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Thesis abstract 

 This thesis aims to understand the crucial cognitive mechanisms that underpin 

visual search in medical images and the influence of expertise. Research suggests that 

experienced radiologists use information from an initial glance at an image to set the 

basis of their diagnosis. This research explores the information that can be extracted from 

images regarding the presence and location of a target.  I use two stimulus types: real 

medical images on which I test both novices and expert radiologists, and natural scenes as 

a model for radiologist search. In Chapter 1, I present an overview of the literature 

relevant to these aims. Chapter 2 presents two experiments where I showed that a target 

could be both detected and located in a natural scene after a brief presentation (33ms), but 

that visual clutter interferes with performance in a predictable way. In Chapter 3, I 

showed radiologists were able to detect and localise an abnormality in a mammogram 

presented for 250ms at levels better than guessing. Crucially I demonstrated that a normal 

patient variant, high levels of breast density, affects performance. I conducted an in-depth 

analysis which emphasises the importance of considering factors such as stimulus 

variability, response imprecision, and participant guessing. In Chapter 4, I investigated 

the extent to which expertise guides attention based on prior experience with the 

prevalence of cancer, using a novel cueing paradigm where a chest radiograph (with or 

without a suspicious nodule) formed a prime. For naïve observers, an artificially boosted 

nodule in the prime radiograph guided attention, validating the task. Radiologists viewing 

true, more subtle nodules did not show the same effect, nor did they show any attentional 

guidance from cancer prevalence. However, more experienced radiologists seemed to be 

more sensitive to the subtle nodules than less experienced radiologists, suggesting that 
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expertise might boost nodule salience. Finally, in Chapter 5, the implications of these 

findings are discussed in a broader context along with suggestions for areas of future 

research. Overall, my research shows that there is a large amount of information available 

after observers first look at a scene or medical image; more than previously thought. 

Further, the visual complexity of the display affects performance. Together, the 

experiments presented in this thesis advance the scientific understanding of the type of 

information available in the first glance and has clear implications for radiologist teaching 

and clinical benefits. 
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General Introduction 

 Radiologists are medical doctors who have undergone specific postgraduate 

training in performing and interpreting diagnostic imaging tests and interventional 

procedures. They are required to search and interpret complex medical images to reach 

a diagnostic decision. The result of this search forms the core component of the 

information for diagnostic and treatment decisions about patients. The focus of this 

thesis is the visual search component of medical imaging where the consequences of 

errors range from mild to severe.  In a worst-case scenario, a cancerous mass could go 

undetected which could have a devastating outcome for a patient. Understanding the 

basic processes that underpin radiologist visual search is a crucial component in better 

understanding the causes and possible solutions for errors. 

 The tests used by radiologists involve the use of modalities which provide 2-

dimensional displays (e.g., plain X-ray, mammograms) as well as dynamic (e.g., 

ultrasound) and 3-dimensional examinations (e.g., computer tomography and magnetic 

resonance imaging). According to the Royal Australian and New Zealand College of 

Radiologists (RANZCR: http://www.ranzcr.edu.au/radiology), to qualify as a 

radiologist requires (after completion of a six-year medical degree) two years’ 

internship, then an accredited five-year training program, whilst practicing within a 

radiology setting. Once qualified, radiologists can choose to work in various 

subspecialties of radiology such as breast, interventional, musculoskeletal, cardiac, 

neuroradiology or paediatric imaging. Using medical imaging, radiologists form a core 

part of a multidisciplinary team trained to assist other doctors and specialists who treat 

patients by making a diagnosis and providing treatment (e.g., drug therapy). This 

extensive training means they have the medical knowledge and ability to understand 
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medical problems or symptoms by the interpretation of anatomical representations of 

the human body. 

The task of searching medical images for abnormalities is effectively a visual 

search in a cluttered display. Similar to basic search paradigms, radiologists are 

required to visually search a cluttered medical image for a target (e.g., mass) while 

ignoring distractors (e.g., normal anatomical structures) and then make a diagnostic 

decision based on abstract anatomical features. To make a diagnosis, the image must be 

perceived and interpreted appropriately; these tasks are perceptually and cognitively 

demanding. Errors that can occur are either misses of a target that is present or false 

alarms on target absent displays. Coupled with the increasing amount of computer 

interaction, 3D imaging modalities and a higher caseload, the potential for error is high 

(Samei & Krupinski, 2010). All tasks that involve visual search are prone to error and, 

similar to other real world visual search tasks, radiologist errors may result in serious 

consequences for public safety.  

The visual search errors we know humans are prone to make become 

particularly problematic in such high consequence environments as radiology. The 

consequences for making an error can be extremely serious: false negatives result in 

missed abnormalities, which can be catastrophic. For instance, a missed breast 

carcinoma on a mammogram means delayed treatment and thus reduced survival rate. It 

has been reported that for radiologists there may be up to a 30% miss error rate and an 

equally high false alarm rate (Berlin, 2005). Using eye tracking methods, Kundel, 

Nodine and Carmody (1978) categorised radiologist errors when reading chest 

radiographs into the following: visual search errors, where they never fixate the 

abnormality (30%); recognition errors, where the abnormality is fixated but only briefly 

(25%); and decision errors, where the abnormality is fixated but actively dismissed as 
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an abnormality (45%). Other error types include satisfaction of search (subsequent 

search misses), where detection of the first abnormality interferes with detection of 

others (Adamo, Cain & Mitroff, 2013; Berbaum, et al., 1990; Tuddenham, 1962) and 

inattentional blindness, where sustaining attention on a specific target can cause an 

obvious, unexpected target to be missed (Drew, Võ, & Wolfe, 2013; Mack & Rock, 

1998; Simons & Chabris, 1999). Furthermore, a robust phenomenon reported in both 

the vision science and medical literature is the effect of prevalence, where low target 

prevalence (i.e. rare targets, few cases are truly abnormal) results in elevated miss rates. 

(Evans, Birdwell & Wolfe, 2013; Mitroff & Biggs, 2014; Wolfe, Horowitz & Kenner, 

2005). Given much radiology search is within a screening environment, where the 

prevalence of an abnormality is very low, the effect of rare prevalence is likely to 

contribute to high rates of miss errors. The evidence that errors clearly occur, and the 

cost of such errors in both financial and social terms, makes it crucial to understand the 

processes underpinning visual search in medical images.  

 Anatomically speaking, the human body is complex and variable: both 

externally (e.g., height) and internally (e.g., breast tissue), there is considerable 

variation between individuals. In mammograms, the breast parenchyma is highly 

variable with regards to level of breast density (mammographic breast density: MBD). 

Dense tissue is comprised of normal fibroglandular tissue and appears radio-opaque on 

a mammogram, whereas tissue that is comprised of fat appears radio-lucent. In practice, 

radiologists use density to characterise the complexity of the breast parenchyma (Ray, 

et al., 2016). It has been shown that as MBD increases there is an increased risk (4-6 

fold) of breast cancer (Boyd, et al., 2010). This is most likely due to the combined 

effects of lower radiologists’ sensitivity when the mammogram is complex; this could 

mask and/or distract from existing pathology, thus reducing accuracy; and with the 
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increased amount of breast tissue present in a dense breast in which a cancer could 

occur. These combined effects negatively impact a patient as they can limit early 

detection of breast cancer and subsequent treatment (Al-Mousa, Ryan, Mello-Thoms & 

Brennan, 2014).  

The focus of this thesis is on the cognitive mechanisms that underpin visual 

search in medical images by radiologists. Such searches, however, share key 

characteristics with laboratory visual search tasks, which have been well studied for 

decades. I therefore start my literature review by outlining the factors that are known to 

strongly impact on visual search. I then focus in on previous medical imaging literature 

before outlining my major research questions and the structure of the thesis.  

 

1.1  Overview  

The moment we wake up each day, we are required to process a large amount of 

sensory information in order to perform tasks and attain our goals. Looking for a target 

amongst distractors is an essential and often challenging task that we routinely conduct 

throughout our daily lives. In order to find a coffee cup or our car keys, we must engage 

our attention, actively scan our environment, whilst ignoring irrelevant items in our 

surrounds. Object recognition is capacity limited, so we need to be able to search and 

direct our attention in order to function (Wolfe, Võ, Evans, & Greene, 2011). Selective 

attention is one way we can filter the incoming information, and is actively engaged 

when conducting visual search tasks (Lamy, Zivony, & Yashar, 2011).  

Recent work in visual search has linked decades of laboratory studies using 

perceptually simple displays (e.g., Posner, 1980; Treisman & Gelade, 1980; Wolfe, 

1994) with real-world search tasks across a wide range of domains. There are many 
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professionals who rely upon visual search to effectively carry out their routine work. 

These include airport luggage screening, where images of luggage are searched for 

weaponry and prohibited items (Wolfe, et al., 2005), air traffic surveillance and 

aeroplane piloting, where ever-updating and moving displays are monitored (Lopez, 

Previc, Fischer, Heitz and Engle, 2012), and central to the theme of this thesis, medical 

imaging, where a radiologist searches an image or scan for abnormalities  (Drew, et al., 

2013; Evans, Georgian-Smith, Tambouret, Birdwell & Wolfe, 2013; Evans, Haygood, 

Cooper, Culpan, & Wolfe, 2016; Kundel & Nodine, 1975; Kundel, Nodine, Krupinski 

& Mello-Thoms, 2008). Studying real-world visual search is crucial as even the 

experienced observer has perceptual limitations and a better understanding of these 

limitations will help improve training and practice of these tasks.  

Evidence from both the natural scene and medical imaging literature has 

demonstrated that a large amount of information is processed in the first glance at a 

scene (e.g., Kundel & Nodine, 1975; Potter, 1976, Thorpe, Fize & Marlot, 1996). 

Understanding this ability is critical as important decisions (e.g., medical diagnosis) 

often depend on this early processing. An established theory in the medical perception 

literature proposes that the information extracted from the initial signal, that indicates 

an abnormality, guides subsequent search to the location (Kundel & Nodine, 1975). 

However, recent studies report that this signal does not guide the observer to where an 

abnormality is located, but rather changes the observer’s search strategy (Evans, et al., 

2013; Evans, et al., 2016). This recent challenge to the classic model of radiologist 

search deserves full consideration, as it has important theoretical implications.  

The primary aims of this research are to investigate and understand the 

processes that underpin important diagnostic tasks related to medical images and to 

explore visual search expertise in the initial stages of perception. To this end, my 
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research comprises three series of experiments exploring the information that can be 

extracted from images regarding the presence and location of a key target (e.g., a mass 

in a mammogram). Specifically, I explore the time course of target detection and 

localisation (in both natural scenes and medical images), the effect of the visual 

complexity of a display, and the mechanisms that drive attention.  In this introductory 

chapter I start by taking a step back by discussing visual attention and search and look 

at some of the factors that influence the allocation of visual attention. Then, I introduce 

some of the models based on other stimulus sets. I review studies exploring fast visual 

processing and expertise where I specifically focus on object detection and localisation 

(in scenes) and abnormality detection (in medical images). Next, I introduce the 

dominant models of radiologist visual search. I then return to some of the specific 

issues in radiology that I will be addressing in this thesis. I conclude this chapter by 

examining recent findings that raise some challenges to how a radiologist searches 

medial images that are driving some of the major research questions in this thesis and 

outline how I have approached these questions in this thesis.   

 

1.2  Visual attention and search 

Attention is capacity limited: we simply cannot attend to and process everything 

that arrives at our visual system at any one time. Many theorists have described a 

‘bottleneck’, where information arrives in parallel but only the relevant information is 

filtered through for processing (although there is debate about the stage at which this 

filtering occurs; Broadbent, 1958; Treisman, 1964). The factors which drive our 

attention act to select and prioritise this information for processing. There is a dynamic 

interplay between what is happening in the environment and our internal state: attention 
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can be guided by bottom-up (exogenous) information from the stimulus as well as by 

top-down (endogenous) information about one’s goals (Jonides, 1981; Posner, 1980). 

The interaction between exogenous and endogenous influences on attention determines 

what information passes through into the limited-capacity system. The research in this 

thesis relates to spatial attention, the directing of attention to a location in space to 

select and prioritise relevant information.  

Visual search is an excellent paradigm for measuring the effect of different 

factors on the guidance of spatial attention. A classic example that illustrates many of 

these factors is the well-known puzzle, Where’s Waldo? (Hanford, 1987; Figure 1). The 

target of the search is a character that is comprised of the unique combination of certain 

features such colour and shape; Waldo wears a red striped shirt and blue jeans. Many 

other items in the display share these features, which makes the task difficult. This 

illustrates target-distractor similarity, a factor that effects the degree to which target 

features can be used to guide attention efficiently. Prior research has shown that target 

salience is higher and search efficiency increases when targets are dissimilar from the 

distractors in a display (Duncan & Humphries, 1989; Koch & Ullman, 1985; Koehler, 

Guo, Zhang, & Eckstein, 2014). Other factors that increase the difficulty of finding 

Waldo are the complex scenes with many heterogeneous objects. Research with 

perceptually simple displays has demonstrated the strong effect that increasing the 

number of distractors can have on searches for targets that are not defined by a unique 

feature (setsize: Treisman & Gelade, 1980; Wolfe, 1994), distractor heterogeneity 

(Duncan & Humphries, 1989), and additional visual information (clutter: Rosenholtz, 

Li, Mansfield & Jin, 2005). These factors have been studied more systematically in 

classic laboratory visual search tasks which I will now review.  
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In vision science, visual search is studied experimentally in a laboratory setting 

using well-controlled displays and computer-based tasks. In a typical visual search 

paradigm, observers are asked to find a target among distractors in a visual display that 

stays on until response (free viewing); usually 50% of displays contain a target. 

Measures include accuracy and reaction time to target detection report. Figure 2 shows 

Figure 1.  Example of the pictorial visual search puzzle Where’s Waldo 

(Downloaded from Google images). Note: the red circle surrounding Waldo is for 

illustration purposes only.  
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a basic visual search array (for target-present displays) and illustrates key factors that 

make visual search difficult.  

Based on decades of visual search data, we know that some features result in 

‘pop-out’ search. Stimulus features, such as unique colour and orientation, can guide 

attention in a bottom-up manner (Posner, 1980). Figure 2a demonstrates an array where 

the target (red letter L) differs from the distractors (black Ls) by a single feature. ‘Pop-

out’ or highly efficient search is not affected by the number of distractors in the array. 

Stimulus driven or bottom-up guidance will attract visual attention to certain aspects of 

a display or scene, resulting in a highly efficient search.  

Attention and search can also be guided by top-down factors, which allows                             

search in situations where the target does not ‘pop-out’. Figure 2b shows an example of 

a type of serial search where attention has to be allocated item-by-item to find the target 

(black T) among the distractors (black Ls) (Triesman & Gelade, 1980; Wolfe, 1994). 

Search for a target defined by a conjunction of features tends to be slower than feature 

search and is affected by the number of distractors (Treisman & Gelade, 1980; Wolfe, 

1994: Wolfe & Horowitz, 2017). There can, however, be guidance to some features, 

which increases the efficiency of search over a truly serial search (e.g. feature-based 

guidance to red, Figure 2c. For target absent displays, conjunction search is slower than 

target present displays, as it takes more time to actively search all the items instead of 

stopping once the target is found, which takes, on average, a search of half the items in 

the display (Wolfe, 2012). There have been many hundreds of studies using this basic 

paradigm to explore the way different factors influence visual search efficiency.  
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There are a number of key factors that affect the speed with which a target can 

be located. Top-down attentional control settings can be quite complex and include 

feature guidance, scene guidance, prior knowledge and item value (Wolfe & Horowitz, 

2017). In feature guidance, when you are looking for a particular target, features of that 

target are boosted in a top-down manner that can guide attention (Jonides, 1981). For 

example, searching for a target you know is red results in feature-based attentional 

enhancement of neural responses to items throughout the visual field that share the 

target colour, providing a mechanism for guided search (Wolfe, 2012). Actually, even 

search for a target defined by a unique feature includes a top-down component: the task 

is to detect that salient target, making it task-relevant and therefore presumably 

Figure 2. Basic visual search paradigm illustrating target present displays. (a) Illustrates 

a ‘pop-out’ search: the target (red L) varies on a unique feature.; (b) Illustrates a type of 

serial search: the target (the letter T) is presented among many distractors (Ls); (c) 

Illustrates guided search using feature based attention: the target is a red T (adapted 

from Wolfe & Horowitz, 2017).  
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facilitated by both bottom-up and top-down guidance. Figure 3 provides an example of 

targets that evoke top-down feature and bottom-up guidance in a visual search.  

   

 Folk, Remington & Wright (1994) describe situations where attentional control 

settings can be set or ‘tuned’ to specific features such as colour, motion or onset. They 

based this on results of experiments in which observers were instructed to attend to a 

critical feature of the target (such as colour). They reported that under these 

circumstances other features (such as motion or onset) failed to capture attention. This 

‘colour set’ can also be set to within-colour dimensions, meaning that if red is the 

critical feature then this will capture attention and other colours can be filtered out 

(Folk & Remington, 1998). These results could also be considered within a general 

Figure 3: Illustration demonstrating bottom-up and top-down guidance. If the 

target is the white square with a black border set among grey circles and shapes, it 

can be found using bottom-up guidance as it is highly dissimilar to the distractors. 

If one is searching instead for the light grey circle, top-down guidance can be used 

to restrict search to the sub-set of light grey round-ish objects (from Wolfe, Evans, 

Drew, Aizenman & Josephs, 2016).  
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similarity account: distractor items that are more similar to the target capture attention 

more than items less like the target (Duncan & Humphries, 1989). For example, search 

for an upright L among 180° and 270° rotated Ts is slower compared with 0° and 90° 

rotated Ts, due to the similarity in the length of the letter strokes in the 180°/270° 

condition (Duncan & Humphries, 1989). More recently, Becker (2008) proposed that a 

relational set or contextual properties of the target act to guide visual attention in a top-

down manner. In a series of attention cueing experiments, attention was shown to be 

tuned to relational properties of the target (e.g., smaller) when compared with the 

distractors. Furthermore, that knowledge about these relations develop with experience 

(Becker, Folk & Remington, 2010). These findings highlight how fine-tuning of 

attention to features to match task requirements, and previous experience with a task, 

can both influence the allocation of attention.  

Another important factor that has been added to attentional models of visual 

search is scene-based guidance. This is based on the idea that attention allocation is 

influenced by our prior knowledge about the spatial relations of objects in scenes. 

Natural scenes are complex but the items within them are not randomly located. We 

have a rich and extensive experience with scenes; for example, rules, knowledge and 

experience has taught us that a toaster is usually located on the kitchen bench (Chun & 

Jiang, 1998; Wolfe, et al., 2011). Evidence of top-down, scene structure guidance can 

be found in the scene congruency literature which has shown that observers are faster at 

scene categorisation when the objects contained within the scene are consistent with the 

surrounds (Davenport & Potter, 2004; Joubert, Rousselet, Fize, & Fabre-Thorpe, 2007). 

For instance, a car on a highway is consistent with our expectations, whereas a car in 

the sky is not. In the example of natural scenes, visual search is driven by searching for 
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the most distinctive features of a target in the locations of scenes most likely to contain 

the target, based on prior experience of similar scenes (Wolfe et al., 2011). Thus, when 

we move beyond simplistic displays, additional sources of guidance come into play. 

Prior experience with specific search displays can also influence how attention 

is guided (Wolfe & Horowitz, 2017). A number of studies describe search facilitation 

by repetition, such as implicit priming for previously seen stimuli (Becker et al., 2010; 

Kristjánsson, 2006; Lamy, et al., 2011). Priming occurs when search improves (faster 

responses) on a display when the location of distractors and the target is repeated over 

trials, despite the participants being unaware of this. Chun and Jiang (1998) describe 

this search facilitation as contextual cueing. In a series of well-designed studies with 

tight experimental control, observers were presented a search display with varying 

spatial layouts of targets (Ts) among distractors (Ls). Half of the layouts were repeated 

across the experiment with the spatial location of the target constant, but observers were 

unaware of this repetition. The findings showed that on the repeated trials the target was 

localised and discriminated faster suggesting that target context (spatial relations) was 

implicitly learned over the course of the experiment. These experiments show that 

attention can be guided and responses biased by top-down factors based on previous 

exposure.  

Further evidence for how priming influences search and attention also comes 

from studies using attentional cueing paradigms. Here a lateralised cue is specified in a 

spatial location preceding the subsequent display that contains a search stimulus. The 

previously seen prime acts to shift the observer’s attention to the location of the target. 

Attention can be shifted by exogenous cues (e.g., salient prime) and endogenous cues 

(e.g., informative prime). When an observer is primed or cued by stimuli, subsequent 

reaction times (RTs) to a target in that same location (valid trials) are shorter than 
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targets in different locations (invalid trials). Performance is also facilitated for validly-

cued compared to uncued or neutrally-cued trials (Becker et al., 2010; Posner, 1980). 

Priming could potentially occur in number of real world situations that could affect the 

performance on important tasks such as medical screening. In Chapter 4, I have 

investigated priming on both naïve and expert observers (radiologists) using medical 

images as it is important that we understand this aspect of attention guidance in applied 

contexts.  

There have been several studies that show that voluntary attention and search 

can be influenced by reward and item value (e.g., Della Libera, & Chelazzi, 2006). For 

example, in Anderson, Laurent & Yantis (2011), observers searched for red and green 

targets interspersed between non-coloured targets. At the end of each trial, feedback 

was provided along with the accumulation of a monetary reward for correct responses. 

If the observers were rewarded more for red items, then attention was guided to red, 

even when the task was to find a different target. In addition, it has been shown that this 

type of learning persists over time (Anderson & Yantis, 2013). Perhaps in an applied 

setting, such a medical imaging, finding a cancer and thus preventing disease 

progression is reward alone. However, this intriguing aspect of how attention can be 

guided is beyond the scope of this thesis.  

In summary, there are a number of factors that drive our selective attention from 

both the environment and our internal state. These include bottom-up and top-down 

factors which interact and lead us to attain our goals. These have been studied 

extensively in laboratory settings using typical visual search displays (e.g., Chun & 

Jiang, 1998; Duncan & Humphries, 1989; Folk et al., 1994; Koch & Ullman, 1985) and 

natural scenes (e.g., Wolfe, et al., 2011) but less so in medical imaging. It seems 

reasonable that the basic cognitive underpinnings of attention operate in the same way 
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regardless of whether you are viewing a simple display, a natural scene or a medical 

image, but there are certain factors that may be more or less influential in different 

display types, and these could be domain specific. Thus, it is important to test how the 

knowledge gained in highly controlled laboratory stimuli generalise to more complex 

medical images.  

 

1.3  Models of visual search  

Early models of attention proposed two types of visual processing that occur in 

parallel (Neisser, 1967). Treisman and Gelade’s (1980) influential Feature Integration 

Theory (FIT) proposes that a first preattentive stage is automatic, unconscious and 

effortless, where features available in parallel across the display are ‘mapped’. As 

reviewed in section 1.2, basic features (e.g., colour or orientation) seem to be able to be 

detected without attention and will ‘pop out’ because they differ in a basic feature from 

their surroundings (e.g., red circle among blue circles). A second stage applies focused 

attention to detect a combination of features across feature maps (‘conjunctions’; e.g., 

the conjunction of colour and shape required to detect a red circle among blue circles 

and red squares). This type of search occurs serially (item-by-item) and targets take 

longer to be detected when set size increases. FIT (Treisman & Gelade, 1980) was 

fundamental in providing an understanding of how attention is allocated. These early 

influential models of attention provided a structure to understand how we attend to 

relevant items in our environment and laid the foundation for the development of 

further models.  

All search tasks require attention to identify a target, and it has been proposed 

that the information extracted in the first stage can be used to ‘guide’ search leading to 
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identification (Wolfe, 1994). Originally developed over twenty years ago, Wolfe, Cave 

and Franzel (1989) proposed an alternative model to FIT (Treisman and Gelade, 1980), 

leading to Wolfe’s (1994) influential model of Guided Search. This model extended the 

two-stage architecture of FIT (Treisman & Gelade, 1980) by adding the core principle 

that information from the first stage could guide attentional deployments in the second 

stage. Basic visual attributes, such as target size and orientation, could be used by other 

processes to constrain attentive search to likely target locations. This model was 

subsequently built upon in Guided Search 4.0 (GS4: Wolfe, 2001). The architecture of 

GS4 describes a non-selective pathway which performs a limited analysis of the entire 

scene in parallel, the contents of which subsequently guides attention. The type of 

guidance the meaning of a scene provides is ‘scene-based’ guidance. Occurring early in 

the visual system, this simplistic pathway allows for the rapid global assessment of an 

entire image and the processing of scene gist. Basic features such as orientation or the 

distribution of spatial frequencies can be processed, but it lacks the precision required 

for object recognition. A selective pathway recognises objects based on a limited subset 

of the stimuli. GS4 (Wolfe, 2001) has been applied to natural scenes into the ‘Two-

pathway architecture of visual processing’ (Wolfe, et al., 2011). Figure 4 (from Wolfe 

et al., 2011) illustrates this model.  The non-selective pathway is similar to preattentive 

processing providing a route to semantic scene information, but instead it occurs in 

parallel with the selective pathway and together they result in a successful search.  
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Although the non-selective pathway does not support object recognition, it may 

provide estimates such as spatial layout of the scene and how the items contained 

within it are distributed. This may provide a possible explanation for how the visual 

system is capable of tasks such as rapid detection of masses within medical images by 

experts (e.g., Evans et al., 2013; Evans et al., 2016) and pathology slides (Houghton, 

Smoller, Leonard, Stevenson & Dornan, 2015). These estimates guide the resources of 

the selective pathway allowing the identification of relevant features which are bound 

and recognised leading to precise object recognition (Wolfe, et al., 2011). Overall, these 

models describe the framework for the mechanisms which guide the deployment of 

Figure 4: A two-pathway architecture for visual processing. The non-selective 

pathway can extract scene statistics but lacks the precision for object recognition. The 

selective pathway can bind features and recognise objects. Scene guidance is also 

incorporated into the model (from Wolfe, et al., 2011).  
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attention and might be useful for understanding applied visual search particularly for 

those whose task is to interpret medical images.  

 

1.4 Fast visual processing and expertise  

From the models of search reviewed above, it is clear that in the early stages of 

vision a large amount of information is processed rapidly. An exposure duration of 

100ms is sufficient for observers to extract the basic meaning of natural scenes (e.g., 

indoor versus outdoor; Potter, 1976). When stimuli are backward masked, a duration of 

20ms is enough to distinguish between scene categories at the superordinate level (e.g., 

man-made versus natural) and basic level (e.g., coast versus city) (Greene & Oliva, 

2009; Joubert, et al., 2007). It is widely accepted that rapid scene categorisation is 

based on a global summary or ‘gist’ (Oliva, 2005). Described as the earliest meaningful 

stage of scene perception, after or during a glance, gist captures the global properties 

and overall spatial layout of a scene (Oliva, 2005; Torralba, Murphy & Freeman, 2010). 

These properties are based on statistical and structural cues in the scenes and stimulus 

based information such as the low-level features within the scene (e.g., orientation and 

size). Objects can also be detected at brief durations: when primed with a predefined 

target category (e.g., animal or truck), detection has been reported at exposures of 20-

25ms, albeit unmasked (Thorpe et al., 1996; VanRullen & Thorpe, 2001) and observers 

tend to extract low-level visual information such as size, motion and orientation rapidly 

(Hidalgo-Sotelo, Oliva & Torralba, 2005; Greene & Oliva, 2009; Wolfe, et al., 2011). 

There is also evidence that objects and their surrounds are processed simultaneously 

(Davenport & Potter, 2004). After 80ms exposure, detection is facilitated when the 

object is semantically related to or consistent with the scene background (Davenport & 
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Potter, 2004). The opposite is also true: we are faster to categorise a scene if the objects 

within are consistent (Davenport & Potter, 2004; Joubert et al., 2007). These studies 

provide support for the notion that observers are processing the scene globally and are 

able to use their contextual knowledge with very brief presentations when making rapid 

decisions.   

It has been proposed that the ability to extract information rapidly from a scene 

is the result of our experience with our environment (Drew, Evans, Võ, Jacobson & 

Wolfe, 2013; Wolfe, et al., 2011). Simply due to our day-to-day interaction with our 

surrounds, natural scenes are stimuli in which we are all expert. This ‘expertise’ means 

we may have fined tuned our visual perception skills after years of interacting with our 

surrounds, which supports the rapid processing of scenes.  

 In a number of domains, it has been suggested that experts develop perceptual 

and cognitive skills that are tuned to their task (Nodine & Krupinski, 1998), and where 

a superior ability to encode large scale visual patterns develops (Drew, et al., 2013). 

Studies in the chess playing literature provide an excellent example of this type of 

expertise: experienced players (but not novices) are able to recognise and recall chess 

positions in a glance (Charness, 2014). After seeing a 5 second layout of pieces on a 

board, master chess players can accurately recall the test-game positions far better than 

less skilled players. Interestingly, if the chess pieces are randomly placed around the 

board, analogous to a visual search display, this performance is reduced. It has been 

proposed that experts can extract information by grouping the features of the layout 

rather than at the individual level (Chase & Simon, 1973).  This suggests that experts 

use their fine-tuned perceptual and cognitive skills to process the layout/scene globally 

to reach a decision. These studies show that observers who have expertise in a 
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particular domain can extract a large amount of relevant information from a display in a 

short period of time.  

I now move to review the body of research that suggests an experienced 

radiologist can detect an abnormality after viewing images for less than one second 

(Kundel et al., 2008; Kundel & Nodine, 1975; Evans et al., 2013; Evans et al., 2016). 

One must note here that no one would expect a radiologist to base their diagnosis on 

this brief glance and this is not the typical way radiologists read images in clinical 

practice. There are other image projections, previous imaging and clinical history 

available to a reporting radiologist who would conduct a review under free-viewing 

conditions. However, these studies can provide valuable insights into the type of 

information available in this initial ‘global’ signal, and thus early visual processing.  

As reviewed above, experts are able to rapidly extract meaning from a display 

by processing what they see globally (e.g. Charness, 2014). It is plausible that a 

radiologist who has experience in viewing medical images is using holistic or global 

processing to make diagnostic decisions after seeing an image briefly. Kundel and 

Nodine (1975) showed that experienced radiologists were 70% accurate in interpreting 

chest radiographs after seeing the image for only 200ms. Studies recording eye 

movements have shown that expert radiologists fixate faster and more accurately on an 

abnormality in mammographic images than less experienced observers, and use fewer 

eye movements to do so (Kundel & La Follette, 1972; Kundel & Nodine, 1975). Kundel 

et al. (2008) showed that within 300ms on average, mammographic readers fixate upon 

67% of breast cancers. Others have shown that in around 1-2 seconds of image 

presentation experts fixate on true abnormalities and the majority of their subsequent 

scanning is to confirm that there are no other lesions. This follow-up takes about 5-10 

seconds after initial fixation, after which a diagnostic decision is reached (Mello-
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Thoms, et al., 2005). These studies provide evidence that an enormous amount of detail 

can be extracted in the first glance, especially for those with domain specific expertise 

such as a radiologist.  

 Like many other visual disciplines, medical image interpretation not only 

requires years of training, viewing hundreds of images, but also ongoing practice. For 

example, in clinical practice, breast radiologists who report mammograms in screening 

programs interpret 2500-4000 cases/year (Rawashdeh, et al., 2013). As expertise 

evolves, Kundel and Nodine (1975) propose that a radiologist shifts the perceptual 

mechanisms used in image interpretation from recognition-by-parts (feature-based) to 

the holistic recognition-by-whole. Over time, after viewing hundreds of images, it has 

been hypothesised that a type of perceptual fine-tuning for relevant features occurs 

(Nodine & Krupinski, 1998), which is similar to what has been reported in other 

domains. In the case of an abnormal finding, it is thought that radiologists recognise 

larger perceptual units as chunks and their initial response is based on a global pattern. 

The ‘patterns’ extracted in the first glance contain relevant information that is then 

compared with a normal anatomical template, stored in memory (Nodine & Mello-

Thoms, 2010). Perceptual expertise is a learned skill that radiologists develop over time 

and with experience. Understanding the processes involved in reaching ‘expertise’ 

could help inform trainee radiologists.  

There is evidence that the information obtained in a single glance varies 

according to experience (Nodine, et al., 1999). Recently, others have also shown that 

experienced radiologists outperform novices on abnormality detection in mammograms 

(Evans et al., 2013) providing further support for domain specific expertise in 

radiology.  Figure 5 shows the typical scanning pattern of both an experienced breast 

reader (a) and a trainee (b) (from Kundel & La Follete, 1972). This shows the efficient 



Chapter 1 

 

 

24 

search pattern of an expert who adopts a ‘look – detect – scan’ of the mammogram. The 

abnormality is fixated upon quickly, with higher accuracy and with less fixations. It 

may be that the expert is able to use the initial or holistic representation to allow for this 

accuracy and efficiency. This could occur as the result of years of training and 

perceptual learning about abnormal features (the target) and the normal background in 

the surrounding breast tissue. The less efficient search pattern for a trainee shows they 

adopt a ‘scan – look – detect’ strategy, making more fixations and spending more time 

searching the entire image (Kundel et al., 2008).  These studies show that experience 

facilitates search efficiency.   

 

 

Figure 5: Mammograms showing the typical search patterns of radiologists. (a) An 

experienced radiologist who adopts an efficient search strategy; (b) A trainee 

radiologist who adopts a less efficient search strategy. Each small circle shows a 

fixation and the large circles represent the region of abnormality (from Kundel & 

La Follete, 1972). 
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As reviewed above, radiologists extract a large amount of information in the 

early stages of visual processing. For an experienced radiologist, there is some evidence 

that what is processed in the first second influences the overall diagnosis. In a study that 

investigated expert radiologists, Mello-Thoms (2009) presented two view digital 

mammograms (cranio-caudal and medio-lateral) and asked the radiologist to make a 

detection response (is there a mass or not?) followed by a localisation response (click 

on the mass) in both views under free viewing conditions.  The accuracy of the initial 

localisation decision affected their subsequent decision. For instance, if the first 

decision was a true positive (clicking on a mass), the probability they would make a 

further correct decision on the second view was 94%. If the first decision was incorrect 

(e.g., false positive), the probability that the radiologists would make a further correct 

decision was only 6%. Mello-Thoms (2009) suggests that the observer developed a 

‘blindness’ to the features of a true lesion and suggest that the first response reflects 

holistic/global processing without focused search.  However, it is important not to place 

too much emphasis on this interpretation as the viewing time was unconstrained and 

there was no specific manipulation ensuring that this was not indeed an attentive search. 

Moreover, this study used a small sample size (n = 4) and only one classification of 

breast pathology. This study proposed the first decision made affects the subsequent 

decision, albeit at longer viewing durations. The claim that radiologists extract 

information in the first second that influences diagnosis, together with the evidence 

from the basic vision literature about the enormous amount of visual processing that 

occurs in the first glance, highlights the importance of understanding these initial stages 

of visual search.   
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1.5  Models of the stages of radiologist visual search  

Over 40 years ago, Kundel and Nodine (1975) proposed a model of the stages of 

radiologist visual search that has become a well-accepted model in the medical imaging 

field. This model describes two distinct stages leading to a diagnostic decision. During 

the first, a global impression or ‘gestalt’ of the image is compared with ‘normal’ 

information, or a schema, stored in long term memory. This schematic representation is 

thought to have developed as a result of viewing large numbers of negative cases 

relative to abnormal cases (Kundel & Nodine, 1975). If a perturbation is noticed, this 

information constrains and guides subsequent search in the second stage to the region of 

an abnormality. In this model, location information must be present in the initial view 

in order to guide search (Kundel & Nodine, 1975; Nodine & Mello-Thoms, 2010). 

Figure 6a shows the Kundel and Nodine (1975) model of visual search, illustrating that 

the initial percept establishes content which guides subsequent search.  

 Recently the Kundel and Nodine (1975) model has been challenged by Evans 

and colleagues (2013; 2016). These authors argue that the initial signal may alert the 

radiologist with an overall ‘hint’ or ‘hunch’ that there is an abnormality. This alert, 

rather than guiding search to its location, changes the search strategy to a more 

thorough search. This signal could be supported by the rapid extraction of basic 

information such as the summary statistics of an image, within the non-selective 

pathway in the ‘two-pathway architecture for visual processing’ (Wolfe et al., 2011) (as 

reviewed in section 1.3). Evans and colleagues (2013; 2016) propose that this pathway 

could signal an abnormality, but fine detail, such as its location, becomes available 

along the selective pathway at a later period.  

Figure 6b shows the proposed Evans et al. (2013) model illustrating this change 

in search strategy. In the next section, I review the studies that form the basis for this 
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model in detail, as they are the starting point of my own research. To summarise, 

however, they conducted a series of experiments where radiologists viewed rapidly 

presented mammograms (250ms – 2000ms) and were asked to make a detection and 

localisation decision. They found an apparent dissociation between the ability to detect 

a target and the ability to locate it. Although the authors acknowledge that in some 

cases the initial signal will guide the deployment of attention, they argue that a 

dissociation between abnormality detection and localisation suggests that detection of 

an abnormality could be supported by a global/holistic signal. As I discuss in the next 

section, the key issue is whether or not Evans et al. (2013) and Evans et al. (2016) have 

provided good evidence of such a dissociation. The results presented in this thesis 

inform this debate and I return to these models in the general discussion (Chapter 5).  

 

Figure 6. Basic representations of models of the stages of visual search leading to 

diagnosis in radiology. (a) Kundel and Nodine (1975); (b) Evans and colleagues 

(2013). The critical difference is whether the global response/signal contains 

localisation information (Kundel & Nodine, 1975) or not (Evans et al., 2013).   
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1.6 Rapid target detection and localisation  

  When we glance at a scene, we are not just interested in what is there, but also 

where each object is so that the appropriate action can be made. There is a large body of 

literature on target/object detection after fast presentations, some of which I have 

reviewed above, but less is known about the degree to which information about location 

is available in brief displays. Although it seems intuitive that when we see something 

we can also say where it is, there are suggestions in the change detection and medical 

imaging literature that detection and localisation do not necessarily go together (e.g., 

Evans et al., 2013; Howe & Webb, 2014). It is important to find out whether 

localisation and detection can be dissociated as this has theoretical implications and 

might inform visual search models both in general, and the models of diagnostic 

process from visual search of medical images in particular.   

Compared with target detection, localisation has scarcely been investigated in 

rapid presentations, so we know much less about this. However, within the change 

detection and medical imaging literature there are suggestions that target detection and 

localisation are dissociable (Evans, et al., 2013; Evans, et al., 2016; Howe & Webb, 

2014; Rensink, 2004). In a change detection paradigm, Howe and Webb (2014) showed 

observers a photograph of a face for 1.5 seconds, followed by a 1 second blank, and 

then another version of the same photograph with a single changed feature (e.g., 

removal of glasses). The task was to indicate if a change had occurred and if so, to 

select the change from a list of nine possible options. The results showed that a change 

could sometimes be detected in the absence of identification. Howe and Webb (2014) 

then considered whether these trials could be simply the result of correct guesses. They 

tested the influence of possible observer response bias by deriving an equation to 

explore observer guessing. This calculates the degree to which such trials (detection in 
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the absence of identification) could occur by a ‘hypothetical observer’ with no ability to 

detect changes without also being able to identify them. This model of observer 

behaviour did not provide an adequate account for the proportion of trials in which 

detection occurred in the absence of identification. The authors therefore concluded that 

the results cannot be explained by guessing suggesting there is apparent lack of 

information about the identity of the changes. There are two alternatives here. First, 

there truly was no identification information in the presence of true detection (a 

dissociation between detection and localisation). Alternatively, the task failed to 

measure localisation with sufficient sensitivity. As the authors acknowledge, low 

precision of the localisation response could be a possible explanation for the apparent 

‘lack of identification’.  

There are a number of studies in the change detection literature which have 

explored the relationship among detection, localisation and identification. Fernandez-

Duque & Thornton (2000) describe implicit localisation where localisation is above 

than what is expected by chance, even though the observers were unaware of the 

change. Others argue that that implicit change detection can guide attention to the 

change (Smilek, Eastwood, & Merikle, 2000). Following a series of experiments, 

Mitroff, Simons and Franconeri (2002) argue that successful change detection requires 

that the observer’s attention be allocated to its location both before and after the change. 

In a typical flicker task, observers shift their attention from item to item searching for 

the change. Here, they argue that attention is not guided by the actual change per se 

rather the properties of the presented scene (e.g., salient regions, Rensink, O’Regan & 

Clark, 1997). These studies challenge those which have argued that detection and 

localisation are dissociable (e.g., Evans et al, 2013). Determining whether detection is 

accompanied by localisation is a key focus of this thesis. 
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The other key set of studies suggesting a dissociation of detection from 

localisation was conducted with medical images. Evans et al. (2013) and Evans et al. 

(2016) showed that when observers were shown mammograms for 500ms, radiologists 

(but not novices) could discriminate normal from abnormal images but localisation 

performance was consistently poor. Analogous to Howe and Webb (2014) the authors 

interpret their findings as implying that target detection is possible without localisation 

under some circumstances. In Evans et al. (2016) radiologists viewed target-present and 

target-absent mammograms for 500ms where the target-present images contained subtle 

masses and architectural distortions. The results showed that mean d¢ for detection was 

1.16, significantly above chance (0), whereas localisation accuracy was not 

significantly greater than that expected by chance (6%). In subsequent experiments, 

Evans et al. (2016) suggested that diagnostic judgements could be made based on a 

whole and cut out patches from thus far normal mammograms where the contralateral 

side contained an abnormality. From this, they suggested that a global signal spread 

across the entire breast could support detection without carrying the information needed 

for localisation.  

There are several issues with the interpretation of the Evans et al. (2013) and 

Evans et al. (2016) results. First, they used frequentist analyses and their main result 

rests on a null effect. This can only show whether performance was significantly above 

chance, not whether there is a dissociation between detection and localisation. Second, 

their conclusions were based on summary statistics (e.g., average d′ and accuracy) 

where in some cases d′ was low (e.g., Evans et al. 2016, Experiment 2, average d′ = .59 

for the contralateral breast condition). It is possible that these results may have been 

driven by a few of the images. To fully test such a question, one needs to rule out any 

other explanation for the apparent lack of localisation in the key images (i.e., those in 
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which detection was accurate but localisation was not). These factors include response 

imprecision (coarse localisation information may be present) and correct guessing for 

the detection response (as outlined in the Howe and Webb (2014) paper reviewed 

above). Exploring these issues is a major theme of my work in Chapter 3.  

Overall, a theme that runs through this thesis is the thorough examination of the 

claims that detection and localisation are dissociable at brief durations (e.g., Evans et 

al., 2013). I do this using natural scenes (Chapter 2) as these are an excellent model to 

use when investigating these processes, as well as medical images (Chapters 3 and 4), 

and using different paradigms: variants on brief visual search and attention cueing. 

   

1.7 Overview of thesis 

1.7.1 Chapter 2: The time course of rapid target detection and localisation  

 Visual search in natural scenes and medical images depend on the same 

underlying processes, making natural scenes an ideal model for radiologists’ search in 

medical images. As reviewed above, previous studies have shown that a large amount 

of information can be extracted after viewing a natural scene briefly, such as scene 

categorisation (Greene & Oliva, 2009; Joubert, et al., 2007; Potter, 1976) and object 

detection (e.g., Thorpe, et al., 1996; VanRullen & Thorpe, 2001), but less is known 

about object localisation, which is important for goal-directed actions. This fast-visual 

processing has also been demonstrated in medical image interpretation (Evans, et al., 

2013; Evans, et al., 2016; Kundel & Nodine, 1975; Nodine, et al., 1999). As previous 

studies in the medical domain have suggested no evidence for localisation of 

abnormalities at brief exposure durations even when detection is possible (Evans et al., 

2013; Evans et al., 2016), the aim of the experiments reported in Chapter 2 was to test 
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whether a target could be localised in brief displays and to investigate its time course 

along with target detection. This chapter is not about natural scenes per se, but these are 

useful stimuli to explore this question, particularly as scene categorisation provides an 

independent verification that ‘gist’ has been extracted.  

I presented natural scenes that varied on different sub-categories within the 

superordinate categories of natural and man-made. Using a two-alternate forced 

paradigm (2AFC) to reduce response bias, a target Gabor was superimposed (location 

randomised) and presented within either Scene 1 or Scene 2, which were presented for 

durations of 33-199ms. The observers were asked to detect the Gabor and then to 

localise it. In two experiments, I showed that a target could be localised when viewing a 

scene at very brief exposure durations (33ms). Experiment 2 was motivated from the 

findings from Experiment 1, which suggested that clutter mediated performance. It is 

well known that clutter impedes visual search during free viewing (Rosenholtz, et al., 

2005), so we manipulated clutter using the computational definition of enclosure for 

natural scenes (Oliva & Torralba, 2001). The results showed target detection and 

localisation accuracy was higher for scenes that were open (e.g., coast) rather than 

closed (e.g., city centre). A plausible interpretation is for the open scenes, the Gabor 

may have provided a strong bottom-up signal, appearing salient. Overall the results 

presented in Chapter 2 demonstrate that a target can be detected and localised when 

viewing a scene briefly, and performance is mediated by visual clutter. Crucially, I 

showed localisation information could be extracted at the durations that have previously 

been documented to support detection (e.g., Thorpe et al., 1996; VanRullen & Thorpe, 

2001).  
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1.7.2 Chapter 3: Finding cancer in mammograms: if you know it’s there, do you 

know where?  

The aim of the experiments reported in Chapter 3 is to investigate whether 

experienced radiologists can detect and localise a mass in a mammogram after seeing 

the image briefly. In Chapter 2, we found evidence of localisation information after 

viewing briefly presented natural scenes. Here, we investigated mammograms to 

explore the claims made by Evans et al. (2013). I adapted the task used in Evans et al. 

(2013) and presented radiologists with brief displays containing mammograms. In a 

pilot study, the radiologists saw images where 50% contained an easy-to-detect mass at 

3 presentation durations (250ms, 500ms and 750ms, not backward masked). 

Participants were asked to decide whether there was an abnormality (detection) and 

then to locate the mass on a blank outline of the mammogram (localisation). I found 

that detection and localisation performance was above that expected by chance, 

providing a firm basis for a further study using a similar paradigm. In the main 

experiment, I built upon these findings to explore how breast density moderates the 

type of information extracted in a brief display. I increased task difficulty by including 

images with less obvious masses due to higher breast density (50% high density) to 

more closely replicate the paradigm of Evans et al. (2013) and presented mammograms 

at 2 durations (250 and 1000ms, backward masked). I found evidence for detection and 

localisation, even at our briefest duration (250ms). This is consistent with previous 

findings that those with experience can extract a considerable amount of information to 

support detection in the first quarter of a second when viewing an image, but also 

demonstrates that localisation information can be extracted at these durations.  

Although localisation performance was above chance in my studies, there was a 

proportion of trials on which detection appeared to occur in the absence of localisation 
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(as in Evans et al., 2013 and Evans et al., 2016). This therefore offered the potential to 

fully explore the possibility of a dissociation between detection and localisation. An 

analysis of individual location error trials is crucial for the question of dissociation; it 

cannot be answered using simple summary statistics and frequentist analyses. I 

categorised localisation error types and discovered a number of factors that led to the 

underestimation of localisation including stimulus variability, response imprecision and 

participant guesses. This study also showed that higher breast density reduced 

performance. Breast density is a related (not wholly equivalent) construct to clutter and 

here we replicated what is known from the visual search literature that clutter reduces 

performance (e.g., Rosenholtz, et al., 2005), extending these findings to medical 

images. These findings are also consistent with the findings in Chapter 2 (using natural 

scenes as stimuli), where I showed that performance is mediated by clutter in a scene. 

Broadly speaking, these results differ from the Evans et al. (2013) account and provide 

support for the Kundel and Nodine (1975) model of visual search.  

 

1.7.3 Chapter 4: The influence of prior expectation and expertise on attentional 

cueing in medical images 

Another method for indirectly measuring whether information about location of 

a mass is extracted is to look for the impact of a mass on a subsequent detection task. In 

this chapter, I used an attention cueing task where medical images served as primes. 

This allowed me to further explore localisation, but also examine some important 

questions of how prior knowledge and expertise might influence the allocation of 

attention in medical images.  

Radiologists make critical decisions based on searching and interpreting medical 

images and the probability of abnormalities varies across anatomical regions in the 
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body. The allocation of spatial attention may be influenced in a top-down manner, by 

priors that may set a search strategy or attentional bias. The aim of the experiments 

reported in Chapter 4 is to investigate the extent to which expertise guides attention 

based on prior experience with the prevalence of cancer, using a cueing paradigm 

where a chest radiograph (with or without a suspicious nodule) formed a prime. This 

experiment also addressed whether localisation information was available as indexed by 

attentional capture and if expertise boosted the salience of subtle nodules that do not 

affect attentional allocation in naïve observers. In Experiment 1, with naïve observers, 

an artificially boosted nodule in the prime radiograph guided attention, validating the 

task. In Experiment 2, radiologists viewing real nodules did not show the same effect, 

nor did they show any attentional guidance from cancer prevalence. However, more 

experienced radiologists seemed to be more sensitive to the subtle nodules than less 

experienced radiologists, suggesting that expertise might boost nodule salience.  

 

1.7.4 Chapter 5: General discussion  

In Chapter 5, I summarise and draw together the major findings from these 

experiments: target localisation is possible along with detection in both natural scenes 

and medical images and decisions can be influenced by experience. In this chapter I 

discuss the theoretical implications of these findings, and how they fit within the 

current literature specifically in the context of the two major models of radiologist 

visual search. I discuss implications in a broader scientific and clinical context, the 

challenges and limitations of my research and future directions, before drawing it all 

together with general conclusions.  
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Abstract 

The human visual system is capable of processing an enormous amount of detail 

in a short space of time. Scene categorisation and target detection are possible after only 

brief exposures. Although rapid target detection has been explored extensively, less is 

known about target localisation. In addition to processing what objects are present in a 

scene, information about where each object is located is important for guiding goal-

directed action. We measured the time course of target detection and localisation in 

natural scenes. Participants viewed scenes across four presentation durations (33-199ms) 

taken from two superordinate categories (natural and man-made), each containing 

exemplars from four basic scene categories. In a 2AFC task, observers were asked to 

detect a Gabor inserted in one of the two scenes. This was followed by one of two 

different localisation tasks. Participants were either asked to discriminate whether the 

target was on the left or the right side of the display, or to click on the exact location 

where they saw the target. The results demonstrate that a target can be detected and 

localised at exposures as brief as 33ms, with performance improving with increasing 

exposure duration. Experiment 2 showed that closed scenes which typically contained 

higher levels of visual clutter than open scenes reduced the accuracy of detection and 

localisation. The results demonstrate that a target can be localised when viewing a scene 

at very brief exposure durations, and performance is mediated by visual clutter. This has 

real-world implications for visual search tasks such as medical screening.  

 

Keywords: fast visual processing, visual clutter, target detection, target localisation 
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Vision is fast: as soon as our eyes open we get an impression that we can see 

everything around us. Early findings suggested that the basic meaning of natural scenes 

(e.g., classification as ‘outdoor’ versus ‘indoor’ scenes) can be extracted after an exposure 

of only 100ms (Potter, 1976; Potter & Faulconer, 1975). Further studies using backward 

masking to precisely control display duration showed that observers are above chance at 

categorising scenes at the superordinate (e.g., natural vs. man-made) and basic (e.g., coast 

vs. city) levels after exposure durations as short as 20ms (Greene & Oliva, 2009; Joubert, 

Rousselet, Fize, & Fabre-Thorpe, 2007). In addition, when primed with an object 

category (e.g., animal or truck) these objects can be accurately detected when observers 

are shown scenes for only 20 -25ms, albeit with no backward mask (Thorpe, Fize, & 

Marlot, 1996; VanRullen & Thorpe, 2001). Moving from the laboratory to real-world 

tasks, at slightly longer durations, experts can process medical images to a remarkable 

degree. Kundel & Nodine (1975) showed that when presented with a chest radiograph for 

200ms, radiologists could detect an abnormality with 70% accuracy.  Thus, there is 

evidence that considerable information is extracted in the initial glance at an image or 

environment. 

Categorisation of natural scenes at these brief durations (Oliva, 2005; Potter, 

1976), and, more recently, detection of abnormalities in medical images (Evans, 

Georgian-Smith, Tambouret, Birdwell, & Wolfe, 2013; Evans, Haygood, Cooper, Culpan 

& Wolfe, 2016), has been argued to occur based on a global signal or ‘gist’. Although it 

seems intuitive that information about where an item is should accompany detection of its 

presence, the global nature of ‘gist’ implies that specific location information is unlikely 

to be available. Indeed, previous studies on change detection in faces (Howe & Webb, 

2014) and abnormality detection within medical images (Evans, et al., 2013; Evans, et al., 

2016) have suggested that target detection is possible without localisation under some 
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circumstances. Howe and Webb (2014) showed observers a photograph of a face for 1.5 

seconds, followed by a 1 second blank, and then another version of the same photograph 

with a single changed feature (e.g., removal of glasses). Observers were asked to indicate 

if a change had occurred and if so, to select the change from a list of nine possible 

options. The results showed that observers could sometimes detect that a change had 

occurred without identifying the specific change, even when taking into account potential 

correct guesses. The authors suggest that the apparent lack of information about the 

identity of the change might reflect low precision in the location. In contrast, other 

change detection studies have found that detection of a change is accompanied by 

knowledge of the change location, and that this performance is driven by feature salience 

(Mitroff & Simons, 2002).  

There has been considerable interest in detection and localisation within medical 

images. Eye-gaze data has shown that abnormalities in chest radiographs and 

mammograms can be detected prior to fixation on the lesion, with subsequent search 

leading to localisation within one to two seconds of image onset (Kundel, Nodine, Conant 

& Weinstein, 2007; Mello-Thoms, et al., 2005).  More recent studies have suggested that, 

at relatively brief durations, expert radiologists may be able to detect an abnormality but 

not locate it (Evans et al., 2013; Evans et al., 2016). Evans et al. (2013) compared the 

performance of novices and radiologists on the detection and localisation of 

abnormalities. The stimuli were mammograms containing subtle masses and architectural 

distortions that varied in size (10 to 48mm). They presented bilateral images (left and 

right breasts) at durations from 250ms to 2000ms and showed that radiologists (but not 

novices) could detect an abnormality within a mammogram above chance. Following 

detection, the radiologists viewed a blank outline of the mammogram and were asked to 

localise the abnormality with the computer mouse. Chance was determined by calculating 
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the average (across images) percentage of overall tissue area lying within a predetermined 

region of abnormality. At a display duration of 500ms, abnormalities could be detected by 

radiologists above chance but localisation performance was not statistically different from 

chance. Using a similar design and stimuli, Evans et al (2016) replicated these findings: at 

500ms detection was greater than chance, with localisation accuracy at 21%, not 

significantly different from chance performance. This raises the possibility that in some 

cases, at brief durations, target detection may occur in the absence of information 

sufficient to locate the target. 

The aim of the present study is to investigate the time course of target detection 

and localisation in brief displays. As previous studies in the medical domain have found 

no evidence for localisation of abnormalities at brief exposure durations even when 

detection is possible (Evans et al., 2013; Evans et al., 2016), we aimed to evaluate 

whether any localisation information is accessible at very short durations. To adapt the 

paradigm used in medical imaging to a broader visual context, we used natural scenes as 

these provide an independent measure where some meaning-level information can be 

processed. This category of stimuli is one we are all experts at viewing and interpreting, 

and previous research has already demonstrated we can detect targets (e.g., animals) 

within scenes at brief durations (Thorpe, et al., 1996; VanRullen & Thorpe, 2001). We 

can also verify that ‘gist’ level information has been extracted at our selected durations by 

using a scene classification task.  We embedded a target Gabor within the scenes rather 

than using an identifiable nameable object within the scene. This was to avoid invoking 

any semantic congruency, as the Gabor is equally irrelevant in the different scenes (see 

Davenport & Potter, 2004). This study is not about natural scenes per se, using this 

paradigm allows precise experimental control over factors such as target location, size 
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and luminance contrast, which is not possible with real world stimuli such as 

abnormalities in medical images.  

 To validate the durations we used, in Experiment 1A we confirm that scene 

categorisation (natural vs. man-made) is possible for the background scenes at the 

shortest experimental duration. In Experiment 1B, we then compare detection and 

localisation performance for a Gabor target embedded in a range of natural scenes at brief 

exposure durations between 33ms and 199ms. Based on the results of Evans et al. (2013) 

and Evans et al. (2016) with medical images, we test for evidence of information 

sufficient to support detection and localisation at each duration. To test the idea that 

location information might be present but less precise at brief durations (Howe & Webb, 

2014), we included a Left (L) vs Right (R) localisation task as well as the ‘click on the 

location with the mouse’ version used by Evans et al. (2013) and Evans et al. (2016). 

Finally, in Experiment 2 we investigate the influence of visual clutter in natural scenes on 

target detection and localisation at brief durations. 

Experiment 1 

Experiment 1A was a scene categorisation task (natural vs. man-made) designed 

to verify that the overall 'gist' of the background scenes could be extracted at the shortest 

experimental duration (33ms) used in our paradigm.  The aim of Experiment 1B was to 

test whether durations between 33 and 199ms resulted in sufficient processing to support 

detection and localisation of a Gabor target embedded in the natural scenes. Using a two-

alternative forced paradigm (2AFC), natural scenes were presented at one of four 

durations (33 – 199ms) on each trial, with a Gabor target randomly located within one of 

the two scenes. The participants were asked to report which scene contained the target 

and then where it was located within the scene.  
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Method 

All measures and conditions are reported. 

Participants 

Thirty participants (22 females, age range 19 - 55 years, mean age [M] = 31.47 

years, standard deviation [SD] = 8.81) were recruited from Macquarie University. All 

participants gave informed consent, reported normal or corrected-to-normal vision, and 

were financially reimbursed for their time. The study was approved by the Macquarie 

University Human Research Ethics Committee (Medical Sciences). The data for two 

observers were excluded due to technical issues, leaving 28 datasets for analysis. 

 

Stimuli and Apparatus 

Natural scene stimuli were classified as scene categories defined by Oliva and 

Torralba (2001), which are available at http://cvcl.mit.edu/database.htm (see Fig. 1). One 

hundred and sixty photographic images of natural scenes comprising two superordinate 

categories (natural and man-made) were selected from an internet search using Google 

Images. The natural and man-made categories comprised four basic-level categories (20 

images in each): coast, mountain, open country and forest for the natural category, and 

tall building, highway, city centre and street for the man-made category. The images were 

converted to greyscale and downsized to subtend 23° x 15° of visual angle.  
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The target was a Gabor patch with the following parameters: orientation 45°; spatial 

frequency 0.5° cycles/degree; diameter 3.8°; Michelson contrast 0.2. The target image 

appeared in a different random location within the scene boundaries and was present on 

all trials in either Scene 1 or Scene 2. 

 

Figure 1. Example scenes for the superordinate categories and four basic 

categories within each. 

Figure 2. Example of a city (manmade) scene with the embedded target Gabor (diameter = 3.8°). 
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The participants sat at a viewing distance of approximately 70cm in a dimly lit, 

windowless laboratory at Macquarie University, Sydney. Stimuli were presented with 

MATLAB 8.2. using PsychToolbox 3 (Brainard, 1997; Pelli, 1997) and were displayed 

on a 27-in Samsung SyncMaster SA950 LCD monitor (1920 x 1080, 120 Hz). 

 

Procedure 

Experiment 1A: Scene Categorisation Task 

This task was to verify that scene categorisation (natural vs. man-made) is 

possible for the background scenes at the shortest experimental duration. We used a 

single factor (superordinate category: natural, manmade) within-subjects design. Each 

trial began with a fixation point for 498ms, followed by a scene from one of the 

superordinate categories displayed in the centre of the screen for 33ms. This was 

followed by a backward 1/f noise mask for 249ms. Participants categorised the scene by 

its superordinate category ("manmade" vs. "natural") with a key press as accurately and 

quickly as possible (See Fig. 3). Participants were given ten practice trials at a longer 

scene presentation duration of 398ms to familiarise them with the task before completing 

the experimental trials.  
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Experiment 1B: Target detection and localisation task.  

For the main experimental task, we used a 2 (location task: exact click or L vs. R) 

x 4 (duration: 33, 58, 116, 199ms) within-subjects design. Initially the participants were 

shown a picture of the target to familiarise them with a Gabor, and given eight practice 

trials (2 per duration) with feedback. Each trial began with a fixation point for 498ms, 

followed by Scene 1 [33 – 199ms, constant within a block] followed by a backward 1/f 

noise mask for 249ms and then Scene 2 [same duration as Scene 1] followed by a 1/f 

noise mask [249ms]. Observers made a 2AFC decision with a key press regarding 

whether the target was present in Scene 1 or Scene 2. Following this detection response, 

they were presented with a blank screen and asked one of two localisation questions (in 

separate blocks; order counterbalanced across participants). In one block of trials, they 

were asked to click on the exact location of the target on the blank screen using the 

mouse. In the other localisation task, they were instead asked whether the target appeared 

Figure 3. Example of a trial for the superordinate scene categorisation task 

in Experiment 1A. The participant responded whether the image was a 

manmade or natural scene. 
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on the left or the right side of the screen and responded using a key press. This 

localisation task required a coarser judgment of the target's location in order to answer 

correctly, compared to the more difficult exact click task. The response keys for the 

left/right localisation task (L/R) were the same as the keys used for the detection task 

(Keys ‘z’ and ‘m’; see Fig. 4). On each trial, both scenes were selected from the same 

superordinate category (e.g., natural or man-made) but the basic category was random 

(e.g., both could be from the same category or from different categories within the 

superordinate category). Fifty percent of trials had the Gabor in Scene 1 and 50% in 

Scene 2, randomly interleaved within a block. Target location was randomised, with the 

restriction that it was not clipped by the screen edge and that it appeared in the left half 

for 50% of trials, and in the right for the other 50% of trials. Duration order was blocked 

and counterbalanced across participants. The participants performed 160 experimental 

trials for each localisation task. The experiment was self-paced and the participants 

initiated each trial with a key press. The observers saw the same images in each task, but 

in a different randomised order (80 natural and 80 man-made scenes in each version of 

the task), giving a total of 320 trials across the experiment. They were instructed to 

respond as accurately as possible and there was a minimum 15 second rest period every 

40 trials. Participants were not provided with any feedback during the experimental tasks 

(see Fig. 4).  
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Results and Discussion 

Experiment 1A: Scene categorisation 

We first verified that sufficient information about scene categories (natural vs 

man-made) could be extracted at our shortest duration (33ms), as has been demonstrated 

by others (Greene & Oliva, 2009; Joubert et al., 2007). We used a measure of sensitivity, 

d¢, as our dependent measure. Mean d¢ for the categorisation tasks was 2.29 (SD = .56, 

range = 1.36 – 3.65). A single sample t-test on d¢ relative to chance (d¢ = 0) demonstrated 

performance was better than chance in categorising the scenes as manmade vs. natural at 

Figure 4: Example of a trial for the target detection and localisation tasks, 

with the Gabor target in Scene 1. Note the order of the task blocks was 

counterbalanced across participants and the target was as equally likely to 

appear in Scene 1 as Scene 2. 
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the shortest experimental duration, t(27) = 21.8, p < .0001. This replicates previous 

findings that sufficient visual information to categorise scenes is available from 33ms 

presentations.  

 

Experiment 1B 

Detection performance 

Figure 5 shows detection performance for the Gabor target at exposure durations 

between 33ms and 199ms. We calculated d prime as a function of target presence in 

Scene 1 or Scene 2. A two-way repeated measures ANOVA on d¢ with the factors of 

Localisation Task (exact click, L vs. R) x Duration (33, 58, 116, 199) revealed no main 

effect of Localisation Task, F(1, 27) = .38, p = .541, a significant main effect for 

Duration, F(1.1, 29.79) = 16.25, p < .0001, h2
p  = .38 (Greenhouse-Geisser corrected), 

and no significant Localisation Task x Duration interaction, F(1.1, 29.71) = 1.29, p = .27, 

h2
p  = .046 (Greenhouse-Geisser corrected). The detection task was identical for the two 

location tasks and detection was performed prior to the localisation task. It is therefore 

not surprising that we see only an effect of improved performance as duration increased. 

Our primary question for target detection is whether at each duration there is sufficient 

information to support detection. We therefore collapsed the detection data across 

localisation task and evaluated detection performance using single sample t-tests at each 

duration relative to a chance level of d' = 0. Figure 5 shows the data for detection 

performance (d prime) collapsed across localisation tasks. To maintain an overall Type I 

error rate of .05, a Bonferroni correction was used (test-wise alpha was set at p = .0125). 

Detection performance was significantly above chance at each exposure duration [33ms, 

t(27) = 3.98, p < .0001; 58ms, t(27) = 16.04, p < .0001; 116ms, t(27) = 27.51, p < .0001; 

199ms, t(27) = 34.23, p < .0001].  
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Localisation performance 

The results above show that the target Gabor could be detected in complex natural 

scenes with presentations even as brief as 33ms. These results are consistent with the 

previous literature that has shown accurate object detection within scenes at exposure 

durations between 20-25ms (Thorpe et al., 1996; VanRullen & Thorpe, 2001). Next, we 

investigated whether the target can also be located at these very brief presentation 

durations. Our dependent variable was percentage localisation correct. We analysed the 

total percentage of localisation correct across all trials, splitting the analysis by the two 

localisation tasks: L vs. R (coarse localisation) and exact click (fine localisation), which 

were presented in separate blocks.  

Localisation in the coarse L vs. R task: This localisation task was a 2AFC: left or 

right. Thus, chance is 50%. Figure 6 shows a clear pattern of increasing localisation 

performance with increasing duration for both localisation tasks. Our key question relates 

Figure 5. Detection performance collapsed across location tasks. The dashed 

line represents chance. The error bars represent 95% confidence intervals. 



Chapter 2 

 

62 

to whether there is sufficient information at each duration to support localisation. We 

therefore used single sample t-tests on percent correct localisation responses (Bonferroni 

corrected, test-wise alpha was set at p = .0125). For the L vs. R task (chance = 50%), this 

showed that performance was above chance for all durations [Fig 6, black line; 33ms, 

t(27) = 5.07, p < .0001; 58ms, t(27) = 11.10, p < .0001; 116ms, t(27) = 27.49, p < .0001; 

199ms, t(27) = 15.87, p < .0001].   

 

Localisation in the exact click localisation task: This localisation task was a 

precise mouse click on the target. We calculated chance based on the number of possible 

non-overlapping locations of the target Gabor within the image (chance = 16.67%). To 

allow for some imprecision in reporting the remembered target location, we defined a 

region of acceptance (ROA) for scoring a mouse click as correct localisation of twice the 

Gabor diameter: 7.6° centred on the Gabor location. Our dependent variable was 

percentage localisation correct. Again, our key question relates to whether there is 

sufficient information at each duration to support localisation. Single sample t-tests were 

conducted on percent correct localisation responses (Bonferroni corrected, test-wise alpha 

was set at p = .0125). For the exact click task (chance = 16.67%), this showed that 

performance was above chance for all durations [Fig 6, blue line; 33ms, t(27) = 6.3, p < 

.0001; 58ms, t(27) = 14.78, p <.0001; 116ms, t(27) = 26.75, p < .0001; 199ms, t(27) = 

51.21, p < .0001].  



Chapter 2 

 

63 

 

The localisation results show that the participants could accurately localise a 

Gabor target on some trials for presentation durations as brief as 33ms. Specifically, 

participants performed significantly better than chance for all durations, 33-199ms, even 

for the precise localisation task (exact click). In Figure 7 and the corresponding analysis, 

all localisation trials are included regardless of whether detection was correct. Figure 7 

represents the relative proportion of trials across all four durations when detection and 

localisation were both correct (dark blue bar), when detection was correct and localisation 

was incorrect (light blue bar), when localisation was correct and detection was incorrect 

(dark grey bar) and when detection and localisation were both incorrect (light grey bar). 

Figure 6. Accuracy on the two localisation tasks. The dashed line represents chance 

(black: Left vs. Right; blue: exact click). The error bars represent 95% confidence 

intervals. Note: Due to the different features of each task is it not possible to directly  

compare performance.  
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Each experimental trial is represented once in the graph. The proportion of trials on which 

both detection and localisation are correct clearly increases as a function of duration, as 

one would expect. At the shortest durations, accuracy on detection and localisation 

appears lower in absolute performance for the more precise localisation task (exact click) 

compared with the coarse localisation task (L vs. R), however note that differences in 

chance baseline between the two localisation tasks (50% for left/right, 16.67% for exact 

click) limits a direct comparison of between-task performance. Figure 7a for the L vs. R 

task shows that at 33ms duration, the observers actually got ~20% of trials correct on 

localisation when they got the corresponding detection task incorrect. This unexpected 

finding, however, is likely to be due to a keyboard assignment issue. The keys for the 

detection response and localisation were the same (e.g., ‘z’ = Scene 1 and Left; ‘m’ = 

Scene 2 and Right). This seems to have caused a ‘response conflict’ effect where 

participants are giving an initial response incorrectly based on localisation rather than 

which scene contained the target. We therefore do not interpret these localisation-

without-detection trials for the left/right task further. 
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Returning to the summary statistics, the overall finding that observers are greater 

than chance on both detection and localisation show that even at brief durations, a target 

embedded in a natural scene can often be spatially localised as well as detected. In the 

medical imaging domain, Evans et al. (2013) and Evans et al. (2016) reported detection in 

the absence of localisation. A critical difference between our stimuli and that of Evans et 

al. (2013) and Evans et al. (2016) is that we used an artificial target Gabor embedded in 

Figure 7. Percentage of trials across all four durations grouped as a function 

of response profile: trials on which detection and localisation were both 

correct (dark blue bar), trials on which detection was correct and localisation 

was incorrect (light blue bar), trials on which localisation was correct and 

detection was incorrect (dark grey bar) and trials on which detection and 

localisation were both incorrect (light grey bar) for (a) Left vs. right task and 

(b) Exact click task. The error bars represent 95% confidence intervals.  
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natural scenes, whereas the targets in Evans et al. (2013) and Evans et al. (2016) were 

abnormalities in medical images, which are often subtle and less visually distinct from the 

healthy tissue background. Therefore, localisation of targets at brief presentations may 

depend on how salient the target is within a particular scene, or on features of particular 

types of scenes such as visual clutter. We performed an exploratory post-hoc scene 

analysis on the effect of visual clutter on localisation performance within our diverse 

natural scene image set.  

As the definition of 'visual clutter' is not straightforward in complex natural 

scenes, for our post-hoc analysis we operationalised clutter based on the related concept 

of enclosure. Within the computational literature, the global properties or distribution of 

basic features of a scene such as level of enclosure have been described using the Spatial 

Envelope Model (SEM; Oliva & Torralba, 2001). A scene that has a closed spatial 

envelope is composed of many visual characteristics (e.g., forest, city and mountain). In 

contrast, an open scene appears vast and clutter free with minimal visual items (e.g., 

coast, highway and open country). Enclosure is related to visual clutter within a scene, 

which can lead to lower accuracy in decision making tasks (Oliva, Mack, Shrestha & 

Peeper, 2004; Bravo & Farid, 2007; Rosenholtz, Li & Nakano, 2007).  

If localisation is affected by visual clutter, there should be a difference between 

localisation performance on correct-detection trials in open versus closed scenes. We 

divided the scenes into categories according to the level of enclosure (open and closed) 

where open represents low clutter and closed represents high clutter and plotted the data 

separately (Figure 8). We conducted a two-way repeated measures ANOVA on the two 

localisation tasks separately with the factors of Scene (open, closed) and Duration (33, 

58, 116, 199).  
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For the L vs. R task, there was a significant main effect of Scene (Open vs. 

Closed), F(1,27) = 70.16, p < .0001, h2
p  = .72, a significant main effect of Duration, 

F(2.63, 71.11) = 176.13, p < .0001,  h2
p  = .87, (Huynh-Feldt corrected), and a significant 

Scene by Duration interaction, F(2.21, 59.58) = 5.99, p = .001, h2
p  = .18 (Greenhouse-

Geisser corrected).  Similarly, for the Exact click task, there was a significant main effect 

of Scene (Open vs. Closed), F(1,27) = 87.49, p < .0001, h2
p  = .76, a significant main 

effect of Duration, F(3,81) = 259.69, p < .0001, h2
p  = .91 and a significant Scene by 

Duration interaction, F(3, 81) = 7.96, p < .0001, h2
p  = .23. The interactions suggest that 

clutter does influence the degree to which location information is available. Experiment 2 

was designed to follow up this initial analysis by experimentally manipulating the degree 

of visual clutter in natural scenes to systematically examine its effects on target detection 

and localisation at brief durations. 

 

Figure 8. Localisation accuracy as a function of exposure duration 

partitioned into open vs. closed scene categories in a post-hoc analysis. Note 

that only trials on which the target was correctly detected are included. The 

error bars represent 95% confidence intervals.  
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Experiment 2 

Experiment 2 was designed to systematically investigate the influence of clutter in 

natural scenes on target detection and localisation. As outlined in Experiment 1, we 

manipulated visual clutter using the computational definition of enclosure for natural 

scenes with the categories: open (coast, open country and highway) and closed (forest, 

mountain and city; Oliva & Torralba, 2001). The post-hoc analysis of clutter for 

Experiment 1 was limited due to the small and unbalanced set of open and closed natural 

scenes across durations, as it was not designed for this purpose. Thus, in Experiment 2, 

we increased the number of scenes in each category to be equal across open/closed scene 

types in each duration and examined detection and localisation performance as a function 

of duration and scene type. 

Method 

All measures and conditions are reported. 

Participants 

Thirty participants (24 females, age range 18-58 years, mean [M] = 28 years, 

standard deviation [SD] = 8.5) were recruited from Macquarie University. Five had 

participated in Experiment 1 (15 months prior). All gave informed consent, reported 

normal or corrected-to-normal vision, and were reimbursed for their time. The study was 

approved by the Macquarie University Human Research Ethics Committee (Medical 

Sciences).  

Stimuli 

There were 240 natural scene images in total. Half of the images of scenes were 

repeated from Experiment 1 and half were new images selected from the Web using 

Google Images to reach a balanced number across the open/closed categories. The open 

(coast, open country and highway) images and closed (city, forest and mountain) 
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contained 40 exemplars in each basic category (see Fig. 9). The images were converted to 

grayscale, downsized and subtended 23° x 15°.  

 

 

Procedure 

The stimuli and setup were identical to those of Experiment 1, with the following 

modifications.  

Target detection and localisation task: We used a Scene (open, closed) x Duration 

(33 58, 116, 199ms) within-subjects design. To reduce the effects of possible keyboard 

assignment we changed the detection response keys to a one hand response; ‘left arrow’ 

for Scene 1 and ‘right arrow’ for Scene 2. We constrained possible target locations to be 

one of 12 locations, which were equally prevalent. Following the detection response, 

participants were presented with a screen with a grid of 12 squares and asked to indicate 

the location of the target using the mouse to select one of the 12 possible locations. 

Chance could therefore be calculated precisely as 8.3% (1/12). For each interval within a 

Figure 9. Example scenes for the open and closed categories. 
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trial, the scenes were randomly selected from within the same open or closed category. 

Duration order was counterbalanced across participants. After 12 practice trials with 

feedback (3 at each duration), there were 240 experimental trials (60 at each duration; 30 

trials per condition (See Fig. 10).  

 

 

Results and Discussion 

Detection performance 

First, we evaluated whether there were any differences in detection performance 

between the open and the closed scenes. Figure 11 shows that performance was higher for 

the open than closed scenes and this difference increases with longer duration. We 

calculated d¢ as a measure of detection performance and conducted a two-way repeated-

measures ANOVA with the factors of Scene (Open, Closed) x Duration (33, 58, 116, 

Figure 10. Example of a trial in Experiment 2 for the target detection and 

localisation tasks. A Gabor target is in Scene 1 of an open scene. 
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199) on the mean d¢ values. There was a main effect of Scene, F(1, 29) = 202.24, p = < 

.0001, h2p  = .88, a main effect for Duration, F(3, 87) = 146.42, p < .0001 , h2p  = .84, 

and a significant Scene x Duration interaction, F(3, 87) = 10.86 , p < .0001, h2p  = .27. A 

Bonferroni correction for multiple comparisons (α = 0.05/4 = .0125) was applied to post-

hoc analyses. The interaction was due to d prime being significantly higher in the open 

compared with the closed scenes at all durations (p < .0001) except for 33ms (p = .078) 

(See Fig. 11).  

 

 

We next examined whether localisation performance was influenced by scene 

type. As for Experiment 1, trials were partitioned into those in which detection and 

localisation were correct or incorrect to examine the response distribution as a function of 

duration and scene type. Figure 12 shows the total proportion of trials across all four 

durations when detection and localisation were both correct (dark blue bar), when 

detection was correct and localisation was incorrect (light blue bar), when localisation 

Figure 11. Detection performance for open versus closed scenes. The dashed 

line represents chance. The error bars represent 95% confidence intervals. 
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was correct and detection incorrect (dark grey bar) and when detection and localisation 

were both incorrect (light grey bar). Each experimental trial is represented once in the 

graph. The proportion of trials on which both detection and localisation were correct 

increases as a function of duration. For the open scenes, numerically there are more trials 

in which the target is both detected and localised across all durations, however we reserve 

the quantitative comparison for the following analysis performed on all localisation 

correct trials.  
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Localisation performance 

To investigate the degree to which a briefly presented target can be spatially 

located when embedded in open versus closed scenes, we analysed accuracy for 

localisation across all trials, regardless of whether detection was correct or incorrect. 

Figure 13 shows that localisation accuracy appears higher for the open compared with the 

closed scenes and this improves with duration. We conducted a two-way repeated 

measures ANOVA with the factors of Scene (Open, Closed) x Duration (33, 58, 116, 

Figure 12. Percentage of trials across all four durations grouped as a 

function of response profile: trials on which detection and localisation were 

both correct (dark blue bar), trials on which detection was correct and 

localisation was incorrect (light blue bar), trials on which localisation was 

correct and detection was incorrect (dark grey bars) and trials on which 

detection and localisation were incorrect (light grey bar) for (a) Open scenes 

and (b) Closed scenes. The error bars represent 95% confidence intervals.  
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199) on the mean percentage localisation accuracy values. There were significant main 

effects of Scene, F(1, 29) = 328.48, p = < .0001, h2
p  = .92, and Duration, F(3, 87) = 

374.88, p < .0001 , h2
p  = .93, and a significant Scene x Duration interaction, F(3, 87) = 

16.43 , p < .0001, h2
p  = .36. As in the Experiment 1 exploratory post-hoc analysis of 

clutter, the interaction shows that scene category (open vs. closed) has a different effect 

on localisation accuracy depending on duration. Although participants were able to 

localise a salient target with high levels of accuracy for both the open and closed scenes 

from around 116ms, they were more accurate in both detection and localisation for open 

scenes compared with closed scenes. Using a Bonferroni correction (α = 0.05/4 = .0125), 

paired sample t- tests showed that localisation accuracy was significantly higher in the 

open compared with the closed scenes at all four durations [33ms, t(29) = 3.23, p = .003; 

58ms, t(29) = 7.42, p < .0001; 116ms, t(29) = 13.48, p < .0001; 199ms, t(29) = 8.97, p < 

.0001]. To replicate the findings of Experiment 1, we also conducted simple sample t-

tests (Bonferroni corrected) on localisation accuracy. Compared to a chance performance 

of 8.3%, observers were above chance at all durations for both open scenes and closed 

scenes [Open scenes: 33ms, t(29) = 8.88, p <  .0001; 58ms, t(29) = 16.06, p < .0001 ; 

116ms, t(29) = 34.98, p < .0001; 199ms, t(29) = 54.1, p < .0001; Closed scenes: 33ms, 

t(29) = 3.56, p = .001; 58ms, t(29) = 11.48, p < .0001 ; 116ms, t(29) = 18.38, p < .0001; 

199ms, t(29) = 30.23, p < .0001]. Even at the briefest duration, localisation performance 

was above chance for both the uncluttered (open) and cluttered (closed) scenes, with a 

steady rise in performance with increasing presentation duration. These results 

demonstrate that detection and localisation performance is affected by visual clutter.   
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General Discussion 

Observers can report the basic category of a scene (e.g., natural or man-made) and 

detect targets in both natural scenes (Green & Oliva, 2009; Potter & Faulconer, 1975; 

Thorpe et al., 1996; VanRullen & Thorpe, 2001) and medical images (Evans et al., 2013; 

Evans et al., 2016; Kundel & Nodine, 1975), at very brief display durations. Although 

location information is crucial for guiding our interactions with the environment, some 

findings suggest that detecting a target and localising it might not always go together 

(Evans et al, 2013; Evans et al., 2016; Howe & Webb, 2014). Here, we used natural 

scenes and showed observers can both detect and localise a Gabor target at durations as 

brief as 33ms.  

Figure 13. Localisation performance for open and closed scene categories. All 

trials are included in the analysis, regardless of whether target detection was 

correct. The dashed line represents chance (8.3%). The error bars represent 

95% confidence intervals.  
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In Experiment 1, even for the most difficult exact click localisation task, which 

requires precise location information, observers had sufficient information from a 33ms 

presentation to be able to perform greater than chance. This suggests that fine-grained 

localisation information can be extracted in as little as 33ms. The results of Experiment 2 

showed that this is mediated by visual clutter, with increasing levels of visual clutter 

impairing both detection and localisation performance. Together, our results suggest that 

at least some localisation information is available at the brief exposure durations that 

support rapid target detection.  

Although the results show that a target in a natural scene can be localised with 

brief displays, this was not the case on all trials; performance was far from ceiling. 

Additionally, there are a proportion of trials where detection was correct and localisation 

was incorrect, especially at the briefest durations (33 and 58ms) and in the more precise 

exact click localisation task. The challenge in interpreting these particular results is that 

there are several possible interpretations. These trials may truly reflect a dissociation 

between information for detection and information for localisation, as has been suggested 

in the medical literature, where target detection but not localisation was above chance at 

500ms (Evans et al. 2013). However, apparent detection without localisation could also 

occur for a number of other reasons. First, on these trials participants may have guessed 

the correct response (was the target in Scene 1 or Scene 2?), without actually having seen 

the target on that trial. These ‘lucky guesses’ would presumably be accompanied by a 

guess on the subsequent localisation, which has only 1/12 chance of being correct. 

Second, observers may have had some localisation information on these trials, but this 

was too coarse to be detected by the localisation tasks. This is suggested by the greater 

occurrence of apparent ‘detection without localisation’ trials for the more precise exact 

click localisation task compared to the left/right localisation judgment. Finally, there may 
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have been localisation information present on these trials but our experiment was not 

sensitive enough to detect it. We found that the proportion of ‘detection without 

localisation’ trials decreased with increasing exposure duration, but this could be 

consistent with either the correct guessing account or a dissociation of detection versus 

localisation information. To make the claim of a dissociation between detection and 

localisation, one would need to correct for guessing, and then conduct a Bayesian analysis 

to test whether there is evidence for a lack of location information.  

Our main findings demonstrate that a briefly viewed scene could be processed 

sufficiently for a target to be localised. In our experiments, for some scenes, the Gabor 

would be salient (e.g., the open scenes, Figure 13), guiding attention effectively. 

Performance was far from ceiling, however, suggesting that we have not reached the 

realm of ‘pop-out’ in these displays (Borji & Itti, 2013; Rosenholtz et al., 2007). For other 

scenes (e.g., the closed scenes), there was less salient information about the target, but 

some information about localisation was still available.  Using this paradigm allowed us 

to precisely control for low-level visual factors (e.g. target size, contrast, spatial 

frequency) as well as semantic congruency. Although we found localisation of a target in 

natural scenes with rapid viewing, it is possible that either our displays were not brief 

enough to dissociate detection and localisation due to the speed of visual processing of 

natural scenes, or that the effects seen in complex medical images with subtle masses 

(e.g., Evans et al., 2013; Evans et al., 2016) do not generalise to natural scenes. In 

addition, the alternative interpretations we offer above for why target detection may occur 

without localisation on some trials in our own results also apply equally to the studies 

with medical images.  

The results of Experiment 2 are consistent with what we know about visual search 

in free viewing, with increasing clutter or set size decreasing performance (Adamo, Cain 
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& Mitroff, 2015; Asher, Tolhurst, Troscianko, & Gilchrist, 2013; Rosenholtz, Li, 

Mansfield & Gin, 2005; Rosenholtz et al., 2007). Reduced performance with increased 

clutter may be due to crowding and/or masking effects by the increased number of items 

in the set size of scene contents.  These effects have been documented throughout the 

visual search literature (e.g., Asher et al., 2013; Whitney & Levi, 2011; Wolfe, 1994). 

The reduced accuracy we observe for scenes with increased clutter is consistent with the 

idea that the task would be more difficult for some medical images, such as highly-

cluttered or dense breast tissue.   

The relationship between clutter and target detection and localisation has potential 

real-world implications. Analogous to clutter interfering with performance in natural 

scenes, in which we are all experts, it seems likely that similar effects occur for 

radiologists interpreting medical images, for example during mammography screening. In 

the medical perception literature, there have been a number of studies that have 

investigated factors such as lesion subtlety, which may be dependent on the surrounding 

anatomical structures (e.g., Krupinski, 2005). Female breast tissue is extremely variable 

with regards to mammographic breast density (Li, et al., 2013). This dense tissue can 

increase the visual complexity for a radiologist, potentially masking and/or distracting 

from pathology. As an extension to the present work, we are currently conducting similar 

experiments in our laboratory on medical experts. To explore the effect of visual clutter in 

an applied medical context we are using a related task with radiologists to investigate 

abnormality detection in mammograms of different density. This will provide an 

important extension to the current finding that localisation of a target in a complex visual 

scene is possible at very rapid exposure durations and is influenced by clutter.  

Our rapid perception of the world around us is critical for successful interactions. 

Here, we explored the degree to which information available in very brief presentations 
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of natural scenes could support not just detection of a target but also knowledge of where 

that target is. Access to location information is crucial for guiding actions or further 

analysis (e.g., eye movements); we find a tight link between information supporting 

detection and localisation. 
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 Chapter 3: Finding cancer in mammograms: if you know it’s there, 

do you know where?  

 

Chapter 3 is comprised of two experiments. The first experiment was a pilot study and the 

second experiment extends and builds upon these findings. As such, for this chapter, the 

introduction and discussion have been modified to encompass both experiments and to 

avoid repetition. The manuscript that describes Experiment 2 (modified slightly for this 

Chapter) was co-authored by Carrigan, A.J., Wardle, S.G., & Rich, A.N. (under review). 

Finding cancer in mammograms: if you know it’s there do you know where it is? 

Cognitive Research: Principles and Implications. The version submitted for publication 

can be found in Appendix A.  
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As soon as we open our eyes, our visual system processes an enormous amount of 

information in a short space of time. Early findings showed that an exposure of 100ms is 

sufficient to extract the basic meaning of natural scenes (e.g., indoor versus outdoor; 

Potter, 1976). Using backward masking to precisely control for exposure times, others 

have shown that the distinction between natural scene categories at the superordinate 

level (e.g., man-made versus natural) and basic level (e.g., coast versus city) can occur 

with presentation durations as short as 20ms (Greene & Oliva, 2009; Joubert, Rousselet, 

Fize, & Fabre-Thorpe, 2007). Furthermore, when observers are pre-specified a category 

(e.g., animal or truck), objects can be detected at brief durations (Thorpe, Fize, & Marlot, 

1996; VanRullen & Thorpe, 2001). This fast-visual processing has also been reported 

among those who are experienced in domain-specific tasks such as medical imaging 

(Evans, Georgian-Smith, Tambouret, Birdwell & Wolfe, 2013; Evans, Haygood, Cooper, 

Culpan & Wolfe, 2016; Kundel & Nodine, 1975; Nodine, et al., 1999). Kundel & Nodine 

(1975) showed that when presented a chest radiograph for 200ms, radiologists could 

detect an abnormality with 70% accuracy. Kundel and colleagues (2008) have since 

shown that within 1 second of viewing a mammogram, experts fixate on 67% of breast 

cancers (Kundel, Nodine, Krupinski, Mello-Thoms, 2008). Furthermore, when shown 

briefly presented mammographic displays (250ms), radiologists can discriminate normal 

from abnormal at levels better than guessing (Evans et al., 2013; Evans et al., 2016). The 

evidence that observers can extract information with fast presentations from natural 

scenes (e.g., Potter, 1976; Thorpe et al., 1996), and medical images (e.g., Kundel & 

Nodine, 1975; Evans et al., 2013), suggests that the processing involved in early visual 

search is similar whether the display is a natural scene or a medical image, at least for 

experts. 
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 Radiologists develop expertise in ‘visual search’ in such images over a period of 

years. It has been suggested that specialised training and ongoing experience leads to 

perceptual and cognitive ‘fine-tuning’ in the task of image interpretation (Nodine & 

Mello-Thoms, 2010).  Maintaining such expertise requires interpreting high volumes of 

cases. For example, mammographic screening radiologists interpret more than 2000 cases 

per year (Rawashdeh, et al., 2013). There is evidence that this extensive experience 

modulates the perceptual/cognitive system of experts: experienced radiologists 

outperform novices and trainee radiologists on tasks such as detecting an abnormality in 

brief images (Evans et al., 2013; Nodine et al., 1999), and in different patterns of eye 

movements between experts and novices. For example, Kundel and La Follette (1972) 

compared the visual scan patterns of expert breast radiologists with trainees interpreting 

mammograms and found that the experts fixated on lesions faster and concluded search 

earlier than the novices. Others have shown that experts fixate true abnormalities within 

1-2 sec of image onset and most of their subsequent scanning is to confirm that there are 

no other lesions (Mello-Thoms, et al., 2005). This follow-up takes about 5-10 seconds 

after initial fixation, after which a diagnostic decision is reached. There is an enormous 

amount of information that is processed in the first second of viewing a scene or image, 

so it is important that we understanding the cognitive underpinnings of early visual 

search.  

 Kundel and Nodine (1975) developed a model that describes two distinct 

processes leading to a diagnostic decision. The first glance supports a global, or holistic 

overview of the image, which indicates on a basic level whether the image deviates from 

a cognitive representation of a normal anatomical schema. The information extracted at 

this first stage is then proposed to constrain and guide search to the region of the image 
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containing the abnormality (the second stage). For this to occur, the global signal must be 

informative about the location of the abnormality.  

Recently an alternative perspective has been offered by Evans and colleagues 

(2013; 2016). They suggest an initial abnormal signal could act to alert a radiologist that 

something is abnormal but without containing location information. Rather than guiding 

search to a location, this global signal then changes the search strategy to a more 

complete search for the abnormality. The initial signal could be supported by the rapid 

extraction of the summary statistics of the image, such as average orientation and size. In 

the basic vision literature, two stage models (e.g., Wolfe, Võ, Evans & Greene, 2011) 

describe an initial, non-selective pathway which, although limited in capacity, extracts 

summary statistics in parallel from the display. In the model, global processing occurs 

along this pathway. A second, selective pathway recognises one or a few objects at a time 

and requires selective attention. Together these pathways combine to support perception. 

Evans et al. (2013) and Evans et al. (2016) suggest that information via the non-selective 

pathway could alert a radiologist that something is abnormal, but the fine-grained detail, 

such as its location, only becomes available at the later selective stage.    

Evans et al. (2013) compared the performance of radiologists and novices on the 

detection and localisation of abnormalities in mammograms. The stimuli were bilateral 

(left and right breast) mammograms where one side could contain subtle masses and 

architectural distortions that varied in size (10 to 48mm). Such pathologies are highly 

variable, and are difficult to detect and locate even by expert radiologists under free 

viewing conditions. As a result, these have the highest reported rate of false negatives 

(Knutzen & Gisvold, 1993). Despite these difficult images, Evans et al. (2013) found that 

radiologists (but not novices) could detect an abnormality above chance (Mean d¢ was ~ 

0.7 for 250ms duration and up to ~1 for 2000ms duration, where d’ of 0 is chance). For 
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the combined detection and localisation task, images were displayed for 500ms. 

Following detection, the radiologists viewed a blank outline of the mammogram and were 

asked to localise by marking the abnormality with a mouse-click. Chance was determined 

by calculating the average percentage (across images) of overall tissue area lying within a 

predetermined region of abnormality. Although abnormalities could be detected by 

radiologists above chance at 500ms, localisation performance was at chance. Evans et al. 

(2013) interpreted these results as evidence that the information extracted to support 

detection at brief durations does not contain location information, but is rather based on 

an overall ‘gist’ or holistic signal.  

In a subsequent paper, Evans et al. (2016) did another series of experiments using 

mammograms, replicating and extending their initial findings. In their second experiment, 

they presented radiologists a set of 120 single-sided (one breast) mammograms for 500ms 

and asked them to detect and then localise an abnormality. The unilateral mammograms 

either contained an abnormality (target-present), had no abnormality (target-absent), or 

was the contralateral breast from the target-present mammogram (no abnormality). In this 

experiment, mean d¢ for detection was 1.16 for the target-present/target-absent images, 

significantly above chance (0), whereas localisation accuracy was not significantly 

greater than that expected by chance (6%). They concluded that the radiologists could not 

localise a lesion despite detecting it. Further, they suggested that experienced radiologists 

could even make such judgments based on images from the contralateral (thus far normal) 

breast (remaining 40 images). Mean d¢ was 0.59 for detection of abnormality in the 

contralateral breast from a woman with signs of cancer in the other breast. This result is 

striking because the mammogram on which the judgement was based had no mass. These 

results provide intriguing hints that the information required for detection and that for 

localisation could be dissociable, and indeed that even images without an actual mass 
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may carry some signal that is informative to experts about the overall potential for cancer 

in the patient.  

Evans et al. (2013) and Evans et al. (2016) interpret their results as reflecting a 

global signal of abnormality that lacks information about location of a specific mass. 

Indeed, the remarkable findings that a diagnosis could be made from the contralateral 

apparently-normal breast when the opposite side was abnormal might be explained by 

this interpretation. There are, however, some alternative interpretations that need to be 

carefully considered and ruled out. Frequentist statistics, used in these studies, cannot 

distinguish between a true null (no effect exists) and a lack of sensitivity (an effect exists 

but is not detected). To interpret a null effect as evidence for there being no effect (in this 

case no localisation), we would need to use alternate statistics, such as a Bayes Factor 

(Dienes, 2011). Second, the summary statistics (e.g., average d prime) are inadequate to 

answer the key questions. For d prime values quite close to chance, artefacts or slight 

imprecisions in localisation for just a few images could be sufficient to drive performance 

to an apparently greater than chance level. For example, if participants are actually 

‘detecting’ a distracting signal in the breast for a target present trial, the detection 

response would be correct, but localisation would be incorrect (as participants would 

click on the distractor). Similarly, if participants click just outside the lesion, this would 

be categorised as incorrect, which would lead to the erroneous inference that there was no 

localisation information. Finally, in a detection experiment, there will always be some 

‘lucky guesses’ that are correct. We need to consider the impact of these on the apparent 

dissociation between detection and localisation. These two studies by Evans and 

colleagues (2013) and (2016) raise important questions, but the challenge to the Kundel 

and Nodine (1975) model of radiologists’ diagnostic decision-making rests heavily on the 

lack of information about the location of an abnormality. We need to go beyond the 
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summary statistics and explore image level variability, precision of localisation responses 

and the potential influence of guesses to ascertain whether there is truly detection without 

localisation. 

The aims of the present study were to extend previous work by Evans et al. (2013) 

and explore the question of localisation in detail. The claim that radiologists can detect an 

abnormality without knowing where it is has strong theoretical implications. Instead of 

the intuitive notion that the information in the first glance guides attention and the eyes 

towards the location of the potential abnormality, it implies a quite different process. 

Here, our first aim was to see whether expert readers of mammograms viewing brief 

displays can extract location information when there are localisable signals from the 

lesion (i.e., a salient mass).  

 

Experiment 1: Pilot study to validate the paradigm 

This pilot experiment was designed to test whether experienced radiologists could 

extract sufficient information about obvious masses in a single mammogram to support 

detection and localisation at brief presentation durations. We presented a single side 

(unilateral breast) to reduce the size of the visual display and amount of visual processing 

required (relative to Evans et al (2016, Experiment 2)). We also were meticulous in 

selecting our stimuli. Using real-world stimuli rather than typical laboratory visual search 

displays allows for high ecological validity, but presents considerable challenges. The 

available images are often far from perfect for vision studies as it is difficult to control for 

factors such as co-existing variables (e.g., breast calcifications, target number and size, 

and breast tissue type). For our experiment, we selected images with single masses and 

minimised the features in the image which may act as visual distractors for the 

radiologists.  
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We investigate detection and localisation performance for a single mass present in 

a unilateral mammogram at unmasked exposure durations of 250ms, 500ms and 750ms. 

The majority of the stimuli were categorised as ‘masses easy to detect’ by an independent 

breast radiologist (P.S) on free viewing. The participants performed a detection and an 

‘exact click’ localisation task similar to Evans and colleagues (2013), except that the 

target-present stimuli exclusively contained a single mass rather than ‘subtle masses and 

architectural distortions’. We predict that these easy cases (obvious mass) will result in 

both detection and localisation even at brief durations, demonstrating the task is 

appropriate for measuring location information when it is able to be extracted.  

 

Method 

All measures and conditions are reported. 

Participants 

We defined experts as having at least four years of experience and in their current 

practice reading at least 2000 mammographic cases per year (Rawashdeh et al., 2013). 

When conducting research on experts, the sample size is often constrained by the 

availability of the participants. Here, we recruited 30 radiologists, and analysed the data 

from 18 of these who met our criteria for experts. These were all board-certified 

radiologists (nine females; age range 41 – 73 years, mean [M] = 54, standard deviation 

[SD] = 8.6). Half of the participants were NSW BreastScreen radiologists who read > 

5000 cases per year and half were from general radiology practices. All gave informed 

consent and reported normal or corrected-to-normal vision. The study was approved by 

the Macquarie University Human Research Ethics Committee (Medical Sciences). 
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Design, Stimuli and Apparatus 

The experiment was a single factor repeated-measures design. The stimuli were 96 

full-field, de-identified, medio-lateral oblique digital breast mammograms obtained from 

the Dokuz Eylul Mammography Set (DEMS: Bulu, Alpkocak & Balci, 2013). Half of the 

images contained a single suspicious mass and half were normal. The average size of the 

mass was 26.70 mm (SD = 13.23 mm) and the range was from 8 – 54 mm. The abnormal 

images contained a mass previously diagnosed and coded according to the Breast 

Imaging and Reporting Data System (BIRADS: American College of Radiology: Breast 

Imaging Reporting and Data System Atlas. Reston, Va: © American College of 

Radiology, 2003). BIRADS is a standardised breast assessment tool developed for 

mammography that ranges in number from zero to six. In clinical practice a radiologist 

assigns a BIRADS score to each image, which determines the next step in the diagnostic 

protocol. The 52 normal images had assigned BIRADS codes of 1 (no significant 

abnormality). The abnormal breast images consisted of a mixture of BIRADS codes 4 

(suspicious abnormality and biopsy recommended), 5 (highly suggestive of malignancy) 

and 6 (known pathological proven malignancy). The starting resolution of the single 

mammograms were 4096 x 3328 or 3328 x 2560 pixels and were downsized to 50° x 30° 

or 50° x 28° visual angle.  

The participants sat at a viewing distance of 53cm in a dimly lit, quiet room at a 

conference setting. The experiment was written and presented via MATLAB 2013B using 

the Psychophysics Toolbox 3 (Brainard, 1997; Pelli, 1997) and controlled using a 

Macintosh MacBook Pro. The stimuli were displayed externally on a Dell Full HD LCD 

22-inch screen with resolution = 1920 x 1200, refresh rate = 120 Hz.  
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Procedure 

We presented the stimuli at one of three presentation durations (250ms, 500ms or 

750ms) in separate blocks, counterbalanced across participants. After 4 practice trials at 

each duration, with images not used in the main experiment, radiologists then completed 

3 blocks, each with 32 unique mammograms. Thus, there were 32 trials for each duration. 

For each participant, the particular image presented in each duration was randomly 

selected without replacement. Figure 1 shows the trial sequence. Each trial began with a 

fixation point for 500ms, followed by a centrally-presented left medio-lateral oblique 

(MLO) breast image. After the mammogram, we presented a black screen asking the 

radiologists to categorise the mammogram using a key press as either ‘normal’ or 

‘contains a suspicious mass’, followed by a black screen with a white mask of the breast 

(each unique mammogram was paired with its corresponding mask). The radiologists 

were asked to click with the mouse on the location where they saw a mass. In the case of 

normal responses, they were asked to click anywhere on the display. They began the next 

trial with a key press. Participants did not receive feedback and were not told the 

prevalence of abnormalities (See Fig. 1).  
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Analysis 

Following the recommendations of Cumming (2012), we present Mean 

differences (Mdiff) with 95% confidence intervals (CI), as well as a Cohen’s d estimate of 

effect size corrected for small sample size, to assist in accurate interpretation of the 

effects. This latter measure, dunb  represents an adjusted, unbiased Cohen’s d standardised 

effect size applied to single sample t-tests where dunb = (1 - 3 / (4*df - 1)) * d (Cumming, 

2012). A Bonferroni adjustment was applied to all statistical tests (alpha = .0167).  

Results and Discussion  

Ten images were removed post hoc (five from the cancer set and five from the 

normal set) prior to the analysis as these were found to contain co-existing pathology that 

may have confounded the results (e.g., microcalcifications). The responses from the 

participants for a total of 86 images were analysed.   

Figure 1: Example trial for Experiment 1. Radiologists were asked first 

whether the image was normal or contained a mass, and then to use the 

mouse to indicate the location of the mass if present. MLO = Medio-lateral 

oblique mammographic projection. 
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Detection accuracy: Sensitivity (d¢ ) was calculated as a function of abnormality 

present or absent. Higher d¢ indicates greater sensitivity: the higher the d’, the more 

accurately the radiologists gave the correct answer on both target present and target 

absent trials (i.e., reported a mass when a mass was present and no mass when no mass 

was present). A d¢ of zero indicates there is no sensitivity and the participant is 

performing at chance (i.e., no better than guessing). In free-viewing tasks, radiologists 

have been shown to have d¢  values around 2.5–3.0 (D’Orsi, et al., 2013). Figure 2a shows 

the average d¢ values across participants for the three durations. Single sample t-tests 

showed the radiologists’ detection was significantly above chance [t-test relative to 0: 

250ms, t(17) = 11.81, p < .0001, Mdiff = 1.28, CI [1.05, 1.50], dunb = 3.76; 500ms, t(17) = 

12.32, p < .0001, Mdiff = 1.67, CI [1.39, 1.96], dunb = 3.92; 750ms, t(17) = 10.53, p 

< .0001, Mdiff = 1.44, CI [1.15, 1.73], dunb = 3.35]. Repeated measures ANOVA on d’ 

revealed no effect of presentation duration [F(2,34) = 2.28, p = .117].   

Of course, these d¢ values reflect poorer performance than seen in free-viewing – 

and in clinical practice, additional mammographic projections, previous imaging and 

patient history would be available to a reporting radiologist. Thus, the task of detecting an 

abnormality after seeing a one-shot display flash briefly is not the typical way a 

radiologist conducts image interpretation, but it can give valuable insights into the type of 

information available in this initial stage of the diagnostic process.  

 

Localisation accuracy: Our key question was whether there is localisation 

information when detection is correct so we analysed trials where the participants 

correctly detected an abnormality at each exposure duration (i.e., correct detection target-

present trials) to look at the accuracy of the localisation task. We compared the location of 

the mouse click with the location of the actual mass and coded the response as either 
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accurate (participant clicked within the boundaries of the mass) or not (any other 

location). We then compared localisation performance to chance, calculated across the 43 

mass-present images as 4%. This is the proportion of breast tissue that contains the mass 

to the proportion of total tissue, and represents the average number of possible random 

locations the radiologists could select, taking into account the lesion and image size 

across all of the target-present images. Figure 2b shows localisation accuracy (percentage 

correct) on detection correct trials compared with chance (4%). Single sample t-tests 

showed that the radiologists’ localisation accuracy (when detection was correct) for all 

three durations was significantly above chance [t-test relative to 4: 250ms, t(17) = 9.93, p 

< .0001, Mdiff = 30.85, CI [24.3, 37.41], dunb = 3.16; 500ms, t(17) = 12.04, p < .0001, Mdiff 

= 42.46, CI [35.02, 49.9], dunb = 3.83; 750ms, t(17) = 12.3, p < .0001, Mdiff = 38.66, CI 

[32.03, 45.29], dunb = 3.92].  

  

Figure 2: Detection and localisation results for Experiment 1. (a) Average 

sensitivity (d¢ ) on the detection task; (b) Average percentage correct on the 

localisation task when detection was correct. Chance is 4% (dotted line) with 

95% confidence intervals. Error bars represent 95% confidence intervals. 
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The localisation results show that on at least a third of the trials on which they 

correctly detected the presence of a mass, participants also had information about the 

exact location of the mass. To examine localisation performance as a function of detection 

performance, we binned target present trials according to responses on both detection and 

localisation. In Figure 3, we present the data in an alternative format to examine the 

relationship between detection and localisation. Each experimental target-present trial is 

represented once in the graph. At all durations, there are approximately 20% of trials 

where the radiologists are correctly detecting a mass without being able to localise it 

accurately. 

 

 

 

 

 

Figure 3: Average percentage correct for detection and localisation correct (blue 

bar) and detection only correct (grey bar). Error bars represent 95% confidence 

intervals. 
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To summarise, in this experiment we tested a group of experienced radiologists on 

a task designed to measure the information available to them when mammographic 

images are presented for brief durations. We modified the paradigm used by Evans and 

colleagues (2013) to test whether localisation information could be sensitively measured 

in this way, and found a significant portion of trials on which such information was 

indeed detectable. Radiologists could detect and localise a mass in a single view 

mammogram which was presented briefly but not masked, as well as some trials where 

apparently only detection is possible. In these images, 75% of the masses were relatively 

obvious: the lesion was conspicuous or salient, often due to low mammographic breast 

density (MBD). From this pilot experiment, we designed a follow-up experiment to fully 

explore whether we can still provide evidence of detection and localisation when the 

images are more difficult. We manipulated breast density, and tightly controlled 

presentation durations (using a mask), after which we delve into the ‘detection without 

localisation’ data more deeply.  

 

Experiment 2 

The aims of Experiment 2 are to extend previous work by Evans and colleagues 

(2013; 2016) and explore in detail whether detection and localisation are dissociable. 

Female breast tissue is highly variable in mammographic breast density (MBD: Li, et al., 

2013). In the human population, 40% of women aged between 40-74 years have dense 

breasts (Sprague, et al., 2014). Critically, as MBD increases there is a 4-6-fold increased 

risk of breast cancer (Boyd, et al., 2010), and studies have shown that higher levels of 

MBD reduce radiologist sensitivity, thus limiting early detection of breast cancer (Al-

Mousa, Ryan, Mello-Thoms & Brennan, 2014). For a radiologist, MBD increases the 

complexity of the image and could mask and/or distract from existing pathology. Thus, an 
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additional aim was to explore the effect of breast density (which can make masses more 

difficult to see) on the type of information that can be extracted in a brief display. Finally, 

the distinction between theories of radiologist visual search rests heavily on the 

dissociation between detection and localisation of masses. Our third aim was therefore to 

develop methods that can test for evidence of this dissociation. To this end, we looked at 

the images in detail to explore the degree and source of localisation errors on apparent 

detection-correct trials, as well as considering the potential influence of ‘lucky’ guesses to 

‘detection without localisation’ performance.   

 We investigate detection and localisation performance for a single mass in 

unilateral mammograms presented centrally for a brief duration and then masked. There 

is a bias to click directly in front of fixation (centre of the image) when the location is 

unknown (Buswell, 1935; Tatler, 2007). However, the mass location varied within the 

breast in our images, which minimises the influence of any such bias (i.e., a random 

central click is not likely to fall within the mass location on many trials). We presented 

two sets of mammograms that varied on density (high density and low density) and mass 

presence. As half of the images contained a mass that would be difficult to detect, we 

used two durations (unique images in each): 250ms (within the timeframe others have 

considered to support gist-level information in medical images; Evans et al. (2013)) and 

1000ms (presumably well beyond gist level of perception). The participants performed a 

detection and an ‘exact click’ localisation task similar to Evans and colleagues (2013), 

except that the target-present stimuli exclusively contained a single mass that was either 

easy (50%) or difficult (50%) to see, due to level of breast density, rather than subtle 

masses and architectural distortions. We predict that mass detection and localisation will 

be more accurate for mammograms with low density compared with those with high 

density at both experimental durations. We consider image variability, response 
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imprecision and we use alternative analyses and a guessing correction to fully test for a 

dissociation between knowing an abnormality is present versus knowing where it is.  

 

Method 

All measures and conditions are reported. 

Participants.  

Twelve participants with experience in interpreting mammograms were recruited 

from BreastScreen New South Wales and local radiology practices (6 female, Average 

age = 54 years, SD = 13 years). We defined experts as having at least four years of 

experience and in their current practice reading at least 2000 mammographic cases per 

year (Rawashdeh et al., 2013). The BreastScreen doctors (n = 11) read > 3000 

mammographic cases per year, but we did also include one breast physician who read > 

1000 cases per year, as she had extensive experience (10 years). The average experience 

reading mammograms of our participants was 22 years (SD = 13 years). All gave 

informed consent and reported normal or corrected-to-normal vision. The study was 

approved by the Macquarie University Human Research Ethics Committee (Medical 

Sciences). 

Design, Stimuli and Apparatus  

We used a Density (low, high) x Duration (250, 1000ms) within-subjects design.  

As in Experiment 1, the stimuli were 160 full-field, de-identified, medio-lateral oblique 

digital breast mammograms obtained from the Dokuz Eylul Mammography Set (DEMS: 

Bulu, et al., 2013), which varied on target presence/absence, and high MBD/low MBD. 

Half the images (80) were normal and half contained a single mass previously diagnosed 

and coded according to the Breast Imaging and Reporting Data System (BIRADS: 2003). 
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The average size of the mass was 26.70 mm (SD = 13.23 mm) and the range was from 8 – 

54 mm.  

Difficulty was manipulated by including two sets of mammograms (dense: high 

MBD and fatty: low MBD) where half of the mass images (40) and half of the normal 

images (40) had high MBD. The remaining images had low MBD (See Fig. 4). Density 

was categorised on a dichotomous scale (low/high) by an experienced radiologist blind to 

the purpose of the study (M.B.) and one author with experience reading mammographic 

images (A.C.). These ratings were significantly correlated (r = 0.9, p < .0001). One of the 

most challenging aspects of studying radiologists and using medical images rather than 

using artificial stimuli is that the human body varies widely anatomically. To ensure that 

the stimuli set used in our experiment was free of potential confounds such as co-existing 

pathology we included images that only contained a single mass. Image artefacts such as 

side markers, dust and large calcifications (potential distractors) were found in ten 

mammograms and were deleted using GraphicConverter (version 9.4).  
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The experiment was presented on a Macintosh MacBook Pro using MATLAB 

2011B with the Psychophysics Toolbox Version 3 (Brainard, 1997; Pelli, 1997). The 

stimuli were centred on a 1920 x 1080 resolution 24-inch, LG W2442PA, liquid-crystal 

display screen, refresh rate of 120Hz. The participants sat approximately 70cm away 

from the screen. The original resolution of the single mammograms was 4096 x 3328 or 

3328 x 2560 pixels, which were downsized to 19° x 24° (18 out of 160) or 20° x 24° of 

visual angle. To validate our image categories and presentation durations, pilot data was 

collected from three radiologists at 250ms and 500ms durations two months prior to their 

Figure 4: Exemplars of target-present images. The red outline depicts the mass 

(and did not appear in the actual stimuli). (a) Low density breast that contains 

predominately fatty tissue, which is radio-translucent or black/grey. The higher 

contrast mass is easily seen; (b) High density breast that contains normal 

fibroglandular tissue resulting in a more difficult search. The X-ray beam is 

attenuated by this tissue and appears radio-opaque or white on a mammogram.  
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participation in the experimental session. Previous studies which have used medical 

images have reported that a time-lapse of around 2 months between each session reduces 

the likelihood of recall (Berbaum, et al., 2015). On the basis of these pilot data we 

increased the long duration condition to 1000ms.  

 

Procedure 

The experiment was conducted onsite at various metropolitan Sydney 

BreastScreen and radiology practice locations. We presented the stimuli at two 

presentation durations (250ms, 1000ms) in separate blocks, counterbalanced in order 

across participants. For each participant, the particular image presented in each duration 

was randomly selected without replacement. After four practice trials at 2000ms with 

feedback and a further six trials at the experimental durations (three at 250ms, three at 

1000ms; blocked) with feedback, the radiologists viewed 160 trials without feedback. The 

radiologists were asked to detect ‘any mass that you would recommend for further 

investigation’. Each trial began with a fixation point for 500ms, followed by a centrally 

presented left medio-lateral oblique breast image. This was followed by a backward 1/f 

noise mask for 250ms after each stimulus presentation and a black screen asking the 

radiologists to categorise the mammogram using a key press as either ‘normal’ (left arrow 

key) or ‘mass’ (right arrow key), followed by a black screen with a grey mask of the 

breast (each unique mammogram was paired with its corresponding mask). The 

radiologists were asked to ‘please click with the mouse the exact location where you saw 

a mass’. In the case of normal responses, they were asked to click anywhere on the 

display. There were 20 trials per condition (duration/target presence/density). Figure 5 

shows the trial sequence. Participants began the next trial with a key press.  
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Results 

The aims of the experiment were to see whether expert readers of mammograms 

viewing brief displays (1) can extract location information; (2) are affected by breast 

density in the type of information that can be extracted; (3) show a dissociation between 

detection and localisation. For all analyses (including Bayes Factor) the Statistical 

Package for the Social Sciences was used (IBM: SPSS, 2015).  

Detection accuracy: Figure 6 shows percentage correct for low density (blue 

lines) and high density (black lines) for (a) target present and (b) target absent trials. For 

the target present trials, we can see from Figure 6a that performance for the low density 

images, in which the masses are salient, appears better than the high density images, 

where the masses are much more difficult to find even in free viewing. We can also see 

that accuracy improves with duration. Figure 6b shows accuracy for the target absent 

Figure 5: Example trial for twelve radiologists who were asked first whether the 

image was normal or contained a mass, and then to use the mouse to indicate the 

location of the mass if present. 
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trials. The radiologists appeared less accurate on target absent trials at the longer duration, 

showing they tended to make false alarms when given slightly more time to inspect the 

display. 

 

 

Sensitivity (d¢ ) was calculated as a function of abnormality present or absent. 

Higher d¢ indicates greater sensitivity: the higher the d¢, the more accurately the 

radiologists responded to both target present and target absent trials (i.e., reported a mass 

when a mass was present and no mass when no mass was present). A d¢  of zero indicates 

there is no sensitivity and the participant is performing at chance (i.e., no better than 

guessing).  

Figure 6c presents the sensitivity (d¢ )  data. Single sample t-tests (Bonferonni 

adjusted, alpha = .0125) on average d¢ relative to 0 (chance) for each duration and density 

showed that radiologists do have information about the presence of the mass at both 

Figure 6: Detection accuracy. (a) Average percentage correct on target present 

trials; (b) Average percentage correct on target absent trials; (c) Average 

sensitivity (d¢)  on the detection task. Error bars represent 95% confidence 

intervals. 
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durations. Performance at 250ms for the low density condition was greater than chance 

(t(11) = 14.97, p < .0001, Mdiff = 2.39, CI [2.03, 2.74], dunb = 5.69) as was performance in 

the more difficult high density images (t(11) = 3.3, p < .007, Mdiff = .44, CI [.15, .74], dunb 

= 1.3). As one might expect, this was also the case at the longer duration of 1000ms, both 

for low density images (t(11) = 13.38, p < .0001, Mdiff = 2.31, CI [1.93, 2.69], dunb = 5.09) 

and high density images (t(11) = 5.04, p < .0001, Mdiff = .82, CI [.46, 1.17], dunb = 1.92). 

Although high density d¢ values reflect poorer performance than seen in free-viewing, 

where radiologists have d¢ values around 2.5–3.0 (D’Orsi, et al., 2013), performance 

already approaches these levels for the low density images, even at 250ms (see Fig. 6c). 

These results suggest that when the mass is relatively easy to see (low density), diagnostic 

sensitivity in the first quarter of a second is already close to that of free-viewing.  

As one would expect, we can see from Figure 6c that performance for the low 

density images is better than the high density images. This obvious pattern was confirmed 

by a repeated measures ANOVA with the factors of Density (low, high) x Duration (250, 

1000) on the mean d¢ values. This showed a main effect of Density (F(1, 11) = 133.51, p 

< .0001, h2
p  = .92), no effect of Duration, (F(1, 11) = .98, p = .344) and no Density x 

Duration interaction (F(1, 11) = 2.09, p = .18).  

Localisation accuracy: Our key questions were first, whether there is localisation 

information when detection is correct, and second, how breast density influences 

localisation. Using the same method as Evans et al. (2013) and Evans et al. (2016, 

Experiment 2), we compared the location of the mouse click with the location of the 

actual mass and coded the response as either accurate (participant clicked on or within the 

boundaries of the mass) or not (any other location). We analysed trials where the 

participants were correct on detecting an abnormality at each exposure duration (i.e., 

correct detection target-present trials). We compared localisation performance to chance, 
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calculated across the 80 target-present images as 4.4% (CI [3.02%, 5.75%]). This is the 

proportion of breast tissue that contains the mass relative to the proportion of total tissue; 

thus it represents the average number of possible random locations radiologists could 

select, taking into account the lesion and image size across all of the target-present 

images. Figure 7a shows the percentage of trials when the radiologists responded 

correctly on localisation task, when detection was correct, for low density (blue line) and 

high density (black line) at the two durations, compared with chance. Single sample t-

tests (Bonferonni adjusted, alpha = .0125) showed that radiologists’ localisation accuracy 

was significantly above chance (4.4%) for 250ms presentations of low density images 

(t(11) = 12.9, p < .0001, Mdiff = 30.18, CI [25.03, 35.33], dunb = 4.9) as well as for high 

density images (t(11) = 3.74, p = .003, Mdiff = 6.43, CI [2.64, 10.22], dunb = 1.42). The 

same pattern was evident at the longer duration of 1000ms for low (t(11) = 13.9, p < 

.0001, Mdiff = 50.6, CI [42.59, 58.61], dunb = 5.28) and  high (t(11) = 10.41, p < .0001, 

Mdiff = 19.35, CI [15.26, 23.44], dunb = 3.95) density images. 
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To investigate the effect of density on localisation (Fig. 7a), we conducted a 

repeated measures ANOVA with the factors of Density (low, high) x Duration (250, 

1000) on the mean percentage localisation correct values from the correct detection 

target-present trials. Again in line with expectations, this showed a main effect of 

Density, with better localisation accuracy in the low than high density condition (F(1, 11) 

= 114.07, p < .0001, h2
p  = .91), a main effect for Duration, with better localisation 

accuracy at 1000ms than 250ms (F(1,11) = 53.01, p < .0001, h2
p  = .83), and no Density x 

Duration interaction (F(1,11) = 2.17, p = .17). These analyses show that radiologists were 

statistically above chance in localising the target on trials where they successfully 

detected a mass. However, as localisation performance is far from perfect, we have some 

trials on which detection occurred apparently without localisation information being 

Figure 7: Detection and localisation results. (a) Average percentage 

correct on the localisation task for trials when detection was correct; (b) Average 

percentage correct on the localisation task when a region of acceptance (ROA) 

around the lesion is included. Chance is 4.4% (dotted line) with 95% confidence 

intervals. Error bars represent 95% confidence intervals. 
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available. This could reflect a global signal as suggested in the previous literature (Evans 

et al., 2013) and to investigate this possibility thoroughly, we conducted several follow-

up analyses.  

   Before concluding one has evidence of ‘detection without localisation’ (e.g., 

Evans et al., 2013; Evans et al., 2016), there are some important alternatives to be 

considered. First, we would like to note that before concluding anything from a null 

localisation effect (such as that of Evans and colleagues), we need to use statistics that 

can provide evidence of no effect (of localisation when there is detection) rather than just 

no evidence. Frequentist statistics do not allow for the interpretation of null effects – a p 

value greater than alpha merely informs us that we do not have evidence to reject the null 

hypothesis. To see whether there is evidence for the null hypothesis of no localisation 

information, we could instead calculate a Bayes Factor (BF). In line with Jeffreys (1961) 

a BF < .3 indicates that the data support the null rather than the alternative hypothesis, a 

BF ~ 1 indicates maximal insensitivity of the experimental evidence, whereas a BF >1 

indicates the data support the alternative hypothesis (BF > 3 suggests evidence for the 

alternative) (Dienes, 2011). In our case, we do not have a null effect in any condition, but 

we can still calculate a Bayes equivalent of a single sample t-test compared to chance 

(4.4%) to illustrate the point: if we test just the difficult images that are comparable to 

those of Evans et al. (2013; 2016), we can see strong evidence for the alternative 

hypothesis that localisation information exists: For the high density condition at 250ms, 

the BF(12) = 14.73 and at the longer duration, 1000ms, BF(12) = 31052.09. Consistent 

with our frequentist statistics results, we conclude that the radiologists are localising 

targets better than chance in the high dense conditions.  

Our second consideration is whether summary level statistics such as overall 

accuracy or sensitivity are adequate to address the ‘detection without localisation’ 
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question. In fact, one cannot be sure of ‘detection without localisation’ without examining 

the error trials carefully. A null localisation effect could, for example, be due to less 

precision in the localisation task than the detection task, due to the additional 

requirements rather than a true lack of localisation information. This could include decay 

in the visual short-term memory trace over time or motor error in clicking the precise 

location. If such factors influence the precision of the localisation responses, we should 

see localisation errors that nonetheless cluster around the correct region. Our radiologists 

were scored correct on localisation if the mouse-click occurred within or on the 

boundaries of the lesion, consistent with Evans et al. (2016) (Evans, personal 

communication, May, 2017). However, when we look at the incorrect localisation 

responses, we see that this does not accurately reflect the degree of localisation 

information. For example, in Figure 8a, many of the ‘incorrect’ responses suggest the 

participant had some information about location, rather than basing his or her response on 

an amorphous global signal of abnormality.  

There is also inherent variability in real-world stimuli. Although we carefully 

selected images with only one true mass, and removed obvious artefacts (e.g., dust), the 

images have naturally-occurring variations in breast tissue. We need to examine the 

responses at an image level to assess whether such variance may have contributed to trials 

of apparent successful detection without accurate localisation. Figure 8b shows clearly an 

image where natural variability has contributed to three incorrect responses to a distractor 

in the breast (presumably in these cases, the radiologists were responding ‘abnormality 

present’ to this distractor, rather than the actual mass). The responses on these images 

suggest that apparent ‘detection without localisation’ may actually reflect coarse or less 

precise localisation, rather than no localisation, warranting image-level investigation.  
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Figure 8: Exemplars from the target present stimuli set illustrating the mass (red 

outline, not shown in the experiment) and localisation responses of the 12 

radiologists (blue) collapsed across duration. (a) Low density image showing 

precision errors. The blue mouse-clicks for localisation show that the 8 

radiologists who were ‘incorrect’ on this image may have information about the 

location of the target; (b) High density image showing the effect of a naturally-

occurring distractor. Three radiologists localised the distractor as the abnormality 

(note a further 4 ‘incorrect’ responses are near the mass (red outline) but 

imprecise).  
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To quantify the degree to which such examples might influence our results, we 

conducted a post-hoc image analysis collapsed across participants for each duration. We 

calculated the distance between the response click and the mass (i.e., the degree of 

incorrect localisation). In academic radiology, a region of acceptance (ROA) for lesion 

localisation is determined by taking into account the size of the largest lesion (e.g., 

Haygood, et al., 2014). Following this convention, we measured the radius of the largest 

mass in the image set (27mm) and added this value to the boundary values for all the 

target present images. Using this method, localisation is scored correct when a radiologist 

clicks within this ROA, allowing for a margin of response imprecision and reducing the 

‘tightness’ of acceptance. We further examined the trials that were still incorrect to 

quantify the distance from the lesion boundary.  

Figure 9 shows image level analysis for the localisation data on incorrect trials 

plotted as a function of distance (in pixels) from the closest boundary of the mass, 

collapsed across radiologists (Fig. 9a: 250ms; Fig. 9b: 1000ms). Detection incorrect 

images are not included (250ms: high density =12, low density = 1; 1000ms: high density 

= 8; low density = 0). Correct responses for localisation (when detection correct) would 

appear on the baseline and are also not included on the figure (250ms: high density = 3, 

low density = 8; 1000ms: high density = 8; low density = 8). The dashed red line 

represents the ROA plotted at 29 pixels. Figure 9 shows a considerable proportion of the 

clicks lie within this decision boundary and highlights how the variability within each 

image affected accuracy due to factors such as mass size and distractors.  
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Figure 9: Localisation errors showing the distance between the localisation 

response and the mass for each image (detection correct target-present trials only). 

(a) 250ms duration; (b) 1000ms duration.  The x-axis represents the images 

(divided by high and low density. Note: the image numbers are arbitrary for the 

purpose of the graph only). A correct score on localisation would score 0 (excluded 

from the figure). The y-axis is the distance (in pixels) from the mass border. The 

dashed red line represents the region of acceptance (ROA). Red numbers are data 

points in response to images with unusual characteristics: 25 (250ms) is the high 

density image presented in Figure 8b showing the mouse-clicks on a distractor. 34 

is a low density image which contained a prominent lymph node in the axillary tail 

of the breast which appears to have captured 4 radiologists’ attention; 25 (1000ms) 

is a low density image containing a small mass and 43 is the low density image 

presented in Figure 8a showing the cluster of mouse-clicks near the correct 

location.  
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Localisation accuracy including a ROA: We calculated percent correct for 

localisation trials with an ROA included in assessing localisation for target-present trials 

with correct detection responses. Figure 7b shows the percentage of trials in which ROA 

localisation was correct for low density (blue line) and high density (black line) images 

across both durations, compared with chance. The summary-level measures clearly 

indicate better accuracy for all conditions compared with the non-ROA data, especially 

for the 250ms high density condition (ROA Mean = 20.42%; non-ROA Mean = 10.83%), 

demonstrating that the Evans et al. (2013) and Evans et al. (2016) method for calculating 

localisation may not adequately capture the degree to which location information is 

present.  

This post-hoc analysis highlights the variability and challenges which exist when 

using real-world stimuli, and the importance of carefully examining the data from 

individual images rather than stopping at summary statistics. These findings suggest that 

the apparent lack of localisation on some trials where a mass was detected is, at least in 

part, driven by image variability, such as small masses and distractors, and response 

imprecision. When we apply a more liberal localisation ROA, we see evidence that coarse 

localisation information exists, with a higher proportion of correct localisation responses 

even for the more difficult images.  

We can also bin trials on which detection was correct according to their response 

profile to further examine the distribution of trial performance. Figure 10 shows the 

localisation data calculated using an ROA as a function of detection performance 

(collapsed across radiologists and images) for trials on which detection plus localisation 

were correct (blue bar), the additional localisation correct trials produced by including a 
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ROA (dark grey bar) and detection only trials on which localisation was incorrect (light 

grey bar).  

 

 In addition to the trials with evidence for coarse localisation or precise mis-

localisation, Figure 8 shows some remaining trials on which localisation is clearly 

incorrect; these contribute to the light grey bars in Figure 10. These trials could be 

evidence for ‘detection without localisation’, which seems key to interpretations of 

radiologists using ‘gist’ or a global signal. However, there is one final consideration 

before making such an interpretation: we need to be sure that the number of trials on 

which this occurs exceeds the rate at which such trials would occur simply from ‘lucky’ 

guesses. With any visual detection task, some proportion of trials will be correct by 

Figure 10: Percentage correct detection and localisation on target-present trials for 

low and high density mammograms plotted by duration (250ms, 1000ms). Data are 

separated by response accuracy: Detection and localisation correct (blue bar); the 

additional proportion of trials where localisation is correct when a ROA is included 

(dark grey bar); and detection correct/localisation incorrect (light grey bar). Error bars 

represent 95% confidence intervals.  
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chance. A d¢ above chance shows more trials are correct than would be predicted by 

simply guessing, but if one wants to infer that there are trials in which there is 'detection 

without localisation’, we need to calculate what proportion of these could be lucky 

correct detection guesses, followed by a localisation guess (which has less chance of 

being correct, recall chance in Evans et al. (2016) for localisation was ~ 6%). 

We calculated a guessing probability using the method described in Howe and 

Webb (2014). They were interested in whether observers could ever ‘sense’ a change in a 

change blindness paradigm without knowing where the change was. In their method, one 

works out what proportion of correct detection trials (in their study, detection of a 

change) could be due to lucky guesses by creating a hypothetical observer who can only 

detect a change when it also knows what that change is (i.e., there is no true detection 

without localisation, therefore any such trials are due to correct guesses). Here, we used 

the same logic, a hypothetical observer who cannot detect a mass without also knowing 

where that mass is, to work out the proportion of trials on which correct detection 

combined with incorrect localisation could be due to lucky guesses. We can then compare 

actual performance with this prediction for each radiologist. 

 

Calculated N (hypothetical observer) = Q(Y-PA)/(1-P) 

 

where Q = proportion of possible incorrect localisations; Y = number of target 

present trials on which the participant responded ‘target present’ (hits); P = proportion of 

target absent trials on which the participant responded ‘target present’ (false alarms); and 

A = actual number of target present trials (Note, there is no correction applied to an 

observer with no false alarms).  
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We calculate a guessing probability for the ROA localisation data, as this already 

takes into account any slight imprecisions in the localisation responses, giving the most 

accurate view of localisation information at a summary level. If the actual participants 

correctly indicated the presence of a mass in the absence of a correct location response 

more often than this hypothetical observer, this provides evidence for information about 

the presence of an abnormality without knowing where it is: ‘detection without 

localisation’. Figure 11 shows the number of ‘detection without localisation’ trials from 

our data (dark grey bars) and the number of trials the hypothetical observer would ‘guess’ 

for all four conditions (light grey bars).  

 Figure 11: The observed number of correct ‘detection without localisation’ 

trials (dark grey bars) compared to the number of calculated (guessing) trials 

for a hypothetical ideal observer (light grey bars) for low and high density 

mammograms plotted by duration (250ms, 1000ms). Error bars represent 95% 

confidence intervals.  
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 From Figure 11, it is clear that there are only a small number of trials representing 

apparent ‘detection without localisation’, which makes statistical analysis unlikely to be 

reliable.  However, even just from the graph one can see that only for the low density 

conditions is there any chance that there might be more detection without localisation 

trials than predicted by our hypothetical observer. Recall that it is only our high density 

condition that has images in which the mass is comparable in difficulty to Evans and 

colleagues (2013; 2016), making this the key condition. We have no evidence that for this 

high density condition the number of observed ‘detection without localisation’ trials is 

more than what would be predicted by ‘lucky’ guesses.   

 

Discussion 

The aim of this study was to examine the type of information that is available in 

the initial processing of a medical image (mammogram) by experienced radiologists, 

focusing on detection and localisation of potential abnormalities. We found radiologists 

were able to detect abnormalities at both durations (250ms, 1000ms) and density 

conditions (high, low), with a significant effect of duration. Overall summary statistics 

also supported the presence of localisation information, with the radiologists performing 

better than chance for both the 250ms and 1000ms durations, for the low and high density 

mammograms. Breast density affected performance in a predictable way, with better 

performance for low than high density images. As our key question related to a potential 

dissociation between detection and localisation, we carefully examined trials on which 

there seemed to be a dissociation. We suggest a number of factors that can lead to an 

underestimation of localisation information such as image variability, the precision of 

localisation responses, and correct detection guesses. Overall, our data suggest that 

although it is possible that there may be a dissociation between detection and localisation 
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on a small number of trials, particularly on easy trials (low density), there are other 

plausible explanations for the majority of such apparent dissociation trials. 

Recent high-profile papers have concluded that radiologists can detect but not 

localise abnormalities in briefly presented mammograms (Evans et al., 2013; Evans et al., 

2016). These papers suggest a different process to the previous theory that the 

information in the first glance guides experienced radiologists’ attention and directs their 

eyes towards the location of the potential abnormality (Kundel & Nodine, 1975). 

Specifically, Evans et al. (2013) and Evans et al. (2016) proposed that the information 

extracted in the early signal is a global impression, which alerts the radiologist to the 

presence of an abnormality and then prompts a more thorough search, rather than guiding 

attention to the region of the abnormality directly. This alternative theory depends 

crucially on radiologists being able to detect masses in the absence of any information 

about location.  

One of the key distinctions between the Evans et al. (2013; 2016) studies and our 

study is that they presented stimuli described as ‘subtle masses and architectural 

distortions’. This might mean that there were a mix of both potentially localisable 

abnormalities (subtle masses) and abnormalities that do not have a well-defined location 

(architectural distortions, which do not contain a discrete mass in the parenchyma), or 

each category in a separate image. It would then make sense if there were no localisation 

signals if the abnormality was not well defined in location. A global or gist signal also 

seems a plausible explanation for the other intriguing findings of this group in which  

radiologists are above chance in detecting abnormality in a patient when shown whole 

mammograms of a contralateral normal breast  (Experiment 2) or only a patch of a 

mammographic image that does not actually contain the mass (Evans et al., 2016, 

Experiment 4). In these cases, however, there is no mass to localise, making these 
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findings less relevant to the question of whether a localisable mass can indeed be detected 

without being localised but may explain how a global signal can be used to diagnose an 

abnormality. The evidence pertaining to this question comes from the experiments in 

which it seems there is a mix of pathology (architectural distortions and subtle masses). It 

would therefore be interesting to know the proportion of these two types of breast 

pathology in the Evans et al. (2016) stimulus set, and how the location data break down 

by pathology. This would then allow a more accurate comparison with our own data.  

There is also a potential concern with the analyses in the Evans et al. (2013; 2016) 

studies. Working with real-world images introduces many challenges, and with d prime 

values quite close to chance, we raise the concern that these data could be driven by a 

small number of images that contained additional artefacts. If these studies had any 

images like those illustrated in Figure 8, this could contribute to correct detection but 

incorrect location responses. Similarly, if the localisation responses cluster around the 

actual mass but not within the boundaries in some images, such as we found in our data 

(see Figure 9), this would also contribute to apparent detection without localisation. In the 

Evans et al. (2016) patch and contralateral breast experiments (2 and 4), coarse 

localisation cannot be an explanation, as there is no actual mass to localise. Thus, if there 

are any artefacts in images that drive detection above chance, this will appear to be 

dissociated from location (which is always chance). With only summary statistics 

showing d prime slightly (but significantly) above chance (Evans et al. (2013); Evans et 

al. (2016)), it is possible that the data interpreted as evidence for a global signal could be 

misleading.  

Even when we use a conservative measure of localisation (click within the mass 

boundary), we were not able to replicate the findings of Evans et al. (2013) and Evans et 

al. (2016) that there are circumstances where radiologists can detect a mass above chance 
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but not localise it. This could simply reflect that we were not at exactly the right durations 

to catch a dissociation due to variability in the experience of the participants, difficulty of 

the images, and other cross-experiment differences between our study and those of Evans 

and colleagues (2013; 2016). Another potential factor that could influence the difference 

between the studies is that our participants seem to be more experienced than those of 

Evans and colleagues (2013; 2016). This may be reason that we found localisation at a 

summary statistics level: our more experienced participants could extract information 

more rapidly and therefore processed the images in greater detail. For these previous 

studies to make the inference that there is no localisation, however, still requires an 

approach such as Bayes statistics, rather than standard frequentist statistics. Here, we 

have outlined the steps that seem crucial to be able to make an inference of dissociation 

between detection and localisation. 

Although at the summary statistic level we did not replicate the lack of 

localisation information, we did find trials on which detection responses were correct but 

those for localisation were incorrect. We were therefore able to use these to investigate 

factors that might contribute to an apparent dissociation between detection and 

localisation. First, variability in the target-present images might be contributing 

misleading data to the summary statistics. Using real-world stimuli rather than typical 

laboratory visual search displays allows for high ecological validity, but presents 

challenges. The available images are highly variable and it is difficult to control for 

factors such as co-existing variables (e.g., breast calcifications, target number and size 

and breast tissue type). Indeed, we identified images where there were clear clusters of 

incorrect localisation corresponding to a specific visual feature in the image, suggesting 

the detection response was based on an incorrect identification (i.e., of the distracting 

feature). Second, we find evidence that coarse localisation information is often present in 
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apparently incorrect responses. When we use a region of acceptance around the lesion, we 

see clusters of correct localisation responses surrounding the lesion. This suggests that 

task demands, such as having to hold the information through a detection response and 

subsequent location screen, may result in a loss of precision. Alternatively, it may be that 

the location information is only present at a coarse level in the first place (and is perfectly 

maintained). Finally, on trials where there is detection but incorrect localisation (by 

whatever definition one uses), it is important to consider the contribution of correct 

detection guesses. We used a method for estimating the effect correct guesses might have 

on the subsequent results. The key high density condition, which is most similar to that of 

Evans and colleagues (2013; 2016), gives no evidence for there being more ‘detection 

without localisation’ trials than can would be predicted to be lucky guesses. Thus, the 

pattern taken from a small number of trials suggest that in the difficult images, such as 

our set of high density mammograms, apparent ‘detection without localisation’ responses 

can be accounted for by ‘lucky’ guesses.  

Our only evidence of an apparent dissociation between detection and localisation 

comes from the low density conditions. Intuitively, a salient mass seems most likely to 

have localisation information recorded, as there is a stronger bottom-up signal (much like 

a classic ‘feature search’). Indeed, we do see overall better performance in the low 

density conditions compared with the high density conditions (although nowhere near 

‘pop-out’ performance). Although our ROA takes into account coarse localisation 

information, it cannot account for image-level variability where a distractor may have 

been selected, or the potential decay of localisation information over time. Thus, while it 

is possible that these potential ‘detection without localisation’ trials in the low density 

condition could reflect a global signal that is used to make a detection response, as 

proposed by Evans et al. (2013) and Evans et al. (2016), these trials could alternatively 
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reflect the contribution of other factors to reducing localisation accuracy. Overall, such 

‘detection without localisation’ occurred on a very small number of trials (~ 4), 

precluding statistical analysis, which means we have only the numerical difference to 

support any such inference.  This means that for most of our stimuli, including those most 

similar to the previous studies, when the radiologists reported detecting a mass, they also 

had some information about where it was.  

The proposal by Evans et al. (2013) and Evans et al. (2016) that radiologists use a 

global signal lacking in location information has important theoretical implications, as it 

identifies a very different mechanism from the Kundel and Nodine (1975) classic theory. 

Our results, however, demonstrate that successful detection of a mass in briefly presented 

mammograms is typically accompanied by information about location. This is more 

consistent with the Kundel and Nodine (1975) model: that the initial signal guides 

attention and eye movements to the lesion. To fully reconcile these distinctions, we need 

a study which investigates the presence (or lack thereof) of both global and localisable 

signals across three clearly defined conditions with different degrees of potential 

localisation (a salient mass, a subtle mass, or diffuse parenchymal change). We then need 

to ensure that the analyses are appropriate to the key question of whether any localisation 

information exists through a thorough image-level analysis. 

Both detection and localisation performance decreased with increased breast 

density at fast presentations. These results are related to what we know about clutter in 

natural scenes and visual search in free viewing: increasing clutter or set size decreases 

performance (Adamo, Cain & Mitroff, 2015; Asher, Tolhurst, Troscianko, & Gilchrist, 

2013; Rosenholtz, Li, Mansfield & Jin, 2005; Rosenholtz, Li & Nakano, 2007; Whitney 

& Levi, 2011; Wolfe, 1994). Fibroglandular tissue, which increases density on a 

mammogram, appears more radio-opaque than fat and may increase crowding and/or 
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masking effects reducing performance in the denser mammograms.  In the medical 

perception literature, there have been a number of studies that have investigated factors 

such as lesion subtlety, which may be dependent on the surrounding anatomical structures 

(e.g., Krupinski, 2005). Analogous to clutter interfering with performance in natural 

scenes, our results show similar effects in radiologists interpreting medical images.  

These findings improve our understanding of how density can influence a 

radiologists’ diagnostic decision and therefore have clinical relevance. Female breast 

tissue is highly variable with regards to mammographic breast density (MBD: Li et al., 

2013) and high levels of breast density reduce radiologist sensitivity (see Al-Mousa, et 

al., 2014). It has been suggested that what radiologists perceive and thus report in the first 

second is critical (Mello-Thoms, 2009), that women with dense breasts make up almost a 

half of the population (Sprague et al., 2014), and that there is an increased risk of 

developing cancer in dense breasts (Boyd et al., 2010). Our results confirm that MBD has 

a negative impact on mass detection and localisation when radiologists are shown an 

image briefly. From a clinical viewpoint, we should inform women and their clinicians 

about their MBD levels, for appropriate and personalised care. For instance, in the case of 

a dense breast, further imaging modalities such as 3D mammography (digital breast 

tomosynthesis), ultrasound or magnetic resonance imaging will facilitate a definitive 

diagnosis. Although for almost half of the United States, density scoring is included 

(Slanetz, Freer & Birdwell, 2015), current breast screening reporting protocols in 

Australia do not include a mammographic density rating. Our data shows that high breast 

density reduces the amount of information available in the first glance, suggesting 

reporting this information should be mandatory. 
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Conclusions 

Here, we explored the degree to which information available in very brief 

presentations of medical images can support both detection and localisation of a mass in 

mammograms. Access to location information is crucial for guiding actions or further 

analysis (e.g., eye movements). We find a tight link between information supporting 

detection and localisation, and present methods that allow a stronger test of the claim that 

detection of a mass can occur based on gist (without knowledge of location). Although it 

is certainly possible that gist and the non-selective pathway of visual processing 

contribute to the detection of a non-localisable abnormality, our systematic examination 

of the factors that can result in apparent dissociation between detection and localisation 

demonstrates the importance of going beyond summary statistics when seeking to test this 

hypothesis. We emphasise the importance of considering factors such as stimulus 

variability, response imprecision, and participant guessing. Our results are consistent with 

Kundel & Nodine’s (1975) model of radiologist visual search suggesting that the initial 

signal in a brief glance contains information that subsequently guides attention to the 

abnormality. Finally, we suggest the finding of reduced performance for dense 

mammograms illustrates the importance of reporting density information in the context of 

medical screening.  
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Chapter 4: The influence of prior expectation and expertise on 

attentional cueing in medical images 
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Chapter summary  

Radiologists make critical decisions based on searching and interpreting medical 

images. Prior expectations may set a search strategy or attentional bias, as the probability 

of a nodule differs across anatomical regions within the tissue. Using a modified 

attention-cueing paradigm, we investigated the potential for information in medical 

images to cause attention shifts in naïve participants and radiologists. Our first aim was to 

test whether priors about likely locations for nodules in chest radiographs affected the 

allocation of attention. Our second aim was to see whether expertise boosted the salience 

of subtle signals, resulting in attentional capture by nodules in radiologists that did not 

affect attention in naïve participants. Both groups started with a block of ‘no prime’ target 

detection trials to assess any underlying bias across the vertical meridian. In block two, 

normal chest radiographs were presented as primes before a target dot to test the effect of 

priors alone. In block three, chest radiographs with a single pulmonary nodule (equally 

distributed between the left and right lung across images) were presented as primes. For 

the naïve participants, we presented an additional block where the nodule was artificially 

enhanced to give a strong ‘bottom-up’ signal. For the radiologists, we only presented the 

original subtle nodule images. The task was a simple visual detection, responding as 

quickly as possible to the appearance of a small dot that appeared following the prime 

display. In naïve observers, the salient nodule (but not the original subtle nodule) cued 

attention, validating our paradigm. For the radiologists, a Bayes analysis revealed there 

was inclusive evidence that attention shifted to locations based on statistical probability 

of a nodule, and no evidence that the nodules did not cue attention. There were, however, 

some intriguing hints that prime information (including nodule location) is available after 

brief durations for the more experienced radiologists. Experience may lead to higher 
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sensitivity to the subtle nodules, in that there was a positive correlation between more 

experience and the validity effect.  

In this chapter, I look for evidence that priors, based on experience about the 

statistical probability of nodule locations, cause a shift in attention, and the extent to 

which information in a medical image can cue spatial attention. In Chapter 3, a direct 

measure was used to see whether radiologists had information about the location of a 

mass after seeing an image briefly. Here, this is examined from a different perspective, 

exploring indirectly the consequences of expertise and information about mass location 

on the deployment of attention.  

 

Introduction 

 There is evidence that certain pathologies occur more frequently in specific 

locations. For example, breast cancer is more likely to occur in the upper, outer quadrant 

of the female breast than other regions, due to the higher proportion of breast tissue in this 

region (Lee, 2005). In the lung, primary malignant nodules are one and a half times more 

likely to occur in the right lung than the left, and mostly in the upper lobe (Garland, 1961; 

Swensen, et al., 2000; Winer-Muram, et al., 2002). Disease of the lung includes primary 

cancers as well as single pulmonary nodules (SPN). SPNs are frequently (0.2%) present 

in chest radiographs (Holin, Dwork, Glaser, Rikki & Stocklen, 1959). Although these 

nodules are often benign when less than 3cm in size, they are at risk of developing into 

malignant disease (Midthun, Swensen & Jett, 1993), making them a key target for 

radiologists during screening.  As lung cancer is an insidious process (develops 

gradually), and has an overall mortality rate of 85% (Siegelman, et al., 1986), SPNs are 

clinically significant and would therefore be of importance in a screening environment. 
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Experienced chest radiologists are therefore exposed to SPNs, most frequently in the 

upper right lung, in their daily work.  

 Targets of a visual search in the real world, whether a mass in a mammogram or a 

weapon in a bag, sit in relation to surrounding objects that give them global context 

(Biederman, 1972). Laboratory based studies (using non-medical images) have shown 

that participants are sensitive to the global context and the statistical regularities in a 

display. This type of incidental statistical learning has been shown to affect the allocation 

of spatial attention within visual search displays, referred to as contextual cueing (Chun 

& Jiang, 1998; Jiang, Swallow, & Rosenbaum, 2013). In a series of experiments, Chun 

and Jiang (1998) presented different spatial layouts (global context) of objects (Ts) 

among distractors (Ls). The task was to discriminate the orientation of the target T. Half 

of the layouts were repeated across the experimental blocks in which the target object 

location remained constant.  Participants were unaware of the repetition. The results 

showed that when the display was repeated, targets were discriminated more quickly, 

meaning that the context of the target was implicitly learned during the experiment. For 

radiologists, the global context of a target in a medical image may well form a similar 

type of contextual cue. In lung images, then, they may be biased towards the right upper 

lung because of experience with SPNs appearing in this location more frequently.  

 The potential influences on attention described here are top-down and implicit, 

akin to what has been previously described in the natural scene literature as ‘scene based 

guidance’ (Wolfe, Võ, Evans, & Greene, 2011). This guidance is thought to result from 

the build-up of a cognitive representation of how specific scenes appear (e.g., a kitchen), 

and how the items contained within it are spatially represented. It is influenced by scene 

structure and the sum of our past experiences. For those with experience reading medical 
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images, such ‘image based’ guidance, or priors, might similarly guide attention when one 

is within the context of the medical expertise.  

One way to test for a shift of attention is to look at the effect of a cue or prime 

stimulus on performance of a subsequent task. In classic spatial orienting experiments 

(e.g., Posner, 1980), participants are asked to detect a visual target presented at a left or 

right peripheral location in a display. On each trial, a prime stimulus appears prior to the 

target display. In exogenous cueing paradigms, the prime appears in either the same 

location as the subsequent target (valid; 50% of trials) or in the opposite location (invalid; 

50% of trials). The prime captures attention to its location, and this causes a measurable 

effect on the response to the target (a cueing effect: valid reaction time (RT) < invalid 

RT).  In endogenous cueing paradigms, the prime is centrally presented and validly cues 

the subsequent target location on more than 50% of trials (e.g., 75% valid: 25% invalid). 

This results in a cueing effect driven by a voluntary shift of attention. These paradigms 

allow responses to an unrelated lateralised visual target to provide an index of the 

influence of a preceding prime stimulus on spatial attention.  

Exogenous cueing depends on attention being captured by a salient stimulus. This 

is a ‘bottom-up’ effect, such that the observer cannot avoid having their attention drawn 

to the location of the prime (Jonides, 1981). In medical images, then, naïve observers may 

get capture from nodules that have high contrast relative to the rest of the prime image, 

but are unlikely to be captured by subtle SPNs. For radiologists, however, it is possible 

that their experience in detecting such stimuli could result in otherwise subtle nodules 

having a stronger signal. As seen in Chapter 3, radiologists can detect abnormalities in in 

brief displays (also in Evans, Georgian-Smith, Tambouret, Birdwell & Wolfe, 2013; 

Evans, Haygood, Cooper, Culpan & Wolfe, 2016; Kundel & Nodine, 1975). This might 

be due a higher sensitivity than naïve observers to certain abnormality-related signals, 
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which could capture attention to the location of the nodule in the prime. Thus, attentional 

cueing is a useful indirect measure of the extent to which location information is 

extracted from the prime display.  

Nodine and Krupinski (1998) proposed that after long hours of perceptual 

learning, experts develop skills which are selectively tuned for relevant features when 

performing a task. For instance, experts in domains where performance maps onto 

recognising perceptual layouts in a display, such as master chess players, have 

demonstrated superior abilities when compared to novices. These experts have dedicated 

years of practice developing their skills and can detect the layout of a chess display in a 

glance (Charness, 2001). Radiologists with experience in breast mammography have been 

shown to fixate their eyes on 67% of cancers within one second of viewing a 

mammogram (Kundel, Nodine, Krupinski, Mello-Thoms, 2008). Those with experience 

reading chest radiographs are 70% accurate on detecting abnormalities after these images 

are flashed for 200ms (Kundel & Nodine, 1975). These experts are thought to recognise 

deviations from normal structures (or layout) rapidly, thus identifying abnormalities. The 

information extracted at this early stage is mostly based on pattern recognition and is 

compared with a cognitive template of ‘normal’ to reach a diagnostic decision (Nodine & 

Mell-Thoms, 2010). Indeed, in the vision literature, studies have shown that ‘search 

templates’ are set up, which direct attention to objects with shared features (e.g., Chun & 

Jiang, 1998).  If radiologists have greater sensitivity to the features (or pattern) of a 

nodule, they should be more sensitive (i.e., ‘tuned’) to these features in medical images, 

or have an ‘attentional set’ for specific nodule features (Folk, Remington, Wright, 1994) 

compared with naïve observers. Therefore, radiologists should be ‘tuned’ to nodules in a 

chest radiograph more than naïve observers who have no prior experience reading 

medical images.  
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Here, I present the results of two experiments with naïve participants and 

radiologists which explored the allocation of attention using a novel modification of a 

Posner cueing paradigm (1980). Chest radiographs were presented as primes and the task 

was a simple visual detection of a lateralised (left or right) low contrast stimulus. For the 

first experiment, naïve observers saw four blocks of trials, completed in a set order. In the 

first block of trials, there was no prime, to test for any underlying attentional bias. In the 

second block, normal chest radiographs were presented as primes, to test whether simply 

invoking the context of the medical image would result in a bias in radiologists’ attention 

towards more likely locations for nodules. In the third block, chest radiographs which 

contained a single, equally located (left and right lung) SPN, were presented as primes, 

followed by the same visual detection task. In the fourth block, these original chest 

radiographs were presented where the same nodule was artificially enhanced by creating 

a hybrid nodule, to give a strong ‘bottom-up’ signal. Here, we tested whether a salient cue 

in the context of a medical image causes a shift of attention to validate our paradigm. For 

the second experiment, radiologists performed the identical tasks but only performed 

three blocks: the no prime condition, normal chest radiographs, and the original nodule 

chest radiographs. To understand whether the observers had any explicit knowledge about 

the likely location of nodule, a brief questionnaire was completed at the completion of the 

experiment (See Appendix B).  

If simply activating a context with a medical image activates priors regarding 

nodule likelihood, radiologists may show faster responses to subsequent targets appearing 

on the side most likely to show nodules (top right) than to targets appearing at other 

locations. In our nodule images, if salient contrast areas in cluttered images capture 

attention, naïve participants should get priming effects from the hybrid images. Thus, 

responses to targets on the same side as the enhanced nodule (valid) should be faster than 
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those on the opposite side (invalid). Similarly, if subtle cues are effective to capture a 

radiologist’s attention due to their expertise with chest radiographs, they should show 

priming from a brief glance at a chest radiograph containing an original nodule. This 

would also act as an indirect method for seeing if localisation information is present from 

this brief exposure. We predict that there will be a priming effect where faster reaction 

times for the valid target locations relative to the invalid target locations occur. This could 

occur for the radiologists but not the naïve participants because of their tuning to relevant 

features of the nodule, and their ability to extract information about abnormalities from 

brief displays (including localisation information).  

 

Experiment 1: Attentional cueing from medical images in naïve observers 

 Experiment 1 was designed to validate the medical image attentional cueing 

paradigm and find the appropriate experimental timing settings. In standard exogenous 

cueing, typical timings would be ~ 100ms prime-target delay (Posner, 1980). If one uses 

prime-target delays in excess of ~300ms, there is potential for a reversal of effects 

(invalid<valid), reflecting a phenomenon known as Inhibition of Return (IOR: Posner & 

Cohen, 1984) For endogenous cueing, prime-target delays typically need to be ~300ms or 

greater, with effects that persist over long time periods (valid<invalid). Here, we initially 

artificially boost the bottom-up signal of the nodule to create a salient cue within the 

medical image. This should therefore result in exogenous cueing. However, for 

radiologists to extract information about the context from the medical image, and 

therefore to allow exploration of potential effects of expertise, the prime image has to be 

on for a minimum of 200ms. We therefore needed to initially validate the paradigm to be 
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sure we could still get evidence exogenous cueing before examining the potential for 

expertise to affect perception of the primes and subsequent attentional allocation. 

 

Method 

All measures and conditions are reported. 

Participants 

A group of 23 naïve observers (4 male, mean age = 23 years, SD = 7 years) 

volunteered from the Macquarie University subject pool for course credit, after giving 

informed consent. All reported normal or corrected-to-normal vision and the study was 

approved by the Macquarie University Human Research Ethics Committee (Medical 

Sciences).  

Stimuli and Apparatus  

The central fixation point was a cross measuring 0.5° of visual angle which 

appeared against a grey background (RGB triplet: 200, 200, 200) and the target was a 

low-contrast grey circle (RGB triplet: 195, 195, 195; 1 degree in diameter). The prime 

consisted of 124 de-identified, posterior-anterior chest radiographs (62 normal, 62 SPN), 

downloaded from the Japanese Society of Radiological Technology database (JSRT: 

Shiraishi, Katsuragawa, Ikezoe, Matsumoto, Kobayashi et al., 2000), which is publically 

available at  http://www.jsrt.or.jp/jsrt-db/eng.php . These images are digitized to 12 bits 

posterior–anterior chest radiographs with a resolution of 2048 × 2048 pixels (the size of 

one pixel is 0.175 × 0.175 mm2). The nodule diameters range from 8 to 37mm 

(mean = 19 mm), they are located throughout the lungs (also behind the heart and under 

the diaphragm), and their intensities (densities) vary from nearly invisible to very bright. 

The nodules are subdivided in five categories, based on the degree of subtlety for 
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detection (rated by three chest radiologists), which is influenced by the nodule size, 

occlusion by other structures and nodule density. For the experimental trials, we selected 

images with a range of nodule subtlety: 3: subtle, n = 20; 4: relatively obvious, n = 17; 

and 5: obvious, n = 11.  Half of the images contained a nodule in the left lung and half in 

the right.  Nodule subtlety was balanced across location.  

To validate the attentional cueing task, we modified the original SPN images to 

enhance the bottom-up salience of the nodule. These hybrid (salient) images were created 

using Adobe Photoshop (version CS6). As the lungs varied on factors such as size (e.g., 

degree of inspiration) and co-existing pathology (e.g., pneumonia), we wanted to present 

the same chests (true SPNs) that the radiologists would see, but boost the saliency of the 

nodule by the addition of a larger, higher contrast nodule, spatially superimposed over the 

original nodule. We selected the largest nodule (4.5° of visual angle) from the database 

and inserted it over all the SPNs in the original images. Figure 1a shows exemplars from 

the original (subtle) nodule SPN images, and Figure 1b from the hybrid (salient) nodule 

images. There were 48 images in each image set and nodule location was balanced across 

lung field (50% left, 50% right).  
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Experimental sessions took place in a dimly-lit, windowless laboratory at 

Macquarie University, Sydney. Stimuli were downsized to 800 x 800 resolution and 

presented with MATLAB via PsychToolbox 3 (Brainard, 1997; Pelli, 1997), were flipped 

horizontally so that the right lung appeared on the left side of the screen and centred on a 

1920 x 1080 resolution 27in Samsung SyncMaster AS950, refresh rate of 120Hz. The 

horizontal flip was to replicate the projection radiologists view in clinical practice. The 

observers sat at approximately 70cm away from the screen. The prime subtended 

approximately 20° of visual angle and the target subtended approximately .8° of visual 

angle.  

Procedure  

There were four experimental conditions, blocked and presented in a set order. In 

all blocks, the task was simply to press the spacebar as quickly as possible when the low-

contrast target appeared. The target was displaced equally to the left or right from the 

centre by 240 pixels with a randomly varying radius of 120 pixels around this location. 

Figure 1: Exemplars from the target-present image sets. (a) Native nodule 

presented in the subtle nodule condition (white arrow); (b) Hybrid nodule 

presented in the salient nodule condition (white arrow). 



Chapter 4 

 

 

145 

The participants were asked to look at the cross and press the space bar as soon as a grey 

circle appeared. If no response, each trial timed out after 4 seconds. A new trial was 

indicated by a 100ms flash of the fixation cross (see Fig. 2). A simple detection task 

avoids high working memory or other tasks demands but it is important to ensure that the 

participant is not automatically pressing the response button. To reduce anticipatory 

responses, we added 12 catch trials where no target appeared. If the participants 

responded to a catch trial they received a red error message on the screen (‘Error! No 

target’). In addition, we also randomly jittered target onset times relative to the prime 

offset (58, 92, 125ms). The Mean prime-target SOA was 342ms (specific durations: 

308ms, 342ms and 375ms)  

The first two conditions, baseline and chest priors, were composed of a practice 

block of 4 trials followed by 96 experimental trials, giving a total of 24 trials/condition 

(left/right). The chest priors condition included the context factor, which was a normal 

chest prime displayed for 250ms, after the fixation screen. Each chest prime appeared on 

two different trials (target left/target right) resulting in 96 experimental trials. In total, the 

participants saw 108 trials (including 12 catch trials) each for the baseline and chest prior 

conditions.  

For the subtle and salient conditions, the normal chest primes were replaced with 

the relevant set for each condition (original nodule and enhanced nodule). As we have an 

additional factor (cue validity: valid/invalid) in the subtle and salient conditions, we 

repeated the primes in random order within each condition (observers saw each prime a 

total of 4 times: twice in the valid and twice in the invalid). Each condition was composed 

of 4 practice trials and 216 experimental trials, giving a total of 48 trials/condition. For 

each of these two conditions, we included 24 catch trials. In total, the participants saw 

240 trials each for the subtle and salient nodule conditions. Breaks were given for 10 
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seconds every 48 trials and no feedback was provided. Note: we did not backward mask 

the stimuli so although timings were precisely programmed, the resulting processing time 

is only approximate.  

 

Results and Discussion  

Analysis 

Mean differences (Mdiff) with 95% confidence intervals (CI), as well as a Cohen’s 

d estimate of effect size corrected for small sample size, to assist in accurate 

interpretation of the effects are presented. This latter measure, dunb, represents an adjusted, 

unbiased Cohen’s d standardised effect size applied to single sample t-tests where dunb = 

Figure 2: Example trial shown to 23 naïve participants in Experiment 1a. Trials 

began with a fixation cross. In separate blocks, the prime display was either (a), (b), 

(c) or (d) corresponding to our baseline, chest priors, subtle and salient conditions. 

The prime was displayed for 250ms followed by a variable blank screen with fixation 

for 58, 92 and 125ms (randomised within conditions) followed by the simple dot 

detection (note: target larger and brighter for illustration purposes). The prime-target 

SOA therefore varied between 308, 342 and 375ms (within each block) 
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(1 - 3 / (4*df - 1)) * d (Cumming, 2012). For all analyses (including Bayes Factor) the 

Statistical Package for the Social Sciences was used (IBM: SPSS, 2015).  

Our dependent variable for target detection was reaction time (RT, milliseconds). 

Outliers (defined as RTs less than 100ms and greater than 1000ms) were removed prior to 

statistical analyses. With these criteria, 1% of trials were discarded (across all conditions). 

Catch-trial errors ranged from 2-8% across all conditions and were removed from further 

analyses.  

 Baseline condition: When participants were asked to respond to the visual target 

with no prime, there was no difference in the RTs for left-sided targets and for right-sided 

targets. Figure 3 (left side bars) shows the mean RTs for the left-sided targets (blue bar) 

and the right-sided targets (grey bar). A paired samples t-test showed no significant 

difference [t(22) = -.686, p = .5, Mdiff = 2.91, CI [-5.88, 11.69], N = 23, r = .97]. As in 

Chapter 3, we calculated a Bayes Factor (BF), which in this baseline condition provided 

some evidence for the null hypothesis, BF(23) = .27. We can conclude that the 

participants are not localising targets faster on the left or right side. We therefore have no 

evidence of an underlying bias.  

 Chest priors condition: When participants were asked to respond to the visual 

target following a normal radiograph prime, the RTs for the left-sided targets were 

different to the right-sided targets. Figure 3 (right side bars) shows the mean RTs for the 

left-sided targets (blue bar) and the right-sided targets (grey bar). A paired samples t-test 

showed that this difference in RT was significant: RTs were faster in the left compared to 

the right hemi-field [t(22) = -3.22, p = .004, Mdiff = 18.17, CI [6.45, 29.89], N = 23, r = 

.96]. In standardised terms, this is a small effect (dunb  = .18, 95% CI [.059, .31]).  
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 To maintain ecological validity of the images, we did not alter the appearance of 

the radiographs. The significant cueing result in the priors condition (unexpected in naïve 

participants) may reflect effects of the stomach bubble (normal stomach filled with 

contents) which was present in some cases on the lower right of the screen (anatomical 

left).  For participants who are naïve to reading chest radiographs, this normal anatomical 

variant could have caused a masking effect which slowed the participants down when the 

target appeared on the same side (right).  

Subtle nodule condition: When participants were asked to respond to the visual 

target following a prime radiograph containing an original (subtle) nodule, the RTs for 

Figure 3: Experiment 1a. Mean Reaction Time (RT) for the naïve observers’ 

performance on the cueing task for the baseline condition (left bars) and the 

chest priors condition (right bars). The blue bars represent the mean RTs for the 

left-sided target trials and the grey bars represent the mean RTs for the right-

sided target trials. Error bars represent 95% confidence intervals.  
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targets appearing on the same side as the nodule (valid) were no different than for targets 

appearing on the opposite side as the nodule (invalid).  Figure 4 (left side bars) shows the 

mean RTs for the valid targets (blue bar) and the invalid targets (grey bar). A paired 

samples t-test confirmed that this difference was not significant [t(22) = 1.03, p = .32, 

Mdiff = -2.37, CI [-7.15, 2.41], N = 23, r = .99]. The Bayes factor was calculated as 

BF(23) = .35. This provides some support for the null hypothesis and indicates that the 

naïve participants do not show evidence for cueing effects for the subtle nodules.  

Salient nodule condition: When participants were asked to respond to the visual 

target following a prime radiograph containing a salient nodule, the RTs for targets 

appearing on the same side as the nodule (valid) were slower than for targets appearing 

on the opposite side as the nodule (invalid). Figure 4 (right side bars) shows the mean 

RTs for the valid targets (blue bar) and the invalid targets (grey bar). A paired samples t-

test showed that this difference was significant: unexpectedly, RT was faster in the 

invalid compared to the valid trials [t(22) = 2.28, p = .033, Mdiff = -8.68, CI [-16.57, -

0.78], N = 23, r = .98]. In standardised terms, this is a small effect (dunb  = -0.11, CI [-

0.21, -0.01]). On review of the images, it appears that there is a masking effect such that 

when the target appeared on the same side as the salient nodule, it often was more 

difficult to see than when it appeared on the other side, which is reflected in the RTs. 
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In summary, in Experiment 1a, we tested a group of naïve participants using a 

medical imaging attention cueing paradigm. There was no hemi-field bias for the baseline 

condition where only a simple visual detection task was performed. In the chest prior 

condition there was a small cueing effect (left < right), which may be due to the stomach 

(present in some of the images on the lower right side of the screen). The subtle prime 

failed to cue attention with support for the null hypothesis. Finally, in the salient prime 

condition, we expected to see an attention cueing effect in the valid trials compared with 

the invalid trials. However, there was a reverse effect, with RT faster for the invalid trials 

compared with the valid trials. This seems likely to be due to the strong bottom-up signal 

in the salient nodule condition masking the target in the subsequent display. 

Alternatively, this effect might reflect IOR (Posner & Cohen, 1984). We cannot, 

however, distinguish these possibilities in this experiment. We therefore repeated the 

 Figure 4: Experiment 1a. Mean Reaction Time (RT) for the naïve observers’ 

performance on the cueing task for the subtle condition (left bars) and the 

salient condition (right bars). The blue bars represent the mean RTs for the 

valid target trials and the grey bars represent the mean RTs for the invalid 

target trials. Error bars represent 95% confidence intervals. 
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subtle and salient nodule conditions in a follow up experiment which avoided potential 

masking effects.  

 

Experiment 1b  

 For an involuntary shift of attention to result in a validity effect, the experimental 

timings are crucial. In Experiment 1a, it is possible that the results are explained by IOR 

or it could be due to masking effects of the prime on the target. Experiment 1b was 

designed to reduce the potential masking effect of the nodule, and again test for an 

attention cueing effect from a chest radiograph prime in naïve observers. We presented 

only the subtle and salient conditions and modified the timing parameters, with the blank 

screen (either 50ms or 100ms in separate blocks) between the image (prime) and target 

(grey dot) adjusted to avoid masking effects.  

 

Methods 

All measures and conditions are reported. 

Participants 

A naïve group of 13 participants (male 1, mean age = 19.69 years, SD = 2.25 

years) from the Macquarie University subject pool participated for course credit. Note: 

our sample size was selected a priori, to match the number of available radiologists for 

Experiment 2 (When conducting research on experts, the sample size is often constrained 

by the availability of the participants).  

Stimuli and Apparatus 

The apparatus, stimuli and design were unchanged except for the following 

modifications. As it has been reported that an experienced radiologist can detect an 



Chapter 4 

 

 

152 

abnormality in a chest radiograph after a presentation of 200ms (e.g., Kundel & Nodine, 

1975), we reduced the prime duration from 250ms to 200ms. The observers saw primes 

and targets in two blocks (order counterbalanced) of (1) Mean SOA of 342ms (specific 

durations 308, 342, 375); (2) Mean SOA of 392 (specific durations 358, 392, 425 

(randomly intermingled). These screen durations were chosen to capture an attentional 

cueing effect whilst trying to minimise the chance of IOR. In addition, to ensure the target 

appeared within the area of the lung in the prime, we reduced the possible target location 

distance from the centre from 240 pixels to 200. This randomly varied by a factor of 100 

around this point and equally appeared either on the left or the right. As for Experiment 

1a, to reduce anticipatory responses, we included further trials where no target appeared 

(catch trials) and each trial had a variable delay. Also, as for Experiment 1a, the images 

were flipped horizontally, so the right lung was positioned on the left side of the screen to 

mimic standard radiological presentation.  

Procedure 

 After four practice trials per condition, the participants completed 192 

experimental trials for each of the subtle condition followed by the salient condition 

(blocked; primes were randomly presented four times within each condition). A blank 

screen with fixation was displayed after the prime for each condition. In total, the 

participants saw 216 trials (192 experimental and 24 catch trials per condition) (See Fig. 

5).  
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At the end of the experiment, the participants were asked to complete a ‘nodule 

priors’ questionnaire that consisted of a static image of a normal chest radiograph divided 

into quadrants (See Appendix B). First, they were asked to “Please mark 1-4 where you 

think the likely location for a single pulmonary nodule would occur, with 1 = most likely, 

2 = likely, 3 = less likely, 4 = least likely”. Second, we asked, “Do you know the 

frequencies of nodules in different areas?” 

 

 

Figure 5: Example trial shown to 13 naïve participants in Experiment 1b. Trials 

began with a fixation cross. In separate blocks, the prime display was either (a), 

(b) corresponding to our subtle and salient nodule conditions. The prime was 

displayed for 200ms followed by a variable blank screen with fixation 108, 142 

and 142ms or 158, 192 and 225ms (randomised within condition) followed by 

the simple dot detection (note: target larger and brighter for illustration 

purposes). The prime-target SOAs were 308, 342 and 375ms or 358, 392 and 

425ms (blocked).  
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Results and Discussion 

Analysis 

Our dependent variable for target detection was reaction time (RT, milliseconds). 

Outliers (defined as RTs less than 100ms and greater than 1000ms) were removed prior to 

statistical analyses. With these criteria, 2% of trials were discarded across conditions. 

Catch-trial errors ranged from 2-11% across conditions and were removed from further 

analyses.  

  

Subtle nodule condition. Prime-target SOA (1): Figure 5 (left two bars) shows the 

mean RTs (valid and invalid) for the subtle condition. A paired samples t-test confirmed 

that this difference was not significant [t(12) = -.749, p = .47,  Mdiff = -4.95, CI [-19.33, 

9.44], N = 13, r = .96].  BF(13) = .35, providing strong support for the null hypothesis. 

Prime-target SOA (2): Figure 6 (middle, left 2 bars) shows the mean RTs for the subtle 

condition. A paired samples t-test confirmed that this difference was not significant [t(12) 

= -.079, p = .94,  Mdiff = -.27, CI [-7.42, 7.15], N = 13, r = .97]. As BF(13) = .28, we have 

support for the null hypothesis. These results provide evidence that naïve participants do 

not get cueing effects for the subtle nodules at prime-target onset delays of ~ 342 or 

392ms.  

 Salient nodule condition. Prime-target SOA (1): Figure 5 (middle right two bars) 

shows the mean RTs (valid and invalid) for the salient condition. A paired samples t-test 

showed that this difference was not significant [t(11) = -.526, p = .61, Mdiff = 2.3, CI [-

7.33, 11.94], N = 12, r = .98]. BF(11) = .32 (Note: data from one observer were not 

recorded due to experimental error). Prime-target SOA (2): Figure 6 (right 2 bars) shows 

the mean RTs for the salient condition. A paired samples t-test showed that this 

difference was significant [t(12) = 2.53, p = .027, Mdiff = 7.08, CI [.98, 13.19], N = 13, r = 
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.99].  In standardised terms, this is a small effect (dunb  = .094, CI [.01, .19]). This shows 

evidence for a small, but reliable valid cueing effect for the salient nodules at a prime-

target SOA of ~ 392, but not for ~ 342.  

 

 

The results from Experiment 1, testing naïve observers, validate the experimental 

paradigm and identify the timings that can result in priming by showing a significant 

attention cueing effect for the salient nodules at a prime-target SOA of ~ 392ms. 

Figure 6: Experiment 1b. Mean Reaction Time (RT) for the naïve observers’ 

performance on the cueing task for prime-target SOA of (1) 308, 342, 375ms, and 

(2) 358, 392, 425, for the subtle and salient nodule conditions. The blue bars 

represent the mean RTs for the valid trials and the grey bars represent the mean RTs 

for the invalid trials. Error bars represent 95% confidence intervals.  
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Experiment 2 was designed to investigate a group of radiologists using similar timing 

parameters.  

 

Results: Nodule Priors Questionnaire 

We obtained responses from the naïve observers across these experiments, who 

have no previous experience reading medical images. The quadrant marked ‘most likely’ 

(assigned a ‘1’) to contain a nodule was the upper left of the display (64%), followed by 

the upper right (22%), lower right (14%) and lower left (0%). None of the naïve observers 

reported explicitly knowing the frequencies of nodules in different areas of the lungs.  

 

Experiment 2: Attentional cueing from medical images in radiologists 

Our aim was to test whether invoking the context of a medical image would result 

in an attentional bias to the region of a chest radiograph most likely to contain a nodule 

(upper right quadrant). We also aimed to explore whether expertise boosted the salience 

of subtle signals (attentional capture by the original, subtle nodules that do not affect 

attentional allocation in naïve observers) and whether localisation information is 

extracted, as indexed by priming effects. Experts are thought to be sensitive to relevant 

features in an image and previous research suggests that brief durations are sufficient for 

experts to extract information about abnormalities (e.g., Carrigan, Wardle & Rich, (under 

review; Chapter 3); Evans et al., 2013; Kundel & Nodine, 1975). We therefore 

hypothesised that such information about the presence of nodule might drive a shift of 

attention, measurable by our priming paradigm.  
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Method 

Participants   

 Thirteen radiologists (4 female, mean age = 50 years, SD = 10 years, range = 37 – 

66 years; mean years qualified = 19 years, SD = 12 years, range = 2-36 years), from 

Sydney Metropolitan radiology practices volunteered and gave informed consent. All 

reported normal or corrected-to-normal vision and were naïve to the purposes of the 

experiment. The study was approved by the Macquarie University Human Research 

Ethics Committee (Medical Sciences).  

Stimuli and Apparatus 

For this experiment, we included only the baseline, chest priors and subtle prime 

conditions. As the salient primes already show an effect in naïve observers, including this 

condition was unnecessary. In addition, the radiologists’ time was a valuable resource.  

The experiment was conducted in in a quiet reading room in each radiologist’s 

workplace, and was presented on a Macintosh MacBook Pro using MATLAB 2011B with 

Psychtoolbox Version 3 (Brainard, 1997; Pelli, 1997). Stimuli were downsized to 800 x 

800 pixels centred on a 1920 x 1080 resolution 24-inch, LG W2442PA, liquid-crystal 

display screen, refresh rate of 60Hz. As for Experiment 1, the images were flipped 

horizontally, so the right lung was positioned on the left side of the screen to replicate the 

projection radiologists view in clinical practice. The participants sat at approximately 

70cm away from the screen and the images subtended approximately 18° of visual angle 

and the target subtended approximately .7° of visual angle. 
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Procedure 

There were three experimental conditions, blocked and presented in a set order. 

As the task was a simple target detection, to reduce the risk of set responses we included 

some jitter.  For all conditions, the prime-target Mean SOA was 417ms  (specific 

durations were 400, 417, and 450ms, randomised within condition).  These timings were 

chosen after reviewing the RT data from Experiment 1b which indicated that the strongest 

cuing effects occurred at SOAs of 392-425ms. Apart from the timings, the baseline and 

chest priors conditions were identical to Experiment 1a and the radiologists performed 96 

experimental trials, giving a total of 24 trials/condition (valid/invalid, left/right). The 

subtle nodule condition was identical to Experiment 1b (apart from the timings), and we 

increased the number of trials to maximise our sensitivity for detecting a subtle effect. 

The prime images were repeated so the radiologists saw the primes 4 times in each 

condition (valid = 2, invalid = 2), resulting in 192 experimental trials. To reduce 

anticipatory responses, we included a further 24 catch trials. For each of the conditions 

they saw 4 practice trials and breaks were given for 10 seconds every 48 trials. No 

feedback was provided (See Fig. 7). The radiologists were later sent the ‘nodule priors’ 

questionnaire (see Appendix B).  
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Results and Discussion 

Analysis 

Our dependent variable for target detection was reaction time (RT, milliseconds). 

Outliers (defined as RTs less than 100ms and greater than 1000ms) were removed prior to 

statistical analyses. With these criteria 2-4% of trials were discarded across the three 

conditions. Catch-trial errors ranged from 1-2% and were removed from further analyses.  

 

Figure 7: Example of an experimental trial shown to 13 radiologists in Experiment 2.  

Trials began with a fixation cross followed by the prime display. In separate blocks, 

the prime display was either (a), (b) or (c), corresponding to our baseline, chest priors 

or subtle nodule conditions. The prime was displayed for 200ms followed by a 

variable blank screen with fixation for 200, 212 or 250ms (randomised within 

condition) followed by the simple dot detection (note: target larger and brighter for 

illustration purposes). The target SOA was 400, 417 and 450ms.  
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Baseline condition. When radiologists were asked to respond to the visual target 

with no prime, there was no difference in the RTs for left-sided versus right-sided targets. 

Figure 8a (left bars) shows the mean RTs for the baseline condition for left-sided target 

trials (blue bars) and right-sided trials (grey bars). A paired samples t-test showed this 

difference was not significant [t(12) = -.501, p = .625. Mdiff = 5.01, CI [-16.78, 26.79], 

dunb = .04, N = 13, r = .95]. As BF(13) = .31, there is support for the null hypothesis that 

the radiologists are equally fast at localising targets on either side. We interpret this as 

suggesting no underlying bias.  

 

Chest priors condition. Lung nodules occur more frequently in the upper right 

quadrant (Winer-Muram, 2002). Figure 8a (right bars) shows the mean RTs when 

radiologists were asked to respond to the visual target following a normal chest 

radiograph prime for the left-sided target trials (blue bar) and right-sided target trials 

(grey bar). A paired samples t-test showed the difference in mean reaction time between 

the left and right cued trials was not significant [t(12) = 2.107, p = .057, Mdiff = 16.17, CI 

[-.55, 32.88], dunb = .12, N = 13, r = .98]. BF(13) = 1.46. This is another situation where a 

Bayes analysis can be very useful: our Bayes Factor of 1.46 shows that we have 

insufficient evidence to distinguish the null and alternative hypotheses; we would require 

more data to be able to draw conclusions.  
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Subtle nodule condition: Figure 8b shows the mean RTs when participants were 

asked to respond to the visual target following a subtle prime for the valid trials (blue bar) 

and invalid trials (grey bar). A paired samples t-test showed that the participants were not 

significantly faster on valid vs. invalid trials [t(12) = .66, p = .52,  Mdiff = 3.32, CI [-7.64, 

14.28], dunb = .03, N = 13, r = 1]. BF(13) = .34. This provides support for the null 

hypothesis and indicates that, as a group, the radiologists do not show evidence for an 

attention cueing effect.  

In many studies of expertise, the number of years of experience is an important 

factor. Here, we initially collapsed across all radiologists who fulfilled our criteria for 

Figure 8: Experiment 2. Mean Reaction Time (RT) for the radiologists’ 

performance on the cueing task. (a) Average RT for left and right trials for both the 

baseline and chest priors conditions; (b) Average RT for valid and invalid trials for 

the subtle nodule condition. Error bars represent 95% confidence intervals. 
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‘experts’. In the sample, however, there is a lot of variability in years of experience, from 

2-36 years. This lends itself to a post-hoc analysis to see if years of experience might 

correlate with any cueing effect. We note that any results of these post-hoc analyses need 

to be considered preliminary, particularly given the small sample size, and require 

replication before we can draw any firm conclusions. We conducted two correlation 

analyses to explore the relationship between experience and attention cueing.  

First, we looked at the chest priors condition to see if years of experience affected 

the extent to which a normal chest radiograph influenced the deployment of attention. We 

calculated a hemifield effect in the direction of the hypothesis that attention will shift to 

the side of likely nodule location (that they will attend to the right lung (left screen) more 

than the left lung (right screen)) calculated as a difference score between left-sided target 

and right-sided target RTs. Figure 9a shows no relationship between years of experience 

and a left/right hemifield effect, Pearson’s r(13) = .033, p = .915.  

Next, we looked at the subtle nodule condition. To see whether there was a 

relationship between years of experience and cueing, we calculated a validity effect 

(calculated as a difference score between invalid and valid RTs). Figure 9b shows a 

significant positive correlation between years of experience and the validity effect, 

Pearson’s r(13) = .78 p = .002. This suggests that the more experienced radiologists may 

be more sensitive to the subtle nodules than the less experienced radiologists.  
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Results: Nodule Priors Questionnaire 

 For the radiologists, 10/13 returned the questionnaire (retrospective to the 

experiment). The quadrant marked ‘most likely’ to contain a nodule was the upper right 

of the chest (50%), followed by the lower right (30%), upper left (20%) and lower left 

(0%). Somewhat surprisingly, none of the radiologists were aware of knowing the 

frequencies of nodules in different areas of the lungs. However, from this small sample 

we do see that half of the radiologists ‘guessed’ the upper right quadrant, which is the 

reported most frequent location of primary malignant nodules (Swensen, et al., 2000). 

Figure 9: Correlation between years of experience (x-axis) for (a) the hemifield 

effect (y-axis) in the chest priors condition; and (b) the validity effect (y-axis) for the 

subtle nodule condition in Experiment 2. 
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This suggests that there may be implicit knowledge of nodule locations, although a larger 

number of radiologist participants would be required to make any firm conclusions.  

General Discussion 

The successful completion of reading and interpreting medical images by 

radiologists is crucial for accurate diagnoses and patient care. These complex tasks reply 

upon the effective engagement of attentional mechanisms. Our first aim was to test 

whether normal chest radiographs presented as primes would result in a bias in 

radiologists’ attention towards more likely locations for nodules. Second, for naïve 

observers we explored whether a salient cue in the context of a medical image caused a 

shift of attention. Finally, we investigated whether subtle cues are effective for 

radiologists due to their expertise with chest radiographs containing a nodule. We are 

using this as an indirect method for seeing if localisation information is present. In 

Experiment 1a, we tested naïve observers and as expected we did not show a bias in 

attention, but we also failed to show a cuing effect for the salient cues in a chest 

radiograph. In Experiment 1b, we adjusted the experimental timings and obtained a 

validity effect for naïve observers viewing a salient prime only, thus validating the 

paradigm. This was particularly important as exogenous cueing effects (such as are 

presumably occurring here in response to the salient nodule) typically occur around 

100ms post cue and are short lived, lasting only for a few hundred milliseconds. In 

Experiment 2, for the radiologists, a Bayes analysis showed that we have inconclusive 

evidence that the 1.5-fold increase in nodules occurring the right vs. left lung (Swensen, 

et al., 2000; Winer, et al., 2002) influenced the initial distribution of attention in 

radiologists. We also failed to show a validity effect for a group of radiologists shown 

subtle primes, although a post-hoc analysis provides us with a hint that there may be a 
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correlation between experience and effects on our task. Given the replicated and robust 

effect of spatial attention cueing from a salient stimulus evident in classic laboratory 

paradigms (e.g., Posner, 1980), there are two possible explanations for the lack of the 

validity effect for the radiologists.  First, is that the subtle nodules do not have a strong 

enough signal to capture attention in an exogenous sense. This could be because expertise 

does not tune feature sensitivity in that way, or, second, it could be there is an effect but 

our task in not sensitive enough to detect it.  

We did not find conclusive experimental evidence either way on the question of 

whether the radiologists’ prior knowledge about the location of nodules biased the 

allocation of attention. So, we cannot say for certain whether the information obtained is 

implied based on the statistical learning that accompanies experience. However, it is 

entirely possible that the variation in experience prevents us from seeing evidence for a 

bias. The evidence from the contextual cueing literature suggests that experience with the 

global context and spatial layouts of a display lead to a bias in attention deployment 

(Chun & Jiang, 1998). Further studies with a larger sample are required to investigate 

whether an experienced radiologist have developed an implicit memory for the likely 

location of a nodule in a medical image. This is critical because if a radiologist’s 

allocation of attention is biased to a specific area, it implies that they might not attend to, 

and thus miss, an abnormality in a different region.  

In Experiment 1b we showed evidence for an attention shift from a spatial cue 

(salient lung nodule) embedded in a cluttered medical image for a group of naïve 

observers. These findings are consistent with the strong bottom-up signal from the 

enhanced bright nodule among the lower contrast lung tissue capturing attention. Here, 

the naïve observers were unfamiliar with medical images and therefore would not be 

relying on context or prior knowledge to search for nodules. These results are useful as 
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they demonstrate that exogenous cueing can occur even when the cue is embedded within 

a cluttered heterogeneous prime image, which is quite different from most laboratory 

priming studies where factors such as distractors can be controlled (e.g., Chun & Jiang, 

1998; Posner, 1980). Even though the outcomes for the radiologists (Experiment 2) are 

unclear, we have shown that cues embedded in medical images can drive the allocation of 

attention.   

 If further experiments show that highly experienced radiologists do indeed get a 

validity effect, this could reflect that they extract diagnostic information quicker in 

general from the radiograph, and therefore get the prime information (including nodule 

localisation) within a brief exposure. It could also be that the more, but not less 

experienced radiologists, are more attuned to the nodule and therefore it captures their 

attention to the location of the nodule in the prime. With many years of experience, this 

perceptual tuning we hypothesised might ‘boost’ the signal of the nodules in a top-down 

manner. Kundel & Nodine (1975) showed that when presented with a chest radiograph 

for 200ms experienced radiologists (but not trainees) could detect an abnormality with 

70% accuracy. There are intriguing hints in our data that experience may be an important 

factor in the extent to which attention might be captured by suspicious-looking nodules. 

This would make sense for the perceptual tuning hypothesis of expertise where specific 

features in the image are attended to, and overall pattern recognition facilitates diagnosis 

(Nodine & Krupinski, 1998). Experienced radiologists have spent longer time reading 

chest cases and therefore have seen a higher number of images. To an expert, it is 

plausible that over time, a subtle signal might become more salient. We need further 

research to examine this hypothesis. 

 There are several limitations to the experiments presented in the chapter. First, we 

were constrained by the images so we not able to ensure that the nodule always appeared 
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within the same quadrant as the target. Thus, the prime and target were not always close 

in space (just on the same side). This means that even if the subtle prime shifted attention 

to its location, it might have been too distant from the subsequent target to facilitate 

detection. Our data from the naïve participants with salient versions of the same nodule 

locations, however, suggests that simply being cued to one side or the other with these 

displays can result in a priming effect. In future studies, it would be good to optimise the 

paradigm to get a larger effect in the naïve participants and then use these parameters for 

retesting a radiologist sample with subtle nodules. Another challenge when using medical 

images is the inherent variability that exists due to anatomical differences and image 

artefacts. At the outset, we chose to show the radiologists true pathology instead of the 

enhanced stimuli that the naïve observers saw, as we were concerned that the experts 

could ‘spot a fake’. In addition, we wanted to maintain the ecological validity of the study 

by showing ‘true’ medical cases. Such variance in the prime images introduces another 

source of noise to the data, which could well mask any small effect. Third, the 

radiologists saw images slightly smaller in visual angle (and therefore possible decreased 

salience) due to the different presentation screen size compared with the naïve observers. 

Finally, the sample size in Experiment 2 was small. In practice, recruiting radiologists is 

challenging and obtaining larger sample sizes is difficult. Despite these limitations, this 

study is the beginning of an interesting new direction.  

To our knowledge, this is the first study to investigate attention cueing of 

radiologists with medical images as stimuli, and it is as yet unknown if IOR and 

attentional cueing is moderated by expertise or experience when viewing medical images. 

A future study with a larger sample size, recruiting a broad range of experience including 

the sub-specialty of thoracic (chest) radiology, would be worthwhile as it would be 

interesting to see if there is a strong correlation between experience and cueing effects. 
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This would also allow for a more thorough investigation of the existence of chest priors 

(if indeed these exist) as our Bayes analysis was inconclusive, indicating we need more 

data to answer this question.  

Overall, these experiments show promise. Here, we fail to see evidence for an 

attention shift in our expert group seeing subtle signals, but do when naïve observers see 

salient signals. We see intriguing clues that expertise could be related to the strength of 

cueing. Although further studies are required, this preliminary work suggests that within a 

medical imaging context, attention shifts may occur as a result of seeing a previously seen 

prime in highly experienced radiologists.  
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General Discussion 

 The overarching goal of this thesis was to explore the cognitive processes that 

underpin important visual search tasks, such as those involved in medical image 

interpretation, focusing particularly on the early stages of vision. In a series of 

experiments, I explored the information that can be extracted from images regarding the 

presence and location of a target to reconcile two different theories of radiologist visual 

search (i.e., Evans, Georgian-Smith, Tambouret, Birdwell, & Wolfe, 2013; Kundel & 

Nodine, 1975). I used two stimulus types: natural scenes and naïve observers, and 

medical images on which I tested both novices and expert radiologists. Medical images 

and natural scenes share some key characteristics, such as inherent variability in the 

degree of clutter within a basic structure. In addition, it has been argued that we are all 

experts in perceiving scenes (Wolfe, Võ, Evans, & Greene, 2011), therefore using natural 

scenes and naïve observers forms a good model for radiologists with medical images. 

Thus, to address my key questions in this thesis I used both of these stimuli.  

A major theoretical debate surrounds the extent to which radiologists have 

information about the location of a potential abnormality when they initially detect it. 

Although intuitively it seems that knowing there is something abnormal should also have 

information about where that something is, recent studies have claimed otherwise, 

suggesting a dissociation between detection and localisation of an abnormality (Evans, et 

al., 2013; Evans, Haygood, Cooper, Culpan, & Wolfe, 2016). These findings are 

inconsistent with a standard model of the stages of radiologist visual search (Kundel & 

Nodine, 1975). This thesis examines the claims by Evans and colleagues (2013; 2016) 

closely, and in this final chapter, I integrate the theoretical implications of my findings for 

the models of visual search.  
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I first review the specific findings from each experimental chapter and revisit the 

major issues which are addressed throughout my thesis. Then, I discuss some 

methodological considerations and factors that can affect study outcomes. Next, I discuss 

my study limitations and challenges. I then present the translational implications, which 

include clinical and broader implications. Finally, I discuss some outstanding questions 

and future directions.  

5.1 Overview of findings 

5.1.1 Chapter 2: The time course of rapid target detection and localisation  

The experiments presented in Chapter 2, describe a behavioural paradigm where 

natural scenes were presented to naïve observers to investigate the amount of target 

detection and localisation information available after viewing a scene briefly. This design 

was an adaptation of a previously reported paradigm that presented medical images to 

expert observers (radiologists). I selected a Gabor as a target to avoid the complications 

of semantic relatedness to the scenes. Using scenes allowed an independent measure 

(scene categorisation) that ‘gist’ information was available at the selected durations. In 

two experiments, participants performed a two-alternate forced-choice task and were 

asked to detect and then localise a target presented within either Scene 1 or Scene 2 at 

presentation durations of 33-199ms (backward masked). In Experiment 1, the observers 

performed a precise localisation task (exact click) and a coarser task (left or right). I 

showed that a target could be detected and localised above chance for both tasks, even at 

the briefest duration, 33ms. In Experiment 2, using a similar procedure, I explored the 

influence of clutter during rapid presentations, operationalised as enclosure (Oliva & 

Torralba, 2001). Here, clutter affected performance in a predictable way: accuracy for 

both detection and localisation was higher for the scenes which were open compared with 
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closed, presumably due to the greater bottom-up salience of the target within the 

surrounding scene. The outcomes from this chapter extend what has been shown in the 

natural scene literature about object detection (e.g., Thorpe, Fize, & Marlot, 1996) and 

provide novel findings: localisation information is available after only seeing a natural 

scene for 33ms.  

 

 5.1.2 Chapter 3: Finding cancer in mammograms: if you know it’s there, do you 

know where?  

In Chapter 3, I adapted the paradigm used in the natural scenes experiments 

presented in Chapter 2 to explore the type of information available in medical images 

viewed by radiologists. Extending previous work by Evans et al. (2013), I first verified 

that a salient mass is able to be both detected and localised. These results confirmed that 

the experimental paradigm could measure these factors. I then did a second experiment 

replicating these findings with images more closely matched in difficulty to previous 

studies. In this study, I manipulated mammographic density, which increases the visual 

complexity of mammograms. With respect to the early visual processing of medical 

images, the work by Evans and colleagues (2013; 2016) has been predominant in the 

recent literature. These authors claimed that an initial global signal carries sufficient 

information to detect an abnormality, but this does not contain information about 

location. In my results, I found that radiologists could detect and localise a mass even for 

the most difficult condition (250ms, high density). I also showed that performance was 

mediated by density in a medical image in a predictable way: accuracy was lower for the 

high than low density images. I did, however, have trials on which detection was correct 

and localisation was incorrect, allowing me to fully investigate the possibility of a 

dissociation between detection and localisation. My approach emphasised the importance 
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of going beyond summary statistics to test this hypothesis, in particular to analyse the 

location errors at an image-level. Here, I discovered a number of factors that led to the 

underestimation of localisation including stimulus variability, response imprecision and 

participant guesses. Overall, my results from this experiment demonstrated that rapid 

localisation in mammograms is possible, and a normal patient variant, breast density 

(which contributes to the visual complexity of the image), has a large impact on 

radiologist search. I also outlined a method to fully test the account of Evans and 

colleagues (2013; 2016). I discuss this issue below in more detail. 

 

5.1.3 Chapter 4: The influence of prior expectation and expertise on attentional 

cueing in medical images 

In my final experimental chapter, I investigated whether priors about likely 

pathology locations guide attention, whether expertise boosts the salience of subtle 

nodules present in the lung tissue, and the extent to which location information is present, 

using a novel cueing paradigm where a chest radiograph (with or without a suspicious 

nodule) formed a prime. In two experiments, I presented prime chest radiographs to naïve 

observers and radiologists performing a simple visual detection task. After Experiment 1a 

showed effects that were influenced by masking, the modified design in Experiment 1b 

showed that an artificially-boosted nodule in the prime radiograph cued attention in naïve 

participants (valid < invalid reaction times), validating the task.  

The results from Experiment 1b showed an effect of a salient but normal structure 

on naïve observers that did not seem to affect radiologists. Figure 1 shows an example of 

a normal anatomical variant commonly seen on a chest radiograph: a stomach bubble (red 

arrow). This darker area below the lungs is a gas bubble located in the fundus of the 

stomach. In naïve participants, there was a reverse validity effect which seems likely to 
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have been driven by a masking effect from the stomach bubble (right screen) when the 

target appeared on the same side. This effect did not occur for radiologists. This may be a 

hint that they are able to efficiently discount items that are salient in a bottom-up sense 

but are known to be irrelevant to the task based on expertise. Indeed, this is a hypothesis 

only that requires further exploration.  

 

In Experiment 2, with radiologists, we did not find conclusive experimental 

evidence either way on the question of whether attention shifted to locations based on 

statistical probability of a nodule. However, a post-hoc correlation analysis showed a 

significant relationship between experience and a validity effect: more experienced 

radiologists showed more effect of the prime than less experienced radiologists. This 

Figure 1: Example of a target-present chest radiograph presented to the participants in 

the subtle nodule condition from in Chapter 5. A subtle nodule (left screen, white 

arrow) is present in the lung tissue and the patient’s stomach bubble is present on the 

lower right of the screen (red arrow).  
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suggests that expertise might boost sensitivity to the nodules. To my knowledge, this is 

the first study to consider the presence of priors and the effect of cueing in a medical 

imaging context, providing an indirect measure of the extent to which information about 

location is extracted by experts, and building upon the findings from the previous 

chapters. Future follow-up of this initial study is presented in a section 5.6. 

 

The major issue that is addressed throughout my thesis is whether target 

localisation information can be extracted from brief displays, and whether it can be 

dissociated from detection. It seems intuitive that if you can detect a target you should 

also have information about its whereabouts. However, there are few studies which have 

investigated these two processes in the context of fast visual processing. Of these, some 

have argued that detection and localisation are dissociable and others have not found any 

evidence for localisation at all.  As discussed in Chapters 2 and 3, using two different 

image sets, natural scenes and medical images, I found participants were able to both 

detect and localise targets above chance at comparable durations to previous work. In 

Chapter 3, I also found that apparent detection without localisation trials, particularly in 

difficult images, could be explained by other factors rather than a dissociation. When 

other possible explanations are taken into account (e.g., imprecision and guessing), there 

are few trials where detection is correct without localisation. These issues are discussed in 

more detail below. In Chapter 4, presenting chest radiographs as primes for 200ms, there 

were hints that perhaps highly experienced radiologists might get validity effects from 

subtle nodules, which would imply that localisation information must be present 

(although I note this was based on a post-hoc analysis and requires further study). 

Overall, my results do not provide evidence that detection and localisation are 

dissociable, suggesting instead that they are tightly coupled. 
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In any task where we present an observer with a stimulus display, there is an 

intricate interplay between top-down and bottom-up guidance of attention. Top-down 

guidance occurs when observers are looking for a specific target and can form an 

‘attentional set’ for certain features. Bottom-up processing of the display will influence 

attention in terms of the way the stimulus interacts with the observer’s visual system: 

high contrast or otherwise salient items in the display will tend to capture attention. In the 

medical images presented in Chapter 3, the radiologists ‘set’ their attention mechanisms 

to search for the features of an ‘abnormal mass’ present within a mammogram. Knowing 

the features of masses, a radiologist could use ‘feature-based’ guidance when searching 

an image. It is possible that the salience of a subtle nodule might be enhanced due to the 

effects of perceptual expertise. This suggests that there may be an interaction of top-down 

and bottom-up factors guiding attention in medical image search.  

 Many studies have shown that targets can be detected in the early stages of visual 

processing. In a classic rapid presentation study where observers performed a go/no-go 

categorization task, Thorpe et al. (1996) showed that observers could detect an 

animal/vehicle in a scene after seeing the display for 20ms. Although it is often cited that 

these objects can be detected in only 20ms, the lack of a backward mask makes the exact 

duration debatable. The Thorpe et al. (1996) study has potential issues which include the 

fact that the features of vehicles vs. animals are different. This means that observers could 

make the decision without actually seeing the whole animal, using a sense of whether 

there were more curves or straight edges in the display. My results from Chapter 2 show, 

with a stimulus that is completely arbitrary, that observers can indeed get enough 

information from brief displays to localise a target. These findings add to what is already 

known about objects in the natural scene literature about rapid target detection (e.g., 



Chapter 5 

 

 

181 

Thorpe et al., 1996; VanRullen & Thorpe, 2001) by showing that a target can also be 

localised after a fast presentation. 

My research has highlighted some important methodological issues that could 

affect the interpretation of prior results. Evans and colleagues (2013; 2016) briefly 

presented radiologists with mammograms (and patches from) and argue that abnormality 

detection but not localisation is based on the information provided by a global signal. 

There are a number of important issues with the Evans et al. (2013) and Evans et al. 

(2016) studies that my research addresses. I discuss each of these below.  

 

5.2 Methodological considerations 

5.2.1 Stimulus factors 

For any experiment, the selected stimulus set is crucial and the use of real-world 

images comes with considerable challenges. First, the available images are often far from 

perfect for vision studies as it is difficult to control for factors such as co-existing 

variables (e.g., breast calcifications), target number and size, and breast tissue type. There 

is variability in medical images that make it possible that other factors could influence the 

results. In Chapter 2, I presented natural scenes as a model for expertise in visual search. 

Here, I could control for factors such as target number, size and location, enabling me to 

reduce the variability in the data. For my medical image experiments, I meticulously 

selected the stimuli to ensure that they were free of potential confounds, such as co-

existing pathology and image artefacts. It is unclear whether this type of control has been 

taken in other studies (e.g., Evans et al., 2013; Evans et al., 2016).  

The importance of considering the particular stimuli and responses at an 

individual image level was clearly illustrated in my response imprecision analysis in 
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Chapter 3. This analysis demonstrated coarse location information exists in many 

apparently ‘incorrect’ location responses. By looking at responses at the image level, I 

found that there were many instances where the radiologists’ localisation responses were 

clustered around the correct area, thus providing evidence for coarse localisation 

information. This could be due to decay in the visual short-term memory trace over time 

or motor error in clicking the precise location. Individual images also showed instances 

where radiologists gave an apparently correct detection response but have then gone on to 

clearly localise a ‘distractor’ (see section 5.4 for further detail). Thus, selection of stimuli 

and analysis of the responses in detail is crucial to clear interpretation. 

In clinical practice, there is a wide range of potential breast pathology which is 

required to be diagnosed. I deliberately selected images that contained a single mass, 

whereas Evans et al. (2013); Evans et al (2016) selected architectural distortions and 

subtle masses. This means that their stimuli may not have had a localisable signal or may 

have had multiple areas of abnormalities, making the localisation task unreliable and in 

some cases impossible. If there actually is not any artefact driving these effects (recall the 

artefact may only be present in a few images), then this is intriguing and evidence for a 

‘gist’ or holistic signal of abnormality. However, this is not evidence for a dissociation 

between detection and localisation, because there may be nothing to localise on some 

images. We therefore need to ensure that future studies give full consideration to the 

potential impact of individual images on the results.  

 

5.2.2 Summary statistics 

 Evans and colleagues’ (2013; 2016) conclusions were made based on data that 

were very close to chance, where d prime was low.  If the research question is, ‘is 

detection (localisation) of an abnormality possible under these conditions?’, as it probably 



Chapter 5 

 

 

183 

was when they commenced these studies, then looking for ‘better than chance’ 

performance makes sense. However, there are (at least) two issues that arise from the 

inference that detection greater than chance, and localisation not different from chance, 

equates to no localisation information. As this claim has significant theoretical 

implications, I consider these issues in detail below. 

First, as discussed in Chapter 3, having no localisation is a null effect and 

therefore this cannot be interpreted using frequentist statistics. When a p value is greater 

than alpha this simply means that we have no evidence to reject the hull hypothesis. To 

claim that there is evidence for no localisation, appropriate statistics such as a Bayes 

Factor, would need to be calculated. This would then provide evidence of no effect (of 

localisation when there is detection) rather than just no evidence.  

 Second, summary statistics that are close to chance could be at risk of being 

influenced by a few images that might be driving the effect. If there are some images that 

are subject to any or all of the influences outlined in the above section on stimulus 

variables, this could drive a marginal effect. In Evans et al. (2016, Experiment 2), 14 

radiologists were presented a single (thus far normal) mammogram for 500ms where the 

contralateral breast had a biopsy-proven cancer. They proposed that an abnormal signal 

may be present before the actual lesion is detectable by a radiologist, but do not elaborate 

on how this could be possible. Evans et al. (2016) are basing their findings on summary 

statistics where for the contralateral breast condition average d′ = .59, which is only just 

above chance (d′ chance = 0). For the ipsilateral side, average d′ = 1.16, which was 

significantly higher than the contralateral condition. In a subsequent experiment, Evans et 

al. (2016) tested the hypothesis that if an abnormal signal is present across the entire 

breast then this signal should be present in isolated normal parenchyma. They presented 

radiologists 256- x 256-pixel lesion-free patches of a section from the abnormal breast 
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and lesion-free patches from the breast contralateral to the lesion. They propose that there 

is some signal in sections in both the ipsilateral and contralateral conditions because mean 

d¢ for detection was 0.33-0.4, which was significantly above chance. Given that the 

patches comprised of one eighth of the whole breast, they used a model of the whole 

breast which would show d¢ of 0.9-1.2. Both of these findings are intriguing as they claim 

that the radiologists were able to say something was abnormal based on a non-localised 

signal (as there was no abnormality to be localised) and means that these results could be 

influenced by a few images.  

If one could be sure that image-level artefacts are not driving results in these 

studies, abnormality detection in contralateral and patches of non-lesion tissue may 

indeed provide evidence that ‘gist’ or other information at a global level can indeed 

support detection. They are not, however, evidence of a dissociation between detection 

and localisation, as there is effectively no localised mass or abnormality to detect in these 

experiments. They therefore do not provide any support for the basic claim that detection 

of a mass can be dissociated from location information, which is the crucial part of the 

argument, that gist can support detection. 

  

5.2.3 Participant guessing  

In any type of visual search study, on some occasions, the observers will make 

‘lucky guesses’ which contribute to the data. Although these will be taken into account in 

a summary level d′ analysis, any inference based on subsets of responses must consider 

this issue. To determine whether the trials where there was apparent ‘detection without 

localisation’ were indeed evidence of a dissociation, I tested whether a proportion of 

these could be explained by correct detection guesses. In Chapter 3, I calculated a 
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guessing probability based on a modified method described by Howe and Webb (2014). I 

created a hypothetical observer for each radiologist, one who only gets detection correct 

when it also has localisation information, meaning that any ‘detection without 

localisation’ trials are due to correct guessing. The prediction for each radiologist was 

compared with their observed performance and the results showed that there were 

actually very few trials representing a true dissociation between detection and 

localisation.  

To summarise, my guessing correction results, the results of the response 

imprecision analysis, and the statistical factors discussed above, raise concerns about the 

interpretations presented in previous high-profile papers (Evans et al. 2013; Evans et al., 

2016). My analyses identified the contribution of other factors to my (and potentially 

prior) results. It is crucial, particularly in research with such clear potential implications 

for clinical practice, that we, as scientists, are extremely sure of any claims we make.  

Overall, it is certainly likely that in a normal visual search of medical images 

information perceived on the basis of gist contributes to successful diagnosis. However, 

as outlined above, there are important methodological issues to be considered before 

making the claim that such gist information can support detection in the absence of 

location information. 

 

5.3 Models of visual search  

The original model of the stages of radiologist visual search describes an initial 

stage where the extracted information (e.g., detection of an abnormality) then guides eye-

movements in the second stage to the location of the abnormality (Kundel & Nodine, 

1975). For this to occur, some information about location must be available in the initial 
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stage (Figure 2a). However, Evans and colleagues (2013; 2016) argue that the global 

signal lacks localisation information, rather providing only a sense that something is ‘bad’ 

in the image. On the basis of this sense, the search strategy of the radiologist then changes 

for a more thorough search for the source of that abnormality signal. Figure 2b shows the 

Evans et al. (2013) proposal, where a global signal changes search strategy.  

 

In this thesis, I replicate the effect that experienced radiologists can detect 

abnormalities in an image that is presented for 1 second or less, even within a quarter of a 

second. These findings are consistent with both of the above models and the medical 

perception literature (e.g., Kundel & La Follette, 1972; Kundel & Nodine, 1975; Kundel, 

Nodine, Krupinski, & Mello-Thoms, 2008; Nodine, Mello-Thoms, Kundel & Weinstein, 

2002). The findings are also consistent with the two-pathway model proposed by Wolfe 

Figure 2. Basic representations of models of visual search in radiology. (a) Kundel and 

Nodine (1975); (b) Evans and colleagues (2013). The critical difference is whether the 

global response/signal contains localisation information (Kundel & Nodine, 1975) or not 

(Evans et al., 2013).  
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et al. (2011) based on laboratory studies of basic visual search. In this model, the 

information picked up by the non-selective pathway includes structural cues but lacks the 

precision for object recognition. This ‘gist’ information then guides attentive search using 

a selective pathway that can achieve identification, presumably requiring accurate 

localisation.  

 Evans and colleagues (2013; 2016) seem to propose that in brief presentations of 

medical images, radiologists’ detection could be achieved via the non-selective pathway. 

They base this claim on data showing detection occurring without localisation. They infer 

that correct detection must be based on gist – a global signal that could then change the 

search, rather than detection being based on any selective process. Indeed, this could 

explain the intriguing results where abnormalities in mammograms were detected in thus 

far normal parenchyma (i.e., no localisable signal) (Evans et al., 2016: Experiments 2 and 

4). The findings presented in this thesis suggest that if an abnormality is detected, it can 

also be localised. This is consistent with the information supporting detection actually 

being within the selective pathway. This picture is consistent with the Kundel and Nodine 

(1975) model, which suggests information extracted in the first glance allows for 

detection and guides search to localising an abnormality. It is important to recall that 

these pathways are not strictly sequential, they feed into each other. Although the gist 

signal still exists through the non-selective pathway, I failed to find any evidence that this 

signal is what is driving successful detection.  

The two-pathway model (Wolfe, et al., 2011) incorporates the proposal by Evans 

and colleagues (2013; 2016). Figure 3 shows the Wolfe et al. (2011) model with the 

conflicting findings illustrated. These results fit with the two-pathways working together, 

as they presumably do within the normal system, in the same way for medical images as 

for other visual searches. Thus, in the normal system, we would expect global (statistical) 
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information through the non-selective pathway whereas information in the selective 

pathway can support more detailed analysis including that required for object recognition 

and localisation.  

 

 

Figure 3. The two-pathway architecture for visual processing (from Wolfe, 

et al., 2011). Evans and colleagues (2013, 2016) propose that detection or an 

abnormal signal without localisation is achieved via the non-selective 

pathway. Carrigan et al. (under review) and Kundel and Nodine (1975) 

suggest that there is no detection without also having localisation 

information. This suggests rapid involvement of the selective pathway.  
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In Figure 4, I have built upon the theoretical model of Kundel and Nodine (1975) 

with modifications based on the evidence provided throughout this thesis. What others 

have described as a ‘global response’ is somewhat confusing because ‘global response’ 

and ‘gist’ have become synonymous in the literature. Therefore, it becomes unclear what 

is actually being discussed. Here, I have replaced this term with ‘early processing’ to 

reflect the findings in this thesis in a less theory-laden manner. After stimulus onset, at 

the level of the global response, there are three proposed mechanisms which work in 

parallel to lead to detection and localisation. Top-down goals such as knowledge of the 

target’s features and the statistical likelihood of a target’s location are postulated to 

influence the system at the same time as the bottom-up information such as salient 

features of the target. If the Evans et al. (2013) and Evan et al. (2016) proposal is 

subsequently found to hold, for example, under situations where the abnormality involves 

a more diffuse signal that could potentially modulate the gist, this would also contribute. 

Together this information guides subsequent search leading to localisation. This modified 

model aims to reconcile the previous experimental findings with those reported in this 

thesis.  

 When a stimulus has ‘clutter’ or higher complexity, there is more information to 

be processed through the system simultaneously. This results in less clearly defined 

bottom up information, reducing the benefit of this part of the guidance and therefore 

performance. It is well known that increased clutter or set size in a display degrades 

performance when observers are doing a free-viewing search task (Adamo, Cain & 

Mitroff, 2015; Asher, Tolhurst, Troscianko, & Gilchrist, 2013; Rosenholtz, Li, Mansfiled 

& Jin, 2005; Rosenholtz, Li, & Nakano, 2007; Whitney & Levi, 2011; Wolfe, 1994). In 

Chapters 2 (Gabor in natural scenes) and 3 (mass in mammograms), I showed that when 

the scene or mammogram is complex (closed scenes or high density mammograms), 
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performance is reduced relative to the simpler displays (open scenes or low density 

mammograms), likely because the target is less salient among the cluttered background. 

Presumably in this situation, the observer has to rely more on the other mechanisms in 

play.  

 

 

 

Figure 4. Modification of Kundel and Nodine’s (1975) model of the stages of 

radiologist visual search. At the level of early processing, attentional deployment 

presumably reflects the input from both bottom up and top down factors. The type of 

‘gist’ analysis described by Evans et al. (2013) (included in the non-selective pathway 

by Wolfe et al. (2011)) would contribute to perception, but the overall outcome of the 

global response in early processing is to identify deviations from normal that can 

guide subsequent search to the abnormality location.  
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5.4 Limitations & challenges  

 As discussed in section 5.2.1, the real-world images have significant challenges. 

The limitation of meticulously selecting the stimuli means that to obtain an adequate 

number of trials within an experiment, in some cases the images were repeated (e.g. chest 

radiographs in Chapter 4). The mammograms used in Chapter 3 were selected to exclude 

those images which contained potential confounding variables. Figure 5 illustrates 

examples of images excluded from the stimuli set. Figure 5a is an example of an image 

that was excluded due to a large, centrally located breast calcification, which is a normal 

variant often seen among the breast tissue (bright white area, red arrow). Figure 5b is an 

example of an image which contained a small calcification (bright white area, red arrow) 

along with a normal axillary lymph node (red arrow). These naturally occurring variants 

would distract the radiologists, potentially leading to misleading detection responses (cf. 

Chapter 3, Fig.8). However, the need for such strict selection resulted in limited image 

sets.  
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 Despite applying a strict selection criterion, the post-hoc inspection of the images 

revealed that there were still characteristics in a few images that were naturally occurring 

stimulus features, which may affect the results. In Chapter 3, I delved into response errors 

by looking closely at the responses to each image. This image-level analysis made it clear 

that in some apparent correct ‘detection without localisation’ trials, radiologists were 

actually detecting a distractor as a target and these trials contributed to the overall 

summary data of ‘detection without localisation’. As discussed above, this is a clear 

concern for interpretation of summary statistics alone, and suggests image-level analysis 

is crucial for studies wishing to access potential dissociations.  

Figure 5: Examples of two mammograms which were excluded from the stimulus 

set from the experiments presented in Chapters 3 and 4 as they contained distractor 

items. (a) A large, centrally located breast calcification (red arrow) which appears 

salient in the image; (b) A smaller calcification (red arrow) and also a normal 

axillary lymph node.  
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 In Chapter 4, chest radiographs were selected as these stimuli are more 

symmetrical than mammograms, which was crucial to test for cueing in for this paradigm. 

A set of chest radiographs downloaded from the Japanese Society of Radiological 

Technology database (JSRT: Shiraishi, Katsuragawa, Ikezoe, Matsumoto, Kobayashi et 

al., 2000) were selected as the best options, excluding those with image artefacts. As the 

radiographs were digitised images from analogue film this meant many contained 

artefacts such as anatomical variants or marker opacities and even tape and pencil 

markings which could act as distractors. It is possible that these stimulus factors may 

have cluttered the image with features that are more salient than the actual nodule, 

reducing the potential for capturing attention to the nodule.  

Excluding images also meant a reduction in the number of stimuli in the sets for 

all the experiments presented in Chapters 3 and 4. To overcome this, in Chapter 3, 

Experiment 2, I tested only two duration blocks (instead of the 3 presented in Chapter 3, 

Experiment 1) to maximise the number of trials per condition, as I had introduced a 

further factor (density). In Chapter 4, I increased the number of primes by randomly 

repeating each one the same number of times to also increase the number of trials per 

condition. As the subsequent target location was randomised, the prime/target was not 

repeated in exactly the same location, so contextual cueing is unlikely.  It is also unlikely 

the observers remembered the prime after a repeated exposure, given the brevity of the 

displays. However, overall, it would be ideal to have many more unique images per 

experiment to avoid any such potential influences. 

A further limitation when using medical images as stimuli is that I was unable to 

control for nodule location within each quadrant and could only balance nodule number 

across the vertical axis. This means that the prime was not always close in space to the 

target, decreasing the likelihood I would see evidence of any attention shift that did occur. 
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A future study with tighter control on prime-target locations may be more successful in 

detecting cueing effects, which are likely to be quite subtle.  

A challenge when studying experts is that it is often difficult to obtain a large 

enough sample size for adequate statistical power. Here, in addition to recruiting 

radiologists for my key studies, I also used a model of expert visual search using natural 

scenes. Based on the scene perception literature (e.g., Oliva & Torralba, 2001), I was able 

to obtain exemplars easily and categorise these at the superordinate and basic-level. 

Although Chapter 2 is not about scene perception per se, I selected these as stimuli 

because they form a category with which we all have extensive perceptual experience. In 

addition, they provide a way of independently verifying that ‘gist’ is extracted. The main 

advantage of using scenes was that I was able to maintain experimental control of target 

location within the scene (unlike Evans and colleagues (2013; 2016) and my medical 

image studies). Using a target such as a Gabor also allowed me to control factors such as 

size, location and semantics, so the observers would not be relying on scene guidance to 

make judgements (e.g., Wolfe, et al., 2011). By presenting scenes, I was also able to 

recruit an adequate number of observers from the Macquarie University participant pool 

to maximise power.  

Sample size was a limitation for the attentional cueing study discussed in Chapter 

4, Experiment 2. Here, I was only able to recruit thirteen radiologists for the study, and 

they had a wide range of experience (2 – 30+ years). This may have been an issue as level 

of experience could be a key factor in determining potential cueing. The range did, 

however, give us the opportunity for an exploratory post-hoc analysis assessing the 

relationship between the magnitude of the validity effect and the years of experience. 

This analysis showed a significant positive correlation. For the less experienced 

radiologists, it is entirely possible that their perceptual expertise, and thus recognition of 
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subtle nodules from such a brief (200ms) image, had not yet developed. This direction is 

promising and this experiment provides important pilot data for a future larger study. 

 

5.5 Translational implications  

5.5.1 Clinical implications  

My research has implications for clinical practice in Australia. As outlined in 

Chapter 3, mammographic breast density (MBD: Li, et al., 2013) is an important factor to 

consider in a medical imaging context. My research findings converge with clinical 

research outcomes of increased risk and decreased diagnostic sensitivity to suggest MBD 

is a major factor in diagnostic performance. MDB varies widely and approximately half 

of the female population have dense breasts (Sprague, et al., 2014). As there is more 

functional breast tissue present in a dense breast, there is an increased risk of developing 

cancer in such breasts (Boyd, et al., 2010). Studies have also shown that high levels of 

breast density reduce radiologist sensitivity in free-viewing (see Al-Mousa, Ryan, Mello-

Thoms & Brennan, 2014). In Chapter 3, my results confirm that the normal anatomical 

variant of breast density seen in patients affects early visual search processes. Whereas 

previous studies only demonstrated that high levels of breast density impede radiologist 

diagnostic performance, my research demonstrates that breast density has a negative 

effect on the information a radiologist is able to extract from the first processing stages 

(the ‘first glance’). Given it has been proposed that diagnostic decisions depend crucially 

on the information available during this time (Kundel et al., 2008; Kundel & Nodine, 

1975; Evans et al., 2013; Evans et al., 2016), these results provide evidence that density is 

an important consideration for clinical practice.  
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Breast density is a factor which is not currently recorded in patient screening 

reports in Australia. If referring clinicians and patients were notified of having breasts 

which contain high levels of MBD then this would lead to the provision of more suitable 

imaging modalities such as 3D mammography (digital breast tomosynthesis: DBT), 

ultrasound or magnetic resonance imaging, and thus an earlier cancer diagnosis. It is well 

known that the key to cancer survival is early diagnosis. Along with teaching trainee 

radiologists, notification for both patient and clinician about breast density and potential 

cancer risk may have a significant positive effect on outcomes.   

With the advances in computerisation and technology, medical imaging is 

undergoing rapid change. The development of digital breast tomosynthesis (DBT), which 

provides volumetric 3-dimensional image data in mammography, aims to reduce tissue 

overlap that often accompanies a mammogram. DBT is a reconstructed mammogram 

taken from many ‘slices’ through the breast parenchyma (Poplack, Tosteson, Kogel, & 

Nagy, 2007) and is often used in a screening context for patients with complex breast 

tissue such as dense breasts (Alakhras, Brennan, Rickard, Bourne, & Mello-Thoms, 

2015). Research has shown that the addition of DBT potentially increases cancer 

detection, and reduces false positives and recall rates (Alakhras et al., 2015; Poplack et 

al., 2007). If density is not routinely reported in screening context, then the referring 

clinician and patient are not made aware that further imaging such as DBT may be 

warranted.  

There is a global endeavour to understand the complex issues associated with 

applied visual search, how the processes work, and what strategies are beneficial for 

boosting performance. In radiology, a better understanding of the cognitive mechanisms 

underpinning visual search will lead to improved diagnostic performance, and better 

health outcomes. My research has implications for policy and radiologist training, in the 
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need for breast density to be mandatorily reported in mammographic screening, and for 

greater consideration in training.  

 

5.5.2 Broader implications 

The research presented in this thesis falls squarely into Pasteur’s quadrant of use-

inspired basic research (Stokes, 2011). In this thesis, I have taken a real-world problem of 

cancer diagnosis and applied fundamental cognitive science tools to understand the basis 

of initial processing of medical images by radiologists. For example, by using natural 

scenes as a model for medical image search, I have linked two literatures and my results 

can therefore inform basic vision science as well as the medical community. Most papers 

in this field stop at the level of summary statistics (e.g., average accuracy or reaction 

time), whereas in other fields, like language-research, an item-based analysis is common. 

My research emphasises the importance of the image-based analysis (e.g., Chapter 3,) 

which allowed important insights, and indeed, counter-evidence to a high-profile claim 

about the mechanism underpinning radiologist search. This thesis also builds upon the 

literature surrounding early visual processing and expertise. I investigated factors relating 

to visual search and attention and related these to the real-world context of medical 

imaging. These results contribute to a growing literature where rigorous science 

techniques have been applied successfully to address important clinical questions.  

The findings presented in this thesis also have implications for several other 

similar real-world situations where experts need to examine complex images. In the areas 

of airport security and military surveillance, for example, understanding how people are 

able to detect and localise information efficiently is crucial for public safety.  
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This research could inform computer-aided classification of abnormalities. A 

conventional classification system used widely in clinical practice is computer-aided 

detection (CAD). CAD is a tool which aims to increase the detection rate and thus reduce 

errors in digital radiology (Al Mohammad, Brennan & Mello-Thoms, 2017). It requires 

several steps which include pattern recognition and image processing (Hua, Hsu, 

Hidayati, Cheng, & Chen, 2015). The algorithms developed for CAD are based on the 

features presumed to be use when a radiologist is searching an image, namely pattern 

recognition (Castellino, 2005). An expert radiologist has learned to visually recognise 

normal vs. abnormal patterns and can do so rapidly (Drew, Evans, Võ, Jacobson & 

Wolfe, 2013; Kundel & Nodine, 1975; Nodine & Krupinski, 1998). In a machine learning 

context, CAD is also focusing on pattern recognition and regularities/irregularities in the 

data. The findings in this thesis, specifically the features detected and localised in the first 

glance, could inform CAD.  They have contributed to the understanding of the 

information radiologists are basing their decisions on, and could inform trainees who are 

in the process of developing visual expertise.  

The development of diagnostic tools raises important questions: what impact will 

recent computational advances such as deep neural networks have on medical imaging? 

One of the main criticisms of CAD is the large amount of processing required to 

differentiate malignant and benign features. To reach a ‘decision’ the steps involved 

include feature computing, selection and integration - every subsequent step rests heavily 

on the success for the prior stage. Recently, machine-learning techniques, such as deep 

learning, have been explored in the context of tumour classification in radiology (Hua, et 

al., 2015). In deep learning, using a hierarchical structure, a number of layers of data are 

exploited for pattern classification and feature learning. Hua et al. (2015) showed that 

these methods achieved better pulmonary nodule classification than CAD in computer 
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tomography (CT). Overall, these systems show promise, reducing errors and false alarms, 

and improving diagnostic outcomes. A greater understanding of human diagnosis will 

provide important foundations for future development of automated tools. We also need 

further research studying the interaction between humans and automated diagnostic tools.  

 

5.6 Future directions 

The research in this thesis opens up several clear research directions. For the 

experiment presented in Chapter 3, a future study with a larger sample size, presenting 

pathologically varied mammograms (i.e. not only single masses) would be important to 

ensure results replicate and generalise to larger samples. The preliminary results 

presented in Chapter 4 offer intriguing hints that priming may indeed be possible by 

subtle lesions for highly experienced radiologists. This is likely to be a small effect, 

however, and requires a large sample to fully test the idea. This also offers another 

method for looking at the localisation question, and may contribute to the notion of 

developing expertise. Further exploration of the influence of prior knowledge will also be 

important as it is possible that these priors affect the allocation of attention. A follow-up 

experiment should also source a higher number of chest radiographs that contain nodules 

balanced across the four quadrants of the lung to constrain prime-target locations more 

closely. These experimental directions follow from the research presented in this thesis. 

Radiology is moving from 2D towards more 3D modalities (e.g. DBT, CT), and 

we know very little about visual search in a 3D context within medical imaging. 

Currently, cognitive psychology paradigms are in development which can be used for 

both non-expert and expert populations. For example, a segemented-3D search paradigm 

that matches the critical qualities of digital breast tomosynthesis allows presentation of 
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stimuli that appear ‘mammogram like’, but using target ‘Ts’ among ‘Ls’ arranged 

throughout (Adamo, personal communication, August, 2017). What is unique about this 

paradigm is the ability to create a large number of exemplars and the ease with which 

control and flexibility to manipulate factors such as target number, and set size in the 

search display is achieved. This overcomes some of the challenges using real-world 

images and could provide useful insights into expert visual search, especially pertaining 

to rapid target detection and localisation.  

It is also crucial that we test radiologists in conditions more closely aligned to 

radiology practice. Somewhat related to priming effects are the errors caused by the 

phenomena known as the attentional blink (AB: Broadbent & Broadbent, 1987; 

Raymond, Shapiro, & Arnell, 1992). The AB is a temporal search phenomenon where the 

second of two targets is missed when it appears close in time to the first. AB is studied 

during a rapid-serial-visual-presentation (RSVP) paradigm where items are sequentially 

displayed briefly and observers are required to detect targets. In medical imaging an 

enormous amount of data is viewed within a 3D reconstructed examination. For instance, 

in a typical abdominal CT scan ~1000 images are generated (Reiner, Siegel, & Siddiqui, 

2003). To view a scan the radiologist selects a case and then scrolls through the images 

with a mouse. Each radiologist is likely to adopt a scrolling speed/method which is 

behaviourally suited for their diagnostic purpose. One study reported that the average 

scrolling rate through CT images for radiologists is around 25-30 frames/second, or 

40ms/frame (Diaz, Schmidt, Verdun, & Bochud, 2015). Depending on the individual’s 

speed and the location/size of targets, it is plausible that targets may be missed, especially 

when a second one appears temporally close to the first. Unanswered questions include: 

does the AB similarly occur with 3D volumes? Does the magnitude of the AB correlate 

with levels of experience of a radiologist? It is important that we investigate the extent to 
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which the AB occurs when radiologists view rapidly presented displays scrolling through 

a 3D search space. 

 The recent, rapid and continual growth in computational and 3-dimensonal 

modalities is providing fertile ground for future studies. In a broader context, there remain 

many unanswered questions in the medical perception research literature. These include 

how can we, as vision scientists, inform sophisticated machine learning techniques about 

the cognitive underpinnings of the processes involved in the human search engine? This 

also poses the contentious question: will the human search engine be replaced in the 

future?  

 

5.7 Conclusions and final remarks  

 The findings in this thesis advance our knowledge about early visual processing 

and, consistent with previous research, show that a remarkable amount of information can 

be processed from very brief displays. Specifically, when observers view a natural scene 

or medical image briefly, they can extract not just information allowing detection of a 

target, but this is tightly linked with information about target location. I have also 

examined important factors in medical image perception, including how the normal 

anatomical variant of breast density affects early visual search.  

My research approaches a real-world problem of detection of abnormalities in 

medical images using rigorous methods of cognitive science. By using natural scenes as a 

model for medical image search, I have linked two literatures and my results can 

therefore inform basic vision science as well as the medical community. I have applied 

fundamental cognitive science tools to understand the basis of initial processing of 

medical images by radiologists. My approach emphasised the importance of going 



Chapter 5 

 

 

202 

beyond the summary statistics when interpreting findings. For instance, a thorough 

analysis at the image level has important implications for the way researchers are 

studying questions of localisation in radiology. By taking this approach, this research 

advances the scientific understanding of the perceptual limitations in medical imaging.  

Overall, my work presented in this thesis is important in the scientific arena by 

promoting good practice and addressing important theoretical questions about how we 

search complex images. The implications from these findings are broad: for the medical 

and health arena, with direct policy and training implications, and for the general public.  
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Abstract  

Humans can extract considerable information from scenes, even when these are 

presented extremely quickly. The ability of an experienced radiologist to rapidly detect an 

abnormality on a mammogram may build upon this general capacity. Although 

radiologists have been shown to be able to detect an abnormality ‘above chance’ at short 

durations, the extent to which abnormalities can be localised at brief presentations is less 

clear. Extending previous work, we presented radiologists with unilateral mammograms, 

50% containing a mass, for 250 or 1000ms. As the female breast varies with respect to 

the level of normal fibroglandular tissue, the images were categorised into high and low 

density (50% of each), resulting in difficult and easy searches respectively. Participants 

were asked to decide whether there was an abnormality (detection) and then to locate the 

mass on a blank outline of the mammogram (localisation). A post-hoc analysis showed 

both detection and localisation information for all conditions when we include a wider 

acceptance localisation boundary. Although there may be a dissociation between 

detection and localisation on a small proportion of trials, we find a number of factors that 

lead to the underestimation of localisation including stimulus variability, response 

imprecision and participant guesses. We emphasise the importance of taking these factors 

into account when interpreting results. The effect of density on detection and localisation 

highlights the importance of considering breast density in medical screening.  

 

 

 

Keywords: visual search, medical imaging, global processing, breast density, target 

detection, target localisation 
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Significance  

In medical imaging, a radiologist searches and interprets a medical image to make 

critical diagnostic decisions (e.g., is that a cancer or not?), often under time pressure. 

With time and practice, experienced radiologists are thought to develop skills that allow 

them to form the basis of a diagnosis (normal or abnormal) during an initial glance at an 

image. This implies that the information extracted from the image in the first second of 

processing contains critical information that informs diagnosis. Here, we explore what 

type of information is present in this timeframe, particularly focusing on the presence (or 

lack thereof) of information about the location of potential abnormalities. We develop an 

image-level analysis of errors, which shows coarse location information exists in many 

apparently ‘incorrect’ location responses. Finally, we assess whether trials which imply 

detection of a target without localisation could be due to guessing. We demonstrate that 

for breast masses there is information that supports both detection and localisation of 

abnormalities, with better performance in images with low relative to high breast density. 

Our findings emphasise the need for breast density to be considered in screening reports 

and radiologist training. Notification for the patient and clinician about breast density 

and potential cancer risk may have a significant positive effect on outcomes, such as the 

provision of more suitable imaging modalities, and an earlier cancer diagnosis.  

 

Background 

As soon as we open our eyes, our visual system processes an enormous amount of 

information in a short space of time. Early findings showed that an exposure of 100ms is 

sufficient to extract the basic meaning of natural scenes (e.g., indoor versus outdoor; 

Potter, 1976). Using backward masking to precisely control for exposure times, others 

have shown that the distinction between natural scene categories at the superordinate 
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level (e.g., man-made versus natural) and basic level (e.g., coast versus city) can occur 

with presentation durations as short as 20ms (Greene & Oliva, 2009; Joubert, Rousselet, 

Fize, & Fabre-Thorpe, 2007). Furthermore, when primed with a category (e.g., animal or 

truck), objects can be detected at brief durations (Thorpe, Fize, & Marlot, 1996; 

VanRullen & Thorpe, 2001). This fast visual processing has also been reported among 

those who are experienced in domain-specific tasks such as medical imaging (Evans, 

Georgian-Smith, Tambouret, Birdwell & Wolfe, 2013; Evans, Haygood, Cooper, Culpan 

& Wolfe, 2016; Kundel & Nodine, 1975; Nodine, Kundel, Mello-Thoms, Weinstein, Orel 

et al., 1999). Kundel & Nodine (1975) showed that when presented a chest radiograph for 

200ms, radiologists could detect an abnormality with 70% accuracy. Kundel and 

colleagues (2008) have since shown that within 1 second of viewing a mammogram, 

experts fixate on 67% of breast cancers (Kundel, Nodine, Krupinski, Mello-Thoms, 

2008). Furthermore, when shown briefly presented mammographic displays (250ms), 

radiologists can discriminate normal from abnormal at levels better than guessing (Evans 

et al., 2013; Evans et al., 2016). The evidence that observers can extract information with 

fast presentations from natural scenes (e.g., Potter, 1976; Thorpe et al., 2001), and 

medical images (e.g., Kundel & Nodine, 1975; Evans et al., 2013), suggests that the 

processing involved in early visual search is similar whether the display is a natural scene 

or a medical image, at least for experts. 

 Radiologists develop expertise in ‘visual search’ in such images over a period of 

years.  It has been suggested that specialised training and ongoing experience leads to 

perceptual and cognitive ‘fine-tuning’ in the task of image interpretation (Nodine & 

Mello-Thoms, 2010).  Maintaining such expertise requires interpreting high volumes of 

cases. For example, mammographic screening radiologists interpret more than 2000 cases 

per year (Rawashdeh, Lee, Bourne, Ryan, Pietrzyk, et al., 2013). It is possible that 
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expertise can be attributed to implicit learning and many hours of training and practice 

has allowed for the efficient guidance of attention to relevant regions in an image (Drew, 

Evans, K., Jacobson, & Wolfe, 2013). Evidence for expertise includes the findings that 

experienced radiologists outperform novices and trainee radiologists on tasks such as 

detecting an abnormality in brief images (Evans et al., 2013; Nodine et al., 1999), and in 

different patterns of eye movements between experts and novices. For example, Kundel 

and La Follette (1972) compared the visual scan patterns of expert breast radiologists 

with trainees interpreting mammograms and found that the experts fixated on lesions 

faster and concluded search earlier than the novices. Others have shown that experts 

fixate true abnormalities within 1-2 sec of image onset and most of their subsequent 

scanning is to confirm that there are no other lesions (Mello-Thoms, Hardesty, Sumkin, 

Ganott, Hakim et al., 2005). This follow-up takes about 5-10 seconds after initial fixation, 

after which a diagnostic decision is reached. There is an enormous amount of information 

that is processed in the first second of viewing a scene or image, so it is important that we 

understanding the cognitive underpinnings of early visual search.  

 Kundel and Nodine (1975) developed a model that describes two distinct 

processes leading to a diagnostic decision. The first glance supports a global, or holistic 

overview of the image, which indicates on a basic level whether the image deviates from 

a cognitive representation of a normal anatomical schema. The information extracted at 

this first stage is then proposed to constrain and guide search to the region of the image 

containing the abnormality (the second stage). For this to occur, the global signal must be 

informative about the location of the abnormality.  

Recently an alternative perspective has been offered by Evans and colleagues 

(2013, 2016). They suggest an initial abnormal signal could act to alert a radiologist that 

something is abnormal but without containing location information. Rather than guiding 
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search to a location, this global signal then changes the search strategy to a more 

complete search for the abnormality. The initial signal could be supported by the rapid 

extraction of the summary statistics of the image, such as average orientation and size. In 

the basic vision literature, two stage models (e.g., Wolfe, Võ. Evans & Greene, 2011) 

describe an initial, non-selective pathway which, although limited in capacity, extracts 

summary statistics in parallel from the display. In the model, global processing occurs 

along this pathway. A second, selective pathway recognises one or a few objects at a time 

and requires selective attention. Together these pathways combine to support perception. 

Evans et al. (2013) and Evans et al. (2016) suggest that information via the non-selective 

pathway could alert a radiologist that something is abnormal, but the fine-grained detail, 

such as its location, only becomes available at the later selective stage.   

Evans et al. (2013) compared the performance of radiologists and novices on the 

detection and localisation of abnormalities in mammograms. The stimuli were bilateral 

(left and right breast) mammograms where one side could contain subtle masses and 

architectural distortions that varied in size (10 to 48mm). Such pathologies are highly 

variable, and are difficult to detect and locate even by expert radiologists under free 

viewing conditions. As a result, these have the highest reported rate of false negatives 

(Knutzen & Gisvold, 1993). Despite these difficult images, Evans et al. (2013) found that 

radiologists (but not novices) could detect an abnormality above chance (Mean d¢ was ~ 

0.7 for 250ms duration and up to ~1 for 2000ms duration, where d’ of 0 is chance). For 

the combined detection and localisation task, images were displayed for 500ms. 

Following detection, the radiologists viewed a blank outline of the mammogram and were 

asked to localise by marking the abnormality with a mouse-click. Chance was determined 

by calculating the average percentage (across images) of overall tissue area lying within a 

predetermined region of abnormality. Although abnormalities could be detected by 
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radiologists above chance at 500ms, localisation performance was at chance. Evans et al. 

(2013) interpreted these results as evidence that the information extracted to support 

detection at brief durations does not contain location information, but is rather based on 

an overall ‘gist’ or holistic signal. In a subsequent paper, Evans et al. (2016) did another 

series of experiments using mammograms, replicating and extending their initial findings. 

In their second experiment, they presented radiologists a set of 120 single-sided (one 

breast) mammograms for 500ms and asked them to detect and then localise an 

abnormality. The unilateral mammograms either contained an abnormality (target-

present), had no abnormality (target-absent), or was the contralateral breast from the 

target-present mammogram (no abnormality). In this experiment, mean d¢ for detection 

was 1.16 for the target-present/target-absent images, significantly above chance (0), 

whereas localisation accuracy was not significantly greater than that expected by chance 

(6%). They concluded that the radiologists could not localise a lesion despite detecting it. 

Further, they suggested that experienced radiologists could even make such judgments 

based on images from the contralateral (thus far normal) breast (remaining 40 images). 

Mean d¢ was 0.59 for detection of abnormality in the contralateral breast from a woman 

with signs of cancer in the other breast. This result is striking because the mammogram 

on which the judgement was based had no mass. These results provide intriguing hints 

that the information required for detection and that for localisation could be dissociable.  

Evans et al. (2013) and Evans et al. (2016) interpret their results as reflecting a 

global signal of abnormality that lacks information about location of a specific mass. 

Indeed, the remarkable findings that a diagnosis could be made from the contralateral 

apparently-normal breast when the opposite side was abnormal might be explained by 

this interpretation. There are, however, some alternative interpretations that need to be 

carefully considered and ruled out. Frequentist statistics, used in these studies, cannot 
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distinguish between a true null (no effect exists) and a lack of sensitivity (an effect exists 

but is not detected). To interpret a null effect as evidence for there being no effect (in this 

case no localisation), we would need to use alternate statistics, such as a Bayes Factor 

(Dienes, 2011). Second, the summary statistics (e.g., average d prime) could be 

inadequate to answer the key questions. For d’ values quite close to chance, artefacts or 

slight imprecisions in localisation for just a few images could be sufficient to drive 

performance to an apparently greater than chance level. For example, if participants are 

actually ‘detecting’ a distracting signal in the breast for a target present trial, the detection 

response would be correct but localisation would be incorrect (on the distractor). 

Similarly, if participants click just outside the lesion, this would be categorised as 

incorrect, which would lead to the erroneous inference that there was no localisation 

information. Finally, in a 2AFC (detection), there will always be some ‘lucky guesses’ 

that are correct. We need to consider the impact of these on the apparent dissociation 

between detection and localisation. These two studies by Evans and colleagues (2013) 

and (2016) raise important questions, but the challenge to the Kundel and Nodine (1975) 

model of radiologists’ diagnostic decision-making rests heavily on the lack of information 

about the location of an abnormality. We need to go beyond the summary statistics and 

explore image level variability, precision of localisation responses and the potential 

influence of guesses to ascertain that there is truly detection without localisation. 

The aims of the present study were to extend previous work by Evans and 

colleagues (2013; 2016) and explore in detail whether detection and localisation are 

dissociable. The claim that radiologists can detect the presence of an abnormality without 

knowing where it is has strong theoretical implications. Instead of the intuitive notion that 

the information in the first glance guides attention and the eyes towards the location of 

the potential abnormality, it implies a quite different process. Here, our first aim was to 
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see whether expert readers of mammograms viewing brief displays can extract location 

information when a mass is either obvious or subtle. Female breast tissue is highly 

variable in mammographic breast density (MBD: Li, Humphreys, Eriksson, Edgnen, 

Czene & Hall, 2013), which provides us with a natural variant for manipulating the 

salience of a mass. In the human population, 40% of women aged between 40-74 years 

have dense breasts (Sprague, Gangnon, Burt, Trentham-Dietz, Hampton, et al., 2014). 

Critically, as MBD increases there is a 4-6-fold increased risk of breast cancer (Boyd, 

Martin, Bronskill, Yaffe & Duric et al., 2010), and studies have shown that higher levels 

of MBD reduce radiologist sensitivity, thus limiting early detection of breast cancer (Al-

Mousa, Ryan, Mello-Thoms & Brennan, 2014). For a radiologist, MBD increases the 

complexity of the image and could mask and/or distract from existing pathology. Our 

second aim was to explore the effect of breast density (which can make masses more 

difficult to see) on the type of information that can be extracted in a brief display. Finally, 

the distinction between theories rests heavily on the dissociation between detection and 

localisation of masses. Our third aim was therefore to develop methods that can test for 

evidence of this dissociation. To this end, we looked at the images in detail to explore the 

degree and source of localisation errors on apparent detection-correct trials, as well as 

considering the potential influence of ‘lucky’ guesses to ‘detection without localisation’ 

performance.   

We investigate detection and localisation performance for a single mass in 

unilateral mammograms presented centrally for a brief duration and then masked. There 

is evidence of a bias to click directly in front of fixation (centre of the image) when the 

location is unknown (Buswell, 1935; Tatler, 2007). However, the mass location varied 

within the breast in our images, which minimises the influence of any such bias (i.e., a 

random central click is not likely to fall within the mass location). We presented two sets 
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of mammograms that varied on density (high density and low density) and mass presence. 

As half of the images contained a mass that would be difficult to detect, we used two 

durations (unique images in each): 250ms (within the timeframe others have considered 

to support gist-level information in medical images; Evans et al. (2013)) and 1000ms 

(presumably well beyond gist level of perception). The participants performed a detection 

and an ‘exact click’ localisation task similar to Evans and colleagues (2013). We had two 

conditions for our target-present stimuli, each containing a single mass: a difficult 

condition (50%) in which the mass was subtle due to level of breast density and an easy 

condition (50%) in which the mass was obvious. The difficult condition is comparable to 

those of Evans et al. (2013) and Evans et al. (2016).  We predict that mass detection and 

localisation will be more accurate for mammograms with low density compared with 

those with high density at both experimental durations. We consider image variability, 

response imprecision and we use alternative analyses and a guessing correction to fully 

test for a dissociation between knowing an abnormality is present versus knowing where 

it is.  

 

Method 

Participants.  

Twelve participants with experience in interpreting mammograms were recruited 

from BreastScreen New South Wales and local radiology practices (6 female, Average 

age = 54 years, SD = 13 years). We defined experts as having at least four years of 

experience and in their current practice reading at least 2000 mammographic cases per 

year (Rawashdeh et al., 2013). The BreastScreen doctors (n = 11) read > 3000 

mammographic cases per year, but we did also include one breast physician who read > 

1000 cases per year, as she had extensive experience (10 years). The average experience 
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reading mammograms of our participants was 22 years (SD = 13 years). All gave 

informed consent and reported normal or corrected-to-normal vision. The study was 

approved by the Macquarie University Human Research Ethics Committee (Medical 

Sciences). 

 

Design, Stimuli and Apparatus  

We used a Density (low, high) x Duration (250, 1000ms) within-subjects design.  

The stimuli were 160 full-field, de-identified, medio-lateral oblique digital breast 

mammograms obtained from the Dokuz Eylul Mammography Set (DEMS: Bulu, 

Alpkocak & Balci, 2013), which varied on target presence/absence, and high MBD/low 

MBD. Half the images (80) were normal and half contained a single mass previously 

diagnosed and coded according to the Breast Imaging and Reporting Data System 

(BIRADS: American College of Radiology: Breast Imaging Reporting and Data System 

Atlas. Reston, Va: © American College of Radiology, 2003). BIRADS is a standardised 

breast assessment tool developed for mammography that ranges from 0 to 6. In clinical 

practice, a radiologist assigns a BIRADS score to each image, which determines the next 

step in the diagnostic protocol. The 80 normal images had a previously assigned BIRADS 

code of one (no significant abnormality). The abnormal breast images consisted of 

BIRADS coded 2 (benign), 3 (probably benign), 4 (suspicious abnormality and biopsy 

recommended), 5 (highly suggestive of malignancy) and 6 (known pathological proven 

malignancy). The average size of the mass was 26.70 mm (SD = 13.23 mm) and the range 

was from 8 – 54 mm.  

From this set, ten images were ‘cleaned’ using GraphicConverter (version 9.4). 

Image artifacts such as side markers and occasional dust speckles outside of the breast 

and large calcifications within the tissue were removed. One of the most challenging 
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aspects of studying radiologists and using medical images rather than using artificial 

stimuli is that the human body varies widely anatomically. Stimuli were selected that 

contained only a single mass (so those with a second lesion were excluded). Difficulty 

was manipulated by including two sets of mammograms (dense: high MBD and fatty: low 

MBD) where half of the mass images (40) and half of the normal images (40) had high 

MBD. The remaining images had low MBD (See Fig.1). Density was categorised on a 

dichotomous scale (low/high) by an experienced radiologist blind to the purpose of the 

study (M.B.) and one author with experience reading mammographic images (A.C.). 

These ratings were significantly correlated (r = 0.9, p < .0001).  

 

 

Fig. 1: Exemplars of target-present images. The red outline depicts the mass (and did not 

appear in the actual stimuli). (a) Low density breast that contains predominately fatty 

tissue, which is radio-translucent or black/grey. The higher contrast mass is easily seen; 

(b) High density breast that contains normal fibroglandular tissue resulting in a more 



Appendix A 

 

219 

difficult search. The X-ray beam is attenuated by this tissue and appears radio-opaque or 

white on a mammogram. 

 

The experiment was presented on a Macintosh MacBook Pro using MATLAB 

2011B with the Psychophysics Toolbox Version 3 (Brainard, 1997; Pelli, 1997). The 

stimuli were centred on a 1920 x 1080 resolution 24-inch, LG W2442PA, liquid-crystal 

display screen, refresh rate of 120Hz. The participants sat approximately 70cm away 

from the screen. The original resolution of the single mammograms was 4096 x 3328 or 

3328 x 2560 pixels, which were downsized to 19° x 24° (18 out of 160) or 20° x 24° of 

visual angle. To validate our image categories and presentation durations, pilot data was 

collected from three radiologists at 250ms and 500ms durations two months prior to their 

participation in the experimental session. Previous studies which have used medical 

images have reported that a time-lapse of around 2 months between each session reduces 

the likelihood of recall (Berbaum, Krupinski, Schartz, Caldwell, Madsen et al., 2015). On 

the basis of these pilot data we increased the long duration condition to 1000ms.  

 

Procedure 

The experiment was conducted onsite at various metropolitan Sydney 

BreastScreen and radiology practice locations. We presented the stimuli at two 

presentation durations (250ms, 1000ms) in separate blocks, counterbalanced in order 

across participants. For each participant, the particular image presented in each duration 

was randomly selected without replacement. After four practice trials at 2000ms with 

feedback and a further six trials at the experimental durations (three at 250ms, three at 

1000ms; blocked) with feedback, the radiologists viewed 160 trials without feedback. The 

radiologists were asked to detect ‘any mass that you would recommend for further 
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investigation’. Each trial began with a fixation point for 500ms, followed by a centrally-

presented left medio-lateral oblique breast image. This was followed by a backward 1/f 

noise mask for 250ms after each stimulus presentation and a black screen asking the 

radiologists to categorise the mammogram using a key press as either ‘normal’ (left arrow 

key) or ‘mass’ (right arrow key), followed by a black screen with a grey mask of the 

breast (each unique mammogram was paired with its corresponding mask). The 

radiologists were asked to ‘please click with the mouse the exact location where you saw 

a mass’. In the case of normal responses, they were asked to click anywhere on the 

display. There were 20 trials per condition (duration/target presence/density). Figure 2 

shows the trial sequence. Participants began the next trial with a key press.  

 

Fig. 2: Example trial for twelve radiologists who were asked first whether the image was 

normal or contained a mass, and then to use the mouse to indicate the location of the mass 

if present. 

 



Appendix A 

 

221 

Analysis 

Following the recommendations of Cumming (2012), we present Mean 

differences (Mdiff) with 95% confidence intervals (CI), as well as a Cohen’s d estimate of 

effect size corrected for small sample size, to assist in accurate interpretation of the 

effects. This latter measure, dunb, represents an adjusted, unbiased Cohen’s d standardised 

effect size applied to single sample t-tests where dunb = (1 - 3 / (4*df - 1)) * d (Cumming, 

2012).  

Results 

The aims of the experiment were to see whether expert readers of mammograms 

viewing brief displays (1) can extract location information; (2) are affected by breast 

density in the type of information that can be extracted; (3) show a dissociation between 

detection and localisation.  

Detection accuracy: First, we calculated accuracy for target present and target 

absent trials to test whether the radiologists could detect a mass at these durations. Figure 

3 shows performance on the detection task presented as accuracy for target present and 

absent trials separately (a, b) and sensitivity (c). Figure 3a shows better performance for 

low density images (more obvious masses) than the high density images (where the 

masses are more difficult to find even in free viewing). Accuracy also improves with 

duration. Figure 3b shows accuracy for the target absent trials. The radiologists appeared 

less accurate on target absent trials at the longer duration, showing they tended to make 

false alarms when given slightly more time to inspect the display. 
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Sensitivity (d¢ ) was calculated as a function of abnormality present or absent. 

Higher d¢ indicates greater sensitivity: the higher the d¢, the more accurately the 

radiologists responded to both target present and target absent trials (i.e., reported a mass 

when a mass was present and no mass when no mass was present). A d¢  of zero indicates 

there is no sensitivity and the participant is performing at chance (i.e., no better than 

guessing).  

Figure 3c presents the sensitivity (d¢ )  data. Single sample t-tests (Bonferonni 

adjusted, alpha = .0125) on average d¢ relative to 0 (chance) for each duration and density 

showed that radiologists do have information about the presence of the mass at both 

durations. Performance at 250ms for the low density condition was greater than chance 

Fig. 3: Detection performance. (a) Average percentage correct on target present trials; (b) 

Average percentage correct on target absent trials; (c) Average sensitivity (d¢) on the detection 

task. Error bars represent 95% confidence intervals. 
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(t(11) = 14.97, p < .0001, Mdiff = 2.39, CI [2.03, 2.74], dunb = 5.69) as was performance in 

the more difficult high density images (t(11) = 3.3, p < .007, Mdiff = .44, CI [.15, .74], dunb 

= 1.3). As one might expect, this was also the case at the longer duration of 1000ms, both 

for low density images (t(11) = 13.38, p < .0001, Mdiff = 2.31, CI [1.93, 2.69], dunb = 5.09) 

and high density images (t(11) = 5.04, p < .0001, Mdiff = .82, CI [.46, 1.17], dunb = 1.92). 

Although high density d¢ values reflect poorer performance than seen in free-viewing, 

where radiologists have d¢ values around 2.5–3.0 (D’Orsi Getty, Pickett, Sechopoulos, 

Newell et al., 2013), performance already approaches these levels for the low density 

images, even at 250ms (see Fig. 3c). These results suggest that when the mass is 

relatively easy to see (low density), diagnostic sensitivity in the first quarter of a second is 

already close to that of free-viewing.  

As one would expect, we can see from Figure 3c that performance for the low 

density images is better than the high density images. This obvious pattern was confirmed 

by a repeated measures ANOVA with the factors of Density (low, high) x Duration (250, 

1000) on the mean d¢ values. This showed a main effect of Density (F(1, 11) = 133.51, p 

< .0001, h2
p  = .92), no effect of Duration, (F(1, 11) = .98, p = .344) and no Density x 

Duration interaction (F(1, 11) = 2.09, p = .18). 1 

Localisation accuracy: Our key questions were first, whether there is localisation 

information when detection is correct, and second, how breast density influences 

localisation. Using the same method as Evans et al. (2013) and Evans et al. (2016, 

Experiment 2), we compared the location of the mouse click with the location of the 

actual mass and coded the response as either accurate (participant clicked on or within the 

boundaries of the mass) or not (any other location). We analysed trials where the 

participants were correct on detecting an abnormality at each exposure duration (i.e.,  
                                                

1 Individual observer data can be found in the supplementary materials.  
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correct detection target-present trials). We compared localisation performance to chance, 

calculated across the 80 target-present images as 4.4% (CI [3.02%, 5.75%]). This is the 

proportion of breast tissue that contains the mass relative to the proportion of total tissue; 

thus it represents the average number of possible random locations radiologists could 

select, taking into account the lesion and image size across all of the target-present 

images. Figure 4a shows the percentage of trials when the radiologists responded 

correctly on localisation task, when detection was correct, for low density (blue line) and 

high density (black line) at the two durations, compared with chance. Single sample t-

tests (Bonferonni adjusted, alpha = .0125) showed that radiologists’ localisation accuracy 

was significantly above chance (4.4%) for 250ms presentations of low density images 

(t(11) = 12.9, p < .0001, Mdiff = 30.18, CI [25.03, 35.33], dunb = 4.9) as well as for high 

density images (t(11) = 3.74, p = .003, Mdiff = 6.43, CI [2.64, 10.22], dunb = 1.42). The 

same pattern was evident at the longer duration of 1000ms for low (t(11) = 13.9, p < 

.0001, Mdiff = 50.6, CI [42.59, 58.61], dunb = 5.28) and  high (t(11) = 10.41, p < .0001, 

Mdiff = 19.35, CI [15.26, 23.44], dunb = 3.95) density images. 
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To investigate the effect of density on localisation (Fig. 4a), we conducted a 

repeated measures ANOVA with the factors of Density (low, high) x Duration (250, 

1000) on the mean percentage localisation correct values from the correct detection 

target-present trials. Again in line with expectations, this showed a main effect of 

Density, with better localisation accuracy in the low than high density condition (F(1, 11) 

= 114.07, p < .0001, h2
p  = .91), a main effect for Duration, with better localisation 

accuracy at 1000ms than 250ms (F(1,11) = 53.01, p < .0001, h2
p  = .83), and no Density x 

Duration interaction (F(1,11) = 2.17, p = .17). These analyses show that radiologists were 

statistically above chance in localising the target on trials where they successfully 

detected a mass. However, as localisation performance is far from perfect, we have some 

trials on which detection occurred apparently without localisation information being 

Fig 4: Detection and localisation results. (a) Average percentage correct on the localisation task for 

trials when detection was correct; (b) Average percentage correct on the localisation task when a 

region of acceptance (ROA) around the lesion is included. Chance is 4.4% and adjusted to 9.1% 

when including the ROA (dotted line) with 95% confidence intervals. Error bars represent 95% 

confidence intervals. 
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available. This could reflect a global signal as suggested in the previous literature (Evans 

et al., 2013) and to investigate this possibility thoroughly, we conducted several follow-

up analyses.  

Before concluding one has evidence of ‘detection without localisation’ (e.g., 

Evans et al., 2013; Evans et al., 2016), there are some important alternatives to be 

considered. First, we would like to note that before concluding anything from a null 

localisation effect (such as that of Evans and colleagues), we need to use statistics that 

can provide evidence of no effect (of localisation when there is detection) rather than just 

no evidence. Frequentist statistics do not allow for the interpretation of null effects – a p 

value greater than alpha merely informs us that we do not have evidence to reject the null 

hypothesis. To see whether there is evidence for the null hypothesis of no localisation 

information, we could instead calculate a Bayes Factor (BF). A BF < 1 indicates that the 

data support the null rather than the alternative hypothesis (BF < .33 provides strong 

evidence for the null), a BF ~ 1 indicates maximal insensitivity of the experimental 

evidence, whereas a BF >1 indicates the data support the alternative hypothesis (BF > 3 

suggests strong evidence for the alternative) (Dienes, 2011). In our case, we do not have a 

null effect in any condition, but we can still calculate a Bayes equivalent of a single 

sample t-test compared to chance (4.4%) to illustrate the point: if we test just the difficult 

images that are comparable to those of Evans et al. (2013; 2016), we can see strong 

evidence for the alternative hypothesis that localisation information exists: For the high 

density condition at 250ms, the BF(12) = 14.73 and at the longer duration, 1000ms, 

BF(12) = 31052.09. Consistent with our frequentist statistics results, we conclude that the 

radiologists are localising targets better than chance in the high dense conditions.  

Our second consideration is whether summary level statistics such as overall 

accuracy or sensitivity are adequate to address the ‘detection without localisation’ 
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question. In fact, one cannot be sure of ‘detection without localisation’ without examining 

the error trials carefully. A null localisation effect could, for example, be due to less 

precision in the localisation task than the detection task, due to the additional 

requirements rather than a true lack of localisation information. This could include decay 

in the visual short-term memory trace over time or motor error in clicking the precise 

location. If such factors influence the precision of the localisation responses, we should 

see localisation errors that nonetheless cluster around the correct region. Our radiologists 

were scored correct on localisation if the mouse-click occurred within or on the 

boundaries of the lesion, consistent with Evans et al. (2016) (Evans, personal 

communication, May, 2017). However, when we look at the incorrect localisation 

responses, we see that this does not accurately reflect the degree of localisation 

information. For example, in Figure 5a, many of the ‘incorrect’ responses suggest the 

participant had some information about location, rather than basing his or her response on 

an amorphous global signal of abnormality.  

There is also inherent variability in real-world stimuli. Although we carefully 

selected images with only one true mass, and removed obvious artefacts (e.g., dust), the 

images have naturally-occurring variations in breast tissue. We need to examine the 

responses at an image level to assess whether such variance may have contributed to trials 

of apparent successful detection without accurate localisation. Figure 5b shows clearly an 

image where natural variability has contributed to three incorrect responses to a distractor 

in the breast (presumably in these cases, the radiologists were responding ‘abnormality 

present’ to this distractor, rather than the actual mass). The responses on these images 

suggest that apparent ‘detection without localisation’ may actually reflect coarse or less 

precise localisation, rather than no localisation, warranting image-level investigation.  
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Fig 5: Exemplars from the target present stimuli set illustrating the mass (red outline, not shown 

in the experiment) and localisation responses of the 12 radiologists (blue) collapsed across 

duration. (a) Low density image showing precision errors. The blue mouse-clicks for localisation 

show that the 8 radiologists who were ‘incorrect’ on this image may have information about the 

location of the target; (b) High density image showing the effect of a naturally-occurring 

distractor. Three radiologists localised the distractor as the abnormality (note a further 4 

‘incorrect’ responses are near the mass (red outline) but imprecise).  
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To quantify the degree to which such examples might influence our results, we 

conducted a post-hoc image analysis collapsed across participants for each duration. We 

calculated the distance between the response click and the mass (i.e., the degree of 

incorrect localisation). In academic radiology, a region of acceptance (ROA) for lesion 

localisation is determined by taking into account the size of the largest lesion (e.g., 

Haygood, Ryan, Brennan, Li, Marom, et al., 2014). Following this convention, we 

measured the radius of the largest mass in the image set (27mm) and added this value to 

the boundary values for all the target present images. Using this method, localisation is 

scored correct when a radiologist clicks within this ROA, allowing for a margin of 

response imprecision and reducing the ‘tightness’ of acceptance. We further examined the 

trials that were still incorrect to quantify the distance from the lesion boundary.  

Figure 6 shows image level analysis for the localisation data on incorrect trials 

plotted as a function of distance (in pixels) from the closest boundary of the mass, 

collapsed across radiologists (Fig. 6a: 250ms; Fig. 6b: 1000ms). Trials on which the 

detection response was incorrect are not included (250ms: high density n=12, low density 

n= 1; 1000ms: high density n= 8; low density n= 0). Correct responses for localisation 

(when detection correct) would appear on the baseline and are also not included in the 

figure (250ms: high density n= 3, low density n= 8; 1000ms: high density n= 8; low 

density n= 8). The dashed red line represents the ROA plotted at 29 pixels. Figure 6 

shows a considerable proportion of the clicks lie within this decision boundary and 

highlights how the variability within each image affected accuracy due to factors such as 

mass size and distractors.  
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Fig 6: Localisation errors showing the distance between the localisation response and the mass for 

each image (detection correct target-present trials only). (a) 250ms duration; (b) 1000ms duration.  

The x-axis represents the images (divided by high and low density. Note: the image numbers are 

arbitrary for the purpose of the graph only). A correct score on localisation would score 0 (excluded 

from the figure). The y-axis is the distance (in pixels) from the mass border. The dashed red line 

represents the region of acceptance (ROA). Red numbers are data points in response to images with 

unusual characteristics: 25 (250ms) is the high density image presented in Figure 5b showing the 

mouse-clicks on a distractor. 34 is a low density image which contained a prominent lymph node in 

the axillary tail of the breast which appears to have captured 4 radiologists’ attention; 25 (1000ms) is 

a low density image containing a small mass and 43 is the low density image presented in Figure 5a 

showing the cluster of mouse-clicks near the correct location.  
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Localisation accuracy including a ROA: We calculated percent correct for 

localisation trials with an ROA included in assessing localisation for target-present trials 

with correct detection responses. Figure 4b shows the percentage of trials in which ROA 

localisation was correct for low density (blue line) and high density (black line) images 

across both durations, compared with chance. ROA chance was calculated as 9.1%, 

adjusted to account for the increased proportion of tissue included in the ROA. The 

summary-level measures clearly indicate better accuracy for all conditions compared with 

the non-ROA data (Figure 4a), especially for the 250ms high density condition (ROA 

Mean = 20.42%; non-ROA Mean = 10.83%), demonstrating that the Evans et al. (2013) 

and Evans et al. (2016) method for calculating localisation may not adequately capture 

the degree to which location information is present.  

This post-hoc analysis highlights the variability and challenges which exist when 

using real-world stimuli, and the importance of carefully examining the data from 

individual images rather than stopping at summary statistics. These findings suggest that 

the apparent lack of localisation on some trials where a mass was detected is, at least in 

part, driven by image variability, such as small masses in a proportionally large breast 

and normal tissue with salient features (distractors), and response imprecision. When we 

apply a more liberal localisation ROA, we see evidence that coarse localisation 

information exists, with a higher proportion of correct localisation responses even for the 

more difficult images.  

We can also bin trials on which detection was correct according to their response 

profile to further examine the distribution of trial performance. Figure 7 shows the 

localisation data calculated using an ROA as a function of detection performance 

(collapsed across radiologists and images) for trials on which detection plus localisation 

were correct (blue bar), the additional localisation correct trials produced by including a 
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ROA (dark grey bar) and detection only trials on which localisation was incorrect (light 

grey bar).  

 

  

 

 

In addition to the trials with evidence for coarse localisation or precise mis-

localisation, Figure 6 shows some remaining trials on which localisation is clearly 

incorrect; these contribute to the light grey bars in Figure 7. These trials could be 

evidence for ‘detection without localisation’, which seems key to interpretations of 

radiologists using ‘gist’ or a global signal. However, there is one final consideration 

Fig 7: Percentage correct detection and localisation on target-present trials for low and 

high density mammograms plotted by duration (250ms, 1000ms). Data are separated 

by response accuracy: Detection and localisation correct (blue bar); the additional 

proportion of trials where localisation is correct when a ROA is included (dark grey 

bar); and detection correct/localisation incorrect (light grey bar). Error bars represent 

95% confidence intervals.  
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before making such an interpretation: we need to be sure that the number of trials on 

which this occurs exceeds the rate at which such trials would occur simply from ‘lucky’ 

guesses. With any visual detection task, some proportion of trials will be correct by 

chance. A d¢ above chance shows more trials are correct than would be predicted by 

simply guessing, but if one wants to infer that there are trials in which there is 'detection 

without localisation’, we need to calculate what proportion of these could be lucky 

correct detection guesses, followed by a localisation guess (which has less chance of 

being correct, recall chance in Evans et al. (2016) for localisation was ~ 6%). 

We calculated a guessing probability using the method described in Howe and 

Webb (2014). They were interested in whether observers could ever ‘sense’ a change in a 

change blindness paradigm without knowing where the change was. In their method, one 

works out what proportion of correct detection trials (in their study, detection of a 

change) could be due to lucky guesses by creating a hypothetical observer who can only 

detect a change when it also knows what that change is (i.e., there is no true detection 

without localisation, therefore any such trials are due to correct guesses). Here, we used 

the same logic, a hypothetical observer who cannot detect a mass without also knowing 

where that mass is, to work out the proportion of trials on which correct detection 

combined with incorrect localisation could be due to lucky guesses. We can then compare 

actual performance with this prediction for each radiologist. 

 

  

Calculated	N	(hypothetical	observer)	=	Q(Y-PA)/(1-P)	

 

where	Q	=	proportion	of	possible	incorrect	localisations;	Y	=	number	of	target	present	

trials	on	which	the	participant	responded	‘target	present’	(hits);	A	=	actual	number	of	target	
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present	trials;	and	P	=	proportion	of	target	absent	trials	on	which	the	participant	responded	

‘target	present’	(false	alarms).	(Note,	there	is	no	correction	applied	to	an	observer	with	no	false	

alarms).		

   

We calculate a guessing probability for the ROA localisation data, as this already 

takes into account any slight imprecisions in the localisation responses, giving the most 

accurate view of localisation information at a summary level. If the actual participants 

correctly indicated the presence of a mass in the absence of a correct location response 

more often than this hypothetical observer, this provides evidence for information about 

the presence of an abnormality without knowing where it is: ‘detection without 

localisation’. Figure 8 shows the number of ‘detection without localisation’ trials from 

our data (dark grey bars) and the number of trials the hypothetical observer would ‘guess’ 

for all four conditions (light grey bars).  
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 Fig. 8: The observed number of correct ‘detection without localisation’ trials (dark 

grey bars) compared to the number of calculated (guessing) trials for a hypothetical 

ideal observer (light grey bars) for low and high density mammograms plotted by 

duration (250ms, 1000ms). Error bars represent 95% confidence intervals.  
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From Figure 8, it is clear that there are only a small number of trials representing 

apparent ‘detection without localisation’, which makes statistical analysis unlikely to be 

reliable.  However, even just from the graph one can see that only for the low density 

conditions is there any chance that there might be more detection without localisation 

trials than predicted by our hypothetical observer. From the image level analysis, these 

trials could reflect errors accounted for by response imprecision (e.g., large amount of 

breast tissue/small mass) and distractors. Recall that it is our high density condition that 

has images in which the mass is comparable in difficulty to Evans and colleagues (2013; 

2016), making this the key condition. We have no evidence that for this high density 

condition the number of observed ‘detection without localisation’ trials is more than what 

would be predicted by ‘lucky’ guesses.   

 

Discussion 

The aim of this study was to examine the type of information that is available in 

the initial processing of a medical image (mammogram) by experienced radiologists, 

focusing on detection and localisation of potential abnormalities. We found radiologists 

were able to detect abnormalities at both durations (250ms, 1000ms) and density 

conditions (high, low), with a significant effect of duration. Overall summary statistics 

also supported the presence of localisation information, with the radiologists performing 

better than chance for both the 250ms and 1000ms durations, for the low and high density 

mammograms. Breast density affected performance in a predictable way, with better 

performance for low than high density images. As our key question related to a potential 

dissociation between detection and localisation, we carefully examined trials on which 

there seemed to be a dissociation. We suggest a number of factors that can lead to an 

underestimation of localisation information such as image variability, the precision of 
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localisation responses, and correct detection guesses. Overall, our data suggest that 

although it is possible that there may be a dissociation between detection and localisation 

on a small number of trials, particularly on easy trials (low density), there are other 

plausible explanations for the majority of such apparent dissociation trials. 

Recent high-profile papers have concluded that radiologists can detect but not 

localise abnormalities in briefly presented mammograms (Evans et al., 2013; Evans et al., 

2016). These papers suggest a different process to the previous theory that the 

information in the first glance guides experienced radiologists’ attention and directs their 

eyes towards the location of the potential abnormality (Kundel & Nodine, 1975). 

Specifically, Evans et al. (2013) and Evans et al. (2016) proposed that the information 

extracted in the early signal is a global impression, which alerts the radiologist to the 

presence of an abnormality and then prompts a more thorough search, rather than guiding 

attention to the region of the abnormality directly. This alternative theory depends 

crucially on radiologists being able to detect masses in the absence of any information 

about location.  

One of the key distinctions between the Evans et al. (2013; 2016) studies and our 

study is that they presented stimuli described as ‘subtle masses and architectural 

distortions’. This might mean that there were a mix of both potentially localisable 

abnormalities (subtle masses) and abnormalities that do not have a well-defined location 

(architectural distortions, which do not contain a discrete mass in the parenchyma), or 

each category in a separate image. It would then make sense if there were no localisation 

signals as the abnormality may not have a well defined boundary or location. A global or 

gist signal also seems a plausible explanation for the other intriguing findings from these 

researchers in which radiologists are above chance in detecting abnormality in a patient 

when shown whole mammograms of a contralateral normal breast (Experiment 2) or only 
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a patch of a mammographic image that does not actually contain the mass (Evans et al., 

2016, Experiment 4). In these cases, however, there is no mass to localise, making these 

findings less relevant to the question of whether a localisable mass can indeed be detected 

without being localised (although obviously pertinent to the idea that a global signal can 

be used to diagnose an abnormality). The evidence pertaining to this question comes from 

the experiments in which it seems there is a mix of pathology. It would therefore be 

interesting to know the proportion of these two types of breast pathology in the Evans et 

al. (2016) stimulus set, and how the location data break down by pathology. This would 

then allow a more accurate comparison with our own data.  

With the Evans et al. (2013; 2016) studies as a whole, however, there may be 

influences other than gist leading to the results. Working with real-world images 

introduces many challenges, and with d prime values quite close to chance, we raise the 

concern that these data could be driven by a small number of images that contained 

additional artefacts. If these studies had any images like those illustrated in Figure 5, this 

could contribute to correct detection but incorrect location responses. Similarly, if the 

localisation responses cluster around the actual mass but not within the boundaries in 

some images, such as we found in our data (see Figure 6), this would also contribute to 

apparent detection without localisation. In the Evans et al. (2016) patch and contralateral 

breast experiments (2 and 4), coarse localisation cannot be an explanation, as there is no 

actual mass to localise. Thus, if there are any artefacts in images that drive detection 

above chance, this will appear to be dissociated from location (which is always chance). 

With only summary statistics showing d prime slightly (but significantly) above chance 

(Evans et al. (2013); Evans et al. (2016)), it is possible that the data interpreted as 

evidence for a global signal could be misleading.  
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Even when we use a conservative measure of localisation (click within the mass 

boundary), we were not able to replicate the findings of Evans et al. (2013) and Evans et 

al. (2016) that there are circumstances where radiologists can detect a mass above chance 

but not localise it. This could simply reflect that we were not at exactly the right durations 

to catch a dissociation due to variability in the experience of the participants, difficulty of 

the images, and other cross-experiment differences between our study and those of Evans 

and colleagues (2013; 2016). Another potential factor that could influence the difference 

between the studies is that our participants seem to be more experienced than those of 

Evans and colleagues (2013; 2016). This may be reason that we found localisation at a 

summary statistics level: our more experienced participants could extract information 

more rapidly and therefore processed the images in greater detail. For these previous 

studies to make the inference that there is no localisation, however, still requires an 

approach such as Bayes statistics, rather than standard frequentist statistics. Here, we 

have outlined the steps that seem crucial to be able to make an inference of dissociation 

between detection and localisation. 

Although at the summary statistic level we did not replicate the lack of 

localisation information, we did find trials on which detection responses were correct but 

those for localisation were incorrect. We were therefore able to use these to investigate 

factors that might contribute to an apparent dissociation between detection and 

localisation. First, variability in the target-present images might be contributing 

misleading data to the summary statistics. Using real-world stimuli rather than typical 

laboratory visual search displays allows for high ecological validity, but the available 

images tend to be highly variable and it is difficult to control for factors such as co-

existing variables (e.g., breast calcifications, target number and size and breast tissue 

type). Indeed, we identified images where there were clear clusters of incorrect 
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localisation corresponding to a specific visual feature in the image, suggesting the 

detection response was based on an incorrect identification (i.e., of the distracting 

feature). Second, we find evidence that coarse localisation information is often present in 

apparently incorrect responses. When we use a region of acceptance around the lesion, we 

see clusters of correct localisation responses surrounding the lesion. This suggests that 

task demands, such as having to hold the information through a detection response and 

subsequent location screen, may result in a loss of precision. Alternatively, it may be that 

the location information is only present at a coarse level in the first place (and is perfectly 

maintained). Finally, on trials where there is detection but incorrect localisation (by 

whatever definition one uses), it is important to consider the contribution of correct 

detection guesses. We used a method for estimating the effect correct guesses might have 

on the subsequent results. The key high density condition, which is most similar to that of 

Evans and colleagues (2013; 2016), gives no evidence for there being more ‘detection 

without localisation’ trials than can would be predicted to be lucky guesses. Thus, the 

pattern taken from a small number of trials suggest that in the difficult images, such as 

our set of high density mammograms, apparent ‘detection without localisation’ responses 

can be accounted for by ‘lucky’ guesses.  

Our only evidence of an apparent dissociation between detection and localisation 

comes from the low density conditions. Intuitively, a salient mass seems most likely to 

have localisation information recorded, as there is a stronger bottom-up signal (much like 

a classic ‘feature search’). Indeed, we do see overall better performance in the low 

density conditions compared with the high density conditions (although nowhere near 

‘pop-out’ performance). Although our ROA takes into account coarse localisation 

information, it cannot account for image-level variability where a distractor may have 

been selected, or the potential decay of localisation information over time. Thus, while it 
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is possible that these potential ‘detection without localisation’ trials in the low density 

condition could reflect a global signal that is used to make a detection response, as 

proposed by Evans et al. (2013) and Evans et al. (2016), these trials could alternatively 

reflect the contribution of other factors to reducing localisation accuracy. Overall, such 

‘detection without localisation’ occurred on a very small number of trials (~ 4), 

precluding statistical analysis, which means we have only the numerical difference to 

support any such inference.  This means that for most of our stimuli, including those most 

similar to the previous studies, when the radiologists reported detecting a mass, they also 

had some information about where it was.  

The proposal by Evans et al. (2013) and Evans et al. (2016) that radiologists use a 

global signal lacking in location information has important theoretical implications, as it 

identifies a very different mechanism from the Kundel and Nodine (1975) classic theory. 

Our results, however, demonstrate that successful detection of a mass in briefly presented 

mammograms is typically accompanied by information about location. This is more 

consistent with the Kundel and Nodine (1975) model: that the initial signal guides 

attention and eye movements to the lesion. To fully reconcile these distinctions, we need 

a study which investigates the presence (or lack thereof) of both global and localisable 

signals across three clearly defined conditions with different degrees of potential 

localisation (a salient mass, a subtle mass, or diffuse parenchymal change). We then need 

to ensure that the analyses are appropriate to the key question of whether any localisation 

information exists through a thorough image-level analysis. 

Both detection and localisation performance decreased with increased breast 

density at fast presentations. These results are related to what we know about clutter in 

natural scenes and visual search in free viewing: increasing clutter or set size decreases 

performance (Adamo, Cain & Mitroff, 2015; Asher, Tolhurst, Troscianko, & Gilchrist, 
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2013; Rosenholtz, Li, Mansfield & Jin, 2005; Rosenholtz, Li & Nakano, 2007; Whitney 

& Levi, 2011; Wolfe, 1994). Fibroglandular tissue, which increases density on a 

mammogram, appears more radio-opaque than fat and may increase crowding and/or 

masking effects reducing performance in the denser mammograms.  In the medical 

perception literature, there have been a number of studies that have investigated factors 

such as lesion subtlety, which may be dependent on the surrounding anatomical structures 

(e.g., Krupinski, 2005). Analogous to clutter interfering with performance in natural 

scenes, our results show similar effects in radiologists interpreting medical images.  

These findings improve our understanding of how density can influence a 

radiologists’ diagnostic decision and therefore have clinical relevance. Female breast 

tissue is highly variable with regards to mammographic breast density (MBD: Li et al., 

2013) and high levels of breast density reduce radiologist sensitivity (see Al-Mousa, et 

al., 2014). It has been suggested that what radiologists perceive and thus report in the first 

second is critical (Mello-Thoms, 2009), that women with dense breasts make up almost a 

half of the population (Sprague et al., 2014), and that there is an increased risk of 

developing cancer in dense breasts (Boyd et al., 2010). Our results confirm that MBD has 

a negative impact on mass detection and localisation when radiologists are shown an 

image briefly. From a clinical viewpoint, we should inform women and their clinicians 

about their MBD levels, for appropriate and personalised care. For instance, in the case of 

a dense breast, further imaging modalities such as 3D mammography (digital breast 

tomosynthesis), ultrasound or magnetic resonance imaging will facilitate a definitive 

diagnosis. Although for almost half of the United States, density scoring is included 

(Slanetz, Freer & Birdwell, 2015), current breast screening reporting protocols in 

Australia do not include a mammographic density rating. Our data shows that high breast 
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density reduces the amount of information available in the first glance, suggesting 

reporting this information should be mandatory. 

Conclusions 

Here, we explored the degree to which information available in very brief 

presentations of medical images can support both detection and localisation of a mass in 

mammograms. Access to location information is crucial for guiding actions or further 

analysis (e.g., eye movements). We find a tight link between information supporting 

detection and localisation, using methods that allow a stronger test of the claim that 

detection of a mass can occur based on gist without knowledge of location. Although it is 

certainly possible that gist and the non-selective pathway of visual processing contribute 

to the detection of a non-localisable abnormality, our systematic examination of the 

factors that can result in apparent dissociation between detection and localisation 

demonstrates the importance of going beyond summary statistics when seeking to test this 

hypothesis. We emphasise the importance of considering factors such as stimulus 

variability, response imprecision, and participant guessing. Our results are consistent with 

Kundel & Nodine’s (1975) model of radiologist visual search suggesting that the initial 

signal in a brief glance contains information that subsequently guides attention to the 

abnormality. Finally, we suggest the finding of reduced performance for dense 

mammograms illustrates the importance of reporting density information in the context of 

medical screening.  
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ANOVA: Analysis of Variance; SD: Standard Deviation; MBD = Mammographic Breast 
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Supplementary Materials  

 

 

 

  

Fig.S1: Detection accuracy: percentage correct for individual radiologists on target present 

trials for (a) Low density and (b) High density mammograms on the detection task. The three 

radiologists that had piloted the experiment previously are illustrated in red.  
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Fig. S2: Detection accuracy: percentage correct for individual radiologists on target absent 

trials for (a) Low density and (b) High density mammograms on the detection task. The three 

radiologists that had piloted the experiment previously are illustrated in red.  
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Fig.S3: Detection performance: sensitivity (d¢)  for individual radiologists (a) Low density and 

(b) High density mammograms. The three radiologists that had piloted the experiment previously 

are illustrated in red.  
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Fig. S4: Detection and localisation results: percentage correct on the localisation task for 

individual radiologists on trials when detection was correct for (a) Low density and (b) High 

density mammograms. The three radiologists that had piloted the experiment previously are 

illustrated in red. Chance is 4.4% and adjusted to 9.1% when including the ROA (dotted line) 

with 95% confidence intervals.  
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Fig. S5: Detection and localisation results: percentage correct on the localisation task when a region 

of acceptance (ROA) around the lesion is included for individual radiologists for (a) Low density and 

(b) High density mammograms. The three radiologists that had piloted the experiment previously are 

illustrated in red. Chance is 4.4% and adjusted to 9.1% when including the ROA (dotted line) with 

95% confidence intervals.  
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Appendix B: Nodule Priors Questionnaire 

Participant code _____________________________ 
 

This is a posterior-anterior chest radiograph. Please mark 1-4 where you 
think the likely location for a single pulmonary nodule would occur, with 
1 = most likely, 2 = likely, 3 = less likely, 4 = least likely.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Do you know the frequencies of nodules in different areas? 

 Yes/No 

Thank you for your time J  

L 
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