LOW-COST 4-DOF ROBOTIC ARM USING ROS:
COLLISION-FREE PATH PLANNING

Jacob Blanck

Bachelor of Engineering
Mechatronic Engineering Major

]
Pg
ey

MACQUARIE
University

SYDNEY-AUSTRALIA

Department of Engineering
Macquarie University

November 6, 2017

Supervisor: Subhas Mukhopadhyay







ACKNOWLEDGMENTS
I would like to acknowledge several people for supporting me and helping me
through the duration of my undergraduate degree and thesis. Firstly, I would
like to dedicate this project to God. He is always there, giving me wisdom
and opportunity through my circumstances and my family. He has given me
everything in life and I pray that I can continue to live my life in His image and
to achieve what He has set out for me. Thank you to my beautiful wife, Rachel,
for all the love and support. guiding and encouraging me through all the stressful
times and long hours. Without her, I would not be the man I am today, she
always inspires me to work harder and believe that what I am working towards
is achievable. Subhas Mukhopadhyay, thank you for your guidance, support and
assistance through my thesis project. I am very grateful for the attention and

time vou have given throughout this project.







STATEMENT OF CANDIDATE

1, Jacob Blanck, declare that this report, submitted as part of the requirement
for the award of Bachelor of Engineering in the Department of Engineering, Mac-
quarie University, is entirely my own work unless otherwise referenced or acknowl-
edged. This document has not been submitted for qualification or assessment at

any other academic institution.

Student’s Name: Jacob Blanck

Student’s Signature: M

Date: 06/11/2017







ABSTRACT

Robotic arm control and path planning is a highly important aspect of research
due to the rise in robotic arm applications and advancements in their capacity to
work accurately and safely. ROS software has been used to achieve this collision-
free path planning and robotic arm control previously in research, however these
robotic arms are often expensive and supply ready-made SDIK packages that
function within ROS. In this project, ROS software is used to simulate the ” AX-
12A Smart Robotic Arm” from CrustCrawler. This low-cost robotic arm has
limited open-source ROS software associated with it, in addition to no accessible
simulations of the robotic arm. The aim of this project is to form a collision-free
static path planning model within ROS, similar to packages available for more
expensive robotic arms. The ROS software generates a random goal state and
plans a collision-free path for the robotic arm to follow, achieving the desired
state. This is achieved through a Movelt! configuration generated from SRDF
and URDF files created for the robotic arm. The results show that the URDF
functions correctly and the Movelt! configuration path plans successfully. The
simulation is able to identify configurations that include self-collision and will
not path plan to this collision. This research is significant for the use of low-cost
robotic arms within both research and industrial industries whilst accurately

executing path planning to a goal state and operating without collision.







Contents

Acknowledgments iii
Abstract vii
Table of Contents ix
List of Figures xiii
List of Tables XV
Abbreviations xvii
1 Introduction 1
1.1 Project Objectives . . . . . . . . . . .. 1
1.2 Project Goals . . . . . . . . e 2
1.3 Project Validation . . . . . . . . . . ... ... 2

2 Literature Review 3
2.1 Imtroduction . . . . . .. 3
2.2 Collision-free vs. Moving Obstacles . . . . . . .. ... ... ... ... .. 3
2.3 Workspace Safety . . . . . . .. ... 4
24 Relevant Projects . . . . . . . . . . . . . e e e e e e 4
2.4.1 Cheap Chess Robot . . . . .. . .. .. .. 0L 4

2.4.2 Collision-Free Manipulation . . . . ... .. ... ... .. ..... 5

2.4.3 Planning for Tabletop Clutter . . . . . . . . .. .. .. ... .... b}

2.4.4 Object Sorting in Cluttered Environments . . . . . . ... ... .. 5

3 Background 7
3.1 Imtroduction . . . . . ... L 7
3.2 Software . . . . ... e 7
3.2.1 Robot Operating System (ROS) . . . ... ... ... .. ... ... 7

3.2.2 RoboPlus and "Mixecell” . . . . . . ... 8

3.2.3  SolidWorks-to-URDF Exporter . . .. .. ... ... ... ..... 8

3.3 Hardware . . . . . . . . . . ... 9




CONTENTS

3.3.1  AX-12A Smart Robotic Arm by CrustCrawler . . . . . . ... ... 9
3.3.2 USB2Dynamixel . . . . .. .. .. ... ... ... 10
3.4  Related Robots Running ROS . . . . ... ... ... . ........... 11
3.4.1 Robotis Manipulator-H . . . . . .. ... .00 11
3.42 Personal Robot 2 (PR2) . . . ... ... ... .. ... ... .... 11
343 CytonEpsilon300 .. ... .. ... ... ... ... .. ..... 11
Implementation 13
4.1 Introduction . . . . . . . ... 13
4.1.1 Software Setup . . . . . . . . ... 13
4.2 3D Model . . ... e 14
4.2.1 Materials . . . . .. e 14
4.2.2 SolidWorks Parts . . . . . . . ... ... 14
4.2.3 Reference Geometry . . . . . . .. ... 14
43 URDF File . ... .. . e 15
431 LinkMeshes . . . .. . ... . . . . . . e e 15
4.3.2 Link Properties . . . . . . . . . .. . 17
4.3.3 Joint Transforms and Limits . . . . . . . ... ... ... . ..... 18
4.34 Navigation Stack . . . . . .. . ... 19
4.4 Movelt! Configuration . . . . ... . ... ... ... ... ... ..., 19
4.4.1 Self-Collision Matrix . . . . . ... ... ... ... ... ...... 20
4.4.2 Navigation Stack . . . . . . . ... 20
Results 23
.0 IREFOdUGHIoN . - ¢ o ¢ o v v b v e s s e e e s e s e e e s e 23
5.2 URDF Display . . . . . . .. .. 23
5.3 Movelt! Path Planning . . . . . . . .. .. ... ... ... ... . ..... 23
5.3.1 Path Planning in Movelt! . . ... ... ... ... ... ...... 23
5.3.2 Default Pose to Random Goal Configuration . . . . . .. ... ... 25
5.3.3 Random Start to Random Goal Configuration . . . .. . ... ... 26
5.3.4 Average Time Taken to Establish Planned Path . . . . . . ... .. 27
54 Collision Detection . . . . . . . . . . . e 27
5.5 Defined Workspace . . . . . ... L 28
Discussion 29
6.1 Assessment of Project . . . . . . . ... 29
6.2 Limitations of Project . . . . . . .. ..o o 29
6.2.1 4 DOF Simulation of a 5 DOF Robotic Arm . . . . ... ... ... 29
6.2.2 Obstacles within Robotic Arm Workspace . . . .. ... ... ... 30
6.2.3 End-effector Control . . . .. ... ... ... ... ... . ..... 30
6.3 Implementation to Hardware . . . . . . . . . .. ... ... .. .. ..... 30
6.3.1 Joint Trajectory Action Controller . . . . ... .. ... ...... 30

6.4 Future Work . . . . . . . . 32




CONTENTS

xi

7 Conclusions
A URDEF file (robot_arm.urdf)

Bibliography

35

37

39







List of Figures

3.1 Robotic Arm Joint Configuration [1] . . . ... .. ... ... ... ..... 9
3.2 AX-12A Smart Robotic Arm Side View . . . . .. ... ... .. 10
3.3 USB2Dynamixel [2] . . . . .. 10
3.4 Robotis Manipulator-H [3] . . . . ... ... ... .. .. 11
4.1 Folder tree for catkin workspace . . . . . . . . . ... ... 13
4.2  Co-ordinate Systems at each joint . . . . . . . .. ... ... ... ... .. 15
4.3 Joint Mode Limits . . . . . . . . . . 18
4.4 Navigation Stack f URDF . . . . . .. .. ... ... .. ... ... .... 19
4.5 Navigation Stack of Active Nodes and Topics. . . . . . . .. ... ... .. 21
4.6 Navigation Stack of NodesOnly . . . . . . . . . ... .. ... ... .... 22
51 URDF displayed in rviz . . . . . . . . .. ... ... 24
5.2  Start Position (grey) to Move Goal (orange) . . . . .. ... ... ... .. 24
5.3 Default Start Position Path Planning . . . . . . . ... ... ... ... .. 25
5.4 Default Start Position Path Planning with more frequent trail . . . . . . . 25
5.5 Random Start Position Path Planning . . . . . . ... ... ... ..... 26
5.6 Random Start Position Path Planning with more frequent trail . . . . . . . 26
5.7 Self-Collision Detection inrviz . . . . . .. ... ... ... ... .. .... 28
5.8 Robotic Arm Workspace when placed on flat surface . . .. ... ... .. 28
6.1 Example code for controller_manager.launch . . . ... ... ... ... .. 31
6.2 Example code for controllers.yaml . . . . .. ... ... L. 31
6.3 Example code for start_meta_controllerlaunch . . . . . .. . ... ... .. 32

xiil







List of Tables

4.1 Link Meshes . . . . . . . . . .. 17
4.2 Joint Origin Position Transforms . . . . . .. . ... . ... ... . .... 18
4.3 Joint Origin Rotation Transforms . . . . . . . . . ... ... ... ..... 18
4.4 URDF Joint Limits . . . . . . . . . . . . e 19
4.5 Link Pairs with Disabled Collision Checks . . . . . .. ... ... ... .. 20
5.1 Average Time Taken to Establish Planned Path . . . . ... ... ... .. 27

XV







Abbreviations

3D
DOF
ID
IGES
IK
JTAC
OMPL
PR
RAM
ROS
SDK
SRDF
tf
URDF
USB
XML

Three-Dimensional

Degrees of Freedom

Identifier

Initial Graphics Exchange Specification
Inverse Kinematics

Joint Trajectory Action Controller
Open Motion Planning Library
Personal Robot

Random-Access Memory

Robot Operating System

Software Development Kit
Semantic Robot Description Format
Transform

Unified Robot Description Format
Universal Serial Bus

Extensible Markup Language

Xvii







Chapter 1

Introduction

Path planning is the process of establishing a collision-free movement from the current
configuration of the robotic arm, to the final configuration of the robotic arm [4]. The final
configuration is generally determined by a goal end-effector position and the remaining
links positions determined through inverse kinematics or similar. There are two basic
types of robotic arm path planning; static and dynamic. Static path planning is based
on the full knowledge of the robots workspace, in which the ideal path is planned to
achieve the goal position without collisions [5,6]. Dynamic path planning however is
based off constantly evaluating the workspace and predicting hazards, due its environment
constantly changing [4]. These changes can be work related, such as sorting objects that
are brought into the workspace at random, or unpredictable obstacles such as humans.
As a result, the end-effector position and path planning process are essential in any
robotic arm within its workspace to ensure collision-free movement. The methodology of
controlling these robotic arms has changed over time, with sensors, human controls and
"repetitive configuration moves” all featuring over the years. In recent times, controlling
robotic arms through software such as ROS has been of academic interest for non-dynamic
and dynamic environments [7,8]. This is explored further in Chapter 2 with similar ROS
controlled projects described in Section 3.4.

1.1 Project Objectives

In this project, ROS will be used to implement a software simulation model of the AX-12A
Smart Robotic Arm from CrustCrawler. The simulation will be able to achieve collision-
free path planning from a start configuration to a goal configuration. The workspace
will be static such that every obstacle in the workspace will be known. The simulation
presented will function identically to many other robotic arms supported by ROS, but
for a much cheaper robotic arm in comparison. At present, there is limited research into
such a low-cost robotic arm completing this task. The project research can then be built
onto in future to implement software-to-hardware integration, end-effector control, image
processing to identify objects and demand the end-effector to reach the objects and sort
them, as well as increasing the complexity of the workspace into a dynamic workspace.

1




2 Chapter 1. Introduction

1.2 Project Goals

e [mplement a virtual machine which runs the Ubuntu 16.04 operating system com-
plete with ROS Kinetic and its relevant tools and packages outlined in Section 3.2.

e Transform a 3D drawing of the AX-12A Smart Robotic Arm from CrustCrawler
into a URDF file which includes details on all joints locations, axis and limits as
well as links mass. inertial values and origin.

e Create a Movelt! configuration for the robotic arm based of the SRDF and URDF
files which demonstrates the realism of the software demonstration through realistic
joint limits and similarity to the physical robotic arm.

e Demonstrate the Movelt! configuration’s ability to plan a path from its present
state to a goal state without failure or self-collision.

1.3 Project Validation

When examining the research into ROS control and collision-free path planning, the
most similar robotic arm with packages available in the ROS library is for the "Robotis
Manipulator-H”. This robotic arm has 6 DOF using the H-series Dynamixel Pro servo
motors and use RS-485 communication and USB interface. The cost however of these
robotic arms is $18,900 USD [3], compared to the cost of the AX-12A Smart Robotic
Arm from CrustCrawler, which is $700 USD [1]. The CrustCrawler robotic arm has 5
DOF using 7 AX-12A Dynamixel servo motors and has the RS-485 communication, USB
interface and feedback. These motors are both ROBOTIS servo motors with the same
communication type, however the AX-12A are considerably cheaper, costing $44.95 USD
each [3] compared to the more expensive H-series Dynamixel Pro costing $1,490 USD [3].
Therefore, it is the aim of this project to achieve the same path planning software control
possible on the ROBOTIS MANIPULATOR-H, on the AX-12A Smart Robotic Arm from
CrustCrawler instead. This would create a low-cost demonstration of collision-free path
planning and lead into the possibility to build the controllers needed to transfer this
software movement into the robotic arm itself using the Dynamixel SDK.




Chapter 2

Literature Review

2.1 Introduction

This chapter presents the research conducted prior to the undertaking of the project,
including related work and similar projects. Section 2.2 compares the design decision to
avoid obstructions against moving each obstruction between the robotic arm and the goal
object. Section 2.3 presents research into safety concerns and solutions associated with
robotic arm workspaces and shows how a controlled workspace can be a static workspace
or a dynamic workspace without unpredictable obstacles. Section 2.4 evaluates relevant
projects including implementing robotic arm manipulation, ROS control and path plan-
ning.

2.2 Collision-free vs. Moving Obstacles

There are many types of dynamic workspaces which a robotic arm can be designed to
navigate. In some cases, robotic arms are used to search for one or more specific colours
[9,10] or complex materials/bodies or differing shapes/sizes [11,12]. The robotic arm
identifies the desired object, either by colour, size, etc, then plans a collision-free path to
navigate the end-effector from it’s current position to the goal position. The identification
of colours and shapes is performed with the use of image processing, which also can assist
in mapping the workspace of the robotic arm. When an object is presented which is
blocking the robotic arm from reaching the desired object, a design decision must be made
either to path plan around the obstacle [4] or to move the obstacle [12]. Both designs
result in the same desired position, however the moving of multiple objects to reach
the desired object is time-consuming and presents more challenges than path planning
collision-free around obstacles, therefore making the collision-free path planning around
obstacles approach preferable.




4 Chapter 2. Literature Review

2.3 Workspace Safety

Robotic arms are often used in the industry due to their repeatability and reliability com-
pared to human labour, as well as their ability to work with hazardous conditions which
are not appropriate for humans [13]. When working with robotic arms in this way, the
workspace must be clearly defined and regulated to ensure safety for all aspects, includ-
ing the robotic arm, the products being handled by the arm and any human presence.
The four main categories of robotic incidents are; Impact or collision accidents, crush-
ing and trapping accidents, mechanical part accidents (a breakdown in mechanical parts)
and other accidents as a result of working with the robotic arm, such as environmental
hazards, tripping hazards and hazard caused by extensions of the robotics, like power
supplies or hydraulic lines [13]. Incidents and hazards can be avoided through safeguards
which are implemented for the robotic arms workspace. Relevant safeguards include risk
assessments and safeguard devices such as presence-sensing devices and fixed barriers to
prevent contact with moving parts or human presents within the workspace. Perimeter
fencing are designed to keep humans from entering the "danger zone”, while presence-
sensors detect human movement within the workspace and shut down movement to ensure
the safety of the human [13].

By implementing perimeter fencing into a workspace in which the environment is fully
known, static path planning can then be used as outside, unpredictable obstacles such as
humans can be eliminated from the workspace. Additionally, once a workspace changes
from static to dynamic by means of variable goal locations, such as when picking up
select items from a pile of ohjects, then the corresponding dynamic path planning can
be accomplished without dynamic obstacle avoidance of unpredictable obstacles such as
humans, but rather navigating around stationary objects to select the correct/desired
object.

2.4 Relevant Projects

2.4.1 Cheap Chess Robot

This project develops a robot capable of playing chess using ROS packages and image
processing. The robotic arm used is the same robotic arm used within this project, the
AX-12A Smart Robotic Arm from CrustCrawler [14]. This project had the benefit of us-
ing packages, namely "ua-ros-pkg”, which are not currently available, which assisted with
implementation from software-to-hardware, as well as displaying results and communicat-
ing with the Dynamixel motors. The result of the project was very positive, achieving the
goal of a functioning chess playing robotic arm with less restrictions on the game itself,
however the project did not use Movelt! which is part of the goal of this project.




2.4 Relevant Projects 5

2.4.2 Collision-Free Manipulation

Vision, manipulation and planning is researched for the benefit of sorting objects where all
objects must reach their goal locations. The solution is focused around combining ROS,
Movelt! and OMPL through the Cyton Gamma 300 which uses single MX-28 Dynamixel
servo motors at each joint of the 7 DOF robotic arm [15]. This project is supplied a
3D model where a URDF, Movelt! configuration and OMPL code is created, though this
robotic arm is simpler to create OMPL files for due to its single-actuated joints, compared
to the 2 dual-actuated joints in the AX-12A Smart Robotic Arm from CrustCrawler. The
results of this project are positive in that the project achieves similar aims to this project,
however the robotic arm used is at a much higher price point than the robotic arm used in
this project, solidifying the goal of a low-cost solution using the AX-12A Smart Robotic
Arm from CrustCrawler.

2.4.3 Planning for Tabletop Clutter

A low cost custom 5 DOF robotic arm is manipulated within a cluttered tabletop envi-
ronment. The approach of this project, as discussed in Section 2.2, is to clear the collision
area between the robotic arm and the desired object by moving obstacle objects aside.
The robotic arm consists of 5 Dynamixel servo motors (2 MX-64T, 2 AX-12A and a single
MX-106T) and costs $1788.2USD at time of writing [12]. The results of the project are
very positive, achieving manipulation of the robotic arm and manipulation of simple ge-
ometries due to the simple end-effector gripper. The project does however take a different
approach to this project, as discussed in Section 2.2 and is still not as low cost as the
AX-12A Smart Robotic Arm from CrustCrawler.

2.4.4 Object Sorting in Cluttered Environments

A pipeline is presented which is used for the perception and manipulation of the viewing
area to accurately sort objects by a specified property, such as size, colour or shape.
Two motion primitives are used to manipulated the scene and the results are shown
through ROS implementation onto the PR2 robot from Willow Garage [16]. The results
of this project are overly positive, demonstrating the benefits of robotic manipulation in
sorting clutter and motion planning. This project however does use the PR2 robot for
manipulation and implementation through ROS, which packages are currently available
and as described in Section 3.4.2, is considerably more expensive than the AX-12A Smart
Robotic Arm from CrustCrawler used in this project.




Chapter 2. Literature Review




Chapter 3

Background

3.1 Introduction

This chapter provides background information relating to the project, which is necessary
to understand the implementation described in Chapter 4 and is organised as follows.
Section 3.2 introduces the key software concepts and technologies used throughout the
project. Section 3.3 describes the key hardware and components featured in the scope of
the project. Section 3.4 lists robots related to this projects through their similarity and
higher costs.

3.2 Software

3.2.1 Robot Operating System (ROS)

ROS is a framework for writing software for robotic applications. These sets of tools and
libraries are open-source and encourage a collaborative approach to create robotic control
and manipulation. Ubuntu is a open-source computer operating system based on Linux
distribution and is fully supporting of ROS.

Key ROS Concepts

e The tf (transform) library manages coordinate transform data for robotic systems
used within ROS. The library supports the defining of both static and dynamic
transforms resulting in the tracking of robotic arm joints within any frame of refer-
ence [17].

e catkin Build System creates a catkin workspace with three folders. The original
source code is contained within the "sre/” folder, whilst the build space is within
"build/” and the development space is within "devel/”. Both the build/ and devel/
folders are created using the catkin make command and changes based on the user
edited code and installed packages within the sre/ folder.

7




8 Chapter 3. Background

e roslaunch is a tool used to launch multiple ROS nodes. The XML files defines which
nodes to launch based of the .launch extension [18]. roslaunch is smmmoned within
the command line inside the workspace "src/” folder as follows;
$ roslaunch <package name> <launch file name>.launch

Key ROS-Related Tools

e Movelt! is an open-source software for the motion planning, control, kinematics,
navigation and manipulation of robots [19].

e rviz is used for the 3D visualisation of URDF described robots and functions with
Movelt! for 3D simulation and motion planning.

e rqt_tools allows for graphical representations of ROS nodes, topics and messages
through navigation stacks.

e URDF (Unified Robot Description Format) is a format for describing a robot in
a machine-readable language. The .urdf file describes the physical properties of
the robotic arm, including details on all joints and links that form a robot. Joints
contain information such as locations, axis and limits. Links detail information such
as mass, inertial values, origin and visual appearance. This file is then used with
the tf library, rendering in 3D for visualisation, simulations and motion planning
using rviz and Movelt! [17].

e (GGazebo is a 3D real-time simulator which can display URDF described robots similar
to rviz. This tool can also be used to test the implementation of robotic controllers
before implementing to hardware [20].

3.2.2 RoboPlus and ”"Mixcell”

RoboPlus is a program from ROBOTIS which is used to manage the Dynamixel servo
motors using the USB2Dynamixel described in Section 3.3. The "Dynamixel Wizard” is
used to modify the 1D, baud rate, angle/motor limits and joint /wheel mode of Dynamixel
servos. RoboPlus is compatible with Windows, however is not so useful when using
Ubuntu, therefore "Mixcell” [21] is a beneficial open-source program which can be used
as substitute. " Mixcell” is used for the same purpose of ”"Dynamixel Wizard”, however
functions within Ubuntu.

3.2.3 SolidWorks-to-URDF Exporter

The SolidWorks-to-URDF exporter [22] is an open-source SolidWorks add-in which en-
ables a URDF file to be created using a pre-existing 3D drawing. A SolidWorks assembly
can be built into links using mesh shapes and joints to create an URDF file. Addition-
ally, since each SolidWorks part has mass, each links moment of inertia in all frames




3.3 Hardware 9

can be automatically calculated. This is extremely useful and saves the need for manual
calculations for all links in all frames.

3.3 Hardware

3.3.1 AX-12A Smart Robotic Arm by CrustCrawler

The 5 DOF, 7 actuator robotic arm used throughout this project is the " AX-12A Smart
Robotic Arm” from CrustCrawler. The material of this robotic arm is 6061 aluminium
with a black hard anodize finish. The actuators are AX-12A Dynamixel servo motors
with two DOF joints are dual motor controlled. The motors are connected in daisy chain
and provide feedback for position, velocity, current, voltage and temperature. The joint
configuration is shown in Figure 3.1 with the " gripper motor” controlling the end-effector
pinch motion through gears and dependant joints. The side view shown in Figure 3.2
originates from a 3D drawing of the robotic arm [1] which shows the dimensions of the
robotic arm in millimetres.

Wrist
Rotation

Gripper
Motor

Dual
Elbow
. Rotation
Dual
Shoulder
Rotation
Base
Rotation

Figure 3.1: Robotic Arm Joint Configuration [1]




10 Chapter 3. Background

All units in mm

(Notto scale)

LAT

Figure 3.2: AX-12A Smart Robotic Arm Side View

3.3.2 USB2Dynamixel

The USB2Dynamixel shown in Figure 3.3 connects the Dynamixel servo motors to a PC
for customisation through RoboPlus/” Mixcell”, as described in Section 3.2.2. The device
communicates via TTL communication (via the function selection switch) and uses the
3-pin port, as shown in Figure 3.3.

Status Display LED

Figure 3.3: USB2Dynamixel [2]




3.4 Related Robots Running ROS 11

3.4 Related Robots Running ROS

3.4.1 Robotis Manipulator-H

Robotis Manipulator-H is a 6 DOF robotic arm which features the H-series " Dynamixel
Pro” servo motors, costs $18,900 USD [3] and has open-source packages available for ROS
control and manipulation [23]. This includes a SDK for software-to-hardware control,
Movelt! path planning and end-effector control. The URDF file of the robotic arm is
shown in Figure 3.4.

6th axis

Figure 3.4: Robotis Manipulator-H [3]

3.4.2 Personal Robot 2 (PR2)

PR2 from Willow Garage is a robotics research and development platform with built soft-
ware designed for ROS application. This innovative device is priced at $280,000 (plus
taxes and shipping) [24] and is leading for tutorials and open-source code for ROS appli-
cations, such as Movelt! which is applied in this project [25].

3.4.3 Cyton Epsilon 300

The Cyton Epsilon 300 is a robotic arm from ROBAI which provides packages for ROS
control and manipulation. ROS control includes end-effector control and joint control.
The robotic arm has 7 DOF and advertises prices starting under $5000 [26].




12

Chapter 3. Background




Chapter 4

Implementation

4.1 Introduction

This chapter provides the key information regarding the implementation of the project
and is organised as follows. The remainder of Section 4.1 outlines the setup of the software,
installing of packages required for the project. Section 4.2 explains the process behind
manipulating the supplied 3D drawing into the framework to convert the drawing into a
URDF file. Section 4.3 describes the key elements in the created the URDF file, including
link meshes and inertia tensors. Section 4.4 details key details in the Movelt! configuration
created from the URDF file.

4.1.1 Software Setup

Ubuntu 16.04.3 operating system was implemented on a virtual machine (VMware Work-
station 12) and ROS Kinetic was installed. This version of ROS was chosen for it’s full
compatibility with Ubuntu 16.04.3, rather than the newer version Lunar.

Note: The decision to run the Ubuntu operating system on a virtual machine rather than
on the primary machine is due to the lack of a spare computer and the convenience of
running both report and project on one computer.

A workspace named " catkin_ws” was created within Ubuntu using the catkin build sys-
tem. The folder tree that was created is shown in Figure 4.1.

catkin_ws

I
v v '

build devel src

Figure 4.1: Folder tree for catkin workspace

13




14 Chapter 4. Implementation

Some packages suggested by tutorials were installed, including ” python-rosinstall” and
" python-catkin-tools”, before $ /catkin.ws/devel/setup.bash was executed to config-
ure the ROS environment.

4.2 3D Model

A 3D drawing (.iges file) of the AX-12A Smart Robotic Arm by CrustCrawler [1] was
used for this section of the project as the base work to form a URDF file in Section 4.3.
This was preferred over creating a URDF file using primitives and the dimensions of the
robotic arm as this was more presentable, accurate and already existed free of charge.

4.2,1 Materials

The first step of improving the 3D model was adding material to each part of the robotic
arm, which allows for an accurate calculation of the mass moment of inertia needed in the
URDF file in Section 4.3. The plastic gears attached to the last motor on the end-effector
of the robotic arm are plastic while the small dependant joints have small rubber tubes.
All of the metal frame is 6061 aluminium which only left the Dynamixel servo motors.
These motors clearly are not made from one solid material, so its mass and volume was
used to calculate an appropriate material with similar density. Using p = m/V where p =
density, m = mass (55g) and V' = volume (32 x 50 x 40mm) [27], we find p = 859.375
kg/m® and use a material with similar density within SolidWorks.

4.2.2 SolidWorks Parts

Simplifying the SolidWorks assembly was required to streamline the SolidWorks-to-URDF
process, as instead of highlighting all parts that combine to make one link. Rather, its
possible to combine all small parts to one large link before the process is undertaken. As
a result, 46 parts was reduced to 6 parts where each part is a link between joints defined
in the URDF file in Section 4.3. Additionally, the base part in the 3D model [1] is not
square but rather slightly askew. Therefore, this was adjusted to simplify the assembly
and the following URDF default pose.

4.2.3 Reference Geometry

This robotic arm has 5 DOF, each of which being a revolute joint featuring at least
one actuator. Each of these joints must be defined within the URDF file and therefore
their co-ordinate systems and axis’ must be referenced within SolidWorks. A plane was
drawn down the centre of the robotic arm, parallel to the viewing angle in Figure 4.2,
Each co-ordinate system was drawn at the point of actuation, with the z-axis pointing
perpendicular to the joint’s corresponding actuator. A fixed joint has also been defined
at the adjustable joint on the robotic arm, as this allows for adjusting in software to suit
the hardware setting, increasing flexibility and workability of the model. Additionally,




4.3 URDF File 15

reference axis were drawn along the same z-axis’ for the SolidWorks-to-URDF conversion.
The location for each joint and its co-ordinate system is shown in Figure 4.2.

ulder_origin

[ rbtate_origin

Figure 4.2: Co-ordinate Systems at each joint

4.3 URDF File

Creating the URDF file from the SolidWorks assembly is completed using the SolidWorks-
to-URDF add-in [22]. The co-ordinate systems and reference axis’ described in Section
4.2 are stated for each joint, while each link is given its corresponding SolidWorks part.

4.3.1 Link Meshes

Link meshes are the defined shape of each part which links two joints together. The robotic
arm URDF functions as a chain of parent-to-child links, which is shown correspondingly
from top-down in Table 4.1. The link names correlates to the two joints that correspond
to each one, for example, "link_shoulder2elbow” is the link between the joints named
"joint_shoulder” and ”joint.elbow”. The parent-to-child order of the robotic arms joints
is shown in Table 4.2 and 4.3.




16

Chapter 4. Implementation

Link Name

Link Mesh

Controlling Joint

base_link

no actuation

link_rotate2fixed

"joint rotate”

Type = revolute

link _fixed2shoulder

"joint _fixed”

Type = fixed

link_shoulder2elbow

7joint_shoulder”

Type = revolute




4.3 URDF File 17

"joint_elbow”

link_elbow2wrist
Type = revolute

"joint_wrist_rotate”

link_end_effector
Type = revolute

Table 4.1: Link Meshes

4.3.2 Link Properties

Each link is individual in its shape, size, mass and as a result has a corresponding mass
moment of inertia. This is calculated by SolidWorks technology, identifying the density,
mass, volume, surface area, centre of mass and then performing the calculations internally.
This information can be viewed using Mass Properties before using the SolidWorks-
to-URDF exporter. This exporter uses the same SolidWorks technology to calculate the
mass moment of inertia for each link, which is far too advanced to do without computer
assistance given the complexity of most links. The formula for mass moment of inertia
(inertia tensor) for each link is shown in Equation 4.1.

I= I, I, I, (4.1)




18

Chapter 4. Implementation

Joint Name

Position (x, y, z) m

joint_rotate

0,0, 0)

Jjoint fixed

0, 0, 0.049784)

joint_shoulder

joint_elhow

0.17221, 0, 0)

joint_wrist_rotate

(
(
(-0.017186, 0.077011, 0)
(
(

0.066193, -0.017501, 0)

Table 4.2: Joint Origin Position Transforms

4.3.3 Joint Transforms and Limits

The origin of each joint is the change from the previous joint, such that the origin of
"joint_elbow” is the change from the origin of ”joint_shoulder” to that location. These
origin position transforms are shown in Table 4.2 and their origin rotation transforms are
shown in Table 4.3.

Joint Name

Rotation (x, y, z) rad

joint_rotate

0, 0, 0)

joint_fixed

1.5708, 0, 0)

joint_shoulder

joint_elbow

0, 0, -0.7096)

(
(
(0, 0, 0.7096)
(
(

joint_wrist_rotate | (-1.5708, 0, 1.5708)

Table 4.3: Joint Origin Rotation Transforms

Excluding ”joint_fixed” which is a "fixed” joint, all joints named on the robotic arm
are "revolute” joints. These joints are controlled in hardware by AX-12A Dynamixel servo
motors and have limits whilst set in ”joint mode”. Joint mode results in a 300 degree
rotation radius, from 30 degrees to 330 degrees as shown in Figure 4.3.

150°
[ Goal Position = 512 (0x2001 ]

cow " ow
=)

e
300° 300-360°
[Goal Position = 1024 Invalid Angie  [Goal Position = 0
[0x3t1 ) [0x0001 1

Figure 4.3: Joint Mode Limits




4.4 Movelt! Configuration 19

Additionally to these motor limits, the URDF must have more specific limits as the
robotic arm should not collide with itself. While the Movelt! configuration in Section 4.4
does not allow for self-collision, the URDF also defines limits for each joint to avoid such
a situation. A lower and upper limit is defined for each joint and is based on the default
pose of the motor. These values are shown in Table 4.4.

Joint Name lower (rad) | upper (rad)
joint_rotate -2.618 2.618
joint_shoulder -3.3 1.3247
joint_elbow -2.7 1.23
joint_wrist_rotate -2.618 2.618

Table 4.4: URDF Joint Limits

4.3.4 Navigation Stack

Following the competition of the URDF file, it can be displayed using the following com-
mand:

$ roslaunch robot_arm display.launch

Whilst running this display, the navigation stack can be sourced using rqt_graph, which
outputs as Figure 4.4.

robot_state_publisher
Joint_state_publisher .@
- I
fjoint_state_publisher = floint_states Jrobot_state_publisher
™t _static

Figure 4.4: Navigation Stack of URDF

4.4 Movelt! Configuration

The Movelt! configuration file was created using the open-source Movelt! setup assistant
using the following command:

$ roslaunch moveit_setup.assistant setup._assistant.launch

By loading the URDF file, the setup assistance contains 8 steps to follow to form the
completed Movelt! configuration file and accompanying SRDF file. A full tutorial using
the PR2 robot described in Section 3.4.2 was used which described each step [25] and was
extrapolated onto the robot_arm URDF file and its Movelt! configuration.




20 Chapter 4. Implementation

4.4.1 Self-Collision Matrix

By default, a Movelt! configuration assumes that any link could come into collision
with any other link in the robotic arm, resulting in a self-collision. A tag called "dis-
able_collisions” can be used to eliminate checking some collisions between links when
they are known to be impossible to occur. Table 4.5 shows all link pairs which have
disabled collisions in the Movelt! configuration and the reason for their non-collision.
"Never” means that the link cannot collide with the other within its joint constraints,
whilst "adjacent” means that links are attached to each other directly and cannot collide
with each other. This information is stored as code in the SRDF file, which is used to
generate the Movelt! configuration.

Link 1 Name Link 2 Name Reason
base_link link_fixed2shoulder | Never
base_link link_rotate2fixed Adjacent
base_link link_shoulder2elbow | Never
link _elbow2wrist link_end_effector Adjacent
link_elbow2wrist link_fixed2shoulder | Never
link_elbow2wrist link_shoulder2elbow | Adjacent
link _end _effector link_fixed2shoulder | Never
link_end_effector link_shoulder2elbow | Never
link_fixed2shoulder | link_rotate2fixed Adjacent
link_fixed2shoulder | link_shoulder2elbow | Adjacent
link_rotate2fixed link_shoulder2elbow | Never

Table 4.5: Link Pairs with Disabled Collision Checks

4.4.2 Navigation Stack

Following the competition of the Movelt! configuration file, it can be displayed using the
following command:

$ roslaunch moveit_config demo.launch

Whilst running this display, the navigation stack can be sourced using rqt_graph, which
outputs as Figure 4.5 for all active nodes and topics, whilst Figure 4.6 outputs nodes only,
making for a simpler diagram.




21

4.4 Movelt! Configuration

mave_group

e Jmove_group/fake_controller_joint_states ﬁ

\\\\ Imove_group/display_planned_path _

e

Joint_state_publisher

.\J,
AT et ]
“ e : groupfaction |

b A

d Topics

Figure 4.5: Navigation Stack of Active Nodes an




Chapter 4. Implementation

Jays|iqnd- ams':a_f/

i

7

533235 00|

0
Sa9e3sJu|0(J8||00u0Y ey dnosD aAow/

s U0

Jays|iqnd a9

Figure 4.6: Navigation Stack of Nodes Only




Chapter 5

Results

5.1 Introduction

This chapter presents how the URDF and Movelt! configuration outlined in Chapter 4
were tested and the results that were obtained. Section 5.2 displays the results gathered
from the created URDF file. Section 5.3 provides the output results of the Movelt!
configuration file as well as the results from path planning and success of collision-free
movement. Section 5.4 shows the collision detection within the Movelt! configuration for
both self-collision and collision with known objects. Section 5.5 describes the detailed
workspace of the robotic arm.

5.2 URDF Display

The results from the creation of a URDF file which replicates the AX-12A Smart Robotic
Arm from CrustCrawler was successful. The major difference between the URDF file
and the hardware is the end-effector. This model has taken the end effector as a single
link, with no movement due to the joint complexity required in software to perform its
realistic movement. The result of the URDF is shown in rviz in Figure 5.1. Each joint is
represented by their axis, in which each z-axis is perpendicular to the actuator controlling
the joint.

5.3 Movelt! Path Planning

5.3.1 Path Planning in Movelt!

The process of path planning is successful for all "random valid” goal states of the robotic
arm with a goal tolerance set to "0”. The "Planning” tab within rviz allows the user
to update the goal state to "random valid” or "random” configuration and then select
"Plan” for the robotic arm’s path. The path planning process is consistently performed in
less than 0.2 seconds with an average of less than 0.1 seconds, as described in Section 5.3.4

23




24

Chapter 5. Results

Figure 5.1: URDF displayed in rviz

and the simulation can then display the planned path. The starting state is displayed in
grey and the goal state is displayed in orange as shown in Figure 5.2.

Figure 5.2: Start Position (grey) to Move Goal (orange)




5.3 Movelt! Path Planning 25

5.3.2 Default Pose to Random Goal Configuration

The starting state has been set to "default” whilst the goal state has been set to a
"random” configuration. Figure 5.3 and Figure 5.4 show the planned path through a
path trail, with Figure 5.4 showing the trail more frequently.

Figure 5.3: Default Start Position Path Planning

Figure 5.4: Default Start Position Path Planning with more frequent trail




26 Chapter 5. Results

5.3.3 Random Start to Random Goal Configuration

The starting state has been set to "random” whilst the goal state has also been set to
a "random” configuration. Figure 5.5 and Figure 5.6 show the planned path through a
path trail, with Figure 5.6 showing the trail more frequently.

Figure 5.5: Random Start Position Path Planning

Figure 5.6: Random Start Position Path Planning with more frequent trail




5.4 Collision Detection 27

5.3.4 Average Time Taken to Establish Planned Path

The time taken for the simulation to plan a collision-free path is a important result to the
project. This does depend on the amount of processing power the computer contains, with
this virtual machine running 8GB of RAM and 2 processing cores. A test was conducted
by planning a path for a goal state 10 times and taking the average. This was then
repeated 3 times for 3 different goal states and the results are shown in Table 5.1.

=

Goal State 1 Goal State 2 Goal State 3

Attempt # | Time to Plan (s) | Time to Plan (s) | Time to Plan (s)
1 0.082 0.149 0.058

2 0.044 0.067 0.083

3 0.037 0.056 0.091

4 0.049 0.073 0.074

5 0.124 0.075 0.063

6 0.054 0.035 0.08

7 0.085 0.1 0.074

8 0.044 0.064 0.108

9 0.029 0.056 0.046
10 0.057 0.037 0.051
Average 0.0605 0.0712 0.0728

Table 5.1: Average Time Taken to Establish Planned Path

5.4 Collision Detection

Path planning within a static workspace involves providing the software with all known
obstacles contained which could cause a collision. The two key types of obstacles that
can cause a collision is the self-collision of the robotic arm and a collision with items
within the workspace. The Movelt! configuration provides us with results for the first
type of collision, self-collision, as shown in Figure 5.7 where the "random” goal state was
a state which involved a self-collision, shown in red as a collision between "base_link” and




28 Chapter 5. Results

"link_end_effector”. As a result, the path will not be planned as the software recognises
that this is an "invalid” state and would cause a collision.

Figure 5.7: Self-Collision Detection in rviz

5.5 Defined Workspace

The workspace of the robotic arm is an important result to consider when performing
static path planning safely as discussed in Section 2.3. When placed on a flat surface such
as a table, the robotic arm has a set workspace in which it can function, as shown in Figure
5.8. It should be noted that the workspace is not a simple sphere about any single joint.
Due to the configuration of the robotic arm, the workspace spans a reach of 391.72mm
from the "shoulder” joint of the robotic arm, which rotates about the base rotating joint.
The joint is limited from 30-330 degrees, such that the remaining 60 degrees is smaller
in span. The current rotation of the base is at 180 degrees and the highest point of the
workspace is slightly off-centre due to the angle of the "fixed” joint.

o

Figure 5.8: Robotic Arm Workspace when placed on flat surface




Chapter 6

Discussion

6.1 Assessment of Project

All goals for the project as described in Section 1.2, were implemented and have supplied
the foundation for future work to further the research into a low-cost robotic arm used
for path planning within ROS. There are some shortcomings for the project which are
discussed in Section 6.2 and while this can be perceived as future work, it would be
beneficial to implement these improvements to the project in future. Additionally, the
implementation to hardware for this project would be greatly beneficial, as discussed in
Section 6.3. This project builds the foundation for future improvements in ROS control
for the low-cost robotic arm, with more rigid simulations, tests and ROS control possible
with the future of the project as discussed in Section 6.4.

6.2 Limitations of Project

6.2.1 4 DOF Simulation of a 5 DOF Robotic Arm

During this project, the end-effector link featuring the 7th Dynamixel servo motor con-
trolling the "pinch joint”, is considered as one link with no functioning joint. This is
due to the complexity of the end-effectors motion and the challenge of re-creating this
movement in software. The link mesh as shown in Table 4.1 named "link_end_effector”
consists of one Dynamixel servo motor on the underbelly of the link which is connected
to a parent gear and a child gear of equal size and teeth. When the motor moves, the
end effect joint moves forward and the two "fingers” diverge, or the end effector joint
retreats and the "fingers” separate. Implementing this motion in ROS is challenging and
for simplicity in the project, was neglected. This movement is similar to the movement
of a prismatic joint for the sake of simulation, however the movement in hardware and
the values of the motor that this corresponds to is a more challenging task to understand
and implement into the URDF, SRDF models and the Movelt! configuration.

29




30 Chapter 6. Discussion

6.2.2 Obstacles within Robotic Arm Workspace

While this project demonstrates the Movelt! configuration’s ability to plan a path from
its present state to a goal state without self-collision, it does not supply an example of
avoiding collision with another object/entity within the simulation. This would have
involved placing an object within the scene of the Movelt! confignration and within
the workspace of the robotic arm. Between the two states, an object would have been
placed which would have collision conditions such that the path planning would have been
demonstrated to avoid a collision with the object.

6.2.3 End-effector Control

Rather than a goal state for the robotic arm to path plan to, an end-effector co-ordinate
would have been preferable. This would use open-source ROS Movelt! IK packages which
run the inverse kinematics to allow the robotic arm to determine a viable configuration
to achieve the end-effector location within the workspace and without collision with self
or other objects within the workspace. The main issue with this is that the IK packages
supplied by Movelt! are for 6 DOF robotic arms and above and do not support lower
DOF robotic arms to my knowledge at present.

6.3 Implementation to Hardware

Implementing the simulation of static path planning of the robotic arm onto hardware
would be very beneficial to the project, as this would allow for a greater gather of results,
testing accuracy and goal tolerance when applied to hardware, rather than the goal tol-
erance of 0 and complete accuracy that the simulation provides. The implementation for
software-to-hardware integration within Movelt! and ROS for Dynamixel servo motors is
performed through a Joint Trajectory Action Controller (ITAC).

6.3.1 Joint Trajectory Action Controller

A JTAC takes a list of joint positions, velocities, accelerations and efforts for each joint
of the robotic arm over a period of time as an input. This can be used to implement the
simulation of the robotic arm in Movelt! onto the robotic arm. A desired goal config-
uration of the robotic arm is sent to Movelt! using a rviz GUI plugin, or through the
command-line interface. Movelt! generates the planned path in the form of a trajec-
tory_msgs/JointTrajectory message, before this is sent to the JTAC by connecting the
follow_joint_trajectory topic. The steps involved to achieving this JTAC is detailed
below, using open-source software referenced in code [20].




6.3 Implementation to Hardware 31

Connect to Dynamixel Motors

Create a .Jaunch file to manage the controller that connects the motors and publishes raw
feedback data at a specified rate. An example of this for the project is shown in Figure
6.1.

<launch>
<neds name="dynamixel manager” pkg="dynamixel sontrellara® type="scentroller manager.py” reguirsd="true® suzput=Tacreen®>
<rosparam>

namespace: controller manager

serial_ports:

robot_arm port:
1 "/dew/ceyUsBO®

nin_motor_id:

nax_moter id: 7
update_zate: 20
=/ rosparam>
<fnode>
</launch>

Figure 6.1: Example code for controller_manager.Jaunch

Create a Meta Controller

A meta controller is an action server that allows individual servo motors to be associated
with each joint and control this by an action client. A joint position controller should be
connected to each joint, an example for this project is shown in Figure 6.2. The AX-12A
Smart Robotic Arm from CrustCrawler features both single-actuated joints and dual-
actuated joints, which is represented in Figure 6.2 through the ”joint_position_controller”
and " joint_position_controller_dual_motor” respectively.

Jjoint _baselrotate_controller:
controller:
package: dynamixel controllers
module: joint_position_controller
type: JointPositionController
Jjoint_name: joint_baselrotate
joint_speed:
motor:
id:
init:
min:
max:

Jjoint_fixed2shoulder_controller:
controller:
package: dynamixel controllers
module: joint_position_controller dual motor
type: JointPositionControllerbual
joint name: joint_fixedZshoulder
Joint_speed:
motor master:
id:
init:
min:
max:
motor_slave:
id:

Figure 6.2: Example code for controllers.yaml




32 Chapter 6. Discussion

A configuration file for JTAC should also be created which specifies the minimum
velocity and constraints such as goal time. Finally, a .Jaunch is required to load the
controller parameters, for which an example for this project is shown in Figure 6.3.

<launch>
<!-- Start joint controllers -->
<rosparam file="$(find robot amm)/config/controllers.yaml® command="locad®/>
<node na.'r.e="cm‘.:1011e-L'_spawl‘.gr" pkg="dynamixel controllers" type="controller_ spawner.py"
args="--managersdxl manager
--port dxl_port
joint_baselrotate_controller
joint_fixedIshoulder controller
jeint_shoulderZelbow controller
joint_elbowZwrist_controller
"

output="screen"/>
<!-- Start joint trajectory controller --»
<rosparam file="$(find robot amm)/config/joint trajectory controller.yaml®™ command="load"/>
<node name="controller spawner meta"™ pkg="dynamixel controllers" type="controller spawner.py"
args="--manager=dxl_manager
--type=meta
robotic_arm_controller
joint_baselrotate_controller
joint_fixedZshoulder_centroller
joint_shoulderZelbow_controller
joint_elbowlwrist_controller

output="screen"/>
</launch>

Figure 6.3: Example code for start_meta_controller.launch

This example code shown in Figure 6.1, 6.2 and 6.3 are only samples of some written
code and therefore are not a solution to this specific project and as such should not
be taken as functional code. While this method should work correctly for Dynamixel
servo motors since it sources the Dynamixel SDK for dynamixel controllers and follows
similar steps to functioning open-source examples [20], it has not been implemented in
this project.

6.4 Future Work

This project begins to build the foundation for future works between the AX-12A Smart
Robotic Arm from CrustCrawler and ROS. Additionally, this project demonstrates the
use of static path planning using ROS and performing this task using a low-cost robotic
arm. This can be used as the foundation for any number of related goals and projects, as
described in this section.

Implementing the End-effector Motion

The end-effector in this project is taken as a single link with no actuation, as discussed in
Section 6.2.1. There is an opportunity for future work to implement the correct motion
for this robotic arm, giving the simulation 5 DOF as the robotic arm has, rather than the
4 DOF URDF presented in the project.




6.4 Future Work 33

End-effector Control

As discussed in Section 6.2.3, the project does not use IK to path plan to a goal end-
effector location. This would be extremely beneficial to the project and its research as
it would enable the model to explore channels such as object sorting and further explore
path planning as discussed in Section 2.4.

Implementation to Hardware

Discussed in Section 6.3, a JTAC could be build using Dynamixel SDK to implement the
Movelt! configuration software simulation onto the robotic arm. This would enable tests
such as the accuracy and goal tolerance of the hardware, as well as open multiple avenues
for demonstrations and applications.

Image Processing

There are many applications for using image processing in conjunction with a ROS con-
trolled robotic arm, such as the projects discussed in Section 2.4 including object sorting
based on multiple factors, such as size or colour. Furthermore, there are many open-
source packages available in ROS for such image processing and can be integrated with
the existing structures within this project.

Dynamic Path Planning

This project focuses on static path planning within a non-changing and known workspace
of the robotic arm. As mentioned in Section 2.2, robotic arms can be used to search for one
or more specific colours [9,10] or complex materials/bodies or differing shapes/sizes [11,12]
within a dynamic workspace. Using ROS to navigate the a dynamic workspace with
collision-free path planning would be very beneficial for future research, further ensuring
the safety of workers as discussed in Section 2.3 as well as advancing the model.




34

Chapter 6. Discussion




Chapter 7

Conclusions

Collision-free static path planning has been simulated using ROS to control a low-cost 4
DOF robotic arm. The benefit of the robotic arm used is the fractional cost compared to
robotic arms used in similar projects and in similar ROS control applications. The AX-
12A Smart Robotic Arm from CrustCrawler used has limited open-source ROS software
associated with it, in addition to no accessible simulations of the robotic arm within
ROS. The implementation of this simulation required a URDF file, SRDF and Movelt!
configuration of the robotic arm to be created, which together formed the AX-12A Smart
Robotic Arm from CrustCrawler in software, however lacked the " pinch” motion of the Hth
DOF. The simulation demonstrated the expected results of collision-free path planning
from any valid position to a demanded goal state with average path planning time of less
than 0.1 seconds and a goal tolerance of zero. The simulation identified configurations
that include self-collision and did not path plan to this collision, which demonstrated the
collision-free path planning within an empty workspace. Further simulations are required
to demonstrate the collision-free path planning about present obstacles within the static
workspace to further the research conducted. This research was significant for the use of
low-cost robotic arms within both research and industrial industries, with the capability
of accurately executing path planning to a goal state and operating without collision.







Appendix A

URDF file (robot_arm.urdf)

<robot
name="robot.arm” >
<link
name="base_link" >
<inertial>
<origin
xyz="0 00"
rpy="000" />
< Imass
value="0.14802" />
<inertia
xx="0.00031882"
ixy="2.4634E-10"
ixz="2.146TE-06"
iyy="0.00031355"
iyz="1.0027E-10"
000565427 />
< [inertial >
<visual>
<origin
xyz="0 00"
rpy="000" />
< geometry >
<mesh
filename="package: / /robot_arm/
meshes/base link.STL” /=
< /geometry >
< material
name="">
<eolor
rgba="0.89804 0.91765 0.92941 1”7 />
< /material >
< [visual>
<collision>
<origin
xyz="0 00"
rpy="000" />
< geometry >
<mesh
filename="package: / /robot_arm/
meshes/base link.STL” />
< [geometry >
< [eollision>
< /link>
<link
name="link_rotate2fixed” >
<inertial>
<origin

xyz="0 0.0588478918345656 0"

rpy="000" />

< mass

value="0.025446" />

<inertia

ixx="3.2059E-05"

i 6. T8GE-08"

-7.1623E-09"

1.6385E-05"

-1.9678E-08”

izz="4.1799E-05" />

< finertial>

<visual>

<origin

xyz="0 00"

rpy="000" />

< geometry >

<mesh

filename=" package: / /robot_arm/

meshes/link _rotate2fixed STL" />

< [geometry >

< material

name="">

<color

rgha="0.79216 0.81961 0.93333 1" />

< /material =

< [visual >

<collision >

<origin
"0 00"

rpy="000" />

<geometry >

<mesh

filename="package: / /robot_arm/

meshes/link rotate2fixed STL" />

< /geometry>

< [collision>

< flink>

< joint

name="joint_rotate”

type="revolute” >

<origin

xyz="000"

rpy="000" />

< parent

link="baselink" /=

<child

link="link_rotate2fixed” />

ixz=

1y

37

<axis
xyz="001" />
<limit
lower="

velocity="3.33" />

< [joint>

<link
name="link_fixed2shoulder” >
<inertial>

<origin
xyz="0.137339568094239 0 0"
rpy="000" />

<mass

value="0.1155" />

<inertia

2.271E-12"

4.5553E-05" />

< finertial>

<visual>

<origin

xyz="00 0"

rpy="000" />

< geomelry >

<mesh

filename=" package:/ /robot_arm/
meshes/link fixed2shoulder.STL" />
< [geometry>

<material

name="">

<color

rgha="0.70216 0.81961 0.93333 17 />
< /material >

< [visual>

< collision>

<origin

00 0”

<geometry>

<mesh

filename="package: / /robot.arm/
meshes/link fixed2shoulder.STL" />
< [geometry >




38

Chapter A. URDF file (robot_arm.urdf)

< collision>

< /link>

< joint

name="jointfixed"
type=""fixed" >

<origin

xyz="0 0 0.049784"
py="1.5708 0 0" />
<parent
link="link_rotate2fixed” />
<child
link="link_fixed2shoulder” />
<axis

xyz="00-1" />

< /joint>

<link
name="link_shoulder2elbow” >
<inertial>

<origin

xyz="0.13734 0 0"
rpy="000" />

<Imass

value="0.13341" />

DXxX="

ixz="1.1269E-11"
iyy="0.00047665"
iyz="-3.0658E-12"
izz="0.00028193" />

< /inertial >

<visual >

<origin

xyz="00 07

rpy="000" />

<geometry >

<mesh
filename="package://robot.arm/
meshes/link_shoulder2elbow STL" />
< [geometry>

<material

name="">

<color

rgba="0.79216 0.81961 0.93333 1" />
</ material>

</visual>

<collision >

<origin

xyz="0 00"

rpy="000" />

<geometry >

<mesh
filename="package://robot_arm/
meshes /link_shoulder2elbow STL" />
</geometry>

</ collision>

</link>

< joint

name="joint_shoulder”
type="revolute” >

<origin

xyz="-0.017186 0.077011 0"
rpy="0 0 0.7096" />

< parent
link="link_fixed2shoulder” />
<child

link="link-shoulder2elbow” />
<axis

xyz="00-1" />

<limit

veloeity="3.33" />

< fjoint>

<link
name="link_elbow2wrist” >
<inertial>

<origin

xyz="0.042421 0 0"
rpy="000" />

<mass

value="0.069218" />

<inertia

i G022E-05"

8. 149E-07"
ixz="3.0449E-12"
iyy="3.8T88E-05"
iyz=""7.T853E-13"
izz="2.499E-05" />

< /inertial >

<visual >

<origin

xyz="00 07

rpy="000" />

<geometry>

<mesh
filename="package://robot_arm/
meshes /link_elbow2wrist. STL” />
</ geometry>

<material

name="">

<color

rgba="0.79216 0.81961 0.93333 1" />
< /material >

< fvisual>

<collision>

<origin

xyz="0 0 0”

rpy="000" />

<geometry>

<mesh
filename="package://robot_arm/
meshes /link_elbow2wrist. STL” />
</ geometry>

< fcollision>

</link>

<joint

name="joint_elbow™
type="revolute” >

<origin

xyz="0.17221 0 0"

rpy="00 -0.7096" />

< parent
link="link_shoulder2elbow™ />
<child

link="link_elbow2wrist™ />
<axis

xyz="010-1" />

<limit

lower="-2.7"

upper="1.23"

effort="0"

velocity="3.33" />

< /joint>

<link

name="link_end_effector” >
<inertial>

<origin

xyz="-0.015137 -0.019755 -0.037903"
rpy="000" />

<mass

value="0.087747" />

<inertia

ixx="0.00014586"
ixy="-1.7T602E-05"
ixz="1.4942E-05"
iyy="0.00012169"
iya="1.9931E-05"
izz="8.1825E-05" />

< finertial>

<visual>

<origin

xyz="0 00"

rpy="000" />

<geometry>

<mesh

filename="package: / /robot_arm/
meshes /link_end_effector STL” />
</geometry>

<material

name=""

<color

rgba="0.79216 0.81961 0.93333 1" />
< /material>

< fvisnal>

<collision>

<origin

xyz="00 0"

py="000" />

<geometry >

<mesh
filename="package: / /robot_arm /
meshes /link_end_effector.STL” />
< /geometry >

< /collision>

</link>

<joint
name="joint_wrist_rotate”
type="revolute” >

<origin

xyz="0.066193 -0.017501 0"
rpy="-1.5708 0 1.5708" />

< parent

link="link_elbow2wrist™ />
<child

link="link_end_effector™ />
<axis

xyz="010-1" />

<limit

0"

velocity="3.33" />
</joint>
</rabot>




Bibliography

1]
2]

13]
4]

15]

[6]

[7]

8]

[9]

[10]

[11]

“Ax 12 a smart robotic arm.” [Online]. Available: http://www.crustcrawler.com/
products/AX12ASmartRoboticArm/

“Robotis.” [Online]. Available: http://support.robotis.com/en/product/anxdevice/
interface /usbh2dxl.manual. htm

“Robotis.” [Online]. Available: http://www.robotis.us/

Y. Li, B. Mac Namee, and J. Kelleher, “Expecting the unexpected: Measure the
uncertainties for mobile robot path planning in dynamic environment,” in Conference
Towards Autonomous Robotic Systems. Springer, 2013, pp. 363-374.

D. Roy, “Algorithmic path planning of static robots in three dimensions using con-
figuration space metrics,” Robotica, vol. 29, no. 2, p. 295315, 2011.

W. Parvez and S. Dhar, “Path planning of robot in static environment using ge-
netic algorithm (ga) technique,” International Journal of Advances in Engineering
& Technology, vol. 6, no. 3, p. 1205, 2013.

V. Tlach, I. Kuric, D. Kumi¢dkovd, and A. Rengevi¢, “Possibilities of a robotic end

of arm tooling control within the software platform ros,” Procedia engineering, vol.
192, pp. 875-880, 2017.

T.-Y. Li and J.-C. Latombe, “On-line manipulation planning for two robot arms in
a dynamic environment,” The International Journal of Robotics Research, vol. 16,
no. 2, pp. 144-167, 1997,

R. Szabo and 1. Lie, “Automated colored object sorting application for robotic arms,”
in Electronics and Telecommunications (ISETC), 2012 10th International Symposium
on. IEEE, 2012, pp. 95-98.

M. Nkomo and M. Collier, “A color-sorting scara robotic arm,” in Consumer Elec-
tronics, Communications and Networks (CECNet), 2012 2nd International Confer-
ence on. IEEE, 2012, pp. 763-768.

M. Gupta and G. S. Sukhatme, “Using manipulation primitives for brick sorting in
clutter,” in Robotics and Automation (ICRA), 2012 IEEE International Conference
on. IEEE, 2012, pp. 3883-3889.

39




40 BIBLIOGRAPHY

[12] A. Ozgiir and H. L. Akin, “Planning for tabletop clutter using affordable 5-dof ma-
nipulator.”

[13] D. Zhang, B. Wei, and M. Rosen, “Overview of an engineering teaching module
on robotics safety,” in Mechatronics and Robotics Engineering for Advanced and
Intelligent Manufacturing. Springer, 2017, pp. 29-43.

[14] B. Okal and O. Dunkley, “Design of a cheap chess robot: Planning and perception,”
2011.

[15] A. Fekete, “Robotic grasping and manipulation of objects,” 2015.

[16] M. Gupta, J. Miiller, and G. S. Sukhatme, “Using manipulation primitives for object
sorting in cluttered environments,” IEEE transactions on Automation Science and
Engineering, vol. 12, no. 2, pp. 608-614, 2015.

[17] “Core components.” [Online|. Available: http://www.ros.org/core-components/

[18] V. S. Lindrup, “Robotic maintenance and ros-appearance based slam and navigation
with a mobile robot prototype,” Master’s thesis, NTNU, 2016.

[19] “Moveit! motion planning framework.” [Online|. Available: http://moveit.ros.org/

[20] A. Gaddipati and A. Sadananda, “eysip-2017,” Sep 2017. [Online]. Available:
https://github.com/eYSIP-2017/

[21] C. C. Filho, “clebercoutof/mixcell,” Aug 2017. [Online]. Available: https:
/ /github.com/clebercoutof /mixcell

[22] “Wiki,” Jun 2017. [Online]. Available: http://wiki.ros.org/sw_urdf_exporter
[23] “Robotis git.” [Online]. Available: https://github.com/ROBOTIS-GIT
[24] “Order a pr2.” [Online]. Available: http://www.willowgarage.com/pages,/pr2/order

[25] 2017. [Online]. Available: http://docs.ros.org/kinetic/api/moveit_tutorials/html/
index.html

[26] “Cyton epsilon 300.” [Online]. Available: http://www.robai.com/robots/robot/
cyton-epsilon-300/

[27] “Dynamixel ax-12a robot actuator.” [Online]. Available: http://www.
trossenrobotics.com/dynamixel-ax-12-robot-actuator.aspx




	43710808_JacobBlanck_ENGG411_FinalReport
	by Jacob Blanck




