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Summary

Breast cancer is the most common type of cancer affecting women worldwide. It is the leading
cause of cancer-related death among females and its incidence rate is rising sharply. Significant
molecular heterogeneity exists within breast cancer, which consequently leads to the formation of
multiple molecular subtypes of the disease. In an effort to address the challenges associated with
establishing reliable markers predictive of breast cancer and to develop effective drug therapies,
the major aim of this thesis is to achieve an improved understanding of the molecular

mechanisms and pathway deregulation in the breast cancer pathology.

The studies described in this thesis applied high throughput proteomics and glycomics analyses,
which allowed parallel global protein and N-glycan comparisons, respectively, to be made to
define discriminatory patterns that correlated with the molecular heterogeneity observed in breast
cancer. Specifically, comparative proteomics and glycomics of secreted and membrane fractions
from a panel of breast cancer cell lines corresponding to three common breast cancer subtypes
including luminal A, HER2-enriched and basal B subtypes, were performed using non-
tumorigenic human mammary epithelial cells (HMEC) as a normal healthy reference. The
distinctive subcellular proteome and glycome signatures unique to the individual cancer subtypes
were functionally evaluated by utilizing a range of bioinformatics-assisted pathway analysis tools
to gain insights into regulatory mechanisms underlying the normal and tumorigenic cellular

processes.

The combination of structural and functional proteomics yielded consistent molecular themes
involved in the pathogenesis of breast cancer. In addition, distinctive molecular features
associated with each subtypes were present. In the first study of its kind, comprehensive analysis
of the secreted N-glycome of a panel of breast epithelial cells investigated the involvement of

protein N-glycosylation in breast cancer. The causative and/or effector roles of aberrant N-
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glycosylation in breast tumorigenesis were evident as strongly supported by the presence of
tumor-promoting N-glycan determinants in the secreted and membrane fractions of breast
cancer cells. Significantly, unique secretome IN-glycosylation signatures enabled breast cancer

subtype classification.

Subcellular-specific N-glycosylation was found to be a universal cellular feature not only limited
to epithelial breast cancer cells and was mechanistically explained by the differential solvent
accessibility to the asparagines residues forming the N-glycosylation sites. Having mapped this
relationship between spatial accessibility and N-glycan processing of glycoproteins is important to

allow us to understand the expression and (de)regulation of glycoepitopes in breast cancer.

In recognizing the importance of investigating intact glycopeptides to integrate the information
from the obtained breast cancer cellular proteome and glycome and obtain site-specific
information of protein N-glycosylation of breast cancer cells in future work, a multi-lectin affinity
chromatography platform for cancer-specific glycoprotein enrichment directly from whole cell

lysates was developed and optimized, which will serve as a useful tool in glycoproteomics.

In conclusion, this thesis provides the most detailed picture of the proteome and N-glycome
deregulation in multiple breast cancer subtypes to date, which yields valuable insight into the
multiple mechanisms associated with the pathophysiological changes in breast cancer. This
molecular insight forms an important knowledge platform from which the emerging field of
glycoproteomics promise to yield an even higher definition of the tumor-specific protein
modifications and, as a consequence, eventually allow us to develop targeted molecular
therapeutics and diagnostics tools to benefit the growing number of women affected by the

disease.
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1.1 Breast cancer

1.1.1  Breast cancer incidence and mortality

With one in eight women predicted to develop breast cancer in their lifetime, breast cancer is the
most commonly diagnosed cancer affecting Australian women [1]. In 2011, the disease accounted
for 15.6% of all female cancer deaths, making it the second leading cause of cancer-related deaths
in Australian women. The incidence rate is rising steadily with 13,567 new cases diagnosed in
Australia in 2008. Approximately 15,270 new cases will be detected in Australia in 2014 and this

figure is estimated to increase by about 13% by 2020 [2].

1.1.2 Anatomy of the breast

Basamant
Membrane
of Duct

Suspensory
ligaments

Adipose tissue "’

fubdiicels Figure 1.1 Anatomy of the mammary gland.

(Adapted from Al ez al. 2002 [3] and
http:/ /www.breastcancer.com)

The mammary gland is a complex tissue composed of a series of milk-producing lobes connected
to the lactiferous ducts that converge near the nipple. Together, these form a branching ductal
network that is embedded in a mass of fibrous connective tissues, adipose tissues and
extracellular matrix collectively known as the mammary stroma. The breast is thus comprised of a
diverse array of cell types, although the majority belong to two types of differentiated epithelial
cells found within the epithelium ductal network — an inner layer of polarized luminal epithelial
cells facing the ductal lumen surrounded by an outer layer of myoepithelial cells (Figure 1.1). The
myoepithelial cells affect the differentiation, polarity, proliferation and migration of the adjoining

luminal epithelial cells [4]. In addition, they secrete major structural proteins such as laminin and
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collagen that contribute to the formation of the basement membrane, which is a physical barrier

separating the ductal epithelium structures and the stroma [5].

1.1.3 Types of breast cancer

Breast cancer is a highly diverse disease with more than a dozen histopathological variants
defined by the World Health Organization (WHO) [6]. Breast tumors that are still confined
within the ducts or lobules are known as ductal or lobular carcinoma 7 situ, respectively. When
lesions have breached the basement membrane or spread to the lymph nodes, they are generally
known as invasive breast cancer. The majority of invasive breast cancers are of epithelial origin
known as carcinomas. Sarcomas which arise from the stroma in the breast are rare. The two
dominant types of invasive breast cancers are invasive ductal carcinoma (IDC) and invasive
lobular carcinoma (ILC). Up to 80% of breast lesions are IDC, often described as not otherwise
specified (NOS), making it the most common form of breast cancer while 10% to 15% are
represented by ILC. Both of these carcinomas show distinguishable molecular and genetic

features [7

b

8]. The remaining carcinomas are rare and include the inflaimmatory breast cancer,

Paget’s disease and IDC variants such as tubular, medullary, mucinous and papillary carcinomas

[9]-

1.1.4 Molecular subtypes of breast cancer

Following initial diagnosis, breast cancer is often categorized according to established
classification schemes to determine the prognosis of the disease and more importantly, to aid in
selection of the most appropriate treatment for the individual breast cancer patient [10]. The
classification schemes are heavily based on pathological examination of breast tumors which
group them into histopathological types, tumor grades and stages. In addition, breast tumors are
assessed for expression of estrogen receptor (ER), progesterone receptor (PR) and human

epidermal growth receptor 2 (HER2). The hormone receptors (ER and PR) are assayed by
15



immunohistochemistry (IHC) while HER2 status is confirmed by fluorescent i situ

hybridization.

Table 1.1 Summary of characteristics of breast cancer subtypes.

Molecular L Relative Therapeutic
Gene expression Prevalence . .
subtype Survival options
Luminal A ER+, PR+, HER2-, low Ki-67 ~40% Longest Hormonal
therapy
Luminal B ER+ and/or PR-i—, HER2-, high ~20% Decreased Hormonal
Ki-67 therapy
H].ERZ- ER-, PR-, HER2+ Decreased Trastuzumab
enriched
15-20%
Basal-like ER-, PR-, HER2-, EGFR+, Shortest Surgery/Chemo-
CK5/CK17 ortes therapy
Claudin-low ER-, PR-, HER2-, claudin genes 10-15% Decreased Surgigéﬁgpk;?mo—

"ER+/-, ER positive/negative; PR+/-, PR positive/negative, HER2+/-, HER2 positive/negative,
EGFR+, EGFER positive

In recent years, there has been an increased emphasis to use molecular approaches to improve
breast cancer diagnostics due to the limited clinical utility of the conventional classification
schemes. The receptor status of ER, PR and HER2 has prognostic value in predicting efficacy of
targeted hormone and cytotoxic drug treatment against these receptors. However, the predictive
value has insufficient specificity and sensitivity, and is inadequate for newly developed targeted
therapies. Moreover, these traditional classification schemes alone are unable to capture the
genetic diversity that is invariably present within the largest IDCs NOS group. The seminal work
by Perou e# al, revealed that distinctive molecular features associated with IDC-classified breast
tumors, such as differential expression of the three receptors (ER, PR and HER2) and
proliferative genes, such as Ki-67, could be used to segregate tumors into various intrinsic
subtypes [7]. The four subtypes identified were known as luminal A (ER/PR positive, HER2
negative), luminal B (ER positive and/or PR positive, HER2 positive), HER2-enriched (ER/PR
negative, HER2 positive) and basal-like (ER/PR/HER2 negative, also known as triple-negative)
(Table 1.1). Subsequent gene profile-centric investigations have reproducibly observed similar

trends showing that these key molecular features are conserved among breast cancers [11-14].
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More recently, a novel subtype known as claudin-low that shares some characteristics of the

basal-like subtype has been described [15].

Molecular subtyping has great prognostic value since each subtype has unique survival outcomes.
The division of luminal subtypes into luminal A and B is of clinical interest because despite both
groups being positive for ER, they have different prognosis with luminal A having a better
prognosis than luminal B. Similatly, significantly worse prognosis is observed in HER2-enriched
and basal-like subtypes. Subtype classification also influences the therapeutic options and serves
to predict treatment response, in particular for tumors that are highly responsive or non-
responsive to hormonal or targeted drug therapies. Patients with ER+ breast cancer are treated
with drugs such as Tamoxifen that blocks ER activity while those with HER2+ benefit from
anti-HER2 drugs such as Trastuzumab. In contrast, patients with breast tumors that lack the
three receptors, i.e. ER, PR and HER2, are not expected to respond to these targeted treatments

and may be more suitable to undergo surgery and chemotherapy.

Although the gene expression-based stratification of breast cancer has led to better insights into
the biological diversity of breast cancers, the overall underlying molecular mechanism(s) in breast
tumorigenesis, including those associated with the more aggressive basal-like breast tumors, are
still poorly understood. It is widely accepted that gene transcription does not necessary correlate
with the expression of gene products (i.e. proteins), which are the key mediators of cellular
processes. Various spliced protein variants are known to exist for a single gene, and proteins
undergo a wide range of post-translational modifications (PTMs) such as glycosylation,

phosphorylation or methylation which dramatically can affect their biological functions.
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Studying protein expression and the associated PTMs is therefore crucial to understand how
these molecular effectors of function regulate key biological events during malignant breast

transformation.

1.2 Proteomics

1.2.1 Proteomics — a brief overview

The proteome is defined as the entire complement of proteins, produced by the genome of a
particular cell or tissue, at a specified time, space and condition [16]. Proteomics encompasses the
structural analysis of proteins involving aspects such as protein identification, protein abundance
measurements as well as both qualitative and quantitative characterization of any PTMs
associated with the expressed proteome. The development of conjugated liquid chromatography
(LC) and advanced mass spectrometry (MS) technologies have been pivotal in aiding the rapid
advancement of proteomics by allowing for high throughput and ultra-sensitive protein
identification and quantitation. The LC interfaced with tandem MS (MS/MS) is cutrently the
mainstay technology for proteomics-based studies, which are undertaken via either a global or
targeted approach of the proteome being investigated. Global proteomic analysis entails the
identification and quantitation of all proteins in a given sample, in contrast to targeted
proteomics, which investigate a relatively small group of proteins under various conditions [17].
By combining appropriate upstream methodologies such as sample preparation and
fractionation/enrichment and downstream computational tools, proteomics is a powerful
analytical approach to allow parallel global proteome profiling and identify distinct protein
expression patterns in tumorigenesis, so as to discover cancer biomarkers and gain insights into
molecular perturbations. A typical global proteomics workflow to find differences between the
proteomes of a disease and healthy reference (control) samples is illustrated in Figure 1.2. The

following sections will describe the global proteomics workflow that incorporates various

18



proteomics technologies used for proteome profiling and their applications in breast cancer

research.
Database search for
Peptide identification
_ Sequest
LC Mass spectrometer Mascot
{ - XITandem
4 ! L C#;
Protein Peptide S " Relative
O W Quantitation
Disease Control Disease Coniral
”:g' h Chromatogram
S — @—btg,;—r —
Protein Protesiytic 175 1
extraction digestion .
Biological
inference

Figure 1.2 A Schematic representation of a typical proteomics workflow involving the éomparadve
investigation of disease and healthy control samples. In summary, the samples are digested and
applied to LC-MS/MS after which the data are analysed for proteins identification, relative
quantification and biological significance. (Modified from Meissner and Mann 2014 [18])
1.2.2 Sample preparation
In the last two decades, technological advancements in MS-based proteomics have facilitated the
rapid, accurate and highly sensitive analysis of proteins at a relatively low cost. However, despite
these advances, proteomics analyses remain challenging due to the complexity of samples
investigated and the extensive dynamic molar range of proteins present within the proteome. To
overcome these issues, appropriate implementation of upstream methodologies are needed. This
includes sample enrichment or separation/fractionation steps to enhance the dynamic range and
depth of analysis [19]. In plasma or serum samples displaying an extreme dynamic range of
protein concentration, depletion strategies are often employed to remove the high abundance

proteins in order to detect those of lower abundance [20]. Protein glycosylation is a biologically

significant PTM with more than 50% of proteins considered to be glycosylated [21].

In recent years, the field of glycoproteomics have emerged to focus on the analysis of this major
class of biomolecules (glycoproteins) [22], which have the potential to serve as cancer

biomarkers. Several separation tools have been developed to enrich for glycoproteins to decrease
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sample complexity thus facilitating more efficient analysis of glycoproteins. Enrichment
technologies include the use of lectins [23], boronic acid [24] and hydrazine chemistry [25] to
capture glycoproteins from complex mixtures. Lectins bind to glycoproteins via recognition of
specific glycoepitopes attached to the proteins. Such property is exploited to identify altered
glycoforms on tumor samples, for example, a two-step fractionation strategy combining serum
depletion with the enrichment of glycoproteins using multi-lectin affinity chromatography (M-
LAC) has been developed for biomarker discovery studies [26]. M-LAC is the subject of
investigation presented in Chapter 5. Boronic acid form reversible covalent complexes with the
ds-diols present in monosaccharides of glycan residues on proteins in an alkaline/acidic aqueous
solution and have been shown to successfully isolate and identify glycoproteins from complex
protein mixtures [27, 28]. Similarly targeting the cs-diols found in glycosylated proteins, the
hydrazide chemistry-based selectively enrichment of glycoproteins has been widely applied in
proteomics research [29-31] since it was first developed by Zhang ef a/ [25]. Although this
method may be easily integrated into LC-MS/MS workflows, the itreversible glycoprotein
attachment to hydrazide beads limit the downstream analysis of the intact glycoprotein relative to
the non-covalent and reversible covalent lectin and boronic acid enrichment strategies,

respectively.

Very often, reduction in the sample complexity can be easily achieved by sample separation by
gel-based or gel-free approaches. Gel-based methods are capable of separating proteins, whereas
gel-free methods in proteomics are typically used to separate peptides after digestion and may be
conjugated directed to the LC-MS/MS analysis as described below. Such strategies are now a

standard step incorporated prior to MS/MS analysis to enhance the protein identification.
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1.2.2.1 Gel-based separation of proteins

By exploiting the physicochemical properties of proteins, one-dimensional electrophoresis (1DE)
on sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) resolves proteins
according to their molecular weight (MW) while two-dimensional electrophoresis (2DE)
separates proteins first based on isoelectric focusing (IEF) followed by MW on SDS-PAGE, thus
allowing detection of protein charge-isoforms. The gel is then fixed, stained and imaged to
visualize the protein bands or spots where they are subsequently excised and proteolytically
digested into peptides. The enzymatic release of peptides from proteins for MS characterization
is commonly referred to as “bottom-up” protein identification, an approach which fundamentally
defines shotgun proteomics [32]. This contrasts the “top-down” strategy where intact proteins or
large protein fragments are directly analyzed (Figure 1.3). The “top down” strategy preserves the
biological organization within the protein but due to the associated analytical challenges
including, but not limited to, limited throughput and sensitivity is best suited for the emerging
field of mechanistic biology for studying single proteins or simple protein mixtures. The “bottom
up” method, therefore, remains the preferred approach for most current proteomics research
[33].

‘Next-gen’ top-

down proteomics Protein complexes

Top-down

proteomics Intact proteins

Bottom-up

proteomics :‘.2' Digested proteins

D Number of laboratories operative in studying

Connectivity to mechanistic biology and human disease

Figure 1.3 The “top-down” vs “bottom-up” approach in proteomics research. (Adapted from Compton
et al, 2012 [33])
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A related alternative to 2DE gel based proteomics is known as differential in-gel electrophoresis
(DIGE). DIGE was introduced to improve the reproducibility of 2DE, mainly as a result of gel
to gel variations [34]. DIGE allows the labelling of proteins with up to three different fluorescent
cyanine dyes and pooling of the labelled proteins, followed by 2D separation to quantitatively
compare for differential expression [35]. This strategy has been widely adopted in breast cancer
biomarker studies [36-39]. However, taking into account overall cost, time, reproducibility and
recovery rate, the 1IDE SDS-PAGE is becoming the fractionation method of choice for many

global LLC-MS-based proteomics applications [40, 41].

MUDPIT
(Multidimensional Protein Identification Technology)

3. Purification

q f peptides
1. Sample preparation ~ Of peplides 5. MudPIT

=]

v
—_— %@—v SCX_[_®P
2. Digestion 23-'

' 4. Preparation
of column

Protein Mixture Digested 2D Chromatographic
Peptides Separation of Peptides
Identify proteins E Mass
in mixture — [ spectrometer

Figure 1.4 A schematic diagram of a MudPIT experiment.
(Source: http:/ /www. dddmag.com/articles/2007/10/got-mudpit)

1.2.2.2 Gel-free separation of peptides

Ongoing concerns regarding limitations of gel-based methods such as biased detection of certain
classes of proteins and increased sample handling led to the development of an innovative gel-
free technique for protein separation known as multidimensional protein identification
technology (MudPIT) [42]. The seminal work in the early days of modern proteomics
impressively described the identification of more than 5,000 peptides mapped to around 1,500
proteins from the yeast proteome, many of which were of low abundance. The technology has
been widely applied to study global proteomic changes in cancer [43-45], where a complex
mixture of proteins is first digested and applied to a strong cation exchange resin (SCX)

chromatography column, followed by reversed phase (RP) chromatography, prior to MS analysis
22



(Figure 1.4). The coupling of ion exchange and RP chromatography to MS represent a typical
mode of orthogonal 2D L.C analysis of proteins where peptides are separated using two different
mechanisms to ensure maximum peptide coverage, thus enhancing protein identification.
Limitations of SCX chromatography including low peptide resolution, reduced sample recovery
and the need for sample desalting [46] have led to the development of other orthogonal methods
such as strong anion exchange (SAX)/RP [46] and high pH-low pH RP systems [47] showing

improved separation efficiency.

The choice of ecither gel-based or non-gel-based method will depend on several factors including
time, cost, sample type and complexity. A brief comparison of the analytical advantages and

limitations of both approaches is listed in Table 1.2.

Table 1.2 Comparison between gel-based and non-gel-based protein separation for LC-MS/MS

analysis
Advantages Disadvantages

1D/2D GEL
= Ability to identity novel proteins ® Biased towards certain classes of proteins
= Separates protein modifications (2D) ® Limited reproducibility (2D)
* Good resolving power (2D) * Limited dynamic range (1D)
® Less time required (1D) = Limited sensitivity but improved for DIGE

NON-GEL BASED 2D LC-MS/MS

= Ability to identify novel proteins = No visualization of separated proteins

* Improved separation efficiency and * Time consuming for increased SCX/SAX
proteome coverage fractionation

= Less sample handling = Less flexibility in setup

® Less biased than gel-based for certain
protein classes

1.2.2.3 Lectin affinity chromatography

As products of one of the most common PTMs, glycoproteins constitute a major class of
biomolecules with significant roles in pathological processes including various human cancers.
The glycoproteome, i.e. the entire complement of cellular glycoprotein expression, of tumor cells

is therefore an attractive source to mine for potential biomarkers. For comprehensive coverage of
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the glycoproteome in a complex mixture such as serum, the wide dynamic molar range of

proteins often necessitates enrichment prior to their analysis. Plants lectins have the ability to

bind to specific glycan epitopes and more than 60 of them, which recognize a diverse range of

glycan structures are commercially available. Table 1.3 shows a partial list of commonly used

lectins and their known specificity including concanavalin A (Con A), jacalin (JAC) and wheat

germ agglutinin (WGA), Aleuria aurantia lectin (AAL), Lens culinaris agglutinin (LCA), Sambucus

nigra lectin (SNA), peanut agglutinin (PNA), and Phaseolus vulgaris leucoagglutinin (PHA-L). Some

of these lectins such as Con A, WGA and JAC display a broader glycan specificity, which is

useful to capture a wider range of glycoproteins while others such as LCA, SNA and PHA-L

have narrower glycan selectivity and can be used for more targeted glycoform enrichment.

Table 1.3 Commonly used lectins and their glycan specificities
(Adapted from Fanayan ez a/, 2012 [23])

Lectin

Specificity

Concanavalin A (Con A)
Wheat germ agglutinin (WGA)

Jacalin {JAC)

Sambucus nigra lectin (SNA, EBL)

Peanut agglutinin (PNA)

Lens culinaris agglutinin (LCA)

Phaseolus vulgaris
leucoagglutinin (PHA-L)

Aleuria aurantia lectin (AAL)

High-mannose type, branched
a-mannosidic structures

N-acetylglucosamine; chitobiose
(sialic acid)

Galactosyl (b-1,3)
N-acetylgalactosamine
{0-glycoproteins)

Sialic acid attached to terminal
galactose in (a-2,6)

Galactosyl (b-1,3)
N-acetylgalactosamin
{T-Antigen)

o-Linked mannose residues

Triftetra-antennary complex-type
N-glycan

Fucose linked (a -1,6) to
N-acetylglucosamine; fucose
linked (a -1,3) to
N-acetyllactosamine

Several modes of lectin affinity chromatography workflows have been established to isolate

cancer-associated glycoproteins from complex biological samples. Using single lectin affinity

chromatography, lectins with narrow selectivity were shown to enrich a small group of



glycoproteins with 3-fold or more change in concentration between normal and breast cancer
patient plasma [48]. Varieties of lectins can be used consecutively in an approach known as serial
lectin affinity chromatography (SLAC); The specificity of JAC for O-glycans was shown to be
increased by first using Con A to remove high mannose type N-glycans before application of the
flowthrough fraction to the JAC column [49]. On the other hand, using multiple lectins that
recognize different glycan motifs in a single column can increase the range of glycoproteins
isolated simultaneously [50]. This approach is known as multiple lectin affinity chromatography
(M-LAC). This method is the subject of investigated detailed in Chapter 5 where lectins with
broad glycan specificities were used i.e. Con A, JAC and WGA with the aim to capture large and

complex subsets of proteins with different glycoforms for further analysis.

1.2.3 LC-MS/MS-based protein detection of peptides

Both gel-based and gel-free separation shotgun proteomic approaches have allowed for high
throughput characterization of complex mixtures of proteins when coupled with advanced LC-
MS/MS [51-53]. The LC setves to chemically separate the peptides and is usually achieved on the
basis of differential peptide hydrophobicity using RP column packed with octadecylsilyl (C18)
stationary phases. Bound peptides are progressively eluted with increasing gradient of
hydrophobic organic solvents such as acetonitrile (ACN) which are then subjected to ionization
in the MS. The development of the two most popular ionization sources for MS, namely, matrix-
assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) has won their
inventors the Nobel Prize in Chemistry in 2002 [54]. Both types are known as relative soft
ionization methods (Figure 1.5). MALDI involves embedding the analyte molecules (i.e. peptides)
in an organic matrix which become ionized when the matrix absorbs energy from the laser. The
exact mechanism of desorption and ionization is still unclear [55]. ESI utilizes electrical voltage
and heat to transfer ions from liquid to the gas phase generating peptide precursor ions; which

are then separated according to their mass to charge ratios (7/3) for further fragmentation using,
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for example, collision induced dissociation (CID) to generate MS/MS spectra [56]. Although
both methods of ionization are routinely used in proteomics, ESI typically produces a range of
multiply charged ions that can be detected in ideal 7/3 ranges of all common types of mass
analyzers for biomolecular analysis thereby enabling efficient identification and characterization
of large biologically important macromolecules such as peptides, proteins, nucleic acids and
carbohydrates [57]. On the other hand, the combination of MALDI and time of flight (TOF)-MS
in applications such as peptide mass fingerprinting demonstrates the usefulness of MALDI as a
rapid and sensitive analytical tool for protein identification.
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Figure 1.5 The two major ionization methods for modern MS of biomolecules are (a) MALDI and (b)
ESI. (Adapted from Lucio ez a/, 2013 [58] )

1.2.4 Label-assisted and label-free mass spectrometry-based protein quantitation

The ability to accurately quantify protein expression in comparative studies represents an
important but challenging task enabling determination of proteins that may play key biological
roles in disease development and potential biomarkers or drug targets. Currently, MS-based
relative quantitation of individual proteins from different samples can be undertaken either via

the label-assisted or label-free techniques.

1.2.4.1 Label-assisted methods
To perform a typical label-assisted quantification experiment, two or more protein samples are

simultaneously investigated in a single run. Stable heavy isotopes are widely used for protein
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labelling (Figure 1.6b) and can be performed at either the protein or peptide level. However, it is
desirable to introduce the label as early in the sample work-up as possible to allow mixing of the
samples being compared and thereby avoid introduction of bias from sample preparation steps,

which may skew the relative quantitation.
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Figure 1.6 Relative quantitation can be performed with (a) label-free technique based on peak intensity or
spectral count; or (b) labelled stable isotopes to generate “light” and “heavy” samples. (Adapted from
Zhu et al, 2010 [59])

Common labelling strategies include (1) introducing stable isotope-containing amino acids in the
cell culture media (SILAC) that contains "Cglysine and "“Cg-arginine which are then
metabolically incorporated into proteins via de novo protein biosynthesis [60]; (2) chemically
modifying the sulfhydryl-reactive chemical group of the protein or peptide with isotope-coded
affinity tag (ICAT) [61]; (3) enzymatic labelling of proteolytic fragments with O [62]; and, (4)
modifying peptides with amino-reactive isobaric labels including isobaric tags for relative and
absolute quantitation (TRAQ) [63] or tandem mass tags (TMT) [64]. As SILAC has been
restricted to 7 vitro use, a modified approach has been developed to facilitate protein quantitation
in vivo, for example, the human tissue proteome [65]. The super-SILAC strategy greatly improved
quantification accuracy of various tumor tissues by analysing the combined mixtures of five
SILAC-labeled cell lines with the individual tumor tissues. Differentially labelled samples,

typically defined as “heavy” and “light”, are pooled and analyzed together in the same LC-
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MS/MS run and the quantitative difference between the samples is detected by means of the

quantitative intensities of specific mass shifted signals in the MS or MS/MS.

Relative quantitation using metabolic, ICAT and enzymatic labelling are based on mass difference
between differentially labelled peptides and therefore limited by the number of samples analyzed
in a single run as labelling beyond 3-plex set of samples would lead to more complex mass
spectra. This issue is addressed by the design of isobaric chemical tags, i.e., ITRAQ and TMT
reagents, enabling multiplexed analysis of different biological samples or conditions (up to eight
for iITRAQ and ten for TMT) in a single experiment. The N-termini and the lysine residues of
proteolytic peptides are modified by iTRAQ or TMT tags, each containing a mass balance and a
unique reporter group, which are indistinguishable in the MS. Upon peptide fragmentation,
distinct low-mass reporter ions are generated and their intensity ratio measured, yielding
quantitative information of proteins present in the samples. Both iTRAQ and TMT are widely
applied to shotgun proteomics to quantify and identify differentially expressed proteins as disease
biomarkers [66-68]. However, studies have reported an underestimation of fold changes, also
known as “ratio compression”, using these quantitation methods which leads to substantially less
proteins being identified and quantified [69]. Strategies that addressed this limitation include
employing fractionation to reduce sample complexity [70], removing co-isolating impurities that
interfere with peptide elution through gas-phase purification [71] and applying computational

algorithms to improve the quantitation accuracy while retaining protein coverage [69].

1.2.4.2 Label-free quantitation

In recent years, technological advancements in the high performance (HP) LC system and high
resolution/accuracy mass spectrometry have facilitated the use of label-free quantitation in
numerous comparative proteomics studies. The strategy requires each sample containing

unlabelled peptide mixtutes to be analyzed in separate LC-MS/MS runs. The relative protein
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abundance is then determined by comparing the precursor peak ion intensities or MS/MS
spectral counts of the corresponding peptides across all the samples. The relative protein
abundance has been reported to correlate well with the relative precursor peptide ion intensity or
spectral counts of identified peptides with reproducible results [72-74]. Strong correlation has
also been observed for complex protein mixtures in particularly for medium to high abundance
proteins [74-76]. Precursor ion intensity is quantified by measuring the area under curve of the
peptide precursor ions in the LC-MS. However, peak area can vary from run to run, even with
the same sample but from two injections, extensive normalization is therefore necessary to
account for such variation amongst samples and is achieved using sensitive computer algorithms

to automatically align the extracted ion chromatograms prior to comparison [77].

Relative protein abundance as assessed by spectral counts relies on the sum of MS/MS spectra
obtained for each identified peptide across different samples. Normalization is also required for
spectral counting methods but without the need of complicated computer algorithms, for
example, the simple but robust method known as the normalized spectral abundance factor
(NSAF) takes the protein length into account. NSAF was shown to be able to reliably determine
the quantitative changes of membrane proteins in yeast following statistical analysis [78].
Zybalilov et a/ defined the NSAF for a protein k in the formula shown below where the
numerator is the spectral count (SpC) of a protein divided by the length of protein (L) and the
denominator is the sum of numerator of all N proteins in the experiment. Although both
quantitative methods show a high degree of correlation to protein abundance, higher
reproducibility and a large dynamic range were observed with spectral counting than with
precursor peptide ion intensity [76].
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A major issue in label-free is the potential bias arising from sample preparation and data
acquisition [79]. However, such bias can be minimized with careful sample handling and
implementation of good practises for LC-MS/MS data acquisition, for example, inclusion of
quality control runs and performing all analyses in a single batch in randomized order. In
addition, to increase the statistical significance of the measured protein fold-change, it is
necessary to perform sample analysis in multiple technical replicates (at least in triplicate). The
main advantages of label-free approaches are the ability to perform and compare many samples
in a single experiment without additional sample processing steps and at a relatively low cost.
Label-free quantitation has been shown to have a greater and deeper proteome coverage
compared to iTRAQ [80]. Taken together, label-free quantitation is particularly suited for large-
scale discovery-based studies to interrogate sets of differentially expressed proteins to map
unique molecular signatures associated with specific conditions. Based on these reasons and
accessibility to high mass accuracy and high resolution LC-MS/MS instrumentation, the label-
free quantitation method was chosen as the method of choice for the quantitative proteomics

analyses in Chapter 2.

1.2.5 Bioinformatics tool for protein identification

The computational task in protein identification begins with matching the acquired MS/MS
spectra to a database of theoretical spectra generated from 7 silico digestion of protein sequences
(translated from protein coding regions of DNA) by specifying the appropriate parameters such
as cleavage rules, possible modifications, species, precursor and fragment ion mass tolerance and
charge states (Figure 1.7). The availability of complete whole-genome sequences has benefitted
greatly the process of protein identification in that the protein sequence database consists of
translated protein sequences from known genomic data. The curated non-redundant and publicly
available SWISS-PROT database, containing the entire set of known human proteins and their

predicted fragment spectra is widely used in proteomics [81], while a high-quality spectral library
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with actual experimental spectra has also been constructed for more accurate spectral matching
and scoring [82]. In order to validate the results of the highly automated and high-throughput
process of database search, it is necessary to estimate the false discovery rate (FDR) to minimize
false-positive identifications. Database search is typically repeated using identical search
parameters against a decoy database, in which the protein sequences have been reversed from the
true target protein database [83]. The FDR is usually pre-specified before the database search, the
value is reported as the ratio of the number of matches in the decoy database to the total matches

in both the target and decoy databases.
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Figure 1.7 Workflows illustrating the typical approaches in database-assisted protein identification from
LC-MS/MS data. (Adapted from Duncan ¢z a/, 2010 [84])

Confident peptide identification from complex mixtures depends heavily on the resolving power
and mass accuracy of the mass spectrometer, which in turn will affect the stringency and the
FDR of the database search. In typical MS/MS spectra, the predominant fragments ions
observed are the b and y ions, generated from the cleavage of the polypeptide backbone. During
database search, computer algorithms are ran to match experimentally-derived fragment ions
against pre-defined 7 silico peptide fragmentation in the database to return a list of peptide
sequences which are ranked with their probability score or FDR. Higher MS resolution allows for
narrower mass tolerance of precursor and fragment ions leading to higher level of confidence in
the peptide identification. Therefore MS with high resolution in excess of 20,000 and high mass
accuracy below 10 parts per million (ppm), such as the orbitrap platform or triple quadrupole

TOF instruments, are much sought after in proteomics-based studies.

31



Scores are generally given for peptide-spectrum matches (PSMs) and the highest scoring matches
are used for protein assignment. Essentially the identity of the protein is inferred from the
peptide sequences that match the queried MS/MS spectra during database search. Ambiguity of
protein identification can arise when a common or degenerate peptides are present in multiple
proteins, which therefore complicates the interpretation of proteomics data [85]. This “protein
inference problem” is further compounded when a protein has only one single identifiable
peptide (so-called “one-hit wonders”) which naturally has a higher probability of false-positive
identification compared to proteins covered by multiple identified peptides. Taken together, it
becomes evident that accurate assignment of proteins assembled from identified peptides

requires sophisticated statistical computations.

More than a dozen complex algorithms to assist the protein identification from LC-MS/MS data
have been developed, some of which are proprietary while others are freely available. Currently,
the three most commonly used are Sequest [86], Mascot [87] and X!Tandem [88]. These
algorithms also address the issue of “one-hit wonders” by incorporating additional statistical tools
such as PeptideProphet to validate PSMs [89]. Recently, simpler algorithms have been written to
target high quality MS data obtained from the increased use of high resolution and high mass
accuracy mass spectrometers such as the Orbitrap or high-end Q-TOF platforms [90, 91]. In this
thesis, X!Tandem which is publicly available and run from the Global Proteome Machine (GPM)

interface, is the main software tool used for protein identification.

In recent years, a number of proteomics software with a suite of analytical tools have been
developed, containing pipeline features that allow comprehensive analysis of high quality MS data
including protein and PTM identification as well as peptide/protein validation and quantitation.
Some software are licensed by manufacturers of mass spectrometers such as Proteome Discover

(Orbitrap, Thermo Scientific) and ProteinPilot (TripleTop, ABSciex), while others are standalone
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proprietary software such as Scaffold ([92] and Byonic [93]). Freely available open source
proteomics software tools are also widely used and include the Trans-Proteomic Pipeline[94] ,

Skyline [95] and MaxQuant [96].

1.2.6 Proteomics in breast cancer biomarker discovery

In the past decades, significant amount of proteomics data in the space of breast cancer has been
accumulated through large scale comparative studies of breast cancer and “healthy” normal
reference samples utilizing model systems such as mammalian cultured cells [45, 51, 53, 97-101],
mice models [102-105] and human tumor xenografts models (in mice) [106-108], clinical
biological specimen such as serum [52, 109-116] tumor tissues [98, 117-119], tissue interstitial
fluid (TIF) [120, 121], nipple aspirate fluid (NAF) [122-124], cerebrospinal fluid [125], saliva [38,
126] and tear [127]. The motivation underlying most of these efforts were the anticipation that
the proteins between disease and normal states provide molecular signatures or yield insight into
the intracellular signalling pathways that lead to initiation and progression of breast tumors. Such
knowledge may in turn identify novel biomarkers and new drug targets [128]. For example,
quantitative proteomics analysis of ER-negative breast tumor cells of defined breast cancer stages
identified a multi-marker signature of three proteins (isocitrate dehydrogenase 2, cellular retinoic
acid-binding protein 2 and alpha-tocopherol-associated protein) that were predictive of overall

breast cancer survival [98].

Well-characterized cell lines established from primary breast tumors, pleural effusions or other
metastatic sites are widely used in MS-based breast cancer studies. To date more than 50 breast
cancer cell lines are available to researchers; the more frequently used cell lines are shown in
Table 1.4. Cell lines provide a continuous source of homogeneous cell population and therefore
largely overcome the issue of cellular heterogeneity contributed by for example, the stromal,

endothelial, adipose and immune cells in clinical samples [129]. The frequently-used breast cancer
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cell lines such as MCF7, SKBR3 and MDA-MB-231, which are also part of the human epithelial
breast cell panel investigated in this thesis, have been individually characterized at the proteome
level [130-132]. The shotgun proteomics approach utilized in these studies identified numerous
proteins that were previously recognized to be involved in breast cancer tumorigenesis. For
example, cathepsin D, 14-3-3-sigma, antigen Ki-67 in MCF7; human receptor protein kinase,
breast cancer type 1 and 2 susceptibility proteins, and N-myc proto-oncogene protein in SKBR3;

breast tumor suppressor p53 and epidermal growth factor receptor in MDA-MB-231.

Table 1.4 Clinicopathological features of frequently used breast cancer cell lines*
Cell line Subtype ER PR HER2 Source  Tumor type ‘

184A1 B NA - RM NA
BT20 A - - - PT AC
BT474 L + + + PT IDC
BT549 B - - - PT IDC
HS578T B - - - PT C Sar
MCF7 L + + - PE Met AC
MCF10A B - - - RM F
MDA157 B - - - PE Med C
MDA231 B - - - PE Met AC
MDAA453 L - - + PE Met C
MDAA468 A - - - PE Met AC
SKBR3 L - - + PE Met AC
T47D L + + - PE IDC

A = Basal A subtype; AC = adenocarcinoma; B = Basal B subtype; C Sar = catcinoma sarcoma; F =
fibrocystic disease; IDC = invasive ductal carcinoma; L. = Luminal subtype; Med C = medullary
carcinoma, Met AC = metastatic adenocarcinoma; Met C =metastatic carcinoma; NA = not available; PE
= pleural effusion; PT = primary tumor; RM= reduction mammoplasty. (*Extracted from Kao ez a/, 2009
[133])

The major concern whether breast cancer cells are representative of the molecular diversity
observed in breast tumors were addressed through profiling of various breast cancer cell lines,
which mirrored the luminal-basal subtype distinction established in true breast tumors after
surgery [129, 133, 134]. However, researchers need to take into consideration the limitations
associated with using cell lines, including their genomic instability, risk of cross-contamination

and intra-laboratory cell line heterogeneity during the experimental design and data interpretation

[135].
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The global expression of membrane and secreted proteins of breast cancer cell lines are often the
main focus as they are a rich source of potential biomarkers and drug or antibody targets. An
early work using 2DE to separate membrane proteins proved to be challenging as they are not
readily amenable to IEF such that very few proteins were consistently observed across the 25
malignant samples [136]. In a subsequent study, SILAC was used to investigate a pair of isogenic
cell lines, accurately representing different stages of metastasis. In the same study, metastasis-
related plasma membrane proteins including CD74, CD44, CD98, ecto-5-nucleotidase, integrin
B1, integrin o6, annexin A2 and MUCI8 were identified, some of which were validated by
immunohistochemistry staining (IHC) in primary breast cancer biopsies [99]. More recently,
MudPIT analysis identified more than 5,000 plasma membrane proteins extracted from a panel of
breast cancer cell lines. The large amount of derived proteome knowledge revealed the
correlation of the expression of plasma membrane proteins with the aberrant expression of
tyrosine kinases (eg. proto-oncogene c-kit and ephrin receptor), cellular adhesion molecules (eg.
CD44 and tetraspanins) and structural proteins (eg filamin A and alpha-actinin-4) [45]. Various
proteomics technologies including 1DE, 2DE, 2D-DIGE and SILAC were used to capture the
secretome profiles of breast cancer cells. These studies suggested a number of proteins with
biomarker potential including proteasome activator complex subunit 1 and HLA class I
histocompatibility antigen [100]; PDZ domain containing 1, 4-aminobutyrate aminotransferase
and Pentraxin-related protein PTX3 [101]; salivary cystatins (CST1, CST2 and CST4),
plasminogen activators (PLAT and PLAU) and collagen proteins (PLOD2 and COLG6A1) [137];
bestrophin-3, parvabumin, barrier-to-autointegration factor and the 14-3-3 proteins [53]. A
consistent observation across these studies was a significant presence of exosomes (alternatively
referred to as microvesicles or microparticles in the literature) in the secretions. These organelles
are secretory vesicles that carry macromolecules including proteins, nucleic acids and lipids which

all may be involved in cell-cell communication [138]. Given their emerging relevance in cancer

35



development, they have been the focal point in recent proteomics profiling studies including

those on breast cancer [139-141].

The first step for successful translation of potential biomarkers identified in 7z vitro systems into
clinical applications is their detection in clinical samples such as tissue biopsies or serum of breast
cancer patients. Accordingly, findings from cell cultured-based proteomics studies were validated
using tissue biopsies [99, 101] or plasma [142]. However, there may be inconsistencies in the
results obtained from tumor tissues as illustrated by the example of 14-3-3 sigma protein, a
promising early-stage biomarker for breast cancer. Initial studies on tumor tissues showed that
this signalling protein was down-regulated in a specific breast cancer subtype but this observation
could not be replicated in other tumor types in a subsequent investigation [143]. Aside from
tumor heterogeneity, the hormonal micro-environment of the tumor tissues can also influence

protein expression, hence, affecting proteome deregulation [144].

The serum or plasma is often considered the preferred source for mining and validation of
diagnostic biomarkers as it is readily obtainable directly from patients and healthy donors with
minimal invasiveness. In addition, the circulating body fluid is an enriched reservoir of proteins
secreted from all cells lining the blood circulation including the sites of primary tumor lesions or
metastases, thus reflecting the physiological and pathological status of individuals. However,
several factors present enormous analytical challenges for comprehensive serum proteome
analysis. Firstly, the dynamic molar range of proteins in the serum is extreme, spanning at least 10
orders of magnitude [145]. Secondly, the serum proteome is dominated by a few high-abundant
proteins including albumin which alone contributes to more than half of the total serum protein
and together with at least 15-20 other high-abundant proteins make up almost 95% of the total
serum protein content [146]. Thirdly, there is intra- and inter-individual variations, which lead to

a large biological variation even within patient groups and various protein isoforms may be
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observed in the serum [147]. Lastly, the sample collection, handling and storage conditions can
lead to profound changes in the serum proteome, thereby affecting the downstream
interpretation of the acquired data [148]. Immunoaftinity depletion is often applied to serum
samples to remove albumin and other highly abundant serum proteins so as to benefit
subsequent separation techniques such as 2DE or MudPIT. While detection of the less abundant
proteins is improved with serum depletion, loss of potentially valuable low-abundant proteins has
been known to occur by their binding to albumin [149]. A number of initiatives have been
implemented to standardize protocols for sample collection and handling [150] and setting up
resource databases containing high-confidence human plasma proteome reference sets such as

PeptideAtlas [151] and Plasma Proteome Database (PPD) [152].

Extensive MS-based proteomics have been performed to compare the serum of breast cancer
patients to those of normal healthy individuals to identify differentially expressed proteins. Using
a three-step method (immunodepletion of abundant proteins followed by fractionation using RP-
HPLC and 2DE PAGE) and the LC-MS/MS of serum samples from breast ductal carcinoma
sitn (DCIS) patients and normal controls, one study revealed vitronectin to be a novel candidate
serum marker for early detection of DCIS amongst a list of other differentially regulated proteins
[116]. The elevated protein expression in DCIS samples was validated using enzyme-linked
immunosorbent assay, western blot and IHC staining of tissues samples. The findings were
supported by previous studies reporting similar observations [153, 154]. It is thought that
vitronectin regulate proteolysis by binding to and stabilizing plasminogen activator inhibitor-1
(PAI-1) while inhibiting the activity of urokinase plasminogen activator receptor (uPAR) [155].
Both PAI-1 and uPAR have been shown to have clinical utility by their implicated roles in cancer
invasion and metastasis. Thus vitronectin may be a promising biomarker candidate for the early

detection of breast cancet.
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Constraints in using tissues and serum as suitable sources of biomarkers in the clinic have led
other researchers to seek alternative sources of biological relevant specimen including the nipple
aspirate fluid (NAF) and tissue interstitial fluid (TIF). NAF breast fluid is rich in proteins,
secreted by epithelial cells that line the ducts while TIF is the extracellular fluid that surrounds
the breast tissues. Both are considered as attractive sources because of their proximity to the
primary tumor site and the lower proteome complexity relative to serum. In a study using label-
free spectral counting that compared the NAF proteomes between breast cancer and normal
individuals, almost 900 non-redundant proteins were identified of which half were unique to the
cancer-associated NAF, thus validating this bodily fluid to be a valuable source of breast cancer-
specific biomarkers [122]. However, the results from these small sample sizes need to be
validated with a larger sample cohort. Another study applied a more extensive biomarker
discovery research strategy that initially identified 110 differentially regulated proteins in the TIF
derived from a pair of matched breast tumor/benign tissues [120]. This was then followed by
comparative proteomic analysis with the remaining 68 pairs of samples to single out a set of 26
common breast cancer-related proteins including calreticulin, cellular retinoic acid-binding
protein II, chloride intracellular channel protein 1, EF-1-beta, galectin 1, peroxiredoxin-2,
platelet-derived endothelial cell growth factor, protein disulfide isomerase and ubiquitin carboxyl-
terminal hydrolase 5, which were validated by a tissue microarray containing 70 various grades of
malignant breast carcinomas. Many of these have already been observed in other plasma- and
secretome-based studies and the authors proposed that future studies will evaluate their true

potential as breast cancer biomarkers.

1.2.7 Functional analysis of proteomics — pathway analysis and interaction networks
To achieve the overarching goal of identifying potential biomarkers for breast cancer diagnosis,
prognosis and targets for therapy, an improved understanding of the global and integrated view

of molecular mechanisms underlying breast cancer biology is essential. Studies that use high
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throughput proteomics approaches, including those in this thesis, have generated a vast amount
of high quality data enabling comprehensive system-wide investigation of protein deregulation
during breast cancer. It is now well-accepted that cancer is a systems biology disease with
multiple oncogenic proteins involved simultaneously in different cellular processes [156].
Therefore, in addition to identifying, characterizing and quantifying the proteins which are
differentially expressed in biological samples, an emerging theme is to undertake a functional
interpretation of the proteome-wide changes. Two strategies for functional proteome analysis
that are widely adopted by an increasing number of proteomics-based studies are pathway and

protein-protein network analyses.

A major challenge in functional proteome analysis is capturing biologically significant information
from the large datasets. To this end, it relies heavily on the effective use of bioinformatics tools
to query knowledge bases that have been established and meticulously maintained by individuals,
research institutions or consortia, for example, UniProt [157], Gene Ontology (GO) [158], Kyoto
Encyclopaedia of Genes and Genomes (KEGG) [159] and Reactome [160]. These database-
centric resources provide integrated biological information of genes, mRNAs, proteins and other
small molecules including their biological processes, components, structures or molecular
interactions, either predicted or experimentally observed [161]. The most basic approach in
functional proteome analysis is to categorize the identified proteins using GO terms consisting of
defined descriptors that relate proteins with their biological processes, molecular functions or
cellular components [158]. More in-depth analysis can be performed from the perspective of
biological pathways or protein-protein networks, which seek to understand the key processes
underlying the functional roles of differentially expressed proteins by statistically evaluating their
relationships and interactions with one another in a given condition. Bioinformatics tools proved
to be indispensable for this type of data mining as they are able to organize and reduce the

complexity of large volumes of data to present a visual view of significantly important biological
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patterns and relationships. Examples of freely available computational tools for functional
proteome analysis include STRING [162], DAVID [163] , PANTHER [164] and Cytoscape [165]
or commercially developed software such as GeneGo MetaCore (www.genego.com) and

Ingenuity Pathway Analysis IPA) (www.ingenuity.com).

In an effort to gain better mechanistic insights, proteome-based studies that explored the
functional aspects of the resulting proteomes identified important oncogenic processes and
protein interaction networks that are critical for cancer progression [45, 51, 100, 137, 166-168],
indicating the usefulness of these approaches to interpret large data sets. Some recurring themes
that emerged from these analyses include perturbations of cellular structural integrity, changes to
the extracellular matrix (ECM) composition, abnormal intracellular signalling, increased cell
locomotion and an activated immune system in the cancer pathophysiology. These altered
processes were found to be orchestrated by changes in the expression of groups of functionally
similar proteins such as cytoskeletal proteins, extracellular matrix proteins, cell surface integrins,
tyrosine kinases, adhesion proteins and peptide-presenting proteins. Individual groups of proteins
can interact within their own network as well as work synergistically with other protein groups to

promote cancer invasion and metastasis.

Increasing evidence suggests that dramatic changes in the extracellular matrix (ECM)
composition play a significant role during successive stages of breast cancers from the initial
appearance over progression to metastasis [169]. Structurally, the ECM is composed of two
cellular and biochemically distinct components, the basement membrane (BM), which forms a
physical barrier separating the epithelium or endothelium from the stroma; and the interstitial
matrix, which is mainly made up of the stromal cells [5]. Laminin, entactin, type IV collagen and
heparin sulphate proteoglycan (petlecan), secreted from the epithelial, endothelial and stromal

cells are found in the BM while the interstitial matrix is composed of a mesh of fibrillar collagen,
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glycosaminoglycans (GAGs), glycoproteins such as fibronectin, thrombospondin, tenascin and
tissue inhibitor metalloproteinase. The BM has two important functions: (1) it serves as an
anchorage for the epithelium through binding to the transmembrane integrins or non-integrin
protein such as dystroglycan, both of which act as a linkage between the ECM and cytoskeleton
within the cells [170], (2) it induces epithelial cell polarity and differentiation, mediated through
the integrins, to regulate the development and homeostasis of epithelial tissues [171]. Similarly,
the interstitial matrix is critically involved in cellular communication by regulating the activity of
growth factors by means of binding to them thereby limiting their diffusion. Thus the ECM
components serve to provide structural support to tissues and modulate biochemical signals to
influence cellular behaviour such as proliferation, polarity adhesion, migration, polarity and

migration through its interaction with cellular receptors, primarily the integrins.

The ECM-cell interactions are highly dynamic, with multiple regulation and feedback
mechanisms to keep the cellular activities under tight control. Evidence from 7z witro studies
demonstrated that fibroblasts in the stroma can become activated, secrete various growth factors
and ECM proteins, and as a consequence initiate carcinogenesis by autocrine signalling [172].
Aberrant ECM remodelling that leads to the degradation of ECM components, particulatly in the
BM, represents an essential step for tumour invasion and metastasis (Figure 1.8). Several studies
have shown that the down-regulation of BM components, such as the laminins and type IV
collagen [173-175]; and over-expression of ECM degrading enzymes such as the matrix
metalloproteinases, are associated with breast tumorigenesis [176, 177]. The loss of epithelial
anchorage and polarity allows the cells to gain mobility, breaching the BM to invade the dense
interstitial matrix and acquiring mesenchymal-like characteristics; a model known as epithelial
mesenchymal transition (EMT), which describes the progression of cancer development into
metastasis [178]. This process is generally accompanied by a number of deregulated events

including altered expression of cytosekeletal proteins, cell adhesion molecules such as cadherins,
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integrins, membrane-associated tyrosine kinases, growth factors and cytokines. Cadherin
switching, i.e loss of E-cadherin and over-expression of N-cadherin on tumor cell surface, and
altered expressions of catenins, which are found in cadherins complexes, is well-documented in
epithelial carcinomas such as breast cancer [179-181]. Although EMT is well studied, the
molecular events that initiate these processes are still poorly understood but may involve

deregulation of pathways associated with protein modification, i.e. phosphorylation and

glycosylation.
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Figure 1.8 Schematic diagram showing the process of epithelial-mesenchymal transition. (Adapted from
Kalluti ez a/, 2009 [182])

1.3 Protein glycosylation

1.3.1 Protein glycosylation — a brief overview
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Glycosylated proteins ubiquitously decorate human cell surfaces and are major components of
the extracellular matrix. Protein glycosylation is a universal phenomenon that occurs in all forms

of life ranging from most basic prokaryotic cells to the complex multicellular eukaryotic cellular

systems where it generates an array of glycoproteins [183]. The attached glycans displayed high
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structural diversity, which is rather remarkable considering the limited number of
monosaccharide building blocks utilized for mammalian glycan synthesis including fucose (Fuc),
mannose (Man), galactose (Gal), glucose (Glc), N-acetylgalactosamine (GalNAc), N-
acetylglucosamine (GIcNAc), N-acetylneuraminic acid (NeuAc) and N-glycolylneuraminic acid
(NeuGc) (Figure 1.9). The often partial glycan occupancy of various glycosylation sites on the
polypeptide backbones, also known as protein macro-heterogeneity, in combination with the
extensive micro-heterogeneity caused by variation in the glycan length (number of building
blocks), the monosacchatide compositions, topology/branching and linkage types dramatically
increase the diversity of the glycosylated proteome, which is considered to be essential to

facilitate the diverse functional roles of glycoproteins [184].

Several types of protein glycosylation are known in human but the two most common types
involve glycans enzymatically attached to the protein via either N- or O-glycosidic linkages. In
protein N-glycosylation, an N-glycan precursor is added via a reducing-end N-acetylglucosamine
(GlcNAC) residue to asparagine (Asn) residues on polypeptides found within a consensus peptide
sequences or “Asn-sequons” displaying Asn-X-Serine/Threonine (Ser/Thr), where X can be any
amino acid residue except for proline [185]. However, not all predicted Asn-sequons are
glycosylated, indicating that consensus sequences alone do not solely dictate N-glycosylation and
that additional primary structure features or conformational requirements may be needed to
promote N-glycosylation [186, 187]. O-glycosylation involves the attachment of an IN-
acetylgalactosamine (GalNAc) residue to either Ser or Thr residues on the protein backbone. So
far, no recognition motifs or sequons have been identified and it remains as such unclear why
certain Ser or Thr residues are O-glycosylated whilst others are not. Both N- and O-glycosylations
are prevalent on membrane and secretory (non-mucin) proteins while O-glycosylation is also
commonly found on large viscous cysteine-rich glycoproteins known as mucins. Mucins are

expressed in large quantities on many epithelial surfaces of the body, including the
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gastrointestinal and respiratory tract and by the salivary and sweat glands [188]. We have
established a robust MS-based workflow for profiling and characterization of N-glycans released
from wvarious biological samples and the focus in this thesis is exclusively on protein N-

glycosylation.

Despite the fact that a plethora of N-glycoforms decorate mammalian proteins, all N-glycans are
synthesized using the same biosynthetic machinery. As such, all maturing glycoproteins traffic a
common pathway known as secretory pathway. Starting with the addition of a common glycan
precursor of which only the outer domains gets modified by truncation and extension reactions,
all N-glycosylation share a common tri-mannose chitobiose core (Man;GIcNAc,) [189]. The
extension from the two non-reducing end mannose residues of the chitobiose core [Mana(1,3)
and Manx(1,6)] by the addition of various monosaccharide residues generates an assortment of
N-glycan structures, which can be classified into three major classes: high-mannose, hybrid and
complex (Figure 1.10). Paucimannose (truncated chitobiose N-glycan cores) is a more unusual
mammalian N-glycan type, but widely expressed in plants and invertebrates [190, 191]. This type
of N-glycosylation has gained much attention in recent years for its association with

pathophysiological conditions such as inflammation and cancer [192].
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Figure 1.10 Types of N-glycans and their linkages
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1.3.1.1 Biosynthesis and the endoplasmic reticulum (ER)-Golgi secretory pathway

Extensive metabolic studies in mammalian cell cultures and in yeast have unravelled this
seemingly complicated process of N-glycan biosynthesis into four distinct stages [193]: (1) the
synthesis of lipid-linked glycan precursors, a highly conserved process among all eukaryotes, (2)
en bloc transfer of the glycan precursors to the Asn-sequons of protein acceptors, (3) eatly
monosaccharide trimming in endoplasmic reticulum (ER), and (4) further processing of the IN-
glycans in the cis-, medial- and frans-Golgi network (Figure 1.11). As these series of steps are tightly

coupled to the synthesis of secretory proteins, the process is also known as ER-Golgi secretory

pathway.
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Figure 1.11 Initial synthesis, processing and maturation of human N-glycoproteins in the secretory

pathway (Adapted from Varki ez a/, 2009 [194])
45



The assembly of the glycan precursors on the lipid dolichol phosphate carrier begins on the
cytosolic face of the ER culminating with the lipid-linked 14-monosaccharide complex glycan
precursor with the composition Glc;Man,GlcNAc, (Figure 1.12). The translocation to the
luminal side of the ER is mediated by an ER “flippase” enzyme [195]. Secretory, membrane-
bound, ER-, Golgi- or endosome-residing proteins are targeted to the secretory pathway by their
signal or signal-anchor sequences [196]. The co-translational protein glycosylation modification is
initiated by the transfer of the entire oligomannose precursor onto selected Asn-sequons of
newly-synthesized polypeptides entering the ER, a process facilitated by the multisubunit enzyme
oligosaccharyltransferase (OST). Variable occupancies at the individual Asn-glycosylation sites of
glycoproteins give rise to the macro-heterogeneity of glycoforms [197]. Local sequence and
topological constraints may influence site-specific occupancy; however there is incomplete

understanding of the factors controlling the glycosylation efficiency [187].

:

Trimannosyl
core

Figure 1.12 N-glycan precursor containing the trimannosyl core structure (box).

In the ER, the outer glucose residues of the N-glycan precursor are sequentially removed by
interactions with the ER chaperones (i.e. calnexin and calreticulin) and glycosidase enzymes (x-
glucosidase I and II, ERa(1,2)-mannosidase) to ensure correct folding of the glycoproteins before
leaving the ER and into the Golgi apparatus. Trimming continues in the cs-Golgi by a series of
Golgi-resident a-mannosidases, which removes more mannose residues until a key intermediate
(Man;GIcNAc,) is formed in the media/-Golgi. The arrays of glycosyltransferases localized in the
medial- and frans-Golgi act upon this intermediate in a step-wise manner yielding hybrid- or

complex-type structures containing up to four antennae extending from the two a-mannoses of
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the chitobiose core. The series of enzymatic remodelling eventually lead to the “maturation” of
N-glycans, which primarily involves the addition of sialic acid, fucose, galactose, IN-
acetylgalactosamine to the non-reducing end (antennas), which in addition may receive another
layer of structural complexity by the infrequent addition of sulphate and phosphate to particular
monosaccharide residues. Not all high mannose N-glycans that enter the Golgi are fully
processed but may terminate at any given point in the glycosylation machinery. This introduces
an extensive glycan heterogeneity resulting in glycosylated proteins displaying for example,
varying numbers of mannose residues (Man, ,GIcNAc,). Thus, multiple N-glycan types often
appear at a single N-glycosylation site due to competing enzymatic reactions giving rise to protein
micro-heterogeneity [197]. Several factors can affect the differential processing of N-glycans
including trafficking rates along the ER-Golgi secretory pathway, the availability of sugar donors
and abundance/activity and localization of the modifying glycosyltransferases [198]. These
factors are well controlled during cellular homeostasis and growth, development and
differentiation and often unique in the individual cell and tissues types, giving rise to cell- and
tissue-specific N-glycosylation [199]. In addition, cellular systems may further fine tune these
expression patterns through the feature of protein or site-specific N-glycosylation to express
unique sets of glycoforms on individual proteins [200]. The interesting observation of subcellular-
specific N-glycosylation on secreted and membrane glycoproteins was investigated in this thesis

(Chapter 4).

1.3.2 Characterization of protein N-glycosylation

In the past few decades, it has become increasingly evident that aberrant protein glycosylation is
intimately associated with numerous pathological conditions including many human cancers
[201], congenital disorders [202], inflammation [203], diabetes [204] and neurodegenerative
diseases [205]. This has prompted many biochemists and glycobiologists to investigate the

glycome, which is defined as the entire set of glycans displayed in a specified “system” such as a
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cell or organism at a given time under a given condition. The system-wide analysis of the glycome
complements the molecular studies of other “omes” including the genome, transcriptome,
lipidome, proteome and metabolome. Glycomics research is currently expanding rapidly,
covering many aspects of scientific research from basic science and fundamental biology over
therapeutic areas to the development and refinement of state-of-the-art analytical technologies
with fusion to neighbouring analytical disciplines such as proteomics and glycoproteomics. In
cancer research where the attention is focused on identifying unique expression patterns of N-
glycans, two major objectives have emerged. Firstly, detecting N-glycan changes associated with
cancer may lead to the identification of candidate N-glycan biomarkers of sufficiently high
sensitivity and specificity for early diagnosis and monitoring of cancer progression. Secondly,
functional glycomics studies may provide insights into the significance of N-glycosylation in
cellular functions during tumorigenesis. However, the lack of a direct synthesis template or “blue-
print” as for the protein equivalent and the structural heterogeneity of N-glycans have posed a
significant challenge for the identification and structural characterization of N-glycans [206]

(Figure 1.13).
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Figure 1.13 The challenges in glycomics research. Unlike the transcriptome and proteome which are
based on a genetically encoded template, the glycome is built via nontemplate-driven processes as a
secondary gene-product. In addition, the encoded information is significantly enhanced as it flows from
the genome to the glycome. (Adapted from Turnbull ef a/, 2007[206])
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Until recently, the field of glycomics research lagged far behind the genomics and proteomics
disciplines, but recent advances have improved the analytical capabilities to allow for streamlined
analysis of the glycome. As such as, the development of robust and relatively high-throughput
analytical platforms integrating the use of powerful mass spectrometry has allowed larger-scale
characterization of N-glycosylation profiles [207], thus aiding to establish its place amongst the
other “omics” fields. In recent years, the need for an integrative understanding of the
glycoproteome has placed more emphasis on glycoproteomics, which has a significantly higher

level of complexity relative to the proteome and glycome alone.

1.3.2.1 LC-MS/MS based structural analysis of the N-glycome

By global analysis of N-glycans released from mixtures of glycoproteins, N-glycome profiling is
an approach to capture the N-glycosylation status of a biological event. However, this method
suffers from a loss of information on the protein origin of the released glycans including site
occupancy. In contrast, site-specific glycoprofiling of glycopeptides retains vital information of
the carrier protein identity [22]. Such an approach, which is defined as glycoproteomics when
preformed on the system-wide level, is often necessary to get a better and more exact

understanding of the functional roles of protein glycans.

The liberation of N-glycans from glycoproteins is achieved enzymatically by N-glycosidase F
(PNGase F) treatment, which specifically hydrolyses the amide bond between N-glycan and the
Asn residue, converting the Asn to an aspartic acid residue in the process. PNGase F is effective
on virtually all types of N-glycans of the mammalian type but does not release N-glycans having
chitobiose cores containing «(1,3) linked fucosylation, which are common features of plant N-
glycosylation. Instead, PNGase A is used to release all plant N-glycans [208]. Alternatively, IN-
glycans can be chemically removed by for example hydrazinolysis or f-elimination. However, one

major drawback is the significant degradation of the protein component in these chemical
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reactions. f-elimination is frequently used for O-glycan release due to limited availability of

enzymes for complete O-deglycosylation [209].

Historically, N-glycomics research focused on identifying monosaccharide compositions of IN-
glycans in the N-glycome. With advances in instrumentation for glycan separation, detection and
characterization, various N-glycan analytical methods have been developed and optimized
enabling now complete structural characterization and quantification of N-glycan species within a
glycome population. Three major approaches have been described and are routinely used for
both structural analysis and quantitative glycomics [209] i.e. (1) Reductive amination where the
reducing end of glycans is derivatized (and reduced) by labelling with a functional group followed
by HPLC analysis and fluorescence detection [210, 211], (2) permethylation of N-glycans
followed typically by MALDI-MS analysis in the positive polarity mode [212, 213], and (3)
glycans can be left underivatized. The reduced N-glycans are separated and detected by porous
graphitized carbon PGC-LC-ESI-MS in the negative polarity mode [209] (Figure 1.14). This

approach has been utilized for the N-glycan analysis in this thesis.
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Figure 1.14 The three main approaches in N-glycan profiling and characterization.
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The advantages and disadvantages associated with each of these methods are presented in Table
1.5 and these are briefly discussed below. For a complex mixture of N-glycans, the practice of
fluorescent labelling of N-glycans at the reducing terminus offers several advantages. Amongst
various fluorescent molecules useful for such so-called reductive amination reactions, 2-
aminobenzamide (2-AB) is the most widely used fluorophore. The fluorescent tag facilitates and
enhances the N-glycan detection limit and thereby the sensitivity on HPLC-fluorescence with
sensitivity limits in the low femtomole range [214]. In addition, the fluorescence intensity
measured from the stoichiometric labelling of all free N-glycans in the pool allows for accurate
N-glycan quantitation [215]. This method is often accompanied by sequential treatment with an
array of specific exoglycosidases, which remove specific terminal monosaccharide residues,
generating a series of related glycan species from which the glycan sequence can be deduced
[216]. However, this validation process is labour intensive as it requires repeated exoglycosidase
digestions and reanalysis by HPLC to be performed. A comprehensive database (GlycoBase),
containing chromatographic data generated from these reactions has been established to facilitate

higher throughput of the structural identification of N-glycans [217].

Without doubt, advent of modern MS has revolutionized glycomics research and the approach of
using permethylated N-glycans analyzed by MALDI-TOF-MS or ESI-MS in positive mode has
contributed to this impetus. Permethylation, which methylates all free hydroxyl and carboxyl
groups, stabilizes the derivatized glycans, in particular the sialic acid residues which otherwise are
prone to premature destruction in the ionization process in MS; it increases the predictability of
MS fragmentation to improve interpretation of the monosaccharide sequence and branching
glycans; and it allows simultaneous and quantitative analysis of acidic and neutral glycans when
the MS detection is performed in the positive mode [218]. In addition, permethylated glycans can

be subsequently subjected to gas chromatography MS for linkage analysis [219]. As a result, this

51



approach has been extensively used to profile and characterize N-glycans in various biological

samples [212, 219-221].

Although these two glycan derivitization strategies, i.e. 2-AB labelling and permethylation greatly
enhance the detection sensitivity of glycans during LC separations, they are still inadequate to
resolve and identify isomeric glycans, an inevitable consequence of the extensive N-glycosylation
micro-heterogeneity, thus limiting the in-depth and accurate characterization and quantitation of

N-glycan isomers.

Table 1.5 Comparison of the three approaches for N-glycan profiling and characterization.

Advantages Disadvantages
Fluorescent labelling of N-glycan (2-AB labelling)
= Increased the detection sensitivity limit = Incomplete derivatization may occur
= Allows for quantitative analysis = Labour-intensive work with repeated
= Extensive database for structural assignment exoglycosidase digestions for validation

® Inadequate to resolve isomers
Permethylation of N-glycan

= Increased the detection sensitivity limit = Incomplete derivatization may occur

= Allows for quantitative analysis = Inadequate to resolve isomers

= Increased predictability of MS fragmentation

= Allows for linkage analysis

Reduction of N-glycan

® Forms alditol (eliminates the anomericity of | ® Slight under-derivatization may occur and
reducing end of glycan) loss of labile glycan PTMs during reduction
= Hasy to perform

In contrast, PGC efficiently separates isomeric glycans in a reproducible manner [222]. The
performance of PGC for N-glycan separation has been investigated and compared to those of
other types of chromatography such as hydrophilic interaction liquid chromatography (HILIC)
and reversed-phase chromatography (RPC) and found to have superior peak capacity allowing
efficient separation of N-glycans [223]. When coupled to tandem MS in the negative mode, PGC
provides a tool for the very detailed characterization of complex mixtures of glycans [224] with
the ability to differentiate between many isobaric glycan epitopes/determinants, e.g. terminal

«2,3- and o2,6-sialylation; between core ol,6- and antenna «1,2/3/4-fucosylation; between
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terminal motifs such as Gal-GlcNAc (LacNAc) and GalNAc-GlcNAc (LacdiNAc); and between
bisecting GIcNAc and non-bisecting GlcNAc residues [225]. The exact interaction mechanism(s)
between the glycans and the hexagonal carbon atoms in the PGC stationary phase remains
unclear; however, the interactions have been established at low resolution to be of mixed mode
consisting partially of hydrophobic, electrostatic, and hydrophilic (dipole-dipole interactions)
[226]. In order to reduce the added complexity of « and B anomers formed by the anomericity
switching at reducing end of all free glycans due to their separation by the high resolving power
of PGC, the reducing ends of N-glycans are routinely converted to free sugar alditols by simple
sodium borohydride based reduction enabling single chromatographic peak detection on PGC-
LC. Using this approach, several studies have successfully characterized complex mixtures of
released N-glycans from glycoproteins extracted from various biological sources including cell
lines, tissues and secreted bodily fluids such as saliva and milk [227-232]. One disadvantage of
this approach is the limited availability of computational tools for high throughput data analysis
of the information-rich MS/MS spectra. Thus, labotrious manual de novo interpretation is still

required for detailed assignment of structures.

Most comparative glycomics studies are based on relative quantitation of investigated glycomes,
which is achieved by normalizing individual glycan structures within each glycomic profile and
compared across different samples. Such comparison is commonly used although low abundant
glycans may not be easily quantified if there is large variation in the whole glycan profile.
Absolute quantitation of N-glycan can be achieved by spiking glycan samples with fluorescently-
labelled glycan standards. Such measurement is desirable as each glycan quantified would be
independent of the variations in the whole profile, however, this approach is currently not well
established. Hence, relative glycan quantitation remains to be widely used, which also was the

quantitation method applied in this study.
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Notwithstanding, bioinformatics tools are clearly needed to integrate and automate interpretation
of the vast amount of glycomics data being generated from these glycomics technology
platforms. To meet such demands, several large scale initiatives such as Consortium for
Functional Glycomics (CFG) [233], KEGG [159] and recently, the UniCarbKB [234] were set up
to provide integrated resources to glycoscientists. These resources include web-based tools such
as GlycoMod [235] for predicting monosaccharide compositions of glycans based on MS
(precursor) data; databases such as GlycoSuiteDB which contains manually curated glycan
structural information as derived from the literature [236]; KEGG-GLYCAN which maps glycan
data to known molecular interactions and pathways [237] and GlycoWorkbench, which consists
of a suite of software tools useful for drawing glycan structures and annotating experimentally-
derived mass spectra [238]. However, there is still a lack of bioinformatics tools for the high-
throughput handling of large MS/MS datasets. Interpreting the MS/MS spectra currently relies
on de novo approaches, which is a tedious process. Sophisticated computational algorithms for
database matching to experimentally-derived MS/MS spectra are currently being developed to

overcome this major bottleneck in glycan analysis.

1.3.3 Protein N-glycosylation changes in breast cancer

We have come to understand that in protein N-glycosylation, the intricate organizational
interplay of glycosylation enzymes including glycosidases and glycosyltransferases creates an array
of highly complex and related glycan structures on proteins. It is thought that such structural
diversity facilitated by the N-glycans on membrane-bound and sectetory proteins is essential to
carry out their divergent biological functions including cell proliferation, differentiation,
migration, cell-cell integrity and recognition, cell-matrix and host-pathogen interactions, immune
modulation and signal transduction [201]. Aberrant protein N-glycosylation can therefore disrupt
normal cellular functions leading to lack of cellular homeostasis and pathophysiological

conditions.
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Early studies using cultured breast cancer cells and breast tumor tissues identified specific IN-
glycan changes that correlate well with breast tumorigenesis, thus suggesting the involvement of
N-glycans in breast cancer [239, 240]. Before the advent of more advanced MS technologies, a
variety of glycan detection methods were employed to compare the glycosylation patterns
between normal and breast cancer samples. These investigations were targeted visualizing glycan
epitope-changes rather than modern approaches measuring the detailed structural glycome
changes in MS-based glycomics studies. Plant lectins, which have reactivity for a wide range of
glycan determinants, are the most commonly exploited tool for visualization/detection of glycan
epitopes and have been used in several ways to reveal differential N-glycoepitope expression
including lectin histochemical staining [241, 242], lectin affinity chromatography [243], lectin
blotting [244], and lectin array [245]. When integrated with MS platforms, the value of lectins was
clearly demonstrated by the ability to identify the proteins that carry tumor-specific glycan
epitopes [212]. Lectins are thus useful to isolate and visualize glycoproteins in their intact forms
whereas MS may facilitate the identification of the protein carrier. Another detection method,
immunohistochemical (IHC) staining, uses antibodies to target glycan-associated antigens on
breast tumor tissues, which positively correlated with the increased metastatic potential and poor
prognosis of breast cancer patients [239, 246]. When combined with well-designed controls,
approaches using lectin and antibodies are able to provide valuable information such as glycan
topology, cellular localization and relative abundance [194]. Overall, glycan epitope-detection
methods (i.e. lectins and antibodies) and whole structure characterization-(i.e. HPLC, LC-MS)
have identified consistent alterations in the N-glycan expression patterns in breast cancer. The
aberrant N-glycosylation involves a relative increase in sialylation, fucosylation, 1-6 branching
and Lewis-type epitopes such as Lewis X (Le*), Lewis Y (Le"), sialyl Lewis X (sLe*) and sialyl
Lewis A (sLe”). Differential detection using fluorescently-labelled lectin and antibody staining is
generally quantified by the absolute fluorescence intensity, while in global glycan profiling,

relative abundances between glycans within glycome populations are reported and the
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glycoprofiles are then compared between samples. As such, an increase in a glycan determinant
within a glycome population, e.g. complex type is naturally accompanied by the decrease of other

glycan types, e.g. high mannose and hybrid types.

In recent years, there has been a growing interest in understanding pathology-driven glycome
changes at the system-wide level, which encompasses studies to investigate the relationship
between the genome, transcriptome, gene product (i.e. proteome and glycome) and glycosylation
enzyme activity [247-249]. The following sections detail these molecular changes in the context of
breast cancer. Cell surface protein glycosylation changes in breast cancer has also been described

as part of a published review, attached at the end of Chapter 1.

1.3.3.1 Sialylation

Sialic acids belong to a large family of nine-carbon o-keto acids known collectively as
nonulosonic acids. The two predominant forms of sialic acid residues in mammalian cells are N-
acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gce) [250] (Figure 2.15).
Although Neu5Ac differs from Neu5Gc only by a single hydroxyl group, an irreversible mutation
in the human gene encoding for the enzyme producing the Neu5Gce nucleotide donor have
eliminated its expression in humans, thus limiting its production to non-human mammals [251].
However, minute quantities of Neu5Gce detected in normal human tissues and at somewhat
higher levels in some human cancer tissue possibly by incorporation from exogenous (nutritional)

sources, suggest their possible roles as cancer biomarkers [252].
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Figure 1.15 The chemical structures of Neu5Ac and Neu5Ge.
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The addition of sialic acids (herein mainly Neu5Ac) to N-glycans of glycoproteins is catalyzed by
different families of sialyltransferases, which are classified according to the carbohydrate linkage
being formed from the sialic acids to the penultimate residues, e.g., [-galactoside «-2,6-
sialyltransferases (ST6Gal) for «2,6-linked sialylation, B-galactoside «-2,3-sialyltransferases
(ST3Gal) for «2,3-linked sialylation and «2,8-sialyltransferases (ST8Sia) for a2,8-linked sialylation
(Figure 1.16). Increased expression of either «2,3- or o2,6-sialylated N-glycans have been
observed in breast tumor tissues, breast cancer cell lines and breast cancer serum compared to
healthy tissue [253-255]. In general, total sialylation is enhanced in breast malignancy although the
linkage-specific expression differences remain undocumented. Sialylated Lewis epitopes including
sLe® and sle® were reported to be over-expressed in tissues and serum of breast carcinoma
patients relative to healthy donors; their expression correlated with the increased metastatic
potential of the cancer and the reduced patient survival [211, 256-259]. In contrast, the presence
of the less common a2,8-polysialic acid has only been detected in the MCF7 breast cancer cell
line. The two proteins known to specifically carry the «2,8-polysialic acid chains are neural cell
adhesion molecule (NCAM), which is associated with nervous system development and plasticity
[260], and the rat brain voltage-dependent sodium channel « subunit [261]. In an effort to better
understand the mechanism of N-glycosylation deregulation, a transcriptomics study revealed an
increased occurrence of the corresponding sialyltransferases [262]. In addition, this correlated

with poor patient outcome, suggesting their clinical value as prognostic marker [263].

Sialic acids are commonly expressed on mammalian glycoconjugates i.e. glycoproteins, glycolipids
and proteoglycans. Sialylation is a dominating feature on cell surface and secreted N-linked
glycoproteins compared to the intracellular N-glycoproteome suggesting its involvement in
extracellular biological functions [200]. Hybrid and complex type N-glycans of secretory nature,
for example plasma glycoproteins, are often capped by sialic acid residues, serving to mask the

underlying galactose residues from recognition by the liver asialoglycoprotein receptor, thus
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extending the circulatory half-life [264]. The elevated expression of sLe” in breast cancer patients
and their strong correlation to advanced stages of the disease are often reported in serum-based
studies [211, 259]. Serum measurements of sLe*and CA15-3, which is currently a clinical breast
tumor marker with relative low specific and sensitivity, has been suggested to improve the

prognostic features (i.e. sensitivity) when monitoring breast cancer [265].

The structural and chemical properties embedded within the large nine-carbon sialic acid
molecule impart the potential for generating multiple levels of diversity, allowing the sialylated
glycans to mediate various significant biological roles including immune responses, cellular
recognition, adhesion and signalling [22]. The exposed terminal localization of sialic acid residues
of glycoconjugates is a natural disposition to interact with other biomolecules, in particular the
endogenous and exogenous glycan-binding proteins such as the family of sialic acid-binding
lectins known as siglecs. Siglecs are important molecules for regulating the cell-cell signalling to
facilitate a functional immune response [203]. In healthy individuals, such interactions are tightly
controlled to attenuate immune responses mitigating the effects of inflammation [266]. However,
hyper-sialylation on cancer cells may allow such cells to escape immune surveillance [267] and
may also contribute to the invasive and metastatic behaviour of cancer cells [268]. Specifically,
altered sialylation displaying higher levels of «2,6-sialic acid on the cancer cell surfaces were
linked to increased motility and invasive potential of breast tumor cells [254]. Although the role
of altered sialylation in breast cancer is evident, there remains a lack of mechanistic understanding

of their involvement in tumor metastasis.

1.3.3.2 Fucosylation
Increase in fucosylation in human cancers is well documented and may be a general glyco-
phenotypic hallmark associated with malignancy [269]. Fucosylated N-glycans are synthesized by

a wide range of human fucosyltransferases (FUT1-11) and can be broadly categorized into core-
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and antenna-fucosylated glycans (Figure 1.16). The most common modification of the innermost
GlcNAc residue of the N-glycan chitobiose core is the a1,6-linked core fucosylation catalyzed by
ol,6-fucosyltransferase 8 (FUTS). The link between core fucosylation and antibody-dependent
cellular cytotoxicity (ADCC) is well known. Antibodies lacking core fucosylation display a higher
affinity for the Fc receptors on immune cells leading to enhanced ADCC [270]. Such modulation
has important clinical implications for Trastuzumab, a monoclonal antibody used for therapeutic
treatment of breast cancer patients over-expressing the human epidermal growth factor receptor
2 (HER2) [271]. In contrast, higher core fucose content has been found on the abundant serum
glycoprotein a-1-proteinase inhibitor in breast cancer [272] which was supported by the detection
of an up-regulated FUTS transcripts in breast tumor tissues [247]. The role of increased core

fucosylation on glycoproteins in breast tumorigenesis remains unclear and needs further

investigation.
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Figure 1.16 Diagram illustrating the glycosyltransferase genes involved in the N-glycan changes observed
in breast cancer. (Adapted from Christiansen ez 2/, 2013 [201])

Fucosylation may also be linked to the antenna of N-glycans via o1,3- and/or 4 linkages by the
action of multiple fucosyltransferases including FUT1-7 and FUTY. Such additions give rise to
the formation of specific Lewis blood group antigens such as Le* and Le"’. When «1,3 or a1,4-

fucosylation occurs on antennas carrying an o2,3-sialic acid, they become part of the sialylated
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and fucosylated glycoepitopes/determinants known as sLe* and sLe”, respectively. Many studies
have demonstrated a clear pathological relationship between fucosylated Lewis antigens and the
invasiveness of breast tumors [246, 273-275]. The pivotal regulatory role of fucosylation in breast
cancer is manifested in the sialyl Lewis antigens as a binding ligand for E-selectins, which are
expressed on endothelial cells in blood vessels [276]. Cutrent proposition on extravasation of
tumor cells at a metastatic site suggests the involvement of sLe® antigens in a selectin-dependent
manner for the adhesion and invasion similar to the mechanisms of leukocyte transendothelial
migration [277]. Numerous corroborating lines of evidence are in support of this hypothesis.
Reports of over-representation of sLe*and sLe® epitopes on metastatic breast tumor cells are
well-documented [257, 258, 278] and they were shown to be critical determinants in the adhesion
of tumor cells to vascular endothelium [279]. Introduction of the FUT4 gene into the breast
cancer cell line MCF7 markedly induced the expression of sle® and enhanced attachment of
cancer cells to the endothelial cells [280]. In hormone-dependent breast cancers, the adhesion
was demonstrated to mediate through E-selectin and sle® interactions to promote cancer
metastasis [249]. Breast carcinoma-associated glycoproteins that have been identified as carriers
of Lewis types determinants include CD44 [281], CD98hc [282], CDD147 [283] and podocalyxin
[284]. Taken together, the regulatory role of fucosylation is firmly established in breast
tumorigenesis. Such knowledge could be further exploited to seek new diagnostic methods to
ultimately improve the range of therapeutic options and clinical outcome of breast cancer

patients.

1.3.3.3 Branching and bisecting GlcNAc

The glycosylation enzyme, N-acetylglucosaminyltransferase V (GnT-V), which is encoded by
MGATS, catalyses the formation of $1,6-GlcNAc branches on N-glycans (Figure 1.16). Using
lectin-based methods, consistently higher levels of 31,6 branching of the cell surface N-glycans

have been detected in breast tumor tissues when compared to normal tissues [212, 241, 242, 285].
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These observations were supported by concomitant increases in the GnT-V levels [286] and its
corresponding MGAT5 [287]. Knockdown studies that dampened the expression of GnT-V
inhibited cells dissolution from the ECM and the subsequent spreading of cancer cells, thus
demonstrating that 31,6 branching may drive the migratory and metastatic phenotype in breast
tumor cells [288, 289]. Some studies have used the strong implications of 81,6-branching in
breast malignancy to propose that N-glycan branching may be a predictive marker for the

identification of node-negative breast cancer [241, 242].

The role of B1,4-bisecting GIcNAc in breast cancer has not been extensively investigated.
Bisecting GIcNAc epitopes are synthesized when a 31,4-linked GlcNAc residue is attached to the
N-glycan core by N-acetylglucosamintransferase III (GnT-III). In breast tumors, the expression
of the responsible MGAT3 gene was down-regulated compared to normal breast tissues [247].
The authors suggested anti-tumor features of bisecting GIcNAcylation by reasoning that the
addition of the bisecting GlcNAc to the core may prevent other types of N-glycan branching to

form, for example the tumor associated $1,6-linked GIcNAc as described above.

1.3.3.4 High mannose N-glycans

Total cellular glycoproteins extracted from the human ovarian carcinoma cell line, SKOV3
predominantly displayed high-mannose type N-glycans [290]. Increased expression of high-
mannose type N-glycans on cell surfaces of various tumors including breast, colorectal, lung,
cervical, ovarian and lymphatic cancers have been reported [291]. These N-glycans were released
from membrane proteins isolated using conventional ultracentrifugation method, however, a
recent study showed that ultracentrifugation was inefficient in enriching for cell surface proteins,
but instead predominantly capture intracellular membrane glycoproteins [292]. Evidence for this
observation is substantiated in Chapter 4 where the proteomics of such preparations showed that

many ER- and Golgi-residing proteins were co-purified along with plasma membrane proteins.
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Therefore it cannot be ruled out that intracellular glycoproteins contributed to the high mannose-
rich patterns observed in such cancer studies. Nevertheless, expression of high-mannose type N-
glycans carrying nine mannose residues, which is normally considered to be an indicator of
relative immature and intracellular N-glycan, were elevated in the sera of breast cancer patients
and in breast tumor mice models relative to healthy references thereby indicating that these
unprocessed glycoconjugates are indeed extracellular [293]. Additionally, immature high-mannose
structures have been detected on cell surface glycoproteins including intracellular adhesion
molecular 1 and the oncogenic form of epidermal growth factor receptor (EGFR) [294]. As is the
case for many of the other glycan structures and glycoepitopes, it remains unknown whether
these alterations are causing or a consequence of tumorigenesis. Thus, the exact significance of

the presence of high-mannose type N-glycan in breast malignancy remains to be determined.

1.4 Aims of the thesis

The major aim of this thesis was to apply state-of-the-art proteomics and glycomics analytical
technologies, in conjunction with sophisticated bioinformatics tools, to gain insights into the
molecular alterations associated with breast cancer. The investigated samples comprised of a
panel of cultured human breast epithelial cells. A total of six breast cancer cell lines were used;
five were established from metastatic cells obtained by the pleural effusion and one derived from
primary breast tumors. The five cancer cell lines were representative of three common breast
cancer subtypes, MCF7 for luminal A, SKBR3 for HER2-enriched, MDA-MB-468 (MDDA468)
for basal-A, and MDA-MB-157 (MDA157), MDA-MB-231 (MDA231) and HS578T for basal-B
subtypes. Two non-tumorigenic cell lines were used including the human mammary epithelial
cells (HMEC), which was derived from normal breast tissues and MCF10A, an immortalized cell
line originated from the mammary gland of a patient with fibrocystic disease. Minor focus was

given to the development and optimization of the multi-lectin affinity chromatography (M-LAC)
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methodology for fractionation/enrichment of cancet-specific glycoproteins detived from breast

cancer cells. To achieve these aims, the following studies were conducted:

1.

Comparative global profiling of secreted and membrane proteins extracted from four breast
epithelial cell lines (HMEC, MCF7, SKBR3 and MDA231) to identify differentially
expressed and unique proteins in breast cancer cells. Global and subtype-specific functional
analyses were performed on the subset of significantly regulated proteins to elucidate cancer-
related pathways and protein-protein interaction networks.

Global N-glycan profiling and structural characterization of secreted and membrane
fractions of six breast epithelial cell lines (HMEC, MCF7, SKBR3, MDA157, MDA231 and
HS578T). Global and subtype-specific comparative analyses were carried out to identify
differentially expressed N-glycan determinants.

Performing systematic investigation of subcellular-specific N-glycosylation of cell surface,
secreted and microsomal fractions extracted from three breast epithelial cells (MCEF10A,
MCF7 and MDA468) by using a combination of structural knowledge, computational and
analytical tools.

Optimizing the multi-lectin affinity chromatography platform, comprising of a combination
of three lectins (Con A, WGA and Jac), to enrich for glycoproteins from the cell lysates of
MCF7 with the aim for future application to target tumor-specific glycoepitopes present in

complex biological samples.
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2.1 Introduction

Molecular profiling of breast cancer has successfully characterized the disease into various
subtypes with distinctive pathological features and clinical outcomes [7, 295]. The remarkable
heterogeneity of breast cancer tumors underscores the importance of identifying molecular
signatures specific to each subtype to aid the development of targeted therapies. Tumorigenic
transformation in breast epithelial cells has correlated well with protein expression changes [296].
Global differential protein analysis, i.e. mapping and comparing all proteins between different
samples, could unravel protein signatures that determine the biological and functional
characteristics associated with each breast cancer subtype, providing us with better insights into
the underlying molecular mechanisms involved. However, such function-based global analysis
approach to examine different breast cancer subtypes has not been widely undertaken by those

investigating the proteome-wide changes in various breast cancer cells [51, 99, 101].

Both secreted and membrane proteins are involved in key biological processes such as cell-cell
communication, transportation of molecules, enzymatic activities, cellular adhesion and immune
response. During malignant transformation, cells secrete various effector molecules into the
extracellular space that promote cellular migration, invasion, adhesion and matrix degradation
[297]. More than 50% of membrane proteins are potential drug targets [298]. Therefore, analysing
the secreted and membrane proteomes is a promising approach to identify potential cancer

biomarkers and drug targets.

In this study, we utilized a shotgun proteomics method to investigate the subcellular specific

proteomes of four cultured breast epithelial cells. Three well-characterized breast cancer cell lines

established from the pleural effusion representative of each breast cancer subtypes were selected,
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namely, MCF7 for luminal A subtype, SKBR3 for HER2-enriched subtype and MDA231 for
basal B subtype. The primary human mammary epithelial cells (HMEC) served as a normal

reference for comparison with the three breast cancer cell lines.

Although comparative analysis performed between paired tumor and normal non-tumorigenic
tissues may represent the most suitable comparison for understanding tumorigenesis and for
downstream clinical applications, tissue heterogeneity in terms of cellular and molecular
composition remains a significant challenge. Hence, cultured cells were used in this study as they
constitute a homogeneous population of epithelial cells, which allow for interrogation of breast
epithelial cancer cell-specific proteins without contamination from other cell types such as
stromal cells, adipocytes, endothelial cells or immune cells In addition, breast cancer cell lines
recapitulate the subtype classification observed 77 vivo in breast tumors, making them suitable
models for studying breast cancer subtypes [134]. In total, we identified more than 3,000 secreted
and membrane proteins from the conditioned media and the enriched membrane of four breast
epithelial cells. Accordingly, we subjected these identified proteins to a system-wide functional
analysis to gain insight into the molecular events underlying breast tumorigenesis. The functional
analysis of differentially expressed proteins in the three breast cancer cell lines revealed common
functional features involved in breast cancer biology, including abnormal activities associated
with the proteasomes, translation initiation factors, cytoskeletal proteins and in the extracellular
matrix (ECM). Functional analysis of the proteins specific to each of the three breast cancer
subtypes revealed that the G protein-coupled receptor GPCR signalling pathway was activated in
the three breast cancer subtypes, but that this pathway involved different sets of proteins.
Importantly, this approach identified a number of proteins that were central to the altered
biological processes or pathways and which could serve as potential cancer biomarkers or targets

for future cancer therapy.
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2.2 Materials and methods

2.2.1 Cell cultures and sample preparation under serum-free conditions

Human mammary epithelial cells (HMEC) were purchased from Lonza (CC-2551, Walkersville,
MD). Human breast cancer cell lines MCF7, SKBR3 and MDA231 were obtained from
American Type Culture Collection (Manassas, VA). HMEC was grown in HUMEC Ready Media
(Invitrogen, CA). The other three cell lines were grown in RPMI (Sigma, MO) supplemented
with 5% FBS (Invitrogen, CA), 10 mM glutamine (Invitrogen, CA) and 10 pg/mL insulin. Cells
were maintained at 37°C in 5% CO, for all experiments. The breast epithelial cell lines were
grown in triplicates to around 80% sub-confluency and washed at least four times with ice-cold
PBS to remove traces of FBS and incubated in serum-free media at 37°C in 5% CO, for 48
hours. Cell viability was determined by trypan blue exclusion assay after 48-hour incubation,
Conditioned media (CM) containing the serum-free secreted proteins were collected, followed by
centrifugation at 2,000 x g to pellet any floating cells. Supernatant was then concentrated and
buffer exchanged with PBS (1x) using Amicon Ultra centrifugal filter devices with a 10,000 MW
cut-off membrane (Millipore, MA). Proteins were then precipitated with acetone overnight at -
20°C and stored at -80°C until further analysis. Following removal of serum-free media, cells
were washed with PBS (1x) and harvested in Tris buffer containing 25 mM Tris-HCI pH 7.4, 150
mM NaCl, T mM EDTA and protease inhibitors cocktail (Roche Diagnostics). The cell
suspensions were ultra-sonicated (Branson Sonifier 450) on ice for 3 rounds of 10 s and
centrifuged at 2,000 x g for 20 min at 4°C to remove intact cells and nuclei. The supernatant was
ultra-centrifuged at 120,000 x g for 80 min after which the supernatant was discarded. The
microsomal membrane pellet was washed twice with ice-cold 0.1 M sodium carbonate and
resuspended in 25 mM Tris-HCl pH 7.4, 150 mM NaCl and 1% (v/v) Triton X-114. Samples
were subjected to phase partitioning by incubation at 37°C for 20 min, followed by 1,000 x g

centrifugation for 10 min. The upper aqueous layer was carefully removed and 9 volumes of ice-
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cold acetone was added to the lower detergent phase and incubated overnight at -20°C to

precipitate the proteins.

The total protein concentration of the subcellular fractions from breast cells was measured using
Bradford reagent (Sigma, MO). Equal amount of total protein in each subcellular proteome was
used for precipitation followed by solubilization in NuPAGE LDS sample buffer to prepare

protein samples for gel electrophoresis.

2.2.2  Gel electrophoresis of subcellular proteomes and in-gel digestion

Proteins were separated using 1D gel electrophoresis (SDS-PAGE) and each lane was sliced in
eight fractions which, after in-gel digestion, were analyzed by LLC-MS. This analytical approach
(GeLLC-MS) was chosen to provide an additional orthogonal platform for protein separation,
which has been shown to achieve in-depth protein identification [299]. SDS-PAGE also has the
advantages to improve protein solubility and to render samples more compatible with LC-MS by

the option for removing salts, buffers and detergents in the in-gel digestion step.

Approximately 50 ug of membrane proteins and 20 pg of secreted proteins were reduced with 50

mM of dithiothreitol for 10 min at 70°C and alkylated with 125 mM iodoacetamide in the dark at
room temperature for 30 min. Each sample (10 uL), in NuPAGE LDS buffer, was loaded on 4-
12% Bis-Tris PAGE gel (Invitrogen) and electrophoresis was performed at 200 V for 50 min.
After separation of proteins, the gel was fixed in 40% (v/v) ethanol and 10% (v/v) acetic acid for
at least 2 hours and stained overnight with Coomassie Blue G250, and destained with Milli-Q

water (Millipore).
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To perform in-gel trypsin digestion each lane was cut into 8 segments of equal size. Each
segment was further sliced into 1 mm smaller pieces and placed in a 96-well plate. The gel pieces
wete destained with 50% (v/v) ACN in 50 mM ammonium bicarbonate until they became clear.
They were then dehydrated in 100% ACN and dried. Trypsin (sequencing grade Modified,
Promega) was added at a weight ratio of 1:30 to digest the proteins overnight at 37°C. The next
day, the tryptic peptide mixtures were collected and two more extractions were performed with
2% (v/v) formic acid in 50% (v/v) ACN and 50 mM ammonium bicarbonate. All three extracted
fractions were combined and the solution was dried by vacuum centrifugation. Tryptic peptides
were acidified in 10 uLL 0.1% (v/v) formic acid and desalted. Briefly, C18 tips were washed three
time with 20 ul. 100% ACN, three times with 20 pl. 50% (v/v) ACN in 0.1% formic acid, and
equilibrated with 50 pl. 0.1% (v/v) formic acid. After sample loading, tips were washed three
times with 20 pul. 0.1% formic acid. Peptides were eluted by 20 uL. 60% (v/v) ACN in 0.1%
formic acid and 20 uL. 90% (v/v) ACN in 0.1% formic acid and dried. The samples were at

stored at -80°C until used for LC-MS/MS analysis.

2.2.3 LC-MS/MS-based proteomics

Triplicates LC-MS/MS injections from all peptide mixtures detrived from extracted membrane
and secreted proteomes of the breast epithelial cell lines were performed using a Q-Exactive
Orbitrap (ThermoFisher) mass spectrometer. Tryptic peptide mixtures in 0.1% (v/v) formic acid
were loaded onto an in-house packed RP column (2.7 um Halo C18 resins, 100 mm x 75 um).
Separation of peptides was performed over 60-min gradient with the first 50 min linear gradient
increasing from 0-50% in solvent B (0.1% (v/v) aqueous formic acid in ACN) and up to 85% in
solvent B for the next 2 min and maintained at 85% for 8 min. The flow rate was set at 300
nl/min. The nanoL.C system was connected directly to the nanoESI soutce of the mass

spectrometer. MS and MS/MS spectra were acquired with resolution of 35,000 in the positive
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polarity mode and over the range of 7/% 350 — 2000. Automated peak recognition, dynamic
exclusion, and tandem MS of the top 10 most intense precursor ions were performed using
Xcalibur v2.2 (ThermoFisher). Yeast enolase was routinely used between samples as quality

control.

2.2.4 Protein identification

Raw LC-MS/MS data files were converted to MGF format using Proteome Discoverer (v2.0)
and searched against SwissProt protein database (Homo sapiens, 20,279 reviewed entries) using the
global proteome machine (GPM, Cyclone version). The following criteria were used during the
search: carbamidomethylation of cysteine residues was set as a fixed modification and oxidation
of methionine and deamidation of asparagine and glutamine residues were used as variable
modifications. Mass tolerances of 10 ppm and 0.02 Da were selected for precursor and MS/MS

fragment ions, respectively, with a maximum of two missed trypsin cleavages.

Scaffold (v4.2.1, Proteome Software) was used to validate MS/MS based peptide and protein
identifications. Peptide identifications were accepted if they could be established at greater than
95.0% probability by the Scaffold Local FDR algorithm. Protein identifications were accepted if
they could be established at greater than 99.0% probability assigned by the Protein Prophet
algorithm incorporated in the software. Proteins that contained similar peptides and could not be
differentiated based on MS/MS analysis alone were grouped to satisfy the principles of
parsimony. Proteins sharing significant peptide homology were grouped into clusters of protein

families. Proteins were annotated using GO terms from NCBI.

2.2.5 Label-free quantitation using normalized spectral abundance factor
Normalized spectral abundance factor (NSAF) was calculated based on the following formula:

NSAF = (Spc/L)/>.(Spc/L), where Spc refers to the spectral count (number of non-redundant
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peptide identifications for a given protein) and L is the length of the protein in amino acid
residues [300]. Protein identifications were only included in NSAF data analysis if a given protein
were covered by a minimum of two peptides in at least one of the three technical replicates and
contained at least a total of four spectral counts across all replicates. For comparative analysis
using fold change as a measure for protein regulation, only proteins that were present in both of
the compared samples were included. The fold change of a protein was calculated by the ratio of

its NSAF across different samples.

2.2.6 Statistical analysis and bioinformatics

Statistical analyses were conducted using SPSS software (v22). One-way ANOVA analyses were
performed for proteins displaying a minimum of a three-fold change between each of the cancer
cells and the HMEC reference followed by post-hoc Dunnett’s test. All P values were adjusted
taking into account the multiple comparisons made and reported as multiplicity adjusted P values,
where a value of less than 0.05 was regarded as statistically significant. GO annotation and
functional analyses were performed using the open source program Cytoscape (v3.1.1)
http:/ /www.cytoscape.org/). Statistical test for enrichment or depletion was based on a two-
tailed hypergeometric test and corrected for multiple testing using Bonferroni [301]. Protein
interaction networks were performed using STRING (v9.1) (http://string-db.org/). Hierarchical

clustering analysis was performed using an in-house program written in R.

2.3  Results

2.3.1 Optimization of cultured cells for proteomics analysis

In order to profile secreted proteins in the conditioned media of the four breast epithelial cell
lines, it was essential to use serum-free media (SFM) to ensure no exogenous proteins from the
FBS were included in the analysis of the secretome. Prior to SFM incubation, cells were adapted

to growth in media containing a reduced amount of FBS (< 5% v/v) so as to minimize
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deleterious effects on cell growth induced by rapid serum starvation. The confluency of cultured
cells was checked and at ~70% sub-confluency the media were removed and cells washed at least
three times with PBS before replacing the cells in SFM. Preliminary studies using conditioned
media (CM) of MCF7 cells collected after 24 hours and 48 hours post-SFM incubation showed
no significant difference in the protein expression patterns as evaluated by the protein patterns
on SDS-PAGE between the two time points. Increased total cell counts and higher protein levels
were observed in the 48-hour CM (Figure 2.1). Cell viability as measured by trypan blue exclusion
remained above 90% for both time points indicating minimal cell death. The 48-hour SFM
incubation time was thus chosen to maximize the protein concentration in the CM. After the CM
was collected, cells were harvested and membrane proteins (microsomal fraction) extracted using
ultracentrifugation followed by Triton X-114 phase partitioning. Both subcellular fractions (i.e.
secreted and microsome) were fractionated on SDS-PAGE and each lane cut into eight equal-
sized fractions. The gel fractions were trypsinized and the resulting tryptic peptides were analyzed
using LC-MS/MS to obtain the secreted and membrane subcellular proteomes of each of the

investigated cultured breast cells.
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Figure 2.1 SDS-PAGE gel of MCF7 CM proteins sampled after 24 and 48 hours of incubation in SFM.
Total cell counts, viability and protein amounts were also measured at the two time points.
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2.3.2 Identification of secreted and membrane proteins in HMEC, MCF7, SKBR3 and
MDA231

Shotgun proteomics is a powerful analytical tool for system-wide proteome analysis, depicted in
Figure 2.2. We applied this approach to investigate the global cellular profiles of secreted and
membrane proteins in four breast epithelial cell lines. HMEC is a non-tumorigenic breast
epithelial cell line while the other three breast cancer cell lines represent the three common breast
cancer subtypes, namely, luminal A (MCF7), HER2-enriched (SKBR3) and basal B subtype
(MDAZ231). Three technical replicates of the individual cell lines were performed. By applying
strict criteria for peptide and protein identification (see Section 2.2.4 — Materials and Methods for
details), we confidently identified a total of 1,755 and 2,063 non-redundant proteins in the
secreted and the membrane fractions of the four cell lines, respectively (Table 2.1). The
confidence of the protein identifications as measured by the false discovery rate (FDR) was less
1% for all samples. Of the proteins identified in the two subcellular proteomes, i.e. secreted and

membrane fractions, 34% to 42% have at least five unique peptides in each of the replicates.

Secreted proteins

x

Membrane proteins

Protein/Peptide
In-gel tryptic LC-MS/MS Database validation
Cell culture Sample preparation digestion (Q-exactive) search (Seaffold) Data analysis

Figure 2.2 Workflow illustrating the sample preparation and the proteomic analyses of secreted and
membrane protein fractions from the investigated breast epithelial cell lines.

==

Table 2.1(a) Summary of the number of proteins identified in the secreted subcellular proteome.

Number of proteins identified with two or more Total number
Cell line unique peptides (UP)* of non- FDR (%)

2 UP 3UP 4UP > 5 UP redundant

proteins
HMEC 114 109 78 232 558 0.49
MCF7 267 228 163 561 1219 0.53
SKBR3 261 174 166 487 1088 0.57
MDA231 243 203 165 483 1094 0.49
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Table 2.1(b) Summary of the number of proteins identified in the membrane subcellular
proteome.

Number of proteins identified with two or more Total number
Cell line unique peptides (UP)* of non- FDR (%)

2 UP 3UP 4UP > 5 UP redundant

proteins
HMEC 211 180 121 286 798 0.49
MCF7 343 283 237 673 1536 0.53
SKBR3 266 226 172 340 1004 0.57
MDA231 306 239 171 500 1215 0.49

* Unique peptides based on 95% confidence

Amongst all samples, the non-tumorigenic cell line HMEC has the lowest number of secreted
and membrane proteins identified whereas MCEF7 has the highest number of proteins identified
in both subcellular fractions. In each cell line, with the exception of SKBR3, more proteins were
detected in the membrane relative to the secreted fraction. Figure 2.3 shows the proteome
overlap for the two subcellular proteome fractions. The same proteins that were detected across
the four different cell lines, herein termed “common proteins”, comprised 17% (292) and 20%

(423) of the total secreted and membrane proteome, respectively.

Secreted proteins Membrane proteins
MCF7 SKBR3 MCF7 SKBR3

MDA231 HMEC MDAZ231

HMEC

Figure 2.3 Four-way Venn diagrams showing the number of secreted and membrane proteins identified
across the four breast epithelial cell lines.

In total, the secreted and membrane subcellular proteomes of the four cell lines generated 3,052
non-redundant proteins. A global comparison between the total secreted and membrane
proteomes showed that they shared around 25% proteins, that is, 766 common proteins were
observed in the two subcellular fractions (Figure 2.4). The common proteins ranged between
14% for HMEC to 22% for MDAZ231, indicating significant heterogeneity between the

investigated cell lines for these common proteins. A summary of the identified proteins in the
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secreted and membrane fractions of each cell line, along with their gene names, information on

signal peptide, transmembrane information, exosome and breast cancer-specificity can be found

in the Appendix 1 and 2.
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Figure 2.4 Number of common and unique proteins in the secreted and membrane subcellular fractions
in all four breast epithelial cell lines (top) and sepatately in each of the cell lines (bottom).
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Figure 2.5 (a) Distribution of GO terms of proteins identified in the secreted fraction. (b) Distribution of
secretion mechanisms used by secreted proteins i.e. secretion through classical (yellow) or non-classical
pathways predicted either by SecretomeP (green) or via exosomes (light red).

Although cells were progressively adapted to grow with reduced FBS to minimize cell stress, the
presence of ER stress was evaluated by assessing the expression of ER stress markers in the
secreted proteome. Proteins indicative of ER stress include 78 kDa glucose-regulated protein
precursor (GRP78), homocysteine-induced endoplasmic reticulum protein (HERP), endoplasmic

reticulum resident protein 72 (ERP72), tryptophan--tRNA ligase (WARS), 52 kDa repressor of
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the inhibitor of the protein kinase (P58IPK) and ER degradation enhancer mannosidase alpha-
like 1 (EDEM) [302]. Of these, GRP78 and WARS were detected to be more abundant in the
cancer cell lines (MCF7, SKBR3 and MDA231) relative to levels in the normal HMEC cell line
(Table 2.2). WARS was not observed in HMEC; negligible in SKBR3 and moderately low in
MCF7 and MDA231. The over-expression of GRP78 in tumor cells is well-documented and
together with the lack of other ER stress indicators suggested that the elevated GRP78 levels in

the three breast cancer cell lines maybe a cancer-associated feature rather than due to cell stress.

Table 2.2 Relative abundance of GRP78 and WARS expressed in the secretome of cultured
breast cells.

Cell line GRP78 WARS

Av. spectra count | Fold change' | Av. spectra count Fold change'
HMEC 25.7 1.0 0 N/A
MCF7 121.3 2.7 12 High (infinite)
SKBR3 88 24 1.3 High (infinite)
MDA231 108.7 2.9 9.3 High (infinite)

' Fold change relative to HMEC, NA = not applicable

It is anticipated that the proteins identified in the secreted fraction (i.e. culture medium) are either
secreted or shed from the cell surface of the cultured cells. Based on GO term, 313 and 116
proteins were classified to be located in the extracellular space and extracellular matrix,
respectively, while around 79% (1,384) of the these proteins were assigned as cytoplasmic
proteins (Figure 2.5a). These data suggested that between 7-18% of proteins observed in the
secreted fraction were proteins actually secreted from the cells. Given that cell viability was more
than 90%, it is unlikely that cytoplasmic proteins were significantly released into the extracellular
space due to cell death. In the classical secretion pathway in mammalian cells, proteins that are
destined for the cell surface and secretion into the extracellular environment are targeted to the
secretory pathway by a signal peptides and/or transmembrane domain. Based on the prediction
tool SignalP v4.1 [303] and the curated information provided by UniProt, 503 proteins in the

secreted fraction were predicted to contain signal sequences and an additional 106 proteins were
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further predicted to have transmembrane domains. Hence, in total 609 of the 1,755 identified
proteins (~35%) in the secreted fraction could be classified as secreted proteins. There is
increasing evidence that, in addition to the well characterized classical secretory pathway, proteins
that lack a signal peptide can be transported to the extracellular space via various non-classical
pathways, which are independent of the ER-Golgi route [304]. Of the few types known,
secretions through exosomes are the most well studied [305]. Using a sequence-based non-
classical protein secretion prediction tool, SecretomeP v2.0 [306], we found 82, 254, 269 and 273
proteins in HMEC, MCF7, SKBR3 and MDA231, respectively, predicted to reach the cell
exterior via the exosome route. Based on these numbers alone, this indicated a three-fold increase
of the use of the non-classical secretion pathways in breast cancer cells relative to non-
tumorigenic cells. Interestingly, GO term defined 964 proteins in the secreted fraction as
extracellular vesicular exosomes, which are membrane vesicles secreted by cells. Exosomes are
also referred to as microvesicles, microparticles, ectosomes and by other terms in the literature.
At the same time, 1,182 proteins in the secreted fraction were mapped to human-derived
exosome in the Vesiclepedia database (http://microvesicles.org/) [307], which contains
experimentally profiled proteins released from the exosomes. Considering the total set of
identified proteins secreted via the classical pathways and, the non-classical pathways including
secretions through exosomes, our analysis verified that at least 60% of proteins in the secreted

fraction were of secretory nature across the four breast epithelial cell lines (Figure 2.5b).

On the other hand, GO annotation of the proteins in the membrane fraction revealed that
although 570 proteins were classified as being associated with the plasma membrane, a significant
proportion were associated with intracellular membrane organelles, derived from the
mitochondrion, endoplasmic reticulum (ER), Golgi apparatus, endosome and lysosome (Figure
2.60). Although membrane proteins were extracted from the crude cell lysate under high-speed

centrifugation, intracellular organelles were co-purified along with the plasma membrane proteins
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in the microsome pellet. It is likely that integral membrane proteins were enriched during phase
partitioning using Triton X-114 including those derived from the ER, Golgi apparatus,

mitochondria and nucleus, in addition to the proteins from the plasma membrane [200].
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Figure 2.6 GO term classification of the subcellular locations of proteins identified in the membrane
fraction. Only GO terms significantly associated with the proteins are shown (P < 0.05).

2.3.3 Global biological and functional analyses of secreted and membrane proteins

The proteins aberrantly secreted or shed by cultured cancer cells into the extracellular
environment may mirror those of tumor cells released into the blood circulation. Over 80% of
the secreted and 70% of the membrane proteins from the breast cell lines were found to map to
the proteome data in the PPD (http://www.plasmaproteome.org/) [152], which contains
proteins reported in plasma and serum. Cluster analysis using GO term representation for
biological processes of the identified proteins revealed as expected that the membrane and
secreted proteins have considerable unique biological functions assigned to them (Figure 2.7).
While the membrane proteins were largely involved in different intracellular metabolic and
transportation processes (i.e. macromolecule localization), secreted proteins have varied roles
including biological adhesion, wound healing, cell migration, response to organic substances and
antigen processing and presentation of peptide antigen. Together this indicates that the roles of
secreted proteins in general are centered on the interaction with other external molecules. When

secreted proteins were further interrogated using Gene-to-Systems Breast Cancer Database
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(http://www.itb.cnt.it/ breast cancer) around 30% of secteted proteins from the three breast
cancer cell lines matched to breast cancer-associated proteins in the database, almost twice as
much as those secreted by the non-tumorigenic cells (Table 2.3). However, this difference was

not observed for membrane proteins.
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Figure 2.7 Cluster analysis of identified secreted and membrane proteins from the investigated breast cell
lines and their classification according to their biological processes based on their significant association
with GO terms, P < 0.05. Each circle represents a GO term. An over-representation of secreted proteins
associated with a specific GO term is indicated in red and an over-representation of membrane proteins
appears in green. When there is no over-representation of either sub-proteome, it appears in grey. Selected
clusters of GO terms are highlighted by the representative GO term of the cluster.
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Table 2.3 Number of secreted and membrane proteins found in the breast cancer database*

Cell lines Secreted protein Membrane protein
Number” %" Number” %"

HMEC 98 17.6 198 24.8
MCF7 370 30.4 304 19.8
SKBR3 329 30.2 209 20.8
MDA231 332 30.3 273 22.5

* Gene-to-Systems Breast Cancer Database (http://www.itb.car.it/ breast cancer)
# Total proteins identified in the subcellular proteome

2.3.4  Comparative analysis of secreted and membrane proteins differentially expressed
between normal and breast cancer cells
Label-free spectral counting of the identified proteins was used to determine the protein
deregulation in the investigated cancerous breast cell lines relative to the non-cancerous cells as
measured by a fold change in protein expression. As described explicitly in the introduction,
spectral counting is a robust quantitative method for LC-MS/MS based proteomics data that has
been shown to reliably and accurately yield a measure for the relative protein abundance between
samples [231, 308-310]. The relative abundances of the proteins were expressed as normalized
spectral abundance factors (NSAFs) where raw data are logarithmic transformed. Natural log
transformation was applied to the raw intensity data to normalize the distribution and allow for
significance testing as well as quantitation of proteins of both high and low abundance (Figure

2.8).

Sample Densities (Secreted) Sample Densities (Membrane)
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Figure 2.8 Logarithmic (natural log) transformed NSAF of secreted and membrane proteins derived from
the four breast epithelial cell lines yield sample densities with normal distributions which allow for
statistical comparative analyses of high and low abundant proteins between samples. See insert for colour
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coding (the triplicate LC-MS/MS analyses are indicated in same colour but with full, half broken and
broken lines).

Secreted Proteins Membrane Proteins
MCF7/HMEC SKBR3/HMEC MCF7/HMEC SKBR3/HMEC
871 55] 901 50| 871 121] 081 36
MDA231/HMEC MDA231/HMEC
911 59| 721 108]

Figure 2.9 Venn diagrams showing the numbers of differentially expressed proteins between the
individual breast cancer cell lines relative to the non-tumorigenic cell line (HMEC) for the subcellular
proteomes (secreted, left; membrane, right).

In total, 269 secreted proteins and 360 membrane proteins displayed a threefold or greater (P <
0.05) regulation in the expression level for the three malignant breast cancer cell lines compared
to HMEC. For the proteins identified in the secreted fraction, 142 proteins were in addition
differentially expressed between MCF7/HMEC, 140 between SKBR3/HMEC; and 150 between
MDA231/HMEC. For membrane proteins, 208 proteins were differentially expressed between
MCF/HMEC, 134 between SKBR3/HMEC and 180 between MDA231/HMEC (Figutre 2.9). A
total of 49 secreted and 29 membrane proteins were found to be differentially expressed in all
three breast cancer cell lines relative to the non-tumorigenic breast cell line (Table 2.4). The
majority of these proteins are regulated in the same directions in all breast cancer subtypes with
the exception of clusterin (CLU, secreted), heterogeneous nuclear ribonucleoproteins A2/B1
(HNRNPA2B1, membrane), pyruvate dehydrogenase E1 component subunit beta, mitochondrial
(PDHB, membrane) and HLA class I histocompatibility antigen, B-41 alpha chain (HLA-B,
membrane). In addition, another nine secreted and eight membrane proteins that were mutually
expressed in two of the three cell lines were also differently regulated between the different

cancer subtypes (Table 2.5). Notable examples include vimentin (VIM), extracellular matrix
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protein 1 (ECM1), neuronal cell adhesion molecule NRCAM) and annexin A1/A2 (ANXA1/2).
The top ten exclusive proteins as measured by NSAF in both subcellular fractions of each breast
cancer lines are listed in Table 2.6.

Table 2.4 List of 49 secreted and 29 membrane proteins that were differentially expressed in all
three breast cancer cell lines relative to HMEC.

Secreted proteins differentially expressed in all three breast cancer cell lines

Gene Protein Name Average FC BC.-
specific

ACTR2 Actin-related protein 2 2.65 No
ALDOA Fructose-bisphosphate aldolase A 2.59 No
BSG Isoform 2 of Basigin 2.41 No
C3 Complement C3 -5.32 No
CANDI1 Cullin-associated NEDD8-dissociated protein 1 2.89 No
CAPZB Isoform 2 of F-actin-capping protein subunit beta 1.90 No
CCTS8 T-complex protein 1 subunit theta 2.61 No
CLTC Clathrin heavy chain 1* 3.71 Yes
CLU Clusterin See Table 2.5 Yes
COL12A1 Collagen alpha-1(XII) chain -2.11 No
COPB1 Coatomer subunit beta 2.43 No
EEF1D Elongation factor 1-delta 3.22 Yes
EFEMP1 EGF-containing fibulin-like extracellular matrix protein 1 -4.14 No
ERP29 Endoplasmic reticulum resident protein 29 1.66 No
FASN Fatty acid synthase* 4.33 Yes
FLNA Filamin-A 2.30 Yes
FN1 Fibronectin -4.25 No
GM2A Ganglioside GM2 activator -3.94 Yes
GNB1 Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit 1.85 No
GPI Glucose-6-phosphate isomerase 3.01 Yes
HIST1H4A Histone H4 2.32 No
HNRNPA1 Heterogeneous nuclear ribonucleoprotein Al 2.12 No
HRNR Hornerin 1.97 No
HSP90AA5P Cluster of Putative heat shock protein HSP 90-alpha A5 2.52 No
HSPA1A Cluster of Heat shock 70 kDa protein 1A/1B 2.37 Yes
HSPG2 Basement membrane-specific heparan sulfate proteoglycan -3.01 Yes
HYOU1 Hypoxia up-regulated protein 1 2.56 Yes
IQGAP1 Ras GTPase-activating-like protein IQGAP1 3.67 No
LMNA Prelamin-A/C 2.75 Yes
LTBP1 Cluster of Latent-transforming growth factor beta-binding 343 No
NCL Nucleolin 2.40 Yes
NUCB1 Nucleobindin-1 -2.37 No
PA2G4 Proliferation-associated protein 2G4 2.33 No
PDCDG6IP Programmed cell death 6-interacting protein 1.93 No
PGK1 Phosphoglycerate kinase 1 3.05 Yes
PLEC Cluster of Plectin 2.25 No
PPA1 Inorganic pyrophosphatase 2.58 No
PSMB5 Proteasome subunit beta type-5 2.03 Yes
RAB14 Ras-related protein Rab-14 2.72 No
RPS27A Ubiquitin-40S ribosomal protein S27a 2.73 No
SDF4 45 kDa calcium-binding protein -2.16 No
SFN 14-3-3 protein sigma -2.37 Yes
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SPTAN1 Fodrin alpha chain* 3.93 No
TFRC Transferrin receptor protein 1 3.89 Yes
TGFBI Transforming growth factor-beta-induced protein ig-h3 -2.61 No
TLN1 Talin-1 3.62 No
TXNDC17 Thioredoxin domain-containing protein 17 3.17 No
VASN Vasorin 2.87 No
WDR1 WD repeat-containing protein 1 2.04 No
Membrane proteins differentially expressed in all three breast cancer cell lines
Gene Protein Name Avg FC BC._
specific

AHNAK Neuroblast differentiation-associated protein AHNAK 3.71 No
ATL3 Atlastin-3 3.01 No
BCAP31 B-cell receptor-associated protein 31 3.65 No
CDIPT CDP-diacylglycerol--inositol 3-phosphatidyltransferase 2.21 No
CLTC Clathrin heavy chain 1* 2.83 Yes
DSP Desmoplakin -2.95 No
FASN Fatty acid synthase* 2.61 Yes
FLII Isoform 2 of Protein flightless-1 homolog -2.14 Yes
H2BFS Histone H2B type F-S 2.30 No
HLA-B HILA class I histocompatibility antigen, B-41 alpha chain See Table 2.5 No
HNRNPA2B1  Heterogeneous nucleat tibonucleoptoteins A2/B1 See Table 2.5 No
IMMT Mitochondrial inner membrane protein 1.96 No
KRT14 Keratin, type I cytoskeletal 14 -2.90 Yes
KRT18 Keratin, type I cytoskeletal 18 3.42 Yes
KRT9 Keratin, type I cytoskeletal 9 -2.19 No
LMAN2 Vesicular integral-membrane protein VIP36 2.00 No
LMNB1 Lamin-B1 2.13 No
LPCAT1 Lysophosphatidylcholine acyltransferase 1 2.47 No
MYO1B Unconventional myosin-Ib -3.00 No
NUMA1 Nuclear mitotic apparatus protein 1 3.31 Yes
PDHB Pyruvate dehydrogenase E1 component subunit beta, See table 2.5 No
RAB2A Ras-related protein Rab-2A 1.79 No
RHOA Transforming protein RhoA 2.55 Yes
RRBP1 Ribosome-binding protein 1 217 Yes
SLC25A11 Mitochondrial 2-oxoglutarate/malate carrier protein 1.79 No
SPTAN1 Fodrin alpha chain* 2.62 No
SRPR Signal recognition particle receptor subunit alpha 2.36 Yes
TOMM40 Mitochondrial import receptor subunit TOM40 homolog 2.57 No
VAT1 Synaptic vesicle membrane protein VAT-1 homolog -2.02 No

* Changes were observed in both the secreted and membrane proteins; FC= Log fold change; BC = breast cancer

Table 2.5 Proteins that were differently regulated (>three-fold, P < 0.05) in the three breast
cancer cell lines relative to the normal non-tumorigenic breast cell line.

Change in expression

Gene Secreted Protein MCF 7/ SKBR3/ MDA231/
HMEC HMEC HMEC
ANXAL1 Annexin Al l AB )
CPA4 Carboxypeptidase E 1 NC l
CLU Clusterin 1 ) |
ECM1 Extracellular matrix protein 1 l AB 1
LGALS3BP Galectin-3-binding protein ! i NC
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PTPRF Receptot-type tyrosine-protein phosphatase kappa 1 AB !
NRCAM Neuronal cell adhesion molecule 1 AB !
LCN2 Neutrophil gelatinase-associated lipocalin ! 1 AB
FAT1 Protocadherin Fat 1 AB i l
STC1 Stanniocalcin-1 l NC
. MCF 7 SKBR3 MDA231
Gene Membrane protein HME ({ HME C/ HME C/
RPS19 40S ribosomal protein S19 i AB
ANXA2 Annexin A2 NC | 1
ATP5B ATP synthase subunit beta, mitochondrial NC !
ATP5I ATP synthase subunit e, mitochondrial T AB !
ADAR Double-stranded RNA-specific adenosine deaminase 1 AB
GSTKI1 Glutathione S-transferase kappa 1 NC i !
HNRNPA2B1  Heterogeneous nuclear ribonucleoproteins A2/B1 i l
HLA-B HILA class I histocompatibility antigen, B-41 alpha chain l l i
PDHB Pyruvate dehydrogenase E1 component subunit beta, 1 !
TACSTD2 Tumor-associated calcium signal transducer 2 NC 1 l
VIM Vimentin AB l 1

NC = no change; AB = absent; T up-regulated; | down-regulated

Table 2.6 Top 10 secreted and membrane proteins exclusively present in each subtype.

Gene Protein Name Cell line (Fraction)
SERPINA3 Alpha-1-antichymotrypsin MCF7 (secreted)
GFRA1 GDNF family receptor alpha-1 MCF7 (secreted)
SERPINA5 Plasma serine protease inhibitor MCF7 (secreted)
TFF1 Trefoil factor 1 MCEF7 (secreted)
SDK1 Protein sidekick-1 MCEF7 (secreted)
CLSTN2 Calsyntenin-2 MCF7 (secteted)
PCDH7 Protocadherin-7 MCF7 (secteted)
NCAM2 Neural cell adhesion molecule 2 MCEF7 (secreted)
NPNT Nephronectin MCEF7 (secreted)
BMP7 Bone morphogenetic protein 7 MCF7 (secreted)
MAOB Amine oxidase [flavin-containing] B MCF7 (membrane)
SLC7A2 Low affinity cationic amino acid transporter 2 MCF7 (membrane)
ABCB6 ATP-binding cassette sub-family B member 6, mitochondrial MCEF7 (membrane)
HEATRG HEAT repeat-containing protein 6 MCF7 (membrane)
HSD17B4 Peroxisomal multifunctional enzyme type 2 MCF7 (membrane)
MAOA Amine oxidase [flavin-containing] A MCF7 (membrane)
RAB17 Ras-related protein Rab-17 MCF7 (membrane)
RFT1 Protein RFT1 homolog MCF7 (membrane)
CERS2 Ceramide synthase 2 MCF7 (membrane)
HERC2 E3 ubiquitin-protein ligase HERC2 MCF7 (membrane)
ERBB2 Receptor tyrosine-protein kinase erbB-2* SKBR3 (secteted)
SUSD2 Sushi domain-containing protein 2 SKBR3 (secreted)
FBLN2 Fibulin-2 SKBR3 (secreted)
IVL Involucrin SKBR3 (secreted)
EGFR Epidermal growth factor receptor SKBR3 (secreted)
RNF213 E3 ubiquitin-protein ligase RNF213 SKBR3 (secreted)
MUC16 Mucin-16 SKBR3 (secreted)
NAPRT1 Nicotinate phosphotibosyltransferase SKBR3 (secteted)
CNP 2'3'-cyclic-nucleotide 3'-phosphodiesterase SKBR3 (secteted)
CP Ceruloplasmin SKBR3 (secreted)
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DHRS2 Dehydrogenase/reductase SDR family member 2, SKBR3 (membrane)
KRT4 Keratin, type II cytoskeletal 4 SKBR3 (membrane)
ERBB2 Receptor tyrosine-protein kinase erbB-2* SKBR3 (membrane)
ANXA7 Annexin A7 SKBR3 (membrane)
AHSG Alpha-2-HS-glycoprotein SKBR3 (membrane)
SLC35F6 Solute carrier family 35 member F6 SKBR3 (membrane)
AGRN Isoform 6 of Agrin SKBR3 (membrane)
EFHD1 EF-hand domain-containing protein D1 SKBR3 (membrane)
HMGN1 Non-histone chromosomal protein HMG-14 SKBR3 (membrane)
SRP14 Signal recognition particle 14 kDa protein SKBR3 (membrane)
FLNC Filamin-C* MDA231 (secreted)
PTX3 Pentraxin-related protein PTX3 MDAZ231 (secreted)
TGEFB2 Transforming growth factor beta-2 MDA231 (secreted)
CSPG4 Chondroitin sulfate proteoglycan 4 MDA231 (secreted)
LRP1 Prolow-density lipoprotein receptot-related protein 1 MDA231 (secteted)
SRGN Serglycin MDAZ231 (secreted)
MYOF Myoferlin MDA231 (secteted)
CFH Complement factor H MDA231 (secteted)
CSF1 Macrophage colony-stimulating factor 1 MDAZ231 (secreted)
EDIL3 EGF-like repeat and discoidin I-like domain-containing MDAZ231 (secreted)
FLNC Filamin-C* MDA231
GNAO1 Guanine nucleotide-binding protein G(o) subunit alpha MDA231
LBR Lamin-B receptor MDA231
MICAL2 Protein-methionine sulfoxide oxidase MICAI2 MDA231
SSR1 Translocon-associated protein subunit alpha MDA231
NRP1 Neuropilin-1 MDA231
NES Nestin MDA231
LDHB L-lactate dehydrogenase B chain MDA231
RAB32 Ras-related protein Rab-32 MDA231
FMNL3 Formin-like protein 3 MDA231
(membrane)

* Changes were observed in both the secreted and membrane fractions of the same cell line.

For the functional proteome analysis, proteins that were exclusively present in all three cancer cell
lines were combined with the proteins that were significantly up-regulated in the breast cancer
cells relative to HMEC. This created a list of 589 breast cancer-related proteins. Similarly,
proteins that were only expressed in HMEC were combined with proteins which were
significantly down-regulated in the breast cancer cells relative to the HMEC, generating a list of
173 non-breast cancer-related proteins. Accessing the two groups of breast cancer- and non-
breast cancer-related proteins for an enrichment of GO biological processes above the
“background” distribution revealed that these abundant proteins have biological functions
grouped into five major clusters (Figure 2.10). The four major biological processes associated

with abundant breast cancer-related proteins were nucleobase-containing small metabolic
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process, regulation of protein metabolic process, negative regulation of cell death, cell junction
assembly and cellular component disassembly. On the other hand, proteins associated with
hemidesmosome assembly and extracellular matrix (ECM) organization were predominantly
under-represented amongst the breast cancer-related proteins. Interestingly, ECM organization is
found within the cluster represented by cellular component disassembly comprising of proteins

over-expressed in breast cancer.
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Figure 2.10 Over- (red) and under- (green) represented proteins in the investigated breast cancer cell lines
relative to proteins derived from the normal non-tumorigenic breast cell line were mapped to five major
clusters of biological processes. Each cluster is a network of closely related biological processes in which
the one with the most number of mapped proteins is highlighted in bold. Biological processes significantly
different from the normal cell line are indicated as * P < 0.05; ** P < 0.005; *** P < 0.0005.
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The web-based tool known as STRING (http://string-db.otrg/) [311] was used to further analyze
protein-protein interactions that occurred in a few of the altered biological processes. In the
largest cluster of regulated biological function (“The regulation of protein metabolic process”),
protein interactions were observed to center around three groups of proteins (Figure 2.11). One
group consisted of a dense intricate web of protein subunits of the proteasomes and proteasome
activators suggesting a deregulation in the protein degradation in the breast cancer cells. Another
group comprised a closely related network of translational initiator factors including eukaryotic
translation initiation factor 4 gamma 1 (EIF4G1) and eukaryotic translation initiation factor 3
subunit K (EIF3K). The third group showed interactions between several breast cancer-
associated proteins such as the vascular endothelial growth factor A (VEGFA), mitogen-activated
protein kinase 1 (MAPKI), ras-related C3 botulinum toxin substrate 1 (RAC), 14-3-3 protein

gamma (YWHAG), exportin-1 (XPO1) and GTPase NRas (NRAS).

Similatly, protein-protein interaction networks for the proteins which were found to be down-
regulated in breast cancer in the clusters of “hemidesmosome assembly” and “extracellular matrix
(ECM) organization”, including the co-cluster of up-regulated proteins in “cellular component
disassembly” (see Figure 2.10), were visualized using STRING (Figure 2.12). Protein interaction
networks consisting of the highly expressed ribosomal proteins, mainly derived from the
membrane fraction, and the poorly expressed secreted laminins and collagen proteins, were
evident. The investigated over- and under-represented proteins mostly congregated within the
same network. A few over-expressed proteins were found closely associated with the under-
expressed proteins, including laminin subunit alpha-5 (LAMAS), collagen alpha-1(V) chain
(COL5A1), alpha-2-macroglobulin-like protein 1 (A2M) and disintegrin and metalloproteinase

domain-containing protein 9 (ADAMY).
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Figure 2.11 Protein-protein interaction map of proteins in the major cluster of biological processes
represented by “The regulation of protein metabolic process” (see Figure 2.10 for more) shows three
groups of closely associated protein groups (red circles).
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Figure 2.12 Protein-protein interaction map of proteins under-represented in breast cancer cell lines
relative to normal breast cells (green box) found in the clusters of “Hemidesmosome assembly” and
“Extracellular matrix organization” and over-represented proteins (red box) in the associated cluster
“Cellular component disassembly”. Proteins not within color boxes were either not differentially
expressed or not present in the datasets.
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Figure 2.13 The major clusters of biological processes associated with the identified up- and down-
regulated proteins in the individual breast cancer subtypes. Only data subsets yielding specific clusters of

biological processes are included here. No clusters were obtained for MCF7 and MDA231 down-regulated
proteins
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Proteins found at the border between the networks of proteins over- and under-represented in
breast cancer were of particular interest such as plectin (PLEC), matrix metalloproteinases-
2/9/10 (MMP2, MMP9, MMP10), transctiption activator BRG1 (SMRCA4) and basigin (BSG).
In particular, plectin was observed to be a key mediator between the network of over-represented
ribosomal proteins and under-presented extracellular matrix components including the laminins

and collagens.

2.3.5 Differential expression of subtype-specific proteins in breast cancer

The three breast cancer cell lines studied are representative of three breast cancer subtypes,
namely, MCF7 for the luminal subtype, SKBR3 for the HER2-enriched subtype and MDA231
for the triple negative subtype. Comparative proteome analysis between the “normal” reference
cell line (HMEC) and each of the breast cancer cell lines indicated subtype-specific changes.
Next, the subtype-specific changes at the functional level were determined by mapping the
regulated protein to biological processes and pathways for better understanding of the underlying
molecular mechanisms associated with each subtype. The subtype-specific analysis included
proteins that were uniquely expressed and differentiated in each subtype. To improve the
specificity of the analysis, redundant proteins between the cell lines were removed. In total, 1,074,
882 and 838 proteins for MCF7, SKBR3 and MDA231, respectively, were used to assess
potential enrichment of GO biological process terms and perform pathway analysis. The
biological processes GO terms significantly enriched (P < 0.05) for each subtype are shown in
Figure 2.13. No enrichments were observed for under-represented proteins in MCF7 and
MDA231. Over-represented proteins in each subtype were found to be involved in a wide
spectrum of biological functions including various cellular metabolic processes for MCFE7;
nuclear transport and sphingolipid metabolic process for SKBR3; and cell migration, locomotion,
regulation of cell adhesion and wound healing for MDA231. The key biological processes

observed in MDA231 supports the highly invasive and metastatic nature of this breast cancer cell
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line. The metabolic processes observed in MCEF7 and SKBR3 may be restricted to less metastatic
cells or early stages of tumorigenesis. Similarly, pathway analysis revealed increased perturbations
in the extracellular matrix organization and L1CAM interactions in MDA231, both of which are
known to promote cell migration and invasion (Figure 2.14). An interesting observation was that
all three breast cancer subtypes shared a common up-regulated pathway, associated with G
protein-coupled receptor (GPCR) signaling. Given that redundant proteins between the three
subtypes were removed to increase the specificity of the analysis, the GPCR signaling in each
breast cancer subtype apparently involved three different clusters of proteins, which may affect
cellular transformation via different intracellular signaling mechanisms. Analysis of protein-
protein interaction networks, using STRING revealed small subsets of proteins that were key
integrators of the entire protein network (Figure 2.15). In MCF7, the majority of the proteins
including calmodulin (CALMT1), guanine nucleotide exchange factor (VAV2) and ras GTPase-
activating-like protein IQGAP1) were shown to cluster around cell division control protein 42
homolog (CDC42), a GTPase protein involved in regulating diverse signalling pathways that
control cell morphology, cell migration and cell growth. In SKBR3, epidermal growth factor
receptor (EGFR) is observed as the core protein in the network, associating with rho-related
GTP-binding protein (RHOB) and growth factor receptor-bound protein 2 (GRB2), both of
which have important regulatory roles in signal transduction. Two large and one smaller cluster
of protein interaction networks were observed for MDA231. The two larger networks were
focused around cyclin-dependent kinase 1 (CDKI1) and lysophosphatidic acid receptor 1
(LPAR1) while the smaller cluster contained two proteins, namely, rho-associated protein kinase
2 (ROCK2) and rho-related GTP-binding protein (RHOG). Most of the proteins found in the
GPCR signalling pathway of MDA231 were associated with LPARI, including guanine
nucleotide-binding protein G(o) subunit alpha (GNAO1), heme-binding protein 1 (HEBP1),

annexin Al (ANXA1) and metastasis-suppressor KiSS-1 (KISS1).
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Figure 2.14 Pathway analyses of up- (left) and down- (right) regulated proteins associated with the

individual breast cancer subtypes.

Further analysis was performed to interrogate the protein-protein interaction in the L1ICAM

interactions and extracellular matrix organization pathways observed in MDA231. The resulting

protein-protein interactions featured an intricate network that centered on closely related

proteins, including cell adhesion proteins (integrins and L1CAM), ECM structural proteins

(laminins), basement membrane proteins (collagens) and the cell surface proteoglycan protein
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syndecan-4 (SDC4) (Figure 2.16). Two proteins, VEGFA and MAPKI1, with altered protein
expression, involved in the regulation of cellular metabolic process, were also observed in this

network.

(a)

© RO

1G]

Figure 2.15 Protein-protein interaction network analysis using STRING of proteins observed in the
GPCR signalling pathway specific to (a) MCF7, (b) SKBR3 and (c) MDA231. Proteins marked in red
boxes are present in the specific datasets.
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Figure 2.16 Protein-protein interaction map of over-represented proteins in MDDA231 in the categories of
L1CAM interaction (marked in *) and ECM organization (marked in red boxes). Proteins in yellow ovals
were present in all breast cancer cell lines, but absent in HMEC.

2.3.6 Proteomics-based clustering of tumorigenic and breast cancer subtypes

Hierarchical cluster analysis and principal component analysis (PCA) were performed to evaluate
the relationship of the secreted and membrane protein expression profiles with the known
differences in genotype and phenotype of the four investigated breast epithelial cell lines. To
achieve this, hierarchical clustering with Pearson correlation were applied to the log-transformed
NSAF values of the identified proteins that were differentially regulated between the breast
tumorigenic cell lines and HMEC. Two major clusters were observed in the dendrogram, with
HMEC evidently well separated from the other three breast cancer cell lines albeit a better
segregation (greater distance) between the two clusters were achieved for the secreted protein
profiles (Figure 2.17a-b). Similar trends were observed in PCA analysis, which showed a clear
division between cancer and non-cancer samples and a segregation of secreted proteins between

the three breast cancer subtypes (Figure 2.17¢-d).
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Figure 2.17 Dendrogram cluster analysis using hierarchical clustering and 3D plot of PCA of membrane
protein (a, ¢) and secreted protein (b, d) profiles of the four epithelial breast cells investigated. PC1,
principal component 1; PC2, principal component 2; PC3, principal component.

2.4 Discussion
Although considerable time and efforts have been invested in the molecular research of breast
cancer, there remains a lack of definitive early-stage biomarkers for the onset and recurrence of

the disease and limited drug targets for aggressive forms of breast cancer are available. Early
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detection in breast cancer is crucial as it can enhance the disease prognosis and increase the
survival rate of affected patients due to the availability of more effective treatment options.
Breast cancer is a highly heterogeneous disease defined by multiple cellular and molecular
subtypes characterized by varied clinical outcomes. It is hope that a better understanding of the
underlying molecular mechanisms in breast cancer pathogenesis eventually will facilitate the
development of efficient therapeutics and prognostic/diagnostic matkers. In this study, a label-
free quantitative LC-MS/MS based shotgun proteomics approach was applied to investigate the
proteome changes in the secretory and membrane subcellular fractions of several tumorigenic
(three subtypes) and non-tumorigenic breast cell lines and performed in-depth functional
comparisons of the protein expression levels to identify deregulated proteins and protein

networks and pathways within the individual breast cancer subtypes.

A key concern associated with investigating the secretome (secreted fraction) of cell lines is the
potential contribution of intracellular proteins as a result of cell death induced by the serum-free
conditions. Intuitively, longer duration of serum starvation leads to increased cellular apoptosis.
Serum deprivation beyond the 48 hour incubation has been shown to result in a dramatic
increase in cell lysis resulting in the release of the abundant intracellular proteins into the
condition media [312]. In the same study, higher secretome contents were obtained following 48
hour incubation compared to 24 hour incubation with virtually unchanged cellular viabilities and
protein profiles in excellent agreement with our observations presented here. Very often, cells
stress can lead to ER stress, disturbing protein folding and leading to the activation of unfolded
protein response (UPR), which could potentially modulate cellular characteristics [302]. The lack
of many ER stress marker proteins suggest that there is minimal cellular stress, hence the 48 hour
incubation in serum-free conditions accurately captures the “true” secretome of the cultured

breast cells.
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On the other hand, it became clear that the membrane fraction did not accurately reflect the cell
surface proteins but enriched for most membrane bound proteins from multiple intracellular
organelles or microsomes. In support of this observation, the majority of the identified
membrane proteins were biologically associated with cellular metabolic processes and
macromolecule localization or transportation. Additionally, this may result in the secreted protein
profiles generating a clearer division between the breast cancer subtypes compared to that

achieved by the membrane protein profiles.

The phase separation of integral membrane proteins using non-ionic detergent Triton X-114 was
first investigated by Bordier [313] and has been shown in several studies to be effective in
enriching this class of proteins [314]. However, beside cell surface proteins, the integral
membrane proteome also included those derived from all other membrane e.g. ER, Golgi,
nucleus and mitochondria. Moreover, many non-integral membrane proteins were identified. The
sonication step during extraction may have momentarily disrupted the membranes which are
quickly re-assembled thereby possibly trapping some non-integral membrane proteins within the
lipid bilayer. The use of Triton X-114 is therefore not an efficient approach to isolate cell surface
proteins for proteomics and glycomics studies. Cell surface specific extraction ie. selective
biotinylation of the cell surface proteins was also successfully employed to enrich and purify the
cell surface proteome as has been published before [292]. This method was adopted in Chapter 4
for the isolation of cell surface proteins of selected breast cancer cell lines. Further work is
needed to isolate the cell surface proteomes from the remaining cell lines for cell surface specific

proteomics and glycomics analyses.

Analysis of the secretome suggests that the non-classical pathways are the major mechanisms by
which the secreted proteins in breast cancer cells reach the extracellular space. Several MS-based

proteomics studies of the secretome have reported the presence of many intracellular proteins,
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such as cytoskeletal, ribosomal, nuclear and chaperone proteins, in the conditioned media of
cultured cancer cells, in addition to the common extracellular secreted proteins [53, 101, 312,
315]. Amongst the various non-classical secretory pathways, protein secretion via exosomes has
been intensely researched in recent years. Exosomal protein secretion has been associated with
numerous cancers including melanoma, ovarian cancer, colorectal cancer, liver cancer and breast
cancer [141, 316-319]. It is increasingly evident that proteins residing in exosomes may modulate
cell-cell communication, thereby promoting cancer invasion and metastasis via various signaling
mechanisms [305]. In this study, no specific isolation of exosomes was performed, yet a
significant proportion of the secreted proteins were associated with exosomes. As one of the
main aims of this study was to characterize the secretome in a global manner, no further analysis
was performed for the exosomes. However, these findings suggest that a separate investigation of

exosome secretion is warranted in breast cancer cell lines.

Both the secreted and membrane fractions are rich sources of potential protein biomarkers and
drug targets. In particular, breast cancer cells were shown to secrete almost twice as many
proteins known to be implicated in breast cancer, compared to non-cancer cells. To reduce false
positive identification, each protein identified must be present in all three replicates of each
sample and with a minimum of two unique peptides and a total minimum of five spectral counts
in all replicates. The combined proteomics datasets from the secreted and membrane fractions
and the multiple breast cancer subtypes identified over 3,000 non-redundant proteins, which
included the protein homologs of the same family that were grouped together. Many were known
to be involved in key biological roles including regulation of cell growth, cell-cell communication,
cell adhesion and immune responses. Using the label-free quantification approach with strict
identification criteria and a strong fold change with p-value less than 0.05, these proteins were
found to be significantly regulated and by different mechanisms in the investigated breast cancer

subtypes. A few themes central to breast cancer biology emerged from the comparative protein
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profiling analysis; perturbations in the cellular metabolic processes, cytoskeletal organization and
extracellular matrix were general alterations observed in breast cancer cell lines. Specifically,
cellular hyper-activities were associated with the proteasomes, translational initiation factors and a
number of proteins with diverse functions as signaling molecules (MAPK1, YWHAG, RAC1),
growth factors (VEGFA), chaperones (ANP21B) and transporters (XPO1). These networks of
regulated proteins were observed to be intricately connected, indicating that a combination of
events including protein degradation, DNA repair, cell death and regulation of gene expression

were orchestrated in breast tumorigenesis.

In the absence of subsequent verification using clinical samples, these proteins were validated
stlico using The Human Protein Atlas (http://www.proteinatlas.org), which is a publicly available
database portal where an antibody-based approach has been extensively used to explore the
human proteome. Many proteasomes such as PSMC3, PSMA3, PSMB7, PSMB3, PSMD13,
PSME3, USP14; initiation factors such as EIF3B and EIF4G1; XPO1 and YWHAG showed
moderately to strong immunochemical staining in malignant breast tissues. Many of these
proteins have well established roles in breast cancer [320, 321] and have been actively targeted in
therapeutic studies [322-324]. Interestingly, inhibition of the catalytic activity of proteasomes was
shown to increase anti-apoptotic processes by down-regulating the MAPK signaling pathway,
which is crucial in pathological cell proliferation [325]. Over-expression of XPO1, a nuclear
export protein, has been demonstrated to drive the development of breast cancer and its
inhibition was shown to be a promising anti-tumor strategy to suppress the progression of
invasive breast cancer [326]. However, these potential biomarker proteins have not been
sufficiently validated e.g. using targeted proteome strategies such as selective reactive monitoring

(SRM) /multiple reactive monitoring (MRM), which is needed for clinical utility.
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The ECM and cytoskeletal organization were deregulated in the investigated breast cancer
subtypes supporting the notion that alterations in these processes promote oncogenic
transformation in breast cells [327-330]. The cytoskeleton and ECM proteins dynamically interact
with one another to maintain the structural integrity of cells. In the tumor microenvironment,
remodeling of the cytoskeleton architecture and the aberrant expression of specific ECM
components underlie a process known as epithelial-mesenchymal-transition (EMT), where cells
lose their epithelial polarity to acquire the migratory mesenchymal cell phenotype [182]. EMT is
mediated by the re-organization of cytoskeleton components, an increase in integrin-based
adhesion and a loss of expression of hemidesmosome proteins or degradation of underlying
basement membrane (BM); all events will contribute to the enhanced migration and invasion of
tumor cells [178, 331]. A higher expression of several cytoskeletal proteins was observed in breast
cancer including various keratins, desmoplakin (DSP), filamins, spectrins and the cytoskeletal-
associated PLEC. Increased integrin expression was mainly restricted to MDA231.
Simultaneously, expression of hemodesmosomes as well as basement membrane proteins such as
laminins and collagens, which are involved in cell-matrix adhesion were reduced. Interestingly,
the intermediate filament VIM, which is an established EMT marker, was up-regulated in
MDA231, down-regulated in SKBR3 and absent in MCF7. Amongst the three investigated breast
cancer cell lines, MDA231 is considered to be the most invasive and metastatic cell line [332]. In
effect, the majority of these proteins such as the cytoskeletal proteins, basement membrane
proteins and intermediate filament proteins are part of a complex protein network described as
the “integrin adhesome”, i.e. large adhesion complexes at the cell interface that allow cells to
detect and respond to multiple extracellular signals and consequently affecting the cell adhesion,
migration and cytoskeletal organization [333]. Of this subset of proteins, PLEC and VIM may
have great promise as cancer biomarkers and drug targets since their ablation indicated a
modulation of the cancer cell invasion and metastasis potential by disrupting the formation of

filamentous network in the ECM [334].
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Another aim of this study was to identify breast cancer subtype-specific proteome changes. The
analysis revealed that the GPCR signaling pathway, which occurred as a major signal transduction
pathway, was mediated by different subsets of proteins in the individual breast cancer subtypes.
The GPCRs constitute the largest and most diverse group of integral membrane receptors that
bind to an array of external ligands including chemokines, hormones and neurotransmitters.
Upon ligand binding, signals are transduced via the G proteins which are closely associated to the
GPCRs and a cascade of events are then triggered leading ultimately to a specific cellular
response such as gene expression [335]. Aberrant expression of components related to the GPCR
signaling pathway can therefore have adverse effects on the cell growth and proliferation leading
directly or indirectly to tumorigenesis. At present, 60% of current cancer drugs target the
GPCRs.[336] Although our datasets did not identify any major GPCRs, several G proteins and
downstream effectors, such as GTPases were well represented in the identified proteomes.
Similarly, such G protein-related gene products were previously observed in the enriched plasma
membrane fractions derived from several breast cancer cell lines including MCF7, SKBR3 and
MDA231. [45] In this study, subtype-specific G proteins were observed including GNAS for
MCF7, GNA11 for SKBR3 and GNAO1 for MDA231. These proteins have previously been
linked to several other cancer types e.g. GNAS in pancreatic cancer [337], GNAO in gastric
cancer [338] and GNA11 in melanoma [339]. However, their roles in breast cancer have not yet
been reported. Recently, siRNA screening identified that amplification of GNAS gene locus may
contribute positively to the pathogenesis of ER-positive breast cancer [340]. The analysis here
showed that signaling of GPCR in MCF7 may be mediated through the activation of cdc42, a
member of the Rho family of GTPases. Activation of EGFR in SKBR3 and LPAR1 in MDA231
suggested that cross-talks exists between the GPCR signaling pathway and the pathways of

EGFR and LPA, respectively.
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2.5  Conclusion

The high degree of interconnectivity between networks of altered proteins in breast cancer as a
general pathology and within the individual breast cancer subtypes indicates that reliable breast
cancer biomarkers and therapeutic targets may be discovered from improving our understanding
of their functional roles and their interaction within the tumor environment. Utilizing an 7 vitro
model system such as cultured breast epithelial cell lines allowed the mapping of breast cancer-
and subtype-specific proteome alterations without the molecular and cellular complexity
observed in tissues albeit with the potential caveat that the cell cultures may not reflect the
natural 7z vivo system. Bioinformatics-assisted pathway analysis of the function and connectivity
of the large proteome maps provided molecular insights into the underlying pathological
mechanisms of the highly complex breast cancer biology. Crucially these semi-automated
approaches were built on high quality proteome data, followed by label-free quantitative L.C-
MS/MS based proteomics to identify differential protein expression in the secreted and
membrane protein fractions derived from the four investigated breast epithelial cell lines. Protein
profile features associated with individual breast cancer subtypes were discerned. Breast cancer-
and subtype-specific proteins may serve as potential cancer biomarkers and therapeutic drug
targets due to their involvement in the aberrant biological processes or pathways central to breast

cancer progression, invasion and metastasis.
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CHAPTER 3

STRUCTURAL ANALYSIS OF N-
GLYCOME CHANGES IN BREAST
CANCER

Over half of the mammalian proteome is estimated to be glycosylated. Many important
biological processes are mediated through the glycans attached to the glycoproteins. The
membrane proteome and the secreted media of cultured cancer cells are a rich reservoir of
glycoproteins. Analysis of N-glycans released from these proteins offers a unique opportunity
to study subcellular-specific N-glycosylation changes in cancer. This chapter is made up of
two parts. Part 1 is presented as a publication as the first study to investigate N-glycan
changes on secreted glycoproteins from a panel of breast cancer cell lines. To our knowledge,
N-glycan profiling and characterization in the secretome of breast cancer cell lines have not
been systematically investigated. Part 2 focuses on N-glycome analysis of membrane proteins
extracted from the same panel of cultured breast epithelial cells.
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Part 1

Publication II - Comprehensive N-glycome
profiling of cultured human epithelial breast
cells identifies unique secretome /V-
glycosylation signatures enabling
tumorigenic sub-type classification
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William S. Hancock, and Susan Fanayan (2014) Comprehensive N-Glycome Profiling of Cultured Human
Epithelial Breast Cells Identifies Unique Secretome N-Glycosylation Signatures Enabling Tumorigenic
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ABSTRACT: The secreted cellular sub-proteome (secre-
tome) is a rich source of biologically active glycoproteins. N-
Glycan profiling of secretomes of cultured cancer cells
provides an opportunity to investigate the link between
protein N-glycosylation and tumorigenesis. Utilizing carbon-
LC—ESI-CID-MS/MS of protein released native N-glycans,
we accurately profiled the secretome N-glycosylation of six
human epithelial breast cells including normal mammary
epithelial cells (HMEC) and breast cancer cells belonging to
luminal A subtype (MCF7), HER2-overexpressing subtype
(SKBR3), and basal B subtype (MDA-MB157, MDA-MB231,
HS578T). On the basis of intact molecular mass, LC retention
time, and MS/MS fragmentation, a total of 74 N-glycans were
confidently identified and quantified. The secretomes comprised significant levels of highly sialylated and fucosylated complex
type N-glycans, which were elevated in all cancer cells relative to HMEC (57.7—87.2% vs 24.9%, p < 0.0001 and 57.1—78.0% vs
38.4%, p < 0.0001—0.001, respectively). Similarly, other glycan features were found to be altered in breast cancer secretomes
including paucimannose and complex type N-glycans containing bisecting #1,4-GlcNAc and LacdiNAc determinants. Subtype-
specific glycosylation were observed, including the preferential expression of @2,3-sialylation in the basal B breast cancer cells.
Pathway analysis indicated that the regulated N-glycans were biosynthetically related. Tight clustering of the breast cancer
subtypes based on N-glycome signatures supported the involvement of N-glycosylation in cancer. In conclusion, we are the first
to report on the secretome N-glycosylation of a panel of breast epithelial cell lines representing different subtypes.
Complementing proteome and lipid profiling, N-glycome mapping yields important pieces of structural information to help
understand the biomolecular deregulation in breast cancer development and progression, knowledge that may facilitate the
discovery of candidate cancer markers and potential drug targets.
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B INTRODUCTION

Breast cancer is the most frequently diagnosed cancer in
women worldwide. According to World Health Organization
(WHO), the disease accounted for around 14% of all female
cancer-related mortalities in 2008, and this figure is estimated
to double by 2030." The five-year survival rate for localized
breast cancer is almost 99% but falls drastically to 24%
following tumor metastasis.” This implies that breast cancer is
highly curable if diagnosed early, which may be facilitated by
identification of specific and sensitive biomarkers for early and
accurate detection.

A significant challenge with the identification of suitable
biomarkers for early detection lies in the heterogencous nature
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of breast cancer pathogenesis. Breast cancer diagnostics are
heavily based on histological examination and molecular testing
of tumor tissues for staging, grading, and subtyping of the
disease. In particular, knowledge of molecular marker status
such as estrogen receptor (ER), progesterone receptor (PR),
and epidermal growth factor receptor 2 (HER2) has
contributed to successful targeted therapy.® Gene expression
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profiling has revealed the capability of these receptors in
segregating the disease broadly into five major subtypes,
namely, luminal A (ER positive and/or PR positive, HER2
negative), luminal B (ER positive and/or PR positive, HER2
positive}, HER2-enriched (HER2 positive), basal-like (ER
negative, PR negative, and HER2 negative), and normal-like.*
The basal-like subtype is also known as triple-negative breast
cancer due to the absence of the three markers. In breast cancer
cell lines, gene expression profiling further identified two
distinct subgroups in the basal-like subtype: basal A and B®
Each subtype is strongly associated with different prognoses of
the disease, with better survival outcomes observed in luminal
A and HER2-enriched subtypes and significantly poorer
prognosis in basal-like subtype. Moreover breast cancer patients
with luminal A and HER2-enriched subtypes respond positively
to targeted treatment using hormone therapy and monoclonal
antibody {Trastuzumab), respectively. In contrast, patients with
basal-like tumors lack targetable treatment and have limited
therapy options, which include surgery and chcmnthcrapy.ﬁ
Current clinically approved serum biomarkers, such as CA15-3
and carcinoembryonic antigen, lack specificity and sensitivity
and are not suitable for screening and early detection of the
disease.” To improve prognosis outcome for these patients, a
better understanding of the underlying molecular mechanisms
involved in the highly aggressive and metastatic nature of basal-
like subtype is clearly needed in order to identify suitable
biomarkers for early diagnosis and as potential therapeutic
targets.

Proteomic analyses have identified many secreted and
membrane proteins that are involved in tumorigenesis. More
than half of these are glycosylated, carrying either N- or O-
linked glycans. The N-glycans are known to facilitate essential
biological functions of glycoproteins such as cell growth,
proliferation, and differentiation; cell—cell or cell-matrix
interactions; and immune I.'CSPOJ:)SES.s It is now evident that
altered N-glycans play key roles in disrupting these functions
and contribute to the development and I;mgrcssinn of different
cancers including those of the colon, pancreas,w breast,"!
uvar_',',u prostate, * and liver."* Sensitive and accurate profiling
of protein glycans is now possible due to gradual advances in
LC-MS/MS tcclmologics.ls Comprehensive structural eluci-
dation and quantitative analysis of N-glycans have been
performed on various types of breast cancer samples including
breast tumor tissues, serumn of breast cancer Pulienls, and
membrane proteins of breast cancer cell lines.*'**% These
analyses revealed common aberrant features of N-glycosylation
such as the relative increase of fucosylation, sialylaton, £1,6-
GleNAc branching, high mannose, and Lewis type determi-
nants, which correlate with poor disease prognosis. Such
transformations may be accompanied by concomitant changes
in expression levels of the processing glycosidases and
glycosyltransferases."”” Therefore, understanding the molecular
changes at the glycome level may provide clues on irregularities
of protein glycosylation that drive the invasive and metastatic
behaviors of breast tumor cells. Since many biomarkers are
glycoproteins, this in turn can aid in identifying suitable early
diagnostic and prognostic biomarkers and effective drug targets.

To our knowledge, few studies have performed detailed
profiling and characterization of N-glycosylation on proteins
secreted [rom breast cancer cell lines. Secretions from cancer
cell lines reprasent an excellent source of glycoproteins. Unlike
serum, which is highly complex and carries secreted
glycoproteins from various cellular tissues such as stroma or
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liver, the homogeneity of cancer cell secretions preclude
contaminations from other cell types and hence allow for
detection of cancer-specfic N-glycan changes.

The aim of this study is to map and compare the secretome
N-glycomes of a panel of breast cancer cell lines. On the basis
of existing literature, we hypothesize that unique N-
glycosylation signatures exist in non-cancer and breast cancer
cell lines as well as within the subtypes of breast cancer. Such
molecular signatures may serve as potential tumor markers and
advance our understanding of the involvement of protein N-
glycosylation in cancer- and subtype-specific malignant trans-
formation. In this study, we used a non-tumorigenic breast
epithelial cell line derived from primary human mammary
epithelia cells (HMEC) as a normal reference and five breast
cancer cell lines representing different breast cancer subtypes,
namely, luminal A (MCF7), HER2-enriched (SKBR3)}, and
basal B (MDA-MB-157, MDA-MB-231, HS578T). Using
porous graphitized carbon (PGC)-negative ion-LC—CID-MS/
MS of reduced but otherwise native N-glycans released from
their proteins, we profiled the N-glycomes of secreted proteins
of these cell lines and identified key glycosylation pathways
deregulated in breast cancer. Our results revealed significant
tumorigenic and breast cancer subtype-specific N-glycosylation
signatures, including alterations in glycoprotein sialylation,
fucosylation, GlcNAc branching, terminal Lewis determinants,
bisecting GleNAc, and N,N'-diacetyllactosamine (LacdiNAc).

B MATERIALS AND METHODS

Breast Cell Origin and Collection of Secretomes

Human mammary epithelial cells (HMEC) were purchased
from Lonza (CC-2551, Walkersville, MD). Human breast
cancer cell lines MCF7, SKBR3, MDA-MB-157 {MDA157),
MDA-MB-231 (MDA231), and HS578T were obtained from
American Type Culture Collection (Manassas, VA). HMEC
was grown in HiMEC Ready Media (Invitrogen, CA). The five
breast cancer cell lines were grown in RPMI (Sigma, MO)
supplemented with 5% FBS ({lnvitrogen, CA), 10 mM
glutamine (Invitrogen, CA), and 10 gg/mL insulin. Cells
were maintained at 37 °C in 5% CO, for all experiments. Each
cell line was grown in triplicate to around 80% confluency,
washed at [east four times with ice-cold PBS to remove traces of
FBS, and incubated in serum-free media at 37 °C in 5% CO,
for 48 h. Conditioned media containing the serum-free secreted
proteins were collected, followed by centrifugation at 2,000 x g.
Supernatant was collected and concentrated, followed by buffer
exchange with PBS {1x) using Amicon Ultra centrifugal filter
devices with a 10,000 molecular weight cutoff membrane
(Millipore, MA). The concentrations of secreted proteins were
measured using Bradford reagent (Sigma, MO) to determine
the total amount of proteins secreted by each cell line.

Cell Proliferation Assay

Cells were seeded at 1.3 X 10% cells/mL/well in six-well plates
and incubated overnight at 37 °C in 5% CO, Cells were
counted every 24 h over a 4-day period using a cell counter
(Biorad, CA). The doubling time for each cell line was
determined from their exponential growth phase.

Release of N-Glycans from Secreted Proteins for
LC-MS/MS Analysis

N-Glycans were released from approximately 20 ug of secreted
proteins as previously described®™ Briefly, proteins were
precipitated with acetone overnight at —20 °C. Following
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solubilization in 8 M urea, proteins were immobilized on
methanol-activated PVDF membrane {Millipore, MA) and
alowed to dry overnight. Membrane-bound proteins were
incubated with 2.5 U of PNGase F (Flavobacterium
meningospeticunt) for 16 h at 37 °C to ensure complete release
of N-glycans. Released N-glycans were incubated with 100 mM
ammonium acetate {pH 5} for 1 h at RT and subsequently
dried by vacuum centrifugation. Reduction of N-glycans was
performed with 20 yL of 1 M sodium borohydride (Sigma,
MO} in 50 mM potassium hydroxide (Sigma, MO} for 3 h at
50 °C. Reduced samples were quenched with 2 ul. of glacial

acetic acid and desalted as described below.
Desalting of Reduced Native N-Glycans

Strong cation exchange columns were packed on top of Zip'Tip
C18 columns (Millipore, MA), using 30 uL of AG 50W X8
cation exchange resin (Biorad, CA). Columns were washed
three times sequentially with 50 gL of each of the following: 1
M HC, methanol, and water. N-Glycan mixtures were added to
the prepared columns, and the flow-through fractions were
retained. Columns were washed twice with 50 ul. of water, and
the flow-through fractions were pooled with the initial fractions
and dried by vacuum centrifugation. Residual borate was
removed by adding 100 gL of methanol, and samples were
allowed to evaporate in the vacuum centrifuge. This step was
repeated 4—5 times until the white borate residue disappeared.
The desalted samples were kept at =80 “C if not desalted
immediately with carbon.

Carbon resin obtained from carbon SPE cartridges (Grace,
IL} was suspended in 50% methanol. Small carbon columns
were prepared by adding 5 gL of carbon slurry onto an empty
TopTip (G]ygt'n, MD). Carbon columns were washed
sequentially with 30 pl. of 90% acetonitrile containing 0.1%
{v/v} TFA, 40% acetonitrile containing 0.1% {v/v) 'I'FA, and
water. Samples were dissolved in 15 gl of water, applied to the
columns, and washed twice with water. All flow-through
fractions were discarded. Desalted glycans were eluted with 20
pL of 40% acetonitrile containing 0.1% (v/v) TEA and dried by
vacuum centrifugation. Samples were stored at —80 °C if not
analyzed immediately.

Analysis of N-Glycans by Mass Spectrometry

N-Glycan alditols were separated using porous graphitized
carbon {PGC) LC columns (5 gm Hypercarb KAPPA, 100 mm
X 0.2 mm, ThermoFisher, MA} using a Dionex HPLC system
{Ultimate 3000) connected directly to an ESI-MS/MS Bruker
HCT Ultra ion trap mass spectrometer. Separation was
performed using a binary gradient solvent system made up of
solvent A {10 mM NH,HCO,} and solvent B {90% ACN/10
mM NHHCQ,). The flow rate was 2 xL/min, and a total
gradient of 100 min was programmed as follows: 0—2.5%
solvent B for 0—13 min; 2.5—17.5% solvent B for 14—48 min;
17.5—50% solvent B for 48—65 min; 50—100% solvent B for
65—75 min; 100% solvent B for 75—80 min; back to 0% solvent
B for 80—85 min and 100% solvent A equilibration for 15 min.
Settings for the MS/MS were as follow: drying gas flow, 6 L/
min; drying gas temperature, 300 °C; nebulizer gas, 12 psi;
skimmer, —40.0 V; trap drive, —99.1 V; and capillary exit, —166
V. Smart fragmentation was used with start and end amplitude
of 30% and 200%, respectively. Ions were detected in ion
charge control set at 100,000 ions/scan and with maximum
accumulation time of 200 ms. MS spectra were obtained in
negative ion mode with two scan events: a full scan (m/z 400—
2,200) at scan speed of 8,100 m/z per second and data-
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dependent MS/MS scans after CID fragmentation of the top
two most intense precursor ions with threshold 30,000 and
relative threshold of 5% relative to the base peak. Dynarmic
exclusion was inactivated to ensure MS/MS generation of
closely eluting N-glycan isomers. Precursors were observed
mainly in charge states —1 and/or —2 and rarely in charge state
—3. Mass accuracy calibration of the instrument was performed
using tuning mix {Agilent, CA) prior to acquisition, and N-
glycans released from bovine fetuin served as positive controls
for the sample preparation and the LC—MS/MS performance
before each data acquisition. Differences between observed and
theoretical precursor and fragment masses were generally less
than 0.2 Da. Three LC—MS/MS technical replicates were
performed for cach cell line.

Assessing Transcriptome Differences of Selected
Glycosyltranferases of Breast Cancer Cells

The ArrayExpress database (http://www.ebi.ac.uk/
arrayexpress/) was queried for data sets with transcriptomes
of human breast cancer cell lines. The data set (E-GEOD-
48213) selected for further analysis contained transcriptional
profiling of 56 cultured breast cell lines prepared irom the
TruSeq RNA Hlumina platform and analyzed on an Agilent
Bioanalyzer High Sensitivity chip.j'] The panel included three
breast cancer cell lines (MCF7, SKBR3, and MDA231} that
were used [or subtype comparisons. Processed data were
downloaded, and transeriptomes associated with glycosylation
enzymes (glyco-transcriptomes) were selected for further
analysis,

Data and Statistical Analysis

The resulting raw data were viewed and analyzed using ESI-
Compass v1.4 {Bruker Daltonics). Monoisotopic masses were
manually obtained and searched against Glycomod (http://
wt'b.t‘xpusy.urgj’glywmml/) lo obtain possible glycan mono-
saccharide compositions. These were subsequently verified
manually by de novo sequencing of their corresponding MS/MS
spectra and their matches to recently published N-glycan data
sets.”** The relative abundance of each glycan in a sample was
determined using the ratio of the extracted ion chromatogram
(EIC) peak area of each N-glycan over the sum of EIC peak
