

Models of Neural Computation-

An Examination of David Chalmers’ Causal Theory of the Mind

By

Dinyar Mistry, B.A.

A THESIS SUBMITTED TO MACQUARIE UNIVERSITY

FOR THE DEGREE OF MASTER OF RESEARCH

DEPARTMENT OF PHILOSOPHY,

FACULTY OF ARTS

MACQUARIE UNIVERSITY, NSW 2109, AUSTRALIA

OCTOBER 2015

 2

Declaration

I certify that the work in this thesis has not been submitted for a degree nor has it been

submitted as part of the requirement for a degree except as fully acknowledged within

the text.

I also certify that the thesis has been written by me. Any help that I have received in

my research work and the presentation of the thesis itself has been acknowledged.

I certify that all information sources and literature used are indicated in the thesis.

Dinyar Mistry October 28, 2015

 3

Acknowledgements

I would like to thank my supervisor Dr. Colin Klein for his help, support and

encouragement while I was writing this thesis.

 4

TABLE OF CONTENTS

Summary..5

1. Introduction..6

1.1 Methodology..9

2. Chalmers on Implementation and Cognition ...11

2.1 Chalmers’ Causal Thesis of the Mind..12

2.2 Finite State Machines and its Relation to Chalmers’ Thesis15

2.3 Combinatorial State Automata...23

2.4 CSAs and Connectionist Networks..25

2.5 Computation and Cognition...29

2.6 Merits of Chalmers’ Causal Thesis of the Mind..34

2.7 Does the CSA Formalism Escape the Trivialisation Objection?37

2.8 Objections and Replies ..40

1) Is Chalmers’ notion of implementation over liberal?41

2) Is CSA an adequate formalism for different types of computation?................42

4) Issue with Computational Sufficiency..44

2.9 Conclusion ...45

3. Chalmers’ Causal Theory of the Mind and Neuroscience47

3.1 Introduction..47

3.2 Neural Structures ...49

3.3 Nature of Neural Computation...52

3.3.1 What Is A Digital Computation? ..53

3.3.2 Why Neural Computation is not Digital Computation54

3.3.3 What Is An Analog Computation?..59

3.3.4 Why Neural Computation Is Not An Analog Computation?......................60

3.3.5 Is Neural Computation Hybrid?..61

3.4 Support for Neural Computation as Hybrid Computation from other Authors

..62

4. Evaluation of Chalmers’ Theory..64

4.1 Chapter Approach ..64

4.2 Does Chalmers’ Implementation Scheme Apply To Neural Computation?..64

4.3 Is ASM the Solution?...68

4.4 If Neural Processes Are Not Computations ...75

4.5 Does Chalmers’ Thesis of Computational Sufficiency and Computational

Explanation Hold If Neural Computation is Hybrid? ..76

5. Conclusion ...78

References..79

Summary

 5

Summary

David Chalmers has defended a causal version
1
 of the Computational Theory of the

Mind(CTM) by formulating an abstract computational object called a Combinatorial

State Automata(CSA) which he argues can cover the structure of different abstract

computational objects such as Finite State Automata, Turing Machines, Cellular

Automata etc. He views implementation as the bridge between formal computation

and physical computation. He defines implementation as an isomorphism between

causal processes of a physical object and the formal structure of a computation. He

uses his causal version of CTM to connect computation and cognition by defending a

thesis of computational sufficiency and uses computation as an explanatory

framework for cognitive processes and behaviour. In my thesis I examine Chalmers’

views to see whether his argument stands up to scrutiny and whether his views are

supported by the data of neuroscience. Where there are shortcomings I modify and

extend Chalmers’ theory to make it compliant.

1
 Chalmers D, (2011), A Computational Foundation for the Study of Cognition, Journal of Cognitive

Science 12: 323-357

1. Introduction

 6

1. Introduction

In contemporary philosophy, materialist theories of the mind have dominated

discussion in the philosophy of mind, with versions of the Computational theory of

the Mind (CTM) being in the mainstream. The CTM is based on the intuition that the

mind is a computer, and mental processes involve computations.

The idea of the mind as a computer program was originally proposed by Putnam

(1960). It was based on the abstract idea of computation derived from the work of

Turing (1936) and Church (1936) and others who formalised the notion of algorithm

or effective procedure in mathematics. An algorithm is an explicit step by step

procedure consisting of a set of instructions. When these instructions are carried out

sequentially over input values it transforms them in a deterministic way into one or

more subsequent states plus intermediate values and finally into output values. This

makes it possible to define solutions to problems of a class which are effectively

decidable i.e. can be mechanically done by rote by pencil and paper alone. Such a

procedure or algorithm constitutes the machine table or program of a computer.

On this view, the mind is viewed as the machine table or program of a computer.

Another way to look upon the machine table is as a set of rules operating on one set of

symbols to transform them into another set. For example the Rule “If a then b”

implies that if input is symbol “a” then output is symbol “b”. Note that this rule

assigns no meaning to the symbols “a” and “b”. Putnam’s view of CTM is cast in this

syntactic vein of not assigning any meanings to machine tables. As the machine table

1. Introduction

 7

or program is not a physical object the relationship between the mind and the machine

table is not between the mind and a physical object but to an abstract object. This was

an attraction at that time as the preceding theory of the mind, the Identity Theory of

Smart (1959) and Place (1956) ran afoul due to its assertion of identifying mental

states and processes with actual brain states and processes thereby unable to account

for the multiple realisation of mental states such as “pains” in species with totally

different physiologies. CTM was deemed more plausible and replaced the Identity

Theory. The versions of CTM developed and proposed by Fodor (1975) following

Putnam became for a while according to Fodor (1975, pp. 27-53) “the only game in

town”.

Fodor’s (1975) main contribution was to modify CTM by marrying the Putnam view

of “the mind as a computer” to the view that the way in which these computations are

done are by processing symbolic representations about the world so as to give truth-

value, reference and meaning to these representations in a manner similar to a natural

language statement. In fact Fodor called his theory the Language of Thought

Hypothesis which asserted that thought takes place within a mental language.

However working out the nature of the meanings or the semantic relationship for

mental representations turned out to be controversial and in some respects a vexed

topic. This led to a number of moves by Fodor and his collaborators to save the day

resulting in more than one version of his theory. His thesis is also known as the

“semantic version” of CTM. I discuss Fodor’s views further in Section 2.6 of the next

chapter.

1. Introduction

 8

The main weakness of Fodor’s theory (Milkowski 2015) was that it could not offer a

clear connection between computation at the abstract formal level and computation at

the physical level. That is to say, it could not explain the implementation relationship

between abstract computation as logically done by a Turing Machine and concrete

computation as performed by a physical computer.

David Chalmers (2011, pp. 325-326) on the other hand identified the need for giving

an account of the implementation relationship between computation at the abstract

and physical levels as crucial to giving an account of the mind and proposed his

causal account of computation. He argued that by explaining this link he was able to

make computation foundational to mentality and cognition. He saw his causal version

of the computational theory of the mind as providing a foundation to Cognitive

Science and Artificial Intelligence and avoiding objections made to earlier versions of

CTM.

Chalmers causal theory is based on the intuition that a system implements a

computation when the causal structure of the physical system mirrors the formal

structure of the computation. His aim is to develop an account based on a rigorous

concept of the implementation relationship between abstract or formal computation

and computation as realised in physical systems. While computation at a formal level

was well understood from the work of Turing and Church however there was no clear

account for computation as implemented in physical systems. There is clearly a need

for this if computation is used to explain cognition and minds as they are realised in

physical systems, namely brains.

1. Introduction

 9

Chalmers has developed this intuition by formulating an abstract computational object

called Combinatorial State Automata (CSA) which he argues can cover the structure

of all different types of formal computational objects such as Finite State Automata

(FSA), Turing Machines, Cellular Automata etc. FSAs and CSAs are discussed in

detail in Section 2.2 and 2.3 respectively of the next chapter. He then brings out the

connection between computation and cognition by arguing that the right kind of

computational structure suffices for the possession of a mind. Furthermore he argues

that computation is an explanatory framework for cognitive processes and behaviour.

I discuss in detail the link between computation and cognition in Section 2.5 of the

next chapter.

1.1 Methodology

The methodology used in the thesis is to look at both the logical soundness of

Chalmers’ argument and to see if it is supported by the data of neuroscience. Where

there are any weaknesses in the argument I endeavour to see if the argument can be

modified, extended or has to be rejected. Whereas the critical analysis strand of the

methodology is a standard approach in a philosophy thesis, I have also brought to bear

on Chalmers’ thesis the weight of empirical data from neuroscience. I do this by

looking at whether extant neural processing can be looked upon as a computation and

if so whether it is a type of computation that can be supported by Chalmers’ thesis. I

have taken this approach because Chalmers’ says that the main purpose of his work is

to give an account of the mind and cognition which is foundational to Cognitive

Science and Artificial Intelligence. Therefore for Chalmers’ enterprise to be relevant

requires examining whether his theory is compliant with neuroscience as otherwise it

would have to be rejected.

1. Introduction

 10

The outline of the rest of the thesis is as follows. In the next chapter I examine

Chalmers’ theory in detail. Chapter 3 is devoted to a discussion on neuroscience and

whether neural processes underlying cognitive processes are either a digital

computation or an analog computation, or a hybrid computation or not a computation.

Chapter 4 discusses whether Chalmers causal version of CTM is compliant or can be

made compliant by modification or extension with the data about neural computation

discussed in Chapter 3. Finally in Chapter 4 I also consider the case if neural

processes were not a computation. I close with concluding remarks in Chapter 5.

2. Chalmers on Implementation and Cognition

 11

2. Chalmers on Implementation and Cognition

In this chapter I take a close look at Chalmers’ thesis. I discuss his analysis of the

relationship between abstract and physical computation and how he links the latter to

the mind and cognition. I examine the merits of his theory and how it responds to the

triviality arguments of Putnam (1988) and Searle (1992). Finally I cover the main

objections raised by his critics with his replies.

The outline of the chapter is as follows. In Section 2.1 below I discuss Chalmers’

causal thesis of the mind. There I look in detail at the implementation relationship

between abstract and physical computation which is central to his account of the mind.

Chalmers develops his theory based on an abstract computational object namely

Combinatorial State Automata (CSA) which is an extension of Finite State Automata

(FSA). FSA’s are crucial for the development of Chalmers’ views hence in Section

2.2 I first discuss the nature of FSA accompanied by a detailed example of their

functioning. I outline Chalmers discussion on implementation via FSA and their

shortcomings. Section 2.3 is devoted to a discussion of the definition of the CSA and

the implementation relationship using CSA instead of FSA. In Section 2.4 I discuss

how CSA’s can also apply to connectionist networks thereby making Chalmers’

theory applicable to both symbolic and sub-symbolic architectures. Having

established the implementation relationship using CSA I turn in Section 2.5 to a

discussion of the link between computation and cognition as envisaged by Chalmers

with a discussion of some issues identified with his thesis of computational

explanation. In Section 2.6 I discuss the merits of Chalmers’ theory with a discussion

in Section 2.7 of how it overcomes the trivialisation objection raised by Putnam and

Searle. Finally in Section 2.8 I discuss objections raised to Chalmers’ views with his

2. Chalmers on Implementation and Cognition

 12

replies. I close the chapter in Section 2.9 with concluding remarks and prefacing the

strategy for the rest of the thesis.

2.1 Chalmers’ Causal Thesis of the Mind

As a background to the paper Chalmers (2012, p. 212) says that he does not see his

work posing a radically original view but squarely in the roots of Putnam’s (1960)

original work and trying to overcome the triviality objections of Searle (1980) and

the later Putnam (1988). The main subject of Chalmers causal thesis is a discussion of

two questions. The first question is the nature of the implementation relationship

between abstract computation (based on the mathematical theory of computation) and

physical computation in physical systems, for example as in computers. The second

question is about the nature of the link between physical computation and mentality in

general and cognition in particular.

I will focus on the first question before the second as Chalmers (2011) views an

account of the nature of the implementation relation between a physical system and an

abstract computation as the key to understanding minds and computational processes

in cognition. This is because while the mathematical theory of computation is well

understood however it is not clear “what is it for a physical system to implement a

computation” (Chalmers 2011, p. 323). The idea was to give a clear account of the

implementation relationship between an abstract computation and a physical system.

Furthermore he posits that without a clear answer to this question the foundational

role of computation in cognitive science cannot be justified as cognition does not

occur in the abstract but as a physical process in the brain.

2. Chalmers on Implementation and Cognition

 13

As mentioned earlier in Chapter 1, Chalmers’ main intuition is that for the

implementation of an abstract computation such as a program P, the formal structure

of P must be mirrored in the causal structure of the physical system.

In a detailed gloss he says (Chalmers 2011, p. 326):

“A physical system implements a given computation when there exists a grouping of

physical states of the system into state-types and a one-to-one mapping from formal

states of the computation to physical state-types, such that formal states related by an

abstract state-transition relation are mapped onto physical state-types related by

corresponding causal state-transition relation.”

I explain each of the points made in detail below.

 1) A physical system has a structure viz., electrical for a computer, electrochemical

for a nervous system and electromechanical for a manufacturing control system to

give three different examples. Any such physical system will be in different physical

states at the same time. For example having a current flowing or a voltage level for

an electrical system; a chemical reaction occurring along with electrical activity of a

current or voltage for an electrochemical system and a force or pressure exerted along

with electrical activity for an electromechanical system. These different physical

states occurring concurrently can be grouped by the requirements of the computation

under study. For example one grouping can be by the nature of the state. All the

electrical ones can be grouped together, as can all the chemical or all the mechanical

ones. Similarly groupings can be done by some other features such as spatio-temporal

factors such as all the states at particular location(s) in space or time(s). Another

example of a grouping parameter could be all the states to produce a particular type of

output for a particular type of input.

2. Chalmers on Implementation and Cognition

 14

2) Sub-sets of these grouped states form a state-type such that there is a one-one

mapping between each state-type of the physical system and an abstract

computational state of the machine table or algorithm being implemented. The notion

of machine table or algorithm was introduced in the previous chapter in Section 1.0. A

one-one mapping is an isomorphic relationship between two sets or groups such that

one member in one set or group corresponds to or picks out one and only one member

in the other set or group. Such a mapping can be just a correlation or based on a rule.

The rule can be just a “If a then b” type of material conditional or one that is law like

obeying counterfactual conditionals such as “If a were to happen then b would

happen” so that it has modal force. In the case of the material conditional the truth of

the consequent “b” clause is tied up with the truth of the precedent “a” clause. While

in the case of the counterfactual conditional the if clause is not true, while

the then clause may or may not be true but certainly would be true in the

counterfactual circumstance of the if clause being true. Given a set of statements

about possible states of affairs the material conditional is weaker as its truth only

applies to those that are realised in reality while the counterfactual conditional applies

to the full set of statements irrespective of their instantiation in reality. Hence the

counterfactual conditional is the one to express law like behaviour. Obviously the

strongest type of isomorphism will be the one based on the rule supporting

counterfactuals. Chalmers above description makes no mention of the nature of the

isomorphism. But as we will see later in the more refined versions below he argues

for law like rules with counterfactual force in order to overcome Putnam’s and

Searle’s well known triviality objections. This is discussed in Section 2.7 below.

2. Chalmers on Implementation and Cognition

 15

3) The states of a complex physical system change over time either due to internal

changes in its structure or function or its states might change due to external

environmental inputs. Chalmers’ analysis is via an isomorphism or one to one

mapping between groups of physical states (i.e. state-types) that have a causal role (or

causal topology as he terms it) and formal computational states and becomes clearer

in my description of Finite State Machines below.

Chalmers’ above description of implementation is made all encompassing by

specifying it by a schema that covers all other computational formalisms such as

Turing machines, Finite State Machine or cellular automata. Chalmers introduces the

notion of an abstract computational object called a Combinatorial State Automata

(CSA) which has the power to mirror the states of a Turing machine (or any other

computational formalism). It is implemented when the state transitions of a physical

system map on to the state transitions of the CSA. This is an improvement on earlier

accounts by Putnam (1967) using Finite State Automata (FSA).

2.2 Finite State Machines and its Relation to Chalmers’ Thesis

I will explore the concept of FSA in a little detail as it is so central to Chalmers’

account of a CSA which is a development of FSA. A Finite State Machine (Automata)

(Denning, Dennis, Qualitz 1978 pp. 88-136) is a logical computational object which is

made up of a set of inputs, a set of states, a set of transitions from one state to another

and a set of outputs. The machine is in only one state at a time and there can be only

a finite number of states. From its current state at some point in time the machine

transitions to a new state plus a new output based on a triggering event which results

in a new input. That is for each combination of an input and an internal state there is

2. Chalmers on Implementation and Cognition

 16

a corresponding transition function which results in a new internal state and a new

output. A standard version of the machine has a starting input and state and a finishing

state and output at which the machine stops. Note that variants of the FSA model

involve machines which have no output and machines which do not halt but keep

cycling sequentially through all their states.

 A physical version of a FSA can be looked upon as a machine with input signals,

internal states and output signals. Examples of FSA’s used to control a device are a

vending machine or traffic lights. By machine I mean that it operates in a mechanical

step by step procedure or algorithm to arrive at the result. FSA’s have wide uses such

as parsers and lexical analysers in computing.

The following example
2
 illustrates the FSA concept. Consider a set of traffic lights

which cycles through the three states Red, Green and Yellow. The change in state is

controlled by a 5 second delay timer. We can illustrate the operation of this FSA by

the transition diagram below. The nodes represent the states (Red, Green and Yellow).

The arrows from state to state represent the timer value which causes the transition

and changes a state (e.g. from Red to Green) and the label on the arrow represents the

input received (in binary bits) to change the state when time = 5 seconds. As there are

only two relevant controlling values namely 5 seconds or < 5 seconds we can replace

these by the binary values 0 and 1 so that any timer value < 5 seconds is shown as an

input of 0 while the timer value = 5 seconds is shown as an input of 1. Note that this

FSA does not halt as there is no final state and the machine keeps cycling from one

2
 This example is adapted from discussion and examples on FSA in Denning, Dennis, Qualitz (1978)

and in Hopcroft , Ullman (1979)

2. Chalmers on Implementation and Cognition

 17

state to the next state every 5 seconds. There are other FSAs which can have a final

state and halt but the basic concept is the same.

The input arrow going to the Red state indicates the start state. The FSA stays in Red

until the timer is 5 seconds when it transitions to Green and the timer initialises and

starts counting again. The arrow labelled “0” curling back to the same state indicates

that the timer is < 5 seconds and no transition has occurred. While the arrow from one

state to the other labelled “1” indicates that the timer = 5 seconds and a state transition

has occurred.

This simple FSA can be implemented by Flip Flop circuits which alternate between 0

and 1 (i.e. ON or OFF) for each light based on the control signal from a timing circuit.

Flip Flops are circuits that can be either in one state or another based on a controlling

input and hence are widely used to implement binary states of 0 or 1.

Red Green

Yellow

1

1

0 0

1

0

2. Chalmers on Implementation and Cognition

 18

Another way of representing the above FSA is by a transition table which shows the

states the inputs, the transitions as shown below.

.

STATE INPUT

(Timer Signal)

NEXT STATE

Red 0(Timer<5secs) Red

Red 1(Timer=5secs) Green

Green 0(Timer<5secs,) Green

Green 1(Timer=5secs) Yellow

Yellow 0(Timer<5secs,) Yellow

Yellow 1(Timer=5secs) Red

The causal structure to note in this implementation is made up of the two components

namely the timer circuit and the Flip Flops. The timer circuit clocks the 5 second

delay between states and controls the firing of the Flip Flops which sends binary

signals to the lights based on which the lights transition from one state to another.

A physical traffic lights system has a causal structure which will be made up of a

number of different physical states described as follows. Electrical, connected with

the current flowing through the circuits of the system. Thermal due to the heat

generated in any circuit accompanying a flow of electrons. Chemical related to the

release of chemicals (e.g. gases) in the air detected as a smell or maybe odourless

either from paint or sometimes from hot electrical components. Finally, gross material

based on weight, shape, size and molecular structure.

2. Chalmers on Implementation and Cognition

 19

It is important to see that the computation of this FSA is only related to the

functioning of the causal structure of the electrical system. An actual traffic light will

have a causal nexus inter-relating all the above different types of physical states. In an

intuitive way it is easy to see for this example that the causal structure of the physical

electrical circuit mirrors the formal structure of the FSA. On the formal side we have

the transition table or diagram of the FSA which gives the inputs, the states and the

transitions from state to state. On the physical side the causal structure of the flip

flops is controlled by the timer circuit which gives rise to a state transition every time

the timer = 5 seconds. Hence each transition in the transition table is mirrored by

corresponding causal processes in the flip flops when the timer = 5 seconds which

leads to the lights changing state. Thus the formal structure of the computation as

enshrined in the formalism of the FSA is mirrored in the causal structure of the

physical system.

In fact depending on the design of the circuit we ignore all groups of electrical

(physical) states where the timer is < 5 seconds and are only interested in the

electrical (physical) state where the timer equals 5 seconds. So we have a one-one

mapping or isomorphism between physical state types and abstract states as posited

by Chalmers in Section 2.1 above of what it means for a physical system to

implement a computation. In this sense the causal organisation is invariant and the

abstract computation of the FSA is realised in the implementation or physical

computation via the output bits at each state.

Chalmers defines an FSA as follows:

“An FSA is specified by giving a set of input states I1, ..., Ik, a set of internal

2. Chalmers on Implementation and Cognition

 20

states S1,...,Sm, and a set of output states O1,...,On, along with a set of

state-transition relations of the form (S, I) → (S’, O’), for each pair (S, I)

of internal states and input states, where S’ and O’ are an internal state and an output

state respectively. S and I can be thought of as the “old” internal state and the input

at a given time; S’ is the “new” internal state, and O’ is the output produced at that

time.” Chalmers (2011, p.326)

Chalmers definition captures the gist of the points about FSA I had explained in detail

above both in the description and in the traffic light example given.

Chalmers defines the implementation of a FSA as follows:

“A physical system P implements an FSA M if there is a mapping f that

maps internal states of P to internal states of M, inputs to P to input states

of M, and outputs of P to output states of M, such that: for every state transition

relation (S, I) → (S’, O’) of M, the following conditional holds:

if P is in internal state s and receiving input i where f(s)=S and f(i)=I, this

reliably causes it to enter internal state s’ and produce output o’ such that

f(s’)=S’ and f(o’)=O’. Chalmers (2011, p. 327)

Chalmers definition needs some expansion and explanation as follows.

In the example above the finite set of states are the traffic light states Red, Green, and

Yellow. The finite input is made up of the binary values 0 and 1. The transition

function is realised by the combination of the current (traffic light) state and Input = 1

(i.e. timer = 5 seconds) which results in the state transition to the next state. The initial

or start state = Red. Finally there is no final state for this FSA as it is a cyclic process.

The thing to note is that the state transition relation in the physical system is based on

a causal transition from one state to the succeeding state and furthermore such

2. Chalmers on Implementation and Cognition

 21

causation must be according to Chalmers a “reliable” one. Although Chalmers does

not formally develop here this notion of reliable causation I take it he means that the

causation must be law like and counterfactual supporting. Earlier when I had

discussed Chalmers intuition in Section 2.1 I had stated how an isomorphism can

range from a mere correlation to one based on a rule that is a law like counterfactual

supporting one. There Chalmers was silent about the nature of the isomorphism. Here

by referring to reliable causation he has indicated that the state transitions must be law

like and counterfactual supporting. By imposing the additional condition of

supporting counterfactuals Chalmers’ separates out correlations and coincidences

from law like behaviour. That is the state transitions should not just be material

conditionals of the sort “If at time t, system happens to be in state a then it would

transition to state b”. But rather they must be counterfactually true so that they are of

the form: “Given a formal state-transition A → B, it must be the case that if the

system were to be in state A, it would transit to state B” (Chalmers 2011, p. 333).

For computation, the important cases are ones where the input was different but the

machine table continues to hold true. For example if their were three state transition

rules A → B, B → C, B → D in a machine table that branches based on a decision so

that only one of B → C or B → D gets instantiated in a run, say B → C, then the

counterfactual conditional ensures the truth of the state transition rule B → D even

though it does not get instantiated in a particular run. Similar remarks apply for state

transition rule B → C in the runs when B → D gets instantiated.

In his discussion of the Putnam objection to CTM Chalmers’ uses the above

counterfactual conditional for a FSA. It is the truth of the counterfactual that makes

the state transitions neither a mere correlation nor an arbitrary causal effect e.g. due to

2. Chalmers on Implementation and Cognition

 22

say stray fields or cosmic rays changing the state of a circuit and tripping it thereby

causing a change of state.

One of the things to note about a FSA is that the elements that make up its states,

inputs or outputs are monadic scalar quantities like numbers or symbols from an

alphabet i.e. they have no structure such as vectors or matrices do. In our above

example the states were represented by the values “Red”, “Green”, and “Yellow”

which have a value but no structure. Similarly consider another example of a FSA

such as a Vending Machine where the machine is either in a state for receiving a

customer’s selection (the Order state) or is in the state of delivering the selection (the

Delivery state). So that while there may be multiple inputs and outputs to such a

machine (depending on the items stocked and selection made) however the states have

no internal combinatorial structure i.e. they cannot be broken up into sub-states.

FSA’s are simple low level computation devices and have limitations on the number

of computational problems they can solve. They have limited memory as it is limited

to the state and they have no control structure. Turing Machines on the other hand

are a class of computational object which have more computational power. They can

solve all effectively decidable problems
3
 i.e. they can in theory generate an algorithm

for a problem if one is possible. They are the model of the general purpose computer.

Conceptually a Turing machine can be looked upon as a FSA with memory. It

consists of an infinite tape, a Read/Write Head and a finite set of states which form its

machine table. The tape is made up of cells consisting of a datum i.e. having a value

expressed as a symbol from an alphabet set. The machine reads the tape one cell at a

3
 Note: This assumes the truth of the Church-Turing thesis.

2. Chalmers on Implementation and Cognition

 23

time and then depending on its instruction set writes a value back to that cell and then

moves the head one cell either to the left or the right of the tape.

2.3 Combinatorial State Automata

Chalmers (2011, p. 328) extends the concept of a FSA to one where the internal state

is extended by having a combinatorial structure. By that I mean that the elements of a

CSA are vectors. The vector can be made up of sub-states mirroring e.g. the states of

a Turing machine such as a combination of Head states, Tape states and internal states.

CSAs can be represented by vectors as sub-states of an overall state. Hence CSA’s are

a more faithful translation of Turing Machine states or the cell pattern of a cellular

automata or whichever formal computation is the subject of an implementation. The

other point where CSAs differ from FSAs is that the internal states can be either finite

or infinite while for a FSA they are always finite. But both inputs and outputs in the

case of CSAs are finite like FSAs. Chalmers mentions that for all practical purposes

the finite case suffices. He needs the infinite states to ensure that it makes CSAs

powerful enough to cover all computational formalisations.

As Chalmers states it a physical system P implements a CSA, M, when the following

conditions are met:

“If there is a vectorization of internal states of P into components [s
1
, s

2
,…],

 and a mapping f from the sub-states s
j
 into corresponding sub-states S

j
 of M, along

with similar vectorizations and mappings for inputs and outputs, such that

for every state-transition rule ([I
1
, …, I

k
], [S

1
, S

2
,…]) → ([So

1
, So

2
, …], [O

1
, …, O

l
]) of

M: if P is in internal state [s
1
, s

2
, …] and receiving input [i

1
, …, i

n
] which map to

formal state and input [S
1
S

2
, …] and [I

1
, …, I

k
] respectively, this reliably causes it to

2. Chalmers on Implementation and Cognition

 24

enter an internal state and produce an output that map to [So
1
, So

2
,…] and [O

1
, …, O

l
]

respectively.” (Chalmers 2011, p. 329)

The above can be unpacked as follows. Each internal state of P is a vector given by its

components [s
1
, s

2
,…], and similarly each internal state of the CSA is a vector whose

components are [S
1
, S

2
,…]. A vector consists of an ordered set of sub-states or components

for each internal state of both the physical system and the CSA. For example each component

of the vector corresponding to an internal state of P could represent a spatial location

coordinate. The inputs and outputs of the physical system have combinatorial or vectorial

structure e.g. [i
1
, …, i

n
] and [o

1
, …, o

l
] respectively. The inputs and outputs of the CSA also

have combinatorial or vectorial structure e.g. [I
1
, …, I

k
] and [O

1
, …, O

l
] respectively.

There is a function f that does a one to one mapping from each sub-state sj of the internal state,

of the physical system P to each sub-state Sj of the internal state of the CSA, M. along with

mappings of the components of the inputs and outputs of P to components of inputs and

outputs of M. This mapping is based on the state transition rule of M ([I
1
, …, I

k
], [S

1
, S

2
,…])

→ ([So
1
, So

2
, …], [O

1
, …, O

l
]) . The state transition rule specifies a unique mapping for a

combination of input state vectors and internal states of M giving new internal state

vectors plus an output vector of M. Furthermore the state transition rule must be such

that the causal transition in the physical system P is reliable i.e. counterfactual

supporting as discussed earlier in connection with reliable causation for FSA

implementation.

By formalising the CSA Chalmers gives a formal account of his intuition about what

it is for a physical system to implement a computation and how to interpret the

mirroring relationship between the states of a physical system and the states of an

abstract computation.

2. Chalmers on Implementation and Cognition

 25

2.4 CSAs and Connectionist Networks

In this section we look at another class of computational structures called neural

networks. They operate in a different way then the state based machines we have seen

so far in FSAs, TM and CSAs. Chalmers CSA formalism can be extended to neural

networks as neural networks can be described by a Turing Machine which in turn can

be described by CSAs.

The entities of computation in the transition (machine) table that we have seen so far

e.g. in the FSA traffic light example operate at the “symbol” level. By this I mean that

the states of the FSA (Red, Green and Yellow) and the inputs (0 or 1), correspond to

the status of the lights and the timer value of < 5 seconds or timer value = 5 seconds

respectively. There are another class of systems whose entities of computation operate

at a lower “sub-symbolic” level. To paraphrase Chalmers (2011, p. 351-352) in the

state machine case the units that do the computation and the vehicles of representation

are identical as both operate at the symbol level. In the neural network case the units

of computation and the vehicles of representation are different. The claim is that these

sub-symbolic structures and their operation is closer to mental processes in brains.

Our standard architecture of all computers since their inception is based on what is

called the Von Neumann (1945) model. It is centred on serial processing and a

separation between data and programs. Unlike the Von Neumann (1945) model of

computers neural networks have parallel processing and have distributed data and

instruction sets. Furthermore they do not have a separate declaratively held program /

knowledge store. They are made up of simple computational units having no

2. Chalmers on Implementation and Cognition

 26

representational link to objects in the real world. The computational units act as nodes

with links between them to form a computational network. The representation to the

real world is derived in a distributed way based on the pattern of activation of nodes

and the links and weights to connecting nodes in the rest of the network. Its

proponents (connectionists) argue that these are more suited to model and explain the

mind as they are closer to the way the brain works via neurons and connections

between them via synapses to form networks. However note that their computational

ability is prime and not their representational ability. There can be such networks

performing computations that are purely syntactic without having any meaning just as

there can be Turing Machines or CSAs performing meaningless computations on

strings of numbers or symbols of an alphabet. No doubt for cognition a semantic

output is required but it is not required purely for computation. As mentioned above

Chalmers’ CSA model applies to computation at both a symbolic and a sub-symbolic

level. The reason for this is that neural networks can be rendered in a Turing Machine

form and therefore as a CSA. The following diagram from Garson (2015) represents a

simple neural net showing the layer of input processing units, the pattern of

connections between all units, the hidden layer units of processing, and the output

units. It is the pattern of activation in the net that converts inputs to outputs.

2. Chalmers on Implementation and Cognition

 27

Each input unit has an activation value that it sends to the hidden units which in turn

send their activation value to the output units. Each layer of units gets activated based

on the strength of the activation values received from the previous layer of units. The

pattern of activation of the network depends on the strength of the connection or the

weights between the units in the different layers. An activation functions calculates

the activation value at a hidden or output unit to arrive at the resulting value for that

unit taking the strength of all the inputs received into account. This simple net is

called a feed forward net as the outputs are just passed on. It will produce the same

result every time for the same set of inputs. More complex networks are also possible

which will have connections from forward layers to back layers causing modification

of results. While these more sophisticated neural nets are used to simulate cognitive

functions it does not concern my thesis as my main interest is not a study of

connectionist networks but rather to show that neural nets also fall under Chalmers’

computation model.

I will now show how a connectionist or neural net can be rendered in terms of a CSA.

According to Rummelhart (1998) the conceptual framework of connectionist

architecture takes the “abstract neuron” as the fundamental processing unit.

Computation occurs by interactions between these units. These processing units may

represent either particular features
4
 of a problem over which meaningful patterns can

be defined or they can be a totally abstract set of nodes having no meaning. The units

are connected to each other. It is this pattern of connectivity among units in a

connectionist system which determines what the system knows and how it behaves.

As mentioned earlier the units are generally structured in 3 layers namely input,

4
 such as for example a network to train phonemes of words to get their plurals

2. Chalmers on Implementation and Cognition

 28

hidden and output
5
. There is a state of activation defined over the units as denoted by

a vector which represents the state of the system at a point in time t. An output

function maps each unit’s state of activation into an output signal. Units transmit

signals to units in their neighbouring layer and the degrees to which they affect their

neighbours depend on their state of activation. A rule of activation determines how

the inputs into a unit combine with the present state of a unit to give the new state of a

unit. A learning rule specifies how the system changes with experience.

A connectionist net N can be rendered as a CSA M by initially ignoring the training

rule and treating only the starting form of the net thereby simplifying the problem.

This is because from a CSA viewpoint all the training rule is doing is changing the

neural net and therefore the CSA either in terms of inputs or states or outputs or the

state transition rules. Initially we want to get the form of the CSA right for the

connectionist network. Once that is done the changes to generate a new CSA based on

the training rule should be fairly straightforward.

In order to express a network N as a CSA we first set up a correspondence between an

internal state vector of the CSA and an appropriate part of the network as follows. Each

internal state s of the network N at a point in time t is based on its state of activation

defined over the units and their pattern of connections and can be denoted by a vector

whose components are [s1, s2,…sn] and are made up of the states of the processing

units and the weights of the pattern of connections between units. There is a function f

that does a one to one mapping from each sub-state sj of the network to each sub-state

Sj of the CSA.

5
 with the input units and their connections storing the content and the hidden units plus connections

the pattern

2. Chalmers on Implementation and Cognition

 29

There are input, output and hidden layer vectors corresponding to the underlying

layers of units and their relationships in a neural net. We assume as many hidden

layers as required for a problem although generally there is only one. The inputs and

outputs also have combinatorial or vectorial structure whose components corresponds

to the states of the units plus the relationships between units reified as entities whose

values are based on the connection values. State-transition rules are determined by the

reliable causation for each element of the state-vector, a function by which its new

state depends on the old overall state-vector and the input-vector, and the same for

each element of the output-vector. That is there is a one to one mapping which gives

an isomorphism between the states of the units and their connections and the vectors

corresponding to the CSA based on the causal structure of the network. Therefore we

have a vectorisation of input, internal (hidden) states and output states, and a mapping

function which maps sub-states of inputs to sub-states of outputs based on a transition

rule thereby enabling a CSA to represent a connectionist network.

 The purpose of this section was to show that the CSA format can be extended to

other forms of computation such as neural networks. This would apply to neural

networks both at a purely syntactic level where the outcomes of the neural network

have no meanings or to a neural network whose outputs have meanings as in the

ones tied to cognition.

2.5 Computation and Cognition

I now look at the relationship between Chalmers’ account of implementation and

cognition. Chalmers introduces the following two theses that link his account of

2. Chalmers on Implementation and Cognition

 30

implementation using CSA and cognition they are a) a thesis of computational

sufficiency and b) a thesis of computational explanation. The first thesis says that

having the right kind of computations suffices for the possession of a mind and

cognition. On the other hand the computational explanation thesis says that

computation so construed provides a framework for explanation for cognitive

processes and behaviour. I discuss them one by one below.

To discuss these theses I need to explain two of Chalmers’ notions on which they

depend, namely abstract causal organisation or causal topology and organisational

invariance. Chalmers’ theory of implementation (as discussed earlier in Section 2.3

above) posits an isomorphism relationship between the computation being

implemented and the causal structure of the physical system implementing the

computation. Hence Chalmers describes a computation as an “abstract specification of

causal organisation”
6
 of the implementing system. This abstract specification of the

causal organisation he refers to as the causal topology. In addition Chalmers posits

that mentality and cognitive properties are organisationally invariant properties.

Organisationally invariant properties of a physical system are those which depend on

the causal topology alone and not on the nature of the physical system. Furthermore

they remain invariant with respect to causal topology i.e. any change or distortion that

does not affect the causal topology does not affect mentality and cognition. For

example he contrasts mental and cognitive properties against the properties of

digestion and flying as follows. The former do not depend on the underlying physical

substrate while the latter depend on the physico-chemical makeup in the case of

stomachs and factors like height and speed (among other aerodynamic ones) in the

6
 Chalmers (2011, p 331)

2. Chalmers on Implementation and Cognition

 31

case of flying. The latter group stop functioning at some point: if in the stomach’s

case parts were replaced by metal and in the flying case if the height gets to ground

level. While cognition and mental properties are dependent on the abstract pattern of

causal organisation alone i.e. they can be specified by a CSA description. It is in

virtue of implementing these “right kind” of computation that the system is cognitive

and particular mental states have a one to one correspondence to computations such

that implementing those computations realises those mental states. Computational

sufficiency implies that a particular computation for a cognitive process can be

implemented in different physical substrates as long as they have the same causal

organisation and therefore they would have the same CSA description.

The thesis of computational explanation also depends on causal organisation and

looks to providing an explanation of cognition and behaviour based on specifying a

description of the underlying computational structure in terms of a CSA description.

In Chalmers (2012) he says that this maybe too strong and needs modification as it

will not work in all cases of cognition. In his response to Egan (2012) and Rescorla

(2012) Chalmers qualifies this thesis when he concedes that explanation in cognition

using mathematical functions (“function-theoretic” as he calls it) like explanation of

edge detection by Marr in terms of computing the Laplacian of the Gaussian of the

retinal array is not captured well by his CSA model of computation. I briefly expand

on this without going too deeply into Marr exegesis. In image processing edge

detection is one of the important tasks (HIPR 2000). Edges carry useful information

about an object than that available from other features such as texture and colour.

Edges are generally drastic changes of image brightness over a small spatial distance.

The challenge in edge detection is to distinguish edges from other features in the

2. Chalmers on Implementation and Cognition

 32

image such as textures and especially noise, so that all edges are detected while the

noise is suppressed. In Marr’s technique the noise is first suppressed by smoothing the

image by applying the Gaussian operator and then applying the Laplace operator for

edge detection. Both the Gaussian and Laplacian operators are two mathematical

operators which Chalmers concedes are not well covered by his model of computation.

The other example Chalmers gives as an exception to his explanatory framework

when responding to Rescorla (2012) is that of Bayesian models in perceptual

psychology. These rely on statistical theory for estimating prior and posterior

probabilities to posit hypothesis about the perceptual field. The Bayesian approach

assumes that cognition is approximately optimal in accord with probability theory.

The mind has representations for statistical correlations and conditional probabilities.

It has the capacity for probabilistic computations such as applications of Bayes'

theorem. Applying probabilistic computations to statistical representations

accomplishes mental tasks such as perception.

Chalmers argues that while these techniques are useful for individual areas of

cognition e.g. vision and perception but they do not give a general account for

cognition and the mind in general which is his project. Furthermore he argues that as

the Marr and Bayesian theories are computing mathematical functions they are like a

black-box input- output tool far removed from the internal states and mechanisms of

cognition unlike his theory which is at a lower level involving states and therefore

“mechanism ready”. This mention by Chalmers of higher and lower levels of

explanation links up with a well known meta theoretical view of Marr (1982) on

cognitive architecture. Briefly, Marr posits three levels of explanation for a cognitive

2. Chalmers on Implementation and Cognition

 33

function. The first is the computational level. This is the highest level which answers

the What/Why question about the role of a function for an organism in its

environment. The next is the algorithmic level which is at an intermediate level. It

seeks an answer on how a function is performed and is akin to the software in an

implemented program. Finally at the physical level is the implementation level like

the hardware of a computer where the algorithm is implemented. In his discussion of

Klein, Egan and Rescorla’s papers Chalmers (2012, p. 222 & pp. 243-248) posits that

his theory was at a lower level just above the physical neurobiological level while the

ones of the above three were at an intermediate level closer to Marr’s algorithmic

level.

Chalmers generalises by saying that representational, function-theoretic, teleological

and social explanations are “higher level explanations”. They are not covered by his

model of computation. But they are not incompatible with his causal model and the

connections between them could be worked out possibly if one moved from a CSA

framework to a framework of Abstract State Machines (ASM). This is a new

machine architecture which enables the setting up of a hierarchy of machine

formalisations and their connections to define higher level cognitive functions to

intermediate and lower level ones with the connections between them set out. The top

of the hierarchy would correspond to higher level cognitive functions and the lower

levels to the ones corresponding to CSA states. I discuss ASM in more detail in

Chapter 4.

Note that the theses of computational sufficiency and of computational explanation

can be held independently as we can take a pluralist approach to mentality and

2. Chalmers on Implementation and Cognition

 34

therefore on the one hand deny the thesis of computational sufficiency but at the same

time accept the thesis of computational explanation. Doing this implies taking an

instrumentalist view on the role of computation and the mind. Equally one can accept

the thesis of computational sufficiency as an account of the mental and be pluralistic

about explanation which is how Chalmers (2012) is heading.

2.6 Merits of Chalmers’ Causal Thesis of the Mind

Chalmers’ causal thesis of the mind has three key merits. Firstly it has benefits over

earlier theories of the mind such as the semantic version of the Computational Theory

of the Mind (CTM) developed and proposed by Fodor (1975) and his followers

following Putnam (1960). Secondly it claims to overcome the triviality arguments

against CTM launched by Putnam (1988) and Searle (1992). Finally it claims to

provide a foundation to cognitive science by defining the role of computation in a

theory of cognition. I discuss each of these below.

Fodor’s (1975) version of CTM is linked with his Language of Thought hypotheses. It

holds that mental states are representations or tokens in a language of thought which

is like a natural language. The mind manipulates tokens of this language like a

computer i.e. the manipulations are by computations. Fodor’s account makes it

possible to answer the question of how thought and higher cognitive processes such as

abstract thinking and language processing are possible in terms of processing strings

of symbols computationally and providing them content with referential relations to

entities in the world. Fodor’s (1975) version of CTM is tied up with mental

representations and their semantics such as truth-value, reference, content etc.

2. Chalmers on Implementation and Cognition

 35

According to his view cognitive states and processes such as thinking, reasoning and

imagining are constituted by the occurrence, transformation and storage in the mind

of mental representations of one kind or other for mental objects such as thought,

mental images etc. To quote Fodor (1975, p. 198): “Mental states are relations

between organisms and internal representations, and causally interrelated mental

states succeed one another according to computational principles which apply

formally to the representations. A little earlier on the same page he says. “So having a

propositional attitude is being in some relation to an internal representation. In

particular having a propositional attitude is being in some computational relation to

an internal representation.”

 As pointed out in Section 1.0 earlier Fodor’s theory had a major weakness in that it

could not offer a clear connection between computation at the abstract

representational level and computation at the physical level. It could not explain the

implementation relationship which Chalmers (2011 pp. 323-326) has argued as

crucial for making computation foundational for cognition and explaining behaviour.

Fodor’s connectionist critics e.g. Rummelhart (1998) are not convinced by his plea

that his theory is at a higher level and not intended to provide neural realisations.

Connectionists view his CTM as biologically implausible. The problem with the

semantic version of CTM had been made worse by the advent of well supported

connectionist models of cognition which operated at a sub-symbolic level

(Rummelhart et el 1986).

In their response Fodor and Pylyshyn (1988) criticise connectionism by arguing that

there are some features of cognition such as the productivity and systematicity of

2. Chalmers on Implementation and Cognition

 36

language which require a symbol system and cannot be accommodated within a

connectionist model. The productivity of thought or language is the capacity human

beings have to produce indefinitely many different thoughts/ sentences of a learnt

language. The systematicity of thought or language is the capacity for mastery of the

syntax of one’s native language. Fodor and Pylyshyn (1988) argue that this is missing

from connectionist nets as the representations they have don’t have the structure to be

compositional. Compositionality is a feature of rich symbol systems, similar to natural

language. Fodor notes that while minds are finite and therefore the number of simple

ideas can be finite yet we can construct almost an indefinite number of complex ideas

/ thoughts. This he refers to as the productivity of thought and the mechanism for

doing it is compositionality. Compositionality ensures that the contents of complex

concepts are determined by the content and arrangement of their simple constituents

with the semantics of the former determined by the semantics of the latter.

Furthermore it is not just in the structure of the concepts but also in the content that

this productivity of thought applies.

Note that Fodor and Pylyshyn’s criticism does not apply to all connectionist theories.

Smolensky (1990, p.166) has developed a version of connectionism which could

account for higher level cognitive structures like language without including a full

blown language of thought. The semantic version of CTM had a problem explaining

connectionist models as the question of symbolic processing and discrete mental

representation did not apply to the connectionists. Also as mentioned above it could

not give an account of how physical implementation occurred thereby facing the

charge of biological implausibility. However this does not pose a problem to

Chalmers’ thesis which operated at a purely syntactic level by appealing to an abstract

2. Chalmers on Implementation and Cognition

 37

computational object namely CSAs and explaining the implementation relationship

between abstract and physical computation by the causal thesis.

Chalmers also claims to overcome triviality objections against the computational

theories of the mind raised by Searle and Putnam. I discuss the triviality objection and

Chalmers’ response in the next section (2.7).

Cognitive scientists and AI researchers make heavy use of computation in the models

they develop for understanding cognition and the mind. In the course of this they

believe that they are not just simulating but replicating these cognitive processes in

their models. However critiques such as Searle (1980), Dreyfus (1972) and Penrose

(1990) to mention three raise questions about the role of computation in a theory of

cognition and throw doubt on whether a replication of a cognitive process is really

possible. They suggest the models were merely at best doing simulations. Chalmers

responds that if a model shares the causal topology of the cognitive process then it is

replicating the process. By establishing the theses of computational sufficiency and

computational explanation Chalmers feels he has established the foundational role of

computation in cognition thereby answering these critics.

2.7 Does the CSA Formalism Escape the Trivialisation

Objection?

 Searle (1992) and Putnam (1988) argue against CTM by saying that computations

have no independent reality in the scheme of things but are observer or mind

dependent and exist for our convenience. They argue that a complex machine can

2. Chalmers on Implementation and Cognition

 38

implement all possible computations, with the computations it implements being mind

dependent. They thereby question the reality of the implementation relationship. This

is the trivialisation objection and it claims that every complex object such as a wall or

a rock could be described as an inputless FSA hence doing all possible computations

but without any inputs or outputs. The arguments are based on the contention that the

notion of a physical system implementing a computational formalism is overly liberal

to the point of vacuity and hence of no use in grounding mentality and behaviour. One

key assumption in both is the idea of a mapping correlation between physical states of

the physical system and computational states of the FSA.

Searle claims that Putnam’s (1960) original account of FSAs is so lax that any

complex object such as walls could be given computational descriptions without

inputs or outputs and appear to be performing a computation. In fact he claims that a

complex system such as a wall implemented a WORDSTAR program. Putnam (1988)

developed the formally argued objection which said that every ordinary open system

implemented every inputless FSA thereby trivialising CTM. Putnam’s argument is

that given any machine table of a FSA, every physical system implements the FSA by

having mappings of the machine table to internal states of the physical system within

a given time interval. For example if the machine table stated that state A is followed

by state B then every instance of A is followed by state B in a time interval. This can

be described as based on the material conditional of the form “If A then B”.

Chalmers’ (2011, p.333) response to Putnam’s argument is based on an appeal to law

like counterfactuals supporting the notion of reliable causation associated with the

implementation of a transition from one state to another in a CSA. He argues that

Putnam’s argument is based on the use of weak material conditionals for the

2. Chalmers on Implementation and Cognition

 39

implementation of a FSA as seen above. While Chalmers’ thesis requires stronger

causally reliable ones i.e. one’s that can support law like counterfactual conditionals

and are not merely coincidental or corelational.

As he says: Chalmers (2011, p. 333)

 “Given a formal state-transition A → B, it must be the case that if the

system were to be in state A, it would transit to state B. Further, such a conditional

must be satisfied for every transition in the machine table, not just for those whose

antecedent states happen to come up in a given time period.”

Chalmers is asserting what I had discussed in Section 2.1 earlier that given a machine

table with a set of state transition rules, the use of the counterfactual conditional

makes the rules true in all cases of the machine table and not just the ones that get

instantiated in a time period. The notion of reliable causation based on law like

counterfactual conditionals was discussed earlier in the discussion on Chalmers

statement of the implementation of CSA in Section 2.3 and in Section 2.1 above.

Because of using CSA instead of FSA the computational descriptions are no longer

lax and are sufficiently constrained to reduce the probability of any complex object

such as walls implementing a particular computation to be almost improbable. The

requirement of reliable causation in CSAs does the work of imposing the rigour

required via counterfactual conditionals in preventing complex objects like walls

implementing a given particular computation while no doubt it will implement some

computation(s). By introducing CSA Chalmers argues that while there could still be

residual false implementations however the probability of such trivial cases is

dramatically reduced (Chalmers 2011, p. 331). For example Chalmers estimates the

probability for an arbitrary system to meet the requirements of a CSA whose state

2. Chalmers on Implementation and Cognition

 40

vectors have 1000 elements with up to 10 possible values for each element and a

similar number of state transition rules as less than one in (10
1000

)10
1000

. While this

probability is a very small number, note that for a CSA with an infinite or a very large

number of vector states this probability could still amount to a large number.

Therefore while CSA reduces the problem for practical purposes but in theory it does

not totally eliminate it.

2.8 Objections and Replies

In the Journal of Cognitive Science (Vol. 12, 2011 and Vol. 13, 2012) a number of

commentators provide a critique of Chalmers’ views from a number of different

angles. In general most agree with the basic intuition behind Chalmers’ causal theory

of the mind and see it as an improvement on a semantic view of CTM like Fodors’.

While they see shortcomings and weaknesses in the detail of Chalmers’ work from

different aspects however in my view no one gives a knockdown argument and in

return Chalmers (2012) offers a robust defence. There is only one area where

Chalmers’ accepts a need for revision and makes concession and that is on the thesis

of computational explanation. I discussed this earlier in Section 2.5 above.

I list here some of the main issues raised by Chalmers’ critics:

1) Is Chalmers’ notion of implementation over liberal thereby leading to too many

systems implementing too many computations without complying with their causal

structure and explaining their behaviour?

2) Is CSA an appropriate formalism for capturing all different types of computation

such as Turing machines, Pascal programs, etc and what are its shortcomings?

2. Chalmers on Implementation and Cognition

 41

3) Does Chalmers’ CSA formalism in fact manage to escape the triviality objection

of Searle and Putnam?

4) Is computation sufficient for cognition and mentality?

5) Does computation provide an explanatory framework for cognition and behaviour?

In what follows I will discuss 1) and 2) and 4) below with 3) and 5) already discussed

earlier in Sections 2.7 and 2.5 respectively. Note that the discussion referred to earlier

on objection 3) and 5) cover the subject of the objection and not necessarily the

specific arguments of particular commentator(s) from the Journal of Cognitive

Science (2011 & 2012).

1) Is Chalmers’ notion of implementation over liberal?

Some critics
7
 argue that Chalmers’ definition of CSA can lead to an over liberal

interpretation of computation so that too many systems end up implementing too

many computations in a way that does not reflect their real causal structure and does

not explain their behaviour. Chalmers
8
 had leant qualified support to such a view by

saying in his paper that any sufficiently complex system will implement a number of

computations. However he had gone on to say that this was benign as long as every

system does not implement every possible computation or any given computation as

Putnam and Searle had argued. The worry here maybe that Chalmers’ views endorses

panconputationalism
9
 or the thesis that everything is a computation under some

description with Towl (2011, p. 428) giving an example of a pool table doing

computations. Chalmers agrees, rightly in my view, that his view endorses a benign

version of Panconputationalism. Such a view says that every complex physical system

7
 Ritchie (2011) and Towl (2011)

8
 Chalmers(2011) pp. 331-332

9
 I discuss what I see as the main issue and not individual points of Ritchie and Towl.

2. Chalmers on Implementation and Cognition

 42

may implement multiple computations however he does not see it as endorsing blatant

permissiveness (i.e. not every possible computation). This is due to the constraints

imposed by the rigour of CSA definitions via the requirement for reliable causation

and related counterfactual requirements of state transition rules which do not permit

random mappings of physical states to computations. Furthermore it does not make

his causal theory of the mind trivial because of the strong thesis of computational

sufficiency based on causal topology and organisational invariants defining the mental

so that it is not attributing mentality to all matter. Chalmers is open to the idea that

there maybe a need to put constraints on how implementation is to be applied if it

provides a more precise definition and has hinted at constraints such as spatial,

functional and teleological ones among others without developing these ideas in

detail (Chalmers 2012, p.242)). His theory involves law like transitions in his talk of

“reliable causation” and not mere mappings.

2) Is CSA an adequate formalism for different types of computation?

Chalmers says that he chose CSAs for his implementation thesis as it was abstract

enough and powerful enough to capture all different types of computational

formalisms such as Turing Machines, FSAs, cellular automata and probably can be

extended to other models such as PASCAL programs, declarative and imperative

programming languages etc.

Chalmers’ critics
10

 argue on two fronts on this issue namely that:

a) CSA’s are too powerful and not a purist computational model;

b) CSA’s are too general and miss out the detail in the architecture of a Turing

machine;

10

 Sprevak (2012) and Milkowski (2011)

2. Chalmers on Implementation and Cognition

 43

On the first point Chalmers agrees that an unrestricted CSA is effectively a “super-

Turing Machine” able to compute computable and non-computable functions thereby

not a purist computational model like Turing Machines. However he argues that he is

not advancing the theory of computation nor is there anything that says that a

computational model of the mind should be based on a purist model of computation

when all that he is hoping to achieve is a consistent and coherent account of the

implementation. Chalmers also says that by restricting CSAs to finite starting states

and inputs we can get a sub-set of CSAs which correspond to Turing Machines.

Furthermore he argues he sees nothing wrong in giving an account covering both

super-Turing Machines and Turing Machines.

The other criticism made against CSA’s by Sprevak (2012, p. 126) was that they

obscured the architecture of a Turing Machines which were conceived as having a

head and a tape with the head moving serially a step at a time reading and writing one

square of a tape. Furthermore there was a distinction between control and data. All

this detail was lost in a CSA which was just a giant table with a state or states

covering each of these factors. While a physical parameterisation could handle some

of the features it was unlikely to represent all the concepts within different

architectures. Chalmers agrees that while this is a more worrying difficulty than the

previous one however he points out that to some degree it is to be expected as the

CSA was a more abstract computational object than the other formalisms. It was only

because of the CSA’s abstractness and generality it was able to provide translations of

the different computational formalisms such as Turing machines, FSAs etc. However

the translations are not to be seen as replications of the target architectures. While

Chalmers sees this mattering at the level of models and theory however at the

2. Chalmers on Implementation and Cognition

 44

implementation level he does not see this loss of distinctions and detail being

important. In Chapter 4 I discuss Abstract State Machines which Chalmers (2012)

endorses in the face of criticisms of CSA. As will become clear in my discussion there

a move to ASMs would answer Sprevak’s critique of CSAs as ASMs are far more

granular and flexible.

Milkowski raises the issue of breakdown saying that all mechanical devices are

subject to breakdown in their lifetime and the CSA translation of a TM will not have

any state representing a head or paper tape breakdown and therefore is not an

adequate representation of real live implementation. Chalmers argues that on his

account the device stops computation at breakdown. He is giving an account of

implementation for some points in time and not for all points in time i.e. forever.

Since Chalmers’ views are developed to give a framework for a theory of the mind in

general and cognition in particular then the reservation I have about Chalmers’ reply

is that his view (to stretch the analogy) does not apply when there is a breakdown in

physical structure or function i.e. in the brain or mind either as a result of accident or

birth. This would be a weakness in his position as accounting for defective function

should be part and parcel of a general theory of the mind and cognition.

4) Issue with Computational Sufficiency11

The main issue people have with Chalmers’ computational sufficiency thesis is the

idea of abstract causal organisation where in the pattern of interactions of the parts of

a system one could abstract away to a fine grained level where all one has left are

computational properties related to mentality. How such abstraction occurs is a worry

as Chalmers offers no clues. Piccinini (2010, Note8, p. 275) argues that unless an

11

 Note: Issues 3 & 5 as mentioned above were covered in Sections 2.7&2.5 respectively.

2. Chalmers on Implementation and Cognition

 45

explanation of such abstraction is forthcoming from Chalmers we are left with the

belief that either such abstraction will also include material properties e.g. related to

bodily processes such as digestion or it will capture some but not all mental

properties. Note that the detractors here are raising a worry about how such an

abstraction process occurs so as to be plausible and are not giving a knock down

objection. To reiterate, in the computational sufficiency thesis Chalmers is drawing a

line between cognition and the mental on the one hand and the rest of material things

on the other hand. He does this by saying that for cognition and mentality

computation is a sufficient property because of the organisation invariant properties of

cognition and mentality while for other things like his stock examples of flying and

digestion, computation is insufficient and requires other physical properties for

constituting them. I think a valid objection to his thesis would be for the detractors to

argue that computation is insufficient for mentality and cognition and this has not

been done.

2.9 Conclusion

This chapter has discussed Chalmers theory of implementation based on his account

of the computational object of a CSA and its relation to mentality and cognition. I

have argued that Chalmers’ theory though not perfect has advantages over previous

theories of the mind and it meets the trivialisation objections of Putnam and Searle

plus has been robustly defended by Chalmers.

In the next chapter (3) I discuss the nature of neural computation based on current

accounts of the functioning of the brain from neuroscience. In Chapter 4 I will look at

2. Chalmers on Implementation and Cognition

 46

whether Chalmers computational model of the mind can be made compatible with

neural computation as discussed in the next chapter.

3. Chalmers’ Causal Theory of the Mind and Neuroscience

 47

3. Chalmers’ Causal Theory of the Mind and
Neuroscience

This chapter discusses the nature of neural computation based on current accounts of

the functioning of the brain from neuroscience.

3.1 Introduction

Cognitive Science and related disciplines such as Cognitive Neuroscience are the

fields that address questions about cognitive functions and their performance by the

brain. The brain is the organ that realises mental activity (Piccinini and Bahar, 2013).

It does this via signals consisting of action potentials or spikes which are organised in

sequences called spike trains resulting from the activity of neurons firing. For large

organisms the performance of cognitive functions is done by the firing of population

groups of neurons and their patterns of firing in well defined regions of the brain.

McCulloch and Pitts (1943) working in mathematical bio-physics and influenced by

Turing were the first to propose that neurons are a binary switch, neural activity is

computational and that neural computation explains cognition (Piccinini and Bahar,

2013, p. 467-468). This is the earliest version of a computational theory of the mind

and looked upon the brain as a computer with computations undertaken by neural

activity to carry out mental processes. Their methods and techniques are superseded

by modern ones. However the general notion of the processing of spike trains as

computation has survived in the Cognitive Science and Neuroscience disciplines.

When people talk of neural computation in the literature they are basically referring to

the processing of spike trains.

3. Chalmers’ Causal Theory of the Mind and Neuroscience

 48

If we ask whether neural processes perform computations in the sense employed in

Chalmers’ theory then at the most basic level the question is whether spike trains are:

i. a digital computation or

ii. an analog computation or

iii. a type of computation not covered by our current paradigms of computation or

iv. not a computation.

Of the above four cases only the first case supports Chalmers’ theory. The second and

third one would require a revision of Chalmers’ theory and the fourth case negates

Chalmers’ theory. I discuss this in detail in Section 4.2 below but briefly digital

computation assumes discrete values in the input, state and output parameters making

up the CSA while analog computation would assume continuous parameters.

Chalmers (2011 p. 347) has implied that the CSA model as it stands would have to be

modified to handle continuous parameters. The third case above is a hybrid case

which requires a modification of Chalmers current model to handle both discrete and

continuous parameters. Finally the last case is a straightforward negation of

Chalmers’ view as it is denying any role for computation.

While at this stage of my thesis it is an open question which type of computation

occurs in neural processes however it would be a significant result for Chalmers’

theory of physical computation (implementation) if it can be shown to be compliant

with the data of neuroscience. If on the other hand Chalmers’ computational views

cannot accommodate neural computation then one of the things to look at is if it can

be modified so that it applies at a higher abstract level i.e. at a neural circuit or

3. Chalmers’ Causal Theory of the Mind and Neuroscience

 49

function level. I discuss the compliance and modification of Chalmers’ theory in the

next chapter.

3.2 Neural Structures

Nervous systems are found in all multi-cellular animals except very simple ones like

sponges. While they vary greatly in complexity, the basic structure is widely

homologous across species reflecting a common evolutionary ancestry. The Central

Nervous System (CNS) is an electrochemical system consisting at the cellular level of

nerve cells or neurons with their structures such as dendrites, synapses and axons. The

CNS
12

 consists of the brain and the spinal cord in vertebrates and is responsible for

controlling all cognitive functions.

Neurons work like a switch (Byrne 2013). They are quiescent as long as the electrical

voltage across their membrane is below a threshold. They get electrically excited and

fire when the voltage reaches a threshold level under electrochemical stimulation.

This excitation occurs by electrical or chemical signals from other neurons or as a

result of sensory stimulation. The electrical signal resulting from a neuron firing is

called an action potential or spike as recordings of it are shaped like a spike. These

spikes are all or nothing and flow across nerve fibres or axons and are passed on via

the neuron’s synapses which act like a terminal in an electric circuit. The signal or

action potential is passed on down the axon and is a brief event of about a millisecond

only. Electrical activity across synapses is facilitated by chemical activity of

neurotransmitters and hormones. There is a short refractory period after a spike when

12

 The introductory paragraphs on neuroscience are based on Piccinini & Bahar (2013), Dayan and

Abbott (2001) and Kandel, Schwartz and Jessell (2000).

3. Chalmers’ Causal Theory of the Mind and Neuroscience

 50

neurons cannot get electrically excited. Neurons recover after the refractory period for

firing the next signal when the input voltage again reaches the threshold.

A sequence of spikes fired by a neuron as a result of stimulation is called a spike train.

A longer duration stimulus to a sensory organ will result in a succession of action

potentials the frequency of which will depend on the intensity of the stimulus. Spike

trains from a single neuron do not have sufficient useful information for a neural

function. The minimal neural processing unit for carrying out a neural function are a

few dozen groups of neurons working together according to estimates of Shadlen and

Newsome (1998). Smooth operation of a neural function is achieved by neurons

working in inhibitory and excitatory neighbouring groups by sending inhibitory or

excitatory signals to manage the dynamics of neural networks. Neurons can also be

distinguished by their firing pattern. The firing pattern from individual neurons can

either be a regular train of spikes or in bursts of spikes. The firing pattern can also be

either in phase with (i.e. synchronous) or out of phase with (i.e. leading or lagging)

other neighbouring neurons. Phasic firing pattern generally occurs when they are

carrying out a common neural function.

Information about the outside world is acquired by the sensory organs in various

sensory modalities such as visual, auditory, olfactory to name a few. The brain has

developed multiple coding systems which render this sensory information into a

suitable code. This is done by using a feature of the information about the world

captured in the sensory modality of sounds or sight or smells and coding it into a

variable in the neuron’s action potential or spike. This process is called modulation

and it can be explained further by a reference to radio engineering where the term

3. Chalmers’ Causal Theory of the Mind and Neuroscience

 51

originated. Note that in my discussion I look at the two main coding systems in the

brain namely rate coding and temporal coding.

In wireless transmission modulation is a means of encoding information in a carrier

signal (Terman 1960). Carriers are signals using different waveforms such as sine

waves, saw-tooth waves, square waves and pulses. Different waveforms are used for

different applications such as radio, telephony, TV and radar. The process of encoding

information in the carrier is called modulation. The information encoded can be of

different formats such as audio, video, text and messages. Modulation involves

varying one of the variables of the carrier such as the amplitude, the frequency or the

phase using the information for transmission as the parameter. For example in Pulse

Frequency Modulation (PFM) the carrier waveform are pulses of constant amplitude

and duration but whose frequency is varied to encode the transmitted information.

Neuronal spike trains can be viewed as a modulation with the spike firing rate

encoding the neuronal information while spike amplitude and duration are constant

and not used for modulation. The rate of firing of the neuron is varied and is one of

the main means of coding information in the neural signal and transferring it across

the brain
13

. This coding method is called rate coding. It is akin to radio signals using

pulse frequency modulation of a carrier wavefront to convey information where the

firing rate of pulses are varied to code the information to be transmitted. This analogy

makes no commitment to neural signals either as a PFM or more broadly as an analog

process. In rate coding the rate is a measure of the average number of spikes over a

duration measured in milliseconds.

13

 (Piccinini & Bahar 2013, p. 462), Byrne (2013 Fig.4)

3. Chalmers’ Causal Theory of the Mind and Neuroscience

 52

The other main coding scheme called temporal coding applies when the neural

information is coded in the precise timing of the spike train pattern. It is generally

used when coding rates are high (e.g. in vision) so that the stimuli have to be

processed more quickly than rate coding allows. When information is based on high

frequency fluctuations in firing rates it could easily be mistaken for noise in a rate

coding model but in the temporal coding model the information is better discriminated.

For example if 1 indicates a spike and 0 = no spike then a spike pattern of

011001111001 has different information from a spike pattern of 011101110001 even

though the average rate is 6 spikes per 10 milliseconds.

There are other coding schemes. However for our purposes just illustrative discussion

of the two important ones is sufficient. Overall it seems that the information in the

spike train is mainly conveyed in some combination of their dynamical properties

such as the average firing rate, or the timing of the spikes (i.e. the inter-spike interval

or phase shifts).

3.3 Nature of Neural Computation

In this section I discuss the nature of neural computation. The discussion is mainly

based on the work of Piccinini and Bahar (2013) who argue that “neural computation”

is a hybrid type of computation, neither a digital nor an analog computation.

To address this issue the structure of this section covers the following five points:

1) What is digital computation?

2) Based on Neuroscience data can neural activity be considered a digital computation?

3) What is an analog computation?

3. Chalmers’ Causal Theory of the Mind and Neuroscience

 53

4) Based on Neuroscience data can neural activity be considered an analog

computation?

5) If neural computation is neither digital nor analog then is it sui generis?

Each of the above 5 points is addressed one by one below.

3.3.1 What Is A Digital Computation?

A digital representation is one which uses discrete set of elements or values of entities

or variables represented by symbols of a finite alphabet or natural numbers or integers.

Digital computation uses discrete step wise changes over a set of elements according

to an abstract rule over them to solve or process changes (Piccinini and Bahar 2013, pp.

459-461). In its physical implementation digital computation has three main

characteristics.

The first characteristic is the processing of input strings from a finite discrete alphabet

to suit the hardware circuitry underlying the physical device. Digital computation

generally uses a code such as binary or octal or hexadecimal numbers to give a few

commonly used examples. The second characteristic of digital computation is a finite

number of internal states and symbols of the machine and a finite number of

instructions or rules in terms of those symbols. The internal states are set up as a

machine table to manipulate the input strings (as in the FSA machine description in

the previous chapter). Furthermore the rules and vehicles or entities which form the

alphabet strings are medium independent. They are insensitive to any concrete

properties of the physical medium or hardware on which they are implemented

thereby making multiple realisability possible i.e. the same computation being

implemented on different media or machines such as for example mechanical,

electronic or magnetic. The third characteristic of digital computation is the

3. Chalmers’ Causal Theory of the Mind and Neuroscience

 54

production of output strings resulting from the manipulation of the input strings. The

output is in the same or a different alphabet from the input.

The key to abstract digital computation is the ability to convert all input, rules and

output discrete elements so that it can be interpreted as a number for use in the

internal inputs and states of the physical machine. A practical device will have all

sorts of bells and whistles such as memory, storage communications networks etc.

depending on the architecture on which it is designed. These however are not relevant

for our purpose.

3.3.2 Why Neural Computation is not Digital Computation

We have seen that neural spikes have an all or nothing character as they are either

present or absent. This gave rise to the consideration of an analogy between spikes

and digits (originally by McCulloch and Pitts)
14

. Digital computation requires the

manipulation of strings of digits hence in the neural case continuing with the analogy

the candidate would be spike trains either from a neuron in their temporal order or

from synchronous neurons within a suitable time interval. Synchronous neurons are

the ones that are anatomically or functionally located and participate in a neural

circuit to work in unison. However there are strong dissimilarities between spikes and

digits.

Piccinini and Bahar (2013 p. 469) argue that spikes are not digits and manipulation of

spike sets is not digital computation
15

. Their assertion in a nutshell is that while digital

computation requires the manipulation of strings of digits i.e. the concatenation of

representations like natural numbers or integers, they note that: “Neural spikes are not

14

 Piccinini & Bahar (2013 p. 467)
15

 Note: I do not discuss all the arguments presented by Piccinini & Bahar (2013).

3. Chalmers’ Causal Theory of the Mind and Neuroscience

 55

digits, and even if they were digits, spike sets would not be strings”. (Piccinini and

Bahar 2013 p. 469)”

Three proposals for neural activity as digital computation are considered by Piccinini

and Bahar (2013) and then rejected on the evidence available. They are 1) Single

neuron spike activity; 2) Spike rates as digits; 3) Fitting Spikes into Strings. I discuss

each of these in detail below.

1) Single neuron spike activity:

One proposal is to consider the firing of a neuron as digital computation as this gives

rise to two states: the presence or absence of a spike. This superficially could be

mathematically typed with two digital values and investigated further as a digital

computation. However Piccinini and Bahar (2013, p. 470) provide two reasons why

this digital typing is not correct.

The first reason is based on not being able to identify a functionally significant time

interval for neural activity. For digital representation only a finite number of digits

can be typed within a given time interval. Therefore the typing of the presence or

absence of a spike as digits is based on the assumption of a fixed time interval

between spikes in order to map a finite number of digits to spikes. But this

assumption is questionable as neural firing in vivo occurs with a high degree of

variability (Piccinini and Bahar 2013, p. 471) and is not based on a fixed time interval.

This leads to a move for spiking from a deterministic to a probabilistic one. While

digital computation can be probabilistic, events are temporally discrete so that for a

fixed time interval there can only be a finite number of outcomes with different

degrees of probability such that a finite number of digits can be assigned to each

3. Chalmers’ Causal Theory of the Mind and Neuroscience

 56

outcome. But in the neural case there is no fixed functionally significant time interval

for counting spikes. Proposals like using the synaptic delay or a master time interval

were found to be wanting as in the former case there was lot of variation in the time

and there is no empirical evidence for the latter. Spike counting would then have to be

done in real time and spike probabilities assigned over an infinitesimal period. This

leads to the possibility of an uncountably infinite number of times in a finite time

interval during which a spike could occur. For a non-deterministic set up this leads to

an uncountably infinite number of probabilities for the occurrence of spiking events.

If spikes are typed as digits this would require the assignment of an uncountably

infinite number of digits as there is a background assumption that different times in an

interval correspond to different digits. However by definition of digital processing

there can only be a finite number of digits in an interval for a digital value to be

correctly assigned. Hence the analogy between spikes and digits breaks down and the

presence and absence of a spike for digital typing is not workable.

Next they argue that while the presence or absence of a spike has a differential impact

in a spike train, what is of functional significance neurally is the rate at which spiking

occurs. In many cases neuroscientists assess the functional significance of a neuron by

computing the average firing rates over many trials (Piccinini and Bahar 2013, p.472).

Furthermore, especially in rate coding, individual spikes may be removed or added to

a spike train without losing their functional significance (Dayan and Abbott, 2001;

Chapter 1). Hence they argue we cannot attach significance to the presence or absence

of a spike so as to treat that as a digit.

3. Chalmers’ Causal Theory of the Mind and Neuroscience

 57

2) Spike rates as digital states:

Von Neumann’s proposal was that we take the spike rate as a digital value. As the

spike rate varies with the stimuli received the digital value would also vary. This

proposal had the merit that it proposed using the functionally significant variable from

a neural viewpoint. However as spike rates vary continuously there is no functionally

significant time interval (Piccinini and Bahar 2013 p. 472-473) which can be used to

parse i.e. quantize the spike rate in a reliable manner such that a digitisation is

possible.

Piccinini and Bahar (2013, p. 473) report that Von Neumann states that there is a limit

to the precision of spike rates thereby making a digitisation from spike rates

unreliable. Hence they argue the idea of using the spike rate as the basis for

digitisation has to be given up.

3) Fitting Spikes into Strings

In the previous two cases Piccinini and Bahar (2013) argue why spike trains from

single neurons cannot be considered as a digital computation. In the case discussed

below Piccinini and Bahar (2013, p. 473) argue why even the functioning of groups of

neurons cannot be looked upon as a digital computation.

A basic uncontroversial assumption in digital computation is that any non-trivial

computation requires a finite number of strings of digits concatenated together to

carry out a function whether a program instruction or some other operation such as a

FSA internal table state. A single digit or even a pair of digits as a rule serves no

useful purpose. If neural computation were a digital computation then it should be

3. Chalmers’ Causal Theory of the Mind and Neuroscience

 58

possible to unambiguously decide which sets of spikes belonged to which strings of

digits. However Piccinini and Bahar (2013, p. 473) argue that this is not possible.

They cite two sub-cases here namely:

a) Spike train synchrony

Consider sets of spikes from neurons associated with a cortical column engaged in

carrying out some neural circuit or function. These columns are as a rule spatially and

anatomically contiguous and have a neural function performed by groups of neurons

working in synchrony i.e. in the sense that there spike trains begin and end in unison.

The proposal was to consider the spike trains from such synchronous neurons as

strings of digits. The complication here is the fuzziness in defining neural structures.

Determining the boundary for a neural structure on a neuron by neuron basis is not

possible. However the main issue is that such neural synchrony is a matter of degree

and therefore the spike trains of neurons from neural structures will be in phase over

some time intervals and out of phase (either leads or lags) over other time intervals,

with no meaningful way of finding a functionally significant time interval where they

will be in perfect synchrony. Therefore looking at spike trains from synchronous

neurons as concatenation of strings of digits is not possible.

b) Spike trains from individual neurons.

A spike train has a temporal order but in order to treat a spike train as a string we need

to identify the start of the string i.e. the first spike and the end of the string i.e. the last

spike. In neural activity there is a high stochastic or random background or “noise”

signal such that the neural signal cannot be parsed out from the noise in a functionally

significant way to identify the start and end of a spike train. I am not totally

convinced by this argument of Piccinini and Bahar (2013) as in theory the signal

should always be distinguishable from the power spectrum of the noise. Furthermore

3. Chalmers’ Causal Theory of the Mind and Neuroscience

 59

in non-linear circuits (including neural) a stochastic resonance (Piccinini and Bahar

2013, p. 472) effect occurs where the noise can aid and enhance the signal.

The second point they make is probably more significant and that is that spike trains

from individual neurons are not functionally significant. Their significance is

discovered by averaging out spike trains from single neurons over many trials and

then use the average spike trains as units of functional significance. Colin Klein has

remarked (in conversation) that this is a confusion between the functional significance

of a spike train and the process to discover the functional significance of a spike train.

Based on the above three points Piccinini and Bahar (2013) reject spike trains as a

digital computation.

The purpose of this section was to discuss reasons why spikes and spike trains are not

a digital computation. It was based on reasons given in Section 7 of Piccinini and

Bahar (2013). While the reasons are of varying degrees of conviction however all up

they make a case that spikes and spike trains are not a digital computation.

3.3.3 What Is An Analog Computation?16

An analog structure is one which uses continuous representations such as the real

numbers so that the values of a function using these representations can vary

continuously with respect to some variable(s). Analog processing could use these

continuous representations to solve or process a continuous function. Some of these

functions may be set up as differential equations of multiple variables varying over real

values. Analog computation is the application of analog processing either in nature or

16

 Piccinini & Bahar 2013, p. 461

3. Chalmers’ Causal Theory of the Mind and Neuroscience

 60

by design in a device. While some analog computers are systems which are setup for

finding solutions to differential equations this need not be so for all cases of analog

processing. To give a stock example of a looser kind of analog processing even the old

AM wireless radio is an example of an analog processor. It detects the audio signal

from the broadcast radio frequency carrier which is a continuous signal (or

representation). The audio signal, again a continuous representation, is amplified and

converted to a sound wave for listening to a radio broadcast.

There is a clear contrast between digital and analog computation which can be

intuitively grasped and it is as follows. In a digital computation there will be a clear

difference from one state to the next state with no intermediate states. On the other

hand in an analog computation, theoretically there will be an uncountable number of

intermediate states between two states as it uses continuous functions ranging over

real numbers.

3.3.4 Why Neural Computation Is Not An Analog Computation?

 Piccinini and Bahar (2013, pp. 465-467) argue that neural processing is not an analog

computation for the following reason. They concede that there are neural processes of

a continuous nature over real time. These are the release and uptake of

neurotransmitters and hormones, plus continuously variable voltages transmitted by

dendrites and some axons. These may look like analog processes and in this loose

sense the brain may appear to be an analog machine. But they argue that for the brain

to be looked upon as an analog machine in a strict sense its functionally significant

signals must be “irreducibly” continuous variables. Now from earlier discussion in

this chapter we know that spikes are the main functional signal of neural activity.

3. Chalmers’ Causal Theory of the Mind and Neuroscience

 61

Furthermore what is of value is the dynamical attributes of a spike such as its firing

rate or spike timing and not any physical attribute such as its threshold voltage or the

rise / decay time. The mathematics of the operation of these functionally relevant

neural factors (viz. firing rates and spike timing) as set out in theoretical neuroscience

does not correspond to the mathematics of analog computation. A new mathematics

had to be invented to account for their operation (Dayan and Abbott, 2001). Hence

Piccinini and Bahar (2013, pp. 465-467) argue neural computation is not strictly an

analog computation.

3.3.5 Is Neural Computation Hybrid?

Based on the survey of the neuroscientific evidence Piccinini and Bahar (2013, pp.

476) conclude that neural processing is neither strictly a digital computation nor an

analog computation but has characteristics of both. This leaves two choices namely:

neural computation is not a computation, or it is a unique hybrid one which has some

attributes of both digital and analog computation. Furthermore it is specific to the

brain itself.

Piccinini and Bahar argue for the latter view by concluding that:

“In a nutshell, current evidence indicates that typical neural signals, such as spike

trains, are graded like continuous signals but are constituted by discrete functional

elements (spikes). Therefore, typical neural signals are neither continuous signals nor

strings of digits; neural computation is sui generis. (2013, pp. 476)

Such a hybrid computation is intended to allow for both continuous variables as well

as discrete digits and it therefore has a broader range than digital computation.

3. Chalmers’ Causal Theory of the Mind and Neuroscience

 62

Piccinini and Bahar introduce a “generic” concept of computation to cover this hybrid

form of neural computation and define it as:

“the processing of vehicles (defined as entities or variables that can change state) in

accordance with rules that are sensitive to certain vehicle properties and, specifically,

to differences between different portions (i.e., spatiotemporal parts) of the vehicles. A

rule in the present sense is just a map from inputs to outputs; it need not be

represented within the computing system” Piccinini and Bahar (2013, pp. 458)

One other point they stress as a corollary of this definition is that the processing

involves physical properties that are abstracted away to be independent of the medium

or substrate on which they are implemented and referred to as “medium independent”.

Piccinini and Bahar (2013, pp. 458) refer to the work of the neo-mechanists such as

Craver (2006) for their main assumptions behind generic computation namely the talk

of vehicles and their portions with association rules between inputs and outputs and

their fractionating into parts. While Craver does talk about capacities and operations

of parts and taxonomy of levels however as my thesis is on Chalmers’ theory hence I

will not go further into an analysis of the notion of generic computation nor use the

notion of generic computation further. I will accommodate hybrid computation by

revising Chalmers’ model in the next chapter.

3.4 Support for Neural Computation as Hybrid Computation from

other Authors

Ratification of a hybrid view of neural processing is also independently provided by

Sengupta, Stemmler and Friston (2013, p. 7). Their reasons are different from

Piccinini and Bahar (2013) however they argue against neural computation being

3. Chalmers’ Causal Theory of the Mind and Neuroscience

 63

analog processing as noise is endemic to analog processing
.
. In analog processing the

noise signal is transmitted with the information signal while with digitisation only the

information is transmitted. If neural circuits are analog then noise would be

transmitted with the signal instead of being suppressed. The inbuilt threshold

mechanisms of spike trains attenuate noise and do not transmit it down the line.

However they argue the pre-production processing of the neural signal via

neurotransmitters and hormones plus the continuously variable voltages across

dendrites is like analog processing thereby making the overall neural computation a

hybrid one.

I have discussed a number of views about the nature of neural computation using

Piccinini and Bahar (2013) as the main foil for the discussion. The argument

presented indicates that neural computation is a hybrid type of computation which has

both discrete and continuous properties. In the next chapter I will look at how

Chalmers’ views can account for hybrid computation or need to be modified.

4. Evaluation of Chalmers’ Theory

 64

4. Evaluation of Chalmers’ Theory

In this chapter I will discuss how well Chalmers’ thesis of cognition and the mind

outlined in Chapter 2 stands up to scrutiny in the face of known empirical facts of

neuroscience discussed in the previous chapter.

4.1 Chapter Approach

The discussion in the previous chapter on neurons, their activity and functions was

done with the aim of asking the following questions in this chapter.

1) Does Chalmers’ implementation scheme apply to neural computation?

2) Does Chalmers’ thesis of Computational Sufficiency hold in the light of the

facts of neuroscience?

3) Does Chalmers’ thesis of Computational Explanation hold in the light of the

facts of neuroscience?

4.2 Does Chalmers’ Implementation Scheme Apply To Neural

Computation?

Chalmers’ (2011) original paper would be consistent with digital computation

described in Section 3.3.1 above as he sets up his CSA as a state based machine. His

machine is like a FSA but with vectors for inputs, outputs and internal states. There

can be an infinite number of internal states unlike FSA’s which can only have a finite

number of internal states. The components of the vectors range over discrete

parameters such as integers or symbols of an alphabet. He then argues that other

computation models such as Turing Machines and cellular automata for example can

be represented using CSA. In Section 2.4 of Chapter 2 I argued that his analysis

covers both symbolic and sub-symbolic or connectionist architectures. Chalmers does

4. Evaluation of Chalmers’ Theory

 65

not use the term digital computation as I have described in Section 3.3.1 above

following Piccinini and Bahar (2013) but calls it symbolic computation.

 In order to judge how Chalmers’ views have to be modified if neural computation is a

hybrid type of computation as argued in the previous chapter I consider how a CSA

can be set up to handle physical processes with continuous causal organisation.

Chalmers’ makes some remarks in this direction in his discussion on “Continuous and

Discrete” in Chalmers (2011, p. 347) and also in his replies to commentators

(Chalmers, 2012, p. 227).

I mentioned above that the CSA has inputs, internal states and outputs that are made

up of vectors whose components are discrete values such as integers or symbols from

an alphabet. Now if we posit the inputs, internal states and outputs of CSAs as

corresponding to real valued quantities then we cover continuous causal processes in

the world. Hybrid processes will then be covered by a combination of real valued

quantities and discrete quantities and therefore cover combinatorial structures with

components having both discrete and continuous values. One other point is that

Chalmers’ expresses the causation as happening reliably by appeal to counterfactuals

to avoid Putnam-Searle type of trivialisations. He posits a spatial separation in the

components of the input and state vectors of the CSA keeping head states and tape

states of Turing Machines in mind as having different physical locations. For handling

continuous structures this will have to be achieved by extending spatial to the spatio-

temporal field in order to capture time slices of continuous variables (if need be) in a

continuous manner.

4. Evaluation of Chalmers’ Theory

 66

Next we consider how the state transition function has to be setup to generate

continuous values. There are two options here according to Chalmers. The first is a

very close approximation which employs polynomial functions over the real numbers

to do a step wise continuous change from state to state with an acceptable level of

error. This would work in practice for biological structures and therefore cognitive

processes most of the time. This is because approximations can be made as close as

possible to a continuous variable (Blum, Shub and Smale 1989). We need to keep in

mind that there is noise in biological systems which would make it unlikely that any

cognitive process would be so sensitive as to require changes which need tracking to

the tenth decimal place. Where it may not work is in the case of chaotic and random

signals which can happen in neural circuits in unusual cases e.g. stimuli resulting in

epileptic seizures (Manganotti, Tamburin, Zanette, and Fiaschi 2001).

 The second option is an exact one based on differential equations which generates

continuous values (MacLennan 1990). Note that as the state transition function has to

cover both discrete and continuous values as far as inputs, internal states and outputs

go hence two different sets of rules are required with discrete state transition functions

applied to discrete structures and one of the two options discussed above used to

handle continuous structures.

The above extension of CSA’s will work provided the continuous and discrete

structures in the inputs, states and outputs are kept separate. By this I mean that there

are two cases. The first case is where there are some tuples or vectors with all discrete

components and some with all continuous components and none with mixed

components. For example if the input vector I has components [i
1
, i

2
, …i

n
] then in the

4. Evaluation of Chalmers’ Theory

 67

first case all the components of the vector [i
1
, i

2
, …i

n
] have discrete values for one

set of input vectors Ij and have continuous values represented by real numbers for

another set of input vectors Ik. In the second case the input vector I has mixed value

components [i
1
, i

2
, …i

n
] such that some components have discrete values and some

have continuous ones. I have referred to input vectors but the same remarks can apply

to the composition of internal state vectors and output vectors of the CSA.

The above extension to Chalmers’ CSA model may not work for the mixed case

which requires simultaneous modelling of discrete and continuous data in the one

tuple. This case cannot be ruled out on an a priori basis and has to be considered
17

.

For this case the CSA as a computational paradigm will have to be replaced by one

which works at the component level and handles the individual component variables

separately instead of combining them within a vector. I don’t think the CSA as a tool

can handle it as the processing is done at the tuple or vector level and not at the

component level of the vector. The only way the mixed case can be handled is to

change the paradigm from a CSA processing at a vector or tuple level to a hierarchical

computational structure which is setup as a tree with the functional and complex

states at the top of the hierarchy and simpler and closer to physical ones lower down

until you get a separation of discrete and continuous at a branch and leaf level of the

tree. What we are trying to do is break it down to a fine grained level so that

processing happens at the component level on the one hand and yet keep the

connection at the higher level but hide the detail.

17

 An actual example of this does not come to mind. Colin Klein has suggested one could happen

along modulation lines either by attention or by top-down cognitive control to an underlying

continuous cognitive process that is enhanced (or inhibited) in a binary fashion.

4. Evaluation of Chalmers’ Theory

 68

4.3 Is ASM the Solution?

There maybe a way out for Chalmers if we develop a line of thought advanced by

Milkowski (2012, pp 369-371) and endorsed by Chalmers (2012, pp 228)
18

.

Milkowski argues that Chalmers use of the CSA is not as effective as the computation

model developed using a new class of machines called Abstract State Machines (ASM)

which would allow us to model any computation in Cognitive Science. ASMs were

developed based on the thesis that one can use them to model any algorithm in any

framework to any level of abstraction (Gurevich 1995). In particular any given

algorithm can be step-for-step simulated by an appropriate ASM.

The notion of an algorithm in ASM is defined by the following axioms (Milkowski

2012, p 369):

“I. An algorithm determines a sequence of computational states for each valid input.

II. The states of a computational sequence are structures.
III. State transitions in computational sequences are determinable by some fixed,

finite description.”

A fourth axiom can be added to exclude oracle machines
19

 viz.

IV. Only undeniably computable operations are available in initial states.

An ASM therefore consists of a sequence of finitely many transition rules of the form

“if Condition then Updates which transform the abstract states.

The Condition (also called guard) under which a rule is applied is an arbitrary

predicate logic formula without free variables whose interpretation evaluates to true

or false. Updates is a finite set of function updates (containing only variable free

terms) of form f (t1, . . . , tn) = t whose execution is to be understood as changing (or

18

 The other technique which enables simultaneous modelling of discrete and continuous structures in

dynamical systems is Time Scale Calculus but use of that is not compliant with a computational

framework.
19

 The Church-Turing thesis has been shown to be derived by extending the axioms to cover

computable operations in the initial state to avoid non-classical computations (Dershowitz and

Gurevich, 2008).

4. Evaluation of Chalmers’ Theory

 69

defining, if there was none).. the occurring functions f at the indicated arguments to

the indicated value”. (Borger and Stark, 2003 pp. 28-29).

The rule can be unguarded i.e. without the “If..then” conditional. The states of an

ASM are structures which are domains consisting of sets their members, functions

over the members and relations. Without loss of generality one can treat predicates as

characteristic functions.

The ASM approach provides a way to describe algorithmic issues in a simple abstract

pseudo-code which can be translated into a high level programming language source

code in a quite simple manner. ASMs have been extended for algorithms over

continuous structures over space and time (Bournez and Derschowitz 2010). Hence

they can be used to model hybrid architectures which is what we need to cover neural

computation at different levels. ASMs can describe the causal dynamics of systems at

different levels of data abstraction. ASMs can work with different data structures

unlike Turing Machines or FSAs which work with symbols or numbers alone. Hence

they could be used to specify a hierarchy of machines with different levels of data

abstraction from very low level ones with detailed states and state transitions specified

to higher level ones specifying functions and commands in a higher level language.

 For example for a two level hierarchy of machines the top level can be rendered as a

state machine whose state transition rules reference the machine at the lower level.

As the states are structures i.e. domains of sets their functions and their relations

hence they would include the relationships between the different levels of machines.

This enables us to give a general account of when low level machines implement high

level models.

4. Evaluation of Chalmers’ Theory

 70

As ASM states are based on structures whose elements can have functions and

relations over the domains they range over hence ASMs can combine both the Turing

paradigm of conventional imperative programming with the Church paradigm of

functional programming.
20

 The higher level ASM could then have declarative

command(s) format (akin to the Church paradigm) and its functional descriptions and

relations get realised in lower level(s) of state machine(s) (akin to the Turing

paradigm) where the states take whatever desired level of abstractness right down to a

physical level. Klein (2012) has argued that the Church paradigm maybe more

important for understanding the architecture of the brain at higher cognitive levels.

According to Klein CSA’s had a problem covering this however ASMs have no such

problem.

ASMs would be able to give a general account of when a physical system implements

different types of computations including ones involving virtual hardware and

software states where the original states are being emulated and no longer physically

exist. Many computational models have difficulties with working over multi-level

structures especially ones which include combinations of levels of virtual hardware

and software without direct spatio-temporal or causal relationships e.g. consider a PC

running Windows7 where the causal structures of the hardware are related to the

20

The Turing paradigm is captured by the following quote from Klein (2012, pp. 168) “Computations

are specified by specifying state-transition rules. These prescribe, in precise detail, the transitions that

an implementing machine must undergo for any particular combination of substates”. Imperative

programming languages are based on the Turing paradigm and programs consist of a sequence of

source language instructions which direct a computer how to solve a problem by following a strict

sequence of instructions which get compiled into a sequence of machine code i.e. the transitions

undertaken.

The Church paradigm on the other hand does not tell a computer the strict sequence of instructions i.e.

how to solve problem. It states the problem that is to be solved. It does this by setting up the functions

(mathematical) that are to be evaluated. To quote Klein (2012, pp. 169): “A program thus describes

which functions are to be computed, but neither constrains nor guarantees the order in which functions

are evaluated.” The connection to Church is because these functional programming languages are

based on the lambda calculus. See Klein (2012) for a discussion on the Turing and Church paradigms

of imperative and functional programming.

4. Evaluation of Chalmers’ Theory

 71

underlying formal structures of the computation and then a hierarchy of virtual

machines running on this platform emulating various hardware and operating systems

e.g. a Mac running MAC/OS, which in turn emulates an old IBM 486 PC running

DOS and so on with each of these virtual machines running their virtual application

software. This is a relatively common occurrence with the inability to run old

applications on newer hardware and operating systems A possible example of a

virtual machine applying to minds and therefore to neural computation is given by

Colin Klein of simple sets of rules communicated in a higher level language like

English which “runs” on the brain machine (or mind) like a compiler on a computer

and getting translated into a lower level machine code type of language before being

actioned. His example is a set of three instructions such as: “First staple these two

pages”. “Then add them to the folder”; “Then write the delegate’s name on them”. For

processing it requires translating those English instructions presumably by something

like compiling them to neural instructions prior to being actioned
21

. As ASMs can be

defined by inputs and states from very abstract to physical ones hence virtual states

are not a problem plus the link from abstract to concrete physical states can also be

defined in the one machine.

Because ASMs can cover functions and relate them to lower level states, they would

not have the issues Chalmers’ thesis of Computational Explanation had with Marr’s

and Bayesian theories as discussed earlier in Section 2.5. The functional operators in

21

 Another case is given by Hamburger & Crain (1984) who describe a compile and plan

neurolinguistic study on children. It involves carrying out “Do as I say” instructions on words to check

if the child has for example correctly understood the referent of a word. Their thesis is that when a chid

is asked to show its comprehension on a sentence by an appropriate action, the syntactic structure is

first converted into a plan and it is the plan that is actioned. The plan is made up of one or more

algorithms and this process of acquisition of the plan is akin to a compilation of a program on a

computer. This plan specification and acquisition process could be construed as a case of a hierarchy of

virtual machines as the neural representation has no causal structural relationship to the underlying

physical mechanism since one does not directly exist.

4. Evaluation of Chalmers’ Theory

 72

those theories are not covered well by CSAs as Chalmers had conceded. As

mentioned before in this section Gurevich (1995) originally worked on ASM as a

general framework covering all algorithms. The proofs he has developed enable ASM

to cover all computational formalisms such as Turing machines, FSAs etc. In

replacing CSA by ASM we no longer have the objections raised in Section 2.8 to

CSA as an adequate formalism covering all computational formalisms.

Chalmers (2012, pp 228) has agreed with Milkowski’s suggestion to replace CSAs by

ASMs and said that that would be the way to go to get a general model of

computation which overcame many of the objections raised to his views. Note that the

development of the formalism to replace CSAs by ASMs is a non trivial exercise,

beyond the scope of this thesis and remains a project for the future. In what follows

below I give a brief informal outline.

A definition for a basic ASM can be rendered in the same manner as the one done for

FSA with the proviso that the states are abstract structures and the state transition

rules can reference other machines as the structure can contain functions and relations:

“A basic ASM is specified by giving a set of input states I1, ..., Ik, a set of internal

states S1,...,Sm, and a set of output states O1,...,On, along with a set of

state-transition relations of the form (S, I) → (S’, O’), for each pair (S, I)

of internal states and input states, where S’ and O’ are an internal state and an output

state respectively. S and I can be thought of as the “old” internal state and the input

at a given time; S’ is the “new” internal state, and O’ is the output produced at that

time.”

4. Evaluation of Chalmers’ Theory

 73

As mentioned earlier ASMs’ states are structures hence they can have functions to

any desired level of abstraction. In addition as mentioned before ASMs have systems

of finitely many transition rules either with conditional form “if Condition then

Updates” or unconditional form which transform the abstract states.

We extend the concept of the implementation by CSA to one by ASM where the

internal states, transition rules and outputs replace vectors by structures. In moving

from scalars to vectors Chalmers had provided a combinatorial complex structure to

the CSA. The move to an ASM deepens the complexity and granularity of the

resulting machine with hierarchy and functional command structures as discussed

earlier. The other point is that ASMs (like CSAs) differ from FSAs in that their

internal states can be either finite or infinite while for a FSA they are always finite.

However ASM’s inputs can be constrained to be finite by the last axiom above to

adhere to the Turing Church hypothesis. For all practical purposes the finite case

suffices.

A physical system P implements an ASM, M, when the following conditions are met:

“If there are internal states of P into structures [s
1
, s

2
,…], and a mapping f from the

sub-states s
j
 into corresponding sub-states S

j
 of M, along with similar mappings from

inputs and outputs, such that for every state-transition rule ([I
1
, …, I

k
], [S

1
, S

2
,…]) →

([So
1
, So

2
, …], [O

1
, …, O

l
]) of M: if P is in internal state [s

1
, s

2
, …] and receiving

input [i
1
, …, i

n
] which map to formal state and input [S

1
S

2
, …] and [I

1
, …, I

k
]

respectively, this reliably causes it to enter an internal state and produce an output that

map to [So
1
, So

2
,…] and [O

1
, …, O

l
]] respectively.”

4. Evaluation of Chalmers’ Theory

 74

The state transition rules given above are unguarded however they can be set to be

conditional with the conditions largely determined by the context (e.g. another related

machine), the subject matter and the environment to name at least three factors. As

FSAs and CSAs are sequential,
22

 the ASM description given above is that of a

sequential ASM however this need not apply in all cases. ASMs can be defined with

parallel, distributed, encapsulated and multi agent formats (Borger, E. and Stark. R.,

2003, pp. 88-282).

The above ASM formulation can be unpacked as follows. Each internal state of P is a

structure given by its components [s
1
, s

2
,…], and similarly each internal state of the

ASM is a structure whose components are [S
1
, S

2
,…]. A structure consists of an

ordered set of sub-states or components for each internal state of the physical system

and the ASM plus their functions and relations. For example each component of the

structure corresponding to an internal state of P could represent a spatio-temporal

coordinate. The inputs and outputs of the physical system have structures e.g. [i
1
, …,

i
n
] and [o

1
, …, o

l
] respectively. The inputs and outputs of the ASM also have

structures e.g. [I
1
, …, I

k
] and [O

1
, …, O

l
] respectively.

There is a function f that does a one to one mapping from each sub-state sj of the

internal state, of the physical system P to each sub-state Sj of the internal state of the

ASM, M. along with mappings of the components of the inputs and outputs of P to

components of inputs and outputs of M. This mapping is based on the state transition

rule of M ([I
1
, …, I

k
], [S

1
, S

2
,…]) → ([So

1
, So

2
, …], [O

1
, …, O

l
]) . The state transition

rule specifies a unique mapping for a combination of input state structures and

internal states of M giving new internal state structure plus an output structure of M.

22

 Klein (2012) covers this point in detail in his discussion of the Turing paradigm mentioned earlier.

4. Evaluation of Chalmers’ Theory

 75

Furthermore the state transition rule must be such that the causal transition in the

physical system P is reliable i.e. counterfactual supporting as discussed earlier in

connection with reliable causation for FSA implementation.

The above description gives an account of what it is for a physical system to

implement a computation and how to interpret the mirroring relationship between the

states of a physical system and the states of an abstract computation. In this section I

looked at how Chalmers CSA model can be modified if neural computation is a

hybrid form of computation. I found that while Chalmers model can be extended to

handle continuous causal processes however in the hybrid case it can only handle one

of the two possible cases. Only a move to an ASM model can handle both cases.

4.4 If Neural Processes Are Not Computations

At the start of Chapter 3 before investigating the nature of neural computation I set

out the four possible logical alternatives. One of these was what if neural processes

are not a computation. If that were true then clearly Chalmers theory would have to

be rejected. However we have found at the end of the discussion in Chapter 3 that

there is sufficient evidence that neural computation is a hybrid type of computation.

Hence this alternative has to be discounted and would merit no further discussion

about overall theories of the mind and cognition. No doubt as discussed earlier in

Chapter 2 Section 2.5 there are theories in specific areas like Marr’s model of vision

and the Bayesian model of perception which did not fit in well with Chalmers’

explanatory computational framework. These were based on mathematical functions

and not a computational framework. However Chalmers (2012, pp 243-4, 246) has

convincingly argued that they are not general theories of the mind and cognition but

4. Evaluation of Chalmers’ Theory

 76

cover particular areas only and the links to his model could be worked out if a move

were made to ASMs.

4.5 Does Chalmers’ Thesis of Computational Sufficiency and

Computational Explanation Hold If Neural Computation is Hybrid?

In the assessment of neuroscientific data that I discussed in Chapter 3 I had concluded

that neural computation is neither a digital nor an analog computation but a hybrid

type of computation. This would potentially pose a problem for Chalmers’ CSA

model which is a digital one. This was overcome in Section 4.2 above by modifying

CSAs to handle both discrete and continuous structures using real numbers with

suitable changes to the state transition function. The question I wish to consider here

is how Chalmers’ thesis of computational sufficiency which links computation to

cognition gets affected (if at all) by neural computation being hybrid. We have seen in

Section 2.5 that this thesis states that the right kind of computations is sufficient to

have a mind. The straight forward point is that the extensions to CSA in Section 4.2

above make it possible to cover cognitive processes which are both discrete and

continuous. If the brain has a massively parallel and massively distributed architecture

and its circuits to carry out a function are like artificial neural networks then there is a

separation between the task of individual neurons which are like a switch passing

encoded / decoded data and the overall processing by the network. The individual

neurons are mainly responsible for low level computation while networks of neurons

are responsible for the high level computation of cognitive processes. The work of the

network results in meaning or action on the data to deliver the function of the network

of neurons. In general a cognitive process is not at the level of an individual neuron

but at the level of a network of neurons and hence debating about the nature of

4. Evaluation of Chalmers’ Theory

 77

processing at the neuron level (whether analog or digital or hybrid) maybe too low a

level when we are giving an account of cognition. Chalmers (2011 p. 337) says that

his account applies to a “neural level or higher depending on just how the brain’s

cognitive mechanisms function” provided it results in the causation of behaviour.

Only by reading this as meaning at a neural network level and by “higher” as meaning

an abstract causal organisational level does one avoid confusion. Hence there is no

impact on the thesis of computational sufficiency.

To recall as discussed in Section 2.5, Chalmers’ thesis of computational explanation

says that computation as construed by him provides an explanatory framework for

cognitive processes and behaviour. This thesis is not affected by neural computation

at the neuron level being hybrid as hybrid computation was shown to be compliant

with an extension to Chalmers’ computational model, both the extended CSA one or

the ASM model.

5. Conclusion

 78

5. Conclusion

In this thesis I have examined David Chalmers’ causal theory of the mind. I have

outlined the theory and then discussed the strengths and weaknesses of his approach.

Chalmers developed his theory by first defining an abstract computational object

namely a CSA and its implementation via an isomorphism (or mirroring) with the

causal processes of the physical system in which the computation is realised. Next he

brings out the connection between computation and cognition via the theses of

computational sufficiency and computational explanation. In Section 2.7 I go on to

show how Chalmers’ argument does not fall afoul of the Putnam-Searle trivialisation

objection by appealing to counterfactual conditionals. Next I discussed some key

issues and objections made by his critics and concluded that while there maybe some

difficulties, however no knockdown argument was advanced by any of his detractors

on the one hand while Chalmers on the other hand in most cases made robust

responses to objections. Furthermore I argued in Chapter 4 that a move away from

CSA to ASM as hinted by Chalmers (2012) overcomes the main difficulties with CSA

as a computational model and as an explanatory framework for cognition.

By looking at neural computation in Chapter 3 I concluded that the evidence suggests

that it is of a hybrid variety covering both discrete and continuous structures causing a

potential problem for Chalmers’ theory. Again by replacing CSA by ASM I have

proposed how Chalmers’ thesis can be extended to comply with the hybrid nature of

neural computation. By doing this I have shown that it is still a live theory in the

philosophy of mind.

References

 79

References

Blum, L., Shub, M. and Smale, S. 1989. On a theory of computation and complexity

over the real numbers: NP-completeness, recursive functions, and universal

machines. Bulletin (New Series) of the American Mathematical Society 21(1): 1-46.

Borger, E. and Stark. R. 2003. Abstract state machines, A method for high-level

system design and analysis. Springer-Verlag, Berlin.

Bournez, O. and Dershowitz, N. 2010. Foundations of analog algorithms.

Proceedings of the Third International Workshop on Physics and Computation (P&C),

Nile River, Egypt, pp. 85–94. Available at http://nachum.org/papers/Analog.pdf

Byrne, J. 2013. Introduction to neurons and neuronal networks. Neuroscience Online,

University of Texas Medical School, Houston, Texas.

http://nba.uth.tmc.edu/neuroscience/s1/introduction.html

Chalmers, D.J. 2011. A computational foundation for the study of cognition. Journal

of Cognitive Science, 12(4): 1-21.

,

Chalmers, D.J. 2012. The varieties of computing: A reply. Journal of Cognitive

Science, 13: 211-228.

Church, A. 1936. ‘A Note on the Entscheidungsproblem’. Journal of Symbolic Logic,

1: 40-41.

Craver, C. 2006. When mechanistic models explain. Synthese, 153(3): 355-376

Dayan, P. and Abbott, L. F. 2001. Theoretical neuroscience, computational and

mathematical modelling of neural systems. MIT Press, USA.

Denning, P., Dennis, J. and Qualitz, J. 1978. Machines, languages and computation.

Prentice-Hall, NJ.

Dershowitz, N., and Gurevich, Y. 2008. A natural axiomatization of computability

and proof of Church’s Thesis. The Bulletin of Symbolic Logic, 14(3): 299-350.

Dreyfus, H. L. 1972. What computers can’t do. New York: Harper & Row.

nd and Machines 4: 391-402, 1995.

Egan, F. 2012. Metaphysics and computational cognitive science: Let’s not let the tail

wag the dog. Journal of Cognitive Science. 13: 39-49.

Fodor, J.A. 1975. The language of thought. New York: Thomas Crowell.

Fodor, J.A. and Pylyshyn, Z. W. 1988. Connectionism and cognitive architecture: A

critical analysis. Haugeland J. (Ed), Mind design II, MIT Press, 1997.

References

 80

Garson, J. "Connectionism", The Stanford Encyclopaedia of Philosophy (Spring 2015

Edition), Edward N. Zalta (ed.),

http://plato.stanford.edu/archives/spr2015/entries/connectionism/

Gurevich, Y. 1995. Evolving algebras 1993: Lipari guide. In E. Börger (Ed.)

Specification and validation methods (pp. 231-243). Oxford: Oxford University

Press.

Hamburger, H. and Crain, S. 1984. Acquisition of cognitive compiling. Cognition, 17:

85-136.

HIPR 2000. Hypermedia image processing reference. Department of Artificial

Intelligence, University of Edinburgh.
http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm

Hopcroft, J.E., Ullman, J.D. 1979. Introduction to automata theory, languages and

computation. Addison-Wesley, Reading, Mass. USA.

Kandel, E., Schwartz J.H., Jessell, T.M. (eds.) 2000. Principles of neural science.

McGraw-Hill, New York, USA.

Klein, C., 2012. Two Paradigms for individuating implementation. Journal of

Cognitive Science. 13: 167-179.

MacLennan, B. 1990. Field computation: A theoretical framework for massively

parallel analog computation, Parts I-IV. Technical Report CS-90-100. Computer

Science Department, University of Tennessee.

Manganotti, P., Tamburin, S., Zanette, G., Fiaschi, A. 2001. Hyperexcitable cortical

responses in progressive myoclonic epilepsy: a TMS study. Neurology. 2001 Nov 27;

57(10): 1793-9.

Marr, D. 1982. Vision, New York: Freeman Press USA.

McCulloch, W. and Pitts, W. 1943. A logical calculus of ideas immanent in nervous

activity. Bulletin Of Mathematical Biophysics, 5: 115–133.

Miłkowski, M. 2011. Beyond formal structure: a mechanistic perspective on

computation and implementation. Journal of Cognitive Science, 12: 359-379.

Milkowski M. 2015. Internet Encyclopaedia of Philosophy (IEP), ISSN 2161-0002

http://www.iep.utm.edu/compmind

Penrose, R. 1990. Precis of the emperor’s new mind. Behavioral and Brain

Sciences 13: 643-655.

Piccinini, G. 2010. The mind as neural software. Understanding functionalism,

computationalism, and computational functionalism. Philosophy and

Phenomenological Research, 81:(2) 269-311.

References

 81

Piccinini, G. and Bahar, S. 2013. Neural computation and the computational theory

of cognition, Cognitive Science, 34: 453–488.

Place, U. T. 1956. ‘Is consciousness a brain process? British Journal of Psychology,

47: 44–50.

Putnam, H. 1960. “Minds and machines.” in Dimensions of Mind, ed. Sidney Hook,

New York University Press, USA.

Putnam H. 1967. The nature of mental states. in Mind and Cognition: An Anthology,

2
nd

edn. eds. W Lycan, 1999. Malden, Ma, Blackwell.

Putnam, H. 1988. Representation and reality. The MIT Press, Cambridge, USA.

Rescorla, M. 2012. How to integrate representation into computational modeling,

and why we should. Journal of Cognitive Science, 13: 1-38.

Ritchie, J.B. 2011. Chalmers on implementation and computational sufficiency.

Journal of Cognitive Science, 12: 401-417.

Rummelhart, D., McClelland, J.L. and the PDP Research Group. 1986. Parallel

Distributed Processing: Explorations in the Microstructure of Cognition. Volume 2:

Psychological and Biological Models, Cambridge, MA: MIT Press, USA.

Rummelhart, D. 1998. The architecture of the mind, a connectionist approach. Mind

readings, 207-238.

Searle, J.R. 1980. Minds, brains and programs. Behavioral and Brain Sciences 3: 417-

457.

Searle, J.R. 1992. The rediscovery of the mind. Cambridge, Mass. MIT Press, USA.

Sengupta, B., Stemmler M.B. and Friston K.J. 2013. Information and efficiency in the

nervous system— A Synthesis. PLOS Computational Biology, 9: (7) 1-12.

Shadlen, M. N., and Newsome, W. T. 1998. The variable discharge of cortical

neurons: Implications for connectivity, computation and information coding. Journal

of Neuroscience, 18: 3870–3896

Smart, J.J.C. 1959. Sensations and brain processes. Philosophical Review, 68: 141–

156.

Smolensky, P. 1990. Tensor product variable binding and the representation of

symbolic structures in connectionist systems, Artificial Intelligence 46: 159-216

Sprevak, M. 2012. Three challenges to Chalmers on computational implementation.

Journal of Cognitive Science, Volume 13: 107-143.

Terman, F.E. (1960) Electronic and radio engineering. McGraw-Hill, India.

References

 82

Towl, B. 2011. Home, pause, or break: a critique of Chalmers on implementation.

Journal of Cognitive Science, 12: 419-433

Turing, A.M. 1936. On computable numbers, with an application to the

Entscheidungsproblem. Proceedings of the London Mathematical Society,

Series 2 42: 230-65.

Von Neumann, J. 1945. “First Draft of a Report on the EDVAC,” Contract No. W-

670-ORD-4926, Between the United States Army Ordnance Department and the

University of Pennsylvania Moore School of Electrical Engineering, University of

Pennsylvania. June 30, 1945.

