OPTIMISING MARKER PLACEMENT FOR GAIT ANALYSIS

Michael Buckingham

Bachelor of Engineering
Software Engineering

]
Pg
ey

MACQUARIE
University

SYDNEY-AUSTRALIA

Department of Engineering
Macquarie University

November 6, 2017

Supervisor: Dr Dané Turner
Co-Supervisor: Associate Professor Franck Cassez

ACKNOWLEDGMENTS

I would like to acknowledge Dr Dane Turner for all her help and guidance through-
out my thesis project.

I would also acknowledge the motivation and support of my parents, whom
without their guidance would not have the confidence to be who I am today.

I would like to thank my girlfriend Taylor, for proof reading this document
and putting up with me in my stressed, sleep deprived state.

Finally, I would like to thank my good friend Vishnu, for lending me his time

and computer for testing of the program.

STATEMENT OF CANDIDATE

1, Michael Buckingham, declare that this report, submitted as part of the require-
ment for the award of Bachelor of Engineering in the Department of Software
Engineering, Macquarie University, is entirely my own work unless otherwise ref-
erenced or acknowledged. This document has not been submitted for qualification

or assessment an any academic institution.

Student’s Name: Michael Buckingham
Student’s Signature: Michael Buckingham (Electronic Signature)

Date: November 6, 2017

ABSTRACT

Gait analysis is a well-defined area in mechanical engineering. However, in
biomedical and mechatronic engineering, gait analysis of the human body is a
lot newer with many issues to overcome. One of the main problems faced by
researchers is the scaling of models for comparison.

This project will investigate gait analysis scaling for the human body, and
produce a program to speed up the scaling process.

This completed project will help assist in defining a more accurate process
for scaling gait models and aid research in future to make further discoveries and

advancements.

Contents

Acknowledgments
Abstract

Table of Contents
List of Figures
List of Tables

1 Introduction
1.1 AIm . . e e

2 Background and Related Work

2.1 What is Gait Analysis
2.2 Scaling in Gait Analysis
221 Manual Scaling L
2,22 Linear Scaling
2.2.3 Anatomical Landmark Scaling
2.24 Kinematical Scaling
2.3 Optimisation Technique o000 L.
2.3.1 Evolutionary Optimisation
2.3.2 Stochastic Optimisation
2.4 Methods Iimplemented in OpenSim
2.4.1 Computing Scale factor L.
2.4.2 Scaling the Model’'s Geometry
2.4.3 Scaling Mass and Inertial Properties
2.4.4 Scaling Muscles and Other Model Components
245 Placing Markers

3 System Requirements

3.1 Functional Requirements,
3.2 Non-Functional Requirements
3.2.1 Awailability oo

iii

vii

9
9
9

CONTENTS

3.2.2 Maintainability
3.3 Design and Implementation Requirements
3.3.1 System Interfaces
3.3.2 User Interfaces
3.3.3 Hardware Interfaces.
3.3.4 Software Interfaces L ...
3.3.5 Communications Interfaces

4 System Design

4.1 Selected Method
4.2 Method Justification
4.3 Algorithm Explanation

5 Algorithm Correctness
6 Algorithm Complexity

7 Testing Method

7.1 Method 1
7.2 Method 2
7.3 Method 3
T4 Method 4
7.5 Method b

8 Results and Analysis

8.1 Testing Method 1 L
82 Testing Method 2
8.3 Testing Method 3
8.4 Testing Method 4
8.5 Testing Method 5

9 Conclusions and Future Work
9.1 Conclusions e
9.2 Future Works e

10 Abbreviations
A Software Requirements

B Source Code
B.1 OpenSim_Scaling.py o v v i i e
B.2 GetFiles.py
B.3 ModifyMarker.py
B.4 ModifySetup.py e e e e
B.5 MultipleScale.py

13

15

17
17
18
18
18
19

21
21
24
206
27
28

33
33
34

35

37

CONTENTS xi
B.6 Scale.pyo e 56
B.7 SelectScaleFilepy 58
B.8 Script.psl . . .o 59

C Tabulated Results 63

D Meeting Attendance Form 67

67

Bibliography

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7

4.1

8.1
8.2
8.3

8.4

8.5
8.6
8.7
8.8
8.9

8.10

Example of Gait Model in Vieon. 3
Example of an OpenSim Model. 4
Schematic overview of linear model scaling. 5
Schematic Overview of anatomical landmark scaling. 5
Schematic overview of kinematical scaling, 6
Basic evolutionary algorithm cycle. 6
Weighted least square mean formula implemented by OpenSim. 8
Software flow diagram. L 12
Comparison of runtime data. 21
Comparison of error values. 22
Comparison of marker placements on the initial generic models for subject

20170223MB. Blue markers are the original file while the pink markers are
the modifiedmodel. 23

Comparison of marker placements on the scaled models for subject 20170223MB.
Blue markers are the original file while the pink markers are the modified
model. e 24
Comparison scaling times. 25
Comparison of scaling with the manual marker weighting. 26
Comparison error from static pose for all test subjects. 27
Comparison error from static pose for test subject 2070704PT. 28
Close up of torso markers for subject 20170704PT. The pink marker is from

the script, The blue marker is from JN, the black marker is from JM, the
green marker is from PT, and the yellow marker is from TN. 29
Front and rear marker comparison for the manually scaled models along
with the script scaled model for subject 20170704PT. The pink markers
are from the script, the blue markers are from JN, the black markers are
from JM, the green markers are from PT and the yellow markers are from
TN, 30

xiil

xiv LIST OF FIGURES

8.11 Left and Right marker comparison for the manually scaled models along

with the secript scaled model for subject 20170704PT. The pink markers

are from the script, the blue markers are from JN, the black markers are

from JM, the green markers are from PT, and the yellow markers are from

TN, e 31
8.12 Comparison of error obtained during inverse kinematics. 32

D.1 Meeting Attendance Form 68

List of Tables

8.1 Comparing the weighted least square method and developed seript 28

A.1 Functional Requirements 37
A.2 Availability Requirements 37
A.3 Maintainability Requirements00 37
A.4 System Interface Requirements 38
A.5 User Interface Requirements 38
A.6 Software Interface Requirements 38
C.1 Comparison of script and mannal scaling error 63
C.2 Comparison of script with manual marker weighting and manual scaling

5] o) 64
C.3 Comparison of Scaling Time, 65
C.4 Comparison of Scaling Method to Static Pose 66
C.5 Comparison of Scaling Methods Inverse Kinematic Error 66

XV

Chapter 1

Introduction

Gait analysis is the study of the movement of an object. This process is done by placing
markers on the subject and using a set of cameras to recording 3D coordinates of the
markers as the subject moves along a set path. Currently, Macquarie University is con-
ducting a study of the effectiveness of knee replacement surgery by analysing the gait of a
subject before and after the surgery. This data is then manually modified to better corre-
spond to the standard model. This manual manipulation lowers the accuracy and validity
of the results as there is an increases chance human error and the manual manipulation
decreases the likelihood that of repeatable results.

1.1 Aim

The aim of this project to automate, or semi-automate the process of scaling the test data,
such that it is the best fit to the standard model. This process will allow for more accurate
gait analysing of a human knee. A successful project will allow for more significant
research into the effectiveness of current knee replacement techniques and possibly allow
for future advancements in knee replacement surgery.

Chapter 1. Introduction

Chapter 2

Background and Related Work

2.1 What is Gait Analysis

Gait analysis is the study of the movement of an object. This process is achieved by
placing markers on a subject and using a set of cameras to record the 3D coordinates of
the markers as the subject moves along a set course, as shown in Figure 2.1. This data
is scaled to a generic model for interpretation, ensuring an accurate comparison between
each test subject. Figure 2.2 shows an example of a scaled model.

Figure 2.1: Example of Gait Model in Vicon.

4 Chapter 2. Background and Related Work

Figure 2.2: Example of an OpenSim Model.

2.2 Scaling in Gait Analysis

2.2.1 Manual Scaling

Manual scaling is where the operator adjusts the generic model to represent the sub-
ject. This scaling is usnally is achieved by the operator adjusting the marker position
in computer modelling software like OpenSim. This manual manipulation inherently has
accuracy issues as the finished model varies based on the operator.

2.2.2 Linear Scaling

Linear scaling models are the current standard method for musculoskeletal scaling. It
relies on the motion trail to linearly scale body segment and calibrate the position of the
markers on the subject [1]. Figure 2.3 demonstrates this process.

2.2 Scaling in Gait Analysis 5

Dynamic
motion caputure
trial

Musculoskeletal M Inverse
template Parameter itions Marker i
identification egment trackin 4 mol
geometry length B Joint analysis Joint moments

angles Knee reaction forces

Figure 2.3: Schematic overview of linear model scaling.

2.2.3 Anatomical Landmark Scaling

Anatomical scaling uses a similar concept to linear scaling but instead of scaling the
generic model straight to the motion trail, the static pose is used. The use of a static
pose allows for the calculation of the joint parameters based on markers placed on the
subjects anatomical landmarks.

Once the calculations are finished, the generic model is non-linearly transformed such
that it has the same joint parameters and body segment values and the static pose. Figure
2.4 shows this process.

Dynamic
mation caputure

trial

i I
Standing Create stick- Marker | _| m-ersle] 22
reference _ dynamic
i figure model tracking I Joint | A J Joint moments
L l J angles Knee reaction forces
.
Il i
(Mysclosoviata] ‘ Model Scaled musculoskeletal model
template

morphing joint parameters, muscle topology,
geometry L segment COM and inertia

Figure 2.4: Schematic Overview of anatomical landmark scaling,.

2.2.4 Kinematical Scaling

Kinematical scaling advances on anatomical landmark scaling through the use of dynamic
functional trails. This advancement eliminates the dependency that correct marker place-
ment places on anatomical landmark scaling.

Using a gait trial as the dynamic functional trial allows for the specific joint parameters
to be calculated through the use of an optimised-based parameter identification method.
This optimisation method can be similar to the multi-joint method proposed by Reinbolt
et al [2]. Figure 2.5 outlines this process.

6 Chapter 2. Background and Related Work

=i motion caputure
trials identification : P

Functional Parameter (Dynamic (

trial
Joint parameters l
¥
indin) Inw
's;:e: i c': Create stick- | Marker | Ll dvn:::: | -
o figure model tracking J loint | S I Joint moments
angles Knee reaction forces

M“i""‘ﬂ""’lk:"m‘ Model Scaled musc model
R morphing joint parameters, muscle topology,
geametry segment COM and inertia

Figure 2.5: Schematic overview of kinematical scaling.

2.3 Optimisation Technique

2.3.1 Evolutionary Optimisation

Evolutionary optimisation bases itself on similar concepts to organic evolution. It aims to
find the optimal system configuration within set bounded conditions. This optimisation
is achieved through continuous modification of the system (or sub-system) and keeping
the best outcome [3]. The basic design of an evolutionary algorithm is shown below in
Figure 2.6 [4].

Initialisation

Evaluation

Yes

Reproduction Stop?)——F Termination

F Mo

Selection Al

Figure 2.6: Basic evolutionary algorithm cycle.

2.4 Methods Implemented in OpenSim 7

Explanation of Stages

Initialisation: The initial set-up of the system.

Evaluation: Comparing the systems current state to the desired state
Stop: Terminate the loop if system is in optimal configuration
Selection: Selecting the optimal component in the system
Reproduction: Modifying the sub-optimal components

2.3.2 Stochastic Optimisation

Stochastic optimisation refers to any optimisation method where randomness is present.
This randomness often presents itself in the objective function or constraints [5]. Stochas-
tic algorithms function by generating random solutions to a problem and testing how well
they fit the solution. More advanced algorithms will incorporate a limiting function which
will create tighter bounds for the random solution, the closer the function gets to an op-
timal solution [G].

Stochastic optimisation can be split into two sub-categories, single-stage stochastic
optimisation and multi-stage stochastic optimisation [7]. These differ in the number of
random decisions needed for a single solution. As its name implies, single-stage stochastic
optimisation focuses on optimising a problem with a single random objective function
or constraints. This method is contrasted by multi-stage stochastic optimisation, where
there is a need to find a sequence of random variables to solve a given problem [5].

2.4 Methods Implemented in OpenSim

During the scaling process, OpenSim implements a combination of three scaling methods
to scale the test data to a given standard model. These methods are manual scaling,
linear scaling and inverse kinematics. The full scaling process is broken down into the
steps below [8].

2.4.1 Computing Scale factor

Computing the scale factor is the first step in the scaling process. Calculating the scale
factor is achieved by averaging the length of each marker set in the given .tre file. These
lengths are then divided by the segment length of the generic model, giving the scale
factor for each segment. The only exception to this is if a manual scale factor is specified.
In this case, the specified scale factor is given priority over the computed scaled factor.
Each segment scale factor is then averaged to give the overall scale factor [8].

8 Chapter 2. Background and Related Work

2.4.2 Scaling the Model’s Geometry

Once the scale factor has been computed, OpenSim’s scaling tool uses these scale factors to
scales the model’s geometry. This geometric scaling is done by scaling muscle attachment
points, mass centre location, joint frame locations and force application points [8].

2.4.3 Scaling Mass and Inertial Properties

Next. the computed scale factors are used to scale the size of each body segment. Ad-
ditionally, the mass of each segment is adjusted such that the mass of the subject is
conserved.

There are two different ways that OpenSim scales the segment mass. The first ap-
proach is to preserve mass distribution. This approach scales the segment mass of the
subject in such a way that it is proportional to the generics model segment mass. The
second approach is to independently scale each segment based on the segments scale
factor. [8].

2.4.4 Scaling Muscles and Other Model Components

Finally, OpenSim scales any components in the model that is dependent on its segment
length. These components include ligaments and muscle actuators. For this scaling, a
new scale factor is calculated. It is the ratio of a segment before and after scaling, this
new scale factor is used to scale any length dependent component [8].

2.4.5 Placing Markers

Once the above scaling process is complete, OpenSim tries to move the markers on the
generic model to match those on the experimental model’s static pose. The experimental
static pose is calculated by the implementation of the inverse kinematic algorithm used
in the Inverse Kinematic tool [8] [9]. The marker error is generated by using a weighted
least square mean formula as stated in figure 2.7 [10]. Where q is the vector of generalized
coordinates being solved for, x;“? is the experimental position of marker i, xi(q) is the
position of the corresponding marker on the model (which depends on the coordinate
values), q;*? is the experimental value for coordinate j [10].

mn| ¥ wheox(@f+ ¥ wfer-g)

Emarkers JjEunprescribed coords

q,=q, for all prescribed coordinates j

Figure 2.7: Weighted least square mean formula implemented by OpenSim.

Chapter 3

System Requirements

For this section, the system shall refer to the scaling program in development.

3.1 Functional Requirements

With The system’s role being to antomate scaling of maodels for gait analysis, its functions
can be broken down into three distinct categories. Those categories being data input,
data processing, and data output. Table A.1 states the complete list of the functional
requirements.

3.2 Non-Functional Requirements

3.2.1 Availability

With the project solely being a software component, a working version of the program
must be available at all times. Table A .2 states the Availability requirements.

3.2.2 Maintainability

The system must be able to support updates to the source code. Table A.3 displays the
Maintainability requirements.

3.3 Design and Implementation Requirements

3.3.1 System Interfaces

The system will need to interface with a computing device. In particular, the system will
need to be able to interface with any operating system currently supported by Microsoft.
Table A.4 lists the System interface requirements.

10 Chapter 3. System Requirements

3.3.2 User Interfaces

The user will need to be able to select multiple input files that the system will use for
scaling. Table A.5 shows all the User interface requirements.

3.3.3 Hardware Interfaces

The computing device’s operating system ensures a well-defined interface with the hard-
ware, such that there are no additional hardware requirements.

3.3.4 Software Interfaces

Along with the operating system requirement stated in section 3.3.1, the system will need
to interface with three different software libraries. These software libraries being Python,
NET and OpenSim’s inbuilt API's. Table A.G states all software interface requirements.

3.3.5 Communications Interfaces

As the system will run locally on the user’s device, it does not need any need any com-
munication interfaces.

Chapter 4

System Design

4.1 Selected Method

Evolutionary optimisation has been selected for the initial design of this project. Section
4.2 explains the reasoning on for the selection of this method.

4.2 Method Justification

Evolutionary optimisation has been chosen as it is simpler to design, implement and test.
This is due to the randomness introduced by a stochastic method. This randomness adds
extra uncertainty to the optimisation algorithms implementation.

Another factor to take into consideration is that time complexity of both optimisa-
tion methods. Theoretically, in an evolutionary algorithm, the time complexity should
stay constant on multiple runs on the same data set. This complexity is contrasted by
stochastic optimisation where the time complexity changes based on the randomness in
the random number generation function.

4.3 Algorithm Explanation

The automated scaling program shall have the following structure:

1. The program will take input files of the generic model shown in Figure show in
Figure 2.2, the test subject’s static pose, the scale settings from OpenSim and a list
of markers and what order they are to be scaled in.

2. The program will scale the generic model to the subject’s static pose using Opensim’s
scaling tool.

3. The program will calculate the maximum error and the marker where the maximum
error 0Ccurs.

11

12 Chapter 4. System Design

4. The program will check if the maximum error is within its set error limit.

5. If the maximum error is outside the set error limit, the program will move the
markers on the generic model

6. The program will repeat steps 2-5 until the scaled model is within the set error limit
or if there are 20 cycles without an improvement in error.

7. When the scaled model is within the set error limit or reaches its cycle limit, the
program will output the scaled model in OpenSim and then terminate.

This process is outlined in Figure 4.1.

Input Files

—h Scale

Modify Data

Quitside Error Limit

Inside Error Limit

Output File

Figure 4.1: Software flow diagram.

Chapter 5

Algorithm Correctness

The program is considered to be correct if the maximum error of the scaled generic model
is less than two centimetres.

For the marker with the max error, if there is a marker location between 50% and 0.9%
of the error value that reduces the overall error, the algorithm will select this modification.
From testing, it has been evaluated that the algorithm is correct 80% of the time, for the
given test subjects.

13

14

Chapter 5. Algorithm Correctness

Chapter 6

Algorithm Complexity

The developed algorithm is a Monte-Carlo algorithm, such that it will always output a
scaled model, but it may not be a correct scaled model.

Since the algorithm has no set termination but terminates based off having not im-
proved the error value or being inside a predefined bound. There is no definable complexity
in natural time. That being said if the subject is at an optimal scale but outside the set
bound, the lower bound complexity is defined as:

Numbero fscalingbodics

o(f(n)) = Z 20z,

n=1

Where x is the time taken to scale a select body of markers.

16

Chapter 6. Algorithm Complexity

Chapter 7
Testing Method

The tests below are the methods used to verify and validate the developed script. These
methods were chosen as they best validate the efficiency and correctness of the script
when compared to manual scaling.

7.1 Method 1

The first testing method implemented aims to test the runtime of the script along with the
consistency of the script across different devices. The script will run ten times on three
devices of different specifications. For each run, identical script settings where used to
ensure that valid results. These settings are, first scaling with the markers on the pelvis
(RASI, LASI, LPSI, RPSI, LTOR, RTOR). Then scaling the with the markers on the
bony landmarks (HEAD, LKNE, RKNE, RFIB, LFIB, RANK, LANK, RHEE, LHEE,
RASI, LASI, LPSI, RPSI, LTOR, RTOR) and finally scaling with all the markers on the
test subject.

The final setting defined is the marker weighting. These are predefined as all the
markers located on the pelvis having a marker weight of 5, while the other markers have
a marker weighting of 1.

The order and weighting specified above is selected due to the overall error being more
sensitive to any error present in the pelvis. This sensitivity causes any error in the pelvis
to to be compounded throughout the rest of the model.

The specifications of the three devices used are defined below:

1. Desktop PC:
e Operating System: Windows 10 Pro
CPU: AMD Ryzen 7 1700 @ 3.6Ghz
Memory: 16GB DDR4 2400MHz
Hard Drive: 960GB SS5D
GPU: NVIDIA GTX 1080ti EVGA FTW3 11GB
17

18 Chapter 7. Testing Method

2. HP Spectre Pro Laptop:

Operating System: Windows 10 Enterprise
CPU: Intel Core i7-4500U @ 1.8Ghz
Memory: 8GB DDR3 1600MHz

Hard Drive: 128GB SSD

GPU: Intel Dedicated Graphics

3. Microsoft Surface Pro 4:

Operating System: Windows 10 Pro
CPU: Intel Core i5-6300U @ 2.4Ghz
Memory: 8GB DDR3 1867MHz
Hard Drive: 256GB SSD

e GPU: Intel Dedicated Graphics

7.2 Method 2

The previous test aimed to prove that the script runs identically on different devices. The
second testing method aims to compare the scripts error to the error of the manual scalers.
This comparison was achieved by running the script with the same marker weightings as
the manually scaled model.

7.3 Method 3

The third testing method aims to compare the accuracy of the different scalers final model
to the script. This test was conducted by taking the marker locations on the mannally
scaled model and the model scaled by the script. These markers are then compared by
calculating their distance to the marker location in the test subjects static pose.

7.4 Method 4

The fourth test aims to compare the errors obtained when running inverse kinematics on
a mannally scaled model and a model scaled by the script. This comparison shall allow
for conclusions to be made on the accuracy of scaled models as any error present will be
compounded in the inverse kinematic process.

7.5 Method 5 19

7.5 Method 5

The fifth test aims to try and compare the results of Mohboobins weighted least square
mean method [11] to the developed script. This method tries to replicate the test per-
formed by Mohboobin.

20

Chapter 7. Testing Method

Chapter 8

Results and Analysis

8.1 Testing Method 1

The graph in Figure 8.1 displays a comparison of the script runtime between the different
devices. In this graph, the number of cycles for each test subject has been included to
show the relation between runtime and number of iterations. In this graph, the subject
20170223MB’s generic model has been manually modified to better represent the initial
marker placement on the subjects body.

Comparison of Program Run Times

60 900

800
50 v
= l/ 700 %
E 40 600
— con o
g 30 ol
= " o 400 g
L a
5 20 " 300 £
& A 200 3
10 =

188 . I BER -

0 0
} C] 2 & & . Y Pl %
,i,,u* S & & &S P S
& t‘:\' o) A A0 A I Yy e 4 & o\ "1>'
A S S R N e Ky
S & P A S) I A S
& &
N N
YV ’LQ
lest Subject
mm Surface Time . |aptop Time mm Desktop Time Cycles

Figure 8.1: Comparison of runtime data.

21

22 Chapter 8. Results and Analysis

Figure 8.2 is a visual representation of the data in Table C.1. This graph compares
the errors from the manually scaled test subjects to test subjects scaled by the script.
Again, in this graph, the number of cycles has been included to show any relation between
the final error and iterations. An error line has also been added, where any value below
that mark is considered as an acceptable scaled model. Similar to Figure 8.1, subject
20170223MBs modified generic model has been included.

Comparison of Script and Manual Scaling

900
800
700
600
500
400
300
200
100

Number of Cycles

Test Subject

W Script Error Manual Error Error Limit = s Cycles

Figure 8.2: Comparison of error values.

From both Figure 8.1 and Figure 8.2, it can be observed that there is a correlation
between the runtime and the number of cycles. However, there is no correlation between
final error and number of cycles, and by extension no relation between runtime and final
error. Figure 8.1 also displays that the scripts main limitation is the processing speed of
the CPU. Such that, the better the CPUs single and multi-core performance, the faster
the script will complete the scaling process.

It can also be observed from the data, that 75% of the twelve test subjects can be
scaled to have an acceptable error value. Furthermore, out of the nine manually scaled
subjects, only three manually scaled subjects have a lower error.

Due to the script having difficulty scaling a large number of incorrectly placed markers
on the test subject, this higher error can be cansed by inaccurate marker placement. Two
sources of incorrectly placed markers are, large amounts of soft tissue on the subjects
body making it difficult for the bony landmarks to be identified. The other source of
marker error is where markers are incorrectly placed due to human error.

8.1 Testing Method 1 23

In Figure 8.2, it can be observed that a subject’s final error can be reduced by initially
modifying the generic model to represent a more accurate marker placement on the test
subject. This observation is evident with subject 20170223MB, with their final error
being reduced by 30% by modifying a few markers on the subjects pelvis and leg. This
modification to the generic model can be seen in Figures 8.3, with the scaled models
shown in Figures 8.4.

Figure 8.3: Comparison of marker placements on the initial generic models for subject
20170223MB. Blue markers are the original file while the pink markers are the modified
model.

24 Chapter 8. Results and Analysis

Figure 8.4: Comparison of marker placements on the scaled models for subject
20170223MB. Blue markers are the original file while the pink markers are the modi-
fied model.

8.2 Testing Method 2

Figure 8.5 displays the data shown in Table C.3. This graph compares the estimated time
taken to manually scale a test subject to the time taken for the same test subject to be
scaled by the developed script. The estimate manual scaling time is a rough estimate
based on the scalier recollection. The estimate was based on the lower bound scaling
time, assuming for eight hour days and that the scalier work solely on scaling the whole
time.

The graph displayed in Figure 8.6 compares the error obtained when the test subject
was scaled manually and when the same subject was scaled with the seript, using the
same marker weights as the manual scaling. Similar to Figure 8.2, an error line has been
added to display what is considered an acceptable scaling.

In Figure 8.5, it can be identified that on average the script is 99% faster the current
manual scaling method. This massive reduction is due to the script being able to modify

8.2 Testing Method 2 25

the generic model and efficiently evaluate the modification multiple time per second. This
reduction is contrasted by the manual method which can take up to 5 minutes to make
single scaling iteration.

From Figure 8.6, it can be concluded that using the same weighting as the manually
scaled subjects, nine out of the twelve subjects have an acceptable final error. It can also
be observed that manually scaled model had a lower error five out of the 12 models. This
result can be caused by manual scalers tuning the marker weightings mid scaling to better
fit their proposed modified generic model. This manual tuning could lessen the accuracy
of the results, as it can obfuscate any errors present in the proposed model.

Furthermore, the only test subject to have a manually scaled error lower than either
automatically scaled model was subject 20170424JT. As hypothesised above, this could
be caused by inaccurate marker placement, or manual tuning of the marker weights to
better suit the proposed model.

Manual vs Script Scaling Times

45
40

B Average Script Scaling Time

B Estimated Manual Scaling Time

Run Time (h)
EOE NN W
o v o un O
_
C—
e
_
_
_
_
|

Test Subject

Figure 8.5: Comparison scaling times.

26 Chapter 8. Results and Analysis

Comparison of Script with Manual Weighting
0.06

m anual Error
Script With Manual
Weighting
3 N c.}‘:? r‘:"\“ Q‘\

;\‘}‘ ¥ ——Error Limit

av S AU A >
DU @W $ & @;1,
I e S S R S
o D o >

Test Subject

Figure 8.6: Comparison of scaling with the manual marker weighting.

8.3 Testing Method 3

Figure 8.7 shows the average error for each scaling method when compared to the static
pose. This has been broken down further in Figure 8.8, where the error for each manual
scaler is being compared for a single test subject.

In Figures 8.7 and 8.8, the distance between the scaled model and static poses marker
location has been calculated and used as a measure of scaling accuracy. From observing
the figures and the data in Tables C.4, there is a general trend to the seript having a
lower average marker distance. But it is difficult to that any one scaling method is more
accurate than another due to the variation in scaled marker differences being negligible.
Ounly one case having a variation that was more than one millimetre.

Upon further visual comparisons of the marker placements for subject 20170704PTs
scaled models as shown in Figures 8.10 and 8.11. There have been instances of markers
being incorrectly move. This is evident in Figure 8.9, where the CLAV marker is not placed
in the centre of the model with the grouping of the manually scaled CLAV markers.

8.4 Testing Method 4 27

o M ..
,Dc:\ &

Comparison of Marker Error

W Script
m Manual
M Script with Manual
Weight
-
R il

W = w

Average Marker Error (mm)
L)

C]

o < A
60} ’\Q_@é‘ élc%‘a) 6’3{’\0 ’;\Q&b"' @O ';\6,;» /\6\01\ éo}
O A G O
“9"&
Test Subject

Figure 8.7: Comparison error from static pose for all test subjects.

8.4 Testing Method 4

The graph displayed in Figure 8.12 displays a comparison of the average errors obtained
when running three different inverse kinematic tests on a manually scaled model for a
subject and a model scaled by the script, both of subject 20161208JT. The three inverse
kinematic test performed where, step-up, step-down and walking.

From observing the data, it can be observed that for the step-up and step-down test,
the variation in error is negligible, with the exception of the max error. But there is a
more notable difference in the walking test with the script scaled model having the lower
errors. This result demonstrates that for subject 20161208JT, the script can produce a
model that is close to the manually scaled model.

28 Chapter 8. Results and Analysis
Comparison of Manual Scaling for 20170704PT
2655
T 2654
E
5 2653
= 2652
2 W Script
T 2651
= m Manual
& 265
e
E 2.649 = Script with Manual
Weighting
2,648
IN ™ PT ™

Figure 8.8: Comparison error from static pose for test subject 2070704PT.

8.5 Testing Method 5

The data in Table 8.1 is a summary of the comparison between the developed script
and the WLSM method. The data shows that Mohboobin's method is more effective in
reducing error in gait model "Gait2354”. Since this model is different from the model
"gait2392" which the previous tests used, it is difficult to draw a direct conclusion from

between this test and the previous tests.

Table 8.1: Comparing the weighted least square method and developed script

Method

Max Error (cm)

WLSM

0.04

Seript

2.5

It is difficult to validate the accuracy of this result. This difficulty is because we are
unable to verify that the example models provided by OpenSim have not been modified

since Mohboobin’s testing in 2013.

Another area of difficulty comes from the source code not being available, such that
we are unable to do further testing comparing the two methods.

8.5 Testing Method 5 29

Figure 8.9: Close up of torso markers for subject 20170704PT. The pink marker is from
the script, The blue marker is from JN, the black marker is from JM, the green marker
is from PT, and the yellow marker is from TN.

30 Chapter 8. Results and Analysis

Figure 8.10: Front and rear marker comparison for the manually scaled models along
with the script scaled model for subject 20170704PT. The pink markers are from the
script, the blue markers are from JN, the black markers are from JM, the green markers
are from PT and the yellow markers are from TN.

8.5 Testing Method 5 31

Figure 8.11: Left and Right marker comparison for the manually scaled models along
with the script scaled model for subject 20170704PT. The pink markers are from the
script, the blue markers are from JN, the black markers are from JM, the green markers
are from PT, and the yellow markers are from TN.

32

Chapter 8. Results and Analysis

Error {(mm)

Comparions of IK Processes

mTotal Square Error
ERMS
o Max

5

. IR NNN WRS mAR A0 |

w
o

[
u

(=]
=]

=
w

i
=]

Step Up Step Up Step Down Setp Down Walking Walking
Manual Manual Manual
IK Method

Figure 8.12: Comparison of error obtained during inverse kinematics.

Chapter 9

Conclusions and Future Work

9.1 Conclusions

The shown above in Chapter 8 and Appendix C, it can be concluded that 75% of the
subjects scaled by the script have an acceptable error value. It can also be observed
that without any manual intervention, the script produced a lower error than manual
scaling 50% of the time with this percentage increasing with minimal manual intervention.
Further investigation found that manual manipulation of the initial model can reduce
the final error and can speed up the scaling process. A similar result can be seen in
Mohboobins paper, where he saw a reduction in the maximum error from 6 cm down
to 0.04cm in his test sample [11]. His method differs from the seript in this project, as
Mohboobin method focus on trying to find a solution for the weighted least square mean
formula stated in Figure 2.7, while this projects script focuses on manipulating OpenSim'’s
generic model to be a better representation of the test subject.

Unfortunately, it is difficult to compare the accuracy of the two ditferent methods.
This difficulty is due to there currently is no method for determining the accuracy of
models. Further testing will also be needed for a conclusion to be made on which method
is better.

From the test data obtained it can be calculated that time taken to scale a test
subject with the script was 99% less than the current manual process, with the script’s
main bottleneck being the CPU.

From the results summarised above, it can be concluded that it is not optimal to solely
scale using the developed scaling script, but to use the script in conjunction with manual
user intervention. Unfortunately, due to the validation of the marker placement being
outside the scope of this project, it is difficult to state with complete confidence which
method is superior.

In conclusion, the script developed in this project satisfies all the predefined require-
ment as outlined in Chapter 3 and the project aim outlined in Section 1.1. Such that
the project was successful in its goal of development of a program to optimise marker
placement for gait analysis.

33

34 Chapter 9. Conclusions and Future Work

9.2 Future Works

There are several areas that can be investigated to either improve scaling or further
validate the results obtained in this project. One of the areas for further research is to
conduct a research project validating accuracy of the scaled marker placements. This can
be achieved by performing a CT scan on a test subjects to get an accurate position of the
marker placements and comparing it to the final scaled model.

Due to the project scope focusing on developing an optimisation algorithm to speed up
the scaling process and not comparing the efficiency of an evolutionary implementation
verse a stochastic implementation. An area of future research would be to develop a
stochastic optimisation algorithm and compare its time complexity to the evolutionary
optimisation algorithm. This can also be extended to find ways to optimise the methods
implemented by the program developed in this project.

A third area of research is test how marker weighting and the order of marker weights
affect the final scaling error. As the program developed in this project can have markers
weights and scaling order modified without any modification to the underlying source
code, this testing can utilise the developed program to minimise human error and bias on
the results.

Another area of future research is to further investigate Mohboobin’s method and
compare to the method developed in this project.

A final possible area of research is to implement a method that uses the marker location
of the subjects static pose, or image recognition to better align the markers. This method
can also be extended to use a similar process to further verify the marker placement on
the scaled maodel.

Chapter 10

Abbreviations

API Application Programming Interface
C7 Tth cervical vertebra

CLAV Clavicle

CT Computed Tomography

EA Evolutionary algorithm

EO Evolutionary optimisation

GUI Graphical User Interface

HEAD Top of the Head

1K Inverse kinematic

LANK Left Ankle

LASI Left Anterior Superior Iliac Spine
LFIB Left Fibula

LHEE Left Heel

LKNE Left Knee

LPSI Left Posterior Superior Iliac Spine
LQUA Left Quadriceps

LSHI Left Shin

LTHI Left Thigh

LTIB Left Tibia

LTOE Left Toe

LTOR Left Torso

OS Operating system

RANK Right Ankle

RASI Right Anterior Superior Iliac Spine
RFIB Right Fibula

RHEE Right Heel

RKNE Right Knee

RPSI Right Posterior Superior Iliac Spine
RQUA Right Quadriceps

RSHI Right Shin

36 Chapter 10. Abbreviations
RTHI Right Thigh

RTIB Right Tibia

RTOE Right Toe

RTOR Right Torso

SA Stochastic algorithm

SO Stochastic optimisation

Ul User interface

WLSM Weighted least square mean

Appendix A

Software Requirements

Table A.1: Functional Requirements

Requirement Requirement

Number

FR-1 The system must be able to accept input files.

FR-2 The system must be able to process the input files.

FR-3 The system must be able to scale the generic model.

FR-4 The system must be able to output the scaled file.

FR-5 The scaled file must have a maximum error less than 0.02m.

FR-7 The system must be faster than the current manual scaling method

Table A.2: Availability Requirements

Requirement Requirement

Number

AR-1 A working version of the system shall be available 100% of the time.
Table A.3: Maintainability Requirements

Requirement Requirement

Number

MR-1 the system must be able to be updated when a new update is released.

37

38

Chapter A. Software Requirements

Table A.4: System Interface Requirements

Requirement Requirement
Number
SI-1 The user must be able to use the system on a Windows 7, Windows
8/8.1 or Windows 10 machine.
Table A.5: User Interface Requirements
Requirement Requirement
Number
UI-1 The user must be able to select a generic model to scale.
UI-2 The user must be able to select the subject’s static pose trial.
UI-3 The user must be able to select the subject’s scaling file.
Ul-4 The user must be able to select a scaling body file.
UI-5 The user must be able to select a custom scaling weights or the default
scaling weight.
Table A.6: Software Interface Requirements
Requirement Requirement
Number
SWI-1 The system must be able to interface with Python’s libraries.
SWI-2 The system must be able to interface Microsoft’s native .NET libraries.
SWI-2 The system must be able to interface OpenSim’s inbuilt libraries.

Appendix B

Source Code

B.1 OpenSim Scaling.py

#
#
#
#
#
#
#
#
#
#
#
#
#

#

This file is part of OpenSim_Scaling
Copyright (c¢) 2017, Michael Buckingham

Permission is hereby granted, free of charge, to any person
obtaining a copy of

this software and associated documentation files (the
Software”), to deal in

the Software without restriction , including without limitation
the rights to use,

copy, modify, merge, publish, distribute , sublicense , and/or
sell copies of the

Software , and to permit persons to whom the Software is
furnished to do so,

subject to the following conditions:

”

The above copyright notice and this permission notice shall be
included in all
copies or substantial portions of the Software.

THE SOFTWARE 1S PROVIDED "AS IS7, WITHOUT WARRANTY OF ANY KIND

. EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY

, FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,

WHETHER IN AN ACTION
39

40 Chapter B. Source Code

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

from GetFiles import

from ModifyMarker import
from ModifySetup import =
from Scale import =

from MultipleScale import
from SelectScaleFile import =
import time

import os

import datetime

def log(model, line):

INPUT: Location of patient Files and string

OUTPUT: appends the string to the log file and print the
string to console

print line

file = model. FilePath + ’/Log/Log.txt’

f = open(file, ’a’)

f.write(line + "\n")

f.close()

class File:
Creates the "File” objecl
def __init__(self, name, path,):
self . FileName = name
self.FilePath = path
self.FullFileName = path + '/’ + name

if __name__. = " __main__":
Main script, initalises all variables and runs scaling
program

bound = 0.000005

summary = |[]
ST = str(datetime.datetime.now())
files , customScaling, runArray = GetFiles ()

B.1 OpenSim_Scaling.py 41

start = time.time ()
location = os.getewd()

creates file object from GetFiles() output
for f in files:

if f[' FileType’'] = ’'Pose :

pose = File(f [’FileName’|, f[’FilePath’])
if f['FileType’'| = 'Model ":

model = File(f[FileName’], f['FilePath’])
if f['FileType'] = ’Setting ":

setting = File(f['FileName’], f[’FilePath’])

Creation of log file

directory = model.FilePath + ’/Log’

if not os.path.exists(directory):
os.makedirs(directory)

file = model.FilePath + ’/Log/Log.txt’

f = open(file, ’'a’)

f.write(pose.FileName + ".” + ST + "\n’)

f.close()

Initial Scaling of markers

InitModifySetup (setting , model, pose, customScaling)

errorMarker , initErrorVal = Scale(location, setting.
FullFileName)

scaleValue = float (initErrorval) / 2

log (model, "INIT:." 4+ str(errorMarker) + 7 ,.7 + str(
initErrorVal) + 7 .7 4+ str(scaleValue))

Check if inital scale is within the predefined bounds
if float (initErrorVal) > bound:
Loops the program depending on the number of scaling
bodys defined in test file
for runs in runArray:
run = runs.get('run’)
scaleMarkers = runs. get('markerList ")
log (model, "Scale.” + run)
prevError = float(initErrorVal)

creates multiple setup files

ModifySetup (setting , model, customScaling,
scaleMarkers)

errorMarker , initErrorVal = Scale(location , setting.

42

Chapter B. Source Code

FullFileName)
scaleValue = float (initErrorval) / 2
count = 1
sameCount = 0

Modifies markers and validates 1f scaled model
meets specifications
while prevError > bound:
ModifyMarker (model. FullFileName , errorMarker ,
scaleValue)

lowMarker, lowValue, lowIndex = MultipleScale (
location , setting)
log (model ,
str(lowMarker) + 7 ,.” + str(lowValue) + 7 ,."
+ str(lowlndex) + 7 ,." + str(count) + '
4 ostr(
sameCount))
count += 1

if float(lowValue) < prevError:
sameCount = 0
SelectScaleFile (model. FullFileName , lowlndex

)

prevError = float (lowValue)
errorMarker = lowMarker
elif sameCount =— 10:

log (model,

"Resetting .Scale.Variance.(” + str(
scaleValue) + 7".—>_" + str(float(
prevError) / 2) + 7)7)

scaleValue = float (prevError) / 2
sameCount += 1

elif sameCount < 20:
sameCount += 1
log (model, "halving_value_(” + str(
scaleValue) + ".—>." + str(float(
scaleValue) / 2) + 7)7)
scaleValue = float (scaleValue) / 2
else:
log (model,
"Unable_tooscalel.” + run + " _further , .
exiting .loop.” + str(

B.1 OpenSim_Scaling.py

43

prevError) + ".” 4+ errorMarker + '

+ str(
sameCount))
break

—

log (model, " Finished.” + run + ".in.” + str(count) +

"oeyceles. ")

dict = {’run’: run, ’'runCount’: count, ’error’:
prevError, "marker’: errorMarker}
summary . append (dict)

tree = et.ElementTree(file=model. FullFileName)
writeFile = model. FilePath + 7 /scaled” + run + 7
osim”

tree . write(writeFile)

Runs the final scale on all scalable markers

ModifySetupFinal (setting , model, customScaling)

errorMarker , initErrorVal = Scale(location, setting.
FullFileName)

scaleValue = float (initErrorVal) / 2

log (model, "FINAL:_.” + str(errorMarker) + 7 .." 4+ str(
initErrorVal) + 7 ,."7 + str(scaleValue))

log (model, "Scale_.Final”)

prevError = float(initErrorVal)

count = 1
sameCount = 0
while prevError > bound:
ModifyMarker (model . FullFileName , errorMarker ,
scaleValue)

lowMarker , lowValue, lowIndex = MultipleScale (
location , setting)

log (model , str(lowMarker) + ”7.."7 + str(lowValue) + 7

n

.7+ str(lowlndex) + 7,.7 + str(count) + ",
str(
sameCount))
count 4= 1
if float(lowValue) < prevError:
sameCount = 0
SelectScaleFile (model. FullFileName , lowIndex)
prevError = float (lowValue)

+

44 Chapter B. Source Code

errorMarker = lowMarker

elif sameCount = 10:
log (model, " Resetting_Scale_Variance.(” + str(
scaleValue) + ".—>." + str(float(prevError) /
2) +7)7)
scaleValue = float (prevError) / 2
sameCount += 1

elif sameCount < 20:
sameCount += 1
log (model, "halving.value.(” + str(scaleValue) +
" —>." + str(float(scaleValue) [/ 2) + 7)7)
scaleValue = float(scaleValue) / 2

else:
log (model, ”"Unable.tooscale body_further .
exiting.loop.” + str(prevError) + "." + str(
sameCount))
break
log (model, "Finished_body.in.” + str(count) + "_cycles.”
)
finalCount = count
finalError = prevError
finalMarker = errorMarker
tree = et.ElementTree(file=model. FullFileName)
writeFile = model. FilePath + ’/scaledFinal.osim’

tree. write(writeFile)

Deletes all temp files
RemoveOldFiles (model, setting)
finish = time.time ()
totalCycles = finalCount
Finalises the log file
for line in summary:
totalCycles += line.get(’runCount’)
log (model, line.get(’run’) + " ::.Error:.” + str(line
.get(Terror’)) 4+ "_Marker:.” + line. get(
"marker’) 4+ "_.Cycles:.” + str(line.get(runCount
"))
log (model, "Body:: Error: 7 + str(bodyError) + 7
Marker: 7 + bodyMarker + 7 Cycles: 7 + str(

B.2 GetFiles.py 45

bodyCount))
log (model, "Final:: _ Error:.” + str(finalError) + ".
Marker:.” + finalMarker + 7_.Cycles:.” + str(
finalCount))
log (model, "Run.Time:.” + str((finish — start) / 60) + 7
min.Cyecles:.” + str(totalCycles) + "\n\n’)

Opens scaled model in OpenSim
OpenOSIMFile (model)

Terminates the code

exit (0)

B.2 GetFiles.py

This file is part of OpenSim_Scaling
Copyright (c¢) 2017, Michael Buckingham

#

#

#

#

Permission is hereby granted, free of charge, to any person

obtaining a copy of

this software and associated documentation files (the 7

Software”), to deal in

the Software without restriction , including without limitation
the rights to use,

copy, modify, merge, publish, distribute , sublicense, and/or
sell copies of the

Software, and to permil persons to whom the Software is
furnished to do so,

subject to the following conditions:

#

#

#

The above copyright notice and this permission notice shall be
included in all

copies or substantial portions of the Software.

#

THE SOFTWARE 1S PROVIDED "AS IS”, WITHOUT WARRANTY OF ANY KIND
., EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
. FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY
WHETHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN

46 Chapter B. Source Code

CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

import Tkinter, tkFileDialog , tkMessageBox
import ntpath

def GetFiles():
INPUT: None
#Output: List of files, Boolean defining custom scaling

vaelues , array of scale bodies.
files = []

Select file body segments

root = Tkinter.Tk()

root . withdraw ()

fullFilePath = tkFileDialog.askopenfilename (filetypes=(("
Marker_.List”, "=.txt”),("All_files” |, "%.%7)), title=’
Select _Marker. List 7)

processes body segmenits and appends them to an array
f = open(fullFilePath)
runArray = []
for line in f:
runName = ""
markerList = []
split = line.split(”:7)
if split[0] != "7
runName = split [0]. strip ()
markers = split [1].split (”,”)
for marker in markers:
markerList . append (marker.strip())
dict = {'run’: runName, 'markerList’': markerList}
runArray . append (dict)

Select File static pose (.trc)

root = Tkinter.Tk()

root . withdraw ()

fullFilePath = tkFileDialog.askopenfilename (filetypes=(("
Templateofiles”, "x.tre”), ("Allofiles”, "%.%7)), title=’
Select .Static.Pose_File ")

poseFileName = ntpath.basename(fullFilePath)

B.2 GetFiles.py 47

poseFilePath = ntpath.dirname(fullFilePath)

dietValue = { 'FileType’: "Pose’, 'FileName’: poseFileName,
FilePath ': poseFilePath}

files .append(dictValue)

]

Select File generic model (.o0sim)

root = Tkinter .Tk()

root . withdraw ()

fullFilePath = tkFileDialog. askopenfilename (filetypes=(("
Template_files”, "#.0sim”), (7 All_files”, 7. 7)), title=
"Select .Generic.Model .File ")

modelFileName = ntpath .basename(fullFilePath)

modelFilePath = ntpath.dirname(fullFilePath)

dictValue = {'FileType’: 'Model’, ’'FileName : modelFileName,
"FilePath ': modelFilePath}
files.append(dictValue)

Select File Initial Setup (.xzml)

root = Tkinter.Tk()

root . withdraw ()

fullFilePath = tkFileDialog . askopenfilename (filetypes=((
Template_files”, "x.xml”), ("All_files”, "%.x"7)), title=’
Select .Scale.Settings._.File ")

setupFileName = ntpath.basename(fullFilePath)

setupFilePath = ntpath.dirname(fullFilePath)

dictValue = {'FileType’: ’Setting’, ’'FileName :
setupFileName , 'FilePath’: setupFilePath}
files.append(dictValue)

Selects if script uses weights defined in settings file
result = tkMessageBox.askquestion(” Scaling”, "Use_scaling.
weights_from.file?”)
if result = ’'yes’:
customScaling = True
else:
customScaling = False

returns list of files and boolean for custom scaling and
bodysegment array
return files , customScaling, runArray

48 Chapter B. Source Code

B.3 ModifyMarker.py

This file is part of OpenSim_Scaling
Copyright (c¢) 2017, Michael Buckingham

Permission is hereby granted, free of charge. to any person
obtaining a copy of

this software and associated documentation files (the
Software”), to deal in

the Software without restriction , including without limitation
the rights to wuse,

copy, modify, merge, publish, distribute , sublicense, and/or
sell copies of the

Software, and to permit persons to whom the Software is
furnished to do so,

subject to the following conditions:

”»

The above copyright notice and this permission notice shall be
included in all
copies or substantial portions of the Software.

Fe¥ FHFHI K O Kk FH hHFHEER

THE SOFTWARE IS PROVIDED *AS 187, WITHOUT WARRANTY OF ANY KIND
. EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
, FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

import xml.etree.cElementTree as et

def ModifyMarker(markerFile, mark, value):
INPUT: Marker file , marker to modify, value to modify
marker by
OUTPUT: Modified marker files

B.4 ModifySetup.py 49

datafile = markerFile

repeats the modification of marker file for each of the 6
possible combinations

for i in range(0, 6):
tree = et.ElementTree(file=datafile)
datafileMod = datafile.replace(’osim’, ') + str(i) +

osim’

iterates through all markers, modify ’s marker passed
for elem in tree.iter(tag="Marker’):

if elem.attrib['name’] = mark:
for loc in elem:
if loc.tag =— ’location ":

a = loc.text.lstrip()

split = a.split(”.")

x = float (split [0])

y = float (split [1])
float (split [2])

Il

]

z
if i = 0:
loc.text = str(x + value) + 7.7 +
str(y) + 7.7 + str(z)

if i = 1:
loc.text = str(x — value) + 7.7 +
str(y) + 7.7 + str(z)
if i = 2:

loc.text = str(x) + ".7 + str(y +
value) + 7.7 + str(z)
if i = 3:
loc.text = str(x) + ".7 + str(y
value) 4+ 7.7 + str(z)
if i = 4:
loc. text = str(x) + "." + str(y) + 7
27+ str(z + value)
if i = 5:
loc.text = str(x) + ".” 4+ str(y) + 7

1

W74 str(z — value)

tree.write(datafileMod)

B.4 ModifySetup.py

This file is part of OpenSim_Scaling

#

Copyright (¢) 2017, Michael Buckingham

#

50 Chapter B. Source Code

Permission is hereby granted, free of charge, to any person
obtaining a copy of

this software and associated documentation files (the
Software”), to deal in

the Software without restriction , including without limitation
the rights to wuse,

copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the

Software, and to permit persons to whom the Software is
furnished to do so,

subject to the following conditions:

#

The above copyright notice and this permission notice shall be
included in all

copies or substantial portions of the Software.

#

THE SOFTWARE IS PROVIDED "AS 187, WITHOUT WARRANTY OF ANY KIND
, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
. FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

import xml. etree.cElementTree as et
from OpenSim_Scaling import log
exclude = []

def InitModifySetup (setting , model, pose, custom):
pelvis = ["RASI”", "LASI”, "LPSI”, "RPSI”, "LTOR” , "RTOR” |
datafile = setting.FullFileName
fileName = model.FileName
pose = pose.FileName
repeates the modification of marker file for each of the 6
possible combinations

tree = et.ElementTree(file=datafile)

B.4 ModifySetup.py 51

iterates through all markers, modify’s marker passed
for clem in tree.iter (tag='GenericModelMaker’):
for loc in elem:
if loc.tag = "model_file ":
loc.text = fileName
for elem in tree.iter(tag="ModelScaler’):
for loc in elem:
if loc.tag = "marker_file ":
loc.text = pose
for elem in tree.iter (tag="MarkerPlacer’):
for loc in elem:
if loc.tag =— "marker_file ":
loc.text = pose
for elem in tree.iter (tag="IKMarkerTask’):
markerName = elem.attrib ['name’]
for loc in elem:
if loc.tag = Tapply
if loc.text = ’'false ' :
exclude . append (markerName)
tree.write(datafile)
print exclude

input: setting and marker files.
output: 6 different settings files for scaling method.
def ModifySetupPelvis(setting , model, custom):
pelvis = ["RASI”, "LASI”, "LPSI”, "RPSI”, "LTOR” , "RTOR”]
datafile = setting.FullFileName
f[ileName = model.FileName
repeates the modification of marker file for each of the 6
possible combinations
for i in range(0, 6):

tree = et.ElementTree(file=datafile)
datafileMod = datafile.replace(’xml’, "7) + str(i) + °’
xml’

iterates through all markers, modify s marker passed
for elem in tree.iter(tag='GenericModelMaker'):
for loc in eclem:

if loc.tag = "model_file :
print 'Before ’ + loc.text
loc.text = fileName.replace(osim’, *') +

str(i) + ’.osim’
print "After 7+ loc.text

52 Chapter B. Source Code

for elem in tree.iter (tag="IKMarkerTask’):
if elem.attrib ['name’] in pelvis:
for loc in elem:

if loc.tag = Tapply’:
loc.text = "true’
if not custom:
if loc.tag = 'weight’:
loc.text = 5’
else:
for loc in elem:
if loc.tag = Tapply '
loc.text = 'false’

tree. write (datafileMod)

def ModifySetupBody(setting , model, custom):
datafile = setting.FullFileName
fileName = model.FileName
body = ["HEAD”, "LKNE", "RKNE", "RFIB", "LFIB", "RANK", ”
LANK” , "RHEE" , "LHEE" |

for i in range(0, T):

if i < 6:
tree = et.ElementTree(file=datafile)
datafileMod = datafile.replace(’'xml’, ") 4+ str(i) +
"oxml’
iterates through all markers, modify s marker
passed

for elem in tree.iter (tag="GenericModelMaker’):
for loc in elem:
if loc.tag = "model_file ":
a = loc.text.Istrip()
print "Before ' + loc.text
loc.text = fileName.replace(osim’, *7)
+ str(i) + ~.osim’
print "After ' + loc. text
else:
tree = ect.ElementTree(file=datafile)
datafileMod = datafile
iterates through all markers, modify s marker
passed
for elem in tree.iter (tag='GenericModelMaker’):
for loc in elem:

B.4 ModifySetup.py 53

if loc.tag = "model_file ":
print "Before ' + loc.text
loc.text = fileName

print "After 7 + loc. lexl
for elem in tree.iter(tag="IKMarkerTask'):
if elem.attrib['name’] in body:
for loc in elem:
if loc.tag = ’apply :
loc.text = "true’
if not custom:
if loc.tag = "weight *:
loc.text = "1°
tree. write(datafileMod)

def ModifySetupFinal (setting, model, custom):
datafile = setting. FullFileName
fileName = model. FileName

for i in range(0, 7):

if i < 6:
tree = et.ElementTree(file=datafile)
datafileMod = datafile.replace(’'xml’, *’) + str(i) +
Toxml’
iterates through all markers, modify s marker
passed

for clem in tree.iter (tag="GenericModelMaker’):
for loc in elem:

if loc.tag = "model_file *:
print 'Before ' + loc.text
loe . text = fileName.replace(’osim’, ')

+ str(i) + ".osim’
print "After ’ + loc.text

else:
tree = et.ElementTree(file=datafile)
datafileMod = datafile
iterates through all markers, modify s marker

passed
for elem in tree.iter (tag="GenericModelMaker’):
for loc in elem:
if loc.tag = "model_file ":
a = loc.text.lIstrip()
print 'Before ’ + loc.text

54 Chapter B. Source Code

loc. text = fileName
print "After 7 + loc.text
for elem in tree.iter(tag="IKMarkerTask’):
if elem.attrib[’name’] not in exclude:
for loc in elem:

if loc.tag = Tapply :
loc.text = "true’
if i = 0:
line = elem. attrib ['name’] + 7.7 +
loc. text

log (model, line)
if nmot custom:
if loc.tag = ’“weight ":
loc.text = '1°7
else:
for loc in elem:
if loc.tag = Tapply :
loc.text = 'false’
if i = 0:
line = elem. attrib ['name’] + 7.7 +
loc . text
log (model, line)
tree. write (datafileMod)

def ModifySetup(setting , model, custom, markerList):
datafile = setting.FullFileName
fileName = model.FileName
repeates Lhe modification of marker file for each of the 6
possible combinations
for i in range(0, 6):

tree = et.ElementTree(file=datafile)
datafileMod = datafile.replace('xml’, "7) + str(i) +
xml’

iterates through all markers, modify s marker passed
for elem in tree.iter (tag='GenericModelMaker’):
for loc in elem:

if loc.tag = "model_file "
print 'Before ' + loc.text
loc.text = fileName.replace('osim’, ") +

str(i) + '.osim’
print "After 7 + loc.text
for elem in tree.iter (tag="1KMarkerTask’):

B.5 MultipleScale.py 55

if elem.attrib| 'name’] in markerList:
for loc in elem:

if loc.tag = Tapply’:
loc. text = "true’
if i = 0:
line = elem.attrib ['name’] + 7.7 +
loc. text

log (model, line)
if not custom:
if loc.tag = “weight ":
loc.text = 17
else:
for loc in elem:
if loc.tag = ’Tapply’:
loe.text = 'false’
if i = 0:
line = elem.attrib [' name’] + 7.7 +
loc. text
log (model, line)
tree. write(datafileMod)

B.5 MultipleScale.py
This file is part of OpenSim_Scaling
Copyright (c¢) 2017, Michael Buckingham

Permission is hereby granted, free of charge, to any person
obtaining a copy of

this software and associated documentation files (the 7
Software”), to deal in

the Software without restriction , including without limitation
the rights to use,

copy, modify, merge, publish, distribute , sublicense, and/or
sell copies of the

Software , and to permit persons to whom the Software is
furnished to do so,

subject to the following conditions:

The above copyright notice and this permission notice shall be
included in all
copies or substantial portions of the Software.

FFh FHRFWHFH WK O W W HWHHFHRHKETF

56 Chapter B. Source Code

THE SOFTWARE IS PROVIDED "AS 1§87, WITHOUT WARRANTY OF ANY KIND
, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
, FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

from Scale import *
import sys

def MultipleScale(location, baseFile):
INPUT: Location of script and base settings file
OUTPUT: marker with the lowest error, lowest error and
file index of lowest error
lowestErrorMarker = 77

lowestErrorValue = float(sys.maxsize)
lowestErrorIndex = —1
for i in range(0, 6):
file = baseFile.FullFileName.replace('xml’, ") + str(i)
+ '.xml’
errorMarker, errorVal = Scale(location, file)
if (float(errorVal) < lowestErrorValue):
lowestErrorMarker = errorMarker
lowestErrorValue = float (errorVal)
lowestErrorIndex = i

return lowestErrorMarker, lowestErrorValue, lowestErrorIndex

B.6 Scale.py

This [ile 1s part of OpenSim_Scaling

#

Copyright (¢) 2017, Michael Buckingham

#

Permission is hereby granted, free of charge, to any person
obtaining a copy of

B.6 Scale.py 57

this software and associated documentation files (the
Software”), to deal in

the Software without restriction , including without limitation
the rights to use,

copy, modify, merge, publish, distribute , sublicense, and/or
sell copies of the

Software, and to permit persons to whom the Software 1is
furnished to do so,

subject to the following conditions:

#

The above copyright notice and this permission notice shall be
included in all

copies or substantial portions of the Software.

#

THE SOFTWARE 1S PROVIDED "AS IS”, WITHOUT WARRANTY OF ANY KIND
, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
, FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

import subprocess

def Scale(location, scaleFile):
INPUT: location of scaling script and settings file to
scale with
OUTPUT: marker and error of marker with the greatest error
scaleScript = u’&”’ + location + '/Seript.psl” —Filename.’ +
4+ gcaleFile + 77

Opens a powershell window and runs the scaling script
p = subprocess.check_output(
[u’C: /WINDOWS/system32/WindowsPowerShell /v1.0/ powershell
.exe', scaleScript])

output = p.splitlines ()

58 Chapter B. Source Code

errorMarker = output[0]
errorVal = output[1]
return errorMarker, errorVal

def OpenOSIMFile(model):
INPUT: Final scaled model.
OUTPUT: Opens OpenSim with the final scale model loaded.
openSeript = r'&."C:\ OpenSim.3.3\ bin\ opensim64 . exe” .—
console_suppress.’ + 777 + model. FullFileName + 7~

p = subprocess.check_output ([u’C:/WINDOWS/system32/
WindowsPowerShell /v1l.0/powershell .exe.’, openScript])

B.7 SelectScaleFile.py

This file is part of OpenSim_Scaling
Copyright (c¢) 2017, Michael Buckingham

Permission is hereby granted, free of charge, to any person
obtaining a copy of

this software and associated documentation files (the
Software”), to deal in

the Software without restriction , including without limitation
the rights to use,

copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the

Software. and to permit persons to whom the Software is
furnished to do so.

subject to the following conditions:

The above copyright notice and this permission notice shall be
included in all
copies or substantial portions of the Software.

F¥e W FHRF WK W W R W HEH KT

THE SOFTWARE IS PROVIDED "AS 1S”, WITHOUT WARRANTY OF ANY KIND
. EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
., FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,

B.8 Script.psl 59

WHETHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

import xml.etree.cElementTree as et
import os

def SelectScaleFile(file , index):

INPUT: base generic model and the index of the best scaled
generic model

OUTPUT: owverites base generic model with best scaled
generic model

datafileMod = file.replace(’osim’, '’) + str(index) + . osim

tree = et.ElementTree(file=datafileMod)

tree.write(file)

def RemoveOldFiles(model, setting):
INPUT: generic model and seltings file
OQUTPUT: deletes the temp generic model and settings files.
for i in range(0, 6):
os.remove (model. FullFileName.replace(osim’, '') + str(i
) + 7.osim’)
os.remove(setting . FullFileName.replace('xml’, '7) + str(

i) + ".xml’)

B.8 Script.psl

This file is part of OpenSim_Scaling

#

Copyright (c¢) 2017, Michael Buckingham

#

Permission is hereby granted, free of charge, to any person
obtaining o copy of

this software and associated documentation files (the
Software”), to deal in

the Software without restriction , including without limitation
the rights to use,

copy, modify, merge, publish, distribute , sublicense , and/or

60 Chapter B. Source Code

sell copies of the

Software, and to permit persons to whom the Software is
furnished to do so,

subject lto the following conditions:

#

The above copyright notice and this permission notice shall be

included in all

copies or substantial portions of the Software.

#

THE SOFTWARE IS PROVIDED 7"AS 1§7, WITHOUT WARRANTY OF ANY KIND
. EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
. FITNESS FOR A

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

[CmdletBinding ()]

Param (
[Parameter (Mandatory=$true) |
[string] $Filename

)

$marker = $null
$errorVal = $null
$errorLine = $null
try{

$Scale = scale —S $Filename

foreach ($line in $Scale){
if($line —like "Frame.at.(t=+"){
$errorLine = $line
}

if ($errorLine —ne $null){
$max = S$errorLine.split(”,”).get(2).trim()
$Marker = $max.split (".”).get(1).replace(”(

()77

”

,77) . replace

B.8 Script.psl

61

$errorVal = $max.split(”.").get(0).replace("max=".,""

return $marker, $errorvVal
else{

return " Scale_.Null”
}
}

catch{
return " Scaling_Error”
h

62

Chapter B. Source Code

Appendix C

Tabulated Results

Table C.1: Comparison of script and manual scaling error

Subject Script Error (m) | Manual Error (m) | Cycles
20170523AH 0.0425 No Data 152
20161222JW 0.0072 0.0242 313
20170109CC-Stairs 0.0176 0.0317 306
20170109CC 0.0143 0.0188 302
20170327DG 0.0604 0.0221 299
20170724JR 0.0271 No Data 793
20170424JT 0.0181 0.0114 373
20161208JT 0.0143 0.0289 241
20170515LS 0.0196 0.0159 393
20170223MB-Original 0.0237 No Data 331
20170223MB-Modified 0.0162 No Data 214
20170704PT 0.0105 0.0125 169
20161213RA 0.0109 0.0113 422

63

64 Chapter C. Tabulated Results

Table C.2: Comparison of script with manual marker weighting and manual scaling
error

Subject Manual Error (m) Seript. With Manual Weighting (m)
20161222JW 0.0242 0.0125
20170109CC-Stairs 0.0317 0.0182
20170109CC 0.0188 0.0166
20170327DG 0.0221 0.0153
20170424JT 0.0114 0.035
20161208JT 0.0289 0.0136
20170515LS 0.0159 0.0098
20170704PT - JN 0.0125 0.0151
20170704PT - JM 0.0443 0.0195
20170704PT - PT 0.0155 0.0168
20170704PT - TN 0.0166 0.0231
20161213RA 0.0113 0.057

65

aapduoour Surfeds renuely

(@4 91 v o FE1¢ 99°¢¢ L6°L¢ YUEIZI910g
691 8 LT°0 a¥'8 er'ot1 88°0T Ld¥0202102
¥1¢c or (44 L 0T .21 8991 POYIPON-HINETTOLTOT
1€€ or g0 €491 8G°0¢ 7'9¢ [PWSHO-(INETTOLTI0T
£6¢ (43 170 €2L°1¢ 6'¢e £8'9¢ STETS0LT02
1ve 8 ¢z 0 Tt 68°€T | LI80CT9T0C
€LE 0€ g0 96'81 8¥'1¢ 1€°¢e LIYEr0L10C
€6L #VC LL0 avey 0Ly €067 HIFELOLTOT
662 91 1€°0 cg9l r6l e 0g DULGEOLTOE
a0€ 0z 620 7691 Ll 62'81 DD60T0LT0E
90¢€ 0¢ 8¢°0 8€91 6L'91 L6°L1 SIRIS-DO60TOLTOE
cle ¥ €60 G¢81 95761 L0¢ MIEEE1910¢
(4] #0F P10 96'9 8e'8 776 HVEZS0LTOT
(1) ouL, () oumy, | (urm) oury, | (urur) eury, | (urur) aurg,
Sa[AD) [enuey ofeIoAy dopysa(g dogder Q0efIng j0alqng

ol I, Surreog jo wosueduwoy) gD 9[qe],

66 Chapter C. Tabulated Results

Table C.4: Comparison of Scaling Method to Static Pose

Subject Script Manual Script with Man-
ual Weight
20161222JW 0.4939 0.5016 0.5049
20170109CC 0.0083 0.146 0.0882
20170109CC-Stairs 3.2867 3.2809 3.2873
20170327DG 1.5546 1.5598 1.5612
20170424J7T 0.0007 1.6104 1.609
20161208J7T 1.1678 1.8498 1.8495
2017051518 1.826 1.829 1.8247
20170704PT 2.6541 2.6501% 2.6541*
20170704PT - JN 2.6541 2.6538 2.6538
20170704PT - JM 2.6541 2.653 2.6515
20170704PT - PT 2.6541 2.6532 2.6512
20170704PT - TN 2.6541 2.6501 2.6541
20161213RA 1.1158 4.9643 1.1183

* Average based of individual scaler results

Table C.5: Comparison of Scaling Methods Inverse Kinematic Error

Error Type Total Square Er- | RMS Max
ror

Step Up 3.9991 11.5465 25.8688
Step Up Manual 3.973 11.9903 26.3344
Step Down 3.5404 11.3412 24.3074
Step Down Manual 3.1298 10.8413 22.119
Walking 2.1106 8.9139 18.9861
Walking Manual 3.973 11.9903 26.3344

Appendix D

Meeting Attendance Form

67

68 Chapter D. Meeting Attendance Form

Consultation Meetings Attendance Form

Week Date Comments Student’s Supervisor’s
(if applicable) Signature Signature

feucw oF fi‘ib{?

58/ | preess e | o

_ o'l OF Scathg and -
{5/g//7 G S Fopeblon M-ﬂﬁojg{c? p——— EZL‘#\—-
. Ncr’(fF’Mr?h’chu A

”W?/O il Pl %*ﬂ-

PV OF ToeT T
O(/d({f// 7 J')C‘:I.ﬂ—lﬁ/*@&")q pfrx resy | e a—— /)ﬁm

REL-eC Ot ploGE5S

O/ repertcrpstanin o— | Ot

Peut s Of Hed T Scul,

[Z/C)CI/D coldl PreerEss S R——" ,&/%H

N[O (K o

| petc OF ol |
MSL |19/ 0¥]) o ey pRAEAL o | / lt—

v nel s ¥

Uyl 26/&}/}7 Rey e of 10yl plyt| =" D& a

p—é’;}(("—\/ Ce [\"f-’?lf,;-.r_.

' &% /10717 Clegisy e %\,

Revite OF v 0=
i YYe, erf o’ e | L
Le T o scaled ‘
[D O/[b/,:) neofel <orpzr o PP /)z{z/""""
ey OF Aoc o went Q
L 290/ p g g | e

They} dr,(.ww_/fffé’jf-e,.
(l 03/0//7 scd pASe b A9 %‘J"q(&./l/—r;__é_ %%

Figure D.1: Meeting Attendance Form

Bibliography

[1] S. L. Delp, F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guen-
delman, and D. G. Thelen, “Opensim: Open-source software to create and analyze
dynamic simulations of movement,” IEEE Transactions on Biomedical Engineering,
vol. 54, no. 11, pp. 1940-1950, 2007.

[2] J. A. Reinbolt, J. F. Schutte, B. J. Fregly, B. I. Koh, R. T. Haftka, A. D. George,
and K. H. Mitchell, “Determination of patient-specific multi-joint kinematic models
through two-level optimization,” Journal of Biomechanics, vol. 38, no. 3, pp. 621—
626, 2005.

[3] J. A. Egea, R. Mart, and J. R. Banga, “An evolutionary method for complex-process
optimization,” Computers & Operations Research, vol. 37, no. 2, pp. 315-324, 2010.

[4] R. Wehrens and L. M. Buydens, “Evolutionary optimisation: a tutorial,” TrAC
Trends in Analytical Chemistry, vol. 17, no. 4, pp. 193-203, 1998.

[5] L. A. Hannah, “Stochastic optimization,” International Encyclopedia of the Social &
Behavioral Sciences, pp. 473-481, 2015.

[6] J. J. Schneider and S. Kirkpatrick, Stochastic optimization. Springer, 2006.
[7] K. Marti, Stochastic optimization methods, 2nd ed. Springer, 2010.

[8] “How scaling works,” 2017. [Online]. Available: https://simtk-confluence.stanford.
edu:8443/display /OpenSim/How+Scaling+Works

[9] “Inverse kinematics tasks for scale,” 2017. [Ouline]. Avail-
able: https://simtk-confluence.stanford.edn:8443/display /OpenSim /Inverse+
Kinematics+Tasks+for+Scale

[10] “How inverse kinematics works,” 2017. [Online]. Available: https://simtk-confluence.
stanford.edu:8443/display /OpenSim /How-+Inverse+Kinematics+ Works

[11] A. Mohboobin, “An automated iterative method for adjusting virtual model markers
in an opensim model,” Ph.D. dissertation, University of Pittsburgh, 2013.

69

	SOFT_MICHAEL_42846811
	by Michael Buckingham

