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Summary 
 

David Chalmers has defended a causal version
1
 of the Computational Theory of the 

Mind(CTM) by formulating an abstract computational object called a Combinatorial 

State Automata(CSA)  which he argues can cover the structure of  different abstract 

computational objects such as Finite State Automata, Turing Machines, Cellular 

Automata etc. He views implementation as the bridge between formal computation 

and physical computation. He defines implementation as an isomorphism between 

causal processes of a physical object and the formal structure of a computation. He 

uses his causal version of CTM to connect computation and cognition by defending a 

thesis of computational sufficiency and uses computation as an explanatory 

framework for cognitive processes and behaviour. In my thesis I examine Chalmers’ 

views to see whether his argument stands up to scrutiny and whether his views are 

supported by the data of neuroscience. Where there are shortcomings I modify and 

extend Chalmers’ theory to make it compliant. 

                                                 
1
 Chalmers D, (2011),  A Computational Foundation for the  Study of Cognition, Journal of Cognitive 

Science 12: 323-357 
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1. Introduction 
 

In contemporary philosophy, materialist theories of the mind have dominated 

discussion in the philosophy of mind, with versions of the Computational theory of 

the Mind (CTM) being in the mainstream. The CTM is based on the intuition that the 

mind is a computer, and mental processes involve computations.  

 

The idea of the mind as a computer program was originally proposed by Putnam 

(1960). It was based on the abstract idea of computation derived from the work of 

Turing (1936) and Church (1936) and others who formalised the notion of algorithm 

or effective procedure in mathematics. An algorithm is an explicit step by step 

procedure consisting of a set of instructions. When these instructions are carried out 

sequentially over input values it transforms them in a deterministic way into one or 

more subsequent states plus intermediate values and finally into output values. This 

makes it possible to define solutions to problems of a class which are effectively 

decidable i.e. can be mechanically done by rote by pencil and paper alone. Such a 

procedure or algorithm constitutes the machine table or program of a computer. 

 

On this view, the mind is viewed as the machine table or program of a computer.   

Another way to look upon the machine table is as a set of rules operating on one set of 

symbols to transform them into another set. For example the Rule “If a then b” 

implies that if input is symbol “a” then output is symbol “b”. Note that this rule 

assigns no meaning to the symbols “a” and “b”. Putnam’s view of CTM is cast in this 

syntactic vein of not assigning any meanings to machine tables.  As the machine table 
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or program is not a physical object the relationship between the mind and the machine 

table is not between the mind and a physical object but to an abstract object. This was 

an attraction at that time as the preceding theory of the mind, the Identity Theory of 

Smart (1959) and Place (1956) ran afoul due to its assertion of identifying mental 

states and processes with actual brain states and processes thereby unable to account 

for the multiple realisation of mental states such as “pains” in species with totally 

different physiologies. CTM was deemed more plausible and replaced the Identity 

Theory. The versions of CTM developed and proposed by Fodor (1975) following 

Putnam became for a while according to Fodor (1975, pp. 27-53) “the only game in 

town”.  

 

Fodor’s (1975) main contribution was to modify CTM by marrying the Putnam view 

of “the mind as a computer” to the view that the way in which these computations are 

done are by processing symbolic representations about the world so as to give truth-

value, reference and meaning to these representations in a manner similar to a natural 

language statement. In fact Fodor called his theory the Language of Thought 

Hypothesis which asserted that thought takes place within a mental language. 

However working out the nature of the meanings or the semantic relationship for 

mental representations turned out to be controversial and in some respects a vexed 

topic. This led to a number of moves by Fodor and his collaborators to save the day 

resulting in more than one version of his theory. His thesis is also known as the 

“semantic version” of CTM.  I discuss Fodor’s views further in Section 2.6 of the next 

chapter. 
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The main weakness of Fodor’s theory (Milkowski 2015) was that it could not offer a 

clear connection between computation at the abstract formal level and computation at 

the physical level. That is to say, it could not explain the implementation relationship 

between abstract computation as logically done by a Turing Machine and concrete 

computation as performed by a physical computer.  

 

David Chalmers (2011, pp. 325-326) on the other hand  identified the need for giving 

an account of the implementation relationship between computation at the abstract 

and physical levels  as crucial to giving an account of the mind and proposed his 

causal account of computation. He argued that by explaining this link he was able to 

make computation foundational to mentality and cognition. He saw his causal version 

of the computational theory of the mind as providing a foundation to Cognitive 

Science and Artificial Intelligence and avoiding objections made to earlier versions of 

CTM.  

 

Chalmers causal theory is based on the intuition that a system implements a 

computation when the causal structure of the physical system mirrors the formal 

structure of the computation.  His aim is to develop an account based on a rigorous 

concept of the implementation relationship between abstract or formal computation 

and computation as realised in physical systems.  While computation at a formal level 

was well understood from the work of Turing and Church however there was no clear 

account for computation as implemented in physical systems.  There is clearly a need 

for this if computation is used to explain cognition and minds as they are realised in 

physical systems, namely brains.  
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Chalmers has developed this intuition by formulating an abstract computational object 

called Combinatorial State Automata (CSA)  which he argues can cover the structure 

of  all different types of formal computational objects such as Finite State Automata 

(FSA), Turing Machines, Cellular Automata etc. FSAs and CSAs are discussed in 

detail in Section 2.2 and 2.3 respectively of the next chapter. He then brings out the 

connection between computation and cognition by arguing that the right kind of 

computational structure suffices for the possession of a mind.  Furthermore he argues 

that computation is an explanatory framework for cognitive processes and behaviour. 

I discuss in detail the link between computation and cognition in Section 2.5 of the 

next chapter. 

 

1.1 Methodology 

The methodology used in the thesis is to look at both the logical soundness of 

Chalmers’ argument and to see if it is supported by the data of neuroscience. Where 

there are any weaknesses in the argument I endeavour to see if the argument can be 

modified, extended or has to be rejected. Whereas the critical analysis strand of the 

methodology is a standard approach in a philosophy thesis, I have also brought to bear 

on Chalmers’ thesis the weight of empirical data from neuroscience. I do this by 

looking at whether extant neural processing can be looked upon as a computation and 

if so whether it is a type of computation that can be supported by Chalmers’ thesis. I 

have taken this approach because Chalmers’ says that the main purpose of his work is 

to give an account of the mind and cognition which is foundational to Cognitive 

Science and Artificial Intelligence. Therefore for Chalmers’ enterprise to be relevant 

requires examining whether his theory is compliant with neuroscience as otherwise it 

would have to be rejected.  
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The outline of the rest of the thesis is as follows. In the next chapter I examine 

Chalmers’ theory in detail.  Chapter 3 is devoted to a discussion on neuroscience and 

whether neural processes underlying cognitive processes are either a digital 

computation or an analog computation, or a hybrid computation or not a computation. 

Chapter 4 discusses whether Chalmers causal version of CTM is compliant or can be 

made compliant by modification or extension with the data about neural computation 

discussed in Chapter 3. Finally in Chapter 4 I also consider the case if neural 

processes were not a computation. I close with concluding remarks in Chapter 5. 
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2. Chalmers on Implementation and Cognition 
 

In this chapter I take a close look at Chalmers’ thesis. I discuss his analysis of the 

relationship between abstract and physical computation and how he links the latter to 

the mind and cognition.  I examine the merits of his theory and how it responds to the 

triviality arguments of Putnam (1988) and Searle (1992). Finally I cover the main 

objections raised by his critics with his replies. 

The outline of the chapter is as follows. In Section 2.1 below I discuss Chalmers’ 

causal thesis of the mind. There I look in detail at the implementation relationship 

between abstract and physical computation which is central to his account of the mind. 

Chalmers develops his theory based on an abstract computational object namely 

Combinatorial State Automata (CSA) which is an extension of Finite State Automata 

(FSA). FSA’s are crucial for the development of Chalmers’ views hence in Section 

2.2 I first discuss the nature of FSA accompanied by a detailed example of their 

functioning. I outline Chalmers discussion on implementation via FSA and their 

shortcomings.  Section 2.3 is devoted to a discussion of the definition of the CSA and 

the implementation relationship using CSA instead of FSA. In Section 2.4 I discuss 

how CSA’s can also apply to connectionist networks thereby making Chalmers’ 

theory applicable to both symbolic and sub-symbolic architectures. Having 

established the implementation relationship using CSA I turn in Section 2.5 to a 

discussion of the link between computation and cognition as envisaged by Chalmers 

with a discussion of some issues identified with his thesis of computational 

explanation. In Section 2.6 I discuss the merits of Chalmers’ theory with a discussion 

in Section 2.7 of how it overcomes the trivialisation objection raised by Putnam and 

Searle. Finally in Section 2.8 I discuss objections raised to Chalmers’ views with his 
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replies. I close the chapter in Section 2.9 with concluding remarks and prefacing the 

strategy for the rest of the thesis. 

 

2.1 Chalmers’ Causal Thesis of the Mind 

As a background to the paper Chalmers (2012, p. 212) says that he does not see his 

work posing a radically original view but squarely in the roots of Putnam’s (1960) 

original work and trying to overcome the  triviality objections of Searle (1980)  and 

the later Putnam (1988). The main subject of Chalmers causal thesis is a discussion of 

two questions. The first question is the nature of the implementation relationship 

between abstract computation (based on the mathematical theory of computation) and 

physical computation in physical systems, for example as in computers. The second 

question is about the nature of the link between physical computation and mentality in 

general and cognition in particular.   

 

I will focus on the first question before the second as Chalmers (2011) views an 

account of the nature of the implementation relation between a physical system and an 

abstract computation as the key to understanding minds and computational processes 

in cognition. This is because while the mathematical theory of computation is well 

understood however it is not clear “what is it for a physical system to implement a 

computation” (Chalmers 2011, p. 323). The idea was to give a clear account of the 

implementation relationship between an abstract computation and a physical system.  

Furthermore he posits that without a clear answer to this question the foundational 

role of computation in cognitive science cannot be justified as cognition does not 

occur in the abstract but as a physical process in the brain. 
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As mentioned earlier in Chapter 1, Chalmers’ main intuition is that for the 

implementation of an abstract computation such as a program P, the formal structure 

of P must be mirrored in the causal structure of the physical system.  

In a detailed gloss he says (Chalmers 2011, p. 326): 

“A physical system implements a given computation when there exists a grouping of 

physical states of the system into state-types and a one-to-one mapping from formal 

states of the computation to physical state-types, such that formal states related by an 

abstract state-transition relation are mapped onto physical state-types related by 

corresponding causal state-transition relation.” 

  

I explain each of the points made in detail below.  

 1) A physical system has a structure viz., electrical for a computer, electrochemical 

for a nervous system and electromechanical for a manufacturing control system to 

give three different examples. Any such physical system will be in different physical 

states at the same time.  For example having a current flowing or a voltage level for 

an electrical system; a chemical reaction occurring along with electrical activity of a 

current or voltage for an electrochemical system and a force or pressure exerted along 

with electrical activity for an electromechanical system. These different physical 

states occurring concurrently can be grouped by the requirements of the computation 

under study. For example one grouping can be by the nature of the state. All the 

electrical ones can be grouped together, as can all the chemical or all the mechanical 

ones. Similarly groupings can be done by some other features such as spatio-temporal 

factors such as all the states at particular location(s) in space or time(s). Another 

example of a grouping parameter could be all the states to produce a particular type of 

output for a particular type of input.  
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2) Sub-sets of these grouped states form a state-type such that there is a one-one 

mapping between each state-type of the physical system and an abstract 

computational state of the machine table or algorithm being implemented. The notion 

of machine table or algorithm was introduced in the previous chapter in Section 1.0. A 

one-one mapping is an isomorphic relationship between two sets or groups such that 

one member in one set or group corresponds to or picks out one and only one member 

in the other set or group. Such a mapping can be just a correlation or based on a rule. 

The rule can be just a “If a then b” type of material conditional or one that is law like 

obeying counterfactual conditionals such as “If a were to happen then b would 

happen” so that it has modal force. In the case of the material conditional the truth of 

the consequent “b” clause is tied up with the truth of the precedent “a” clause. While 

in the case of the counterfactual conditional the if clause is not true, while 

the then clause may or may not be true but certainly would be true in the 

counterfactual circumstance of the if clause being true. Given a set of statements 

about possible states of affairs the material conditional is weaker as its truth only 

applies to those that are realised in reality while the counterfactual conditional applies 

to the full set of statements irrespective of their instantiation in reality. Hence the 

counterfactual conditional is the one to express law like behaviour.  Obviously the 

strongest type of isomorphism will be the one based on the rule supporting 

counterfactuals. Chalmers above description makes no mention of the nature of the 

isomorphism. But as we will see later in the more refined versions below he argues 

for law like rules with counterfactual force in order to overcome Putnam’s and 

Searle’s well known triviality  objections. This is discussed in Section 2.7 below.  
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3) The states of a complex physical system change over time either due to internal 

changes in its structure or function or its states might change due to external 

environmental inputs. Chalmers’ analysis is via an isomorphism or one to one 

mapping between groups of physical states (i.e. state-types) that have a causal role (or 

causal topology as he terms it) and formal computational states and becomes clearer 

in my description of Finite State Machines below. 

 

Chalmers’ above description of implementation is made all encompassing by 

specifying it by a schema that covers all other computational formalisms such as 

Turing machines, Finite State Machine or cellular automata. Chalmers introduces the 

notion of an abstract computational object called a Combinatorial State Automata 

(CSA) which has the power to mirror the states of a Turing machine (or any other 

computational formalism). It is implemented when the state transitions of a physical 

system map on to the state transitions of the CSA. This is an improvement on earlier 

accounts by Putnam (1967) using Finite State Automata (FSA).  

 

2.2 Finite State Machines and its Relation to Chalmers’ Thesis 

I will explore the concept of FSA in a little detail as it is so central to Chalmers’ 

account of a CSA which is a development of FSA. A Finite State Machine (Automata) 

(Denning, Dennis, Qualitz 1978 pp. 88-136) is a logical computational object which is 

made up of a set of inputs, a set of states, a set of transitions from one state to another 

and a  set of outputs. The machine is in only one state at a time and there can be only 

a finite number of states. From its current state at some point in time the machine 

transitions to a new state plus a new output based on a triggering event which results 

in a new input.  That is for each combination of an input and an internal state there is 
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a corresponding transition function which results in a new internal state and a new 

output. A standard version of the machine has a starting input and state and a finishing 

state and output at which the machine stops. Note that variants of the FSA model 

involve machines which have no output and machines which do not halt but keep 

cycling sequentially through all their states. 

 

 A physical version of a FSA can be looked upon as a machine with input signals, 

internal states and output signals.  Examples of FSA’s used to control a device are a 

vending machine or traffic lights. By machine I mean that it operates in a mechanical 

step by step procedure or algorithm to arrive at the result. FSA’s have wide uses such 

as parsers and lexical analysers in computing. 

 

The following example
2
 illustrates the FSA concept. Consider a set of traffic lights 

which cycles through the three states Red, Green and Yellow. The change in state is 

controlled by a 5 second delay timer.  We can illustrate the operation of this FSA by 

the transition diagram below. The nodes represent the states (Red, Green and Yellow). 

The arrows from state to state represent the timer value which causes the transition 

and changes a state (e.g. from Red to Green) and the label on the arrow represents the 

input received (in binary bits) to change the state when time = 5 seconds. As there are 

only two relevant controlling values namely 5 seconds or < 5 seconds we can replace 

these by the binary values 0 and 1 so that any timer value < 5 seconds is shown as an 

input of 0 while the timer value = 5 seconds is shown as an input of 1. Note that this 

FSA does not halt as there is no final state and the machine keeps cycling from one 

                                                 
2
 This example is adapted from discussion and examples  on FSA in Denning, Dennis, Qualitz (1978) 

and in Hopcroft , Ullman (1979)  
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state to the next state every 5 seconds.  There are other FSAs which can have a final 

state and halt but the basic concept is the same. 

 

 

The input arrow going to the Red state indicates the start state. The FSA stays in Red 

until the timer is 5 seconds when it transitions to Green and the timer initialises and 

starts counting again. The arrow labelled “0” curling back to the same state indicates 

that the timer is < 5 seconds and no transition has occurred. While the arrow from one 

state to the other labelled “1” indicates that the timer = 5 seconds and a state transition 

has occurred.  

 

This simple FSA can be implemented by Flip Flop circuits which alternate between 0 

and 1 (i.e. ON or OFF) for each light based on the control signal from a timing circuit. 

Flip Flops are circuits that can be either in one state or another based on a controlling 

input and hence are widely used to implement binary states of 0 or 1. 

 

Red Green 

Yellow 

1 

1 

0 0 

1 

0 
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Another way of representing the above FSA is by a transition table which shows the 

states the inputs, the transitions as shown below.  

. 

STATE INPUT 

(Timer Signal) 

NEXT STATE 

Red 0(Timer<5secs) Red 

Red 1(Timer=5secs)  Green 

Green 0(Timer<5secs,) Green 

Green 1(Timer=5secs)  Yellow 

Yellow 0(Timer<5secs,) Yellow 

Yellow 1(Timer=5secs)  Red 

 

The causal structure to note in this implementation is made up of the two components 

namely the timer circuit and the Flip Flops. The timer circuit clocks the 5 second 

delay between states and controls the firing of the Flip Flops which sends binary 

signals to the lights based on which the lights transition from one state to another.  

A physical traffic lights system has a causal structure which will be made up of a 

number of different physical states described as follows. Electrical, connected with 

the current flowing through the circuits of the system. Thermal due to the heat 

generated in any circuit accompanying a flow of electrons. Chemical related to the 

release of chemicals (e.g. gases) in the air detected as a smell or maybe odourless 

either from paint or sometimes from hot electrical components. Finally, gross material 

based on weight, shape, size and molecular structure. 
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It is important to see that the computation of this FSA is only related to the 

functioning of the causal structure of the electrical system.  An actual traffic light will 

have a causal nexus inter-relating all the above different types of physical states. In an 

intuitive way it is easy to see for this example that the causal structure of the physical 

electrical circuit mirrors the formal structure of the FSA. On the formal side we have 

the transition table or diagram of the FSA which gives the inputs, the states and the 

transitions from state to state.  On the physical side the causal structure of the flip 

flops is controlled by the timer circuit which gives rise to a state transition every time 

the timer = 5 seconds. Hence each transition in the transition table is mirrored by 

corresponding causal processes in the flip flops when the timer = 5 seconds which 

leads to the lights changing state.  Thus the formal structure of the computation as 

enshrined in the formalism of the FSA is mirrored in the causal structure of the 

physical system. 

 

In fact depending on the design of the circuit we ignore all groups of electrical 

(physical) states where the timer is < 5 seconds and are only interested in the 

electrical (physical) state where the timer equals 5 seconds. So we have a one-one 

mapping or isomorphism between physical state types and abstract states as posited 

by Chalmers in Section 2.1 above of what it means for a physical system to 

implement a computation.    In this sense the causal organisation is invariant and the 

abstract computation of the FSA is realised in the implementation or physical 

computation via the output bits at each state. 

 

Chalmers defines an FSA as follows:  

“An FSA is specified by giving a set of input states I1, ..., Ik, a set of internal 
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states S1,...,Sm, and a set of output states O1,...,On, along with a set of 

state-transition relations of the form (S, I) → (S’, O’), for each pair (S, I) 

of internal states and input states, where S’ and O’ are an internal state and an output 

state respectively. S and I can be thought of as the “old” internal state and the input 

at a given time; S’ is the “new” internal state, and O’ is the output produced at that 

time.” Chalmers (2011, p.326) 

Chalmers definition captures the gist of the points about FSA I had explained in detail 

above both in the description and in the traffic light example given.  

 

Chalmers defines the implementation of a FSA as follows: 

“A physical system P implements an FSA M if there is a mapping f that 

maps internal states of P to internal states of M, inputs to P to input states 

of M, and outputs of P to output states of M, such that: for every state transition 

relation (S, I ) → (S’, O’) of M, the following conditional holds: 

if P is in internal state s and receiving input i where f(s)=S and f(i )=I, this 

reliably causes it to enter internal state s’ and produce output o’ such that 

f(s’)=S’ and f(o’)=O’. Chalmers (2011, p. 327) 

 

Chalmers definition needs some expansion and explanation as follows.  

In the example above the finite set of states are the traffic light states Red, Green, and 

Yellow. The finite input is made up of the binary values 0 and 1. The transition 

function is realised by the combination of the current (traffic light) state and Input = 1 

(i.e. timer = 5 seconds) which results in the state transition to the next state. The initial 

or start state = Red. Finally there is no final state for this FSA as it is a cyclic process. 

The thing to note is that the state transition relation in the physical system is based on 

a causal transition from one state to the succeeding state and furthermore such 
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causation must be according to Chalmers a “reliable” one. Although Chalmers does 

not formally develop here this notion of reliable causation I take it he means that the 

causation must be law like and counterfactual supporting. Earlier when I had 

discussed Chalmers intuition in Section 2.1 I had stated how an isomorphism can 

range from a mere correlation to one based on a rule that is a law like counterfactual 

supporting one. There Chalmers was silent about the nature of the isomorphism. Here 

by referring to reliable causation he has indicated that the state transitions must be law 

like and counterfactual supporting. By imposing the additional condition of 

supporting counterfactuals Chalmers’ separates out correlations and coincidences 

from law like behaviour. That is the state transitions should not just be material 

conditionals of the sort “If at time t, system happens to be in state a then it would 

transition to state b”. But rather they must be counterfactually true so that they are of 

the form: “Given a formal state-transition A → B, it must be the case that if the 

system were to be in state A, it would transit to state B” (Chalmers 2011, p. 333). 

For computation, the important cases are ones where the input was different but the 

machine table continues to hold true. For example if their were three state transition 

rules A → B, B → C, B → D in a machine table that branches based on a decision so 

that only one of B → C or B → D gets instantiated in a run, say B → C,  then the 

counterfactual conditional ensures the truth of the state transition rule B → D even 

though it does not get instantiated in a particular run. Similar remarks apply for state 

transition rule B → C in the runs when B → D gets instantiated. 

In his discussion of the Putnam objection to CTM Chalmers’ uses the above 

counterfactual conditional for a FSA. It is the truth of the counterfactual that makes 

the state transitions neither a mere correlation nor an arbitrary causal effect e.g. due to 
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say stray fields or cosmic rays changing the state of a circuit and tripping it thereby 

causing a change of state.  

 

One of the things to note about a FSA is that the elements that make up its states, 

inputs or outputs are monadic scalar quantities like numbers or symbols from an 

alphabet i.e. they have no structure such as vectors or matrices  do. In our above 

example the states were represented by the values “Red”, “Green”, and “Yellow” 

which have a value but no structure. Similarly consider another example of a FSA 

such as a Vending Machine where the machine is either in a state for receiving a 

customer’s selection (the Order state) or is in the state of delivering the selection (the 

Delivery state). So that while there may be multiple inputs and outputs to such a 

machine (depending on the items stocked and selection made) however the states have 

no internal combinatorial structure i.e. they cannot be broken up into sub-states. 

 

FSA’s are simple low level computation devices and have limitations on the number 

of computational problems they can solve. They have limited memory as it is limited 

to the state and they have no control structure.   Turing Machines on the other hand 

are a class of computational object which have more computational power. They can 

solve all effectively decidable problems
3
 i.e. they can in theory generate an algorithm 

for a problem if one is possible. They are the model of the general purpose computer. 

Conceptually a Turing machine can be looked upon as a FSA with memory. It 

consists of an infinite tape, a Read/Write Head and a finite set of states which form its 

machine table. The tape is made up of cells consisting of a datum i.e. having a value 

expressed as a symbol from an alphabet set. The machine reads the tape one cell at a 

                                                 
3
 Note: This assumes the truth of the Church-Turing thesis. 
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time and then depending on its instruction set writes a value back to that cell and then 

moves the head one cell either to the left or the right of the tape. 

 

2.3 Combinatorial State Automata 

Chalmers (2011, p. 328) extends the concept of a FSA to one where the internal state 

is extended by having a combinatorial structure. By that I mean that the elements of a 

CSA are vectors. The vector can be made up of sub-states mirroring e.g. the states of 

a Turing machine such as a combination of Head states, Tape states and internal states. 

CSAs can be represented by vectors as sub-states of an overall state. Hence CSA’s are 

a more faithful translation of Turing Machine states or the cell pattern of a cellular 

automata or whichever formal computation is the subject of an implementation. The 

other point where CSAs differ from FSAs is that the internal states can be either finite 

or infinite while for a FSA they are always finite. But both inputs and outputs in the 

case of CSAs are finite like FSAs. Chalmers mentions that for all practical purposes 

the finite case suffices. He needs the infinite states to ensure that it makes CSAs 

powerful enough to cover all computational formalisations. 

 

As Chalmers states it a physical system P implements a CSA, M, when the following 

conditions are met: 

“If there is a vectorization of internal states of P into components [s
1
, s

2
,…], 

 and a mapping f  from the sub-states s
j
 into corresponding sub-states S

j
 of M, along 

with similar vectorizations and mappings for inputs and outputs, such that  

for every state-transition rule ([I
1
, …, I

k
], [S

1
, S

2
,…]) → ([So

1
, So

2
, …], [O

1
, …, O

l
]) of 

M: if P is in internal state [s
1
, s

2
, …] and receiving input [i

1
, …, i

n
] which map to 

formal state and input [S
1
S

2
, …] and [I

1
, …, I

k
] respectively, this reliably causes it to 
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enter an internal state and produce an output that map to [So
1
, So

2
,…] and [O

1
, …, O

l
] 

respectively.” (Chalmers 2011, p. 329)  

 

The above can be unpacked as follows. Each internal state of P is a vector given by its 

components [s
1
, s

2
,…], and similarly each internal state of the CSA is a vector whose 

components are [S
1
, S

2
,…]. A vector consists of an ordered set of sub-states or components 

for each internal state of both the physical system and the CSA. For example each component 

of the vector corresponding to an internal state of P could represent a spatial location 

coordinate. The inputs and outputs of the physical system have combinatorial or vectorial 

structure e.g. [i
1
, …, i

n
] and [o

1
, …, o

l
] respectively. The inputs and outputs of the CSA also 

have combinatorial or vectorial structure e.g. [I
1
, …, I

k
] and [O

1
, …, O

l
] respectively. 

There is a function f that does a one to one mapping from each sub-state sj of the internal state, 

of the physical system P to each sub-state Sj of the internal state of the CSA, M. along with 

mappings of the components of the inputs and outputs of P to components of inputs and 

outputs of M. This mapping is based on the state transition rule of M ([I
1
, …, I

k
], [S

1
, S

2
,…]) 

→ ([So
1
, So

2
, …], [O

1
, …, O

l
]) . The state transition rule specifies a unique mapping for a 

combination of input state vectors and internal states of M giving new internal state 

vectors plus an output vector of M. Furthermore the state transition rule must be such 

that the causal transition in the physical system P is reliable i.e. counterfactual 

supporting as discussed earlier in connection with reliable causation for FSA 

implementation.  

 

By formalising the CSA Chalmers gives a formal account of his intuition about what 

it is for a physical system to implement a computation and how to interpret the 

mirroring relationship between the states of a physical system and the states of an 

abstract computation.  
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2.4 CSAs and Connectionist Networks 

In this section we look at another class of computational structures called neural 

networks. They operate in a different way then the state based machines we have seen 

so far in FSAs, TM and CSAs. Chalmers CSA formalism can be extended to neural 

networks as neural networks can be described by a Turing Machine which in turn can 

be described by CSAs. 

 

The entities of computation in the transition (machine) table that we have seen so far 

e.g. in the FSA traffic light example operate at the “symbol” level. By this I mean that 

the states of the FSA (Red, Green and Yellow) and the inputs (0 or 1), correspond to 

the status of the lights and the timer value of < 5 seconds or timer value = 5 seconds 

respectively. There are another class of systems whose entities of computation operate 

at a lower “sub-symbolic” level. To paraphrase Chalmers (2011, p. 351-352) in the 

state machine case the units that do the computation and the vehicles of representation 

are identical as both operate at the symbol level. In the neural network case the units 

of computation and the vehicles of representation are different. The claim is that these 

sub-symbolic structures and their operation is closer to mental processes in brains.  

 

Our standard architecture of all computers since their inception is based on what is 

called the Von Neumann (1945) model. It is centred on serial processing and a 

separation between data and programs. Unlike the Von Neumann (1945) model of 

computers neural networks have parallel processing and have distributed data and 

instruction sets. Furthermore they do not have a separate declaratively held program / 

knowledge store. They are made up of simple computational units having no 
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representational link to objects in the real world. The computational units act as nodes 

with links between them to form a computational network. The representation to the 

real world is derived in a distributed way based on the pattern of activation of nodes 

and the links and weights to connecting nodes in the rest of the network.  Its 

proponents (connectionists) argue that these are more suited to model and explain the 

mind as they are closer to the way the brain works via neurons and connections 

between them via synapses to form networks. However note that their computational 

ability is prime and not their representational ability. There can be such networks 

performing computations that are purely syntactic without having any meaning just as 

there can be Turing Machines or CSAs performing meaningless computations on 

strings of numbers or symbols of an alphabet. No doubt for cognition a semantic 

output is required but it is not required purely for computation. As mentioned above 

Chalmers’ CSA model applies to computation at both a symbolic and a sub-symbolic 

level. The reason for this is that neural networks can be rendered in a Turing Machine 

form and therefore as a CSA. The following diagram from Garson (2015) represents a 

simple neural net showing the layer of input processing units, the pattern of 

connections between all units, the hidden layer units of processing, and the output 

units. It is the pattern of activation in the net that converts inputs to outputs. 
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Each input unit has an activation value that it sends to the hidden units which in turn 

send their activation value to the output units.  Each layer of units gets activated based 

on the strength of the activation values received from the previous layer of units. The 

pattern of activation of the network depends on the strength of the connection or the 

weights between the units in the different layers. An activation functions calculates 

the activation value at a hidden or output unit to arrive at the resulting value for that 

unit taking the strength of all the inputs received into account. This simple net is 

called a feed forward net as the outputs are just passed on. It will produce the same 

result every time for the same set of inputs. More complex networks are also possible 

which will have connections from forward layers to back layers causing modification 

of results. While these more sophisticated neural nets are used to simulate cognitive 

functions it does not concern my thesis as my main interest is not a study of 

connectionist networks but rather to show that neural nets also fall under Chalmers’ 

computation model.  

 

I will now show how a connectionist or neural net can be rendered in terms of a CSA. 

According to Rummelhart (1998) the conceptual framework of connectionist 

architecture takes the “abstract neuron” as the fundamental processing unit. 

Computation occurs by interactions between these units. These processing units may 

represent either particular features
4
 of a problem over which meaningful patterns can 

be defined or they can be a totally abstract set of nodes having no meaning.  The units 

are connected to each other. It is this pattern of connectivity among units in a 

connectionist system which determines what the system knows and how it behaves. 

As mentioned earlier the units are generally structured in 3 layers namely input, 

                                                 
4
 such as for example a network to train phonemes of words to get their plurals 
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hidden and output
5
. There is a state of activation defined over the units as denoted by 

a vector which represents the state of the system at a point in time t. An output 

function maps each unit’s state of activation into an output signal. Units transmit 

signals to units in their neighbouring layer and the degrees to which they affect their 

neighbours depend on their state of activation. A rule of activation determines how 

the inputs into a unit combine with the present state of a unit to give the new state of a 

unit. A learning rule specifies how the system changes with experience. 

 

A connectionist net N can be rendered as a CSA M by initially ignoring the training 

rule and treating only the starting form of the net thereby simplifying the problem. 

This is because from a CSA viewpoint all the training rule is doing is changing the 

neural net and therefore the CSA either in terms of inputs or states or outputs or the 

state transition rules. Initially we want to get the form of the CSA right for the 

connectionist network. Once that is done the changes to generate a new CSA based on 

the training rule should be fairly straightforward.  

 

In order to express a network N as a CSA we first set up a correspondence between an 

internal state vector of the CSA and an appropriate part of the network as follows.  Each 

internal state s of the network N at a point in time t is based on its state of activation 

defined over the units and their pattern of connections and can be denoted by a vector 

whose components are [s1, s2,…sn ] and are made up of the states of the processing 

units and the weights of the pattern of connections between units. There is a function f 

that does a one to one mapping from each sub-state sj of the network to each sub-state 

Sj of the CSA. 

                                                 
5
 with the input units and their connections storing the content and the hidden units plus connections 

the pattern 
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There are input, output and hidden layer vectors corresponding to the underlying 

layers of units and their relationships in a neural net. We assume as many hidden 

layers as required for a problem although generally there is only one. The inputs and 

outputs also have combinatorial or vectorial  structure whose components corresponds 

to the states of the units plus the relationships between units reified as entities whose 

values are based on the connection values. State-transition rules are determined by the 

reliable causation for each element of the state-vector, a function by which its new 

state depends on the old overall state-vector and the input-vector, and the same for 

each element of the output-vector. That is there is a one to one mapping which gives 

an isomorphism between the states of the units and their connections and the vectors 

corresponding to the CSA based on the causal structure of the network. Therefore we 

have a vectorisation of input, internal (hidden) states and output states, and a mapping 

function which maps sub-states of inputs to sub-states of outputs based on a transition 

rule thereby enabling a CSA to represent a connectionist network. 

 

 The purpose of this section was to show that the CSA format can be extended to 

other forms of computation such as neural networks.  This would apply to neural 

networks both at a purely syntactic level where the outcomes of the neural network 

have no meanings or to a neural network whose outputs have meanings   as in the 

ones tied to cognition. 

 

2.5 Computation and Cognition 

I now look at the relationship between Chalmers’ account of implementation and 

cognition. Chalmers introduces the following two theses that link his account of 
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implementation using CSA and cognition they are a) a thesis of computational 

sufficiency and b) a thesis of computational explanation.  The first thesis says that 

having the right kind of computations suffices for the possession of a mind and 

cognition. On the other hand the computational explanation thesis says that 

computation so construed provides a framework for explanation for cognitive 

processes and behaviour. I discuss them one by one below. 

 

To discuss these theses I need to explain two of Chalmers’ notions on which they 

depend, namely abstract causal organisation or causal topology and organisational 

invariance. Chalmers’ theory of implementation (as discussed earlier in Section 2.3 

above) posits an isomorphism relationship between the computation being 

implemented and the causal structure of the physical system implementing the 

computation. Hence Chalmers describes a computation as an “abstract specification of 

causal organisation”
6
 of the implementing system.  This abstract specification of the 

causal organisation he refers to as the causal topology. In addition Chalmers posits 

that mentality and cognitive properties are organisationally invariant properties.  

Organisationally invariant properties of a physical system are those which depend on 

the causal topology alone and not on the nature of the physical system. Furthermore 

they remain invariant with respect to causal topology i.e. any change or distortion that 

does not affect the causal topology does not affect mentality and cognition.   For 

example he contrasts mental and cognitive properties against the properties of 

digestion and flying as follows. The former do not depend on the underlying physical 

substrate while the latter depend on the physico-chemical makeup in the case of 

stomachs and factors like height and speed (among other aerodynamic ones) in the 

                                                 
6
 Chalmers (2011, p 331) 
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case of flying. The latter group stop functioning at some point: if in the stomach’s 

case parts were replaced by metal and in the flying case if the height gets to ground 

level. While cognition and mental properties are dependent on the abstract pattern of 

causal organisation alone i.e. they can be specified by a CSA description. It is in 

virtue of implementing these “right kind” of computation that the system is cognitive 

and particular mental states have a one to one correspondence to computations such 

that implementing those computations realises those mental states. Computational 

sufficiency implies that a particular computation for a cognitive process can be 

implemented in different physical substrates as long as they have the same causal 

organisation and therefore they would have the same CSA description.  

 

The thesis of computational explanation also depends on causal organisation and 

looks to providing an explanation of cognition and behaviour based on specifying a 

description of the underlying computational structure in terms of a CSA description.  

In Chalmers (2012) he says that this maybe too strong and needs modification as it 

will not work in all cases of cognition. In his response to Egan (2012) and Rescorla 

(2012) Chalmers qualifies this thesis when he concedes that explanation in cognition 

using mathematical functions (“function-theoretic” as he calls it) like explanation of 

edge detection by Marr in terms of computing the Laplacian of the Gaussian of the 

retinal array is not captured well by his CSA model of computation.  I briefly expand 

on this without going too deeply into Marr exegesis. In image processing edge 

detection is one of the important tasks (HIPR 2000). Edges carry useful information 

about an object than that available from other features such as texture and colour. 

Edges are generally drastic changes of image brightness over a small spatial distance. 

The challenge in edge detection is to distinguish edges from other features in the 
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image such as textures and especially noise, so that all edges are detected while the 

noise is suppressed. In Marr’s technique the noise is first suppressed by smoothing the 

image by applying the Gaussian operator and then applying the Laplace operator for 

edge detection. Both the Gaussian and Laplacian operators are two mathematical 

operators which Chalmers concedes are not well covered by his model of computation. 

  

The other example Chalmers gives as an exception to his explanatory framework 

when responding to Rescorla (2012) is that of Bayesian models in perceptual 

psychology. These rely on statistical theory for estimating prior and posterior 

probabilities to posit hypothesis about the perceptual field. The Bayesian approach 

assumes that cognition is approximately optimal in accord with probability theory. 

The mind has representations for statistical correlations and conditional probabilities. 

It has the capacity for probabilistic computations such as applications of Bayes' 

theorem. Applying probabilistic computations to statistical representations 

accomplishes mental tasks such as perception. 

 

Chalmers argues that while these techniques are useful for individual areas of 

cognition e.g. vision and perception but they do not give a general account for 

cognition and the mind in general which is his project. Furthermore he argues that   as 

the Marr and Bayesian theories are computing mathematical functions they are like a 

black-box input- output tool far removed from the internal states and mechanisms of 

cognition unlike his theory which is at a lower level involving states and therefore 

“mechanism ready”. This mention by Chalmers of higher and lower levels of 

explanation links up with a well known meta theoretical view of Marr (1982) on 

cognitive architecture. Briefly, Marr posits three levels of explanation for a cognitive 
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function.  The first is the computational level. This is the highest level which answers 

the What/Why question about the role of a function for an organism in its 

environment. The next is the algorithmic level which is at an intermediate level. It 

seeks an answer on how a function is performed and is akin to the software in an 

implemented program. Finally at the physical level is the implementation level like 

the hardware of a computer where the algorithm is implemented. In his discussion of 

Klein, Egan and Rescorla’s papers  Chalmers (2012, p. 222 & pp. 243-248) posits that 

his theory was at a lower level just above the physical neurobiological level while the 

ones of the above three were at an intermediate level  closer to Marr’s algorithmic 

level.    

 

Chalmers generalises by saying that representational, function-theoretic, teleological 

and social explanations are “higher level explanations”. They are not covered by his 

model of computation. But they are not incompatible with his causal model and the 

connections between them could be worked out possibly if one moved from a CSA 

framework to a framework of Abstract State Machines (ASM).  This is a new 

machine architecture which enables the setting up of a hierarchy of machine 

formalisations and their connections to define higher level cognitive functions to 

intermediate and lower level ones with the connections between them set out. The top 

of the hierarchy would correspond to higher level cognitive functions and the lower 

levels to the ones corresponding to CSA states. I discuss ASM in more detail in 

Chapter 4. 

 

Note that the theses of computational sufficiency and of computational explanation 

can be held independently as we can take a pluralist approach to mentality and 
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therefore on the one hand deny the thesis of computational sufficiency but at the same 

time accept the thesis of computational explanation. Doing this implies taking an 

instrumentalist view on the role of computation and the mind. Equally one can accept 

the thesis of computational sufficiency as an account of the mental and be pluralistic 

about explanation which is how Chalmers (2012) is heading. 

 

2.6 Merits of Chalmers’ Causal Thesis of the Mind 

Chalmers’ causal thesis of the mind has three key merits. Firstly it has benefits over 

earlier theories of the mind such as the semantic version of the Computational Theory 

of the Mind (CTM) developed and proposed by Fodor (1975) and his followers 

following Putnam (1960). Secondly it claims to overcome the triviality arguments 

against CTM launched by Putnam (1988) and Searle (1992). Finally it claims to 

provide a foundation to cognitive science by defining the role of computation in a 

theory of cognition. I discuss each of these below. 

 

Fodor’s (1975) version of CTM is linked with his Language of Thought hypotheses. It 

holds that mental states are representations or tokens in a language of thought which 

is like a natural language. The mind manipulates tokens of this language like a 

computer i.e. the manipulations are by computations. Fodor’s account makes it 

possible to answer the question of how thought and higher cognitive processes such as 

abstract thinking and language processing are possible in terms of processing strings 

of symbols computationally and providing them content with referential relations to 

entities in the world. Fodor’s (1975) version of CTM is tied up with mental 

representations and their semantics such as truth-value, reference, content etc.  
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According to his view cognitive states and processes such as thinking, reasoning and 

imagining are constituted by the occurrence, transformation and storage in the mind 

of mental representations of one kind or other for mental objects such as thought, 

mental images etc. To quote Fodor (1975, p. 198): “Mental states are relations 

between organisms and internal representations, and causally interrelated mental 

states succeed one another according to computational principles which apply 

formally to the representations. A little earlier on the same page he says. “So having a 

propositional attitude is being in some relation to an internal representation. In 

particular having a propositional attitude is being in some computational relation to 

an internal representation.” 

 

 As pointed out in Section 1.0 earlier Fodor’s theory had a major weakness in that it 

could not offer a clear connection between computation at the abstract 

representational level and computation at the physical level. It could not explain the 

implementation relationship which Chalmers (2011 pp. 323-326) has argued as 

crucial for making computation foundational for cognition and explaining behaviour. 

Fodor’s connectionist critics e.g. Rummelhart (1998) are not convinced by his plea 

that his theory is at a higher level and not intended to provide neural realisations. 

Connectionists view his CTM as biologically implausible. The problem with the 

semantic version of CTM had been made worse by the advent of well supported 

connectionist models of cognition which operated at a sub-symbolic level 

(Rummelhart et el 1986).  

 

In their response Fodor and Pylyshyn (1988) criticise connectionism by arguing that 

there are some features of cognition such as the productivity and systematicity of 
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language which require a symbol system and cannot be accommodated within a 

connectionist model. The productivity of thought or language is the capacity human 

beings have to produce indefinitely many different thoughts/ sentences of a learnt 

language. The systematicity of thought or language is the capacity for mastery of the 

syntax of one’s native language. Fodor and Pylyshyn (1988) argue that this is missing 

from connectionist nets as the representations they have don’t have the structure to be 

compositional. Compositionality is a feature of rich symbol systems, similar to natural 

language. Fodor notes that while minds are finite and therefore the number of simple 

ideas can be finite yet we can construct almost an indefinite number of complex ideas 

/ thoughts. This he refers to as the productivity of thought and the mechanism for 

doing it is compositionality. Compositionality ensures that the contents of complex 

concepts are determined by the content and arrangement of their simple constituents 

with the semantics of the former determined by the semantics of the latter. 

Furthermore it is not just in the structure of the concepts but also in the content that 

this productivity of thought applies.  

 

Note that Fodor and Pylyshyn’s criticism does not apply to all connectionist theories. 

Smolensky (1990, p.166) has developed a version of connectionism which could 

account for higher level cognitive structures like language without including a full 

blown language of thought. The semantic version of CTM had a problem explaining 

connectionist models as the question of symbolic processing and discrete mental 

representation did not apply to the connectionists.  Also as mentioned above it could 

not give an account of how physical implementation occurred thereby facing the 

charge of biological implausibility. However this does not pose a problem to 

Chalmers’ thesis which operated at a purely syntactic level by appealing to an abstract 
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computational object namely CSAs and explaining the implementation relationship 

between abstract and physical computation by the causal thesis. 

 

Chalmers also claims to overcome triviality objections against the computational 

theories of the mind raised by Searle and Putnam. I discuss the triviality objection and 

Chalmers’ response in the next section (2.7). 

 

Cognitive scientists and AI researchers make heavy use of computation in the models 

they develop for understanding cognition and the mind. In the course of this they 

believe that they are not just simulating but replicating these cognitive processes in 

their models. However critiques such as Searle (1980), Dreyfus (1972) and Penrose 

(1990) to mention three raise questions about the role of computation in a theory of 

cognition and throw doubt on whether a replication of a cognitive process is really 

possible. They suggest the models were merely at best doing simulations. Chalmers 

responds that if a model shares the causal topology of the cognitive process then it is 

replicating the process. By establishing the theses of computational sufficiency and 

computational explanation Chalmers feels he has established the foundational role of 

computation in cognition thereby answering these critics.  

 

2.7 Does the CSA Formalism Escape the Trivialisation 

Objection? 

 Searle (1992) and Putnam (1988) argue against CTM by saying that computations 

have no independent reality in the scheme of things but are observer or mind 

dependent and exist for our convenience. They argue that a complex machine can 
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implement all possible computations, with the computations it implements being mind 

dependent. They thereby question the reality of the implementation relationship. This 

is the trivialisation objection and it claims that every complex object such as a wall or 

a rock could be described as an inputless FSA hence doing all possible computations 

but without any inputs or outputs. The arguments are based on the contention that the 

notion of a physical system implementing a computational formalism is overly liberal 

to the point of vacuity and hence of no use in grounding mentality and behaviour. One 

key assumption in both is the idea of a mapping correlation between physical states of 

the physical system and computational states of the FSA.  

 

Searle claims that Putnam’s (1960) original account of FSAs is so lax that any 

complex object such as walls could be given computational descriptions without 

inputs or outputs and appear to be performing a computation. In fact he claims that a 

complex system such as a wall implemented a WORDSTAR program.  Putnam (1988) 

developed the formally argued objection which said that every ordinary open system 

implemented every inputless FSA thereby trivialising CTM. Putnam’s argument is 

that given any machine table of a FSA, every physical system implements the FSA by 

having mappings of the machine table to internal states of the physical system within 

a given time interval. For example if the machine table stated that state A is followed 

by state B then every instance of A is followed by state B in a time interval. This can 

be described as based on the material conditional of the form “If A then B”. 

 

Chalmers’ (2011, p.333)  response to Putnam’s argument is based on an appeal to law 

like counterfactuals supporting the notion of reliable causation associated with the 

implementation of a transition from one state to another in a CSA. He argues that 

Putnam’s argument is based on the use of weak material conditionals for the 
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implementation of a FSA as seen above.  While Chalmers’ thesis requires stronger 

causally reliable ones i.e. one’s that can support law like counterfactual conditionals 

and are not merely coincidental or corelational.   

As he says: Chalmers (2011, p. 333) 

 “Given a formal state-transition A → B, it must be the case that if the 

system were to be in state A, it would transit to state B. Further, such a conditional 

must be satisfied for every transition in the machine table, not just for those whose 

antecedent states happen to come up in a given time period.”  

 

Chalmers is asserting what I had discussed in Section 2.1 earlier that given a machine 

table with a set of state transition rules, the use of the counterfactual conditional 

makes the rules true in all cases of the machine table and not just the ones that get 

instantiated in a time period. The notion of reliable causation based on law like 

counterfactual conditionals was discussed earlier in the discussion on Chalmers 

statement of the implementation of CSA in Section 2.3 and in Section 2.1 above. 

Because of using CSA instead of FSA the computational descriptions are no longer 

lax and are sufficiently constrained to reduce the probability of any complex object 

such as walls implementing a particular computation to be almost improbable. The 

requirement of reliable causation in CSAs does the work of imposing the rigour 

required via counterfactual conditionals in preventing complex objects like walls 

implementing a given particular computation while no doubt it will implement some 

computation(s). By introducing CSA Chalmers argues that while there could still be 

residual false implementations however the probability of such trivial cases is 

dramatically reduced (Chalmers 2011, p. 331). For example Chalmers estimates the 

probability for an arbitrary system to meet the requirements of a CSA whose state 
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vectors have 1000 elements with up to 10 possible values for each element and a 

similar number of state transition rules as less than one in (10
1000 

)10
1000

.  While this 

probability is a very small number, note that for a CSA with an infinite or a very large 

number of vector states this probability could still amount to a large number. 

Therefore while CSA reduces the problem for practical purposes but in theory it does 

not totally eliminate it.  

 

2.8 Objections and Replies 

In the Journal of Cognitive Science (Vol. 12, 2011 and Vol. 13, 2012) a number of 

commentators provide a critique of Chalmers’ views from a number of different 

angles. In general most agree with the basic intuition behind Chalmers’ causal theory 

of the mind and see it as an improvement on a semantic view of CTM like Fodors’. 

While they see shortcomings and weaknesses in the detail of Chalmers’ work from 

different aspects however in my view no one gives a knockdown argument and in 

return Chalmers (2012) offers a robust defence. There is only one area where 

Chalmers’ accepts a need for revision and makes concession and that is on the thesis 

of computational explanation. I discussed this earlier in Section 2.5 above. 

 

I list here some of the main issues raised by Chalmers’ critics: 

1) Is Chalmers’ notion of implementation over liberal thereby leading to too many 

systems implementing too many computations without complying with their causal 

structure and explaining their behaviour? 

2) Is CSA an appropriate formalism for capturing all different types of computation 

such as Turing machines, Pascal programs, etc and what are its shortcomings? 
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3) Does Chalmers’ CSA formalism in fact manage to escape the triviality objection 

of Searle and Putnam? 

4) Is computation sufficient for cognition and mentality? 

5) Does computation provide an explanatory framework for cognition and behaviour?  

 

In what follows I will discuss 1) and 2) and 4) below with 3) and 5) already discussed 

earlier in Sections 2.7 and 2.5 respectively. Note that the discussion referred to earlier 

on objection 3) and 5) cover the subject of the objection and not necessarily the 

specific arguments of particular commentator(s) from the Journal of Cognitive 

Science (2011 & 2012).   

1) Is Chalmers’ notion of implementation over liberal? 

Some critics
7
 argue that Chalmers’ definition of CSA can lead to an over liberal 

interpretation of computation so that too many systems end up implementing too 

many computations in a way that does not reflect their real causal structure and does 

not explain their behaviour. Chalmers
8
 had leant qualified support to such a view by 

saying in his paper that any sufficiently complex system will implement a number of 

computations. However he had gone on to say that this was benign as long as every 

system does not implement every possible computation or any given computation as 

Putnam and Searle had argued. The worry here maybe that Chalmers’ views endorses 

panconputationalism
9
 or the thesis that everything is a computation under some 

description with Towl (2011, p. 428) giving an example of a pool table doing 

computations. Chalmers agrees, rightly in my view, that his view endorses a benign 

version of Panconputationalism. Such a view says that every complex physical system 

                                                 
7
 Ritchie (2011) and Towl (2011) 

8
 Chalmers(2011) pp. 331-332 

9
 I discuss what I see as the main issue and not individual points of Ritchie and Towl. 
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may implement multiple computations however he does not see it as endorsing blatant 

permissiveness (i.e. not every possible computation). This is due to the constraints 

imposed by the rigour of CSA definitions via the requirement for reliable causation 

and related counterfactual requirements of state transition rules which do not permit 

random mappings of physical states to computations. Furthermore it does not make 

his causal theory of the mind trivial because of the strong thesis of computational 

sufficiency based on causal topology and organisational invariants defining the mental 

so that it is not attributing mentality to all matter. Chalmers is open to the idea that 

there maybe a need to put constraints on how implementation is to be applied if it 

provides a more precise definition and has hinted at constraints such as spatial, 

functional and teleological ones among others without developing these  ideas in 

detail (Chalmers 2012, p.242)). His theory involves law like transitions in his talk of 

“reliable causation” and not mere mappings. 

2) Is CSA an adequate formalism for different types of computation?  

Chalmers says that he chose CSAs for his implementation thesis as it was abstract 

enough and powerful enough to capture all different types of computational 

formalisms such as Turing Machines, FSAs, cellular automata and probably can be 

extended to other models such as PASCAL programs, declarative and imperative 

programming languages etc. 

Chalmers’ critics
10

 argue on two fronts on this issue namely that: 

a) CSA’s are too powerful and not a purist computational model; 

b) CSA’s are too general and miss out the detail in the architecture of a Turing 

machine; 

                                                 
10

 Sprevak (2012) and Milkowski (2011) 
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On the first point Chalmers agrees that an unrestricted CSA is effectively a “super-

Turing Machine” able to compute computable and non-computable functions thereby 

not a purist computational model like Turing Machines.  However he argues that he is 

not advancing the theory of computation nor is there anything that says that a 

computational model of the mind should be based on a purist model of computation 

when all that he is hoping to achieve is a consistent and coherent account of the 

implementation.  Chalmers also says that by restricting CSAs to finite starting states 

and inputs we can get a sub-set of CSAs which correspond to Turing Machines. 

Furthermore he argues he sees nothing wrong in giving an account covering both 

super-Turing Machines and Turing Machines. 

 

The other criticism made against CSA’s by Sprevak (2012, p. 126) was that they 

obscured the architecture of a Turing Machines which were conceived as having a 

head and a tape with the head moving serially a step at a time reading and writing one 

square of a tape. Furthermore there was a distinction between control and data.  All 

this detail was lost in a CSA which was just a giant table with a state or states 

covering each of these factors. While a physical parameterisation could handle some 

of the features it was unlikely to represent all the concepts within different 

architectures. Chalmers agrees that while this is a more worrying difficulty than the 

previous one however he points out that to some degree it is to be expected as the 

CSA was a more abstract computational object than the other formalisms. It was only 

because of the CSA’s abstractness and generality it was able to provide translations of 

the different computational formalisms such as Turing machines, FSAs etc. However 

the translations are not to be seen as replications of the target architectures. While 

Chalmers sees this mattering at the level of models and theory however at the 
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implementation level he does not see this loss of distinctions and detail being 

important. In Chapter 4 I discuss Abstract State Machines which Chalmers (2012) 

endorses in the face of criticisms of CSA. As will become clear in my discussion there 

a move to ASMs would answer Sprevak’s critique of CSAs as ASMs are far more 

granular and flexible.  

 

Milkowski raises the issue of breakdown saying that all mechanical devices are 

subject to breakdown in their lifetime and the CSA translation of a TM will not have 

any state representing a head or paper tape breakdown and therefore is not an 

adequate representation of real live implementation. Chalmers argues that on his 

account the device stops computation at breakdown. He is giving an account of 

implementation for some points in time and not for all points in time i.e. forever. 

Since Chalmers’ views are developed to give a framework for a theory of the mind in 

general and cognition in particular then the reservation I have about Chalmers’ reply 

is that his view (to stretch the analogy) does not apply when there is a breakdown in 

physical structure or function i.e. in the brain or mind either as a result of accident or 

birth. This would be a weakness in his position as accounting for defective function 

should be part and parcel of a general theory of the mind and cognition. 

4) Issue with Computational Sufficiency11 

The main issue people have with Chalmers’ computational sufficiency thesis is the 

idea of abstract causal organisation where in the pattern of  interactions of the parts of 

a system one could abstract away to a fine grained level where all one has left are 

computational properties related to mentality. How such abstraction occurs is a worry 

as Chalmers offers no clues. Piccinini (2010, Note8, p. 275) argues that unless an 

                                                 
11

 Note: Issues 3 & 5 as mentioned above were covered in Sections 2.7&2.5 respectively. 
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explanation of  such abstraction is forthcoming from Chalmers we are left with the 

belief that  either such abstraction will also include material properties e.g. related to 

bodily processes such as digestion or it will capture some but not  all mental 

properties. Note that the detractors here are raising a worry about how such an 

abstraction process occurs so as to be plausible and are not giving a knock down 

objection.  To reiterate, in the computational sufficiency thesis Chalmers is drawing a 

line between cognition and the mental on the one hand and the rest of material things 

on the other hand.  He does this by saying that for cognition and mentality 

computation is a sufficient property because of the organisation invariant properties of 

cognition and mentality while for other things like his stock examples of flying and 

digestion, computation is insufficient and requires other physical properties for 

constituting them. I think a valid objection to his thesis would be for the detractors to 

argue that computation is insufficient for mentality and cognition and this has not 

been done.  

 

2.9 Conclusion 

This chapter has discussed Chalmers theory of implementation based on his account 

of the computational object of a CSA and its relation to mentality and cognition. I 

have argued that Chalmers’ theory though not perfect has advantages over previous 

theories of the mind and it meets the trivialisation objections of Putnam and Searle 

plus has been robustly defended by Chalmers. 

 

In the next chapter (3) I discuss the nature of neural computation based on current 

accounts of the functioning of the brain from neuroscience. In Chapter 4 I will look at 
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whether Chalmers computational model of the mind can be made compatible with 

neural computation as discussed in the next chapter. 
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3. Chalmers’ Causal Theory of the Mind and 
Neuroscience 

 

This chapter discusses the nature of neural computation based on current accounts of 

the functioning of the brain from neuroscience.  

3.1 Introduction 

Cognitive Science and related disciplines such as Cognitive Neuroscience are the 

fields that address questions about cognitive functions and their performance by the 

brain. The brain is the organ that realises mental activity (Piccinini and Bahar, 2013). 

It does this via signals consisting of action potentials or spikes which are organised in 

sequences called spike trains resulting from the activity of neurons firing. For large 

organisms the performance of cognitive functions is done by the firing of population 

groups of neurons and their patterns of firing in well defined regions of the brain. 

 

McCulloch and Pitts (1943) working in mathematical bio-physics and influenced by 

Turing were the first to propose that neurons are a binary switch, neural activity is 

computational and that neural computation explains cognition (Piccinini  and Bahar, 

2013, p. 467-468). This is the earliest version of a computational theory of the mind 

and looked upon the brain as a computer with computations undertaken by neural 

activity to carry out mental processes. Their methods and techniques are superseded 

by modern ones. However the general notion of the processing of spike trains as 

computation has survived in the Cognitive Science and Neuroscience disciplines. 

When people talk of neural computation in the literature they are basically referring to 

the processing of spike trains. 
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If we ask whether neural processes perform computations in the sense employed in 

Chalmers’ theory then at the most basic level the question is whether spike trains are: 

i. a digital computation or 

ii. an analog computation  or  

iii. a type of computation not covered by our current paradigms of computation or 

iv. not a computation. 

 

Of the above four cases only the first case supports Chalmers’ theory. The second and 

third one would require a revision of Chalmers’ theory and the fourth case negates 

Chalmers’ theory. I discuss this in detail in Section 4.2 below but briefly digital 

computation assumes discrete values in the input, state and output parameters making 

up the CSA while analog computation would assume continuous parameters. 

Chalmers (2011 p. 347) has implied that the CSA model as it stands would have to be 

modified to handle continuous parameters. The third case above is a hybrid case 

which requires a modification of Chalmers current model to handle both discrete and 

continuous parameters. Finally the last case is a straightforward negation of 

Chalmers’ view as it is denying any role for computation. 

  

While at this stage of my thesis it is an open question which type of computation 

occurs in neural processes however it would be a significant result for Chalmers’ 

theory of physical computation (implementation) if it can be shown to be compliant 

with the data of neuroscience. If on the other hand Chalmers’ computational views 

cannot accommodate neural computation then one of the things to look at is if it can 

be modified so that it applies at a higher abstract level i.e. at a neural circuit or 
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function level. I discuss the compliance and modification of Chalmers’ theory in the 

next chapter.  

3.2 Neural Structures  

Nervous systems are found in all multi-cellular animals except very simple ones like 

sponges. While they vary greatly in complexity, the basic structure is widely 

homologous across species reflecting a common evolutionary ancestry. The Central 

Nervous System (CNS) is an electrochemical system consisting at the cellular level of 

nerve cells or neurons with their structures such as dendrites, synapses and axons. The 

CNS
12

 consists of the brain and the spinal cord in vertebrates and is responsible for 

controlling all cognitive functions.   

 

Neurons work like a switch (Byrne 2013). They are quiescent as long as the electrical 

voltage across their membrane is below a threshold.  They get electrically excited and 

fire when the voltage reaches a threshold level under electrochemical stimulation. 

This excitation occurs by electrical or chemical signals from other neurons or as a 

result of sensory stimulation. The electrical signal resulting from a neuron firing is 

called an action potential or spike as recordings of it are shaped like a spike. These 

spikes are all or nothing and flow across nerve fibres or axons and are passed on via 

the neuron’s synapses which act like a terminal in an electric circuit. The signal or 

action potential is passed on down the axon and is a brief event of about a millisecond 

only. Electrical activity across synapses is facilitated by chemical activity of 

neurotransmitters and hormones. There is a short refractory period after a spike when 

                                                 
12

 The introductory paragraphs on neuroscience are based on Piccinini & Bahar (2013), Dayan and 

Abbott (2001) and Kandel, Schwartz and  Jessell (2000).  
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neurons cannot get electrically excited. Neurons recover after the refractory period for 

firing the next signal when the input voltage again reaches the threshold.  

 

A sequence of spikes fired by a neuron as a result of stimulation is called a spike train. 

A longer duration stimulus to a sensory organ will result in a succession of action 

potentials the frequency of which will depend on the intensity of the stimulus. Spike 

trains from a single neuron do not have sufficient useful information for a neural 

function. The minimal neural processing unit for carrying out a neural function are a 

few dozen groups of neurons working together according to estimates of Shadlen and 

Newsome (1998). Smooth operation of a neural function is achieved by neurons 

working in inhibitory and excitatory neighbouring groups by sending inhibitory or 

excitatory signals to manage the dynamics of neural networks. Neurons can also be 

distinguished by their firing pattern. The firing pattern from individual neurons can 

either be a regular train of spikes or in bursts of spikes.  The firing pattern can also be 

either in phase with (i.e. synchronous) or out of phase with (i.e. leading or lagging) 

other neighbouring neurons. Phasic firing pattern generally occurs when they are 

carrying out a common neural function. 

 

Information about the outside world is acquired by the sensory organs in various 

sensory modalities such as visual, auditory, olfactory to name a few. The brain has 

developed multiple coding systems which render this sensory information into a 

suitable code. This is done by using a feature of the information about the world 

captured in the sensory modality of sounds or sight or smells and coding it into a 

variable in the neuron’s action potential or spike. This process is called modulation 

and it can be explained further by a reference to radio engineering where the term 
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originated. Note that in my discussion I look at the two main coding systems in the 

brain namely rate coding and temporal coding. 

 

In wireless transmission modulation is a means of encoding information in a carrier 

signal (Terman 1960). Carriers are signals using different waveforms such as sine 

waves, saw-tooth waves, square waves and pulses. Different waveforms are used for 

different applications such as radio, telephony, TV and radar. The process of encoding 

information in the carrier is called modulation. The information encoded can be of 

different formats such as audio, video, text and messages. Modulation involves 

varying one of the variables of the carrier such as the amplitude, the frequency or the 

phase using the information for transmission as the parameter. For example in Pulse 

Frequency Modulation (PFM) the carrier waveform are pulses of constant amplitude 

and duration but whose frequency is varied to encode the transmitted information.  

 

Neuronal spike trains can be viewed as a modulation with the spike firing rate 

encoding the neuronal information while spike amplitude and duration are constant 

and not used for modulation. The rate of firing of the neuron is varied and is one of 

the main means of coding information in the neural signal and transferring it across 

the brain
13

. This coding method is called rate coding. It is akin to radio signals using 

pulse frequency modulation of a carrier wavefront to convey information where the 

firing rate of  pulses are varied to code the information to be transmitted. This analogy 

makes no commitment to neural signals either as a PFM or more broadly as an analog 

process.  In rate coding the rate is a measure of the average number of spikes over a 

duration measured in milliseconds.  

                                                 
13

 (Piccinini & Bahar 2013, p. 462), Byrne (2013 Fig.4) 
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The other main coding scheme called temporal coding applies when the neural 

information is coded in the precise timing of the spike train pattern. It is generally 

used when coding rates are high (e.g. in vision) so that the stimuli have to be 

processed more quickly than rate coding allows. When information is based on high 

frequency fluctuations in firing rates it could easily be mistaken for noise in a rate 

coding model but in the temporal coding model the information is better discriminated. 

For example if 1 indicates a spike and 0 = no spike then a spike pattern of 

011001111001 has different information from a spike pattern of 011101110001 even 

though the average rate is 6 spikes per 10 milliseconds.  

 

There are other coding schemes. However for our purposes just illustrative discussion 

of the two important ones is sufficient. Overall it seems that the information in the 

spike train is mainly conveyed in some combination of their dynamical properties 

such as the average firing rate, or the timing of the spikes (i.e. the inter-spike interval 

or phase shifts).  

 

3.3 Nature of Neural Computation  

In this section I discuss the nature of neural computation. The discussion is mainly 

based on the work of Piccinini and Bahar (2013) who argue that “neural computation” 

is a hybrid type of computation, neither a digital nor an analog computation. 

To address this issue the structure of this section covers the following five points:    

1) What  is  digital computation?  

2) Based on Neuroscience data can neural activity be considered a digital computation? 

3) What is an analog computation? 
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4) Based on Neuroscience data can neural activity be considered an analog 

computation?  

5) If neural computation is neither digital nor analog then is it sui generis? 

Each of the above 5 points is addressed one by one below.  

 

3.3.1 What Is A Digital Computation? 

A digital representation is one which uses discrete set of elements or values of entities 

or variables represented by symbols of a finite alphabet or natural numbers or integers. 

Digital computation uses discrete step wise changes over a set of elements according 

to an abstract rule over them to solve or process changes (Piccinini and Bahar 2013, pp. 

459-461). In its physical implementation digital computation has three main 

characteristics.   

The first characteristic is the processing of input strings from a finite discrete alphabet 

to suit the hardware circuitry underlying the physical device. Digital computation 

generally uses a code such as binary or octal or hexadecimal numbers to give a few 

commonly used examples. The second characteristic of digital computation is a finite 

number of internal states and symbols of the machine and a finite number of 

instructions or rules in terms of those symbols. The internal states are set up as a 

machine table to manipulate the input strings (as in the FSA machine description in 

the previous chapter). Furthermore the rules and vehicles or entities which form the 

alphabet strings are medium independent. They are insensitive to any concrete 

properties of the physical medium or hardware on which they are implemented 

thereby making multiple realisability possible i.e. the same computation being 

implemented on different media or machines such as for example mechanical, 

electronic or magnetic. The third characteristic of digital computation is the 
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production of output strings resulting from the manipulation of the input strings. The 

output is in the same or a different alphabet from the input.    

 

The key to abstract digital computation is the ability to convert all input, rules and 

output discrete elements so that it can be interpreted as a number for use in the 

internal inputs and states of the physical machine. A practical device will have all 

sorts of bells and whistles such as memory, storage communications networks etc. 

depending on the architecture on which it is designed. These however are not relevant 

for our purpose. 

 

3.3.2 Why Neural Computation is not Digital Computation 

We have seen that neural spikes have an all or nothing character as they are either 

present or absent. This gave rise to the consideration of an analogy between spikes 

and digits (originally by McCulloch and Pitts)
14

. Digital computation requires the 

manipulation of strings of digits hence in the neural case continuing with the analogy 

the candidate would be spike trains either from a neuron in their temporal order or 

from synchronous neurons within a suitable time interval.   Synchronous neurons are 

the ones that are anatomically or functionally located and participate in a neural 

circuit to work in unison. However there are strong dissimilarities between spikes and 

digits. 

Piccinini and Bahar (2013 p. 469) argue that spikes are not digits and manipulation of 

spike sets is not digital computation
15

. Their assertion in a nutshell is that while digital 

computation requires the manipulation of strings of digits i.e. the concatenation of 

representations like natural numbers or integers, they note that: “Neural spikes are not 

                                                 
14

 Piccinini & Bahar (2013 p. 467) 
15

 Note:  I do not discuss all the arguments presented by Piccinini & Bahar (2013).   
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digits, and even if they were digits, spike sets would not be strings”. (Piccinini and 

Bahar 2013 p. 469)” 

Three proposals for neural activity as digital computation are considered by Piccinini 

and Bahar (2013) and then rejected on the evidence available. They are   1) Single 

neuron spike activity; 2) Spike rates as digits; 3) Fitting Spikes into Strings. I discuss 

each of these in detail below. 

 

1) Single neuron spike activity: 

One proposal is to consider the firing of a neuron as digital computation as this gives 

rise to two states: the presence or absence of a spike. This superficially could be 

mathematically typed with two digital values and investigated further as a digital 

computation. However Piccinini and Bahar (2013, p. 470) provide two reasons why 

this digital typing is not correct. 

 

The first reason is based on not being able to identify a functionally significant time 

interval for neural activity. For digital representation only a finite number of digits 

can be typed within a given time interval.  Therefore the typing of the presence or 

absence of a spike as digits is based on the assumption of a fixed time interval 

between spikes in order to map a finite number of digits to spikes.  But this 

assumption is questionable as neural firing in vivo occurs with a high degree of 

variability (Piccinini and Bahar 2013, p. 471) and is not based on a fixed time interval. 

This leads to a move for spiking from a deterministic to a probabilistic one. While 

digital computation can be probabilistic, events are temporally discrete so that for a 

fixed time interval there can only be a finite number of outcomes with different 

degrees of probability such that a finite number of digits can be assigned to each 
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outcome.  But in the neural case there is no fixed functionally significant time interval 

for counting spikes. Proposals like using the synaptic delay or a master time interval 

were found to be wanting as in the former case there was lot of variation in the time 

and there is no empirical evidence for the latter. Spike counting would then have to be 

done in real time and spike probabilities assigned over an infinitesimal period. This 

leads to the possibility of an uncountably infinite number of times in a finite time 

interval during which a spike could occur. For a non-deterministic set up this leads to 

an uncountably infinite number of probabilities for the occurrence of spiking events. 

If spikes are typed as digits this would require the assignment of an uncountably 

infinite number of digits as there is a background assumption that different times in an 

interval correspond to different digits. However by definition of digital processing 

there can only be a finite number of digits in an interval for a digital value to be 

correctly assigned. Hence the analogy between spikes and digits breaks down and the 

presence and absence of a spike for digital typing is not workable. 

 

Next they argue that while the presence or absence of a spike has a differential impact 

in a spike train, what is of functional significance neurally is the rate at which spiking 

occurs. In many cases neuroscientists assess the functional significance of a neuron by 

computing the average firing rates over many trials (Piccinini and Bahar 2013, p.472). 

Furthermore, especially in rate coding, individual spikes may be removed or added to 

a spike train without losing their functional significance (Dayan and Abbott, 2001; 

Chapter 1). Hence they argue we cannot attach significance to the presence or absence 

of a spike so as to treat that as a digit.  
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2) Spike rates as digital states: 

Von Neumann’s proposal was that we take the spike rate as a digital value.  As the 

spike rate varies with the stimuli received the digital value would also vary. This 

proposal had the merit that it proposed using the functionally significant variable from 

a neural viewpoint. However as spike rates vary continuously there is no functionally 

significant time interval (Piccinini and Bahar 2013 p. 472-473) which can be used to 

parse i.e. quantize the spike rate in a reliable manner such that a digitisation is 

possible.  

Piccinini and Bahar (2013, p. 473) report that Von Neumann states that there is a limit 

to the precision of spike rates thereby making a digitisation from spike rates 

unreliable. Hence they argue the idea of using the spike rate as the basis for 

digitisation has to be given up.  

 

3) Fitting Spikes into Strings       

In the previous two cases Piccinini and Bahar (2013) argue why spike trains from 

single neurons cannot be considered as a digital computation. In the case discussed 

below Piccinini and Bahar (2013, p. 473) argue why even the functioning of groups of 

neurons cannot be looked upon as a digital computation. 

 

A basic uncontroversial assumption in digital computation is that any non-trivial 

computation requires a finite number of strings of digits concatenated together to 

carry out a function whether a program instruction or some other operation such as a 

FSA internal table state. A single digit or even a pair of digits as a rule serves no 

useful purpose. If neural computation were a digital computation then it should be 
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possible to unambiguously decide which sets of spikes belonged to which strings of 

digits. However Piccinini and Bahar (2013, p. 473) argue that this is not possible. 

They cite two sub-cases here namely:  

a) Spike train synchrony 

Consider sets of spikes from neurons associated with a cortical column engaged in 

carrying out some neural circuit or function. These columns are as a rule spatially and 

anatomically contiguous and have a neural function performed by groups of neurons 

working in synchrony i.e. in the sense that there spike trains begin and end in unison. 

The proposal was to consider the spike trains from such synchronous neurons as 

strings of digits. The complication here is the fuzziness in defining neural structures. 

Determining the boundary for a neural structure on a neuron by neuron basis is not 

possible. However the main issue is that such neural synchrony is a matter of degree 

and therefore the spike trains of neurons from neural structures will be in phase over 

some time intervals and out of phase (either leads or lags) over other time intervals, 

with no meaningful way of finding a functionally significant time interval where they 

will be in perfect synchrony.  Therefore looking at spike trains from synchronous 

neurons as concatenation of strings of digits is not possible.  

 

 

b) Spike trains from individual neurons. 

A spike train has a temporal order but in order to treat a spike train as a string we need 

to identify the start of the string i.e. the first spike and the end of the string i.e. the last 

spike. In neural activity there is a high stochastic or random background or “noise” 

signal such that the neural signal cannot be parsed out from the noise in a functionally 

significant way to identify the start and end of a spike train.  I am not totally 

convinced by this argument of Piccinini and Bahar (2013) as in theory the signal 

should always be distinguishable from the power spectrum of the noise. Furthermore 
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in non-linear circuits (including neural) a stochastic resonance (Piccinini and Bahar 

2013, p. 472) effect occurs where the noise can aid and enhance the signal.   

 

The second point they make is probably more significant and that is that spike trains 

from individual neurons are not functionally significant. Their significance is 

discovered by averaging out spike trains from single neurons over many trials and 

then use the average spike trains as units of functional significance. Colin Klein has 

remarked (in conversation) that this is a confusion between the functional significance 

of a spike train and the process to discover the functional significance of a spike train. 

Based on the above three points Piccinini and Bahar (2013) reject spike trains as a 

digital computation. 

 

The purpose of this section was to discuss reasons why spikes and spike trains are not 

a digital computation. It was based on reasons given in Section 7 of Piccinini and 

Bahar (2013). While the reasons are of varying degrees of conviction however all up 

they make a case that spikes and spike trains are not a digital computation. 

 

3.3.3 What Is An Analog Computation?16 

An analog structure is one which uses continuous representations such as the real 

numbers so that the values of a function using these representations can vary 

continuously with respect to some variable(s). Analog processing could use these 

continuous representations to solve or process a continuous function. Some of these 

functions may be set up as differential equations of multiple variables varying over real 

values. Analog computation is the application of analog processing either in nature or 
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by design in a device. While some analog computers are systems which are setup for 

finding solutions to differential equations this need not be so for all cases of analog 

processing.  To give a stock example of a looser kind of analog processing even the old 

AM wireless radio is an example of an analog processor. It detects the audio signal 

from the broadcast radio frequency carrier which is a continuous signal (or 

representation). The audio signal, again a continuous representation, is amplified and 

converted to a sound wave for listening to a radio broadcast.  

 

There is a clear contrast between digital and analog computation which can be 

intuitively grasped and it is as follows.  In a digital computation there will be a clear 

difference from one state to the next state with no intermediate states.  On the other 

hand in an analog computation, theoretically there will be an uncountable number of 

intermediate states between two states as it uses continuous functions ranging over 

real numbers. 

 

3.3.4 Why Neural Computation Is Not An Analog Computation? 

 Piccinini and Bahar (2013, pp. 465-467) argue that neural processing is not an analog 

computation for the following reason. They concede that there are neural processes of 

a continuous nature over real time. These are the release and uptake of 

neurotransmitters and hormones, plus continuously variable voltages transmitted by 

dendrites and some axons. These may look like analog processes and in this loose 

sense the brain may appear to be an analog machine. But they argue that for the brain 

to be looked upon as an analog machine in a strict sense its functionally significant 

signals must be “irreducibly” continuous variables. Now from earlier discussion in 

this chapter we know that spikes are the main functional signal of neural activity. 
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Furthermore what is of value is the dynamical attributes of a spike such as its firing 

rate or spike timing and not any physical attribute such as its threshold voltage or the 

rise / decay time. The mathematics of the operation of these functionally relevant 

neural factors (viz. firing rates and spike timing) as set out in theoretical neuroscience 

does not correspond to the mathematics of analog computation. A new mathematics 

had to be invented to account for their operation (Dayan and Abbott, 2001). Hence 

Piccinini and Bahar (2013, pp. 465-467) argue neural computation is not strictly an 

analog computation.  

 

3.3.5 Is Neural Computation Hybrid? 

Based on the survey of the neuroscientific evidence Piccinini and Bahar (2013, pp. 

476) conclude that neural processing is neither strictly a digital computation nor an 

analog computation but has characteristics of both. This leaves two choices namely: 

neural computation is not a computation, or it is a unique hybrid one which has some 

attributes of both digital and analog computation. Furthermore it is specific to the 

brain itself. 

Piccinini and Bahar argue for the latter view by concluding that: 

“In a nutshell, current evidence indicates that typical neural signals, such as spike 

trains, are graded like continuous signals but are constituted by discrete functional 

elements (spikes). Therefore, typical neural signals are neither continuous signals nor 

strings of digits; neural computation is sui generis. (2013, pp. 476) 

 

Such a hybrid computation is intended to allow for both continuous variables as well 

as discrete digits and it therefore has a broader range than digital computation.  
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Piccinini and Bahar introduce a “generic” concept of computation to cover this hybrid 

form of neural computation and define it as: 

“the processing of vehicles (defined as entities or variables that can change state) in 

accordance with rules that are sensitive to certain vehicle properties and, specifically, 

to differences between different portions (i.e., spatiotemporal parts) of the vehicles. A 

rule in the present sense is just a map from inputs to outputs; it need not be 

represented within the computing system” Piccinini and Bahar (2013, pp. 458) 

 

One other point they stress as a corollary of this definition is that the processing 

involves physical properties that are abstracted away to be independent of the medium 

or substrate on which they are implemented and referred to as “medium independent”. 

Piccinini and Bahar (2013, pp. 458) refer to the work of the neo-mechanists such as 

Craver (2006) for their main assumptions behind generic computation namely the talk 

of vehicles and their portions with association rules between inputs and outputs and 

their fractionating into parts. While Craver does talk about capacities and operations 

of parts and taxonomy of levels however as my thesis is on Chalmers’ theory hence I 

will not go further into an analysis of the notion of generic computation nor use the 

notion of generic computation further. I will accommodate hybrid computation by 

revising Chalmers’ model in the next chapter.  

 

3.4 Support for Neural Computation as Hybrid Computation from 

other Authors 

Ratification of a hybrid view of neural processing is also independently provided by 

Sengupta, Stemmler and Friston (2013, p. 7). Their reasons are different from 

Piccinini and Bahar (2013) however they argue against neural computation being 
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analog processing as noise is endemic to analog processing
.
. In analog processing the 

noise signal is transmitted with the information signal while with digitisation only the 

information is transmitted. If neural circuits are analog then noise would be 

transmitted with the signal instead of being suppressed. The inbuilt threshold 

mechanisms of spike trains attenuate noise and do not transmit it down the line. 

However they argue the pre-production processing of the neural signal via 

neurotransmitters and hormones plus the continuously variable voltages across 

dendrites is like analog processing thereby making the overall neural computation a 

hybrid one.  

 

I have discussed a number of views about the nature of neural computation using 

Piccinini and Bahar (2013) as the main foil for the discussion. The argument 

presented indicates that neural computation is a hybrid type of computation which has 

both discrete and continuous properties. In the next chapter I will look at how 

Chalmers’ views can account for hybrid computation or need to be modified.
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4. Evaluation of Chalmers’ Theory 
 

In this chapter I will discuss how well Chalmers’ thesis of cognition and the mind 

outlined in Chapter 2 stands up to scrutiny in the face of known empirical facts of 

neuroscience discussed in the previous chapter.  

4.1 Chapter Approach 

The discussion in the previous chapter on neurons, their activity and functions was 

done with the aim of asking the following questions in this chapter.  

1) Does Chalmers’ implementation scheme apply to neural computation?  

2) Does Chalmers’ thesis of Computational Sufficiency hold in the light of the 

facts of neuroscience? 

3) Does Chalmers’ thesis of Computational Explanation hold in the light of the 

facts of neuroscience? 

 

4.2 Does Chalmers’ Implementation Scheme Apply To Neural 

Computation?  

Chalmers’ (2011) original paper would be consistent with digital computation 

described in Section 3.3.1 above as he sets up his CSA as a state based machine. His 

machine is like a FSA but with vectors for inputs, outputs and internal states. There 

can be an infinite number of internal states unlike FSA’s which can only have a finite 

number of internal states. The components of the vectors range over discrete 

parameters such as integers or symbols of an alphabet. He then argues that other 

computation models such as Turing Machines and cellular automata for example can 

be represented using CSA. In Section 2.4 of Chapter 2 I argued that his analysis 

covers both symbolic and sub-symbolic or connectionist architectures. Chalmers does 
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not use the term digital computation as I have described in Section 3.3.1 above 

following Piccinini and Bahar (2013) but calls it symbolic computation.    

 

 In order to judge how Chalmers’ views have to be modified if neural computation is a 

hybrid type of computation as argued in the previous chapter I consider how a CSA 

can be set up to handle physical processes with  continuous causal organisation. 

Chalmers’ makes some remarks in this direction in his discussion on “Continuous and 

Discrete” in Chalmers (2011, p. 347) and also in his replies to commentators 

(Chalmers, 2012, p. 227). 

 

I mentioned above that the CSA has inputs, internal states and outputs that are made 

up of vectors whose components are discrete values such as integers or symbols from 

an alphabet. Now if we posit the inputs, internal states and outputs of CSAs as 

corresponding to real valued quantities then we cover continuous causal processes in 

the world. Hybrid processes will then be covered by a combination of real valued 

quantities and discrete quantities and therefore cover combinatorial structures with 

components having both discrete and continuous values.  One other point is that 

Chalmers’ expresses the causation as happening reliably by appeal to counterfactuals 

to avoid Putnam-Searle type of trivialisations. He posits a spatial separation in the 

components of the input and state vectors of the CSA keeping head states and tape 

states of Turing Machines in mind as having different physical locations. For handling 

continuous structures this will have to be achieved by extending spatial to the spatio-

temporal field in order to capture time slices of continuous variables (if need be)  in a 

continuous manner. 
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Next we consider how the state transition function has to be setup to generate 

continuous values. There are two options here according to Chalmers. The first is a 

very close approximation which employs polynomial functions over the real numbers 

to do a step wise continuous change from state to state with an acceptable level of 

error. This would work in practice for biological structures and therefore cognitive 

processes most of the time.  This is because approximations can be made as close as 

possible to a continuous variable (Blum, Shub and Smale 1989). We need to keep in 

mind that there is noise in biological systems which would make it unlikely that any 

cognitive process would be so sensitive as to require changes which need tracking to 

the tenth decimal place. Where it may not work is in the case of chaotic and random 

signals which can happen in neural circuits in unusual cases e.g. stimuli resulting in 

epileptic seizures (Manganotti, Tamburin, Zanette, and Fiaschi 2001).  

 

 The second option is an exact one based on differential equations which generates 

continuous values (MacLennan 1990). Note that as the state transition function has to 

cover both discrete and continuous values as far as inputs, internal states and outputs 

go hence two different sets of rules are required with discrete state transition functions 

applied to discrete structures and one of the two options discussed above used to 

handle continuous structures.   

 

The above extension of CSA’s will work provided the continuous and discrete 

structures in the inputs, states and outputs are kept separate.  By this I mean that there 

are two cases. The first case is where there are some tuples or vectors with all discrete 

components and some with all continuous components and none with mixed 

components. For example if the input vector I has components [i
1
, i

2
, …i

n
]  then in the 
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first case all the components of the vector  [i
1
, i

2
, …i

n
]   have discrete  values  for one 

set of  input vectors Ij and  have  continuous values represented by real numbers for 

another set of input vectors Ik. In the second case the input vector I has mixed value 

components [i
1
, i

2
, …i

n
] such that some components have discrete values and some 

have continuous ones.  I have referred to input vectors but the same remarks can apply 

to the composition of internal state vectors and output vectors of the CSA.   

 

The above extension to Chalmers’ CSA model may not work for the mixed case 

which requires simultaneous modelling of discrete and continuous data in the one 

tuple. This case cannot be ruled out on an a priori basis and has to be considered
17

. 

For this case the CSA as a computational paradigm will have to be replaced by one 

which works at the component level and handles the individual component variables 

separately instead of combining them within a vector. I don’t think the CSA as a tool 

can handle it as the processing is done at the tuple or vector level and not at the 

component level of the vector. The only way the mixed case can be handled is to 

change the paradigm from a CSA processing at a vector or tuple level to a hierarchical 

computational structure which is setup as a tree with the functional and complex 

states at the top of the hierarchy and simpler and closer to physical ones lower down 

until you get a separation of discrete and continuous at a branch and leaf level of the 

tree. What we are trying to do is break it down to a fine grained level so that 

processing happens at the component level on the one hand and yet keep the 

connection at the higher level but hide the detail. 

 

                                                 
17

  An actual example of this does not come to mind. Colin Klein has suggested one could happen 

along modulation lines either by attention or by top-down cognitive control to an underlying 

continuous cognitive process that is enhanced (or inhibited) in a binary fashion.  
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4.3 Is ASM the Solution? 

There maybe a way out for Chalmers if we develop a line of thought advanced by 

Milkowski (2012, pp 369-371) and endorsed by Chalmers (2012, pp 228)
18

. 

Milkowski argues that Chalmers use of the CSA is not as effective as the computation 

model developed using a new class of machines called Abstract State Machines (ASM) 

which would allow us to model any computation in Cognitive Science. ASMs were 

developed based on the thesis that one can use them to model any algorithm in any 

framework to any level of abstraction (Gurevich 1995). In particular any given 

algorithm can be step-for-step simulated by an appropriate ASM.   

The notion of an algorithm in ASM is defined by the following axioms (Milkowski 

2012, p 369): 

“I. An algorithm determines a sequence of computational states for each valid input. 

II. The states of a computational sequence are structures. 
III. State transitions in computational sequences are determinable by some fixed, 

finite description.” 

 

A fourth axiom can be added to exclude oracle machines
19

 viz. 

 

IV. Only undeniably computable operations are available in initial states. 

 

An ASM therefore consists of a sequence of finitely many transition rules of the form    

“if Condition then Updates which transform the abstract states.  

The Condition (also called guard) under which a rule is applied is an arbitrary 

predicate logic formula without free variables whose interpretation evaluates to true 

or false. Updates is a finite set of function updates (containing only variable free 

terms) of form f (t1, . . . , tn) = t  whose execution is to be understood as changing (or 

                                                 
18

 The other technique which enables simultaneous modelling of discrete and continuous structures in 

dynamical systems is Time Scale Calculus but use of that is not compliant with a computational 

framework. 
19

 The Church-Turing thesis has been shown to be derived by extending the axioms to cover 

computable operations in the initial state to avoid non-classical computations (Dershowitz and 

Gurevich, 2008).  
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defining, if there was none).. the occurring functions f at the indicated arguments to 

the indicated value”. (Borger and Stark, 2003 pp. 28-29).  

 

The rule can be unguarded i.e. without the “If..then” conditional. The states of an 

ASM are structures which are domains consisting of sets their members, functions 

over the members and relations. Without loss of generality one can treat predicates as 

characteristic functions.  

 

The ASM approach provides a way to describe algorithmic issues in a simple abstract 

pseudo-code which can be translated into a high level programming language source 

code in a quite simple manner. ASMs have been extended for algorithms over 

continuous structures over space and time (Bournez and Derschowitz 2010). Hence 

they can be used to model hybrid architectures which is what we need to cover neural 

computation at different levels. ASMs can describe the causal dynamics of systems at 

different levels of data abstraction. ASMs can work with different data structures 

unlike Turing Machines or FSAs which work with symbols or numbers alone. Hence 

they could be used to specify a hierarchy of machines with different levels of data 

abstraction from very low level ones with detailed states and state transitions specified 

to higher level ones specifying functions and commands in a higher level language. 

 For example for a two level hierarchy of machines the top level can be rendered as a 

state machine whose  state transition rules reference the machine  at the lower level. 

As the states are structures i.e. domains of sets their functions and their relations 

hence they would include the relationships between the different levels of machines. 

This enables us to give a general account of when low level machines implement high 

level models.  

 



4. Evaluation of Chalmers’ Theory 

 70 

As ASM states are based on structures whose elements can have functions and 

relations over the domains they range over hence ASMs can combine both the Turing 

paradigm of conventional imperative programming with the Church paradigm of 

functional programming.
20

 The higher level ASM could then have declarative 

command(s) format (akin to the Church paradigm) and its functional descriptions and 

relations get realised in lower level(s) of state machine(s) (akin to the Turing 

paradigm) where the states take whatever desired level of abstractness right down to a 

physical level.  Klein (2012) has argued that the Church paradigm maybe more 

important for understanding the architecture of the brain at higher cognitive levels. 

According to Klein CSA’s had a problem covering this however ASMs have no such 

problem. 

ASMs would be able to give a general account of when a physical system implements 

different types of computations including ones involving virtual hardware and 

software states where the original states are being emulated and no longer physically 

exist. Many computational models have difficulties with working over multi-level 

structures especially ones which include combinations of levels of virtual hardware 

and software without direct spatio-temporal or causal relationships e.g. consider a PC 

running Windows7 where the causal structures of the hardware are related to the 

                                                 
20

The Turing paradigm is captured by the following quote from Klein (2012, pp. 168) “Computations 

are specified by specifying state-transition rules. These prescribe, in precise detail, the transitions that 

an implementing machine must undergo for any particular combination of substates”. Imperative 

programming languages are based on the Turing paradigm and programs consist of a sequence of 

source language instructions which direct a computer how to solve a problem by following a strict 

sequence of instructions which get compiled into a sequence of machine code i.e. the  transitions 

undertaken. 

The Church paradigm on the other hand does not tell a computer the strict sequence of instructions i.e. 

how to solve problem. It states the problem that is to be solved. It does this by setting up the functions 

(mathematical) that are to be evaluated. To quote Klein (2012, pp. 169): “A program thus describes 

which functions are to be computed, but neither constrains nor guarantees the order in which functions 

are evaluated.” The connection to Church is because these functional programming languages are 

based on the lambda calculus. See Klein (2012) for a discussion on the Turing and Church paradigms 

of imperative and functional programming. 
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underlying formal structures of the computation and then a hierarchy of virtual 

machines running on this platform emulating various hardware and operating systems 

e.g. a Mac running MAC/OS, which in turn emulates an old IBM 486 PC running 

DOS and so on with each of these virtual machines running their virtual application 

software. This is a relatively common occurrence with the inability to run old 

applications on newer hardware and operating systems A possible example of a 

virtual machine applying to minds and therefore to neural computation is given by 

Colin Klein of simple sets of rules communicated in a higher level language like 

English which “runs” on the brain machine (or mind) like a compiler on a computer 

and getting translated into a lower level machine code type of language before being 

actioned. His example is a set of three instructions such as: “First staple these two 

pages”. “Then add them to the folder”; “Then write the delegate’s name on them”. For 

processing it requires translating those English instructions presumably by something 

like compiling them to neural instructions prior to being actioned
21

. As ASMs can be 

defined by inputs and states from very abstract to physical ones hence virtual states 

are not a problem plus the link from abstract to concrete physical states can also be 

defined in the one machine. 

 

Because ASMs can cover functions and relate them to lower level states, they would 

not have the issues Chalmers’ thesis of Computational Explanation had with Marr’s 

and Bayesian theories as discussed earlier in Section 2.5. The functional operators in 

                                                 
21

 Another case is given by Hamburger & Crain (1984) who describe a compile and plan 

neurolinguistic study on children. It involves carrying out “Do as I say” instructions on words to check 

if the child has for example correctly understood the referent of a word. Their thesis is that when a chid 

is asked to show its comprehension on a sentence by an appropriate action, the syntactic structure is 

first converted into a plan and it is the plan that is actioned. The plan is made up of one or more 

algorithms and this process of acquisition of the plan is akin to a compilation of a program on a 

computer. This plan specification and acquisition process could be construed as a case of a hierarchy of 

virtual machines as the neural representation has no causal structural relationship to the underlying 

physical mechanism since one does not directly exist. 
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those theories are not covered well by CSAs as Chalmers had conceded. As 

mentioned before in this section Gurevich (1995) originally worked on ASM as a 

general framework covering all algorithms. The proofs he has developed enable ASM 

to cover all computational formalisms such as Turing machines, FSAs etc. In 

replacing CSA by ASM we no longer have the objections raised in Section 2.8 to 

CSA as an adequate formalism covering all computational formalisms. 

 

Chalmers (2012, pp 228) has agreed with Milkowski’s suggestion to replace CSAs by 

ASMs and said that that would be the way to go to get a general model of 

computation which overcame many of the objections raised to his views. Note that the 

development of the formalism to replace CSAs by ASMs is a non trivial exercise, 

beyond the scope of this thesis and remains a project for the future. In what follows 

below I give a brief informal outline.  

 

A definition for a basic ASM can be rendered in the same manner as the one done for 

FSA with the proviso that the states are abstract structures and the state transition 

rules can reference other machines as the structure can contain functions and relations:  

“A basic ASM is specified by giving a set of input states I1, ..., Ik, a set of internal 

states S1,...,Sm, and a set of output states O1,...,On, along with a set of 

state-transition relations of the form (S, I) → (S’, O’), for each pair (S, I) 

of internal states and input states, where S’ and O’ are an internal state and an output 

state respectively. S and I can be thought of as the “old” internal state and the input 

at a given time; S’ is the “new” internal state, and O’ is the output produced at that 

time.” 
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As mentioned earlier ASMs’ states are structures hence they can have functions to 

any desired level of abstraction. In addition as mentioned before ASMs have systems 

of finitely many transition rules either with conditional form “if Condition then 

Updates” or unconditional form which transform the abstract states. 

 

We extend the concept of the implementation by CSA to one by ASM where the 

internal states, transition rules and outputs replace vectors by structures. In moving 

from scalars to vectors Chalmers had provided a combinatorial complex structure to 

the CSA. The move to an ASM deepens the complexity and granularity of the 

resulting machine with hierarchy and functional command structures as discussed 

earlier. The other point is that ASMs (like CSAs) differ from FSAs in that their 

internal states can be either finite or infinite while for a FSA they are always finite. 

However ASM’s inputs can be constrained to be finite by the last axiom above to 

adhere to the Turing Church hypothesis. For all practical purposes the finite case 

suffices. 

 

A physical system P implements an ASM, M, when the following conditions are met: 

“If there are internal states of P into structures [s
1
, s

2
,…],  and a mapping f  from the 

sub-states s
j
 into corresponding sub-states S

j
 of M, along with similar mappings from 

inputs and outputs, such that for every state-transition rule ([I
1
, …, I

k
], [S

1
, S

2
,…]) → 

([So
1
, So

2
, …], [O

1
, …, O

l
]) of M: if P is in internal state [s

1
, s

2
, …] and receiving 

input [i
1
, …, i

n
] which map to formal state and input [S

1
S

2
, …] and [I

1
, …, I

k
] 

respectively, this reliably causes it to enter an internal state and produce an output that 

map to [So
1
, So

2
,…] and [O

1
, …, O

l
]] respectively.”  
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The state transition rules given above are unguarded however they can be set to be 

conditional with the conditions largely determined by the context (e.g. another related 

machine), the subject matter and the environment to name at least three factors. As 

FSAs and CSAs are sequential,
22

 the ASM description given above is that of a 

sequential ASM however this need not apply in all cases. ASMs can be defined with 

parallel, distributed, encapsulated and multi agent formats (Borger, E. and Stark. R., 

2003, pp. 88-282). 

 

The above ASM formulation can be unpacked as follows. Each internal state of P is a 

structure given by its components [s
1
, s

2
,…], and similarly each internal state of the 

ASM is a structure whose components are [S
1
, S

2
,…]. A structure consists of an 

ordered set of sub-states or components for each internal state of the physical system 

and the ASM plus their functions and relations. For example each component of the 

structure corresponding to an internal state of P could represent a spatio-temporal 

coordinate. The inputs and outputs of the physical system have structures e.g. [i
1
, …, 

i
n
] and [o

1
, …, o

l
] respectively. The inputs and outputs of the ASM also have 

structures e.g. [I
1
, …, I

k
] and [O

1
, …, O

l
] respectively. 

There is a function f that does a one to one mapping from each sub-state sj of the 

internal state, of the physical system P to each sub-state Sj of the internal state of the 

ASM, M. along with mappings of the components of the inputs and outputs of P to 

components of inputs and outputs of M. This mapping is based on the state transition 

rule of M ([I
1
, …, I

k
], [S

1
, S

2
,…]) → ([So

1
, So

2
, …], [O

1
, …, O

l
]) . The state transition 

rule specifies a unique mapping for a combination of input state structures and 

internal states of M giving new internal state structure plus an output structure of M. 

                                                 
22

 Klein (2012) covers this point in detail in his discussion of the Turing paradigm mentioned earlier. 
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Furthermore the state transition rule must be such that the causal transition in the 

physical system P is reliable i.e. counterfactual supporting as discussed earlier in 

connection with reliable causation for FSA implementation.  

 

The above description gives an account of what it is for a physical system to 

implement a computation and how to interpret the mirroring relationship between the 

states of a physical system and the states of an abstract computation. In this section I 

looked at how Chalmers CSA model can be modified if neural computation is a 

hybrid form of computation. I found that while Chalmers model can be extended to 

handle continuous causal processes however in the hybrid case it can only handle one 

of the two possible cases. Only a move to an ASM model can handle both cases. 

 

4.4 If Neural Processes Are Not Computations  

At the start of Chapter 3 before investigating the nature of neural computation I set 

out the four possible logical alternatives. One of these was what if neural processes 

are not a computation.  If that were true then clearly Chalmers theory would have to 

be rejected. However we have found at the end of the discussion in Chapter 3 that 

there is sufficient evidence that neural computation is a hybrid type of computation.  

Hence this alternative has to be discounted and would merit no further discussion 

about overall theories of the mind and cognition.  No doubt as discussed earlier in 

Chapter 2 Section 2.5 there are theories in specific areas like Marr’s model of vision 

and the Bayesian model of perception which did not fit in well with Chalmers’ 

explanatory computational framework. These were based on mathematical functions 

and not a computational framework. However Chalmers (2012, pp 243-4, 246) has 

convincingly argued that they are not general theories of the mind and cognition but 
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cover particular areas only and the links to his model could be worked out if a move 

were made to ASMs. 

 

4.5 Does Chalmers’ Thesis of Computational Sufficiency and 

Computational Explanation Hold If Neural Computation is Hybrid? 

In the assessment of neuroscientific data that I discussed in Chapter 3 I had concluded 

that neural computation is neither a digital nor an analog computation but a hybrid 

type of computation. This would potentially pose a problem for Chalmers’ CSA 

model which is a digital one. This was overcome in Section 4.2 above by modifying 

CSAs to handle both discrete and continuous structures using real numbers with 

suitable changes to the state transition function. The question I wish to consider here 

is how Chalmers’ thesis of computational sufficiency which links computation to 

cognition gets affected (if at all) by neural computation being hybrid. We have seen in 

Section 2.5 that this thesis states that the right kind of computations is sufficient to 

have a mind. The straight forward point is that the extensions to CSA in Section 4.2 

above make it possible to cover cognitive processes which are both discrete and 

continuous. If the brain has a massively parallel and massively distributed architecture 

and its circuits to carry out a function are like artificial neural networks then there is a 

separation between the task of individual neurons which are like a switch passing 

encoded / decoded data and the overall processing by the network. The individual 

neurons are mainly responsible for low level computation while networks of neurons 

are responsible for the high level computation of cognitive processes. The work of the 

network results in meaning or action on the data to deliver the function of the network 

of neurons. In general a cognitive process is not at the level of an individual neuron 

but at the level of a network of neurons and hence debating about the nature of 
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processing at the neuron level (whether analog or digital or hybrid) maybe too low a 

level when we are giving an account of cognition. Chalmers (2011 p. 337) says that 

his account applies to a “neural level or higher depending on just how the brain’s 

cognitive mechanisms function” provided it results in the causation of behaviour. 

Only by reading this as meaning at a neural network level and by “higher” as meaning 

an abstract causal organisational level does one avoid confusion. Hence there is no 

impact on the thesis of computational sufficiency.  

 

To recall as discussed in Section 2.5, Chalmers’ thesis of computational explanation 

says that computation as construed by him provides an explanatory framework for 

cognitive processes and behaviour.  This thesis is not affected by neural computation 

at the neuron level being hybrid as hybrid computation was shown to be compliant 

with an extension to Chalmers’ computational model, both the extended CSA one or 

the ASM model.  
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5. Conclusion 
 

In this thesis I have examined David Chalmers’ causal theory of the mind. I have 

outlined the theory and then discussed the strengths and weaknesses of his approach. 

Chalmers developed his theory by first defining an abstract computational object 

namely a CSA and its implementation via an isomorphism (or mirroring) with the 

causal processes of the physical system in which the computation is realised. Next he 

brings out the connection between computation and cognition via the theses of 

computational sufficiency and computational explanation. In Section 2.7 I go on to 

show how Chalmers’ argument does not fall afoul of the Putnam-Searle trivialisation 

objection by appealing to counterfactual conditionals. Next I discussed some key 

issues and objections made by his critics and concluded that while there maybe some 

difficulties, however no knockdown argument was advanced by any of his detractors 

on the one hand while Chalmers on the other hand in most cases made robust 

responses to objections. Furthermore I argued in Chapter 4 that a move away from 

CSA to ASM as hinted by Chalmers (2012) overcomes the main difficulties with CSA 

as a computational model and as an explanatory framework for cognition.  

 

By looking at neural computation in Chapter 3 I concluded that the evidence suggests 

that it is of a hybrid variety covering both discrete and continuous structures causing a 

potential problem for Chalmers’ theory. Again by replacing CSA by ASM I have 

proposed how Chalmers’ thesis can be extended to comply with the hybrid nature of 

neural computation. By doing this I have shown that it is still a live theory in the 

philosophy of mind.  



References 

 79 

References 
 

Blum, L., Shub, M. and Smale, S. 1989. On a theory of computation and complexity 

over the real numbers: NP-completeness, recursive functions, and universal 

machines. Bulletin (New Series) of the American Mathematical Society 21(1): 1-46. 

 

Borger, E. and Stark. R. 2003. Abstract state machines, A method for high-level 

system design and analysis. Springer-Verlag, Berlin. 

 

Bournez, O. and Dershowitz, N. 2010. Foundations of analog algorithms.  

Proceedings of the Third International Workshop on Physics and Computation (P&C), 

Nile River, Egypt, pp. 85–94. Available at http://nachum.org/papers/Analog.pdf 

 

Byrne, J. 2013.  Introduction to neurons and neuronal networks. Neuroscience Online, 

University of Texas Medical School, Houston, Texas. 

http://nba.uth.tmc.edu/neuroscience/s1/introduction.html 

 

Chalmers, D.J. 2011. A computational foundation for the study of cognition. Journal 

of Cognitive Science, 12(4): 1-21. 

, 

Chalmers, D.J. 2012. The varieties of computing: A reply. Journal of Cognitive 

Science,  13: 211-228. 

 

Church, A. 1936. ‘A Note on the Entscheidungsproblem’. Journal of Symbolic Logic, 

1: 40-41. 

 

Craver, C. 2006. When mechanistic models explain. Synthese, 153(3): 355-376 

 

Dayan, P. and Abbott, L. F. 2001. Theoretical neuroscience, computational and 

mathematical modelling of neural systems. MIT Press, USA. 

 

Denning, P., Dennis, J. and Qualitz, J. 1978. Machines, languages and computation. 

Prentice-Hall, NJ. 

 

Dershowitz, N., and Gurevich, Y. 2008. A natural axiomatization of computability 

and proof of Church’s Thesis. The Bulletin of Symbolic Logic, 14(3): 299-350. 

 

Dreyfus, H. L. 1972. What computers can’t do. New York: Harper & Row. 

nd and Machines 4: 391-402, 1995. 

Egan, F. 2012. Metaphysics and computational cognitive science: Let’s not let the tail 

wag the dog. Journal of Cognitive Science. 13: 39-49. 

 

Fodor, J.A. 1975. The language of thought. New York: Thomas Crowell. 

 

 

 

Fodor, J.A. and Pylyshyn, Z. W.  1988. Connectionism and cognitive architecture: A 

critical analysis. Haugeland J. (Ed), Mind design II, MIT Press, 1997. 

 



References 

 80 

Garson, J. "Connectionism", The Stanford Encyclopaedia of Philosophy (Spring 2015 

Edition), Edward N. Zalta (ed.), 

http://plato.stanford.edu/archives/spr2015/entries/connectionism/ 

 

Gurevich, Y. 1995. Evolving algebras 1993: Lipari guide. In E. Börger (Ed.) 

Specification and validation methods (pp. 231-243). Oxford: Oxford University 

Press. 

 

Hamburger, H. and Crain, S. 1984. Acquisition of cognitive compiling. Cognition, 17: 

85-136. 

 

HIPR 2000. Hypermedia image processing reference. Department of Artificial 

Intelligence, University of Edinburgh. 
http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm 
 

Hopcroft, J.E., Ullman, J.D. 1979. Introduction to automata theory, languages and 

computation. Addison-Wesley, Reading, Mass. USA. 

 

Kandel, E., Schwartz J.H., Jessell, T.M. (eds.) 2000. Principles of neural science. 

McGraw-Hill, New York, USA.  

 

Klein, C., 2012. Two Paradigms for individuating implementation. Journal of 

Cognitive Science. 13: 167-179. 

 

MacLennan, B. 1990. Field computation: A theoretical framework for massively 

parallel analog computation, Parts I-IV. Technical Report CS-90-100. Computer 

Science Department, University of Tennessee. 

 

Manganotti, P., Tamburin, S., Zanette, G., Fiaschi, A. 2001. Hyperexcitable cortical 

responses in progressive myoclonic epilepsy: a TMS study. Neurology. 2001 Nov 27; 

57(10): 1793-9. 

 

Marr, D. 1982. Vision, New York: Freeman Press USA. 

 

McCulloch, W. and Pitts, W. 1943. A logical calculus of ideas immanent in nervous 

activity. Bulletin  Of Mathematical Biophysics, 5: 115–133. 

 

Miłkowski, M. 2011.  Beyond formal structure: a mechanistic perspective on 

computation and implementation. Journal of Cognitive Science, 12: 359-379. 

 

Milkowski M.  2015. Internet Encyclopaedia of Philosophy (IEP), ISSN 2161-0002 

http://www.iep.utm.edu/compmind  

 

Penrose, R. 1990. Precis of the emperor’s new mind. Behavioral and Brain 

Sciences 13: 643-655. 

 

Piccinini, G. 2010. The mind as neural software. Understanding functionalism, 

computationalism, and computational functionalism. Philosophy and 

Phenomenological Research, 81:( 2) 269-311. 

 



References 

 81 

Piccinini, G. and Bahar, S. 2013.  Neural computation and the computational theory 

of cognition, Cognitive Science, 34: 453–488.  

 

Place, U. T. 1956. ‘Is consciousness a brain process? British Journal of Psychology, 

47: 44–50. 

 

Putnam, H. 1960. “Minds and machines.”  in Dimensions of Mind, ed. Sidney Hook, 

New York University Press, USA.  

 

Putnam H. 1967. The nature of mental states. in Mind and Cognition: An Anthology, 

2
nd

edn. eds. W Lycan, 1999.  Malden, Ma, Blackwell.  

 

Putnam, H. 1988. Representation and reality. The MIT Press, Cambridge, USA.  

 

Rescorla, M. 2012. How to integrate representation into computational modeling, 

and why we should. Journal of Cognitive Science, 13: 1-38.  

 

Ritchie, J.B. 2011.  Chalmers on implementation and computational sufficiency. 

Journal of Cognitive Science, 12: 401-417. 

Rummelhart, D., McClelland, J.L. and the PDP Research Group. 1986. Parallel 

Distributed Processing: Explorations in the Microstructure of Cognition. Volume 2: 

Psychological and Biological Models, Cambridge, MA: MIT Press, USA. 

 

Rummelhart, D. 1998. The architecture of the mind, a connectionist approach. Mind 

readings, 207-238. 

 

Searle, J.R. 1980. Minds, brains and programs. Behavioral and Brain Sciences 3: 417-

457. 

 

Searle, J.R. 1992. The rediscovery of the mind. Cambridge, Mass. MIT Press, USA. 

 

Sengupta, B., Stemmler M.B. and Friston K.J. 2013. Information and efficiency in the 

nervous system— A Synthesis. PLOS Computational Biology, 9: (7) 1-12. 

 

Shadlen, M. N., and Newsome, W. T. 1998. The variable discharge of cortical 

neurons: Implications for connectivity, computation and information coding. Journal 

of Neuroscience, 18: 3870–3896 

 

Smart, J.J.C. 1959. Sensations and brain processes. Philosophical Review, 68: 141–

156. 

 

Smolensky, P. 1990. Tensor product variable binding and the representation of 

symbolic structures in connectionist systems, Artificial Intelligence 46: 159-216  

 

Sprevak, M. 2012. Three challenges to Chalmers on computational implementation. 

Journal of Cognitive Science, Volume 13: 107-143. 

 

Terman, F.E. (1960) Electronic and radio engineering.  McGraw-Hill, India. 



References 

 82 

 

Towl, B. 2011. Home, pause, or break: a critique of Chalmers on implementation. 

Journal of Cognitive Science, 12: 419-433 

 

Turing, A.M. 1936. On computable numbers, with an application to the 

Entscheidungsproblem. Proceedings of the London Mathematical Society, 

Series 2 42: 230-65. 

 

Von Neumann, J. 1945. “First Draft of a Report on the EDVAC,” Contract No. W-

670-ORD-4926, Between the United States Army Ordnance Department and the 

University of Pennsylvania Moore School of Electrical Engineering, University of 

Pennsylvania. June 30, 1945. 

 

 


