errors in Figure 5.2.23 Observations from the GFC period (2007:08-
2009:05) are highlighted with (*). This illustrative plot confirms, that the
GFC period accounts for a high number of relatively large USD/AUD ex-
change rate changes throughout the forecasting period. It also becomes ob-
vious that all models have problems to pick up the extend of these changes
as the forecast errors are relatively large compared to the remaining sample.
To thoroughly investigate the impact of the crises on the forecasting accu-
racy, we further re-calculate all statistical evaluation measures excluding the

23Due to the high number of currency/horizon combinations, we focus on one illustrative
forecasting horizon (h = 6 months) currency which has been identified in Section 5.4.3
as being highly impacted by the GFC (USD/AUD). Further plots of other currencies
and forecasting horizons are available upon request.
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Figure 5.2. USD/AUD exchange rate changes vs. forecasting errors for h=6 months and all considered
forecasting models. Observations from the GFC period (2007:08-2009:05) are indicated with (*). See
Section 5.4.2 for a detailed description of the selected models.

forecasts of the crises period (2007:08-2009:05) from the sample. The respec-
tive tables are reported in Appendix C.3.
The results show, that Berkowitz statistics for h=1 and h=3 months forecast-
ing horizons improve significantly, indicating that the forecasting uncertainty
is much lower prior to and after the GFC. Not surprisingly, this effect is the
strongest for the exchange rates identified as severely impacted by the GFC in
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Section 5.4.3. While the forecasting performance of the models also slightly
improves for the forecasting horizon h = 6 months, it still remains rather
poor, indicating that longer term exchange rate forecasts are generally asso-
ciated with high forecasting uncertainty.
With regards to other forecast evaluation measures, we find the impact to
be somewhat limited. The RMSEs reported in Table C.5 generally decrease
as the large forecasting errors during the crisis period are excluded, but in
relative terms the results remain rather stable. The overall impact on the
direction accuracy reported in Table C.6 is – not surprisingly – rather small,
as the crisis only comprises a relatively small part (20 observations) of the
entire forecasting period and the magnitude of forecasting errors does not
affect the DA metric.
Overall, we do not find much difference in terms of relative performance
between the models for all evaluation metrics when the crises period is ex-
cluded. It thus seems that, while the GFC generally had some impact on the
forecasting accuracy in terms of the RMSE and a significant impact on the
density forecasts, no model stands out as a particular good or bad performer
during the crisis.

5.6 Trading Strategy

5.6.1 Trading Rule Implementation

The ultimate test of predictive power is the profitability of the forecasts (Ab-
hyankar et al., 2005; Corte et al., 2009; Moosa and Burns, 2014). After all,
statistical evidence of exchange rate predictability does not guarantee an in-
vestor to make profits with a strategy exploiting this predictive power.
To asses the profitability of the different models, we thus implement a simple
trading strategy that utilizes the respective exchange rate forecasts ∆̂s

M

t+h.
Following Moosa and Burns (2014) we apply an intuitive approach that in-
volves period-by-period trading based on the forecasted h-month horizon
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excess returns x̂sMt/t+h predicted by model M:

x̂sMt/t+h = (iτt − i
τ,∗
t )− ∆̂s

M

t+h. (5.30)

Note that the maturity τ of the interest rate differential (iτt − i
τ,∗
t ) equals the

forecasting horizon h.
The decision rule for trading is then based on whether the forecasted excess
return x̂sMt/t+h derived from the model forecast ∆̂s

M

t+h is positive or negative.
A negative excess return, for example, indicates that the model forecasts
an appreciation of the foreign currency which outweighs the interest rate
differential24 and thus suggests an investment in the foreign currency. The
trading rule can therefore be defined as:

if x̂sMt/t+h > 0 → invest in home currency,

if x̂sMt/t+h < 0 → invest in foreign currency.

We then calculate the actual return xsMt+h for every trade based on the actual
exchange rate changes over the corresponding horizon as:

xsMt+h =

(iτt − i
τ,∗
t )−∆st+h for investments in home currency

(iτ,∗t − iτt ) + ∆st+h for investments in foreign currency.

(5.31)
Note that we ignore transaction costs as the main purpose of our analysis is
to compare the profitability of the considered models and the same number
of trades are executed for all models.
We implement the trading strategy for every month of the forecasting period
P = T − R − h and summarize the annualized returns in the mean return
xsM across the entire forecasting period. We then calculate the risk adjusted
profitability xsMra for every model M as a ratio of the mean return xsM and

24Recall, that a rise in the nominal exchange rate s represents a depreciation of the home
currency (USD) and a lower value an appreciation.
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the standard deviation σMxs of the returns:

xsMra =
xsM

σMxs
. (5.32)

This can be illustrated with a simple example. Let us assume that s is the
log of the USD/CAD exchange rate and the τ = 6 months interest rate
differential iτ=6

t − iτ=6,∗
t between the US (home country) and Canada (foreign

country) is 5%− 2% = 3%. Let us further assume that model M predicts a
depreciation of the US dollar over the next h = 6 months period of ∆̂s

M

t+6 =

4%.25 The predicted negative semi-annual excess return x̂sMt/t+6 of 3%
2
−4% =

−2.5%26 would indicate an investment in the Canadian dollar as the predicted
CAD appreciation outweighs the interest rate differential. Further assuming
that the actual appreciation ∆st+6 of the Canadian dollar over the next 6-
months horizon is only 1%, the investment in the Canadian dollar would
yield a negative actual semi-annual return of xsMt/t+6 = −3%

2
+ 1% = −0.5%

and thus an annualized return of xsMt/t+6,ann. = −0.5% · 2 = −1.0%. This
strategy is now implemented for every month of the forecasting period. If
we assume that the mean return of all these trades is xsM = 2.8% with a
standard deviation of σMxs = 14.6% the annualized return-risk ratio or risk
adjusted return is xsMra = 2.8%

14.6%
= 0.19.

5.6.2 Risk-adjusted Trading Returns

We report the annualized risk adjusted returns or return-risk ratio xsMra of the
implemented trading strategy for all considered models including the random
walk in Table 5.6. The first line reports the return-risk ratios for the yield
spread models. Risk adjusted returns smaller than those of the yield spread
models then indicate a superior risk-return relationship for our model and
are highlighted in bold.

25Again, recall that a rise in the nominal exchange rate s represents a depreciation of the
home curreny (USD).

26Note, that the difference in annual interest rates has to be adjusted to match the semi-
annual (h = 6-month) horizon of the exchange rate change.
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Focusing on the yield spread models first, we find positive risk-adjusted

Spread Level L∆sy Spread Slope S∆sy

AUD CAD CHF JPY GBP AUD CAD CHF JPY GBP

h = 1
L∆sy/S∆sy 0.06 0.03 0.02 0.04 0.10 0.09 0.15 0.01 0.14 -0.01

IRD 0.04 0.07 -0.02 0.06 0.04 0.04 0.07 -0.02 0.06 0.04
PPP 0.04 0.10 -0.02 0.07 -0.08 0.04 0.10 -0.02 0.07 -0.08
MON 0.02 0.04 -0.04 0.01 0.03 0.02 0.04 -0.04 0.01 0.03
TR 0.05 0.04 0.12 0.11 0.07 0.05 0.04 0.12 0.11 0.07
RW -0.02 0.05 0.11 0.04 0.03 -0.02 0.05 0.11 0.04 0.03

h = 3
L∆sy/S∆sy 0.00 0.01 0.10 0.09 0.06 0.09 0.22 0.01 0.16 0.04

IRD 0.05 0.10 0.08 0.05 0.13 0.05 0.10 0.08 0.05 0.13
PPP 0.00 -0.01 -0.03 0.10 -0.14 0.00 -0.01 -0.03 0.10 -0.14
MON -0.02 0.01 0.01 -0.08 0.03 -0.02 0.01 0.01 -0.08 0.03
TR 0.06 0.26 0.02 0.05 -0.08 0.06 0.26 0.02 0.05 -0.08
RW -0.02 0.08 0.25 0.17 0.08 -0.02 0.08 0.25 0.17 0.08

h = 6
L∆sy/S∆sy 0.13 -0.07 0.11 0.14 0.05 0.21 0.28 0.07 0.10 -0.06

IRD 0.15 -0.01 0.13 0.15 0.08 0.15 -0.01 0.13 0.15 0.08
PPP 0.06 -0.08 0.12 0.07 0.03 0.06 -0.08 0.12 0.07 0.03
MON -0.07 -0.04 0.17 -0.13 0.08 -0.07 -0.04 0.17 -0.13 0.08
TR -0.07 0.22 0.00 -0.04 -0.14 -0.07 0.22 0.00 -0.04 -0.14
RW -0.09 0.13 0.39 0.17 0.09 -0.09 0.13 0.39 0.17 0.09

Table 5.6. Annualized risk adjusted returns or return-risk ratios of a monthly trading strategy based
on model exchange rate predictions for the time period from 1995:01 – 2014:12 and h=1, h=3 and h=6
months-ahead forecasting horizons. The risk adjusted returns are calculated as a ratio of the mean return
xsM and the standard deviation σMxs of the returns: xsMra = xsM/σMxs . The higher the risk adjusted
return the better is the risk-return relation of the model’s forecasts. Risk adjusted returns’s smaller than
the yield spread models indicate a superior risk-return relationship of the yield spread models, and are
reported in bold. See Section 5.4.1 for a detailed description of the models and Section 5.6.1 for a
description of the trading strategy.

returns for nearly all currencies and forecast horizons. The spread slope ap-
proach seems to work particularly well for the Canadian Dollar, where the
returns yield annualized return-risk ratios of up to 0.28.
Overall, we also find promising results for our approach relative to the funda-
mental models and the random walk when the forecasting accuracy is assessed
in terms of trading profitability. Our models predominantly generate higher
risk-adjusted returns than the traditional fundamental models.27 This holds
in particular for the Australian Dollar for both models and the Canadian
Dollar and Japanese Yen for the spread slope approach. Note, that the ran-

27We note that this difference in risk-adjusted trading returns is not statistically significant
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dom walk does surprisingly well, which is further validation for the success
of the carry trade.28 Nevertheless, our yield spread model is able to beat the
random walk for some of the currency/forecast horizon combinations.29

In general, profits and losses seem to become larger with a widening fore-
casting horizon. Trading profitability also seems to be more currency specific
than the previously applied statistical evaluation metrics, with some curren-
cies working exceptionally well (especially the Australian Dollar) across all
forecasting horizons while the profitability for others (e.g. the Swiss Francs)
is somewhat disappointing.
It is also important to note, that simply trading based on exchange rate
forecasts without additional discretionary trading rules or the creation of
portfolios does generally not produce promising results. The majority of the
annualized return-risk ratios is not very high and several trading strategies
based on forecasts created by the benchmark models even yield negative risk-
adjusted returns. Taking into account reasonable transaction costs would
probably see more of the remaining profits diminish.

5.7 Conclusion

This paper investigates whether two selected financial variables — the level
and slope of the yield spread curve between two economies — can successfully
forecast exchange rates. We apply these two variables as proxies reflecting
the market’s unobservable expectations of current and future macroeconomic
fundamentals and investigate their forecasting accuracy in an extensive out-

28Note that under the random walk without drift, the forecast change in the exchange
rate is always zero. This means that the decision rule leads to going short on the low-
interest currency and long on the high-interest currency which represents the common
carry trade.

29We also investigate the impact of the GFC on profitability by re-calculating the risk
adjusted returns excluding the GFC period (Tables reported in Appendix C.3). While
some of the individual results for the different forecasting model/horizon/currency com-
binations change quite substantially, the overall relative forecasting performance when
comparing the models remains rather stable compared the results presented in this sec-
tion.
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of-sample forecasting exercise against traditional models based on interest
rate, price, monetary and Taylor rule fundamentals as well as the random
walk.
We find that our approach is able to consistently beat traditional fundamen-
tal exchange rate models in terms of all considered forecasting evaluation
metrics such as the RMSE, direction accuracy and density forecasts. While
it fails to beat the random walk in terms of the RMSE – which should hardly
be surprising based on previous findings in the literature – it is also superior
to a random walk in forecasting the direction of exchange rate changes.
We also assess the profitability of our approach by implementing a period-
by-period trading strategy and find that trading based on the implemented
yield spread level and spread slope models consistently generates higher risk-
adjusted returns compared to traditional fundamental models and is also able
to beat the random walk for several currencies.
As our sample includes the GFC period from 2007-2009, we further inves-
tigate the impact of this time period on the forecasting performance. We
find that, while the GFC generally had a strong impact on foreign exchange
markets, the effect on point forecasts is somewhat limited in terms of the
RMSE and direction accuracy as well as profitability. However, not surpris-
ingly, we find that the GFC period has significantly increased the forecasting
uncertainty as measured by density forecasts.
Interestingly, depending on the forecasting measures the results seem to be
at least partly currency specific. While the superior performance of our ap-
proach compared to the fundamental models is comprehensive in terms of
direction accuracy and density forecasts, it is less distinct for some curren-
cies in terms of the RMSE. The investigated density forecasts also reveal that
some currencies can generally be forecasted with higher degress of certainty
than others. Trading on exchange rate forecasts also seems to work generally
well for some currencies while it fails to deliver positive returns for others.
This difference in conclusions depending on the choice of statistical and eco-
nomic forecasting metrics highlights the importance of applying a variety of
measures to provide a conclusive assessment of a model’s forecasting ability.
Simply minimizing the mean squared error is not always adequate from an
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economic standpoint and may miss out on important aspects of exchange
rate forecasts such as the direction of change and profitability.
Overall, our promising results provide further evidence that there is an im-
portant place for models based on financial variables in exchange rate fore-
casting. Evans and Lyons (2007), Guo and Savickas (2008) and Rime et al.
(2010) have previously shown that financial variables related to stock returns
and order flow have the ability to improve exchange rate forecasts. Recently,
Chen and Tsang (2013) and Bui and Fisher (2016) also found predictive
power of cross-country Nelson-Siegel factors for exchange rates conducting
an in-sample analysis. These factors are closely associated with the empirical
spread level, slope and curvature suggested in this study. We complement
their findings and the conclusions of the previous Chapter 4 and show that
the empirical yield spread level and slope also successfully forecast exchange
rates out-of-sample.
There are several possible explanations why the yield spread level and slope
work so well in forecasting exchange rates. When the exchange rate is un-
derstood as an asset price and determined by the sum of expected future
fundamentals these indicators act as natural proxies whose forward-looking
character summarizes the market expectations for these fundamentals. Fur-
ther, because sovereign yield spreads and foreign exchanges are susceptible to
the same macroeconomic risk the expected risk premia that investors require
for holding these assets might closely relate to each other.
From an empirical forecasting perspective it is also favorable to focus on
a small number of variables which reflect a broad range of unobservable
macroeconomic information and business conditions. First, this allows for
parsimonious modeling and previous research has shown, that simple spec-
ifications often deliver accurate forecasts, see, for example, Clark and Mc-
Cracken (2013). Second, our approach is more flexible to changes in business
conditions over time and less vulnerable to the omitted variables bias than
traditional models based on selected observable fundamentals.
It is important to note that exchange rates are notoriously difficult to fore-
cast empirically and the forecasting success often depends on the choice of
currency, forecast horizon, in-sample window length, sample period and fore-
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cast evaluation method. We also find that our approach works better for
some currencies and horizons than for others. But considering all applied
evaluation metrics as well as the trading profitability, we provide a promis-
ing, multifaceted picture of the forecast performance of the proposed yield
spread models. In addition, our approach is parsimonious and based on read-
ily available, market-driven data, which makes it straightforward to apply in
practice.
We thus hope that our study sparks a renewed interest in the empirical assess-
ment of exchange rate forecasting models based on financial variables, as they
are an intuitive and promising resolution, in particular when exchange rates
are understood as an asset price. Further research is required, for instance,
to fully understand the dynamics of the term structure of yield spreads and
its relation to macroeconomic fundamentals and exchange rates. It may also
be worthwhile to combine our approach with other financial variables, e.g.
stock returns, or factors derived from a range of financial variables which may
reflect other aspects of the business cycle and exchange rate determination,
to further increase the forecasting accuracy.
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Appendix C

C.1 Descriptive Statistics

Currency Mean Std Min Max Skewness Kurtosis

h = 1

USD/AUD 0.000 0.035 -0.18 0.09 -0.73 5.92
USD/CAD 0.001 0.024 -0.14 0.09 -0.64 7.94
USD/CHF 0.001 0.031 -0.12 0.13 0.15 4.38
USD/JPY -0.001 0.032 -0.10 0.16 0.52 5.78
USD/GBP 0.000 0.024 -0.10 0.09 -0.34 4.59

h = 3

USD/AUD 0.002 0.064 -0.36 0.22 -1.07 8.24
USD/CAD 0.003 0.040 -0.17 0.15 -0.19 6.01
USD/CHF 0.003 0.051 -0.12 0.13 0.05 2.64
USD/JPY -0.003 0.058 -0.16 0.22 0.47 4.06
USD/GBP 0.000 0.043 -0.20 0.14 -0.83 7.70

h = 6

USD/AUD 0.005 0.095 -0.39 0.27 -0.77 6.05
USD/CAD 0.005 0.059 -0.22 0.16 -0.32 5.10
USD/CHF 0.006 0.072 -0.20 0.18 -0.10 2.69
USD/JPY -0.006 0.082 -0.20 0.22 0.04 2.99
USD/GBP 0.000 0.065 -0.32 0.16 -1.46 8.48

Table C.1. Descriptive statistics for h=1, h=3 and h=6 months nominal exchange rate changes (home
currency price per unit of foreign currency) for the time period from 1995:01 – 2014:12. Source: Bloomberg.
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Country Mean Std Min Max Skewness Kurtosis

log(p)

US 4.478 0.140 4.23 4.69 -0.08 1.68
AU 4.449 0.160 4.19 4.71 0.03 1.66
CA 4.501 0.115 4.31 4.68 -0.09 1.68
CH 4.553 0.044 4.47 4.62 -0.20 1.57
JP 4.618 0.013 4.60 4.65 0.62 2.33
UK 4.493 0.122 4.30 4.72 0.47 1.96

π

US 0.023 0.011 -0.02 0.05 -0.67 5.04
AU 0.027 0.013 0.00 0.06 0.26 3.64
CA 0.019 0.009 -0.01 0.05 -0.04 3.89
CH 0.007 0.008 -0.01 0.03 0.30 3.14
JP 0.001 0.011 -0.03 0.04 1.04 4.60
UK 0.021 0.010 0.01 0.05 0.86 3.55

log(m1)

US 7.272 0.294 6.97 7.97 1.00 2.80
AU 5.123 0.399 4.32 5.74 -0.34 2.00
CA 5.812 0.478 5.02 6.62 0.09 1.83
CH 5.631 0.402 4.93 6.36 0.31 2.03
JP 5.871 0.456 4.95 6.41 -0.61 1.77
UK 6.453 0.532 5.40 7.22 -0.34 1.84

i

US 2.854 2.350 0.07 6.54 0.06 1.30
AU 5.054 1.361 2.50 7.52 -0.06 2.54
CA 3.017 1.843 0.24 8.06 0.34 2.38
CH 0.967 1.055 -2.00 3.50 0.56 2.66
JP 0.217 0.329 0.00 2.25 3.51 19.76
UK 3.818 2.396 0.40 7.50 -0.39 1.67

log(y)

US 4.601 0.095 4.36 4.77 -0.90 3.39
AU 4.531 0.098 4.32 4.73 -0.31 2.57
CA 4.490 0.148 4.21 4.71 -0.49 2.07
CH 4.638 0.155 4.36 4.86 -0.07 1.60
JP 4.623 0.069 4.34 4.76 -0.70 5.18
UK 4.657 0.053 4.55 4.73 -0.68 1.96

ygap

US -0.048 0.062 -0.21 0.06 -0.33 2.79
AU -0.011 0.032 -0.08 0.07 0.07 2.35
CA -0.018 0.036 -0.09 0.07 -0.09 2.08
CH 0.020 0.047 -0.07 0.15 0.70 2.89
JP 0.005 0.067 -0.28 0.11 -1.33 5.90
UK -0.043 0.040 -0.14 0.03 -0.23 2.51

Table C.2. Descriptive statistics of the macroeconomic time series for the US, Australia, Canada,
Switzerland, Japan and the United Kingdom for the time period from 1995:01 – 2014:12. Sources: IMF’s
International Financial Statistics, Datastream. See Section 5.4.3 for a detailed description of the variables.
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Spread Mean Std Min Max Skewness Kurtosis

US - AU

3m -2.180 1.619 -5.50 0.94 0.14 2.06
60m -1.864 1.314 -4.89 0.72 0.05 2.16

120m -1.313 0.705 -3.20 0.14 -0.41 2.71
Spread Level -1.786 1.146 -4.11 0.45 0.19 2.10
Spread Slope 0.867 1.269 -1.51 3.13 -0.09 1.85

US - CA

3m -0.273 0.965 -2.59 2.32 0.56 3.21
60m -0.352 0.721 -2.14 1.30 0.20 2.42

120m -0.189 0.578 -2.02 0.66 -1.12 3.86
Spread Level -0.271 0.667 -1.88 1.20 0.07 2.72
Spread Slope 0.084 0.895 -2.65 1.44 -0.76 3.33

US - CH

3m 1.560 1.586 -1.09 4.52 0.27 1.46
60m 1.712 1.271 -0.61 4.56 0.37 1.88

120m 1.859 0.562 0.15 3.37 0.20 2.83
Spread Level 1.710 1.100 -0.22 4.01 0.30 1.68
Spread Slope 0.299 1.205 -2.08 2.32 -0.21 1.62

US - JP

3m 2.502 2.181 -0.46 6.28 0.10 1.36
60m 2.868 1.824 0.09 6.23 -0.04 1.60

120m 2.874 0.896 0.76 4.79 -0.35 2.65
Spread Level 2.748 1.582 0.32 5.62 -0.02 1.59
Spread Slope 0.372 1.568 -2.61 2.84 -0.14 1.49

US - UK

3m -0.987 1.048 -3.40 0.89 -0.68 2.28
60m -0.759 0.745 -2.59 0.56 -0.40 2.27

120m -0.271 0.656 -2.39 1.39 -0.52 4.17
Spread Level -0.672 0.700 -2.25 0.65 -0.21 2.16
Spread Slope 0.716 1.049 -1.56 3.08 0.18 2.15

Table C.3. Descriptive statistics of sovereign yield spreads for 3-months, 36-months and 120-months
maturity and the empirical yield spread level L∆sy

t and spread slope S∆sy
t for the time period from

1995:01 – 2014:12. Source: Bloomberg. See Section 5.4.2 for the calculation of the sovereign yield spreads
and the spread level and slope.
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C.2 Statistical Significance of Direction Accuracy

Spread Level L∆sy Spread Slope S∆sy

AUD CAD CHF JPY GBP AUD CAD CHF JPY GBP

h = 1

IRD 0.00 0.00 0.30 1.04 0.15 -0.15 0.75 0.15 1.19 -0.90
PPP 1.04 0.90 0.75 1.34 3.31* 0.89 1.64 0.60 1.49 2.26*
MON 0.30 -1.35 0.60 1.34 1.64 0.15 -0.60 0.45 1.49 0.60
TR 1.49 0.00 0.45 0.90 0.75 1.34 0.75 0.30 1.04 -0.30
RW 1.19 0.15 0.45 1.49 1.49 1.04 0.89 0.30 1.64 0.45

h = 3

IRD -0.60 -1.50 0.91 0.75 0.00 0.76 1.20 -0.30 0.75 -0.60
PPP 2.72* 1.06 3.76* 0.45 3.49* 4.08* 3.78* 2.55* 0.45 2.88*
MON -0.30 -1.20 2.70* 4.59* 2.25* 1.05 1.50 1.50 4.59* 1.65
TR 0.75 -2.57" 3.45* 1.65 1.80 2.10* 0.15 2.25* 1.65 1.20
RW 1.05 -0.75 2.85* 1.80 1.50 2.40* 1.95 1.65 1.80 0.90

h = 6

IRD -0.61 -1.81 -0.15 -0.93 -0.46 0.77 3.93* -0.77 -1.56 -2.58"
PPP 3.04* 0.15 0.61 1.51 2.44* 4.41* 5.94* 0.00 0.91 0.31
MON 1.97* -3.68" -0.31 4.94* 2.13* 3.33* 2.15* -0.92 4.32* 0.00
TR 3.20* -2.43" 1.97* 5.96* 1.06 4.57* 3.34* 1.36 5.34* -1.06
RW 1.59 -1.44 1.89 2.19* 0.68 2.95* 4.31* 1.29 1.59 -1.44

Table C.4. Z-scores of a conventional test of the significance of proportions for the direction accuracy
(DA) of the yield spread approaches against the benchmark models for the time period from 1995:01 –
2014:12 and h=1, h=3 and h=6 months-ahead forecasting horizons. The DA statistic reported in the
corresponding Table 5.3 denote the proportion of forecasts that correctly predict the direction of the
exchange rate movement over horizon h. Positive z-scores (highlighted in bold) indicate a higher
direction accuracy of the yield spread models. Negative z-scores indicate a lower direction accuracy. Z-
scores above/below 1.96/-1.96 (indicated with */") imply statistical significance of the results on a 5% or
lower level. See section 5.4.1 for a detailed description of the models.
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C.3 Forecasting Results excluding GFC period

Spread Level L∆sy Spread Slope S∆sy

AUD CAD CHF JPY GBP AUD CAD CHF JPY GBP

h = 1
L∆sy/S∆sy 0.033 0.022 0.029 0.027 0.023 0.033 0.022 0.029 0.028 0.023

IRD 0.971 1.003 0.972 0.984 0.994 0.988 0.987 0.981 1.008 1.020
PPP 0.988 0.990 0.984 0.982 0.967 1.006 0.974 0.993 1.006 0.993
MON 1.003 1.018 0.981 0.966 0.962 1.022 1.002 0.990 0.990 0.988
TR 0.966 0.980 0.991 1.000 1.000 0.984 0.964 1.000 1.024 1.027
RW 1.017 1.017 1.011 1.011 1.013 1.035 1.000 1.020 1.035 1.040

h = 3
L∆sy/S∆sy 0.059 0.037 0.052 0.049 0.036 0.060 0.037 0.055 0.054 0.040

IRD 0.972 1.018 0.966 0.932 0.981 0.986 0.994 1.007 1.030 1.076
PPP 0.970 0.950 0.994 0.917 0.927 0.985 0.927 1.037 1.013 1.017
MON 1.019 1.012 0.974 0.913 0.891 1.034 0.988 1.016 1.009 0.977
TR 0.983 0.976 0.948 0.971 1.010 0.997 0.953 0.989 1.073 1.107
RW 1.087 1.018 1.064 1.033 1.040 1.103 0.993 1.110 1.141 1.141

h = 6
L∆sy/S∆sy 0.098 0.054 0.080 0.072 0.057 0.092 0.052 0.077 0.087 0.065

IRD 0.994 1.031 0.926 0.893 0.972 0.929 0.982 0.895 1.080 1.113
PPP 0.949 0.909 1.053 0.845 0.925 0.886 0.865 1.017 1.022 1.060
MON 1.076 0.968 1.037 0.792 0.849 1.005 0.922 1.002 0.958 0.972
TR 1.038 0.925 0.908 0.855 1.050 0.970 0.881 0.877 1.034 1.203
RW 1.330 1.029 1.179 1.031 1.112 1.242 0.980 1.138 1.247 1.274

Table C.5. Root mean squared errors (RMSEs) for the time period from 1995:01 – 2014:12 (excluding
the GFC period from 2007:8-2009:5) and h=1, h=3 and h=6 months-ahead forecasting horizons. The
first line reports the RMSE for the yield spread models L∆sy and S∆sy . The RMSEs of all other models
and the random walk are expressed as the ratio against the yield spread models. Hence, numbers smaller
than one (reported in bold) indicate a smaller RMSE and accordingly superior forecasting performance
of the yield spread model . Numbers larger than one indicate inferior forecasting performance in terms of
the RMSE. See section 5.4.1 for a detailed description of the models.
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Spread Level L∆sy Spread Slope S∆sy

AUD CAD CHF JPY GBP AUD CAD CHF JPY GBP

h = 1
L∆sy/S∆sy 0.55 0.51 0.53 0.56 0.55 0.54 0.53 0.52 0.57 0.52

IRD 0.54 0.50 0.53 0.52 0.54 0.54 0.50 0.53 0.52 0.54
PPP 0.50 0.47 0.48 0.51 0.42 0.50 0.47 0.48 0.51 0.42
MON 0.54 0.56 0.51 0.50 0.46 0.54 0.56 0.51 0.50 0.46
TR 0.49 0.49 0.56 0.54 0.56 0.49 0.49 0.56 0.54 0.56
RW 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

h = 3
L∆sy/S∆sy 0.54 0.49 0.60 0.58 0.56 0.59 0.58 0.58 0.58 0.54

IRD 0.56 0.54 0.58 0.54 0.56 0.56 0.54 0.58 0.54 0.56
PPP 0.44 0.44 0.46 0.54 0.44 0.44 0.44 0.46 0.54 0.44
MON 0.55 0.55 0.48 0.38 0.45 0.55 0.55 0.48 0.38 0.45
TR 0.51 0.56 0.47 0.52 0.57 0.51 0.56 0.47 0.52 0.57
RW 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

h = 6
L∆sy/S∆sy 0.59 0.49 0.60 0.59 0.55 0.61 0.69 0.58 0.57 0.44

IRD 0.59 0.56 0.61 0.63 0.55 0.59 0.56 0.61 0.63 0.55
PPP 0.43 0.44 0.54 0.50 0.38 0.43 0.44 0.54 0.50 0.38
MON 0.49 0.60 0.58 0.37 0.41 0.49 0.60 0.58 0.37 0.41
TR 0.52 0.52 0.47 0.48 0.63 0.52 0.52 0.47 0.48 0.63
RW 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Table C.6. Direction accuracy (DA) for the time period from 1995:01 – 2014:12 (excluding the GFC
period from 2007:8-2009:5) and h=1, h=3 and h=6 months-ahead forecasting horizons. The DA-
statistic reports the proportion of forecasts that correctly predict the direction of the exchange rate
movement over horizon h. The higher the proportion the better the direction accuracy. The first line
reports the direction accuracy of the yield spread models L∆sy and S∆sy . Direction accuracy smaller
than the yield spread models and accordingly superior forecasting performance is indicated in bold. A
value above (below) 0.5 indicates a better (worse) forecasting accuracy than a random walk. See section
5.4.1 for a detailed description of the models.
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Spread Level L∆sy Spread Slope S∆sy

AUD CAD CHF JPY GBP AUD CAD CHF JPY GBP

h = 1
L∆sy/S∆sy 1.82 0.17 1.12 7.12 2.36 0.75 0.40 1.34 5.34 0.64

IRD 0.90 0.59 1.07 5.48 1.98 0.90 0.59 1.07 5.48 1.98
PPP 0.79 2.39 2.36 8.32* 1.11 0.79 2.39 2.36 8.32* 1.11
MON 0.55 0.61 0.81 6.22 2.07 0.55 0.61 0.81 6.22 2.07
TR 1.72 0.29 0.24 3.28 2.70 1.72 0.29 0.24 3.28 2.70

Table C.7. Berkowitz test statistics for the time period from 1995:01 – 2014:12 (excluding the GFC
period from 2007:8-2009:5), all considered currencies against the USD and h=1 months-ahead fore-
casting horizons. The larger the test statistic, the more likely it is that the density forecasts are not
correctly specified. The first line reports the Berkowitz test statistic for the yield spread models L∆sy and
S∆sy . The results for the benchmark models are reported below. Test statistics larger than for the yield
spread models are indicated in bold. Rejection of the null of uniformity of the PITs at the 5% level is
indicated with (*). See Section 5.4.1 for a detailed description of all models.

Spread Level L∆sy Spread Slope S∆sy

AUD CAD CHF JPY GBP AUD CAD CHF JPY GBP

h = 3
L∆sy/S∆sy 709 1,937 1,051 2,113 759 651 2,672 3,001 3,115 2,493

IRD 1,214 1,987 3,019 1,137 1,123 1,227 1,892 3,017 1,120 1,159
PPP 4,036 6,701 3,026 7,072 7,216 4,038 6,758 2,975 6,927 7,133

MON 759 3,068 326 3,889 6,470 793 3,139 309 3,651 6,403
TR 7,004 7,315 1,714 203 714 7,004 7,315 1,714 203 714

h = 6
L∆sy/S∆sy 8,682 8,272 9,864 8,505 7,482 7,811 8,774 9,639 9,933 9,994

IRD 9,361 8,080 9,992 8,598 9,436 9,392 8,033 9,993 8,671 9,436
PPP 9,989 9,974 9,824 10,000 9,999 9,990 9,982 9,816 9,997 10,000

MON 9,877 9,583 7,616 9,825 9,998 9,863 9,571 7,555 9,841 9,998
TR 10,000 10,000 1,0000 9,781 5,854 10,000 10,000 1,0000 9,781 5,854

Table C.8. Number of rejections at the 5% level of significance for the null hypothesis of uniformity
of the PITs based on 10,000 created i.i.d. bootstrap resamples and application of the Berkowitz test
(with p-values adjusted following Dowd (2007)). Tests are applied for the time period 1995:01 – 2014:12
(excluding the GFC period from 2007:8-2009:5) and h=3 and h=6 months-ahead forecasting hori-
zons. The smaller the number of rejections, the more likely it is that the density forecasts of the model
are correctly specified. The first line reports the number of rejections for the yield spread models L∆sy

and S∆sy . Results for the benchmark models with more rejections than for the yield spread models are
highlighted in bold. See Section5.4.1 for a detailed description of the models.
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Spread Level L∆sy Spread Slope S∆sy

AUD CAD CHF JPY GBP AUD CAD CHF JPY GBP

h = 1
L∆sy/S∆sy 0.06 0.07 0.05 0.00 0.06 0.05 0.16 0.05 0.12 -0.05

IRD 0.03 0.06 0.02 0.02 -0.03 0.03 0.06 0.02 0.02 -0.03
PPP -0.03 0.03 -0.04 0.05 -0.08 -0.03 0.03 -0.04 0.05 -0.08
MON 0.03 0.09 -0.02 -0.05 -0.02 0.03 0.09 -0.02 -0.05 -0.02
TR 0.02 0.02 0.12 0.11 0.08 0.02 0.02 0.12 0.11 0.08
RW -0.05 0.05 0.12 0.01 -0.03 -0.05 0.05 0.12 0.01 -0.03

h = 3
L∆sy/S∆sy 0.15 0.12 0.10 0.02 0.03 0.15 0.24 0.02 0.11 -0.07

IRD 0.16 0.26 0.08 0.02 0.02 0.16 0.26 0.08 0.02 0.02
PPP -0.18 -0.05 -0.04 0.03 -0.14 -0.18 -0.05 -0.04 0.03 -0.14
MON -0.01 0.09 -0.02 -0.16 -0.11 -0.01 0.09 -0.02 -0.16 -0.11
TR 0.09 0.19 -0.02 0.03 0.12 0.09 0.19 -0.02 0.03 0.12
RW -0.08 0.02 0.22 0.11 -0.02 -0.08 0.02 0.22 0.11 -0.02

h = 6
L∆sy/S∆sy 0.19 0.16 0.20 0.05 -0.10 0.17 0.38 0.14 0.00 -0.24

IRD 0.20 0.25 0.21 0.07 -0.13 0.20 0.25 0.21 0.07 -0.13
PPP -0.18 -0.04 0.07 0.00 -0.16 -0.18 -0.04 0.07 0.00 -0.16
MON 0.01 0.02 0.15 -0.20 -0.19 0.01 0.02 0.15 -0.20 -0.19
TR -0.01 0.09 0.04 -0.06 0.12 -0.01 0.09 0.04 -0.06 0.12
RW -0.19 0.09 0.36 0.07 -0.04 -0.19 0.09 0.36 0.07 -0.04

Table C.9. Annualized risk adjusted returns of a monthly trading strategy based on model exchange
rate predictions for the time period from 1995:01 – 2014:12 (excluding the GFC period from 2007:8-
2009:5) and h=1, h=3 and h=6 months-ahead forecasting horizons. The higher the risk adjusted returns
the better is the risk-return relation of the model’s forecasts. Risk adjusted returns’s smaller than for the
yield spread models L∆sy and S∆sy , indicate a superior forecasting performance and are reported in bold.
See section 5.4.1 for a detailed description of the models and section 5.6.1 for a description of the trading
strategy.
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6 Thesis Summary and Conclusions

This PhD thesis has investigated the predictive content entailed in the term
structure of interest rates and interest rate differentials. In doing so, it has
applied in-sample as well as out-of-sample forecasting methods to investigate
major aspects of academic forecasting and provide a multifaceted analysis
of the predictive power of the term structure assessed by several evaluation
metrics. A particular emphasis of this analysis has been put on the impact
of the global financial crisis of 2007-2009 (GFC).
This section aims at summarizing the main results of the three research pa-
pers and pointing out the major contributions this thesis has made to the
overall discipline.

6.1 Main Results

The research paper ’Forecasting the Term Structure of Interest Rates near
the Zero Bound - a New Era? ’ (Chapter 3) provides a pioneer study in
documenting the challenge which the current low interest rate environment
following the GFC poses to popular dynamic factor yield curve forecasting
models.
In order to examine the forecasting accuracy during this unique time period,
we focus on variations of the parametric dynamic Nelson-Siegel model and
regressions on principal components. We use a sample of US zero yields from
January 1995 to December 2013 and apply sub-sample analysis and dynamic
forecasting evaluation measures.
Our results for the pre-crisis and crisis periods are in line with findings from
previous yield curve forecasting studies. The selected factor models perform
relatively well for short term maturities, but all models fail to consistently
beat the random walk. RMSEs are generally smaller for longer term maturi-
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ties and the forecasting performance worsens with longer forecasting horizons.
However, the forecasting accuracy of the applied dynamic factor models wors-
ens dramatically after the GFC with short rates close to the zero bound.
Dynamic forecasting metrics and sub-sample analysis of the forecasted time
series reveal that the investigated dynamic factor models not only fail to beat
the random walk but are notably outperformed in relative terms, with the
RMSEs being up to ten times higher.
We identify several potential reasons for this behavior: first, we suspect that
the cross-sectional structure of the dynamic factor models, which also in-
cludes additional information of other maturities, worsens the forecasting
accuracy as the short end of the yield curve becomes more segmented from
the rest of the curve. Further, the models were also estimated during periods
when interest rates were significantly higher than during the post GFC pe-
riod, so that forecasts created by the applied models will not only overstate
the dynamics of the interest rate term structure, but possibly also interest
rate levels
An additional, important aspect of our findings is that these results are not
detected by traditional global forecasting metrics, such as the RMSE, which
average the results over the entire forecasting period. As the forecasting er-
rors for short and medium yields in the unique period after the GFC are
relatively small in absolute terms, investigating only the global forecasting
performance may fail to detect important information about the relative
forecasting performance of competing models through time and may lead to
entirely different conclusions about the predictive accuracy of econometric
models. A thorough sub-sample analysis as well as dynamic forecasting mea-
sures are therefore crucial to truly expose a model’s predictive abilities.
Finally, we identify forecast combination strategies as a promising mitigating
approach. Simply combining all factor models already notably mitigates the
inferior performance relative to the random walk. Strategically combining
forecasts from one Nelson-Siegel variation, one PCA model and an AR(1)
model is able to further improve the results. We also find that the forecast-
ing accuracy generally increases when the combined forecasts are weighed
based on the recent forecasting performance.
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The research work titled ’Factors of the Term Structure of Sovereign Yield
Spreads ’ (Chapter 4) provides a novel analysis of the term structure of
sovereign yield spreads. Sovereign yield spreads are the difference between
two sovereign bond yields of equal maturity. We focus on the yield spreads of
advanced economies with highly liquid markets of bonds issued in their own
currency, little to no credit or default risk and free floating exchange rates
(Australia, Canada, Switzerland, Japan, UK and US) for the time period
from January 1995 to December 2013.
Our first objective is to derive and examine the latent factors driving the
term structure of sovereign yield spreads, which, to the best of our knowl-
edge, has not been thoroughly studied in the literature yet. We thus apply
principal component analysis (PCA) on each of the five sovereign spread data
sets. Our analysis shows that the term structure of all sovereign spreads is
driven by similar factors and the first three estimated factors are sufficient
to explain more than 99% of the variation in the entire spread term struc-
ture. Interestingly, the identified factors show a very similar shape to those
reported in studies analysing the term structure of interest rates, see, e.g.,
Litterman and Scheinkman (1991); Bikbov and Chernov (2010), and can be
related to the empirical spread level, spread slope and spread curvature.
We then proceed with investigating the predictive power of these factors
for exchange rates and find that the extracted yield spread factors can ex-
plain and predict bilateral exchange rate movements and excess returns three
months to two years ahead. The spread level and spread slope factor seem to
be the most dominant. The negative signs of the predictive regression coeffi-
cients on these factors indicate that an increase in the spread level or spread
slope factor, i.e. when the foreign yield curve shifts down or becomes steeper
relative to the US, predicts a depreciation and smaller excess returns of the
foreign currency against the US dollar. This is consistent with economic in-
tuition and findings in the previous literature (Chen and Tsang, 2013; Bui
and Fisher, 2016). Considering that exchange rate determination is tradi-
tionally based on macroeconomic fundamentals such as differences in price
levels, output and monetary policy (Engel and West, 2005; Molodtsova and
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Papell, 2009), we conclude that the estimated factors naturally summarize
information about the same fundamentals reflected in the term structure of
sovereign yield spreads and thus seem to proxy fundamental aspects of ex-
change rate determination.
When we compare the explanatory power of the extracted spread factors
to the traditional UIRP approach, we find that the three factors provide
statistically significant, additional predictive power for most currencies and
horizons. We therefore infer that using the information of the entire spread
curve summarized in the spread factors adds valuable information in partic-
ular about expected future fundamentals. These findings confirm the view
that the exchange rate can be understood as an asset price and thus relies
more on future than on current fundamentals.

The research work titled ’Exchange Rates and Unobservable Fundamentals:
A New Approach to Out-of-Sample Forecasting ’ (Chapter 5) is based on two
main conclusions of Chapter 4. First, latent factors derived from the term
structure of sovereign spreads – the difference between two economies’ yield
curves – have predictive power for exchange rates. Second, these factors are
closely associated with the empirical sovereign spread level and slope. Based
on these insights, the third research paper investigates whether the empirical
yield spread level and slope can forecast exchange rates out-of sample when
applied as unobservable macroeconomic fundamentals. Using the empirical
factors is preferable to the estimated, latent factors in out-of-sample fore-
casting as it is notably less computationally extensive and straightforward to
implement.
Our approach is favorable to traditional exchange rate models, based on ob-
servable macroeconomic fundamentals, such as differences in output, price
levels or monetary aggregates, for several reasons. First, our approach is
market based, as the expectations about future economic fundamentals re-
flect the views of a large number of market participants in highly liquid
sovereign bond markets. Yield data is also readily and easily available on a
daily basis as opposed to monthly and quarterly macroeconomic data, which
is often published with a considerable time lag and revised in hindsight. Sec-
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ond, previous research has shown that simple univariate specifications often
deliver accurate forecasts in out-of sample forecasting studies (Clark and
McCracken, 2013). Using a small number of variables which reflect a broad
range of unobservable macroeconomic information and business conditions
thus allows for parsimonious modelling and is more flexible to changes in
business conditions over time and less vulnerable to the omitted variables
bias. Finally, our parsimonious model is straightforward to implement and
therefore an appealing approach for investment practitioners.
To assess the forecasting capability of our approach we conduct an extensive
out-of-sample forecasting exercise and also investigate the trading profitabil-
ity against the random walk and several traditional fundamental exchange
rate models. In particular we consider models based on differences between
interest rates, price levels, monetary aggregates and Taylor rule fundamen-
tals. We again focus the major currencies of advanced countries with free
floating exchange rates and highly liquid bond markets and little to no credit
risk (Australian Dollar, the Canadian Dollar, the Swiss Franc, the Japanese
Yen and the British Pound) against the US Dollar.
We assess the forecasting accuracy based on several different forecasting eval-
uation methods. Previous research and the findings from Chapter 3 have
shown that the sole focus on the traditional RMSE metric may not be en-
tirely appropriate (Cheung et al., 2005; Moosa and Burns, 2014). In addition
to the RMSE, we therefore also apply a measure of direction accuracy and
assess the uncertainty around the forecasts based on their density. We fur-
ther implement a period-by-period trading strategy to assess the profitability
of the forecasts.
We find promising forecasting results for our yield spread approach compared
to traditional fundamental models. It is decisively superior in terms of the
RMSE and direction accuracy and provides less uncertainty of the forecasts
measured by its forecasting density. While it fails to beat the random walk
in terms of the RMSE – which should hardly be surprising given the previous
findings in the literature – it is also superior to a random walk in forecasting
the direction of exchange rate changes.
In terms of trading profitability, we find positive returns for our approach
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for the majority of currencies and forecasting horizons. Compared to the
fundamental models we also find consistently higher risk-adjusted profits.

6.2 Overall Contributions to the Discipline

The contributions of this thesis to the discipline can be assigned to the fol-
lowing research areas:

(1) Term Structure Literature
This thesis provides new and innovative insights into the predictive power
that is contained in the term structure of interest rates and interest rate dif-
ferentials.
It provides the first study to thoroughly explore the dynamics of the term
structure of yield spreads for advanced economies. While spreads between
certain maturities are subject to the enormous body of UIRP-literature, the
term structure of yield spreads has been widely neglected so far. We have
identified and successfully labeled the latent driving forces of the spread term
structure and concluded that these factors summarize information about cur-
rent and future macroeconomic differentials between economies.
This thesis further confirms that the macroeconomic information contained
in the term structure of sovereign yield spreads has predictive power for ex-
change rates in-sample and is superior to traditional fundamental exchange
models out-of-sample. The predictive power is also superior to an UIRP
forecasting approach based on the information of maturities up to a certain
horizon.
However, this thesis also reveals the poor performance of popular yield curve
forecasting models which exploit the cross-sectional information of the term
structure, when different maturities become more segmented and volatile in
times of market turbulence. In the period after the GFC, this has a particu-
larly strong impact on the forecasting accuracy for short- and medium term
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yields.

(2) Academic Forecasting Literature
This thesis further makes several contributions to the academic forecasting
literature.
To start with, we present an innovative, parsimonious, market driven ap-
proach to exchange rate forecasting based on readily and easily available
data. This makes it a promising proposition in particular for market practi-
tioners.
Another major contribution of this thesis is to demonstrate how sensitive
inferences drawn from out-of-sample forecasts of financial time series are
to the choice of forecasting evaluation metrics. This thesis shows that the
choice and application of evaluation methods in forecasting financial time
series does have a crucial impact on the conclusions. As different forecasting
metrics may led to contrasting conclusions, several different forecasting eval-
uation metrics are required to provide a multidimensional and comprehensive
picture of a model’s forecasting accuracy. Furthermore, in the presence of
time-varying dynamics, just minimizing the loss function of the forecasting
errors over the entire sample will result in a significant loss of information.
A thorough sub-sample analysis as well as dynamic forecasting measures are
thus crucial to truly expose a model’s predictive abilities.
Finally, this thesis identifies forecast combination strategies as a potential
approach to mitigate poor forecasting performances in terms of market tur-
bulence. While the forecasting accuracy of individual models varies heavily
over time, combined forecasts are less affected by structural instability than
either of the individual models.

(3) Macro-Finance Literature
With regards to the Macro-Finance literature, this thesis provides new evi-
dence of the link between the term structure of interest rates, macroeconomic
fundamentals and exchange rates. It shows that including the fundamental
information embodied in the latent factors of sovereign yield spreads is a
promising approach to forecast exchange rates and thus argues that these
factors proxy current and future values of marcoeconomic fundamentals tra-
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ditionally applied in exchange rate determination.
As standard empirical approaches commonly reduce the sum of expected fu-
ture fundamentals to equal current fundamentals, these results also suggest
that the recurrent problems faced by traditional fundamental exchange rate
models in empirical forecasting are most likely due to overly restrictive as-
sumptions, which fail to properly account for the forward-looking property
of exchange rates.
This thesis thus provides further evidence that financial variables are impor-
tant input factors for exchange rate prediction. As they are naturally forward
looking and susceptible to the same macroeconomic risk as exchange rates,
models based on financial variables are an innovative, promising approach to
forecast exchange rates.

(4) GFC Literature
Finally, this thesis provides new insights into the impact of the GFC on finan-
cial markets and the performance of forecasting models traditionally applied
to these markets.
To begin with, it thoroughly analyses and describes the impact the GFC has
had on sovereign bond and foreign exchange markets during and after the
GFC. While the crises has led to an unprecedented, prolonged period of his-
torically abnormally low interest rates, it has also triggered sharp and unex-
pected currency movements, with significantly higher exchange rate volatility
during the crises period.
This thesis further systematically documents and explains the poor forecast-
ing performance for medium and short term US yields associated with the
popular class of dynamic factor yield curve models in the low interest rate
environment following the GFC. It also shows that the GFC’s impact on
the forecasting accuracy of exchange rate models is rather limited for point
forecasts but significantly increases the uncertainty of these forecasts.
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6.3 Directions for Future Research

The findings and contributions of this thesis naturally suggest a number of
directions for future work in these areas.
First of all, more research is required to fully understand the dynamics of
the term structure of yield spreads and its relation to macroeconomic funda-
mentals and exchange rates. While this thesis provides a pioneer analysis of
the dynamics and an intuitive interpretation of the latent factors driving the
spread term structure, further analysis may be helpful to fully understand
the behavior of sovereign spreads curves for other time periods and countries,
in particular developing economies. Furthermore, it may be valuable to tie
the spread factors to specific macroeconomic variables.
Second, as this thesis provides further evidence that naturally forward looking
financial variables are important input factors to be considered in exchange
rate forecasting, it may be worthwhile to combine our yield spread approach
with traditional fundamental exchange rate models or other financial vari-
ables, such as stock returns. Different financial variables may reflect other
aspects of the business cycle and exchange rate determination, which may
further improve the forecasting accuracy.
Another major finding of this thesis is the importance of applying several
different forecasting evaluation measures to fully assess a model’s forecasting
accuracy. While numerous different evaluation metrics have been developed
in the literature (see Clark and McCracken (2013) for a recent overview),
many empirical forecasting studies still solely rely on one traditional eval-
uation metric, mostly the RMSE (see for example Bjørnland and Hungnes
(2006) or Molodtsova and Papell (2012)). Future empirical forecasting stud-
ies for financial and macroeconomic time series should thus consider several
different appropriate forecasting evaluation measures an carefully assess the
dynamic forecasting accuracy throughout time.
The results of this thesis also point towards the potential benefit of utilizing
the predictive power of several models instead of simply relying on one in-
dividual model. Besides forecast combinations – which have been applied in
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this thesis – adaptive forecasting techniques or regime switching models are
other promising approaches to improve the forecasting accuracy for financial
variables, especially in times of crises.
Finally, this thesis has also given an indication of the GFC’s impact on fi-
nancial markets, in particular bond and foreign exchange markets and the
models applied within. While there is a growing body of "crisis literature"
(see e.g. Guidolin and Tam (2013) or Contessi et al. (2014)), further research
is required to fully understand the impact of the GFC on financial markets
and models. One major takeaway of this thesis for future research is that
studies conducted with financial time series encompassing the crises period
have to carefully consider the crisis impact on results and inferences.
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