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Abstract

Finding the global optimum of an unknown system has attracted a great deal of in-

terest in many engineering problems. In this setting, meta-heuristics are very com-

mon and efficient approaches for solving complex real-world problems in Global

Continuous Optimization Problems (GCOPs) as they can approximate solutions

without any need for mathematical assumptions such as differentiability. The appli-
cation of global continuous optimization methods is essential in many engineering

applications where an optimization problem has certain properties such as unreli-
able derivatives and/or black-box nature. Meta-heuristic based optimizations, as one

of the promising approaches in global continuous optimization, have a slow rate

of convergence. Hybridization frameworks are investigated as a potential way of

enhancing the optimization speed, and the quality of solutions.

Fuzzy linear regression analysis is a powerful tool to model the input-output re-

lationship for forcasting purposes or studying the behavior of the data. The existing

challenges in fuzzy linear regression are, dealing with non-transparent fitness mea-

sures, outlier detection and spread increasing problem. The application of global

continuous optimization is investigated to tackle these issues. We propose an Un-

constrained Global Continuous Optimization (UGCO) method based on tabu search

and harmony search to support the design of Fuzzy Linear Regressionmodels (FLR).

The proposed approach offers the flexibility of using any kind of an objective func-

tion based on the client’s requirements or requests and the nature of the data set,

and then attains its minimum error.

Fuzzy linear analysis may lead to an incorrect interpretation of data in case of

being incapable of dealing with outliers. Both basic probabilistic and least squares

approaches are sensitive to outliers. In order to detect outliers, we propose a two

stage least squares approach based on global continuous optimization which outper-

forms some issues that exist in other methods. In both the first and second phases,

vi



vii

the minimization of the model fitting measurement is achieved by hybrid optimiza-

tion which gives us the flexibility of using any type of model fitting measures re-

gardless of being continuous, differentiable, or transparent.
Some of the fuzzy linear regression models suffer from constantly increasing

spreads of the outputs with the increase in the magnitude of the inputs. Such mod-

els are known to have the so-called spread increasing problem. We introduce a

model, obtained by the application of hybrid optimization, which is capable of hav-

ing variable spreads for different input variables regardless of their magnitute. The

proposed approach is also compared and contrasted with other models in terms of

the number of parameters, the flexibility of spreads, and errors.
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