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Abstract 

Cognitive control broadly refers to those processes which adaptively coordinate behaviour in 

service of a goal. To achieve control, the brain must resolve conflicting information and 

competing cognitive demands, even when doing so runs counter to more dominant, or 

prepotent impulses. Explaining this property in the context of the brain has long posed a 

general problem to researchers. Mechanisms of control have been typically posed as 

intentional processes and are thus subject to anthropomorphism—styled as a brain within 

the brain. It is difficult to imagine how neural circuits can achieve this. Classical cognitive 

science has often been criticised for invoking these ‘homunculi’ to account for control-

related processing. Contemporary neuroscientific and computational literature provides an 

opportunity to resolve these homuncular accounts. Neural network function provides a 

plausible means of representing information in the brain. Viewed through the lens of 

network dynamics, certain structural and functional specialisations characterising control-

related phenomena can be grounded in neurally plausible properties of the brain. I pay 

particular attention to how the circuit organisation of the neocortex may contribute to 

cognitive control mechanisms. I show that such a structure would achieve a high level of 

cognitive control as an emergent property of network function, without the need to invoke 

homuncular mechanisms.  

Keywords: representation, cognitive control, neural networks, neocortex 
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Introduction Neuroscience has achieved a great deal in identifying neural mechanisms that can 

account for the straightforward transformation of environmental input into behavioural 

output (Kandel, 2009; Miller, 2000). Yet the behavioural repertoires of many organisms far 

exceed simple stimulus-response relationships. Humans and other sophisticated animals are 

capable of organising behaviour to achieve goals that are removed from any proximal 

circumstance (e.g. Craik, 1967; Hull, 1943; Premack & Premack, 1983; Tolman, 1951). To do 

this, animals must resolve conflicts between competing cognitive demands, particularly when 

an adaptive response runs counter to more dominant, or prepotent impulses (Botvinick, 

Braver, Barch, Carter, & Cohen, 2001; Botvinick & Cohen, 2014). This ability to resolve 

internal conflicts is typically referred to as cognitive control, and it is not yet understood how 

such a complex process is accomplished by the nervous system (Koechlin, Ody, & 

Kouneiher, 2003; Miller, 2000; Miller & Cohen, 2001). Questions of how, and to what 

degree, information about the world might be preserved, or ‘represented’ in the brain to 

support this complexity have generated a great deal of useful conjecture in both philosophy 

and cognitive science. Yet, only recently have we gained the means to model one such 

interpretation in the context of the nervous system (Clark, 1995). A connectionist 

perspective provides a neurally plausible account of representation that offers a novel means 

to investigate cognitive control (Botvinick et al., 2001; Cohen, Dunbar, & McClelland, 1990; 

Collins & Frank, 2013). Exploring how far such a perspective can take us will set the stage 

for a new and exciting foray into neural origins of complex behaviour. My thesis asks the 

question, how can we understand the phenomena of cognitive control in a manner that is 

compatible with a neurally plausible perspective on representation? 

Methodology 

Before we begin, I open with a broad outline of my methodology. This thesis is, at its 

core, a literature review in light of a certain hypothesis. In this respect, my method is broadly 
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based on methodological naturalism. The phenomena of interest are part of the natural 

world, and as such any investigation which aims to comment on their nature should be 

continuous with the sciences. Thus, I will be looking for how these phenomena and their 

associated terms or concepts are employed by working scientists, as opposed to engaging in 

something more like a traditional conceptual analysis (e.g. Jackson, 1998). Here, “[t]he 

point…is not to develop conceptual truths about minds, but rather to deal with 

philosophical issues through close attention to developments in…cognitive science” 

(Gabbay, Woods, & Thagard, 2006, p. x; see also Hartner, 2013). 

While the more narrow aspects of my approach, along with the premise and 

background to this research project are more comprehensively explored in chapter 1, the 

broad thrust is as follows. To explore my research question, I analyse contemporary work on 

cognitive control with particular reference to cognitive philosophical, psychological, 

neurobiological, neuroethological, and computational literature. I take my cues from Barbara 

Webb (2006), Andy Clark (1995), Matthew Botvinick and Jonathan Cohen (2014), James 

McClelland (1988), Earl Miller (2000), and Michael Graziano (2016) who have each 

contributed foundational works in the domain and have been used to structure the premise 

of my arguments. A comprehensive literature review ensued, consolidating and evaluating 

perspectives from these myriad sources to explore my hypotheses in detail. The content of 

the study is presented in the form of a chapterised thesis. 

Prospectus 

Chapter 1. I will suggest that representation should be distinguished as a special 

function of the nervous system in cases where neural activity somehow ‘stands in’ for aspects 

of the environment to produce behaviour in the absence of an eliciting stimulus. Viewed this 

way, I argue that representation can be considered as a feature of neural network function, 
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with implications for the kinds of information that may be preserved in this context and 

thus, the mechanisms for control. 

Chapter 2. I will go on to propose that certain structural and functional 

specialisations characterising control-related phenomena are best understood in terms of this 

neurally plausible form of representation. Specifically, an account of neural conflict 

resolution can be largely explained in terms of the adaptive tuning of neural networks to 

attain, or maintain desirable states of the world and avoid that which might obstruct those 

states.  

Chapter 3. However, such a view cannot explain more complex goal-directed 

behaviour. Sophisticated animals appear to develop intricate domain-general representations 

that can adapt the parameters of information processing to achieve control in more complex 

tasks. I will argue that traditional accounts of this phenomenon are insufficient, and that a 

more productive approach would be to consider these representations as an epiphenomenal 

product of the interaction between environmental structure and the neural systems which 

process it. I suggest that the neocortex possesses the architectural features necessary to 

plausibly accomplish this as a property of network function. Moreover, I demonstrate that 

this network structure would achieve a high level of cognitive control organically, without 

the need to appeal to additional mechanisms. I will conclude by highlighting the features of 

control phenomena that continue to defy explanation, and outline future avenues of 

empirical pursuit in relation to the internal origination of complex behaviour.  
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Chapter 1. Representation in the Brain 

1.1 Representation in Cognitive Science 

Representation at its most philosophically uncomplicated involves things that ‘stand 

in’ for other things, as a painting might stand for its subject, or a lawyer stands for her client 

(Haugeland, 1991; Kalhat, 2015). The notion of representation was adopted by cognitive 

science to account for the observation that not all animal behaviour can be explained by 

appealing to the reinforcement history of some eliciting stimulus (see Craik, 1967; Tolman, 

1951; although c.f. Hull, 1943; Skinner, 1938). For circumstances in which a stimulus is not 

present to stimulate a response, brains must ‘re-present’ the stimulus internally to elicit that 

same response; neural activity must somehow ‘stand in’ for aspects of the environment to 

produce behaviour when the evoking stimulus is not available (Webb, 2006). Cognitive 

science has typically concerned itself with symbolic mental objects which explicitly represent 

information about the world and can be stored, retrieved and acted on to make decisions 

(e.g. Chomsky, 2000; Fodor, 1975, 1983; Marr, 1982; Newell & Simon, 1976). 

However, this view has proven problematic, as our models of neural architecture do 

not provide an intuitive method of carrying information about the world forward in an 

enduring form (Gallistel, 2006). This issue has been exacerbated by the widespread and 

uncritical conflation of the terms ‘encoding’ and ‘transformation’ with ‘representation’ by 

neuroscientists (Webb, 2006). Associative learning is characterised by changes in neural 

structure which elicit behaviours in response to stimuli that correspond to predictable 

outcomes (Bienenstock, Cooper, & Munro, 1982; Hebb, 1949; Kandel, 2009). In such cases, 

while it is generally possible to view the neural activity that correlates with a stimulus as a 

code which preserves information in some way, the code itself is not necessarily 

representing. The nervous system is not literally trying to reconstruct the stimulus in the 

form of a neural code, nor is the encoded information ‘decoded’ later on, as one might 
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decrypt a message from an encrypted source (Webb, 2006). Rather, this information forms 

part of a cascade of internal processes, the role of which is to transform the stimulus into a 

behavioural response. These transformations actually retain less information about the 

stimulus as the system propagates toward response specification (Webb, 2012). To call these 

‘representations’ merely because they correspond to some environmental event is to confuse 

the process which links a stimulus to behaviour with something the animal can use as a 

‘stand-in’ for the world (Webb, 2006, 2012). In many cases describing this process does 

nothing to explain circumstances in which the nervous system does represent—that is, when 

it produces internal states that can be used in some equivalent way as external stimuli in 

order to act when the stimuli aren’t present. 

This, appraised in combination with models in computational literature that mimic 

properties of complex behaviour without requiring representations, has led some to suggest 

that we should try to understand the brain without appeal to representations (e.g. Chemero, 

2000; Dennett, 1987; Hutto & Myin, 2013). However, I contend that there is no need for an 

absolutist anti-representational stance, so long as we are clear about what kinds of 

representations are possible in the context of the nervous system (Clark & Toribio, 1994; 

Gallistel, 2008). 

1.2 Brains Can Represent 

A connectionist account provides a viable mechanism for a certain form of neural 

representation (Clark, 1995). Neural network modelling refers to a connectionist approach to 

computation that attempts to mimic the properties of neurons organised as a network 

(Bechtel & Abrahamsen, 1991; Churchland, 1989; Feldman, 1981; LeCun, Bengio, & Hinton, 

2015; McClelland, 1988; Rumelhart, McClelland, & PDP Research Group, 1986). Inputs into 

the system are encoded as an activation pattern of ‘input units’, or artificial neurons. This 
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initial signal is transformed by associative layers of ‘hidden units’ into an ‘output unit’ 

activation pattern that specifies the response (Fig. 1). The connections between units are 

given a weight value, affecting the likelihood that the connected unit will pass the signal on. 

If the response is inappropriate to the input, then the weights are algorithmically adjusted so 

that the activation pattern of output units elicited by the activation pattern of input units is 

more suitable, mimicking neural associative learning mechanisms (Bechtel & Abrahamsen, 

1991; Hinton, McClelland, & Rumelhart, 1986). In this way, the weighted connections 

between units determine which inputs prompt which outputs. Here lies the representation, 

but in a non-intuitive form (Clark, 1995, 1998). The connections contain information that 

can ‘stand-in’ for the input, but that information is simply how the signal should be passed 

 

Figure 1. Diagram of a generic neural network architecture. (a) Stimuli are encoded as an activation 
pattern of ‘input units’, or artificial neurons. This initial signal is transformed by associative layers 
of ‘hidden units’ into an ‘output unit’ activation pattern that specifies the response. The weight value 
of connections between units determines whether the signal will be passed on or not. The weight 
values are determined by an algorithm which attempts to match inputs to a prespecified output. In 
a biological organism, these weights would be adjusted by Hebbian synaptic plasticity. (b) 
Commonly, these input-output pathways are illustrated in this way, with a single unit used to 
represent the activation patterns in each layer. Alternatively, the pathway may be displayed without 
an associative unit. 
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on. The connection weights describe what outputs are possible in the context of specific 

input activation patterns (Hinton et al., 1986). 

We must return to describing organisms for the import of this to become clear, a feat 

made possible by the similarity between neural network models and the functionality of the 

brain (London & Häusser, 2005; Marder & Thirumalai, 2002). If we consider that the 

activation patterns of input neurons in animals would be triggered by stimuli in the 

environment, and consequent responses are triggered by the activation patterns of connected 

output neurons, then these neural networks ‘stand in’, not for the world, but for the 

responses possible in the environmental context associated with an input neuron activation 

pattern (Cisek, 2001; Clark, 1995; Engel, Maye, Kurthen, & König, 2013; Millikan, 1995). 

This means that to encode a stimulus is to at once compute the appropriate response(s). So 

long as we can elicit the input neuron activation pattern, even if the stimulus normally 

responsible for that pattern is absent, the animal can use the information contained within 

connections between neurons. The inner state of the animal can act as a proxy for the world. 

Indeed, for the purpose of illustration, they could be viewed as explicit representations of 

Gibson’s (1979) ‘affordances’ in that the inner states activated stipulate the actions available 

or ‘afforded’ to an organism in certain environmental contexts (Cisek, 2001; Clark, 1995).  

That such things are truly representations remains an open question in philosophical 

terms; these are different to traditional accounts in many ways. Yet, these ‘neural network 

representations’ inarguably satisfy the premise upon which the term representation was 

introduced to cognitive science: they present a plausible opportunity for neural activity to 

‘stand in’ for an eliciting stimulus regardless of its physical presence. More significantly, this 

account of representation allows us to explore the thorny topic of cognitive control.  
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1.3 Cognitive Control and Associated Phenomena 

Very broadly, cognitive control refers to those processes which flexibly coordinate 

internal processes and behaviours in service of a goal (Cooper, 2010; Koechlin et al., 2003; 

Miller, 2000; Posner & Snyder, 1975; Shiffrin & Schneider, 1977).1 While the circumstances 

purported to require control are somewhat amorphous in the literature, the most 

demonstrable are those which require the animal to resolve conflicts between competing 

cognitive demands. This is particularly evident where more reflexive or dominant 

propensities run counter to the goal. This phenomenon is clearly illustrated by a typical 

variation of the Stroop task (Fig 2.; also see Stroop, 1935). 

In this task, participants are asked to name the colour of the ink a word is printed in.  

When the word describes a non-corresponding colour, for example the word ‘blue’ printed 

in red ink, the task is generally more difficult than simply reading the words, evidenced by 

increased error rates and response times (e.g. Posner & Snyder, 1975). The presence of some 

control-related process is relatively easy to identify in this context, in the form of an 

                                                
1 As distinct from stimulus-control, in which habitual responding determines behaviour. Though it should 

be noted that the distinction between habitual or reflexive behaviours, and those which are truly purposeful is not 
always clear (see for example Dickinson, 1985; Frijda, 2016). 

 

Figure 2. A typical variation on the Stroop task (Stroop, 1935). In Task (a), 
participants are required to read the words. In Tasks (b) and (c), participants are 
required to name the colour of the ink. Task (c) is typically considered to be more 
difficult than tasks (a) or (b) and appears to require effortful control to execute. 
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experience of effortful attention in executing the task. One must sustain focus on the colours 

to avoid reading the words. Here, the cognitive scientist would say that the dominant, 

prepotent response (word-reading) is ‘controlled’ such that the less dominant response 

(colour-naming) can be executed. 

Yet, despite a similarly conspicuous presence in many complex tasks, the nature and 

composition of control-related phenomena have proven elusive (Botvinick et al., 2001; 

Cooper, 2010; Koechlin et al., 2003; Miller, 2000; Miller & Cohen, 2001). 

1.3.1 The homuncular problem of cognitive science. This difficulty forms the 

foundation upon which the construct of the ‘executive’ was introduced into cognitive science. 

The executive comprises a hypothetical set of functions which arbitrate over lower order 

processes to facilitate goal-directed behaviour (see for example Baddeley & Hitch, 1974; 

Barkley, 1997; Miyake et al., 2000; Norman & Shallice, 1980; Zelazo, Carter, Reznick, & Frye, 

1997). Yet, naming these arbitrators does little to explain them and we are still faced with the 

problem of mapping these processes to neural function (Botvinick & Cohen, 2014; 

McClelland et al., 2010). Too often researchers will uncritically ascribe cognitive processes, or 

their deficits, to the executive without questioning their mechanistic nature. Performance 

deficits in the Stroop, for example, tend to be attributed to a lapse in a hypothetical 

supervisory attentional system (Badgaiyan, 2000; Norman & Shallice, 1980; Stuss, Shallice, 

Alexander, & Picton, 1995). As with any hypothetical construct, this presents the risk of 

reification; coming to believe that naming these functions somehow explains their 

performance (Hull, 1943).2  

                                                
2 Alternatively, it is subject to a doctrine of emergentism; a position that the processes are unexplainable in 

terms of more basic properties. 
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One must also consider the corollary: over what are these arbitrators arbitrating? 

With little clarity around what information is actually preserved in the context of the nervous 

system, this problem appears insurmountable. Grounded as they are in symbolic notions of 

mental content, executive functions are typically considered to reflectively arbitrate over 

detailed internal models of the world. Under these conditions, the executive becomes an ill-

defined set of homunculi—unexplained intelligences, or ‘little men’ in the brain—which are 

treated as the causal source and solution to many cognitive problems, including that of 

control (Botvinick & Cohen, 2014; Hazy, Frank, & O'Reilly, 2007; Rougier, Noelle, Braver, 

Cohen, & O'Reilly, 2005). The assumption here is that the homuncular mechanism looks at 

the model of the world and makes the appropriate adjustments. We are left to explain how 

the homunculus is making its decisions, which is the core of the original problem all over 

again (Gregory, 1969; Hull, 1943). Empirical predictions made on this basis are likely to lead 

us astray. 

However, deferring explanations of control to the executive has allowed cognitive 

science to narrow the scope of the empirical problem. The traditional neurocognitive 

literature presents a number of ‘executive’ functions thought to facilitate conflict resolution; 

the ability to maintain sustained attention (Pennington & Ozonoff, 1996; Smith & Jonides, 

1999); to plan steps toward a goal (Duncan, 1986; Passingham, 1993; Shallice, 1982; Smith & 

Jonides, 1999); to subsequently initiate goal directed behaviour (Lezak, 2004); to hold, 

integrate, and manipulate information in the mind over time to support appropriate response 

selection (i.e. 'working memory', Fuster, 1988; Fuster & Alexander, 1971; Goldman-Rakic, 

1987, 1996; Goldman‐Rakic, 1987); and inhibit inappropriate responses (Luna, 

Padmanabhan, & O’Hearn, 2010; Smith & Jonides, 1999); to monitor performance (Petrides 

& Milner, 1982); to learn task ‘rules’ to support performance (Fantino, 2003; Miller, Nieder, 
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Freedman, & Wallis, 2003; Seger & Miller, 2010); and finally, the ability to shift between goal 

states (Ravizza & Carter, 2008).3 

These functional distinctions have been supported by the discovery of neural systems 

that apparently correspond to these executive mechanisms, primarily associated with cortical 

regions of the brain such as the pre-frontal cortex (Luria, 1970; Miller, 2000; Niendam et al., 

2012; Shallice, 1988) or their analogues in animals which lack a cortex (e.g. Diekamp, Kalt, & 

Güntürkün, 2002; Güntürkün, 2005). Yet the components of the executive, in their current 

form, resist attempts to plausibly map them onto neural architecture (Botvinick & Cohen, 

2014; McClelland et al., 2010). So long as cognitive science models these processes at the 

level of the cognitive agent, there can be no unification of these theories of control with 

tenets of neuroscience, which tends to model instead at the level of the neural circuit. 

There is a question as to whether control is in fact reduceable to some number of 

component processes. The idea that control should instead be viewed as an emergent 

product of other cognitive functions (an argument clearly articulated in Cooper, 2010) has 

seen several treatments and in fact stretches back to the ostensible birth of the domain of 

study. In his seminal analysis of goal-directed behaviour, Thorndike wondered whether the 

capacity to control impulses was merely the consequence “of an increase in the number, 

delicacy, and complexity of associations of the general animal sort” (1911, p. 286). 

Unfortunately, answering this question has proven impossible in the absence of a plausible 

account of representation, and the empirical data in this direction is lacking. 

As such, I will consider how the hypothetical components of cognitive control 

outlined above might be supported by neurally plausible mechanisms. In doing so, we can 

                                                
3 It should be noted that while this componential characterisation of control-related functions is something 

of a consensus in the neurocognitive literature, there is considerable debate as to the specific nature of these 
functions and while the components outlined here are the most common, it is by no means an exhaustive treatment. 
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begin to deconstruct these somewhat inscrutable executive mechanisms and so extend upon 

the foundations that cognitive science has laid. 

1.4 Neural Network Representations as an Exploratory Tool for Cognitive 

Control 

In the neural network account, as opposed to traditional perspectives on control, 

there is no need for reflection on internal stores of information to employ in some 

independent control mechanism. In these models, the only information retained is how the 

information should be processed. Connection weights merely describe how the signals 

shared between neurons should be passed on. Using such neurally plausible forms of 

representation means we can explore questions of control without deferring these functions 

to the homuncular mechanisms espoused in the traditional cognitive and philosophical 

literature. Examining questions of control then becomes a matter of determining how 

representations thus described can account for control-like behaviour. 
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Chapter 2. Control in the Absence of Control Representations 

2.1 Motivation and Control 

Given that cognitive control is often framed as the coordination of behaviour in 

service of a goal, we should first consider the animal’s motivation to engage in purposive 

action. In his influential work on the principles of behaviour, Hull (1943, p. 17) identifies a 

guiding principle in the cognitive and behavioural sciences: “Since the publication by Charles 

Darwin on the Origin of Species it has been necessary to think of organisms against a 

background of organic evolution and to consider both organismic structure and function in 

terms of survival”. On this view, to the extent that they have agency, organisms will be 

fundamentally motivated to perform actions which satisfy the dominant physiological need at 

any given point in time. An important corollary concerns the selective pressures brought to 

bear by the environment in which the organism subsists; the conditions which define survival 

vary as a function of the organism’s ecological niche. Thus, organisms will act to attain, or 

maintain states of the world that promote their survival, and avoid that which might obstruct 

those states. Perception subserves this function of organisms, constituting the manner(s) in 

which an organism is sensitive to its environment and prompting it to act (or not act) in 

response (Allport, 1955; Mather, 2016; Pomerantz, 2003). Perception in organisms is not 

arbitrary, but has evolved to reflect the meaning of a given object or event to the organism; 

its valence, or its potential to contribute or detract from certain desirable states of the world 

(Barrett, 2006; Carruthers, in press; Lebrecht, Bar, Barrett, & Tarr, 2012), and the consequent 

possibilities of action afforded to the organism in the context (Feldman, 2016; Gibson, 1979; 

Millikan, 1995; Parker & Newsome, 1998). 

This principle forms the basis of behavioural coordination. Even single-celled 

organisms must at times integrate chemosensory, sensorimotor, communicative and 

physiological information to inform adaptive responding (Lyon, 2015). To illustrate, consider 
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the chemotaxic properties of these creatures. Bacteria possess in their cell membrane 

molecules sensitive to the presence of glucose (a food) and phenol (a toxin). The presence of 

these substances automatically instigates a series of molecular feedback mechanisms that 

determine whether the bacterium’s flagella movements are coordinated such that it moves up 

or down the encountered concentration gradient and so away from, or toward the substance 

(Adler, 1966; Alon, Surette, Barkai, & Leibler, 1999; Brandman & Meyer, 2008; Macnab & 

Koshland, 1972; Wadhams & Armitage, 2004). 

This differential coordination of response highlights an important feature of 

organisms. Even at the lowest levels, organisms are capable of integrating information from 

competing signalling pathways to achieve adaptive outcomes (Hazelbauer, Falke, & 

Parkinson, 2008). 

Parallels can be drawn in cases where flowers move in order to maximise their 

position in relation to the sun, known as phototropism. While in some cases the property 

appears to be purely mechanical, phototropism can be quite complex, involving multiple 

signalling pathways, photoreceptors, and hormones to coordinate differential growth 

gradients (Whippo & Hangarter, 2006). 

In all cases, organisms exhibit the capacity to flexibly respond to environmental cues 

in order to promote survival, and often this requires the integration of signals to achieve 

differential outcomes. In the following section, I will argue that this consideration should 

feature heavily in an appreciation of cognitive control.  

2.2 Behaviour Control is Realised in the Brain for More Sophisticated Animals 

Godfrey-Smith (1998, 2002) advocated the notion that the complexity of an 

organism’s ecological niche is the catalyst for the evolution of more complex forms of 

cognition. While such a hypothesis is debatable, it is certainly the case that the stimulus-
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response propensities evident in unsophisticated organisms are eventually realised in the 

brain for more sophisticated animals (Allman & Martin, 1999; Damasio, 1999; Greenspan, 

2007). Indeed, the work on adaptive integration of sensory signalling pathways in simple 

organisms in many ways underpins information-processing perspectives on cognition (Bray, 

2009; Miller, 2003; Wadhams & Armitage, 2004). Recall that associative learning is 

characterised by changes in neural structure that elicit behaviours in response to stimuli that 

correspond to predictable outcomes. A very basic property of neurons is the strengthening 

of connections between cells that fire in synchrony, and the weakening of connections for 

those which fire at dissimilar intervals, commonly known respectively as ‘Hebbian’ or ‘anti-

Hebbian’ learning (Bienenstock et al., 1982; Hebb, 1949). In this way, the brain marries 

perceptions with the appropriate responses for organisms, allowing for behaviour in 

environmental contexts which exceed the capacity for less complex biological mechanisms 

(Miller & Cohen, 2001). As such, where control in less sophisticated organisms is achieved 

without a brain, it seems sensible to assume a hierarchy of simplistic control mechanisms 

that are eventually realised in the neural mechanisms of more sophisticated animals. 

Recall that the information contained in a neural network is how the signal 

transduced by input neurons should be passed on to the response neurons; the perception of 

a stimulus automatically triggers the associated response. Neural plasticity can account for 

the development of these stimulus-response relationships in the brain. However, it is not 

sufficient to explain control over those relationships which compete, merely to account for 

which stimuli are linked to which responses. Augmenting an account of neural plasticity with 

a neurally plausible account of network function provides insight into how control might be 

achieved. 
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2.3 Evidence-Accumulator Models as a Foundation for Control 

A family of computational models known collectively as accumulator models, feature 

competing neural network representations as evidence-accumulators. These accumulators 

each independently gather channels of appropriate perceptual information. When one 

channel reaches some threshold, it will ‘win out’ over the others in specifying a response (e.g. 

Cisek, 2007; Ditterich, Mazurek, & Shadlen, 2003; Ratcliff, 1978; Usher & McClelland, 2001; 

Vickers, 1970; Wang, 2002). The form of this evidence is taken to be the overall activation of 

a given neural network representation. This ‘winner-take-all’ property in such models is 

particularly attractive because it can account for circumstances in which individual neural 

network representations share similar inputs, or similar outputs; only the most active 

representation will be fully realised. 

An important theoretical development in these models has been the introduction of 

reciprocal inhibition, in which all related representations inhibit the others proportional to 

the amount of appropriate information obtained (Fig. 3; Basten, Biele, Heekeren, & Fiebach, 

2010; Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006; Feng, 2012; Krajbich & Rangel, 

2011; Marshall, Bogacz, & Gilchrist, 2012). This addition has been crucial in aligning the 

computational models with the performance outcomes achieved in real-world experimental 

data for a range of psychophysical tasks (e.g. Laming, 1979; Ratcliff, 1978; Stone, 1960). 

These models match, for example, the real-world data on decision accuracy and reaction time 

distributions (Brody & Hanks, 2016). Likewise, accumulator models approximate the 

underlying neural processes well, accounting for neural activation patterns related to 

perceptual choice tasks (Gold & Shadlen, 2007; Schall, 2001; Shadlen & Newsome, 2001; 

Usher & McClelland, 2001). For example, the rate at which the evidence accumulates toward 

a decision threshold in these models is comparable to the decision-relevant neural response 

variability measured in primate brains during perceptual tasks (Gold & Shadlen, 2007). 
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Further, while the vast majority of experimental evidence pertains only to decisions involving 

two alternatives, evidence-accumulator models can be extended to incorporate multiple 

alternatives (Krajbich & Rangel, 2011; Usher & McClelland, 2001) and multiple steps of 

action (Solway & Botvinick, 2015). 

 2.3.1 Evolutionary valence can inform action-selection. These accumulator 

models can explain how the connection weights of real world neural network representations 

are changed to achieve control with reference to their current interactions. In the models, the 

combination of accumulation (equivalent to neural excitation) and the inhibitive capability of 

 

Figure 3. Diagram of an evidence accumulator model. Arrows indicate 
excitatory connections. Closed circles indicate inhibitory connections. 
Signals from input units converge on an evidence-accumulator for each 
neural network representation. Lateral inhibitory connections inhibit 
competitors proportional to the activation of respective input units. When a 
specified decision threshold of activation has been reached, one 
representation will ‘win-out’ over the others in passing the signal on to 
output units determining the response. 
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the links between these pathways can be used to model the optimisation of resource 

allocation demonstrated in neural systems. The experimenter will commence by specifying 

the initial drift rate (equivalent to baseline neural activity), or the decision threshold for 

competing representations.4 The parameters defining these evidence-accumulators (i.e. the 

criteria for triggering a threshold) will then change according to an algorithm designed to 

approximate the plastic properties of neurons. This algorithm will seek to achieve the 

optimal compromise between the speed of evidence accumulation and accuracy (Bogacz et 

al., 2006; Marshall et al., 2012). For example, a threshold requiring less evidence to trigger 

would be faster, but sacrifice accuracy in action-selection. Given an acceptable error rate,5 

this may explain the manner in which real world neural network representations governed by 

the plastic properties of neurons would establish naturalistic dominance patterns over time 

and development. In doing so, evidence accumulators achieve the most basic functions of 

control; the selection of appropriate responses, and the inhibition of inappropriate ones. 

Arguably, these mechanisms also satisfy functions typically ascribed to attentional 

processes. Attention tends to be vaguely defined, but is generally considered to be a process 

responsible for tuning the parameters of information processing in order to optimise task 

performance (Chun, Golomb, & Turk-Browne, 2011; Tsotsos, 2017; see also section 2.6.2). 

In the cognitive literature, it has become commonplace to assume that the executive 

performs attentional functions. This is largely due to the observation that some effortful 

attention is employed in executing tasks such as the Stroop (recall section 1.3). 

                                                
4 It should be noted that neural networks have seen myriad applications in tasks that vary wildly in their 

ecological verisimilitude. Here, I concern myself only with experimental intervention as informed by actual neural 
function, and propose that in organisms, these would be established by the relevant evolutionary imperatives. 

5 Again, an experimenter defined parameter, assumed to be established organically in an animal (e.g. I 
imagine mice inherit a high acceptable error rate for a fear response in the presence of a possible threat, it being far 
less adaptive to ignore it). 
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However, there is no requirement to invoke an independent attentional process to 

explain the optimisation occurring in these evidence-accumulation processes. Rather, it is 

intrinsic to their function. So long as the decision threshold has been specified, the 

parameters will be adjusted automatically to optimise performance for speed and accuracy in 

action-selection. 

Numerous networks which exhibit these evidence-accumulation and reciprocally 

inhibitive properties can be found in the brains of both vertebrates and invertebrates 

(Barron, Gurney, Meah, Vasilaki, & Marshall, 2015; Brody & Hanks, 2016; Gallistel, 2013; 

Windhorst, 1996). As such, mechanisms that can achieve control over low-level 

environmental conflicts surely exist in the absence of an executive mechanism.  

Yet, while a great number of the actions an organism engages in are motivated by the 

evolutionarily implied valence of stimuli (see Panksepp, 2004 for a treatment),6 a great many 

more are informed by experiential interactions with the world. Learning is a crucial feature of 

adaptive behaviour and to account for this in the models just described, we require further 

mechanisms with which to incorporate feedback. 

2.4 Learning Informs Value-Based Action Selection  

It is fortunate then, that incorporating learned valence into the existing evidence-

accumulator models poses no significant challenge. Further, by examining biological 

mechanisms of learning, we can infer the real-world processes responsible for altering the 

defining parameters of accumulator mechanisms to adapt to a changing environment. 

Learning valence is a phylogenetically basic capacity (Lyon, 2015; Skinner, 1938; 

Thorndike, 1911). Very simple animals can learn new possibilities for the potential of stimuli 

                                                
6 Although any taxonomy of these will be largely speculative, given that one cannot empirically deduce the 

full evolutionary history of an organism. 



REPRESENTATION IN COGNITIVE CONTROL 20 

to contribute or detract from desirable states of the world (Alem et al., 2016; Menzel, 2013; 

Webb, 2004). The significance of this observation should not be underplayed. It is difficult 

to imagine many ecological scenarios in which the kinds of speed and accuracy judgements 

described above solely inform action-selection.7 Rather, there are many environmental 

variables and many distinct actions available to an animal which must be judged for their 

relative utility in any given circumstance. However, to make a utility judgement, the organism 

must possess information about the outcomes of an action in a given environmental context 

and be able to determine how that might relate to its goal (Pirrone, Stafford, & Marshall, 

2014). 

2.4.1 The value of expected outcomes may be judged for their contribution to a 

goal. Cognitive science typically assumes that this information is stored in some 

propositional form and reflected upon to inform goal-directed behaviour (section 1.1; 1.3; 

Buckner, 2010; Damasio, 1999; Doya, 2008; Seligman, Railton, Baumeister, & Sripada, 2013; 

Wilson & Gilbert, 2005). In this vein, evidence-accumulator models have been extended to 

make utility-based judgements, using the same kinds of reciprocal inhibitory connections 

described earlier (Basten et al., 2010; Krajbich & Rangel, 2011; Pais et al., 2013; Rangel & 

Hare, 2010; Rustichini, 2008; Seeley et al., 2012; Usher, Elhalal, & McClelland, 2008). 

However, this is typically done by incorporating an independent representation of the 

extrinsic value of stimulus features to inform competitive decision making. This approach 

does not entirely release us from the homuncular problem. We must still explain the 

mechanism responsible for determining the value of stimuli according to the expectation that 

they might facilitate the animal’s goals. However, there may be no need to posit such a 

                                                
7 Indeed, only one comes to mind; imminent life or death scenarios, in which a fast but inaccurate decision 

would likely prove more beneficial than slower, more accurate ones (e.g. Trimmer et al., 2008). 
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mechanism in all cases (Gold & Shadlen, 2007). A more plausible interpretation of utility-

based judgements considers value as an intrinsic property of stimuli. 

2.4.2 Value is an intrinsic property of neural network representations. In the 

presence of reinforcement (reward or punishment), any organism with the capacity for 

learning develops an extensive repertoire of outcome-expectations in service of adaptive 

function (Lyon, 2015; Menzel, 2013; Rescorla & Solomon, 1967; Skinner, 1938; Thorndike, 

1911; Webb, 2004). These expectations merely comprise the valence of a stimulus-response 

association in a given environmental context. When hungry, the valence of food becomes 

salient, the animal having learned that the food item will fulfil the need. When satiated, food 

no longer presents as salient, and the animal may concentrate on some other dominant need. 

Observe that this requires no explicit representation of a goal, nor an independent 

representation of an expectation to inform the animal of the stimulus’ goal-related value. 

Instead, they can simply be viewed as neural predispositions to respond in certain ecological 

circumstances (Carruthers, in press; Dreyfus, 2002; Frijda, 2016; Gollwitzer, 1999; Jeannerod, 

2006; Pacherie, 2002; Scott, 2006). This feature of reinforcement learning should not be 

trivialised. The assumption that goals are explicit has encouraged lines of enquiry devoted to 

discovering the mechanisms responsible for selecting among them (e.g. Ravizza & Carter, 

2008). While explicit goals may be realised in the brains of higher-animals, there is no reason 

to accept that all goal-directed behaviour is accomplished thus. Similarly, there is no need to 

assume that the expected outcomes of an action are explicitly measured against a goal-state. 

Indeed, expectations can be explained in the context of neural network 

representations, the premise of which being that environmental contexts activate inner states 

which intrinsically afford certain responses to the organism. In such cases, the relative utility 

of a representation is an intrinsic property (Carruthers, in press; Peil, 2014) that can be used 
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as evidence in a more generic reciprocally inhibited network (Basten et al., 2010; Bogacz et 

al., 2006; Pais et al., 2013; Rangel & Hare, 2010). This development has permitted the 

extension of accumulator models to account for circumstances in which a decision must be 

made between alternatives which have equal, or equally uncertain values (Pais et al., 2013; 

Pirrone et al., 2014). Thus, by remaining close to the fundamental principles of 

reinforcement learning, we avert the risk of invoking homuncular mechanisms where none 

need be present. 

Examining the features of reinforcement learning not only permits insight into how 

animals make utility judgements, but also how these judgements can be optimised over time.  

2.4.3 Biological mechanisms of reinforcement learning provide insight into the 

how parameters are altered. In a reciprocally inhibited network architecture, the 

optimisation of the system depends on three key parameters; the baseline activation of the 

neural network representations, the rate of evidence accumulation (in the form of neural 

response variability), and the threshold for triggering a response. In the brain, reinforcement 

learning is primarily facilitated by the interaction between changes in neuromodulator 

concentrations across neuronal populations and the Hebbian and anti-Hebbian properties of 

neurons, contributing to the growth and stability of connections (Doya, 2008; Soltoggio, 

Durr, Mattiussi, & Floreano, 2007). Neuromodulators are associated with the neural 

equivalents of each of the parameters defining evidence-accumulator models. Neural 

response variability has long been observed to be influenced by the presence of nor-

adrenaline (Keeler, Pichler, & Ross, 1989; McGinley, David, & McCormick, 2015; Solway & 

Botvinick, 2012) and there is evidence to suggest that acetylcholine provides information 

regarding the certainty of stimuli, a factor that drives the rate of accumulation (Angela & 

Dayan, 2005; Marshall et al., 2016; Sarter & Bruno, 1997). Dopamine (e.g. Braver & Barch, 
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2002; Niv, 2009) and oxytocin (e.g. Kis, Hernádi, Kanizsár, Gácsi, & Topál, 2015) have been 

known to influence the expectancy biases observed in humans and other animals and could 

serve to alter the baseline activation of neural network representations.  

The final relationship deserves some special attention, being both well-studied and 

bearing a striking similarity to the performance monitoring function typically ascribed to 

some executive process in classical cognitive science. Unexpected events, or prediction errors, 

are presumed to play a major role in reinforcement learning; unexpected outcomes may 

indicate that the organism’s environment has changed, and signal the need for adaptation 

(Hohwy, 2013; Schultz, Dayan, & Montague, 1997; Sutton & Barto, 1990). Work conducted 

by Wolfram Schultz (1997) formalised this notion, demonstrating that unanticipated rewards 

in vertebrates are signalled by phasic dopamine responses. Electrophysiological data routinely 

identifies neurons in mammals that signal reward-related information in the mid-brain 

dopaminergic pathways that are suitable candidates for learning and decision-making 

(Bromberg-Martin, Matsumoto, & Hikosaka, 2010; Schultz, 2016). The same can be said of 

octopamine and dopamine in the invertebrate brain, which signal aversive and appetitive 

stimuli respectively and may modulate connections accordingly (Perry & Barron, 2013; Søvik, 

Perry, & Barron, 2015). Indeed, the incorporation of octopamine and dopamine in the 

simulation of a partial insect brain has been used to successfully model reward and 

punishment learning in insects (Bazhenov, Huerta, & Smith, 2013; Schwaerzel et al., 2003; 

Vergoz, Roussel, Sandoz, & Giurfa, 2007). Based on these findings, many neural network 

models incorporate prediction error as a means of adjusting decision thresholds. Different 

threshold values are sampled and algorithmically adjusted to optimise for the ideal rate of 

reward. Assuming that neuromodulatory changes take the place of these algorithms in 

organisms, the values of these decision-making thresholds could conceivably be adjusted by 

an interaction between these neuromodulator concentrations and the disposition of the 
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connections in the neural network architecture. Recall that in the classical literature, 

performance monitoring is typically ascribed to cortical processes (Petrides & Milner, 1982) 

and is traditionally assumed to be carried out by a supervisory mechanism (e.g. Norman & 

Shallice, 1980). On this view, some independent arbitrator presides over lower-order 

processes to iteratively improve their performance. In stark contrast, evidence accumulator 

architectures provide convincing evidence that such a feature is, at least in part, an emergent 

property of a reciprocally connected neural network. There is no requirement for an external 

arbitrator, nor a need for cortical intervention. Performance monitoring in these models is 

simply the naturalistic outcome of phasic neuromodulator responses. 

As such, incorporating neuromodulatory feedback into the existing evidence 

accumulation models theoretically permits an organism to optimise action-selection 

according to speed, accuracy, and relative utility as an inherent property of neural network 

function (Bogacz & Gurney, 2007; Dayan & Daw, 2008). Evidence-accumulator models 

then, present a neurally plausible mechanism which may account for the resolution of a wide 

range of low level conflicts. However, at more ecologically complex levels, these models 

betray important limitations. 

2.4.4 Accumulator models will fail in more complex environments. With a 

suitably complex organism, the scope of relevant ecological considerations will eventually 

outstrip the capacity of simple evidence-accumulator models to explain. 

The optimisation of the systems described in the preceding section would only occur 

in the presence of events which, through reward or punishment, trigger the activity of certain 

neuromodulators. Neuromodulatory changes tend to be quite rapid, and these architectures 

do not therefore lend themselves well to circumstances involving delayed feedback. Delayed 

consequences are associated with significant decrements in performance during operant 
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learning paradigms (see Lattal, 2010 for a review), hinting at the fundamental role of 

neuromodulator action during learning. Yet, sophisticated animals clearly at times perform in 

the absence of immediate feedback.8 A well-known example in this regard concerns the 

ability of rats to apparently learn the organisation of a maze prior to the introduction of any 

reinforcement (Anthony, 1959; Seward, 1949; Tolman & Honzik, 1930; Wirsig & Grill, 

1982). 

Further, ecological scenarios tend to provide more information to an organism than 

merely the potential for reward or punishment. Suitably sophisticated organisms might use 

this information to inform action-selection in other ways, by assessing the opportunity costs 

involved for example, or the difference in energy expenditure (Frank & Claus, 2006; Gopnik, 

Schulz, & Schulz, 2007; Niv, 2009). While these factors have been explored from an 

optimisation perspective (in a fashion similar to that described in 2.4.1; e.g. Aston-Jones & 

Cohen, 2005; Yu & Dayan, 2005), they do not yet map neatly to plausible neural 

mechanisms.  

It must also be noted that with a large number of competitive representations, these 

architectures would become prohibitively dense. The crucial feature of accumulator models 

in aligning the model data with real-world outcomes is the addition of reciprocal inhibition. 

To ‘win out’, a representation must inhibit its competitors proportional to the amount of 

evidence it has accumulated, a process requiring inhibitory links between each related 

representation. For each new competitor into the system we must therefore introduce 

reciprocally inhibitory links to each existing competitor, increasing the wiring exponentially 

                                                
8 There do exist special reflexive mechanisms for this, although these would not account for all 

circumstances in which delayed consequences inform learning. Consider, for example, the phenomenon of taste 
aversion (Bures, Bermúdez-Rattoni, & Yamamoto, 1998; Garcia, Ervin, & Koelling, 1966). With minimal exposure, 
a substance which induces illness will result in a long-term aversion to said substance, despite significant delays 
between ingestion and the onset of symptoms. Taste aversion may in fact belong to a wide range of similar reflexive 
associations, which have been brought under the heading of preparedness learning (Seligman, 1971). 



REPRESENTATION IN COGNITIVE CONTROL 26 

to account for every possible conflict (Lennie, 2003; Redgrave, Prescott, & Gurney, 1999). It 

seems likely that the metabolic cost of operation would eventually outweigh the adaptive 

benefit of such an architecture, placing pressure on solutions that more efficaciously achieve 

comparable performance. This would be compounded by the fact that, as an organism and 

its environment become more sophisticated, so too would the value relationships between 

stimuli. In a reciprocally inhibited network, in which all competitive representations are 

linked, modifying one representation to better account for its comparative utility to another 

may sub-optimally reflect its comparative utility in other circumstances. For example, on 

learning that yellow flowers are less nutritious than red, a bee may inherit a slower 

accumulation rate for yellow. Later learning that red flowers are less nutritious than green 

flowers, red may suffer the same consequence, invalidating the earlier utility distinction 

between red and yellow. Indeed, valence can be produced from many properties of stimuli 

depending on the circumstance, making overall evaluative responses increasingly difficult in a 

reciprocal network alone. 

2.5 Centralised Action-Selection 

A more metabolically efficient option would be a centralised selection mechanism, in 

which neural network representations would converge on a single locus, allowing the conflict 

between competitors to be evaluated and resolved therein. Such a system requires only two 

connections for each representation; one input to and one output from the central 

mechanism (Barron et al., 2015; Redgrave et al., 1999). 

In vertebrates, such a mechanism is thought to be realised in the basal ganglia (BG) 

and associated neural structures, which both collects input from diverse neural areas across 

the cortex and sub-cortical regions (McHaffie, Stanford, Stein, Coizet, & Redgrave, 2005), 

and contains the requisite properties to support the competitive processing of neural 
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network representations (Gurney, Prescott, & Redgrave, 2001; Redgrave et al., 1999). On this 

hypothesis, inputs, termed action requests,9 comprise the overall activity of a given 

representation, signalling the salience of a neural activation. These action requests are then 

subjected to competitive processing as they travel through action channels10 within the BG to 

determine which is most salient. The BG ‘selects’ this input by decreasing the supply of 

inhibition in the corresponding action channel (while maintaining, or perhaps increasing the 

inhibition of non-selected channels). This permits the most salient representation to ‘win-

out’ while inhibiting the competitors. When the relevant features of the BG are applied in a 

computational model, the simulations achieve a Bayesian-like optimisation of conflict 

resolution (Bogacz & Gurney, 2007; Lepora & Gurney, 2012).11 This suggests that the BG 

system does indeed possess the requisite features to plausibly explain the optimisation of 

performance in an ecological scenario. 

The primary benefit of the proposed structure is the use of salience as a ‘common 

currency’, allowing for complex valence relations to produce an overall evaluative response 

when competing alternatives would otherwise appear incommensurable (Carruthers, in press; 

Gurney et al., 2001; Levy & Glimcher, 2012; Redgrave et al., 1999). Such a mechanism would 

have the added advantage of modifying individual representations without necessarily 

altering the functionality of others. 

                                                
9 The proponents of this hypothesis use the term ‘action request’ as something of an illustrative catch-all 

for system inputs, failing to specify their exact nature. However, if we consider these to be neural network 
representations, the hypothesis carries more weight. 

10 Consider these to be anatomically discrete populations of neurons associated with distinct action 
requests, described best in Bogacz and Gurney (2007); Gurney et al. (2001). Again, we can view these as neural 
network representations whose inputs are not external stimuli, but instead the neural network representations 
comprising an action request. 

11 Bayesian optimisation is a strategy frequently employed by modellers to simulate the combination of new 
evidence with prior beliefs or expectations in a principled manner (via the application of Bayes’ rule) (Mockus, 2012; 
see also section 3.3.2). 
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Both the basal ganglia and the striatum are known to possess the requisite features to 

support a cross-inhibitory architecture in a number of configurations, and a similar 

functionality has been proposed for invertebrates in the lateral protocerebrum (see Barron et 

al., 2015 for a review). Indeed, the latter was shown to be capable of theoretically achieving 

comparative outcomes with the vertebrate system just described despite non-trivial system 

differences.12 The key outcome of this exploratory work indicates that a system architecture 

supporting centralised processing of competing representations is a plausible neural 

specialisation for increasingly sophisticated organisms to develop in order to achieve control 

in increasingly complex environments. 

2.6 Executive Functioning with No Executive 

We entered this chapter asking how the traditional components thought to comprise 

the executive might be explained in a neurally plausible manner. In the interest of clarity, I 

will now address each and highlight again the opportunities described in the preceding 

sections for these functions to be achieved as a feature of neural network dynamics. 

2.6.1 Appropriate action-selection and inhibition. Adaptive action selection is a 

problem that faces even single-celled organisms, and the capacity to integrate competing 

signals in service of this precedes the development of neural tissue (Bray, 2009; Hazelbauer 

et al., 2008). That the resolution of conflicts at the level of the brain necessitates in all cases 

homuncular arbitrators, or top-down ‘executive’ control thus seems unlikely. Indeed, a 

reciprocally inhibitive neural network architecture supports a vast array of self-organising 

decision-making processes and maps well onto the existing neuroanatomical structures found 

in both vertebrate and invertebrate species. I do not make the claim that such mechanisms 

are sufficient to resolve conflicts in all ecological contexts. However, that these networks are 

                                                
12 Albeit on a less complex scale. 
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capable of optimisation in service of speed, accuracy, and relative value utilising only known 

properties of neural function should raise questions about the continued utility of invoking 

homuncular mechanisms to account for control-related phenomena.13 

2.6.2 The role of attention in control. As animals develop in sophistication, so too 

will they develop perceptive capabilities that increasingly exceed those strictly required for 

immediate tasks. As such, attentional processes are considered a vital component of 

cognitive control phenomena. While the facets of attentional processes have provoked 

myriad theoretical treatments (see Chun et al., 2011), the most enduring characterisations 

involve the ability of organisms to adjust input and computational load to that best suited to 

achieving the task or tasks at hand.14 In computational terms, attention is best viewed in 

terms of a dynamic tuning of processing in response to task demand; attentional processes 

adaptively tune the parameters of information processing in order to optimise task 

performance (Tsotsos, 2017). Traditional approaches to the question of attention assume 

that an organism requires a set of established representations in order to perform this 

function, and these are activated to the appropriate degree when required (e.g. Botvinick et 

al., 2001; Norman & Shallice, 1980). Yet, thus far, there has been no need to invoke such 

representations. Provided the system possesses the requisite decision thresholds, here 

proposed to be established and modified by selective pressures or learned valence, this 

parameterisation is an emergent property of the network. Both baseline activation and 

                                                
13 While the focus of this thesis is on the resolution of conflict in service of control, the application of 

neural network representations can assist to narrow enquiry into other, more amorphous aspects of control also. For 
example, Rodney Brooks’ (e.g. 1990, 1999) subsumption architecture bears similarities to biological nervous systems and 
demonstrates how some representations may impose control on less dominant representations in limited ecological 
contexts (Gallistel, 2013; Maes, 1993; Prescott, Redgrave, & Gurney, 1999; Redgrave et al., 1999). 

14 Often, a distinction is made between attentional processes responsible for selecting among competing 
alternatives (e.g. Desimone & Duncan, 1995) and attending to a selection to improve performance (e.g. Carrasco, 
Ling, & Read, 2004). I make no such distinction here, in part because doing so is beyond the scope of this thesis, 
but also because in many cases this distinction is unclear. Performance-enhancing attentional processes often 
involve competitive processing internally (see e.g. section 3.5.2). 
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accumulation rate can be adjusted by the associative properties of neural function to achieve 

the optimal compromise between speed to accuracy, permitting adaptive performance across 

a broad range of contexts (Bogacz et al., 2006; Marshall et al., 2012; Pais et al., 2013; Rangel 

& Hare, 2010; Usher & McClelland, 2001). 

2.6.3 Performance monitoring with no monitor. Recall that a fundamental 

attribute of reciprocally inhibitive architectures are the thresholds which trigger a decision, 

allowing one representation to ‘win-out’ over others. Many models incorporate prediction 

error as a means of adjusting the value of these thresholds; different threshold values are 

sampled and adjusted according to an algorithm to optimise for the ideal rate of reward. This 

property of neural networks bears conspicuous similarity to the phenomena of ‘performance 

monitoring’ that is typically ascribed to cortical executive processes in the cognitive literature 

(Norman & Shallice, 1980; Petrides & Milner, 1982). Here, some supervisory process is 

thought to adjust lower-order processes in order to improve an animal’s performance in a 

given task. However, given that unexpected events, or prediction errors, are signalled in 

vertebrates by phasic dopamine responses (Bromberg-Martin et al., 2010; Schultz, 2016; 

Schultz et al., 1997; Sutton & Barto, 1990) and in invertebrates by octopamine and dopamine 

(Bazhenov et al., 2013; Perry & Barron, 2013; Schwaerzel et al., 2003; Søvik et al., 2015; 

Vergoz et al., 2007), the values of these decision making thresholds may instead be adjusted 

by the change in neuromodulator concentration across the connections of the relevant 

evidence-accumulators. That is not to say that all performance monitoring can be accounted 

for by prediction error. In fact, prediction errors are demonstrably inferior mechanisms for 

regulation, having only a limited capacity to resolve conflicts, and higher organisms evolve 

progressively more effective mechanisms to inform performance improvements (Conant & 

Ashby, 1970). 
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2.6.4 Goal-directed behaviour does not require goal representations. The 

development of expectations, in the form of behaviour-outcome contingencies, is a 

phylogenetically basic property of organisms. In the learning literature, this is commonly 

referred to as ‘instrumental’ or ‘operant’ learning. Commencing with the ostensible birth of 

the domain of study (Skinner, 1938; Thorndike, 1911), accounts of goal-directed behaviour 

typically make a distinction between behaviour elicited by some triggering stimulus, and that 

which is controlled by the animal’s knowledge of the potential consequences of an activity 

(although c.f. Rescorla & Solomon, 1967). This distinction has given rise to a widespread 

notion that instrumental behaviour should be explained by the storage of expectations in 

some propositional form to be operated on in service of some intention. However, there is 

no reason to conclude that all such goal-directed behaviour is accomplished thus. The brains 

of even quite simple animals contain information regarding the dependencies of anticipated 

states on earlier states and actions (Menzel, 2013; Webb, 2004). Such expectations can be 

plausibly explained in the form of neural network representations, in that the environmental 

context activates a representation which intrinsically affords certain responses to the 

organism. Given the capacity to learn outcome-expectations, an animal needs no explicit 

representation of a goal or intention to engage in purposive behaviour, and control over 

conflicting priorities can be incorporated into the existing evidence-accumulator models as 

the difference between the intrinsic, or learned valence of expected outcomes. 

2.6.5 Working memory. Conspicuously absent from the sections above is any 

discussion of the holding or integrating information over time (i.e. working memory). 

Evidence-accumulator models are quite limited in this regard. Recall that the optimisation of 

reciprocally inhibitive architectures is largely dependent on neuromodulatory changes across 

neuronal populations (section 2.4.4). Such changes tend to be rapid, and these architectures 
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do not therefore lend themselves well to circumstances involving delayed feedback.15 This 

limitation does not necessarily restrict the function of evidence-accumulators, however. 

Contemporary accounts of working memory rely primarily on reverberatory, localized 

persistent activity (Compte, Brunel, Goldman-Rakic, & Wang, 2000; Freeman, 1995; 

Goldman-Rakic, 1995). Reverberatory systems such as these can be found at any level of the 

brain, and incorporation of this widespread property of neural function into the existing 

models of lateral-inhibition may provide insight into how such systems may hold and 

integrate information over time. 

2.7 Conclusion: Moving Toward Control Representations 

The preceding sections highlight the opportunities available for the brain to achieve 

control in the absence of higher-order control representations or cortical control 

mechanisms. An account of behavioural control in the brain can be largely explained by way 

of the adaptive tuning of neural network representations to attain, or maintain desirable 

states of the world and avoid that which might obstruct those states. The signals indicating 

that control is necessary may be evoked by the evolutionarily-hardwired, or experientially-

learned valences of stimuli. More significantly, the brain can support control-related 

phenomena typically ascribed to ‘executive’ functioning, without any homuncular modulation 

of ‘lower-order’ processes.  

Yet, such systems cannot account for all control-related phenomena. More 

complicated animals engage in behaviours that frankly outstrip the capacity for the models 

we have described. To adaptively resolve conflicts, evidence accumulators are reliant on 

highly context sensitive representations. This context-sensitivity allows the mechanism to 

integrate the difference in available evidence between competing representations. However, 

                                                
15 A notable exception in this regard can be found in Pais et al. (2013). 
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keeping with Godfrey-Smith’s (1998, 2002) thesis, as an organism moves toward increasing 

levels of sophistication, the brain must engage in more flexible ways to represent wider 

ranges of behavioural complexity in response to a wider range of environmental 

considerations (see Lazareva & Wasserman, 2008; Seger & Miller, 2010; Taylor & Stone, 

2009; Zentall, Wasserman, & Urcuioli, 2014). Let us then explore the ways in which neural 

network function might help us explain more complex behaviour. 
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Chapter 3: The Anatomy of a Control Representation 

3.1 Domain-General Representations as a Control Mechanism 

In an increasingly complex world, a brain requiring representations which account for 

each individual pairing of environmental context to action set would eventually place a 

prohibitive burden on the system. Since Lashley (1951), it has been generally accepted that 

sophisticated organisms, with particular reference to primate species, are capable of detecting 

the commonalities shared across experiences and thus group them into meaningful clusters 

to coordinate behaviour in complex environments. As such, where control is initially 

achieved by highly context sensitive representations, more domain-general representations 

would likely develop to exploit the naturalistic properties shared across environmental 

contexts (Botvinick & Cohen, 2014; Karmiloff-Smith, 1995; Lake, Ullman, Tenenbaum, & 

Gershman, 2016). These would permit an animal to more flexibly apply acquired knowledge 

in new ways and coordinate behaviour in new contexts, allowing animals to generalise 

performance across tasks sharing environmental commonalities. 

We are thus left to question how. Botvinick and Cohen call this a “metaoptimization 

problem”: 

“Given a particular distribution of naturally occurring tasks, how can the 

control system itself be configured so as to optimize performance across tasks? The 

objective function here involves not only single-task performance but also the 

generalizability of control—that is, the efficiency (“economy of scale”) gained by using 

similar representations to control multiple tasks” (2014, p. 1262). 

To highlight the necessity of an account of ‘metaoptimisation’ as it relates to control, 

let us return to the example of the Stroop task (Fig. 1). Cognitive demands may come into 

conflict for a number of reasons, depending on the nature of the task parameters (Cohen et 



REPRESENTATION IN COGNITIVE CONTROL 35 

al., 1990; Engle, 2002; Kahneman & Treisman, 1984; Posner & Snyder, 1975; Shiffrin & 

Schneider, 1977). It is likely, for example, that much of the difficulty experienced in 

executing the Stroop is evoked by the need for a more practiced, or ‘automatic’ process 

(word reading) to be overcome by a less commonly employed one (colour naming) 

(MacLeod & Dunbar, 1988; Posner & Snyder, 1975).  

Yet, difficulties like these would not emerge unless induced by the architecture of the 

brain. A fundamental challenge to any networked system is that of mutual interference, or cross 

talk. Cross talk occurs when two tasks share local resources, and so compete for their use 

(Allport, 1955; Cohen et al., 1990). In the Stroop, it would appear that the neural processes 

for both colour naming and word reading share systems (for example, those required to form 

a verbal response), and one must overcome the resultant cross talk to complete the task 

(Cohen et al., 1990; Feng, Schwemmer, Gershman, & Cohen, 2014). 

As the nature of tasks in which an organism engages becomes more complex, the 

likelihood that these tasks will share common processes increases, making their simultaneous 

performance impossible where these shared resources are integral to their execution (Navon 

& Gopher, 1979; Allport, 1980; Allport, Antonis, & Reynolds, 1972; Logan, 1985; Wickens, 

1984). Neural network models apply this at the level of the neuron; this cross talk arises 

when tasks recruit neural network representations that share neurons responsible for 

encoding input and specifying responses. This poses a control problem when one 

representation must be selected over another (recall section 2.3). Similarly, when a 

representation is recruited in service of multiple different tasks, or multiplexed, the brain will 

face difficulty in prosecuting those tasks simultaneously (Fig. 4; Feng et al., 2014). 

3.1.1 Task ‘rules’ inform conflict resolution. To resolve this particular conflict, 

some additional factor must intervene to bias action selection in favour of one response or 
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another. This poses no significant challenge alone. As has been discussed (sections 2.3.1; 

2.6.2), while this may be accomplished by some separate attentional or executive function, it 

need not be; evidence accumulator models describe an example of how this might be 

achieved in-house, so to speak. Typically, evidence accumulator models are used to resolve 

conflicting stimuli rather than conflicting responses. However, neural network 

representations make no distinction between the two; the stimulus affords the possible 

responses. As such, where a single stimulus affords two competing responses, we can 

 

Figure 4. Multiplexing of multiple tasks. This diagram illustrates three tasks 
(brown dashed lines) which engage multiplexed representations (diagonal 
connection represents multiplexing). Tasks 1 and 2 share input units (A). 
Tasks 2 and 3 share output units (Y). Carrying out Tasks 1 and 2, or Tasks 
2 and 3 simultaneously would result in conflict as they compete for shared 
resources. The connection between A and Y is less dominant (indicated by 
light colour) than the connection between B and Y. Where Tasks 2 and 3 
came into conflict, representation B-Y would win out without training. For A-
Y to win out in a transient context, Control Representation 1 would bias A-
Y to increase its responding allowing it to overcome the prepotent B-Y 
connection. 
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imagine that an accumulation process may suffice to allow one to ‘win out’. Yet, recall that 

the Stroop task is further complicated by the presence of automaticity—the participant must 

overcome the prepotent word-reading response to name the colours. While we might 

account for the initial bias in the networks described earlier and account for how this bias 

might change with training,16 it is far more difficult to imagine how this bias is mitigated such 

that the weaker response ‘wins out’ in the short term in accord with the transient task 

demands of the Stroop. 

Cohen et al. (1990) solve this issue in a traditional neural network model by 

introducing what they call ‘task demand units’ (Fig. 4). These are independent control 

representations which serve to bias processing in favour of the weaker representations in 

circumstances which demand this outcome. In the context of the Stroop task, these task 

demand units are imagined to represent the ‘rule’ determining the nature of the task at hand, 

and so bias the colour naming pathway to make it more responsive to its input (see also 

Cohen, Aston-Jones, & Gilzenrat, 2004, pp. 73-74). Cohen et al. (2004) suggest these task 

demand units are realised in the pre-frontal cortex, which are thought to sustain the 

activation of representations using the recurrent mutually excitatory connections 

characteristic of this brain region. The authors go on to make various plausible proposals for 

how these they may be ‘switched on’ using existing neural structures (Botvinick & Cohen, 

2014 review these in more detail; see also section 3.5.5). 

One is then left to question what forms such representations might take, and how 

these might contribute to control.  

                                                
16 Again, for example, consider that neuromodulation theoretically permits us to modify the baseline 

activation of neural network representations in an evidence accumulator model (section 2.4.3). This might explain 
the propensity to engage in one of these tasks over another. However, when one is solving the Stroop, it is not likely 
that one is altering baseline activation – to alter the prepotent response requires training (MacLeod & Dunbar, 
1988). 
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3.2 Classical Approaches to Domain-General Representations: Rules, 

Categories, and Concepts 

Traditional models of control place heavy emphasis on explicit domain-general 

representations to explain an animal’s ability to discern the value of stimuli across contexts 

(Anderson, 2013; Cowan, 2001; Engle, 2002; Miller & Cohen, 2001). These representations 

are referred to quite interchangeably as rules, categories, and concepts (Laurence & Margolis, 

1999; Zentall, Galizio, & Critchfield, 2002), but can be broadly defined as a “knowledge of 

groupings and patterns [of functional relevance] that are not explicit in the bottom-up 

sensory inputs” (Seger & Miller, 2010, p. 2). Based primarily on experimental observations of 

vertebrate behaviour, the classical literature presents the capacity to structure knowledge thus 

as a hierarchy of increasingly complex, discrete abilities (e.g. Herrnstein, 1990; Katz, Wright, 

& Bodily, 2007; Lazareva & Wasserman, 2008; Mackintosh, 2000; Thomas, 2012; Thompson 

& Oden, 2000; Zayan & Vauclair, 1998; Zentall et al., 2014). These range drastically from 

simple associative learning (for example discrimination based on a representation of colour) 

to abstract conceptual ability (e.g. discriminating more from less using some kind of 

numerical representation). 

3.2.1 The homunculus unnecessarily rears its head again. Borne out of, and 

complementing this hierarchical approach to categorical ability, the predominant neurological 

perspective distinguishes between behaviour based solely on stimulus-response relationships, 

and that which is coordinated by some cortical or otherwise executive function according to 

a rule (Fantino, 2003; Miller et al., 2003). This is largely due to the fact that damage to 

cortical regions appears to impair categorical decision tasks, particularly rule-learning and 

rule-switching in primates and humans (see Owen, Sahakian, Semple, Polkey, & Robbins, 

1995; Seger & Miller, 2010; Stuss et al., 2000) and the extraordinary task specificity evidenced 

in mammalian cortical cells (Asaad, Rainer, & Miller, 2000; Durstewitz, Vittoz, Floresco, & 
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Seamans, 2010; Everling, Tinsley, Gaffan, & Duncan, 2006; Hoshi, Shima, & Tanji, 1998; 

Karlsson, Tervo, & Karpova, 2012; Miller, Erickson, & Desimone, 1996; Miller et al., 2003; 

Schoenbaum & Setlow, 2001; Tsujimoto, Genovesio, & Wise, 2011; Wallis, Anderson, & 

Miller, 2001; Wallis & Miller, 2003; White & Wise, 1999). Correspondingly, researchers have 

sought to identify the executive mechanism responsible for this coordination, with an 

emphasis on prefrontal and other cortical areas, or their analogues in non-mammalian 

animals (Güntürkün, 2005; Kalenscher et al., 2005; Moore, Schettler, Killiany, Rosene, & 

Moss, 2012; Seger & Miller, 2010). However, this heavy emphasis on the role of the cortex in 

the learning of general rules and the role of the executive in applying these to ‘lower-order’ 

processes may be misplaced. Once more, we are faced with difficult questions about the 

nature of the mechanisms responsible for storing and employing these rules. 

This is made more puzzling in the face of evidence that domain-general processing is 

not restricted to discrete areas of the brain, or even the cortex, but rather that it is distributed 

across many interacting neural systems (e.g. Ashby & O'Brien, 2005; Poldrack & Foerde, 

2008; Seger & Miller, 2010; Smith & Grossman, 2008). Indeed, an extraordinary number of 

non-primate animals have satisfied experimental behaviour criteria intended to demonstrate 

the ability to learn and apply even the most complex rules (Katz et al., 2007; Lazareva & 

Wasserman, 2008; Maes et al., 2015; Minors, 2016; Roitblat & von Fersen, 1992), down to 

the level of the invertebrate, which have quite substantial differences in neural architecture 

from the typical subjects of these experiments (Avarguès-Weber & Giurfa, 2013; Minors, 

2016). 

If one were inclined to invoke the executive, therefore, it should only be a means of 

last resort. That even very simple animals can demonstrate ‘complex’ domain-generalisation 

indicates that the ability can emerge from the specialisation of more phylogenetically basic 
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neural structures. Indeed, the evolution of the brain is highly conserved. The major features 

of vertebrate neural organisation have been present from extremely early in its phylogeny 

(Butler & Hodos, 2005; Holland & Holland, 1999; Katz & Harris-Warrick, 1999; Shu, 

Hasenstaub, & McCormick, 2003), with homologous properties found in the invertebrate 

brain (Barron et al., 2015). It would not only be more plausible, but more parsimonious to 

conclude that this ability is a product of neural attributes that are shared by these creatures, 

rather than relying on specific neural structures present only in the brains of some animals. 

As such, exploring how domain-generalisation might emerge from more basic properties of 

neural function would likely prove a productive enterprise. 

3.2.2 Generalisation involves learning the structure of the environment. To 

start, we should consider again the defining characteristics of these domain-general 

representations. Ultimately, these ‘rules’ can be reduced to one shared trait; they comprise 

some aspect of the statistical structure of the environment. Certain properties of the world 

(e.g. the compositionality of environmental objects, the functional outcome of behaviours, or 

the properties of the environment which govern object manipulation [i.e. physics]) drive the 

development of more domain-general representations when learning these presents a more 

adaptive solution than relying on highly context sensitive representations (Lake et al., 2016). 

The crucial characteristic of learning domain-general representations then, is the interaction 

between environmental structure and the neural systems which process it (Reber, Gitelman, 

Parrish, & Mesulam, 2003; Seger & Miller, 2010; Zeithamova, Maddox, & Schnyer, 2008). As 

a consequence, the formation of ‘rules’ in the sense described above could be present in 
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numerous neural systems, to the extent that they are responsible for interfacing with the 

environment. 17 

Let us then return to the neural network literature, which has succeeded in emulating 

quite complex categorical processes, deriving structure from only the properties of the 

learning environment. 

3.3 Neural Network Architectures Provide Neurally Plausible Mechanisms for 

Learning the Statistical Structure of the Environment 

Proponents of neural network models typically examine how the structure of 

networks may influence the structure of information processing. As such, rather than 

characterise task rules and concepts as explicit knowledge structures, they tend to view them 

as epiphenomenal: emergent products of network dynamics in processing environmental 

features (McClelland et al., 2010). Recall that in a neural network model, representations take 

the form of connection weights, which describe what outputs are possible in the context of 

specific input activation patterns. In biological terms, when environmental contexts activate 

these representations, certain responses are intrinsically afforded within the network. 

3.3.1 Supervised network learning naturalistically supports generalisation 

across contexts. When neural network models are applied to (highly stylised) cognitive 

phenomena, they are typically implemented in a supervised manner (LeCun et al., 2015). This 

means that a generic network architecture will be applied to a task and the experimenter will 

add information to assist the system in its learning. The connection weights will then adjust 

in a mimicry of Hebbian plasticity so that the neural network representations will eventually 

                                                
17 This may not be true in all cases. For example, some rule-following appears to be linguistically mediated 

(e.g. Cole, Bassett, Power, Braver, & Petersen, 2014). How the application of a truly external rule to internal 
processes can be explained in the context of neural network function is not yet apparent, if possible at all, although 
interesting inroads are discussed in Schiffer, Siletti, Waszak, and Yeung (2017; see also section 3.7). 
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specify the correct output without the assistance of the experimenter. To illustrate, a network 

might be shown a series of images of vehicles, labelled by vehicle type. The system will 

configure itself such that it can eventually distinguish between these vehicle types, absent the 

labels. This approach has demonstrated that these neural network architectures can produce 

something akin to categorical learning. Stimuli which are in some way related activate similar 

or the same representational apparatus, which can thus support generalisation across 

stimulus classes, in the form of similarity-based inference (e.g. Forbus, Gentner, & Law, 

1995; Hinton et al., 1986).18 

This has led to proposals that the same occurs in a biological context: the neural 

structures involved in sensorimotor function could conceivably support more domain-

general functioning, assuming a network architecture (e.g. Barsalou, 2008). Neuroimaging 

provides preliminary support for this, revealing perceptual processing regions of the brain 

appear to also assume responsibility for more domain-general processing.19  

3.3.2 Network learning can inform and be informed by ‘expectation’. Not all 

domain-generalisation is informed solely by perceptual input. Rather, organisms learn a 

broad range of expectations that influence processing (as discussed in section 2.4). Consider, 

as an example, the mis-step that commonly occurs when stepping on a broken escalator, or 

when one erroneously anticipates a change in elevation; one’s expectation informs one’s 

interpretation of the lay of the land. In a similar way, and particularly evident in the visual 

literature, it appears that the brain anticipates possible interpretations of ambiguous stimuli 

                                                
18 One class of neural network architecture which has proved particularly effective in this regard is known 

as a convolutional neural network or convnet (LeCun et al., 2015), which will be discussed in more detail at section 
3.4.1. 

19 For example, motor regions involved in action execution have been found also responsible for planning 
and interpretation (Carr, Iacoboni, Dubeau, Mazziotta, & Lenzi, 2003; Di Pellegrino, Fadiga, Fogassi, Gallese, & 

Rizzolatti, 1992; Gallese & Goldman, 1998; Goebel, Khorram‐Sefat, Muckli, Hacker, & Singer, 1998; Jeannerod, 
1994). Visual regions have been found to be responsible for both perception and imagery (Kosslyn, Thompson, & 
Alpert, 1997). 
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based on contextually derived expectations, sampling probabilistically from a statistical 

distribution of possible percepts (e.g. Hoyer & Hyvärinen, 2003; Moreno-Bote, Knill, & 

Pouget, 2011; Said & Heeger, 2013; Wilson, Krupa, & Wilkinson, 2000). This process 

undoubtedly enhances an organism’s ability to generalise across contexts, interpreting novel 

circumstance through the lens of past experience (Gregory, 2005). 

A variation on the supervised models outlined in the previous section demonstrates 

how anticipation might be achieved as a function of network dynamics. Here, an expectation 

is programmed into the network in the form of a conditional probability distribution. When 

presented with ambiguous stimuli, the network will invert this distribution model using 

Bayes' rule, in order to compute the posterior probability (e.g. Dayan, Hinton, Neal, & 

Zemel, 1995; Kersten, Mamassian, & Yuille, 2004; Knill & Richards, 1996; Yuille & Kersten, 

2006). Utilising top-down connections, it will specify desired states for the associative units 

in lower levels of the processing hierarchy, attempting to create the patterns it anticipates will 

be presented to it as input (Clark, 2013; Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 

2010; Hinton, 2007). When complemented by the architectural properties of traditional feed-

forward models, these probabilistic distributions can be updated over time to improve their 

accuracy. Such models have made good progress in deriving the structure of higher-order 

representations based only on the statistical commonalities present in the environment (see 

Ghahramani, 2015). 

3.3.3 In a network, domain-general representations emerge and are updated 

using the statistical structure of the environment. Both of these approaches emphasise 

the likelihood that the brain may be structured in order to take advantage of the statistical 

commonalities shared across ecological contexts, without consolidating this information in 

some explicit manner. Indeed, they are complementary: with the addition of a prior 
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probability distribution, neural networks can optimise their behaviour by learning to match 

probabilistic outputs to the statistical structure of the training environment (Hinton & 

Salakhutdinov, 2006; Movellan & McClelland, 1993).  

It seems prudent to conclude, therefore, that given a network architecture, the 

capacity to generalise can emerge organically from the statistical structure of the learning 

environment in the absence of pre-specified knowledge structures (Hinton & Salakhutdinov, 

2006; LeCun et al., 2015; Rogers & McClelland, 2004). We are left to explain how these 

domain-general representations achieve control in circumstances where they conflict. In the 

following sections, I will argue that the neocortex provides substantial insight into this 

question. Let us then briefly turn our attention to the architecture of the neocortex, to 

explore the extent to which it lends itself to an application of the models we have discussed. 

3.3.4 Neocortical architecture can plausibly support domain-general network 

function. The brain is commonly presumed to operate in a feedforward manner. Hebbian 

theory of synaptic plasticity assumes that changes in neural architecture are induced by the 

persistent or repeated stimulation of the postsynaptic cell by the presynaptic cell (Hebb, 

1949, p. 62), or the lack thereof (Bienenstock et al., 1982). Neural network models, inspired 

by this property of brain function, similarly employ feedforward architectures. However, the 

neocortex is distinct in that each feedforward connection is paired with a feedback 

connection, the function of which is currently unknown (Gilbert & Li, 2013). While it is 

presumed that such connections facilitate the top-down modulation of earlier information 

processing, the precise mechanism is as yet unclear.  

In a recent paper, David Heeger (2017) utilises these feedback connections to model 

a process by which the properties of neural network function outlined in the previous 

section can be plausibly consolidated in a neocortical circuit. Into a generic neural network 
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architecture, Heeger adds a feedback connection for every feedforward connection. Each 

unit is therefore altered locally,20 a feature which supports the generation of more domain-

general representations. While neurons lower in the hierarchy of processing will adjust their 

responses rapidly in accordance with the perceptual input, those neurons higher in the 

hierarchy are likely to be both slower and more abstract, having been subjected to 

increasingly abstract input from lower levels.21 This then permits a neural network 

architecture to develop domain-general representations in an emergent fashion; the slower, 

higher levels will be more broadly responsive to the commonalities shared across the details 

conveyed by the lower, faster levels.  

A final input into each unit, the prior, is designed to simulate prior expectation and 

memory, and depends on the weighted sum of previous responses over time.22 This permits 

the system to propagate an expectation, or otherwise stored representation down the 

processing hierarchy via the feedback connections.23 This, then, is functionally equivalent to 

the influence of a probabilistic distribution on the network,24 supporting anticipation based 

on contextually derived expectations. 

Of course, the specifics of Heeger’s model are open to debate, and the theoretical 

aspects may prove inaccurate in any number of ways. However, the model serves to 

                                                
20 This is non-trivial. Local adjustment differs from the common approach to weight adjustment employed 

by neural network models, known as backpropagation; a non-local process which has been criticised as neurally 
implausible (see Bengio, Lee, Bornschein, Mesnard, & Lin, 2015). 

21 This particular feature mirrors a hypothesis within the neurological literature. It is thought that fast 
plasticity in the form of large synaptic weight changes, in neural systems lower in the processing hierarchy train 
higher neural systems which are slower, with smaller weight changes (Gilbert & Li, 2013; Seger & Miller, 2010). 

22 This dependency allows these expectations to take the form of a neural network representation, which 
are currently active at the higher, more abstract layers of the model, or might be stored for example, in the 
hippocampus or other neural regions akin to contemporary accounts of Semon’s (1921)  ‘engram’ (see also section 
3.7). 

23 The dominance of the prior is determined by state parameter variables explicitly linked to empirical 
findings concerning the influences of other neural processes thought to impact the system, such as attention, 
neuromodulation, and neural response variability for example. 

24 Indeed, Heeger explicitly makes this link, demonstrating that the prior input can plausibly be interpreted 
in terms of a prior probability distribution. 
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demonstrate that the neocortex has a unique capacity to plausibly achieve whatever form of 

neural network architecture that is required of it to support the naturalistic development of 

domain-general representations.  

This demonstration is a useful prologue to an examination of another unique feature 

of the neocortex; that it is optimised according to the structure of naturalistic task demands. 

This property does much to emphasise the credibility of interpreting cortical function from a 

neural network perspective. 

3.4 The Neocortex is Best Viewed as a Multidimensional Task Map 

The neocortex is typically viewed as a two-dimensional sheet of functionally similar 

vertical cell columns (Fig. 5; Hubel & Wiesel, 1959; Mountcastle, 1997; although c.f. Horton 

& Adams, 2005). Discrete regions of the neocortex can be distinguished by clusters of cell 

column activation that appear to emphasise different information domains (Cowey, 1979; 

Penfield & Rasmussen, 1950; Woolsey, 1952). This organisational feature appears to adhere 

to a principle of ‘like-attracts-like’; regions appear to maximise local functional similarity 

(Kaas & Catania, 2002; Kohonen, 1982; Rosa & Tweedale, 2005; Saarinen & Kohonen, 

1985). ‘Like-attracts-like’ is most well described in the visual cortex, in which adjacent or 

overlapping areas of the visual field activate adjacent radial cortical columns (Rosa, 2002). 

The same can be said of the organisation of the primary motor cortex, long observed to be 

differentially responsive to discrete body parts (e.g. Jackson, 1873; Schott, 1993). The 

mechanisms which contribute to this broad characteristic are currently unknown, although 

current views tend to draw from the mechanisms which drive functionally similar sub-

cortical regions (Martinetz, 1993; Rosa, 2002; Rosa & Schmid, 1995). In particular, 
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genetically-determined cell-surface chemical cues that guide axons to their targets would 

naturally result in a localised structure, and activity-dependent synaptic plasticity would result 

in similar response patterns shared by cells in close proximity. Evolutionary perspectives 

have also been advocated. For example, a proximally organised architecture would be 

particularly adaptive due to the increased efficiency borne of the attendant reduction in 

wiring between associated neurons (Chklovskii, Schikorski, & Stevens, 2002) or the frugal 

expenditure of action potentials (Barlow, 1961). 

Consider again the potential for the neocortex to exploit the properties of neural 

network function (section 3.3.4). We would expect therefore that the neocortex would also 

incorporate the structure of the environment to facilitate performance. A recent account of 

this ‘like-attracts-like’ characteristic presents a parsimonious interpretation of neocortical 

organisation that both conforms to our expectations in this regard and encompasses the 

 

Figure 5. Illustration of neocortical sheet and cortical column. To the left (a), 
the neocortical sheet of a human brain is exposed along the horizontal 
plane. The neocortex is comprised of functionally similar vertical cell 
columns which each span the total height (top to bottom) of the sheet. To 
the right (b), a segment of the cortical sheet is blown up to illustrate a typical 
cortical column. 
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considerations outlined above. This view proposes that the topography of the neocortex is 

best viewed as an optimal mapping of task-relevant parameters onto the two-dimensional (2-

D) space of the cortical sheet, in order to maximise interactions between neurons concerned 

with related operations (Cowey, 1979; Durbin & Mitchison, 1990; Graziano, 2016; 

Obermayer, Schulten, & Blasdel, 1991).  

3.4.1 Mapping visual task parameters to a 2-D plane resembles the visual 

cortex. In their seminal paper on the topic, Durbin and Mitchison (1990) modelled the 

connections between neurons restricted to a two-dimensional plane (to mimic the two-

dimensional nature of the neocortex) responsive to both stimulus position on the retina and 

orientation. The model attempted to maximise the colocation of neurons with similar 

receptive fields. The premise for this constraint was based on a feature of the primary visual 

cortex (V1) known as ‘selective tuning’ or ‘feature-extraction’, in which V1 neurons 

selectively respond to visual stimulus features (Blakemore, 1974; Niell & Stryker, 2008; 

Tsotsos et al., 1995). This property is heavily dependent on the interaction between neurons 

which respond to neighbouring regions of space, an operation which would be prohibitively 

complex without the colocation of such cells (Cowey, 1979). The result of this 

‘dimensionality reduction’ from the multi-dimensional parameter space to the two-

dimensional plane generated a complex arrangement qualitatively resembling that of an 

experimentally measured macaque striate cortex.  

Erwin, Obermayer, and Schulten (1995) extended the model and included 

binocularity as a parameter, successfully reproducing the relationship between ocular 

dominance stripes and orientation columns seen in the macaque brain. In parallel, and 

utilising an alternative dimensionality reduction algorithm, Obermayer and colleagues 

modelled the same parameters, reproducing experimentally obtained data on cortical ocular 
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dominance maps and orientation with an extraordinary degree of precision (Obermayer, 

Blasdel, & Schulten, 1992; Obermayer, Ritter, & Schulten, 1992; Obermayer et al., 1991). 

Finally, Goodhill and Willshaw (1990) modelled the effect of abnormal eye function in the 

form of strabismus and monocular deprivation. The model demonstrated that the 

development of retinotopic stripes characteristic of the visual cortex in primates and the 

optic tectum in amphibia and fish could plausibly be a function of retinal parameters.  

The suggestion then, is that these models do indeed reproduce the ontological 

pressures which guide neocortical development. The propensity of the neocortex to 

maximise the colocation of neurons with similar receptive fields results in the mapping of 

task-relevant parameters to the more constrained 2-D cortical sheet. Thus, an animal’s 

interaction with the environment appears to drive cortical localisation in a manner consistent 

with the properties of neural network function outlined earlier (section 3.3.1).  

Indeed, based on these properties of visual processing, a class of neural network 

architecture known as ‘convolutional’ neural networks organise associative layers into 

‘feature maps’, a function which maps data vectors or parameters from feature space to the 

two-dimensional surface of the feature map (LeCun et al., 2015). These maps can learn 

specific stimulus features, and then detect those features across the entirety of the map, 

independent of a given stimulus’ position in feature space (for example, its location on an 

image, or its position in time). Such networks not only match human performance in a range 

of categorical tasks (Lake, Zaremba, Fergus, & Gureckis, 2015; Mnih et al., 2015; Peterson, 

Abbott, & Griffiths, 2016), but also predict primate cortical activation patterns in a manner 

similar to the dimensionality reduction models described here (Khaligh-Razavi & 

Kriegeskorte, 2014; Kriegeskorte, 2014; Yamins et al., 2014). 
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3.4.2 Mapping behavioural parameters to a 2-D plane resembles motor 

cortices. The work of Graziano and Aflalo (2007; also see Aflalo & Graziano, 2006a, 2006b, 

2007) successfully extended the dimensionality reduction procedure to the motor cortex. A 

series of experiments (Graziano, Aflalo, & Cooke, 2005; Graziano, Cooke, Taylor, & Moore, 

2004; Graziano, Taylor, & Moore, 2002) applied electrostimulation to macaque cortical 

regions over a timescale approximating that of common macaque actions. A number of 

complex movements were provoked, resembling those found in the animal’s normal 

behavioural repertoire, such as reaching and grasping, or hand to mouth actions. These 

findings spurred the hypothesis that the parameters relevant to the organisation of the motor 

cortex are related to: (1) the location of muscle groups on the body, (2) spatial correlates to 

common movements, and (3) the behavioural commonalities shared between aspects of the 

movement repertoire (Aflalo & Graziano, 2006b; Graziano & Aflalo, 2007). Implementing a 

dimensionality reduction model which optimised local continuity between these three 

competing parameters produced a topography bearing a striking similarity to that of the 

actual macaque motor cortex. This similarity extended well beyond the primary motor 

 

Figure 6. Comparison between model motor map and experimentally obtained data. (a) 
Arrangement of eight ethological movement categories after model simulation. (b) Activity 
measured in monkey motor cortex during eight ethological movement categories clustered 
in these discrete regions. There is a high level of topological similarity between the clustering 
of the movement categories in both model and actual cortical location. Adapted from Neuron, 
Vol. 56, Graziano and Aflalo, Mapping Behavioural Repertoire onto the Cortex, pp. 239-251, 
Copyright (2017), with permission from Elsevier. 
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cortex, into pre-motor and supplementary regions, reproducing the organisation of roughly 

20% of the cortical mantle (Fig. 6).  

The results were thus taken to demonstrate that the macaque motor cortex is 

organised in order to maximise connections between neurons sharing motor control 

responsibilities, constrained by task demand. The success of this approach contributed to a 

large body of literature extending these findings across a range of primate and rodent species, 

incorporating a variety of action-relevant parameters, and including a range of exploratory 

techniques (see Graziano, 2016 for a review). In all cases, the evidence appears to converge 

on the motor cortex being organised into zones emphasising common task-related 

behaviours, constrained by the need to map the multi-dimensional task space to the 2-D 

cortical sheet. 

This ‘like-attracts-like’ organisational characteristic, then, bears some interesting 

similarities to the properties of network function described in the previous sections. In co-

locating functionally similar neurons, the cortex incorporates the structure of the 

environment and the interactions of the agent within it. This provides ample opportunity for 

generalisation in the form of similarity-based inference, assuming a network architecture. The 

significance of this as it relates to control will be elaborated further in section 3.5, but first I 

think it appropriate to further highlight the value in interpreting cortical organisation from 

this perspective as opposed to other, more traditional perspectives. 

3.4.3 Mapping task parameters onto the limited dimensions of the neocortical 

sheet explains neglected features of neocortical topology. While the research in this 

domain has been restricted to the motor and visual cortex, this theory is uniquely attractive. 

The ‘like-attracts-like’ property of the neocortex appears to be operating simultaneously 

across multiple dimensions of functional similarity and all possible task domains, the 



REPRESENTATION IN COGNITIVE CONTROL 52 

outcome of which is best viewed as a complex multi-dimensional task map. Not only are the 

empirical results of the dimension-reduction experiments enticing, but the output aligns well 

with existing findings on the subject, some of which currently remain unexplained. 

Importantly, the theoretical underpinnings align with the predominant views 

regarding the biological mechanisms of cortical development mentioned earlier. Recall that 

the primary mechanisms thought to drive cortical organisation relate to genetically-

determined chemical cues and activity-dependent plasticity (section 3.4). In these models, the 

localisation function is essentially derived from principles of synaptic plasticity and there is 

no reason why chemical cues could not contribute. Indeed, noting that the dimension 

reduction algorithm changes from study to study (at times substantially, e.g. Durbin & 

Mitchison, 1990; c.f. Obermayer et al., 1991), it seems reasonable to conclude that regardless 

of the algorithm used, constraining a dimensionality reduction model to maximise local 

continuity will reproduce actual cortical regions with a high level of similarity. This suggests 

that any biological mechanism utilising this principle would produce similar results. Likewise, 

assuming a network architecture, we would expect the neocortex to derive its structure from 

the properties of the learning environment (section 3.3.4). That the ‘like-attracts-like’ 

organisational property naturalistically incorporates the nature of the task-demand is 

encouraging in this respect. 

The resultant output also naturally reproduces features of cortical organisation left 

largely unaddressed by existing theories. Many researchers note with puzzlement that cortical 

columns will frequently share overlapping responsibilities, despite belonging to functionally 

distinct regions of the neocortex (e.g. Graziano, 2008; Rosa & Tweedale, 2005; Schieber, 

2001). This is better explained as the result of competitive responsivity to multiple task 

parameters. Similarly perplexing are the apparently random fractures evident across cortical 
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regions in which strips of adjacent neurons respond to discrete inputs (e.g. in the motor 

cortex Manger, Woods, Muñoz, & Jones, 1997; in the visual cortex  Rosa & Schmid, 1995) 

These too can be better explained as an emergent feature of mapping multiple competing 

task demands onto the two-dimensional surface of the cortex. Both overlapped and fractured 

organisations naturalistically appear in these models (Aflalo & Graziano, 2006b; Durbin & 

Mitchison, 1990; Graziano & Aflalo, 2007; Obermayer et al., 1991). Assuming these features 

are indeed best explained by the colocation of functionally related neurons, they are of 

critical interest to us in considering the nature of control (section 3.5.1). 

Finally, progressive cortical regions appear to respond to stimuli with increasingly 

complex activation patterns. Traditional approaches to cortical maps interpret these as 

‘second-order’ transformations of stimuli (Allman & Kaas, 1974; Rosa, 2002). Alternatively, 

they have been considered as a hierarchy in which higher-order areas combine input from 

lower-order regions responsible for encoding perceptual features of a stimulus, or coordinate 

the regions responsible for behavioural outputs (Evarts, Shinoda, & Wise, 1984; Porter, 

1985). While it is likely that a hierarchical structure does exist to some extent, it is similarly 

likely that some regions thought to be hierarchical may be better viewed as responding to 

features of a task which are more complex in nature. For example, the results of the motor 

cortex models demonstrate that some premotor regions, thought to be hierarchically distinct 

from the primary motor cortex in primates, may in fact be responsible for emphasising 

aspects of the animal’s movement repertoire requiring more than one body part (Graziano, 

2008; Graziano & Aflalo, 2007). Thus, premotor areas necessarily appear more complex than 

the primary motor cortex, which correlates more closely to individual body parts. Given that 

both regions project directly to the spinal cord (Dum & Strick, 2002), such an interpretation 

seems appropriate and indeed, aligns more closely to the rodent literature, which makes no 

hierarchical distinction between motor areas (see for example Brown & Teskey, 2014; 
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Dombeck, Graziano, & Tank, 2009; Harrison, Ayling, & Murphy, 2012; Isogai et al., 2012; 

Ramanathan, Conner, & Tuszynski, 2006). I suggest that this particular characteristic also has 

implications for the nature of control-related processing, assuming a network architecture 

(section 3.5.1). 

This ‘like-attracts-like’ characteristic then, presents a particularly attractive lens 

through which to interpret neocortical organisation. Not only does it align well with existing 

theory in this domain, it appears to account for previously neglected features of neocortical 

topography. Crucially, it conforms to our expectations regarding the influence of 

environmental structure on neural network function; the neocortex derives its structure from 

the properties of the environment. I suggest that this architectural feature has profound 

implications regarding the nature of control-related processing. 

3.5 Control Emerges from Massively Multiplexed Domain-General 

Representations. 

Assuming a network architecture, a propensity to co-locate neural resources in the 

manner described above would introduce a substantial level of potential conflict into the 

system. Recall the notion of cross talk (section 3.1). Where two tasks share local resources, 

they must compete for their use. In the context of the Stroop task, this manifests as a 

conflict wherein the processes responsible for colour naming and word reading share 

systems. One must overcome this cross talk to complete the task (Allport, 1955; Cohen et al., 

1990). Recall also that neural network models apply this at the level of the neuron in the 

form of multiplexing; where tasks recruit the same representational apparatus to execute 

multiple tasks, their simultaneous performance becomes impossible (Fig. 4; section 3.1; Feng 

et al., 2014). In maximising local functional similarity, the likelihood that neocortical regions 
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will be multiplexed is amplified. The substantial overlap and blurring of functional 

responsibility characteristic of neocortical maps suggests that this is the case (section 3.4.3). 

This is not necessarily surprising. A multiplexed neural architecture would provide 

substantial flexibility to the system (Botvinick & Cohen, 2014; Feng et al., 2014; Forbus et al., 

1995; Hinton et al., 1986). Firstly, multiplexing would minimise the metabolic and functional 

costs of operation (section 3.4; Barlow, 1961; Chklovskii et al., 2002). More importantly, 

multiplexing supports generalisation across tasks sharing representations. Recollect that in a 

neural network, task demands which are in some way related will activate the same 

representational apparatus, allowing for similarity-based inference (section 3.3.1). This 

feature is key to the success of neural network models in emulating human performance for 

complex tasks (section 3.4.1). Multiplexed representations are thus an efficient mechanism 

with which to generalise across common environmental characteristics to support 

performance in complex tasks (e.g. Forbus et al., 1995; Hinton et al., 1986). I suggest that the 

neocortex makes full use of these benefits, particularly as it becomes responsive to 

increasingly complex task demands. 

3.5.1 The neocortex is massively multiplexed. In any system which seeks to 

minimise redundancy, multiplexing implies an important corollary. As tasks become more 

complex, they will increasingly share resources with other tasks in order to minimise the 

double-handling of common sub-processes (Navon & Gopher, 1979; Allport, 1980; Allport, 

Antonis, & Reynolds, 1972; Logan, 1985; Wickens, 1984). As such, multiplexing would be 

particularly evident at the level of more abstract, or domain-general representations for at 

least two reasons. 

Firstly, it seems likely that the ‘like-attracts-like’ principle would manifest at this level. 

It is no stretch to imagine these as ‘higher-level’ feature dimensions which would also act as 
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parameters guiding the topology of neocortical regions. This would complement the finding 

that some regions of the cortex appear to respond to more complex features of tasks (noted 

in section 3.4.2; also see Graziano, 2008). 

Secondly, recall the implications of neural network learning, particularly as it would 

pertain to the neocortex (section 3.3.4). As perceptual signals propagate through the system, 

the neural responses in higher layers will become both slower and more abstract due to the 

increasing complexity of signals from layers lower in the processing hierarchy (a functionality 

which compliments neurocognitive proposals, e.g. Seger & Miller, 2010). Consequently, 

higher levels will be broadly responsive to environmental commonalities, rather than 

transient features. This means that ‘like-attracts-like’ is not only influencing higher levels 

directly, but also via the signals propagated from lower levels, themselves organised 

according to ‘like-attracts-like’. 

Thus, as the neocortex becomes responsive to increasingly complex task parameters, 

it will also become increasingly multiplexed. Given that representational multiplexing will 

introduce additional conflict in any ecological scenario in which functionally similar tasks, or 

their supporting internal processes compete, this seems to present a troubling control 

problem. However, recent work by Feng et al. (2014) suggest it actually limits the complexity 

required of a control mechanism. 

3.5.2 Multiplexing intrinsically constrains control. Feng et al. (2014) modelled a 

number of different sized neural networks, containing between 10 to 1000 individual 

representations. Each representation was given an individual ‘task demand’ unit to 

implement control by biasing the response of the representation, allowing it to ‘win out’ over 

competitors. The system had no intrinsic constraint on control, meaning every control unit 

could be activated at once. A ‘task’ in the system was simulated when the output unit activity 
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of a given representation was congruent with the input unit activation. The authors then 

assigned each representation a random amount of overlap with other representations in the 

system to simulate multiplexing. 

Two findings are particularly pertinent to this thesis. Unsurprisingly, multiplexing 

imposed limitations on the multi-tasking of those ‘tasks’ subject to interference. Interestingly, 

this limitation reached a maximum number of conflicting tasks after only a modest degree of 

multiplexing, and upon which the size of the network had only a marginal influence. This 

suggests that introducing multiplexing into a neural architecture intrinsically limits the 

amount of possible multitasking quite significantly, regardless of the representational capacity 

of the system. This implies that multiplexing also limits the complexity required of the 

control system—it need only provide control in circumstances where multiple tasks are 

possible.  

The second finding was somewhat counter-intuitive. While activating control units 

did improve performance to a point, it also contributed cross talk to the system (Fig. 7). 

Connections in the model could be either excitatory or inhibitory. Multiplexing resulted in 

the same output units containing both inhibitory and excitatory links from different input 

units. Recall that ‘tasks’ required the output units of a representation to be congruent with 

the input units. Should a control unit increase the strength of an irrelevant representation 

possessing an incongruent connection to the output units involved in the task, this would 

interfere with the congruency between the input and output units of the task. For example, 

in a task requiring a representation with excitatory links from input to output units, allowing 

a control unit to strengthen an irrelevant representation with an inhibitory link to the output 

units involved in the task would interfere with the task’s performance. As such, to achieve 
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optimal performance, the system was forced to limit the number of active control units, else 

introduce too much additional conflict into the system.  

When considered together, the findings indicate that not only would control in a 

network architecture prove deleterious in some respects, the presence of multiplexing alone 

would intrinsically limit the number of control-demanding tasks that could be carried out 

simultaneously. Thus, the control system need only provide control in very limited 

circumstances: where multiple tasks are possible. This then begs the question, in a neural 

network architecture constrained by the implications of multiplexing, under what conditions 

would the system need to allocate control? 

 

Figure 7. Control units may contribute cross talk by activating irrelevant multiplexed 
representations with incongruent connections to a task. This diagram illustrates four tasks 
(brown dashed lines) which engage multiplexed representations (diagonal connection 
represents multiplexing). Orange connections are excitatory. Blue connections are inhibitory. 
Activating Control Representations 3 and 4 to increase the responding of C and D would have 
no effect on the ability to carry out Tasks 3 and 4 simultaneously as all connection types are 
congruent. However, the activation of Control Representation 3 would introduce conflict into 
Task 2 as the connection between C and X is incongruent with the connection between the 
input units (B) and output units (X) involved in the task. 
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3.5.3 The need for control is determined by task pre-conditions. The final piece 

of the puzzle concerns a defining characteristic of complex behaviour. Recall that cognitive 

control describes the tuning of cognitive processes in service of a goal. It has been the 

recurring observation of behavioural scientists that purposive behaviour takes the form of a 

pre-conditional hierarchy: simple actions are coordinated to achieve subtasks, which 

themselves are nested within more complex tasks (Lashley, 1951; Miller, Galanter, & 

Pribram, 1986; Sacerdoti, 1974). As a simplistic example, consider the hungry monkey. To 

reach the banana, it must first climb the tree. To climb the tree, it must coordinate reaching 

and grasping movements of the hands and feet. Pre-conditional hierarchies are a strikingly 

ubiquitous feature of goal-directed behaviour; even the humble bumblebee has been 

observed to manipulate objects in order to reach a sugar water reward (Alem et al., 2016). 

More to the point, experimental evidence suggests that complex animals deconstruct these 

hierarchies to inform their planning (Bruner, 1973; Fischer, 1980; Greenfield & Schneider, 

1977; Zacks, Kurby, Eisenberg, & Haroutunian, 2011). 

This should not surprise us. The benefits to an animal in exploiting the extant pre-

conditional hierarchies in naturalistic tasks are identical to the benefits of grouping stimuli 

and responses into functional categories. By decomposing complex behaviours into 

constituent parts, not only can they be more efficiently coded, but they also lend themselves 

to generalisation—the constituents can be applied in different ways under different 

conditions in ways that a larger behavioural routine cannot (Allport & Alan, 1997; Hayes‐

Roth & Hayes‐Roth, 1979; Laird, Rosenbloom, & Newell, 1986; Taatgen & Lee, 2003). We 
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should expect then that as a defining parameter of naturalistic tasks, the neocortex will 

incorporate the pre-conditional nature of behaviour into its task map.25 

The evaluation of the influence of pre-conditional hierarchies on the physical 

topology of the brain is in its infancy. However, the research appears to converge on a 

structural feature that not only conforms to our expectations, but has great significance for 

the implications brought forward by Feng et al. (2014), as described in the previous section. 

Pre-conditional hierarchies will characteristically demonstrate what has been called a 

‘community structure’ (Newman, 2004; Radicchi, Castellano, Cecconi, Loreto, & Parisi, 

2004); groups of related items (a community) will be distinguishable from other communities 

by the pre-conditions which define them (Botvinick & Cohen, 2014). 

An exemplar in this respect is the Tower of Hanoi task (Fig. 8), commonly employed 

in cognitive control assays (Allport & Alan, 1997). Visualised in graph form the task 

manifests as a network of densely connected groups, representing the legal moves 

permissible in each stage of the task, separated by bottle-neck like edges, reflecting the 

necessary pre-conditions for exploiting the legal moves in each stage and thus, solving the 

task.  

                                                
25 The cortical localisation literature discussed in section 3.4 emphasises genetically-determined cell-surface 

chemical cues which guide axons to their targets and activity-dependent synaptic plasticity as likely biological 
contributors to the localised structure apparent in the neocortex. These same mechanisms could be invoked to 
account for the mapping of pre-conditional structures to the cortex. Accounts of motor behaviour tend to 
characterise action sequences as originating from genetically specified propensities (e.g. Aldridge & Berridge, 1998; 
Bruner, 1973; Elfwing, Uchibe, Doya, & Christensen, 2007) and developed further via associative learning, which is 
facilitated in the brain by Hebbian plasticity (e.g. Conway & Christiansen, 2001; Fischer, 1980; Greenfield, Nelson, 
& Saltzman, 1972). 



REPRESENTATION IN COGNITIVE CONTROL 61 

The brain appears to be highly sensitive to the community structure of such 

naturalistic tasks. Regions of highly localised activity, which respond to discrete task features 

(termed modules),26 coactivate differentially during both task and resting states (termed 

functional connectivity). Contemporary accounts of this functionality suggest that the brain is 

primarily organised to reflect a relatively stable community structure in a resting state, with 

only minor deviations during some task states (see Cole et al., 2014 for a review). A recent 

meta-analysis of more than 1600 functional connectivity studies provides strong evidence for 

this assessment, estimating the similarity of activation patterns across 638 brain regions 

during experimental tasks (Crossley et al., 2013). The authors found a high correlation 

                                                
26 While these ‘modules’ have at times been equated with Fodor’s (1983) mental modules (e.g. Meunier, 

Lambiotte, & Bullmore, 2010), given the extensive evidence intimating the like-attracts-like properties of the cortex 
(see again section 3.4, 3.5.1), I suggest that these are better considered in terms of localised regions of functional 
similarity. 

 

Figure 8. Tower of Hanoi task visualised in graph space. The Tower of Hanoi involves a set of 
disks of varying sizes, each of which can be placed on any of three posts. No disk can be 
placed on a smaller disk. With the smallest (blue) disk only, there are three options. When a 
second, larger (green) disk is added, a pre-condition becomes apparent. Blue can make three 
moves for every position green takes on the posts, but green can only make one movement 
(to the post that blue does not occupy). Adding a third, still-larger (red) disk adds a second 
series of pre-conditions. The blue and green movements are unconstrained by red, but red 
can only move to the post that green and blue do not occupy. The resulting structure illustrates 
the general point that pre-conditional tasks naturally induce hierarchical structures, comprising 
clusters or “communities” of states separated by state space bottlenecks. Reprinted from 
Cognitive Science, Vol. 38, Botvinick and Cohen, The Computational and Neural Basis of 
Cognitive Control: Charted Territory and New Frontiers, pp. 1249-1285, Copyright (2017), with 
permission from John Wiley and Sons. 
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between the resultant data and the resting state neuroimaging data of healthy control 

subjects. This stability conforms well to our expectations assuming a network derived task 

map – at higher levels of processing, neural responsivity should be more broadly responsive 

to environmental commonalities, rather than transient features (section 3.5.1).  

Interestingly, the authors identified apparent competition between nodes, signified by 

concomitant activation and deactivation of paired regions during tasks. These competitive 

interactions were more likely to appear between regions in different modules than those in 

the same module. More importantly, this was most apparent in the relationship between 21 

particularly high-density rich-club nodes which were responsive to a larger set of task features, 

and less well connected peripheral nodes, responsive to a more restricted number of task 

features. Specifically, activation in rich-club nodes was accompanied by decreases in the 

activation of peripheral nodes. The authors suggest two alternative explanations for this 

phenomenon. One interpretation is that coactivation is a finite resource; all modules cannot 

be simultaneously coactive (see also Kastner, De Weerd, Desimone, & Ungerleider, 1998). 

The alternative is that rich-club nodes ‘switch off’ modules under certain task conditions, or 

suppress activity in inactive modules (see also Drevets et al., 1995; Kawashima, O'Sullivan, & 

Roland, 1995). While the authors critique the latter as homuncular, I suggest that in the 

context of network function, these accounts are complementary. Consider the implications 

of multiplexing (section 3.5.2). The activation of domain-general representations is likely to 

intrinsically constrain the activation of functionally similar representations. The associated 

deactivations in peripheral nodes may well come about as a result of representational 

multiplexing. However, we must also consider the proposed function of domain-general 

representations—to detail the functional relevance of behaviours across a broader range of 

environmental features and bias responding accordingly (section 3.1.1; 3.2.2). It may be that 
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the associated deactivations come about as the more domain-general rich-club nodes bias 

responding to allocate multiplexed resources to one task over another (see also section 3.5.4). 

Recent computational work complements these findings, providing insight into how 

these pre-conditional task ‘modules’ are formed and implemented. Applying a generic neural 

network model to a task with a community structure will reflect that structure following 

training; nodes within a sub-task grouping will be reflected by similar activation patterns than 

those in different groups (Schapiro, et al. 2013). Neuroimaging reveals an equivalent effect 

within the frontal and temporal cortex (Schapiro, Rogers, Cordova, Turk-Browne, & 

Botvinick, 2013) and hippocampus (Schapiro, Turk‐Browne, Norman, & Botvinick, 2016) of 

human participants during the same or similar tasks; neural responsivity to events clusters 

according to sub-task groupings with training. Further, when a model network is imbued 

with a probabilistic distribution at the highest level of processing (as seen in section 3.3.3), it 

will demonstrate simulated behaviour very similar to that demonstrated by humans in real 

behavioural assays (Collins & Frank, 2013; Mnih et al., 2015; Solway et al., 2014). Both 

simulated agent and human participant are sensitive to and utilise bottlenecks in their 

planning, indicating that humans may possess an expectation that tasks can be deconstructed 

to exploit naturalistic pre-conditions.  

3.5.4 A community structure implies that when tasks conflict, control will be 

emergent and functionally segregating. This sensitivity to community structure then, 

quite neatly describes the conditions which would demand the allocation of control. In 

circumstances where task parameters congregate on cortical regions of particular functional 

similarity, representational multiplexing will inherently prevent these tasks from being carried 

out simultaneously. These regions would be determined in part by their role as a pre-

conditional bottleneck: where multiple tasks require the operation of that cortical zone as a 
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pre-condition to their execution. Thus, when two or more tasks compete for that resource in 

a given ecological scenario, the nature of the task, informed by the domain-general 

representations specifying the appropriate contingency-context pairing, will bias responding 

to allocate the resource to one task over another. The plausibility of this conclusion is 

highlighted by the findings of Crossley et al. (2013): highly interconnected modules of 

functional similarity appear to compete for activation. When more domain-general 

neocortical regions are active, less well connected peripheral regions deactivate. 

Recall the task demand units posited by Cohen et al. (1990); independent domain-

general control units which serve to bias processing according to the nature of the task 

demand (section 3.1.1). Miller and Cohen’s (2001) guided activation theory (GAT) extrapolates 

this idea in a manner quite compatible with the conclusion proposed here. In GAT, it is 

suggested that the prefrontal cortex can be viewed as a map that specifies the pattern of 

neural network representations in other cortical or subcortical regions required to solve a 

task, particularly when these pathways overlap. Botvinick, Niv, and Barto (2009) review 

evidence suggesting the dorsolateral striatum may act in a similar manner, drawing inputs of 

task sets from frontal cortices and specifying neural network representations accordingly, 

with particular reference to the region’s response specificity during action sequences. Both 

proposals have seen successful application in the context of a neural network architecture, 

emphasising the neural plausibility of these accounts (Botvinick & Cohen, 2014; Frank & 

Claus, 2006; O'Reilly & Frank, 2006; Rougier et al., 2005). Indeed, GAT is but one of a 

number of recent theories that share a similar premise (see Botvinick & Cohen, 2014 for an 

overview). 27 Despite their differences in mechanism, the common thread concerns more 

general, established representations that are activated to the appropriate degree in order to 

                                                
27 Although GAT has seen the most substantial empirical development. 
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bias less complex representations in service of an adaptive outcome. I suggest that in many 

cases, the pre-conditional representations described in the preceding section not only serve 

this purpose, but also serve as the signal that control is needed, activated when multiple tasks 

require them as a resource. 

3.6 Conclusion: Control is Achieved as a Function of the Pre-conditions for 

Representational Action Sets 

Let us then return to Botvinick and Cohen’s (2014) ‘metaoptimization’ problem; how 

might control mechanisms optimise performance across a broader range of tasks most 

efficaciously? A salient corollary concerns the nature of this optimisation; how can we 

account for these control mechanisms without deferring to the homunculus? Quite profound 

answers to this question appear plausible in the neocortex. 

Complex behaviour seems to necessitate representations which permit an animal to 

generalise performance across tasks sharing environmental commonalities. These would be 

far more adaptive than the proliferation of representations accounting for each individual 

pairing of context to action set. Assuming a network architecture, neural network function 

provides substantial insight into the likely nature of these domain-general representations. 

The statistical structure of the environment, and the nature of the animal’s interactions 

therein, would naturalistically drive the development of complex neural representations 

which map action sets to the appropriate contextual contingencies. The responses of 

neurons lower in the processing hierarchy would adjust their responses rapidly in accordance 

with sensorimotor input, while those neurons higher in the hierarchy are likely to be both 

slower and more abstract, having been subjected to increasingly abstract input from lower 

levels. These higher levels would consequently be more responsive to the commonalities 
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shared across the environmental details conveyed by the lower, faster levels. This would 

support similarity-based inference as a form of generalisation. 

This property appears to be realised in the neocortex. Not only does it possess the 

architectural features required to develop these representations, it is also characterised by an 

organisational propensity that emphasises the commonalities between task-related 

parameters. This ‘like-attracts-like’ characteristic closely aligns with our expectations 

assuming a network architecture. However, in co-locating functionally similar neurons, the 

neocortex will be subject to representational multiplexing: where tasks recruit the same 

representational apparatus to execute multiple tasks, their simultaneous performance 

becomes impossible. Indeed, as the neocortex becomes responsive to increasingly complex 

task parameters, it will become increasingly multiplexed. It is from this constraint that we 

derive the optimisation criterion for domain-general control-related processing. 

In such an architecture, the presence of multiplexing alone would intrinsically limit 

need for control to only those circumstances where multiple tasks are possible. These 

circumstances are defined by the pre-conditional structure of naturalistic tasks, a property of 

the learning environment that is robustly featured in the organisation of the neocortex. 

Behaviours which serve as the preconditions for multiple action-sets manifest in the brain as 

densely-connected cortical regions responsive to a broad array of task demands. Where 

multiple tasks compete for this resource, these domain-general representations specify the 

pattern of neural network representations in other cortical or subcortical regions according 

to the nature of the task demand.  

On this account of control, there is no need to posit the existence of explicit 

knowledge structures to explain an animal’s ability to discern the functional relevance of 

behaviours in increasingly complex environments. Nor is there a need to appeal to the 
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executive mechanisms which feature so prevalently in the neurocognitive literature. Rather, 

the development of domain-general representations may merely be an epiphenomenal 

product of the interaction between the statistical structure of the environment and the neural 

systems which process it. These representations would serve as both the signal that control is 

required and the mechanism by which conflicts are resolved. Crucially, these representations 

are entirely plausible in the context of the nervous system. 

3.7 Outlook for the Future 

Of course, this account merely sets the stage for further enquiry into the possibilities 

for network function to provide insight into the neural bases of complex behaviour. As such, 

before I conclude, let us briefly explore the prospects for future research in light of the 

material discussed in chapter 3. In my mind, in addition to the ongoing research into Guided 

Activation Theory and its brethren (section 3.5.4) three avenues of empirical pursuit hold 

particular value.  

The cortex appears to be particularly suitable for generating the kinds of 

representations that can achieve control in more complex tasks (see section 3.3.4). Yet, 

animals which lack a cortex are not only capable of organising behaviour around functional 

categories (e.g. Avarguès-Weber & Giurfa, 2013; Giurfa, 2007; Hoy, 1989; Windhorst, 1996), 

but they do so in a manner that demonstrates the exploitation of pre-conditions (e.g. Alem et 

al., 2016). The approaches to domain-generalisation in the classical neurocognitive literature 

tend to characterise rule-learning as a hierarchy of increasingly complex abilities (section 3.2). 

These abilities are commonly used as a comparative measure of animal intelligence (Katz et 

al., 2007; Minors, 2016; Zayan & Vauclair, 1998). Exploring the features of neural 

architecture that could support the functionality discussed in this thesis in non-cortical 

regions, or their homologues in invertebrates might provide useful insights in this domain.  
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The next avenue concerns the nature of expectations in facilitating control. Our 

interpretation of perceptual input is at times influenced by contextually derived expectations; 

anticipated states, and their dependencies on earlier states and actions. Sections 3.3.2 and 

3.3.4 suggest ways in which these might contribute to control-related processing, but relies 

heavily on the assumption that these are stored and retrieved. No doubt this may be partially 

accounted for in the context of the pre-conditional representations outlaid in Section 3.5. 

Yet, expectations also facilitate control mechanisms in a manner that does not presuppose 

cortical intervention (see section 2.4.2). Indeed, behavioural and electrophysiological data 

increasingly implies the presence of enduring temporal and spatial representations (e.g. 

Campos, Cherian, & Segraves, 2006; Foster & Wilson, 2006; Jirenhed, Rasmussen, 

Johansson, & Hesslow, 2017; Menzel et al., 2005; Moser, Rowland, & Moser, 2015; Pfeiffer 

& Foster, 2013; Spencer & Ivry, 2013; Yoganarasimha, Yu, & Knierim, 2006). Linking the 

material discussed in this thesis to the vast literature on memory may profitably advance our 

knowledge in this domain. I suggest a useful starting point may lie in interpreting 

contemporary accounts of Semon’s (1921) ‘engram’, through the lens of network dynamics. 

Engrams, or ‘memory traces’, are thought to be (semi)permanent neural changes that explain 

the persistence of memory, typically thought to be widely distributed throughout the brain 

(Bruce, 2001; Schacter, 1996). While their exact mechanism has proven elusive, I suggest that 

inroads may exist in the literature on neural consolidation (Dudai, 2004).  

One must also eventually face the role of language in mediating control. Much has 

been made of the human ability to rapidly adjust behaviour in response to instructions (e.g. 

Cole et al., 2014). This capacity is not limited to humans, or even primates (e.g. Pepperberg, 

1987). How the application of what is truly an external rule to internal processes can be 

explained in the context of neural network function is not yet apparent, if possible at all, 

although interesting inroads are discussed in Schiffer et al. (2017). Early thoughts on this 
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posed the notion that the ability to form a mental representation of a concept via language 

would help to explain this capacity (Premack, 1978; Premack & Premack, 1983; Thompson 

& Oden, 1995). Attempting to explain these in the context of neural network representations 

may prove a fruitful exercise.  
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Conclusion 

We commenced this thesis asking the question, how can we understand the 

phenomena of cognitive control in a manner that is compatible with a neurally plausible 

perspective on representation? By restricting our perspective to the kinds of information 

currently explicable in a neural context, myriad opportunities emerge for the brain to resolve 

conflicts without appealing to the inscrutable executive mechanisms proposed in the classical 

cognitive literature. Foremost, many of the traditional components thought to comprise 

control can be achieved by quite basic features of neurally plausible network dynamics. These 

networks would require only the evolutionarily-hardwired, or experientially-learned valence 

of stimuli to adaptively resolve a broad array of conflicts and coordinate responding in 

service of a goal. Of course, as animals become more sophisticated, so too do their 

mechanisms for achieving control. Yet, the kinds of mechanisms that can resolve conflicts 

evoked by more complex tasks in a neurally plausible manner appear to again be quite 

different from their counterparts in the cognitive literature. The neocortex appears to 

develop quite intricate representations from the structure of an animal’s interactions with the 

environment that serve as both the source of and solution to neural conflicts. To the extent 

that this interpretation of neural function proves true, it would have profound implications 

for the nature of complex behaviour that extend far beyond the phenomena of cognitive 

control. 
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