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ABSTRACT

Evolutionary optimization algorithms are a type of computational intelligence.

Their application to electromagnetic (EM) engineering problems open exciting

possibilities of improving the performance of existing solutions, finding novel

complex configurations and, ultimately, having the potential to fully automate

the design of antennas, filters and other electronic devices. This thesis focuses

on extending the functionality that is provided by evolutionary algorithms to the

field of electromagnetics. A detailed study is undertaken to identify the needs

of real-world EM engineering problems and propose methodologies that enhance

the available capabilities.

The EM problems optimized in this thesis include compact high-gain wide-

band resonant cavity antennas (RCAs), wideband aperture-coupled microstrip

patch antennas (ACMPAs), pixelated EM surfaces and microstrip filters. In or-

der to obtain accurate performance prediction of the designed devices, all consid-

ered designs are simulated using a full-wave EM solver. The optimization process

is automated by interfacing simulation software with evolutionary algorithms.

Particle swarm optimization (PSO), the cross-entropy (CE) method and co-

variance matrix adaptation evolutionary strategy (CMA-ES) are the evolutionary

algorithms used in this thesis. By means of PSO, improved designs of a new class

of compact RCAs are obtained that outperform the designs reported in the liter-

ature. Four antennas of only 1.7–2.2λ0 in diameter have a directivity 17.6–19.6

dBi and a 3–dB radiation bandwidth of 24%, 50%, 55% and 70%. An ACMPA

with 53% bandwidth is proposed as a new planar feed solution for RCAs. The

designed RCA with an ACMPA feed has a peak directivity of 19 dBi and a 3–dB

radiation bandwidth of 40%.





The most important outcome of this thesis are the proposed methodologies

for the optimization of continuous, mixed-variable, binary and constrained EM

problems. It is shown that various design requirements can be incorporated in

optimization using the CE method, which is not possible with PSO or CMA-ES.

In contrast to the previous CE applications, which only utilise the normal distri-

bution, this thesis makes use of probability distribution functions that model the

design space, such as the beta, Dirichlet, Bernoulli and discrete probability dis-

tribution families. Thus, the flexibility and broader potential of the CE method

is exploited and demonstrated.

By encoding the metallic patterns printed on thin pixelated EM surfaces

into binary strings, single- and dual-frequency artificial magnetic conductors and

phase-shifting metasurfaces are designed. The methodology of handling equality

and inequality constraints is demonstrated on the design of a 5-pole microstrip

low-pass filter, which has a selectivity of 60 dB and an 8.5 GHz rejection band-

width.

All the designs in this thesis are obtained by an automated optimization

process. In comparison with the initial designs or existing alternative solutions,

the optimized designs exhibit improved desired characteristics.
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It was the best of times, it was the worst of

times...
— Charles Dickens, ”A Tale of Two Cities”

Chapter 1

Introduction

1.1 Evolutionary Optimization in Antenna Design

Optimization is everywhere. It is a fundamental aspect of problem solving. Even in

our everyday life, we strive to make decisions that are optimal in terms of time, cost,

effort or other factors. In simple terms, to optimize means to find such design parame-

ters of a system which result in its best possible performance. Optimization is a truly

interdisciplinary research topic merging mathematics with practical problems from var-

ious application areas. It has been effectively used in such applications as design of gas

and water supply networks, distributed energy systems, wind farm turbine positions and

aircraft structural components [1, 2].

Life on Earth has been evolving for almost four billion years, and she has found

various ingenious problem-solving methods and the ways to adapt to ever-changing envi-

ronments [3]. Interpreting the genetic theory of evolution as a population-based optimiza-

tion process inspired the creation of evolutionary algorithms (EAs). The first attempts to

simulate genetic systems using automatic digital computers were made in the 1950s [4].

Later studies were conducted on adaptation in natural and artificial systems through re-

production, mutation, competition and selection. The proposed algorithmic expressions

of these processes resulted in the creation of genetic algorithms (GAs). The core principle

of almost all EAs is the collective intelligence of populations of agents that must contin-

1



2 Chapter 1. Introduction

ually obtain information from sometimes uncertain, changing environments and use it to

improve performance and enhance the chance of survival [5, 6]. GAs have inspired many

related methods and led to the thriving field of evolutionary computation.

Evolutionary optimization algorithms are global search methods that have the po-

tential to find the universally best solution(s) in the presence of multiple suboptimal,

local solutions under the specified constraints [7]. They have been widely used in many

real-world engineering applications [8], including electromagnetic and antenna design.

Modern electromagnetic (EM) optimization problems have complex geometries with mul-

tiple design parameters and multimodal search spaces, and therefore, global optimization

methods, which are more computationally intensive than local ones, have to be used.

Previously, the lack of computing power limited the range of problems that could have

been solved by EAs. As the computing technology advances, more practical problems

become tractable [9–11].

The antenna design process requires the adjustment of its geometry and material pa-

rameters to ensure that the response satisfies performance specifications with respect

to certain characteristics, such as input impedance, radiation pattern, antenna effi-

ciency [12]. Therefore, EAs are exceptionally suitable for application to antenna design.

One of the first applications of EAs to antenna engineering is a crooked wire antenna,

shown in Fig. 1.1. It is also known as an evolved or genetic antenna because it was

designed by an automated procedure using GAs [13–15].

Figure 1.1: Genetically evolved crooked wire antennas for the 2006 NASA ST5 space-

craft [15].
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1.2 Research Motivation

As an industry and academic standard, antenna design is realised by a manual or semi-

manual adjustment of selected geometrical dimensions guided by engineering experi-

ence [16]. Such a trial-and-error approach often leads to a satisfactory result but is

time-consuming and does not produce the best possible solution. As the number of de-

sign parameters increases, the complexity of the design problems grows exponentially.

This phenomenon, known as the curse of dimensionality, limits the success of manual

design methods. A genuinely optimal solution can be obtained with a high probability

by means of numerical optimization algorithms, such as EAs.

Progress in evolutionary optimization (EO) has led to a tremendous increase in the

interest in EAs within the EM community. The search by the keywords “antennas” and

“optimization” or “evolutionary algorithm” in the Scopus database shows a total number

of 19568 papers published from 1960 to 2017 year [17]. Fig. 1.2 shows the distribution of

these publications over the last 57 years, where a five-fold increase is observed from the

year 2000 to 2010. A dramatic change in modern antenna design approaches in the field

of EM can be observed. The areas where EAs have been implemented and advanced our

knowledge of EM design problems include microstrip antennas [18–20], antenna arrays of

arbitrary shapes [21–23] and electromagnetic bandgap (EBG) structures and EBG-based

antennas [24–26].

Figure 1.2: Academic publications related to the application of evolutionary optimiza-

tion algorithms to antenna engineering according to the Scopus database.
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The growth of interest in the application of EO to antenna engineering problems is

motivated by the following factors [7, 27]:� There is a high probability of finding the optimum or near-to-optimum solution.� Significantly reduced overall design time compared to manual trial-and-error ap-

proach can be achieved.� In contrast to classic optimization methods such as gradient descent and quasi-

newton methods, there is no need for the optimization problem to be differentiable.� No assumptions about the problem topology are required, as multi-extremal, multi-

objective and multi-variable optimization problems can be solved.� Educated trade-off analysis can be conducted based on several performance figures

(in multi-objective optimization).� Employing EO allows the exploration of designs that might not be identified using

traditional techniques. Non-intuitive designs may be found, allowing new possibil-

ities in antenna engineering.� They have an advantage of a convenient parallel implementation, which can reduce

optimization time when multiple computers are available.� Real-world problems with continuous, discrete and mixed variables can be opti-

mized.� In conjunction with numerical simulation packages, an accurate optimized result

can be directly obtained, reducing the engineering design cycle.� The potential to automate antenna design process by means of advanced computa-

tional resources and thus significantly decrease the cost of antenna components in

wireless communication systems.

Automated design optimization technology is being rapidly adopted by engineers in

all major industries [11]. The potential for delivering better designs in less time compared
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to manual optimization approaches makes automated design optimization very attractive

from both technical and business points of view [28]. It would be highly convenient if

the antenna design process could be reduced to defining the design variables, objectives

and constraints, followed by an automatic process producing a satisfactory solution. A

framework for numerical optimization can be defined as specifying the space of all possible

designs with optimization parameters and specifying the design criteria. For a seamless

automation, the required solvers have to be connected to optimization strategies.

A significant challenge lies in handling the design parameters and constraints of prac-

tical designs. Electronic and EM engineering design problems are often constrained and

include discrete parameters. The designs are traditionally realised using commercially

available materials and components, such as dielectric materials, available in limited

thickness and permittivity values, or resistors, available in specific resistance values. Also,

overall dimensions of many modern designs are constrained by space limitations. There-

fore, mixed-variable (continuous and discrete) design parameters and constraints have to

be handled by optimization methods.

1.3 Current State of the Art

The collection of EAs is evolving so rapidly that decades of research will be needed to

utilise its potential in EM engineering [29–31]. According to the classification proposed

in [32], there are four types of EAs: biology-based, physics-based, chemistry-based and

mathematics-based. As shown in Fig. 1.4, the algorithms based on biological phenomena

have been investigated in EM applications the most.

The first methods implemented on EM problems were GAs [33–37], particle swarm op-

timization (PSO) and differential evolution (DE). Currently, the number of optimization

methods known to the EM community is gradually increasing [38–41]. Fig. 1.3 shows the

most popular EAs in EM applications from 1960 to 2017. After GAs, PSO and DE, novel

algorithms such as ant-colony optimization (ACO), invasive weed optimization (IWO),

cross-entropy (CE), covariance matrix adaptation evolutionary strategy (CMA-ES) and
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Figure 1.3: The most common evolutionary optimization algorithms in EM applications

from 1960 to 2017 according to Scopus. *The category Others include CE, CMA-ES and

BBO.

biogeography-based optimization (BBO) gain popularity.

“No free lunch” (NFL) theorems for optimization state that there is no universally

better algorithm [42, 43]. However, experience shows that some algorithms outperform

others for given types of optimization problems. Most EAs are well-suited for uncon-

strained continuous search spaces, but require some modifications or real-binary conver-

sions to handle discrete or mixed-integer variables. In terms of design parameters, GAs

and ACO handle discrete variables intrinsically, while other EAs, including PSO, DE,

cuckoo search (CS), IWO and evolutionary strategies (ESs), were originally developed

for problems with a continuous domain.

The demand for practical combinatorial, mixed-variable and constrained optimization

is clear. To optimize problems with discrete variables, binary modifications of popular

optimization algorithms were proposed, such as binary DE [44] and binary PSO [45].

For mixed-integer problems, hybrid real-binary techniques have been developed, such

as hybrid real-binary PSO [46], mixed-integer GA [47], mixed-integer CMA-ES [48],

mixed-variable ACO [49] and hybrid real-binary DE [50]. The constraints are still a

very challenging requirement that is usually handled outside of the algorithm update

procedures [51].
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Figure 1.4: Evolutionary optimization algorithms applied to EM engineering problems.
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1.4 Research Framework and Objectives

Taking into account the variability in terminology in the field of evolutionary compu-

tation, some terms that are used throughout this thesis have to be defined. Evolution-

ary optimization (EO) implies that the optimization is performed by an EA. According

to [52], any algorithm that optimizes the objective function by evolving, i.e., by an it-

erative process, can be called an EA. EAs are not necessarily inspired by the theory

of natural evolution, such as ESs or GAs, which are just a specific case of EAs. EAs

can be population-based, as PSO or IWO, or single-individual algorithms, such as SA.

Although EAs are quite often referred to as nature-inspired or bio-inspired optimization

algorithms, this terminology excludes DE or EDA, which are not directly motivated by

nature. Therefore, we accept the term “evolutionary algorithm” as a broad term that

includes non-biologically motivated algorithms.

In mathematics, algorithms are usually evaluated on test functions in order to compare

their performance. Since EM problems are usually evaluated via simulation, it is time-

consuming to perform such studies on them, especially in the competitive engineering

environment, where the focus is on a better design rather than on research. Moreover,

NFL theorems for optimization show that a “one-size-fits-all” optimization algorithm

does not exist [42]. Instead of comparing the algorithms, the research is focused on how

the problem specifics govern the choice of the optimization method. A diverse range of

EM problems with continuous, discrete and mixed-integer design parameter is considered,

such as wideband high-gain resonant cavity antennas of compact size, wideband planar

microstrip patch antennas, pixelated EM surfaces and low-pass microstrip filters. The

literature review is accompanied by a benchmark study conducted on two common test

functions using one well-known and two novel optimization algorithms that will later be

implemented on EM problems.

Simulations of all EM designs in this thesis are conducted via the full-wave commercial

solver CST Microwave Studio (MWS). The optimization is automated by interfacing the

solver with MATLAB using macro programming. MATLAB and its statistics toolbox

were used to generate the code for the CE method and PSO.
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Engineering problems are mostly multiobjective. There are two possible ways to op-

timize for multiple objectives. First, conduct a multi-objective optimization procedure

to find multiple trade-off optimal solutions with a wide range of values for objectives

and then choose a single solution from the obtained solutions using higher-level infor-

mation [53]. Second way is to start from prioritising objectives and then combine them

according to their weights to form a composite objective function. This method of scal-

ing an objective vector into a composite objective function converts the multi-objective

optimization problem into a single-objective optimization problem. Some authors name

it as a preference-based multi-objective optimization procedure, others refer to it as a

conventional weighted aggregation (CWA). Multiobjective optimization provides a set of

non-dominated solutions, a Pareto front, which might be useful to have in case of un-

certain priorities. CWA gives only one outcome and is much simpler and more practical

because usually only one solution is needed for a problem instead of a set of solutions.

Therefore, CWA gained more popularity in engineering applications and EM problems

in particular.

In this thesis, multiple design objectives are handled by a CWA. Although multiob-

jective versions of the implemented optimization algorithms have been proposed, such as

multiobjective PSO [45], multiobjective CE [54] and multiobjective CMA-ES [48], their

investigation is out of the scope. It is assumed that in many engineering applications the

decision about the relative importance of the objectives can be made in advance, and,

therefore, the objectives can be combined into a single objective.

The objective of this research is to identify the limitations of the most advanced op-

timization algorithms for EM applications and propose the solutions that would enable

the required capabilities. This thesis provides methodologies that respond to the require-

ments of real-world EM engineering optimization, and that are flexible enough to be

adapted to any other EM problem with similar design requirements.
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1.5 Overview of Contents

The thesis consists of eight chapters, including this introductory chapter (Chapter 1).

The contents of the following chapters are briefly described below.

Chapter 2 provides the theory of three evolutionary algorithms considered in this

thesis, PSO, CE and CMA-ES, and reviews their previous applications to EM opti-

mization problems. Following the conventional approach in optimization research, their

implementation on common optimization test problems is conducted. The results of the

benchmark study are presented and performance comparison is provided. Finally, the

difficulties of EO are discussed, as well as the techniques to overcome them.

In Chapter 3, the application of the PSO method to the design of a new type of

resonant cavity antennas (RCAs) is described. The superstrates of the RCAs, made out

of concentric dielectric sections, are optimized for different objectives. The considered

optimization problems have continuous variables. Four optimized compact designs with

≈ 19 dB gain and radiation bandwidths of 24–70% are presented. The parameters of

each superstrate are provided, and the reason for the wideband phenomenon is explained

by looking at near-field phase distribution. Optimization methodologies are described in

detail.

Chapter 4 presents the application of the CE method to the design of RCAs. The

formulated optimization problems exhibit two unique features. The first is that the overall

diameter of the superstrates remains fixed, while the concentric sections composing them

vary in size, thus, imposing an equality constraint on the design. The second is that the

design variables comprise both continuous and discrete values. The parameters of six

compact resonant cavity antennas with improved performance as compared to the initial

design are provided. Measurement results of a prototype antenna are presented.

Chapter 5 presents the optimization results of aperture-coupled microstrip patch

antennas obtained using PSO, CE and CMA-ES. The optimization problems consist

of continuous design variables. Two scenarios are considered: a stand-alone aperture-

coupled microstrip patch and a resonant cavity with an aperture-coupled microstrip patch

as a feed. Optimization methodology is described in detail, and performance of each
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algorithm, along with the advantages of the CE method, are discussed.

In Chapter 6, a novel optimization methodology for the design of pixelated EM

surfaces is presented. The fast convergence properties of the CE method and its flexibility

to handle various types of design parameters are employed to optimize unit-cell problems

with binary variables. The proposed approach is demonstrated on the designs of single-

and dual-frequency artificial magnetic surfaces for X-band operation, as well as thin phase

shifting metasurfaces for K-band.

Chapter 7 presents an application of the CE method to the design of a microstrip low-

pass filter. The optimization problem consists of continuous variables as well as equality

and inequality constraints. The importance of the constrained design requirements is

discussed. The optimized microstrip filter with the cut-off frequency at 2.5 GHz has a

significantly improved rejection bandwidth as compared to the initial design, preserving

its selectivity and size.

Finally, Chapter 8 summarises the thesis and suggests avenues for future work.

1.6 Thesis Contributions

The main contributions of this thesis are presented in five chapters. The major outcomes

are listed below.

1. In Chapter 3, a new class of high-gain wideband RCAs with single planar super-

strates is considered. Four different configurations of dielectric superstrates, opti-

mized using the PSO method, are proposed. It is shown that by formulating an

objective function that reflects the design requirements, radiation bandwidths of

24%, 50% or 70% can be obtained from the RCA. All designs have a high gain of

17.6–19.6 dB and a very compact size ranging between 1.7− 2.2λ0. The presented

RCA designs have radiation parameters outperforming the latest advances found

in the literature.� M. Kovaleva, D. Bulger and K.P. Esselle, “Directivity-Bandwidth Enhance-

ment of EBG Resonator Antennas Using a Particle Swarm Optimization Algo-
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rithm”, Fourteenth Australian Symposium on Antennas (ASA 2015), Sydney,

Australia, Feb. 18-19, 2015.� M. Kovaleva, B.A. Zeb, D. Bulger, K.P. Esselle, “Radiation Performance En-

hancement of a Compact Fabry-Perot Cavity Antenna Using Particle Swarm

Optimization”, 2015 IEEE International Symposium on Antennas and Prop-

agation (ISAP), Hobart, Australia, Nov. 9-12, 2015.� M. Kovaleva, B.A. Zeb, D. Bulger, K.P. Esselle, “Simulation-Driven Op-

timization of a Compact Fabry-Perot Cavity Antenna”, 2016 IEEE Inter-

national Symposium on Antennas and Propagation (AP-S/USNC-URSI), Fa-

jardo, Puerto Rico, June 26-July 1, 2016.� M. Kovaleva, B.A. Zeb, D. Bulger, K.P. Esselle, “An Extremely Wideband

Fabry-Perot Cavity Antenna for Superfast Wireless Backhaul Applications”,

2016 International Symposium on Antenna Technology and Applied Electro-

magnetics (ANTEM), Montreal, Canada, July 10-13, 2016.� M. Kovaleva, D. Bulger and K.P. Esselle, “Efficient Optimization of a Simple

Compact Resonant Cavity Antenna”, 2017 IEEE International Symposium on

Antennas and Propagation (AP-S/USNC-URSI), San Diego, California, July

9-14, 2017, pp. 345-346.

2. In Chapter 4, a novel methodology is developed for the optimization of mixed-

integer constrained EM problems. It differs from the previously reported optimiza-

tion approaches by using flexible updating rules of the CE method. The method-

ology is implemented on an RCA optimization problem in order to demonstrate

its advantages in application to mixed-integer problems with constraints. Simula-

tion results are confirmed by measurement of the prototype, which has the peak

directivity of 17.6 dBi and the 3-dB directivity bandwidth of 51%.� M. Kovaleva, D. Bulger, K.P. Esselle, B.A. Zeb, Australian Patent Appli-

cation (AU) 2016903249. Title: Optimisation of designs of electromagnetic

devices, date of filing: 16 August 2016.



1.6 Thesis Contributions 13� M. Kovaleva, D. Bulger, K.P. Esselle, B.A. Zeb, International Patent Ap-

plication PCT/AU2017/050873. Title: Optimisation of designs of electromag-

netic devices, date of filing: 16 August 2017.� M. Kovaleva, D. Bulger, B.A. Zeb and K.P. Esselle, “Cross-Entropy Method

for Electromagnetic Optimization with Constraints and Mixed Variables”,

IEEE Transactions on Antennas and Propagation, vol. 65, no. 10, pp. 5532-

5540, Oct. 2017.

3. In Chapter 5, a new feed is proposed for achieving wideband impedance matching

in compact RCAs. An aperture-coupled microstrip patch antenna (ACMPA) is de-

signed using CE, PSO and CMA-ES optimization methods. The ACMPA has the

peak directivity of 9.5 dBi and 45% common bandwidth, and the RCA with the

ACMPA feed has the peak directivity of 19 dBi and 40% common bandwidth. A

performance comparison of the aforementioned algorithms is provided in order to

evaluate the effectiveness of the aforementioned methods in optimization of contin-

uous unconstrained EM problems.� M. Kovaleva, D. Bulger and K. P. Esselle, “A Comparative Study of CE,

PSO and CMA-ES in Wideband Antenna Design”, IEEE Transactions on

Evolutionary Computation, in preparation.

4. In Chapter 6, a new methodology is proposed for optimizing pixelated printed EM

surfaces. The CE method has not previously been used for the optimization of

binary EM problems. Single- and dual-frequency artificial magnetic conductors ob-

tained using the CE method have a comparable performance to that obtained using

GAs but their optimization took much less time. Using the proposed methodology,

novel thin phase-shifting metasurfaces are designed with the desired transmission

and reflection magnitude and phase. A novel shape of pixels is proposed that pre-

vents a very common issue related to vertices connection in fabricated EM surfaces.� M. Kovaleva, D. Bulger and K. P. Esselle, “A Novel Fast Optimization

Method for Pixelated Metasurface Design”, IEEE Transactions on Antennas
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and Propagation, in preparation.

5. In Chapter 7, it is shown how the CE method can be applied to EM problems

with constrained continuous design variables. As compared to previously described

methods to tackle constraints, the method proposed in this thesis ensures efficient

implementation for both inequality constraints, usually obtained by discarding un-

satisfactory solutions, and equality constraints, which cannot be handled by the

previous methods. The success of the methodology is demonstrated via optimiza-

tion of a low-pass microstrip filter. The optimized filter outperforms the initial

design by improving the rejection bandwidth from 0.5 to 8.5 GHz.� M. Kovaleva, D. Bulger, R. P. Khokle, K.P. Esselle, “Application of the

Cross-Entropy Method to Electromagnetic Optimisation Problems”, 2018 IEEE

International Symposium on Antennas and Propagation (AP-S/USNC-URSI),

Boston, MA, pp. 1595-1596.

The code for the PSO and CE optimization algorithms and macro programs for interfacing

with software packages in this thesis are the work of the author. The work presented in

this thesis has been carried out by the author, and the role of the thesis supervisors was

primarily advisory.

A complete list of the author’s publications is given in Appendix D.



Evolution advances, not by a priori design, but

by the selection of what works best out of

whatever choices offer. We are the products of

editing, rather than of authorship.

— George Wald

Chapter 2

Evolutionary Optimization

Algorithms in Electromagnetics

2.1 Introduction

Biological studies of group intelligence of animals, plants, bacteria, fungi, etc. show that

their survival behaviour (such as foraging, migration, mating, etc.) can be mathematically

formulated as optimization algorithms. The algorithms that imitate this behaviour are

called nature-inspired optimization algorithms. The inspiration for some well-known

nature-inspired techniques came from such phenomena as schooling of fish, flocking of

birds, the movements of ants or fireflies, as well as the sophisticated gene combinations

in human DNA (Fig. 2.1).

Nature-inspired optimization techniques found its application in electromagnetics

(EM) back in 1960s. The complexity of the problems in EM engineering make it imprac-

tical to search every possible solution manually. For such problems evolutionary compu-

tational techniques can yield globally optimized solutions in an acceptable timescale that

are not attainable by traditional gradient-based local-search optimization methods. EO

algorithms can be classified as population-based and trajectory-based. For example, GA

and PSO use multiple search agents (or candidates) that explore the solution space, while

SA is a single-individual algorithm. Table 2.1 summarizes the alternative terminology

15
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(a) A school of fish (b) A flock of birds (c) A colony of ants

(d) DNA and chromosomes (e) A sprinkle of fireflies

Figure 2.1: A few examples of group intelligence behaviour.

that will be interchangeably used in this thesis.

EO algorithms are stochastic, which means that a certain degree of randomness is

involved in the search process. Therefore, every optimization run produces a slightly

different result. Randomisation is a crucial step that provides an opportunity to move

away from local search and to search on a global scale. Every EO algorithm has a certain

trade-off between randomisation and local search [3]. While increasing randomisation

encourages diversification of the solutions, decreasing it allows for intensification of the

search around the already found good solutions.

In this chapter, PSO, CE and CMA-ES along with their recent applications to EM

optimization problems will be reviewed. The biggest challenges that EM applications

pose to EAs will be identified and discussed. The need for efficient optimization methods

capable of solving optimization problems of special types, such as mixed-variable and

constrained, will be demonstrated.
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Table 2.1: Alternative terminology and the meaning of the key terms used in evolution-

ary optimization algorithms.

Key term Meaning

Search/Solution space, Design region User-defined region with the dimensional-

ity of the optimization problem

Particle, Candidate, Agent, Solution An individual design expressed as a vector

of design parameters

Generation, Population, Iteration, Swarm Each time the candidates move to a new

location in a search space

Fitness, Score, Objective, Cost function A single number reflecting the goodness

(or badness) of each candidate

Ranking, Elitism, Sorting, Scoring Arranging the candidates in ascending (or

descending) order of their fitness and keep-

ing only Nel best for reproduction

2.2 Particle Swarm Optimization (PSO): Theory and

Applications

Particle swarm optimization (PSO) was developed by a social psychologist James Kennedy

and an electrical engineer Russell Eberhart in 1995 [55,56]. Simple in implementation, it

has demonstrated great robustness and speed of convergence in many applications. The

method uses the memory of the particles and their cooperation within a swarm in order

to find the best position in a field. The fundamental difference between PSO and other

EAs is that it modifies the movement of the particles in the search space and not the

positions directly. Since its development, about 20 versions of modified PSO have been

proposed to improve its search capabilities, including the concept of neighbourhoods or

by hybridising it with other optimization methods [3, 57–60]. The classical version of

PSO, which has been used in this thesis, is described below.
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Figure 2.2: Schematic representation of the motion of a particle pulled by the global

best, personal best and its inertia in a two-dimensional space with parameters t and ε.

2.2.1 PSO Algorithm

The algorithm searches for the best location in the domain of an objective function by

adjusting the trajectories of individual particles. Fig. 2.2 gives a schematic representation

of the forces that affect the movement of a single particle. Flying around the search space,

the particles are attracted by the best positions they have observed pn(t) (cognition),

the best position observed by the whole swarm b(t) (socialising) and by their previous

directions vn(t) (inertia).

The position of each particle xn
(t) is updated at each iteration using the equation [56]:

xn
(t+1) = xn

(t) +∆t ∗ vn(t+1), (2.1)

where n = 1, ..., Npop is a particle index, Npop is a swarm size, and t is an iteration count

with a step ∆t=1. In a classical PSO with an inertia weight w, the velocity vn(t+1) of each

particle, which is a sum of inertia, social and cognitive components, has the following
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Figure 2.3: PSO algorithm flowchart.

expression:

vn(t+1) = wvn(t) + c1 ∗ rand1 ∗ (pn(t) − xn
(t)) + c2 ∗ rand2 ∗ (b(t) − xn

(t)), (2.2)

where rand1 and rand2 are random coefficients taking any value between (0,1). The

factors c1 and c2 will be described in the following discussion.

The essential steps of the PSO can be summarized in the flowchart in Fig. 2.3. The

first step is to assign initial values of positions and velocities to each particle. If there

is no prior knowledge of the problem, the values are assigned randomly. It is highly

recommended though to initialize the algorithm from a meaningful result as, in this

case, the time taken by the algorithm to converge can be significantly reduced [61]. The

following steps should be repeated for each particle in a population: evaluate fitness, find

b(t) and pn(t), update velocity and position. The cycle is repeated until the termination
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criterion is met.

The swarm behaviour can be controlled by the adjustment of the swarm size Npop,

the weight of the inertia component w, cognitive constant c1, social constant c2 and

the maximum number of iterations Nit. Although other stopping criteria are possible,

Nit should be specified if a linearly decreasing inertia component is used. The speed

of decreasing w depends on the maximum number of iterations. As suggested in [62],

acceleration constants should be c1 = c2 = 1.49. The value of the inertia weight is usually

decreased over iterations from 0.9 to 0.4. The convergence rate of the algorithm can be

increased (therefore, the overall number of evaluations can be decreased) by setting the

lowest value of w equal to 0.1 [63]. The randomness is introduced to the algorithm by

rand1 and rand2, which are uniformly distributed coefficients taking values between 0

and 1. The swarm size n and the maximum number of iterations N “are somewhat

arbitrary” [64] and depend of the optimization problem but a “rule of thumb” is that n

is at least two to four times larger than the problem dimensionality.

It can be seen that the algorithm is extremely simple to implement, which is one

of the reasons it has gained significant popularity in EM applications. Compared to

GAs, PSO does not require an artificial binary encoding of the problem domain, and

it has fewer parameters to be tuned. PSO does not naturally keep the particles inside

any defined solution space. Therefore, boundary conditions have been introduced to

prevent the particles from flying out of the solution space and, therefore, violating the

design constraints. For example, penalties can be used, assigning a bad fitness value to

any infeasible particle [45, 62, 65]. This measure however reduces the efficiency of the

optimizer because it causes a temporary loss of search agents.

2.2.2 Applications of PSO to EM problems

The classical version of PSO described above operates only with continuous design vari-

ables. It has found numerous applications in EM, such as in the design of multiband and

wide-band microstrip patch antennas [66, 67], reconfigurable and conformal E-shaped

antennas [68, 69], as well as EBG-based antennas [26] and UWB antennas [70]. Many



2.2 Particle Swarm Optimization (PSO): Theory and Applications 21

successful applications of PSO to linear and planar antenna array synthesis problems have

been demonstrated for the purpose of side lobe suppression, null placement or dynamic

phased-array control [46, 71–73]. A significant advantage of array synthesis problems is

that they are very fast to analyse and, therefore, the optimization results can be obtained

within several hours, giving a designer a chance to repeat multiple optimization runs and

tune the internal parameters of optimization algorithms. A binary version of PSO that

can handle discrete design variables has been proposed in [74]. It has found applications

in array thinning [75], adaptive phased-arrays control [72], microstrip antenna design [76]

and many others. Below, some recent PSO applications will be reviewed in detail.

To tackle optimization problems with mixed variables and constraints, a hybrid real-

binary PSO has been proposed [46]. Highlighting that the rounding-off operation, which

has been previously used to handle mixed-integer problems, significantly deteriorates

convergence of PSO, the authors proposed concatenating real and binary variables into

a single parameter vector. One application of the proposed methodology was a handset

patch antenna shown in Fig. 2.4(a). The challenge of the design was to obtain required

dual-band impedance matching in a limited design space. The space was divided into

two parts, where one part served to hold a 15 mm × 8 mm rectangular patch, and

Figure 2.4: A dual-band handset patch antenna design problem with a mixed-

parameters vector. (a) Antenna geometry. (b) Convergence curve with antenna prototype

in the inset (from [46]).
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Figure 2.5: A parasitically coupled microstrip antenna array for the IEEE 802.11a

WLAN 5–6 GHz frequency band. (a) The prototype of the optimized antenna. (b) Re-

flection coefficient of the original and optimized antenna (from [18]).

the second was discretized into 12 × 10 square pixels with a side length of 1.5 mm.

The design was represented by 3 continuous variables and a 120-bit binary string to

identify dielectric/metal status of each pixel. The cost function included S11 at two

frequencies of interest, 1.8 GHz and 2.4 GHz. Fig. 2.4(b) shows the optimized design

and the convergence curve of the optimization. The optimal design that has satisfactory

input impedance appeared at the 190th iteration. It is interesting to note that after first

10 iterations the algorithm showed very little improvement for around 50 iterations but

then escaped stagnation.

Another EM problem was described in [18], where a microstrip patch antenna without

predefined geometry was optimized by PSO. The aim of the design was to increase the

impedance bandwidth of a standard rectangular microstrip patch antenna. The hypoth-

esis was that small parasitic rectangular dipoles placed around the driven patch could

create strong mutual coupling resulting in additional resonances at frequencies slightly

lower than that of the main patch. The methodology employed classic PSO to place

the sub-patches of 8 mm × 2 mm on the substrate at the positions corresponding to a

particle’s position in the solution space. The constraints of the design were the area of
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Figure 2.6: Ka-band single-feed reflectarray system was optimized for a number of quad-

beam requirements using PSO. (a) Fabricated reflectarray prototype. (b) Convergence

curves for four radiation pattern mask requirements (from [77]).

the substrate, the shape of the sub-patches and selection of the driven patch. The results

confirmed the initial assumption, and the bandwidth of the antenna increased from the

original 7% to 19%.

PSO has also been implemented to optimize the phase of the elements in asymmetric

multibeam reflectarrays with arbitrary beam directions and gain levels [77]. This is a very

challenging design problem due to the very large solution spaces. In particular, the opti-

mization problem in [77] has 848 continuous variables. To achieve a multibeam pattern,

a far-field mask based on the design requirements was defined for the optimization. A

swarm population of 400 particles performed 100 000 iterations, corresponding to 40 mil-

lion fitness evaluations. Due to the use of a custom analysis code, the radiation pattern

calculations were fairly fast, with total computation time of about 44 hours. The proto-

type of the optimized reflectarray is shown in Fig. 2.6(a), and the convergence curves for

four different design cases are given in Fig. 2.6(b). It can be seen that for 70 000–80 000

iterations the algorithm struggled to find a satisfactory performance but it eventually

escaped the stagnation. Convergence rates can potentially be increased by using larger

swarm populations, however, this would come at a cost of longer optimization runs.

It is very common that specifications for antenna design problems include multiple

requirements, such as impedance matching, gain, axial ratio, radiation pattern, etc. There
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Figure 2.7: L-shaped folded monopole antenna array optimized under five inequality

constraints. (a) Antenna deployment on a substrate and the geometry under optimization

with eleven continuous variables. (b) Convergence of the elite particle X minimizing the

goal function equal to the sum of G1(X), G2(X) and G3(X) (from [78]).

are two alternative ways to optimize for multiple objectives. First, by a multi-objective

optimization procedure that finds multiple trade-off optimal solutions (known as Pareto-

optimal solutions) with a wide range of values for objectives. It is then the designer’s task

to choose a single solution from the obtained solutions using higher-level information [53].

Second way is to start from prioritising objectives and combining them according to their

weights to form a composite objective function. These methods will be discussed in more

detail in Section 2.6.1. In a recent implementation of continuous PSO [78], it is proposed

to include multiple objectives by performing multi-level optimization instead of using

conventional weighted aggregation or Pareto dominance method. The design problem

consists of two L-shaped folded monopole antennas (Fig. 2.7(a)) that are to be installed

in a handset and, therefore, miniaturisation is one of the most important criteria. Other

design requirements were low mutual coupling reduction between two antennas and a

sufficient resonant bandwidth covering the IEEE 802.11 b/g WLAN band. Parametrized

antenna geometry, shown in Fig. 2.7(b), had 11 variables and 5 constraints. To satisfy

the design targets, the optimization goals were expressed by three equations that were
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minimized one by one. Convergence curves for each goal are shown in Fig. 2.7(b). The

optimized design achieves the specified goals and outperforms the previous solutions.

It can be seen that PSO has been a successful optimization method for EM ap-

plications. However, to incorporate problem-specific information, some modifications

were required. Particularly, to tackle the problem with mixed variables and constraints

(Fig. 2.4), a novel methodology had to be derived. The updating procedure was separate

for continuous and binary parts of the design vector. The position of continuous part

was updated by the Eq. (2.1), and the binary part was updated using sigmoid transfor-

mation [46]. This approach converts discrete variables into binary strings, which adds

complexity and, therefore, might prevent the methodology from be widely used.

2.3 Cross-Entropy (CE) Method: Theory and Ap-

plications

The cross-entropy (CE) method was proposed by Rubinstein in 1997 [79] as an adaptive

importance sampling procedure for estimating the probabilities of rare events, such as

earthquakes, hurricanes or financial market crashes. The distinctive feature of the CE

method is in the use of parametrized probability distributions in the updating rules. The

name of the method comes from the fact that it uses Kullback-Leibler divergence, also

known as cross-entropy, as a measure of closeness between two sampling distributions [80].

In later work by the same author, it was shown that the CE method can be used as

a stochastic optimization algorithm because optimization problems can be represented

as rare-event estimation problems. The idea of the method is that the probability of

locating an optimal or near optimal solution using naive random search is a rare-event

probability [81]. Searching for the global optimal solution, the CE method iteratively

reshapes the sampling distribution of a random search to place more emphasis on the

rare-event occurrence.
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2.3.1 CE Algorithm

To operate with the CE method, knowledge of basic principles from statistics and in-

formation theory is required [82, 83]. Before getting into the details on how exactly the

distance between two probability distributions is measured, we will introduce some nec-

essary notations. As mentioned above, in optimization using the CE method, updating

rules iteratively modify the shape parameters of probability distributions instead of the

solutions of the optimization problem itself. Probability density functions (for continuous

variables) or probability mass functions (for discrete variables) are the functions whose

value at any given point in the sample space can be interpreted as providing a relative

likelihood that the value of the random variable would equal that sample.

All possible outcomes of a random experiment constitute the sample space of the

experiment. A sample space is discrete if it consists of a finite or countably infinite set

of outcomes and continuous if it contains an interval (either bounded or unbounded) of

real numbers.

Continuous random variables can be modelled by probability density functions (PDFs),

such as Gaussian, beta or Gamma distribution. Each PDF is uniquely identified by its

parameters. For example, Gaussian distribution is characterised by its mean µ and vari-

ance σ and has the notation N(µ, σ2). A normal random variable X has a PDF as in

Eq. (2.3) with parameters −∞ < µ < ∞ and σ > 0.

f(x;µ, σ) =
1

σ
√
2π

e−(x−µ)2/2σ2

,−∞ < x < ∞ (2.3)

From Fig. 2.8, which illustrates three normal PDFs with selected values of µ and σ, it

can be seen that µ determines the center of the distribution, and σ determines its width.

In CE, at each iteration, a population is drawn by sampling from any given PDF that

is defined by its distributional parameters. The distributions are also called models in the

literature, and, therefore, the CE algorithm belongs to a class of model-based optimization

methods along with CMA-ES (see Section 2.4) and Estimation of Distributions. Another

important concept used in CE is parameter estimation, which is used to update the

shape parameters of PDF for the next iteration. In order to generate the parameters of a
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Figure 2.8: Normal probability density functions of a random variable x, N1(4, 0.5),

N2(4, 0.5), N3(4, 0.5).

new sampling distribution, the updating procedure looks at the current best performing

individuals and generates the parameters of a new sampling distribution that closely

describes them. The estimation of the parameters of this new sampling distribution is

the key task in the CE method.

In statistics, there are two well-known methods, the method of moments and the

method of maximum likelihood [82], that perform this estimation. In information theory,

this is performed using a measure of dissimilarity (or “distance”) between two PDFs,

f(y) and g(y), called cross-entropy, that can be expressed as:

D(f, g) =

∫
f(y)ln

f(y)

g(y)
dy. (2.4)

The above expression holds for continuous variables, and for the discrete variables, the in-

tegration should be substituted by summation (alternatively, the continuous and discrete

cases could be notationally unified with a measure-theoretic treatment). Minimising

Eq. (2.4) gives D(f, g) = 0 and, therefore, f = g assuring a perfect fit of two PDFs.

Essentially, maximum likelihood estimation and cross-entropy minimisation is the same

procedure, and either of them can be performed for CE optimization method depending

on which is easier to obtain. It should be noted that D from Eq. (2.4) is not a distance

in the formal sense, since in general D(f, g) 6= D(g, f) [84].

The flowchart in Fig. 2.9 summarizes the operating principle of the CE method for

optimization. The settings of three parameters, i.e. population size Npop, elite subpop-
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ulation size Nel and smoothing parameter αS, have to be supplied by a user to begin

optimization.

Figure 2.9: CE method flowchart.

The algorithm is initialized by sampling the population from an initial (usually uni-

form) distribution, in a so-called random start. After the population is sampled, the

performance of each candidate is evaluated by calculating f(x), and each candidate in

the population is assigned a fitness value. If the optimization problem is maximisation,

the fitness function values are sorted in a descending order, and an elite subpopulation is

created by taking the first Nel samples. Similarly, if the optimization aims at minimizing

the objective function, the candidates are sorted in an ascending order of their perfor-

mance, and the top ρ% are chosen for an elite subpopulation, where ρ = Nel/Npop∗100%.

Then, the termination criterion is evaluated. If the algorithm is not converged, the itera-

tions continue. Based on the elite subpopulation, a new sampling distribution is defined.

It is this crucial point when the algorithm applies cross-entropy minimisation (or max-

imum likelihood estimation) to fit a new sampling distribution as close as possible to

the current empirical distribution of elite candidates. A smoothing procedure is usually

introduced to the algorithm to prevent a premature convergence and ensure the balance
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between intensification and diversification. With a smoothing parameter αS set to 0.7,

the algorithm converged after 5 iterations. The smoothing is applied as follows:

vt+1
s = αS ∗ vt+1

un + (1− αS)v
t
s, (2.5)

where vt+1
un is a vector of reconstructed distributional parameters at the current popula-

tion, and vts is a vector of smoothed distributional parameters from a previous popula-

tion. Setting smoothing closer to 1 increases the speed of convergence but results in lower

success rates, while lower values of αS slow down convergence (increase the number of

iterations) but also increase the chance of locating the global optimum.

A couple of comments should be made about possible modifications in the given

flowchart. Although it is typical for EO to initialize with a random population, it might

be beneficial to start the optimization from a seed containing close-to-optimum solutions

if such a priori knowledge exists. Further information with valuable practical examples

can be found in [52]. In Fig. 2.9, a stopping criterion that compares the diversity of the

elite subpopulation with a user-defined threshold is evaluated. If the elite subpopulation

consists of identical or very similar results, then the algorithm has reached convergence,

and the optimization is terminated. Other stopping criteria are also possible, such as a

maximum number of iterations or the distance between the best found solution and the

target result.

To demonstrate the fast convergence properties of the CE method, we visualize an

optimization process of a 2D Eggholder function that is characterised by a very difficult

terrain. The function contains multiple local minima, some of which pose difficulties

by being deep and narrow or diagonally oriented, while the global solution is located at

the boundary of the solution space. Eggholder function has the following mathematical

expression:

f(x) = −(x2 + 47) sin

(√∣∣∣x2 +
x1

2
+ 47

∣∣∣
)
− x1 sin

(√
|x1 − (x2 + 47)|

)
, (2.6)

and its multiple local minima can be seen in Fig. 2.10. The function is usually evaluated

in the domain xi ∈ [−512, 512], for i = 1, 2. The well-hidden global optimum is located

at x* = (512, 404.2319) with the value f(x*) = −959.6407 [85].
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Figure 2.10: 2D Eggholder test function, best location is at x* = (512, 404.2319).

For a bounded solution space, the beta PDF with distributional parameters α and β

is a natural choice. Its equation in provided below:

B(x; v) =
xα−1(1− x)β−1

∫ 1

0
xα−1(1− x)β−1 dx

, v = (α, β). (2.7)

Unlike the normal distribution N(µ, σ), which has unbounded support, the beta PDF

has the support [0; 1]. This ensures that the parameters of the candidates sampled from

the beta distribution are located within the defined bounds of the solution space. If

the solution space bounds are different from [0; 1], a simple transformation is applied to

scale the parameters of all samples to the solution space bounds. Marginal distributions

B(α, β) are generated for every optimization parameter.

A full optimization process of the Eggholder function is shown in Fig. 2.11. Beside

the contour plot of the design space, the marginal distributions for each variable are

provided. The populations of N = 200 candidates are depicted in red circles, while elite

subpopulations of Nel = 6 candidates are highlighted by blue dots. It can be observed

from Fig. 2.11 that the PDFs for each variable gradually concentrate around the best

results. In Section 4.2, the CE method will be further discussed from the application

point of view.
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(a) First iteration

(b) Second iteration

Figure 2.11: (continues on next page) CE optimization process demonstrated on the

2D Eggholder function. The global best solution is located at x1 = 512, x2 = 404.2319

(red pentagram).
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(c) Third iteration

(d) Fourth iteration

(e) Fifth iteration

Figure 2.11: (cont.) CE optimization process demonstrated on the 2D Eggholder

function. Five iterations were required for the algorithm to converge to the global best

solution located at x1 = 512, x2 = 404.2319 (red pentagram).
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2.3.2 Applications the CE method to EM problems

The CE method has been successfully applied to a diverse range of optimization problems,

including multi-modal and multi-dimensional problems [86]. For EM applications this

method is still new and has only been applied to a few problems [87–90]. The first work

where CE has been used to optimize EM design problems is by Connor [7,91]. Particularly,

the method has been explored in application to continuous and combinatorial problems of

aperiodic and phased antenna array synthesis. Both single objective and multi-objective

problems were considered, and the conclusion was reached that the CE method is a com-

petitive alternative to such popular techniques as PSO or GA. Other EM applications of

the CE method include antenna selection for multiple-input multiple-output systems [92],

superconductive magnetic energy storage optimization benchmark [54] and radiation pat-

tern null steering in phased arrays [93].

A more recent application of the CE method to a continuous constrained EM problem

has been reported in [89]. To the best of author’s knowledge, it is the only previous

application of the CE method that resulted in a built antenna prototype. The work

addresses the design problem of a sparse planar array for radar cross section measurement

under various constraints. The array shown in Fig. 2.12 (left) is composed of identical

bipolar antennas made of two folded dipoles. A single element of the array is shown in

the middle of Fig. 2.12. The optimization problem is an array of 29 elements spaced on

5 circles with the the radius and angle as the design parameters. The optimization goals

were to produce a “quiet zone” where the variation of the amplitude of the EM field

is less than 0.2 dB and to reduce the coupling between the array and a scatterer. To

optimize the described problem with 10 design variables, a population size was set to 500,

and the algorithm converged after 38 iterations. The fabricated optimized antenna array

prototype with reduced number of elements (for simplicity) is shown in Fig. 2.12 (right).

It can be seen that in addition to the central element, 12 array elements are placed

on 3 circles, 4 antennas on each circle, resulting in non-uniformly spaced array. The

optimization produced results that satisfy the design requirements. After comparison

to other evolutionary paradigms, it was concluded that CE features the advantages of a
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straightforward application and relatively fast convergence.

Figure 2.12: The optimized planar sparse antenna array, a single element and the

prototype of simplified antenna array [89].

The advantages of the CE method include:� Global search method;� Inherently flexible for any types of variables;� Fast convergence properties [94];� No derivative information is required;� Population-based method, so that the evaluation of the designs can be arranged in

a parallel way using high-performance computers (as opposed to SA).

The known limitations of the CE method are:� Large number of samples is required for an accurate estimation of distribution;� In case the sample size is not large enough, the algorithm can be trapped in a local

optimum.

In this thesis, all considered design problems are evaluated using EM software in

order to obtain more accurate results. Moreover, in contrast to the previously reported

applications, which only utilize the normal distribution for the CE method, this thesis

makes use of PDFs that model the design space such as beta, Dirichlet and discrete
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probability distribution families. Thus, the flexibility and broader potential of the CE

method is exploited and demonstrated.

2.4 Covariance Matrix Adaptation Evolutionary

Strategy (CMA-ES): Theory and Applications

The covariance matrix adaptation evolutionary strategy (CMA-ES) is a very popular

and successful evolutionary algorithm for continuous optimization introduced by Hansen

and Ostermeier in 2001 [95]. It was introduced to EM community in 2011 [96] as an

attractive alternative to GA and PSO because of the minimal number of required user-

defined algorithm parameters. The search in CMA-ES is performed by evolving a normal

distribution that approximates the contours of the objective function. It differs from

other model-based optimization methods in the way it moves and reshapes the sampling

distributions. As its name suggests, CMA-ES makes use of a full covariance matrix and

not only a variance vector.

2.4.1 CMA-ES Algorithm

Optimization problems usually have multiple design variables, and therefore a multi-

dimensional design space. CMA-ES employs general multivariate normal distributions,

i.e. it models the design variables as normally distributed and correlated with each other.

For the convenience of illustration, the contours of a two-dimensional (bivariate) PDF

along with a random sample of 100 candidates is shown in Fig. 2.13. It can be seen that

the shape of the bivariate normal distribution is ellipsoid. For higher dimensions, the

distribution takes the form of a hyper-ellipse. Therefore, the algorithm has the potential

to adjust to the terrain of the optimization problem.

The flowchart of the CMA-ES is shown in Fig. 2.14. The algorithm is initialized by

setting a population size λ and a number of selected children µ = λ/2, which can also

be called an elite subpopulation. The parameters of the initial normal distribution, that

is the mean 〈x〉g=0, step-size σg=0 and covariance matrix Cg=0, where g is an iteration
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Figure 2.13: Bivariate normal distribution (contours) and a sample of 100 points from

this distribution (blue dots). Mean and variance for each marginal normal distribution

are given in a textbox.

Figure 2.14: Flowchart of CMA-ES [96].
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count, are set automatically to the recommended values. Then, the designs are sampled

from this distribution, evaluated and sorted according to their performance. These steps

are common for CE and CMA-ES. If the termination criterion is not satisfied, the best

µg=0 designs are then chosen for the creation of a new mean using a weighted average

method (Table 2.2).

To iteratively update the step-size and the covariance matrix, two parameters are

calculated, i.e., the conjugate evolution path pσ and evolution path pC :

pg+1
σ = (1− cσ) · pg

σ +
√
cσ(2− cσ) ·

√
µeff

σg
(Cg)−1/2(〈x〉g+1 − 〈x〉g) (2.8)

pg+1
C = (1− cc) · pg

c +
√

cc(2− cc) ·
√
µeff

σg
(Cg)−1/2(〈x〉g+1 − 〈x〉g) (2.9)

The coefficients used in the equations (2.8) and (2.9) are collected in Table 2.2. Finally,

the step-size and covariance matrix can be updated by:

σg+1 = σg · exp
(
cσ
dσ

(
‖pg+1

σ ‖√
N
(
1− 1

4N
+ 1

21N2

) − 1

))
(2.10)

Cg+1 = (1− ccov) · Cg +
ccov
µeff

pg+1
c

(
pg+1
c

)T
+

+

(
1− 1

µeff

)
ccov
(σg)2

µ∑

i=1

wi

(
xg+1
i − 〈x〉g

) (
xg+1
i − 〈x〉g

)T
(2.11)

These parameters take into account the learning rates cσ, ccov (also in Table 2.2) and

keep the history of the evolution for the distributional parameters at the previous itera-

tions. A population size depends on the problem dimensionality N , and the recommended

minimum value for it is:

λ = 4 + [3 ln(N)]. (2.12)

An illustration of CMA-ES procedure is shown in Fig. 2.15. The assignment of differ-

ent weights to the candidates depending on their performance is colour-coded, and the

solutions that are the closest to the global optimum are coloured in green. Fig. 2.15(b)

shows the evolved contours of the sampling distributions over iterations. CMA-ES is

attractive for EM optimization problems due to its adaptive properties that make the
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Table 2.2: Additional coefficients used in the CMA-ES algorithm.

Parameter Equation

Mean 〈x〉g+1 =
µ∑

i=1

wix
g
i

Recombination weight wi =
log2(µ+0.5)−log2(i)))

µ∑

j=1

(log2(µ+0.5)−log2(i)))
, i = 1, 2, ..., µ

Effective number of children µeff =

(
µ∑

i=1

w2
i

)−1

Step-size learning rate cσ =
µeff+2

N+µeff+3

Step-size damping factor dσ = 1 + 2max

(
0,
√

µeff−1

N+1
− 1

)
+ cσ

Covariance learning rate cc =
4

N+4

Covariance damping factor ccov =
1

µeff

2
(N+

√
2)2

+
(
1− 1

µeff

)
min

(
1,

2µeff−1

(N+2)2+µeff

)

algorithm almost user-independent. Although the tuning of some internal parameters of

the algorithm can be performed by a user to manipulate the behaviour of the algorithm,

the preference is to minimize the interaction between the user and the algorithm. Also,

it will be shown later that CMA-ES demonstrates fast convergence properties.

Figure 2.15: Illustration of CMA-ES (a) selection process with the generation of a new

mean and (b) movement and reshaping of the search distribution over several iterations

on a 2D Rotated Hyperellipse test function [97].
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2.4.2 Applications of CMA-ES to EM problems

Although CMA-ES is a relatively new paradigm for the EM community, it has been proven

to have robust and efficient performance. The range of its applications is quite broad,

including microstrip antennas [98], slot antennas, Yagi-Uda antennas [48], ultra wideband

(UWB) and non-uniform antenna arrays [99], dielectric resonator antennas [100] and EBG

structures [41].

An interesting antenna optimization problem has been described in [97]. The antenna

geometry is shown in Fig. 2.16. It is a modified folded patch antenna with a meandered

slot and a short. The requirements for the antenna is to provide a miniaturised solution

operating at two Wi-Fi frequencies, 2.4 and 5.0 GHz. The optimization problem has 9

design variables x = (L,W, gap, RL, RW , h1, h2, lslot, yfeed) with defined bounds. The goal

of the optimization is to achieve less than –12 dB reflection coefficient and more than

6 dBi broadside gain at the two specified frequencies.

Figure 2.16: Parameterized geometry of a folded shorted patch antenna with a mean-

dered slot: side view (left) and top view (right) [97].

A population size was set to 16, which is a little larger than recommended by Eq. (2.12),

and converged after 24 iterations. The targeted reflection coefficient was achieved at both

frequencies, and the broadside gain was 2.9 and 5.9 dBi at 2.4 and 5.0 GHz, respectively.

Due to the physical limitations, the value of 6 dBi gain at 2.4 GHz in such a compact

footprint is probably not attainable. During optimization, the performance of each can-

didate was evaluated using Ansoft HFSS. The fabricated antenna and its measured and

simulated characteristics are shown in Fig. 2.17. It can be seen that the optimized results
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satisfy the design requirements. Such a complex antenna design with multiple design

parameters and strong mutual coupling effects would be impractical to design using the

traditional manual approach. Optimization in this case helped to obtain the solution

within the practical time frames.

Figure 2.17: Simulated and measured reflection coefficient of the optimized antenna

design. Vertical dashed lines indicate the targeted frequencies [97].

As CMA-ES is inherently suitable for solely continuous problems, attempts have been

made to overcome this limitation. Two schemes were proposed in [48] for the optimization

of the design problems with mixed-variables using a Poisson mutation (Scheme I ) and

an integer mutation (Scheme II ). The techniques were tested on a dielectric band-pass

filter problem and a novel design of a printed UWB antenna.

The geometry of a multilayer dielectric filter is given in Fig. 2.18. For optimization,

a filter with seven layers (N = 7) of permittivity εri and thickness di each was con-

sidered. The optimization problem involves 14 variables, where the thickness of each

layer di is a continuous bounded variable, and the permittivity εri is a discrete variable

sampled from a library of 14 elements. The optimization goal was to achieve band-

pass performance with the reflection coefficient less than –15 dB in the frequency band

fpass = 28 − 32 GHz and greater than –5 dB in the bands fstop = 24 − 26.5 GHz. The

results of both mixed-parameter CMA-ES schemes were compared with mixed-parameter

GA and mixed-parameter EP, and, after the same number of function evaluations, CMA-

ES located better results with the second scheme providing the overall best performance.
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Figure 2.18: Mixed-parameter optimization problem of multilayer dielectric filter de-

sign [48].

An UWB antenna optimization problem considered in [48] has a complex geometry

with the continuous parameters describing the dimensions of the antenna and binary

parameters indicating whether the segments in the patch should be filled with metal or

air. The optimization goal was to obtain the reflection coefficient less than –10 dB and a

boresight gain above 0 dBi in the frequency band 1−10 GHz. Due to the long simulation

time (21 min per 1 out of 20 frequency points per generation on a 3-GHz P4 PC), only

CMA-ES with Scheme II was implemented. The algorithm converged after 60 generations

producing a design with significantly enhanced performance as compared to the original

design.

CMA-ES has definite advantages for EM applications, i.e., it is a quasi-parameter-free

algorithm with a robust performance. It should be noted that, though inherently suitable

for the problems with continuous variables, it requires additional modifications in order

to be applicable to problems with discrete and mixed variables. Another consideration is

that the elements in the covariance matrix that need to be stored increase quadratically

(O(n2)) with the problem dimensionality. Therefore, large scale optimization problems

might be challenging for CMA-ES [101].
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2.5 Comparisons of the Algorithms

Although the NFL theorems [42, 43] state that “all optimization algorithms perform

equally well when averaged over all possible problems”, it is still worth providing the

comparisons of several algorithms on the same problems. The meaning of this is two-

fold: first, it can serve as a test of the algorithmic implementations and, second, it can

help the designer to develop intuition for the algorithms.

2.5.1 Benchmarks for Optimization

Benchmark problems for optimization are artificial landscapes with known locations and

fitness of global optimal positions. The results of a short comparison study of PSO,

CE and CMA-ES are provided further. The performance of these algorithms has been

compared on two classical multidimensional test functions, unimodal Sum of Squares

and multimodal Ackley function [85], in order to provide a basis for an educated decision

when choosing the one for the implementation on EM problems. Both functions in their

2D versions are shown in Fig. 2.19.

(a) (b)

Figure 2.19: Optimization test functions used in a comparative benchmark study:

(a) Sum of squares, (b) Ackley.

The first function has a single minimum, and the second has multiple local optima

along with the global minimum in the middle. Both test functions were restricted to the
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domain xi = [−10, 10] for all i = 1, . . . , d, where d is the problem dimensionality, set

to 5, 10, 15, 20 and 30. The mean number of function evaluations (MNFE) required for

each algorithm to reach the fitness function values less than the threshold δ = 0.01 was

calculated over 200 Monte-Carlo simulations.

The results are summarized in Table 2.3. For each problem, the internal parame-

ters of CE and PSO were adjusted to ensure that the algorithms perform with 100%

success rate. Presented PSO results were acquired with population sizes from 20 (for

low-dimensional cases) to 300 (for high-dimensional cases), absorbing wall boundary con-

dition and inertia weight [102] with wmin =0.01 for low-dimensional cases and wmin =0.4

for high-dimensional cases. The population sizes were selected using a rule of thumb

for PSO which states that the minimum number of candidates should be four times the

dimensionality of the problem [62]. CE results were achieved with Gaussian distribution

and population sizes from 50 to 140, elite sizes from 10 to 15 and smoothing parameter

αS within the recommended range of (0.4 – 0.7).

It can be seen that CE and CMA-ES converge much faster than PSO, especially

for high-dimensional and multimodal problems. A significant speed advantage can be

observed in Fig. 2.20 showing the convergence curves of PSO and CE optimization of 5D

Table 2.3: Comparison of the mean number of function evaluations (MNFE) required

for CE, PSO and CMA-ES on two test functions.

Test functions d CE PSO CMA-ES

Sum of Squares

(Fig. 2.19 (a))

5 567 573 623

10 1771 2325 1706

15 3255 5155 2919

20 4864 12413 4157

30 7059 62340 6711

Ackley

(Fig. 2.19 (b))

5 853 1384 994

10 1908 6636 2281

15 3090 13708 3531

20 4628 20310 4704

30 6512 78380 6810
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Figure 2.20: Convergence comparison between PSO and CE method on 5D Ackley test

function.

Ackley function. In both cases, the population size Npop=100, and the stopping criterion

was –0.1. It can be seen that while PSO needs 26 iterations to converge, CE needs only

9, which can be a very significant time reduction in case of practical applications.

The convergence rates of CE and CMA-ES are comparable. This can be explained by

the similarities in the nature of their updating rules on continuous problems, i.e. both

methods manipulate the parameters of a Gaussian distribution. CMA-ES outperformed

CE on the unimodal test problem, and CE outperformed CMA-ES on the multimodal

function. This is expected because CMA-ES is very similar to a gradient descent local

optimizer [103].

The comparison of MNFE for CE and CMA-ES on 10- and 20-dimensional Ackley

functions is shown in Fig. 2.21 using a box-and-whisker plot. This graph is useful for

illustrating variations in large datasets, and is used here to demonstrate that the per-

formance of CE is steadily faster than that of CMA-ES. The results for CMA-ES in

Table 2.3 agree well with those reported in [41]. This comparison study is not thorough

but it demonstrates that the PSO, CE and CMA-ES algorithms, implemented in this

thesis, converge to the global optimum under the provided settings. Sample code for a

CE implementation on two test functions is given in Appendix B.
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Figure 2.21: Box-and-whisker plots of MNFEs for 60 optimization runs by CMA-ES

and CE on a d-dimensional Ackley function: (a) d = 10, (b) d = 20. The blue boxes

are drawn around the 25th and 75th percentiles and divided (by the red thick line) at

the 50th percentile. The whiskers (black dashed line) extend out to the 10th and 90th

percentiles. The outliers are plotted individually using the ‘+’ symbol.

2.5.2 Antenna Engineering Designs

Multiple comparative studies of evolutionary optimization algorithms in application to

antenna design problems have been reported [20,104–110]. In [104], SA, GA and PSO, as

well as their hybrids, have been applied to antenna far-field radiation pattern reconstruc-

tion from planar near-field data. All methods achieved accurate results, but PSO and SA

excel in simplicity, accuracy, and computational cost. Self-adaptive DE and classical PSO

were compared on a number of common antenna problems in [105]. Linear antenna array,

E-shaped patch and microstrip filter optimization problems were chosen, and DE demon-

strated a slightly better performance. A recent comparative study of PSO, DE, Taguchi,

IWO and adaptive IWO on a log-periodic dipole array showed that although PSO has
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fast convergence properties, IWO can find secluded locations of better performance [106].

As expected, no universal algorithm has been found for antenna applications. The

preference is usually given to methods that tend to require fewer fitness function evalu-

ations, because in EMs, fitness functions are usually evaluated through computationally

expensive full-wave simulations and, thus, NFEs determine the overall optimization time.

An important note was made in [108], which investigated the use of SA, ACO and GA

for self-structuring antennas. The authors refrained from selecting the best performing

algorithm and instead noted that “performance of the various algorithms depends on

the configuration of the antenna model and the fitness objectives used, as well as on the

details of algorithm implementation”.

2.6 Limitations and Challenges of Evolutionary Op-

timization

A great variety of evolutionary optimization algorithms is available for EM design prob-

lems. No matter what method is used, there are common hurdles that might be faced

during the set-up of an optimization procedure.

2.6.1 Objective Function

The definition of an objective function is a crucial part of any optimization process. It

has more influence on the result of optimization process than the selection of an opti-

mization algorithm. Unfortunately, there are no guidelines on how to define the right

objective function, and usually it is found by trial and error. The most common perfor-

mance parameters in antenna engineering are the reflection coefficient, directivity/gain,

the shape of radiation patterns and axial ratio, but other requirements are of course pos-

sible. Although the formulation of an objective function greatly depends on whether the

performance parameters need to be achieved in narrow, wide or multiple bands, in many

cases, the least mean square difference between the current solution and the objective

was found to be an effective way to evaluate the fitness [7, 97, 109].
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To accommodate multiple objectives, a conventional weighted aggregation (CWA)

method is usually used as it is a simple way as opposed to multiobjective versions of the

applied optimization methods. In CWA, the fitness function is a sum of all objectives

each multiplied by a coefficient reflecting its relative importance. This method of scaling

an objective vector into a composite objective function converts the multi-objective opti-

mization problem into a single-objective optimization problem. Some authors name it as

a preference-based multi-objective optimization procedure, others refer to it as a weighted

sum method. Multiobjective optimization provides a set of non-dominated solutions, a

Pareto front, which might be useful to have in case of uncertain priorities. Weighted sum

method gives only one outcome and is much simpler and more practical because usually

only one solution is needed for a problem instead of a set of solutions. Therefore, weighted

sum method is more preferred and gained more popularity in engineering applications

and electromagnetic problems in particular.

Some recommendation for the choice of weights in a combined objective function can

be found in [53]. First, it is important to identify if objectives take different orders of

magnitude and normalize them. Then, the weights can be assigned according to each

objective according to their relative importance. A disadvantage of the CWA approach

is that it often requires extensive tuning of the weighting coefficients to find the most

effective combination of for the set of sub-objective functions. This is especially difficult in

problems where the objectives of design targets are unrelated or employ different physical

units.

2.6.2 Design Constraints

Practical EM optimization problems have equality and inequality constraints, such as

overall size limitations or physical limitations, which are desirable to include in the op-

timization process. Several methods exist in optimization to deal with constraints. A

direct approach intends to find the feasible solutions enclosed by the constraints. If the

solution does not satisfy one or more constraints, it is discarded and a new solution is

generated. However, this method is often slow and inefficient. Another common approach
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to constraint handling in EO is to apply a penalty function to bias the search toward a

feasible solution [111]. It implies that the solution’s fitness function is evaluated even

if the constraints are not satisfied but receives a penalty to reduce the chance that the

offspring of this solution appear in next generations [112, 113].

2.6.3 Computational Time

Full-wave EM simulations nowadays are used in industry and academia as a standard

approach to obtain a reliable evaluation of antenna structures. Therefore, to acquire a

reliable optimized design, the optimization algorithms are interfaced with full-wave EM

solvers [114, 115]. Appendix A provides an interface scheme used in this thesis.

In order to minimize the simulation time, the use of “low-fidelity” surrogate-based

models that can substitute time-consuming EM simulation has been investigated [16,116].

This approach was found useful but its general-case implementation is not yet automated.

2.6.4 Algorithm Selection

With the variety of existing optimization methods [30–32], it is often not clear which one

is the most suitable for which problem, and it becomes a challenge to select the one to be

applied to the given problem. The choice of a suitable optimization method for a given

problem depends on the type of the design space that this problem has. However, the

characteristics of the design space are not known in advance for real-world problems, and

can be explored by means of the optimization algorithms. Some useful and interesting

comments about this topic are provided in [28], calling this a “chicken and egg” problem.

Another important criterion to consider when choosing an optimization algorithm is

the design variables, the knowledge of the problem (local methods might work better than

EO) and the availability of the optimization code. Applying several optimization methods

to the same problem can give the confidence that the global optimum is found [98].

It is also important to justify the use of global optimization algorithms (the class

where EAs belong to) as opposed to local ones. Local optimization methods can find a

more accurate solution in a shorter time if applied to a problem with a single minimum.
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The existing knowledge of the problem is essential for the choice of the optimization

algorithm and for the decision whether global optimization is required or local will be

sufficient. An example when preliminary analysis shows that the problem has only a

single minimum can be found in [117].

2.7 Summary

Three state-of-the-art evolutionary optimization algorithms (PSO, CE and CMA-ES)

that will be applied to EM problems have been introduced. A review of the application

of these methods to antenna design problems with diverse requirements and comparative

studies on common benchmarks have been provided. The significance of probability-

based methods, such as CE and CMA-ES, is that they define a precise mathematical

framework for deriving fast and robust learning rules. Appealing features of the CE,

such as the exponential convergence rate and inherent ability to optimize mixed-variable

design problems, have been identified. The next chapter presents an application of PSO

to the design of an all-dielectric high-gain resonant cavity antenna.





What we once enjoyed and deeply loved we can

never lose, For all that we love deeply becomes

a part of us.

— Helen Adams Keller

Chapter 3

Application of PSO to the Design of

High-Gain Compact RCAs

Achieving high gain and broadband performance in a compact-size antenna is challenging

but desirable in many advanced wireless applications. This chapter addresses the issue of

designing compact resonant cavity antennas (RCAs) with increased boresight directivity

and radiation bandwidth for high-speed communication applications. The PSO algorithm

is applied in the design process to obtain the desired radiation characteristics.

3.1 Introduction to RCAs

Low-profile high-directivity antennas at microwave and millimeter-wave frequencies have

been an ongoing research topic for decades. Applications of these antennas include high-

speed wireless local area networks, satellite reception and various point-to-point radio

links [118]. RCAs, also called Fabry-Perot antennas, electromagnetic bandgap (EBG)

resonator antennas, partially reflective surface (PRS) antennas and leaky-wave antennas,

offer an appealing solution for the aforementioned applications. Their simple planar

configuration and highly directive radiation at boresight offer a more cost-effective option

than antenna arrays, which require feed networks that often are expensive and heavy.

Moreover, both linear and circular polarisation can be provided by RCAs [119].

The elementary geometry of an RCA is shown in Fig. 3.1. It consists of a primary low-

51
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Figure 3.1: Elementary geometry of an RCA along with its advantages and limitations

in comparison to other antenna types.

gain antenna, which serves the purpose of a cavity excitation, a ground plane and a PRS

placed at a resonance distance from the ground. The ground plane is usually just a fully

reflective metal screen, which can be considered as a perfect electric conductor (PEC).

The PRS is an all-dielectric, metallic or metallo-dielectric surface with tailored reflection

and transmission properties. In the first studies by Trentini [120] an open waveguide was

used as a primary antenna, and metallic strips with various separations were employed

as PRSs.

Afterwards, many geometries of RCAs have been devised that provide significantly

improved performance compared to their predecessor. Over time, PRSs underwent the

transformation from wires or strips to single-layered dense dielectric sheets, multi-layered

dielectric sheets, EBG materials, FSSs and, finally, metamaterials [121]. Gain enhance-

ment techniques by single-layer and multi-layer quarter-wavelength dielectric slabs were

described in [122–124]. In [125,126], the PRS was composed of periodically disposed cylin-

drical dielectric rods of high permittivity, and the measured antenna has 19 dB gain with

3% bandwidth. In earlier RCAs, resonant cavities with high Q-factors were used, which

resulted in narrow directivity bandwidths on the order of 0.1-3.0% [24, 127]. Over the

last decade, research efforts have been focused on methods of achieving high directivity
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in a wide radiation bandwidth, and several techniques have been proposed [128–130].

The performance of one-, two- and three-layer printed PRSs was studied in [118,131–

133], and a directivity of 20 dBi with 15% fractional bandwidth was achieved. However,

the high directivity of the three-layer PRS comes at a cost of high antenna profile. The

RCA with a decreased profile presented in [134] has a peak directivity of 19.52 dBi and

a fractional 3-dB bandwidth of 8%. The bandwidth was increased through the use of a

tapered printed surface as a PRS, and the height of the resonant cavity was reduced by

using an artificial magnetic conductor surface as a ground. The design in [129] further

increased the radiation bandwidth by using a complementary printed PRS, resulting in

a fractional 3-dB gain bandwidth of 28% with a peak gain of 13.8 dBi. Later, the au-

thors presented a design with two layers of dielectric slabs that has a fractional 3-dB gain

bandwidth of 25.8% with a peak gain of 15 dBi. A theoretical study by [135] demon-

strated the bandwidth enhancement of unprinted RCAs with a directivity of 17.5 dBi

and a fractional bandwidth of 18%. In [130], a three-layer dielectric RCA with 18.2 dBi

directivity and 22% fractional bandwidth was presented. The outstanding feature of the

antenna is that its area is only 1.5λ0 × 1.5λ0, which is much smaller than all previously

presented RCAs. Recently, [136] introduced superstructures with transverse permittivity

gradients (TPG), which provide extremely large directivity bandwidths, in the order of

50%. The antenna in [136] has a very small footprint area of 1.54λ2
0 and a measured peak

directivity of 16.4 dBi.

The latest advances in directivity-bandwidth enhancement of compact RCAs are sum-

marised in Table 3.1. We take the ratio of gain-bandwidth product per area (dB·%/λ2
0)

as a figure of merit for the comparison. It can be seen that [136] and [139] outperform

the previous solutions due to the large 3-dB gain bandwidths that were achieved.

3.2 Methods of Analysis

To predict the radiation performance of RCAs, four main analytical models have been

proposed. Based on different approximations, they have been used throughout the history
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Table 3.1: Recent advances in gain-bandwidth enhancement of compact RCAs.

Year Ref. Peak Gain 3-dB BW Side length Area GBP/Area

of publication (dB) (%) (λ0) (λ2
0) (dB·%/λ2

0)

2006 [137] 19.1 7 2.9 8.4 15.9

2010 [138] 18.7 15.4 2.2 4.84 59.5

2013 [135] 16.9 19.3 2.6 6.76 48.25

2014 [129] 13.8 28 2.4 5.8 66.6

2014 [130] 18.2 22 1.5 2.25 177.9

2016 [139] 17.15 51 1.62 2.06 424.6

2016 [136] 16.4 53 1.5 1.76 493.9

of RCAs’ development, partially due to the absence of accurate numerical methods and re-

quired computing power, and also for simplicity and time reduction of the analysis. They

are important for an understanding of the physical effects causing the high-directivity

properties of RCAs. Each model will be briefly discussed below.

3.2.1 Ray-Tracing Model

The first model applied for the analysis of RCAs resembles a Fabry-Perot cavity, shown

in Fig. 3.2, where two highly reflecting surfaces are replaced by a PRS and a perfectly

reflecting ground plane. The source is placed inside the cavity instead of outside [140].

While the reflection characteristics of the ground plane are independent of frequency,

i.e., ΓPEC = 1, φPEC = −π, for the PRS they depend on frequency. The cavity can be

excited by a small antenna such as a dipole, patch or open waveguide. The waves from

the primary radiator bounce in the created cavity, travelling outwards from the centre

and accumulating phase delays d. The transmitted power can be calculated by the

interference of the waves partially transmitted through the PRS, and the power pattern

can be represented by an analytical equation [118]:

P (θ) =
[1− R(θ)2]

1 +R(θ)2 − 2R(θ) cos[φ(θ)− π − 4πHcav

λ0

]
F (θ)2, (3.1)
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where R(θ)ejφPRS(θ) the complex reflection coefficient of the PRS as a function of θ, λ0

is the free-space wavelength, and F (θ) is the radiation pattern of the primary antenna.

The maximum power condition at boresight is then

φPRS + φPEC − 4πHcav

λ0

= 2Nπ, (3.2)

where φPEC and φPRS are the reflection phases of the ground plane and the PRS, respec-

tively, and N is an integer.

Figure 3.2: A simple ray-tracing model of an RCA.

Simple equations have been derived in [118] for the estimation of the gain enhancement

and half-power fractional bandwidth as functions of reflectivity:

GPRS =
1 + |ΓPRS|
1− |ΓPRS|

, BW =
λ(1− |ΓPRS|)
2πHcav

√
|ΓPRS|

. (3.3)

It was shown in [141] that the bandwidth and Q-factor of the cavity are related by

∆θ3dB,min ≈
√

2

Q
. (3.4)
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3.2.2 EBG Defect Model

With the advent of photonic band gap structures, the phenomenon of forbidden wave

propagation became a part of the state-of-the art research in electromagnetics. Although

the operational principle is the same as in photonics, these structures were named elec-

tromagnetic band gap (EBG) structures due to the different frequency of operation. The

EBG defect model was derived in [125, 126] to predict the performance of RCAs with

EBG structures as PRSs. By disturbing the periodicity in the EBG material lattice, a

localised transmission window is introduced within a forbidden frequency band. This

transmission window is characterised by a high spatial selectivity that forces the EM

field to propagate in a specific direction at the defect frequency [142, 143]. This results

in an increase of the effective aperture of the antenna, which is the reason for directivity

enhancement in EBG RCAs.

Fig. 3.3(a) shows the transformation from a 4-layer EBG material to an RCA with

a 4-layer EBG-PRS. A defect is introduced in the EBG material (two layers of εr1 and

two layers of εr2, where εr2 is usually air) by removing a dielectric slab from the centre.

Thus, if a PEC is placed at the image plane in the middle, an EBG resonator antenna can

be constructed with highly directive boresight radiation at the frequency of the defect

mode. The predicted transmission coefficient of the EBG structure constructed of lossless

dielectric materials with εr1=9.2, εr2=1 and t1 = h1 = 0.25λg that create a bandgap in the

frequency range 7–15 GHz is shown in Fig. 3.3(b). Also, a defect mode that is generated

at 11 GHz by removing the middle slab is shown. In the same figure, a wide defect mode

that is generated when t1 = 0.5λg is provided.

The defect-mode theory is applicable to RCAs under two assumptions. First, the

PRS is assumed to be infinitely large, and second, the superstrate is illuminated by a

normal-incidence uniform plane wave. Numerical analysis of the EBG defect model can

be realised using a waveguide-simulation method. The method predicts reflection and

transmission characteristics of a unit-cell EBG structure by illuminating it by an open-

ended waveguide and assigning perfect electric and perfect magnetic boundary conditions

around a unit-cell [144].
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(a) Transformation from a 4-layer EBG material to a 4-layer EBG resonator antenna.

(b) Transmission coefficient of a 4-layer EBG structure. Narrow and wide defect modes can be

created by manipulating the parameters of the periodic layers, such as εri, hi and ti, i = 1, 2.

Figure 3.3: The concept of the EBG defect model for the analysis of periodic RCAs.
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3.2.3 Transmission-Line Model

The transmission-line model for the analysis of RCAs with both all-dielectric and metallo-

dielectric superstrates has been described in [129,145,146]. The reflection and transmis-

sion characteristics of the PRS in Fig. 3.4 (top) can be predicted by considering an

equivalent circuit that represents the layered structure as a cascade of transmission lines.

Each layer can be represented by a transmission line with characteristic impedance, such

as Z0i = Zair/
√
εri. The reflection coefficient of the EBG PRS is equivalent to that at

the plane of Z3. In case of printed superstrates, the cascades of circuit elements L and

C represent metallic patches and slots in an equivalent circuit.

The transmission-line model is based on the assumption of uniform plane-wave il-

lumination and does not take into account the diffraction effects caused by the finite

superstrates.

Figure 3.4: A profile of a fully dielectric superstrate and its equivalent circuit [129].
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3.2.4 Leaky-Wave Model

A highly directive boresight radiation in dielectric RCAs was shown to be attributed to

the excitation of weakly attenuated leaky waves on the superstrate [123,124]. A radiated

power pattern described by the equation

R(θ) =
∣∣∣ cos θ

sin2 ζp − sin2 θ

∣∣∣
2

(3.5)

is predicted using scalar diffraction theory, where ζp is a ζ-plane angle. It is applicable

for the H-plane because the dipole pattern at this plane is identical to that for the two-

dimensional infinite line source. The radiation field can then be calculated from the

amplitude distribution of the leaky-wave on the layer surface. More recent studies of the

field distribution within the cavity showed the excitation of an even and odd mode in the

operating frequency band of the RCA [147–149].

The aforementioned models give accurate predictions only under certain conditions.

The assumptions that each of the models make put significant limitations on the param-

eters that can be extracted from the analysis [150]. Ray-tracing, EBG defect and the

leaky-wave model assume infinite lateral dimensions of the ground plane and PRS in at

least one direction. It will be shown later in this chapter that the diffraction from the

edges significantly contributes to the directivity and radiation bandwidth of the compact

RCAs. Moreover, none of the analytical models predict the input impedance of RCAs,

which in practice must be matched to the feed network. Therefore, in order to base the

optimization on accurate predictions, the full-wave numerical analysis of the complete

RCA models is considered.

3.3 PSO Implementation Details

The principle of the PSO algorithm has been described in Chapter 2. We implemented

its classic version for continuous variables [55] in order to optimize several designs of

compact RCAs. Particularly, the parameters of TPG superstrates have been optimized,

while the dimensions of the feed antenna and the ground plane have been kept constant.
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PSO has been chosen for this optimization problem because, as shown in Chapter 2, it

is an easily implemented and robust method for optimization problems with continuous

variables. The pseudocode for PSO is given in Fig. 3.5. For each optimization case, the

input parameters include the minimal and maximal bounds of each design parameter

and the maximum number of iterations Nit, which must be specified when the decreasing

inertia weight is used, even if another stopping criterion is defined. Depending on the

dimension of a problem, Nit can be from 30 to 100 000, and it must be large enough to

ensure proper exploration of the design space in all dimensions.

Figure 3.5: Pseudocode for particle swarm optimization.

Instead of using analytical models to evaluate the fitness function of each design,

an EM simulator has been used. The integration of the optimization algorithm and

CST Microwave Studio (MWS) was organized as described in Appendix A. Different

fitness functions were considered in order to examine the potentially attainable gain and
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bandwidths of RCAs with TPG superstrates. To reduce the computation complexity,

a cavity excitation by an infinitely small horizontal electric dipole (HED) was assumed,

and the symmetry of the RCA was utilised.

The optimization time can be significantly reduced by using high-performance com-

puting (HPC). It is due to the parallel nature of searching agents in population-based

optimization algorithms that the fitness evaluations can be performed in parallel. Thus,

ideally, the overall optimization time depends only on the number of iterations that is

required for an algorithm to converge. However, for low-mesh geometries (< 800 000 hex-

ahedrons), the job allocation and scheduling to the computing nodes in CST MWS is as

time-consuming as the evaluation of one candidate and, therefore, the actual time reduc-

tion is less than expected. For low-mesh geometries, another method has been found to

reduce the total optimization time by a factor of four. Instead of sending the models

for a simulation separately, fitness function evaluation of the full batch of candidates can

be performed by a parameter sweep (Appendix A). Table 3.2 illustrates that the total

optimization time decreased by a factor of four compared to the case when each model is

simulated by a separate software call. The reason for this higher computation efficiency

is that the CST MWS environment is launched only once for the entire population, thus,

less time is spent on intermediate processes. Simulation results are then written into a

single ASCII file by a user-defined watch within CST MWS.

Table 3.2: Simulation-time reduction using parameter sweep.

Without parameter sweep Using parameter sweep

One model evaluation 4 min 4 min

time (1 simulation)

Population evaluation 1 hour 14 min

time (15 simulations)

Total optimization 20 hours 4.5 hours

time (300 simulations)



62 Chapter 3. Application of PSO to the Design of High-Gain Compact RCAs

3.4 Wideband RCAs with Dielectric Superstrates of

Concentric Sections

3.4.1 Uniform-Superstrate Compact RCA

To provide a basis for the comparison of optimized designs, a classical single-layer RCA

with a uniform dielectric superstrate of thickness t and diameter D is considered. A

fully-reflective ground plane of the same diameter D is placed at the cavity distance

Hcav from the superstrate. The cavity is excited by an infinitesimal HED, that is, an

equivalent numerical model of a theoretical Hertzian electric dipole. The RCA model is

shown in Fig. 3.6 with fixed parameters Hcav = 0.5λ0 = 12 mm, D = 2λ0 = 48 mm,

t = 0.25λg = 0.25λ0/
√
εr at the operating frequency of f0=12.5 GHz. With increasing

permittivity of the superstrate εr, its reflectivity increases, which, as analytical models

predict, increases the directivity of the RCA. It was explained in [150] that the directivity

bandwidth cannot be predicted using any of the aforementioned analytic models.

Figure 3.6: Simplified RCA model with HED cavity excitation.

Fig. 3.7 shows the boresight directivity in the band 11–15 GHz for an RCA with a

uniform quarter-wavelength dielectric slab with εri = {2; 3.8; 5.6; 7.4; 9.2; 11; 12; 20; 40}.

For comparison, the boresight directivity of a classical RCA of 6λ0-diameter with εr=9.2 is

also provided. Table 3.3 provides a summary of the peak directivity, half-power fractional

bandwidth (3-dB bandwidth) and directivity-bandwidth product resulting from varying

the superstrate permittivity. The ideal source antenna above the ground has a spherical
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Figure 3.7: Boresight directivity of an RCA with a single-slab superstrate, dielectric

constant of the the slab εri = {2; 3.8; 5.6; 7.4; 9.2; 11; 12; 20; 40} , i = 1, 2, ..., 9.

radiation pattern with maximum directivity equal to 8.5 dBi at boresight. When a

superstrate of permittivity 2 6 εr 6 11 is placed at a resonance distance above the

source, the boresight directivity increases to 12.3 dBi for the lowest permittivity and to

17.1 dBi for the highest permittivity. For permittivity εr > 11, the increase in the peak

directivity is almost negligible. Therefore, to reduce the cost of the designs, commercially

available materials of permittivity less than 11 will be considered for optimization. The

3-dB bandwidth of this RCA varies in the range 21.5–28.5%.

Table 3.3: Radiation characteristics of the RCA with a quarter-wavelength dielectric

superstrate of diameter D = 2λ0, λ0=24 mm.

εr t f0 Dirf0 Dirpeak BW BW DBP

(mm) (GHz) (dBi) (dBi) (GHz) (%) (dBi·%)

2 4.2

12.5

12.24 12.3 3.62 28.3 348.09

3.8 3.1 14.45 14.8 3.45 25.7 380.36

5.6 2.5 15.35 16.2 3.54 26.4 427.68

7.4 2.2 15.58 16.2 3.79 28.5 461.7

9.2 1.9 15.56 16.9 2.95 21.5 363.35

11 1.8 15.45 17.1 3.14 23.6 403.56

20 1.3 15.9 17.1 3.18 24.8 424.08

40 0.9 16.1 16.9 3.52 27.0 456.3
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3.4.2 Design I: Ten-Sectional Superstrate

Very few RCAs have previously been optimized using evolutionary optimization meth-

ods [24],[151]. In [24], a superstructure based on a printed double-sided frequency-

selective surface was designed using a microgenetic algorithm with the goal of achieving

a high-Q resonant cavity. A result of 22.15 dBi peak gain over a narrow frequency band

was achieved. In [151], a real-value coding hybrid genetic algorithm was applied to design

an RCA for a mobile base station by optimizing the dimensions of square patches and

loops on its double-sided superstructure. A peak gain of 13.8 dBi and a 10% 3-dB gain

bandwidth was reported.

The design in [152] has a flat superstrate and offers a large directivity bandwidth. For

the objective of higher peak directivity in a compact-size wideband RCA, we optimize

the geometry shown in Fig. 3.8 with a dielectric single-layer superstrate consisting of ten

concentric annular sections.

Figure 3.8: Cross-sectional view of the optimized RCA with D = 48 mm = 2.2λ0,

Hcav = 11 mm, λ0 = 22 mm.

The antenna model to be optimized consists of a PEC ground plane, a flat dielectric

superstrate and an HED as a feed. The superstructure is 2.2λ0 in diameter and consists

of ten concentric dielectric sections of equal width. The design vector includes ten per-

mittivities and the superstrate thickness: x = (εri, t) , i = 1, 2...10 with the boundary

constraints εri = [2; 11] for permittivities and t = [2; 6] mm for the superstrate thickness.

The objective function is an important figure of merit, which determines the solution
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that will be reached by the algorithm. In order to achieve higher peak directivity while

keeping the bandwidth reasonably large, the objective function was defined as a sum of

the directivity at three particular frequencies given by

F.F. =

3∑

i=1

Dir(fi), (3.6)

where Dir(fi) is the boresight directivity at the ith frequency and f1 = 16 GHz, f2 =

16.8 GHz, f3 = 17.6 GHz. This choice of frequencies in the objective function was found

to be useful in extending the bandwidth.

The algorithm converged after 15 generations of 20 agents. The boresight directivity

and side lobe levels (SLLs) of the optimized design are shown in Fig. 3.9. The peak

directivity and 3-dB directivity bandwidth are 19.1 dBi and 24%, respectively. It is

similar to the result in [130], but the superstructure is much thinner and employs only

one layer. As compared to [152], the peak directivity is improved by 1.5 dBi. The SLLs

remain lower than –20 dB for the H-plane and –25 dB for the E-plane in the frequency

Figure 3.9: Boresight directivity and side lobe levels of the optimized RCA.



66 Chapter 3. Application of PSO to the Design of High-Gain Compact RCAs

range from 14 to 16 GHz. However, the SLL increases to –7 dB at the high edge of the

operating frequency band. Although the increase in SLLs is common for many RCAs, it

comes at the expense of reduced effective bandwidths.

The optimized superstrate has the parameters

εri = (11, 11, 11, 11, 11, 6.9, 11, 2, 8.7, 6.5); t = 4.2 mm. (3.7)

The optimized permittivity profile of the superstrate is shown in Fig. 3.10. It can be seen

that the permittivity in the centre is high but decreases non-linearly towards the edges.
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Figure 3.10: Permittivity profile of the optimized RCA with ten-sectional superstrate.

Compared to an RCA with a uniform superstrate of εr = 11, t = 4.2 mm, which

has peak directivity and 3-dB bandwidth equal to 17 dBi and 16%, respectively, the

performance of the optimized RCA is superior. As shown in Fig. 3.11, the peak directivity

is 19 dBi and the 3-dB bandwidth is 24%. This is higher than for the design presented

in [130] in addition to the advantage of the thinner profile.

The limitation of the ideal feed used for the cavity excitation is that the impedance

matching of the antenna cannot be calculated. Therefore, in the next section, a real feed

antenna will be considered.
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Figure 3.11: Boresight directivity comparison of the optimized RCA and a non-

optimized RCA with a uniform superstrate.

3.4.3 Design II: Four-Sectional Superstrate

In order to achieve a wider bandwidth from the compact RCA with the flat superstrate

made of concentric sections, a different approach is taken in the formulation of the fitness

function. A directivity-bandwidth product (DBP), calculated as the product of a peak

directivity (in dBi) and half-power bandwidth (fractional bandwidth in %), is maximized.

Assuming that a peak directivity appears at any frequency between 10 and 20 GHz,

we evaluate the boresight directivity in this band with a 0.2 GHz frequency step and

then find the values of the peak directivity and half-power bandwidth. The objective of

optimization is then to maximize the following fitness function:

F.F. = max

(
DirdBi

(
f ∈ [10− 20GHz]

))
· 200

(
fh − fl

)
(
fh + fl

) , (3.8)

where the peak directivity is multiplied by the fractional 3-dB directivity bandwidth

(in %) calculated using the lowest fl and the highest fh frequencies of the band. The

peak directivity is found from the DirdBi curve using ‘max’ operator in MATLAB.
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Figure 3.12: (a) A slot with dimensions (Ws, Ls). (b) Cross-sectional view of the RCA

with D = 48 mm=1.85λ0, t = 6.35 mm, Hcav = 13 mm, λ0 = 26 mm.

The geometry of the optimization problem is shown in Fig. 3.12. A slot with the

dimensions (WS, LS) = (9, 12.5) mm is cut in a ground plane and excited by a rectan-

gular waveguide. As the slot parameters mostly affect the input impedance matching

and not the boresight directivity, its dimensions are not considered in the optimization.

The optimization goal is to find the optimal permittivity distribution in an all-dielectric

superstrate made out of four concentric sections of equal widths with overall diameter

equal to 48 mm, which is ≈ 1.85λ0, λ0 = 26 mm. Therefore, the parameter vector for

optimization is given by x = (ε1, ε2, ε3, ε4).

Six sequential optimization trials were performed to keep a reasonable trade-off be-

tween the statistical certainty of performance and the computational cost. For every

trial, a population of 15 particles was optimized for a maximum of 20 iterations. The

approximate time required per simulation on an Intel Core i7-4790 processor and 32 GB

of memory was 4 minutes. Following the guideline given in Chapter 2, acceleration con-

stants were chosen to be c1 = c2 = 1.49, and the inertia weight gradually decreased from

0.9 to 0.1. The evolution of the swarm for one of the optimization trials is shown in

Fig. 3.13, and the results of six optimization trials in the same order as obtained by PSO
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are summarized in Table 3.4 (given at the end of Section 3.4.3).

The maximum value of the objective function formulated in Eq. (3.8) is 911.87 dBi*%.

It is interesting to note that there are only two significantly distinct designs, i.e. the one

with mean(x1)=(10, 10, 6.7, 3.32) and another with mean(x2)=(9.6, 7.14, 4.59, 2.1),

where x1 and x2 represent the average parameter vectors of two noticeable clusters of

solutions. The three out of six times optimizer gave the same suboptimal result, with an

average DBP of around 875 dBi*%, which leads us to the conclusion that this is a high

local maximum, where PSO was trapped. Three other times the solutions varied around

mean(DBP) = 910 dBi*%.
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Figure 3.13: Evolution of the swarm of 15 particles over 20 iterations for one of the

optimization trials.

The input impedance matching, given in Fig. 3.14, shows that the reflection coefficient

is less than –10 dB for the majority of the frequency band of interest and rises to –7 dB

around the resonance frequency of the cavity, which is a common issue in the RCAs.

The impedance improvement was out of the scope of this study, but can be achieved by

fine-tuning WS and LS of the rectangular slot that feeds the cavity.
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Figure 3.14: Input impedance matching of the four-sectional RCA (Design II).

The movement of the particles in the solution space for two distinct solutions is

shown in Fig. 3.15 (a) and (b), respectively. Each figure contains 300 points representing

a solution f̂(xg=j
i ), where i = 1...15 is a particle number, and j = 0...20 is an iteration

number. As the fitness function contains two objectives, each point provides information

about the peak directivity and 3-dB bandwidth. Initially, the particles were generated

randomly and, therefore, their fitness is low (shown in green). However, with every next

iteration, the population moved to better positions with higher fitness values. The plot

emphasises the particles at g = 10 (cyan) and at the final iteration g = 20 (red).

Fig. 3.16 provides an enlarged view of the solutions reached at the last iteration. It

can be seen that there is a trade-off between peak directivity and bandwidth which forms

a Pareto front, and the solutions with the highest fitness function are concentrated on

it. It can be concluded that if larger bandwidths are not required from the RCA but,

instead, designs with higher peak directivity are preferable, the fitness function should be

adjusted to prioritise one objective over another. One way to prioritise peak directivity

over bandwidth in the calculation of DBP will be described in Chapter 4.



3.4 Wideband RCAs with Dielectric Superstrates of Concentric Sections 71

(a) (b)

Figure 3.15: Illustration of two full optimization runs emphasizing f̂(xg=0
pop ) (green),

f̂(xg=10
pop ) (cyan) and f̂(xg=20

pop ) (red).

Figure 3.16: Enlarged view of the trade-off between the peak directivity and 3-dB

bandwidth provided by an RCA with a four-sectional all-dielectric superstrate.

The best optimized antenna design is Solution 3 with a peak directivity of 18.3 dBi

and bandwidth of 49.8%. Although stochastic optimization methods never guarantee

convergence to the global maximum, the repeated trials suggest that the best solution

found is most probably near-optimal, and no significantly better solution can be found.
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We note that for a maximum DBP of the RCA, two central sections of the super-

structure should have equally high permittivities, and starting from the middle of the

superstrate a permittivity gradient is required. The effect of decreasing the permittivity

towards the edge of the slab is similar to what tapered printed superstructures provide,

which results in improving the distribution of the E-field on the aperture while maintain-

ing strong reflections in the middle region of the cavity. Particularly, the phase of E-field

at every point above the superstrate lies between 0 and 90◦, creating an effective in-phase

aperture [136]. It can be seen in Fig. 3.17 that the phase difference is less than 90◦ in the

area covering the entire superstrate for the frequencies 10–18 GHz, and increases slightly

towards the edge of the superstrate at 19 and 20 GHz.

Figure 3.17: E-field phase distribution probed 3 mm above the optimized supersrate of

the four-sectional RCA (Design II).
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Table 3.4: Results of six sequential optimization trials of the design problem given in Fig. 3.12.

Solution 1 Solution 2 Solution 3 Solution 4 Solution 5 Solution 6

ε1 10.00 9.81 10.00 9.47 9.99 9.52

ε2 10.00 7.17 10.00 7.14 9.27 7.12

ε3 7.24 4.61 6.60 4.64 6.28 4.52

ε4 3.36 2.00 3.03 2.32 3.57 2.00

Peak Directivity, dBi 18.61 17.20 18.30 16.99 18.52 17.10

Directivity Bandwidth, % 48.75 51.00 49.84 51.71 49.20 51.14

DBP, dBi*% 907.28 874.58 911.87 878.77 911.05 874.40
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3.4.4 Design III: Three-Sectional Superstrate

An RCA with a three-sectional superstrate has been optimized for maximal DBP. The

reduction in the number of sections as compared to the previous design problems is for

fabrication simplicity. The configuration of the RCA with overall diameter D=48 mm

and cavity height Hcav=12 mm is shown in Fig. 3.18. The thickness of the superstrate

is fixed at t=10 mm. The cavity is fed by a rectangular slot of length Ls=12 mm and

width Ws=9.525 mm.

The classic version of PSO with decreasing inertia weight described in Section 2.2.1

has been implemented to optimize the permittivity distribution in the superstrate, i.e.

(ε1, ε2, ε3), where each variable is bounded between εmin=2 and εmax=11. As the opti-

mization problem has only three variables, the population size is reduced to 7 particles

with the stopping criterion of a maximum number of iterations equal to 30.

The optimization goal was to maximise the product of peak directivity (linear scale)

and 3-dB directivity bandwidth (%), expressed as

F.F. = 10(DirdB/10) · BW%. (3.9)

To evaluate the fitness of each design, the boresight directivity was calculated in the

frequency band 12–26 GHz with a 0.1 GHz step. The approximate time required to

complete a full optimization run is 9 hours on an Intel Core i7, 3.6 GHz processor with

32 GB of RAM. From the convergence curve shown in Fig. 3.19, it can be seen that the

optimal design was found at the 17th iteration. The optimal design vector consists of

the following permittivity values:

x∗ = (ε1, ε2, ε3) = (7.26, 5.2, 3.16).

The boresight gain and the parameters (inset) of the best RCA design found by PSO

is shown in Fig. 3.20. For comparison, the gain of the slot antenna fed by a waveguide

is shown in the graph. The value of the best fitness function is DBP=5526.79, which is

calculated using Eq. (3.9). The RCA’s peak gain is 19.78 dB and the 3-dB gain bandwidth

is from 13.7 to 24.1 GHz, which is a 58% fractional bandwidth.
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Figure 3.18: Cross-sectional view of the RCA structure with three-sectional TPG su-

perstrate: (ε1, ε2, ε3)=(7.26, 5.2, 3.16), t=10 mm. Hcav = λ0/2, D = 2λ0, λ0 = 24 mm.

Figure 3.19: Convergence curve for the completed optimization run. Objective function

is given in Eq. (3.9).
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Figure 3.20: Boresight gain of the optimized RCA in comparison with a slot antenna in

the ground plane, D=48 mm. Inset provides the parameters of the optimal RCA design.

The impedance bandwidth covers well the gain bandwidth, as shown in Fig. 3.22, with

|S11| < −8.5 dB. The voltage standing wave ratio (VSWR) in this frequency range is

below 2.2. Radiation patterns at five frequencies in both planes are provided in Fig. 3.21,

and it can be seen that SLLs in the entire bandwidth are below –14 dB.

Compared to the RCAs with four-sectional superstrates and thickness t = 6.35 mm

(Section 3.4.3), the optimized antenna with three-sectional superstrate and thickness

t = 10 mm has a higher value of DBP. In [136], parametric studies on TPG superstrates

showed that with thick superstrates of up to t = λ0/
√
εr a peak directivity of 19.1 dBi

can be obtained using a nine-sectional superstrate, where ε is the permittivity of the

innermost section in the TPG superstrate. The maximum peak directivity of 16.7 dBi

was obtained from a three-sectional superstrate in [136] using manual search methods.

This is 3 dB lower than that of the optimized design presented here.
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Figure 3.21: Normalized radiation patterns of the optimized high-gain wideband RCA

in the E- and H-planes at five frequencies within the bandwidth.

Figure 3.22: Input impedance matching of the four-sectional RCA (Design III).
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The spatial E-field phase distribution above the superstrate at frequencies 14, 16, 18,

20, 22 and 24 GHz is given in Fig. 3.23. It can be seen that compared to the previous case,

this superstrate (which is significantly thicker) generates less than 100% effective in-phase

aperture as defined in [136]. The cross-section view of the superstrate has been overlapped

with the E-field phase distribution to observe the radial distance where the phase changes

its value. It can be noticed that in the middle of the superstrate the phase is within 90◦.

The phase is below −90◦ for the middle and outer dielectric sections. In this design, the

100% in-phase aperture might not been achieved due to the low level of discretization

of this superstrate and its large thickness. The high value of the directivity-bandwidth

product might be due to the diffraction from the edge of the superstrate. This is arguably

one of the advantages of optimization-generated designs that a high-performing solution

can be obtained without understanding of the physics of the problem.

Figure 3.23: E-field phase distribution above the optimized supersrate of the three-

sectional RCA (Design III).
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3.5 Extremely Wideband RCA With a Slot Feed

An RCA with a ten-sectional superstrate and an HED for cavity excitation has been

presented in Section 3.4.2, with a peak directivity of 19 dBi and a 3-dB bandwidth of

24%. In this section, an RCA with a ten-sectional superstrate and a real feed antenna is

optimized with the goal to maximize the DBP in the frequency band 10–23 GHz.

3.5.1 Design Parameters and Objective

Figure 3.24: Cross-sectional view of the RCA with a superstructure from concentric

dielectric sections of width w = 0.086λ0, D = 1.7λ0, t = 0.3λ0, Hcav = 0.5λ0, λ0=28 mm.

Fig. 3.24 shows an RCA with a cavity fed by a rectangular slot of dimensions 14× 9.5 mm

in the middle of a circular metal ground plane of diameter D = 1.7λ0, λ0 = 28 mm. The

superstrate is a dielectric slab of thickness t composed of ten subwavelength concentric

sections, each of width w. The elements of the superstructure have a permittivity εi,

i = 1, 2, ...10, where ε1 is the permittivity of the central disk. The width of each dielec-

tric section in the superstrate is w=2.4 mm, which is 0.086λ0. Such a fine discretisation

of the superstrate eliminates the need to control the width of each section and adds

flexibility to the optimizer to find a possibly better solution.

This optimization problem has 11 variables. In order to find the optimal vector of

parameters in the superstrate with the design variables

x = (ε1, ε2, ..., ε10, t),
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as before, a classic PSO with decreasing inertia weight [62] has been applied. The con-

straints have been defined as

2 ≤ (ε1, ε2, ..., ε10) ≤ 10,

4 ≤ t ≤ 14 mm, (3.10)

SLL(E,H) < −10 dB,

where SLL(E,H) is the first side lobe level in both principal planes. The optimization goal

is to maximise the expression given in Eq. (3.9) in the frequency band 10–23 GHz.

3.5.2 Results and Discussion

The parameters of the optimal solution obtained after 30 generations of the swarm of

20 particles are ε∗i=1...10 = (10, 10, 7.6, 6.9, 10, 5.4, 5.7, 7.4, 2, 4.67), t∗ = 8.6 mm. The

boresight directivity, shown in Fig. 3.25, has a maximum value of 18.4 dBi, and its 3-

dB bandwidth extends from 10.7 to 22.4 GHz. The peak gain and bandwidth of the

optimized RCA are 17.6 dB and 70%, respectively. The optimized antenna produces

the largest bandwidth ever obtained by an RCA. Such an extreme bandwidth has been

achieved with the diameter of the the antenna as small as 1.7λ0.

The input impedance matching, given in Fig. 3.26, shows that the reflection coefficient

is less than –10 dB between 10 and 19.2 GHz, which is the majority of the frequency

range of interest, but rises at higher frequencies. The goal of impedance matching can

be included in the fitness function along with adding the slot dimensions in the design

variables in order to ensure an overlap of the radiation and impedance bandwidths, but

that was out of the scope of this study.
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Figure 3.25: Boresight directivity and gain of the optimized RCA.

Figure 3.26: Input impedance matching of the optimized RCA.
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As suggested in [136], the reason for large directivity bandwidths in compact RCAs

is the uniformity of the E-field phase distribution. An effective in-phase aperture was

defined in [136] as the aperture within which the phase difference ∆ϕ ≤ 90◦. The E-

field phase distribution on the aperture located λ0/9=3 mm above the superstrate of the

optimized RCA is given in Fig. 3.27. It can be seen that the effective in-phase radius

coincides with the entire superstrate, resulting in a 100% in-phase aperture. For the

clarity of the figure, the phase distributions at 12, 14, 16, 18, 20 and 22 GHz are shown,

but the phase difference is less than 90◦ for all frequencies in the band 11–22 GHz. The

results suggest that the extremely wide 3-dB directivity bandwidth of 70% has been

achieved by finding an optimal permittivity distribution in the superstrate that produces

a uniform aperture phase distribution in a wide frequency band.
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Figure 3.27: E-field phase distribution probed 3 mm above the optimized supersrate of

the extremely wideband RCA.

As opposed to the RCA with a three-sectional superstrate, this superstrate has much

higher level of the discretization of permittivity. Also, the optimal permittivity profile of

this superstrate does not demonstrate a gradual decrease of permittivity from the centre

of the superstrate towards the edges as suggested in [136]. It may only be important that

the spatial phase distribution lies within 90◦. Since materials with the dielectric constants

required for building the prototype of the optimized RCA are not commercially available,
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either additive manufacturing or artificially engineered materials [153] can be used for

realisation of the design.

The radiation patterns at six frequencies within the directivity bandwidth are shown

in Fig. 3.28. It can be seen that the patterns remain directive throughout the operating

frequency range 10.7–22.4 GHz with the SLL(E,H) less than –10 dB. The front-to-back ra-

tio, which becomes significant at the frequencies 18–22 GHz, can be reduced by increasing

the size of the ground plane without affecting other parameters.

Figure 3.28: Normalised radiation patterns of the optimized RCA at six frequencies

within the operating frequency range.
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3.6 Summary

Novel RCAs offer attractive properties for microwave and millimetre-wave wireless com-

munication systems. High gain, compact size and simple configuration make them an

appealing alternative to the conventional solutions such as parabolic antennas, horns and

arrays. In this chapter, a number of RCAs with different radiation characteristics and

design complexity have been presented.

Fig. 3.29 summarises the designs proposed in this chapter in the order in which

they have been presented. The designed RCAs have very small footprints with di-

ameters of 1.7–2.2λ0 and superstrate areas of 2.27–3.8λ2
0. Cavities of different height

(Hcav = 11, 12, 13 and 14 mm) have been investigated, and from the optimized results it

can be seen that Hcav corresponds to f1 of the half-power directivity bandwidth. All opti-

mized RCAs demonstrate further improvement in radiation performance, along with the

advantages, as compared to recent advances in the development of wideband high-gain

RCAs, of a single planar unprinted superstrate. Taking DBP per unit area (DBP/A) as a

figure-of-merit for the comparison, the best performance is provided by the ten-sectional

RCA with a peak gain of 17.6 dB and a 3-dB bandwidth of 70%. This extremely wide-

band and directive radiation performance can be especially useful for building high-speed

wireless backhaul networks.

A disadvantage of PSO is that it operates with continuous variables and, therefore,

yields permittivity values not available from off-the-shelf dielectric materials. Potentially,

some dielectric materials can be obtained using additive manufacturing technology. How-

ever, it is desirable to have an optimization method that operates with discrete variables

and produces a design containing the materials from the list of RF laminates at hand.

In the next chapter, an optimization approach based on the CE method will be proposed

for problems with both continuous and discrete variables.



3.6
S
u
m
m
ary

8
5

Figure 3.29: Summary of the RCA design parameters and their performance characteristics presented in this chapter.





The secret of change is to focus all of your

energy not on fighting the old, but on building

the new.

— Socrates

Chapter 4

CE Method for EM Optimization

With Constraints and Mixed

Variables

A brief introduction to the CE optimization method was given in Chapter 2. In

this chapter, the basic principle of the CE method is described from the perspective

of its application to real-world EM engineering problems. Then, a novel approach to

optimization of designs with constraints and mixed variables is proposed. It is then

interfaced with a full-wave EM solver in order to improve the performance of compact

RCAs with single-slab all-dielectric TPG superstrates. Commercially available dielectric

materials and real-world constraints are considered in optimization.

The main contribution of this chapter is a new, elegant, yet simple approach for

the optimization of EM structures with mixed variables and constraints using the CE

method. To the best of the author’s knowledge, this is the first time the CE method has

been coupled with full-wave simulations. This is also the first time it has been used to

optimize mixed-variable constrained EM design problems.

The material in this chapter is published as: M. Kovaleva, D. Bulger, B. A. Zeb and K. P. Esselle,

“Cross-Entropy Method for Electromagnetic Optimization With Constraints and Mixed Variables”, in

IEEE Transactions on Antennas and Propagation, vol. 65, no. 10, pp. 5532-5540, Oct. 2017.

87



88 Chapter 4. CE for Optimization With Constraints and Mixed Variables

Figure 4.1: Flow chart of a common general approach to optimization of constrained

antenna design problems [154].

4.1 Introduction

Electronic and EM engineering designs frequently make use of commercially available

elements, such as electronic components and dielectric RF laminates. For example, resis-

tors, inductors and capacitors are available in standard values, and dielectric materials are

sold in specific thickness and permittivity values. From the optimization point of view, a

problem containing variables that can only take specific values (as opposed to any value

from an interval) is called a discrete or combinatorial optimization problem. EM opti-

mization problems can consist of only discrete variables, but more often they include a

combination of both types of variables, i.e. discrete and continuous. Problems with both

continuous and discrete variables are called mixed-variable or mixed-integer optimization

problems. There are many designs of microwave components, such as waveguides, filters

and antennas, which fall into this category. Particularly, antenna design examples in-

clude microstrip patch antennas, dielectric horn antennas, lens antennas, wire antennas

and dielectric resonator antennas, to name a few.

The overall dimensions of many modern antenna designs are constrained by space

limitations. To ensure that the optimized designs are within the space requirements,

the constraints have to be taken into account. The most common approach to solving
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constrained optimization problems is to use a penalty function (Fig. 4.1). It has to be im-

plemented because most optimization methods cannot intrinsically generate populations

of designs that are located within the imposed constraints. Therefore, the constrained

problem is transformed to an unconstrained problem, and constraints are handled out-

side the algorithm update procedures by penalising the designs that violate them. A

similar approach is an “acceptance-rejection method”, which also results in inefficient

optimization schemes [155].

Constraints and mixed variables pose a significant challenge for the current opti-

mization algorithms available for EM problems. In terms of design parameters, Genetic

Algorithms (GAs) and Ant Colony Optimization (ACO) handle discrete variables intrin-

sically, while most other algorithms, including the popular Particle Swarm Optimization

(PSO), Differential Evolution (DE), Cuckoo Search (CS), Invasive Weed Optimization

(IWO) and Evolutionary Strategies (ES), were originally developed for problems with a

continuous domain.

4.2 Optimization Approach using the CE Method

The first application of the CE algorithm to EM problems was in antenna array syn-

thesis in 2008 [87], and little research has been done since then on its application to

other EM problems [88–90, 93, 156]. However, all previous applications were based on

closed-form expressions, and no simulation-driven optimization using the CE method has

been reported. It has been discussed in Section 2.6.3 that full-wave analysis is a standard

approach nowadays, and, therefore, to make the CE method useful for practical applica-

tions, it has to be tested in a real-world environment. The advantage of the CE approach

is its fast convergence and the adaptive update procedure, which makes it inherently

capable of optimizing mixed-variable and constrained problems in a much simpler way

than hybrid real-binary techniques, such as [44, 46–48, 50].
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4.2.1 Convergence Properties of the CE Method

The CE method is a stochastic optimization technique based on minimizing the cross-

entropy (or Kullback-Leibler divergence) between probability distributions to solve dif-

ficult multi-modal, multi-objective optimization problems. The idea of the optimizer

evolved from a method to estimate the probability of rare events. Detailed explana-

tions and possible modifications of the CE method can be found in Chapter 2 and in

the literature [157]. Recent studies [158] have shown some similarities between the CE

approach and the ACO and Estimation of Distribution algorithms, all of which belong to

a model-based search paradigm. These methods differ from traditional heuristics in that

they adjust a solution-reproducing mechanism instead of directly manipulating solutions.

Recent stochastic runtime analyses show excellent runtime results and asymptotic con-

vergence properties of the CE method [94, 159]. Below, the CE algorithm will be briefly

discussed from the standpoint of its application to practical optimization problems.

4.2.2 Basic Principle of the CE Method

In statistics, the probability distribution of a random variable x is a description of the

probability of each possible value, or range of values, that x could take. This probability

is specified by the probability density function (PDF) p(x; v), where v is a vector of shape

parameters identifying the distribution within the family. For instance, the well-known

normal (Gaussian) distribution of a random variable x ∈ R is characterised by its mean

µ and variance σ2, and its PDF is expressed as:

p(x; v) =
1

σ
√
2π

e−(x−µ)2/2σ2

, v = (µ, σ2). (4.1)

At each iteration, CE produces new solutions by sampling from the PDF. In any

specific implementation of the CE method, only a finite-dimensional family of probability

distributions is used, and it is often called a model. CE aims to produce a sequence of

sampling distributions that are increasingly concentrated around the optimal design.

The choice of a probability distribution family in the CE method strongly depends on

the nature of the design variables. For optimization problems with continuous variables,
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normal and beta distribution families can be used to generate possible solutions. As

discussed previously, the beta distribution, which has the PDF given by:

B(x; v) =
xα−1(1− x)β−1

∫ 1

0
xα−1(1− x)β−1 dx

, v = (α, β), (4.2)

is particularly useful in describing continuous bounded variables. Fig. 4.2 demonstrates

how shape parameters affect the PDF of a variable enclosed in an interval [–10, 10]. For

optimization problems with discrete variables, discrete probability distribution families

such as binomial, Poisson, Bernoulli, discrete uniform and geometric can be applied.

For optimization problems with mixed variables, consisting of both discrete and contin-

uous parameters, a combination of appropriate distribution families can be used. Thus,

optimization of mixed-variable problems is intrinsic in the CE method.

Let us consider an engineering optimization problem where we wish to determine the

values of several design variables in order to optimise some user-defined performance mea-

sure called the fitness function. As with any other evolutionary optimization method, the

CE evaluates batches of designs at a time, called populations. Each population consists

of N designs, called candidates. Each candidate is characterised by the vector of design

Figure 4.2: Beta distribution PDF of a random variable bounded between [–10, 10] for

various shape parameters (α, β).
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Figure 4.3: Illustration of selection and evaluation procedure in the CE method. The

figure shows the first four iterations in the optimization of the univariate Ackley test

function, with PDF shown on the left and fitness function on the right.
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variables x = (x1, x2, ..., xd), where d is the number of variables or the problem dimen-

sionality. Each candidate should be evaluated, usually by simulation, to calculate its

fitness function. Thus, the total number of function evaluations in a complete optimiza-

tion process equals the number of candidates N multiplied by the number of populations

that is required to achieve the defined goal.

Optimization of the univariate (1D) Ackley test function is illustrated in Fig. 4.3. The

algorithm is initialised by selecting the first population of N candidates from the initial

sampling distribution p(x; v0). It can be seen that the initial beta distribution (left-hand

side in Fig. 4.3) with v0 = (1, 1) is used to characterise the continuous variable x bounded

between –15 and 15. Subsequently, the initial population is created by randomly sampling

N candidates from p(x; v0). The performance of every candidate is evaluated according

to the fitness function f(x), and the Nel best candidates are selected (right-hand side in

Fig. 4.3) as the elite subpopulation. Depending on the type of the optimization, whether

it is a maximisation or minimisation problem, the fitness values are sorted in descending

or ascending order, respectively. The elite subpopulation of the Nel best performing

candidates is used to construct a new distribution p(x; v1). In particular, the algorithm

estimates distributional parameters v1 that best describe the current elite subpopulation

according to the Kullback-Leibler distance, or the cross-entropy minimisation [84]. These

empirical shape parameters describe the distribution p(x; v1), which is used to generate

the next population. Selection, evaluation and updating procedures are repeated until

the stopping criterion is satisfied. In the illustrated example, the elite subpopulation of

the fourth population reached the global solution.

A number of techniques can be used to avoid premature convergence of the CE method

to local instead of global solutions. First, the initial sampling distribution can be very

wide (as p(x; (2, 2)) in Fig. 4.2) or even uniform (as p(x; (1, 1)) in Fig. 4.3, top left), to

cover all plausible designs. Second, the population size N can be defined large enough

to maximise the chance that good designs will appear in a random sample. Third, the

smoothing parameter αS given by Eq. (2.5) can be applied in order to slow down the

convergence. Last, if the best fitness value has not been improved for a number of
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iterations, a mutation operator [88] can be used to add small random perturbations to

the shape parameters.

4.3 RCAs Optimized by the CE Method

The proposed approach of the CE optimization is used to improve the performance of a

compact RCA described in the previous chapter (Fig. 4.4) and overcome the limitations

that are attributed to the designs optimized by continuous PSO. RCAs are not only

a prominent antenna design for future communication systems, they also represent an

optimization problem that well illustrates the benefits of CE, in particular, its ability to

handle simultaneously both mixed variables and design constraints without complexity.

The constraint in this design example is the total diameterD of the antenna. Although

the widths wi of the dielectric sections shown in Fig. 4.4 can take any positive value, their

sum (
∑N

i=1wi), i.e. the total superstrate radius, is fixed to a particular value. Some design

variables, such as wi and t, are continuous, but the permittivities, εi, are discrete, because

they can take only commercially available values.

4.3.1 Algorithm Implementation

The given RCA with a TPG superstrate is a combinatorial and constrained optimization

problem. We approach it by combining discrete and continuous variables in a single

parameter vector. Discrete variables describe those parameters of the superstrate that can

only take values from a given catalogue, for example, nominal permittivity and thickness

values of Rogers materials. Continuous variables describe the width of each section (wi)

in the superstrate under the constraint that they sum to D/2. The permittivities εi and

section widths wi of the superstrate form the design vector

x = (ε1, ε2, . . . , εn, w1, w2, . . . , wn), (4.3)

where

ε1, ε2, . . . , εn ∈ S, (4.4)
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Figure 4.4: (a) Side view and (b) top view of an RCA with a TPG superstrate. The

superstrate is made out of five dielectric segments.

and the section widths wi are constrained by

w1 + w2 + · · ·+ wn = D/2, (4.5)

S is a catalogue of discrete commercially available permittivities and n is the number of

sections in the TPG superstrate.

The uniqueness of the proposed CE optimization approach lies in the use of the general

discrete distribution family for the discrete variables, and the Dirichlet distribution family

for the continuous constrained variables. The sampling distribution for εi is described by

a stochastic vector of length qp, which is the number of elements in the catalog. These

vectors are stored in an n × qp matrix. During initialisation, this matrix is uniform,
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meaning that every permittivity has equal probability to occur in each section. Then,

based on fitness function evaluations, those permittivities that lead to better results

earn a higher probability of occurrence in the next population. Specifically, each row

in the parameter matrix is replaced by the sample proportion vector of that section’s

permittivities in the elite subpopulation.

The widths wi cannot be sampled independently, due to the constraint that they

sum to D/2. For fabrication simplicity and to avoid physically meaningless designs, we

assume wi > 0.1λ0 for each section. Thus, the vector (w1−0.1λ0, . . . , wn−0.1λ0)/(D/2−

0.1nλ0) (abbreviated as (x1, . . . , xn)) must be elementwise nonnegative and sum to 1,

and therefore can be sampled from a multivariate Dirichlet distribution, with parameter

vector (α1, . . . , αn). For convenience, we used a simple method-of-moments update of the

Dirichlet parameter vector at each iteration [160], rather than minimising the Kullback-

Leibler distance, replacing the parameter αi at each iteration with

αi = xi

(
1−

∑n
j=1 xj

2

∑n
j=1Var[xj ]

)
− 1,

where the sample mean, denoted by the overbar, and variance Var are taken over the

elite subpopulation. Fig. 4.5 illustrates different combinations of widths in a superstrate

made of three sections when wi, i=1...3, are sampled from the Dirichlet distribution. It

can be seen that in every case the constraint in Eq. (4.5) is satisfied.

Figure 4.5: Three possible combinations of widths.
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First, we optimized the design of an RCA with a three-sectional superstrate of fixed

thickness t (Case-I). The design vector in this case is x = (ε1, ε2, ε3, w1, w2, w3). The

optimization was repeated for three values of t, and three RCAs were designed. The

catalogue of available materials included five laminates with permittivity 3.27, 4.5, 6,

9.2 and 9.8. The overall diameter of the TPG superstrate and the ground plane was

constrained to D = 48 mm, which is 1.85λ0, where λ0 is the free-space wavelength

corresponding to the first resonance frequency of the cavity f0 = 11.5 GHz. The cavity

height Hcav is 13 mm.

Then we optimized an RCA with a six-sectional superstrate of variable thickness t

(Case-II) with design vector x = (ε1, ε2, ε3, ε4, ε5, ε6, w1, w2, w3, w4, w5, w6, t). Here the

catalogue of substrates had ten permittivity and five thickness values. Superstrates with

diameters D1 = 1.5λ0, D2 = 1.85λ0 and D3 = 2.2λ0 were considered, and three more

RCAs have been designed in Case-II optimization. Design parameters for both cases,

Case-I and Case-II, are summarised in Table 4.1.

4.3.2 Fitness Function Definition

The aim of optimization is to achieve a high directivity-bandwidth product (DBP) and

low side lobe levels (SLLs) in the band 10–20 GHz. Hence, the product of the peak

directivity Dirpeak (in dBi) and the 3-dB directivity percentage bandwidth BW (%),

Table 4.1: Design parameters for RCA optimization.

Case-I Case-II

Number of sections, n 3 6

Catalogue of available permittivity values, qp 5 10

Catalogue of available thickness values, qt 1 5

Number of candidates in a population, N 45 70

Number of candidates in elite subpopulation, Nel 10 10

Smoothing parameter, αS 0.5 0.6

Stopping threshold, [δperm, δwidth] [0, 0.009λ0] [0, 0.009λ0]
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given by

FDBP = Dirpeak ∗BW, (4.6)

has been considered. As a 40% bandwidth is sufficient for most applications, we restricted

the largest BW to BWlim as follows:

BW =





BW, if BW < BWlim.

BWlim, otherwise.

(4.7)

This technique, found successful in previous optimizations of wideband antennas [161],

is applied here to obtain a design with a high peak directivity Dirpeak, as well as a large

percentage BW . In this example, the desirable BW has been limited to 40%, however

any other value can be specified, which would result in a different superstrate profile and

performance.

SLLs in the E-plane are generally much higher than in the H-plane, therefore the

fitness of SLLs in the E-plane is included in the objective. Side lobe fitness FSLL is

defined as the average difference between the current and desired values of SLLs over the

frequency range from fl to fh:

FSLL = mean(max(0, SLLE,(fl<f<fh) − SLLE,obj)), (4.8)

where the desired SLL in the E-plane is SLLE,obj = −20 dB, and SLLE,(fl<f<fh) is the

current SLL between fl and fh (evaluated with a 0.5 GHz frequency step in the frequency

range from 10 to 20 GHz). These objectives were combined into a single objective by a

weighted sum:

F.F. = FDBP − k ∗ FSLL, (4.9)

where k was set to 20. This coefficient was selected through a trial-and-error process with

the goal to reflect the relative importance of combined objectives and to compensate

for the difference in their magnitudes as described in Section 2.6.1. There is a linear

proportionality between k and F.F . Larger k would result in lower F.F. value, thus,

placing more importance to the SLL objective. Impedance matching was not included in

the objective function as it was beyond the scope of this study.
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Since the superstrate is non-periodic and has small lateral dimensions (diameter < 2λ0

at the lowest frequency), classic design approaches involving unit-cell optimizations [144]

or transmission-line modelling [162] cannot be used for the analysis of this compact

RCA. Instead, full-wave analysis of the complete antenna was performed to accurately

predict boresight directivity and SLLs. Thus, the CE algorithm was implemented in

MATLAB and linked to the time-domain solver in CST MWS using macro programming.

A flowchart for design automation and a macro for the optimization of the RCA are

provided in Appendix A. To reduce the simulation time, we exploited the bilateral X-

and Y -symmetry of the RCA superstrate by applying appropriate boundary conditions

in two planes.

4.3.3 Stopping Criterion

The optimization cycle continues until the stopping criterion is satisfied. Its definition

is frequently based on a maximum number of iterations or on the expected value of the

fitness function. If the criterion is too strict, the optimization continues longer than

required, which unnecessarily extends the overall optimization time. On the other hand,

forcing the optimizer to stop prematurely can prevent the population from finding a

significantly better solution. The condition for stopping should be based on a priori

knowledge of the problem.

Here, the stopping criterion was based on a measure of elite subpopulation diversity,

defined as the maximum variation between the candidates in a current subpopulation.

Diversity in radii and permitivities were calculated separately, each measuring the maxi-

mum deviation of any elite parameter from the corresponding elite mean. The algorithm

stopped when the diversity was equal to 0 for permittivities and less than the threshold

δ = 0.009λ0 = 0.2 mm for the section widths.
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4.3.4 Optimization Case-I: RCA with Three-Sectional TPG

The RCA with three-sectional superstrate was optimized for three fixed thickness values

t1, t2 and t3, and the best result for each thickness is summarized in Table 4.2. The

catalogue of available dielectric materials contained five Rogers TMM laminates with

permittivities {3.27; 4.5; 6; 9.2; 9.8}. It can be seen that the design with the superstrate

thickness of 7.62 mm has the highest value of the fitness function (Eq. (4.9)), which is

calculated as F.F. = 19.38∗40−20∗6.16 = 651.80. The lowest average SLLs were obtained

for the superstrate with permittivity distribution (9.8, 6, 4.5), widths 10.8+5.28+7.92 =

24 mm and thickness t = 6.99 mm. It is interesting to note that, without any constraint of

the decreasing permittivity from the centre towards the edges, the optimal permittivity

profiles have a gradual decrease of permittivity. This agrees well with the theoretical

arguments made in [136].

Fig. 4.6 shows the convergence plots for Case-I optimization. With parameters N=45,

Nel=10 and αS=0.5, the stopping criterion was reached after 20 iterations for t1. Eval-

uation of one population (45 candidates) took approximately 20 minutes on an Intel(R)

Core(TM) i7-4790 CPU 3.6 GHz processor with 32 GB of RAM. Approximately 14 hours

were required to complete this optimization. Evolution of the design parameters over

Table 4.2: Optimization Case-I results for three predefined superstrate thickness values.

Superstrate thickness
t1=6.35 mm

(0.24λ0)

t2=6.99 mm

(0.27λ0)

t3=7.62 mm

(0.29λ0)

Superstrate section parameters

ε1, w1 9.8, 7.92 9.8, 10.8 9.8, 8.40

ε2, w2 9.2, 8.16 6, 5.28 6, 6.96

ε3, w3 4.5, 7.92 4.5, 7.92 4.5, 8.64

Dirpeak, dBi 18.51 18.32 19.38

BW, % 45.07 41.46 42.39

FSLL, dB 5.79 4.95 6.16

Fitness function, Eq. (4.9) 624.60 633.80 651.80
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Figure 4.6: Convergence results of the CE method for Case-I optimization of three

compact RCAs with TPG superstrates, where t is the superstrate thickness and D is

its diameter. For each optimization run, “best” is the best result observed so far, and

“average” is the mean of all results observed at each iteration.

the progress of optimization is shown in Fig. 4.7. It can be seen that the first iterations

are characterised by significant variances of the design parameters because the optimizer

operates in the exploration mode. Then, the population gradually concentrates around

the design parameters that produced the best fitness function. Discrete variables have

fewer fluctuations in their parameters than continuous ones.
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(a) Evolution of discrete variables ε1, ε2 and ε3 over the progress of opti-

mization.

(b) Evolution of continuous variables w1, w2 and w3, mm over the progress

of optimization.

Figure 4.7: Evolution of design variables for Case-I optimization with superstrate thick-

ness t2 = 6.99 mm shows the gradual convergence of the population.
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For comparison, we calculate the fitness function value of the RCA presented in

[136], which has three sections of equal widths in the superstrate, permittivity profile

(10.2, 6.15, 3.27) and t = 7.62 mm. The peak directivity of the antenna is 17.2 dBi, the

3-dB bandwidth is 60%, and the fitness of SLLs is 8.5 dB, which yield the fitness function

(Eq. (4.9)) value of 516.92, which is much lower than that of all three optimized designs

presented in this section.

4.3.5 Optimization Case-II: RCA with Six-Sectional TPG

Case-II presents a more complex optimization problem. The RCA with six-sectional

superstrate has been optimized for three different total diameter values D1 = 38 mm,

D2 = 48 mm and D3 = 58 mm. An extended catalogue of materials’ permittivity and

thickness, as shown in Table 4.3, has been provided.

Table 4.3: Catalogue of RF laminates for Case-II optimization.

Dielectric constant [1.96 2.2 2.94 3.27 3.5 4.5 6 9.2 9.8 10.2]

Thickness, mm [3.81 5.08 6.35 6.99 7.62]

The population size for the Case-II optimization was increased to 70 due to the higher

dimensionality of the problem, and the smoothing parameter αS was set to 0.6. The best

optimization results for each diameter are summarised in Table 4.4. It can be seen

that the highest peak directivity of 19.4 dBi and the lowest SLLs were obtained for the

largest diameter (D3 = 58 mm) of the antenna. The optimized permittivity profile of

the superstrate is (10.2, 9.2, 6, 4.5, 3.5, 3.5) and thickness is 6.99 mm. For this design, the

stopping criterion defined in Section 4.3.3 was reached after 27 iterations in approximately

48 hours. Convergence plots for the Case-II optimization are shown in Fig. 4.8.

Optimization of the RCA with diameter D1 required 14 iterations, while RCAs with

diameters D2 and D3 required 26 and 27 iterations, respectively. Fig. 4.9 shows that,

over all 26 iterations, the constraint Eq. (4.5) of the fixed diameter is satisfied, i.e.,

w1 + w2 + ... + w6 = D2=48 mm. Use of the Dirichlet distribution for the sampling of
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Table 4.4: Optimization Case-II Results for Three Predefined Superstrate Diameter

Values (λ0=26 mm).

Antenna diameter
D1=38 mm

(1.5λ0)

D2=48 mm

(1.85λ0)

D3=58 mm

(2.2λ0)

Superstrate section parameters

ε1, w1 9.2, 2.59 9.2, 2.54 10.2, 7.92

ε2, w2 6, 1.93 9.2, 4.65 9.2, 6.62

ε3, w3 9.2, 2.57 9.2, 3.37 6, 4.47

ε4, w4 6, 2.35 6, 4.57 4.5, 2.92

ε5, w5 4.5, 7.25 4.5, 3.71 3.5, 3.39

ε6, w6 3.5, 2.31 3.5, 5.15 3.5, 3.68

t 6.99 6.99 6.99

Dirpeak, dBi 17.8 18.5 19.4

BW, % 41 43 40

FSLL, dB 5.62 4.9 2.9

Fitness function, Eq. (4.9) 599.2 643.4 717.8

widths ensures an efficient optimization process, which is often not the case when the

penalty approach is used.

The evolution of discrete and continuous design parameters over the progress of op-

timization Case-II is shown in Fig. 4.10. It can be observed from the figures that, as in

Case-I, the samples were well spread over the entire search space (which is [1.96; 10.2] for

permittivities), which means that the proposed method has good exploratory abilities.

Also, it can be noted that the variance of the discrete variables reduced substantially af-

ter approximately 600 function evaluations, while for the continuous variables significant

changes in the values continued for at least two times as long.

It is worth mentioning that the number of possible permittivity combinations in the

superstrate of six sections when the library of RF laminates contains 10 values is one

million (106). Problems of such scale are not practical to handle using traditional grid-

search methods with full-wave simulators.
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Figure 4.8: Convergence results of the CE method for Case-II optimization of three

compact RCAs with TPG superstrates, where t is the superstrate thickness and D is

its diameter. For each optimization run, “best” is the best result observed so far, and

“average” is the mean of all results observed at each iteration.

Figure 4.9: Case-II total section widths over iterations.
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(a) Evolution of discrete variables ε1,...,ε6.

(b) Evolution of continuous variables w1,...,w6.

Figure 4.10: Evolution of design variables for Case-II optimization with D3 over the

progress of optimization shows the gradual convergence of the population.
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4.4 Experimental Results

To demonstrate the validity of the simulated results, one of the optimized RCAs, the

design with a three-sectional superstrate with t1=6.35 mm and D = 48 mm, has been

fabricated. The prototype, shown in Fig. 4.11, was built by subtractive manufacturing

using TMM10i (εr = 9.8), TMM10 (εr = 9.2) and TMM4 (εr = 4.5) Rogers laminates.

Two nylon spacers supported the superstrate above the aluminium ground plane. A

rectangular slot in a ground plane was fed by a coaxial-to-waveguide adapter WR-75 to

excite the resonant cavity as the feed antenna. The slot dimensions were 12×7.5 mm2

after fine tuning to provide good impedance matching. The diameter of the ground plane

was equal to the diameter of the superstrate (48 mm).

The measured input impedance matching for the fabricated RCA prototype and the

slot antenna without the substrate is shown in Fig. 4.12. The effect of a superstrate

loading on the input impedance of the slot can be observed. The RCA appears well-

matched in the frequency range 11–18 GHz with a notch at 16.6 GHz due to the use of

the WR-75 adapter as a feed, which can be substituted with a more broadband transition.

The improvement of the reflection coefficient was not in the scope of this study and, thus,

was not included in the objective function.

Figure 4.11: Fabricated prototype of the optimized RCA from Case-I study with su-

perstrate thickness t1=6.35 mm. Two nylon spacers support the superstrate above the

ground plane.
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Figure 4.12: Measured reflection coefficient of the RCA prototype from Case-I study

with superstrate thickness t1=6.35 mm. Impedance matching of the slot is shown for

comparison.

The radiation characteristics of the prototype were measured in a spherical near-

field measurement system at the Australian Antenna Measurement Facility (AusAMF).

Fig. 4.13 shows the predicted and measured boresight directivity versus frequency. Over-

all, good agreement is noted between predicted and measured results. Discrepancy of

the results between 17 and 18 GHz is attributed to the use of an approximate simulation

model of the WR-75 coaxial-to-waveguide adapter. The measured peak directivity is

17.6 dBi, and the 3-dB directivity bandwidth extends from 11.3 to 19.1 GHz, featuring

a 51% percentage bandwidth.

The comparison of the predicted and measured patterns in the E- and H-planes at

three selected frequencies within the operating band are shown in Fig. 4.14. The predicted

and measured beamwidths agree very well at all frequencies. Overall, the measured SLLs

are less than –15 dB in the H-plane, and less than –10 dB in the E-plane (Table 4.5),

except for 18 GHz, where SLL in the E-plane rises to –7 dB. The front-to-back ratio is

greater than 24 dB at all measured frequencies.
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Figure 4.13: Measured boresight directivity of the prototype of the optimized RCA with

the fitness function f(x)=624.6. Measured peak directivity is 17.6 dBi, and measured

3-dB directivity bandwidth is 51%.

Table 4.5: Measured SLLs of the RCA prototype.

13 GHz 14 GHz 15 GHz 16 GHz 17 GHz 18 GHz

E-plane –14.5 –17.7 –16.5 –11.3 –10.2 –7.4

H-plane –18.1 –16.5 –19.0 –15.0 –13.2 –13.5
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Figure 4.14: Predicted and measured radiation patterns of the prototyped antenna at

13 GHz, 15 GHz and 17 GHz.
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It is interesting to continue the observation of the E-field phase distributions above

the superstrates for the optimized RCAs. Fig. 4.15 shows the spatial E-field phase dis-

tribution 3 mm above the RCA from Case-I study with t1 = 6.35 mm at the frequencies

within the directivity bandwidth: 11.5, 14, 16 and 18 GHz. An effective in-phase aper-

ture of this RCA is also 100% for the majority of the frequencies, which confirms that

the uniformity of the E-field phase is required for large directivity bandwidths.

Figure 4.15: E-field phase distribution probed 3 mm above the optimized RCA from

Case-I study with t1 = 6.35 mm.
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4.5 Summary

A new optimization technique using the CE method is proposed for solving EM opti-

mization problems with mixed variables and constraints. To the best of the author’s

knowledge, no classical PSO, GA or CMA-ES algorithm can solve the described opti-

mization problem. By using sampling probability distributions that match the variable

domain, six compact RCAs with improved performance as compared to the initial design

have been produced by the CE method. The measurements of an antenna prototype val-

idated the method and the predicted results. As CE is a universal optimization method,

the introduced technique is applicable to any EM and RF optimization problem with both

continuous and discrete parameters and/or constraints (for example, the total length of

a device has a specified value). The next chapter compares the performance of three op-

timization algorithms on the continuous optimization problem of designing a broadband

aperture-coupled microstrip patch antenna that can be used as a feed for RCAs.



Be sure that, as you scramble up the ladder of

success, it is leaning against the right building.

— Stephen Covey

Chapter 5

CE, PSO and CMA-ES in the

Design of Wideband Antennas

In the previous chapters, the optimization of RCAs using PSO and CE has been discussed.

In this chapter, the optimization results of an aperture-coupled microstrip patch antenna

(ACMPA) using CE, PSO and CMA-ES are provided, and the performance of each

algorithm is analysed. The designed wideband ACMPA with a 53% impedance bandwidth

is integrated with a six-sectional TPG PRS to create a high-gain and wideband RCA with

an improved planar feed antenna.

5.1 Introduction

With the constantly increasing demand for high data rates in wireless communication

systems, it is essential for antennas to operate at wide bandwidths. At the same time,

relentless miniaturisation requirements force antennas to have compact configurations.

Although there is a number of alternative compact wideband printed antenna solutions

employing monopole or slot antennas, microstrip patch antennas (MPA) offer the ad-

vantages of flat profile, low weight, medium gain of 5–10 dB and low cost. According

to [163], broadband printed antennas can be classified according to the direction of radi-

ation as bidirectional, when the antenna radiates at both sides of the ground plane, and

single-directional, when the radiation is mostly concentrated on one side of the ground

113
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plane. The MPA, which has a hemispherical radiation pattern, is the basic antenna type

of the second group. In its simplest form, an MPA antenna consists of a radiating patch

on one side of a dielectric substrate and a ground plane on the other side [164]. Since

the first introduction in 1953 [165], MPAs have undergone enormous development and

have been used in such applications as terrestrial and satellite communications, telemetry,

navigation, off-body communications, biomedical and many others [166–170].

Increasing the bandwidth of MPAs has been the major challenge for antenna engi-

neers for a long time, and broadband solutions with bandwidths of up to 60% have been

achieved [171, 172]. One of the bandwidth-broadening techniques is to introduce addi-

tional resonant elements, such as slots or parasitic patches, with the resonant frequencies

adjacent to each other and stack-tune the resonances. An MPA with an indirect excitation

of the radiating patch through an aperture coupling (or, simply, slot-coupling) and one

or more parasitic patches placed above is known as an aperture-coupled MPA (ACMPA).

It has been shown that ACMPAs can have very wide common impedance and gain band-

widths of more than 70% [173–176] but at a cost of low front-to-back ratio.

Any bandwidth-broadening technique introduces additional degrees of freedom to the

designs and thus increases their complexity. The strong mutual coupling between closely

spaced elements makes it difficult to predict the influence of design parameters on the in-

put impedance using manual design methods. Not only can optimization algorithms find

a close-to-optimum solution, but also they can speed up the design process. PSO, DE and

CMA-ES have been previously applied to the design of broadband and ultra-wideband

antennas, including E-patch [98] and planar monopole [177], and some performance com-

parisons are available in the literature [20, 41, 109, 178–181]. As discussed in Section 2.5,

the comparative studies do not intend to find the best algorithm for all antenna opti-

mization problems, but rather they can shed some light on the question which algorithm

steadily produces a better solution in shorter time frames for a particular problem. This

knowledge is useful for future optimization of antenna problems that have design simi-

larities.
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The optimization of an ACMPA and an RCA with an ACMPA as a feed is presented

below. CE, PSO and CMA-ES have been implemented to achieve wide impedance band-

width in the frequency range 12–18 GHz and a low profile of the antennas. First, the

ACMPA without a superstrate is optimized, and the obtained results as well as the per-

formance of the algorithms is compared. Then, the ACMPA is combined with the a

six-sectional TPG PRS to create a compact wideband RCA, which is optimized using the

three aforementioned methods.

5.2 Optimization of an ACMPA

This section presents the results of optimization of an ACMPA using CE, PSO and CMA-

ES. In this section, we 1) describe the optimization approach using the CE method for a

continuous bounded search space and 2) compare the optimization results of an ACMPA

obtained by CE, PSO and CMA-ES. As CE is a relatively new optimization method

for EM applications, this comparison is required for the assessment of its convergence

properties. The comparison will be based on the number of function evaluations required

for the convergence to the global solution and on the best fitness value obtained by each

algorithm.

5.2.1 Problem Formulation

The geometry of the ACMPA is shown in Fig. 5.1, and the lower and upper limits for each

design variable are given in the inset table. The antenna with the diameter D=60 mm

consists of three Rogers RT5880 laminates with a thickness of h=0.787 mm and a relative

permittivity of εr=2.2. The fixed parameters of the antenna are summarised in Table 5.1.

The first substrate has a printed 50-Ω microstrip line (w=2.45 mm) on one side and a

ground plane with a coupling aperture of width Sy = 0.5 mm and length Sx on the

opposite side. The aperture is centred along the x -coordinate under the patch, to obtain

low cross-polarisation levels. The excitation of the aperture is controlled by the length

of an open-circuit stub Ls. The aperture has a significant affect on the coupling to the
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Figure 5.1: Geometry of the optimized ACMPA. Inset table shows the lower and upper

limits of the design variables.

first patch of width W1 and length L1. The size of the first patch is a very important

factor in impedance matching as it comes in between the aperture and the top patch of

dimensions W2 × L2.

Broadband impedance matching in the ACMPA is achieved by stagger-tuning of the

resonances. The aperture in the ground plane has a resonant length and allows the cou-

pling of the resonant patches to the feedline resulting in three closely spaced resonances.

For the maximum bandwidth and efficiency, the patches are separated from each other

by air gaps h1 and h2, and the thin dielectric substrates are only used for the support of

the printed patches. Lower values of h1 and h2 are preferred in order to have a low-profile

antenna, but they also increase the coupling between the aperture and the patches. It

can be seen that two contradicting requirements are imposed on the design, i.e., wide

impedance bandwidth and low antenna profile. However, decreasing the thickness of the

dielectric layers in microstrip antennas results in less impedance bandwidth. To solve

Table 5.1: Fixed ACMPA parameters.

D, mm h, mm εr w, mm Sy, mm

60 0.787 2.2 2.45 0.5
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this problem, two more variables, shift1 and shift2, have been introduced as proposed

in [182]. They determine the shift of the patches in the y direction from the middle of the

superstrates and help to achieve a larger impedance bandwidth with reduced thickness

of the antenna.

In order to choose the lower and upper limits, theoretical calculations and a quick

sensitivity analysis using a grid search have been performed. The theoretical dimensions

of the patches have been calculated using the equations from [183], and the width and

length of a microstrip patch on a given substrate as a function of the design frequency

are shown in Fig. 5.2. For the frequency band between 10 and 20 GHz, the optimal

width of an MPA changes from 11 to 6 mm, and the length changes from 9 to 5 mm.

These dimensions can be used as reference values, but they are not accurate because the

cavity model, which is a simplification of a patch antenna, has been used to devise the

equations.

Figure 5.2: Theoretical dimensions of a microstrip patch.

Sensitivity analysis is usually performed to quantify the contribution of the design

variables to a possible improvement of a model response. Unfortunately, sufficiently

accurate sensitivity methods require huge numerical effort due to the large number of

simulations [184]. Therefore, a quick sensitivity check has been performed to find ap-

propriate ranges for the design variables. To meet the requirement of a low profile, the

air gaps between the substrates have been limited to the range of [0,1] mm. It can be

seen from Fig. 5.3(a) that even small variations in h1, h2 significantly affect the input



118 Chapter 5. CE, PSO and CMA-ES in the Design of Wideband Antennas

impedance. The sensitivity of other design variables is displayed in Fig. 5.3(a)–(e), where

the grey dashed lines determine the desired |S11| response. The widths of patches are

less-sensitive parameters and, therefore, their ranges have been extended to [9, 13] mm.

According to [165], the two patches are usually very close in size with the top element

being slightly larger than the bottom element. Also, it has been previously observed that

for impedance matching the relative dimensions of two patches are important as opposed

to their absolute dimensions [164]. Parameters shift1 and shift2 vary between narrow

limits [–1.5, 1.5] mm to avoid significant asymmetry in the radiation patterns.

The optimization goal is to obtain a magnitude of the reflection coefficient below

−10 dB (|S11| 6 −10 dB) across the frequency band 12–18 GHz. To ensure this, the

input impedance is analysed in the range 11–19 GHz, and the fitness function to be

maximized has been defined as:

F.F. = −(

19 GHz∑

fi=11 GHz

L(fi)), (5.1)

where

L(fi) =





S11(fi), if S11(fi) ≥ –15 dB,

−20, if –20 dB ≤ S11(fi) < –15 dB,

−35− S11(fi), if –35 dB ≤ S11(fi) < –20 dB,

0, if S11(fi) < –35 dB

(5.2)

and fi = 11,..., 19 GHz with i=1,..., 201 frequency points. Proposed in [161], Eq. (5.2)

gradually penalises designs with the reflection coefficient lower than –20 dB in order

to achieve larger impedance bandwidth. This fitness function works well for wideband

antennas because the desired S11 is usually between –15 and –20 dB, and it is known in

advance that a –30 dB matching level in a wide frequency band is not realistic to obtain.

Fig. 5.3(f) shows the calculated fitness function values for all designs from the sensitivity

analysis. It can be observed that the best manually found solution has F.F. = 2357.
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(a) L1 = L2=6 mm; shift1 = shift2=0 mm;

Ls=2 mm; Sx=7 mm; W1 = W2=11 mm.

(b) h1 = h2=0.5 mm; shift1 = shift2=0 mm;

Ls=2 mm; Sx=7 mm; W1 = W2=11 mm.

(c) h1 = h2=0.5 mm; L1 = L2=6 mm;

Ls=2 mm; Sx=7 mm; W1 = W2=11 mm.

(d) h1 = h2=0.5 mm; L1 = L2=6 mm;

shift1 = shift2=0 mm; W1 = W2=11 mm.

(e) h1 = h2=0.5 mm; L1 = L2=6 mm;

shift1 = shift2=0 mm; Ls=2 mm; Sx=7 mm;
(f) F.F. value for each design.

Figure 5.3: Sensitivity analysis of the design variables. Grey dashed lines show the

desired S11 response.
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5.2.2 Optimization Methodology

The given ACMPA optimization problem is a classic continuous optimization problem

with a bounded solution space. It has ten continuous design variables (d=10):

x = (h1, h2, L1, L2, shift1, shift2, Ls, Sx, W1, W2). (5.3)

The optimization has been carried out independently by CE, PSO and CMA-ES with the

fitness function given in Eq. (5.1).

As the search space of this optimization problem is continuous and bounded, we used

a beta distribution family to sample the populations. Although a normal distribution

can also be used for sampling continuous variables, the use of a beta distribution ensures

that every sample stays within the defined limits.

The flow of the CE method is as follows:

1. Initialise iteration count t = 0. Initial distribution parameters vt = (αt, βt) = 1.

2. Create the beta distribution B(x; vt) using Eq. (2.7).

3. Randomly sample Npop candidates from the beta distribution B(x; vt).

4. Evaluate the fitness function of each candidate.

5. Sort the candidates and choose the elite of size Nel.

6. Using a maximum likelihood estimation, find such (αt+1, βt+1) that best describe

the elite distribution.

7. (optional) Smooth (αt+1, βt+1) according to the equations:

αt+1 = αt + αs ∗ (αt+1 − αt), (5.4)

βt+1 = βt + αs ∗ (βt+1 − βt). (5.5)

8. Update iteration count t = t+ 1.

9. Repeat the steps 2–8 until the stopping criterion is met.
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The input parameters required for CE, PSO and CMA-ES that were set in this opti-

mization are given in Table 5.2. The population size Npop for CMA-ES was found using

Npop = (4 + round(3 ∗ log(d))) = 11, (5.6)

given that the number of design variables d = 10 in this case. Other parameters were set

to their default values.

It is worth mentioning that CE and CMA-ES have some resemblance in operating

principles. Both algorithms are model-based, i.e., they use probability distributions (also

called models) for sampling the populations, rank the solutions and choose the elite

subpopulations. There are two principal differences between CE and CMA-ES. The first

difference is in the updating mechanism as discussed in Section 2.5. CMA-ES creates

new candidates by learning the covariance matrix, while CE does it using the maximum

likelihood estimation. The second difference lies in the population sampling. In CMA-ES,

populations are generated by sampling from a multivariate normal distribution, while in

CE, any distribution family can be used for sampling.

As in the previous implementation, the stopping criterion for the CE optimization is

the population diversity. The run is considered converged when the average difference

between the candidates in an elite subpopulation is less than the threshold δ=0.5 mm.

This stopping criterion helps to avoid unnecessary computations of very similar designs

and, thus, to reduce the total optimization time. For PSO and CMA-ES, the stopping

criterion was a maximum number of iterations Nit equal to 30 and 1000, respectively.

The CE algorithm converged after 24 iterations and 1200 function evaluations. The

time required for the full optimization was approximately 32 hours using an Intel Core i7,

3.6 GHz processor with 32 GB of RAM. With the population size 50, the number of

function evaluations for PSO has been predefined to 1500. While the population size of

CMA-ES was the smallest, the NFE reached 1815.
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Table 5.2: Input parameters for CE, PSO and CMA-ES.

CE PSO CMA-ES� Population size � Population size � Population size

Npop = 50 Npop = 50 Npop = 11� Elite subpopulation size � Acceleration coefficients

Nel = 10 c1 = c2 = 1.49� Smoothing coefficient � Inertia weight

αS = 0.5 wmax = 0.9, wmin = 0.1� Number of iterations

Nit = 30� Velocity clamping factor

Vcf = 1.8
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5.2.3 Optimization Results

The input reflection coefficients of the ACMPAs optimized by CE, PSO and CMA-ES for

the fitness function given in Eq. (5.1) are shown in Fig. 5.4. It can be seen that all the

optimized antennas are well matched in the range of 12–18 GHz with |S11| 6 −10 dB.

The best design was achieved by CMA-ES and has a fractional bandwidth of 53%.
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Figure 5.4: Reflection coefficients of the ACMPAs optimized by PSO, CE and CMA-ES.

Optimized design parameters of the best ACMPAs obtained by PSO, CE and CMA-

ES are given in Table 5.3. Most of the design variables in the solutions obtained by

PSO and CE have very similar values. For instance, the resonant lengths of the aperture

Ls and the patches W1,W2 have dimensions (6.3, 9.4, 10.8) mm for PSO and (6.8, 9.5,

10.9) mm for CE, and the values of shift1, shift2 for PSO and CE are (–0.46, 1.5) mm

and (–0.4, 1.3) mm, respectively.

The CE-optimized ACMPA design has a significantly higher fitness function value of

3470.2 compared to the one obtained manually with F.F. = 2357. Although CMA-ES

produced the result with the highest F.F., many of the optimal design parameters exceed

the given boundaries. This is attributed to use of the Gaussian distribution for sampling

in CMA-ES, that intrinsically has an unbounded support.
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Table 5.3: Dimensions and F.F. of the best ACMPA solutions.

Design variables, mm CE PSO CMA-ES

h1, h2 0.47, 0.75 0.55, 0.98 1.4, 1.9

L1, L2 6.2, 5.3 5.94, 5.0 6.9, 4.7

shift1, shift2 –0.4, 1.3 –0.46, 1.5 –0.92, 3.4

Ls , Sx 1.6, 6.8 1.4, 6.3 3.6, 15.9

W1,W2 9.5, 10.9 9.4, 10.8 12.3, 9.8

F.F., Eq. (5.1) 3470.2 3743.2 3780.9

The boresight directivity curves of three optimized ACMPAs are shown in Fig. 5.5.

The boresight directivity changes from 7 to 9.5 dBi across the frequency range 12–18 GHz.

Larger variations in the boresight directivity across the bandwidth can be seen for the

CMA-ES solution than for the PSO and CE solutions. This is attributed to the significant

shift of the second patch from the middle of the structure. The radiation patterns at 12,

14, 16 and 18 GHz for the CE solution are given in Fig. 5.6. The E-plane corresponds to

the zy plane in Fig. 5.1, and the H-plane corresponds to the zx plane. In the majority of

the frequency band, the patterns in E plane remain near-broadside. The cross-polarisation

levels are below –25 dB for most of the band and rise to –12 dB at 18 GHz.

Figure 5.5: Boresight directivity of the optimized ACMPAs.
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Figure 5.6: Radiation patterns of the CE-optimized ACMPA.
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5.3 Optimization of RCA with ACMPA Feed

In this section, an ACMPA antenna is proposed as an alternative feed solution for RCAs.

A wideband high-gain RCA is designed by integrating the ACMPA described in the

previous section with the all-dielectric TPG superstrate from Chapter 4. PSO, CE and

CMA-ES have been applied to optimize the input impedance of the proposed design, and

the algorithms’ performances have been analysed.

For a long time, a narrow bandwidth has been the main limitation of RCAs that

impeded their use in wideband communication systems, such as telemetry, point-to-point

and satellite communications. A feed antenna that excites a resonant cavity in RCAs

has a critical effect on both impedance and radiation bandwidths. While most recent

bandwidth-improvement techniques have been concentrated on the radiation characteris-

tics of the RCAs, in practice, a shared radiation and impedance bandwidth is required. In

many reported radiation bandwidth improvement techniques, the impedance bandwidth

is either shifted in frequency [185,186], or does not cover the full radiation band [187–189].

Therefore, there is a need for a wideband planar feed solution that can accommodate for

the wide directivity bandwidths. Some common feed techniques in RCAs include:� square patch with very narrow impedance bandwidth of ≈ 1% [190];� E-patch with the impedance bandwidth of 5.6% [151];� dual slot fed by a microstrip line with 11% bandwidth [133, 191];� slot-coupled patch with the impedance bandwidth of 26% [129] and 35% [192];� bowtie antenna with 40% impedance bandwidth and circular polarisation [193];� waveguide-fed slot antenna with the bandwidth of 35–45% [189, 194];

By far the most common feed is a waveguide-fed slot antenna. However, its bandwidth

is usually limited to 40%, and it is not a completely planar solution because a waveguide

or a coax-to waveguide adapter that is used for the slot excitation protrudes outside

the ground plane. ACMPAs have presiously been designed that have up to 60–70%
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impedance bandwidths. Therefore, an ACMPA is a potential candidate for use in RCAs.

The advantage of using ACMPAs for the cavity excitation is that the ground plane of a

microstrip line can also serve as a metal plate of a resonant cavity. Thus, an ACMPA

with a PRS placed on top at a half-wavelength distance can form a high-gain wideband

RCA with a low-profile feed.

5.3.1 Design of an RCA with an ACMPA Feed

Fig. 5.7 shows an RCA constructed from an ACMPA with a six-sectional all-dielectric

TPG PRS placed on top.

Figure 5.7: Geometry of the RCA with an ACMPA feed. The PRS is an all-dielectric

TPG superstrate of diameter D=60 mm and thickness t=6.985 mm.

The fixed design parameters of the ACMPA remain the same as given in Fig. 5.1 and

Table 5.1. The TPG superstrate that was presented in Section 4.3.5 with the thickness

of t=6.985 mm and the permittivity distribution (ε1, ..., ε6)=(10.2, 9.2, 6, 4.5, 3.5, 3.5)

has been taken for this design. The permittivity gradient is created by dividing the

superstrate into six circular sections of widths (w1, ..., w6)=(7.92, 6.62, 4.47, 2.92, 3.39,

3.68) mm. The cavity height Hcav equals 13 mm, which corresponds to 0.5λ0, where

λ0=26 mm is the free-space wavelength of the first resonance frequency of the cavity.
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Figure 5.8: Reflection coefficient of the CE-optimized ACMPA (Table 5.3) before and

after placing the PRS on top.

Fig. 5.8 shows that the input impedance of the CE-optimized ACMPA deteriorates

when it is loaded with a highly-reflective superstrate. Therefore, to achieve a broadband

impedance bandwidth of this RCA, the ACMPA with the presence of the PRS has been

optimized again using PSO, CE and CMA-ES.

5.3.2 Optimization Details

When the superstrate is placed above the ACMPA, a resonant cavity is created. The

strong reflections between the TPG superstrate and the ground plane make impedance

matching very difficult. Therefore, the requirements in the fitness function have been

relaxed to the following:

F.F. = −(

19 GHz∑

fi=11 GHz

L(fi)), (5.7)
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where

L(fi) =





S11(fi), if S11(fi) ≥ –10 dB,

−15, if –15 dB ≤ S11(fi) < –10 dB,

−30− S11(fi), if –30 dB ≤ S11(fi) < –15 dB,

0, if S11(fi) < –30 dB

(5.8)

and fi=11, ..., 19 GHz with i=1, ..., 201 frequency points. Again, this formulation of

the fitness function intentionally suppresses the candidates with S11 < −30 dB at any

frequency within the band for the sake of a wideband matching.

The settings for each algorithm are summarised in Table 5.4. The population size

Npop for CMA-ES is calculated using Eq. (5.6) with d=10.

Table 5.4: Input parameters for CE, PSO and CMA-ES.

CE PSO CMA-ES� Population size � Population size � Population size

Npop = 50 Npop = 30 Npop = 11� Elite subpopulation size � Acceleration coefficients

Nel = 6 c1 = c2 = 1.49� Smoothing coefficient � Inertia weight

αS = 0.8 wmax = 0.9, wmin = 0.1� Number of iterations

Nit = 30� Velocity clamping factor

Vcf = 1.8

5.3.3 Results

Fig. 5.9 provides the impedance matching results of the best optimized RCAs. The CE

solution has the reflection coefficient S11 6 −10 dB in the band 11–19 GHz except for

the increase to –8.5 dB around 13 GHz. The PSO solution has a very similar input
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impedance across the whole frequency band, and the CMA-ES solution has a reflection

coefficient increasing up to –6.8 dB between 11.6 and 12.7 GHz.

Figure 5.9: Reflection coefficient of the RCAs optimized by PSO, CE and CMA-ES.

The dimensions of the best ACMPA designs obtained by PSO, CE and CMA-ES are

summarised in Table 5.5. The highest fitness F.F. = 2825.8 is found by PSO, and the CE

solution has F.F. = 2789.7. Both CE and PSO converged after 900 NFE. In comparison

to the ACMPA in Section 5.2, the RCA model is much more complex, and its single sim-

ulation requires much more time. Particularly, the CE optimization took 241178.15 sec,

which is almost 3 days. PSO took approximately the same overall optimization time

because of the same number of function evaluations. CMA-ES with Npop = 11 took more

than twice longer and was stopped after 205 iterations because of no improvement for 45

consecutive iterations.

The boresight directivity of the CE solution is shown in Fig. 5.10 with an ACMPA-fed

RCA depicted in an inset. The peak directivity is 19 dBi, and the 3-dB bandwidth is

from 11.5 to 17.2 GHz, which is 40%. For comparison, the boresight directivity of the

slot-fed RCA presented in Section 4.3.5 is also given in the graph. Its peak directivity is

19.4 dBi, and the bandwidth is also 40% (Table 4.4). With just a 0.4 dB reduction in

the peak directivity, ACMPA design provides an alternative feed solution resulting in a

much lower RCA profile.
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Table 5.5: Dimensions and F.F. of the best ACMPA-fed RCA solutions.

Design variables (mm) CE PSO CMA-ES

h1, h2 0.19, 0.56 0.26, 0.24 0.58, 0

L1, L2 5.75, 5.29 5.82, 5.03 2.75, 4.21

shift1, shift2 0.41, –0.72 –0.57, –1.5 –2.05, 0.36

Ls, Sx 2.0, 6.32 1.83, 6.52 1.16, 6.56

W1,W2 9.06, 10.87 10.38, 12.99 12.36, 9.54

F.F., Eq. (5.7) 2789.7 2825.8 2669.4

Figure 5.10: Boresight directivity comparison of the slot-fed RCA and the ACMPA-fed

RCA optimized by CE (shown in an inset).

Radiation patterns at 12, 14 and 16 GHz of the CE-optimized design are provided in

Fig. 5.11. It can be seen that the RCA has a directive beam with low side lobe levels and

a front-to-back ratio less than –15 dB.
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Figure 5.11: Radiation patterns of the CE-optimized RCA with ACMPA.
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5.4 Discussion

Applied to the ACMPA optimization problems with continuous variables, the CE method

converged faster than PSO and CMA-ES. Also, it was found that PSO can outperform

CE and CMA-ES in terms of the best fitness function. The comparison of the acquired

F.F. and NFE for the ACMPA design and the RCA with an ACMPA feed is given in

Table 5.6. In the first example, PSO required 1500 NFE, while CE only needed 1200, and

in the second example, both PSO and CE converged after 900 NFE. Although CMA-ES

had the smallest population size, it required more function evaluations, and, therefore, a

longer optimization time. NFE was 1815 in the first case and 2255 in the second case.

Although CMA-ES found the best ACMPA design in the first optimization example, it

violated the limits that had been defined for the design variables. The reason is that the

Gaussian distribution has an unbounded support, and, therefore, some random samples

might appear on the tails of the distribution and exceed the boundary limits. This can be

solved by disregarding or penalising designs that are located outside of the search space

limits.

The convergence curves for the optimization of the ACMPA and the RCA with

ACMPA can be observed from Fig. 5.12(a) and (b), respectively. Good convergence

can be observed for the CE and PSO methods. The convergence of CMA-ES has not

been recorded. The effect of smoothing parameters αS on the number of iterations in

the CE method can be seen. In ACMPA optimization, αS= 0.5 and Nit= 24, while in

the RCA with ACMPA feed optimization, smoothing was increased to αS= 0.8, which

resulted in Nit= 18.

The limitation of this optimization study is the small number of trials obtained for

each algorithm. To obtain a statistically viable performance measure for the comparison

study, multiple optimization trials have to be executed. This is a common procedure

when test functions are optimized, but in application to real engineering problems when

the fitness function is evaluated via simulation, performing multiple repetitive trials is

often impractical.
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Table 5.6: Best obtained fitness function value and NFE of each algorithm applied to

the optimization of the ACMPA and the ACMPA-fed RCA.

Best F.F. NFE

ACMPA

CE 3470.2 1200

PSO 3743.2 1500

CMA-ES 3780.9 1815

RCA with ACMPA feed

CE 2789.7 900

PSO 2825.8 900

CMA-ES 2669.4 2255
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(a) ACMPA (b) RCA with ACMPA feed

Figure 5.12: CE, PSO and CMA-ES convergence curves for two design cases.
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5.5 Summary

In this chapter, the optimization results of CE, PSO and CMA-ES in application to an

ACMPA optimization problem with ten continuous variables were provided. An ACMPA

with a peak directivity of 9.5 dBi and a 53% impedance bandwidth was designed. Then,

the described ACMPA was integrated with an all-dielectric TPG superstrate to form

an RCA. Again, the reflection coefficient was optimised using CE, PSO and CMA-ES.

The designed ACMPA-fed RCA has a peak directivity of 19 dBi and a 3-dB radiation

bandwidth of 40%, well-covered by an impedance bandwidth. Compared to the alterna-

tive solutions for the cavity excitation, the proposed ACMPA results in a reduced RCA

profile. In addition, the convergence properties and NFE needed for each algorithm to

produce the desired result were compared.



To guess what to keep and what to throw away

takes considerable skill. Actually it is probably

merely a matter of luck, but it looks as if it

takes considerable skill.

— Richard Feynman

Chapter 6

Optimization of Thin Pixelated EM

Surfaces

In the previous chapter, an application of the CE method to continuous design problems

has been presented. It was shown that the method is capable of locating a near-to-optimal

solution and requires fewer function evaluations than PSO and CMA-ES. In this chapter,

a general optimization approach to the synthesis of thin pixelated EM surfaces using the

CE method will be described. This is the first time that CE has been applied to the

optimization of encoded binary EM structures; previously these problems have mostly

been handled by GAs.

6.1 Introduction

EM surfaces, also called metasurfaces, are planar structures of finite thickness that are

composed of sub-wavelength periodic or nonperiodic unit-cells. The unit-cell usually con-

sists of one or more layers of dielectric materials with metallic patterns printed on their

opposite sides. The prominent feature of such structures is simultaneous control of the

magnitude, phase and polarisation of the EM waves. Interesting properties such as broad-

band anti-reflection, absorption and polarisation conversion can be achieved through ma-

nipulation of their reflection and transmission characteristics. The applications of EM

surfaces in antenna and microwave engineering include wideband absorbers, multiband

137
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spatial filters, conformal antenna radomes, reflectarrays and transmitarrays, EM shieled-

ing and radar cross section reduction, to name a few.

Previously, frequency-selective surfaces (FSSs), PRSs, high-impedance surfaces (HIS)

and artificial magnetic conductors (AMCs) have been realised using metallic squares,

loops, cross-type elements and their combinations [129, 195–197]. The required reflec-

tion and transmission characteristics of the EM surface can be obtained by finding the

appropriate geometrical parameters of the element in a unit-cell. When designing ei-

ther a band-pass or band-stop FSS, the choice of the proper element may be of utmost

importance [195].

An alternative approach is to divide a unit-cell into pixels that can be either metallic

or non-metallic and use optimization to find the pattern that provides the desired perfor-

mance. The advantage of pixelated surfaces is the flexibility of the geometry, that is not

limited to any element of a canonical shape. Optimization of pixelated EM surfaces has

been previously conducted by encoding a pattern of “metal-air” inclusions into a binary

string. GAs with their inherent binary representation of design variables were the first

methods applied to such optimization. Using GAs, a variety of printed pixelated struc-

tures have been designed, such as a microwave absorber composed of multiple dielectric

layers with FSS screens [198], a PRS of an RCA for high-Q resonant cavity [24], periodic

metamaterials [25] and a double-sided AMC [199].

Apart from GAs, other methods have also been implemented for the optimization

of pixelated printed EM surfaces, such as PSO and SA [45, 200]. In the majority of

cases, they are real-coded optimization methods that require significant overhead when

applied to binary optimization problems. Therefore, considering the fast convergence of

the CE method and its flexibility in terms of design variables, it is worth investigating the

performance of the CE method in application to the design of binary EM problems, such

as pixelated surfaces. Previous research on the CE method in EM applications identified

the possibility of using CE for binary EM problems but little work has been done in this

direction [91].



6.2 The Theory of Thin EM Surfaces 139

In order to investigate the performance of the CE method on binary optimization

problems, in this thesis CE has been implemented on the design of thin composite EM

structures. Pixelated patterns printed on both sides of a thin dielectric material have

been optimized targeting various frequency responses. By controlling the phases and

magnitudes of the scattered waves from both sides of the surfaces, AMCs and planar

phase shifters have been designed.

6.2 The Theory of Thin EM Surfaces

The first realisation of AMCs was demonstrated in [201], where rectangular or hexagonally

shaped metallic patches connected to the ground plane through vias, so-called mushroom-

like metallic structures, were shown to have a high surface impedance. Another realisation

was demonstrated in [202], eliminating the need for vias between the ground plane and

the printed layer. As opposed to the PECs, which have surface impedances equal to zero,

AMCs are characterised by high absolute values of surface impedances and, therefore,

are also called high-impedance surfaces (HISs).

Theoretically, AMCs can be realised by backing a layer of a dielectric material of

thickness d with permittivity ε and permeability µ by an infinite metallic surface [203].

Then, the input impedance seen by a normally incident plane wave at the top of the

dielectric is

ZS = j

√
µ

ε
tan

(
2π

λ
d

)
. (6.1)

It can be seen that the surface impedance |ZS| −→ ∞ as d −→ λ/4. However, a quarter-

wavelength dielectric layer is prohibitively thick for many practical applications. The

thickness of AMCs can be significantly reduced by placing a printed metallic pattern on

top of a thin dielectric layer. When the thickness of the dielectric layer is much less

than λ/4, the input impedance of the surface is inductive and equals ZS ≈ jωµd. If

a capacitive grid with impedance 1/(jωCg) is placed on top of the dielectric, the total

surface impedance is the parallel connection of the inductive input impedance of the thin

layer and the capacitive grid impedance of the FSS:
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ZS =
jωµd

1− ω2Cgµd
. (6.2)

For normally incident plane waves, the surface impedance tends to infinity at the

resonance frequency ω0 =
√
1/(Cgµd), realising an artificial magnetic conductor. One of

the practical applications of magnetic conductors is to reduce the profile of wire antennas

positioned above a ground plane [203]. As shown in [204], metal backing is not a nec-

essary condition for achieving the required values of reflection and transmission phases.

Moreover, the anticipated benefits of an AMC surface without a completely metallic

ground plane in an antenna application include the absence of the associated image and

scattering-induced currents on the back side of a finite ground plane, a lowered possibil-

ity of surface waves, and lighter weight [204]. Based on these considerations, a unit-cell

composed of thin dielectric material of thickness d with a pixelated pattern printed on

both sides has been considered for optimization by the CE method.

6.3 Method of Analysis

The method of analysis and some simplifications that have been considered in order to

reduce the overall optimization time are described below. In order to efficiently optimize

an EM structure, an accurate simulation model with minimal computational burden

has to be established. Accurate prediction of the frequency-dependent reflection and

transmission characteristics of the structure can be obtained by numerical analysis in

full-wave simulation software.

6.3.1 Periodic Analysis

A two-dimensional periodic structure is created by translating a unit-cell in x and y

directions, as shown in Fig. 6.1. It is sufficient to analyse the fields in a single unit-

cell in order to predict the characteristics of the infinitely large periodic EM surface.

Periodic boundary conditions should be applied around the unit-cell to imitate the infinite

dimensions of the structure. The waveguide simulation method in conjunction with time-
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domain analysis in CST MWS has been used to predict the reflection and transmission

characteristics of all the cases presented in the following discussion. Illumination by a

normal plane wave from two opposite ports with the E-field aligned with x-axis was

considered, and perfect electric and perfect magnetic boundary conditions were assigned

to model an ideal parallel-plate waveguide. Taking xz-plane as a plane of incidence, the

applied plane wave is TE-polarized.

Figure 6.1: Illustration of a periodic structure having a pixelated unit-cell with n = 8.

By assuming perfect walls surrounding a single unit-cell, infinite repetitions in the x and

y directions are realised.

A square unit-cell, shown in Fig. 6.1, consists of a dielectric material of thickness

d with two pixelated patterns printed on its opposite sides. The printed surface on

both sides of a unit-cell have equal side length a and level of pixelation n (number of

columns/rows). Each pattern (both top and bottom) is represented by a matrix of n2

elements that can take value either “1” or “0”, where “1” corresponds to “metal” and
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“0” to “air”.

The design variables are expressed as:

Xk =




x11 x12 x13 . . . x1n

x21 x22 x23 . . . x2n

...
...

...
. . .

...

xn1 xn2 xn3 . . . xnn




,

where k = 1 and 2 correspond to the top and bottom pattern, respectively. Therefore,

a unit-cell is represented by a binary vector X = [X1, X2] of 2 ∗ n2 elements. The

optimization problem is to find the binary combination in X that corresponds to the

unit-cell exhibiting the desired transmission and reflection characteristics.

6.3.2 Symmetry Planes

To further reduce the dimensionality of the optimization problem and, therefore, reduce

the computational time, symmetry within the unit-cell is imposed. As shown in Fig. 6.2,

a quarter of a unit-cell can be transformed to a full pattern using three types of sym-

metries, i.e. reflectional, rotational and translational. Although there are other possible

ways to reduce the number of variables in a unit-cell, a 90-degree rotational symmetry

not only reduces the number of design variables by a factor of four, but also ensures

polarisation independence of the structure. Thus, in the designs presented further, a

90-degree rotational symmetry in the unit-cell will be considered.
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90-deg rotational

symmetry

Reflectional/mirror

symmetry

Translational 

symmetry

Figure 6.2: A quarter of a unit-cell can be converted into three different configurations

by applying different symmetry planes. Reducing the unit-cell to a quarter decreases the

dimensionality of the optimization problem by a factor of four.

6.3.3 Vertices-Removal Technique

Pixelated surfaces are known for the fabrication issue related to the interconnections of

the diagonal pixels as in Fig. 6.3 (a). There are two types of possible connections between

square pixels: Type 1, when there is only a single infinitely small point (shown in circles)

and Type 2, when the squares have a common side. The problem occurs because the

pixels with Type 1 connection are treated as not electrically connected by numerical

analysis. In practice, an infinitely small point cannot be realised, and the vertices end

up being physically connected, allowing current flow between the pixels. This causes

disagreement between the predicted and measured results.

A number of techniques have been proposed to deal with this issue. In [205,206], a ver-

tex breaking technique separating the vertices of diagonal pixels by the distance 0.04 mm

has been applied. The disadvantage of this technique is that geometry modification is

required for every generated pattern, which with the numerous simulations required by

the optimization, might substantially increase the computational time. A geometry re-
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finement technique proposed in [207, 208] eliminates the diagonal connections of square

pixels by analysing the geometry of every solution. However, by disregarding many po-

tential solutions, this approach considerably reduces the search space available for the

optimizer. Another approach called the nonuniform overlapping scheme, which ensures

proper electrical connection of diagonal pixels, has been proposed in [209] and [210]. The

idea is to intentionally overlap the metallic pixels in the simulation model by shifting the

diagonally adjacent pixels in the y direction. This ensures the existence of the electrical

connection in both numerical analysis and the fabricated prototype. Again, this scheme

introduces an additional step to the overall optimization flow.

(a) (b) (c)

Figure 6.3: (a) Conventional unit-cell with square pixels causing problematic connec-

tions of Type 1; (b) unit-cell with octagonal pixels; (c) square-to-octagonal pixel conver-

sion for the elimination of diagonal infinitesimal intersection of pixels.

The described problem can be eliminated by using octagonal pixels instead of rectan-

gular ones. This can be easily achieved by subtracting four isosceles triangles with a base

angle 45◦ from a square pixel, as shown in Fig. 6.3 (c). This approach has the advantage

of not adding any complementary steps to the optimization procedure, as the conversion

can be done only once. A unit-cell with octagonal pixels is shown in Fig. 6.3 (b). It

can be seen that only Type 2 electrical connection remains between the octagonal pixels.

The proposed solution comes at a cost of an increased mesh size of the structure in the

numerical analysis. To be specific, the number of meshcells increases from 14 000 with

squared pixels to 22 500 with octagonal pixels. However, due to the short evaluation time

(approximately 60 sec for each unit-cell), the overall optimization time is still acceptable.
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6.4 Optimization Approach

It has been shown in the previous chapters that the use of the CE method for continuous

and mixed-variable optimization problems presents many advantages in application to

EM problems due to its fast and versatile nature. In this section, a method to optimize

problems with binary variables using CE will be presented.

6.4.1 Sampling Binary Variables

The CE method attempts to iteratively approach the global optimal solution by consec-

utively adapting the shape parameters of the sampling probability distributions. The

nature of the design variables guides the choice of the probability distribution used for

sampling. For optimization problems with design variables that have only two possible

values, a Bernoulli distribution can be used. As is known from statistics, the Bernoulli

distribution is a discrete probability distribution of a random variable that takes the

value 1 with probability p and the value 0 with probability (1−p). The probability mass

function f(x; p) of a Bernoulli distribution over possible outcomes x is

f(x; p) = px(1− p)1−x, (6.3)

where x is either 1 or 0, meaning that f(x; p) = p when x = 1, and f(x; p) = (1 − p)

when x = 0.

Therefore, by encoding a pixelated unit-cell into a binary string, the CE method with

the Bernoulli sampling distribution can be used for its optimization. Using a 90-degree

rotational symmetry in a unit-cell with n = 6, the quarter of the pattern on top of the

dielectric layer is represented by a probability distribution matrix P T :

P T =




p111 p121 p131

p211 p221 p231

p311 p321 p331




, (6.4)

and the quarter of the pattern on the bottom of the dielectric layer is represented by PB:
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Figure 6.4: Illustration of the exponential increase in the complexity of binary opti-

mization problems.

PB =




p112 p122 p132

p212 p222 p232

p312 p322 p332




. (6.5)

The probability pijk is the probability that the pixel located at row i = 1, ..., n/2, column

j = 1, ..., n/2 and side k = {1; 2} is filled with metal. The quarter of a unit-cell is,

therefore, sampled using the sampling distribution parameter matrix P =
[
P TPB

]
with

number of elements D = 2 × (n/2)2 = 18 for n = 6. The number of parameters D

in the quarter matrix P is the dimensionality of the optimization problem. Fig. 6.4

illustrates that the difficulty of binary optimization problems increases exponentially

with the number of dimensions. If D = 1, there are only two possible outcomes (straight

line), that represent either “air” or “metal”. If D = 2, the number of outcomes equals

the number of vertices of a rectangle, i.e., 22 = 4. For D = 3, the number of outcomes

is 23 = 8. In the considered case with n = 6, the binary optimization problem with 18

design variables has 2D = 218 = 262 144 possible outcomes.

6.4.2 CE Algorithm for Optimization of Binary Problems

The principle of the CE method has been explained in Section 2.3, and only the crucial

steps of the algorithm implementation on binary problems will be given further. The main

idea of the CE optimizer is the minimization of the cross-entropy between two probability

distributions: an empirical distribution describing the current elite subpopulation and a
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sampling distribution which is used to sample a new population. At each iteration, two

important steps must be taken to implement this idea:� Generate a random population of solutions xt with Npop candidates from the sam-

pling distribution f(xt; pt), where pt are the distributional parameters at the t-th

iteration, and choose the Nel best-performing candidates for the elite subpopulation

by evaluating the fitness function.� Update the shape parameters pt+1 of f(xt+1; vt+1) by minimising its cross-entropy

with the empirical distribution g(xt;wt) describing the current elite solutions using

the maximum likelihood estimation of wt.

The flowchart of the proposed optimization scheme for the design of pixelated printed

surfaces by the CE method with a Bernoulli sampling distribution is given in Fig. 6.5.

The optimization begins by setting the parameters of the CE method, such as population

Figure 6.5: The flowchart for optimization of binary problems using the CE method.

size Npop, proportion of elite subpopulation ρ = Nel/Npop and smoothing parameter αS.

Also, it is required to set the parameters of the optimization problem, such as the number

of rows Np and the number of columns Mp in the probability matrices P T and PB. In the

discussion, we omit the indices (i, j, k) for brevity. The initial patterns X0 are generated
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by sampling from the uniform probability mass function P 0 with all probabilities equal

0.5. At each iteration t, the patterns are generated by the same principle. In particular,

for each candidate, a matrix Et of random variables from the interval [0, 1] is compared

to the corresponding value of success probability in P t according to:

Et
ijk < ptijk ⇒ xt

ijk = 0;

Et
ijk > ptijk ⇒ xt

ijk = 1. (6.6)

If the value of Et is less than the probability of success P t, the corresponding variable xt

is equal to “0” (no metal), and otherwise it is “1” (metal).

The next step is to obtain the performance parameters via EM simulation and evaluate

the fitness functions for each candidate. If the fitness function is to be maximized, the

results are sorted in descending order, and if minimized, in ascending order. In either case,

the first ρ% = Nel · 100%/Npop constitute the elite subpopulation. These Nel candidates

are used to generate new probability mass functions P (t+1), to increase the probability

that the best-performing candidates occur in the next generation. This is achieved by

maximum likelihood estimation, which for the Bernoulli distribution is simply the mean

of the best-performing candidates [82]:

P̂ =
1

Npop

Npop∑

c=1

Xc. (6.7)

An optional smoothing procedure described in Section 2.3 and given by Eq. (2.5) has

been applied.

The termination condition has been defined as the diversity of the elite subpopulation.

If the variance of the elite candidates equal to or goes below the threshold, the optimiza-

tion stops. For binary variables, the threshold is δ=0, which implies that optimization

stops when the elite subpopulation has converged to the same solution.

A script for the optimization of a pixelated unit-cell is provided in Appendix C.
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6.5 Optimization Results

The square unit-cell with side length a and thickness d is shown in Fig. 6.6. Keeping

the fabrication tolerance in mind, the printed surface has been divided into 6 by 6 pixels

resulting in each pixel having a side length b=1.33 mm. As clarified earlier, only one

quarter of each pattern has been optimized due to the use of 90-degree rotational sym-

metry. After applying the symmetry, the parameter vector of the optimization problem

consists of D = 2 ·32 = 18 variables. The metallic pixels in Fig. 6.6 are shown in grey and

represented by “1” in the X matrix, whereas the absence of metallic pixels is shown in

blue and represented by “0”. Numerical results have been obtained by CST MWS using

the waveguide simulation method described in Section 6.3.1. The unit-cell is illuminated

by a TE-polarised wave with the E vector oriented along the x axis from two waveguide

ports. Each port is located at a half-wavelength distance from the unit-cell, and the

reference planes are positioned at the opposite sides of the unit-cell in order to acquire

the reflection phase values.

Figure 6.6: A model of the square unit-cell under optimization.

6.5.1 Single-Frequency AMC Surface

The first AMC design was optimized for X-band operation at 10 GHz. The side length

of the unit-cell was set to a=8 mm, and the dielectric material Rogers RO4003 with

εr = 3.55 and thickness d=1.58 mm has been used. The target phase and magnitude (on
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a linear scale) of the reflection and transmission coefficients at the required frequency are

the following

∠S11 = 0◦,∠S22 = 180◦, |S21| 6 0.3. (6.8)

The optimization goal was to minimise the objective function F.F., which is the sum of

three terms:

F.F. = F1 + F2 + 100 ∗ F3, (6.9)

where

F1 = |0◦ − ∠S11|2, (6.10)

F2 = |180◦ − ∠S22|2, (6.11)

F3 =





0, if |S21| 6 0.3

|S21|, otherwise.

(6.12)

As the transmission coefficient magnitude |S12| of 0.3 is sufficient, all the designs with

|S12| 6 0.3 have F3=0.

The parameters of the CE method were set to the following values: population size

Npop=30, elite subpopulation size Nel=10 and smoothing parameter αS=0.6. The time

required for a single simulation is between 30 and 60 s using a PC with Intel Core i7-4790

processor and 32 GB of memory. Five optimization runs were conducted to keep the

balance between the statistical certainty of the results and the computational cost. The

best obtained solution has F.F.=6.8 and is represented by the following solution matrix:

XT =




1 0 1

1 0 0

0 1 1




, XB =




1 1 1

0 1 1

1 1 0




.

The top and bottom patterns of the surface with 3 × 3 unit-cells, obtained after CE

optimization for the goal given in Eq. (6.8), are shown in Fig. 6.7. To construct the

geometry of a periodic EM surface from the optimized unit-cell, the image theory has

been applied. The mirror image of a current element flowing parallel (perpendicular) to

the PEC boundary should be formed in the opposite (same) direction. The image of a
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current element flowing parallel (perpendicular) to a PMC boundary is formed in the

same (opposite) direction [211].

Figure 6.7: A part of the optimized single-frequency AMC: top pattern (left) and

bottom pattern (right) of 9 unit-cells.

The transmission and reflection results are given in Fig. 6.8, where S11 and S22 rep-

resent reflections from the top and the bottom surface, respectively.

Figure 6.8: Reflection phase of TE-polarised incident wave from the top and bottom

sides of the optimized AMC, as well as the transmission magnitude.

As required, ∠S11 = 0, |S12| = 0.25 (–12 dB) and ∠S22 = 174◦ at 10 GHz. Therefore,

the top surface of the designed EM structure behaves as an AMC at the specified fre-
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quency. An in-phase reflection bandwidth, which is commonly defined as the frequency

band with the phase of the reflection coefficient being within ±45◦, is from 9.41 GHz to

10.59 GHz.

It is also worth noting that, to obtain this AMC, a complete metallic backing was not

required. As shown in Table 6.1, in comparison to the pixelated surfaces obtained through

GA in [25,199], the thickness of this AMC is merely the same but the level of discretisation

is significantly lower, 6 × 6 pixels as opposed to 16 × 16, which is advantageous for

fabrication purposes. The side length of the unit-cell in [25] is 0.1λ0 at 5 GHz, which is

6.6 mm, and thus the dimensions of each pixel are 0.4× 0.4 mm. Neither of the designs

from Table 6.1 have been fabricated due to the focus of the work being on the optimization

methodologies. However, practical considerations should be taken into account. The side

length a = 8 mm and coarser discretisation in the unit-cell have been chosen due to

anticipated fabrication limits. The thickness t = 1.58 mm has been considered because

the AMC surface of 100λ0 × 100λ0 has to be rigid for the measurement purposes.

To demonstrate that AMC design with a = 0.1λ0 is also possible, a unit-cell with

a = 3 mm and 36 pixels (each pixel having b=0.5 mm) on each side has been optimized.

The 3× 3 surface is shown in Fig. 6.9, and its reflection and transmission characteristics

are given in Fig. 6.10. The desired specifications have been satisfied, as |S12| = 0.14,

∠S11 = 2.2◦ and S22 = 175.5◦ at 10 GHz. The best obtained solution is represented by

the following solution matrix:

XT =




1 1 1

0 1 0

1 0 1




, XB =




1 0 0

1 1 1

0 1 1




.

The optimization of the single-frequency AMC only took from 8 to 15 iterations,

which is three times less computational effort than that required by GA in [25]. The

convergence curve of the optimization of the single-frequency AMC with a = 0.1λ0 is

shown in Fig. 6.11. A more detailed visualisation of the fitness function improvement

can be observed in Fig. 6.12, which compares the fitness function values calculated by

Eq. (6.9) for every candidate at the first and the last iteration of the optimization for
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Figure 6.9: A part of the optimized single-frequency AMC with a = 0.1λ0: top pattern

(left) and bottom pattern (right) of 9 unit-cells.

Figure 6.10: Reflection phase of TE-polarised incident wave from the top and bottom

sides of the AMC with a = 0.1λ0, as well as the transmission magnitude.



154 Chapter 6. Optimization of Thin Pixelated EM Surfaces

2 4 6 8 10 12 14
Number of iterations

101

102

103

104

105

F
itn

es
s 

fu
nc

tio
n

Best fitness value
Average fitness value

Figure 6.11: Convergence curve for the optimization of a single-frequency AMC with

a = 0.1λ0.

a = 0.27λ0. The candidates are sorted in descending order of their final F.F. value. A

significant reduction can be seen in the fitness function of all candidates, from the highest

value of 890 at the first iteration to the lowest of 6.8 at the last iteration.
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Figure 6.12: Distribution of the F.F. value (Eq. (6.9)) over all candidates for the first

and the last iteration of the optimization of the AMC with a = 0.27λ0.
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Table 6.1: A comparison table of the presented work with the GA-optimized single-

frequency AMC surfaces.

Ref. Unit-cell geometry Method a t
Polarisation

dependency

Single-frequency AMC

[25] GA 0.1λ0 0.08λr No

[199] GA 0.3λ0 0.09λr Yes

This work CE 0.27λ0 0.09λr No

This work CE 0.1λ0 0.09λr No
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6.5.2 Dual-Frequency AMC Surface

The second AMC design, with the unit-cell dimensions a = 8 mm and d = 3.16 mm, was

optimized to operate at 8 GHz and 12 GHz. The target characteristics were defined as in

Eq. (6.8) at these two frequencies. The optimization goal was to minimise the objective

function

F.F. = F.F.8GHz + F.F.12GHz, (6.13)

where F.F.8GHz and F.F.12GHz are calculated using Eq. (6.9) – (6.12).

Out of five consecutive optimization runs, each with population size Npop=30, elite

subpopulation size Nel=10 and smoothing parameter αS=0.1, the two best solutions had

almost the same F.F. value and design parameters. The solution shown in Fig. 6.13 with

F.F.=41.3 has the following solution matrix:

XT =




1 1 0

0 1 0

1 0 0




, XB =




1 1 0

1 1 1

1 1 1




.

The second solution has F.F. = 35.2, and the only difference in the solution matrix is

a single bit in the bottom pattern, which has all “1s”. It suggests that for dual-band

performance, a complete or nearly complete metallic backing is required.

Figure 6.13: A part of the optimized dual-frequency AMC showing 9 unit-cells: top

view (left) and bottom view (right) of the optimized patterns.
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The transmission and reflection results are given in Fig. 6.14. Phase ∠S22 is 177◦

and 175◦, and |S12| is –32 dB and –40 dB at 8 and 12 GHz, respectively. Phase ∠S11 is

–25◦ at 8 GHz, which is within the in-phase reflection bandwidth (±45◦), and it passes

through 0◦ at 12 GHz. Therefore, the optimized surface behaves as an AMC at both

target frequencies of 8 and 12 GHz. In comparison to the pixelated surface obtained

through GA in [25], this AMC is electrically thinner, t = 0.09λr versus 0.13λr, and has a

larger side length, a = 0.27λ0 versus 0.11λ0. As in the previous case, a comparison given

in Table 6.2 shows that the thickness and the side length of this AMC are merely the

same as in [199] but the level of discretisation of the optimized unit-cell is significantly

lower due to the fabrication considerations.

Figure 6.14: Reflection phase of TE-polarised incident wave from the top and bottom

sides of the optimized AMC, as well as the transmission magnitude.

The optimization run that produced the design in Fig. 6.13 continued for 47 iterations.

Its convergence curve is given in Fig. 6.15. The best result was obtained after the 27th

iteration, and the optimization was terminated after not producing any better solution

for as long as 20 iterations.
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(a)

(b)

Figure 6.15: Convergence curves for the optimization of a dual-frequency AMC. The

stopping criterion was satisfied after (a) 47 iterations for the first run and (b) 58 iterations

for the second run. The unit-cell with octagonal pixels has the side length a=8 mm and

thickness t=3.15 mm.
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Table 6.2: A comparison table of the presented work with the GA-optimized dual-

frequency AMC surfaces.

Ref. Unit-cell geometry Method a t
Polarisation

dependency

Dual-frequency AMC

[25] GA 0.1λ0 0.08λr No

[199] GA 0.22λ0 0.19λr Yes

This work CE 0.27λ0 0.19λr No
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6.5.3 Thin Phase-Correcting Metasurfaces

Other applications of EM surfaces are found in the design of low-profile planar phase

correcting structures [212,213] and beam steering metasurfaces [214]. Using the proposed

optimization methodology by means of the CE method, phase-shifting structures made

of a single dielectric layer with pixelated surfaces printed on the two sides have been

designed. The unit-cells (as in Fig. 6.6) were optimized to provide a required phase

shift without introducing significant losses to the transmitted wave. Eleven optimization

problems have been formulated to obtain phase shifters covering a range of phases from

180◦ to 360◦ with 10◦ to 20◦ steps.

The same unit-cell as in the design of AMCs, with 36 pixels on each side, has been used

for realisation of the phase shifters. Motivated by practical considerations for operation at

20 GHz (λ0 = 15 mm), the side length of the unit-cell has been set to a = 0.3λ0 = 5 mm.

The pixelated patterns are printed on a commercially available dielectric material Taconic

TLY-5 with εr = 2.2 and t = 1.58 mm.

The optimization goal for all phase-shift values has been defined as:

F.F. = 1000 · F 2
phase + 0.01 ∗ F 2

mag, (6.14)

where

Fphase =





0, if |∠S12obj − ∠S12| 6 2◦

∣∣∣∠S12,obj − ∠S12

∣∣∣, otherwise

(6.15)

and

Fmag =





0, if |S12| > 0.9

0.9− |S12|, otherwise.

(6.16)

The coefficients in Eq. (6.14) have been chosen to reflect the relative importance of the

phase and magnitude objectives and to compensate for the difference in their units. The

threshold values 0.9 for magnitude and 2◦ for phase are optional, and the target phase shift

∠S12,obj takes eleven values:
{
180◦, 200◦, 220◦, 240◦, 260◦, 280◦, 300◦, 320◦, 330◦, 350◦, 360◦

}
.

The optimized results are summarised in Table 6.3, where the target transmission-

phase ∠S12 values and the ones obtained after optimization can be compared. For all
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solutions, the magnitude of the transmission phase |S12| is > 0.9 (linear scale), which

ensures transmission losses of less than –1 dB. The largest difference between the desired

and obtained phase shift is 5.67◦, which is assumed to introduce only minor errors in

application to phase correction. A more precise phase-shifting element might be obtained

by optimizing a unit-cell with an increased level of discretisation. Other phase values can

be obtained by defining the desired ∠S12,obj in the optimization goal.

Table 6.3: Obtained phase shifts of the optimized pixelated unit-cells.

Desired

∠S12

Obtained

∠S12

Obtained

|S12|
Design variables

180◦ 184.36◦ 0.92 XT = [000001110], XB = [111110000]

200◦ 200.83◦ 0.95 XT = [100101110], XB = [110010101]

220◦ 222.26◦ 0.93 XT = [001001110], XB = [110100100]

240◦ 239.66◦ 0.90 XT = [011100011], XB = [110001101]

260◦ 257.94◦ 0.91 XT = [001011001], XB = [100101001]

280◦ 279.57◦ 0.90 XT = [000000011], XB = [010011011]

300◦ 300.76◦ 0.95 XT = [111001110], XB = [100000000]

320◦ 319.79◦ 0.93 XT = [000010000], XB = [101011010]

330◦ 329.11◦ 0.90 XT = [000000000], XB = [101001101]

350◦ 350.52◦ 0.95 XT = [000101111], XB = [001100111]

360◦ 365.67◦ 0.90 XT = [101100101], XB = [011011010]

The transmission phase and magnitude of the unit-cell for a 200◦ phase shift is shown

in Fig. 6.16, with the top and bottom unit-cell patterns given in the inset. Fig. 6.17

demonstrates the phase shifts provided by the optimized designs given in Table 6.3. It

can be seen that a thin double-sided single-layer metasurface is capable of providing a

180◦ phase-shifting range at 20 GHz. The optimized unit-cells with pixelated patterns

are half the thickness of the metasurface with square patches in [214] and can be used

to improve the beam-steering solution by decreasing the profile, weight and complexity

of the turning metasurfaces. The proposed optimization methodology and the obtained

unit-cells can also be used in the design of transmitarrays [215].
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Figure 6.16: Transmission coefficient magnitude and phase of the phase correcting

metasurface. Optimized design meets the target of ∠S12,obj = 200◦, |S12| > 0.9 at 20 GHz.
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6.6 Summary

In this section, a novel methodology has been introduced for the synthesis of thin printed

EM surfaces. The CE method has been used to optimize the double-sided pixelated

unit-cell of a periodic structure. To the best of the author’s knowledge, this is the

first time CE has been used in application to the optimization of pixelated metallo-

dielectric EM surfaces. The proposed approach has been demonstrated in application to

the synthesis of thin double-sided AMCs and planar phase shifters, and it can be extended

to any design of thin metallo-dielectric structures, for example metasurfaces and coding

metamaterials [216]. Although only narrowband structures have been considered in the

optimization, the bandwidth of the AMC can be increased by cascading two or more

layers of periodic surfaces. The next chapter presents a simple and novel approach to the

optimization of a microstrip lowpass filter by the CE method.





The best and most beautiful things in the world

cannot be seen or even touched. They must be

felt with the heart.

— Helen Adams Keller

Chapter 7

Optimization of Microstrip Low-Pass

Filters

This chapter presents a simple approach for handling constraints using the CE method

that strictly satisfies the linear equality and inequality constraints of an optimization

problem. The feasibility of the proposed approach is demonstrated in application to

the design of a microstrip low-pass filter. The formulated linear equality and inequality

design constraints are strictly satisfied in each evaluated design, which is ensured by the

use of appropriate sampling distributions. The desired cut-off frequency of the filter is

achieved by incorporating a mask function in the optimization goal.

7.1 Introduction

A filter is a two-port device that allows signals of a certain desired band of frequencies

to pass through it with very little attenuation or loss, while stopping the transmission

of other undesired bands of frequencies [217]. A low-pass filter (LPF) allows the trans-

mission of low frequencies while rejecting high frequencies. The recent advances in fab-

rication technologies and computer-aided design tools such as full-wave EM simulators

revolutionised filter design [218]. Particularly, EM simulators can provide more accurate

performance prediction than traditional linear models, as they can account for effects

that are very difficult to simulate using linear modelling techniques. This is because the

165
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microstrip circuitry is quasi-TEM, with some portion of the EM fields in the free space

above the dielectric material. The design of high-performance microwave filters by in-

terfacing EM simulation packages with global optimization algorithms is a vital modern

research topic [219–222].

To obtain an optimal design in a reasonable time frame, local optimization from the

starting point of a known initial design has become a routine approach for filter design

optimization during the last decade [223]. However, when the initial design is not near

the optimal solution, global optimization methods are necessary. In [10], it is stated

that EAs require a prohibitive amount of time to complete a single optimization run.

However, it will be shown in this chapter that a microstrip filter can be optimized within

a reasonable period of time.

Although nowadays the computational time might not be such a problem due to the

progress in computing capabilities and numerical analysis techniques, other challenges

are present for optimization algorithms. In engineering problems, it is often required

that additional restrictions are fulfilled by the optimal design. Such restrictions can be

formulated by equality and inequality constraints. The constraint functions can include

the design variables, the performance parameters and any mathematical combination

of both. Equality constraints are very difficult to treat by optimization methods [224].

The reason is that the EAs randomly sample populations from a continuous solution

space, which require minimal and maximal allowed values, also called lower and upper

boundaries. These are, therefore, the only strict constraints that can be put on the design

variables.

For the sufficiently accurate fulfilment of other constraints, additional modifications

in the optimization flowchart are required as described in Section 2.6.2. However, such

“tweaks” negatively affect the convergence of the optimizer, i.e. slow down or distort the

search. Neither PSO nor CMA-ES in their pure forms can handle constraints [51, 225].

The advantage of the CE method is its flexibility with regard to the probability distri-

bution family that is used for sampling the candidates. This advantage can be exploited

for the consideration of design constraints. In order to demonstrate its feasibility, the
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method was applied to the optimization of an improved microstrip LPF design.

In the design of microstrip filters, constraints are often required due to package consid-

erations and space limitations. The description of the proposed optimization approach to

tackle equality and inequality constraints will be addressed below. The design challenge

is to preserve the cut-off frequency and the selectivity of the proposed filter design and

improve its rejection bandwidth.

7.2 The CE Method for LPF Optimization

Classical stepped-impedance microstrip LPFs are realised by cascading low- and high-

impedance transmission lines. The low-impedance wide lines act as shunt capacitors, and

the high-impedance narrow lines act as series inductors. The recommended impedance of

the capacitive microstrip sections is between 20–25 ohms, restricting the size of capacitive

microstrip sections.

In [226], a new approach to the design of the classical stepped-impedance microstrip

LPFs was adopted. It was shown that, by introducing a transverse resonance in a capaci-

tive section, a transmission zero can be added in the stopband of the filter. This improves

the sharpness of rejection, attenuation depth and rejection bandwidth. The design of this

filter is known as the transverse resonance LPF (TR-LPF). It has been implemented us-

ing the Butterworth prototype, but the Chebyshev prototype can also be used. However,

the limitation of the initial TR-LPF was the trade-off between the high selectivity and

wide rejection bandwidth, due to a single transmission zero (TZ) frequency that was the

same for all capacitive sections.

To overcome this limitation, linearly-distributed multiple TZ frequencies have been

introduced in the stopband [227]. When TZ frequencies are placed closer to the cut-off

frequency, higher selectivity with a very high attenuation level is obtained, but at a cost

of limited rejection bandwidth. On the other hand, when TZ frequencies are spread

out more in the stopband, it results in the large rejection bandwidth but with lower

attenuation levels and poor selectivity. This filter, called a linear TR-LPF, has multiple
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design variables and seems an ideal candidate for optimization.

7.2.1 Non-Uniform Microstrip Transverse Resonance LPF

Instead of linearly distributing the TZ frequencies in the stopband, we aim at optimizing

the filter dimensions so that the TZ frequencies can be placed at arbitrary locations

while preserving the transverse resonance. A 5-pole TR-LPF with cut-off frequency fc =

2.5 GHz is considered as an example for applying the proposed optimization approach.

The widths of the capacitive sections depend on the TZ frequencies, and their lengths

depend on the capacitance required to obtain the Butterworth response. In order to

maintain the cut-off frequency, the lengths of the inductive sections have to be adjusted.

The widths of the inductive sections are fixed at 0.15 mm. While wider inductive sections

can handle more power, lower widths suppress the harmonics in the stopband. A layout of

a 5-pole parametrised TR-LPF consisting of alternating capacitive and inductive elements

is shown in Fig. 7.1.

Figure 7.1: Layout of a 5-pole transverse resonance Butterworth microstrip LPF.
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The substrate Rogers RO4232 with t=0.762 mm and εr=3.2 is used for the realisation

of the design. Each capacitive section is defined by two parameters, Li and wi, and each

inductive section is defined only by length Lj , where i = 1, 3, 5, j = 2, 4. For the

case of the 5-pole filter, the design vector has 8 continuous variables. To incorporate

a priori knowledge of this filter design, we formulate the optimization problem subject

to two constraints, the equality constraint L1 + L2 + ... + L5 = Ltot and the inequality

constraint Wmax > w1 > w2 > w3 > Wmin. The total length of the filter Ltot=18 mm,

and the minimal and maximal widths of the capacitive sections are Wmin=10 mm and

Wmax=35 mm (substrate width), respectively.

The equality constraint ensures that the total length of the filter is within the required

dimensions. The inequality constraints arise out of the physics of the problem. Since

transverse resonance occurs along the width of the capacitive section, its wavelength

cannot be more than the half wavelength at the first TZ frequency. Since the TZ frequency

will always be greater than the cut-off frequency fc, Wmax will always correspond to

λc/2
√
εr,eff , where εr,eff can be calculated using the Hammerstad-Jensen formula [228].

The practical Wmin limit is slightly larger than the width of a 50-ohm microstrip line.

Below this width, the capacitance of the 50-ohm lines dominates, and the capacitive

sections behave as inductors.

7.2.2 Optimization Approach

The design parameters of this filter are defined by the design vector

x = (L1, L2, L3, L4, L5, w1, w2, w3).

Two constraints have been previously formulated for the optimization problem:� Length requirement: L1 + L2 + ...+ L5 = Ltot,� Width requirement: Wmax > w1 > w2 > w3 > Wmin.

To ensure that each generated design inherently satisfies the formulated constraints,

the Dirichlet distribution has been used for sampling. The Dirichlet distribution has the
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PDF given by

f(x1, ..., xk;α1, ...αk) =
Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

k∏

i=1

xαi−1
i , (7.1)

where the sum of the design variables
∑k

i=1 xi = 1 and xi > 0 for all i ∈ [1, k] dimensions,

Γ is the gamma function and (α1, ...αk) are the distributional parameters. It is important

to note that the support of the Dirichlet distribution includes real numbers from the

interval (0, 1), but it can be converted to any simplex defined by the design variables. To

do that, a linear transformation can be applied to the Dirichlet simplex.

The lengths have been sampled directly from PDF f1(x1, ..., x5;α1, ..., α5), where x1+

x2+ ...+x5 = 1 and (α1, ..., α5) are the distributional parameters. The minimal limitation

of Lmin = 0.1 mm has been applied considering fabrication tolerances. Thus, the sampled

values (x1, ..., x5) are transformed to the required simplex by

L1, ..., L5 = Lmin + (Ltot − 5 ∗ Lmin) ∗ (x1, ..., x5). (7.2)

Due to the fact that
∑k

i=1 xi = 1, the equality constraint is automatically fulfilled.

The widths are sampled from PDF f2(y1, ..., y4;α6, ..., α9), with the further transfor-

mation according to:

w3 = wmin + (wmax − wmin) ∗ y1, (7.3)

w2 = wmin + (wmax − wmin) ∗ (y1 + y2), (7.4)

w1 = wmin + (wmax − wmin) ∗ (y1 + y2 + y3), (7.5)

ensuring the inequality condition. The parameters of the CE method that were set in the

optimization of this LPF are summarised in Table 7.1.

Table 7.1: The CE method parameters for optimization of 5-pole LPF problem.

Population size Elite subpopulation size Smoothing

Npop Nel αS

30 10 0.1
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The major difficulty of broadband filter response optimization is to obtain an op-

timized solution with a cut-off frequency of exactly 2.5 GHz. Initially, a traditional

approach was taken to the formulation of the fitness function, specifying the desired lev-

els of attenuation in the passband and in the rejection band. The cost function increases

proportionally to the difference between the desired level and the actual result. Many

designs optimized using this cost function have excellent stopband response in terms of

the selectivity and/or the rejection bandwidth, but with a cut-off frequency different from

2.5 GHz. Fig. 7.2 shows the transmission characteristics of some of the optimized cases.

It can be seen that the passband and rejection-band requirements are fulfilled, but the

cut-off frequency is shifted from 2.5 to 3.3 GHz.

Figure 7.2: Transmission characteristics of the designed 5-pole TR-LPF with a cut-off

frequency at 3.3 GHz using the traditional cost function formulation.

In order to achieve the desired transmission characteristics of the filter, a new approach

has been taken to the fitness formulation. The optimization goal was expressed using a

mask function given by the following expression:

mask(fr) =





0, fr < 2.4 GHz

147− 60× fr, 2.4 GHz 6 fr < 3 GHz

−35, fr > 3 GHz

(7.6)

The mask has separate sections for the passband, cut-off and rejection bands. The coeffi-

cient in front of the frequency variable corresponds to the desired selectivity 60 dB/GHz,
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and another coefficient is selected to smooth out the sharp corners of the piecewise func-

tion. The optimization goal is to minimise the cost function given below:

F.F. =
2.4 GHz∑

0.1 GHz

20 ∗ (S21(fri)−mask(fr))2 +
3 GHz∑

2.4 GHz

(S21(fri)−mask(fr))2+

+
16 GHz∑

3 GHz

(S21(fri)−mask(fr))2, (7.7)

where S21(fri) is a transmission coefficient given in dB at i = 1, ..., 101 frequency points in

the range 0.1–16 GHz. Due to the filter symmetry and even-mode excitation, a magnetic

wall was placed into the plane of symmetry in order to reduce the simulation time by

half.

7.3 Optimization Results

The best result obtained after five optimization runs is shown in Fig. 7.3. The cut-off

frequency of the filter is at 2.5 GHz, as desired. As a result of the optimization, the

rejection bandwidth has been improved from 0.5 GHz [227] to 8.5 GHz, preserving the

selectivity of the filter and its cut-off frequency. Considering the low order of the filter,

the attenuation level is compared at the level of −30 dB. Although the level of |S21| in

the passband degraded from −1.3 dB for the initial filter to −2.2 dB for the optimized

one, the required insertion loss level depends on the application. The weight of the first

term in the cost function might be increased, but also decreasing the width of inductive

sections (which has been fixed to 0.15 mm) can minimize the ripple in the passband.

CST MWS time-domain solver was used to model the filter response. On an Intel

Core i7 3.6 GHz processor with 32 GB of RAM, the optimization takes around 4.5 hours.

Fig. 7.4 shows the evolution of the cost function over the function evaluations for the run

that produces the best result. The stopping criterion was satisfied after 21 iterations,

resulting in 630 function evaluations. The dimensions of the initial design, with a linear

distribution of the TZ frequencies, and the optimized design are summarised in Table 7.2.
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Figure 7.3: Comparison of the optimized TR-LPF and the linear TR-LPF. The trans-

mission mask (red line) defines the desired filter response. The optimization goal was to

minimise the squared difference between the mask and the result.

Figure 7.4: Convergence curve for the optimization of a 5-pole TR-LPF.
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Table 7.2: Parameter values for the 5-pole TR-LPF before and after optimization.

Design Parameters, mm Before optimization After optimization

L1, w1 0.55, 33.23 1.58, 30.34

L2 3.5 2.75

L3, w2 4.05, 16.46 4.89, 17.17

L4 3.5 3.93

L5, w3 1.77, 10.87 4.84, 11.14

−30 dB rejection bandwidth, GHz 0.5 8.5

Selectivity, dB/GHz 60.2 60.3
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7.4 Summary

This chapter presents the results of applying the CE method to the design of a stepped-

impedance TR-LPF. The initially proposed design of the 5-pole TR-LPF with the cut-off

frequency at 2.5 GHz had a limitation of a narrow rejection bandwidth if the selectivity

was 60 dB/GHz. The CE optimization method incorporates the design considerations

in the form of equality and inequality constraints. The novel approach ensures that

the constraints are satisfied for each design solution, which cannot be realised by PSO

or CMA-ES in their pure forms. The optimization goal was formulated by means of a

mask function representing the desired response. By optimizing the lengths and widths

of capacitive and inductive microstrip sections, the rejection bandwidth of the 5-pole

TR-LPF was improved from 0.5 GHz to 8.5 GHz.





Success is not final, failure is not fatal: it is

the courage to continue that counts. Success

consists of going from failure to failure without

loss of enthusiasm.

— Winston Churchill

Chapter 8

Conclusions

This chapter summarises and concludes the thesis by highlighting the key findings of the

conducted research. Avenues for future work are proposed that can advance optimization

technology for EM engineering problems.

8.1 Summary

This thesis investigated the functionality of evolutionary optimization algorithms in ap-

plication to EM engineering problems. Three algorithms were considered: particle swarm

optimization (PSO), cross-entropy (CE) and covariance matrix adaptation evolutionary

strategy (CMA-ES). PSO was selected because it is simple to implement and a very pop-

ular optimization method. CE is a new method for EM problems, and was found to have

attractive properties, especially for simulation-driven optimization. In particular, it has

fast convergence, and it can be easily adapted to any type of optimization problem, such

as continuous, discrete (including binary), mixed-parameter and constrained. CMA-ES

was selected because it is an emerging popular algorithm and does not require adjustment

of its internal parameters.

The optimization problems considered in this thesis are cutting-edge research topics

and offer novel promising capabilities for many applications in wireless communication

systems. Chapter 3, 4 and 5 describe the optimization of compact resonant cavity an-

tennas (RCAs) and aperture-coupled microstrip patch antennas (ACMPAs) using PSO,
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CE and CMA-ES. Chapter 6 introduces the CE optimization method for the synthesis

of pixelated EM surfaces and metasurfaces, and Chapter 7 shows the approach to design

constrained microstrip low-pass filters with improved characteristics.

In Chapter 3, the designed RCAs have superstrates (of either pre-defined or optimized

thickness) constructed from annular dielectric sections of equal widths and different per-

mittivity values. Since these design problems are continuous and unconstrained, PSO

was employed for their optimization. Four different formulations of the objective func-

tions yielded four antenna designs with high-gain performance of 17.6–19.6 dB and small

footprint of 1.7–2.2λ0. The antennas have 3-dB radiation bandwidths of 24%, 50% and

70%, which makes them good candidates for wideband communication systems including

high data-rate wireless local area networks and point-to-point communications.

The problem of constrained mixed-variable optimization is addressed in Chapter 4

using the CE method. Previously, CE applications to EM designs have utilised only the

normal distribution, thus not taking advantage of its flexible updating rules. Discrete and

Dirichlet probability distribution families are employed to optimize both constrained con-

tinuous parameters of the widths in the superstrates of fixed diameter and their discrete

permittivity values. The method accounts for the list of available dielectric constants,

which results in ready-to-fabricate optimized designs. Six compact wideband RCAs are

obtained with optimal superstrate profiles and diameters of 1.5λ0, 1.85λ0 and 2.2λ0.

Compared to the initial design obtained manually, the optimized RCAs have higher gain

and lower side lobe levels in the frequency band of interest. The best obtained RCA

design has a peak directivity of 19.4 dBi, 3-dB radiation bandwidth of 40% and side lobe

levels close to –20 dB at all frequencies in the operating band.

Chapter 5 presents the results of ACMPA design by PSO, CE and CMA-ES. The

optimization problem is continuous and unconstrained. The design objective is to provide

input impedance matching with S11 6 –10 dB in the band 12–18 GHz. First, a stand-alone

ACMPA is optimized. Then, it is optimized in the resonant cavity offering an advantage

of a planar feed for RCAs. Comparing the performance of three optimization methods,

it is concluded that CE is an efficient and fast optimization technique for unconstrained
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continuous problems. It yielded designs with performance similar to PSO in much less

time.

A novel methodology for the optimization of pixelated EM surfaces is proposed in

Chapter 6. The optimization problem has binary design variables. As in the optimization

of such problems by GAs, the pixels are encoded by “0s” and “1s”, but instead of genetic

operators, a Bernoulli probability distribution is used to produce next generations. The

proposed methodology yielded two types of EM surfaces: artificial magnetic conductors

(AMCs) and phase-shifting metasurfaces. A single-frequency AMC operates at 10 GHz,

and dual-band AMC operates at 8 and 12 GHz, both featuring polarisation independence.

Eleven thin transparent metasurfaces operate at 20 GHz and produce phase shifts from

180 to 360◦.

Most real-world EM engineering problems are constrained. Commonly, constraints

are handled by applying penalties to designs which fall outside of the constrained area,

which reduces the chance that these candidates will occur in the next generations. This

procedure is, however, inefficient. In Chapter 7, it is shown how to incorporate constraints

in the definition of design parameters using the CE method. The Dirichlet probability

distribution is used to generate continuous constrained variables, which by design satisfy

all predefined constraints. Using the proposed technique, a microstrip low-pass filter

with transverse resonance in the capacitive sections is designed. The optimized filter

outperforms the initial design, offering a wide rejection bandwidth and preserving the

filter size, selectivity and a cut-off frequency.

8.2 Avenues for Future Work

The findings of this research and proposed methodologies can be applied to other EM

design problems. Possible directions for future study are given below.� The methodology for combinatorial optimization using the CE method can be used

in the design of lens antennas, such as Maxwell fish-eye lens as a beam splitter

described in [229].
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distribution can be applied to microwave devices, such as filters and couplers, in

order to achieve miniaturisation or weight reduction by reducing the number of

elements [230].� The methodology for binary optimization using the CE method can be applied to

the synthesis of other thin metallo-dielectric structures, such as metasurfaces, cod-

ing metamaterials, reflectarrays, transmitarrays and polarisation converters [231].� Modifications can be sought to further improve the convergence rate of the CE

algorithm and/or improve the algorithm’s resistance to premature convergence.

Also, other probability distributions can be used in CE optimization, discovering

new capabilities of the method.� It is interesting to compare the performance of other emerging algorithms such

as IWO and BBO with CE, PSO and CMA-ES on some common antenna design

problems and identify the common features. As the topography of fitness functions

in simulation-driven EM optimization is usually unknown, it would be useful to

match the algorithms with problems of similar type. Also, it is important to create

a common figure-of-merit for the comparison that combines both mean number

of function evaluations and the value of the fitness function. Alternatively, the

comparison can be based on the characteristics of the EM problems.� Following from the previous suggestion, it seems useful to create a standard set

of benchmark EM problems (continuing the work initiated in [232–235]). The de-

mand for evolutionary optimization in electromagnetics will continue to grow, and

therefore, a systematic approach to their study is necessary.



Appendix A

Interfacing MATLAB and CST

MWS

A general workflow for interfacing a MATLAB-based optimization algorithm (a custom-

built or from the Optimization Toolbox) with an external EM solver is shown in Fig. A.1.

In this thesis, CST MWS has been used for all simulations, and, therefore, it will be

mentioned as an example EM solver in the further discussion.

Figure A.1: The flowchart for interfacing MATLAB and CST MWS.

The important implementation steps are:� MATLAB environment : a new population is generated by an optimization algo-

rithm, and the values of the design parameters for each candidate are stored in
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a text file. MATLAB initiates the execution of a macro script to launch CST

simulations.� CST MWS environment : the values of the design parameters for each candidate

are transferred to a project for simulation. To store the simulation results of each

candidate, a user-defined watch is used. It creates another text file in a Result folder

and stores the results after each simulation. When all simulations are completed,

control retunes to MATLAB.� MATLAB environment : the results stored in the Result folder are accessed for

further evaluations of the fitness function. The iterations continue until the the

stopping condition is satisfied.

The described implementation employs ParameterSweep Object to speed up the

evaluation process. In particular, the information about all candidates in a generation is

loaded into CST MWS to perform continuous simulations. This is faster than simulating

each candidate separately due to the minimized number of software launches. Although

optimization problems are ideal for parallel computing, the described technique is ben-

eficial in case of computationally inexpensive problems or unavailable high performance

computing resources.

In order to launch CST MWS, the following command has to be executed from

MATLAB environment:

system(’"C:\...\CST STUDIO SUITE 2016\CST

DESIGN ENVIRONMENT.exe" -m "E:\...\Macro.bas"’);

The file “Macro.bas” is a macro script written using Visual Basic for Applications (VBA).

Below an example of a script used for the optimization problem Case-I from Chapter 4

is provided.

Sub Main

Dim popSize As Integer, N As Integer

Dim eps() As Double, radii() As Double
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Dim FilePath1 As String, FilePath2 As String

Dim sequenceName As String, candidate As String, strPopSize As String

Dim i As Integer, j As Integer, k As Integer

FilePath1 = "E:\...\eps.txt"

FilePath2 = "E:\...\radii.txt"

’Set number of sections in a superstrate

N=3

’Set population size

popSize = 25

’Preallocate arrays for eps and radii

ReDim eps(popSize,N), ReDim radii(popSize,N)

’Read data for the current generation from the text files

Open FilePath1 For Input As #1

For i = 1 To popSize

For j = 1 To N

Input#1, eps(i,j)

Next j

Next i

Close #1

Open FilePath2 For Input As #2

For i = 1 To popSize

For j = 1 To N

Input#2, radii(i,j)

Next j

Next i

Close #2
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’Open CST model

openfile("E:\...\File_name.cst")

Rebuild

’Define parameters for each candidate

With ParameterSweep

.DeleteAllSequences

For k = 1 To popSize

candidate = "Candidate"

strPopSize = CStr (k)

sequenceName = candidate & strPopSize

.AddSequence sequenceName

.AddParameter_Samples sequenceName, "e1", eps(k,1), eps(k,1), "1", "False"

.AddParameter_Samples sequenceName, "e2", eps(k,2), eps(k,2), "1", "False"

.AddParameter_Samples sequenceName, "e3", eps(k,3), eps(k,3), "1", "False"

.AddParameter_Samples sequenceName, "w_1", radii(k,1), radii(k,1), "1", "False"

.AddParameter_Samples sequenceName, "w_2", radii(k,2), radii(k,2), "1", "False"

.AddParameter_Samples sequenceName, "w_3", radii(k,3), radii(k,3), "1", "False"

’Write result about each candidate into a result text file

.AddUserdefinedWatch

Next k

’Start solver

.Start

End With

save

End Sub
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Sample Code for the

Implementation of the CE method

A MATLAB implementation of the CE method for the optimization of Ackley and Sum

of Squares functions using the beta distribution family is provided below.

1 %%% Copyright 2016, Maria Kovaleva, David Bulger

2 %%% Macquarie University. All rights reserved.%%%

3 clear all; clc

4 %% Set the number of Monte-Carlo simulations

5 for N trial=1:20

6 %% %%%%%%%%%%%%%% Set parameters %%%%%%%%%%%%%%

7 D = 5; % Set dimensionality of the problem

8 variable range=15.*repmat([-1 1],1,D); % Set search space bounds

9 variable range=reshape(variable range, [2,D]);

10 genSize=100; % Set population size

11 qElite=10; % Set elite subpopulation size

12 smooting=0.9; % Set smoothing parameter

13 % Set initial distribution parameters:

14 Beta alpha=ones(D,1); % uniform Beta distribution, *optional

15 Beta beta=ones(D,1); % uniform Beta distribution, *optional

16 %% Preallocation for speed:

17 average fitness plot=zeros(1,100);
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18 fBestResult plot=zeros(1,100);

19 fBestResult= -inf;

20 % Initialize history

21 history={};

22 fitness = zeros(1, genSize);

23 variable = zeros(D,genSize);

24 variable real = zeros(D,genSize);

25 %% Start Cross-Entropy Optimization Algorithm

26 threshold= - 0.1; % Set stopping criterion

27 i=1; % Set iteration count

28 tic % Display elapsed time

29 while fBestResult < threshold

30 %% Sample variables from the beta-distribution

31 Beta alpha r=repmat(Beta alpha,1,genSize); ...

Beta beta r=repmat(Beta beta,1,genSize);

32 for c=1:D % in each dimension

33 variable(c,:) = betarnd (Beta alpha r(c,:),Beta beta r(c,:));

34 variable real(c,:) = ...

diff(variable range(:,c)).*variable(c,:)+variable range(1,c); % ...

transform into the search space bounds

35 end

36 %% Start fitness function evaluation

37 % Option to switch between Ackley and Sum of Squares

38 for gen=1:genSize

39 %hist.fitness raw(1,gen) = -sumsqu (variable real(:,gen),D);

40 hist.fitness raw(1,gen) = -ackley (variable real(:,gen),D); % inverted ...

for maximization

41 end

42 %% Sort fitness values, choose elite

43 [fitness, sortOrder] = sort(hist.fitness raw, 2, 'descend'); % in ...

descending order for maximization

44 sortOrder = sortOrder(1:qElite);

45 % The elite, in descending order of fitness:

46 elite x = variable(:, sortOrder);
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47 elite real=variable real(:, sortOrder); % transformed into the search ...

space bounds

48 %% HAS THIS GENERATION PRODUCED A NEW BEST RESULT?

49 if fitness(1) > fBestResult

50 fBestResult = fitness(1);

51 best x = elite real(:, 1);

52 end

53 average fitness=mean(fitness);

54 % Plot fitness evolution over generations

55 average fitness plot(i)=average fitness;

56 fBestResult plot(i)=fBestResult;

57 figure (1)

58 xlabel('Number of generations')

59 ylabel('Fitness function')

60 title('Fitness over generations'); grid on

61 plot(1:i, fBestResult plot(1:i),'r*-'); hold on

62 plot(1:i, average fitness plot(1:i),'ko:');

63 %% From the elite, estimate distrib. parameters for the next generation

64 for c=1:D

65 p x(c,:) = betafit(elite x(c,:)); % beta parameter estimates

66 end

67 new Beta alpha=p x(:,1); new Beta beta=p x(:,2);

68 %% Apply smoothing *optional

69 Beta alpha=Beta alpha+smooting*(new Beta alpha-Beta alpha);

70 Beta beta=Beta beta+smooting*(new Beta beta-Beta beta);

71 %% Writing history file *optional

72 hist.Beta alpha=Beta alpha; hist.Beta beta=Beta beta; ...

hist.fitness=fitness;

73 hist.average fitness=average fitness; hist.fBestAntenna = fBestResult;

74 hist.variable=variable real; hist.elite=elite real;

75 history = {history{:}, hist};

76 %% Generation count

77 i=i+1;

78 end

79 toc
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80 best solution = sprintf('%f\n', best x);

81 fprintf('Best location:\n %s\n', best solution)

82 fprintf('Global best with fitness %f was reached at generation %d.\n', ...

fBestResult, i-1);

83 stats AckleyBeta.MNFE(N trial) = genSize*(i-1);

84 stats AckleyBeta.Iter(N trial) = i;

85 end

86 fprintf('After repeting %d trials, FINAL statistics: \n Average MNFE is ...

%.2f, Average number of generations %.1f.\n', N trial, ...

87 mean(stats AckleyBeta.MNFE), mean(stats AckleyBeta.Iter));

88 figure; boxplot(stats AckleyBeta.MNFE)

1 function y = ackley(x,n) % Ackley function.

2 % Initial Matlab Code by A. Hedar (Sep. 29, 2005) but modified to

3 % include the number of variables in the input parameters.

4 a = 20; b = 0.2; c = 2*pi;

5 s1 = 0; s2 = 0;

6 for i=1:n

7 s1 = s1+x(i)ˆ2;

8 s2 = s2+cos(c*x(i));

9 end

10 y = -a*exp(-b*sqrt(1/n*s1)) -exp(1/n*s2) +a +exp(1);

1 function y = sumsqu(x,n) % SUM SQUARES FUNCTION

2 % Copyright 2013. Derek Bingham, Simon Fraser University.

3 sum = 0;

4 for i = 1:n

5 xi = x(i);

6 sum = sum + i*xiˆ2;

7 end

8 y = sum;

9 end
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VBA Program for the Optimization

of Pixelated Unit-Cells

The following VBA program has been used for the optimization of pixelated unit-cells.

For parallel simulations on a local machine, matlabpool has been used. The designs are

sent to CST MWS environment from MATLAB by the following command:

parfor k=1:popSize

fprintf(’ Simulating %f particle.\n ’, k);

system([’"C:\...\CST DESIGN ENVIRONMENT.exe" -m ""E:\...

...\macro_pixelated_uc’,num2str(k),’.bas"’]);

end

Each script has a name starting from “macro_pixelated_uc.bas” and ending with

the candidate index. The scripts call .cst files with a unit-cell model shown in Fig. C.1.

The contents of “macro_pixelated_uc1.bas” are provided below:

Sub Main

Dim genSize As Integer, m_bits As Integer, n_bits As Integer

Dim length As Double, t_pec As Double, th_s As Double, h_cav As Double

Dim top_bits() As Double, bot_bits() As Double

Dim FilePath1 As String, FilePath2 As String
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Figure C.1: Initial unit-cell model with only the quarter of the pixels on each side of

the superstrate.

Dim sequenceName As String, candidate As String, strPopSize As String

Dim i As Integer, j As Integer, k As Integer, c As Integer, cand As Integer

FilePath1 = "E:\...\top_bits_data_can1.txt"

FilePath2 = "E:\...\bot_bits_data_can1.txt"

’ Define Unit-Cell Parameters

m_bits=3 ’ Number of rows/2

n_bits=3 ’ Number of columns/2

’ Set population size

genSize=30

’ Read data for the current generation from the text files

ReDim top_bits(m_bits-1,n_bits-1,genSize-1)

Open FilePath1 For Input As #1

For i = 0 To m_bits-1

For j = 0 To n_bits-1

Input#1, top_bits(i,j,genSize-1)
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Next j

Next i

Close #1

ReDim bot_bits(m_bits-1,n_bits-1,genSize-1)

Open FilePath2 For Input As #2

For i = 0 To m_bits-1

For j = 0 To n_bits-1

Input#2, bot_bits(i,j,genSize-1)

Next j

Next i

Close #2

’ Open CST model

OpenFile ("E:\...\pixelated_design_1.cst")

Rebuild

’ Substitute zero bits by vacuum

For j = 1 To n_bits

For i = 1 To m_bits

If top_bits(i-1,j-1,genSize-1) = 0 Then

Solid.ChangeMaterial "Unit-cell:top_element_"+cstr(i)+cstr(j), "Vacuum"

End If

If bot_bits(i-1,j-1,genSize-1) = 0 Then

Solid.ChangeMaterial "Unit-cell:bot_element_"+cstr(i)+cstr(j), "Vacuum"

End If

Next i

Next j
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’Rotate the quarter of the unit-cell to form the full structure

With Transform

.Reset:.Name "Unit-cell":.Origin "Free":.Center "0", "0",

"0":.Angle "0", "0", "90"

.MultipleObjects "True":.GroupObjects "False":.Repetitions

"3":.MultipleSelection "False"

.Destination "":.Material "":.Transform "Shape", "Rotate"

End With

Solver.Start

’ Write the results into the results folder

Dim filename1 As String, filename2 As String

filename1 = "E:\...\Result_UC_magS12_can1.txt"

filename2 = "E:\...\Result_UC_phaseS12_can1.txt"

SelectTreeItem ("Tables\1D Results\S1,2mag")

With ASCIIExport

.FileName (filename1):.Execute

End With

SelectTreeItem ("Tables\1D Results\arg(S1,2)")

With ASCIIExport

.FileName (filename2):.Execute

End With

End Sub
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