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Introduction

The derivative information of a function is immensely valuable for many optimiza-

tion problems, however to derive a derivative, an optimization problem has to sat-

isfy some mathematical assumptions. In many real-world applications the deriva-

tive information is not available or unknown. The design of helicopter rotor is an

application in which the approaches that apply derivative information are not prac-

tical. This is one of the reasons that why derivative-free optimization methods e.g.

meta-heurstic approaches have become popular in the recent decade. One of the ad-

vantages of meta-heuristic approaches is that it can be applied to resolve any types

of optimization problems. However each meta-heuristic approach may need to be

tailored for a particular application to increase speed, reduce the chances for the

local minima traps, and return accurate results. As an example, in a real time opti-

mization, speed has a higher priority compared to the accuracy of result or trap of

local minima. On the other hand, in off-line optimization, the speed might not be a

serious factor as long as an optimum solution is obtained in a feasible time. In this

context, we propose and investigate different hybridization frameworks with their

specific type of optimization problem for which they are designed. As an example

the design of a pressure vessel with minimum cost of production is studied with the

proposed hybridization framework.
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Fuzzy linear regression analysis is a powerful tool for data analysis with uncer-

tainties in which the collected data are inexact. As an example one could refer to

classification of quality of a service, product, resource and so on. In conventional

approaches the quality may be quantized, e.g. by an expression such as 3-star ho-

tel, and premium meat. Quality values are good indicators for average costumers

or clients, however, they do not provide more information that may exist in the

meaning of these values. A model derived from a fuzzy regression analysis task

can take the uncertainty into consideration. As in any other optimization problem,

the selection of the most suitable objective function for a particular application in

fuzzy linear regression analysis is a very important factor. However, majority of

the approaches proposed in the literature for fuzzy linear regression impose some

limitations on the type of the objective function. This is where the application of

meta-heuristic approaches is useful. Other related topics such as detecting outliers

and tackling the spread increasing problem can be solved by using meta-heuristic

approaches. Application of fuzzy regression is given for predicting the quality of

service for web services, where it is shown how fuzzy regression can be applied for

quantized data and still take the uncertainty into consideration.

1.1 Overview

In many real-world applications, a function which relates the input to ouput vari-

ables of a given system is required to be defined. This function is then applied for

forecasting or is used for further study of the behaviour of the system. Linear func-

tions are perhaps the simplest forms of functions for describing the relationship

between the input variables and output variable where the linearity assumption ex-

ists. In the general case where the data comes with uncertainty originating from

experts’ opinions, a Fuzzy Linear Function (FLF) is a suitable technique for repre-

senting the relationship of the input and output variables. Fuzzy Linear Regression

Analysis (FLRA) is a powerful tool to derive the fuzzy linear function for variables

with uncertain nature.

FLRAs ie especially useful for data sets which are generated based on the sub-

jectivity of human decisions [5] or abstracted due to simplification purposes. The

application of FLRA to estimate the relationship of a given data and then to predict

a continuous response to new data is reported for many engineering problems [6].

To derive the best FLF which describes the relationship between input and out-

put variables, a Model Fitting Measurement (MFM) has to be defined. MFM is an
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essential tool to measure the goodness of a defined model where the similarity be-

tween each of predicted and estimated outputs is computed. FLRA aims at seeking

for a FLF which maximizes the model fitting measurement value.

Least Squares (LS) and Linear Programming (LP) are the two main approaches

of FLRA. In both LS and LP approaches, the MFM has to be defined in advance and

must be transparent to designers. The transparency is required otherwise designers

cannot consider the conditions that have to be taken into consideration for modeling

LS or LP approaches. However, the transparency of the MFM is dependent on the

confidentiallity level of the MFM. The MFM could be a trade secret where reveal-

ing its formulation could be risky for the entity who owns it. The LS and LP based

approaches are inapplicable in such situations as in both approaches a clear formu-

lation of the MFM is required. The only way in which the MFM owner does not

need to reveal the formulation is when the input-output behaviour of the MFM is

provided. So as an alternative, designers could solve FLRA by applying approaches

that do not need the mathematical formulation of the MFM.

In real-world applications where the global optimum of a function is sought,

nonlinear programming techniques can be applied. The application of nonlinear

programming techniques may fail if an optimization problem has multiple local

minima [16]. Moreover the gradient descent based approaches are not always ap-

plicable due to non-differentiability of the function or unknown formulation of the

function [17]. For such optimization problems where classical optimization tech-

niques are not applicable, meta-heuristic approaches which mimic the nature or

intelligent procedures are suitable tools [16, 17]. Fuzzy linear regression fits some

of the characteristics mentioned above, i.e., when a model fitting measure is a trade

secret [6], outliers exists in the data set [8], and the spreads of the model increase

with increase in the magnitute of input data [9]. The objectives of this research are

identified as follows:

• To investigate properties of optimization problems which make them suitable

to be solved by global continuous optimization based on meta-heuristics.

• To investigate the situations where the application of global continuous opti-

mization approaches is a necessity for fuzzy linear regression.
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1.2 Contributions

In this thesis, we define the properties of optimization problems which make them

suitable to be solved by global continuous optimization. Some examples of these

properties include unreliable derivatives and/or black-box nature. We then define the

draw-backs of global continuous optimization methods based on meta-heuristic ap-

proaches. As a solution we propose hybridization which may improve one or more

of the success rate, average error, and number of function evaluations. For compar-

ison of the global continuous optimization we introduce a comparison protocol. All

of the optimization problems discussed in this thesis are limited to single objective

optimization. The application of multi-objective optimization is discussed as part

of future work.

The application of global continuous optimization is then applied for fuzzy lin-

ear regression. Three challenges in fuzzy linear regression of non-transparent fit-

ness measure, outlier detection or removal, and spread increasing problem, are

identified to be tackled by global continuous optimization. Fuzzy polynomial re-

gression and non-parametric regression are discussed as part of future work. For

comparing the models we introduce a comparison protocol which compares two

models for a given data set with regards to a finite number of fitness measures. We

compare and verify the performance our proposed method on two main categories

of data; fuzzy input-fuzzy output, and crisp input-fuzzy output. We also define a

comparison protocol to compare the superiority of the models with regards to dif-

ferent fitness measures. Both outlier detection or removal and spread increasing

problem are tackled in the scope of fuzzy linear regression, however, a similar con-

cept may be applied for fuzzy polynomial and non-parametric regression which is

not in the scope of this research. The proposed outlier removal approach is verified

and compared with existing methods on small and large crisp input-fuzzy output

data sets which are taken from the literature. The small data set has three variations

of constant, decreasing and increasing spreads and the large data set has random

spreads. Spread increasing problem is discussed and then an approach based on

global continuous optimization is proposed to tackle the problem. The approach is

also compared to models proposed to solve spread increasing problem in the litera-

ture with regards to number of parameters, and flexibility of the spreads.
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1.3 Organization

The results of this PhD study have been published in several international confer-

ences and two archival journals.

Majority of the materials in Chapter 2 are taken from the following paper:

• M. H. Mashinchi, M. A. Orgun, and W. Pedrycz. Hybrid optimization with im-
proved tabu search. Applied Soft Computing 11(2), 1993-2006 (2011).

In Chapter 2 we discuss the application of global continuous optimization for

optimization problems with objective functions with one or more of following char-

acteristics: unreliable derivatives, non-transparent nature, computationally expen-

sive evaluations, costly (financial-wise) or dangerous evolutions, and/or optimiza-

tions with time constraints. Different approaches of global continuous optimiza-

tion are then briefly studied. As a common drawback in all of the GCOMs, meta-

heuristic approaches do not guarantee finding global optimum solutions, but they

can be used for a wide range of optimization categories without considering strict

assumptions. Moreover most of the time they can avoid the traps of local minima.

The main drawback of some of the meta-heuristic approaches for GCOPs is their

slow rate of convergence if a very detailed solution is required. In other words, they

can find a promising valley (a local minimum area) but getting to the bottom of

the valley is a time consuming process. To overcome some of the above mentioned

issues, we investigate different hybridization approaches. As an example we apply

one of the hybrid approaches for a set of benchmark functions and also an indus-

trial engineering application and then we compare the results with other methods

in the literature (see Appendix A.1). Finally the application of global continuous

optimization is motivated for fuzzy linear regression analysis.

Majority of the materials in Chapter 3 are taken from the following papers:

•M. H. Mashinchi, M. A. Orgun, M. Mashinchi, andW. Pedrycz. A tabu-harmony
search based approach to fuzzy linear regression. IEEE Transactions on Fuzzy Systems

19(3), 432-448 (2011).

• M. H. Mashinchi, M. A. Orgun, and M. Mashinchi. Solving fuzzy linear regres-
sion with hybrid optimization. In 16th International Conference Neural Information

Processing, 336-343 (2009).

In Chapter 3 we introduce the mathematical preliminaries for fuzzy set the-

ory used throughout this thesis. The mathematical formulation and different ap-
proaches in fuzzy linear regression analysis are then studied. The application of



1.3 Organization 6

fuzzy regression is proposed for problems with one or more of following charac-

teristics: abstraction has occurred due to high complexity of environment, human

subjectivity is involved in the system, or the information is partially available. As

an important part of fuzzy linear regression, some of the similarity measures in the

literature of fuzzy linear regression are investigated. Linear programming and least

square based approaches with their advantages and disadvantages are dicussed. Fi-

nally the application of global continuous optimization is motivated for three main

issues in fuzzy linear regression as follows; application of fitness measure, outlier

detection and spread increasing problem.

The majority of the materials in Chapter 4 are taken from the following papers:

•M. H. Mashinchi, M. A. Orgun, M. Mashinchi, andW. Pedrycz. A tabu-harmony
search based approach to fuzzy linear regression. IEEE Transactions on Fuzzy Systems

19(3), 432-448 (2011).

• M. H. Mashinchi, M. A. Orgun, and M. Mashinchi. Solving fuzzy linear regres-
sion with hybrid optimization. In 16th International Conference Neural Information

Processing, 336-343 (2009).

In Chapter 4 we introduce a hybrid global continuous approach based on meta-

heuristic approaches for fuzzy linear regression analysis. We propose a protocol for

comparing fuzzy linear regression analysis methods for a given data set. Based on

this protocol, a model is not necessarily better or worse than another method, yet it

could be Pareto-equivalent to another model based on chosen fitting measures for a

given data set.

The majority of the materials in Chapter 5 are taken from the following paper:

•M. H. Mashinchi, M. A. Orgun, M. Mashinchi, andW. Pedrycz. A tabu-harmony
search based approach to fuzzy linear regression. IEEE Transactions on Fuzzy Systems

19(3), 432-448 (2011).

In Chapter 5 we investigate the performance of our proposed approach com-

pared to other fuzzy linear regression approaches reported in the literature. For

comparison purposes, we report the performance of the model for four different fit-
ting measures available in the literature. The verification of the model is done by

testing the model on two different categories of fuzzy data sets as; fuzzy input-fuzzy
output, crisp input-fuzzy output.

The majority of the materials in Chapter 6 are taken from the following paper

and a techinical report:

• M. H. Mashinchi, M. A. Orgun, and M. R. Mashinchi. A least square approach
for the detection and removal of outliers for fuzzy linear regression. In World Congress
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on Nature & Biologically Inspired Computing, 134-139 (2010).

• M. H. Mashinchi. Application of hybird optimization for spread increasing prob-
lem. Technical Report, Macquarie University, 2011.

In Chapter 6 we tackle outlier detection and spread increasing problem in fuzzy

linear regression analysis. In the first part, we investigate the proposed approaches

in the literature with regards to outlier detection or removal and then compare and

contrast the methods. Then we propose an approach which aims at solving the is-

sues that currently exist in outlier detection or removal approaches in the literature

such as having multiple user-defined variables and being computationally very ex-

pensive. The second part of this chapter provides some definitions for the spread

increasing problem. Then an approach based on the application of global contin-

uous optimization is proposed for fuzzy linear regression analysis which aims at

solving the spread increasing problem.

The majority of the materials in Chapter 7 are taken from the following papers:

•M. H. Mashinchi, L. Li, M. A. Orgun, and Y. Wang. The prediction of trust rating
based on the quality of services using fuzzy linear regression. In IEEE International

Conference on Fuzzy Systems, 1953-1959 (2011).

• M. H. Mashinchi, M. A. Orgun, and W. Pedrycz. Hybrid optimization with im-
proved tabu search. Applied Soft Computing 11(2), 1993-2006 (2011).

In Chapter 7 the application of global continuous optimization as well as fuzzy

linear regression is studied for real-world problems. The cost minimization of pro-

ducing a pressure vessel is given as an optimization problem. Then the fuzzy linear

regression analysis which uses global continuous optimization is applied for qual-

ity of service prediction in web services. The results are compared with those of the

other methods available in the literature.

Finally Chapter 8 discusses the conclusions and future work. Some of the promis-

ing directions for future work are gathering real fuzzy data, an application of global

continuous optimization for non-parametric regression, and an application ofmulti-

objective optimization for fuzzy linear regression with more than one fitting mea-

sure to be optimizated.



2
Global continuous optimization1

The application of global continuous optimization methods is a necessity in many

engineering applications where an optimization problem has certain properties such

as unreliable derivatives and/or black-box nature. Meta-heuristics based approaches,
direct search strategies and surrogate models are the main approaches proposed to

tackle such optimization problemes. Meta-heuristic based optimizations, as one of

the promising approaches in global continuous optimization, have a slow rate of

convergence. Hybridization frameworks are then investigated as a potential way of

enhancing the optimization speed, and the quality of solutions.

2.1 Global continuous optimization

Finding the global minimum of an unknown system (function or objective function),

whichmay havemany unknown local minima is one of the significant problems that

arise in many engineering applications. The only information which is obtainable

in these unknown systems is the input-output behaviour. As examples in engi-

neering applications; one can point at fluid power circuits [18], electronic circuit

designs [19], balancing of hydraulic turbines [20], computational chemistry [21],

1This chapter is based on a journal paper; [2] co-authored by M. A. Orgun and W. Pedrycz.
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developing optical fibers [22], signal setting problems [23], non-destructive con-

trol [24], optimization of electromagnetic devices [25] and others. The diversity of

applications has led to a great deal of interest to develop Global Continuous Opti-

mization Methods (GCOM) which are capable of finding the global minimum solu-

tion in a continuous search space.

A GCOM searches for an input vector, x, in the search space such that the sys-

tem’s output (reaction) reaches its minimum. In such problems a local minimum

is not acceptable and the GCOM should be able to avoid being trapped in local

minima and return a global minimum solution instead. The formulation of the un-

constrained global minimization problem is as follows:

y =min f (x)

f :Rn→R,

where f (x) can be either a convex or non-convex real-valued unknown system [26,

27]. Note that there is no need to investigate a global maximization problem sep-

arately, since it can be converted to a global minimization problem in a standard

manner [27]:

max f (x) = −min[−f (x)]
f :Rn→R.

Note that the value obtained from minimization process on −f (x) is the reflection

(with respect to x-axis) of maximum point on the original function f (x), and so its

sign has to be changed. The change of sign is done via the minus sign in front of the

min function.

Due to the lack of information about the behaviour of an unknown system, no

specific assumptions are being made. Thus it is difficult to solve them using analyt-

ical methods such as complete enumerative search strategies, homotopy methods,

branch and bound algorithms or gradient-best approaches, all of which require cer-

tain conditions and can be only applied to a specific group of problems [28]. There

are no efficient approaches to solve these kinds of problems in general, especially

those of high dimensionality [29]. As an example, note that derivative-based ap-

proaches can only be applied for differentiable systems and there is no guarantee

to reach the global minimum. Although analytical approaches are still being inves-

tigated for potential applications in the Global Continuous Optimization (GCO),

but their applications are fading, because in reality little (or sometimes no) detailed

information is available about the optimization problems.
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2.2 When to use global continuous optimization

Due to a variety of reasons such as unavailability and/or unreliability of the deriva-

tives of many optimization problems, standard mathematical approaches are not

applicable [30, 31]. Moreover in some optimization problems the derivative infor-

mation is practically not feasible. By this, we mean it is either not computable as no

assumptions can be made regarding the differentiability or continuity of the func-

tion or it is very computationally expensive to estimate the derivatives. In some

other type of optimization problems, the cost of computing the objective function

values in terms of both money and computation time is very expensive. Derivative-
free optimization methods are nonlinear optimization techniques which are suitable

for the class of problems when derivative information is unavailable, unreliable,

impractical to obtain, or it is noisy [30, 31]. Such optimization problems can be

found in many applications such as engineering design [32–34], chemistry [35] and

biology [36].

We discuss the design of a helicopter rotor blade while minimizing the vibra-

tion transmitted to the hub. This problem comes from the Helicopter Division of

The Boeing Company [30,32,37]. The simulation is multidisciplinary and involves,

aerodynamics, fluid dynamics, structures and propulsion disciplines. This is a non-

convex optimization problem which has many local minima and is not defined ev-

erywhere and may not be smooth everywhere it is defined.

One main category of optimization problems contains problems which are char-

acterized by one or more of the following properties of

Unreliability of the derivatives: Due to the existence of noise in the objective func-

tion or other reasons, the derivatives may be highly unreliable and/or com-

pletely useless [16, 30, 38]. As an example, consider an engineering system

which generates an output based on some input values, however the output is

not necessarily precise and may come with a random noise. The noise could

come from the nature of the system itself or a measurement or recording error.

In the minimization of the vibration for the helicopter rotor blade design, if

a high fidelity level of the objective function is required, then a single eval-

uation could take up to days [30, 32]. However, if a quick evaluation is de-

manded, then the fidelity of the objective value is low which suggests that it

comes with high noise. Consequently the gradients become unreliable as they

are estimated according to the objective values which contain noise. Other

examples can be found in optimization of molecular geometries [39, 40], and
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shared computing networks [41].

Non-transparent nature: Due to the black-box nature of the objective function, no

assumptions can be made with regards with differentiability and the continu-

ity of the objective function. The black-box naturemay come from codes which

have been written in the past and have not been maintained by the original au-

thors. Although one could try to re-write or manipulate such codes to provide

first-order derivatives, this could be an extremely time-consuming task [30].

Moreover, legacy or proprietary codes necessitate the code to be treated as a

non-transparent objective function, for example, in the case when a company

who owns the code provides only the binary or object files [30,38]. In the min-

imization of the vibration in helicopter rotor design, the objective function is

provided as an object code which belongs to the Boeing Company [32].

It also worth mentioning that derivative-free optimization is often referred to as

optimization over black-boxes in the literature [31].

Optimization problems with the above properties can be solved by brute force or

exhaustive search strategies. But, if the problem has extra properties in addition to

the one given above, then the application of brute force or exhaustive search strate-

gies is not practical. The application of derivative-free optimization (which in this

thesis is also referred to as global continuous optimization) is preferred for prob-

lems which in addition to the above properties, have one or more of the following

properties [31].

Computationally expensive evaluations: Computing the objective function or the

derivatives is theoretically possible but practically impossible as it is compu-

tationally very expensive [16, 38]. In engineering design, there are two main

reasons why the function evaluation is very computationally expensive; the

engineered function is very complex, and/or high accuracy (fidelity) of the

function evaluations is required [32]. In the helicopter rotor design example,

a single evaluation of the objective function depending on the fidelity level

may take from several minutes to days [30, 32]. It is clear that when function

evaluations are computationally expensive, then the finite-difference deriva-

tive approximation is inappropriate. This is due to the fact that for a single

gradient estimation normally no less than the number of variables plus one

evaluation are required [30].
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Costly (financial-wise) or dangerous evaluations: Evaluating an objective func-

tion could be financially very expensive. As an example, function evaluations

can be very financially costly in physical processes where a group of people

have to conduct some simulation with the defined quantity of some materials

to be able to evaluate the result. Considering that the cost of human resources

and the materials used in the simulation is high, each function evaluation can

cost a lot of money. Also, the simulation could be a dangerous process (maybe

for some input values). Due to the costly and/or dangerous nature of function

evaluation in such optimization problems, obtaining a global optimum is not

necessarily a must and a better solution to the current system or an acceptable

solution can be satisfactory [38].

Optimization with time constraints: In many engineering and science applica-

tions, obtaining a solution in extremely long time is a negative factor, espe-

cially when a shorter design cycle time, and a faster turn-around can improve

the result of the whole engineering process [38]. In some real-time applica-

tions, a time constraint may dictate to obtain an acceptable solution before a

specific deadline. However, obtaining a solution before the deadline (faster)

could be even more advantageous as it leaves more time for other dependant

procedures to be done. Although function evaluations can be computation-

ally inexpensive, and/or not costly or dangerous, the optimization procedure

should be able to find an acceptable solution within a certain period of time.

2.3 Global continuous optimization approaches

Global continuous optimization methods can be classified into direct and indirect
approaches. In direct approaches, the current function evaluation/s is used directly

for the next solution whereas indirect approaches utilize a surrogate model of the

objective function based on the current function evaluations [31]. Direct approaches

can be classified as stochastic and deterministic, depending on whether they take

random steps from the current state to the next states or not [16,31] . In the follow-

ing sections, we refer to stochastic direct, deterministic direct, and direct approaches
as meta-heuristic based approaches, direct search strategies, and surrogate models, re-
spectively. Table 2.1 shows the innovation time line of the main global continuous

optimization methods which are discussed in this thesis.
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2.3.1 Meta-heuristics based approaches

Meta-heuristic approaches heuristically generate the next solution/s in a non- deter-

ministic algorithmic manner [31]. The generation of the next solution/s is designed

to be able to explore the search space as extensively as possible. Depending on

how the next solution/s are generated, meta-heuristic approaches are classified into

population-based, or point to point approaches [2,16].

Table 2.1: Timeline of innovation in global continuous optimization
Method Year of Note

pulication
Hooke-Jeeves algorithm [42] 1961 Journal paper
Nelder-Mead algorithm [43] 1965 Journal paper
Genetic algorithms [44] 1975 Text-book
Simulated annealing [45] 1982 Journal paper
Tabu search [46] 1989 Journal paper
Derivative-free optimization [47] 1997 PhD thesis
(surrogate models)
Derivative-free optimization [32] 1999 PhD thesis
(surrogate models)
Harmony search [48] 2001 Journal paper
Global continuous optimization [16] 2004 PhD thesis
(meta-heuristics)
Global continuous optimization [30] 2009 First DFO
(surrogate models) text-book
Global continuous optimization [31] 2009 PhD thesis
(surrogate models) Application to

protein-ligand
docking problem

Global continuous optimization [38] 2009 PhD thesis
(surrogate models)

Due to the ill-defined nature of optimization problems, and the weakness of

mathematical approaches, there is a growing interest in meta-heuristic search [29].

Also, optimization problems do not need to satisfy strict requirements of differen-
tiability. It is advantageous as in the real world applications, we usually end up with

optimization of an non-differentiable system as an example signal setting problem

can be addressed [23].

As a common drawback in all of the GCOMs, meta-heuristic approaches do not

guarantee finding global optimum solutions, but they can be used for a wide range

of optimization categories without considering strict assumptions. Also most of

the time they can avoid the traps of local minima [49]. Among all meta-heuristics,

Tabu Search (TS) stresses emphasis on escaping from local minima by introducing
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the concept of a list. In addition to that list, TS allows moving to another solution

from the current solution even though it allows for a higher value of the objective

function in the anticipation that it will achieve a better solution in the consecutive

iterations [50].

The common drawback of some of the meta-heuristic approaches for GCOPs is

their slow rate of convergence if a very detailed solution is required. In other words,

they can find a promising “valley” (local minimum area) but getting to the bottom

of the valley is a time consuming process. To overcome this issue, meta-heuristic

approaches are mostly hybridized with Local Optimizer Methods (LOM). At the

beginning a meta-heuristic approach is applied to escape from local optima and

determine the promising areas. This process is usually known as diversification

(exploration). Then a LOM starts from such promising areas obtained from the

result of running diversification. It searches for a global optimum solution around

promising areas. This process is known as intensification (exploitation).

In the following sections two population-based meta-heuristics; genetic algo-

rithms and harmony search and two point to point meta-heuristics; tabu search and

simulated annealing are described.

2.3.1.1 Genetic Algorithms

Genetic algorithms (GAs) are inspired from the genetic evolution of a species, pro-

posed by Holland in 1975 [44]. They start from a random population whose ele-

ments are chromosomes and in each generation the chromosomes are substituted

with new chromosomes based on three operators of selection, crossover, and mu-

tation. The selection operator choses the chromosomes for further manipulation

based on their performance which is computed by the objective function. The mat-

ing of the chosen chromosomes is done by the crossover operator and aims at gen-

erating better chromosomes. Also similar to the evolution of the species in the na-

ture, a small portion of the generated chromosomes are mutated. GAs are stochastic

methods as the selection operator works based on the probability of individuals’ fit-

ness, and also the mutation is done randomly. With optimization by GAs, the search

space can be extensively explored as in each generation a pool of chromosomes is

generated. However, as almost all the chromosomes change in each generation, the

number of function evaluations are usually reported to be high [2]. This can be

a negative factor when the objective function has the propertie of computationally
expensive evaluations, costly or dangerous evaluations, or optimization with time con-
straints as given in Section 2.2.
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GAs are one of themost appliedmeta-heuristics for black-box optimization prob-

lems [16]. The objective function does not need to satisfy any condition such as dif-

ferentiability or continuity. In the general case, the underlying function to be min-

imized can be non-transparent (as described in Section 2.2) which makes it suitable

for derivative-free optimization problems [16, 51]. However, it has been observed

that GAs are could perform better for intensification if they are hybridized with

local optimizer methods–a topic which will be discussed in Section 2.4.

2.3.1.2 Tabu search

Glover [46, 52] proposed the idea of TS for combinatorial optimization problems.

The original method was then adapted to continuous optimization problems by Hu

[53], known as CTS. TS is preferred for optimization problem with low dimension

as it is a point to point search strategy. However, it still can explore the search space

extensively as it can keep track of the previous explored areas.

TS is an iterative optimization method which starts from an initial random solu-

tion (point) in the pre-defined search space. Then it generates random neighbours

around the current point and moves from the current solution to the best neighbour

if we have not seen it recently. To keep track of recent points, TS has a limited mem-

ory called Short-Term Tabu List (STTL). The list works in first-in first-out manner

and avoids TS to cycle around local minima [54]. There is another limited mem-

ory that keeps track of the best seen points so far. This is the Long-Term Tabu List

(LTTL), also known as “promising list” in the literature. LTTL is implemented for

diversification and expands the search area [54]. So, once a good solution is de-

tected, it is stored in LTTL which means that the surrounding area of this point has

already been explored. The process of generating neighbours iterates until a certain

stopping criterion has been met. In contrast with hill-climbing approaches, in TS

the next point can have worse performance than the current one. This property also

helps TS to avoid trapping in the local minima.

There are two major differences between CTS and the basic TS. First, the mech-

anism for generating neighbours around the current solution in TS is easier than

the one used in CTS. Since the search space in the basic TS is discrete, only a finite

number of neighbours exists around the current solution. Thus, all the neighbours

can be considered for the next move. But in CTS, each current solution has an in-

finite number of neighbours which makes the investigation of the neiborhood area

very difficult. The strategy of generating neighbours around the current solution in

CTS is known as the neighbour-search strategy. The most basic neighbour-search
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strategy is to generate a number of random neighbours within a radius of “Distri-

bution Factor” (DF) [55]. In this strategy a finite number of neigbours are generated

randomly in a ball with the center of the current point and with radius of DF. This

radius plays an important role on the search performance. A very large value of DF

causes CTS to act like a pure random search method while a very small DF leads

to a local optimization. Thus it is important to find a proper DF. The second dif-

ference between CTS and original TS is in the way of tabulating visited solutions.

In the TS, if a solution is met then it can be simply tabu for a period of time, but

in CTS since the search space is continuous, the algorithm should tabu any solution

in a neighborhood space around the visited solutions. This neighbourhood space is

a ball with radius of “Similarity Factor” (SF) with the visited solution in the center

of the ball [55]. If SF is set to a very large value then the CTS cannot find a near

optimum solution. On the other hand, a very small SF makes CTS to search locally

rather than globally. Thus selecting the value of SF is as just crucial as DF.

In the basic TS the first step is to initialize the parameters. To start from a point

in the search space R random neighbours are generated and the best one is chosen

as the starting point and is copied to current-solution (C) and best-solution (S∗).

The STTL is updated with C. Then N neighbours are generated randomly based

on neighbour-search strategy around C and ranked according to their performance.

Then the best neighbour is selected and copied to C if it has not been seen before.

This condition can be checked by searching the searched solutions which are stored

in STTL. A tabu neighbour can be accepted as a next move if it outperforms the S∗.

This is known as aspiration condition. Also for future intensification, S∗ should be

stored in LTTL. So ifC has better performance to S∗, S∗ is replaced byC. The process

of generating random neighbours and selecting the best ones is continued until a

specific number of iterations or if the algorithm does not find a better solution than

S∗ after a certain number of iterations.

2.3.1.3 Harmony search

Harmony search is a population-based meta-heuristic approach, which adopts the

idea of natural musical processes [56]. The algorithm of harmony search minimizes

an objective function of the form f : Rn → R. Harmony search is a good search

strategy for optimization problems with low dimension or in intensification where

a near optimal solution is already sought.
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In the basic harmony search, randomly generated available solutions are initial-

ized in the Harmony Memory (HM). In each iteration, the algorithm aims at impro-

vising the HM. The improvision process works based on three operations; memory

consideration, pitch adjustment and random selection. In the memory considera-

tion and the random selection operations, each variable of a new solution vector is

generated either based on the solutions in HM or randomly. The pitch adjustment

operation, introduced to escape from local minima, makes random changes to some

of the generated solutions [56,57].

The algorithm of the basic harmony search can be outlined as follows [56]:

1. Initialization of control variables.

2. One way of initializing the Harmony Memory (HM) with HMS (Harmony

Memory Size) is to randomly generate a start-up solution. The start-up so-

lution like Xt = (x1t ,x
2
t , · · · ,xn−1t ,xnt ) plus HMS − 1 solutions which are chosen

randomly in the neighborhood of Xt, generate the HM as given in Algorithm

2.1 (taken from [2]).

Algorithm 2.1 Initializing the harmony memory (taken from [2])
1: for i = 1 to HMS − 1 do
2: for j = 1 to n do
3: xij ⇐ xit +RND(a,b);
4: end for
5: end for

Where a and b are real numbers defined based on the domain of the input

variables or etc.

Then the solutions are sorted according to the output which is produced by

the objective function, as shown below:
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HM =



x11 ... x1j ... x1n

x21 ... x2j ... x2n

: : : : :

xi1 ... xij ... xin

: : : : :

xHMS−1
1 ... xHMS−1

j ... xHMS−1
n

xHMS
1 ... xHMS

j ... xHMS
n


where Xi

j = (xi1,x
i
2, · · · ,x

i
j , · · · ,x

i
(n−1),x

i
n) and n is the number of variables to be

optimized.

3. A new HM is improvised from the current HM. So, for each solution vector

Xi , ĲXi represents the new solution vector which is going to be substituted for

Xi . The next solution can be either chosen from the HM with the probability

of the harmony memory consideration rate (HMCR), or generated rondomly

with the probability of 1 −HMCR in the feasible search space M. some pro-

posed values for HMCR is set to be 0.9 as it is an intensification phase and we

do not need too much mutation [2]. This solution is then adjusted with a prob-

ability of pitch adjustment rate PAR and with the probability of 1 − PAR the

solution remains intact. In pitch adjustment, the solution changes slightly in

the neighborhood space of the solution. To be able to search the neighborhood

of each solution comprehensively, we assign a large value like 0.8 to PAR. The

entire process of improvising harmonymemory can be summarized as follows:

Harmony memory consideration:

ĲX
i
=

 XiϵHM with probability of HMCR

XiϵM with probability of (1−HMCR)
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Pitch adjustment:

ĲX
i
=

 ĲX
i
= ĲX

i
+ (bw ·RND(−1,1)) with probability of PAR

Xi with probability of (1− PAR)

where bw is an arbitrary positive value for pitch adjustment which is usually

assigned a value less than 1. In some works, bw is set to 0.1. The function

RND(−1,1) generates a vector of random numbers coming from the uniform

distribution over [−1,1] [2]. The role of bw · RND(−1,1) is to produce both

negative and positive values randomly. So if we assign an arbitrary value in the

closed interval of [−1,1] to bw instead of [0,1], then we still need to produce

random values in the interval of [−1,1].

4. The new solution vector ĲXi is substituted with the worst solution in the HM –

provided it outperforms the worst one.

5. If the stopping criterion is not met then GOTO 3.

2.3.1.4 Simulated annealing

Initially proposed to handle combinatorial optimization problems [45], the simu-

lated annealing algorithm was later extended to continuous problems. The algo-

rithm successively generates a solution in a neighborhood of the current solution

and based on a probability depending on the difference between their function val-

ues determines whether or not the current solution is replaced by the trial point. As

a result, simulated annealing allows moves to points with worse objective function

values than the current one. By the cooling schedule, simulated annealing is capa-

ble of doing both diversification and intensification which will be discussed later in

this chapter. The main control parameter in the cooling schedule is the temperature

parameter where it is set to be high for diversification and becomes lower (close

to zero) in the final stages for the purpose of intensification [16]. The algorithm of

the basic simulated annealing optimization method is given in Algorithm 2.2 (taken

from [2]).

Simulated annealing does not guarantee finding an acceptable solution in a fi-

nite number of iterations [58]. Finite-time performance is of particular interest for

optimization problems with costly or dangerous evaluations, or optimization with time
constraints as discussed in Section 2.2 [59].
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Algorithm 2.2 Basic simulated annealing algorithm (derived from [16])
1: Initialize tempreture (T ), Starting point x0
2: k = 0
3: while Stopping criterion is not met do
4: Generate a trial neighbor yk around the current point xk
5: if the function evaluation value at yk is better than the function evaluation at

point xk then
6: Move to the new point yk
7: else
8: with the probability of 1 − exp f (xk)−f (yk)

T , xk+1 = yk, otherwise stay in the
same point xk+1 = xk

9: end if
10: k = k +1
11: end while

2.3.2 Direct search strategies

Direct search methods seek the optimum solution via a sequential examination of

trial solutions through the geometric intuition of function evaluation without using

gradients [16, 31, 42]. Due to the simplicity and flexibility of direct search meth-

ods even after about half a century after the Hooke and Jeeves method was first

introduced [42], these methods are still popular. In the following sections, Nelder-

Mead [43] and Hooke-Jeeves [42] search strategies are described.

2.3.2.1 Nelder-Mead

Simplex Nelder-Mead strategy is used to find the local minimum point of a function.

Considering a function of n variables, initially n points (P1, . . . , Pn) in n-dimensional

space are generated randomly around a pre-defined point P0. The pre-defined point

P0 can be chosen either randomly or obtained as a result of another algorithm which

is run before. These n + 1 points are called current simplex, S0. The first n points

define the vector direction that span the n-dimensional space around P0 [43].

The value of the function in Pi is denoted by Yi . The highest and lowest values

of Yi are denoted by Yh and Yl , respectively and are computed as follows:

Yl = min
i

(f (Pi))

Yh = max
i

(f (Pi)).
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In the NM search strategy, the reflection (Pr), the expansion (Pe) and the contrac-

tion (Pc) transformations and centroid P are defined as follows:

P =
1
n

n∑
i=1

Pi ,

Pr = (1+α)P −αPh,

Pe = γPr + (1−γ)P ,

Pc = βPh + (1− β)P ,

where α, β and γ assume values in [0,1] which change the volume of the simplex by

reflection, contraction and expansion, respectively [43].

The algorithm of the NM search strategy is given in Algorithm 2.3 (taken from

[2]).

Algorithm 2.3 Nelder-Mead search strategy (taken from [2])
1: while stopping condition has not been reached do
2: Perform reflection for the point Ph,
3: Copy Pr into Ptemp,
4: if f (Ptemp) ≤ Yl then
5: Substitute Pl with Ptemp and Yl with f (Ptemp);
6: else
7: GOTO 12;
8: end if
9: Perform expansion at point Yl ,

10: Copy Pe into Ptemp
11: GOTO 4,
12: if (f (Ptemp) < Yh and f (Ptemp) > Yi , i , h) then
13: Replace Ph by Ptemp and f (Ph) by f (Ptemp);
14: Perform contraction of Ph;
15: Copy Pc into Ptemp;
16: end if
17: if f (Ptemp) > Yh then

18: Replace all Pi ’s by
(Pi+Pl )

2 ;
19: end if
20: end while
21: return Pl and Yl
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In Algorithm 2.3, the stopping criterion can be set as in (2.1).

1
n

n∑
i=1

∥ P k
i − P

k+1
i ∥2< ϵ, (2.1)

where P k
i and P k+1

i are the points in iteration k and k +1 respectively and ϵ is a very

small real number [24].

2.3.2.2 Pattern search

Hooke-Jeeves is a pattern search optimization method [42]. In general a pattern

search method does not use explicit derivatives. It first defines a pattern of points

by moving each parameter one by one. So, for an optimization problem with n

dimensions, it invokes a pattern containing at least n+1 points in each iteration by

step size. The entire pattern of points is then shifted or moved to a new location.

This new location is determined by selecting the best of each of the moves in the n

parameters. The step sizes constantly become smaller so that the algorithm finds a

good quality solution. To reduce the number of function evaluations, some pattern

search methods evaluate fewer than n + 1 functions in each evaluation [16]. The

basic form of all the pattern search is given in Algorithm 2.4 [32].

Algorithm 2.4 Basic pattern search algorithm
1: while stopping condition has not been reached do
2: Start from a point in the search space.
3: Generate some neighbors around the current point and pick the one with the

best objective function value.
4: Depending on the how good the point is, change the step size
5: end while

2.3.3 Surrogate models

Surrogatemodels aim atmodeling the underlying function of the objective function.

High-fidelity surrogate models provide the gradient and higher order derivative

information [31]. Surrogate models are generated by sampling the original objective

function. The quality of the surrogate model is expected to improve with more

sampling [32].
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A very basic form of surrogate models was proposed by Schonlau as given in

Algorithm 2.5 [47].

Algorithm 2.5 Basic surrogate model proposed in [47]
1: Evaluate few samples of the search space of the objective function
2: while stopping criterion is not meet do
3: Estimate a function which fits all the evaluated points
4: Find the minimum of the estimated function and use it as the next sample

point
5: Evaluate the new sample point
6: end while
7: return the minimum value

By having a larger set of evaluated points, the estimated function becomes closer

to the objective function and, hence, the sought minimum value is expected to have

a smaller value. For the sampling, Schonlau [47] applied Latin hypercube sampling

schemes [60] as they have a space filling property which uniformly cover the search

space. Schonlau proposed sampling of 10 points per each active variable [47]. For

fitting the sampled data; polynomial, non-parametric regressions or etc. could be

applied. The algorithm performs sampling until the improvement is smaller than a

pre-defined threshold for a number of consecutive iterations.

2.4 Hybridizationmethods inmeta-heuristics based ap-

proaches

There are a great deal of works on GCO using meta-heuristic approaches, particu-

larly TS. In an early work, Siarry and Berthiau [61] applied Continuous TS (CTS) for

GCOPs. They introduced a crown notation for neighbour-search strategy. So, instead
of generating purely random neighbours around the current solution which makes

the neighbours’ relative location inhomogeneous, the space around the current solu-

tion is partitioned into crowns. This method suffered from low convergence speed,

since it did not have any specifically designed phases for diversification and intensi-

fication. In another attempt to increase the speed of convergence, TS is divided into

two phases [62]. In the first phase, the most promising areas are defined and then

in the second phase the promising areas are intensified. In another recent work a

three-phase TS approach has been proposed [22]. In the first phase of this approach

the promising areas are recognized. The second phase investigates which of the
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promising areas has the highest potential. Then in the third phase, the potential

area is intensified to find the global optimum solution.

More recent works are mostly based on hybrid methods. It is observed that

some meta-heuristic methods are not efficient enough for local optimization. A

hybrid method combining TS and Nelder-Mead (NM) has been proposed by Che-

louah and Siarry [24]. In this method TS is applied for diversification and it returns

the promising areas. Then the intensification is carried out on the promising ar-

eas by NM. Hedar and Fukushima [26] proposed almost a similar framework with

Adaptive Pattern Search (APS) in the intensification phase.

TS is not the only meta-heuristic approach which is applied for GCO. Other

meta-heuristic approaches like Simulated Annealing (SA) [49], Ant Colony Opti-

mization (ACO) [27, 63, 64], Genetic Algorithms (GA) [51, 65, 66], Particle Swarm

Optimization (PSO) [27, 65, 67–69] and harmony search [56, 70] have been applied

in GCO. As mentioned earlier, meta-heuristic methods are mostly hybridized to in-

crease the speed of convergence. It should be mentioned that the majority of the

above mentioned approaches are hybridized with LOMs for the sake of increasing

speed.

The existing methods can still be improved so that they can return a more ac-

curate result in less time without being trapped in local minima. The basic TS is

an efficient method to search for potential near optimum solutions in a large search

space. It keeps track of the explored areas in a list which is called Tabu List (TL) and

it prevents searching them in the near future. Thus considering the TL, the algo-

rithm pushes the next moves to unexplored areas. Thus, there is a lower possibility

to trap into local optimum solutions or to be stuck in some specific areas [55]. This

makes TS a very effective technique for unknown optimization problems which may

have many local optimum solutions. In this research, to increase the robustness of

the proposed algorithm, we add a new step, called partitioning phase, prior to the

diversification which is performed by TS. To increase the diversification speed while

not being trapped into local minima, we improve the TS method. The improvement

is done by proposing a new neighbour-search strategy. The original NM is applied

at the end to intensify the near optimum solution and return the global optimum so-

lution. As mentioned earlier, Global Optimizer Methods (GOM) use up a lot of time

to find a very close solution in GCOPs if they are used alone. On the other hand,

LOMs are very fast to exploit a local area but they cannot be applied for global op-

timization. This is the main motivation on hybridization of GOMs and LOMs for

GCOPs.
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There are different ways of hybridazation ofmeta-heuristics as GOMswith LOMs;

for a comprehensive study one can refer to [71]. The traditional hybridization of the

most of GCOMs is based on diversification phase followed by the intensification.

Both phases are computationally expensive. To decrease the computational cost,

the diversification phase can stop earlier in order to start the intensification phase.

However, the switching time between the diversification and the intensification is

very important [49]. A very early switching to the intensification, increases the

possibility of trapping in local minima. Conversely, a very late switch makes the

diversification phase very expensive.

The most common meta-heuristic approaches which have been used in GCO are

TS [22,24–26,29, 54, 61, 62, 72–74], GA [51,66,67], PSO [27,67, 69, 75, 76], SA [49],

artificial bee colony [77], artificial immune systems [78] and ACO [63, 64, 79–81].

For the intensification, different approaches like NM [24, 26, 51, 67, 76], proximal

bundle method [49], APS [16,26], Hooke-Jeeves direct search method [82], harmony

search [6] and ACO [27] have been applied. However, some studies have improved

the number of meta-heuristics such that they can be applied alone and perform

both diversification and intensification. As an example, in an early work, dynamic

DF was proposed for TS. Initially TS is applied with a large DF for the sake of

diversification and as the algorithm is unable to find better solutions, the DF is

halved [61]. As the DF gets smaller, the TS carries the intensification. On the other

hand, some meta-heuristics, e.g. SA, naturally carry out both diversification and

intensification. Diversification is done when the temperature factor is high and as

the internal energy is reduced, the algorithm starts the intensification [49].

2.4.1 Hybridization frameworks in meta-heuristics

The diversification and intensification phases can be realized in different ways. Be-

low are the main approaches of hybridization in GCO. Figure 2.1 shows an outline

of these different hybridization strategies.

The simplest way of hybridization of a global optimizer and a local optimizer is

to perform the diversification for a number of iterations and find the “best-solution”
. Then a LOM starts the intensification from the best solution found in the diver-

sification phase. In this case of hybridization, GOM stores the potential solution

-whenever it finds one- in the best-solution and then starts searching again. If it

finds another potential solution, it compares it with the current best-solution. If it

is better, then it replaces the best-solution with the current potential solution. The
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Diversification

Intensification

a. Simple divers-intens

The best solution

b. Iterative divers-intens

Diversification

The current best solution

Intensification

Diversification

Intensification

Semi-intensification

First n best solutions

The best solution

c. Divers-semiintens-intens 

Diversification

The current best solution

Semi-intensification

Intensification

The best solution

d. Divers-semiintens-intens, 
an extended approach

Figure 2.1: Hybridization strategies for diversification and intensification (taken from
[2])

process continues until it cannot find any potential solution which outperforms the

best-solution. The best-solution is then used as the starting point of LOM. The LOM

perfoms the intensification on the best-solution and return the global optimum so-

lution at the end. We refer to this strategy as “simple divers-intens”, see Figure 2.1.a.
Another strategy of hybridization is to perform local optimization for every sin-

gle potential solution. Thus whenever the algorithm finds a potential solution, it

performs intensification on it and saves the result into the best-solution. Then it

starts diversification from another unseen area for the sake of finding a new po-

tential solution. Then again it does intensification on the new potential solution

and compares the new obtained solution with the best-solution. If it is better, the

algorithm replaces the best-solution with the obtained one. The algorithm continues
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until it cannot find any more new potential solutions in the diversification phase.

We refer to this strategy as “iterative divers-intens”, Figure 2.1.b.
An optimized way of hybridization is to do the diversification phase and store all

of the potential solutions in a list, known as “promising-list”. Then perform a semi-

intensification phase on the stored potential solutions and keep the one with the

minimum value in the best-solution. The obtained best-solution is used as the start-

ing point of the intensification phase. We refer to this strategy as “divers-semiintens-
intens”, Figure 2.1.c. There are different varieties of divers-semiintens-intens strate-
gies in the literature. For example the diversification and the semi-intensfication

can be performed in an iterative divers-intens manner. Then the best first n solu-

tions are stored in the promising-list following by the intensification phase which

performs local optimization to find the best solution, Figure 2.1.d.

The simple divers-intens strategy is very fast when compared to other strategies,

but since only one best solution is considered for the intensification phase, it does

not guarantee finding the optimum solution. As an example, suppose there are two

potential solutions in the diversification phase; one is chosen as the best-solution that

has less output value. But the best-solution does not necessarily show the best area

since the other solution might have been around the global optimum solution but

just could not obtain a lower output value. Figure 2.2 shows a typical example of

this case.

To solve the problem of simple divers-intens hybridization strategy, iterative divers-
intens can be applied. Since in this strategy every single potential found area is in-

tensified, the possibility of finding the global optimum solution is increased. But

this strategy is computationally very expensive since the intensifcation is carried

out for all of the potential areas. When we find a potential area it might seem very

promising but as we do diversification in future, we may find far better areas than

the previous promising areas which apparently should not be intensified. Figure

2.3 shows an example of this case where it is computationally expensive.

To solve the computational issue of the iterative divers-intens while obtaining an

acceptable rate of finding the global optimum solution, the divers-semiintens-intens
hybridization strategy can be applied. In this strategy, the diversification stores

only the best n promising areas in the promising-list. So we do not care about the

other promising areas which are found in the diversification phase. Then a semi-

intensfication phase is carried out on these n areas to see which one is the most

promising one. Note that the first best promising area out of those n areas is not

necessarily the one which is in the global optimal area. That is why we need to do
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The best-solution: this point is used as the
starting point of the intensification phase.

Intensification phase

Diversification phase

The local optimum solution which 
is returned as the global solution.

The actual global optimum solution

potential solutions found in the diversification phase

intensification

Figure 2.2: An example of the simple divers-intens drawback (taken from [2])

the semi-intensfication phase. After semi-intensification the best promising area is

given to the intensification phase for local optimization. Figure 2.4 shows this case

with an example. In Figure 2.4, we assume n is equal to 3. Thus only the first three

promising areas are considered during the semi-intensification phase.

2.5 Application of global optimization for fuzzy regres-

sion

One of the major benefits that one could get from the application of meta-heuristic

approaches is that they are context-independent. So, a fitness measure to be mini-

mized can be treated as a black-box. As mentioned earlier, one of the challenges in

fuzzy linear regression is that the fitness measure can be a trade secret which cannot

be transparent to the fuzzy linear regression analyst [30]. Another difficulty with

the existing fuzzy linear regression analysis is that the mathematician is limited in
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Intensification phase

Diversification phase

potential solutions found in the diversification phase

In the intensification phase all of the potential 
solutions from the diversification phase are intensfied.

The returned global optimum solution

Figure 2.3: The computationally expensive example for iterative divers-intens hybridiza-
tion strategy (taken from [2])

selecting the fitness measure. For example in least square approaches the fitness

measure needs to be differentiable and thus must be continuous. The application

of meta-heuristic approaches relaxes this restrictions as these approaches do not

dictate any condition for the selection of the objective function [2]. So, the objec-

tive function can be designed in such a way that it can tackle the issue of dealing

with outliers ( [8]) and the spread increasing problem. Although there are other

approaches to deal with outlier detection ( [7, 83–85]) and the spread increasing

problem ( [86–88]) in the literature where global continuous optimization is not

used in all of them the fitness measures are selected (or tweaked) in such a way that

the least square or linear programming approaches could minimize the measure.

As illustrated in Figure 2.1, there are four major hybridization approaches. De-

pending on the application at hand,one may choose any of the approaches to in-

crease the speed, accuracy, or to balance between both speed and accuracy. To this

end, we assumed that for fuzzy linear regression analysis, we want to have a balance
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Semi-intensification phase

Diversification phase

potential solutions found in the diversification phase

Semi-intensification

Semi-intensification

Semi-intensification

The returned global optimum solution

Intensification

Intensification phase

Figure 2.4: An example for divers-semiintens-intens hybridization strategy (taken from
[2])
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between the speed and accuracy (however if for an application this assumption is

not valid, one could use another hybridization approach). In a preliminary study,

we verified the “divers-semiintens-intens” for some benchmark functions and an in-

dustrial application [2]. The results are presented in Appendix A.1 and the details

of the benchmark functions are given in Appendix A.2.

2.6 Summary

Global continuous optimization is a preferred option when the optimization prob-

lem at hand has either unreliable derivatives, or black-box nature and also satisfies any

of the following properties computationally expensive evaluation, costly or dangerous
evaluations, optimization with time constraints. Some applications that are classified

into global continuous optimization include minimization of helicopter rotor vibra-

tion [30,37,38], and some chemistry and biology applications [30].

Three main approaches to deal with such optimization problems are direct search
methods,meta-heuristic based approaches and surrogate models. Perhaps the oldest ap-
proaches are direct search methods which have a history of about half a century.

These algorithms are mainly deterministic. Nelder-Mead and Hooke-Jeeves meth-

ods are discussed as an example of such methods. Another class of approaches

for solving such optimization problems is meta-heuristic based approaches. Meta-

heuristics are stochastic methods which seek a good solution comprising some ran-

domness. As an example, this chapter provides basic details of four meta-heuristics;

genetic algorithms, tabu search, simulated annealing and harmony search. In surro-

gate models, as the last class of approaches for solving global continuous optimiza-

tion problems, a surrogate model of the objective function is sought. If the high

fidelity surrogate model is available then instead of studying the objective function

itself to find the minimum point, the surrogate model can be investigated. The ben-

efit of applying surrogate models is that they do not have computationally expensive
evaluation, or costly or dangerous evaluations.

A slow rate of convergence is a drawback in some of meta-heuristic based ap-

proaches [2]. Hybridization is a solution toward solving this issue. Four major

hybrid frameworks are described where each is suitable for a types of problems. It

is reported that the simple divers-intens hybridization framework is very fast when

compared to other frameworks, but since only one best solution is considered for

the intensification phase, it does not guarantee finding the optimum solution. On
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the other hand, iterative divers-intens hybridization frameworks increase the possi-

bility of finding the global optimum solution. But this framework is computation-

ally very expensive since intensification is carried out for all of the potential areas.

Divers-semiintens-intens frameworks are realized to keep the balance between the

computational cost and the rate of finding global optimum solutions.



3
Fuzzy linear regression1

Fuzzy linear regression analysis is a powerful tool to model the input-output re-

lationship and for forecasting purposes or studying the behavior of the data. The

existing challenges in fuzzy linear regression are, dealing with non-transparent fit-

ness measures, outlier detection and the spread increasing problem. This chapter

studies the existing methods and proposes the application of the global continuous

optimization to tackle these issues.

3.1 Fuzzy logic

Many real-world problems cannot be expressed by binary logic. In particular most

of human inferences are not consistent with the two-valued logic [90]. For example

the expressions such as; comfortability and cloudy in the sentences “Is the weather

cloudy?” and “Is the temperature comfortable?” cannot be suitably described by

binary logic [3, 90]. The meaning of the comfortability is far more than something

that can be represented by one number. Interval variables can be used to represent

such variables, for example a temperature is comfortable if it is in a closed interval

1This chapter is based on a journal paper; [6] co-authored by M. A. Orgun, M. Mashinchi and W.
Pedrycz, and a conference paper; [89] co-authored by M. A. Orgun and M. Mashinchi

33
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of [20◦,25◦], where the universe is −20◦ to 50◦. However, the interval representation

treats all the temperatures in the interval as comfortable. A more generalized way

is to give membership degrees to each of the values in this interval. Assuming that

the temperature is perfectly comfortable at 22◦ to 23◦ and the satisfaction feeling

decreases with lower or higher values, then the fuzzy set for comfortability can be

defined as given in Figure 3.1 [3].

y

tempreture

20 21 22 23 24

Comfortability

1

Figure 3.1: The fuzzy set of the comfortability of the temperature (derived from [3])

3.1.1 Fuzzy sets and fuzzy numbers

A fuzzy set is a “class of objects with a continuum grades of memberships” [91]

where a membership value can be any value from zero to one and defines howmuch

a member belongs to that set [92]. A fuzzy set Ã which is subset of X is formally

defined as given in 3.1.

Ã = {(x,µA(x))|xϵX} (3.1)

where µA(x) is the grade of membership of x in Ã. Value of µA(x) is in the closed

interval of [0,1]. The closer µA(x) is to 1, the greater is the degree to which x belongs

to Ã. Similarly the closer µA(x) is to 0, the less x belongs to Ã [93,94]. If the interval

[0,1] is substituted with the binary set {0,1}, then the set A is converted to a regular

set [94].

Some other concepts of fuzzy sets are defined as follows:

Definition 1 (α−level). For αϵ[0,1], the α−level set of a fuzzy set Ã is the crisp set:

Ãα = {xϵX |Ã(x) ≥ α}. (3.2)

The interval representation of α−level can be defined as Ãα = [Al
α,A

r
α].
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Definition 2 (Support). The support of a fuzzy set Ã on X, denoted by supp(Ã), is the
set of points in X at which Ã(x) > 0;

supp(Ã) = {xϵX |Ã(x) > 0}. (3.3)

Definition 3 (Height). The height of a fuzzy set Ã on X, denoted by hgt(Ã), is the least
upper sup() bound of Ã(x);

hgt(Ã) = sup
xϵX

Ã(x) (3.4)

Definition 4 (Convexity). A fuzzy set Ã is said to be convex if for any αϵ[0,1], Ãα is a
convex set.

Definition 5 (Fuzzy number). Fuzzy numbers are special kinds of fuzzy sets. A fuzzy
number is a convex normal fuzzy set of the real line X = R1 whose membership function
is piecewise continuous.

An arbitrary fuzzy number Ã can be represented by an ordered pair of continu-

ous functions [Al(α),Ar(α)] for 0 ≤ α ≤ 1 that satisfy the followings:

1. Al(α) is increasing on [0,1],

2. Ar(α) is decreasing on [0,1],

3. Al(α) ≤ Ar(α).

Definition 6 (Positive fuzzy number). A fuzzy number Ã is called positive (non-negative),
denoted by Ã > 0, if ∀x ≤ 0, its membership function Ã = 0. A negative (non-positive)
fuzzy number is defined similarly.

Definition 7 (L-R fuzzy number). A fuzzy number Ã is said to be an L-R fuzzy number
if;

Ã(x) =

L(
a−x
α ) x ≤ 0,α > 0

L(x−aβ ) x > 0,β > 0

where a is the mean value of Ã and α and β are left and right spreads, respectively, and
L() is a left shape function satisfying;
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• L(x) = L(−x),

• L(0) = 1, and

• L(x) is nonincreasing on [0,1).

R() is defined similarly to L().
Such an L-R fuzzy number is denoted by Ã = (a;α;β)LR, by using its mean value (a),

left and right spread functions α and β. If an L-R fuzzy number is symmetric then it can
be represented by Ã = (a;α) where α is the left and right spreads of the fuzzy number.

3.1.2 Fuzzy arithmetics

Fuzzy arithmetics which are defined by extension principle provides necessary op-

erations for the manipulation of fuzzy numbers [3].

Definition 8 (Extension principle). Let f : X→ Y be a mapping function from a set X
to a set Y . For each fuzzy set Ã in X the fuzzy set B̃ in Y is induced by f as follows:

B̃ = {(y, B̃(y))|y = f (x),xϵX} with (3.5)

B̃(y) =

supy=f (x),xϵX Ã(x) f −1(y) , ϕ

0 f −1(y) = ϕ

where, f −1(y) is the inverse image of y.

Now, by setting X =R2 and Y =R, the addition, subtraction, and multiplication

of two fuzzy numbers Ã and B̃ are obtained as follows [90]:

Addition:

(Ã+ B̃)(x) = sup
x=a+b

min{Ã(a),̃ (B)(b)} = sup
aϵR

min{Ã(a),̃ (B)(x − a)}

Subtraction:

(Ã− B̃)(x) = sup
x=a−b

min{Ã(a),̃ (B)(b)} = sup
aϵR

min{Ã(a),̃ (B)(x − a)}

Multiplication:

(Ã× B̃) sup
x=ab

min{Ã(a),̃ (B)(b)}
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For L-R fuzzy numbers such as Ã = (a,α,β)LR and B̃ = (b,λ,σ )LR, the addition,

subtraction and approximate formulas formultiplication are defined as follows [95].

Addition:
(Ã+ B̃) = (a+ b,α +λ,β + σ )LR

Subtraction:
(Ã− B̃) = (a− b,α +λ,β + σ )LR

Multiplication:

(Ã× B̃) =


(ab,aλ+ bα,aσ + bβ)LR Ã > 0, B̃ > 0

(ab,bα − aσ,bβ + aσ )LR Ã ≤ 0, B̃ > 0

(ab,−bβ − aσ,−bα − aσ )LR Ã < 0, B̃ ≤ 0

3.1.3 Fuzzy similarity measures

The evaluation of how well a model can fit the observed data is done by a measure-

ment which is called a fitness measure [92]. A distance-based fitness measure for

fuzzy numbers is often generalized from a distance measure for interval numbers.

Any concept of distance must satisfy the properties in the following definition;

Definition 9 (Property of a distance measure [93]). A numerical function D(A,B)ϵR

which is defined on a set E is a distance if and only if:
∀A,B,CϵE :

D(A,B) ≥ 0,

D(A,B) =D(B,A),

D(A,B) = 0⇒ A = B,

D(A,C) ≤D(A,B) +D(B,C).

Kaufman and Gupta [96] defined the distance measure for two fuzzy numbers Ã

and B̃ as follows:

D(A,B) =
∫ α=1

α=0
|Al

α −Bl
α |+ |Ar

α −Br
α |dα

.

Kaufman and Gupta’s measure is the generalized form of the distance measure

proposed by Dimond [97] and Bardossy et al. [98] for two interval numbers A =
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(a1, a2) and B = (b1,b2) as follows:

D(A,B) =
√
(a2 − b2)2 + (a1 − b1)2.

Dimond [97] defined a distance measure for two fuzzy numbers Ã = (a,α,β) and

B̃ = (b,λ,σ ) as follows:

D = (Ã, B̃) = (a− b)2 + (a−α − b+λ)2 + (a− β − b+ σ )2

In case A and B are crisp values, Dimonds measure is equivalent to triple of the

Euclidean distance. The measure needs to be modified to handle trapezoidal fuzzy

numbers [93].

There are other model fitting measurements (MFMs) such as Hojati’s similar-

ity measure [4], distance criterion [99], Euclidean distance [100], none-intersected

area [88,101], relative none-intersected area [12], and compatibility measure [102].

Since there is no evidence that one measure is better than the others, one may adopt

a MFM based upon requirements of modelling and the nature of the data set. Fol-

lowings are threemore similarity measures proposed byHojati [4] given by equation

(6.3), distance criterion which is proposed in [99] expressed as equation (4.8), and

the none-intersected area (NIA) proposed in [88,101] and defined by equation (4.9).

The numerator of equation (6.3), the none-intersected area, for two fuzzy numbers

is illustrated in Figure (3.2).

Ã B̃

µ(x)

1

x

Figure 3.2: An example of the non-intersected area of two fuzzy numbers which is used
in the numerator of the objective function given in equation (6.3) (derived from [4])

Sh =

∫
min(µỹ∗(x),µỹ(x))dx∫
max(µỹ∗(x),µỹ(x))dx

(3.6)
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D =
1
4

k∑
i=1

|yLi − y
∗L
i |+2|yCi − y

∗C
i |+ |y

R
i − y

∗R
i | (3.7)

NIA =
k∑

i=1

∫
Sỹ∗i

∪
Sỹi

|µỹi (x) −µỹ∗i (x)|dx

 . (3.8)

.

3.2 Fuzzy regression

Classical regression analysis offers a conceptual and algorithmic vehicle to discover

relationships (functions) between independent (explanatory, covariant, input) vari-

ables and dependent (response, output, model’s estimated output) variables [103,

104]. The problem is to optimize the given function’s parameters for the given

input-output data so that a predetermined objective function attains its (global)

minimum [88]. The ultimate objective of forming a regression model is to esti-

mate the value of a continuous dependent variable for any arbitrary value of the

independent variable [105]. Regression models are important tools in operations

research, complex systems analysis and various fields of application; such as econ-

omy, finance, marketing, social sciences, healthcare and others [101,106].

Classical regression realized by means of statistical techniques is applied suc-

cessfully to analyze quantitative data and homogeneous observations [104]. The

deviation between the observed data and the estimated data encountered in clas-

sical regression is due to the measurement error or random variations of parame-

ters [1, 107, 108]. Such random variations can be represented as a normal distribu-

tion of some variance and zero mean, which makes statistical techniques effective
in determining the functional relationship for such types of data [107].

However, often a probabilistic representation of data is not available or not suit-

able, and there are significant deviations between the observed data and the corre-

sponding estimates because of the imprecision introduced by human judgement or

the indefinitness/vagueness of the model’s structure [5,12]. In such systems, uncer-

tainty arises not due to randomness but due to the phenomenon of fuzziness [108].

In “conventional” approaches, a numeric form of data is considered to construct the

model – even if the data comes with some imprecision or uncertainty. As a result,

this makes the estimated model not fully efficient since by considering the numeric

form of data instead of uncertain data, some important information may have been
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overlooked or neglected [105].

The factor of uncertainty may emerge in the system’s behaviour is due to several

reasons:

• the high complexity of the environment, which necessiates the adaptation of

abstraction (granulation of information) for generalization purposes [109],

• the influence of human subjective judgement in the decision process or the

involvement of human-machine interactions [5,12,110], and

• partially available information [13], due to miss-recording or inaccurate mea-

surements [111].

Quantization of uncertain data for simplication may cause partially available infor-

mation [13]. In the quantization process some useful information are overlooked.

Quality prediction based on explanatory variables is an example where the quality

is usually represented by ordinal data [10].

The design of a regression model in such environments has been a challenge the

design of classical regression. In classical aproaches, fuzzy data used to treated as

ordinal data so that the classical statistical approaches can be applied [112]. As

mentioned earlier, there is often useful information that can be overlooked at the

defuzzification stage. An intuitively appealing approach towards the fuzziness of

a system is to not defuzzify the data but to take the vagueness into consideration

in the level of inferencing [112]. The defuzzification is only applied at the decision

stage when it deemed to become necessary [112].

The representation of an experimental environment which is governed by un-

certainty or impreciseness, can involve interval or fuzzy data [113]. To derive the

corresponding models in such environments, Fuzzy Regression (FR) or interval re-

gression (which is regarded as a simple version of FR [114]) is considered.

The FR model is referred to as a fuzzy or possibilistic model of classical regres-

sion, while classical regression is based on the principles of statistics [107]. It has

been observed that the FRmodel is more effective than the classical regression when

the normality of error terms and dependent variables, and the availability of a suf-

ficiently large data set (complete data conditions) are not satisfied [5, 86, 115]. In

such cases, the FR model may be used to explore the imprecise relationship be-

tween dependent and independent variables for the given system. The relationship

is estimated by minimizing some error criterion capturing various facets of uncer-

tainty [1, 116]. There have been many diverse applications of Fuzzy Linear Regres-

sion (FLR), such as R&D project evaluation [117], housing [5, 109], insurance [118]
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and many others.

In the FLR model, we are interested in finding a fuzzy function ỹ in the form

given below (3.9) which fits a finite number of numeric input-fuzzy output data

with a minimum error [5], where the data is
(
(x1i ,x2i , · · · ,x(n−1)i ,xni), ỹ∗i

)
i = 1, · · · , k.

ỹi = (3.9)

Ãnxni + Ãn−1x(n−1)i + · · ·+ Ãjxji + · · ·+ Ã1x1i + Ã0

In a more general situation, both inputs and outputs are treated as fuzzy num-

bers. In this case, we are looking for a function such as the one given by (3.10), to fit

the fuzzy input-fuzzy output data
(
(x̃1i , x̃2i , · · · , x̃(n−1)i , x̃ni), ỹ∗i

)
[14].

ỹi = (3.10)

Ãnx̃ni + Ãn−1x̃(n−1)i + · · ·+ Ãj x̃ji + · · ·+ Ã1x̃1i + Ã0

where in (3.9) and (3.10), Ãj (j = 0, · · · ,n) is the fuzzy coefficient (parameter) of the

regression model. The parameters are optimized in such a way that the differences
between the observed outputs ỹ∗i and estimated ones ỹi are made as small as possi-

ble. All ỹi (i = 1, · · · , k), Ãj (j = 0, · · · ,n) and x̃ji are fuzzy numbers and the operations

used there are treated as the multiplication and addition of fuzzy numbers.

There are two approaches for FLRA; possibilistic and Least Square (LS) [1]. In

the former approach proposed by Tanaka et al. [5], the aim is to minimize the whole

fuzziness by minimizing the total spreads of the fuzzy coefficients while the esti-

mated outputs and the observed ones are within a certain h-level of belief [107].

The LS-based approach proposed by Dimond [119] aims at minimizing the least

square error between the estimated and the observed fuzzy data.

3.2.1 Linear programming approaches

Tanaka et al. [5] proposed a possibilistic approach which tries to minimize the fuzzi-

ness of the model by minimizing the spreads of the fuzzy coefficients where also

each sample is captured within a feasible interval [1]. This model was proposed for

crisp input-fuzzy output data based on linear programming where later on a more

generalized model for fuzzy input-fuzzy output proposed [14]. The difference in

the linear programming based approaches is based on their objective function to be
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minimized and their linear conditions.

The initial model investigated by Tanaka et al. [5] was proposed for symmetric

triangular fuzzy numbers as follows:

minβ0 + β1 + · · ·+ βn (3.11)

subject to:
k∑

j=0

(αj + (1− h).βj).xij ≥ yi + (1− h)ei , i = 1, · · · ,n

k∑
j=0

(αj + (1− h).βj).xij ≤ yi − (1− h)ei , i = 1, · · · ,n

αjϵ[0,1],βj ≤ 0

The solution to the linear program (3.11) forces the model to include the h-level

of the observed interval to be included by the h-level of the predicted interval [4].

Figure (3.3) illustrates a model where the predicted intervals (dotted lines) include

the observed intervals (bold line).

y

x

x_1 x_1

Figure 3.3: Illustration of Tanaka et al. model [5] (derived from [4])

Tanaka et al. [11], and Redden and Woodall [111] suggested to change the objec-

tive function to solve the shortcomings reported by [120] of the linear programming

given in (3.11) where many βi turn out to be zero and the models coefficients are in-

dependent of the input variables. The modified objective function is given in 3.12.
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minβ0 +
n∑
i=1

k∑
j=0

βixij (3.12)

Another major shortcoming of the Tanaka et al. model is that the h-level of the

predicted interval is required to contain the corresponding observed interval, as

illustrated in Figure 3.3. This results in obtaining a model where it is very sensitive

to outliers and the data which have high imprecision (long spreads). A solution

to this problem is given by allowing the model to intersect between the h-levels of

predicted and observed intervals [11]. Peters modified the approach proposed by

Tanaka et al. [5] to detect the outliers for crisp input and crisp output data by linear

programming [85]. The linear program in Peters’ approach maximizes the λ value

which is in the interval [0,1]. The greater the λ value the better the quality of the

data. However, in this approach, there are three user defined variables: d0, pi and

p0. The linear programming model is given as follows (3.13):

maxλ,

subject to:

(1−λ)p0 −
N∑
i=1

ct |xi | ≥ −d0

(1−λ)pi +αtxi + (1− h)ct |xi | ≥ yi (3.13)

αtxi + (1− h)ct |xi | − (1−λ)pi ≤ yi

0 ≤ λ ≤ 1, c ≤ 0, i = 1,2, ·,N

A small d0 value means that we are interested in a function with smaller spreads.

Peters actually suggested d0 = 0 which means the best function is a crisp function

which ideally is rational as both inputs and outputs are crisp. Also pi and p0 are user

defined values which are context-dependent. For example, if a dataset is assumed

to have a lot of outliers then one may use greater pi and p0 values.

Sakawa and Yano proposed a generalized model to deal with fuzzy input-fuzzy

output data which is later on imporved by Hojati et al. [4]. Hojati set the objective

function to the total sum of the distances of right and left spreads of predicted and

observed data. It is noted that Hojati et al. approach does not work for asymmetric

fuzzy numbers [4].
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3.2.2 Least square approaches

Dimond [97,119] proposed another way of fuzzy linear regression analysis by solv-

ing an unconstrained least squares problem which yields solutions analogous to

ordinary least squares. The formulation of least squares fuzzy linear regression is

as follows:

min
∑

D2(Õ, P̃ )

where Õ and P̃ represent the observed and predicted fuzzy outputs, respectively.

D() is a distance measure between two fuzzy values.

The main idea in least square fuzzy linear regression analysis is to seek for the

optimized coefficients in fuzzy linear regression which minimize the defined dis-

tance measure for observed and predicted data. Based on the chosen distance mea-

sure, and the type of the fuzzy input or output, different coefficients would be ob-

tained. The coefficients for a model with one crisp input variable, one fuzzy tri-

angular output variable with the distance measure (3.15) can be computed as fol-

lows [103]:

case 1: if A1 ≥ 0 in (3.9)

S+(A0,A1) =
n∑
i=1

D(ỹi ,A0 +A1x̃i) (3.14)

=
n∑
i=1

[(yi −A0 −A1xi)
2 + (yli −A0 −A1x

l
i )
2 + (yri −A0 −A1x

r
i )
2]

The coefficients A0 and A1 can be computed by differentiating the distance mea-

sure with respect to A0 and A1 as follows:

A1 =

∑n
i=1x

l
iy

l
i + xiyi + xri y

r
i − 3nx̄ȳ∑n

i=1(x
l
i)
2
+ xi)

2 + xri )
2 − 3nx̄2

A0 = ȳ −A1x̄

where ȳ =
∑n

i=1(y
l
i+yi+y

r
i )

3n , and x̄ =
∑n

i=1(x
l
i+xi+x

r
i )

3n .
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case 2: if A1 < 0 in (3.9)

S+(A0,A1) =
n∑
i=1

D(ỹi ,A0 +A1x̃i) (3.15)

=
n∑
i=1

[(yi −A0 −A1xi)
2 + (yli −A0 −A1x

r
i )
2 + (yli −A0 −A1x

r
i )
2]

The coefficients; A0 and A1 can be computed by differentiating the distance mea-

sure with respect to A0 and A1 as follows:

A1 =

∑n
i=1x

l
iy

r
i + xiyi + xliy

r
i − 3nx̄ȳ∑n

i=1(x
l
i)
2
+ xi)

2 + xri )
2 − 3nx̄2

A0 = ȳ −A1x̄

where ȳ =
∑n

i=1(y
l
i+yi+y

r
i )

3n , and x̄ =
∑n

i=1(x
l
i+xi+x

r
i )

3n .

The coefficients for a more generalized model with one fuzzy input variable, one

fuzzy triangular output variable with the distance measure (3.16) can be computed

as follows [103]:

S(A0,A1) =
n∑
i=1

D(ỹi , Ã0 + Ã1x̃i)

=
n∑
i=1

[(yi − a0 − a1xi)2 + (yli − a
l
0 − a

l
1x

l
i)
2 + (yri − a

r
0 − a

r
1x

r
i )
2]

(3.16)

Differentiating with respect to a0, a1, a
l
0, a

l
1, a

r
0, and ar1, the coefficients are as

follows:

al1 =

∑n
i=1x

l
iy

l
i −nx̄

l ȳl∑n
i=1(x

l
i)
2 −nx̄l

2

, al0 = ȳl − al1x̄
l

a1 =
∑n

i=1xiyi −nx̄ȳ∑n
i=1(xi)

2 −nx̄

2

, a0 = ȳ − a1x̄
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ar1 =

∑n
i=1 x

r
i y

r
i −nx̄

r ȳr∑n
i=1(x

r
i )
2 −nx̄r

2

, ar0 = ȳr − ar1x̄
r

All the least square approaches in the literature share the above given concept

in which the chosen distance measure obtains its minimum by differentiation with

respect to the coefficients. However, what make these methods distinct are; defining

an algebraic operation such as approximation of the product operation [121,122], an

application of different a distance measure [123], a more generalized type of fuzzy

coffiecients such as trapezoidal fuzzy numbers [124].

3.2.3 Comparison between least square and linear programming

approaches

The first FLR model, proposed by Tanaka et al. [5], was based on the possibility

theory and solved by Linear Programming (LP) [1, 5, 125]. Celmins [126] and Di-

mond [97] proposed a FR model based on the Least Square (LS) approach. Accord-

ing to the error definition, FR models are classified in two categories [1]; possibilis-

tic with LP, and LS approaches. In the former approach, the aim is to minimize

the overall fuzziness by minimizing the total spread of the fuzzy coefficients while

the estimated outputs and the observed ones are within a certain h-level of con-

fidence [86, 107]. The term h expresses the fitness between the estimated fuzzy

outputs and the observed ones [107]. On the other hand, in the LS-based model, a

similarity measure between observed and estimated outputs is used as the measure-

ment for the fitness of the model [1,107].

LP is a well-known technique used in possibilistic approaches to minimize the

fuzziness of the coefficients. In the LP based approaches with additional observa-

tion data, two constraints are added to LP [103]. However, having extra constraints

is not an issue in practice since the data sets for fuzzy regression are small and also,

LP problems even with thousands of variables and constraints can be solved in a

few seconds. Tanaka et al.’s LP approach [5] is criticized to be very sensitive to out-

liers [86, 111, 123] and if more input-output data are provided, then the spreads of

estimated outputs may become undesirably wide [86, 111, 123]. However consider-

ing the goal of LP based approaches which is to cover the spreads of all the obser-

vations (up to an h-level), the sensitivity of these approaches to outliers or having

wider spreads with more observations cannot be counted as drawbacks. Further-

more, in LP based approaches there is a tunable parameter by which the level of
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uncertainty might be kept under control. On the other hand, the goal of LS-based

approaches which are the extension of the statistical regression analysis differs from
LP based approaches. The goal of LS based approaches is to find a model which has

the most similar estimated outputs to the observed ones based on the chosen simi-

larity measure.

3.3 Challenges in fuzzy linear regression

Perhaps the most important part in an optimization problem is the selection of the

objective function. The sought model could be varied based on the chosen objective

function. Fuzzy linear regression analysis can be seen as an optimization problem

where the aim is to derive a model which it fits the given data set. Another chal-

lenge in fuzzy regression analysis is to obtain a model which is insensitive of the

outliers. Although the portion of the outliers is usually small comparing to the rest

of the data set, a model which fits all the data including the outliers will have an

unpredictable behavior. The last issue in fuzzy linear regression analysis, which is

introduced from the early stages of the proposal of fuzzy linear regression in 1982,

is the spread increasing problem (SIP) in which the uncertainty of the model grows

with the increase of the magnitude of the input.

3.3.1 Fitness measure

The selection of the fitness measure is one of the most important issues in fuzzy

linear regression analysis. Selection of an improper fitness measure may result in;

• having good results for the training set but poor performance on the testing

set,

• causing the iterative approaches to take long time to derive the model due to

the selection of a computationally expensive fitness measure,

• being unable to derive the model by linear programming or least square based

approaches due to an ill-defined nature of the chosen fitness measure [6].

To maximize the performance of the derived model, the fitness measure has to

be chosen based on;

• the nature of the data set, and
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• the experts’ opinion; including the optimization engineer and the client who

needs the model.

Conventionally some well-known fitness measures regardless of the nature of

the problem are always utilized for optimization methods, or in more flexible ap-

proaches the selected fitness measures are tweaked such that they are converted to

a convex optimization, or can be modeled by linear programming. Global contin-

uous optimization approaches remove the restriction of using any type of a fitness

function and allow to choose a fitness measure based on the client request or re-

quirement, and the nature of the data set [6]. Moreover, for the applications where

the fitness measure is not transparent to the designer of the fuzzy linear regression

analysis due to the confidentially and secret trade, the model cannot be derived

based on linear programming or least square based approaches [30]. This is due to

the fact that in the both types of approaches, the fitness measure should be trans-

parent to develop the model. In these scenarios where the fitness measure has to

be treated as a black box, global continuous optimization approaches such as those

which work based on meta-heuristics or surrogate methods are the only suitable

solutions. Furthermore, one of the promises of the global continuous optimization

approaches is to find the minimum of the fitness measure in minimum of time. This

is due to the fact that the evaluation of the fitness measure is assumed to be a very

time consuming process [2, 24, 30, 62]. So, in situations where the fitness measure

is complex and time consuming to be evaluated, global continuous optimization

approaches are suitable tools.

In a nutshell, the application of global continuous optimization for fuzzy linear

regression allows;

• to choose themost suitable fitnessmeasure based on the clients’ request and/or

requirement, and the nature of the data set,

• to keep the confidentiality of the fitness measure when it is a trade secret, and

• to have a fairly complicated and computationally expensive fitness measure-

–as one of aims of global continuous optimization is to find the minimum of

the measure in a very short time.

3.3.2 Outlier detection
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Cleaning the data set off outliers is an important preprocessing task. There are some

methods in the literature which discuss the elimination of outliers before the appli-

cation of fuzzy linear regression [7, 83–85]. A feasible way of detecting outliers is

to develop a fitness measure such that it detects the outliers. This requires high

flexibility on designing the fitness measure which is not always possible in least

square or linear programming based approaches. Global continuous optimization

approaches provide the flexibility of being able to apply any type of fitness mea-

sures. Chapter 6 proposes an outlier detection approach based on the application

of global continuous optimization.

3.3.3 The spread increasing problem

Spread increasing problem has been recognized since the early stages of fuzzy linear

regression. This is due to the fact that the fuzzy linear model which is initially

proposed by Tanaka et al [5] and widely used by other researchers, naturally causes

the uncertainty to increase with the increase in the magnitude of the input variable.

The application of global continuous optimization allows to have a more flexible

fuzzy linear model without being worried about the mathematical assumptions that

one may encounter if we use least square or linear programming based approaches.

In Chapter 6, we propose a fuzzy linear regression analysis method based on global

continuous optimization which solves the spread increasing problem.

3.4 Summary

This chapter presents the preliminaries of fuzzy set theory for fuzzy linear regres-

sion analysis. Least square and linear programming based approaches are discussed

as the main approaches to solve fuzzy linear regression. The motivations of apply-

ing global continuous approaches for non-transparent fitness measure due to con-

fidentiality matters or mathematical assumptions are given. It is briefly described

that how global continuous optimization provides solutions for non-transparency of

the fitness measure, outlier detection and the spread increasing problem –the major

issues in fuzzy linear regression analysis.



4
Approaching fuzzy linear regression by

global continuous optimization1

We propose a meta-heuristic UGCO method based on tabu search and harmony

search for FLR problem. The application of meta-heuristic approaches in UGCO

allows us not to be concerned about the differentiability of the given function – a

condition which must be satisfied when dealing with analytical approaches. So,

any types of model fitting can be applied without being worried about how to

model/solve problem or being concerned about differentiability or continuity of

the chosen model fitting. The proposed method realizes the exploration of space by

tabu search and then its further exploitation by harmony search. Tabu search is a ro-

bust technique to explore a wide area of the search space beyond the local optimality

by positioning next solutions to unexplored areas [50]. It treats the objective func-

tion as a black box, which makes the optimization procedure context-independent.

Harmony search is also a context-independent search procedure emulating some

phenomena encountered in music. It employs a random search, which does not re-

quire the gradient of the function and hence makes it applicable to a wide range

1This chapter is based on a journal paper; [6] co-authored by M. A. Orgun, M. Mashinchi, and W.
Pedrycz, and a conference paper; [89] co-authored by M. A. Orgun and M. Mashinchi

50
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of optimization problems [127]. After finding a near-optimal solution, which is re-

turned by tabu search, harmony search is then applied to exploit the surrounding

area of such a near optimal solution to determine the global optimal solution.

The drawback of meta-heuristic approaches is their slow rate of convergence

[24]. In other words, they can find the near minimal solution very quickly but it is

a time consuming process to find a solution which is very close to the global mini-

mum [2,24]. That is the motivation to apply hybridized approaches which perform

the diversification and then intensification in separate phases. Tabu search is ap-

plied for diversification and improved harmony search is used for intensification.

Tabu search is chosen for two reasons. Firstly it is a point to point approach which

makes it less computationally expensive in terms of the number of function evalu-

ations compared to population based approaches such as genetic algorithms [2,26].

Secondly, tabu search keeps track of the explored areas and stores them in a list

so that it does not search the already explored areas. Thus it is less likely for

tabu search to trap into local minima or become stuck in specific areas for a long

time [50]. In the intensification phase an improved harmony search is applied. The

advantage of harmony search over other meta-heuristic approaches like genetic al-

gorithms is that in harmony search the improvision is mostly made for each vector

individually rather than mating two vectors to generate offsprings. The mating ap-

proach is suitable when we intend to find the near optimal solution, which in our

approach is already sought in the diversification phase by tabu search.

Fuzzy linear regression analysis can also be applied for extracting qualitative in-

formation from quantitative data when information is partially available [13], data

are miss-recording due to inaccurate measurements [111].

4.1 Tabu-Harmony search optimization

The aim of UGCO methods is to search for the global minimum (maximum) of the

given objective function. For a function of continuous variables X, we are interested

in finding a vector of variables for which the function y attains its minimum. The

optimality problem can be either concerned with finding the maximum or the min-

imum of the objective function. The mathematical formulation of UGCO for the
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minimization problem is given as follows:

y =min f (X)

f :Rn→R

There are two different approaches in UGCO; analytical approaches and meta-

heuristic ones. In the former approaches, the objective function should be known

and has to satisfy conditions such as differentiability which is not necessary in meta-

heuristic based approaches. In meta-heuristic based approaches, only the input-

output behaviour of the function has to be provided.

4.1.1 The UGCOmethod

Tabu search is a sound technique for finding a near global solution as it can help

from the local minima and search in a given search space. However, it is reported

that it is not efficient to search for a solution that is located close to the global mini-

mum [24]. This fact motivates us to hybridize tabu search with other local optimizer

methods to increase the effectiveness of the overall search process. Harmony search

is applied in the second phase after finding the near global optimal solution by

tabu search. Geem et al. [127] proposed harmony search as a new meta-heuristic

technique using the process of music generation. Similarly to tabu search, harmony

search is a stochastic random search method which does not require the gradient of

the function, thus making it easier to be applicable in a wide range of optimization

problems without being concerned with the assumptions [127].

In this thesis, we hybridize tabu search and the improved harmony search as

an UGCO method. The improvement in harmony search aims at making it more

sutaible for local optimization. The near optimum solution obtained by the tabu

search is provided to the improved harmony search. In the following subsections,

the details of tabu search (the first phase of the UGCO method) and the improved

harmony search (the second phase of the UGCO method) are discussed.

4.1.1.1 First Phase: Tabu Search

Among the meta-heuristic approaches, tabu search places a particular emphasis on

escaping from traps of local minima. To accomplish this aim, tabu search keeps

track of the last n visited solutions by placing it on a tabu list. Tabu search starts
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from a random solution positioned in the search space and then generates some

neighbors around the current solution. Then it checks the function’s values for the

neighbors. The next solution can even have worse perfomance compared to the

current solution and yet it can be still selected. This allows tabu search to explore

a wider search area. But if the solution has been listed tabu, it can still be accepted

as the next solution provided that it is better than the best solution reported so

far. The algorithm continues until it satisfies a certain stopping condition [50]. The

stopping condition can be set to a maximum number of iterations. Alternatively, the

algorithm can stop if the distance between the solutions in the kth and the (k +n)th

iterations (where k,nϵN) is smaller than a small positive control value such as ϵ.

The starting solution always plays an important role in the rest of the optimiza-

tion process. Starting from an initial point located far from the solution makes the

optimization process very time consuming or even potentially trapped in a local

minimum. To increase the speed of convergence and enhance the success rate, the

initial solutions should be generated randomly to some extent but in a more sys-

tematic manner. Generating finite random solutions in a high-dimensional search

space cannot normally cover the whole space. In virtue of that, we apply a partition-

ing process in which the search space is divided into partitions (sectors) and then

solutions are generated in each of the partitions in a random manner. This allows

the solutions to be distributed all around the search space while they are gener-

ated randomly in each partition. Assuming the domain of independent variables

is [ai ,bi] (where i is the index of independent variables), we can divide each vari-

able’s domain into mϵN equal intervals and then mi random solutions are required

to capture the partitions. The best solution is then selected as the current solution.

A move from the current solution to the next solution is carried out by a neigh-

bor search strategy, which works based on the concept of randomization. In contrast

to discrete tabu search, continuous tabu search has a more complicated neighbor

search strategy as the number of neighbors around the current solution could be in-

finite. The basic mechanism is to generate random neighbors around the current

solution with the maximum distribution radious of distribution factor (DF) and

then the best one is selected according to its fitness. To distribute the generated

neighbors well, DF is divided into crowns and one neighbor is generated for each of

the crowns [24]. Thus the neighbors are distributed homogeneously around the cur-

rent solution. The crown neighbor search strategy enables the neighbors to deliver

a better approximation of the entire neighborhood space.
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In continuous tabu search, a solution is considered as tabu if it is in the neigh-

bourhood of a solution which has been seen before. The similarity factor (SF) defines

the neighbourhood radius of each solution. If the SF is set as to a small value then

tabu search works as a local optimizer. On the other hand, if SF is set to a large

enough value, it behaves as a global optimizer. The process of generating random

neighbors in the crowns with DF and tabulating the neighboorhod space of unseen

solution with SF is shown in Figure 4.1.

DF

SF

crown 4

crown 3

crown 2

crown 1
Current solution

The area in the circles is tabu

Figure 4.1: Generaing neighbors and tabulating areas based on DF and SF (taken from
[6])

we consider two tabu lists: one for the short term and another one for the long

term. A finite number of solutions recently visited are stored in the short term tabu

list, so in the near future we avoid searching them again. In each iteration, if a local

optimal solution is seen, then we save it into the long term tabu list. A solution

is considered as a local minimum solution if the next solution exhibits worse per-

formance. Simply speaking, if the current solution is still improving then we are

getting close to the local optimum solution, otherwise the current solution should

be a local optimum one if the next one has worse performance. The long term tabu

list keeps track of local optimum solutions so later, in semi-intensification phase,

the most potential one is searched.

The semi-intensfication is carried on the stored solutions in the long term tabu

search to find out which of the local optima have the most potential to return a

global optimum solution. The difference between semi-intensification and diversifi-

cation is in applying smaller values for SF andDF. At the end of semi-intensification,

only one point is nominated as the potential point for further intensification, which
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is followed by the improved harmony search.

4.1.1.2 Second Phase: Improved harmony Search

Harmony search is a meta-heuristic approach, which adopts the idea of natural mu-

sical processes [127]. The algorithm of harmony searchminimizes an objective func-

tion of the form f : Rn→ R. In basic harmony search, randomly generated feasible

solutions are initialized in the Harmony Memory (HM). In each iteration, the algo-

rithm aims at improvising the HM. The improvision process works based on three

operations; memory consideration, pitch adjustment and random selection. In the

memory consideration and the random selection operations, each variable of a new

solution vector is generated either based on the solutions in HM or randomly. The

pitch adjustment operation, introduced to escape from local minima, makes random

changes to some of the generated solutions [57,127].

The algorithm of the basic harmony search can be outlined as follows [127]:

1. Initialization of control variables.

2. Harmony Memory (HM) is initialized with HMS (Harmony Memory Size) ran-

domly generated feasible solution vectors Xi where i = 1,2, · · · ,HMS from the

solution Xt = (x1t ,x
2
t , · · · ,xn−1t ,xnt ) obtained from the tabu search. The initial

HM is made up of the solution sought from tabu search plus HMS − 1 so-

lutions which are chosen randomly in the neighborhood of Xt as follows:

1: for i = 1 to HMS − 1 do
2: for j = 1 to n do
3: xij ⇐ xit +RND(−0.5,0.5);
4: end for
5: end for

Then the solutions are sorted according to the output which is produced by
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the objective function, as shown below:

HM =



x11 ... x1j ... x1n

x21 ... x2j ... x2n

: : : : :

xi1 ... xij ... xin

: : : : :

xHMS−1
1 ... xHMS−1

j ... xHMS−1
n

xHMS
1 ... xHMS

j ... xHMS
n


where Xi

j = (xi1,x
i
2, · · · ,x

i
j , · · · ,x

i
(n−1),x

i
n) and n is the number of variables to be

optimized.

3. A new HM is improvised from the current HM. So, for each solution vector

Xi , ĲXi represents the new solution vector which is going to be substituted for

Xi . The next solution can be either chosen from the HM with the probability

of the harmony memory consideration rate (HMCR), or generated randomly

with the probability of 1−HMCR in the feasible search space M. In this the-

sis HMCR is set to be 0.9 as it is an intensification phase and we do not need

too much mutation. This solution is then adjusted with a probability of pitch

adjustment rate PAR and with the probability of 1−PAR the solution remains

intact. In pitch adjustment, the solution changes slightly in the neighborhood

space of the solution. To be able to search the neighborhood of each solution

comprehensively, we assign a large value like 0.8 to PAR. The entire process

of improvising harmony memory can be summarized as follows:
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Harmony memory consideration:

ĲX
i
=


XiϵHM

with probability of HMCR

XiϵM

with probability of (1−HMCR)

Pitch adjustment:

ĲX
i
=


ĲX
i
= ĲX

i
+ (bw ·RND(−1,1))

with probability of PAR

Xi

with probability of (1− PAR)

where bw is an arbitrary positive value for pitch adjustment which is usually

assigned a value less than 1. In this thesis, bw is set to 0.1. The function

RND(−1,1) generates a vector of random numbers coming from the uniform

distribution over [−1,1] . The role of bw ·RND(−1,1) is to produce both neg-

ative and positive values randomly. So if we assign an arbitrary value in the

closed interval of [−1,1] to bw instead of [0,1], then we still need to produce

random values in the interval of [−1,1].

4. The new solution vector ĲXi is substituted with the worst solution in the HM –

provided it outperforms the worst one.

5. If the stopping criterion is not met then GOTO 3.

As the harmony search is applied in the intensification phase, we alter the im-

provision part of the basic harmony search and the one proposed in global-best

harmony search [128]. First, to increase the processing speed, we do not consider

the process of pitch adjustment for all solutions, which are made after the har-

mony memory consideration phase. Thus if a solution is selected randomly with

the probablity of 1−HMCR, then it does not need to undergo the pitch adjustment

process [128]. Secondly, the pitch adjustment operation proposed by Omran and

Mahdavi [128] based on the idea of particle swarm optimization becomes modified.

In their approach, instead of making a random change in the generated solution

after the harmony memory consideration phase, the solution is replaced with the

best solution in HMwith the probability of PAR. We extend this approach by giving
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a chance not only to the best solution but to all the solutions. Here in addition to

extending the global-best concept in [128], we have pitch adjustment as well. So, in

the proposed approach, if the pitch adjustment probability (PAR) is satisfied then

the solution is replaced with one of the solutions in HM with the probability of an

arbitrary control value best . The selection process of one of the solutions is based

on the fitness of the solutions in the HM. According to their goodness, a probability

of selection is assigned to each of the solutions. Thus the goodness probability (GP)

of a solution like Xi with a goodness value of f (Xi) is computed as follows:

GP i =
f (Xi)∑HMS

i=1 f (Xi)
.

Then with the probability of 1 − best, the solution is randomly adjusted/tuned.

As this is the intensification phase, we set best = 0.8, so that we have less random

adjustment and more focus on local optimization. The improvision step of the pro-

posed method is given in the form of Algorithm 4.1.

Algorithm 4.1 Proposed algorithm of the improvision step
1: for i = 1 to HMS do
2: for j = 1 to n do
3: if RND(0,1) ≤HMCR then
4: ĲX

i
j ⇐ Xi

j ;
5: if RND(0,1) ≤ PAR then
6: if RND(0,1) ≤ BEST then
7: Based on the Goodness Probability (GP) of solutions, select one of

the solutions and store the index of this solution into b;
8: ĲX

i
j ⇐ Xi

b;
9: else

10: ĲX
i
j ⇐ ĲX

i
j + (bw ·RND(−1,1));

11: end if
12: end if
13: else
14: randomly select ĲX

i
j ϵ M;

15: end if
16: end for
17: end for
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4.2 Modeling fuzzy linear regression analysis as a global

continuous optimization problem

we show how to model the FLR as an optimization problem so that it can be solved

by an UGCO. There are some studies in the field of FR by means of meta-heuristic

approaches. As an example we can refer to; genetic algorithms [110, 129], genetic

programming [105, 130], tabu search [89], and fuzzy neural networks [131–133].

In this research, FLR is addressed by the proposed UGCO method based on tabu

search and improved harmony search. For the applications of tabu search in fuzzy

optimization problems, we refer the reader to the literature [50].

Finding the optimized FLR model over the given numeric input-fuzzy output

data set
(
(x1i ,x2i , · · · ,x(n−1)i ,xni), ỹ∗i

)
[5] for i = 1, · · · , k with a minimum error can be

viewed as a simple inputs-output system. This system receives the input vector and

then produces the output based on the underlying function. The more general case

of fuzzy input-fuzzy output [14] can be treated in the same way. Here, the underly-

ing function should be the objective function (similarity measure) which shows the

goodness of the FLR model. Thus the input vector consists of the coefficients of the

FLR model and the output is the generated error of this FLR model over the given

data, as shown in Figure 4.2.

Ãn

Ãn−1

Ã1

Ã0

Total error of

1- Construct fuzzy linear regression
based on the input coefficients.

input-output data set

2- Check the behaviour of
the function for the given data set.

the FLR model

Figure 4.2: Modelling of a FLR problem regarded as an UGCO problem (taken from [6])

Having the system presented in Figure 4.2, the UGCO method starts with a ran-

dom initial input vector which is basically the initial FLR model. After a number

of iterations of guessing new input vectors, the UGCO method tends to find a near

global optimum solution of the function. The input vector which enables the system
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to obtain its global minimum contains the optimized coefficients of the FLR model

which fits the given data to the highest extent.

To show the fitness (performance) of the FLR model, we compare the fuzzy out-

put of the model ỹi with the observed one ỹ∗i , where i is the index of the given

data (point). Minimizing the total difference between the observed fuzzy output

and the estimated one is the goal of the optimization. There are different mea-

sures to determine the similarity between two fuzzy numbers. In this thesis, we use

one of the most used objective functions; the relative none-intersected area (RNIA)
which computes the difference area of observed and estimated outputs, as given in

(4.1) [1,12,123,134,135]. The numerator of the RNIA, the none-intersected area, for

two fuzzy numbers is illustrated in Figure (3.2). However, as mentioned earlier, the

selection of RNIA is just for comparison purposes, and any other type of objective

functions can be designed and then applied.

RNIA =
k∑

i=1


∫
Sỹ∗i

∪
Sỹi
|µỹi(x) −µỹ∗i (x)|dx∫
Sỹ∗i

µỹ∗i (x)dx

 . (4.1)

Here Sỹ∗i and Sỹi are the supports of the observed output, ỹ∗i , and the estimated

output, ỹi , respectively. Note that if we consider the objective function in (4.1) alone,

the possibility of being trapped into local minima is high. This happens as the

method can be trapped at the zero input vector (one of the potential local minima),

where the error is equal to 1. The other drawback of RNIA is that if ỹ∗ and ỹ do not

exhibit any overlap, the estimated similarity becomes constant regardless of their

relative position [123]. To avoid these mentioned drawbacks, we combine RNIA
with the level-set differencemeasurement (LSM) given in [110,116,134]. To describe

the LSM procedure, we first start with preliminaries and relevant notation.

We can break down the fuzzy coefficients into some level-sets. In this way the

input vector will have (n+1)× 2× β variables, where n+1 is the number of models

coefficients and 2 × β is the number of left and right spreads of β level-sets. For

a fuzzy number like Ã, where Ã = {(x,µÃ(x))| xϵR, µÃ → [0,1]}, the level-set α (or

α-cut) of Ã is as follows.

αA = {xϵR| µÃ(x) ≥ α}, αϵ(0,1]. (4.2)

In (4.2), αA can be represented as [αaL,αaR], where αa
L and αa

R are the left and

right spreads of Ã at level set α.
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Now we define the LSM measurement as follows.

LSM =
k∑

i=1

(∫ 1

0
|αyLi − αy

∗L
i |+ |αy

R
i − αy

∗R
i |

)
dα (4.3)

Here, αy
L
i , αy

∗L
i and αy

R
i , αy

∗R
i are the left and right spreads of the estimated and

observed fuzzy output at level set α, respectively. Note that in (4.3), we assume 0y
L
i ,

0y
∗L
i , 0y

R
i , 0y

∗R
i are equal to zero.

For a normalized fuzzy number with a triangular membership function β is set

to 2 as it can be represented by α-cuts of 0 and 1. We represent a triangular fuzzy

number like Ã with the tuple (aL, aC , aR), where aC is the center of the membership

function and aL, aR are the left and the right spreads of the membership function.

In this case LSM given in (4.3) is simplified as follows:

LSM =
k∑

i=1

|yLi − y
∗L
i |+ |y

C
i − y

∗C
i |+ |y

R
i − y

∗R
i | (4.4)

The extended objective function (EOF) which combines both RNIA and LSM to

decrease the possibility of being trapped into local minima is given in the following

form:

EOF(Ã0, Ã1, · · · , Ãn) =
k∑

i=1

[∫ 1

0

(
|αỹLi − αỹ

∗L
i |+ |αỹ

R
i − αỹ

∗R
i |

)
dα

]

+
k∑

i=1

∫
Sỹ∗i

∪
Sỹi

|µỹi(x) −µỹ∗i (x)|dx

 (4.5)

The model fitting measurement given is (4.5) works only for numeric input-

fuzzy output or fuzzy input-fuzzy output. However, other model fitting measure-

ments can be applied to derive a linear regression model for numeric inputs and

outputs.

To come up with a sound approximation for the search space (domain) of each

coefficient, we apply statistical linear regression as a pre-processing phase. The

given data are defuzzified (decoded to numeric values), and then the best linear

function is sought to fit them. In defuzzification, we simply take the center point of

the core for each fuzzy number. The neighborhood of the coefficients of the linear

regression are later taken as the search domain for each fuzzy coefficient in FLR.
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The objective function to find the optimized triangular normalized fuzzy num-

bers as the coefficients of the FLR model is defined as follows:

y =min EOF(Ã0, Ã1, · · · , Ãn)

=min EOF(aR0 ,a
C
0 ,a

L
0, a

R
1 , a

C
1 , a

L
1 · · · ,a

R
n ,a

C
n , a

L
n)

EOF : [(k1 −θ)−γ, (k1 −θ)]× [k1 −θ,k1 +θ]×

[k1 +θ, (k1 +θ) +γ]× · · · × [(kn −θ)−γ, (kn −θ)]×

[kn −θ,kn +θ]× [kn +θ, (kn +θ) +γ]→R

(4.6)

where k0, k1, · · · , kn are the coefficients of the linear function which fits the defuzzi-

fied data and θ and γ are neighborhood constants that define the domain of the

fuzzy coeficients of FLR.

4.3 Method’s configurations

We apply the UGCO method to the development of the FLR model. The data sets

which are taken from the literature are divided into two main classes: numeric

inputs-fuzzy output data and fuzzy inputs-fuzzy output data. These two classes

just involve symmetric fuzzy numbers.

Since the proposedmethod is not just restricted to symmetric fuzzy numbers, we

have validated our method in terms of asymmetric fuzzy input-asymmetric fuzzy

output as the third class. Moreover, the performance of the model is investigated

for a large data set with outliers.

Different models in the literature applied different model fitting measurements

(MFMs) such as Hojati’s similarity measure [4], distance criterion [99], Euclidean

distance [100], none-intersected area [88, 101], relative none-intersected area [12],

and compatibility measure [102]. Since there is no evidence that one measure is bet-

ter than the others, one may adopt a MFM based upon requirements of modelling

and the nature of the data set. Thus, in fairness to other studies in the literature,

three other reported MFMs are applied for comparative analysis of models’ perfor-

mance. The first one is a similarity measure proposed by Hojati [4] given by equa-

tion (6.3), the second one is a distance criterion which is proposed in [99] expressed

as equation (4.8), and the third one is the none-intersected area (NIA) proposed
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in [88,101] and defined by equation (4.9).

Sh =

∫
min(µỹ∗(x),µỹ(x))dx∫
max(µỹ∗(x),µỹ(x))dx

(4.7)

D =
1
4

k∑
i=1

|yLi − y
∗L
i |+2|yCi − y

∗C
i |+ |y

R
i − y

∗R
i | (4.8)

NIA =
k∑

i=1

∫
Sỹ∗i

∪
Sỹi

|µỹi (x) −µỹ∗i (x)|dx

 . (4.9)

.

Note that the Hojati’s original MFM (6.3) is a similarity measure with values

between 0 and 1, so, the closer the value to 1, the better the model. However, for the

sake of conformity with other MFMs, we have reported 1− Sh which can be seen as

a dissimilarity measure and the closer the value to 0, the better the model.

Table 4.1: Parameter settings for both phases of the proposed method
Diversification phase with TS
Parameter Value
Cores neighborhood space (θ) 4
Spreads neighborhood space (γ) 2
Initial population size (IPS) 64
Population size 5
Number of iterations with no improvement (NI-first) 5
Tabu list size 10

Intensification phase with Improved HS
Parameter Value
Population size 10
Neighborhood space (NS-second) ±0.5
Depth (Dep) 8
Number of iterations with no improvement (NI-second) 5
Decreament coefficient of neighborhood space (Dec) 2

For comparison of the models for a given data set, we say model f1 is supe-

rior to model f2 over MFM1,MFM2, · · · ,MFMn, where all MFMs are minimization

problems, only if all the following “fuzzy regression model comparison conditions”
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simultaneously hold:

MFM1(f1) ≤MFM1(f2)

MFM2(f1) ≤MFM2(f2)

.

.

.

MFMn(f1) ≤MFMn(f2)

(4.10)

In case for a data for which set only some of the above conditions hold, it can be

said that f1 and f2 are ”Pareto-equivalent“. Note that in some cases f1 can be superior

to f2 with respect to MFM1,MFM2, · · · ,MFMn, however, if for a new MFM ′, f2 is

superior to f1 then f1 and f2 are said to be Pareto-equivalent. So, for comparing the

models for a data set, one should consider the client’s requirements and requests

and the nature of the data set for selecting suitable MFMs. However in this study,

we restrict our comparisons based on RNIA, NIA, distance criterion and Hojati’s

measure as the applied data sets are mainly used for benchmarking purposes.

Four criteria given by (4.1), (4.9), distance criterion and Hojati’s measure are

reported for all the experiments. The similarity measure (4.9) is the total non-

intersected area (NIA) between the observed and the estimated fuzzy outputs. Note

that we have used (4.5) as the main criterion to carry out the optimization process,

however the fuzzy regression model comparison conditions are applied to compare

the models in terms of all the four measures. From now on, in the results, the values

with and without rounded parentheses (∗) show the corresponding values of NIA

and RNIA, respectively.

All meta-heuristic approaches require the setting of some control variables. The

setting of the parameters is usually done by trial and error or based on some ex-

perts’ intuitions. As an example in genetic algorithms one should set the mutation

and crossover percentages, elite count, population size, selection method and so on.

For the proposed method the parameters’ settings for all the experiments are given

in Table 4.1. To start, ki in (4.6) which are the coefficients of the linear regression

to fit the given defuzzified data are computed. For defuzzification, the mean of the

inputs and outputs’ core are considered. Then we generate IPS random fuzzy so-

lutions around the coefficients. Intuitively, the fuzzy coefficients for FLR should be

close to ki , so we set our search space (domain) for FLR in (4.6) with small vales like
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4 and 2 for “cores neighborhood constant” (θ) and “spread neighborhood constant”

(γ), respectively . The initial population size plays an important role to arrive at

a sound final result. By performing preliminary experiments, we noticed that any

population size more than 50 produces good results, so, we set it to be between 60

to 70. A very large value for population size does not increase the performance con-

siderably as much as they slow down the optimization process. The diversification

phase runs until it does not find a better result for 5 consecutive iterations. We

have observed if we set NI-firstmore than 5 the result will not improve significantly

and it just makes the diversification phase very time consuming. Similarly, setting

NI-first less than 5 increases the possibility of trapping into local minima.

In the intensification phase, we define a small search space as we already found

the near optimum solution, so NS-second is set to 0.5. With the trail and error

method, we found if the value of NS-second is greater than 1 then the intensifica-

tion phase does more diversification and the use of values smaller than 0.1 makes

the intensfication very time consuming. In contrast with the diversification phase,

in the intensification phase the neighborhood space gets smaller if there is no im-

provement after NI-second. We set “Decrement Coefficient of Neighborhood Space”

(Dec) to 2 as in the final stages the search space should become very small so the al-

gorithm can find a solution very close to the optimum. The search space can become

smaller up to “depth” times, so in the final stage of intensification the search space

is as small as NS−second
DecDep = ±0.528 which in here is equal to ±0.0019. As mentioned ear-

lier the majority of the values shown in Table 4.1 are selected in an intuitive fashion

and/or by the trial and error method.

As the proposed hybrid optimization method is non-deterministic, 1,000 sep-

arate runs with random seeds are attempted for each data set. The average, best

and worst cases are then reported. In the literature of global continuous optimiza-

tion with meta-heuristics, the speeds of the algorithms are compared based on their

number of function evaluations rather than the execution time. This is due to the

fact that the execution time of a method strictly depends on the computer’s speed,

the code optimization and the programming platform [2, 22]. So, for fair compar-

isons between the speeds of different global continuous optimization methods, only

the number of function evaluations is considered. However, in this thesis, to show

an approximation of how long the optimization process takes to compute a model,

the execution time is given just for a couple of the datasets. The simulations were

run on a PentiumIV 3.00GHz computer with 2GB of memory. The program is coded

inMatlab 7.0. A detailed discussion of the experimental results are given in the next
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chapter.

4.4 Summary

Modeling and solving a FLR by the UGCO offers a number of benefits. When com-

pared with the LS based approaches (which are the extension of classical regres-

sions) and the probabilistic approaches (which aim at covering all the data), the

proposed approach can use any type of model fitting. For example, one may design

an objective function which combines LS and LP basedmodel fitting measurements.

The application of UGCO does not necessarily increase the spread of estimated

fuzzy outputs. However, the spreads may increase if a smaller error is obtained.

Moreover, unlike in fuzzy regression models such as those in [4,12,14,97,136], the

proposed method is not just restricted to triangular fuzzy numbers and can be used

for any form of fuzzy numbers (different membership functions). The method is

capable of finding both positive and negative coefficients, while the methods pre-

sented in [4,14,88,97,101] are unable to process negative coefficients.

Fuzzy linear regression problem is approached by a global continuous optimiza-

tion method. This method is the result of the hybridization of tabu search and im-

proved harmony search. Tabu search is applied in the first phase and it searches the

near optimum solution and then the improved harmony search intensifies the area

close to the near optimum solution. The main benefit of applying this method over

the existing methods is that no assumptions, such as differentiability or continuity,

are required.



5
Performance evaluation of the proposed

fuzzy linear regression analysis

method1

To verify the performance of the proposed fuzzy linear regression method, we apply

themethod on crisp input-fuzzy output and fuzzy input-fuzzy output data sets from

the literature. For comparing the results with other models in the literature, we use

a comparison protocol which includes few fitting measures.

5.1 Numeric input-symmetric fuzzy output results

Example 1: Tanaka et al. in the first work on FLR defined the data set given

in Table 5.1 to investigate the FLR model’s performance. This data set has been

used in many research studies as a benchmark, see [1, 4, 5, 12, 88, 97, 101, 109, 123,

135, 137]. This data set is an example of a small size numeric input-fuzzy output

data. The results for 1,000 separate runs with random initial solutions are reported

1This chapter is based on a journal paper; [6] co-authored by M. A. Orgun, M. Mashinchi and W.
Pedrycz and a conference paper; [89] co-authored by M. A. Orgun and M. Mashinchi

67
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in Table 5.2. The generated errors produced by the estimated models for 1,000

runs are sorted and reported in Figure 5.1. The fuzzy regression model comparison

conditions and the results given in equation (4.10) and Table 5.2 reveal that our

model is Pareto-equivalent to the models given by Hojati et al. [4], Mashinchi et

al. [89], Lu and Wang [86], and Hassanpour [90] and superior to the rest of the

models over all of RNIA, NIA, distance criterion and Hojati’s measure.

Table 5.1: Tanaka et al. data set [11]
Obs. Independent Dependent

variable variable
1 1 (6.2,8.0,9.8)
2 2 (4.2,6.4,8.6)
3 3 (6.9,9.5,12.1)
4 4 (10.9,13.5,16.1)
5 5 (10.6,13.0,15.4)

Table 5.2: The experimental result for 1,000 runs for the data set given in Table 5.1 by
the proposed method (taken from [6])

best solution worst solution average STD
Error (4.5) 11.7473 12.5346 12.0154 0.1760
Error (4.9) 8.3678 9.0414 8.5736 0.1426
Iterations 231 213 224 26
CPU time (s) 3.3326 3.0395 3.0811 0.2814

The models produced by the method presented here and other methods for the

data set shown in Table 5.1 are given in Table 5.3. The proposed method has the

smallest total error (4.9) and outperforms the other methods reported in the litera-

ture based on error given in (4.9). The plot of the estimated fuzzy function of some

models for the given data in Table 5.1 is illustrated in Figure 5.2.
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Figure 5.1: The sorted generated errors (4.9) for 1,000 separate runs for data set given in
Table 5.1 obtained by the proposed method (taken from [6])

Table 5.3: Comparative analysis of fuzzy models in Table 5.1 (taken from [6])
Method A0 A1
This work (best solution) (5.0798,6.7652,7.0613) (1.1042,1.2472,1.6679)
Chen and Hsueh (2009) [123] (2.63,4.95,7.27) (1.71,1.71,1.71)
Mashinchi et al. (2009) [89] (5.07,6.72,8.38) (1.12,1.27,1.38)
Lu and Wang (2009) [86]1 (4.25+1.75xi ,−0.10xi +2.90)
Shakouri and Nadimi (2009) [1] (3.2,5.042,6.884) (1.480,1.592,1.704)
Hassanpour (2008) [90] (4.95,6.75,8.55) (1.05,1.25,1.45)
Bargiela and Pedrycz (2007) [109] (4.95,4.95,4.95) (1.719,1.719,1.719)
Hojati, Bector and Smimou (2005) [4] (5.1,6.75,8.4) (1.10,1.25,1.40)
Modaress et al. (2005) [135] (2.98,4.82,6.66) (1.50,1.66,1.82)
Nasrabadi and Nasrabadi (2004) [136] (2.36,4.68,7.00) (1.73,1.73,1.73)
Kao and Chyu (2003) [101] (2.606,4.926,7.246) (1.718,1.718,1.718)
Kao and Chyu (2002) [88] (1.94,4.95,6.75) (1.71,1.71,1.71)
Özelkan and Duckstein (2000) [138]2 (3.4,5.9,8.4) (1.4,1.4,1.4)
(v = 25)
Kim and Bishu (1998) [12] (3.11,4.95,6.84) (1.55,1.71,1.82)
Savic and Pedrycz (1991) [137]2 (0.92,4.95,8.98) (1.64,1.71,1.78)
Tanaka et al. (1989) [11]2 (0,3.85,7.7) (2.1,2.1,2.1)
Diamond (1988) [97]2 (3.11,4.95,6.79) (1.55,1.71,1.87)
Tanaka et al. (1982) [5] (0,3.84,7.69) (2.1,2.1,2.1)

1The estimated model for [86] has variable spread which we have shown it by Ẽi .
2The estimated model for [97], [137], [11] and [138] are taken from [88], [12], [12] and [4],

respectively.
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Example 2: The data set in this example given in Table 5.7 is related to cognitive

response times of the nuclear power plant control room crew to an abnormal event

and has been introduced by Kim and Bishu [12]. This is a benchmark data set for

fuzzy multiple linear regression. The crew’s fuzzy response time (in minutes) to an

abnormal event is dependent on crews’ experience inside a control room, experience

outside a control room and training. This data set has been applied as a benchmark

for comparison of the methods presented in [1,12,135]. The estimated model of this

work in comparison with other works is given in Table 5.9. Based on (4.10) and the

results of our comparative analysis shown in Table 5.10, our method is superior to

the other models over RNIA, NIA, distance criterion and Hojati’s measure.

Table 5.7: Kim and Bishu’s data set [12]

Obs. Dependent Independent Independent Independent
variable variable variable variable
(Response time) (Inside control (Outside control Education

room experience) room experience)
Team 1 (5.83,3.56) 2.0 0.0 15.25
Team 2 (0.85,0.52) 0.0 5.0 14.13
Team 3 (13.93,8.5) 1.13 1.5 14.13
Team 4 (4,2.44) 2.0 1.25 13.63
Team 5 (1.65,1.01) 2.19 3.75 14.75
Team 6 (1.58,0.96) 0.25 3.5 13.75
Team 7 (8.18,4.99) 0.75 5.25 15.25
Team 8 (1.85,1.13) 4.25 2.0 13.5

The results given in Table 5.8 show the error and the number of iterations for

the case of the best and the worst solutions for 1,000 separate runs. As an exam-

ple, Figure 5.3 illustrates the convergence of the error for the best run. It can be

observed that the first phase is carried out for 125 iterations and then the intensifi-

cation phase is started. In the first phase, the average error in each iteration exhibits

some oscillations, which is due to the nature of tabu search applied in the diver-

sification phase. The oscillations show the effectiveness of the tabu search which

pushes the next solutions to an area which has not been searched so far and does not

necessarily exhibit higher potential. By doing this, we can be almost sure that dur-

ing the diversification phase we have effectively searched the whole search space.

In the intensification phase, the average error in each iteration decreases smoothly

with no oscillations as in each iteration, we get closer to the actual optimal solution.
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Table 5.8: The experimental result for 1,000 runs for the data set given in Table 5.7 (taken
from [6])

best solution worst solution average STD
Error (4.5) 29.7202 34.6411 12.0154 1.2071
Error (4.9) 21.9369 25.8395 23.7067 0.4984
Iterations 300 287 301 24
CPU time (s) 5.1921 5.1049 5.0826 0.327

Example 3: The data set in Table 5.11 was proposed by Tanaka et al. [5] and is

concerned with the prices of housing in Japan. This gives rise to the fuzzy multiple

regression analysis as the price variable is dependent on five numeric variables; the

rank of material (x1), the first floor space in square meters (x2), the second floor

space in square meters (x3), the number of rooms (x4), and the number of Japanese-

style rooms (x5), given in Table 5.11. This data set has the largest number of records

in comparison with other data sets and is a good benchmark for fuzzy multiple

linear regression and negative coefficients.

This data set has been applied to study the efficiency of the FLR methods pre-

sented in [5,87,113,139,140]. Table 5.11 shows the error produced by each method

in comparison to the model which is given in (5.1). According to the error analysis

reported in Table 5.11, the model presented here is Pareto-equivalent to the Kao

and Lin’s model [139] and superior to Tanaka et al.’s model [5].

y = (2429.0,2430.6,2458.4)x1 + (83.46,83.48,83.55)x2+

(82.27,84.69,87.21)x3 + (−402.54,−386.891,−383.892)x4+

(−222.55,−220.64,−206.89)x5 + (−1134.7,−1072.0,−1042.9)

(5.1)

The performance of themethod reported for 1,000 separate runs is given in Table

5.12. The convergence error for the best model is given in Figure 5.4. In the first 200

generations, the method is concerned with the diversification phase, and here we

observe some oscillations due to searching in different parts of the search domain.
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Figure 5.3: The convergence of the error for the best model over the data set in Table 5.7
(taken from [6])
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Figure 5.4: The convergence of the error for the best model over the data set in Table 5.11
(taken from [6])
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Table 5.12: The experimental result for 1,000 runs for the data set given in Table 5.11
(taken from [6])

best solution worst solution average STD
Error (4.5) 6355.18 8645.13 7098.08 354.67
Error (4.9) 5415.95 7539.95 6140.47 314.46
Iteration 406 410 426 25

Example 4: The data set given in Table 5.13 is proposed by Hong et al. [13].

What makes this data set different from the others is that negative fuzzy outputs are

also considered. The proposedmodel and the comparison of the resulting error with

other methods [13,103,140] are given in Table 5.14. The results show that ourmodel

is superior to the other models in the literature over NIA, RNIA, distance criterion

and Hojati’s measure. While there are many methods reported in the literature,

which are not capable of finding functions with negative coefficients (e.g. [4,14,88,

97, 101]), our method is able to find a function with negative coefficients. Table

5.15 reports the performance of the proposed method for 1,000 separate runs. Even

the worst produced error (NIA) by the method is smaller when compared with the

errors produced by other methods presented in the literature.

Table 5.13: Hong and Hwang’s data set [13]

Obs. Independent Dependent
variable variable

1 1 (−1.6,0.5)
2 3 (−1.8,0.5)
3 4 (−1.0,0.5)
4 5.6 (1.2,0.5)
5 7.8 (2.2,1.0)
6 10.2 (6.8,1.0)
7 11.0 (10.0,1.0)
8 11.5 (10.0,1.0)
9 12.7 (10.0,1.0)
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Table 5.15: The experimental result for 1,000 runs for the data set given in Table 5.13 by
the proposed method (taken from [6])

best solution worst solution average STD
Error (4.5) 9.96 10.51 10.27 0.37
Error (4.9) 6.89 7.30 7.03 0.07
Iteration 229 244 210 24

5.2 Symmetric fuzzy input-fuzzy output results

This class involves a more generalized form of numeric input-fuzzy output. Sakawa

and Yano [14] introduced a fuzzy input-fuzzy output data set, which is given in

Table 5.16.

Many approaches present in the literature (in [4,14,86–88,97,101,109,141]) have

used this data set for validation purposes. The result of the comparison between our

estimated model and other methods’ model is given Table 5.18. The comparison

results show that the model generates a smaller error RNIA than reported for other

models generated by other techniques. However, based on the fuzzy regression

model comparison conditions, our model is superior to Hassanpour’s model [90]

and Pareto-equivalent to the rest of the models over RNIA, NIA, distance criterion

and Hojati’s measure. Figure 5.5 illustrates the behaviour of the estimated fuzzy

linear model for the data set given in Table 5.16. The dashed and continuous lines

show the estimated fuzzy output and the observed outputs, respectively. According

to the reported results in Table 5.17, the average error RNIA for 1,000 separate runs

is lower in comparison to the results produced by other models.
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Table 5.16: Sakawa and Yano’s data set [14]

Obs. Independent Dependent
variable variable

1 (1.5,2,2.5) (3.5,4.0,4.5)
2 (3.0,3.5,4.0) (5.0,5.5,6.0)
3 (4.5,5.5,6.5) (6.5,7.5,8.5)
4 (6.5,7.0,7.5) (6.0,6.5,7.0)
5 (8.0,8.5,9.0) (8.0,8.5,9.0)
6 (9.5,10.5,11.5) (7.0,8.0,9.0)
7 (10.5,11.0,11.5) (10.0,10.5,11.0)
8 (12.0,12.5,13.0) (9.0,9.5,10.0)

Table 5.17: The experimental result for 1,000 runs for the data set given in Table 5.16
(taken from [6])

best solution worst solution average STD
Error (4.5) 7.6404 9.3234 7.8158 0.1913
Error (4.9) 5.2656 6.1336 5.4919 0.1582
Iterations 229 227 187 25
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Figure 5.5: The estimated fuzzy function for the given data in Table 5.16 (taken from [6])
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5.3 Numeric input-asymmetric fuzzy output results

To show the performance of the proposed method for numeric input-asymmetric

fuzzy output, we have designed an artificial benchmark (Table 5.19). Although there

is a numeric input-asymmetric fuzzy output in the literature for fuzzy multiple lin-

ear regression [100], the reason for introducing a new data set is to investigate the

performance of the approach for a data set with very large differences in the spreads

of each datum. If the difference in the spreads is not noticable then even the ap-

proaches which are only capable of having symmetric coefficients (such as [4]) may

result in almost the same error level as the ones with asymmetric coefficients. After

applying the method to this data set, the best model comes in the form (5.2). The

total errors for the obtained model in (5.2) with NIA, Hojati’s measurement, and

distance criterion are 5.20, 0.3364, and 3.6701, respectively.

y = (0.1561,0.1630,0.1634)x1 + (7.72,8.33,10.44) (5.2)

As the method was run for 1,000 times the relevant statistics are reported in

Table 5.20. The plot of the best model given by (5.2) is included in Figure 5.6. The

experiments show that the method can deal with asymmetric fuzzy data effectively.
It is quite expected that as five (out of six) points of the data set have larger right

spreads than left spreads, the model follows this reflected tendency.

Table 5.19: Artificial asymmetric numeric input-fuzzy output (taken from [6])
Obs. Independent Dependent

variable variable
1 1 (7.0,8.0,15.0)
2 2 (8.10,8.50,10.80)
3 3 (8.20,10.0,10.20)
4 4 (8.40,9.40,11.0)
5 5 (8.50,9.20,11.20)
6 6 (7.50,8.30,12.0)

5.4 Summary

The models derived from the proposed approach are tested against crisp input-

fuzzy output, and fuzzy input-fuzzy output data sets available in the literature. In

light of the experimental results, our method is either superior or Pareto-equivalent
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Figure 5.6: The estimated fuzzy function for the data set given in Table 5.19 (taken from
[6])

Table 5.20: The experimental result for 1,000 runs for the data set given in Table 5.19 by
the proposed method (taken from [6])

best solution worst solution average STD
Error (4.5) 7.10 9.02 7.60 0.32
Error (4.9) 5.20 6.45 5.54 0.21
Iterations 122 108 125 17

to the other methods discussed in the literature for all the given benchmark data

sets. The method is tested against crisp input-fuzzy output, and fuzzy input-fuzzy

output data sets available in the literature.

Moreover an approach based on fuzzy linear regression is applied to extract the

qualitative information which may have been overlooked in the original data set.

The extracted qualitative data is then used for modeling the data. The proposed ap-

proach is applied for the trust prediction of the delivered web-services based on a

set of advertised QoS values. The method not only provides more detailed informa-

tion of trust but it also has promising results. Although in order to quantitatively

compare the performance of the method, the results are defuzzified, one could use

the fuzzy results as they provide more information.



6
Approaching outlier detection and

spread increasing problem by global

continuous optimization1

Fuzzy linear analysis may lead to an incorrect interpretation of data in case of being

incapable of dealing with outliers. Both basic probabilistic and least squares ap-

proaches are sensitive to outliers. In order to detect the outliers in data, we propose

a two stage least squares approach which in contrast to the other proposed methods

in the literature does not have any user defined variables. In the first stage of this

approach, the outliers are detected and the clean dataset is prepared and then in the

second stage a model is sought to fit the clean dataset. In both the first and second

phases, the minimization of the model fitting measurement is achieved with hy-

brid optimization which gives us the flexibility of using any type of a model fitting

measure regardless of being continuous or differentiable.
Fuzzy linear regression models which constantly increase the spreads of the out-

puts with the increase in the magnitude of the inputs, are known to have spread

1This chapter is based on a conference paper; [8] co-authored by M. A. Orgun and M. R. Mash-
inchi, and a sketch; [9]

87
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increasing problem. We introduce two algebraic operations and then by application

of global continuous optimization we overcome spread increasing problem. The

models obtained by the proposed approach are capable of having variable spreads

for different input variables regardless of their magnitute.

6.1 Outlier detection

Both probabilistic and least squares approaches are vulnerable to outliers unless

there is a modification made in the method. Some modifications to probabilistic

approaches are given in [7, 83–85]. Detecting outliers in fuzzy regression analysis

is shown to be necessary in different real-world applications [143, 144]. Outliers

happen due to miss collection, measurement or recording the data [83]. These are

the common reasons of having outliers in crisp observations as well. However, in

case of fuzzy data, modeling the subjectiveness of the observations may cause out-

liers. So basically we may have an expert who advises an almost perfect observation

(which can be regarded as measuring), and then the system collects and records the

measured observations with no problems, but at modelling stage, the fuzzy data

is not modelled as it is measured/meant by the expert and consequently results in

outliers.

As an example, let us assume that we are trying to find a fuzzy linear function

of the temperature and the condition of the sea. Suppose that the sea condition can

be represented in terms of being calm, tidy, or very tidy. Each of the experts live in

different climates so they have experience in different ranges of temperature. For

example, say, the first one is from Antactica so he knows the sea condition just for

the temperature from -20 to 0. So, the temperature ranges are as [a,b], (b,c], (c,d],

(d,e] and (e, f ]. From each expert, the sea condition is questioned for two differ-
ent temperature in their own temperature range and their opinion is collected and

stored perfectly. However the subjectiveness of data which is hidden in linguistic

expressions of calm, tidy and very tidy can be interpreted in different ways. The

expert who is in a very cold place has a different feeling for the meaning of calm

from that of someone in a very hot place. This causes the spreads or even the core of

the fuzzy observation to become outliers if the person who converts the expressions

into numbers does not really understand the subjectiveness of each expert.

In the literature, different probablistic approaches are proposed to deal with

outliers [7,84,85]. All of these approaches have some primary assumptions such as;

the percentage of available outliers in the dataset, sensitivity to outliers, and etc. To
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the best of authors knowledge, the least square approaches are not investigated in

details for outlier detection in fuzzy linear regression. In this thesis, a two stage ap-

proach is proposed where in the first stage the outliers are detected and eliminated

and then in the second stage a least squares approach is applied to fit a model to the

clean dataset. In detecting the outliers, first we fit a model to the original dataset

and then the observations which produce high error values are detected as ouliers

and excluded from the dataset to make the clean dataset. Then in the second stage, a

model is sought whichminimizes the chosenmodel fittingmeasure over the cleaned

dataset. The minimizition process is carried out with hybrid optimization based on

tabu search and Nelder-Mead. The application of the hybrid optimization gives us

the flexibility in the selection of any type of model fitting measurements based on

the clients’ requirements or the nature of dataset without worrying about the con-

tinuity or differentiability of the measure. The simulation results on the available

datasets in the literature show the performance of the approach for detecting the

outliers and ultimately to find the optimized model which can fit the genuine data.

6.1.1 Outlier detection approaches

In case of having outliers, the model obtained in (3.9) and (3.10) fits both legitimate

and ilegitimate (outliers) data. So, the outliers should be detected and eliminated

from the original dataset in the first stage and then in the second stage we seek

for a model which only fits the clean dataset. The main approaches proposed to

handle outliers in fuzzy linear regression are given by Peters [85], Lee and Yang [84],

Chen [7] and Hung and Yang [83], which are probablistic aproaches.

Peters modified the approach by Tanaka et al. [5] to detect the outliers for crisp

input and crisp output data by linear programming [85]. The linear program in

Peters’ approach maximizes the λ value which is in the interval [0,1]. The greater

the λ value the better the quality of the data. However, in this approach, there are

three user defined variables: d0, pi and p0. The linear programming model is given

as follows (6.1):
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maxλ,

subject to:

(1−λ)p0 −
N∑
i=1

ct |xi | ≥ −d0

(1−λ)pi +αtxi + (1− h)ct |xi | ≥ yi (6.1)

αtxi + (1− h)ct |xi | − (1−λ)pi ≤ yi

0 ≤ λ ≤ 1, c ≤ 0, i = 1,2, ·,N

A small d0 value means that we are interested in a function with smaller spreads.

Peters actually suggested d0 = 0 which means the best function is a crisp function

which ideally is rational as both inputs and outputs are crisp. Also pi and p0 are user

defined values which are context-dependent. For example, if a dataset is assumes to

have a lot of outliers then one may use greater pi and p0 values.

Chen proposed a probabilistic approach based on the linear program given by

Tanaka et al. [5] to detect the outliers for crisp input-fuzzy output datasets [7]. The

main idea of this approach is to keep the difference between the spreads of the

estimated outputs and the actual ones less than a user defined value like kϵR. The

linear program of this approach is given in (6.2). In this approach, by setting k as a

large value, the model becomes less sensitive/affected to the outliers. In this model,

ei represents the spreads of the observed outputs.

minJ =
N∑
i=1

c0 + c1|x1i |+ · · ·+ cn|xni |,

subject to:

atxi + (1−H)ct |xi | ≥ yi + (1−H)ei (6.2)

atxi − (1−H)ct |xi | ≥ yi − (1−H)ei

ct |xi | − ei ≤ k, i = 1,2, ·,N

Unlike the approaches proposed by Chen [7] and Peters [85], Hung and Yang [83]
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proposed an outlier omission approach which does not have any user defined vari-

ables as the ones in Chen’s or Peters’ approaches. However, Hung and Yang’s ap-

proach assumes that there exists at least one outlier in the data set. So, the proce-

dure is to first delete the ith observation and then apply the probabilistic approach

as given by Tanaka et al. [5]. The same approach is applied for the (n−1) remaining

observations and the models’ errors are stored Oi . If O0 is the minimized value of

the objective function in the presence of all observations, then the model with the

smallest di = |Oi−O0|, i = 1, · · · ,n is detected as the best model and the observation ith

is considerd to be the outlier. In case there are two or more outliers in the dataset,

the same approach should be taken with eliminating all the combinations of two

or more observations. However, the process becomes computationally expensive

as for example in case of having 100 observations and 10 outliers we need to have(100
10

)
= 10!

90!10! ≃ 17e12. Morever, we need to know howmany outliers actually exist in

the dataset, otherwise, the problem becomes even more computationally expensive.

6.1.2 Outlier detection with global continuous optimization

All the proposed approaches for the detection of outliers in fuzzy linear regression

in the literature; Peters [85], Chen [7], and Hung and Yang [83], are improvements

on the probabilistic approaches. The goal of probablistic approaches is to cover the

spreads of the outputs as much as possible. However, least square based approaches

are the generalized form of statistical linear regression analysis and their goal is to

find a model by minimizing a model fitting measurement value. The motivation of

the proposed method are as follows;

1. to eliminate the user defined variables, a problem which makes the aproaches

in [84,85,107] context-dependent, and

2. to be able to eliminatemore than one outlier without having a computationally

expensive process– a problem which exists in Hung and Yang’s approach [83].

The proposed method is carried out in two stages. In the first stage, a model

with a minimum of model fitting measure is sought over the original dataset. Then

in the second stage, the observations which have high model fitting measures are

detected as outliers and so excluded from the dataset, as a result we have a clean

dataset. The obtained model in the second stage does not fit the outliers ppresented

in the original dataset. The algorithm of the proposed method is given in Algorithm

1.
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Algorithm 6.1 Proposed algorithm for fuzzy linear regression with outlier elimina-
tion
1: stage 1:
2: Seek the best model, f̃ with total minimum error of the chosen model fitting

measurement Of̃ for the original dataset,
3: Calculate the error of the chosen model fitting measurement for each observa-

tion Oi
f̃ , and the average error of Oi

f̃ =
∑n

i=1
Oi

f̃

n
4: for i = 1 to n do
5: if Oi ≥Oi

f̃ then

6: clean dataset⇐ exclude the ith observation from the dataset
7: end if
8: end for
9: stage 2:

10: Seek the best model, f̃ ∗ with total minimum error of the chosen model fitting
measurement Of̃ ∗ for the clean dataset

If all the outliers are correctly eliminated in the first stage, then the standard

deviation std of all observations’ errors for the clean dataset is expected to be very

close to zero in the second stage. However, a large std value in the second stage can

be due to either incorrect outlier detection, or non-linearity of the dataset.

There are different model fitting measurements in the literature of fuzzy linear

regression such as Euclidean distance [145], distance criterion [146], compatibility

measure [102], relative none-intersected area [12], and Hojati’s measure [4] and etc.

In this thesis, we use Hojati’s measure given in (6.3) due to the fact that this mea-

surement is in the range of 0 to 1 which makes it easier for interpretation. Majority

of the proposedmeasurements range from 0 to +∞. In (6.3), µỹ∗ and µỹ are the mem-

bership functions of the observed and the estimated outputs, respectively. And Sỹ∗i
and Sỹi are the supports of the observed output, ỹ∗i , and the estimated output, ỹi , re-

spectively. Note that in our proposed method, any other model fitting measurement

can also be applied based on the clients’ requests and requirements or the nature of

the dataset.

Sh =

∫
Sỹ∗i

∪
Sỹi

min(µỹ∗(x),µỹ(x))dx∫
Sỹ∗i

∪
Sỹi

max(µỹ∗(x),µỹ(x))dx
(6.3)

To find the best model for a data set which minimizes the model fitting mea-

surement given in (6.3), a hybrid optimization method based on tabu search and

Nelder-Mead approach is applied [6, 89]. Tabu search is a powerful search method
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for diversification as it escapes from the local minima by keeping a record of the

searched areas thus avoiding re-searching them. Tabu search is a point to point

search strategy which also makes it less computationally expensive in terms of the

number of function evaluations for few-dimensional optimization problems com-

pared to population-based approaches such as genetic algorithms or particle swarm

optimization [6, 16]. However, global optimization approaches are very slow if a

very close approximation of the global minimum solution is sought. That’s the mo-

tivation of applying a local optimizer method such as Nelder-Mead to receive the

solution from the diversification phase for further optimization. The hybrid opti-

mization method based on tabu search and Nelder-Mead proposed by Mashinchi

et al. is reported to be superior or Pareto equivalent to other methods for small

dimensional optimization problems [2]. We have applied the same specification of

the hybrid optimization approach given in [6] to seek the optimized model in both

stages 1 and 2 of Algorithm 6.1.

As mentioned earlier, a triangular fuzzy number can be represented by three

parameters. So, for an n-dimensional data set, we search for model given in (3.10)

which has 3n+ 3 parameters to be optimized. The formulation of the optimization

problem is as follows [89]:

min


n∑
i=1

∫
Sỹ∗i

∪
Sỹi

min(µỹ∗i (x),µỹi (x))dx∫
Sỹ∗i

∪
Sỹi

max(µỹ∗i (x),µỹi (x))dx

 (6.4)

f :R3n+3→R

6.1.3 Results

To validate the proposed approach we have used three datasets. The first two

datasets used by [7,83,84] are small datasets with constant, and increasing spreads.

The outliers are just assumed to occur in the spreads and not in the centers of the

data. The other dataset which is produced by an approach given by [147] is large

and has 5 percent random outliers both in centers and the spreads of the data. We

have run the optimization approach for 100 separate runs and reported the average

results. All the simulations were run on PentiumIV 3.00GHz with 2GB memory.

The program is coded in Matlab 7.0. The standard deviation, average number of

function evaluations, and the average execution time are denoted by std, Fe, and Et,
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Table 6.1: Constant, increasing and decreasing spreads datasets with existence of outliers
(taken from [8])

x Dataset 1 Dataset 2
Output 1st st. 2nd st. Output 1st st. 2nd st.

error error error error
1 (8.0,1.8) 0.99d - (11,2) 0.00 0.00
2 (6.4,2.2) 0.02 0.0572 (13,2) 0.88d -
3 (9.5,2.6) 0.50d - (21,4) 0.23 0.23
4 (13.5,2.6) 0.89d - (29,4) 0.78d -
5 (13,2.4) 0.02 0.0590 (29,6) 0.24 0.24
6 (15.2,2.3) 0.05 0.0223 (34,6) 0.19 0.18
7 (17.0,2.2) 0.24 0.2845 (45,15)o 0.60d -
8 (19.3,4.8)o 0.48d - (44,8) 0.17 0.16
9 (20.1,1.9) 0.78d - (48,12) 0.34 0.13
10 (24.3,2.0) 0.29 0.2251 (54,12) 0.10 0.10
std - 0.28 0.1176 - 0.30 0.08
Fe - 437 433 - 463 379
Et - 2.19s 1.16s - 2.51s 1.85s
Avee - 0.49 0.31 - 0.37 0.22

o Represents the outlier data.
d Represents the detected outliers in the first stage.

respectively.

6.1.3.1 small dataset with outliers happening in the spreads

These three datasets are originally proposed by Tanaka et al. [5] and modified by

[84] to introduce outliers. This dataset is then used by [7, 83, 84] for the validation

of their proposed approaches. There is only one outlier in each dataset and the

outlier happens just in the spreads.

The best models for all three data sets, which are used to eliminate the outliers,

detected the outliers correctly. The experimental results and the datasets are given

in Table 1. Out of 100 separate runs, in 54, and 97 runs the set of detected outliers

include the the actual outlier for dataset 1, 2 respectively. As expected, the std of

the error for the second stage for all the datasets is very close to zero. This means

that the outliers are correctly eliminated and the datasets have linear trends.

The comparison of the results obtained from our approach to the one given by

Chen [7] and Lee and Chang [84] is given in Table 6.3. The estimated models from

this work and the one proposed by Chen [7] is given in Figure 6.1. According to
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Figure 6.1 Chen’s approach has wider spreads to cover all the data. As a common

property of the probabilistic approaches, with more observations the spreads of the

model get wider. This makes probabilistic approaches to be more sensitive to out-

liers [148].

y

1.0 2.0 3.0 4.0 5.0 6.0 7.0

5.0

10.0

15.0

20.0

25.0

x

The proposed model
Chen’s estimated model

9.0 10.08.0

Figure 6.1: Comparison between Chen’s estimated model [7] and our approach over
Dataset 1 (taken from [8])

6.1.3.2 large dataset with outliers happening in both centers and spreads

To test the perfomance of the proposed method for a large data set and outliers, we

applied the same approach and function as given by Buckley and Feuring [147]. The

linear function is given as ỹ = (5.0,5.2,5.7)x̃+(3.0,3.2,3.7)+ϵ, where in 95 percent of

the time ϵ = RND[−0.5,0.5] and 5 percent of the time ϵ = RND[−5,−2] or RND[2,5]

is used to generate outputs from 1,000 randomly chosen x̃ in [1,1000]. Then we

attempt to fit ỹ = k̃1x̃+k̃2 to the generated asymmetric fuzzy input-asymmetric fuzzy

output with outliers. Note that the data set is generated once, however, we have run

the method for 1,000 times.

Selected fitness measure is the hybrid distance measure given in (4.5) [6] The
average errors of RNIA, NIA Hojati’s measurement, and distance criterion for the

best obtained model with k̃1 = (5.009,5.488,5.699) and k̃2 = (2.866,3.062,4.053) are

38.1736, 5.9010e+003, 0.0355, and 4.3985e+003, respectively. The average RNIA,

CPU time and standard deviations of RNIA and CPU time are 253.73, 66.4810 sec-

onds, and 116.7378 and 6.48 seconds, respectively. For the best obtained model, the

NIA between the original output and the ideal output and the estimated output
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and the ideal output for the outliers are represented by outliers’ error and esti-

mated error in Table 6.2. The ideal outputs are obtained from ỹ = (5.5,5.5,5.7)x̃ +

(3.0,3.2,3.7) without any noise. In Table 6.2, 25 out of 42 (59%) of the estimated

outputs generate less error than the outliers’ error. In other words, 59% of the out-

liers are detected and the obtained model is not fitting them. However, one may

design and apply a specific objective function to be minimized for data sets with

outliers. As mentioned earlier, in this thesis we used the objective function given in

(4.5) which is not necessarily the best objective function for the detection of outliers.
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Selected fitness measure is Hojati’s distance measure given in (6.4) [4] We

attempt to fit ỹ = k̃1x̃ + k̃2 to the generated asymmetric fuzzy input-asymmetric

fuzzy output with outliers. The average error of the obtained models for 100 sepa-

rate runs in the first stage is 0.0976 with the best model of ỹ = (5.01,5.47,5.69)x̃ +

(−0.09,5.27,6.81). In the first stage, 30 outliers out of 42 are correctly detected and

eliminated from the dataset. The average number of iterations and execution time

are 365 and 218s, respectively. With half iterations are devoted to diversification by

tabu search with 10 neighbors and half to indetsification. In the second stage, the

best model which fits the clean dataset is ỹ = (4.99,5.49,5.68)x̃+(2.8,3.21,4.48) with

model fitting measure of 0.0650 over the actual dataset. The average number of it-

erations and execution time in the second stage are 378.3 and 214.06, respectively.

With half iterations are devoted to diversification by tabu search with 10 neighbors

and half to indetsification. Note that even if we know for example 50 data items are

outliers in a dataset with the size of 1000 data items, then the approach given by

Hung and Yang [83] needs to solve
(1000

50
)
= 1000!

950!50! linear programs.
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6.2 Spread increasing problem

Some fuzzy linear regression models constantly increase the spreads of the outputs

with the increase in the magnitude of the inputs. This problem is known as the

Spread Increasing Problem (SIP) [86]. For introducing the fuzzy linear regression

analysis approach based on global continuous optimization, some definitions are

provided first.

Definition 10 (Magnitude comparison). A vector like −→xj = ⟨x1j ,x
2
j , · · · ,x

n
j ⟩ where x

k
j ϵR

is said to have a larger magnitute compared to a vector like −→xi = ⟨x1i ,x
2
i , · · · ,x

n
i ⟩where x

k
i ϵR,

if there is at least one gϵ{1,2,3, · · · ,n} where xgj > x
g
i and for all e , g, xej ≤ xei . It is shown

by −→xi << −→xj .

Definition 11 (Pareto equivalent magnitudes). Vectors −→xj = ⟨x1j ,x
2
j , · · · ,x

n
j ⟩ and

−→xi =
⟨x1i ,x

2
i , · · · ,x

n
i ⟩ are Pareto equivalent in terms of their magnitude if neither −→xi << −→xj nor

−→xi >> −→xj holds true.

Note that in both the above definitions, only crisp values are considered for mag-

nitude comparison. However if the dataset has fuzzy number input variables, like

⟨x̃1i , x̃
2
i , · · · , x̃

n
i ⟩, then one can defuzzify the input variables to be able to compare the

magnitudes.

As an example let us assumewe have three vectors −→x1 = ⟨1,2,1,3,5⟩, −→x2 = ⟨1,1,1,−
3,6⟩, and −→x3 = ⟨1,2,2,3,7⟩. According to the above definition −→x1 and −→x2 are Pareto
equivalent as x21 > x22 and x51 < x52, but

−→x1 << −→x3 and −→x2 << −→x3 as {x11 = x13, x
2
1 = x23, x

3
1 <

x33, x
4
1 = x43, x

5
1 < x53} and {x

1
2 = x13, x

2
2 < x23, x

3
1 < x33, x

4
1 = x43, x

5
1 < x53}, respectively.

Definition 12 (Definition: SIP-free fuzzy regression). For a given data set, a fuzzy
triangular linear function is SIP-free if there exits at least one i and j where −→xi << −→xj ,
and s(ỹi) > s(ỹj) where s(ỹ) returns a real value representing the spread of ỹ.

However, if the above condition does not hold, one may not conclude that the

model has SIP, as sometimes the nature of the dataset dictates the model to have

constantly increasing spreads to fit the output data.

6.2.1 Anti-spread increasing approaches

Kao and Chyo [88] proposed an approach which seeks a model in the form of

ỹ = Ax+B+ C̃ (or ỹ = Ax̃+B+ C̃ depending on the type of input data) with crisp co-

efficients and an extra fuzzy constant. The extra fuzzy coefficient C̃ is introduced in
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the model so that it can generate fuzzy output from crisp input. This model does not

have SIP as regardless of the inputs magnitude the outputs have the same spreads

which are equal to the spread of C̃. However, the defficiency of this approach is that

the sought models do not properly fit the data with a decreasing/increasing nature.

The model is represented by few number of parameters which makes the model

easy to interpret. In case of having asymmetric triangular numbers, the model has

only m+3 parameters where m is the dimension of the input variable.

Nasrabadi and Nasrabadi [136] tackled SIP by introducing a new fuzzy multi-

plication operation. Based on their defined operator, the result of multiplying two

fuzzy numbers such as Ã = (mA,αA) and B̃ = (mB,αB) is Ã⊗ B̃ = (mA ×mB,αA ×αB).

Applying this algebraic operation solves the SIP, as the spreads of the output are not

dependent on the magnitude of the input and only dependent on the spreads of the

inputs. However, the defficieny of this model is that the spreads of the output are

just dependent on the spreads of the inputs. So, if there is any relationship between

the spreads of the output and the magnitude of the inputs, it cannot be captured by

this model [86]. The model in this approach is in form of

ỹi = Ãn ⊗ x̃in + Ãn−1 ⊗ x̃in−1 + · · ·+ Ã1 ⊗ x̃i1 + Ã0

=

mA0
+

n∑
j=1

mAj
mxij ,αa0 +

n∑
j=1

αAj
αxij

 (6.5)

The above model has 3n + 3 parameters, where n is the dimension of the input

variable. The disadvantage of this model is that if the input variables are crisp, then

the model’s spread is constant and equal to αAj
.

In another approach, Modaress et al. [135] fit the data with a model in the form

of ỹ = (mAn
mxn+mAn−1mxn−1+· · ·+mA1

mx1+mA0
,αAnαmn+αAn−1αmn−1+· · ·+αA1αm1+

αA0). In this model αAi
and αmi

which are the spreads of the coefficients and the

inputs, are allowed to be negative, positive or zero. With the ability to have some

negative αmi
, the model can have decreasing spreads. The LR-type of this model has

3n+3 variables. The deficiency of this model is that it can only produce decreasing,

increasing or constant spreads at a time but variable spreads.

Chen and Dang [87] introduced a fuzzy error notation in their model. Their

regressionmodel is in the form of ỹ = Anxn+An−1xn−1+· · ·+Anxn+A1x1+A0+ẽ, where

ẽ = (el ,0, er). The objective of this approach is to minimize the difference between the

actual and the estimated fuzzy output. The model from this appoach has n+2m+1
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parameters which means the number of variables is proportional to the number

of instances. The dependency between the number of parameters representing the

model and the number of input variables makes the model very complicated to

be interpreted, if the number of input variables increases. Another issue with the

model obtained by this approach is that the model cannot produce fuzzy output for

a crisp input data. As an example, if the regression model is ỹi = 2xi +3+ ẽi , then for

a new datum like x = 5 as the ẽi is unknown, the output will be yi = 2× 3+3.

In a recent approach, Lu andWang [86] proposed a fuzzy linear regressionmodel

in which in contrast to the Chen and Dang’s model [87], there is no fuzzy error term

for each observation in the model. Not having the fuzzy error term, makes the

number of parameters of the model to be independent of the number of observa-

tions. Moreover in contrast to the Kao Chyu’s models in [88], the spreads of the

estimated output in Lu and Wang’s model is also dependent on the input variable.

So, if there is any relationship between the spreads of the output and the input val-

ues, it can be captured. The proposed model for multiple independent variables

X̃ij = (mxij ,αxij ,βxij )LR is given as:

ỹi = Anmxin +An− 1mxin−1 + · · ·+A1mxi1 +A0 + S̃i

S̃i = (0,αSi ,βSi )

αSi =
m∑
t=1

Alltαxit +
m∑
t=1

Almtαxit +
m∑
t=1

Alrtαxit + cl

βSi =
m∑
t=1

Arltαxit +
m∑
t=1

Armtαxit +
m∑
t=1

Arrtαxit + cr

αSi ≥ 0,βSi ≥ 0

x̃i =mxi ,αxi ,βxi

(6.6)

where S̃i is the spreads of the output for the instance i, and consists ofAllt,Almt,Alrt,

Arlt, Armt, Arrt, and cr . This model results in an optimization problem with 7m+ 3

variables which is solved with an iterative approach [86]. Since this approach ap-

plies an iterative optimization method, if the dimension of input variables increases

then it becomes computationally expensive to derive the regression model [86].

The summay of the studies in [86–88,135,136] is given in Table 6.4.
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6.2.2 Drawbacks of the existing methods

In tackling SIP, all the proposed approaches in [86, 88, 135, 136], except the one

proposed by Chen and Dang [87], can only estimate models with either decreasing,

increasing or constant spreads at a time. Themodel proposed by Chen andDang has

this interesting property which can produce variable spreads. In other words, for

some intervals of the input variables, the regression model has decreasing spreads

while for some other intervals the model may have constant or increasing spreads

depending on the nature of the input-output data set. However, if the Chen and

Dang’s model receives a new crisp input, it cannot produce fuzzy output. This is

due to the fact that in their apporach, the only fuzzy term is the error term which

is different for each of the inputs, and this error term is undefined for a new crisp

input. Moreover, the number of parameters of this model to be optimized is pro-

portional to the number of instances [86, 123], see Table (6.4). On the other hand,

although the model proposed by Lu andWang [86] does not have SIP, it cannot sup-

port variable spreads. The number of parameters to be optimized by this approach

is independent of the number of inputs. However, this approach is still computa-

tionally expensive comparing to Chen and Dang’s approach for few inputs but with

high dimension, see Table (6.4).

In industrial applications, models with many parameters are hard to justify as

the interpretation of the model becomes more complex. Moreover, if an iterative

process is applied for deriving such models, the increase in the number of param-

eters makes the process more time consuming. The number of parameters in other

SIP-free approaches proposed by Modarss et al. [135], Nasrabadi and Nasrabadi

[136] and Kao and Chyu [88] are less than the ones proposed by Chen and Dang [87]

and Lu andWang [86]. The models proposed by Modarss et al. [135], and Nasrabadi

and Nasrabadi [136] can still be improved to fit the data with a smaller error, and

the model proposed by Kao and Chyu [88] only supports constant spreads.

This thesis proposes an SIP free fuzzy linear regression model which has the

following properties:

• a fuzzy linear model with a fewer number of parameters in comparison to

Chen and Dang’s [87], and Lu and Wang’s [86] and an equal number of pa-

rameters to the ones proposed by Modaress et al. [135] and Nasrabadi and

Nasrabadi [136],

• it supports variable spreads, and
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• the sought model based on the proposed approach is either superior or Pareto-

equivalent to the models in the literature based on the chosen model fitting

measurements.

6.2.3 Anti-spread increasing approach based on global continu-

ous optimization

We assume a semi-linear model in the form of ŷ = Ânx̂n + Ân−1x̂n−1 + · · ·+ Â1x̂1 + Â0,

where ˆ represents a variable with 3-tuple elements. For example the coefficient, Â

can be in the form of any 3-tuple like ⟨a1, a2, a3⟩ where a1,a2 and a3 are in R. The

model can be expanded as:

(y1, y2, y3) = (a1n, a
2
n, a

2
n)× (x1n,x2n,x3n) + (a1n−1, a

2
n−1, a

3
n−1)

× (x1n−1,x
2
n−1,x

3
n−1) + · · ·+ (a11,a

2
1, a

3
1)× (x

1
1,x

2
1,x

3
1) + (a10,a

2
0,a

3
0) (6.7)

By applying the following introduced algebraic calculations of two 3-tuples like

(a1, a2,a3) and (b1,b2,b3) where all ai and bi are in R, for i = 1,2,3, the model in (6.7)

is converted to (6.8), where the operations are as:

Addition:

(a1, a2,a3) + (b1,b2,b3) = (a1 + b1, a2 + b2,a3 + b3)

Multiplication:

(a1, a2,a3)× (b1,b2,b3) = (a1b1,a2b2, a3b3)

(y1, y2, y3) =(a1nx
1
n, a

2
nx

2
n, a

3
nx

3
n) + (a1n−1x

1
n−1,a

2
n−1x

2
n−1,a

3
n−1x

3
n−1) + · · ·+

(a11x
1
1, a

2
1x

2
1, a

3
1x

3
1) + (a10,a

2
0,a

3
0) = (6.8)

(a1nx
1
n + a1n−1x

1
n−1 + · · ·+ a11x

1
1 + a10,

a2nx
2
n + a2n−1x

2
n−1 + · · ·+ a21x

2
1 + a20,

a3nx
3
n + a3n−1x

3
n−1 + · · ·+ a31x

3
1 + a30)

The 3-tuple (y1, y2, y3) given in (6.8) can represent a fuzzy triangular number

if the three elements are in their ascending order. However, there is no gurantee

that y1 < y2 < y3. Thus by sorting y1, y2 and y3, we would form a triangular fuzzy

number. Basically all y1, y2 and y3 are linear lines. However their roles in terms of
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representing the right, left or center of the fuzzy triangular number change with dif-

ferent inputs. So, for each input value, the yi which has the larger value, represents

the right spread and the smallest one represents the left spread and the remain-

ing one is the center. For doing so a sorting operation sort is applied on 3-tuple to

ascending order. Figure 6.2 illusterates an example of a fuzzy semi-linear model

where the role of each y1, y2 and y3 changes based on different inputs. The dashed
lines in Figure 6.2 show the right, left and the center of the fuzzy number after sort-

ing operation. For example y3 is the right spread of the output for x < a, the center

of the output for a ≤ x < b, and the right spread of the output for b ≤ x.

1.0 2.0 3.0 4.0 5.0 6.0 7.0

4.0

5.0

6.0

1.0

2.0

3.0

a b

Right spread
Core
Left spread

Figure 6.2: An example of a semi-linear fuzzy regression model (taken from [9])

Noting that the input variables are fuzzy triangular numbers, we have (xli ,x
c
i ,x

r
i ) =

(x1i ,x
2
i ,x

3
i ). Thus, the 3-tuple given in (6.8) can be converted to a fuzzy triangular

number after applying a sort operation as in (6.9).

ỹ =(yl , yc, yr) = sort(y1, y2, y3) (6.9)

=sort(a1nx
l
n + a1n−1x

l
n−1 + · · ·+ a11x

l
1 + a10,

a2nx
c
n + a2n−1x

c
n−1 + · · ·+ a21x

c
1 + a20,

a3nx
r
n + a3n−1x

r
n−1 + · · ·+ a31x

r
1 + a30)

=sort(
n∑
i=1

a1i x
l
i + a10,

n∑
i=1

a2i x
c
i + a20,

n∑
i=1

a3i x
r
i + a30)
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Data set SIP-free Model
Dataset (given Table 5.1) ỹ = Sort ((1.10,1.25,1.42)x+ (5.10,6.76,8.31))
Dataset (given Table 5.13) ỹ = Sort ((1.22,1.24,1.33)x+ (−5.82,−5.83,−5.88))
Dataset (given Table 5.16) ỹ = Sort ((0.72,0.72,0.72)x̃+ (0.83,0.46,0.09))
Dataset (given Table 5.19) ỹ = Sort ((0.93,0.12,0.91)x+ (13.10,7.86,6.68))

Table 6.5: Sought SIP-free models for different datasets in the literature

In a simplified version where there is only one input variable, the model in (6.9)

can be represented as ỹ = sort(a11x
l
1 + a10, a

2
1x

c
1 + a20, a

3
1x

r
1 + a30).

Other fuzzy numbers (such as bell shape and etc.) can be treated similarly by

application of the level sets representation.

6.2.4 Experimental results

The model given in (6.9) with triangular fuzzy numbers can be represented by 3n+3

parameters. In case of having a symmetric model the number of the parameters

decreases to 2n+2 which is less than the parameters in models proposed by Lu and

Wang [86] and Chen and Dang [87] and equal to the ones proposed by Modaress et

al. [135] and Nasrabadi and Nasrabadi [136].

The proposed SIP-free approach is applied on different data sets; crisp input-

fuzzy input as given in Tables 5.1, 5.7, 5.11, 5.13, 5.19, and fuzzy input-fuzzy out-

put as given in Table 5.16, the results are compared to the ones obtained by the pro-

posed FLR approach in Chapter 4. The sought models with their errors are reported

in Tables 6.5, 6.6. The results reveal that the models obtained from the proposed

approach are either superior or Pareto-equivalent to the models defined in Chapter

4.

NIA RNIA Hojati’s criterion
Data Set SIP-free FLR SIP-free FLR SIP-free FLR

model model model model model model
Dataset (given in Table 5.1) 8.3986 8.3678 3.4961 3.5438 0.4522 0.494
Dataset (given in Table 5.13) 6.8716 6.89 8.4455 10.29 0.7522 0.7056
Dataset (given in Table 5.16) 5.0063 5.265 8.0206 8.3046 0.9513 0.7508
Dataset (given in Table 5.19) 3.6803 5.20 1.973 - 0.2841 0.3364

Table 6.6: Comparison of the SIP-free errors with FLR model on different datasets in the
literature
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6.3 Summary

A two-stage approach is proposed; first to detect the outliers in a data set and sec-

ond to fit a model on the clean dataset. The chosen model fitting measure value is

minimized with a hybrid optimization method. The benefits of this approach is that

there is no need to set any user defined variables and no need to assume the number

of outliers from the beginning. Also, another advantage of using meta-heuristics for

minimizing the model fitting measurement is that any kind of measurement can be

used regardless of being continuous or differentiable. So, the approach is flexible

with selection/designing of measurements based on the clients’ requirements and

requests or the nature of the dataset.

Spread increasing problem (SIP) is also introduced as one of the major issues

in fuzzy linear regression. A SIP-free fuzzy linear regression model is formulated

to tackle the problem. For doing so, two algebraic operations are introduced and

then the model is derived by a hybrid optimization method. The results shows that

the obtained SIP-free models are either Pareto-equivalent to or better than existing

methods based on four similarity measures.



7
Real-world applications of global

continuous optimization and fuzzy

linear regression1

This chapter discusses the application of the global continuous optimizationmethod

and fuzzy linear regression analysis for the design of a pressure vessel and the qual-

ity of service for web services.

7.1 Real-world application: The design of a pressure

vessel

An optimized design of a cylindrical pressure with two hemispherical heads is

sought such that it minimizes the total cost. This example has been used by many

1This chapter is based on a journal paper; [2] co-authored by M. A. Orgun and W. Pedrycz. and a
conference paper; [10] co-authored by L. Li, M. A. Orgun, and Y. Wang

109
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other studies in the literature to demonstrate the potential application of the pro-

posed approaches [69, 149–153]. The total cost includes the cost of material, form-

ing and welding processes. It is reported that the total cost can be effected by four

variables given in Figure 7.1; thickness of the shell x1, thickness of the head x2, the

inner radius of the vessel x3 and the length of the cylinderical section of the vessel

x4 [152]. The thickness for the shell and the head can be just multiples of 0.0625,

which is the plates thickness. The domain for the length and the radius is continu-

ous. The minimization of the total cost with its constraints is formulated as follows:

minf (x) = 0.6224x1x3x4 +1.7781x2x
2
3 +3.1661x21x4 +19.84x21x3

subject to

g1(x) = −x1 +0.0193x3 ≤ 0

g2(x) = −x2 +0.00954x3 ≤ 0

g3(x) = −πx23x4 −
4
3πx

3
3 +1296000 ≤ 0

g4(x) = x4 − 240 ≤ 0

0 ≤ x1,x2 ≤ 100

10 ≤ x3,x4 ≤ 200

The above optimization problem has been studied in [69, 149–153]. The result

by our method is compared to the ones reported in the literature, see Table 7.1.

To satisfy the thickness condition, the algorithm is allowed to generate any val-

ues for x1 and x2 and then in the objective function, before calculating the total cost,

they are rounded to the closest number, which is a multiple of 0.0625. Moreover to

avoid solutions which do not satisfy g1, g2, g3 and g4, a constraint penalty scheme is
applied. In the constraint penalty scheme, instead of avoiding generating solutions

vector which do not satisfy any of the constraints, any solution vector is generated

and then evaluated but for each of conditions that is not satisfied, a very large value

is added to the objective function. For each condition which is not satisfied the

objective function is increased by with 100,000.
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He and Wang [151] reported to have superior performace over Coello’s method

[150] both in minimizing the cost and number of evaluations. He and Wang [151]

reported the function evaluations for theirs and Coello’s method to be 200,000 and

900,000, respectively. As mentioned earlier, one of the aims in GCO is to reduce the

number of function evaluations, while minimizing the average error and maximiz-

ing success rate. Here, the success rate cannot be computed, as the global minimum

is unknown. Our method finds the smallest total cost in comparison with the meth-

ods that satisfy all the conditions. Moreover the number of the function evaluations

is much smaller than the ones reported by He and Wang [151], and Coello’s [150].

x4

x2x1

x3

Figure 7.1: The structure of the pressure design with its effective variables on total cost
(taken from [2])

The minimized cost for the vessel pressure design is obtained by the approach

of Mahdavi et al. [153]. However, the problem with their solution is that it is not

acceptable as x4 = 221.37 and it is not in the x4’s domain which is given as [10,200].

The optimized solution by the approach of Zahara and Kao [69] is neither acceptable

as it does not satisfy the thickness condition which says both x1 and x2 should be a

multiple of 0.0625.

The above optimization problem is just an example of how to apply the method

for any real-world optimization problems. In particular, the problems which are

very hard to be solved by gradient descent-based methods, or the ones which have

computationally expensive objective functions are very good candidates to be solved

by the proposed methods.
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7.2 Application of fuzzy regression to prediction of qual-

ity of service

With the advent of service-oriented computing, the issue of trust and Quality of Ser-

vice (QoS) have become increasingly important. In service-oriented environments,

when there are a few service providers providing the same service, a service client

would be keen to know the trustworthiness of each service provider in the forth-

coming transaction. The trust rating of a delivered service from a service provider

can be predicted according to a set of advertised QoS data collected by the trust

management authority. Although trust and QoS are qualitative by nature, most

data sets represent trust and QoS in the ordinal form for the sake of simplicity.

A new approach based on Fuzzy Linear Regression Analysis (FLRA) is inroduced

to extract qualitative information from quantitative data and so use the obtained

qualitative information for better modeling of the data. For verification purposes,

the proposed approach can be applied for the trust prediction in the forthcoming

transaction based on a set of advertised QoS in service-oriented environments.

7.2.1 Why fuzzy linear regression for quality of service prediction

In Service-Oriented Computing (SOC), a service is an autonomous and platform-

independent computational entity, which can be described, published, discovered

and dynamically assembled for developing massively distributed systems. In fact,

any piece of code or application component deployed on a system can be taken as a

service [154].

In SOC environments, QoS (Quality of Service) refers to various nonfunctional

characteristics. These specified characteristics should be measurable and constitute

a description of what a service can offer. The QoS of an IT service is often expressed

in terms of capacity, latency, bandwidth, the number of service requests, and the

number of incidents [155]. QoS is essential when a set of quality metrics have to

be achieved during service provision [155]. In contrast, in SOC environments, the

general quality of a delivered service can be represented by a trust rating given by a

service client. As trust and QoS both focus on the quality of service, the trust rating

of a service or service provider can be taken as a function of a set of advertised

QoS values reflecting the quality of the service or the service provider, and the trust

rating can be predicted by the trust management authority.

When a service client looks for a service from a large set of services offered by
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different service providers, in addition to functionality and QoS, reputation-based

trust is also a key factor for service selection. It is also critical for the trust manage-

ment authority to be responsible for maintaining the list of reputable and trustwor-

thy services and service providers with their advertised QoS values, and providing

them to clients as required [154].

Conceptually, trust is the measure taken by one party on the willingness and

ability of another party to act in the interest of the former party in a certain situa-

tion [156]. If the trust value is in the range of [0,1], it can be taken as the subjective

probability with which, one party expects that another party performs a given ac-

tion [157].

The trust issue has been widely studied inmany applications. In e-commerce en-

vironments, a trust management system can provide valuable information to buyers

and prevent certain typical attacks [158, 159]. In Peer-to-Peer information-sharing

networks, binary ratings work pretty well as a file is either the definitively correct

version or not [160]. In SOC environments, an effective trust management system

is critical to identify potential risks, provide objective trust results to clients and

prevent malicious service providers from easily deceiving clients [161]. Different
from P2P information-sharing networks or the eBay reputation management sys-

tem, where a binary rating system is used [160], in SOC environments, trust data

is usually captured in its ordinal form, such as 5-star, gold and high-class, due to

the abstraction or even the simplicity of representation. This abstraction makes

the trust value more understandable for the end users and service clients, but it is

not really suitable for any further inference. An intuitively appealing approach to-

wards trust, which is qualitative by nature, is to not quantize the trust but to take

the uncertainty which comes from vagueness into consideration in the level of infer-

ence [112]. In contrast, the quantization only takes place for representing the trust

to the end users or service clients when it is deemed to become necessary [112].

As mentioned above, the trust rating, representing the subjective belief of a ser-

vice client on the general quality of the delivered service, is both subjective and

qualitative. However, by quantization both subjective and qualitative information

in the trust data set would be overlooked. For example, two services with the same

trust level of 5-star may not be necessarily the same for a specific purpose or the

requirement of a service client. In fact, one service could be much more suitable

than the other one, but, due to the quantization process, such kind of important

information may be ignored in the service selection process.
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This thesis proposes a QoS based approach to trust prediction using Fuzzy Lin-

ear Regression Analysis (FLRA). This approach is built up with the ordinal trust

data which can be extracted, so that the hidden fuzzy information can be taken

into consideration where it has been overlooked in the original trust data set. The

motivations of applying FLRA for predicting trust are summarized as follows.

• Capturing the hidden fuzziness: we want to capture the fuzziness overlooked

in the ordinal trust data set due to the reasons such as abstraction. The other

machine learning approaches such as neural networks, decision trees and sup-

port vector machines in their original form, do not take the fuzziness into con-

sideration and only model the original trust data set.

• Having a transparent model: we want to seek for a transparent relationship

between the delivered trust rating and the advertised QoS values where the

underlying function is extractable. In industry, neural networks or any other

approaches, which have the black-box nature, are not suitable for marketing

purposes.

• More detailed information: we want to provide more information than only a

few trust levels. For example, a web service is not necessarily either platinum
or gold; it could be for instance better than gold, butworse than platinum - which

can be represented by a fuzzy value.

FLRA is a powerful tool to model the relationships in situations where the at-

tributes are inexact. FLRA is widely applied in economy, finance, marketing, social

sciences, healthcare and other domains [101, 106, 162]. In addition, trust is also a

widely studied and complex issue, including many uncertain factors [158]. Hence,

with the fuzziness, fuzzy regression based on fuzzy set theory can deal with QoS

based trust prediction in a reasonable manner. In this thesis, we propose a method

for the prediction of trust rating based on fuzzy linear regression for building up a

mapping from a set of advertised QoS values to the trust rating of the corresponding

delivered service of a service provider. Then, the service client can predict the trust-

worthiness of the service provider in the forthcoming transaction with its advertised

QoS values.

7.2.2 Trust prediction based on fuzzy regression

The application of FLRA for the prediction of trust based is investigated on a set

of advertised QoS values. The main goal in this thesis is to predict the trust rating
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of a web-service, which could be represented by linguistic expressions such as plat-

inum, gold, silver and bronze. So, a common approach is to seek the relationship

between the independent attributes (the QoS attributes) and dependent attribute

(the trust attribute). For doing so, a numeric form of the trust attribute is consid-

ered to construct the model - even if the QoS data comes with some imprecision or

uncertainty. Hence, initially the linguistic expressions of trust are all considered to

be ordinal data. Then, after they are quantized (defuzzified), classical approaches

can be applied [112].

The critical issue here is that the quantization process causes some important

information to be overlooked or neglected [6, 89]. In environments with uncertain

data, the best option is then to not defuzzify the data but to take the uncertainty

in the data into consideration in the level of inference [112]. However, the final

results could be defuzzified for the presentation purposes only if it becomes neces-

sary [112].

A linear regression model in the form of

Y = a0 + a1x1 + · · ·+ anxn,

where n is the number of input variables, is applied for QoS based trust estimation

for each web-service. However, we have added an extra term to fuzzify the results.

A triangular fuzzy value, like B̃i which derives from

(
n∑
i=1

xi) · (b1,b2,b3),

where b1 ≤ b2 ≤ b3 is added to the above linear regression model given in Eq. (7.1).

Ỹi = a0 + a1x1 + · · ·+ a9x9 + B̃i (7.1)

The coefficients a0, a1, · · · ,an are estimated by statistical linear regression. The

motivation of applying the model given in Eq. (7.1) is due to the fact that this

model does not have the spread increasing problem - an issue which exists in the

original models given in Eqs (3.9) and (3.10). A model with the spread increasing

problem would increase the uncertainty of the trust of a service by an increase in

the magnitude of the input QoS variables.

To derive the best values of the variables b1,b2 and b3, tabu-harmony search is
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applied [6]. In order to measure the goodness of the individual models in tabu-

harmony search, we need to count how many predictions of the model are correct.

However, the models have a fuzzy estimation of the trust value which is hard to

be compared with the actual trust values which are ordinal values. One way to

tackle this issue is to defuzzify the estimation and then assign it to a class of trust

which has the smallest distance to it. Basically by doing so, the fuzziness is taken

into consideration for inference and the quantization process takes place only in the

final stage for the sake of presentation [112].

The same margin for all the classes by assigning a class for each estimation is

studied. For example, if the margin is 0.2, then in our example estimations will be

in the bands of

(−∞,1.2], (1.2,2.2], (2.2,3.2], and (3.2,+∞).

We introduce the variable b4 to derive the best margin. Since the value of b4 depends

on the selection of b1,b2 and b3, we optimize all the four variables in one phase.

In contrast to the other methods, with our method, the trust rating will be es-

timated in terms of a fuzzy number. In fact, trust is naturally an inexact concept.

However, due to the abstraction, it is usually converted to a traditional classification

problem and the fuzziness is overlooked.

7.2.3 Experiments

Themost comprehensive data sets for web-services classification used by [163–165],

include ten crisp independent attributes and one linguistic expression which rep-

resents the trust level of the web-service. To the best of our knowledge, in most

studies in the literature, the trust terms (being platinum, gold, silver and bronze)

are quantized to 1 to 4, respectively.

In the experiment, the web-services data set used for the simulation purposes

is taken from [15]. The data set contains 365 real web service implementations ex-

tracted from the Web. These services were collected using the Web Service Crawler

Engine (WSCE). Themajority of theWeb services were obtained from public sources

on theWeb including Universal Description, Discovery, and Integration (UDDI) reg-

istries, search engines, and service portals.1 From the list of attributes given in Table

7.2, we have excluded WSRF due to its high dominance [163].

1For more information visit:
http://www.uoguelph.ca/∼qmahmoud/qws/index.html#Service Classification
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The settings of experiments in this section are as follows.

• The introduced data set with the properties given in Table 7.2 is first normal-

ized and then we perform 10-fold cross validation as used in [163].

• Tabu-harmony search with a population size of 100 for 2000 iterations is used.

• The migration and crossover fractions are set to 0.7 and 0.05, respectively.

• The lower and upper bounds of b1,b2,b3 and b4 are set to −1 and 1, respec-

tively.

The comparison of the method and the results obtained from Support Vector

Machines (SVM), decision tree and linear regression are given in Table 7.3. We can

observe the following results.

• The accuracy of the proposedmethod based on fuzzy linear regression is about

80%, which is superior to the other methods compared in this thesis.

• The standard deviation is estimated to be 0.07, which reveals the robustness

of the approach on different runs.

• Both the standard deviation and the performance of our proposed approach

based on fuzzy linear regression is better than those of the one which applies

the traditional linear regression.

• Moreover, as discussed earlier, our approach is able to re-generate the over-

looked uncertainty in the trust of service and use it for inference.

• The standard deviations and the training performances of the other methods

are not given in Table 7.3, as they are not reported in [163].
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As an example, we have estimated the trust ratings of two web services from the

obtained model during training. The trust values are in the form of fuzzy triangular

numbers as follows:

(1.5714,3.4027,4.1017), (1.9139,3.8692,4.6155).

Although after defuzzification both would be classified as gold, there are differences
between them in terms of QoS. In fact, Figure 7.2 reveals that the second service is

slightly better than the first one. Moreover, there is an uncertainty that the quality

of both services depicted in Figure 7.2 might actually be silver, as the left spreads

of both the fuzzy numbers are very wide.

y

x

1 2 3 4 5

Service 1 Service 2

Figure 7.2: The comparison of the trust of two web services before defuzzification (taken
from [10])

As another example, we assume the trust of two web services given in Figure 7.3.

In case of using traditional (exact) methods, it is deduced that service 2 is superior

to service 1. However, as the left spread of service 2 goes all the way to the bronze

quality, this may result in selecting service 1 over service 2.

y

x

1 2 3 4 5

Service 1 Service 2

Figure 7.3: An example where a traditional method and an inexact method may vary in
the result (taken from [10])
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7.3 Summary

The application of global continuous optimization is shown for designing of a pres-

sure vessel. This is an optimization problem with constraints where the goal is to

minimize the cost of production for making a pressure vessel. The results are dis-

cussed and compared with the other methods in the literature.

An approach based on fuzzy linear regression is applied to extract the quali-

tative information which may have been overlooked in the original data set. The

extracted qualitative data is then used for modeling the data. The proposed ap-

proach is applied for the trust prediction of the delivered web-services based on a

set of advertised QoS values. The method not only provides more detailed informa-

tion of trust but it also has promising results. Although in order to quantitatively

compare the performance of the method, the results are defuzzified, one could use

the fuzzy results as they provide more information.



8
Conclusions and future work

Wehave investigated global continuous optimizationmethods based onmeta heuris-

tic approaches for optimization problems where the objective function has the fol-

lowing characteristics;

• computationally expensive, and/or

• the differentiability (or even the objective function itself is a black-box) is un-

known due to reasons such as being a trade secret.

Fuzzy linear regression analysis can be modeled as an optimization problem where

the objective function can be non-transparent and so it is beneficial to apply global

continuous optimization. We have shown the application of global continuous op-

timization for deriving a fuzzy linear model, detecting outliers and also solving the

spread increasing problem.

8.1 Conclusions of each chapter

Slow rate of convergence is a drawback in some of meta-heuristic based approaches.

Hybridization is a solution toward solving this issue. In Chapter 2, we classified

the global continuous optimization methods into three main categories according

123
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to their hybridization approach. It is noted that the simple diver-intens hybridiza-
tion framework is very fast when compared to other frameworks, but since only one

best solution is considered for the intensification phase, it does not guarantee find-

ing the optimum solution. On the other hand, iterative divers-intens hybridization
frameworks increase the possibility of finding the global optimum solution. But this

framework is computationally very expensive since intensification is carried out for

all of the potential areas. Divers-semiintens-intens frameworks are realized to keep

the balance between the computational cost and the rate of finding global optimum

solutions. The results from our proposed global continuous hybrid method, given

in Appendix A.1, advise that our approach is either superior or Pareto-equivalent

to the other methods in the literature.

In Chapter 3, fuzzy linear regression analysis was modelled as an optimization

problem where the goal is to minimize the model fitting measure. Since the fitting

measure is not always transparent or simple to be evaluated, global continuous op-

timization methods are ideal solutions. We have also introduced a protocol for com-

paring the performance of two models against fitting measures, in which a model

could be better, worse or Pareto-equivalent than/to another model on a given data

set.

In Chapter 4, we proposed an approach based on tabu and harmony search to

tackle fuzzy linear regression analysis. The experimental results show that the

models obtained by global continuous optimization is either superior or Pareto-

equivalant to the ones in the literature. This is due to the fact that a fitting measure

applied in our approach can be used as the objective function while in least square

or linear programming based approaches the goal is to minimize a distance function

and the performance is then measured via a different objective function.
In Chapter 5 we have investigated the goodness of the proposed fuzzy linear

regression model based on global continuous optimization. According to the ex-

perimental results the proposed method outperforms or Pareto-equivalent to other

methods compared on fuzzy input-fuzzy output and crisp input-fuzzy output data

sets. The proposed approach could be generalized for any type of convex fuzzy

value. The CPU times reported for deriving the models are more than LS and LP

based approaches in the literature, however the models can still be obtained in a

feasible time. The CPU time varies based on the size of the data set and type of the

objective function, e.g. for Euclidean type of objective function the optimization is

much faster compared to an area based objective function such as RNIA.
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In Chapter 6, outlier detection and spread increasing problems are also identi-

fied as problems in fuzzy linear regression which can be tackled by global contin-

uous optimization. We have proposed a two stage fuzzy linear regression analysis

where in the first stage the objective is to exclude the data which do not follow the

trend of the rest of the data set. The second stage is dedicated to fit a model with

the minimum error on the clean data set. The experimental results provide evi-

dence that the proposed approach has promising features such as being practical in

terms of removal and fitting a model, and not requiring to configure control vari-

ables such as the ones in other models. The spread increasing problem on the other

hand is tackled by introducing an objective function which applies new algebraic

operations. The sought model is capable of having variable spreads and is shown to

be superior or Pareto-equivalant to other models in the literature.

In Chapter 7, we have studied two real-world applications for global continuous

optimization and fuzzy linear regression. In the first part, an hybridized approach

is applied to reduce the cost of manufacturing of a pressure vessel. This is an ex-

ample where the accuracy of result is more of an interest compared to optimization

speed. This is due to the fact that the design process is an off-line procedure. We

have also investigated an example with regards to the prediction of the quality of

web-services by fuzzy linear regression. We have shown that fuzzy linear regression

analysis could be applied to capture qualitative information from quantitative data.

This example shows a methodolgy of applying fuzzy linear regression analysis for

the applications where there is uncertainty naturally but due to reasons such ab-

straction, loss of information and etc the uncertainty is not recorded. The results

show that not only fuzzy linear regression has promising performance but it also

extracts more information in terms of the uncertainty which exists in the quality

term.

8.2 Future research direction

There remain many avenues for future work and we briefly suggest some of them

below;

• The data sets used in the majority of the fuzzy regression literature are either

produced synthetically or are originally crisp data sets which are converted

to fuzzy data set. It would be very beneficial to have a real fuzzy data set

were the input and output data are fuzzy values by nature. An ultimate way

of collecting fuzzy data could involve running focus group studies. Since the
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uncertainty should come from the participants rather than having another per-

son fuzzifying the data, the participants have to be trained how to put their

feedback in terms of fuzzy values.

• It would be useful to investigate muti-objective optimization methods for the

case that there are more than one model fitting measures to be maximized.

In cases where the fitting measures may come from different clients and all

has to be maximized, multi-objective global continuous optimization methods

based on meta-heuristic approaches seem to be ideal solutions. The appli-

cation of multi-objective optimization method seems to decrease the rate of

Pareto-equivalant models compared to the ones in the literature and increase

the superiority rate of the models.

• The performance of fuzzy regression models are usually measured based on

the same data to which the model is fitted. A more practical way of measuring

the performance of a model could be to measure how good the model predicts

the test data. As otherwise a model may perform very well on the training set

but poor on new data. A future study may consider introducing a protocol for

measuring the performance of a model based on a testing data set.

• It would be also beneficial to compare the results obtained from fuzzy linear

regression with the ones obtained from conventional models such as statisti-

cal linear regression. According to the results obtained in Chapter 7, it seems

that for the problems where uncertainty naturally exists but overlooked for

any reasons, fuzzy linear regression may have better performance. A compre-

hensive study could be conducted to investigate this speculation.

• It would be beneficial to investigate the advantage and disadvantage of differ-
ent similarity measures in the literature. We have suggested some benefits of

few similarity measures, however a comprehensive investigation dedicated to

study the application of each similarity measure would be useful.

• Application of other soft computing approaches such as genetic programming,

K Nearest Neighbours (K-NN) also seem to have potential for non-parametric

fuzzy regression. Approaches such as genetic programming can be applied for

situations where the mathematical formula of a model is required, otherwise

approaches such as K-NN seems to be applicable too.
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• Crisp data sets with many entries could be abstracted by clustering the data

and representing them by fuzzy values. It would be interesting to compare and

contrast a model derived from fuzzy linear regression which fits the abstracted

fuzzy data with a model derived from applying a statistical linear regression

on crisp data. In a particular case when a data set is very noisy, the fuzzy

model might not be as sensitive as the crisp model to the noise.



A
Appendices1

A.1 Optimization results for benchmark functions

To show the effectiveness of the proposed method three important parameters: con-

vergence, speed and robustness may be studied [22]. Each of these parameters is

associated with the average error (Ave), the number of function evaluations (fe) and

the success rate (Sr), respectively. Firstly, we report the experimental results for the

benchmark functions and secondly a real world application from the literature is

solved by the method.

Robustness states that the method can be applied to find the global minimum

solution of different functions. For the sake of robustness 17 multimodal bench-

mark functions (2-10 variables) known in the literature are considered (as listed in

Appendix A) [22,24,26–28,49,51,61–64,66,67,69,80]. Since these are multimodal

functions, it is hard to find their global minimum [27]. To avoid immature conclu-

sions due to the choice of a random initial population in the partitioning phase and

applying randomization in the neighbour search-strategy, the method was run for

100 times for each of the functions. In each run, different initial seeds are applied

1This chapter is based on journal papers; [6] co-authored by M. A. Orgun, M. Mashinchi and W.
Pedrycz, and [2] co-authored by M. A. Orgun and W. Pedrycz.

128
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to generate random initial solutions in the partitioning phase. Thus each run starts

from different starting points. The success rate is defined as g
100 where g is the num-

ber of successfull runs. A run is considered successful if it satisfies the following

condition [16,24,26,28,51,62,64]:

|f ∗ − f | < ϵ1.|f ∗|+ ϵ2,

where f ∗ is the known global minimum of the function under discussion and f is

the global minimum of that function which our method computes. The coeffcients
ϵ1 and ϵ2 are set to 10−4 and 10−6 respectively, see also [16,24,26–28,51,61,62,80].

To test the convergence rate, the relative distance between the obtained global

minimum solution and the actual one is computed. The average distance in 100

runs returns the average error.

The time which takes for the method to find the global minimum of a solu-

tion determines the speed of the method. However, since computing the opti-

mization time strictly depends on the computer’s speed [22], in the literature the

speed criterion is determined by the average number of function evaluations in all

runs [22,24,26–28,49,51,55,61–64,66,67,69,80].

Note that it is unfair to use the global optimum solution value as supportive

information for the stopping condition. So, we do not use the analytical global

optimum solution of the function till the end where we just want to compute the

success rate and the average error.

One of the factors that has a considerable effect on the result is the sizes of the

STTL and LTTL. We examine the effect of different STTL and LTTL sizes on the

solution quality and computational effort for acquiring the minimum solution. The

experimental results of three different combinations of the STTL’s size and LTTL’s

size ((2,2), (5,5) and (10,10)) are reported in Table A.1. we pursue the iteration until

after K consecutive iterations where the improvement is less than ϵ as given below:

|f (xk)− f (xk−n)| < ϵ, (A.1)

where ϵ is used to control the termination of the method. The ϵ in (A.2) is set

to 10−10 for all of 100 runs for each of the functions. The simulations were run

on Pentium IV 3.00GHz with 2GB memory. The program is coded in Matlab 7.0.

According to the result from Table A.1, as expected the different TL sizes have effect
on the success rate of the algorithm. The selection of the large TL size makes the
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algorithm to push the next solutions in new areas, so it gives more opportunities to

explore a broader search space. The sizes of both STTL and LTTL is set to 10 in all

subsequent comparisons with other methods.

|f (xk)− f (xk−n)| < ϵ, (A.2)

where ϵ is used to control the termination of the method.

Table A.1: Effect of STTL and LTTL sizes on the conver-

gence, speed and robustness of the proposed method (taken

from [2])

Benchmark function Performance TL size
(2,2) (5,5) (10,10)

RC Sr(%) 100 100 100

Ave 5.3588e − 11 5.1376e − 11 5.4827e − 11
fe 134 146 146

Avt(s) 0.0171 0.0179 0.0171

GP Sr(%) 100 100 100

Ave 5.5194e − 11 5.6707e − 11 5.3463e − 11
fe 165 166 165

Avt(s) 0.0222 0.0209 0.0190

R2 Sr(%) 100 100 100

Ave 5.6121e − 11 5.1500e − 11 5.4984e − 11
fe 223 221 222

Avt(s) 0.0215 0.0179 0.0222

Z2 Sr(%) 100 100 100

Ave 5.1835e − 11 6.0981e − 11 5.4537e − 11
fe 138 139 139

Avt(s) 0.0155 0.0153 0.0153

H3,4 Sr(%) 100 100 100

Continued on next page



A.1 Optimization results for benchmark functions 131

Table A.1 – continued from previous page

Benchmark function Performance TL size
(2,2) (5,5) (10,10)

Ave 5.7063e − 11 6.1536e − 11 5.5487e − 11
fe 207 212 212

Avt(s) 0.0275 0.0288 0.0264

DJ Sr(%) 100 100 100

Ave 5.4476e − 11 5.4229e − 11 5.6959e − 11
fe 199 199 199

Avt(s) 0.0223 0.0225 0.0225

SH Sr(%) 86 93 100

Ave 5.4655e − 11 5.6929e − 11 5.3745e − 11
fe 358 383 459

Avt(s) 0.0391 0.0426 0.0510

B2 Sr(%) 80 82 83

Ave 5.5337e − 11 5.4287e − 11 5.5828e − 11
fe 560 584 658

Avt(s) 0.0655 0.0733 0.0760

ES Sr(%) 76 77 78

Ave 8.2305e − 11 2.2066e − 11 4.4793e − 11
fe 510 521 515

Avt(s) 0.0576 0.0617 0.0640

Shl4,5 Sr(%) 73 72 74

Ave 6.2260e − 11 6.2174e − 11 6.9967e − 11
fe 799 837 840

Avt(s) 0.0957 0.1003 0.1057

Shl4,7 Sr(%) 83 87 88

Ave 6.3011e − 11 6.2403e − 11 6.4606e − 11
fe 801 841 845

Continued on next page
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Table A.1 – continued from previous page

Benchmark function Performance TL size
(2,2) (5,5) (10,10)

Avt(s) 0.0961 0.1026 0.1052

Shl4,10 Sr(%) 84 87 89

Ave 6.1137e − 11 6.5839e − 11 5.9734e − 11
fe 800 843 845

Avt(s) 0.0962 0.1012 0.1049

H6,4 Sr(%) 66 64 66

Ave 8.6781e − 11 8.1020e − 11 8.0286e − 11
fe 873 878 880

Avt(s) 0.1129 0.1150 0.1190

R5 Sr(%) 94 94 95

Ave 7.1966e − 11 7.0860e − 11 7.1356e − 11
fe 1038 1040 1033

Avt(s) 0.1229 0.1205 0.1236

Z5 Sr(%) 100 100 100

Ave 7.2742e − 11 6.9021e − 11 7.1166e − 11
fe 674 674 674

Avt(s) 0.0759 0.0815 0.0853

R10 Sr(%) 85 85 87

Ave 1.8648e − 10 4.1410e − 10 8.9220e − 10
fe 4039 4051 4057

Avt(s) 0.7093 0.7563 0.7525

Z10 Sr(%) 100 100 100

Ave 1.9313e − 10 1.7252e − 10 1.4605e − 10
fe 1899 1899 1898

Avt(s) 0.3086 0.3171 0.3184
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To show the efficiency of the proposed method, it is compared to the best and

themost recent other published hybridmethods given in Table A.2. For comparison,

we say a GCOM1 is better than a GCOM2 for a function, only if all of the following

“GCOM comparison conditions” simultaneously hold true:

1. fe of GCOM1 < fe of GCOM2,

2. Sr of GCOM1 < Sr of GCOM2,

3. Ave of GCOM1 < Ave of GCOM2.

In case for a function only one or two of the conditions hold true, it can be said that

the GCOM1 is “Pareto equivalent” to the GCOM2 for that function.

To compare our method to other methods, see Table A.2, we need to have smaller

Ave according to the GCOM comparison conditions. Thus we set the ϵ value in the

Equation (A.2) equal to a litte bit less than the Ave of others methods . So if for

example a GCOM for a function returned Ave = 10−12 then we set ϵ in our method

equal to 10−13 to make sure that our method can obtain a smaller Ave. Note that this

does not mean that we assume that we know the analytical global minimum solution

of the functions. The value of each control variable that we use in our experiments

is given in Table A.3.

Table A.2: List of various GCOMs used for the comparison (taken from [2])

Method Reference Published year
Improved TSNM This work
GAPSO [67] 2008
PSACO [27] 2007
HCIACO [80] 2007
NMPSO [76] 2007
DTS [16,26] 2004, 2006
CTSS [24] 2005
NHGA [166] 2005
CHA [51] 2003
ETS [62] 2000

According to the experiments, we can divide the benchmark functions into 3

classes. The first class is that of the low dimensional functions (less than 4 input

variables) which have relatively small or medium input domains. The comparison

experiments for this class is given in Table A.4. The next class includes the func-

tions which have low dimensions (less than 4 input variables) but have large input
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Table A.3: The value of control variables (taken from [2])

Abbreviation Description
S = 10 STTl size
L = 10 LTTL size
N = 5 (if input dimension ≤ 5) Number of neighbours
N = 10 (if input dimension > 5)

DF = upperbound−lowerbound×max(5−inputdimension,1)
2

6 Distribution factor
SFST T L =

DF
100 STTL Similarity factor

SFLT T L = 10× SFST T L LTTL Similarity Factor
α,β = 0.2 Step and Directed percentages

domains, Table A.1. The next investigated class compares the results of our method

with others for the functions which have relatively high dimensions (more than 3

input variables) regardless their input domains, Table A.1.
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Table A.6: (Cont.) Comparison between the proposed method and other GCOMs for low
dimensional benchmark functions (n < 4)with large input domains (|ai−bi | ≥ 20, i = 1, · · · ,n)
(taken from [2])

GCOM
B2 ES

fe Sr Ave fe Sr Ave
Proposed 658 83.4 5.58e − 11 455 78.1 7.8e − 7
GAPSO [67] 174 100 1e-5 809 100 3e − 5
Proposed 699 83.4 4.83− 17 455 78.1 7.8e − 7
PSACO [27] 370 100 5.55e-17 254 100 0.0e-7
Proposed - - - - - -
HCIACO [80] - - - - - -
Proposed 658 83.4 5.58e − 11 - - -
NMPSO [76] 1124 100 3.23e − 10 - - -
Proposed - - - 455 75.4 7.8e − 7
DTS [16,26] - - - 223 82 4e-7
Proposed 581 83.4 2.07e − 8 450 78.1 5.68e − 4
CTSS [24] 98 100 5e − 6 325 100 5e − 3
Proposed - - - - - -
NHGA [166] - - - - - -
Proposed 581 83.4 2.07e − 8 450 78.1 5.68e − 4
CHA [51] 132 100 2e-7 952 100 1e − 3
Proposed - - - 450 78.1 5.68e − 4
ETS [62] - - - 1284 100 1e − 2
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The comparison between the GCOMs shows that the proposed method outper-

forms other GCOMs when the functions under investigation with n input variables

on the domains of [ai ,bi] have low dimensionality (less than 4 input variables) and

relatively small or medium input domains |ai − bi | ≤ 20, for i = 1, . . . ,n, Table A.4.

The method in [67] yields good results for this class only if the optimum solution is

equal to zero vector, X∗ = (0, · · · ,0), otherwise this method in terms of the number of

function evaluations is very computationally expensive. Since in reality, we do not

know whether the solution is zero or not, it may be better to apply a method which

has an acceptable performance regardless of the location of the optimum solutions.

In case the number of input variables increases (more than 3) or the domains of

input variables become larger (|ai−bi | > 20 for i = 1, . . . ,n) our proposed method can-

not outperform other methods. Although it does not outperform the other GCOMs,

it is not worse than many of them since according to the GCOM comparison condi-
tions, the proposed one is pareto equivalant to some others in many cases. This fact

reveals that depending on different applications, different GCOMs for high dimen-

sions can be applied.

A.2 Mathematical formulation of the benchmark func-

tion

Branin RCOS (RC) (two variables)
Definition: RC(x1,x2) =

(
x2 − ( 5

4π2 )x
2
1 + ( 5π )x1 − 6

)2
+10

(
1− ( 1

8π )
)
cos(x1) + 10;

Search domain: −5 < x1 < 10,0 < x2 < 15;

Local minimum: no local minima;

Global minima: (x∗1,x
∗
2) = (π,12.275), (π,2.275), (9.42478,2.475),RC(X∗) ≃ 0.39789.

Goldstein and Price (GP ) (two variables)
Definition: GP (x1,x2) =

(
1+ (x1 + x2 +1)2 × (19− 14x1 +3x21 − 14x2 +6x1x2 +3x22)

)
×
(
30+ (2x1 − 3x2)2 × (18− 32x1 +12x21 +48x2 − 36x1x2 +27x22)

)
;

Search domain: −2 < xj < 2, j = 1,2;

Local minimum: four local minima;

Global minima: (x∗1,x
∗
2) = (0,−1),GP (X∗) = 3.

Rosenbrock (Rn) (n variables)
Definition: Rn(X) =

∑n−1
j=1

(
100(x2j − xj+1)

2 + (xj − 1)2)
)
;
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Search domain: −5 < xj < 10, j = 1, . . . ,n;

Local minimum: several local minima;

Global minima: X∗ = (1, . . . ,1),Rn(X∗) = 0.

Zakharaov (Zn) (n variables)
Definition: Zn(X) =

(∑n
j=1x

2
j

)
+
(∑n

j=10.5jxj
)2

+
(∑n

j=10.5xj
)4
;

Search domain: −5 < xj < 10, j = 1, . . . ,n;

Local minimum: several local minima;

Global minima: X∗ = (0, . . . ,0),Zn(X∗) = 1.

Hartmann (H3,4) (three variables)
Definition: H3,4(X) = −

∑4
i=1 ci exp

(
−
∑3

j=1 aij(xj − pij)2
)
;

Search domain: 0 < xj < 1, j = 1,2,3;

Local minimum: four local minima;

Global minima: X∗ = (0.11,0.555,0.855),H3,4(X∗) ≃ −3.86278.

De Joeng (DJ) (three variables)
Definition: DJ(X) = x21 + x22 + x23;

Search domain: −5.12 < xj < 5.12, j = 1,2,3;

Local minimum: no local minima;

Global minima: X∗ = (0,0,0),DJ(X∗) = 0.

Shubert (SH) (two variables)
Definition: SH(x1,x2) =

(∑5
j=1 j cos[(j +1)x1 + j]

)
×
(∑5

j=1 j cos[(j +1)x2 + j]
)
;

Search domain: −10 < xj < 10, j = 1,2;

Local minimum: 760 local minima;

Global minima: 18 global minima, SH(X∗) ≃ −186.73091.

(B2) (two variables)
Definition: B2(x1,x2) = x21 +2x22 − 0.3cos(3πx1)− 0.4cos(4πx2) + 0.7;

Search domain: −100 < xj < 100, j = 1,2;

Local minimum: several local minima (exact number is unspecified in literature);

Global minima: (x∗1,x
∗
2) = (0,0),B2(X∗) = 0.

Easom (ES) (two variables)
Definition: ES(x1,x2) = −cos(x1)cos(x2)exp

(
−[(x1 −π)2 + (x2 −π)2]

)
;
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Search domain: −100 < xi < 100, j = 1,2;

Local minimum: several local minima (exact number is unspecified in literature);

Global minima: (x∗1,x
∗
2) = (π,π),ES(X∗) = −1.

Shekel (Shl4,n) (four variables)

Definition: Shl4,n(X) = −
∑m

j−1
(∑4

i=4(xi −Cij)2 + βj
)−1

,β = 1
10 [1,2,2,4,6,3,7,5,5],

C =


4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0

4.0 1.0 8.0 6.0 7.0 9.0 5.0 1.0 2.0 3.6

4.0 1.0 8.0 6.0 3.0 2.0 3.0 8.0 6.0 7.0

4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6

 ,

Search domain: 0 ≤ xj ≤ 10, j = 1,2,3,4;

Local minimum: n local minima (n = 5,7 or 10);

Global minima: X∗ = (4,4,4,4),Shl4,5(X∗) ≃ −10.1532,Shl4,7(X∗) ≃ −10.4029,
Shl4,10(X∗) ≃ −10.5364.

Hartmann (H6,4) (six variables)
Definition: H6,4 = −

∑4
i=1 ci exp

(
−
∑6

j=1 aij(xi − pij)2
)

Search domain: 0 < xj < 1, j = 1, . . . ,6;

Local minimum: four local minimma;

Global minima: X∗ = (0.20169,0.150011,0.47687,0.275332,0.311652,0.6573),

H6,4(X)∗ ≃ −3.322368.

A.3 Fuzzy outputs and the errors by Shakouri andNadimi

approach [1]

The reported function in [1] is: ỹ = (−20.08,−20.08,−20.08)+(−0.23,−0.16,−0.09)x1+
(−1.22,−0.9,−0.58)x2 + (1.66,1.81,1.96)x3. Applying the fuzzy arithmetic for addi-

tion and multiplication of the fuzzy numbers [167], the results are given in Table

A.9.
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