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Abstract

This thesis is aimed at presenting the mathematically rigorous analytical-numerical
method for solving the Neumann boundary-value problem for Helmholtz equation. It
is consistently realised that the idea of analytical regularisation of ill-conditioned inte-
gral, integral-differential and series equations of the first kind resulted in the efficient
technique and numerical algorithm which allows accurate numerical solution. the pre-
sented regularisation technique is successfully used studies of two-dimensional wave
scattering by closed and unclosed screens. The thesis concentrates on the screens in
the form of infinitely long cylinders with circular and arbitrary cross sections. When
the boundary of the cross section is opened (or unclosed) we get a slotted cylinder.
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1
Introduction

1.1 Boundary Value Problem for scattering by an

Open Cylinder

The study of wave scattering has a significantly long history across physics, mathemat-
ics and engineering; its practical application produced various and many impacts in
technology such as telecommunications, radar, lasers, ultrasonic imagining, etc. With
such enormous application across numerous fields, accurate mathematical simulation
of wave scattering problems has been developed by many researchers for many decades.
From an analytical and numerical point of view, it is fair to say that the studies of
wave scattering problems on a closed body with smooth surface is well developed. So,
it is natural for the study to move on, by considering (open) scatterers with cavities
and edges.

The focus of this thesis is to provide an approach to find the solution of the Neumann
mixed boundary value problem (BVP) of scattering from an infinitely long (open)
cylinder with arbitrary cross section. Due to the phenomena of wave action on the
cylinder being identical on each cross section, with an appropriate formulation, the
wave scattering problem is then reduced to a 2-dimensional problem where we only
need to consider a cross section.

Since this is ultimately a model for a physical problem, we shall discuss some
context on the physical side. The total wave, incident wave and scattered wave need
to be distinguished. The incident wave is that sent out from some radiating source
and it is assumed that the functional form and behaviour is completely known if it
were allowed to travel unimpeded. In two dimensions, the wave will take the form of
a circular outward travelling wave with a point source or of a plane wave. Note that
the plane wave can be thought of a circular wave where the source point is very far
away from the observation point, and locally behaves as a plane wave. The total wave

1



2 Introduction

is viewed as the resultant wave which describes the behaviour of the incident wave in
the presence of the scatterer. Then the scattered wave can be defined as the difference
of the total wave and the incident wave.

Our main task of this thesis is to use a mathematically rigorous method to calculate
the scattered wave. We assume our waves to have time harmonic dependence e−iωt, so
the waves’ spatial behaviour is captured by the solution of Helmholtz equation. Since
edges are being introduced in our scatterer, the Meixner integrability condition (or
simply, the edge condition) also need to be enforced. Then the solution is bounded,
and it is valid to be used to model physical scattering problems which involve finite
sources. Moreover, we are expecting the wave to decay at infinity, so the solution also
need to obey Sommerfeld radiation conditions. Finally, the solution will also need
to satisfy the Neumann boundary condition. A proof in [2] shows that if a solution
satisfies all these conditions, then it will be unique.

Geometrically, a cross section of cylinder looks like a closed non-self-crossing contour
of finite length. For the cross section of an open (or singly slotted) cylinder, we think of
it as a connected subset of the closed contour. The cylinder with circular cross section
would be the first special case to examine. For the closed circle case, it allows us to
parametrise the surface by the classical cylindrical polar coordinates; it can be solved
by the technique of separation of variables. As a result, the wave scattering problem
can be solved analytically, and an analytical solution can be obtained. When we move
on to the case of an open circle, it turns out the BVP is in the form of dual series
equation which can be reduced to a coupled dual series equation which involving sine
and cosine function. From there, we can make use of the Jacobi representation of the
trigonometric functions, and we are able to apply the Method of Regularisation (MoR)
which is described in [3]. This technique was developed alongside that for potential
theory, and it can be applied when we have dual series equation in a particular form.
The technique leads us to a well-conditioned Fredholm equation of the second kind.
Hence, numerical solution can be found by the application of relatively straight forward
numerical techniques for the solution of such systems.

For the arbitrary case, since there is no canonical or separable coordinate system
in which the Laplace or Helmholtz equation is separable, we shall consider the solution
in its integral representation, which involves a Green’s function. However, the integral
representation of solution results in the form of a first kind Fredholm integral equa-
tion, which is inherently an ill-posed problem [6]. When we solve with direct numerical
methods, by using a Riemannian sum to convert the integral equation into an infi-
nite system of linear algebraic equations, and computing the solution by a truncation
method, the truncation method replaces the infinite system by a finite number Ntr of
linear algebraic equations, in which all infinite sums are truncated to retain only the
variables x0, x1, . . . , xtr. This approximate numerical solution of the integral equation
is shown to be unreliable (see e.g. [5] [7]), and errors will be eventually amplified as
more and more terms are taken into consideration.

Clearly another approach (a rigorous one) is required to obtain the numerical so-
lution, and the one we going to discuss in this thesis is the MoR which we have done
for the open circle case. The key idea of the MoR is to convert the ill-conditioned first
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kind Fredholm equation into a well-conditioned second kind Fredholm equation, ana-
lytically. The unknown function of first kind Fredholm equation is still the same (in the
sense of possessing the same Fourier expansion) after the analytical transformation to
second kind Fredholm equation. The conversion is only done to the operator itself but
does not actually change any information of the unknown function. Furthermore, the
second kind Fredholm equation is guaranteed to have an unique solution, and the solu-
tion which is computed from the truncated well-conditioned matrix equation is reliable,
stable, numerically accurate and efficient. The precise treatments of the behaviour of
second-kind system under truncation can be found in [10], [11].

Moreover, the method and mathematical justification for the Dirichlet case has been
studied in [8] and [9] for infinitely long cylinder with arbitrary shaped cross section;
several classes of canonical scatterers with edge-cavity structures are examined with
the same approach in [4]. However, in comparison, the regularisation of the Neumann
case is more difficult than the Dirichlet case since the kernel of the first kind Fredholm
equation which we obtained is a strongly singular double normal derivative of the
Green function of the Helmholtz equation. We use the results from [13] to transform
the integral equation to the equivalent dual series equation by the Fourier expansion
of each term. The exponential function can be converted into a coupled dual series
equation which involves sine and cosine function. Then, by using the same approach
as for the open circle case, apply the MoR to convert the dual series equation to a well-
conditioned second kind Fredholm matrix equation. Hence, numerical method can be
applied to this appropriately transformed system.

1.2 Outline of the thesis

In chapter 2, we begin by stating the tools which we are going to use for the regu-
larisation. In particular, the Abel transform and the properties of Jacobi polynomials
which are mentioned in this chapter play the important roles for the regularisation in
the later chapters. Most of the steps during the regularisation will required reader to
refer back to this chapter.

In chapter 3, we consider the BVP for the circle in both the closed case and the
open case. For the closed case, we shall proceed with the technique of separation of
variables and obtain an analytical solution. However, for the open case, the solution is
in the form of dual series equation. To solve the dual series equation, we perform the
MoR as developed in [3], and convert the dual series equation into Fredholm equations
of the second kind to obtain the well conditioned equation that is suitable to compute
the solution, numerically.

In chapter 4, we consider the formulation of the problem and its solution in integral
representation. First, we formulate the problem so that the reduced 2D problem with
different boundary conditions on the screen and aperture result in a Neumann mixed
BVP. After enforcing the boundary conditions, the integral representation of the so-
lution results in a Fredholm integral equation of the first kind, an ill-posed problem
where the solution cannot reliable be obtained by numerical methods. In addition, the
kernel is a strongly singular double normal derivative of the Green’s function. To deal



4 Introduction

with this kernel, we use the results from [13] to convert them into their Fourier series.
Hence, we obtain the equivalent dual series equation of the integral equation.

In chapter 5, we start by converting the dual series equation with exponential kernel
which we obtained in the previous chapter into a coupled dual series equation which
involving sine and cosine function. Since the trigonometric functions can be represented
in Jacobi polynomial, we convert the series into a Fourier-Jacobi series, and perform
the same regualrisation as for the open circle case to obtained the desired form of
Fredholm matrix equation of the second kind.



2
Preliminaries

We shall begin with stating some definitions and results which we are going to use
throughout this thesis. They are needed to carry out the regularisation process in later
chapter. The topics concerns Abel’s integral equation and special function, particularly
Jacobi’s polynomial. For full details, please consult [3].

2.1 Abel’s integral equation

Abel’s integral equation is a specific type of integral equation, which is in the form of∫ x

a

U(t)

(x− t)λ
dt = F (x), x ∈ [a, b] (2.1)

where the function U(t) is the only unknown, 0 < λ < 1 and its unique inversion is as
the following

U(t) =
sinλπ

π

d

dt

∫ t

a

F (x)

(t− x)λ
dx, t ∈ [a, b].

Also, there is a companion form of this integral equation, namely∫ b

x

U(t)

(t− x)1−λdt
= F (x), x ∈ [a, b] (2.2)

where the function U(t) is the only unknown, 0 < λ < 1 and has the unique inversion
in the form of

U(t) = −sinλπ

π

d

dt

∫ b

t

F (x)

(x− t)1−λdx, t ∈ [a, b].

Integral equations which are in the form of (2.1) or (2.2) are called integral equation
of Abel type.

5



6 Preliminaries

2.2 Gamma function

The Gamma function Γ is defined by

Γ(z) =

∫ ∞
0

tz−1e−tdt, Re(z) > 0.

It is a generalisation of the factorial, widely used across many fields.

The relevant properties which we are going to use in later section is the recurrence
formula

Γ(ν + 1) = νΓ(ν)

which can be shown by integration by parts.

Further, for positive integer n ∈ N,

Γ(n+ 1) = n!.

Also, a well known identity is Γ
(

1
2

)
=
√
π.

2.3 Jacobi polynomials

Jacobi polynomial form a special class of polynomials. For fixed (α, β) with α >

−1, β > −1, each Jacobi polynomial P
(α,β)
n is a polynomial of degree n (where n =

0, 1, 2, 3, . . . ), and is the solution to the differential equation

(1− x2)
d2y

dx2
+ [β − α− (α + β + 2)x]

dy

dx
+ n(n+ α + β + 1)y = 0.

They form a complete orthogonal basis for the functional space L2[−1, 1] with
respect to the weight function w(α,β)(x) = (1− x)α(1 + x)β, i.e.

〈P (α,β)
n , P (α,β)

m 〉 =

∫ 1

−1

(1− x)α(1 + x)βP (α,β)
n (x)P (α,β)

m (x)dx

= h(α,β)
n δ(n,m)

where

h(α,β)
n = ‖P (α,β)

n ‖2

=

∫ 1

−1

(1− x)α(1 + x)β[P (α,β)
n (x)]2dx

=
2α+β+1

2n+ α + β + 1

Γ(n+ α + 1)Γ(n+ β + 1)

n!Γ(n+ α + β + 1)
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2.4 Normalised Jacobi polynomials

The normalised Jacobi polynomials

P̂ (α,β)
n (x) =

1

‖P (α,β)
n ‖

P (α,β)
n (x)

are commonly used, and they form a complete orthonormal basis for the functional
space L2[−1, 1].

Further more, when α = 0 and β = 1, the normalised Jacobi polynomials P̂
(α,β)
n (x)

satisfy the following for x ∈ [−1, 1]:

P̂ (0,1)
n (x) = − 1

n+ 1

d

dx

[
(1− x)P̂ (0,1)

n (x)
]
, (2.3)

∫ 1

x

P̂ (0,1)
n (t)dt =

1− x
n+ 1

P̂ (1,0)
n (x), x ∈ [−1, 1] (2.4)

P̂ (1,0)
n (x) =

1 + x

n+ 1

d

dx
{P̂ (0,1)

n (x)}. (2.5)

2.5 Incomplete scalar product

Another tool which we required is the incomplete scalar product, we denote

Q(α,β)
n,m (x) =

∫ 1

x

(1− t)α(1 + t)βP (α,β)(t)
n P (α,β)

m (t)dt

and the normalised version

Q̂(α,β)
n,m (x) =

∫ 1

x

(1− t)α(1 + t)βP̂ (α,β)(t)
n P̂ (α,β)

m (t)dt.

Note that the “incompleteness” is referring to the integration is performed over the
subinterval [x, 1], and Q

(α,β)
m,n (−1) = 〈P (α,β)

n , P
(α,β)
m 〉

Also, a notable relation which we need in the later section is

Q̂(0,1)
n,m (x) =

1− x2

m+ 1
P̂ (0,1)
n (x)P̂ (1,0)

m (x) +
n+ 1

m+ 1
Q̂(1,0)
n,m (x) (2.6)

2.6 Properties of Jacobi polynomials

Next, we shall discuss the properties of Jacobi polynomials. Of their many properties,
we are only stating those which are relevant to our problem.

For a fixed parameter η ∈ [0, 1),

P (α,β)
n (x) =

(1− x)−αΓ(n+ 1 + α)

Γ(1− η)Γ(n+ α + η)

∫ 1

x

(1− t)α+η−1P
(α+η−1,β−η+1)
n (t)

(t− x)η
dt (2.7)
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and the companion version

P (α,β)
n (x) =

(1 + x)−βΓ(n+ 1 + β)

Γ(1− η)Γ(n+ β + η)

∫ x

−1

(1 + t)β+η−1P
(α−η+1,β+η−1)
n (t)

(x− t)η
dt. (2.8)

Equation (2.7) express as (1−x)αP
(α,β)
n (x) as the product of the Abel integral transform

of (1−t)α+η−1P
(α+η−1,β−η+1)
n (t) and a constant factor; (2.8) has a similar interpretation.

When η = 0, we have the following identities

(1− x)α+1P (α+1,β−1)
n (x) = (n+ α + 1)

∫ 1

x

(1− t)αP (α,β)
n (t)dt (2.9)

and

(1 + x)β+1P (α−1,β+1)
n (x) = (n+ β + 1)

∫ x

−1

(1 + t)βP (α,β)
n (t)dt. (2.10)

Also, the Rodrigues’s formula for the Jacobi’s polynomial is

P (α,β)
n (x) =

(−1)n

2nn!

1

(1− x)α(1 + x)β

(
d

dx

)n [
(1− x)α+n(1 + x)β+n

]
(2.11)

from which can be deduced

−2n(1− x)α(1 + x)βP (α,β)
n (x) =

d

dx

[
(1− x)α+1(1 + x)β+1P

(α+1,β+1)
n−1 (x)

]
(2.12)

Note that the relation (2.7)-(2.10) are all integral representations of Abel’s type;
they play the key role to solve the dual series equation in our problem.

2.7 Integrals involving arcsine function

The definite integral ∫ z

−1

π
2

+ arcsinx
√

1− x
√
z − x

dx = −π ln

(
1− z

2

)
(2.13)

will occur in the process of later calculation, which may be evaluated from the transform

−
√
xπ ln cos

φ

2
=

∫ φ

0

θ sin 1
2
θ

√
cos θ − cosφ

dθ.

The companion version is∫ 1

z

π
2
− arcsinx

√
1 + x

√
x− z

dx = −π ln

(
1 + z

2

)
, (2.14)

which can be obtained by a change of variables.
These two definite integrals will occur specifically during the regularisation of the

cosine system in the later sections.
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2.8 The l2(µ) space

The l2(µ) is denoted by the space of sequences {xn}∞n=0 satisfying

∞∑
n=0

nµ|xn|2 <∞. (2.15)

Some steps among the regularisation are required to interchange the summation
and integration, more precisely, the convergent of the term by term integration. And
we want the coefficients of the series to fall into this space in order to claim the series
to be uniformly Abel summable, in which term by term integration is permissable.
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3
The Neumann BVP for a Circular Cylinder

3.1 Closed Circle

The Neumann BVP for a closed circle is a classical problem, which we examine this
classical problem before we proceed to an open cylinder.

An infinitely long closed circular cylinder is placed parallel to the z-axis, so each of
the cross section is perpendicular to the z-axis, and also the origin is the centre of the
circular cross section on the xy-plane. So, the wave fronts strike the cylinder in the
same way as z varies, and of the form

vsc = usc(x, y)e−iωt

where the time harmonic part e−iωt is what we have previously assumed; thus we only
need to consider a 2D problem.

The scatterd field usc satisfies the Helmholtz equation

(4+ k2)u = 0,

where 4 refers to the Laplacian and k is a constant (wave number). And in the
Neumann problem, usc satisfies the boundary condition

∂usc

∂n
= −∂u

inc

∂n
(3.1)

on the boundary, where uinc refers to the incident field, and n is the outward pointing
normal. In addition, the scattered field must obey the Sommerfeld radiation condition.

Since the cross section is a circle, we work with polar coordinates (ρ, θ), and we
have the polar form Helmholtz equation as the following

1

ρ

∂

∂ρ

(
ρ
∂usc

∂ρ

)
+

1

ρ2

∂2usc

∂θ2
+ k2usc = 0. (3.2)

11



12 The Neumann BVP for a Circular Cylinder

By the technique of separation of variable with time harmonic dependence e−iωt, we
then obtain the outwardly travelling wave solution of (3.2) in the form of

usc(ρ, θ) =
∞∑

n=−∞

Ene
inθH(1)

n (kρ) (3.3)

where H
(1)
n is the Hankel function of the first kind, En are constants to be found. It

can be shown that (3.3) satisfies the Sommerfeld radiation condition, which captures
the behaviour of wave decaying at a far distance.

In polar coordinates, the Neumann boundary condition (3.1) is in the form of

∂usc

∂ρ
= −∂u

inc

∂ρ

on the surface ρ = a, where ρ =
√
x2 + y2. Note that the normal derivative in boundary

condition for a circle is simply the derivative with respect to the radius ρ.

After enforcing the boundary condition (where incident field uinc(ρ, θ) = e−ikρ cos θ),
we obtain the solution

usc(ρ, θ) =
∞∑

n=−∞

−in J ′n(ka)

H
(1)′
n (ka)

H(1)
n (kρ)einθ (3.4)

where J ′n is the first derivative of Bessel function of the first kind.

And so, we solve the BVP analytically, and we have the solution in a Fourier series,
where convergence can be guaranteed. However, it may not the case when we have the
BVP for an open cylinder.

3.2 Open Circle

Now we are going to examine the same BVP for an infinitely long open circular cylinder.
We shall follow the same formulation which was described in the closed circle case. The
screen θ ∈ [−θ0, θ0] and the aperture θ ∈ (θ0, π) ∪ (−π,−θ0) at a fixed radius ρ = a.
The boundary conditions are

∂usc

∂ρ
(θ, a) = −∂u

inc

∂ρ
(θ, a) = 0 θ ∈ [−θ0, θ0], (3.5)

usc(θ, a) = uinc(θ, a) θ ∈ (θ0, π) ∪ (−π,−θ0). (3.6)

In this setting, we then have a Neumann mixed boundary value problem. Note that the
incident wave is completely known.
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Thus, we seek a scattered field solution in the form

usc (θ, ρ) =
∞∑
m=0

(−i)mRm(kρ) [(2− δ0,m)xm cosmθ + 2ym sinmθ] (3.7)

where

Rm(kρ) =

{
Jm(kρ), ρ < a

J ′
m(ka)

H
(1)′
m (ka)

H
(1)
m (kρ), ρ > a

}
(3.8)

and {xm}∞m=0 and {ym}∞m=0 are unknowns to be found.
After enforcing the boundary conditions (3.5) and (3.6), the following (notice {xm}

and {ym} are decoupled):

∞∑
m=1

im

H
(1)′
m (ka)

ym sinmφ = 0, φ ∈ (0, φ0), (3.9)

∞∑
m=1

imJ ′m(ka) (ym + sinmα) sinmφ = 0, φ ∈ (φ0, π), (3.10)

and

− x0

2H
(1)
1 (ka)

+
∞∑
m=1

im

H
(1)′
m (ka)

xm cosmφ = 0, φ ∈ (0, φ0), (3.11)

−1

2
J1(ka) (1 + x0) +

∞∑
m=1

imJ ′m(ka) (xm + cosmα) cosmφ = 0, φ ∈ (φ0, π), (3.12)

where φ = π − θ, φ0 = π − θ0 and α is the angle of incidence measured from the plane
θ = 0. (so that the incident wave uinc = e−ik(x cosα+y sinα)).

Introduce the rescaled unknown coefficients

{Xm, Ym} =
im

H
(1)′
m (ka)

{xm, ym} . (3.13)
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From the asymptotic expansion

Jm(z) =
zm

2mΓ(m+ 1)

{
1− z2

4(m+ 1)
+

z4

32(m+ 1)(m+ 2)
+O

(
z6

m3

)}
(3.14)

H(1)
m (z) = − i

π

2mΓ(m)

zm

{
1 +

z2

4(m− 1)
+

z4

32(m− 1)(m− 2)
+O

(
z6

m3

)}
(3.15)

as m→∞, we deduce that

J ′m(ka)H(1)′

m (ka) =
i

π

m

(ka)2

[
1 +O

(
ka

m2

)]
as m→∞, so that the parameter

εm = 1 + iπ
(ka)2

m
J ′m(ka)H(1)′

m (ka) (3.16)

is asymptotically small as m→∞, i.e. εm = O( ka
m2 ).

Hence, we convert (3.9)-(3.12) to

∞∑
m=1

Ym sinmφ = 0, φ ∈ (0, φ0), (3.17)

∞∑
m=1

m [Xm(1− εm)− psm] sinmφ = 0, φ ∈ (φ0, π), (3.18)

and

− x0

2H
(1)
1 (ka)

+
∞∑
m=1

Xm cosmφ = 0, φ ∈ (0, φ0), (3.19)

i

2
π(ka)2J1(ka)(1 + x0) +

∞∑
m=1

m [Xm(1− εm)− pcm] cosmφ = 0, φ ∈ (φ0, π), (3.20)

where {
pcm
psm

}
=

i

m
π(ka)2J ′m(ka)

{
cosmα
sinmα

}
.

From now on, we shall call (3.17) and (3.18) the sine system, (3.19) and (3.20) the
cosine system.

3.3 Electromagnetic Field and The Edge Condition

The BVP comprising the Helmholtz equation the boundary conditions on the scatterer
and the Sommerfeld radiation condition has a unique solution for a closed body (such
as a circle). However an additional condition must be imposed in order to guarantee
uniqueness for an open body (such as an open circular arc). The scattered field usc must
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satisfy the so-called edge condition (or the finite energy condition), for any arbitrary
finite area V , ∫

V

| ~E|2+| ~H|2dV <∞, (3.21)

where ~E is the electric field, ~H is the magnetic field.
We consider the electromagnetic field of transverse electric type (H-polarisation,

the only non-zero components are Hz, Eρ, Eφ); the magnetic component of the electro-
magnetic field is oriented along the z-axis. We wish to find the total electromagnetic
field

Hz
~iz = utot(x, y)~iz

or equivalently, to find the scattered field

Hsc
z
~iz = usc(x, y)~iz

= (utot(x, y)− uinc(x, y)) ·~iz
resulting from the scattering of the incident wave by the screen.

This physical problem, thus defined, is described by the boundary value problem
formulated above in terms of Helmholtz equation, with Neumann boundary conditions
for the longitudinal component of the magnetic field Hsc

z = usc(x, y). The two other
non-zero field components are found from the relations:

Esc
ρ = − i

kρ

∂Hsc
z

∂φ
;

Esc
φ =

i

k

∂Hsc
z

∂ρ
.

It can be shown that (3.21) can be reduced to∫
V

|5usc|2 + k2|usc|2dV <∞

for any arbitrary finite area V .
This imply that {xm}∞m=0 and {ym}∞m=0 belong to the functional class l2(1), i.e.

∞∑
m=0

m|xm|2 <∞,
∞∑
m=0

m|ym|2 <∞.

Further, by the asymptotic formulae (3.15), {Xm}∞m=0 and {Ym}∞m=0 also belong to the
functional class l2(1).

3.4 Scheme of Solution

As for the solution of dual series equation, we are going to use the theory which
described in chapter 2 of [3]. First, we replace the trigonometric functions of (3.17)-
(3.20) by their Jacobi representations

sinmφ =

√
π

2

Γ(m+ 1)

Γ(m+ 1
2
)
P

( 1
2
, 1
2

)

m−1 (cosφ) (3.22)
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and

cosmφ =
√
π

Γ(m+ 1)

Γ(m+ 1
2
)
P

(− 1
2
,− 1

2
)

m (cosφ). (3.23)

The representation of Jacobi polynomials as Abel integral transforms (see Section 2.6)
allows each equations to be expressed as Abel’s integral equations with known inversion
formula. This is perhaps the key step in our regularisation procedure. So, by applying
Abel’s integral transform, each original coupled system of dual series equation come
to be represented in the form of a piecewise continuous function F (φ) defined over the
full interval [0, π], where

F (φ) =

{
F1(φ), φ ∈ [0, φ0]

F2(φ), φ ∈ [φ0, π]

and the function F (φ), F1(φ) and F2(φ) are represented in their Fourier-Jacobi series

F (φ) =
∞∑
m=1

ZmP
(α,β)
m (cosφ),

F1(φ) =
∞∑
m=1

AmZmP
(α,β)
m (cosφ),

F2(φ) =
∞∑
m=1

BmZmP
(α,β)
m (cosφ).

Then, by using the orthogonality of the Jacobi’s polynomial on the interval φ ∈
[0, π], we attain the second kind Fredholm infinite system of linear algebraic equations,
i.e. an infinite system of the form

Zn +
∞∑
m=1

ZmHn,m = Cn,

where Fredholm alternative works, and the equations can be solved by the truncation
method (see [1], [3]).

We explain the details of this strategy in the remaining sections.

3.5 Regularisation of the Sine System

By setting t = cosφ, t0 = cosφ0, and making use of (3.22), the sine system (3.17)-(3.18)
can be rewritten as

∞∑
m=1

Γ(m+ 1)

Γ(m+ 1
2
)
m [Ym(1− εm)− psm]P

( 1
2
, 1
2

)

m−1 (t) = 0, t ∈ (−1, t0), (3.24)

∞∑
m=1

Γ(m+ 1)

Γ(m+ 1
2
)
YmP

( 1
2
, 1
2

)

m−1 (t) = 0, t ∈ (t0, 1). (3.25)
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Our first task is to combine (3.24) and (3.26) into a piecewise continuous function,
but due to the asymptotic behaviour of Gamma functions and Jacobi polynomial, the
two equations have different convergence rates. So, we shall first unify their convergence
rate.

3.5.1 The interval (−1, t0) of the sine system

Mutiply both sides of (3.24) by (1 + t)
1
2 and integrate over the interval (−1, x), to

obtain
∞∑
m=1

Γ(m+ 1)

Γ(m+ 1
2
)
m [Ym(1− εm)− psm]

x∫
−1

(1 + t)
1
2P

( 1
2
, 1
2

)

m−1 (t)dt = 0.

Note that the interchanging order between integral and summation is justified by the
edge condition. Then, by applying the relation (2.10) with α = β = 1

2
and n = m− 1:∫ x

−1

(1 + t)
1
2P

( 1
2
, 1
2

)

m−1 (t)dt =
(1 + x)

3
2(

m+ 1
2

)P (− 1
2
, 3
2

)

m−1 (x),

and we obtain

∞∑
m=1

m
Γ(m+ 1)

Γ(m+ 3
2
)

[Ym(1− εm)− psm]P
(− 1

2
, 3
2

)

m−1 (x) = 0, x ∈ (−1, t0). (3.26)

Next, setting n = m− 1, α = −1
2
, β = 3

2
and η = 1

2
, we have the formula (2.8) as

P
(− 1

2
, 3
2

)

m−1 (x) =
(1 + x)−

3
2

√
π

Γ(m+ 3
2
)

Γ(m+ 1)

∫ x

−1

(1 + t)P
(0,1)
m−1(t)

(x− t) 1
2

dt.

Substitute this into (3.26) and interchange the summation and integral, we have

∫ x

−1

(1 + t)
∞∑
m=1

m [Ym(1− εm)− psm)]P
(0,1)
m−1(t)

(x− t) 1
2

dt = 0.

This is in the form of homogeneous Abel integral equation, so

∞∑
m=1

m [Ym(1− εm)− psm)]P
(0,1)
m−1(t) = 0, t ∈ (−1, t0). (3.27)

3.5.2 The interval (t0, 1) of the sine system

On the other hand, by setting α = β = η = 1
2
, n = m− 1, and interchange the role of

x and t, (2.7) then becomes

P
( 1
2
, 1
2

)

m−1 (t) =
(1− t)− 1

2

√
π

Γ(m+ 1
2
)

Γ(m)

∫ 1

t

P
(0,1)
m−1(x)

(x− t) 1
2

dx, t ∈ (t0, 1).
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Substitute into (3.26) and interchange the integral and summation, we obtain

1∫
t

∞∑
m=1

mYmP
(0,1)
m−1(x)

(x− t) 1
2

dx = 0.

This is again a homogeneous Abel integral equation, so we have

∞∑
m=1

mYmP
(0,1)
m−1(x) = 0, x ∈ (t0, 1). (3.28)

3.5.3 The combined sine system

It is clear that (3.27) and (3.28) have the same convergence rate, so we combine them
and get

∞∑
m=1

mYmP
(0,1)
m−1(t) =


∞∑
m=1

m (Ymεm − psm)P
(0,1)
m−1(t) t ∈ (−1, t0)

0 t ∈ (t0, 1)

Replace the Jacobi polynomials with the normalised Jacobi polynomials by using

the relation P
(0,1)
m−1(t) =

√
2
m
P̂

(0,1)
m−1(t), so we have

∞∑
m=1

ŶmP̂
(0,1)
m−1(t) =


∞∑
m=1

(
Ŷmεm − p̂sm

)
P̂

(0,1)
m−1(t), t ∈ (−1, t0),

0, t ∈ (t0, 1),
(3.29)

where {√
2mYm,

√
2mpsm

}
=
{
Ŷm, p̂

s
m

}
.

Finally, we shall multiply both sides of (3.29) by (1 + t)P̂
(0,1)
n−1 (t) and integrate over

(−1, 1), which lead us to

∞∑
m=1

1∫
−1

Ŷm(1 + t)P̂
(0,1)
m−1(t)P̂

(0,1)
n−1 (t)dt =

∞∑
m=1

t0∫
−1

(Ŷmεm − p̂sm)(1 + t)P̂
(0,1)
m−1(t)P̂

(0,1)
n−1 (t)dt.

The right hand side can be rewritten as

∞∑
m=1

t0∫
−1

(Ŷmεm − p̂sm)(1 + t)P̂
(0,1)
m−1(t)P̂

(0,1)
n−1 (t)dt

=
∞∑
m=1

1∫
−1

(Ŷmεm − p̂sm)(1 + t)P̂
(0,1)
m−1(t)P̂

(0,1)
n−1 (t)dt

−
∞∑
m=1

1∫
t0

(Ŷmεm − p̂sm)(1 + t)P̂
(0,1)
m−1(t)P̂

(0,1)
n−1 (t)dt.

(3.30)
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Recall that the set of Jacobi polynomials are orthogonal in the interval (−1, 1), and
make use of the notation of the incomplete scalar product (Section 2.5). Thus, we have
our desired Fredholm equation of the second kind.

(1− εn)Ŷn +
∞∑
m=1

ŶmεmQ̂
(0,1)
m−1,n−1(t0) = p̂sn −

∞∑
m=1

p̂smQ̂
(0,1)
m−1,n−1(t0) (3.31)

for n = 1, 2, 3 . . .
It can be checked taht, the coefficient matrix associated with (3.31) has the form

I + A where I is the identity matrix and

Amn =

{
εmQ̂

(0,1)
m−1.n−1(t0), m 6= n,

εm(Q̂
(0,1)
m−1.n−1(t0)− 1), m = n.

The matrix A represent a compact operator (on l2).

3.6 Regularisation of the Cosine System

First, using (3.23), we rewrite the cosine system (3.19)-(3.20) as

∞∑
m=1

m
Γ(m+ 1)

Γ(m+ 1
2
)

[Xm(1− εm)− pcm]P
(− 1

2
,− 1

2
)

m (t) = − i
2

√
π(ka)2J1(ka)(1 + x0); t ∈ (−1, t0)

(3.32)
∞∑
m=1

Γ(m+ 1)

Γ(m+ 1
2
)
XmP

(− 1
2
,− 1

2
)

m (t) =
x0

2
√
πH

(1)
1 (ka)

; t ∈ (t0, 1). (3.33)

According to the theory developed in [3], as we are taking η = 1
2

invariably, the
same approach in Section 3.5 fails at the index where α = β = −1

2
. For this reason,

we shall first increase the indices by using the Rodrigues’s formula.
Setting α = β = −1

2
, integrating both sides of (2.12) over (−1, t) and (t, 1), we

obtain ∫ t

−1

(1− x2)−
1
2P

(− 1
2
,− 1

2
)

m (x)dx = − 1

2m
(1− t2)

1
2P

( 1
2
, 1
2

)

m−1 (t)∫ 1

t

(1− x2)−
1
2P

(− 1
2
,− 1

2
)

m (x)dx =
1

2m
(1− t2)

1
2P

( 1
2
, 1
2

)

m−1 (t).

(3.34)

Replacing the role of x and t, then we integrate both sides of (3.32)-(3.33) with

(1−x2)−
1
2 . Then, by using the two formulas of (3.34), we have the dual series equation

∞∑
m=1

Γ(m+ 1)

Γ(m+ 1
2
)

[Xm(1− εm)− pcm]P
( 1
2
, 1
2

)

m−1 (t)

= i
√
π(ka)2J1(ka)(1 + x0)

[
π
2

+ arcsin t
]

(1− t2)
1
2

, t ∈ (−1, t0), (3.35)
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∞∑
m=1

Γ(m)

Γ(m+ 1
2
)
XmP

( 1
2
, 1
2

)

m−1 (t) =
x0

√
πH

(1)
1 (ka)

[
π
2
− arcsin t

]
(1− t2)

1
2

, t ∈ (t0, 1). (3.36)

Again, as before the aim is to unify the convergence rate of each equation, so we
can combine them as a piecewise continuous function. The remaining procedure is now
very similar to the regularisation of the sine system.

3.6.1 The interval (−1, t0) of the cosine system

First, we integrate both sides of (3.35) with (1 + t)
1
2 over the interval (−1, x), so

∞∑
m=1

Γ(m+ 1)

Γ(m+ 1
2
)

[Xm(1− εm)− pcm]

x∫
−1

(1 + t)
1
2P

( 1
2
, 1
2

)

m−1 (t)dt

= i
√
π(ka)2J1(ka)(1 + x0)

x∫
−1

(1 + t)
1
2

[
π
2

+ arcsin t
]

(1− x2)
1
2

dt.

Note that the interchanging order of integration and summation is again justified by
the edge conditions. Then, making use of (2.10) with α = β = 1

2
and n = m− 1,∫ x

−1

(1 + t)
1
2P

( 1
2
, 1
2

)

m−1 (t)dt =
(1 + x)

3
2(

m+ 1
2

)P (− 1
2
, 3
2

)

m−1 (x),

and evaluating the integral, we get

(1 + x)
3
2

∞∑
m=1

Γ(m+ 1)

Γ(m+ 3
2
)

[Xm(1− εm)− pcm]P
(− 1

2
, 3
2

)

m−1 (x)

= 2i
√
π(ka)2J1(ka)(1 + x0)

[
2(1 + x)

1
2 − (1− x)

1
2

(
arcsinx+

π

2

)]
.

Next, setting n = m− 1, α = −1
2
, β = 3

2
and η = 1

2
, we use the formula (2.8) as

P
(− 1

2
, 3
2

)

m−1 (x) =
(1 + x)−

3
2

√
π

Γ(m+ 3
2
)

Γ(m+ 1)

∫ x

−1

(1 + t)P
(0,1)
m−1(t)

(x− t) 1
2

dt,

and we obtain an equation in the form of integral equation of Abel type∫ x

−1

U(t)

(x− t) 1
2

dt = F (x),

where

U(t) = (1 + t)
∞∑
m=1

[Xm(1− εm)− pcm]P
(0,1)
m−1(t)

and

F (x) = 2iπ(ka)2J1(ka)(1 + x0)
[
2(1 + x)

1
2 − (1− x)

1
2

(
arcsinx+

π

2

)]
.
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The unique solution obtained by inversion of the Abel integral equation is

U(t) =
1

π

d

dt

∫ t

−1

F (x)

(t− x)
1
2

dx

= 2i(ka)2J1(ka)(1 + x0)
d

dt

∫ t

−1

[
2(1 + x)

1
2 − (1− x)

1
2

(
arcsinx+ π

2

)]
(t− x)

1
2

dx.

By integration by parts, we have

U(t) = 2i(ka)2J1(ka)(1 + x0)
d

dt

∫ t

−1

(t− x)
1
2

(1− x)
1
2

(
arcsinx+

π

2

)
dx.

Interchanging the differential and integral,

U(t) = i(ka)2J1(ka)(1 + x0)

∫ t

−1

(
arcsinx+ π

2

)
(1− x)

1
2 (t− x)

1
2

dx.

The integral is in the form of (2.13), and so we have

(1 + t)
∞∑
m=1

[Xm(1− εm)− pcm]P
(0,1)
m−1(t)

= −πi(ka)2J1(ka)(1 + x0) ln

(
1− t

2

)
; t ∈ (−1, t0) (3.37)

3.6.2 The interval (t0, 1) of the cosine system

For convenient purpose, we restate (3.36), replacing t with x

∞∑
m=1

Γ(m)

Γ(m+ 1
2
)
XmP

( 1
2
, 1
2

)

m−1 (x) =
x0

√
πH

(1)
1 (ka)

[
π
2
− arcsinx

]
(1− x2)

1
2

, x ∈ (t0, 1).

By setting α = β = η = 1
2
, n = m− 1 in (2.7), we have

P
( 1
2
, 1
2

)

m−1 (x) =
(1− x)−

1
2

√
π

Γ(m+ 1
2
)

Γ(m)

∫ 1

x

P
(0,1)
m−1(t)

(t− x)
1
2

dt x ∈ (t0, 1).

Substitute into (3.36), and interchange the integral and summation, we have∫ 1

x

U(t)

(t− x)
1
2

dt = F (x),

where

U(t) =
∞∑
m=1

XmP
(0,1)
m−1(t)
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and

F (x) =
x0

H
(1)
1 (ka)

[
π
2
− arcsinx

]
(1 + x)

1
2

.

The unique solution obtained by inversion is

U(t) = − 1

π

d

dt

∫ 1

t

F (x)

(x− t) 1
2

dx

= − x0

πH
(1)
1 (ka)

d

dt

∫ 1

t

[
π
2
− arcsinx

]
(1 + x)

1
2 (x− t) 1

2

dx,

but the integral may be evaluated using (2.14), so we have

U(t) =
x0

H
(1)
1 (ka)

d

dt

(
ln

(
1 + t

2

))
.

Thus,

(1 + t)
∞∑
m=1

XmP
(0,1)
m−1(t) =

x0

H
(1)
1 (ka)

, t ∈ (t0, 1). (3.38)

3.6.3 The combined cosine system

Since (3.37) and (3.38) clearly have the same convergence rate, so we combine them as
a piecewise continuous function, as follows:

(1 + t)
∞∑
m=1

XmP
(0,1)
m−1(t) =

{
F (t), t ∈ (−1, t0),

x0

H
(1)
1 (ka)

, t ∈ (t0, 1)

where

F (t) = (1 + t)
∞∑
m=1

[Xmεm + pcm]P
(0,1)
m−1(t)− πi(ka)2J1(ka)(1 + x0) ln

(
1− t

2

)
.

Replace the Jacobi polynomials with the normalised Jacobi polynomials by using

the relation P
(0,1)
m−1(t) =

√
2
m
P̂

(0,1)
m−1(t) to obtain

(1 + t)
∞∑
m=1

X̂mP̂
(0,1)
m−1(t) =

{
F̂ (t), t ∈ (−1, t0)

x0

H
(1)
1 (ka)

, t ∈ (t0, 1)
(3.39)

where

F̂ (t) = (1 + t)
∞∑
m=1

[
X̂mεm + p̂cm

]
P̂

(0,1)
m−1(t)− πi(ka)2J1(ka)(1 + x0) ln

(
1− t

2

)
,

{
X̂m, p̂

m
c

}
=

√
2

m
{Xm, p

m
c } .
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The requirement on the solution class forces the function to be continuous at the
point t = t0. This condition uniquely defines the constant x0:

x0

H
(1)
1 (ka)

= (1 + t0)
∞∑
m=1

[
X̂mεm + p̂cm

]
P̂

(0,1)
m−1(t0)− πi(ka)2J1(ka)(1 + x0) ln

(
1− t0

2

)
,

which can be reduced to

x0 = −
iπ(ka)2J1(ka)H

(1)
1 (ka) ln

(
1−t0

2

)
κ(ka, t0)

+ (1 + t0)
H

(1)
1 (ka)

κ(ka, t0)

∞∑
m=1

[
X̂mεm + p̂cm

]
P̂

(0,1)
m−1(t0)

(3.40)
where

κ(ka, t0) = 1 + iπ(ka)2J1(ka)H
(1)
1 (ka) ln

(
1− t0

2

)
.

To deduce the second kind matrix equation for the coefficients
{
X̂m

}∞
m=1

, we use

the orthogonal features of the Jacobi polynomials, i.e. integrate both sides of (3.39)

by P̂
(0,1)
n−1 (t) over (−1, 1), and we have

X̂n =
∞∑
m=1

[
X̂mεm + p̂cm

] ∫ t0

−1

(1 + t)P̂
(0,1)
m−1(t)P̂

(0,1)
n−1 (t)dt

− πi(ka)2J1(ka)(1 + x0)

∫ t0

−1

ln

(
1− t

2

)
P̂

(0,1)
n−1 (t)dt

+
x0

H
(1)
1 (ka)

∫ 1

t0

P̂
(0,1)
n−1 (t)dt.

(3.41)

For the first integral, we could use the same trick as (3.30) in the regularisation of
sine system. So, we have the first integral as

X̂nεn + p̂cn +
∞∑
m=1

[
X̂mεm + p̂cm

]
Q̂

(0,1)
m−1,n−1(t0). (3.42)

For the second integral, we use integration by parts and obtain∫ t0

−1

ln

(
1− t

2

)
P̂

(0,1)
n−1 (t)dt = −1− t0

n
ln

(
1− t0

2

)
P̂

(1,0)
n−1 (t0)− 1

n

∫ t0

−1

P̂
(1,0)
n−1 (t)dt.

By using (2.5), we have the identity∫ t0

−1

P̂
(1,0)
n−1 (t)dt =

1 + t0
m

P̂
(0,1)
n−1 (t0)

and so we can deduce the integral to∫ t0

−1

ln

(
1− t

2

)
P̂

(0,1)
n−1 (t)dt = −1− t0

n
ln

(
1− t0

2

)
P̂

(1,0)
n−1 (t0)− 1 + t0

n2
P̂

(0,1)
n−1 (t0). (3.43)
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For the third integral, we simply apply (2.4)∫ 1

t0

P̂
(0,1)
n−1 (t)dt =

1− t0
n

P̂
(1,0)
n−1 (t0). (3.44)

Substitute (3.40), (3.42), (3.43) and (3.44) into (3.41); we then obtain our desired
Fredholm equation of the second kind

(1− εn)X̂n +
∞∑
m=1

X̂mεmSmn(ka, t0) =

ξ(ka)

κ(ka, t0)H
(1)
1 (ka)

Φm(t0) + p̂cn −
∞∑
m=1

p̂cmSmn(ka, t0) (3.45)

for n = 1, 2, 3, . . . and

Smn(ka, t0) =Q̂
(1,0)
m−1,n−1(t0)− ξ(ka)

κ(ka, t0)
Φm(t0)Φn(t0),

ξ(ka) =iπ(ka)2J1(ka)H
(1)
1 (ka),

Φs(t0) =(1 + t0)
P̂

(0,1)
s−1 (t0)

s
(s ≥ 1).

Evaluating the coefficient matrix associated with (3.45), it can be confirmed that
it is a compact perturbation of the identity.

3.7 Summary of the Regularisation

Let us summarise what we have done for the open case.
By (3.40), we have

x0 = −
iπ(ka)2J1(ka)H

(1)
1 (ka) ln

(
1−t0

2

)
κ(ka, t0)

+ (1 + t0)
H

(1)
1 (ka)

κ(ka, t0)

∞∑
m=1

[
X̂mεm + p̂cm

]
P̂

(0,1)
m−1(t0).

By (3.45), (3.31), for n = 1, 2, 3, . . . , we have

(1− εn)Ŷn +
∞∑
m=1

ŶmεmQ̂
(0,1)
m−1,n−1(t0) = p̂sn −

∞∑
m=1

p̂smQ̂
(0,1)
m−1,n−1(t0),

and

(1− εn)X̂n +
∞∑
m=1

X̂mεmSmn(ka, t0) =

ξ(ka)

κ(ka, t0)H
(1)
1 (ka)

Φm(t0) + p̂cn −
∞∑
m=1

p̂cmSmn(ka, t0)
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where

Smn(ka, t0) =Q̂
(1,0)
m−1,n−1(t0)− ξ(ka)

κ(ka, t0)
Φm(t0)Φn(t0),

ξ(ka) =iπ(ka)2J1(ka)H
(1)
1 (ka),

κ(ka, t0) = 1 + iπ(ka)2J1(ka)H
(1)
1 (ka) ln

(
1− t0

2

)
,

Φs(t0) =(1 + t0)
P̂

(0,1)
s−1 (t0)

s
(s ≥ 1).

Hence, we have now obtained a well conditioned set of equations, where the solution
now can be reliably computed by standard numerical methods.
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4
The Neumann BVP For An Open Cylinder

of Arbitrary Profile

In this chapter, we turn our attention to cylindrical structures of constant cross-section
which have a single aperture. The Neumann BVP is reformulated as an integral equa-
tion, which in turn is converted to an equivalent dual series equations.

4.1 Formulation of The Boundary Value Problem

Consider an infinitely long cylinder of arbitrary shape in which a single aperture is
opened. We refer to the portion of the cross-section that remains of the opening the
aperture as the screen.

The physical phenomena of wave action on a cylinder is identical on every cross
section, so we shall focus the problem only on a cross section, and consider a two
dimensional BVP.

27



28 The Neumann BVP For An Open Cylinder of Arbitrary Profile

The cylinder is assumed to be an infinitely thin, perfectly conducting cavity and
each cross section is identical along the length of the cylinder. We place the origin
inside the cylinder, and set the cylinder parallel along the z-axis such that every cross
section is perpendicular to the z-axis. In this way, the problem is independent of z-
axis, and we can put our focus on the cross section which is on the xy-plane (the plane
where z = 0).

Let Ω be a finite bounded region of R2 to represent the cross section of our cylinder,
and ∂Ω denoted as the boundary of Ω. Geometrically, ∂Ω looks like a simple non-self-
crossing closed contour around the origin.

We let ∂Ω1 be a connected closed subset of ∂Ω to represent the screen, and ∂Ω2 as
the compliment of ∂Ω1 in ∂Ω to represent the aperture, so

∂Ω = ∂Ω1 ∪ ∂Ω2,

the two points where the screen meets the aperture are referred to as the edges.

We seek the scattered field u which satisfies the Helmholtz equation

(4+ k2)u = 0, (4.1)

where 4 refers to the Laplacian, k is a constant, such that the solution u also satisfies

(i) ∂u
∂n

= 0 on the screen, u = 0 on the aperture,

(ii) the Sommerfield radiation condition at infinity,

(iii) the Edge condition,

for an infinitely long open cylinder with arbitrary cross section.
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4.2 The Parametrisation

The contour ∂Ω is parametrised by a smooth 2π-periodic vector function

η(θ) = (x(θ), y(θ))

for θ ∈ [−π, π].
We assume that the condition l(θ) =

√
[x′(θ)]2 + [y′(θ)]2 > 0 holds to provide one-

to-one mapping for η = η(θ); the point η(θ) is moving in an anti-clockwise direction
along the contour ∂Ω.

We may choose θ0 ∈ (0, π) to parametrise the screen by

∂Ω1 = {η(θ); θ ∈ [−θ0, θ0]} ,

and the aperture by

∂Ω2 = {η(θ); θ ∈ [−π,−θ0) ∪ (θ0, π]} .

For any two points on ∂Ω corresponding to η(θ) and η(τ), the function R(θ, τ) :
[−π, π] × [−π, π] → R which measures the distance between the two points is defined
by

R(θ, τ) =
√

[x(θ)− x(τ)]2 + [y(θ)− y(τ)]2.

4.3 The Boundary Conditions

Recalling previous terminology, the incident, scattered and total field, which will be
denoted uinc, usc and utot, respectively. So, we have the total field as

utot = uinc + usc. (4.2)

Recall that the incident field is completely known, and all the fields above satisfy the
Helmholtz equation.
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The boundary condition on the screen ∂utot

∂n
(x) = 0, implies for h > 0

lim
h→0+

∂usc

∂n
(x± hnx) = −∂u

inc

∂n
(x) (4.3)

for x ∈ ∂Ω1, where nx is the outward normal to ∂Ω1 at the point x.
Similarly, for the aperture, we have

usc(x) = −uinc(x) (4.4)

for x ∈ ∂Ω2. With such formulation, we have a Neumann mixed boundary value
problem.

As mentioned in the introduction, we want our solution usc to behave as an outgoing
wave at infinity and vanish at infinity, so the solution needs to satisfy the Sommerfeld
radiation conditions

|
√
rusc| < K

for some constant K, and

lim
r→∞

√
r

(
∂usc

∂r
− ikusc

)
= 0

uniformly with respect to the direction of r, where r = |x| is the distance of point
x from origin. In some contexts, the conditions are also referred as the boundary
condition at infinity.

Additionally, we want our field to be bounded. Thus in an electromagnetic context,
an edge condition namely the Meixner Integrability Condition∫

V

(
| ~E|2+| ~H|2

)
dV <∞ (4.5)

for any arbitrary finite area V also need to be enforced, where ~E is the eletric field,
~H is the magnetic field. This condition is relating to the finiteness of the energy of
the scattered field within any arbitrarily chosen finite area that may contain the edges,
and we already have a brief discussion on Section (3.3), which can reduced to∫

V

(
|5usc|2 + k2|usc|2

)
dV <∞

for any arbitrary finite area V .
As mentioned in Section 1.1, a proof in [2] shows that if a solution satisfies all these

conditions, then it will be unique.

4.4 Solution in Integral representation

We refer to the points (x, y) ∈ Ω as the interior, and for (x, y) ∈ R2\Ω as exterior.
Note that the boundary ∂Ω is not included in both interior and exterior. We denote
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the interior field as ui and the exterior field as ue. In combination, for example usce
means the exterior scattered field.

Since there is no classical or separable coordinate system for arbitrary cross section,
we shall consider the integral representation of the solution.

Let x0 ∈ Ω be a point, then we shall have the interior solution in the form of

usci (x0) =

∫
∂Ω

usci (x)
∂G

∂nx

(x,x0)−G(x,x0)
∂usci
∂n

(x)dlx. (4.6)

And for a point x0 ∈ R2\Ω, the exterior solution is

usce (x0) = −
∫
∂Ω

usce (x)
∂G

∂nx

(x,x0)−G(x,x0)
∂usce
∂n

(x)dlx. (4.7)

In both solutions, G is the free space Green’s function, and nx is the normal vector
pointing outward of Ω. Note that (4.6) will be zero when x0 ∈ R2\Ω; likewise, (4.7) is
zero when x0 ∈ Ω.

So, for x0 /∈ ∂Ω, we can express the whole solution in the form of

usc(x0) = usci (x0) + usce (x0). (4.8)

Therefore, we have

usc(x0) = usci (x0) + usce (x0)

=

∫
∂Ω

usci (x)
∂G

∂nx

(x,x0)−G(x,x0)
∂usci
∂n

(x)dlx

−
∫
∂Ω

usce (x)
∂G

∂nx

(x,x0)−G(x,x0)
∂usce
∂n

(x)dlx.

With some rearrangement, we have

usc(x0) =

∫
∂Ω

[usci (x)− usce (x)]
∂G

∂nx

(x,x0)

−G(x,x0)

[
∂usci
∂n

(x)− ∂usce
∂n

(x)

]
dlx

(4.9)

By enforcing (4.3) and (4.4), we shall have

usc(x0) =

∫
∂Ω1

[usci (x)− usce (x)]
∂G

∂nx

(x,x0)

−
∫
∂Ω2

G(x,x0)

[
∂usci
∂n

(x)− ∂usce
∂n

(x)

]
dlx.

(4.10)
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Since no scattering is happening on the aperture ∂Ω2, we can reduce (4.10) to an
equation

usc(x0) =

∫
∂Ω1

[usci (x)− usce (x)]
∂G

∂nx

(x,x0)dlx. (4.11)

For convenient purpose, we shall denote

z(x) = usci (x)− usce (x).

Hence, for x0 /∈ ∂Ω1, the integral representation of the scattered field is

usc(x0) =

∫
∂Ω1

z(x)
∂G

∂nx

(x,x0)dlx. (4.12)

Enforcing the boundary condition (4.3), we obtain

lim
h→0+

∂

∂nx0

∫
∂Ω1

z(x)
∂G

∂nx

(x,x0 ± hnx1)dlx = −∂u
inc

∂nx0

(x0) (4.13)

where nx0 and nx are the normal to x0 and x, respectively, z(x) is unknown function.
Clearly, (4.13) is a Fredhom integral equation of the first kind. Further more, the

kernel
∂2G

∂nx0∂nx

(x,x0)

is highly singular when x→ x0.

4.5 Transformation of Integral Equation to Its Equiv-

alent Series Equations

It can be shown by using polar coordinates, that the well known free space Green’s
function for the 2D Helmholtz equation is

G(r) = − i
4
H

(1)
0 (kr) (4.14)

where r = |x−x0|, H(1)
0 is the Hankel function of the first kind at order 0, or in terms

of Bessel and Neumann functions,

G(r) = − i
4

[J0(kr) + iY0(kr)] .

Although the Bessel function J0(x) is bounded (in particular at x = 0), the Neu-
mann function Y0(x) has a logarithmic order singularity at x = 0. That Y0 has a
logarithmic order singularity is most easily seen in its expansion

Y0(x) =
2

π

[
J0(x)

(
ln
(x

2
− γ
))

+
∞∑
m=1

(−1)m−1hm
22m(m!)2

x2m

]
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where γ is the Euler’s constant and hm = 1 + 1
2

+ 1
2

+ 1
3

+ . . .+ 1
m

. We shall note here
that

lim
x→0+

J0(x) = 1

and

lim
x→0+

∞∑
m=1

(−1)m−1hm
22m(m!)2

x2m = 0

since the sum is absolutely convergent for all values of x. It is very clear from this that
we have

Y0(x) ∼ ln
(x

2

)
as x→ 0. Hence, a highly singular function (or singularity of order 2) results when we
consider the second derivatives of the Neumann function Y0(x), and by extension, the
Green’s function.

Let x0 = η(θ) and x = η(τ), and we denote

D0(θ, τ) =

[
∂2G

∂nx0∂nx

(x,x0)

]
x0=η(θ),x=η(τ)

.

At this point, let us define the function (recall l(θ) was defined in Section 4.2)

K(θ, τ) = 2πl(θ)l(τ)D0(θ, τ) +

[
4 sin2

(
θ − τ

2

)]−1

(4.15)

and the function

Ks(θ, τ) = K(θ, τ)− kl(θ)kl(τ)

2
ln

∣∣∣∣2 sin
θ − τ

2

∣∣∣∣. (4.16)

Hence,

2πl(θ)l(τ)D0(θ, τ) = Ks(θ, τ)+
kl(θ)kl(τ)

2
ln

∣∣∣∣2 sin
θ − τ

2

∣∣∣∣−[4 sin2

(
θ − τ

2

)]−1

(4.17)

It was shown in [13] that the function (4.15) has only a logarithmic singularity, and
the function (4.16) is smooth with all its first order and second order derivatives have
only logarithmic singularities. The decomposition (4.17) is the basis for obtaining the
dual series equation that are equivalent to the integral equation (4.13).

It is proved in [13] that (4.13) with the described parameterisation η(θ) of contour
∂Ω1 may be equivalently reduced to the equation

d2

dθ2

π∫
−π

ẑ(τ) ln

∣∣∣∣2 sin

(
θ − τ

2

)∣∣∣∣dτ +

π∫
−π

ẑ(τ)K(θ, τ)dτ = F (θ) (4.18)

where

ẑ(τ) =

{
z(τ); τ ∈ [−θ0, θ0]

0; τ ∈ [−π,−θ0) ∪ (θ0, π]
(4.19)
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and

F (θ) = −2πl(θ)

[
∂uinc

∂nx0

(x0)

]
x0=η(θ)

.

Next, we shall consider the Fourier expansion of each function in (4.18).

4.5.1 The Unknown Function

Let

ẑ(θ) =
∞∑

n=−∞

ξne
inθ, θ ∈ [−π, π]. (4.20)

Since ẑ(τ) is the unknown function in (4.19), then obviously the coefficients ξn
are also unknown. From the form of ẑ(τ) in (4.19), it is clear that ẑ(τ) is piecewise
continous.

4.5.2 The Function F (θ)

Let
1

π
F (θ) =

∞∑
n=∞

fne
inθ θ ∈ [−π, π] (4.21)

be its Fourier expansion; all the coefficients fn are known.

4.5.3 The Log Function

The expansion of the log function of the particular form involved is a fairly famous
result and common in many tables for Fourier expansions. Nonetheless, the expansion

ln

∣∣∣∣2 sin

(
θ − τ

2

)∣∣∣∣ = −1

2

∑
n∈Z\{0}

ein(θ−τ)

|n|
θ, τ ∈ [−π, π] (4.22)

will be derived here.
Using the standard Taylor series

ln(1− z) = −
(
z +

z2

2
+
z3

3
+ . . .

)
and noting that it converges for |z| ≤ 1 except when z = 1, we have

ln (1− eiθ) = −
(
eiθ +

e2iθ

2
+
e3iθ

3
+ . . .

)
for real θ.

Taking real parts, we have

ln |1− eiθ| = −1

2

∑
n∈Z\{0}

1

|n|
einθ
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and noting that

|1− eiθ| =
√

(1− cos θ)2 + sin2 θ

=
√

2− 2 cos θ

=

√
4 sin2 θ

2

= 2

∣∣∣∣sin θ2
∣∣∣∣

we have the desired form.

4.5.4 The Function K(θ, τ)

We consider the double Fourier series expansion of K(θ, τ):

K(θ, τ) =
∞∑
p=∞

∞∑
n=−∞

kp,ne
i(pθ+nτ) θ, τ ∈ [−π, π]. (4.23)

Of the four terms being expanded, the function K(θ, τ) is undoubtedly the most
interesting in terms of Fourier expansions.

Recall that in Section 4.2, we have

η(θ) = (x(θ), y(θ)),

l(θ) =
√

[x′(θ)]2 + [y′(θ)]2,

R(θ, τ) =
√

[x(θ)− x(τ)]2 + [y(θ)− y(τ)]2.

We need to calculate the mixed second directional derivative of the Green’s function
(4.14), namely

D0(θ, τ) =

[
∂2G

∂nx0∂nx

(x,x0)

]
x0=η(θ),x=η(τ)

.

After a simple, but bulky calculation, it was obtained (see [13]):

D0(θ, τ) = − i
4

1

l(θ)l(τ)

{
k2C(θ, τ)U(θ, τ)− 1

(kR(θ, τ))2
V (θ, τ)(k2A(θ, τ))(k2B(θ, τ))

}
where

A(θ, τ) = (x(θ)− x(τ))y′(τ)− (y(θ)− y(τ))x′(τ),

B(θ, τ) = (x(θ)− x(τ))y′(θ)− (y(θ)− y(τ))x′(θ),

C(θ, τ) = x′(θ)x′(τ) + y′(θ)y′(τ),

U(θ, τ) =
1

kR(θ, τ)
H

(1)
1 (kR(θ, τ)),

V (θ, τ) =
2

kR(θ, τ)
H

(1)
1 (kR(θ, τ))−H(1)

0 (kR(θ, τ)).
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To find the Fourier coefficients of K(θ, τ), we need to calculate Ks(θ, τ). When
θ 6= τ , we calculate Ks(θ, τ) by the formula (4.17); when θ = τ , it was proved that in
[13], the function Ks has the following form:

Ks(θ, θ) =
(kl)2

2
ln
kl

2
− 1

(kl)2

[
k2Υ(1,3)(θ)

6
− k2Υ(2,2)(θ)

4

]
−1

2

(k2Ψ(1,2)(θ))2

(kl)4
− (kl)2

[
i
π

4
− γ

2
+

1

4

]
+

1

12

where γ is the Euler’s constant, and

l = l(θ),

Υ(i,j)(θ) = x(i)(θ)x(j)(θ) + y(i)(θ)y(j)(θ),

Ψ(i,j)(θ) = x(i)(θ)y(j)(θ)− y(i)(θ)x(j)(θ),

the indices i, j are referring to the orders of derivatives. For numerical purpose Ks is
sufficiently smooth that we may calculate the Fourier coefficients of Ks(θ, τ) by the
fast Fourier transform algorithm.

Recalling that

K(θ, τ) =
kl(θ)kl(τ)

2
ln

∣∣∣∣2 sin
θ − τ

2

∣∣∣∣+Ks(θ, τ),

it follows that the Fourier coefficients {ks,n}s,n∈Z of K(θ, τ) are equal to the sum of the
Fourier coefficients of the functions on the right hand side. So if

Ks(θ, τ) =
∞∑

p=−∞

∞∑
n=−∞

ksp,ne
i(pθ+nτ),

L(θ, τ) =
kl(θ)kl(τ)

2
ln

∣∣∣∣2 sin
θ − τ

2

∣∣∣∣
=

∞∑
p=−∞

∞∑
n=−∞

Lp,ne
i(pθ+nτ),

then the Fourier coefficient of K(θ, τ) is

kp,n = ksp,n + Lp,n. (4.24)

Furthermore, it was shown that with the expansions

kl(θ) =
∞∑

m=−∞

lme
imθ

and

ln

∣∣∣∣2 sin
θ − τ

2

∣∣∣∣ =
∞∑

n=−∞

Λne
int

where Λn =

{
0, n = 0

−1
2

1
|n| n 6= 0
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then

Lp,n =
1

2

∞∑
r=∞

lp−rln+rΛr.

4.5.5 The Equivalent dual series equation

Thus, we substitute (4.20) and (4.22) into the first integral of (4.18), then we integrate
and differentiate to obtain

d2

dθ2

π∫
−π

ẑ(τ) ln

∣∣∣∣2 sin

(
θ − τ

2

)∣∣∣∣dτ = π
∞∑

n=−∞

|n|ξneinθ. (4.25)

As for the second integral of (4.18), we substitute (4.20), (4.23) into it, then perform
integration by parts and we have

π∫
−π

ẑ(τ)K(θ, τ)dτ = 2π
∞∑

n=−∞

einθ
∞∑

p=−∞

kn,−pξp (4.26)

where kn,p are calculated by (4.24).
Finally, substitute (4.21), (4.25) and (4.26) into (4.18), and we obtain the desired

equivalent dual series equation

∞∑
n=−∞

{
|n|ξn + 2

∞∑
p=−∞

(kn,−p)ξp − fn

}
einθ = 0 for θ ∈ [−θ0, θ0],

∞∑
n=−∞

ξne
inθ = 0 for θ ∈ [−π,−θ0) ∪ (θ0, π].

Once we solve the dual series equation above, we have then solved our BVP.
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5
The Analytical Regularisation of The

Solution

5.1 The Coupled dual series equation

In the last section of the previous chapter, we obtained the equivalent series represen-
tation of the integral equation, and our task now is to find the set of unknown Fourier
coefficients {ξn}∞n=−∞ for the unknown function ẑ(τ). This is advantageous, because
when we convert the dual series equation into another form, and obtained the set of
values {ξn}∞n=−∞, we do not change any information of ẑ(τ). Our approach uses the
MoR which has been used in Chapter 3 for the open circle case: it converted the dual
series equation into a matrix equation which is in the form of a well conditioned second
kind of Fredholm equation.

Now, let us consider the dual series equation

∞∑
n=−∞

{
|n|ξn + 2

∞∑
p=−∞

(kn,−p)ξp − fn

}
einθ = 0 for θ ∈ [−θ0, θ0], (5.1)

∞∑
n=−∞

ξne
inθ = 0 for θ ∈ [−π,−θ0) ∪ (θ0, π]. (5.2)

First, we separate the sums in the way of

∞∑
n=−∞

bn = b0 +
∞∑
n=1

(bn + b−n),

39
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and employing the identities

einθ = cosnθ + i sinnθ,

e−inθ = cosnθ − i sinnθ.

Then, by taking the real part and imaginary part separately, we decouple (5.1) and
(5.2) into a coupled dual series equation as the following

∞∑
n=1

(yn − cn) sinnθ = 0, θ ∈ [0, θ0], (5.3)

∞∑
n=1

nyn sinnθ = 0, θ ∈ [θ0, π] (5.4)

and

∞∑
n=1

(xn − an) cosnθ = a0, θ ∈ [0, θ0], (5.5)

∞∑
n=1

nxn cosnθ = −ξ0, θ ∈ [θ0, π], (5.6)

where

xn =
ξn + ξ−n

n
, f+

n = fn + f−n,

yn =
ξn − ξ−n

n
, f−n = fn − f−n

and

a0 = f0 − 2ξ0[k0,0]− 2
∞∑
p=1

[k0,−p + k0,p]pxp,

an = f+
n − 2ξ0[kn,0 + k−n,0]− 2

∞∑
p=1

([kn,−p + k−n,−p] + [k−n,p + kn,p]) pxp,

cn = f−n − 2ξ0[kn,0 + k−n,0]− 2
∞∑
p=1

([kn,−p − k−n,−p] + [k−n,p − kn,p]) pyp.

Recall the edge condition (4.5), which was imposed on the coefficients {xn}n∈N and
{yn}n∈N and restricts them to a solution class l2(1) (following the notation of (2.15)):

{xn}n∈N ∈ l2(1)⇒
∞∑
n=0

n|xn|2 <∞,

{yn}n∈N ∈ l2(1)⇒
∞∑
n=0

n|yn|2 <∞.
(5.7)



5.2 Regularisation of the sine system 41

From (5.7), we obtain asymptotic estimates for {xn}n∈N and {yn}n∈N:

xn = O
(
n−

3
2

)
,

yn = O
(
n−

3
2

) (5.8)

as n→∞. These two conditions allow us to interchange the order of integration and
summation.

Following the same tradition, we shall refer (5.3)-(5.4) as the sine system, (5.5)-(5.6)
as the cosine system.

In the remaining section of the chapter, we shall focus on the regularisation of
(5.3)-(5.6) by following the same scheme which described in Chapter 3 (or in [3]). In
fact, most of the integrals turn out to be the same as Section 3.6.

5.2 Regularisation of the sine system

Apply the Jacobi representation of the sine function (3.22) in Chapter 3, and denote
t0 = cos θ0 and t = cos θ (so t ∈ [−1, 1]). Hence, we have the sine system in the form
of

∞∑
n=1

nyn
Γ(n+ 1)

Γ(n+ 1
2
)
P

( 1
2
, 1
2

)

n−1 (t) = 0, t ∈ [−1, t0], (5.9)

∞∑
n=1

(yn − cn)
Γ(n+ 1)

Γ(n+ 1
2
)
P

( 1
2
, 1
2

)

n−1 (t) = 0, t ∈ [t0, 1]. (5.10)

It can be shown using (5.8) and asymptotic behaviour of Jacobi polynomials and

Gamma function that the sum (5.9) has convergence rate O
(
n−

1
2

)
and (5.10) has

the faster convergence rate O
(
n−

3
2

)
as n → ∞. Our task is again unifying their

convergence rate, so we can combine them as a piecewise function.

First, multiply both sides of (5.9) by (1 + t)
1
2 , then by applying (2.10),

∫ x

−1

(1 + t)
1
2P

( 1
2
, 1
2

)

n−1 (t)dt =
(1 + x)

3
2

n+ 1
2

P
(− 1

2
, 3
2

)

n−1 (x),
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to integrate term by term over the interval [−1, x], we have

∞∑
n=1

∫ x

−1

nyn
Γ(n+ 1)

Γ(n+ 1
2
)
(1 + t)

1
2P

( 1
2
, 1
2

)

n−1 (t)dt

=
∞∑
n=1

nyn
Γ(n+ 1)

Γ(n+ 1
2
)

∫ x

−1

(1 + t)
1
2P

( 1
2
, 1
2

)

n−1 (t)dt

=
∞∑
n=1

nyn
Γ(n+ 1)

Γ(n+ 1
2
)

(1 + x)
3
2

n+ 1
2

P
(− 1

2
, 3
2

)

n−1 (x)

= (1 + x)
3
2

∞∑
n=1

nyn
Γ(n+ 1)

Γ(n+ 3
2
)
P

(− 1
2
, 3
2

)

n−1 (x)

= 0, x ∈ [−1, t0].

Since the product is zero on the interval [−1, t0], hence

∞∑
n=1

nyn
Γ(n+ 1)

Γ(n+ 3
2
)
P

(− 1
2
, 3
2

)

n−1 (x) = 0, x ∈ [−1, t0]. (5.11)

And now we apply the Abel’s transform technique. Taking η = 1
2
, we have (2.8) in

the form of

P
(− 1

2
, 3
2

)

n−1 (x) =
(1 + x)−

3
2

√
π

Γ(n+ 3
2
)

Γ(n+ 1)

∫ x

−1

(1 + t)P
(0,1)
n−1 (t)

(x− t) 1
2

dt. (5.12)

Substituting (5.12) to (5.11), we have

(1 + t)−
3
2

√
π

∫ t

−1

∞∑
n=1

nyn(1 + t)P
(0,1)
n−1 (t)

(x− t) 1
2

dx = 0, t ∈ [−1, t0]. (5.13)

This is in the form of an homogeneous Abel’s integral equation, and the unique inversion
is

∞∑
n=1

nynP
(0,1)
n−1 (t) = 0, t ∈ [−1, t0]. (5.14)

Next, we shall consider equation (5.10). By taking η = 1
2
, we have (2.7) as

P
( 1
2
, 1
2

)

n−1 (x) =
(1− x)−

1
2

√
π

Γ(n+ 1
2
)

Γ(n)

∫ 1

x

P
(0,1)
n−1 (t)

(t− x)
1
2

dt, x ∈ [t0, 1]. (5.15)
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By replacing the role of t by x in (5.10), and then substitute into (5.15) to obtain

∞∑
n=1

(yn − cn)
Γ(n+ 1)

Γ(n+ 1
2
)

[
(1− x)−

1
2

√
π

Γ(n+ 1
2
)

Γ(n)

∫ 1

x

P
(0,1)
n−1 (t)

(t− x)
1
2

dt

]

=
∞∑
n=1

(yn − cn)
n√
π

(1− x)−
1
2

[∫ 1

x

P
(0,1)
n−1 (t)

(t− x)
1
2

dt

]

=
(1− x)−

1
2

√
π

∫ 1

t

∞∑
n=1

n(yn − cn)P
(0,1)
n−1 (t)

(t− x)
1
2

dt

= 0, t ∈ [t0, 1].

Since the product is identically zero in the interval [t0, 1], we have

∫ 1

x

∞∑
n=1

n(yn − cn)P
(0,1)
n−1 (t)

(t− x)
1
2

dt = 0,

which is in the form of homogeneous integral equation of Abel type, the unique inversion
is

∞∑
n=1

n(yn − cn)P
(0,1)
n−1 (t) = 0, t ∈ [t0, 1]. (5.16)

It is clear that (5.14) and (5.16) have the same convergence rate, so we combine
them and obtain the piecewise continuous function

∞∑
n=1

nynP
(0,1)
n−1 (t) =

 0, x ∈ [−1, t0],
∞∑
n=1

ncnP
(0,1)
n−1 (t), x ∈ [t0, 1].

By using the relation P
(0,1)
n−1 (t) =

√
2
n
P̂

(0,1)
n−1 (t), we replace the Jacobi polynomial by

the normalised Jacobi polynomial and obtain

∞∑
n=1

√
2nynP̂

(0,1)
n−1 (t) =

 0, x ∈ [−1, t0],
∞∑
n=1

√
2ncnP̂

(0,1)
n−1 (t), x ∈ [t0, 1].

(5.17)

Recall that the set
{
P̂

(0,1)
n−1 (t)

}
n∈N

is orthonormal in [−1, 1], so∫ 1

−1

(1 + t)P̂
(0,1)
n−1 (t)P̂

(0,1)
m−1(t)dt = δm,n.

Thus, by multiplying both sides of (5.17) with (1 + t)P̂
(0,1)
m−1(t) and integrating over

[−1, 1], we obtain the infinite system of equations

√
2mym =

∞∑
n=1

√
2ncnQ̂

(0,1)
n−1,m−1(t0) (5.18)

for m = 1, 2, 3, . . .
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5.3 Regularisation of the cosine system

By employing (3.23) and denoting t0 = cos θ0 and t = cos θ, the cosine system is hence
in the form of

∞∑
n=1

nxn
Γ(n+ 1)

Γ(n+ 1
2
)
P

(− 1
2
,− 1

2
)

n (t) = − ξ0√
π
, t ∈ [−1, t0], (5.19)

∞∑
n=1

(xn − an)
Γ(n+ 1)

Γ(n+ 1
2
)
P

(− 1
2
,− 1

2
)

n (t) =
a0√
π
, t ∈ [t0, 1]. (5.20)

Since α = β = −1
2
, a preliminary step is needed: we shall increase the value of α

and β. Recall the two formulas which deduced from the Rodrigues’s formula in Section
3.6: ∫ x

−1

(1− t2)−
1
2P

(− 1
2
,− 1

2
)

n (t)dt = − 1

2n
(1− x2)

1
2P

( 1
2
, 1
2

)

n−1 (x),∫ 1

x

(1− t2)−
1
2P

(− 1
2
,− 1

2
)

n (t)dt =
1

2n
(1− x2)

1
2P

( 1
2
, 1
2

)

n−1 (x).

(5.21)

We perform term by term integration on (5.19) and (5.20) with weight (1 − t2)−
1
2

over the interval [−1, x] and [x, 1], respectively. Then, by using (5.21), we obtain the
following

∞∑
n=1

Γ(n+ 1)

Γ(n+ 1
2
)
xnP

( 1
2
, 1
2

)

n−1 (x) =
2ξ0√
π

π
2

+ arcsinx

(1− x2)
1
2

, x ∈ [−1, t0], (5.22)

∞∑
n=1

Γ(n)

Γ(n+ 1
2
)
(xn − an)P

( 1
2
, 1
2

)

n−1 (x) =
2a0√
π

π
2
− arcsinx

(1− x2)
1
2

, x ∈ [t0, 1]. (5.23)

The dual series equation are now having the indices α = β = 1
2
, and we can proceed

the similar steps as the regularisation of the sine system.
By using (2.10), we have (5.22) as

(1 + x)
3
2

∞∑
n=1

Γ(n+ 1)

Γ(n+ 3
2
)
xnP

(− 1
2
, 3
2

)

n−1 (x)

=
4ξ0√
π

[
2(1 + x)

1
2 − (1− x)

1
2

(π
2

+ arcsinx
)]
, x ∈ [−1, t0]. (5.24)

(Note that for convenient purpose, we have retained the parameter of (5.24) as x.)
Applying (5.15) and (5.12),

P
( 1
2
, 1
2

)

n−1 (x) =
(1− x)−

1
2

√
π

Γ(n+ 1
2
)

Γ(n)

∫ 1

x

P
(0,1)
n−1 (t)

(t− x)
1
2

dt,

P
(− 1

2
, 3
2

)

n−1 (x) =
(1 + x)−

3
2

√
π

Γ(n+ 3
2
)

Γ(n+ 1)

∫ x

−1

(1 + t)P
(0,1)
n−1 (t)

(x− t) 1
2

dt,
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we can convert (5.23) and (5.24) into integral equations of Abel type:

1∫
x

∞∑
n=1

(xn − an)P
(0,1)
n−1 (t)

(t− x)
1
2

dt = 2a0

π
2
− arcsinx

(1 + x)
1
2

, x ∈ [t0, 1],

x∫
−1

(1 + t)
∞∑
n=1

xnP
(0,1)
n−1 (t)

(x− t) 1
2

dt = 4ξ0

[
2(1 + x)

1
2 − (1− x)

1
2

(π
2

+ arcsinx
)]
, x ∈ [−1, t0].

Inversion of the equations gives us

∞∑
n=1

(xn − an)P
(0,1)
n−1 (t) = −2a0

π

d

dt

∫ 1

t

π
2
− arcsinx

(1 + x)
1
2 (x− t) 1

2

dx (5.25)

for t ∈ [t0, 1], and

(1 + t)
∞∑
n=1

xnP
(0,1)
n−1 (t) =

4ξ0

π

d

dt

∫ t

−1

2(1 + x)
1
2 − (1− x)

1
2

(
π
2

+ arcsinx
)

(t− x)
1
2

dx (5.26)

for t ∈ [−1, t0].
Note that the integrals on the right hand side of (5.25) and (5.26) have been eval-

uated in Section 3.6.1 and Section 3.6.2. So, we have

d

dt

∫ 1

t

π
2
− arcsinx

(1 + x)
1
2 (x− t) 1

2

dx = − π

1 + t
, (5.27)

d

dt

∫ t

−1

2(1 + x)
1
2 − (1− x)

1
2

(
π
2

+ arcsinx
)

(t− x)
1
2

dx = −π
2

ln

(
1− t

2

)
. (5.28)

Now, substituting (5.27) and (5.28) into (5.25) and (5.26), respectively, and com-
bine, we obtain the piecewise equation

(1 + t)
∞∑
n=1

xnP
(0,1)
n−1 (t) =

 −2ξ0 ln
(

1−t
2

)
, t ∈ [−1, t0],

2a0 + (1 + t)
∞∑
n=1

anP
(0,1)
n−1 (t), t ∈ [t0, 1].

(5.29)

By rescaling the Jacobi polynomial using P
(0,1)
n−1 (t) =

√
2
n
P̂

(0,1)
n−1 (t), (5.29) becomes

(1 + t)
∞∑
n=1

√
2

n
xnP̂

(0,1)
n−1 (t) =

 −2ξ0 ln
(

1−t
2

)
, t ∈ [−1, t0],

2a0 + (1 + t)
∞∑
n=1

√
2
n
P̂

(0,1)
n−1 (t), t ∈ [t0, 1].

(5.30)

The solution belonging to the functional class l2(1) results in continuity being im-
posed on the piecewise continuous function in (5.30) at t = t0, and hence we have

ξ0 = − a0

ln
(

1−t0
2

) − 1 + t0

2 ln
(

1−t0
2

) ∞∑
n=1

√
2

n
anP̂

(0,1)
n−1 (t0). (5.31)
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Now, we employ the orthogonality of the Jacobi polynomials. Multiplying both
sides of (5.30) by P̂

(0,1)
m−1(t) and integrate over [−1, 1], we obtain

√
2

m
xm = −2ξ0

∫ t0

−1

ln

(
1− t

2

)
P̂

(0,1)
m−1(t)dt+2a0

∫ 1

t0

P̂
(0,1)
m−1(t)dt+

∞∑
n=1

√
2

n
anQ̂

(0,1)
n−1,m−1(t0).

(5.32)

Note that the first integral on the left hand side of (5.32) is already been evaluated
in Section 3.6.3. So, we have

∫ t0

−1

ln

(
1− t

2

)
P̂

(0,1)
m−1(t)dt = −1− t0

m
ln

(
1− t0

2

)
P̂

(1,0)
m−1(t0)− 1 + t0

m2
P̂

(0,1)
m−1(t0). (5.33)

From (2.4), the second integral of (5.32) is

∫ 1

t0

P̂
(0,1)
m−1(t)dt =

1− t0
m

P̂
(1,0)
m−1(t0). (5.34)

And now, we shall substitute (5.31), (5.33), and (5.34) into (5.32), and obtain

√
2

m
xm =− 2a0

1 + t0
m2

P̂
(0,1)
m−1(t0)

ln
(

1−t0
2

)
+
∞∑
n=1

√
2

n
an

[
Q̂

(0,1)
n−1,m−1(t0)− (1− t20)

m
P̂

(0,1)
n−1 (t0)P̂

(1,0)
m−1(t0)

]

−
∞∑
n=1

√
2

n
an

[
(1 + t0)2

m2

P̂
(0,1)
n−1 (t0)P̂

(0,1)
m−1(t0)

ln
(

1−t0
2

) ]
.

(5.35)

Finally, replace Q̂
(0,1)
n−1,m−1(t0) by using the relation (2.6), we therefore obtain the infinite

linear system of equations

√
2mxm =− 2a0

1 + t0
m

P̂
(0,1)
m−1(t0)

ln
(

1−t0
2

)
+
∞∑
n=1

√
2nanQ̂

(1,0)
n−1,m−1(t0)

−
∞∑
n=1

√
2nan

(1 + t0)2

nm

P̂
(0,1)
n−1 (t0)P̂

(0,1)
m−1(t0)

ln
(

1−t0
2

)
(5.36)

for m = 1, 2, 3, . . .
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5.4 Summary of the Chapter

At the beginning of the chapter, we considered the Fourier series of the integral repre-
sentation of the scattered field solution:

∞∑
n=−∞

{
|n|ξn + 2

∞∑
m=−∞

(kn,−m)ξm − fn

}
einθ = 0 for θ ∈ [−θ0, θ0],

∞∑
n=−∞

ξne
inθ = 0 for θ ∈ [−π,−θ0) ∪ (θ0, π].

Using the identities einθ = cosnθ+i sinnθ and e−inθ = cosnθ−i sinnθ lead to a coupled
dual series equation:


∞∑
n=1

(yn − cn) sinnθ = 0, θ ∈ [0, θ0],

∞∑
n=1

nyn sinnθ = 0, θ ∈ [θ0, π]

and


∞∑
n=1

(xn − an) cosnθ = a0, θ ∈ [0, θ0],

∞∑
n=1

nxn cosnθ = −ξ0, θ ∈ [θ0, π].

Then, replacing the sine and cosine functions by their Jacobi polynomial represen-
tations, and using the properties of Jacobi polynomial, we reduced the dual series into
integral equation of Abel type which have unique inversion. Finally, by the orthogo-
nality of Jacobi polynomials, we have the following:

√
2mym =

∞∑
n=1

√
2ncnQ̂

(0,1)
n−1,m−1(t0),

√
2mxm =− 2a0

1 + t0
m

P̂
(0,1)
m−1(t0)

ln
(

1−t0
2

)
+
∞∑
n=1

√
2nan

[
Q̂

(1,0)
n−1,m−1(t0)− (1 + t0)2

nm

P̂
(0,1)
n−1 (t0)P̂

(0,1)
m−1(t0)

ln
(

1−t0
2

) ]
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where

xn =
ξn + ξ−n

n
,

yn =
ξn − ξ−n

n
,

f+
n = fn + f−n,

f−n = fn − f−n,

a0 = f0 − 2ξ0[k0,0]− 2
∞∑
p=1

[k0,−p + k0,p]pxp,

an = f+
n − 2ξ0[kn,0 + k−n,0]− 2

∞∑
p=1

([kn,−p + k−n,−p] + [k−n,p + kn,p]) pxp,

cn = f−n − 2ξ0[kn,0 + k−n,0]− 2
∞∑
p=1

([kn,−p − k−n,−p] + [k−n,p − kn,p]) pyp,

ξ0 =
a0

ln
(

1−t0
2

) − 1 + t0

2 ln
(

1−t0
2

) ∞∑
n=1

√
2

n
anP̂

(0,1)
n−1 (t0).

Furthermore, by rescaling the unknowns

X0 = 2ξ0, Xn =
√

2nxn, Yn =
√

2nyn,

then it can be shown that when we combine these two systems, we obtain the desired
Fredholm equation of the second kind. In conjunction, one extra equation will occurs
when we substitute both a0 and an into ξ0.

5.5 Conclusion

In this thesis, we begin by considering the wave scattering problems for the infinite
circular cylinder in both open and closed case. By using the known fact that the
wave’s identical behaviour along the cylinder, we then reduced the problem into a
two dimensional BVP. Since circle can be parametrised by using the cylindrical polar
coordinate, so for the closed case, we show using the separation of variable technique
and obtain an analytical solution. The analytical solution is in the form of Fourier
series, a well known series where the convergent can be guaranteed. As for the open
case, we have the solution resulted in a coupled dual series equation. To solve such
equations, we used MoR to convert the dual series equation into the well-behaved
Fredholm equation of the second kind, in which the solution can be computed by
truncation method.

Then, we moved to the formulation of the wave scattering problems for an infi-
nite long open cylinder with arbitrary cross section. With the appropriate setting, the
problem is independent of the z-axis and thus simplified the problem to two dimen-
sional BVP. Using the standard representation of the scattered field in terms of the
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surface quantities and a Green’s function, the scattered field required us to solve a
first kind Fredholm integral equation. Moreover, the kernel is a highly singular second
normal derivatives of Green’s function. To deal with this, we used the results from [13]
to transform the integral equation to its equivalent Fourier series representation and
resulted a dual series equation.

To solve dual series equation, we first decoupled the exponential kernel into sine and
cosine functions, and that leads us to a coupled dual series equation which is similar to
the open circular cylinder case. The similar approach have been apply, we converted
the sine and cosine functions into their Jacobi polynomial representation, then apply
the Abel’s transform technique and orthogonality of Jacobi polynomial to convert the
series into an infinite system of linear algebraic function which in the form of a well
conditioned second kind Fredholm equation.

Thus, the solution can be obtained by numerical method, and we shall conclude
the thesis here.
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