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ABSTRACT

Determining the power consumption and switching times of a building or house-
holds connected loads and appliances is crucial for energy analysis and optimiza-
tion which is increasingly becoming more relevant in today’s society due to the
implementation of renewable technologies and soaring energy prices. This project
looks to analyse current techniques for determining electrical load characteristics
from an aggregate electrical source such as a buildings electrical mains. In this
project a test and simulation setup is constructed. Using a non-intrusive power
metering device aggregate electrical power data is collected and analysed using
the techniques explored to determine individual load characteristics and to au-
tonomously determine when individual loads are switched on and off. This is
done so individual appliances power consumption can be estimated or appliance

switching times used for automation purposes.
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Chapter 1

Introduction

As renewable technologies such as solar, wind and energy storage solutions are introduced
into homes and buildings, coupled with increasing energy prices for base load power there
is also an increasing demand and value for determining the power consumption and usage
times of different electrical loads or appliances. This is valuable information for users
who wish to optimize their energy consumption for environmental or economic reasons.
Due to the inefficiency and complexity of attaching power metering equipment to mul-
tiple household appliances approaches have been examined to extract unique features of
individual loads from an aggregated source such as the households mains supply. This
reduces hardware to a single metering device capable of capturing the necessary electrical
signals, such a concept is known as Non-intrusive load monitoring (NILM) [2,5,10,11].

This thesis attempts to examine data sets collected of electrical power, current, volt-
age and power factor over specific periods to build a database of individual appliance’s
clectrical characteristics at switching events (when loads turn on and off) and also de-
termine from a simulated aggregate source (multiple loads connected in parallel) when
these loads turn on/off and approximate their consumption over a period by comparing
electrical characteristics generated with those formulated in the load database.

1.1 Non-Intrusive Load Monitoring

Non-intrusive load monitoring is a method for monitoring electrical loads using current
measuring sensors that do not need to be in series with the current flow but rather attached
outside the conductor providing both easy installation and safe use [3]. Non-intrusive load
monitoring also involves determining various features of a loads electrical characteristics
such as current draw for condition monitoring applications [5]. However it is also used
in many applications for determining which loads are switching in an aggregate electrical
signal source, such an application being applicable to this project.
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1.2 Project Overview

This section will describe a brief overview of the whole project, the approach taken and
structure of this thesis. The thesis builds on previous approaches to NILM to produce a
system that can function usefully for the particular application used here.

The project is predominately software based with the main deliverable being a software
application possessing the capabilities mentioned in the project goals below. Hardware is
used supplementary to this software in order to simulate data expected from the projects
application. The main project goals are itemised below;

e The ability to detect load switching events in aggregate electrical consumption data.

e The ability to successfully produce a load characterization (load signature) from
different electrical properties at these events.

e To store load signatures of individual loads in a database or array structure.

e To classify the aforementioned signatures formulated at events with those in the
database.

e To then present to the user individual load switching times and approximate power
consumption of the load over a period.

e The system should be able to use data collected from relatively inexpensive hardware
so as to be a feasible solution for households.

e For the system concept to be straight forward and non-convoluted.

For the scope of this project the idealised application for electricity supply data analy-
sis is for the end user in a household. This is the assumed usage case for which the system
will be designed due to hardware and software capabilities available as well as system
complexity, although similar solutions can be extended to industrial applications.

The approach taken to NILM in this project is analysis of steady-state active, reactive,
and apparent power signals between appliance state transitions [1]. This was found to be
most effective for the NILM using the capabilities of available power monitoring hardware.

1.2.1 Organization of Thesis

The structure of this thesis flows as would be expected of a project requiring testing and
experimentation, where each chapter follows the developments and milestones reached
throughout the research process.

Chapter two recounts the background research and current approaches to NILM. It de-
scribes the various types of load signature formulation methods describing some benefits,
drawbacks and challenges. By the end of the chapter an approach is selected to be used
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for this project and modifications that could be made.

Chapter three looks further at the approach taken and assesses the feasibility of each
technique.

Chapter four provides information about the hardware and software tools used in this
project. It provides background on the chosen technologies and describes their use in the
system.

Chapter five details the design of the system it refers to the approach taken and how
it is to be implemented. The chapter then goes on to describe how the system is imple-
mented and the steps that where taken.

Chapter six defines the testing methodology and defines the metrics used to test the
system. It goes on to describes each test, the results and discuss conclusions derived from
the results, pointing out limitations.

Finally Chapter seven describes the main conclusions from the system tests and of
the project. It sets up what future work should be done in regards to the project, its
limitations and how to improve the system.
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Chapter 2

Current Approaches to NILM and
Background Information

2.1 Load Types

Most NILM implementations differ by their success rates of identifying different types of
loads [12]. This difference between loads is evident when the electrical characteristics of
the load throughout their operational period is concerned.

Load types can be classified into four main categories;

e Typel

e Type Il
e Type III
e Type IV

Type 1 loads represent those with two basic operational modes, on and off [1]. These
loads are the most simple to identify as after state transitions they will draw quite nomi-
nal currents and power. Examples of these type of loads may include heaters, or lighting.

Type II loads on the other hand are loads which have multiple modes of operation [1].
Omne example of this is a washing machine which will operate with different power con-
sumption and current draw over its operational period [1]. First it pumps the water, heats
it and then spin the drum. Type II like type I have state changes and thus can be easier
to detect then type III, however as operational modes may be numerous and over large
periods of time it will prove difficult to formulate loads signatures that represent the load
as a whole [1].

Type III loads are those which are continuously varying over time such as the power
draw of a computer as CPU load increases [1]. These are surely the most difficult to
characterize as there is no clear basis for the steady state power draw of the appliance,
however some approaches provide solutions which prove useful.

5
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Finally, type IV loads are those which are constantly consuming power and rarely
change state. A good example of this is the alarm system or smoke detectors [1]. The
figure shown below demonstrates how each of these load types behave over time.

Continously-
varying appliances

- Multi-state
% Two-state appliances Appliances
o | (ON/OFF)
-
Time

Figure 2.1: Load power consumption over time. Operational modes of loads [1].

2.2 Transient Methods

Transient methods of load identification refer to the unique response in a loads current
draw as the load starts or through the use of load power profiles and their spectral enve-
lope [2]. The one distinct benefit of transient analysis is the lack of overlapping feature
sets for some loads as can be found in steady state approaches [1,5]. Limitations of this
approach that make it less suitable for this project application is the inherent need for
high sampling rates so as to detect and accurately represent the response [1,13].

For type I and type II loads it was found that the shape of a loads transient can be
used for unique characterization of the load. [1,2]. Similarly turn on transients also pro-
vide distinet features for load feature formulation for these load types. The latter includes
determining current or power spikes which occur during some loads turn on state [1,14].
Such responses are shown in figure 2 where it can clearly be seen the unique turn
on transient shape, peaks, and response time. Because it deals with responses at state
changes it is clear that it is a useful tool for determining type I and II loads [2, 15].

It is also possible for transient methods to determine continuously varying loads such
as variable speed drives (VSD’s) found in numerous industrial sites [5]. Approaches such
as [2: 5] use spectral envelopes to try to remove the continuously varying power signal
from the aggregate real power by subtracting the higher-order harmonic components that
contribute to its generation [5]. This approach is not covered in this project.

It should be noted also that transient methods are not ideal for detecting type IV loads
as the nature of these loads do not include frequent turn on events and thus transient
responses are not displayed [1].
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Figure 2.2: Load transients of a motor turn on, lamp turn on and motor reaching steady
state [2].

2.3 Steady-State Methods

Steady state methods are the predominate types used by majority of papers [1,5,10,12,
14,16]. The nature of steady state allows for lower sampling rates of aggregate power
consumption over certain periods. Steady state analysis usually requires periods to be
examined "after the fact” thus real time identification is not possible. Near real time
identification at resolutions of at least one second is possible through the use of techniques
such as current harmonics for load characterization found in [10].

2.3.1 Power State Changes

Approaches such as [5] deal with state changes in real P and reactive power (). Real power
(active power) is that which is able to generate meaningful work whereas reactive power
constitutes a component of the overall power that stores and released energy back to its
source through electrical or magnetic fields generated by the device. Apparent power on
the other hand is the overall current drawn 1gyrs multiplied by the overall voltage Viars
and the three are related through the relationship described in equation 1.

|S| = v/ P2+ Q2 (2.1)

Unlike transient study, steady state methods based on these variables take the magnitude
of P and @ before and after state change events to determine the power consumption of
a particular load [5]. This is seen to be representative of the load with confusion arising
when small loads are concerned [3].

The loads types that are most easily determined through state changes in P and @) are
type I loads as described by [1]. The conclusions made from [1,5] describe the approach
being suitable for high powered devices that do not overlap in the P — @ plane with such
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a distribution being shown in figure 3. It is clear from [3,5,17] and figure 3 that lower
powered devices present overlap and are hard to discern with simply these two variables.

500
400! dehumnidfier
gﬂl]ﬂ
§2I]I]‘ :
kS il Vacuum Cleaner
5 00 ashing machin '
& 0 Dish Wastipfiee machingon Water Heater
-100,
0 200 400 GOD BOD 1DOD |200 400 IGDO 1BOD 2000
Real Power (W)

Figure 2.3: Distribution of loads in the P — @ signature plane [3].

One important drawback to many of the approaches taken in terms of P — @ analysis
is accounting for fluctuations in voltage [3]. As described in [3] the voltage can fluctuate
over time by up to 10 percent and for linear devices this means that the power can also
fluctuate by 20 percent [3]. The method described in [3] is to use then the admittance
Y (¢) to account for these fluctnations in voltage given by equation two [3].

P(t)

)

(2.2)

The paper goes on to describe that it best to use the admittance in normalized power
Prorm shown in equation three [3] which will provide power data normalized around a
steady supplied voltage which in Australia is 240V [3].

Prorm = (%) P(t) (2:3)

This provides a robust solution to improve accuracy of steady state power changes for
load signature formulation as will be shown in chapter 3 where the voltage is indeed found
to fluctuate during different conditions.

2.3.2 Voltage and Current Waveform Analysis

Some loads namely nonlinear loads will often draw currents that are non-sinusoidal, that
is they draw currents with higher order harmonics that distort the shape of the current
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waveform such as that shown in figure 4 [1]. The changes in amplitude of these higher order
harmonics can be utilized as additional features as done in [10], however the drawback of
this of-course is the higher sampling rate needed to detect harmonic content.

Induction Cooker

- Water boiler

Current (Ampere)

'ls‘imc |ms|j

Figure 2.4: Current waveform of an induction cooker versus a water heater. Introduced
harmonic currents [1,4].

Initial NILM study done by MIT used P — () analysis for load identification and in [5]
has found as previously discussed more load signature features should be added in order
to better segregate individual loads [5]. In the case of [5] the third order harmonic com-
ponent derived from the short time Fourier transform of the current waveform is used.

This is represented best in figure 5 where it can be seen that even though AP and AQ
are almost overlapping for the two devices the third order harmonic current is what sep-
arates the two [5]. A similar approach of using changes in harmonic currents Al}u.monics
is used in [10] to create load signatures that are based on the first three odd order har-
monics, the fundamental, third and fifth in the current power spectrum [10].

This particular approach applied the FFT to the current waveform captured at one
second intervals, thus is described as being capable of near real time identification [10].
By collecting the amplitudes of the first three odd order harmonics 5y, I150, I250, the study
aims to increase the identification accuracy specifically for nonlinear low voltage loads [10].

This approach does need a high sample rate in the order of at least 500-1000Hz as dictated
by the Nyquist Theorem. Like others this study [10] uses a training mode in which 300
samples are taken and standard deviations are calculated in order to produce an accept-
able baseline for load signature formulation [10]. The standard deviation allows for the
load signature to incorporate flexibility for type I and I1T loads, those who’s operational
modes change or vary within five minutes of turning on [10].
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Figure 2.5: Alj5p. - AQ, Alsog. - AP, and AP — AQ Planes for two loads at turn
on and off events [5].

The paper goes on to describe that loads for which operational modes change at times
greater than five minutes should be monitored separately and added to the sample space
for SD determination [10].

Load signatures are created in the form of LS; = [[Is0], [l150] . [{250]] where each com-
ponent will have a number of samples representing the operation over it’s five minute
period [10]. After LS formulation for individual loads a similar approach is used for for-
mulation of LS's at turn on and off events however with only one sample needed in the
steady state waveform proceeding each event [10].

The conclusion of current harmonics from [10] is that while high identification rates
are observed for some load combinations other combinations produce poor results due to
the phase angles introduced by different appliances which can cause the overall amplitudes
at the higher harmonics to be influenced [10]. The study proposed voltage measurement
to be implemented so that the phase of each harmonic can be understood and utilized.




Chapter 3

State Changes in Power Space and
Power Transient Features

3.1 Introduction

Developing a successful system for load disaggregation requires the formulation of ap-
propriate load signatures. These signatures should contain independent features and be
unique between different loads as this will make classification significantly more accurate.

As described in the review in chapter two each method of load signature formula-
tion has its distinct benefits and drawbacks, namely the load type best identified by that
method and the complexity of implementation. It is determined that the most simple
approach is to formulate a load signature based upon the steady state changes in real and
reactive power at load switching events as achieved by [18].

The approach examined in this section draws on the benefits of both techniques while
still maintaining some significant challenges including:

e Signature space overlap for low voltage appliances. [1]
e Poor recognition of type III appliances. [1]

e Detection errors during simultaneous load switching, assumes steady-state between
events.

e Power fluctuations due to voltage drift. [12]

3.1.1 State Changes in Power

As reviewed the more features added to a load signature the better the discernment be-
tween different loads. For this reason we can focus on using state changes in a multitude
of different signals, real and reactive power are chosen however apparent power may also
be included in this space as for many non-resistive loads real, apparent and reactive power
all give distinct magnitudes. This is evident by the difference between power factors for

11
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individual loads. Granted, if a load is purely resistive its power factor approaches unity
and real and apparent power become very similar as the phase angle between the current
and voltage waveform decreases. This may present a challenge when discerning between
resistive loads that also have very similar power consumption, or phase corrected devices.

Since the application chosen for this thesis is specific to households many of the con-
cerns associated with NILM become lesser although still present. Households generally
have fewer appliances than large industrial buildings and such appliances are generally
quite unique. For example the typical loads one would be most concerned with in terms of
power consumption may be air conditioning, televisions, computers and monitors, stoves,
ovens, heaters, and washing machines. Each of these devices are quite unique in their
consumption magnitudes and load type. This gives reasonable confidence to using AP,
AQ and even AS as a basis for load identification.

The hardware benefits of using these three power features are obvious, high sample
rates are not needed and high identification results can be achieved for type I loads [1].
However since start-up transients of devices can last for significant amounts of time it
proves difficult to determine when steady-state conditions are met [5].

An example of load state changes in the AP — AQ plane is shown in figure 1. It is
evident that for loads that draw similar real and reactive power it is difficult to discern
between the two using only these two features.

100 - - - - -
B8O ... - .. .. *Incandescent Light Bulb Turn-On .
Bl . : : |® Computer Tum-On |
+ Incandescent Light Bulb Turn-Off
401 Computer Turn-Off 1
5 0 + 2
g :
|
L
80} ... 2
=100 .
-200 -150 -100 -50 o} 50 100 150 200
AP: W

Figure 3.1: Magnitudes of real and reactive power for a computer and incandescent
lights [5].

Additional Steady-State Features

Additional steady-state features can be applied to the load signature to increase iden-
tification accuracy. One such feature which is currently being examined is the average
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fundamental current draw or Alsy. This is the average 50Hz current being drawn by a
particular appliance and has proven thus far to be quite static for individual loads even
with different aggregate load combinations.

Current used to calculate power values is the overall average current [, whereas this
feature deals strictly with the first harmonic in the current spectrum. This is useful as
loads not only draw distinet magnitudes of current but some loads such as computers

=

have been observed to draw current at higher odd harmonics [5] and thus this feature
may help to differentiate between loads with similar power consumption.

This is seen to be true in analysis when ... is compared to I5y for a computer mon-
itor shown in figure 2 and 3 respectively where the fundamental current is significantly
less although still follows the same power profile.

016 1 ‘

Current (Amps)
=
2 B

T

=
2
T

0 s L L s s
o £ 100 150 200 260 300

Time (Seconds)

Figure 3.2: RMS Current draw of a monitor over a series of switching events.

3.1.2 Transient Features

Perhaps the most distinet difference between loads is the way in which they reach steady-
state conditions in both current draw and power consumption. The transient response
of a load particularly at turn on events is often quite unique. This is shown clearly in
figure 4 where the start up transient of first a computer monitor, then a soldering iron,
and finally a florescent lamp can be seen. Clearly the shape and response of the start-up
transient is unique for these loads even at a sampling rates of one second.

Particular characteristics of transients can be quantified from simple operations. For
example, once the beginning and end of steady state periods are identified as displayed
by the red and blue markers in figure 4 the settling time, ¢, peak value P, or I, and even
peak time ¢, can be determined. These values are observed to be unique as shown in table
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Figure 3.3: 50Hz Current draw of a monitor over a series of switching events.

1 below. Comparing these values to the individual load features shown in table 2 high-
lights that while many values are quite close to those determined by state changes in the
aggregate data, the AQ presents a problem of being sensitive to the load configuration.

Table 3.1: Transient Settling times and AP, AQ values from power data shown in fig 4.

Load Type t, (s) AP (W) AQ (VAR)

Monitor 10 17.7 19.2
Soldering Iron 6 45.3 17.5
Lamp 7 17 61.2

Table 3.2: Transient Settling times and AP, AQ for individual load configurations.

Load Type t, (s) AP (W) AQ (VAR)

Monitor 10 18.1 19.7
Soldering Iron 6 44.45 13.8
Lamp 7.7 17.03 75.3

Once again challenges arise specifically when dealing with these transients at low sam-
pling rates. Since the sampling time here is one second the time responses will generally
be at integer values and because transients can often be rapid the likely-hood of similar
settling times can be high. Furthermore it is expected as noise is introduced into the sys-
tem and the aggregate power consumption is significantly higher (kilowatt range) it may
prove difficult to determine such peaks depending on the dynamic range and resolution
of the metering equipment.
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Figure 3.4: Aggregate normalized power of a monitor, soldering iron, and fluorescent
lamp.

In some cases transients can have significant settling times [5]. This can present a prob-
lem when dealing with high event generation as a load signature formulation algorithm
would need to wait. This is of particular interest to the event detection function as it
must determine an interval between which it will decide is not steady state. Implemen-
tation that used Matlab functions to determine when steady state conditions occur and
the thresholds concerned where replaced with the designed event detector described in
greater detail in chapter 5.

For these reasons it is decided that for such low sample rates using the transient pat-
tern of a load is not feasible, with more sophisticated hardware this problem would be
eliminated as responses would be much smoother and well defined. In such a case if
the transient settling time is too high it will either be disregarded or a timeout imple-
mented otherwise other state change events would confuse the system. Thus with more
sophisticated hardware both steady-state and transient behavior could be implemented.




16

Chapter 3. State Changes in Power Space and Power Transient Features




Chapter 4

Technologies and Hardware Used

This project and its implementation requires the use of both hardware technologies and
software applications. This chapter will discuss the hardware chosen for data acquisition
and the programming paradigms used for the implementation of the system.

4.1 Hardware Requirements

Data acquisition hardware is required for this project in order to monitor current and
voltage signals from an aggregated source, in most cases this is the fuse box of a household.
Furthermore it must be able to record the measurements listed below:

e Real Power

Reactive Power

Apparent Power

Current

Voltage

Phase or power factor

While hardware that can achieve this can be purchased this was thought unnecessary as
hardware with these capabilities are expensive and the university currently has a range
of hardware that has all or at least some of this functionality.

Further more in order to run user interface software a piece of hardware should be chosen

that can act as a server for the system. For this task a computer or small embedded
device would be suitable. This lead to the selection of a Raspberry Pi.

17
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4.1.1 HIOKI PW3360-21 Power Monitor

Ultimately the device used was chosen as it is best suited for this application. This device
is capable of measuring all the aforementioned signals and even the ability to measure
harmonic components of current up to the 40th order. This is impressive but useless if
data acquisition is not possible, thankfully the device is able to store the signals onto an
SD memory card in CSV format.

Storing the data is possible over user specified intervals however there is a significant
drawback to this piece of equipment, the sampling interval setting between logging is
limited to a minimum of one second. This limits the diversity of the project, and addi-
tionally only the fundamental harmonic current is logged along with the average, peak
and maximum currents every second.

While the ability to monitor high sample rates of electrical signals is lost, accurate and

Figure 4.1: HIOKI PW3360-21 Power Quality Meter Used. [6]

relevant data is available which correlates to a large portion of the examined NILM ap-
proaches mentioned in chapter two. Furthermore having one second data over specified
periods allows for the easy importation of data-sets into the analysis software and a time
resolution of events to the nearest second.

The capabilities of the hardware available significantly shapes the direction of the
project however the capabilities mentioned do align with the application of the project.
Being mainly aimed at household usage and for a relatively small number of specific ap-
pliance that a user may want to monitor, keeping in mind that users will not necessarily
want to monitor every electrical device installed in the house but rather those which rep-
resent a significant portion of their electricity consumption.

Considering these factors it is determined that this hardware should provide the ca-
pabilities for the load signature approach chosen in chapter 3. Also it is important to
note that while even this hardware is expensive because of the features unused the data
available is representative of what we could expect from cheaper and lower grade power
monitoring hardware. Thus using this hardware to acquire one second sampled power
data simulates real time data acquired from a custom designed monitor or other commer-
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Figure 4.2: HIOKI 9660 100Amp Non-Intrusive Current Probe Used. [7]
cially available power monitors.
To summarize the benefits of using this hardware:
e Non-intrusive current monitoring with both 10Amp and 100Amp probes.

e Line voltage monitoring

Real, Reactive, and Active Power consumption data.

Average, Maximum, Peak, Minimum and fundamental current data.
e Voltage data
e Power factor, lagging, leading.

This monitor shown in figure 4.1 is battery operated thus can be left to log over extended
periods of time to capture household data sets. Furthermore by using a readily available
device no budget is needed to purchase hardware.

As stated above the hardware is non-intrusive such that it uses the current sensor shown
in figure 4.2 to measure the current flowing through the primary cable. A setup of the
system is shown later in chapter 5.2.

4.1.2 Raspberry Pi Server

The Raspberry Pi is what is known an embedded single board computer or SBC. It was
created by the Raspberry Pi foundation as a platform for learning programming and com-
puting however due to its small size, capable hardware and Linux based operating system
it has quickly become an industry standard for rapid prototyping of embedded system
applications.

The community surrounding this hardware is extensive and because of this it has become
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a standard for home automation and IoT (internet of things) applications among hobby-
ists and professionals alike.

For these reasons and the forward thinking idea of producing this project into a em-
bedded solution the Raspherry Pi Zero (smallest version) shown in figure 4.3 was chosen
to run the server applications described in chapter 4.2. Also this device was on hand thus
minimizing project costs further.

It can be powered off a 5V USB power supply and consumes less than 5 Watts of power
making it a very efficient computer for a energy monitoring project. It has TCP/IP net-
working capabilities using a USB to Ethernet adapter which will allow it to communicate
to the dissagregation software developed which will be operating on separate computer
to simulate a standalone power monitor.

n 050,
L

Figure 4.3: Raspberry Pi Zero used as a server for this project. [8]
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4.2 Software Techologies Used

Since the main goal of this project is the development of a software application capable of
analyzing electrical signals to determine appliance information. then software technologies
must be chosen to achieve this. For this project there are two main software paradigms
used, these being;

1. Matlab
Matlab is a well known mathematical modeling application capable of a diverse
range of mathematical tools and algorithms. It was as the main programming
environment used for this project due to its intuitive graphical user interface (GUI)
design environment called GUIDE and its ability to simply produce plots and figures
of all data processed.

2. Node-Red
Node-Red is a flow based programming paradigm based in Java Script which makes
developing web based interfaces and designing automation and IoT systems much
more simple and intuitive.

3. Mosquitto MQTT Broker
MQTT is a messaging protocol used to communicate between [oT devices through
a network. For this project MQTT is used to communicate between the Matlab
software running on a PC and the Node-Red server.

4.2.1 Node-Red Server

Node-Red is flow based programming environment built for IoT. It allows hardware de-
vices, API’s and other services to be wired together using modules described as nodes [19].
This is designed to run on a machine such as the Raspberry Pi described and is able to
be programmed using a web browser. It does this by setting up a web server on the host
device allowing the flow based programming environment to be accessed by any computer.

The Node-Red environment can run on any device whether it be a local computer, an
embedded device or even on the cloud. This means that this project can be extended to
a cloud service in the future.

Furthermore its event driven which means that it is both light weight and non-blocking
in nature, ie. flows are executed as events are detected [19].

Figure 4.4 shows the layout of the environment displaying the node browser on the
left hand side where nodes can be selected and added to a flow. The main tabs at the
top show the flows where nodes are connected together to perform desired functions. The
example in figure 4.4 shows an automation setup developed for web control of lights and
devices.

Each node outputs a message object which is then read by the a connected node and the
information in the message is acted on. For example using the inject node in figure 4.4
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sends a command to the SQLite Database node labeled “houseAutomation” to retrieve
information about the state of an element in the database.

Messages in Node-Red for the most part are structured with a topic and a payload.
The topic can be a command or address or any arbitrary identifier to which the payload
is concerned. The payload can be any data structure such as a string, date time or number
which the node connected requires as an input.

Function nodes are used to perform custom functions that may not be available in the
node palette. They are often used to input a message object and restructure the data to
for use with other nodes or just perform any custom designed function desired and are
written in JavaScript.

4.2.2 MQTT Communication Protocol

There are two nodes of particular interest for this project they are the MQTT input and
output nodes. MQT'T stands for Message Queue Telemetry Transport and is a lightweight
protocol that runs on top of the TCP/IP protocol used in every computer network [20].
1t has become somewhat of a standard in the IoT community due to the little bandwidth
needed to send/receive messages and the small code footprint needed [9]. This makes it
a perfect candidate for embedded devices and the small packets of data being distributed
in IoT applications, this project being no exception.

The protocol uses a publish and subscribe communication method, where there is no real
master or slave unless the application is designed so. Similarly to Node-Red topics and
payloads are used to send and receive messages.

Any clients that are subscribed to particular topic will receive any payload published
by any other client about that topic.
It is standard to use the “/” when structuring topics in this way they can be hierarchical
such that topics can have sub-topics. For example a client can be subscribed to the topic
“bedroom/light/” where it would receive any payload published to that topic, however
it can also subscribe to “bedroom/#” this allows the client to listen to all topics and
payloads under bedroom.

This kind of usability makes it ideal for connecting network based IoT devices such as
the intended NILM system this project aims to simulate though a Matlab application to
a server.

Further more this protocol can be password protected and SSL encrypted which is used
by most web services today for information privacy, for this project however security is
not of significant concern.

Thus to use the MQTT protocol in a system, devices must communicate through an
MQTT broker. This is a service running on a server which is responsible for distributing
published messages to those subscribed, it is responsible for handling all the connections
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Subscriber

Publisher message "+

Virtual channel

[+ ]y

Topic Subscriber

Figure 4.5: MQTT Protocol Structure. Messages are published to topics, those sub-
scribed receive message. [9]

and ensure data gets to where it needs to go similar in function to a network switch as
shown by figure 4.5 [9].

The broker used in this project is the Mosquitto MQTT broker which runs as a service
on the Raspberry Pi server. It can run on any server and there are many freely available
internet brokers that can used however for this project it is ideal to keep all subsystems
within the same network.

The implementation of these technologies for the system design is shown in more detail
in section 5.2.




Chapter 5

NILM System Design and

Implementation

5.1 System Design

This chapter covers the software design and implementation of the proposed NILM system.
The design goal for the system is the ability to determine given a sampled mains power
signal when particular appliances of interest are switched on and off.

To achieve this the overall system can be divided into five key sub-systems, these being;

1. Event Detection
For a given power signal imported into the system the events of interest should
be isolated so as to formulate the load signature based on the change in real and
reactive power at these times. Thus events represent turn on, turn off or change
of state of appliances connected to the circuit. This system uses a sliding average
change detection algorithm designed for this purpose.

2. Training
Training data is an essential part of appliance classification. The system requires
that load signatures of individual appliances of interest are stored in a database
structure to ensure the power features are representative of the load, undisturbed
by other electrical loads.

3. Load Signature Formulation
Once a switching event has been determined the load signature is formulated, this
represents the important electrical information about the event which can be used
to identify what appliance it is. These features being the real, reactive and apparent
power as well as sign of the phase angle (lagging or leading) at the event.

4. Load Signature Classification
The software takes the detected load signatures and compares it against the database
of trained appliances. Using a form of the nearest neighbour classification algorithm
the best match is chosen.
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5. Power and Appliance Monitoring
Once the event has been detected and the appliance corresponding to that event
identified the information about the appliance and activation time can be sent to
the server where users can perform functions with the given information including
calculating power consumption or used as rules for automation processes.

5.1.1 Event Detection

Using the hardware described in section 4.1 real power, reactive power, apparent power,
and RMS voltage signals are acquired and stored in a CSV file at a rate of one sample
per second. This rate is adequate for near real time identification as the algorithms used
are able to be computed before the next sample is acquired. The underlying assumption
here is that the system would be implemented on standalone hardware or acquired in real
time by a capable device.

As described in section 2.3.1 the event detection is based on changes in the active power
signal and thus was found that using equation 2.3 the normalized power can be deter-
mined which helps account for fluctuations in voltage.

Change detection is an essential part of the over system design and thus to determine
steady state changes in a signal the system must accurately determine the starting point
of an event ¢; and finishing point of an event ¢;. Simplistically an event could be described
as the point when the magnitude of power at time t;;, is greater than that at time ¢;.
This however does not lead to a good detection as it assumed steady state is reached at
precisely the next sample which is not the case.

Transient responses as described in section 3.1.2 show that appliances generally have
a settling time of t, > 1s, this shows that ¢; should be the time at which the power after
a change at ¢; reaches its maximum or minimum value corresponding to an off or on event.
Thus, if given initial change time ¢; as determined by P, — P, ,, > TH where TH is some
threshold, the final event time is determined by implementing a counter k& which waits for
Py, <= P, or the inverse for falling power changes. This outputs ¢y = ;14 when the
aforementioned condition is met.

This is implemented in the Matlab application with an imported data-set producing the
output shown in figure 5.1. Shown here is the position of t; and ¢y on the real, reactive
and apparent power signals. Any changes below TH are ignored to minimize superfluous
events which are not of interest. Thus based on the power consumption of loads of interest
TH can be tuned to include such events.

5.1.2 Load Signature Formulation

The load signature LS is a vector comprised of electrical features at an event which are to
resemble those of individual appliances during its various states of operation. Thus this




5.1 System Design 27

4000

Attive Powsr

Apparent Power
Reactve Power
3500 ®  EveniStar
® EveniEnd
Ag
0l [ ‘

2500 | ‘ “—"‘M\'T LL!‘_ _r_,__ FJ —r

i .
1500 — ks |

P (W), Q(VAR), & (VA)

1000 -

|
i ! [ L — ~ -

ol -— . L

= . = e > : » . - - .
- - -

-l
1000 - !

o 500 1000

Time {Seconds)

Figure 5.1: Output of the event detection algorithm. Red and blue markers indicate t;
and t; respectively.

vector describes the change in real, reactive and apparent power at event [t;,tf|.

The t; determined by the event detector is usually the peak value which is not repre-
sentative of the LS which should contain elements representing the steady state change
in electrical energy. To account for this transient and noise in the steady state signal a
averaging window is implemented [21,22].

The averaging window concept is described by equation 5.1 [21] where for any event
in our power signal the average of samples over window 1, wy, before {; is negated from
the average during window 2, ws, after t; + D, where D, is a transient delay time [21,22].
Window 1 and 2 represent how many samples are to be averaged and the output of
equation 5.1 being the change in power APt;, ty] [21,22].

1 £J+D5+wg 1 ti—1
APt =— ) P(i) = o > P (5.1)
i=ty+Ds+1 i=tj—wy

After AR, tg] is determined it is compared with TH to evaluate whether it is still a
suitable event as during testing it was noticed noise which triggers the event detector but

1500
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who’s duration is less than ws should not be included as it assumed not relevant. In this
way events such as noise can be rejected so computational time is not taken trying to
classify its signature.

Equation 5.1 is also applied to the reactive and apparent power signals at [t;, ] to deter-

mine LS features AQ and AS.

When calculating AQ) based on the algorithm previously described it is important to
account for the sign of the phase angle whether the appliance contributes to a lagging or
leading reactive power. This is shown in figure 5.2 where it can be seen that at particular
events the reactive power crosses zero, shifting between negative and positive reactive
power consumption.

The sign of the reactive power describes whether the power factor is lagging or leading at
a particular instant. Measures are taken to ensure correct measurements are made shown
in the case 5.2.

_(L)m.-g(ti): if (L)av_q(ta) >0 and (L)(Lt.'g(tf) <0
AQ = { Quug(ty), if Quuglti) <0 and Quuy(ty) >0 (5.2)
Qavg(ts) — Qaug(t:), otherwise

The above cases handle AQ which can change from negative to positive during an event
[£;,£¢] due to the change of phase angle sign when the appliance is switched.
Furthermore the sign of the phase angle ¢ or whether the appliance is lagging or leading
is added as a feature to the load signature to further distinguish between appliances. The
state of ¢ can be represented as a binary bit as shown in equation 5.3. This represents
the cases where the appliance has switched and the change in sign of the reactive power
is opposite to that of the change is sign of the power.

I, fAP>0and AQ <0
o=1<1, ifAP<0and AQ >0 (5.3)
0, otherwise

From the state information derived using eq 5.1, 5.2, 5.3 a LS can be formulated in the

form of LS = [t,, AP, AQ,AS, ¢]. Information of whether the appliance state is ON or
OFF is detailed in the sign of AP.

The implementation of this is shown in figure 5.2 where the event distribution is shown
in the P, @, S power space. In the figure marker shapes represent the appliance corre-
sponding to that event, the color in this case represents ¢ (phase angle sign). Events
situated in the positive power section are turn on events while those in the negative are
turn off events.

The separation between events has tremendous effects on the performance of the system
which is detailed in chapter 6. However this section has describes thus far the detection of
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events and the formulation of a signature vector to describe the electrical characteristics
at the event, the next stage of the system design is classification of the signature.

5.1.3 Load Signature Classification

Appliance identification in this system is achieved through a classification algorithm
known as k-nearest neighbour or KNN. After detecting events in the aggregated elec-
trical signal and producing a load signature vector LSy, ¢, the aim is to determine which
class of appliance this signature belongs to.

This presents itself as a typical classification problem similar to determining whether
an email is spam or not. It is a prediction which today is becoming increasing more
accurate with the aid of machine learning and Al

There are many algorithms that deal with classification such as the Naive-Bayes classi-
fier [23], and nearest-neighbour [24]. The latter was chosen for three distinct reasons,
those being it makes no assumptions about the data, it is relatively robust and it’s simple
to implement and modify.

Nearest neighbour appliance classification works by treating the load signatures as vec-
tors in a vector space. For any observation LSy, ;,), the euclidean distance between it and
every vector in training signature data-set X is calculated using equation 5.4 producing
set D corresponding to each element in set X.

D(LS, X;) = /(APLs — APx)? + (AQrs — AQx)? + (ASLs — ASx)? (5.4)

The distances in D are sorted in ascending order D, the appliance labels from the class
set L associated with the A nearest neighbors from the sorted distance set D, are selected
where X' > 1. From this minimized set the label which occurs most frequently is selected
as the most likely appliance thus a prediction is made [24].

The drawbacks of such an algorithm include the inability to exclude matches as for every
event including those which are not in our training set X the nearest neighbour is still
selected. Another drawback is the computational burden of the algorithm if X gets very
large the algorithm becomes increasing slower as it still must go through every element
of X [24].

Thus to reduce the computational burden, improve classification accuracy and allow irrel-
evant events to be excluded some modifications are implemented to the original algorithm.
Reducing set X further accomplishes this. By using the signature feature ¢ as a condition
such that only appliances that are in the same phase angle direction are analyzed. This
reduces erroneous predictions where devices have similar power magnitudes but may differ
in phase direction.

Removing irrelevant events is accomplished by introducing a threshold on distances D <
TH those outside this are labeled as “unclassified”. The classification results of this
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implementation are best shown in figure 5.3 where the marker shape for each event is
associated with the unique appliance classified by this algorithm.

Accuracy can be increased over time by adding more data to set X for appliance labels
in L based on known events that present as “unclassified” or are classified incorrectly.
KNN is a form of supervised machine learning and over time clusters would be formed
for each device around their mean power features and the value of K increased.

5.1.4 Classifier Training

Training the KNN classifier is accomplished by adding to training set X and labels L the
signature of individual appliances during each of their operational states. This means that
for events during an individual non-aggregated appliance power signal a load signature
should be formed and added to X with a corresponding label added to L describing the
operational mode.

For example looking to figure 5.4 the power signal of a dishwasher during its normal
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Figure 5.4: Power signal of a dishwasher showing operational modes.

operation can be seen. There are multiple states throughout the duration of its operation
such as heating water and pumping, however there is only one distinct turn on and turn
off event all other modes of operation differ slightly in their power but significantly in
reactive power. Nonetheless all events should be identified but have distinct labels for
each mode in order to distinguish at the server when the dishwasher was initially turned
on and finally turned off.




32 Chapter 5. NILM System Design and Implementation

Thus each event is labeled as appliance — i where ¢ is a number corresponding to each
mode. Such labeling can be interpreted at the server to perform whatever function nec-
essary.

Most appliances however are type I in that they turn on and off with distinct power
values at these instances. These are much easier to handle as in this case only one sig-
nature is needed to represent the operation of the appliance, however in most cases a
minimum of two states are added to ensure small variations during ON and OFF states
are accounted for. In such cases though only a single label is needed being simply the
name of the appliance.

Table 5.1 shows a example of class labels set L while table 5.2 displays and example of
training data set X. Each row in X corresponds with the same row in L and each column
in X corresponds with each feature in the LS.

Table 5.1: Class Labels, set L for classification.

Row Appliance Label

1 Microwave-1
2 Microwave-2
3 Drver-1
4 Dryer-2
b} Dryer-3
6 Vaccum
7 Vaccum

Table 5.2: Training set X corresponding to labels L.

Row AP (W) AQ (VAR) AS (VA) ¢
1 1510.18 -258.20 1470.90 1
2 -1399.38 238.25 -1360.05 1
3 2271.84 55.60 227252 0
4 -2117.58 20.40 -2094.08 1
5 -119.94 -37.78 -74.6 0
6 1156.00 241.00 1121.00 0
7 -1156.00 -241.00 -1121.00 0

The sign of the power has been included to indicate that for loads such as the mi-
crowave there is a significant difference in power when turning off similarly during dryer
mode 2, airing, the device is an off event as AP < 0 however the appliance is not fully
off which is indicated by dryer mode 3. It is also important to note that for devices such
as the dryer the modes are specific to the event, mode 3 is only an off event it cannot
occur as an on event. Thus to minimize error in classification further individual appliance
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states can be linked to the situation in which they occur effectively stopping a dyer mode
3 from having an ON state classification this however can be done by rules set on the
server for that appliance.

5.2 System Implementation
The NILM system is implemented based on the design described in the previous section

and using the hardware and software tools described in chapter 4. The flow chart in figure
5.5 shows the place of each subsystem in the larger system.
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Figure 5.5: Flow Diagram of System Implementation

Recording of power signals is carried out by the HIOKI meter at a rate of one sample
per second into a CSV file which includes the date and time of each sample, the average
real, reactive and apparent power, along with voltage and current measurements. This
file is downloaded to a pec through USB and is then imported into the Matlab analysis
application developed. This is then sent to the node-red server described in chapter 4.2.1
via the MQTT protocol from chapter 4.2.2 for display and notification.
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5.2.1 Matlab Analysis Application

The Matlab GUI shown in figure 5.6 is constructed using the GUIDE tool which allows
for the interface to be custom designed. The interface is set up for this system so that a
user can import the generated CSV from the power monitor by selecting ‘File — Open
CSV’, once imported the user has the option of selecting a variety of signals from the drop
down box and a variety of buttons each relating to the theory in the previously described
design.

This is done so each function can be individually operated and its output individually
analyzed. The rest of this chapter will detail how each of the designed subsystems are
implemented in this GUL Once a file is opened equation 2.3 is applied to the real, reactive
and apparent power to normalize them as suggested by [3].
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Finding Events

Events can be determined using the button ‘Find On/Off Events’ shown in figure 5.6.
This uses the event detection algorithm described in section 5.1.1 and produces the display
shown in figure 5.2. The output of this function are two arrays the first being [initOn]
and the second being [steadyOn| these contain the indexes of all events in the signal
corresponding to [t;, t;] from earlier.

The threshold T'H for the change detection is set by the value entered in the text box
‘Edge Threshold (W)’ seen in figure 5.6, this has a default value of 50 Watts, the effects
of tuning this threshold will be seen later.

Forming the Load Signature

Load signatures are formulated as a result of finding the events in the signal as the same
main loop is used. This uses the moving averaging window and algorithms first described
in section 5.1.2 where two loops calculate the average power magnitudes before initOn
for the length of w; which is entered in the text box ‘Initial Window Size’ as well as
the average after steadyOn + D; over the length of w, where Dy is the delay entered in
‘Transient Delay’ and w, is entered in ‘Final Window Size’ shown in figure 5.7.
Conditions are also implemented that ensure the window size is dynamically adjusted if

Edge Threshold <0 2 Transient Delay
W) i L | (Samples)
initial Window | 5 | 5 | Final Window
Size (Samples) ! 1 ! Size (Samples)

Figure 5.7: Variable Entry Dialogue Box Allowing Edge Detection Variable to Be Set.

an event is detected at initOn < w; or steadyOn > w- + D, ensuring the index remains
in the range of the signal if events are detected at the beginning or end.

When calculating AQ equation 5.2 is implemented to ensure of the correct phase sign ad-
justed measurement. The edge threshold value entered is checked against AP once more
to ensure that the event was is still valid after averaging. Once the phase sign ¢ is found us-
ing equation 5.3 the array ‘output’ is constructed containing variables [dP, dQ, dS, phase]
for all elements in [initOn, steadyOn).

By clicking on the button ‘Delta P-Q-S" the display in figure 5.3 is created showing all
events as points of the events in P-Q)-S energy space as well as displaying the event times
and LS for each event.

Creating Training Data Set

As described in section 5.1.4 classifier training is accomplished by adding the load signa-
ture for each appliance mode to set X and the corresponding label of the appliance to set
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L. This is implemented in the GUI by writing the observation array [dP,dQ, dS, phase|
to a text file ‘training.txt’ in a CSV format along with writing the appliance name to file
‘eroup.txt’ for each event at [1nitOn, steadyOn].

This training is achieved by monitoring the appliance for the duration of its operation,
importing the file and entering the appliance name into the text box shown in figure 5.8.
Once entered clicking ‘Add Training Data’ will perform the function described above and
populate the group and training files.

Enter Appliance Name Add Training Data

Figure 5.8: GUI Interface for adding appliance data to signature definition files.

K-Nearest Neighbour Classification

The KNN algorithm is used for device classification with modifications to try to reduce
the training set in order to increase the possibility for a correct match and decrease the
likelihood of similarly powered appliance being mismatched. This algorithm described in
section 5.1.3 is implemented in the GUI by using a KNN example originally written in
python script from [24] which has been ported to Matlab and tailored for this system.
The algorithm is implemented using three functions ‘eDist’, ‘get K NN’ and ‘match’. These
functions are shown in the code below [24].

1lculate the euclidean distance between vectors setl and set2 up to

5length

function dist = eDist (setl, set2, length)

distance = 0;

for i=1l:length

6 if iz3

7 distance = distance + (abs(setl(i))-abs(set2(i))) 2;
8 end

s end

10 dist = sqgrt(distance);

@ s W R e

finding di lag or lead and

12 %Find the K neighbors by
sorting, selecting the K nearest

13 function neighbors = getKNN(training, group,observation, k,error)

14 distances = [];

15 unspecified = {'unspecified'};

16 lngth = length{ocbservation)-1;

17 for i = 1l:length(group)

18 if observation(4) == training(i,d)

19 dist = eDist {observation,training(i,:),1lngth);

20 if dist<error
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21 distances = [distances; group{i), dist];

22 else

23 distances = [distances; unspecified, dist];
24 end

25 end

26 end

21 sorted = sortrows(distances,2);

28 neighbors = [];

20 for 1 = 1:k

30 neighbors = [neighbors; sorted(i,1)];

31 end

32

33 % Return the match that has the hig'.'lce.St vote or occurance.

3¢ function match = getMatch({neighbors)
35 [a,b,c] = unique {neighbors);

38 count = hist (¢,length(a));

a7 if length(count)>1

38 [M, I] = max(count);
30 match = a(Il);

40 else

a1 match = aj;

42 end

The function ‘match’ takes the output of ‘getkKNN’ and returns the most popular ap-
pliance label as the most likely appliance to match the load signature of the event [24].
The input of ‘getKNN' is the training data set, set of appliance labels group, the load
signature array observation, the value of K and the error threshold for excluding distant
matches.

Function ‘getKNN’ is responsible for getting the distance between each element in

training and the observation signature by calling ‘eDist’. The distance is only calculated
where observation element ¢ is equal to training element ¢ thus increasing the likelihood
of a correct match. These distances are then sorted forming array ‘neighbors’ containing
the sorted list of distances and their associated labels from the ‘group’ array, this is done
only for the K closest neighbors.
Selecting the ‘Match Devices’ option outputs the important information for analysis in-
cluding the appliance, time, state and power figures as shown in table 5.3. The event
information can also be displayed my clicking ‘Delta P-Q-5" which displays figure 5.3
showing the appliances and their event distribution.

Autonomous Operation

Autonomous operation takes the functions of the system and merges them together to
simulate real time identification. This is done by formulating each load signature as an
event is detected and transmitting the classification result at that instant to the server
via MQTT. It also transmits the power consumption every second so it can be logged in
the server for viewing by a user. This simulation is achieved by implementing a simple
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Table 5.3: Output of Match Devices Function.

Appliance  State Time-stamp AP (W) AQ (VAR) AS (VA) ¢
Toaster on  2017-10-31 12:15:52 1560 -15 1490 1
Microwave  on 2017-10-31 12:17:42 1444 -160 1453 1
Toaster off  2017-10-31 12:18:44  -1528 7.7 -1511 1
Microwave  off  2017-10-31 12:19:37  -1339 152 -1299 1

delay of one second between each sample analyzed by the program.

In order to communicate with the server an MQTT connection must first be initialized
with the MQTT broker running on the Raspberry Pi as described in chapter 4.2.2. This
is done using;

1 %Create and instance of MQTT connection to broker

2 myMQTT = mgtt ('tcp://192.168.1.21");

This describes the connection type “TCP’ and points the Matlab MQTT object to the ip
address of the MQTT broker creating a connection.

Since two different types of information are being sent to the server a way of differentiating
between the two is needed. This is done by creating unique topics as mentioned earlier,
these topics need to represent the appliance classification data and the one second power
data. The topics and payloads are formulated using the standard convention of;

e Appliance = appliance/‘applianceLabel’/‘dateTime’ /‘state’ /[AP, AQ, A S, ¢|
e Power = power/‘dateTime’/ Power (i)

This is implemented using these two lines of code which perform an MQTT publish
command to the broker.

1 publish (myMQTT,
'appliance'+'/'+4+string (KNN)+'/'+string (handles.Date(finish))+'/",
strjoin(string(observation), "', '});

2 publish (myMQTT,
'power'+'/'+string({handles.Date(i))+'/',string(Power(i}});

Finally this mode is used by clicking the button ‘Execute Dissag’ from the main display.




Chapter 6

Testing and Discussion

6.1 Hardware and Setup

In order to test the designed system some hardware needs to be constructed and the
HIOKI power monitor needs to be connected. The HIOKI power monitor requires the
measurement of the AC current and voltage waveform to calculate and record the desired
power measurements. This means that the active wire of a circuit must be isolated in
order to install the non-intrusive current probe. This is already available in a household
meter box where mains active wiring is available for each circuit within the household,
however it presents a problem when individual appliances are to be monitored. Since

Figure 6.1: Setup of experimental test bench.

this system requires the monitoring of individual appliances to formulate the training

39
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data sets an inline adapter needs to be made to allow for current measurement. For this
a custom power board was built which has an insulated but exposed mains active wire
for current measurements and multiple sockets allowing for a controlled testing scenario
where appliances can be individually switched on and off.

This designed hardware is shown in figure 6.1 where the board can be seen with the
active wire loop. The current clamp is placed around this with care being taken to ensure
it is installed in the correct direction, as it functions based on induced magnetic field
caused by the AC current and as such if reversed the sensor will read the current as
negative.

The voltage measurement is taken by connecting the standard outlet plug on the left of
figure 6.1 which connects to the neutral and active connections on the meter. Since this
setup is single phase only the one phase of meters three are used.

The equipment is also tested and tagged by a licensed electrician to ensure it can
be used safely. This electrician also installed the current probe on the necessary mains
circuits in the meter box when testing with household signals. The basic setup of this
arrangement is shown by the diagram in figure 6.2.

Current Sensor Loads
Probe

Active Line

Neutral Line

Power Source

Loads in Parallel,
Power board or house power
circuit

Power Meter

Figure 6.2: Diagram of current and voltage connection for measurement of multiple
loads.
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6.2 System Testing

This section is dedicated to testing the system in a number of different configurations and
during each the results discussed. Since appliances can differ in load type, that is they can
be type L, 11, or type L1l then each type of load should be included in the test combinations.
Since the goal of the project is to determine whether individual appliances can be identified
from a single source then the main performance measure is the identification rate. This
means that for each test scenario and each combination of load type the performance is
gauged by the percentage of successful identifications to the actual number of activation’s
for an appliance over a time period, or put more simply in equation 6.1 and 6.2.

Identified Appliance Duration
Actual Appliance Duration

= Match % (6.1)

# Of Successful Identifications
Total # Of Events

= Success Rate % (6.2)

6.2.1 Testing Methodology

A set of test procedures must be setup to in order to collect data that is meaningful
for analysis. There are a few definitions which should be established in relation to data
collection, they include;

e The period for which data will be logged.

e The types of loads that will be monitored.

e The combinations of loads that will be monitored.

e The sequence of events of load switching.

e How long each load should stay on in aggregate configurations.

e How many times the load should be switched and for how long in standalone load
configurations.

There are two main sets of data that are collected for testing, these are standalone and
aggregate. Standalone data is collected once and this refers to the data collected for a
single load during its operation. This is done for all appliances concerned is achieved by
connecting the appliance to the apparatus from figure 6.1. A recording period is then
set on the power monitor for a period longer than that of the normal operation of the
appliance. For some appliances this period is only a few minutes such as in the case of
the kettle however can stretch to two hours for appliances such as the dishwasher which
has a long wash cycle in normal operation.

This standalone data for each appliance is imported into the GUI and by typing the
appliance name and clicking ‘Add Training Data’ the state change information for each
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event during its operation is added to the training file as previously discussed.

At this stage the ‘Edge Threshold’, and window sizes can be tuned to produce an accu-
rate representation of the appliance. It was found that using an edge threshold of 50W
gave good event detection for high powered loads. For lower powered loads this can be
decreased. If erroneous events are generated which can be the case in variable load types
then these signatures can be removed from the training file. In this case nine signatures
are captured and stored into the training file, these are shown in table 6.1. If loads are
switched on and off multiple times in this configuration then the average of each similar
event is to be used.

Table 6.1: Appliance Signatures from individual monitoring.

Appliance AP (W) AQ (VAR) AS(VA) ¢
Kettle 2338.42 -20.20 2338.50 1
Kettle -2322.01 20.01 -2322.10 1
Dryer-1 2271.84 55.60 2272.51 0
Dryer-2 -2117.58 20.40 -2094.07 1
Dryer-3 -119.94 -37.78 -74.6 0
Aircon 788.33 998.06 1271.79 0
Aircon -861.03 -851.94 -1210.09992 0

Microwave-1 1510.18 -258.20 1470.90 1
Microwave-2 -1399.37 238.25 -1360.04 1
Fridge-Garage 200.12 187.55 274.27 0
Fridge-Garage -192.01 -186.18 -267.43 0
Fridge-Garage 270.70 190.88 331.19 0
Fridge-Kitchen-1 74.78 -63.69 95.83 1
Fridge-Kitchen-2 ~ -49.44 51.20 -70.01 1
Fridge-Kitchen-3  77.85 -57.01 88.57 1
Fridge-Kitchen-4  -62.31 48.59 -76.15 1
TV 123.94 -41.78 130.93 1

TV -128.25 43.05 -135.33 1
Vaccum 1156 241 1121 0
Vaccum -1156 -241 -1121 0
Toaster 1583.02 -19.69 1507.79 1
Toaster -1583.02 19.69 -1507.79 1

The standalone signal for a fridge is shown in figure 6.3 where it can be seen there are
two clear states on and off. It is difficult to capture the full duration of the event because
of the extended periods of time and intermittent nature of the fridge compressor turning
on. Compare this with figure 6.4 which shows the variable signal of a TV during a four
minute period, although the signal varies it has clear on and off states during the small
time windows of when it turns on and off. The difficulty here is ignoring false events
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Figure 6.3: Power signal of a TV during 4 minutes of operation.

triggered during its operation.




44 Chapter 6. Testing and Discussion

1200 1
| Active Power
1000 | — Apparent Power
Reactive Power
| #  Event Start
< 800f *  Event End
= - .
w
T
<
2
a
= *
g -y 8
|
o ¥ *
or * -

200! i L i L s L s
a 500 1000 1500 2000 2500 3000 3500 4000

Time (Seconds)

Figure 6.4: Power signal of a typical fridge during its cooling cycle.

Aggregate configuration refers to the data sets collected with multiple loads attached,
creating a mixed signal with events occurring while others are in operation. This is typical
of normal household activity, therefore this data is collected from a typical household and
simulated on the test setup as a basic test. In this state different loads can be connected
and switched in different configurations so as to determine anomaly’s or artifacts that
occur which can be expected for some loads and some combinations.

In aggregate data tests these loads where switched on and off in sequence forming unique
combinations also with the use of houschold data there is always a noise floor or back-
ground signal which are loads that are always on and the test has no control over. This
makes it possible to display real world performance of the system.

Furthermore in some household data there are events which are not known, that is loads
switched on elsewhere in the house which are not part of the test and can be ignored.

6.2.2 Test Configuration 1

In this test scenario data is collected of a household power circuit for a short period of
time in which a set of appliances are turned on and off. This appliance set is combined of
a toaster, microwave, kettle, dryer, vacuum cleaner and fridge. Some of these appliance
such as the toaster, and kettle are purely resistive while the others are combinations of
resistive and inductive such as the dryer and vacuum.

The imported signal is the same as shown back in figure 5.1 with the events defined
by the red and blue markers. This is done with the edge threshold set to 60W to remove
small events which are not of interest.
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The distribution of signatures produced at each event is shown in figure 6.5 where the

Table 6.2: Output of Match Devices Function.

Appliance Time On (s) Time Off (s) Identified On (s) Identified Off (s) %
Toaster 101 274 101 272 98.8%
Microwave 208 328 207 326 99.2%
Kettle 406 557 408 555 97.4%
Dryer On-Airing 650 974 650 970 98.8%
Dryer Airing-Off 974 1192 970 1191 98.6%
Vacuum 816 901 816 899 97.6%
Fridge 1076 1404 1081 1398 96.6%

separation between them gives and idea of the result we can expect. To characterize the
performance the time between on and off or the run-time is used. This is the time in
seconds in the signal the event is detected and the label that they system classified is
shown. Time on and Time ofl represent the actual times they were activated by a human.
Classifying the events yields the results shown in table 6.2.

In terms of identification for this test 100% accuracy is achieved as all appliance events
were correctly identified. Table 6.2 shows that the identification times identified by the
system are very close to the actual operation times in-fact only varying by at most 11
seconds. This successful identification is due to the fact that all these appliance are sub-
stantially different in signatures. Some are very close in terms of power consumption
however differ in their reactive power consumption and may be opposing in their lag-lead
configuration ¢.

Discrepancies in start and finish times can be accounted for by errors in event detection
code with regards to the start time where, further more since the off state event detection
uses the same algorithm as the on state detection the initial on time and off time are
opposite to that of the prior. This means the time off is taken at the top of the falling
edge and not the bottom of it.

6.2.3 Test Configuration 2

Unlike the first test this configuration consists of more appliances with some switched
multiple times during the test period. For this reason the frequency of successful identifi-
cations is tested. This test includes the appliances listed in table 6.3 which is ordered by
the sequence of events. The most far right column in this instance shows the identified
times where ‘-’ represents a miss-identification.
This test uses the household mains power circuit as its source signal. Since the house is
three phase each phase services a separate circuit of the house. The power signal and
event times are shown in figure 6.6, the signal shows clear power state changes at events.
As can be seen from table 6.3 the second vacuum on event is miss-identified as ‘microwave-
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2" this is because as shown in figure 6.6 and in power signal fig 6.7 the event is displayed
by a red marker indicating that it has ¢ = 1 where the load signature of the vacuum
has ¢ = 0. This anomaly cannot be accounted for in code and is presumed to be caused
by the electrical circuit configuration it is in with other appliances. The hair dryer off
miss-identification can be linked to the fact that it’s off power signature is almost identical
to that of the dryer-airing signature, thus the closest match in the moment is selected.
This pushes the idea that more signature features are needed to better separate appli-
ances however some alternative measures can be put in place. For example knowing that
‘dryer-2’ can only occur after ‘dryer-1" would have prevented this miss-identification and
chosen the next closest candidate.

For this test the results show an identification rate of 88.24% where good performance is
achieved for most events which are spaced far enough apart in the P-Q) plane.
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Figure 6.7: Test Configuration 2 appliance distribution.
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Table 6.3: Event List of test configuration 2.

Appliance State Event Time Identified Time

Fridge off 1:56:37 1:56:37
Vacuum On 1:57:56 1:57:56
Kettle On 1:59:02 1:59:02
Vacuum Off 2:01:36 2:01:36
Microwave On 2:03:24 2:03:24
Vacuum On 2:04:06 -
Microwave Off 2:05:18 2:05:18
Hair Dryer On 2:06:05 2:06:05
Vacuum Off 2:07:01 2:07:01
Aircon On 2:08:12 2:08:12
Hair Dryer Off 2:08:36 -
Kettle On 2:09:21 2:09:21
Kettle Off 2:09:57 2:09:57
Dryer On 2:10:47 2:10:47
Aircon Off 2:11:55 2:11:55
Dryer - Airing  Off 2:13:15 2:13:15
Dryer Off 2:14:10 2:14:10

6.2.4 Test Configuration 3

Another household phase is tested for configuration three, this phase connects to one of
the air-conditioner phases and the stove cook-top. The cook-top has multiple options for
cooking food each containing a different sized heating element but each heat setting is
thermostatically controlled. This mean the actual power magnitude does not change as
the heat setting is increased but rather the duration of the element’s on state. In such
a case training measurement is needed for only one setting per element, in this test two
element’s are used along with the air-conditioner.

Training the load signature of each of the stove’s element sizes in done by the same
method used previously, it’s power consumption is monitored while each are turned on
and off. The system then stores the individual events as separate entries as shown in table
6.4. The air-conditioner is also monitored separately again and added to the load signa-
ture database in case of a difference in power on this phase. The table shows how multiple
entries are listed for each appliance signature this done to create clusters of points which
can increase the likeliness of a correct match by the classifier.

The test protocol involves turning on and off the hotplates, then turning the air-conditioner
on and using the hotplates while the air-conditioner is on. The signal is is shown in figure
6.8 while the event signature distribution is shown in figure 6.9. For this test the iden-
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tification rate is tested, that is number of correctly identified events divided by the total
number of tested events. As can be deduced from the classified output shown in table
6.5, identification rate is 100% in this instance. Take into account this uses the same
signature database populated with other signatures therefore this performance figure can
be accounted for by the significant separation in the P-Q plane of these signatures.
Event threshold setting was kept the same for this test however averaging window sizes
wy and wy were set to one sample whereas in previous tests this was kept at a standard
five samples. With the larger window sizes some classifications where incorrect due to
hotplate duration being less than the window length. Thus adjusting window sizes to the
default five results in an identification rate of 77.27%, this is because as described the
window size is larger than the event duration and as such the average changes in power
are lower resulting in classification being confused between the larger hotplate and the
smaller one. This output is shown in table 6.5.

No further tests of this phase where tested due to the limited number of appliances on it
and so with that in mind if a three phase meter was used the optimum window size of
this phase could be used in conjunction with the optimum window sizes for the other two
phases. This way optimal results can be had for each of the phases and their appliances.

Table 6.4: Individual Signature’s for stove and air-conditioner.

Appliance AP (W) AQ (VAR) AS (VA)
Aircon 1118.90 -202.69 1136.87
Aircon -1212.47 350.83 -1262.09

Hotplates-1 ~ 935.14 -1660.32 1905.70

Hotplates-1 ~ 931.82 -1651.71 1896.58

Hotplates-1  -929.82 1649.33 -1893.27

Hotplates-2  628.34 -1128.50 1291.49

Hotplates-2  -623.11 1120.03 -1281.99

Hotplates-2  632.02 -1132.132 1296.54

Hotplates-2  -626.30 1121.97 -1285.03
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Figure 6.8: Test Configuration three, kitchen stove and air-conditioner phase.
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Table 6.5: Event List of test configuration 2. Averaging window size set to one and five.

Appliance

State Event Time

Appliance w; 5 = 1

Appliance w2 = 5

Hotplate-1 ~ On 1:06:00 Hotplate-1 Fridge-Kitchen-1
Hotplate-1 — Off 1:06:05 Hotplate-1 Hotplate-2
Hotplate-1  On 1:06:19 Hotplate-1 Hotplate-1
Hotplate-1 — Off 1:06:35 Hotplate-1 Hotplate-1
Hotplate-1 ~ On 1:07:16 Hotplate-1 Hotplate-2
Hotplate-1 ~ Off 1:07:23 Hotplate-1 Hotplate-1
Aircon On 1:07:39 Aircon Aircon
Hotplate-1  On 1:08:03 Hotplate-1 Hotplate-1
Hotplate-1 ~ Off 1:08:11 Hotplate-1 Hotplate-1
Hotplate-1  On 1:08:51 Hotplate-1 Hotplate-2
Hotplate-1 — Off 1:08:58 Hotplate-1 Hotplate-1
Hotplate-2 ~ On 1:09:16 Hotplate-2 Fridge-Kitchen-1
Hotplate-2  Off 1:09:22 Hotplate-2 Hotplate-2
Hotplate-2  On 1:09:41 Hotplate-2 Hotplate-2
Hotplate-2  Off 1:09:57 Hotplate-2 Hotplate-2
Hotplate-2 ~ On 1:10:37 Hotplate-2 Hotplate-2
Hotplate-2  Off 1:10:45 Hotplate-2 Hotplate-2
Aircon Off 1:11:34 Aircon Aircon
Hotplate-2 ~ On 1:12:20 Hotplate-2 Hotplate-2
Hotplate-2  Off 1:12:37 Hotplate-2 Hotplate-2
Hotplate-2  On 1:13:18 Hotplate-2 Hotplate-2
Hotplate-2  Off 1:13:25 Hotplate-2 Hotplate-2

6.2.5 Test Configuration 4

Another test configuration of the household power circuit is examined this time however
it contains a considerable amount of noise or variation influenced by the operation of
computers and TV’s, appliances which vary in power over time. The signal shown in
figure 6.10 was captured over a five hour period and the appliances monitored include a
kettle, air-conditioner and fridge.

It is evident from the event distribution space in figure 6.11 that besides the above appli-
ances there are events which are incorrectly identified these being the dryer off mode and
the TV. This is entirely due to the fact that these unknown events are closely matched
to these appliances and demonstrates a weakness of the system in identifying appliances
with smaller power magnitudes. Multi-state appliances such as the dryer could be ignored
this case since a dryer-airing has not occurred before the dryer-off, thus it is very unlikely
this is a good match.

However generally lower powered appliances, those which have power magnitudes less
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than 200 Watts tend to occur frequently throughout the day and there is usnally a large
number of these appliances in the household. Thus this can confuse the system unless spe-
cial rules are set per appliance or more features are included to characterize the appliance
type.

4000
3 Active Power
Apparent Power
3500 - Reactive Power
*  Evenl Start
* EventEnd
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Figure 6.10: Test four power signals with considerable noise in the signal.

From the table 6.6 below it can be seen that most of the events are identified thus high
accuracy for the higher powered appliances, however there are miss-identified moments
where variation in the power signal caused by unknown appliances is identified as the TV
and Dryer-Off as described above. The miss-identified fridge off event is due to the fact
that the change in reactive power is not close to that of the fridge, again this a presumed
issue caused by the circuit configuration with it and an appliance attached.

In terms of the three appliances monitored the overall identification success was 92.85%
however the extraneous events detected particularly for the TV could have been true
events however the order of states transitions (on-off, off-on) for this appliance suggest
they are incorrect thus it can be presumed the actual identification rate is lower that
shown.
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Figure 6.11: Test four event distribution in power space.
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Table 6.6: Event List of test configuration 4.

Appliance State Event Time Identified Appliance

Kettle On 16:01:27 Kettle
Kettle Off 16:02:23 Kettle
Kettle On 16:05:00 Kettle
Kettle Off 16:05:21 Kettle
Fridge Off 16:22:45 Fridge
Fridge On 16:59:13 Fridge

- On 17:06:15 TV

- On 17:12:16 TV

- On 17:14:28 Dryer-3
Fridge Off 17:23:00 Dryer-3
Fridge On 17:36:24 Fridge

- ofr 17:53:47 TV
Aircon Off 17:57:05 Aircon
Fridge Off 18:32:44 Fridge

- Off 18:45:09 TV
Fridge On 19:09:29 Fridge
Fridge Off 19:44:27 Fridge

- On 19:58:08 TV

- Off 20:02:08 TV
Fridge On 20:24:29 Fridge

- Off 20:33:35 Dryer-3
Fridge Off 20:47:56 Fridge

6.3 Discussion Review

Although the results of each test have been discussed during their associated sections a
review of these is done here. As discussed, in each of the test scenarios the results of this
NILM approach vary depending primarily on the load type monitored and the particular
load combination they are in. Test one demonstrates that 100% identification is possible
for appliances that have significant enough separation in the A P — AQ power plane when
not interfered by large amounts of frequently varying loads.

It shows also that the identified duration or response time can be almost identical to
reality, this means when calculating power consumption over periods relatively accurate
approximations can be made.

From test two it is shown that appliances with very close load signatures are difficult
to distinguish as load signatures formulated from an aggregate source will never be iden-
tical to those of appliances on their own. This can be due to the influence of varying
type loads and also because of physical properties of appliances such as motors or heating
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elements which can change depending on conditions. Nonetheless good identification is
still achieved for these higher powered appliances.

The results of test three demonstrate limitations of the system where window size can
drastically determine the identification accuracy. This means that appliances with very
short duration’s within the seconds range are difficult for the system to identify correctly.
This was observed with the hotplates which only turn on for a short period of time at
some heat settings, thus these were difficult to correctly identify due to the size of the
averaging windows overlapping the rising and falling edges at ¢; and/or t;. This can be
improved by altering the window size however a dynamic implementation would prove
to be more useful and robust. This could be implemented by performing a check for a
significant change within the window lengths w, and ws;, the size of these windows could
then dynamically be altered to a shorter length.

Since this system uses a sample rate of one sample per second transient effects at ¢; are
often observed as described in chapter 3 and can be seen in various appliances throughout
the test configurations. Due to the slow sample rate and often short lived transients of
the appliances it is not useful to include their features in the load signature as during
experimentation with noisy data such as that shown above, the transient features are
never repeatable for the same load at low sample rates.

Taking the case of the fridge shown by the peaks in signal figure 6.10, these peak values
can alter in magnitude quite significantly and in duration. Thus at higher sample rates it
would be possible to capture the responses such as that of the fridge within the length of
w; and wy since a high enough sampling rate would be used upwards of 2k samples per
second, this way a filter such as the median filter [25] could be implemented within the
transient window to reduce noise from the captured transient and deduce features such
as peak power, and settling time. In such a case discrete time convolution could be used
to determine the similarities between the observed transient pattern and those stored in
the database.

Finally test scenario four shows that with the influence of varying and noisy non-linear
appliances on the power signal the system can tend to report false identifications, events
which are not of interest and incorrectly identified.

The system thus overall works quite well at determining two state and multi-state house-
hold appliances. The main conclusion being that for better identification results and
recognition of variable loads more signature features are necessary which could be found
by start-up transient features previously described.
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Chapter 7

Conclusions and Future Work

The main objective of this thesis was to study electricity supply data and determine
whether information about particular appliances attached to the circuit is able to the
used in order to identify which appliances are in use. From background study in chap-
ter 2 it was found this particular area of research is referred to as Non-intrusive load
monitoring and from using data gathered from a mains metering device certain electrical
characteristics can be utilized to identify when appliances are turned on and off in the
source power signal.

To achieve this it was found that load signatures could be formed from state changes
in power in the source power signal and that these formed signatures could be compared
to those in a database of known appliance signatures to determine their on and off times.
The concepts of load signature formulation from chapter 2 were implemented through the
use of a Matlab GUI program which allowed analysis of electrical power signals, detection
of changes in this signal, formulation of signatures and appliance classification through
the use of kNN classification methods.

The design and implementation demonstrated in this thesis explores the possibility of
creating a complete solution with the incorporation of internet of things protocol MQTT
allowing for a scale-able internet based server solution using Node-Red. Such a solution
can have wide use in both the home and industry reducing the reliance on costly smarter
appliances and allowing for more intricate home automation processes by knowing the
state of appliances and when they change state. From this power consumption can be
estimated and rules set for automation processes. Furthermore this knowledge allows
household residents to be more energy conscious and provide a basis for optimizing their
usage times to minimize cost and consumption. Such use cases become increasingly rele-
vant as home solar and battery systems become more prevalent and energy in the home
becomes more complicated to balance.
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7.1 Conclusions

From testing of the system in a variety of household usage cases shown in chapter 6
it was found that while the system is quite effective at identifying when large powered
appliances are in use with up to 100% accuracy for small numbers of appliances, poor
performance is observed for lesser power consuming appliances especially as the number
of these appliances increases. Thus it was determined that the changes in power signals
alone are not unique enough in some cases for successful identification and that addi-
tional features should also be implemented in the load signature formulation. This was
found to be due to the fact that multiple loads use similar electrical elements for their
operation, for example heating elements used in various appliances are found to produce
almost identical magnitudes in both real and reactive power during some appliance states.

It was shown that while identification of dual and multi-state appliances is good poor
performance is observed when constantly varying loads are introduced and recognition
of these appliances using this method is not ideal. These appliances almost continually
change in power draw and as such state changes in power are often small and clustered
together and overlap making them hard to accurately discern.

The conclusion from this is that further optimization of event detection algorithms should
be implemented with the use of high sample rate data and using more advanced filtering
methods a change window can be captured where transient information about the appli-
ance can be used to further distinguish between appliances.

Also through the use of more advanced machine learning algorithms which remodel ap-
pliance signatures over time would provide an interesting solution to the effects of inac-
curacies in measurements caused by the combination of appliances on in the circuit.

7.2 Future Work

This project signifies a first step into the development of a complete NILM system and it
is encouraged for future students or academics to use and continue to develop ideas and
methods produced in this project to better improve identification accuracy particularly
for low powered and noisy devices.

Below are some suggestions for future development in this field.

Higher Sampled Rate Data Acquisition

As mentioned previously the use of higher sampled rate data would allow for a signal that
has smoother responses and the detection of transient signature features during changes.
This would further increase the accuracy as load transient patterns are often unique.
Similarly advanced digital filters can be used with higher sampled data which will lead to
less miss-identifications.

Besides the ability to monitor transients, high sampled data would provide analysis of the
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AC current waveforms harmonic components which can be determined using the Fourier
transformation which as discussed in [10] helps to determine between non-linear loads.
Implementing this at low cost could be done through the development of an IoT data
acquisition unit capable of high sample rate analogue to digital conversion.

Optimized Event Detection

By optimizing the event detection algorithm specifically the transient delay time Dy and
windows wy, we to be adjusted dynamically based on the response of the signal would
improve the detection of short duration events and increase the identification accuracy.

Cloud Based Classification

This would be a significant improvement as classification done on a server would be both
accessible anywhere as well as having access to much more advanced machine learning
capabilities including the use of big data to perform more accurate identification based
on more rules and decisions as well as more advanced and useful analytic and data repre-
sentation abilities.







Chapter 8

Abbreviations

NLIM
LS

SD
VSD
FFT
PF
CSV
AC
MQTT
TCP
GUI
API
TIoT
IP
KNN
RMS

Non-Intrusive Load Monitoring
Load Signature

Standard Deviation

Variable Speed Drives

Fast Fourier Transform

Power Factor

Comma-Delimited file format
Alternating Current

Message Queune Telemetry Transport
Transmission Control Protocol
Graphical User Interface
Application Programming Interface
Internet Of Things

Internet Protocol

K Nearest Neighbour

Root Means Squared

61




62

Chapter 8. Abbreviations




Appendix A

Supplementary Documentation

A.1 Attendance Form

This section contains the project consultation attendance form.
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Figure A.1: Meeting attendance sheet.
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A.2 Matlab Code

For reference and for anyone who may wish to read below is the Matlab code for main
program GUI which includes the functions used. What is not included are the importation

scripts which select the necessary data from the signal CSV and training text files.

function varargout = gui(varargin)

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename,
'gui.Singleton', gui.Singleton,
'gui_OpeningFecn', @gui_OpeningFcn,
'gui_.CutputFecn', @gui.-OutputFecn,
'gui_LayoutFecn', [1 »
'gui-Callback', [1):

if nargin && ischar(varargin{l})

gui_State.gui_Callback = str2func(varargin{l});
end

if nargout
[varargout{l:nargout}] = guimainfcn(gui_State, varargin{:});
else
guimainfen(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% ——— Executes just before guli is made wvisible.
function gui_OpeningFcn (hObject, eventdata, handles, wvarargin)

% This function has neo output args, see QutputFcn.

% hObject handle to figure

% eventdata reserved to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% wvarargin command line arguments to gui (see VARARGIN)

%2 Choose default command line output for gui

handles.output = hObject;
% Update handles structure
guidata (hObject, handles);

% ——— Outputs from this function are returned to the command line.
function varargout = gui_OutputFcn (hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);
%2 hObkject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{l} = handles.output;

% Executes on buttcn press in pushbuttonl.
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46
47
48
49
5¢

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
7%
77
8

B0
&1
82
83
B4
B85
86
B7
88

90
o1
a2
93
4
95
96

function pushbuttonl_Callback (hObject, eventdata, handles)

% hObject handle to pushbuttonl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
popup-sel_index = get(handles.popupmenul, 'Value');

switch popup_sel_index

case 1

plot (handles.I1_Avgh);
xlabel{'Time (Seconds)');
ylabel {'Current (Amps)');
if handles.onoff==

end
case 2

plot (handles.Ul_AvgV) ;
xlabel('Time (Seconds)');
ylabel('Voltage (Volts)');
if handles.onoff==

end
case 3

plot (handles.P1_AvgW) ;
xlabel({'Time (Seconds)"');
ylabel {'Real Power (Watts)');
if handles.conoff==

end
case 4

plot (handles.S1_AvgVAa);
xlabel{'Time (Seconds)');
ylabel ('Apparent Power (VA)'");
if handles.cnoff==

hold on;

plot (handles.steadyOn, handles.Il _Avgh(handles.steadyOn), 'r+"') j
plot (handles.initOn, handles.I1_AvgA(handles.initOn}), 'bx");
hold off;

grid on;

grid minor;

hold on;

plot (handles.steadyOn, handles.Ul_AvgV (handles.steadyOn), 'r*"') j
plot thandles.initOn, handles.Ul_AvgV (handles.initOn}, 'b+*");
hold off;

grid on;

grid minor;

hold on;

plot (handles.steadyOn, handles.P1l_AvgW (handles.steadyOn), 'r*"') j
plot (handles.initOn, handles.P1_AvgW{handles.initOn}, 'b*");
hold off;

grid on;

grid minor;

hold on;
plot (handles.steadyOn,handles.S1 _AvgVA (handles.steadyOn), "r+'});
plot thandles.initOn, handles.S1_AvgVA (handles.initOn), 'b*');
hold off;
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97

98

99
100
101
102
103
104
1056
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
130
140
141
142
143
144
145
146
147
148

grid on;
grid minor;

end

case 5

plot (handles.Ql_Avgvar);

xlabel ('Time (Seconds)');

ylabel ('Reactive Power (VAR)'};

if handles.onoff==
hold on;
plot (handles.steadyOn, handles.Ql_Avgvar (handles.steadyOn}, "r*
plot (handles.initOn,handles.Ql_Avgvar (handles.initCn}, 'b+"'};

hold off;
grid on;
grid minor;
end
case 6

plot (handles.PFl_Avg);

xlabel ('Time (Seconds)'});

ylabel ('Power Factor');

if handles.onoff==
hold on;
plot (handles.steadyOn, handles.PFl_Avg (handles.steadyOn), 'r+")
plot (handles.initOn,handles.PF1l_Avg (handles.initOn), 'bx");

hold off;
grid on;
grid minor;
end
case 7

plot (handles.activeP);

xlabel ('Time (Seconds)');

ylabel ('Normalized Real Power (Watts)');

if handles.onoff==
hold on;
plot (handles.steadyOn, handles.activeP (handles.steadyOn), 'c+")
plot (handles.initOn,handles.activeP (handles.initOn), 'b«");

held off;
grid on;
grid minor;
end
case 8

plot (handles.reactiveP);

xlabel ('Time (Seconds)'});

ylabel ('Normalized Reactiwve Power (VAR)'");

if handles.onoff==
heold on;
plot (handles.steadyOn, handles.reactiveP (handles.steadyOn), "'r»
plot (handles.initOn, handles.reactiveP (handles.initOn}, 'b«");
hold off;
grid on;
grid minor;

end

case 9
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149 plot (handles.apparentP);

150 xlabel {'Time (Seconds)"');

151 vlabel('Normalized Apparent Power (VAR)');

152 if handles.cnoff==1

153 hold on;

154 plot (handles.steadyOn, handles.apparentP (handles.steadyOn), 'r+
155 plot (handles.initOn, handles.apparentP {(handles.initOn}, 'b+"};
156 hold off;

157 grid on;

158 grid minor;

159 end

160 case 10

161 plot thandles.Ifndl Avgh);

162 xlabel{'Time (Seconds)');

163 vlabel('Average Fundamental Current (A)');

164 if handles.onoff==

165 hold on;

166 plot (handles.steadyOn,handles.Ifndl AvgA (handles.steadyOn), 'ry
167 plot (handles.initOn, handles.Ifndl_AvghA (handles.initOn), 'b*");
168 hold off;

169 grid on;

170 grid minor;

171 end

172 case 11

173 clf('reset');

174 hold on;

175 plot thandles.activeP);

176 plot (handles.apparentP) ;

177 plot (handles.reactiveP);

178 xlabel ('Time (Seconds)');

179 ylabel('P (W), O (VAR), S (VA)'");

180 legend('Active Power', 'Apparent Power', 'Reactive Power');

181 if handles.onoff==

182 hold on;

183 plot (handles.steadyOn, handles.Ifndl_AvgA (handles.steadyOn), 'r/
184 plot (handles.initOn, handles.Ifndl AvgA(handles.initOn), 'b*");
185 grid on;

186 grid minor;

187 end

188 hold off;

189 end

190

191

192

193 % Executes on selection change in popupmenul.

194 function popupmenul_Callback (hObject, eventdata, handles)

195 % hObdject handle to popupmenul {(see GCBO)

w6 % eventdata reserved to be defined in a future version of MATLAB

197 % handles structure with handles and user data (see GUIDATA)

198

199 % Hints: contents = get (hObject, 'String') returns popupmenul contents

as cell array
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200

201
202
203
204

205

206
207
208
209

210
211
212
213
214
215
216

217

220

229
230
231
232
233
234
235
236

237

238

230

240

241

5

contents{get (hObject, 'Value') } returns selected item from
popupmenul

a

% —-—— Executes during object creation, after setting all properties.
function popupmenul _CreateFcn (hObject, eventdata, handles)
if ispc && isequal (get (hObject, 'BackgroundColor'},
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor’, 'white');

end

set (hObject, 'String', {‘Average Current', 'Voltage', 'Real Power',
'Apparent Power', 'Reactive Power', 'Power Factor', 'Power
Normalized', 'Reactive Power Normalized', 'Apparent Power
Normalized', 'Average Fundamental Current’, 'P,Q,S'});

2

%

function File_Callback (hObject, eventdata, handles)

2

function openCsV_Callback (hObject, eventdata, handles)
file = uigetfile{'x.csv','Select the CS8V data file');
if file # 0
handles.file = file;
dataSet = importfile(file);
handles.I1 AvgA = dataSet.Il_AvgA;
handles.Ul_AvgV = dataSet.Ul_AvgV;
handles.P1l AvgW = dataSet.Pl_AvgW;
handles.Etime = dataSet.Etime;
handles.Date = dataSet.Date;
handles.S1_AvgVA = dataSet.S1_AvgVA;
handles.Ql_Avgvar = dataSet.Ql Avgvar;
handles.PFl_Avg = abs(dataSet.PFl_Avg);
handles.Ifndl Avgh = dataSet.Ifndl_Avgh;
Snorm = [];
activeP = [];
apparentP = [];
reactiveP = [];
for i=l:length(dataSet.Etime)
activeP =
lactiveP, ((240/dataSet .Ul AvgV(i))"2)+dataSet .P1_AvgW(i)];
reactiveP =
[reactiveP, ((240/dataSet .Ul ,AvgV (i) ) "2)*dataSet.Ql Avgvar{i)];
apparentP =
[apparentP, ((240/dataSet .Ul_AvgV(i))"2)=*dataSet.S1_AvgVA (i) ];
Snorm = .
[Snorm, ((240/dataSet.Ul_AvgV (i)) "2) * (dataSet .Ul _AvgV (i) *dataSe
end
handles.activeP = activePF;

t.I1 Av
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243

245
246
247
248
249
250

252
253
254
255
256
257
258
259

275
276
277
278
279
280

282
283

285
286
287
288
289
290
201
292

293

handles.reactiveP = reactiveP;
handles.apparentP = apparentP;
handles.Snorm = Snorm;
handles.onoff = 0;
guidata (hObject, handles);

end

function edit2_Callback (hObject, eventdata, handles)

o

% —-—— Executes during object creation, after setting all properties.
function edit2 CreateFcn (hObject, eventdata, handles)
if ispc && isequal {get (hObject, "BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end
handles.currentTh = str2double(get (hObject, 'String')};

% —-—— Executes on button press in pushbutton3.

function pushbutton3_Callback (hObject, eventdata, handles)
% Moving window event detector
$Get variables from gui
threshold = str2double (get (handles.threshold, 'String'));
windowl = str2double (get (handles.windowl, "String')});
window2 = strZdouble (get (handles.windowZ, "String')};
trans = str2double(get (handles.trans, 'String'));
aP = [];
asS = [];
aQ = [1;
initOn = [];
steadyOn = [];
rphaseSign = [];
output = [];
finish = 0;
start = 0;
change = false;
i=2;
%Go through the signal find significant changes and determine the changes
%$in power.
while i < (length(handles.activeP)-1)
$Positive State Change Events
if handles.activeP (i+1l)-handles.activeP (i) > threshold
change = true;
start = 1i;
count 0;
rising = true;
while rising == true
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71

204

295
296G
297
298
299
300
301
302
303
304
305
306G
307
308
309

310

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
33T
338
330
340
541
342
343

4

if handles.activeP (start+count+l) >
handles.activeP (start+count)
count = count + 1;

else
count = count + 1;
rising = false;

end
end
finish = start+count+1;
Pi = 0;
Pf = 0;
Qi = 0;
Qf = 0;
5i = 0;
Sf = 0;

if startcwindowl
windowl = start-1;
end
for j=(start-windowl) :start-1
Pi = P1 + handles.activeP(j);
Qi = Qi + handles.reactiveP(j);
S5i = 5i + handles.apparentP(]j);
end
Pi = Pi/windowl;
Qi = Qi/windowl;
Si = Si/windowl;
if {length(handles.activeP)-finish)<(window2+trans)
windowZ = (length(handles.activeP)-finish)-trans;
end
for j=(finish+trans): (finish+trans+window2)-1
Pf = Pf + handles.activeP(3j);
Qf = Qf + handles.reactiveP (j);
Sf = Sf + handles.apparentP (Jj);
end
Pf = Pf/(window2);
Qf = Qf/ (window2);
Sf = Sf/(window2);
dP = Pf-Pi;

ds = Sf-5i;

if Qi > 0 && Qf <0
dg = Qf;

elseif Qi1 < 0 && Qf > 0
dQ = Qf;

else
dg = Qf-Qi;

end

%¥Negative State Change Events
elseif abs(handles.activeP (i+l)-handles.activeP(i}) > threshold
change = true;
start = i;
count = 0;
falling = true;
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345

346

347
348
349
350
351
352
353
354
355
356
A57
358

358

361

362

364
365
366

367

369
370
371
372
373
374
375
376
377
378
479
380
381
382
383
384
385
386
S8T
388
380
300
391
392
303
304

while falling == true
if handles.activeP(start+count+l) <
handles.activeP (start+count)
count = count + 1;
else
count = count + 1;
falling = false;

end
end
finish = start+count+l;
Pi = 0;
BPf = 0;
Qi = 0;
Qf = 0;
Si = 0;
sf = 0;

if startswindowl
windowl = start-1;

end

for j={start-windowl):start-1
Pi = Pi + handles.activeP (]j);
Qi Qi + handles.reactiveP(j);
Si = Si + handles.apparentP (j);

end
Pi = Pi/windowl;
Qi = Qi/windowl;
Si = Si/windowl;
if (length(handles.activeP)-finish)<(windowZ+trans)
window2 = (length(handles.activeP)-finish)-trans;
end
for j=(finish+trans): (finish+trans+window2}-1
Pf = Pf + handles.activeP (]j);
Qf = Qf + handles.reactiveP (j);
St Sf + handles.apparentP(j);

end

Pf = Pf/(window2});
Qf = Qf/ (window2) ;
5f = Sf/(window2};

dp = Pf-Pi;
ds = Sf-Si;
if Qi > 0 && Qf <O
dg = 0-Qi;
elseif Qi <€ 0 && Qf > 0
dQ = Qf;
else
dp = Qf-Qi;
end
end
$Check to see if change in power 1is significant enough to be an event
if (change == true)&& (abs (dP) > threshold)
$Check for lagging or leading phase angles, 1 = leading, 0 =

lagging
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395
306
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
41T
4158
419

420

429
430
431

432

433
434
435
436
437
438
439
440

441

i = finish;

if dP>0 && dQ<0 || dP<0 && dQ>0
phase = 1;

else
phase = 0;

end

initOn = [initOn; start];

steadyOn = [steadyOn; finish];

AP = [aP; dP];

aQ = [aQ; dO];

a8 = [a8; dS];

phaseSign = [phaseSign; phase];
observation = [dP, dQ, dS, phase]l;

output = [output; observation];
else

i = i+1;
end
change = false;

end

handles.initOn = initOn;

handles.steadyOn = steadyOn;

handles.output = output;

format short g;

disp([initOn, steadyOn, output]);

figure

hold on;

plot thandles.activeP);

plot (handles.apparentP);

plot (handles.reactiveP);

plot (initOn, handles.activeP (initOn), 'r+'};

plot (steadyOn, handles.activeP (steadyOn), 'bx");
plot (initOn, handles.apparentP (initOn), 'r+"');
plot (steadyOn, handles.apparentP (steadyOn), 'b+"');
plot (initOn, handles.reactiveP (initOn), "z+"'});
plot (steadyOn, handles.reactiveP (steadyOn), "b«"');
xlabel ('Time (Seconds)');

ylabel ('P (W), @ (VAR), S (VA)');

legend{'Active Power', "Apparent Power', 'Reactive Power', "Event
Start', 'Event End");

grid on;

grid minor;

hold off;

handles.onoff = 1;
guidata (hObject, handles);

signal at
% the change points

% Executes on button press calculates the state changes

function pushbuttond_Callback (hObject, eventdata, handles)

appliances = unique (handles.out(:,1)})};
marker$= [IO"I"I,‘*I".I"K‘,IS"Id‘!IAI"‘/I">I'I<‘

[
r Py

the

LOF
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445
46
447
448
449
450
451
452
453
454
455
456
457
458
450
AB0
461
462
463
464
4G5
466
ABT
468
469
AT0
471
472
473
474
47D
476
47T
478
479
480
481
482
483
84
485
486
48T
488
489
490
491
492
493
494

495

496

stylesOn = [];
stylesOff = [];
On = [];
Off = [];
for i=l:size (handles.out,1)
if handles.out(i,2)=="on"
On = [Onj;handles.out(i,:)];
else
Off = [0ff;handles.out(i,:)];
end
for j=l:length(appliances)
if handles.out (i, 1l)==appliances(j)
if handles.out (i, 2)=="on"
stylesOn = [stylesOn;markers(j)];
else
stylesOff = [stylesOff;markers(j)];
end
end
end
end
Pon = str2double(On(:,4));
Qon strZzdouble(On(:,5));
Son = str2double(On(:,6));
Poff = strZdouble(0Off(:,4));
Qoff str2double (CG££(:,5));
Soff = str2double (Off(:,6));

%$Plot the state changes in three dimentional space
figure
hold on;
for i=1l:length(Pon)
if On(i,7) == "1"
c="r';
else
c = "b';
end
fl = scatter3(Pon(i),Qon{i),Son(i),60,c,stylesOn({i));
end
for i=l:length{Poff)
if Off(i,7) == "1"
c="r';
else
c = "b';
end
f2 = scatter3(Poff(i),Qoff(i),Soff({i},60,c,stylesOff(i));
end
legend([On{(:, 1) ;0ff(:,1)]);
set (legend, "Location’', "'northeastoutside’');
xlabel ('Power W');
ylabel ('Reactive Power VAR');
zlabel ("Apparent Power VAR');
grid on;
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497

499
500
501
502
503
504
505
506
507
508
500
510
511
512
513
514
515
516

517

518

519
520
521
522
523
524

525

52T
528
529
530
531
532
533
534
535
536
537
538
539

540

541
542
543

GEE

545

grid minor;
hold off;

% —-—— Executes on button press in pushbutton5.
function pushbutton5_Callback (hObject, eventdata, handles)
plot (medfiltl (handles.activeP,10)};

5 Ts = [1;

% Ts = [Ts; (handles.steadyOn-handles.initOn)];
% handles.Ts = Ts;

% disp('Settling Time');

% disp(Ts);

guidata (hObject, handles);

2

% Executes on button press in pushbutton7.
function pushbutton7_Callback (hObject, eventdata, handles)
Alfnd = [];
alrms = [];
for i=1l:length(handles.steadyOn)
alfnd = [aIfnd;
(handles.Ifndl_AvgA (handles.steadyOn(i))-handles.Ifndl_AvgA (handle
Alrms = [alrms;
(handles.Il AvgA(handles.steadyOn(i))-handles.Il AvgA(handles.init
end
handles.alfnd = alfnd;
handles.alrms = alrms;
disp ('Fundamental Average Current'};
disp(alfnd);
disp ("RMS Current');
disp (aIrms);

scatter (alrms, alfnd);

xlabel ('RMS Current A');

ylabel {'50Hz Component of Current A'};
axis([-15 15 =15 15]);

grid on;

grid minor;

guidata (hObject, handles);

function groupBox_Callback (hObject, eventdata, handles)

% hObject handle to groupBox (see GCBO)

% eventdata reserved to be defined in a future wversion of MATLAR

% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObdject, 'String') returns contents of groupBox as text

% str2double (get (hObject, 'String')) returns contents of
groupBox as a double

% —— Executes during cbiject creation, after setting all properties.

function groupBox CreateFcn (hObject, eventdata, handles)

% hObject handle to groupBox (see GCBO)

% eventdata reserved to be defined in a future version of MATLAB

5. initC

Dn (1) ))
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558

559

% handles empty - handles not created until after all CreateFecns ...
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'},
get (0, "defaultUicontrolBackgroundColor'))
set (hObject, "BackgroundColor', 'white');
end

a

% —-—— Executes on button press in matchDevices.

function matchDevices_Callback{hObject, eventdata, handles)

% This functon reads the training database and group database and
performs

% K-nearest neighbour to determine which is the closest match at each ...

of the

% on events. To make this better load vector will need to improved as ...

well
% as training data array.
%Classifier Datasets
training = readTraining('training.txt');
group = readGroup ('group.txt');
out = [];
for i=l:size (handles.output,1)
if handles.output(i,l) > 0

state = "on";
else

state = "off";
end
out = ...

[out ;getMatch (getKNN (training, group, handles.output (i, :),2,500)),
state, handles.Date(handles.steadyOn(i)), handles.output(i,:)];
end
handles.out = out;
guidata (hObject, handles);
disp{out);

o

% Executes ¢on button press in executeDisagg.

function executeDisagg-Callback (hObject, ewventdata, handles)

%$Executes the iterative dissaggregation algorithm, here the three
datasets

%are incremented and compared to the last changes after each second or

%sample are classified and if a close match is found then it is accepted

%and posted.

PmedFil = medfiltl(handles.activeP,10);

QmedFil = medfiltl (handles.reactiveP,10);

SmedFil = medfiltl (handles.apparentP,10);
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590
591
592
595
564
595
596G
597
508
599
GO0
601
602
G5
604
GO5
G606
GOT
GOE
609
610
611
612
613
614
615
616
G1T
618
619
G20
621
G322
623
G24
G625
626
G2T
625
G20
630
631
32
633
634
635
636
637
G35
G300
640

G 1

Power = handles.activeP;

$Classifier Variables
training = readTraining('training.txt');
group = readGroup{'group.txt');

%Instanciate MQTT connection to broker
myMQTT = mgtt('tcp://192.168.1.21");
% Moving window event detector
%Get wvariables from gui
threshold = strZdouble (get (handles.threshold, 'String'));
windowl = str2double({get (handles.windowl, 'String'));
window2 = str2double(get (handles.window2, 'String'));
trans = str2double (get (handles.trans, 'String'));
AP = [];
as = [1;
aQ = [];
initOn = [];
steadyOon = [];
phaseSign = [];
output = [];
finish = 0;
start = 0;
change = false;
i=2;
%Go through the signal find significant changes and determine the changes
%in power.,
while i < (length({Power)-1)
publish (myMQTT, “"power"+"/",string(Power(i)));
pause (0.2} ;
$Positive State Change Events
if Power (i+l)-Power (i) > threshold
change = true;
start = i;
count = 0;
rising = true;
while rising == true
if Power(start+count+l) > Power (start+count)
count = count + 1;
else
count = count + 1;
rising = false;
end
publish (myMQTT, "power"+"/",string(Power (count)));
pause (0.2);

end

finish = start+count+1l;
Pi = 0;

Pf = 0;

Qi = 0;

Qf = 0;
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642
643
Gidd
645
646
647
G448
649
G50
651
G52
653
654
G55
656
657
655
659
GED
Lili7}
G2
G663
G654
665
(ilil5)
GET
Lili.]
GGD
670
671
672
673
674
675
GT6
67T
678
G679
G0
GE1
682
LK)
GE4
685
GG
68T
GER
(it]
690
G601
692

693

Si = 0;
sf = 0;
if start<windowl

windowl = start-1;
end
for j=(start-windowl) :start-1
Pi = Pi + Power (J);
Qi = Qi + handles.reactiveP(j);
Si = Si + handles.apparentP (j);
end
Pi = Pi/windowl;
i = Qi/windowl;
Si = Si/windowl;
if (length(Power)-finish)<(window2+trans)
window2 = (length{Power)-finish)-trans;
end
for j=(finish+trans): {finish+transt+window2)-1
Pf = Pf + Power () ;
Qf = Qf + handles.reactiveP (j);
Sf = S5f + handles.apparentP(j);
publish (myMQTT, "power"+"/",string(Power(j)));
pause (0.2);
end
Pf = Pf/(window2};
Qf = Qf/(windowl} ;
Sf = Sf/(window2);
dp = Pf-Pi;
ds = sf-5i;
if Qi > 0 && Qf <0
dg = Qf;
elseif Qi < 0 && Qf > 0
dg = 0-Qi;
else
dQ = Qf-Qi;
end
tNegative State Change Events
elseif abs(Power (i+l)-Power(i)) > threshold
change = true;
start = i;
count = 0;
falling = true;
while falling == true
if Power (start+count+l) < Power (start+count)
count = count + 1;
else
count = count + 1;
falling = false;
end

publish {(myMQTT, "power"+"/",string(Power(count}));

pause (0.2) ;
end
finish = start+count+l;
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694 Pi = 0;

695 Pf = 0;

696 Qi = 0;

607 Qf = 0;

Gos Si = 0;

690 S5f = 0;

700 if startswindowl

701 windowl = start-1;

702 end

703 for j=(start-windowl) :start-1

704 Pi = Pi + Power(j);

705 Qi = Qi + handles.reactiveP (]);

706 51 = 51 + handles.apparentP(]j);

o7 end

708 Pi = Pi/windowl;

700 Qi = Qi/windowl;

710 Si = Si/windowl;

711 if (length(Power)-finish)<(window2+trans)

712 window2 = (length (Power)-finish)-trans;

713 end

714 for j=(finish+trans): (finish+trans+window2)-1

715 Pf = Pf + Power(j);

715 Qf = Qf + handles.reactiveP (]);

717 Sf = 5f + handles.apparentP(]j);

718 publish (myMQTT, "power"+"/",string(Power(j)));

719 pause (0.2);

720 end

721 Pf = Pf/(window2);

722 Qf = Rf/ (window2);

723 Sf = Sf/(window2);

724 dP = Pf-Pi;

725 ds = S8f-8i;

726 if Qi > 0 && Qf <0

727 dg = 0of;

728 elseif Qi < 0 && Qf > 0

720 dQ = 0-Qi;

730 else

731 dQ = Qf-Qi;

73z end

733 end

734 %Check to see 1f change in power is significant enough to be an event

735 if (change == true)&&{abs(dP) > threshold)

736 %Check for lagging or leading phase angles, 1 = leading, 0 =
lagging

737 i = finish+trans+windowl;

IEE if dP>0 && dQ<0 || dP<O0 && dQ>0

730 phase = 1;

740 else

741 phase = 0;

742 end

743 initOn = [initOn; start];

744 steadyOn = [steadyOn; finish];
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745 aP = [aP; dP);

746 AQ = [aQ; dQ];

747 aS = [a8; dS];

748 phaseSign = [phaseSign; phase];

749 observation = [dP, dQ, dS, phase];

750 if dp<0

751 state = 'off';

752 else

753 state = 'on';

754 end

755 KNN = getMatch (getKNN (training, group,observation,2,200));
756 output = [output;KNN, state, handles.Date(finish), observation];
757 publish (myMQTT,

"appliance"+"/"+string (KNN)+"/"+string (handles.Date(finish))+"
strjoin{string (cbservation), ', "));

758 else

759 i = 1i+1;

760 end

761 change = false;
762 end

TG3

764 handles.loadSignatures = training;
765 guidata (hObject, handles);

766 disp{output);

767

768 figure

769 hold on;

70 plot {(Power);

771 plot (handles.apparentP);

772 plot (handles.reactiveP});

7va xlabel ('Time (Seconds)');

774 ylabel ('P (W), Q (VAR), S (VA)');
775 legend('Active Power', "Apparent Power', 'Reactive Power');
76 grid on;

717 grid minor;

78 hold off;

7s0 figure

781 hold on;

782 scatter3 (aP, aQ, aS, 20, phaseSign) ;

783 xlabel ('Power W');

784 ylabel ('Reactive Power VAR');

7ss zlabel ('Apparent Power VA');

76 axis([-3000 3000 -3000 3000 -3000 3000]);
787 grid on;

788 grid minor;

7s0 hold off;

791 %Calculate the euclidean distance between vectors setl and set2 up to
702 %length

73 function dist = eDist(setl, set2, length)

794 distance = 0;
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T95
TO6
79T
798
799
B00
801
802

803
804
205
206G
80T

B0

816

810
520
821
822
823

825
836G

827

820
830
831
832
833
834
835

236

83T
838
830
840
841

for i=1l:length

if i3
distance = distance + (abs(setl(i))-abs(set2(i}))"2;
end

end

dist = sgrt(distance);

$Find the K neighbors by finding distances if lag or lead and ...
sorting, selecting the K nearest

function neighbors = getKNN(training,group,observation, k,error)

distances = [];

unspecified = {'unspecified'};

lngth = length{observation)-1;

for 1 = 1l:length (group)

if observation(4) == training(i, 4)
dist = eDist (observation,training(i,:), lngth);
if dist<error
distances = [distances; group(i), dist];
else
distances = [distances; unspecified, dist];
end
end
end
sorted = sortrows (distances,2);
neighbors = [];

for i = 1:k
neighbors = [neighbors; sorted(i,1)];
end

% Return the match that has the highest wote or occurance.
function match = getMatch(neighbors)
[a,b,c] = unigque (neighbors);
count = hist (¢,length(a));
if length{count)>1
[M,I] = max(count);
match = a(I);

else
match = a;
end
% ——— Executes on button press in addTrainingData.
function addTrainingData.-Callback (hObject, eventdata, handles)

2This function takes the text inputed and when Add training data is ...
clicked

%the function will take a training dataset imported and find the average

$values for that appliance and add them to the training and group

fmatricies.

Power = handles.activeP;

figure

hold on;

plot (Power) ;

xlabel{'Time S');
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s4s ylabel ('Power W');

a6 grid on;

47 grid minor;

sas hold off;

s40 %Set wvariables via gui

as0 threshold = strZdouble (get (handles.threshold, "String'));
as1 windowl = str2double (get {(handles.windowl, 'String')});
ss2 window2 = str2double (get (handles.window2, 'String'));
53 trans = strZdouble(get (handles.trans, 'String'));

ssa aP = [];

sss AS = [];

ss6 AQ = [];

557 initOn = [1;

s5s steadyOn = [];

ss0 phaseSign = [];

ss0 finish = 0;

61 start = 0;

sz change = false;

ss3 1=2;

s6a %Go through the signal find significant changes and determine the changes
s6s %in power.

s66 while i < (length (Power)-1)

867 tPositive State Change Events

868 if Power (i+l)-Power (i) > 5

869 change = true;

870 start = i;

871 count = 0;

872 rising = true;

873 while rising == true

874 if Power (start+count+l) > Power (start+count)
875 count = count + 1;

876 else

877 count = count + 1;

878 rising = false;

a7 end

850 end

881 finish = start + count+l;

882 i = finish;

883 Pi = 0;

884 Pf = 0;

585 Qi = 0;

856 Qf = 0;

887 Si = 0;

588 st = 0;

559 if startswindowl

590 windowl = start-1;

801 end

892 for j=(start-windowl) :start-1

893 Pi = Pi + Power(J);

804

896

Qi
51
end

Qi + handles.reactiveP (j);
S5i + handles.apparentP (j);
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83

897
BO8
599
900
901
902
D03
904
D05
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
032
923
924
925
926
927
928
D20
930
931
D32
933
934
935
D36
937
938
930
940
941
942
D43
HEEY
945
D46
947

D45

Pi = Pi/windowl;
Qi = Qi/windowl;
Si = Si/windowl;
if (length(Power)-finish)<(window2+trans)
window2 = (length(Power)-finish)-trans;
end
for j=(finish+trans): (finish+trans+window2}-1
Pf = Pf + Power(]j);
Qf QOf + handles.reactiveP (3);
sSf 5f + handles.apparentP({j);
end
Pf = Pf/(window2);
Qf = Qf/(window2);
Sf = Sf/{window2);
dP = PEf-Pi;
ds = Sf-581i;
if Qi > 0 && QOf <0
dg = Qf;
elseif Qi < 0 && Qf > 0
dg = 0-Qi;
else
dg = Qf-Qi;
end
$Negative State Change Events
elseif abs(Power(i+l)-Power(i)) > 5
change = true;
start = 1i;
count = 0;
falling = true;
while falling == true
if Power(start+count+l) < Power (start+count)
count = count + 1;
else
count = count + 1;
falling = false;

end
end
finish = start + count+l;
i = finish;
Pi = 0;
Pf = 0;
Qi = 0;
Qf = 0;
Si = 0;
Sf = 0;

if startswindowl
windowl = start-1;
end
for j=(start-windowl) :start-1
Pi = Pi + Power(j);
Qi Qi + handles.reactiveP (J);
s5i Si + handles.apparentP {j);
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949 end

950 Bi = Pi/windowl;

951 Qi = Qi/windowl;

952 Si = Si/windowl;

953 if (length(Power)-finish)< (window2+trans)

054 window2 = (length(Power)-finish)-trans;

955 end

956 for j={finish+trans): {finish+trans+windowi)-1

957 Pf = Pf + Power(j);

958 Qf = Qf + handles.reactiveP(j);

a5 Sf = Sf + handles.apparentP(j);

960 end

961 Pf = Pf/{(window2);

962 QOf = Qf/ (window2};

963 Sf = Sf/(window2);

964 dp = Pf-Pi;

965 ds = Sf-Si;

966 if Qi > 0 && Qf <0

967 dQ = Qf;

968 elseif Qi < 0 && Qf > 0

969 dQ = 0-Qi;

970 else

071 dQ = Qf-Qi;

972 end

973 end

074 %Check to see if change in power is significant enough to be an event

975 if (change == true)&&(abs(dP) > threshold)

976 %Check for lagging or leading phase angles, 1 = leading, 0 =
lagging

977 if dp>0 && do<0 || dp<0 && dQ>0

078 phase = 1;

979 else

950 phase = 0;

981 end

052 initOn = [initOn; start];

083 steadyOn = [steadyOn; finish];

984 aP = [aP; dP];

985 aQ = [aQ; dQJ;

956 aS = [aS; dS];

987 phasesign = [phaseSign; phase];

988 observation = [start, finish,dP, dQ, ds, phase];

989 else

900 i = 1i+1;

991 end

992 change = false;

03 end

904

995
996
097
998

999

devicelLabel = get (handles.groupBox,
if handles.file 0
for i=l:length (aP)
training = [aP (i) aQ(i) asS(i) phaseSigni(i)];
fileID = fopen{'training.txt',6 "at');

String');
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85

000
001
002
003
004
005
006G
007
008
009
010
011
012
013
014
015
016
017
018
019
020

021

022
023
024
025
026G
027
028

029
030
031
0532

033
034
035
036G
037
035
030
(040
041
042
043
044

045
046
04T

fprintf(£filelID, '%f,%f, %£f,%f;\n',training);
fclose(filelID);
fileID = fopen{'group.txt', 'at');
fprintf(filelID, '%s;\n',devicelabel);
fclose (filelD);
end
end

function threshold Callback (hCbject, eventdata, handles)

hObject handle to threshold (see GCBO)

eventdata reserved to be defined in a future version of MATLAR
handles structure with handles and user data (see GUIDATA)

g

oR of

Hints: get (hObject, 'String') returns contents of threshold as text
str2double (get (hObject, 'String')) returns contents of
threshold as a double

of of

% —-—-- Executes during object creation, after setting all properties.

function threshold.CreateFcn(hObject, eventdata, handles)

hObject handle to threshold (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB

handles empty — handles not created until after all CreateFcns
called

of of

o

% Hint: edit controls usually have a white background on Windows.
3 See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'), ...
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white'};
end

function window2_Callback (hObject, eventdata, handles)

%2 hObkject handle to window2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObiject, 'String') returns contents of window2 as text

% strZdouble (get (hObject, 'String')) returns contents of
window2 as a double

% ——— Executes during object creation, after setting all properties.
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48 function window2_ CreateFen (hObject, eventdata, handles)

pas % hObject handle to windowZ (see GCBO)

so % eventdata reserved - to be defined in a future version of MATLAB

51 % handles empty - handles not created until after all CreateFcns ...
called

052

osa % Hint: edit contreols usually have a white background on Windows.

Hos4 % See ISPC and COMPUTER.

oss if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, "defaultUicontrolBackgroundColor'))

056 set (hObject, 'BackgroundColor', 'white');

o057 end

058

059

060

os1 function windowl_Callback (hObject, eventdata, handles)

psz % hObject handle to windowl (see GCBO)

sz % eventdata reserved - to be defined in a future version of MATLAB

osa % handles structure with handles and user data (see GUIDATA)

065

poe % Hints: get (hObject,'String') returns contents of windowl as text

067 % strZdouble (get (hObject, 'String')) returns contents of ...
windowl as a double

068

069

b0 % --- Executes during object creation, after setting all properties.

o1 function windowl_CreateFcn (hObject, eventdata, handles)

oz % hObject handle to windowl (see GCBO)

o73 % eventdata reserved - to be defined in a future version of MATLAB

ora % handles empty - handles not created until after all CreateFcns ...
called

075

b7é % Hint: edit controls usually have a white background on Windows.

77 % See ISPC and COMPUTER.

ors if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, "defaultUicontrolBackgroundColor'))

079 set (hObject, "BackgroundColor', 'white');

oso end

081

082

083

nea function trans_Callback (hObject, eventdata, handles)

pss % hObject handle to trans (see GCBO)

g6 % eventdata reserved - to be defined in a future version of MATLAB

os7 % handles structure with handles and user data (see GUIDATA)

088

pso % Hints: get (hObject, 'String') returns contents of trans as text

oo % strZdouble (get (hObject, "String')) returns contents of trans ..
as a double

091

092

o9a % -—- Executes during object creation, after setting all properties.
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094
095
096G

097

098
099
100
101

102

103

function trans_CreateFcn(hObject, ewventdata, handles)
% hObject i trans (see

% eventdata reserved - to be defined in a future version
% handles empty handles not created ur 1 afte

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'), ...
get (0, 'defaultUicontrolBackgroundColor'))
set (hCbject, 'BackgroundColor', 'white');
end
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