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Abstract

A cryptographic hash function is a mechanism producing a fixed-length output

of a message of arbitrary length. It fullfils a collection of security requirements

guaranteeing that a hash function does not introduce any weakness into the

system to which it is applied. The example applications of cryptographic hash

functions include digital signatures and message authentification codes. This

thesis analyzes cryptographic hash functions and studies the design principles in

the construction of secure cryptographic hash functions.

We investigate the problem of building hash functions from block ciphers and

the security properties of different structures used to design compression func-

tions. We show that we can build open-key differential distinguishers for Crypton,

Hierocrypt-3, SAFER++and Square. We know that our attack on SAFER++

is the first rebound attack with standard differentials. To demonstrate the effi-

ciency of proposed distinguishers, we provide formal proof of a lower bound for

finding a differential pair that follows a truncated differential in the case of a

random permutation. Our analysis shows that block ciphers used as the underly-

ing primitive should also be analyzed in the open-key model to prevent possible

collision attacks.

We analyze the IDEA-based hash functions in a variety of cipher modes. We

present practical complexity collision search attacks and preimage attacks, where

we exploit a null weak-key and a new non-trivial property of IDEA. We prove

that even if a cipher is considered secure in the secret-key model, one has to be

very careful when using it as a building block in the hashing modes.

Finally, we investigate the recent rotational analysis. We show how to extend

the rotational analysis to subtractions, shifts, bit-wise Boolean functions, multi

i



Abstract

additions and multi subtractions. In particular, we develop formulae for calcu-

lation of probabilities of preserving the rotation property for multiple modular

additions and subtractions. We examine S-functions and its application to the ro-

tational analysis. The findings are applied to BMW and SIMD. We also propose

a new shift distinguisher and apply it to Shabal.
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1. Introduction

A cryptographic hash function is a transformation that maps an arbitrary

length input, called the “message”, into a fixed-length output, the “message

digest”. It is designed to be easily computable and has to achieve certain security

properties, e.g.: preimage resistance, second preimage resistance, and collision

resistance.

Cryptographic hash functions are crucial parts of many cryptographic algo-

rithms like digital signatures, message authentication algorithms and commit-

ment protocols to name a few. For example, digital signatures can be of a fixed

length no matter how long the signed messages are. This is normally done by

signing the message digest (of a fixed length) instead of signing the whole mes-

sage. Note that finding two messages that have the same digest immediately

allows an adversary to replace the message with its colliding sibling as the re-

ceiver making it impossible to determine which of the two colliding messages is

genuine.

1.1. Cryptographic Hash Function Properties

As previously mentioned, the fundamental properties of the cryptographic hash

functions are:

1. preimage resistance – given digest d = H(M) for a message M , it is com-

putationally difficult to find any message that gives the digest,

2. second preimage resistance – given message M , it is computationally diffi-

cult to find a different message M ′ that gives the same digest, i.e. a message

M ′ such that H(M) = H(M ′),

1



1. Introduction

3. collision resistance – it is computationally difficult to find two different

messages M,M ′ that give the same digest, i.e. for two messages M and

M ′, H(M) = H(M ′),

where H is the hash function that takes a message M of arbitrary length and

produces a fixed length digest (formal definition of the three properties is pro-

vided in Section 2.1). Computational difficulty means that an attack is infeasible

to be conducted due to computational restrictions of available hardware. In the

above cases it is assumed that the asymptotic lower bound for the intractabil-

ity is O(2n), O(2n), O(2
n
2 ) hash operations for the n-bit digest, respectively. In

practice, for fixed-sized digest hash functions it is assumed that the asymptotic

bounds are instantiated to 2n, 2n and 2
n
2 calculations of a hash function, respec-

tively. For example, SHA-0 is a hash function with 160-bit digest and is expected

to withstand any collision search attack with complexity less than 280 hash cal-

culations. However, the attack presented in [111] reveals collisions for SHA-0

with complexity 239 hash operations, which breaks the collision resistance of the

function.

Another set of properties required from cryptographic hash functions is col-

lectively called “pseudorandomness”. In particular the SHA-3 call [40] specifies

that the future SHA-3 algorithm should support:

• construction of deterministic Pseudo Random Function (PRF) with use of

HMAC,

• randomized hashing.

In the first case a PRF obtained from HMAC must be resistant to any distinguish-

ing attack with complexity less than 2
n
2 and significantly smaller than preimage

attack. On the other hand the randomized hashing schema should withstand an

attack defined in the challenge-response manner, that is the adversary should be

unable to obtain a second message M ′ and an additional parameter r′ for cho-

sen M and random r that applied to the schema produce the same hash value.

Finally, it is also required that a hash function do not reveal any nonrandom

properties or fail any statistical test.

2



1.2. Classification of Hash Functions

1.2. Classification of Hash Functions

In general hash functions can be divided into two main categories:

1. keyed hash functions, referred to as Message Authentication Codes (MAC),

2. unkeyed hash functions, referred to as Modification Detection Codes (MDC).

Informally, the class of keyed hash functions (see [92] for a formal definition)

is defined as a family of hash functions HK indexed by a secret key K with an

additional property called the computation-resistance – given any set of pairs

(Mi, HK(Mi)) for some i ∈ N∪{0} it is computationally difficult to find HK(M)

for any M /∈ {Mi : i ∈ N∪0} even if HK(M) ∈ {HK(Mi) : i ∈ N∪0}. Their main

purpose is to provide mechanisms for authenticity and integrity check. That is

to say that only parties sharing the same secret key can verify if the message was

altered and if the MAC was generated with the correct secret key.

The second class – Modification Detection Codes – is a class of unkeyed hash

functions, which in contrast to MAC has only one parameter – message input. Its

main purpose is to produce “unique” hash value for any message, which provides

mechanisms for data integrity checks.

It is also possible to produce a MAC from an unkeyed hash function. An exam-

ple of such construction is HMAC (short for Hash-based Message Authentication

Code) which incorporates secret key K in calculations of MAC for M by following

formula:

HMAC(K,M) = H((K ⊕ opad)||H((K ⊕ ipad)||M))

where H is unkeyed hash function and opad, ipad are constants (for details

see [69]).

The MDC class can be further divided into following subclasses:

• One-Way Hash Functions (OWHF),

• Collision Resistant Hash Functions (CRHF).

A OWHF is a hash function that fulfills two security requirements: preimage

resistance and second preimage resistance. Some applications of OWHF are mes-

3



1. Introduction

sage integrity validation, authentication or password verification. A CRHF is on

the other hand a hash function that is collision resistant and second preimage

resistant.

1.3. Hash Functions Applications

The main application of hash functions is to generate “unique” and fixed length

sequence of data for a given input. Cryptographic hashing is used in many

applications such as:

• digital signatures,

• integrity checking,

• message authentication codes,

• commitments,

• password storage,

• encryption algorithms,

• software protection.

Digital signatures. Digital signature algorithms based on asymmetric cryp-

tosystems are computationally inefficient in case of long messages. In order to

improve their performance and make signatures of a fixed length no matter how

long the signed messages, cryptographic hash functions are used to produce a

hash digest for the message, which is then signed. Verifing a signature is done

for the digest of the message. Note that finding two messages that have the same

digest immediately allows an adversary to replace the message with its colliding

sibling as the receiver has no way to determine which of the two colliding mes-

sages is genuine. Hence, security of such digital signatures largely depends on

security of used cryptographic hash function.

Integrity checking. Hash functions are also applied to verifing the integrity

of data sent over error prone communication channel. The sender calculates a

4



1.3. Hash Functions Applications

hash value for a message and then sends a sequence of data to a receiver. At the

same time, the message digest is sent over another channel which is reliable, so

that the receiver can compare the digest with hash value of the received message.

If the hash values are the same we might be assured that the message was not

altered during communication. However, note that if finding another message

with the same digest as the hash value of the original is easy, an adversary is able

to manipulate with the last sent in the communication channel and receiver can

be tricked.

Message authentication codes. In order to authenticate a message keyed

hash functions can be utilized. The possible schema of message authentication is

similar to the one for integrity checking. The difference is in the secret key pro-

vided by the sender in the hash value calculations. Assuming that cryptographic

hash function is MAC, the receiver, who knows the secret used, can identify

whether the message has been altered or if it was sent by the authorized sender.

If the digest of received message under the secret key is different to the digest

accompanying the message, the last one was changed or generated with different

key. Of course digital signatures can also be used for message authentication but

hash functions have advantage over them in having a much lower complexity to

necessary calculations.

Commitments. Another application of cryptographic hash functions are com-

mitment protocols. For example consider such a simple protocol described as

follows (see [51]):

Alice is in possession of some initially secret information. Let it be the sentence

“The answer to the fundamental question is: YES!”. She does not want to reveal

it to Bob at this moment, but she will need to prove in the future that she had

already known this sentence. So Alice hashes concatenation of a randomly chosen

pad and her secret, showing to Bob only the computed digest. Then Bob knows

nothing except the digest of Alice’s secret. When the right time comes, Alice can

prove that she had known the secret sentence by providing the random pad she

used earlier. Bob can verify Alice’s veracity by comparing the digest he received

at first with recomputed hash value of the concatenation of the random string and

5



1. Introduction

the revealed secret.

If we assume that the hash function used in the protocol is preimage resistant,

Bob is not able to efficiently guess Alice’s secret information. Even though Bob

cannot deceive Alice, she can “prove” she knew another secret, if she is able

to find for it different random pad for which the digest of their concatenation is

identical to the first hash value. However, if the hash function used in the schema

is collision resistant the trick becomes computationally infeasible. Unfortunately

the schema does not provide adequate security for Alice, because Bob can still

distinguish between possible secrets (for more details see [51] where the example

is discussed in more detail).

Password storage. Password authentication mechanism for controlling access

to IT resources is one more application of cryptographic hash functions. For

instance operating systems like Windows or Unix are storing hash values of users’

passwords. In order to authenticate to the IT system a user has to provide a secret

password, which hash value is then compared to one stored in the database. The

user is granted access if both hash values are equal. The main reason for storing

hash values of passwords and not exact passwords is to guarantee that access

is granted only to authorized users even if an adversary controls the database.

Hence, we require that hash functions be preimage resistant, so that stored hashes

can not be easily inverted.

Encryption algorithms. Hash functions can also be used as building blocks

of ciphers. For instance they can be used as nonlinear blocks within a cipher, for

instance as F-function in Feistel network designs. Another way to utilize a hash

function in encryption is to use it as a key generator from secret password. The

hash value of the password is forwarded from key input to the cipher in order to

execute cipher or decipher procedure.

Software protection. Protecting software from third party modification, e.g.

viruses, or restricting execution of authenticated programs can also be achieved

with use of cryptographic hash functions. The simplest way to achieve the first

goal is to generate an hash digest of the program and distribute it with program.

However, this solution does not protect from forging another hash digest for

6



1.4. Cryptanalysis

modified program. A remedy is a digital signature for the hash value of the

program. An example of such a mechanism is Microsoft Authenticate present in

Windows family of operating systems.

1.4. Cryptanalysis

Analysis of any cryptographic primitive can be divided into two main streams:

• generic – independent on algorithm,

• algorithm specific.

1.4.1. Generic Analysis

The generic approach does not depend on the internal structure of the subject

of analysis, which is treated as a black-box with input and output interface. The

attacker might only provide input data, which might be altered depending on

the observed results of black-box calculations. Hence, their general assumption is

the pseudo-randomness of the analyzed hash function. We can select three main

attack strategies of generic attacks on hash functions:

• brute force attack,

• birthday attack,

• meet-in-the-middle attack,

which will be briefly presented below while more details can be found in Sec-

tion 2.5.

Brute Force Attack

The brute force attack is the simplest one of the three and the most expensive.

In the attack, the attacker tries all possible input values until the expected output

has been generated. For example, brute force preimage search attack needs to

check on average 2n−1 values before the right message is found.

7
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Birthday Attack

The second method is fundamental to analysis of cryptographic hash functions,

especially by finding collisions. The birthday attack (described in [113]) and its

altered version, the generalized birthday attack (see [47]) are improvements on

the brute force attack. The complexity of the birthday attack (in the case of

hash function which produces n-bit digest, its asymptotic complexity is O(2
n
2 ))

provides an upper bound for the security of any cryptographic hash function

against collision search attacker.

Meet-in-the-Middle Attack

The meet-in-the-middle strategy applies to iterated designs but also to one

that can be divided into two independent parts. For instance, let fk = gk2 ◦ hk1

be a such function, where k1 and k2 are independent parts of some parameter k.

The general idea of this kind of attacks is to pick random k1 and k2 and compute

h(x) and g−1(y) for challenge pair (x, y). Due to independence of h and g the

match is found with the birthday bound complexity.

1.4.2. Algorithm Specific Analysis

The second group of cryptographic tools are design dependent. They exploit

internal structure of analyzed algorithm in order to detect its unwanted proper-

ties. We list some but not all attacks in the group:

• differential attack,

• rebound attack,

• linear attack,

• random graph theory attack,

• distinguishing attack.

8



1.4. Cryptanalysis

Differential Analysis

In recent years it has also become obvious that differential analysis, originated

by cryptanalysis of symmetric ciphers (see for details [17]), is also applicable in

the case of cryptographic hash functions like MD4, MD5, SHA–0, SHA–1, etc.

(see [88, 108, 109, 111]). Generally this method is based on finding a correlation

between the differences (XOR or modular) in input and output of a cipher or

a cryptographic hash function. In the case of hash functions the difference in

output should be equal to zero to produce a full collision or differ slightly to

obtain a so called near-collision.

Rebound Attack

Further improvements of differential paths is possible due to an application of

the meet-in-the-middle approach. By merging two differential paths with use of

available degrees of freedom, longer paths are produced. The example of such an

approach is the rebound attack proposed by Mendel et al. in [91], which resulted

in attacks on cryptographic hash functions like: Grøstl, Whirlpool, ECHO, etc.

(see [90, 91]) and also allowed better cryptanalysis of AES e.g. [46].

Linear Analysis

A very interesting method of breaking hash functions is one based on approxi-

mating the internal states of the cryptographic hash function. This method also

has its origin also in cipher analysis e.g. [87] and is similar to differential anal-

ysis. For example, [30] a linear attack was presented based on finding solutions

of a system of non linear equations describing internal states of the LASH hash

function (described in [9]).

Random Graph Theory Attacks

More sophisticated methods of collision search are ρ− and λ−Pollard (ρ−Pollard

method is described in [6, 101, 104] and λ−Pollard in [105, 107]). The methods

are based on the structure of a random mapping directed graph (digraph), while

9



1. Introduction

making the assumption of a uniform distribution of the image of the crypto-

graphic hash function f , i.e. for any uniformly distributed input its image under

the function is also uniformly distributed. Basically both require finding two dis-

tinct points in the same connected component on the function digraph such that

there is no directed path between either of them.

Distinguishing Attacks

The above-mentioned assumption is also extended to the case where inputs

to the function might be somehow related, e.g. the input distribution is not

necessarily uniform. In this case so called distinguishing attacks are considered,

see for example [67, 94], where a variety of properties are tested for instance:

q-multicollisions [20], preservation of rotations [58], etc. A distinguisher plays a

central role in the attack, which is basically a probabilistic algorithm interacting

with two oracles: one that simulates an analyzed primitive and the other simulates

an ideal primitive, for example random permutation. The aim of the distinguisher

is to decide which of the two is the analyzed primitive, based on queries provided

to the oracles. The attack is considered to be successful if the number of queries

required to make a correct decision is below a well defined level.

1.5. Secure Hash Standards

The first standard of secure hashing [41] was adopted by the United States

National Institute of Standards and Technology (NIST) in 1993. It is commonly

referred to as SHA-0 (SHA stands for Secure Hash Algorithm). The SHA-0

hashing was based on the MD4 and MD5 algorithms that were designed by Ron

Rivest. Unlike its predecessors MD4 and MD5 that produce 128-bit message di-

gest, SHA-0 generates longer 160-bit digest. A few years after the adoption as the

standard NIST replaced it with a new standard so called SHA-1 [42], what might

suggest that some weaknesses of SHA-0 were discovered. It is interesting to see

that the only difference between SHA-0 and SHA-1 is the rotation of bits in the

message scheduling algorithm. The justification of the change in design was pub-

10
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lished 3 years later in 1998 [28] together with the security analysis showing that

the rotation operation significantly increased the complexity of the attacks. At

the same time the output of the European RACE Integrity Primitives Evaluation

project was RIPEMD, another example of the large MD family. Improvements

in the cryptanalysis of hash functions was the driving force behind modifications

of the proposed algorithms. For instance 128-bit RIPMED was upgraded to its

160-bit version.

In 2002, NIST proposed a new hash standard called SHA-2 [43]. SHA-2 which is

in fact a family of hash functions indexed by the required length of the digest. The

lengths are 224, 256, 384 and 512 bits. The situation has dramatically changed

in 2004, when a group of researchers under the leadership of Professor Wang

published a collection of papers (see [109–111]) in which most of the members of

the MD family were broken. Apart from MD4 and MD5, the casualties included

SHA-1. The Wang’s group showed in [109] that in SHA-1, the collisions can

be found in 269 steps which is much faster than the expected complexity of the

birthday attack that is 280 steps.

The need for new standard and novel approach for constructing cryptographic

hash functions is reflected in the Secure Hash Algorithm 3 (SHA-3) competition.

It was originated by NIST in 2007 [40] not only to develop a new standard of

secure hashing but also to stimulate the international community of cryptologists

to find better a way of estimating a security level of cryptographic hash functions.

The competition is organized in a similar way to the Advanced Encryption Stan-

dard selection process, where submissions are revised in a public forum by the

cryptographic community. The process has been divided into three phases Round

1, Round 2 and the final being Round 3, with an October 31, 2008 submission

deadline the competition started in December 2008. Of the 64 submissions 54 of

them were publicly known, 14 of them advanced to Round 2 and only 5 advanced

through to the the final round: BLAKE, Grøstl, JH, Keccak and Skein. The

winner - Keccak - of the process was announced in October 2012.

Note that many attacks on hash functions are “theoretical” as they require

extensive amount of steps for practical analysis. However, as time goes by, the

11
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computers become faster and there is a continual upgrading in the attacking algo-

rithms. Consequently, the developed attacks tend to be more and more efficient

and at some point of time, many theoretical attacks become practical. Devel-

opment of quantum computers is another factor that can change the analytical

tools accessible to adversaries. So far it is not known if quantum computing

is feasible. Nevertheless we know that some “classically” intractable problems

(such as factorization) can be solved in polynomial time on a quantum computer.

An example of a “quantum” attack on CubeHash, one of SHA-3 submissions,

exploiting quantum algorithm for searching database has been presented in [78].

1.6. Thesis structure

Chapter 2 consists of introductory information on cryptographic hash func-

tions. We start by formalizing the framework used, followed by describing the

cipher-based modes of hashing. Next we present selected methods of hash func-

tions and block ciphers analysis like differential and truncated differential analy-

sis. In particular we define open-key distinguishers for block ciphers and present

some techniques for differential trail construction. Then rotational analysis is

discussed and its variant – shift analysis.

In Chapter 3 we investigate the differential properties of block ciphers in hash

function modes of operation. First we show the impact of differential trails for

block ciphers on collision attacks for various hash function constructions based on

block ciphers. Further, we prove the lower bound for finding a pair that follows

some truncated differential trails in case of a random permutation. As far as we

know this is the first formal proof of the bound. Then we present open-key differ-

ential distinguishers for some well known round-reduced block ciphers: Crypton,

Hierocript-3, SAFER++, Square and generic n-bit Feistel cipher. Our rebound

distinguishers substantially improve number of attacked rounds by means of key

bits manipulation.

In Chapter 4 we present practical complexity attacks on IDEA-based hash func-

tions in variety of cipher modes of hashing used, where we exploit null weak-key

12
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and new non-trivial property of IDEA, that we called almost half-involution. The

attacks are another example showing that application of block ciphers in modes

of hashing requires more caution in comparison to their analysis in secret key

model.

In Chapter 5 we extend the application of rotational distinguishers to classes

of primitives that besides additions, rotations and XORs, may have subtractions,

shifts, bit-wise Boolean functions and a combination of multi additions and multi

subtractions. We use a concept of rotational analysis with corrections and provide

formal framework for calculating accompanying probabilities. This allows us to

launch rotational attacks on the compression functions of a SHA-3 candidates:

BMW and SIMD. We also introduce a new form of attack – shift cryptanalysis,

and apply it to the permutation of round 1,2 Shabal.

Finally, we conclude the thesis with some design guidelines for constructing

hash functions and propose possible research directions in the field of crypto-

graphic hash functions.
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This chapter is an introduction to the cryptographic hash function theory. First

we give the definition of hash functions and provide a collection of security proper-

ties required from them. Next, we briefly discuss various applications of hashing.

Further we provide the notations used in this thesis. This is followed by a study of

different approaches in designing cryptographic hashing. This section concludes

with an overview of attacks against hash functions. We start from differential

analysis and its variant truncated differential analysis, then we discuss rotational

analysis, followed by its modification – the so-called shift analysis. Finally we

also recall T-function and S-function representation of Addition-Rotation-XOR

designs.

2.1. Introduction to Cryptographic Hash Functions

Cryptographic hash functions are indispensable for an efficient digital signa-

ture. They provide a fixed-length digest for messages of arbitrary lengths (from

very short to very long). Instead of a message, the signature is then generated

for the message digest. This obviously also has some security implications. An

adversary who would like to forge a signature may try to find two messages that

are hashed to the same digest (we say that the messages collide). Note that the

signature produced in this way is going to pass the verification for the colliding

messages. For more formal definition of cryptographic hash function, we follow

Menezes et al. [92] and introduce the notation {0, 1}∗ =
∞⋃
i=1
{0, 1}i, that is {0, 1}∗

is a set of non-empty bit-sequences of any bit-length.

Definition 2.1. A hash function F : {0, 1}∗ → {0, 1}n is a function that fulfills
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at least the two following requirements:

1. for an arbitrary length input x ∈ {0, 1}∗ the image y under F is of fixed

bit-size n,

2. for given F and input x, F (x) is “easily” computable.

The two properties are referred to as compression and ease of computation

respectively (see Definition 9.1 in [92]). However, the first term is somewhat

misleading. While hash function compresses messages that are longer than the

digest, it “expands” messages that are very short.

A cryptographic hash function is a hash function that is designed to achieve

certain security properties. The collection of required security properties includes:

1. preimage resistance,

2. second preimage resistance,

3. collision resistance.

They are defined as follows:

Definition 2.2. A hash function F : {0, 1}∗ → {0, 1}n is called:

1. preimage resistant – if given hash value H of some unknown message,

it is computationally “hard” to find such a message M whose hash value is

equal to H, i.e. F (M) = H,

2. second preimage resistant – if given one message M1 it is “hard” to find

other M2, M1 6= M2 such that hash values of both M1 and M2 are equal,

i.e. F (M1) = F (M2),

3. collision resistant – if it is “hard” to find different messages M1 and M2

(M1 6= M2) such that hash values of both are equal, i.e. F (M1) = F (M2).

Remark 1. Collision resistant hash function is also second preimage resistant.

However, collision resistance does not imply preimage resistance. What is more

preimage resistance does not imply second preimage resistance and reverse impli-

cation does not hold either.
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The “hardness” in the Definition 2.2, which might as well be replaced with

“computational infeasibility” like in [92] can be understood in many ways. The

two most common interpretations are in terms of:

• asymptotic complexity,

• static complexity.

In the first case the difficulty of a particular problem is defined for an infinite

family of functions indexed by digest length n. The problem is considered “easy”

if there is a polynomially bounded in time and size algorithm that solves it for

infinitely many instances. On the other hand it is “hard” if fraction of solved

instances tends to 0 for any polynomially bounded algorithm. The obvious limi-

tation of this approach is that the results obtained in this model are asymptotic

for n→∞ and apply to infinite families of hash functions.

The second approach is derived from the so called concrete security (see for

instance [22]), which is also based on some family of functions i.e. F = {F : K×

M→ {0, 1}n}, where K is the space of indexes, M is the space of messages. The

central element of this model is a probabilistic algorithm called adversary, which

interacts with randomly chosen functions from F. The strength of primitive is

then obtained by calculating the probability that the adversary finds, for example,

a collision in the hash function (the security bound on collision finding adversaries

is 2−
n
2 ). However, in practical applications we are dealing with one specific design

what leads to slight abuse of the notation. For example, an upper bound for

collision search attacks on 256-bit hash function is 2128.

2.2. Designing Hash Functions

There are variety of different approaches for constructing a hash function. The

most common design strategies are:

1. Merkle and Damgard construction,

2. wide-pipe (double pipe) construction,
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3. fast wide-pipe construction,

4. Merkle tree,

5. sponge construction.

Merkle-Damg̊ard Construction. The first and probably the most common

approach for building cryptographic hash functions is the chaining of the so called

compression functions together. This approach is used in both SHA-1 and SHA-

2. The compression function has fixed size domain, range of size smaller than the

prior and is easily computable. A more formal definition is as follows:

Definition 2.3. A compression function f : {0, 1}n × {0, 1}k → {0, 1}n is a

transformation that maps fixed length input (x, y) where x ∈ {0, 1}n is called

the “previous chaining value”, and y ∈ {0, 1}k is called the “message block”, into

fixed-length output, the “next chaining value” z ∈ {0, 1}n, such that z = f(x, y).

A cryptographic compression function also has to fulfill similar like crypto-

graphic hash function security requirements. An example of such an approach is

the Merkle-Damg̊ard construction of cryptographic hash function which can be

defined as follows (compare the Figure 2.1):

Definition 2.4. Let h0 = IV where IV, so called “initial vector”, is a constant

value from {0, 1}n. Let M ∈ {0, 1}∗ be a message for which hash value is com-

puted, |M | is its bit-length and |M | is multiplicity of k. M is represented as a

concatenation of message blocks m0,m1, . . . ,ml where each block has length k and

l = |M |/k. In addition there is defined additional block ml+1 which consists of

k-bit-representation of |M |. The Merkle-Damg̊ard construction is then defined as

F (M) = hl+1, where hi = f(hi−1,mi−1) for i ≥ 1.

The Merkle-Damg̊ard (MD) construction guarantees that when the underlying

compression function is collision resistant, the resulting hash function is also col-

lision resistant. However, the method has some drawbacks, which were presented

in Joux’s multicollision attack (see [55]) that demonstrates better than generic

attacks finding multicollisions. A possible alternative to the MD construction
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Figure 2.1.: Merkle-Damg̊ard construction of a hash function.

is HAsh Iterative FrAmework (HAIFA) proposed in [12]. In this construction

each compression depends on additional parameters: salt and number of already

hashed bits. The compression function is then defined as f : {0, 1}n+m+s+b →

{0, 1}n and each invocation of f is expressed as hi = f(hi−1,mi−1,#bits, salt),

where #bits is number of already processed bits of message at step i.

Wide Pipe Construction. This is an extension of Merkle-Damg̊ard con-

struction proposed in [85]. The construction aims at a complexity increase of

internal collision search of the hash function by making the size of the chaining

value larger in comparison to the hash digest. Figure 2.2 shows an example of

double pipe design. The chaining value consists of two blocks (hi, h
′
i) and it is the

input to the next execution of compression function f . The final transformation

f ′ is the transforming of the last double-chaining value into single block digest.

Figure 2.2.: Double pipe construction of a hash function.

Fast Wide Pipe Construction. This mode of operation is a variant of

wide pipe design and was first presented in [97]. The underlying function f has

only one chaining block input (apart from message block input), while it outputs

two chaining value blocks (hi, h
′
i). Next invocation of f takes as the input next

message block mi+1 and hi⊕h′i−1, that is (hi+1, h
′
i) = f(hi⊕hi−1,m). In a similar
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way to wide pipe design the last invocation of f ′ outputs final digest value of one

chaining block size. The advantage of this approach is a speed up by at most

factor 2 in comparison to the double pipe construction.

Figure 2.3.: Fast widepipe construction of a hash function. The • symbol repre-
sents XOR operation.

Merkle Tree Construction. The construction was first proposed by Merkle [93]

in order to solve problem of signing multiple messages efficiently. The idea be-

hind this design strategy is to build a binary tree with message blocks as leaves

and traverse the three layer by layer to the root by compressing two lower nodes

(compare the Figure 2.4). This approach allows straightforward paralellization

and improvement in speed of hashing.

Figure 2.4.: Merkle tree construction of a hash function for 4-block message.

Sponge Construction. This iterative construction (presented in [11]), in

contrast to previously presented constructions which used compression functions,
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is based on fixed length permutation π. The internal state of the sponge function

presented in the Figure 2.5 is of size b = k+ c bits. The first l+ 1 invocations of

π are called absorbing phase when consecutive message blocks are XORed with

the first r bits of the previous chaining value and the whole state is transformed

through π. After this phase the so called squeezing phase follows. This phase

consists of a required number of π invocations, when for each invocation first r

output bits of the state are returned as hash value block.

Figure 2.5.: Sponge construction of a hash function. The •represents XOR oper-
ation.

Constructions of Compression Functions. There are three main ap-

proaches for constructing compression functions for hash functions, that is:

1. dedicated designs,

2. block cipher based designs,

3. intractable-problem based designs.

The functions in the first class are built mainly in order to achieve high per-

formance in hardware and software with minimal utilization of resources. The

group is represented by a large MD-family, which includes functions like MD4,

MD5, SHA-0, SHA-1, etc. Thanks to the focus it puts on the performance it is

probably the most popular approach for designing hash functions. The drawback

of this approach is the lack of ”proof of security”. The security is heuristic and it

is argued by showing that the hash function is secure against all known attacks.

It can be seen on the example of evolution of MD family that new designs were

build in order to fix some “design weaknesses”, but does not give mathematical

explanation for introduced changes.
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The second approach in the hashing design is based on block ciphers. The

strong point of this approach is the fact that the block ciphers are the oldest

and most scrutinized cryptographic primitives. In order to transform a cipher

hash modes of operation were proposed to construct compression functions (more

details can be found in Section 2.3). Due to small size of internal block of a cipher

compared to size of the output digest of a hash function, except of “simple” modes

there were also proposed double length modes, which produce digest of twice the

block size. This approaches weakness is that security properties of block ciphers

are not in general aligned well with the properties expected from secure hashing.

In the case of block ciphers it is assumed that the encryption/decryption key is

secret in classical security models. At the same time hash functions give much

more freedom to the attacker, who can control key input to underlying block

cipher and better exploit internal structure of the algorithm.

The last approach uses a (believed) intractable mathematical problem to de-

sign a hash function. The selling point of these constructions is a mathematical

proof that demonstrates how an algorithm that breaks a hash function property

can be used to solve efficiently the underlying (assumed to be intractable) prob-

lem. An example of such construction is the VSH hashing [31] that is based on

intractability of finding nontrivial modular square roots of very smooth numbers

modulo n-bit composite, There is, however, a drawback of this approach. All

known constructions are much slower than other constructions. Nevertheless, it

seems that this approach is getting more and more attention and the efficiency

issue may be addressed by using different intractability assumptions.

2.3. Block Ciphers in Hash Function Modes of

Operation

Block ciphers play an important role in symmetric cryptography providing the

basic tool for encryption. They are the oldest and most scrutinized cryptographic

tool. Consequently, they are the most trusted cryptographic algorithms that are

often used as the underlying tool to construct other cryptographic algorithms.
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One such application of block ciphers is for building compression functions for

the hash functions.

Single-Block Hash Modes. There are many constructions (also called hash

function modes) for turning a block cipher into a compression function. Probably

the most popular is the well-known Davies-Meyer mode (mode 5 in Table 2.1).

Preneel et al. in [102] have considered all possible modes that can be defined for a

single application of n-bit block cipher in order to produce an n-bit compression

function. They have found that there are 12 modes that are resistant against

generic attacks (see 5 in Table 2.1). Later these findings have been formally

proven in [22].

Table 2.1.: The table lists all provably secure hash function modes. The numbers
are from [22].

mode
(ı)

h′
mode
(ı)

h′
mode
(ı)

h′

1 Eh(m)⊕m 5 Em(h)⊕ h 9 Eh⊕m(m)⊕m
2 Eh(h⊕m)⊕ h⊕m 6 Em(h⊕m)⊕ h⊕m 10 Eh⊕m(h)⊕ h
3 Eh(m)⊕ h⊕m 7 Em(h)⊕ h⊕m 11 Eh⊕m(m)⊕ h
4 Eh(h⊕m)⊕m 8 Em(h⊕m)⊕ h 12 Eh⊕m(h)⊕m

Double-Block Hash Modes. To make hash functions and compression func-

tions resistant against the birthday-paradox attack, it is better to use double-

block modes. This approach allows to square the complexity of the birthday

attack in comparison to the attack on single application of primitive. Basic

double-block modes have been proposed in [24, 54, 72, 75, 100] (Table 2.2 lists

them all). In the first column A-DM, T-DM, Hirose and MDC-2 are abbrevia-

tions of Abrest DM, Tandem DM, Hirose’s Double-Block-Length and Modifica-

tion Detection Code 2, respectively (see [72] for the first two, [54] for the third

and [24] for the last). In case of Peyrin et al.(II) [100] Ei are some independent

functions built from the cipher, for example Ei(x, y, z) = Ex‖y(z ⊕ i) ⊕ z. For

MJH-Double [75] f is involution with no fixed points and d is a natural number,

d 6= 1.

(paragraph split) Note that the Tandem-DM mode has been proven to be

collision resistant in [44], while a weakness in MDC-2 was found in [66]. The

MJH-Double mode is described in [75].

23



2. Cryptographic Hash Functions

Table 2.2.: The table lists double-block hash modes presented in [24, 54, 72, 75,
100].

mode (h′, g′)

A-DM
h′ = Eg,m(h)⊕ h
g′ = Em,h(ḡ)⊕ g

T-DM
h′ = Eg,m(h)⊕ h

g′ = Em,Eg,m(h)(g)⊕ g

Hirose
h′ = Eh‖m(g ⊕ c)⊕ g ⊕ c

g′ = Eh‖m(g)⊕ g

MDC-2
h′ = (Eh(m)⊕m)L ‖ (Eg(m)⊕m)R

g′ = (Eg(m)⊕m)L ‖ (Eh(m)⊕m)R

Peyrin et al.(II)
h′ = E1(h, g,m1)⊕ E2(h, g,m2)⊕ E3(h,m1,m2)
g′ = E3(h,m1,m2)⊕ E4(h, g,m1)⊕ E5(g,m1,m2)

MHJ-Double
h′ = Em2‖g(h⊕m1)⊕ h⊕m1

g′ = d · [Em2‖g(f(h⊕m1))⊕ f(h⊕m1)]⊕ h

2.4. Security Notation for Cryptographic Hash

Functions

Ideal Ciphers vs. Hash Functions. Proofs of security of the above modes

are performed under the assumption that the underlying block cipher is ideal.

However, this assumption is not satisfied if the cipher is used to build hash

functions. Note that the ideal cipher is related to the concept of pseudo-random

permutation, where the adversary does not know the cryptographic key. Roughly

speaking, for the unknown key, the permutation of the cipher is chosen at random.

Clearly, the cryptanalyst in case of compression functions based on block ciphers

has a much easier task as the block cipher is no longer a random permutation. The

adversary fully controls the key input and can therefore select the permutation.

A known-key model [67] was proposed in order to bridge the gap between

analysis of the two primitives. The model assumes that the attacker knows the

encryption key and the aim is to distinguish the cipher from a random permuta-

tion on a message space by querying the primitive with messages constructed in a

way to detect unwanted property. A good candidate for such a property would be

one that can be easily checked and achieved in case of specific cipher while hardly

detectable in case of random primitive. In general, these known-key attacks are

not regarded as problematic when the block cipher is used in a classical “secret
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key” setting. Moreover, it is rare that such threats are extended to attacks on

the compression function.

What differs these two approaches is that unlike the secret-key model, where

the complexity of an attack is usually bounded by the size of the key space (i.e.

2k for a k-bit key), the attacks in the open-key model are bounded by the size

of the state space (i.e. 2n for an n-bit state). Therefore, some of the published

attacks in the secret-key model (precisely, the attacks with a complexity higher

than 2n) become worse than simple generic attacks, when applied in the open-key

model.

2.5. Methods of Hash Functions Analysis

The analysis of cryptographic hash functions can be divided into two main

categories. The first are generic attacks which are applicable to any design and

are independent on the internal structure of the function. In this case the analyzed

algorithm is considered as a black-box primitive for which input and output is

specified. The internal behavior is not relevant in this context. On the other

hand we can lift the previous assumption about black-box behavior of analyzed

function and exploit internal structure of it, which is of course known to the

attacker. These kind of attacks are no more applicable to any design, but are

largely dependent on the algorithm.

2.5.1. Generic Attacks

Generic attacks are applicable to any primitive for which the internal struc-

ture is not known to the attacker. The primitive is treated as a black-box with

input and output that can be provided and observed, respectively. The general

assumption of these kind of attacks is the pseudo-randomness of the analyzed

primitive, so in our case a block cipher or a hash function. We will describe in

more detail two following generic attacks:

• brute force attack,

• birthday attack.
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Brute Force Attack. This is the näıve method of breaking a cryptographic

hash function by finding preimages for a given target hash value. The attacker

is challenged with the hash value and its aim is to find a message that has the

same digest. The complexity of this attack for a function on {0, 1}n is 2n−1. The

illustration of the problem is following example:

Let assume that we are challenged with some date, let it be the 2nd day of a

year. How many people have to be in a room in order to find at least one born

on the same day of a year with probability of at least 0.5? We only distinguish

birth dates by the number of a day in a year, so for instance people born on the

1st of January 1888 and the 1st of January 1999 are born on the same day of a

year. For simplicity in the example we are not considering leap years. Hence, we

assume a year has 365 days.

When we calculate the probability for the event of finding a person born on

the 2nd day of a year we calculate it, that it is equal to 1 − (364
365)k where k is

the number of additional people in the room. Elementary calculations show that

k > 252.65, that is at least 253 people are required in order to achieve the goal.

If we generalize the problem to a hash function with range {0, 1}n we obtain that

at least 2n−1 elements have to be checked in order to obtain required preimage

with probability of at least 0.5.

Birthday Attack. The birthday attack on the other hand can be used in col-

lisions search attacks for a hash function with a complexity significantly smaller,

that is 2
n
2 . The birthday paradox is defined as follows:

How many people have to be in the room in order to find at least two of them

born on the same day of a year with probability of at least 0.5? At first glance

it might seem that the answer to the question is the same as before. This is

partially true, the earlier number of occupants of the room will guarantee finding

the required pair. However, we can do it much better. In the first case the

day is fixed while in the later with each considered person the size of the set of

possible dates of birth for finding a match/collision has increased. Hence, the

success probability should be much higher with each new considered person. The

other difference we can detect immediately (and is going to be more visible in the
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following part) is that the first probability is increasing linearly with each person,

because we consider their date of birth separately, while in the second case we are

dealing with pairs of people what increases the number of possible success events

in quadratic manner. When we calculate the exact probability we discover it is

equal to 1 − 364
365 · · . . . ·

365−k+1
365 and tedious calculation show that k > 22.49. In

this case only 23 people are needed in the room to find a collision in comparison

to the 253 in the earlier case. When we generalize the example to a hash function

on {0, 1}n we obtain that at least 2
n
2 elements have to be checked.

In the following sections we present examples of algorithm specific attacks. We

start with a definition of open-key distinguishers for block ciphers and description

of some techniques for differential trail construction. Next rotational analysis and

shift analysis is presented. The chapter ends with definition of T-functions which

have application in analysis of Addition-Rotaion-XOR designs.

2.5.2. Differential Analysis

The differential analysis was introduced by Biham and Shamir in [16] and

successfully used for the DES analysis. The idea is to follow the propagation

of a difference in the state of the cipher throughout consecutive rounds. When

the input-output differences can be predicted with a sufficiently high probability,

than the cipher can be distinguished from a pseudo-random permutation. This

concept can trivially be adjusted for the case, where the adversary knows/controls

the key of the cipher (open-key differential distinguishers). The goal of adversary

in this case would be to find an input-output pair of differences for the cipher

that can be predicted with a probability higher than in a random permutation.

A natural consequence of constructions presented in Section 2.3 is that block

ciphers methods of cryptanalysis are also applicable for attacking hash functions.

The differential analysis is one of best known tools for cipher analysis and it has

also been successfully applied for hash functions analysis, first examples are [28,

111]. What is more the discussion in Section 2.4 clearly shows that available

degrees of freedom make differential attack much stronger tool in hash function

context.
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In this Section we first recall notation and basic differential attack technique.

Next we describe some techniques for design of differential trails for block ciphers.

Then we define open-key distinguishers for block ciphers and in particular open-

key differential distinguishers.

Differential Analysis. We will focus our analysis on substitution-permutation

(SP) block ciphers. Each round of such ciphers consists of two types of transfor-

mations:

• a non-linear layer of S-boxes (S),

• a linear-diffusion layer (LD).

The non-linear layer operates on bytes, i.e. the inputs to the S-boxes are bytes

of the state. The linear-diffusion layer may apply different transformations such

as multiplications of the columns/rows of the state matrix by a fixed diffusion

matrix, transpositions of rows/columns, rotations of elements of the state matrix,

subkey additions, and others.

Differential trails for ciphers are given as a sequence of input-output word

differences of each transformation of the state. Since SP ciphers are usually

byte-oriented, these trails can be given as a sequence of active bytes, i.e. bytes

that have differences. Depending on the properties of the S-box layer and the

linear-diffusion layer, the adversary can built two types of trails.

The first type is a standard differential trail, where the exact values of the

input-output differences for each layer and for each round of the trail are fixed.

The probability of these trails depends on the differential properties of the S-

boxes, i.e. the probability that a given input difference to the S-box will produce

a given output difference. Note that when these differences are fixed, then the

trail in the linear-diffusion layer hold a probability 1.

The second type is a truncated differential trail (proposed in [64]). In this

trail only the position of the active bytes is important, while the actual differ-

ence values are ignored. Since, the S-box operates on a single byte, it means it

cannot change an active byte to a non-active and vice-versa. Hence the adver-

sary concentrates only on the linear-diffusion layer and finds the probability of a
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particular configuration of input-output active bytes.

Techniques for Differential Trail Constructions. A major improvement

in the analysis of SP cryptographic algorithms was the introduction of the re-

bound attack [91]. The idea is as follows. If we assume that the adversary con-

trols the input to the S-boxes in round i (Si), then any input-output difference

to this layer can be obtained for free (simple table lookups). More specifically

only half of the input-output differences are possible, but for each of them there

are two different input values and that is why on average this is true. In other

words, when ∆1,∆2 are fixed differences, then it is easy to find X such that

S(X + ∆1)⊕ S(X) = ∆2. In two consecutive middle rounds (round i and i+ 1)

the adversary first fixes both the input differences ∆′i of the LDi layer in the i-th

round, and the output differences ∆′2 of the LDi+1 layer of the (i+ 1)-th round.

Then he goes forward through the LDi layer and backwards through the LDi+1

layer. He ends up with fully determined differences ∆1 and ∆2, since the layers

are linear. In between there is only one S-box (Si) layer (composed of a number

of S-boxes), which can be passed for free when the adversary fixes the values, i.e.

when he finds the proper solutions for X of the above equation. Therefore, at the

beginning of the i-th round, and at the end of the (i+ 1)-th round, not only the

differences, but now also the values have been fixed. The rounds that precede and

follow the two middle rounds are passed probabilistically with probability p1×p2

dependent on the LD transformation. Compare simple example in Figure 2.6.

The example cipher block consists of 16 bytes which are transformed with LD

and S layers – each round starts with LD followed by S layer. The trail consists

of 4 rounds from i − 1 to i + 2. Darkened square represents nonzero difference

while not filled one – zero, so for example ∆′1 is a difference with non-zero values

only in the first column. Because key addition is not exploited for simplicity it

is omitted in the Figure.

The technique of the rebound attack was improved with the Super-Sbox crypt-

analysis [36, 46, 73]. When the round diffusion is incomplete then two layers of

S-boxes can be passed for free using a precomputed lookup tables. The idea is

similar to the one of the original rebound attack, but bigger lookup tables are
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Figure 2.6.: Example of the application of the rebound attack to a substitution-
permutation block cipher.

used.

The key can be used to gain an additional degree of freedom, which in return

can lead to more S-box layers passed for free. When the adversary controls the

key, then the rebound attack can be extended to one or two additional rounds,

depending on the size of the key. The subkey (round key) is XOR-ed in each

round of the cipher. The first S-box layer can be passed for free using the previous

rebound technique (by fixing not only the difference, but the exact values as well).

The second S-box layer can be passed for free as well if the adversary controls

the input values to this layer by solving the appropriate equations. These values

can be manipulated with the subkey, i.e. the adversary can choose a proper

subkey such that the inputs to the S-box layer can be of arbitrary value (yet,

their difference is fixed). Hence, the adversary can pass the second S-box layer

for free if he controls the subkey of this round.

Figure 2.7.: Example of application of the rebound attack to a substitution-
permutation block cipher in chosen-key model.

Let us explain the idea with an example (see Figure 2.7). The cipher block

consists of 16 bytes which are transformed with LD and S layers – each round

starts with LD followed by S layer. The trail consists of 2 rounds i and i + 1.

Key addition operation is marked with AK. Let ∆1 → ∆2 → ∆3 be an arbitrary
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two-round differential trail. First the adversary finds (with the rebound attack)

a pair of states that satisfies the differential trail of the i-th round, i.e. he finds a

pair (A,A⊕∆1) that produces (B,B ⊕∆2) on the output. Then independently,

he finds a pair of states for the (i + 1)-th round, i.e. he finds (C,C ⊕∆2) that

produces the output (D,D ⊕∆3). In the last step he has to fix a proper subkey

ki+1 for the (i + 1)-th round key addition operation AKi+1, which will connect

the output of the first round and the input of the second round. To do so,

the adversary fixes ki+1 = B ⊕ C, and as the result he obtains a pair of states

(A⊕ ki, A⊕ ki ⊕∆1) that satisfy the two round differential trail.

Similarly, the adversary can pass more S-box layers when he controls the sub-

keys of these layers. An obvious requirement for the subkeys of these additional

rounds is that they need to be independent. Otherwise, a change in a subkey

in one round will change the value of a subkey in another round, which might

lead to incorrect input values for the S-box layer of this second round. A second

requirement is an invertible key schedule. Since the adversary controls the values

of the subkeys of some middle rounds, he has to be able to produce the values

of the subkeys of the rounds that precede and follow these rounds, hence he has

to find the master key from the fixed subkeys. It is important to note that this

technique requires a negligible memory.

Building the Differential Trails. For each of the techniques discussed

above, the adversary first builds a trail that may have a plenty of active S-

boxes in some middle rounds and a few at the ends of the trail. Then, a pair of

values that follows the differential trail only in these middle rounds is found with

complexity 1. The rest of the rounds, before and after the middle rounds, are

found probabilistically since the adversary has no degree of freedom left.

In the case of byte oriented ciphers, finding the optimal differential trails with

no difference in the key can be done automatically. Hence, in case of block ciphers

of block size of b bytes the search space is reduced to only 216 possible starting

values.

Some of the ciphers are based on the so-called wide trail strategy [35], and

provide an efficient method for estimating the probability of the best round-
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reduced standard differential trails. These estimates are based on the differential

properties of the S-boxes and the diffusion properties of the LD layers, which are

often maximum distance separable mappings.

Open-key Distinguishers for Block Ciphers. A distinguisher is one of the

weakest cryptographic attacks that can be launched against a secret-key cipher.

In this attack, there are two oracles: one that simulates the cipher for which the

cryptographic key has been chosen at random and the other simulates a truly

random permutation. The adversary can query both oracles and their task is

to decide which oracle is the cipher (or random permutation). The attack is

considered to be successful if the number of queries required to make a correct

decision is below a well defined level.

The idea of open-key distinguishers was introduced by Knudsen and Rijmen

in [67] for analysis of AES and a class of Feistel ciphers. They examined the

security of these block ciphers in a model where the adversary knows the key.

Later, the same approach was used in the attack on 8-round reduced AES-128 [46]

and for analysis of Rijndael with large blocks [94], where the authors defined a

new security notion for a known-key cipher. The idea of chosen-key distinguishers

was introduced in the attack on the full-round AES-256 [20]. This time the

adversary is assumed to have a full control over the key. A chosen-key attack

was launched on 8-round reduced AES-128 in [21]. When we assume that the

adversary controls only differences in the key, a chosen-key attack is called a

related-key attack.

Both the known-key and chosen-key distinguishers are collectively known open-

key distinguishers. The adversary has the knowledge of the key or even can choose

a value of the key. To succeed, the adversary has to discover some property

of the attacked cipher that holds with a probability higher than for a random

permutation.

Open-key Differential Distinguishers. Differential distinguishers in the

open-key model are defined in similar way as in the secret-key model. However,

their main application is for hash function analysis, because in secret key setting

the known-key attacks are not regarded as a threat. The adversary builds a
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differential trail (∆P ,∆K)→ ∆2 for the block cipher EK(P ). In other words, he

finds a pair of plaintexts (P1,P2) and a pair of keys (K1,K2), together known as a

differential pair, such that P1⊕P2 = ∆P ,K1⊕K2 = ∆K and EK1(P1)⊕EK2(P2) =

∆2. In fact the adversary can build many pairs of plaintexts and keys. The pair

(∆P ,∆K) is the input difference, while ∆2 is the output difference. At least one

of ∆P and ∆K has to be non-zero. For example, the trails given in [21, 46, 94]

have differences only in the plaintext, while the trail from [20] has differences in

both the key and the plaintext.

2.5.3. Rotational Analysis

Rotational distinguishers exploit the fact that some transformations produce

rotated outputs for rotated inputs. In case of rotational analysis, opposed to

differential analysis where propagation of the difference x ⊕ y is tracked, the

adversary is analyzing propagation of a rotational pair (x, x≪r). The technique

was first introduced in [10, 65, 103] while it was formally proposed in [58].

A cyclic rotation on n bits to the left by r bits (0 < r < n) of a given binary

string a = (a0, . . . , an−1) is defined as:

a≪r= (a�r)⊕ (a�(n−r)),

that is

a≪r= (ar, . . . , an−1, a0, . . . , ar−1),

where � and � are left and right bit shifts, respectively. In the same manner

we can define a cyclic rotation on n to the right by r bits:

a≫r= (a�(n−r))⊕ (a�r),

that is

a≫r= (an−r, . . . , an−1, a0, . . . , an−r−1).

The hash functions we consider in dissertation, besides the ARX operations, use
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subtractions, shifts, bit-wise Boolean functions, multi additions and a combina-

tion of multi additions and multi subtractions. The following lemmas characterize

the probability that a given transformation may preserve the rotational property.

The proofs of the lemmas are presented in Appendix A.

Lemma 2.1 (Addition and Subtraction). Given a pair of n-bit words x, y and a

positive integer r, then

Pr((x ? y)≪r= x≪r ? y≪r) =
1

4
(1 + 2r−n + 2−r + 2−n),

where ? ∈ {+,−}.

Lemma 2.2 (Shifts). Given an n-bit word x and two positive integers r, s, then

Pr((x�s)≪r= (x≪r)�s) = 2−2t,

Pr((x�s)≪r= (x≪r)�s) = 2−2t,

where t = min(r, s, n− r, n− s).

Lemma 2.3 (Boolean function). Given a bit-wise Boolean function f ∈ {∧,∨,¬},

then

Pr(f(x)≪r= f(x≪r)) = 1,

where x is a n-bit word and r is some positive integer.

Lemma 2.4 (Multiplication). Given a pair of n-bit words x, y and positive inte-

gers r, s, then

Pr(x≪r · y≪s= (x · y)≪(r+s)) ≥ 2−2(r+s).

A pair (X,X ≪r) for X ∈ {0, 1}m×n where X = (X1, . . . , Xm) is called a

rotational pair with rotational amount r, where X≪r is understood as element

wise rotation of X, that is:

X≪r= (X1 ≪r, . . . , Xm≪r).
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Given a transformation F : {0, 1}n → {0, 1}n and a rotational pair of inputs

(X1, X1 ≪r), X1 ∈ {0, 1}n we say that F preserves the rotational property if

the equality

F (X1)≪r= F (X1 ≪r)

is fulfilled. Hence, F preserves rotational property if for (X,X ≪r), pair

(F (X1), F (X1 ≪r)) is rotational. A system Φ(X) : {0, 1}m×n → {0, 1}k×n

that consists of the transformations F1, . . . , Fk : {0, 1}m×n → {0, 1}n, i.e. Φ =

(F1, . . . , Fk), preserves the rotational property if it produces a rotational output

pair for a rotational input pair.

We would like to address two important issues in rotational analysis:

• in case of the differential analysis, the adversary may introduce differences

on a part of the input, while in the rotational analysis, all the input pairs

of words have to be rotational.

• there are only a few transformations that preserve the rotational property

for any input pair and in majority of cases, for an arbitrary input X, the

condition F (X)≪r= F (X≪r) holds with a probability pF .

The probability pF is further called a rotational probability of F and it depends

on the integer r. If we assume that the outputs of the transformations are in-

dependent, then a system Φ composed of transformations F1, . . . , Fk preserves

the rotational property with the probability pΦ = pF1 · pF2 · . . . · pFk
. Therefore,

in order to find the probability that a system preserves the rotational property,

one only has to find the probabilities that each instance of the underlying trans-

formations preserves this property. For a random system with n-bit output, the

probability that a rotational input will produce rotational output is 2−n. There-

fore, if a system Φ with n-bit output, has a rotational probability pΦ > 2−n, then

this system can be distinguished from a random system.

A pair of n-bit words (X,Y ) can be fully rotational, i.e. X≪r ⊕Y = 0, or only

on t bits, i.e. hw(X≪r ⊕Y ) = n− t, where hw is the hamming weight function.

Basically, we require the output pairs of all internal transformations to be fully
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rotational. We make an exception for the last transformation, where it is enough

to have t rotational output bits as they can be used to build a distinguisher.

For some transformation, instead of taking rotational input pairs, it is better to

introduce correction by XOR-ing some low hamming weight word to the second

input, i.e. instead of (X,X≪r), we take (X,X≪r ⊕δ). IfX is input to another

transformation, then the correction most likely has to be canceled (often by XOR-

ing the same correction to some other input). Otherwise, a non-rotational input

pair may significantly decrease the probability of rotational output pair for the

second transformation.

Since most of the transformations preserve the rotational property only with

some probability, we can observe errors in the cases when the property does

not hold. A rotational error eF of the transformation F is defined as eF =

F (X) ≪r −F (X ≪r). Depending on the actual value of X, different values

for the rotational error may be produced. The errors may cancel each other as

well. For example, let the output pairs of two distinct transformations have the

same rotational errors, but with opposite sign, i.e. F1(X) ≪r −F1(X ≪r) =

e, F2(Y )≪r −F2(Y ≪r) = −e. If the outputs of F1, F2 are inputs to addition,

then the output pair of addition will be rotational (with the rotational probability

of addition), since (F1(X) + F2(Y ))≪r= F1(X)≪r +F2(X)≪r= F1(X≪r

) + e+ F2(Y ≪r)− e = F1(X≪r) + F2(Y ≪r).

2.5.4. Shift Analysis

In line with the rotational analysis, a similar yet distinct form of attack, which

we call a shift analysis, is available. Whereas in rotational analysis the adver-

sary follows the propagation of the rotational pair (x, x≪r), in shift analysis he

follows the pair (x, x �s) or (x, x �s), where s is the shift amount. There is a

significant difference in the shift probabilities of various transformations depend-

ing if the adversary considers shifts to the left or to the right. For our purposes

we will consider shifts to the left, i.e. the shift pair is defined as (x, x�s). In this

case, when the analyzed primitive lacks addition of constants, the shift analysis

might be more efficient (has a higher probability) than the rotational analysis.
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This comes from the fact that the rotational and shift probabilities for certain

transformations are not equal. For example, rotations and modular additions

have different rotational and shift (to the left) probabilities.

2.5.5. T-functions and S-functions

T-functions (see [61–63]), which is short for triangular functions, are very com-

mon building blocks in cryptography. The most popular examples of such func-

tions are XOR and modular addition. T-functions are characterized by the fact

that their output at position k depends only on the input positions k-th and

lower. The formal definition of T-function is:

Definition 2.5. ([38]) A function f : {0, 1}m×n → {0, 1}l×n is called a T-

function if the k-th column of the output [f(x)]k−1 depends only on the first

k columns of the input [x]k−1, . . . , [x]0 where:



[x]0

[x]1
...

[x]n−1



T

→



f0([x]0)

f1([x]0, [x]1)

...

fn−1([x]0, . . . , [x]n−1)



T

.

Except for the mentioned XOR and modulo addition, the condition from the

above definition is also met by all bit-wise Boolean functions and modulo multipli-

cation of integers. What is more, composition of T-functions is also a T-function.

It has been shown in [96] that triangular property of hash function design might

facilitate its cryptanalysis.

When we consider for instance an additional modulo 2n, we can observe in-

teresting property of this particular T-function. The k-th column of output can

be calculated only based on k-th input column and knowledge of carry from the

(k− 1)-th column. In general the group of T-functions can be defined as follows:

Definition 2.6. ([38]) A T-function is called w-narrow function if there are

mappings: α1 : {0, 1}m → {0, 1}w and αk : {0, 1}m+w → {0, 1}w for k = 2, . . . , n−

1, auxiliary variables: a1 = α1([x]0) and ak = αk([x]k−1, ak−1) for k = 2, . . . , n−1
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such that f can be written as:



[x]0

[x]1
...

[x]n−1



T

→



f0([x]0)

f1([x]1, a1)

...

fn−1([x]n−1, an−1)



T

.

The smallest w such that some f is w-narrow is called the narrowness of f .

In [27, 77, 95] the w-narrow functions are referred as S-functions which is

short for state functions. The auxiliary variables ai from the Definition 2.6 are

called there states. Leurent provides also freely available tool for analysis ARX

primitives with use of S-function toolkit accompanying [77].
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Block Ciphers

In this chapter, we study the security of hash functions based on block ci-

phers with respect to differential attack. The study applies open-key differ-

ential distinguishers. For 16 hash function modes based (see Tables 2.1 and

2.2) on block-ciphers, we determine which collision finding attack variants (col-

lisions, pseudo collisions, semi-free start collisions, or free start collisions) are

feasible, assuming that the adversary is given a specific differential trail for the

underlying block cipher in the open-key model. We target all Preneel-Govaerts-

Vandewalle (PGV) single-block-length compression modes, as well as four double-

block-length modes. We examine several well known block ciphers (Crypton,

Hierocrypt-3, SAFER++, Square, and generic Feistel ciphers) and for each of

them, we present new known-key and chosen-key differential distinguishers. Our

distinguishers use the rebound attack [91] as a starting point, but we obtain

substantial improvements in the number of attacked rounds by exploiting some

cipher-specific properties that allow us to manipulate bits of the subkeys (a sim-

ilar technique was used in the context of analysing the Whirlpool function [73]).

In the chosen-key model, for substitution-permutation (SP) ciphers, we obtain

an explicit formula for the number of additional rounds that can be attacked for

free, when the cipher has an invertible key schedule.

To show the efficiency of our distinguishers, we give proof of a lower bound

on the complexity of differential distinguishers in the case of a black-box random

permutation. Although this bound has been used for a while (mainly as an upper

bound, e.g. in [46] it is called a limited-birthday distinguisher), as far as we know,
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it has never been formally proved.

Organization. The chapter is organized as follows. In Section 3.1, we present

our findings about the impact of block cipher differential trails on the security of

hash function modes. Section 3.2 contains our lower bound on the complexity of

differential distinguishers for black-box random permutations. In Section 3.3, we

present our cipher specific known-key and chosen-key differential distinguishers

for various block ciphers. Section 3.4 concludes the chapter.

3.1. Impact of Block Cipher Known Key Differential

Trails on Hash Modes

The most popular design of cryptographic hash is based on iterative use of a

compression function. This construction is also known as the Merkle-Damg̊ard

(MD) structure. Early compression functions used block ciphers as the main

building block. Assume that we have a single instance of a block cipher EK(P )

and wish to design a compression function that takes a 2n-bit input (h,m) and

outputs a n-bit string f(h,m). This problem has been investigated in [22, 102]

and it has been shown that there are 12 structures (modes) that are secure. An

example of one such structure is the well-known Davies-Meyer (DM) mode that

is defined as f(h,m) = Em(h)⊕h, where h and m are the chaining value and the

message, respectively.

In this work, we consider four types of collision attacks against the compression

functions:

1. Collisions - for a fixed chaining value h0, the adversary tries to find two

distinct messages m1,m2 such that f(h0,m1) = f(h0,m2).

2. Pseudo collisions - for a message m, the adversary wishes to find two distinct

chaining values h1, h2 such that f(h1,m) = f(h2,m).

3. Semi-free start collisions - the adversary attempts to find two distinct mes-

sages m1,m2 and a chaining value h such that f(h,m1) = f(h,m2).
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4. Free start collisions - the adversary tries to find two distinct chaining values

h1, h2, and two distinct messages m1,m2 such that f(h1,m1) = f(h2,m2).

We investigate the resistance of compression functions based on block ciphers

against the attacks described above. We assume that the adversary can build a

differential trail for the cipher with differences not only for the plaintext, or for

the key, but also for both the plaintext and the key. For example, for the DM

compression function, this means that the adversary can find a pair of chaining

values (h1, h2) and a pair of messages (m1,m2) (possibly in one of the pairs the

two values are equal) such that h1 ⊕ h2 = ∆h,m1 ⊕m2 = ∆m and f(h1,m1) ⊕

f(h2,m2) = ∆h⊕∆2. Hence, when the adversary can build some trail, i.e. when

he cannot control the exact values of the differences ∆h,∆2, then he can find a

differential distinguisher for the DM compression function. On the other hand,

when the adversary can build a specific trail for the cipher with a difference in

the plaintext (h is the plaintext input to the cipher), such that ∆h ⊕ ∆2 = 0,

then he can find: 1) free-start collisions, if ∆m,∆h 6= 0, 2) pseudo-collisions, if

∆m = 0,∆h 6= 0, 3) collisions or semi-free start collisions, if ∆m 6= 0,∆h = ∆2 =

0 (note that this implies that there are key collisions in the cipher since in DM,

the message is the key).

The same approach can be applied to the other 11 modes. We try to find all

possible collision attacks under the assumption that the adversary can control

the relation between the input and the output differences of a trail in the cipher.

Our findings are presented in Table 3.1. The first column consists of numbers

from [22]. The entries in the plaintext columns, key, plaintext and key show the

best collision attacks for the modes when there is difference only in the plaintext,

only in the key or both in the plaintext and key, respectively. The abbreviations

C, PC, SFSC, FSC stand for collision, pseudo-collision, semi-free start collision,

free start collision, respectively.

Often the block size of a cipher is too small to be secure in the compression

mode. Hence, there is a class of compression functions, also called double-block-

length ones, whose output size is two times bigger than the block size of the
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Table 3.1.: Summary of findings for single block modes.

mode
(ı)

h′ plaintext key
plaintext
and key

1 Eh(m)⊕m C, SFSC PCa FSC

2 Eh(h⊕m)⊕ h⊕m C, SFSC PC PC, FSC

3 Eh(m)⊕ h⊕m C, SFSC PC FSC

4 Eh(h⊕m)⊕m C, SFSC PC PC, FSC

5 Em(h)⊕ h PC Ca, SFSCa FSC

6 Em(h⊕m)⊕ h⊕m PC FSC C, SFSC, FSC

7 Em(h)⊕ h⊕m PC C, SFSC FSC

8 Em(h⊕m)⊕ h PC FSC C, SFSC, FSC

9 Eh⊕m(m)⊕m FSC PCa C, SFSC, FSC

10 Eh⊕m(h)⊕ h FSC Ca, SFSCa PC, FSC

11 Eh⊕m(m)⊕ h FSC PC C, SFSC, FSC

12 Eh⊕m(h)⊕m FSC C, SFSC C, PC, FSC

aWhen key collisions exist in the cipher.

underlying cipher. We investigate the security of such functions proposed by Lai-

Massey in [72], Hirose in [54] and Bracht et al. in [24]. Our results are presented

in Table 3.2. In the first column A-DM, T-DM and Hirose are abbreviations of

Abrest DM, Tandem DM and Hirose’s Double-Block-Length, respectively. The

abbreviations C, PC, SFSC, FSC stand for collision, pseudo-collision, semi-free

start collision, free start collision, respectively.

Table 3.2.: Summary of findings for double block modes.

mode (h′, g′) plaintext key
plaintext
and key

A-DM
h′ = Eg,m(h)⊕ h
g′ = Em,h(ḡ)⊕ g FSC C, SFSC PC, FSC

T-DM
h′ = Eg,m(h)⊕ h

g′ = Em,Eg,m(h)(g)⊕ g FSC C, SFSC PC, FSC

MDC-2
h′ = (Eh(m)⊕m)L ‖ (Eg(m)⊕m)R

g′ = (Eg(m)⊕m)L ‖ (Eh(m)⊕m)R
C, SFSC PCa FSC

Hirose
h′ = Eh‖m(g ⊕ c)⊕ g ⊕ c

g′ = Eh‖m(g)⊕ g PC
C, PC,

SFSC, FSC
PC, FSC

aWhen key collisions exist in the cipher.

Although we have analyzed the collision resistance of the above modes, the

differential trails for the underlying ciphers in the open-key model can be used

as a standalone cryptanalytical result for the compression functions.
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3.2. Lower Bound on Complexity of Differential Distinguisher for Random Permutations

3.2. Lower Bound on Complexity of Differential

Distinguisher for Random Permutations

In this section we present a lower bound on the complexity of differential dis-

tinguishers for a black-box random permutation. This allows us to make a fair

comparison of our cipher-specific distinguisher complexities in Section 2.5.2 to

the best possible black-box distinguisher. Although a similar upper bound has

been used before (see, e.g. [46]), our result proves that it is indeed close to the

best possible. To our knowledge, such a lower bound has not been published

before, and may be of independent interest.

When the key is fixed, a block cipher becomes a permutation. An open-key

differential distinguisher with no difference in the key is valid if the complexity

of finding a differential pair is less than the complexity of finding such pair in a

random permutation. When the input and output differences are fully fixed, in

n-bit random permutation the complexity of finding a differential pair is 2n, hence

any differential distinguisher with a probability higher than 2−n is valid. When

the input difference is fixed, and the output difference can take values from a set

of the cardinality 2c, then for a random permutation, a differential pair can be

found after performing 2n−c encryptions. The general case when both the input

and the output differences are taken from sets of fixed cardinalities, is discussed

in the following lemma.

Lemma 3.1. Let DI , DO denote subsets of {0, 1}n, which are closed under ⊕, i.e.

x⊕ y ∈ DI (respectively DO) for x, y ∈ DI (resp. DO). For any attacker making

queries to a random n-bit permutation π and its inverse π−1, the complexity

(measured in expected number of oracle queries) of finding a pair of inputs (x, y),

where x ⊕ y ∈ DI , |DI | = 2cI , such that π(x) ⊕ π(y) ∈ DO, |DO| = 2cO , is lower

bounded as Q ≥ min(2
n
2
−2, 2n−(cI+cO)−3).

Proof. Since DI and DO are closed under ⊕, we may partition {0, 1}n into input

sets A1, . . . , AN , where each |Ai| = |DI | = 2cI , N = 2n

|DI | = 2n−cI , such that

x ⊕ y ∈ DI for x, y ∈ Ai for i = 1, . . . , N . Similarly, we have a partition into
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3. Open Key Differential Analysis for Block Ciphers

output sets B1, . . . , BM where |Bj | = |DO| = 2cO , M = 2n

|DO| = 2n−cO for all

j = 1, . . . ,M .

Let us define the following game G0: attacker A has an access to a random

permutation oracle π : {0, 1}n → {0, 1}n and its inverse π−1, making a total of q

queries to these oracles.

In the following games Gk (k = 0, 1, 2), let Ek be the following event: A finds

x 6= y with x, y ∈ Ai and π(x), π(y) ∈ Bj for some i, j while interacting with

game Gk.

We show below the following upper bound:

Pr(E0) ≤ q2

2n
+

q

2n−(cO+cI)
. (3.1)

Before we explain the formal proof, we remark that the intuition for this result is

as follows. The first term q2

2n is the upper bound on the collision probability error

due to the fact that we simplify the problem by replacing the random permutation

π with a random function. The last term arises because at each query to π (resp.

π−1) which is in some input set Ai (resp. output set Bj) there are at most 2cI

points in Ai whose image under π is already defined (resp. at most 2cO points in

Bj whose image under π−1 is already defined), thus occupying at most 2cI out of

the 2n−cO output sets (resp. at most 2cO out of the 2n−cI input sets).

We first show that (3.1) implies the claimed expected complexity bound. In

game G0, let T denote the random variable defined as the number of oracle

queries until the event E0 occurs. We lower bound the expected value Q = E(T )

as follows. Let p(q) denote the right hand side of (3.1), and let q∗ be such that

p(q∗) = 1
2 . Since Pr(T ≤ q) ≤ p(q), we have

Q ≥
∑
q>q∗

Pr(T = q) · q ≥ q∗ · Pr(T > q∗) ≥ q∗

2
. (3.2)

Now, for i ∈ {1, 2}, let qi denote the value of q such that the ith term on the

right hand side of (3.1) is equal to 1
4 . Since there are 2 terms in (3.1), we may

take min(q1, q2) as lower bound for q∗. Since q1 = 2
n
2
−1 and q2 = 2n−(cI+cO)−2,
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3.2. Lower Bound on Complexity of Differential Distinguisher for Random Permutations

the claimed lower bound on Q follows.

It still remains to prove (3.1). We will do this by building a chain of games,

starting with G0, which are similar until bad is set (for further details of this

methodology see for example [8]).

First define a game G1 to be similar to G0 except that the permutation π

is replaced by a relation P ⊂ {0, 1}n × {0, 1}n that is injective and functional,

but not necessary defined in the whole domain. According to naming convention

in [8] relation P is called partial permutation, whereas injectivity and functional

conditions together are named “permutation constraint”. Initially P is empty

and through execution of G1 its values are being sampled randomly with respect

to “permutation constraint”. Whenever P (x) (resp. P−1(y)) is needed first

it is checked if P (resp. P−1) is defined on x (resp. y). If this is the case

then appropriate value is returned, otherwise P (x) (resp. P−1(y)) is sampled

uniformly at random from img(P ) (resp. img(P−1)), where img(P ) is complement

of image of P . Because the sampling is the same as in the Game G0, we have

Pr(E0) = Pr(E1). (3.3)

Next we define game G2 which is the same as G1 except “permutation con-

straint” for P does not need to be fulfilled. That means the values P (x) (resp.

P−1(y)) are sampled at random from {0, 1}n, but the game stops immediately

when the “permutation constraint” is not satisfied. Unless the “permutation con-

straint” is violated by the occurrence of a collision between a new output value

returned by P and a previous output value of P or input value queried to P−1

(resp. a collision between a new output value returned by P−1 and an previous

output value of P−1 or input value queried to P ), the games G1 and G2 proceed

identically. Since at each query there are at most q previous P (resp. P−1)

output values already defined, we have

|Pr(E2)− Pr(E1)| ≤ q2

2n
. (3.4)
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3. Open Key Differential Analysis for Block Ciphers

At this stage we stop building chain of games and we upper bound the proba-

bility Pr(E2) directly. We claim that

Pr(E2) ≤ q

2n−(cO+cI)
. (3.5)

Let x denote the qth query of the attacker, define the following variables for

i = 1, . . . , N and j = 1, . . . ,M :

• aFi = number of P oracle queries made so far which are in Ai,

• aRi = number of P−1 oracle answers given so far which fell in Ai,

• bFj = number of P−1 oracle queries made so far which are in Bj ,

• bRj = number of P oracle answers given so far which fell in Bj .

Suppose that x is a query to P and that x ∈ Ai for some i. We have so far aFi +aRi

points in Ai whose Bj sets are already defined. Hence the event E2 will occur

only if the uniformly random (in {0, 1}n) answer of P falls in one of those output

sets, so it will happen in this query with probability ≤ aFi +aRi
M ≤ |DI |

M = 1
2n−(cI+cO) ,

using aFi + aRi ≤ |DI | (since the game has not stopped so far). Similarly, if x is

a query to P−1 and x ∈ Bj for some j, then E2 will occur in this query with

probability ≤ bFj +bRj
N ≤ |DO|

N = 1
2n−(cI+cO) . It follows that E2 occurs among the

first q queries with probability bounded by (3.5), as claimed. This completes the

proof of the Lemma.

3.3. Differential Trails for Specific Block Ciphers

We have searched for differential trails in the following ciphers: Crypton,

Hierocrypt-3, SAFER++, and Square. Especically, we have tried to build stan-

dard and/or truncated trails, which can be used in a rebound-type attack. For

some of the ciphers, the probabilities for both the standard and the truncated

differential trails to be higher than in a random permutation. In this case, only

the trails (which are usually truncated) with higher probability are presented.
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3.3. Differential Trails for Specific Block Ciphers

The trails for the chosen-key distinguishers were built upon the trails for the

known-key distinguishers by increasing the number of the full active middle

rounds which can be covered for free when a proper subkey is fixed. When n-bit

key is used, with an invertible key schedule that produces s-bit subkeys, then the

chosen-key distinguisher has bns c more rounds than the known-key distinguisher.

3.3.1. Crypton, Hierocrypt-3 and Square

Crypton [82], Hierocrypt-3 [32], and Square [34] are 128-bit SP block ciphers

and have a various number of internal rounds depending on the length of the

key. The best published attacks in the secret-key model are on 8 rounds of

Crypton [60], 3-3.5 rounds of Hierocrypt-3 [7], and 8 rounds of Square [68].

The internal state of each cipher can be seen as 4× 4 matrix of bytes, while a

round consists of three types of transformations of the state:

1. byte-wise application of a non-linear S-box,

2. matrix-wise linear-diffusion (LD) layer that applies different linear trans-

formations of various bytes of the matrix to introduce a sufficient diffusion

among the bytes of the state,

3. subkey addition – a simple XOR of the round key to the matrix.

A round of Crypton consists of an S-box layer γ, LD layer composed of two trans-

forms π and τ , and subkey addition σ. Hierocrypt-3 has six round transforms:

two S-box layers [S], two LD layers [MDSL] and [MDSH ], and two subkey ad-

ditions [AK]. A round of Square consists of four transforms: S-box layer γ, LD

layer with two transforms θ and π, and a subkey addition σ. It is important to

notice that all three ciphers have a non-linear, but invertible, key schedule. The

256-bit key versions of Crypton and Hierocrypt-3, have a key schedule such that

each two consecutive 128-bit subkeys are independent.

For each cipher, we can build 7-round truncated differential trails (7 S-box layer

trail in case of Hierocript), that have a full active state in the middle round, but

only a few active S-boxes in the rest of the 3+3 rounds (S-box layers of Hierocript).
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3. Open Key Differential Analysis for Block Ciphers

These trails can be used to construct known-key distinguishers on 7 rounds of

the ciphers, based on the rebound technique. Since the ciphers have invertible

key schedules, we can increase the number of attacked rounds by switching from

the known-key to the chosen-key attacks and using the degrees of freedom of

the subkeys. Hence, we can construct a chosen-key differential distinguisher on

8 rounds of Crypton with 128-bit keys, and 9 rounds of Crypton with 256-bit

keys (the additional round comes from extra 128-bit freedom of the key; the

chosen-key has b256
128c = 2 more rounds than the known-key, see Section 2.5.2).

For Hierocrypt-3, the result is a chosen-key distinguisher on 8 S-box layers =

4 rounds for 128-bit keys, and on 9 S-box layers=4.5 rounds for 256-bit keys.

Square only supports 128-bit keys, hence the chosen-key distinguisher works on

8 rounds, which is indeed the total number of rounds of this cipher.

The trails used in the chosen-key distinguishers for 9, 4.5 and 8 rounds of

Crypton, Hierocrypt-3, and Square, respectively, are given in the Figure 3.1, the

Figure 3.2 and the Figure 3.3, respectively.

Figure 3.1.: Truncated differential trail for 9 rounds of Crypton for chosen-key
distinguisher and 256-bit key.

Figure 3.2.: Truncated differential trail for 4.5 rounds of Hierocrypt for chosen-
key distinguisher and 256-bit key.
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3.3. Differential Trails for Specific Block Ciphers

Figure 3.3.: Truncated differential trail for 8 rounds of Square for chosen-key
distinguisher (σ′ = σ(θ(k0))).

Since the middle full-active state round(s) are covered by the rebound attack

and by fixing the subkeys used in these rounds, we can assume that the probability

of the trails in these rounds is 1. Hence, we count only the probability of the rest of

the rounds. In each of the three trails, we have twice 2−24 – that is the probability

that the linear-diffusion transformation will turn four active bytes into one active

byte. The probability of the trail in the rest of the layers is 1. Therefore, to

find pairs of plaintexts and ciphertexts that will follow the truncated differential

trails, one has to start with 248 pairs of states that pass the middle rounds (each

pair can be build with negligible complexity). Out of 248 pairs, 224 will produce

four-to-one active byte in the first half of the trail, leading to a plaintext difference

as the one in the trail. Out of these 224, one will produce four-to-one active in

the second half of the trail and a ciphertext difference as the one in the trail.

Now, let us try to compare our complexity of 248 encryptions to the complexity

in a case of a random permutation. By Lemma 3.1, to find this complexity we

have to find the cardinalities of the plaintext and the ciphertext differences in

the truncated trails. Although some of the plaintext/ciphertext differences in the

trails have full active states, they are obtained by a linear transformation of some

state with a four active bytes. Hence the cardinalities in all cases are 24·8 = 232,

and the complexity of producing a pair for a random permutation, that follows

the trails, is at least min(2
128
2
−2, 2128−(32+32)−3) = 261 encryptions.

To test the correctness of our results, we have constructed a chosen-key distin-

guisher on mCrypton [83], which has the same design as Crypton, but instead of

bytes (8-bit words), it works with nibbles (4-bit words), and uses a non-invertible

key schedule. The above distinguishers for Crypton can easily be applied to a
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3. Open Key Differential Analysis for Block Ciphers

modified version of mCrypton with a (invertible) key schedule identical to the one

of Crypton. The chosen-key distinguisher for 9 rounds of this modified mCryp-

ton was implemented on a PC, and a differential pair was found, an example

of which is presented in the Figure 3.4. The columns in the table represent: i

- round number, A[i] - value of the state in round i, D[i] - difference between

two states in round i, Dγ [i] - difference between two states after γ in round i,

Dπ◦γ [i] - difference between two states after π◦γ in round i, Dτ◦π◦γ [i] - difference

between two states after τ ◦ π ◦ γ in round i, K[i] - subkey in round i. The trail

was obtained for K = 679ff202d5834e529d9cf7013a4d8218.

i A[i] D[i] Dγ [i] Dπ◦γ [i] Dτ◦π◦γ [i] K[i]

1

0 1 d 3

7 7 0 1

1 b 6 5

e a 3 b

6 1 b 9

e 7 1 f

4 b b 3

c f 4 5

c 0 0 0

c 0 0 0

8 0 0 0

4 0 0 0

c 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

c 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

9 8 2 2

e 6 1 5

a 7 a 2

d d 3 4

2

1 1 a c

9 1 3 7

5 9 d 2

e 7 1 4

c 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

9 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

8 0 0 0

9 0 0 0

9 0 0 0

1 0 0 0

8 9 9 1

0 0 0 0

0 0 0 0

0 0 0 0

e 0 8 d

c a 4 2

a 5 4 1

2 b c 7

3

7 9 5 2

c a 2 8

6 a 3 d

6 8 a 0

8 9 9 1

0 0 0 0

0 0 0 0

0 0 0 0

9 a f d

0 0 0 0

0 0 0 0

0 0 0 0

8 8 b 5

9 a 7 c

9 2 e d

1 a d 9

8 9 9 1

8 a 2 a

b 7 e d

5 c d 9

3 5 3 4

b 8 b 0

c 8 1 9

e 2 9 a

4

6 c b 1

a d 6 f

f 9 b 8

1 6 8 2

8 9 9 1

8 a 2 a

b 7 e d

5 c d 9

d 5 4 b

5 e 9 3

1 1 4 2

d b 2 4

d 4 5 1

1 e a d

1 1 f c

9 a b e

d 1 1 9

4 e 1 a

5 a f b

1 d c e

5 9 5 7

c e d 2

f 3 6 0

d b 2 4

5

8 6 f 0

e 0 d 0

0 0 7 0

0 d 0 7

d 1 1 9

4 e 1 a

5 a f b

1 d c e

1 6 a 7

b c 4 8

e 9 b 4

2 2 9 5

1 f d a

e e 6 b

c 1 4 d

5 1 3 2

1 e c 5

f e 1 1

d 6 4 3

a b d 2

3 d 5 0

3 8 e a

5 4 4 0

b f 1 7

6

0 0 0 5

0 0 6 6

0 0 0 0

7 2 3 0

1 e c 5

f e 1 1

d 6 4 3

a b d 2

e 8 2 7

c a 6 e

a 2 6 d

6 a 4 b

e a 6 f

0 0 0 0

0 0 0 0

0 0 0 0

e 0 0 0

a 0 0 0

6 0 0 0

f 0 0 0

9 e 0 c

8 a e a

b 0 4 6

b f b 1

7

d e 7 f

b 7 3 7

0 d 4 d

3 3 0 2

e 0 0 0

a 0 0 0

6 0 0 0

f 0 0 0

e 0 0 0

c 0 0 0

a 0 0 0

6 0 0 0

e 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

e 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

3 e 4 0

1 7 8 d

1 f 6 c

5 e 4 7

8

1 b 5 0

f 0 e c

1 7 1 2

9 2 4 7

e 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

6 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

6 0 0 0

4 0 0 0

2 0 0 0

6 0 0 0

6 4 2 6

0 0 0 0

0 0 0 0

0 0 0 0

9 8 c 2

d a b 9

4 0 a 9

5 0 a 7

9

7 7 3 d

e e e d

0 0 2 a

b b c 0

6 4 2 6

0 0 0 0

0 0 0 0

0 0 0 0

f 9 c c

0 0 0 0

0 0 0 0

0 0 0 0

e 9 8 4

d 9 4 c

b 1 c c

7 8 c 8

e d b 7

9 9 1 8

8 4 c c

4 c c 8

3 3 3 4

e 6 8 0

6 b 9 2

5 b 9 9

10

8 5 d 0

9 0 2 6

9 e 5 2

5 e a 9

e d b 7

9 9 1 8

8 4 c c

4 c c 8

7 2 9 9

a 8 d d

1 c f e

6 2 7 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 3 c 3

8 2 0 9

8 8 3 a

8 c 1 e

Figure 3.4.: Example of differential pair for mCrypton.

The detailed description of modified version of mCrypton can be found in
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3.3. Differential Trails for Specific Block Ciphers

Appendix B.

3.3.2. SAFER++

SAFER++ [86] is a 128-bit SP block cipher. The version with 128-bit key

has 7 rounds and the best published attack works for 5.5 rounds [18]. A round

of SAFER++ consists of: 1) a byte-wise subkey addition, 2) a byte-wise S-box

layer, 3) a byte-wise subkey addition, and 4) a state-wise linear-diffusion layer

in the form of four 4-PHT. The subkey additions are modular and XOR, and

two different S-boxes are used. After the last round, there is an extra subkey

addition. The key schedule is linear.

When the subkeys are fixed, then the S-box layer can be merged with the

subkey additions to form another S-box layer, with the same input and output

size. In other words, the subkey addition together with S-box and the subkey

addition can be seen simply as some S-box (since the bytes of the subkeys are

different, the S-boxes are also different). Hence, we can assume that a round of

the cipher is composed of an S-box layer and a linear-diffusion layer, and all the

additions in the cipher are modular.

Our automatic search for the best round-reduced standard differentials has

found that there exist only two three-round trails with 10 active S-boxes (the rest

of the trails have more than 10 active S-boxes). The first trail has 4,2,4 while

the second has 2,3, and 5 active S-boxes in the first, the second, and the third

round, respectively. We have used two 4-2-4 trails in our standard differential

attack (see Figure 3.5 and Figure 3.6 for detail values of differentials).

We attack 6.5 rounds of SAFER++, which is the full cipher, except for the first

round, where the three transforms: subkey addition, S-box and subkey addition,

are missing. As far as we know this is the first rebound attack with standard

differentials. Therefore, we will describe it in more details.

First, to cancel the effects of the last extra subkey addition, we fix the MSB

of the bytes 1, 3, 9, 12, 13, 14, 15, 16 of the last subkey to zero, while the values

for the other bits of the subkey are randomly chosen. Then, from the mentioned

subkey, we find the value of the master key, and the values for all remaining
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3. Open Key Differential Analysis for Block Ciphers

Figure 3.5.: Standard differential trail for 6.5 rounds of SAFER++ for the chosen-
key distinguisher and 128-bit key. The first round is without the
S-box layers, crossed square represents fixed 8-bit difference.

subkeys. Now we are ready to start the rebound attack.

We assign differences to the bytes 2, 3, 5, 13 (and no difference to other bytes)

of the state before the linear layer in round 3. The differences should be such

that after the linear layer all bytes are active (this holds for almost any assigned

value). Similarly, we assign differences to bytes 2, 4, 9, 12 of the state after the

linear layer in round 4, go backwards through the linear layer and obtain a full

active state. In between the top and the bottom active states, there is only the S-

box layer, hence we match the differences through this layer, i.e. we fix the values

of the bytes such that all the input differences produce all the output differences.

Since the values of the full state have been fixed, the rest of the rounds are passed

probabilistically. There are 2, 4, 4, 2, 4 active S-boxes (16 in total) in the rounds

2, 3, 5, 6, 7, respectively.

If we assume that the differential propagation through all of the S-boxes occurs

with the probability 2−7 then the complexity of the whole attack is 27·16 = 2112

encryptions. Note that for a fixed key, we have 264 starting values for the rebound

attack. We can choose different keys (such that the last subkey has the MSB of

the mentioned above bytes fixed to zero) to get the necessary number of starting

pairs for the differential attack. Since the input and output differences of the

differential pair are fully fixed, such a pair in a random permutation can be

found with 2128 encryptions.
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3.3. Differential Trails for Specific Block Ciphers

Figure 3.6.: Standard differential trail for 6.5 rounds of SAFER++ for chosen-key
distinguisher and 128-bit key. The first round is without the S-box
layers, * represents any non-zero 8-bit difference.
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Figure 3.7.: Chosen-key distinguisher for 3-round Feistel ciphers.

3.3.3. Feistel Ciphers

Feistel ciphers with a SP round function can have a number of rounds covered

for free in the known and chosen-key differential attacks. When the key is known,

the S-box layers of two consecutive rounds can be attacked independently since

the round function uses only half of the input. For a given two-round differential,

first a pair of input states that satisfy the differential of the first round function

is fixed, and then a pair of states of the second round function. Therefore, in an

known-key attack, any differential trail can be extended by two additional rounds

(this should not be confused with the distinguishers on 7-round Feistel ciphers

proposed in [67]).
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3. Open Key Differential Analysis for Block Ciphers

Assume that the adversary can control the key in a Feistel cipher. As the size

of the input to the round function and the size of the round key are (usually) half

as big as in the SP ciphers, the number of rounds that can be attacked for free

is twice as big as for the SP ciphers. Let us examine the possibility of obtaining

a pair of states for a three-round differential. Let n-bit Feistel cipher has an

invertible key schedule that generates n
2 -bit subkeys. To find a pair of states that

follows some three-round differential:

(∆L
1 ,∆

R
1 )→ (∆L

2 ,∆
R
2 )→ (∆L

3 ,∆
R
3 )→ (∆L

4 ,∆
R
4 )

(the pair of states is (L,R), (L ⊕∆L
1 , R ⊕∆R

1 )), the adversary builds, as in the

rebound attack, three pairs of states, separately for each round, that satisfy the

one-round differentials, i.e. he finds the values A,C,E, such that

F (A)⊕ F (A⊕∆L
1 ) = ∆R

1 ⊕∆L
2 ,

F (C)⊕ F (C ⊕∆L
2 ) = ∆R

2 ⊕∆L
3 ,

F (E)⊕ F (E ⊕∆L
3 ) = ∆R

3 ⊕∆L
4 .

Let F (A) = B,F (C) = D,F (E) = G. Then, in order to connect these three

one-round differentials, the following conditions for the subkeys k1, k2, k3 apply:

L⊕ k1 = A,

R⊕B ⊕ k2 = C,

L⊕D ⊕ k3 = E.

From the first and the third equation, we get the relation k1 ⊕ k3 = A⊕D ⊕ E

(note that the adversary does not control the values of A,D,E because they are

fixed by the rebound attack). To satisfy this relation, the keys k1, k3 have to

be independent (or be linearly dependent – but this is not common for ciphers).

Once this is satisfied, the solution (L,R, k1, k2, k3) for the system can be found

in linear time. Hence in general, the master key has to be at least 3n
2 -bit long.
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A similar analysis applies to cases when a higher number of rounds has to be

covered for free. The only difference is that the resulting system has more equa-

tions. When r rounds are fixed, the system has r equation and r + 2 unknowns:

L,R, k1, . . . , kr. In order to find the solution in linear time, for any invertible key

schedule, the subkeys have to be independent. Hence, to attack an additional r

rounds of a n-bit Feistel cipher the key has to be at least rn
2 -bit long.

3.4. Summary

We have examined the application of the differential trails in analysis of ciphers

that are used for compression function constructions. We have considered both

the known-key and chosen-key models. We have especially analyzed the collision

resistance of all compression functions based on single block ciphers as well as

the four known double-block compression functions, when specific differential

trails for the underlying ciphers can be built. Furthermore, we have presented

differential distinguishers for Crypton, Hierocrypt-3, SAFER++, and Square.

For these ciphers, we have shown that when the attack model is switched from

secret-key to open-key, the number of rounds that can be attacked increases. We

have also given as well a formal proof of lower bound of constructing pair that

follow a truncated trail in the case of a random permutation. Our results are

summarized in Table 3.3. The “Encryptions” column gives the expected number

of encryptions in the case of a SP cipher, while the “Lower bound” column – the

expected number of encryptions required in the case of a random permutation.

In case of n-bit Feistel cipher r is a number of covered rounds, and 2c is the

complexity of some differential attack.

The area of open-key distinguishers is largely unexplored. Finding similar

distinguishers based on related-key differentials remains an open problem.
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3. Open Key Differential Analysis for Block Ciphers

Table 3.3.: Summary of attacks on the ciphers examined in the chapter.
Cipher Distinguisher Rounds Encryptions Lower bound Reference

Crypton Known-key 7 248 261 Section 3.3.1
Chosen-key 9 248 261 Section 3.3.1

Hierocrypt-3 Known-key 3.5 248 261 Section 3.3.1
Chosen-key 4.5 248 261 Section 3.3.1

SAFER++ Known-key 6.5 2120 2128 Section 3.3.2
Chosen-key 6.5 2112 2128 Section 3.3.2

Square Known-key 7 248 261 Section 3.3.1
Chosen-key 8 248 261 Section 3.3.1

n-bit Feistel Differential attack r 2c

with k-bit key Known-key r + 2 2c Section 3.3.3

Chosen-key r + b2k
n c 2c Section 3.3.3

56



4. IDEA in Various Hashing Modes

A potential candidate for hashing is the 64-bit block cipher the International

Data Encryption Algorithm (IDEA) [70, 71] that uses 128-bit keys. While a single-

block hashing mode would only provide a 64-bit hash output, insufficient for most

of today’s security applications, a double-block length construction (DBL) would

allow 128-bit hash outputs which can be appropriate in some applications. As

IDEA handles double-length keys, more flexibility in the constructions is possi-

ble. In fact, the well known Abreast-DM and Tandem-DM modes were especally

created to perform hashing with IDEA (see page 2 and Section 6 of [70] and Ta-

ble 2.2). These modes were later studied in much details [44, 45, 74, 76], but

the security they provide when instantiated with IDEA remains a 20-year-old

open question. In classical “secret key” setting, IDEA has already been studied a

lot [5, 13–15, 19, 29, 33, 39, 52] and is still considered as a secure cipher despite

its age and despite the current best attack [15]. The attack requires 263 data

(half the codebook) and 2114 computations to recover the secret key for IDEA

reduced to 7.5 rounds over a total of 8.5. The attack on the full cipher from [15]

is very marginal with 2126.8 computations and the one from [57] requires 2126

computations and 252 chosen plaintexts. One can also cite the work of [19], that

exposes a weak-key class of size 264. Note also that a first step towards analysis

of IDEA in hashing mode was done in [56] where a 3-round chosen-key attack is

described and in [29] where the authors show how to find a free-start near col-

lision (a free-start collision defined in Section 3.1 for which only a subset of the

output collides) when IDEA is plugged into the Hirose DBL mode [29] (and also

a free-start collision if the internal constant c is controlled by the attacker).

In this chapter, we study the security of the IDEA block cipher [70, 71] when
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4. IDEA in Various Hashing Modes

plugged into various block cipher based compression function constructions, such

as the classical Davies-Meyer mode (refer mode 5 in Table 2.1), also DBL construc-

tions such as Hirose, Abreast-DM, Tandem-DM, Peyrin et al.(II) or MJH-Double,

listed in Table 2.2. Even if this cipher is still considered as secure in the classical

“secret key” setting, its security remains an open problem in the hashing mode.

Depending on the IDEA-based hash construction, we show that an attacker can

find free-start collisions instantaneously, preimages or semi-free-start collisions

practically. For some modes, we describe a method to compute collisions for the

whole hash function.

Organization. This chapter is organized as follows. In Section 4.1, we provide

description of IDEA block cipher. Next we discuss some properties of the cipher in

Section 4.2, in particluar we present a novel and non-trivial almost half-involution

property for IDEA. In Section 4.3 we demonstrate collisions attacks on a variety of

hashing modes and in the following, Section 4.4, we exploit almost half-involution

in order to improve previous attacks. Section 4.5 is summarizing our preimage

attacks obtained with use of T-function framework. Section 4.6 summarizes the

chapter.

4.1. The IDEA block cipher

The International Data Encryption Algorithm (IDEA) is a 64-bit block cipher

handling 128-bit keys and designed by Lai and Massey [70, 71] in 1990. While its

use is reducing in recent years, it remains deployed in practice and has not been

broken yet despite its advanced age. It has a very simple design, performing

8.5 rounds composed of only 16-bit wide XOR, additions and multiplications.

More precisely, one round is composed of three layers: first the key addition layer

(denoted KA), a multiplication-addition layer (denoted MA) and a middle words

switching layer (denoted S). For the eighth round, the switching is omitted.

Let Xi represent the 64-bit internal state of IDEA before application of the i-th

round and we can view it as four 16-bit subwords Xi = (Xi
1, X

i
2, X

i
3, X

i
4), with

1 ≤ i ≤ 9. Also, Y i = (Y i
1 , Y

i
2 , Y

i
3 , Y

i
4 ) will stand for the intermediate internal
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4.1. The IDEA block cipher

state value of IDEA during the i-th round, right between the KA and the MA

layers. We denote by ⊕ the bitwise XOR operation, by � the addition modulo

216 and by � the multiplication modulo 216 +1, where the value 0 is considered as

216 and vice-versa. Finally, Zi = (Zi1, Z
i
2, Z

i
3, Z

i
4, Z

i
5, Z

i
6) represents the six 16-bit

subkeys used during the i-th round (only the first four subkeys for the last half

round).

The KA layer simply incorporates four subkeys:

Y i
1 = Xi

1 � Zi1, Y i
2 = Xi

2 � Z
i
2, Y i

3 = Xi
3 � Z

i
3, Y i

4 = Xi
4 � Zi4.

The MA layer first computes B = Zi6 � ((Y i
2 ⊕ Y i

4 ) � (Zi5 � (Y i
1 ⊕ Y i

3 ))) and

A = B � (Zi5 � (Y i
1 ⊕ Y i

3 )). Then, after application of the S layer we have:

Xi+1
1 = Y i

1 ⊕B, Xi+1
2 = Y i

3 ⊕B, Xi+1
3 = Y i

2 ⊕A, Xi+1
4 = Y i

4 ⊕A.

All the subkeys are simply determined by choosing consecutive bits in the

128-bit master key according to the Table 4.1.

i-th round Z
(i)
1 Z

(i)
2 Z

(i)
3 Z

(i)
4 Z

(i)
5 Z

(i)
6

1 0-15 16-31 32-47 48-63 64-79 80-95
2 96-111 112-127 25-40 41-56 57-72 73-88
3 89-104 105-120 121-8 9-24 50-65 66-81
4 82-97 98-113 114-1 2-17 18-33 34-49
5 75-90 91-106 107-122 123-10 11-26 27-42
6 43-58 59-74 100-115 116-3 4-19 20-35
7 36-51 52-67 68-83 84-99 125-12 13-28
8 29-44 45-60 61-76 77-92 93-108 109-124
OT 22-37 38-53 54-69 70-85

Table 4.1.: Key bits used for subkeys Z
(i)
j in the i-th round of IDEA

Finally, ciphering the plaintext P with IDEA to obtain the ciphertext C is

defined as: C = KA ◦ S ◦ {S ◦MA ◦ KA}8(P ). Figure 4.1 provides a schematic

view of one round of IDEA.

Currently, the best cryptanalysis work published on IDEA [15] can reach 7.5

rounds with 263 data (half the codebook) and 2114 computations. Concerning

weak-keys, the current biggest weak-key class contains 264 elements and has been
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Figure 4.1.: One round of IDEA

published in [19].

4.2. Weak-keys for IDEA

Weak-keys for IDEA have already been studied in details [19, 33, 52], but what

we are looking for is slightly different. Indeed, for block cipher cryptanalysis,

since the attacker cannot control the key input, he looks for the biggest possible

class of weak-keys, so as to get the highest possible probability that a weak-key

will indeed be chosen. In the case of compression function cryptanalysis, the key

input is fully known or even controlled by the attacker. The goal is therefore not

to find the biggest possible class of weak-keys, but to find the weakest possible key.

As we will show for IDEA, even if only one weak-key is found, its weakness might

directly lead to successful attacks on the whole compression or hash function.

4.2.1. Analysis of the Internal Functions

When looking at the internal round function of IDEA, one might wonder what

a weak-key would be. In IDEA, the most annoying functions for the cryptanalyst
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4.2. Weak-keys for IDEA

are clearly the multiplications in Z216+1. Indeed, these operations are strongly

non-linear and provide good diffusion between different bit positions. On the

contrary, XOR operations are linear and do not provide any diffusion between

bit positions, while the additions in Z216 can be easily approximated linearly. On

the other hand, the diffusion between the bit positions only happens through the

carry. Moreover, XOR and additions are even weaker in IDEA since no rotations

are present, comparing with Addition-Rotation-XOR (ARX) designs. Here the

rotation is done through the multiplications in Z216+1 and our goal is therefore

to avoid them.

When adding (a+b) mod 216, we can avoid any diffusion by forcing one operand

to 0. When multiplying (a�b) = (a·b) mod 216 + 1, the good diffusion will happen

especially when (a ·b) ≥ 216 +1. An easy way to avoid this is to fix one of the two

operands to 1. In that case, we have (a � 1) = (a · 1) mod 216 + 1 = a mod 216.

As already stated in [33], a good choice is also 0, since

(a� 0) mod 216 = ((a · 216) mod (216 + 1)) mod 216

= (((a · 216 + a) + (216 + 1)− a) mod (216 + 1)) mod 216

= (0 + 216 + 1− a) mod 216 = 1− a mod 216

= 2 + (216 − 1− a) mod 216 = (2 + a) mod 216

and the multiplication is reduced to only a complement and an addition with a

constant.

4.2.2. Weak-keys Classes

Due to the fact that the operand 0 is very weak for both multiplications and

additions, Daemen et al. [33] generated a class of weak-keys. The first obvious

candidate is the null key (all bits set to zero), which will force all the subkeys

to zero as well. As a consequence, all subkeys additions can be simply removed

and all subkeys multiplications can be replaced by a complement (or XOR with

0xffff) and an addition with value 2. At this point, all the operations in IDEA

with null key are either XOR or additions. Therefore, by inserting differences only
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4. IDEA in Various Hashing Modes

into the Most Significant Bit (MSB) of the four 16-bit plaintext input words, the

attacker is ensured that the MSB of the four output words will be the only one

to contain a difference. Even better, the mapping from an MSB input difference

pattern to an MSB output difference pattern is completely deterministic (it is

linear since no carry is propagated on the MSB). Such a property is largely

sufficient to consider the null key as being weak. This reasoning can be generalized

by observing that the attacker does not necessarily need all subkeys to be null,

but only the ones that are multiplied to an internal word which contains a MSB

difference. Since the MSB differential paths are quite sparse, many of the null

constraints on the subkeys are relaxed and one finally gets 235 weak-keys.

4.2.3. The null Weak-key

We have shown that the null key is particularly weak for hash function utiliza-

tion. Even if other keys belong to a weak-key class, they do not present the same

special properties as the null key.

Almost half-involution. When using the null key, we remark that all subkeys

will be null as well. Then, all rounds layers will be the same and we will write KA0

and MA0 the KA and MA layers with null subkeys. A nice practical feature of

IDEA is that the decryption is done using the very same algorithm as encryption,

but with different subkeys. The decryption subkeys for the MA layer are the same

as the encryption ones since the MA layer is an involution (i.e. MA=MA−1). The

decryption subkeys for the KA layer are the respective multiplicative and additive

inverses of the encryption subkeys. However, note that the null subkey is both its

own multiplicative and additive inverse and the KA layer becomes an involution

as well (i.e. KA0=KA−1
0 ). To summarize, using the null key, we are ensured that

KA0=KA−1
0 and MA0=MA−1

0 . Note that we trivially have S=S−1.

Now, since the KA layer and S layer commute, IDEA with the null key can be
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4.2. Weak-keys for IDEA

rewritten as

C = KA0 ◦ S ◦ {S ◦MA0 ◦KA0}8(P )

= KA0 ◦ S ◦ {S ◦MA0 ◦KA0}3 ◦ S ◦MA0 ◦KA0 ◦ {S ◦MA0 ◦KA0}4(P )

= KA0 ◦MA0 ◦ {S ◦KA0 ◦MA0}3︸ ︷︷ ︸
σ−1

◦KA0 ◦ S︸ ︷︷ ︸
θ

◦ {MA0 ◦KA0 ◦ S}3 ◦MA0 ◦KA0︸ ︷︷ ︸
σ

(P )

which eventually gives C = σ−1 ◦ θ ◦ σ(P ). One can check that since KA0, MA0

and S are involutions, the operation denoted by σ−1 is indeed the inverse of the

one denoted by σ. Thus, using the notation

P
σ−1

−→ U
θ−→ V

σ−→ C

where U and V are internal state values, we have

P
σ←− U θ−→ V

σ−→ C.

We will use this almost half-involution1 property in Section 4.4 to find free-start

collisions and even hash function collisions for some IDEA-based constructions.

T-function. When using the null key, we have already provided evidence

that all operations remaining are either XOR or additions. These operations

are triangular functions [61] (or T-functions) in the sense that any output bit

at position i only depends on the input bits located at a position i or lower. A

composition of T-functions is itself a T-function, therefore the whole permutation

defined by IDEA with the null key is a T-function. As shown in [96], this property

might be very dangerous in a hash function design. In Section 4.5 we will explain

how to exploit this weakness and compute preimages by guessing the input words

bit layer by bit layer.

1The name “almost half-involution” was coined due to almost symmetric transformation U →
P and U → C through σ and σ ◦ θ, respectively, which differ with additional composition
with θ.
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4. IDEA in Various Hashing Modes

4.3. Simple Collision Attacks

As shown by Daemen et al. [33], when using the null key for the encryption

process of IDEA, differences inserted uniquely on the MSB of the four 16-bit

input plaintext words will lead to differences on the MSB of the four 16-bit

output ciphertext words. Moreover, since this difference mapping is linear (the

difference on the carry is not propagated further than the MSB), all possible

differential characteristics have a differential probability 1. For example, we

denote by δMSB = 0x8000 the 16-bit word with difference only on the MSB

and by ∆MSB = (δMSB, δMSB, δMSB, δMSB) the 64-bit difference composed of 4

words with difference δMSB. Then, ∆MSB propagates to itself with probability

1 through one round of IDEA, or through its last half-round. Therefore, we have

with probability 1

∆MSB

IDEAK=0

−−−−−−−−−→ ∆MSB.

Note that instead of using δMSB only, one can generalize the input difference

space and obtain other very good differential paths for the encryption of IDEA

with the null key. However, we are omitting this generalization here since the

methods described in forthcoming sections provide much better attacks.

Davies-Meyer. Finding a free-start collision on Davies-Meyer mode instan-

tiated with IDEA is very easy. Since the difference ∆MSB is mapped to itself

through the IDEA encryption process with the null key, the attacker only has to

pick M = 0. Then, any value of CV with difference ∆MSB applied to it will

lead to a collision with probability 1. An example of such a free-start colision is

presented in Table 4.2.

Table 4.2.: An example of free-start collision in Davies-Mayer mode instantiated
with IDEA.
CVi M CVi+1 = H(CVi,M)

0x9efc 0x14ef 0x85d6 0xc557
0x0000 0x0000 0x0000 0x0000

0x0000 0x0000 0x0000 0x0000
0x7f11 0x83f1 0x7617 0x8af3

0x1efc 0x94ef 0x05d6 0x4557
0x0000 0x0000 0x0000 0x0000

0x0000 0x0000 0x0000 0x0000
0x7f11 0x83f1 0x7617 0x8af3

Hirose. If we apply the method used for the Davies-Meyer mode to the Hirose
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4.3. Simple Collision Attacks

mode, it will prove to be an efficient step if we want to find free-start collisions.

The attacker fixes CV 2 = 0 and M = 0 so as to force the null key to both

encryptions. Then, any value of CV 1 with a difference ∆MSB applied to it will

lead to a collision with probability 1, since ∆MSB will appear on the plaintext

input of both encryptions with the null key. An example of such a free-start

collision is presented in Table 4.3, where used as constant c the first 64 out-

put bits of the SHA-2 computation of the string “IDEA”: SHA-2(”IDEA”) =

”9f8c7b26cde59ca3dacc74ec7afda737ac1d15aa5239206416f79019 dbd7ec37”

that is c = 0x9f8c 0x7b26 0xcde5 0x9ca3.

Table 4.3.: An example of free-start collision in Hirose mode instantiated with
IDEA.

CV 1i CV 2i M CV 1i+1 CV 2i+1

0x93e8 0x4d86

0x45a5 0xa829

0x0000 0x0000

0x0000 0x0000

0x0000 0x0000 0x0000 0x0000

0x0000 0x0000 0x0000 0x0000

0x2101 0x23c9

0xde42 0xdc96

0x0009 0x0401

0x3d38 0x3934

0x13e8 0xcd86

0xc5a5 0x2829

0x0000 0x0000

0x0000 0x0000

0x0000 0x0000 0x0000 0x0000

0x0000 0x0000 0x0000 0x0000

0x2101 0x23c9

0xde42 0xdc96

0x0009 0x0401

0x3d38 0x3934

Abreast-DM. This technique seems impossible to apply to the Abreast-DM

mode since forcing a difference ∆MSB on any of the two encryptions plaintext

input will imply a difference inserted in the key input of the other encryption

block. Therefore, one cannot use ∆MSB difference on plaintext input with null

key in both encryption blocks. Even if the attacker tries to attack only one

encryption block with this method, the other block will not be controlled and he

will have to deal with random differences on its output. These random differences

cannot be dealt with some birthday technique because fixing all inputs of one

encryption block will fix all inputs of the other one as well.

Tandem-DM. This technique seems impossible to apply to the Tandem-DM

mode for the exact same reasons as for Abreast-DM.

Peyrin et al.(II). We have to separate in two groups the possible instances

of this construction, obtained by permuting the position of the three inputs of

each internal function fi. If all compression function inputs CV 1, CV 2, M1 and

M2 appear in at least one of the IDEA key inputs of any fi internal function,

then the attack will not apply. Indeed, since all inputs will be involved at least

once, the attacker will necessarily have to insert a difference in at least one IDEA
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key input and he will not be able to use the differential path with probability

1. Note that these instances would be avoided in practice because they would

lead to more frequent re-keying and therefore reduce the overall performance of

the hash function. If this condition is not met, then we can apply the following

free-start collision attack. Let X ∈ {CV 1, CV 2,M1,M2} denote the input that

is missing in all the IDEA key inputs of the compression function. The attacker

simply fixes the difference ∆MSB on X (one can give any value to X) and all

other inputs are set to 0 in order to get the null key in every internal IDEA. The

attacker ends up with several Davies-Meyer in parallel, with either no difference

at all, or with the null key and ∆MSB as plaintext input difference. Thus, he

obtains a collision with probability 1. If X 6∈ {CV 1, CV 2}, then this attack finds

semi-free-start collisions.

MJH-Double. The MJH-Double mode prevents this simple attack since even

if we fix CV 2 = 0 and M2 = 0 in order to get the null key in both encryptions,

it is hard to force the difference ∆MSB on both their plaintext inputs. Indeed,

the f operation will randomize the difference and in order for the attack to run,

we would require ∆MSB
f−→ ∆MSB which is unlikely to happen.

4.4. Improved Collision Attacks

In this section, using the almost half-involution property with the null key, we

will show how to get the same difference on the input and on the output of the

IDEA ciphering process with good probability. Then, we will use this weakness to

derive our collision attacks, for any number of rounds.

4.4.1. Exploiting the Almost Half-Involution

We have already shown in Section 4.2 that when the key is null, the IDEA

encryption process can be rewritten as

P
σ←− U θ−→ V

σ−→ C

66



4.4. Improved Collision Attacks

where σ = {MA0 ◦KA0 ◦ S}3 ◦MA0 ◦KA0 and θ = KA0 ◦ S.

We denote ∆U the XOR difference between two 64-bit internal state values U

and U ′, i.e ∆U = U ⊕ U ′, and δUi represents the 16-bit difference on the i-th

word of ∆U , that is ∆U = (δU1, δU2, δU3, δU4). Let us consider two random

64-bit internal state values U and U ′ such that δU2 = δU3 and we denote this

16-bit difference δM . For truly random values U and U ′, this condition happens

with probability 2−16. One can check that applying θ on U and U ′ to obtain V

and V ′ respectively will lead to δV2 = δV3 = δM since layer S only switches the

two middle words and layer KA0 has no effect on them (addition of null subkeys).

Let δL and δR represent the difference on δU1 and δU4 respectively, i.e. ∆U

= (δL, δM , δM , δR). Applying function θ to U and U ′, we would like the same

differences to appear on internal state V and V ′: ∆V = (δL, δM , δM , δR). The

previous condition with probability 2−16 already ensures the two middle differ-

ences being the same δM . Concerning differences δL and δR, they will both be

unaffected by layer S, but they might be modified through layer KA0 that applies

a multiplication with the null subkey. Therefore, we need to study the probability

that a random difference δ is mapped to itself through a multiplication by the

null subkey.

Let a be randomly choosen and a′ = a ⊕ δ. The condition we expect can be

translated into the following equation

δ = a⊕ a′ = (a� 0)⊕ (a′ � 0).

Since the � operation is equivalent to a complement (or XOR with 0xffff) and

an addition with value 2, we can rewrite

δ = ((a⊕ 0xffff) + 2)⊕ ((a′ ⊕ 0xffff) + 2)

δ = ((a⊕ 0xffff) + 2)⊕ ((a⊕ δ ⊕ 0xffff) + 2)

δ = (b+ 2)⊕ ((b⊕ δ) + 2)

δ ⊕ (b+ 2) = (b⊕ δ) + 2
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where b = a ⊕ 0xffff. One can check that the least significant bit condition of

this equation is always fulfilled.

If the second least significant bit of b is 0 (probability 1/2), then (b+2) = b⊕2

and the equation is fulfilled if and only if the second least significant bit of (b⊕δ)

is also 0 (probability 1/2). On the whole, this situation happens with probability

1/4.

If the second least significant bit of b is 1 (probability 1/2), then we will have

a carry propagating and we require the second least significant bit of (b ⊕ δ) to

be also 1 (probability 1/2). If the third least significant bit of b is 0 (probability

1/2), then (b + 2) = b ⊕ 6 and the equation is fulfilled if and only if the third

least significant bit of (b ⊕ δ) is also 0 (probability 1/2). Overall, this situation

happens with probability (1/4)2.

Continuing this reasoning for all the bits layers, we will obtain that the success

probability is equal to
14∑
i=1

(1/4)i = 2−1.585.

Hence, we have Pr[(δL, δM , δM , δR)
θ−→ (δL, δM , δM , δR)] = 2−3.17.

At this point, we proved that for randomly chosen internal state values U and

U ′, we will observe with probability 2−19.17 the same difference on U and V , i.e.

∆U = ∆V .

One can see that computing backwards from internal states U to P or forth

from V to C, the function σ is applied. Our final goal is to have the same dif-

ference on P and C. However, this seems unlikely to happen since U and V

have different values, the forward and backward computations of σ should be

completely unrelated, even with the same input difference. Yet, this reasoning

does not take into account the fact that while U and V have distinct values, they

are far from being independent: V = θ(U) with θ being a very light function.

Moreover, we remarked that almost each time that we got the same difference on

P and C, the same differences were observed as well in all rounds of the forward

and backward σ computations (the round success probability increasing with the

number of rounds already processed). Because all the rounds are not independent
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and because U and V are strongly related, it is very difficult to theoretically com-

pute the probability of observing the same difference on P and C and hence we

will leave this as an open question. Therefore, we have measured it by choosing

random values of U , δL, δM , δR, computing V = θ(U), and checking for collisions

on the difference of P and C. The probability obtained was 2−16.26 for about 228

tests (note that this probability somehow contains the 2−3.17 probability com-

puted previously, but we cannot separate them because the two events are not

independent).

To conclude, the probability that two randomly chosen internal state values U

and U ′ will give the same difference on P and C is equal to 2−16−16.26 = 2−32.26

(instead of 2−64 expected for a random function). In other words, using the

birthday paradox, one can find such a pair with about 216.13 computations.

Interestingly, we have observed that most of the pairs fulfilling the differential

path for the full IDEA will also be valid for a strengthened version of the cipher

with any number of additional rounds. Since the subkeys are always null, the

strengthening of the cipher would mean that σ = {MA0 ◦KA0 ◦ S}t ◦MA0 ◦KA0

for any t > 3. We checked that the probability that two randomly chosen internal

state values U and U ′ give the same difference on P and C tends to 2−32.54 when

t tends to infinite. Thus, similarily to the method presented in the previous

section, the attacks using this almost half-involution property will work for any

number of rounds.

4.4.2. Improving Collision Attacks

Davies-Meyer. The first obvious application of having the same difference in

P and C is the collision search on Davies-Mayer mode, where the feed-forward

will cancel the two differences in the output. The attack finds collisions for the

whole hash function and the procedure is very simple: we start from the IV and

add random differences in the first message block M0. This will cause random

differences in the the first chaining variable CV1, so we can avoid controling IV,

like in our free-start collision from Section 4.3, because the almost half-involution

property can be applied to any random difference in CV1. For the second message
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block M1, we will set all its bits 0 (M1 = 0), forcing the internal IDEA compu-

tation to use the null key. Since we estimated in the previous section that using

the null key a random pair of inputs has a probability 2−32.26 to give the same

input/output difference, one can use the birthday paradox to generate a collision

on CV2 with only 216.13 distinct message blocks M0. An example of such a colli-

sion is presented in Table 4.4, where we used as the initial value IV the first 64

output bits of the SHA-2 computation of the string “IDEA”: SHA-2(”IDEA”) =

”9f8c7b26cde59ca3dacc74ec7afda737ac1d15aa5239206416f79019dbd7ec37” that

is IV1 = 0x9f8c, IV2 = 0x7b26, IV3 = 0xcde5, IV4 = 0x9ca3. Note that finding

semi-free-start collisions with this technique is impossible since we would have to

insert differences in the message input, which forbids the use of the null key in

the internal cipher.

Table 4.4.: An example of collision in Davies-Meyer mode instantiated with IDEA,
obtained with almost half involution technique.
M1i CV 1i = H(IV,M1i) CV 2i = H(CV 1i, 0)

0xdacc 0xdacc 0xdacc 0xdacc

0xdacc 0xdacc 0xcadc 0x0282
0xb782 0x4583 0x83b6 0x0bef 0xdffd 0x3ffd 0x8e7d 0x6e7d

0xdacc 0xdacc 0xdacc 0xdacc

0xdacc 0xdacc 0xcade 0x1a3f
0x1ce2 0x8553 0xe656 0x4387 0xdffd 0x3ffd 0x8e7d 0x6e7d

Hirose. We have already shown how to find free-start collisions for the Hirose

mode. However, finding semi-free-start collisions with this technique is impossible

since we would have to insert differences in the message input, which forbids the

use of the null key in the internal cipher. Also, concerning hash collisions, it

seems hard as well because forcing the null key during iteration i requires us

to obtain a chaining variable CV 2i−1 = 0 during the previous iteration. This

half-preimage already costs the same complexity as a generic collision search on

the entire compression function.

Abreast-DM. One can derive a free-start collision attack for the Abreast-DM

compression function using this technique. The attacker first fixes CV 1 = 0 and

M = 0. Then, he builds a set of 248.13 distinct values CV 2 and checks if a pair

of this set leads to a collision. The probability that a pair leads to a collision on

the first (top) branch is 2−32.26 (since the internal cipher on this part has the null
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key), and 2−64 on the other half. Overall, using the birthday paradox on the set

of 248.13 values CV 2 is sufficient to have a good chance of achieving a collision.

Note that finding a semi-free-start collision for the compression function or a

collision for the hash function seems impossible with this method, for the same

reasons as the Hirose mode.

Tandem-DM. The situation of Tandem-DM is absolutely identical to the

Abreast-DM one: one can find free-start collisions for compression function using

this technique. The attacker first fixes CV 1 = 0 and M = 0. Then, he builds

a set of 248.13 distinct values CV 2 and checks if a pair of this set leads to a

collision. The probability that a pair leads to a collision on the first (top) branch

is 2−32.26 (since the internal cipher on this part has the null key), and 2−64 on

the other half. Overall, using the birthday paradox on the set of 248.13 values

CV 2 is sufficient to have a good chance to obtain a collision. Again, finding a

semi-free-start collision for the compression function or a collision for the hash

function seems impossible with this method, for the same reasons as the Hirose

mode.

Peyrin et al.(II). We showed in previous section how to find (semi)-free-start

collisions with probability 1 for a certain subset of Peyrin et al.(II) constructions,

but here we provide attacks on a bigger subset. If all compression function inputs

CV 1, CV 2, M1 and M2 appear in at least one of the IDEA key inputs of f1, f2,

f3 (left side) and in at least one of the IDEA key inputs of f3, f4, f5 (right side),

then the attack will not apply. Indeed, for both the left and the right side of

the compression function, the attacker will necessarily have to insert a difference

in at least one key input (since all inputs will be involved) and he will not be

able to use the null key completely. Note that these instances would be avoided

in practice because they would lead to more frequent rekeying and therefore

they would reduce the overall performance of the hash function. However, if

this condition is not met, then we can apply the following free-start collision

attack. Let X ∈ {CV 1, CV 2,M1,M2} denote the input that is missing in all

the IDEA key inputs of f1, f2, f3 (wlog the reasoning is the same with f3, f4,

f5). The attacker first fixes all inputs but X to 0 in order to get the null key
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in every internal IDEA on the left side. Then he chooses 248.13 random values

for X and checks among them if any pair collides on the whole compression

function output. Since he has a probability 2−32.26 to get a collision on the left

side and 2−64 on the right side, using a birthday search the attacker finds a

solution with complexity 248.13. Again, if X 6∈ {CV 1, CV 2}, then this attack

finds semi-free-start collisions. However, finding a collision for the hash function

seems impossible with this method, because at least one of the chaining variable

inputs CV 1 and CV 2 will be present as key input for one of the IDEA internal

emcryption. Setting this word to 0 is equivalent to a half-preimage that already

costs the same complexity as a generic collision search on the entire hash function.

MJH-Double. One can derive a semi-free-start collision attack on the MJH-

Double compression function instantiated with IDEA. The attacker first fixes

CV 2 = 0 and M2 = 0 and this will force the null key in both encryptions.

Now he chooses a random value for CV 1 (note that actually this value could be

fixed by the challenger) and builds a set of 232.26 values M1. In this configura-

tion, it is easy to see that one will have random differences on the plaintext inputs

to both encryptions. Since the null key is used for both, we have a probability

2−64.52 that a pair of M1 will lead to a collision after the feed-forward of both

encryptions (on the output of the bottom block and just before the application

of g on the top block). Therefore, with the birthday technique, one can find such

a pair with only 232.26 computations. Note that while this pair will directly lead

to a collision on the bottom CV 1 output, the difference on M1 is injected twice

before computing the top CV 2 output. Two times of the same difference will

cancel themselves out and we will eventually get a full semi-free-start collision.

Note that it seems hard to extend this attack to a hash collision since the attacker

would require to force the incoming chaining variable CV 2 to be equal to 0 and

this half-preimage already costs the same complexity as a generic collision search

on the entire hash function.
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4.5. Preimage Attacks

We showed in Section 4.2 that if used with the null key, the whole permutation

defined by IDEA is a T-function. Since any output bit at position i only depends on

the input bits located at a position i or lower, we reuse the idea of preimage attack

for hash functions based on T-functions [96] where the preimage is computed bit

layer by bit layer, starting from the LSB. However, here our situation is different

than the functions studied in [96] since we do not have any truncation or reduction

of the internal state at the end of the process.

We denote by p the probability that given a random challenge, our algorithm

outputs a preimage for this challenge. We denote by s the average number of

preimage solutions that the algorithm will output, given that at least one is found.

The average number of solutions outputted by our algorithm is then A = s·p. For

an n-bit ideal compression function, a generic attack restricted to C computations

can generate A = C · 2−n solutions on average. Thus, we can consider that a

preimage attack is found if we exhibit an algorithm that outperforms this generic

complexity.

Davies-Meyer. Since the key is fixed to 0 and since the plaintext and ci-

phertext sizes are the same, we trivially have that A = 1. We measured2 that

p = 2−17.50, thus we directly deduce that s = A/p = 217.5. A straightforward

implementation is a recursive depth first search, attacking the T-function by bit

layer from the LSB to the MSB of the 16-bit state words. Wrong candidates at

lower layers are discarded thanks to an early-abort strategy. On average, the

amount of IDEA encryptions required to find all the possible preimages (if at

least one can be found) can be estimated as C ' 16 · 24 · s = 225.5, since we

have 16 bit layers, each having 4 bits of input, and on average the number of

candidates in one layer is s. This is a very conservative estimation since only

p = 2−17.50 of the challenges on average will eventually lead to a solution and the

early-abort strategy will make the actual search of very low complexity. Ideally,

with C = 225.5 computations allowed, an attacker should only be able to gener-

2from 231 random challenges, we measured that p = 2−17.50 and s = 217.74.
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ate A = 225.5−64 = 2−38.5 solutions on average for an ideal 64-bit compression

function.

We have provided an example of a preimage in Table 4.5. Since a random 64-bit

challenge has preimage(s) with a probability p, we show the preimage of a chal-

lenge which we are sure at least one preimage exists (similar to a second-preimage

search). In order to get the challenge, we use as input the first 64 output bits of the

SHA-2 computation of the string “IDEA”, and provide one of the preimages found:

SHA-2(”IDEA”) = ”9f8c7b26cde59ca3dacc74ec7afda737ac1d15aa5239206416f79019dbd7ec37”

and the challenge is CVi+1 = H(0x9f8c7b26cde59ca3, 0) = 0x20ad1fc924e61ba2.

Table 4.5.: An example of preimage for Davies-Meyer mode instantiated with
IDEA.

CVi+1 = H(CVi,M) M CVi

0x20ad 0x1fc9 0x24e6 0x1ba2
0x0000 0x0000 0x0000 0x0000

0x0000 0x0000 0x0000 0x0000
0x1860 0x002e 0x2d82 0x0200

The CVi in Table 4.5 is one preimage out of 223.585 for CVi+1, the search takes

225.486 IDEA encryptions, and the average cost per preimage is around 21.9.

Hirose. We can reuse the attack on Davies-Meyer, but only one of the two

branches will be controlled, with the other behaving randomly. First, find a

preimage for the first branch (with probability 2−17.5) and then use the 217.5 so-

lutions on average to also match the second branch (with probability 217.5−64 =

2−46.5). Therefore, our preimage search algorithm have parameters p = 2−17.5−46.5 =

2−64 and s = 1, while the average number of preimage solutions found isA = 2−64.

The complexity of the search is equivalent to the Davies-Meyer case, C = 225.5.

For an attacker using at most 225.5 computations on an ideal 128-bit compression

function, the average number of solutions he could find is only 2−102.5.

Abreast-DM. Similarly to Hirose, by setting for example M = CV 1 = 0, one

can attack one branch bit layer by bit layer while the other branch will behave

randomly. The complexity analysis is identical to Hirose’s case.

Tandem-DM. Similarly to Hirose, by setting M = CV 1 = 0, one can attack

one branch bit layer by bit layer while the other branch will behave randomly.

The complexity analysis is identical to Hirose’s case.
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Peyrin et al.(II). If all compression function inputs CV 1, CV 2, M1 and M2

appear in at least one of the IDEA key inputs of f1, f2, f3 (left side) and in at

least one of the IDEA key inputs of f3, f4, f5 (right side), then the attack will

not apply (because the attacker will not be able to use the null key completely).

Otherwise, similarly to Hirose, by setting all IDEA keys to 0 on one side, one can

attack it bit layer by bit layer while the other side will behave randomly. The

complexity analysis is identical to Hirose’s case.

MJH-Double. The attacker first fixes M2 = CV 2 = 0 so as to get the null

key for both IDEA encryptions. Then, similarly to the Davies-Meyer case, he finds

a preimage with probability p = 2−17.5 for one of the two sides and this defines

the value of M1 ⊕ CV 1. In order to get the preimage on the second side as

well, the attacker only has to modify the value of M1 accordingly. If a solution

is found on the first side, the attacker therefore gets s = 217.5 preimages. On

average, he finds A = 1 solutions and the complexity is again 225.5 computations.

For an attacker using at most 225.5 computations on an ideal 128-bit compression

function, the average number of solutions he should find is only 2−102.5.

4.6. Summary

Table 4.6.: Summary of results for block cipher to compression function modes
when instantiated with IDEA.

mode
hash compression function

hash
function

output free-start semi-free-start preimage attack collision
size collision attack collision attack complexity (s, p) attack

Davies-Meyer [92] 64 21 225.5 (217.5, 2−17.5) 216.13

Hirose [53, 54] 128 21 225.5 (1, 2−64)

Abreast-DM [70, 72] 128 248.13 225.5 (1, 2−64)

Tandem-DM [70, 72] 128 248.13 225.5 (1, 2−64)

Peyrin et al.(II) [100] 128 21 / 248.131 21 / 248.131 225.5 (1, 2−64)1

MJH-Double [75] 128 232.26 232.26 225.5 (217.5, 2−17.5)

In this chapter, we have shown collision and preimage attacks for several single

and double-length block cipher based compression function constructions when

instantiated with the block cipher IDEA. Namely, we have analyzed all known

double-key schemes such as Davies-Meyer, Hirose, Abreast-DM, Tandem-DM,

Peyrin et al. (II) and MJH-Double. While most of these constructions are con-
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jectured or proved to be secure in the ideal cipher model, we showed that their

security is very weak when instantiated with the block cipher IDEA, which re-

mains considered as secure in the secret key model. In particular, our answer is

the negative to the 20-year-old standing open question concerning the security of

the Abreast-DM and Tandem-DM instantiated with IDEA. All our practical at-

tacks have been implemented and they can work for any number of IDEA rounds.

Our results indicate that one has to be very careful when hashing with a block

cipher that presents any weakness when the key is known or controlled by the

attacker. Also, since we extensively use the presence of weak-keys for IDEA ex-

tensively, it would be interesting to look at the security of hash functions based

on block ciphers for which some key sets are known to be weaker than others.

In Table 4.6 we have depicted our results for the block cipher to compression

function modes considered in this chapter when instantiated with IDEA. We did

not include MDC-2 as it does not provide ideal collision resistance. The preimage

complexity results find s preimages on average with a certain probability p, for

a total average of A = s · p solutions. The results for Peyrin et al.(II) construc-

tion, marked with a *, depend on the instance considered (see relevant parts of

Sections 4.3, 4.4 and 4.5 for more details).
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Addition-Rotation-XOR Designs

Rotational analysis is a relatively new type of attack. The technique was

mentioned and applied in [10, 65, 103]. A formal treatment of rotational analysis

is given in [58]. Note that in the differential analysis, for a pair of inputs (x, y),

the adversary follows the propagation of the difference x⊕ y. In contrast, in the

rotational analysis, the adversary examines the propagation of a rotational pair of

inputs (x, x≪r). Khovratovich and Nikolić in [58] have analyzed the primitives

composed of only three operations: addition, rotation, XOR (ARX). For these

primitives, they prove that the probability that a rotational pair of inputs will

produce a rotational pair of outputs depends on the number of additions only.

We extend the application of rotational analysis to primitives that have trans-

formations other than ARX. In particular, we provide the rotational probabilities

of subtraction, shifts, Boolean functions and combination of additions and sub-

tractions. As an example of usage we will apply the rotational analysis to two

versions of Blue Midnight Wish 512 (abbreviated to BMW-512) 1st submitted to

SHA-3 competition and 2nd tweaked by the designers in round 2 of the competi-

tion, and two versions of SIMD-512, 1st round [80] and 2nd round [81] tweaked by

its designers. We find that round 1 BMW-512 [48] is susceptible to the rotational

analysis. Also, the 2nd round BMW-512 [49], with a slightly altered constant,

can be attacked using this method. For SIMD-512, we present various rotational

distinguishers on round-reduced original and modified versions.

Rotational analysis with corrections exploits fact that composition of consid-

ered transformations produce some rotational error, which might be cancelled
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with use of additional constants – corrections. The method has been simultane-

ously applied by Khovratovich et al. in [59] for Skein analysis where XOR cor-

rections were considered. We apply XOR corrections in our analysis and provide

formal framework for calculating exact rotational probabilities in this scenario.

We also present a new type of distinguishers – shift distinguishers. Here the

adversary examines the propagation of a shift pair (x, x�s) or (x, x�s), where

�s,�s is shift to the left and right on s bits. Interestingly, although the ro-

tational and shift analysis are very similar, for particular transformations the

probabilities they preserve the rotational and shift property are different. We ap-

ply the shift analysis to the permutation used in the round 1,2 SHA-3 candidate

Shabal and we obtain a shift distinguisher for this permutation.

Our distinguishers are for the compression functions only, and they do not

contradict the security claims for the whole hash functions.

Organization. The chapter is organized as follows. In Section 5.1 we will

introduce new results on rotational properties of multi additions and multi sub-

tractions. In Section 5.2 we will extend rotational analysis to the case when XOR

corrections are introduced and present how the S-function toolkit can be utilized

to obtain exact probabilities. Section 5.3 contains our rotational distinguishers

for the first submission of BMW and a modified version of tweaked BMW in

the second round. In Section 5.5 we will present rotational distinguishers for

modified SIMD-512 reduced to 24 rounds, with linearized key schedule, and for

SIMD-512 reduced to 12 rounds. The distinguishers do not depend on the tweak

introduced in the 2nd round submission. In Section 5.6 we will present our new

kind of distinguisher based on a shift analysis which impact is presented on the

example of Shabal. Section 5.7 concludes the chapter.
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5.1. Rotational Properties of Multi Additions and

Subtractions

Some basic facts on rotational analysis have been already presented in 2.5.3.

Now let us focus on multi additions and multi subtractions.

Additions and subtractions are basic blocks in many cryptographic hash func-

tions. We call addition of k integers x1, . . . , xk multi additions and in case of

subtraction – multi subtraction. We are interested in calculating probability that

multi additions are preserving rotational property, that is:

Pr((x1+. . .+xk)≪r= x1 ≪r+. . .+xk≪r)

and that combination of multi additions and subtractions is preserving rotational

property:

Pr((x1+. . .+xk−y1−. . .−yl)≪r= x1 ≪r+. . .+xk≪r−y1 ≪r−. . .−yl≪r)

where y1, . . . , yl are integers.

The common approach to approximate the first probability is to estimate the

lower bound in case of k summands (that is k−1 additions) under the assumption

of independence of each operation and calculate it as the product of appropriate

probabilities. For instance, in case of rotational amount 1 and 64-bit numbers

calculation of lower bound for rotational property would be based on rotational

probability of one addition, which is equal to 2−1.41. If calculated this way the

lower bound is 2−1.41·(k−1) and, for example for 2 additions, it equals to 2−2.82,

whereas the value obtained with a computer simulation is 2−2.58 (the same result

is calculated with the next described methodology). This shows how distant the

bound from the exact value of the probability might be. Next, we will present

the formulas for rotational probabilities of multi additions and subtractions.
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For that purpose let define Nk(i, t) such that:

Nk(i, t) =

b i
t+1
c∑

j=0

(−1)j
(
k

j

)(
i− j(t+ 1) + k − 1

i− j(t+ 1)

)
.

Then the following lemmas hold.

Lemma 5.1 (Multi additions). Given n-bit words x1, . . . , xk and a positive in-

teger r, then

Pr((x1 + . . .+ xk)≪r= x1 ≪r + . . .+ xk≪r) =

=
1

2nk

b k−1
2n−r c∑
j=0

Nk+1(j2n + 2r − 1, 2r − 1) ·
b k−1

2r
c∑

j=0

Nk+1(j2n + 2n−r − 1, 2n−r − 1).

Multi additions. Let each xi be represented as a concatenation of two numbers

ai, bi, i.e. xi = ai||bi, where bit-length of ai and bi is r and n − r respectively.

That is the r most significant bits of xi is ai and the rest n − r last significant

bits is bi. Then the equation

(x1 + . . .+ xk)≪r= x1 ≪r + . . .+ xk≪r (5.1)

can be rewritten as (a1||b1 + . . .+ ak||bk)≪r= (a1||b1)≪r + . . .+ (ak||bk)≪r,

and because (ai||bi)≪r= bi||ai, hence, Equation (5.1) is equivalent to:

(a1||b1 + . . .+ ak||bk)≪r= b1||a1 + . . .+ bk||ak. (5.2)

The sum on the left a1||b1 + . . . + ak||bk can be rewritten as (a1 + . . . + ak +

Cb1,...,bk)||(b1 + . . . + bk), where Cb1,...,bk is the carry from the sum b1 + . . . + bk.

Similar relation holds for b1||a1+. . . bk||ak, i.e. b1+. . .+bk+Ca1,...,ak ||a1+. . .+ak,

where Ca1,...,ak is the carry from the sum a1 + . . . + ak. Applying the above

equations to the Equation (5.2), we obtain:

b1 + . . .+ bk||a1 + . . .+ ak + Cb1,...,bk = b1 + . . .+ bk + Ca1,...,ak ||a1 + . . .+ ak,
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that holds when

b1 + . . .+ bk ≡ b1 + . . .+ bk + Ca1,...,ak (mod 2n−r),

a1 + . . .+ ak + Cb1,...,bk ≡ a1 + . . .+ ak (mod 2r),

that is when Ca1,...,ak ≡ 0 (mod 2n−r) and Cb1,...,bk ≡ 0 (mod 2r). These two

conditions can be further rewritten as:

a1 + . . .+ ak ∈
b k−1
2n−r c⋃
j=0

[j2n, j2n + 2r − 1], b1 + . . .+ bk ∈
b k−1

2r
c⋃

j=0

[j2n, j2n + 2n−r − 1].

Then the initial probability can be now expressed as:

Pr((x1 + . . .+ xk)≪r= x1 ≪r + . . .+ xk≪r) =

= Pr(a1 + . . .+ ak ∈
b k−1
2n−r c⋃
j=0

[j2n, j2n + 2r − 1])·

· Pr(b1 + . . .+ bk ∈
b k−1

2r
c⋃

j=0

[j2n, j2n + 2n−r − 1]) =

=

b k−1
2n−r c∑
j=0

Pr(a1 + . . .+ ak ∈ [j2n, j2n + 2r − 1])·

·
b k−1

2r
c∑

j=0

Pr(b1 + . . .+ bk ∈ [j2n, j2n + 2n−r − 1]) =

=

b k−1
2n−r c∑
j=0

j2n+2r−1∑
i=j2n

Pr(a1 + . . .+ ak = i) ·
b k−1

2r
c∑

j=0

j2n+2n−r−1∑
i=j2n

Pr(b1 + . . .+ bk = i),

where ai ∈ [0, 2r − 1] and bi ∈ [0, 2n−r − 1].

Let us notice that Nk(i, t) = #{(z1, . . . , zk) ∈ [0, t]k : z1 + . . . + zk = i}, hence
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Pr(z1 + . . .+ zk = i) = Nk(i,t)
(t+1)k

, and we get:

Pr((x1 + . . .+ xk)≪r= x1 ≪r + . . .+ xk≪r) =

=

b k−1
2n−r c∑
j=0

j2n+2r−1∑
i=j2n

Nk(i, 2
r − 1)

2rk
·
b k−1

2r
c∑

j=0

j2n+2n−r−1∑
i=j2n

Nk(i, 2
n−r − 1)

2(n−r)k =

=
1

2nk

b k−1
2n−r c∑
j=0

Nk+1(j2n + 2r − 1, 2r − 1) ·
b k−1

2r
c∑

j=0

Nk+1(j2n + 2n−r − 1, 2n−r − 1),

where at the last stage, we use the recursion Nk+1(i, t) =
t∑

j=0
Nk(i − j, t), and

precisely, derived from it recursion Nk+1(t+ T, t) =
t+T∑
i=T

Nk(i, t) for some T .

At this point we would like to discuss the case of multi additions and sub-

tractions. The approach for calculating the rotational probability of k − 1 addi-

tions and l subtractions that assumes it is equal to the rotational probability of

k+ l− 1 additions, evaluates only the lower bound on the exact probability. For

instance in case of one addition and one subtraction, rotational amount 1 and

32-bit numbers, a computer simulation (verified by the next lemma) shows that

the probability is approximately equal to 2−1.58, which is a much better result

comparing to the heuristic 2−2.58 (rotational probability of two additions).

Lemma 5.2 (Multi additions and subtractions). Given n-bit words x1, . . . , xk, y1, . . . , yl

and a positive integer r, then

Pr((x1+. . .+xk−y1−. . .−yl)≪r= x1 ≪r+. . .+xk≪r−y1 ≪r−. . .−yl≪r) =

=
1

2n(k+l)

b k−1
2n−r c∑

j=−d l
2n−r e

Nk+l+1(j2n+(l+1)(2r−1), 2r−1) ·
b k−1

2r
c∑

j=−d l
2r
e

Nk+l+1(j2n+(l+1)(2n−r−1), 2n−r−1).

Multi additions and subtractions. This proof is parallel to the previous one, so

we will only provide a sketch of it.

Let xi = ai||bi and yi = ak+i||bk+i then

(x1 + . . .+xk−y1− . . .−yl)≪r= x1 ≪r + . . .+xk≪r −y1 ≪r − . . .−yl≪r
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can be transformed to

b1 + . . .+ bk − bk+1 − . . .− bk+l||a1 + . . .+ ak − ak+1 − . . .− ak+l + C ′b1,...,bk+l
=

= b1 + . . .+ bk − bk+1 − . . .− bk+l + C ′a1,...,ak+l
||a1 + . . .+ ak − ak+1 − . . .− ak+l,

(5.3)

where C ′b1,...,bk+l
is the carry from b1 + . . .+ bk − bk+1 − . . .− bk+l, and C ′a1,...,ak+l

from a1 + . . . + ak − ak+1 − . . . − ak+l, however this time negative carries are

possible. The above Equation (5.3) is equivalent to conditions: C ′a1,...,ak+l
≡ 0

(mod 2n−r) and C ′b1,...,bk+l
≡ 0 (mod 2r) that can be rewritten as:

a1 + . . .− ak+l ∈
b k−1
2n−r c⋃

j=−d l
2n−r e

[j2n, j2n + 2r − 1],

b1 + . . .− bk+l ∈
b k−1

2r
c⋃

j=−d l
2r
e

[j2n, j2n + 2n−r − 1].

Then the initial probability can be expressed as:

Pr((x1+. . .+xk−y1−. . .−yl)≪r= x1 ≪r+. . .+xk≪r−y1 ≪r−. . .−yl≪r) =

=

b k−1
2n−r c∑

j=−d l
2n−r e

j2n+2r−1∑
i=j2n

Pr(a1+. . .−ak+l = i) ·
b k−1

2r
c∑

j=−d l
2r
e

j2n+2n−r−1∑
i=j2n

Pr(b1+. . .−bk+l = i),

where ai ∈ [0, 2r − 1] and bi ∈ [0, 2n−r − 1]. Let us now

Nk,l(i, t) = #{(z1, . . . , zk, zk+1, . . . , zk+l) ∈ [0, t]k+l : z1+. . .+zk−zk+1−. . .−zk+l = i},
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for 1 ≤ k, 0 ≤ l, then of course we have Nk,l(i, t) = Nk+l(i+ tl, t) and

Pr((x1+. . .+xk−y1−. . .−yl)≪r= x1 ≪r+. . .+xk≪r−y1 ≪r−. . .−yl≪r) =

=

b k−1
2n−r c∑

j=−d l
2n−r e

j2n+2r−1∑
i=j2n

Nk,l(i, 2
r − 1)

2r(k+l)
·
b k−1

2r
c∑

j=−d l
2r
e

j2n+2n−r−1∑
i=j2n

Nk,l(i, 2
n−r − 1)

2(n−r)(k+l)
=

=
1

2n(k+l)

b k−1
2n−r c∑

j=−d l
2n−r e

j2n+2r−1∑
i=j2n

Nk+l(i+ l(2r − 1), 2r − 1)·

·
b k−1

2r
c∑

j=−d l
2r
e

j2n+2n−r−1∑
i=j2n

Nk+l(i+ l(2n−r − 1), 2n−r − 1) =

=
1

2n(k+l)

b k−1
2n−r c∑

j=−d l
2n−r e

Nk+l+1(j2n + (l + 1)(2r − 1), 2r − 1)·

·
b k−1

2r
c∑

j=−d l
2r
e

Nk+l+1(j2n + (l + 1)(2n−r − 1), 2n−r − 1).

Note that the probabilities in Lemmas 5.1,5.2 are efficiently computable in time

polynomial in k + l, n.

5.2. Rotational Pairs with Corrections

In the general scenario, we assume that the rotational pair is of the type

(a, a ≪r). Although this approach is very effective in case of composition of

transformations as discussed before (e.g. additions), it might produce worse esti-

mates when an analyzed design includes some operations influenced by constants.

For instance in case of a nonzero constant addition, the resulting rotational prob-

ability is decreased for rotational pair (a, a ≪r). However, we can insert a

correction, i.e. we can analyze the pair (a, a≪r ⊕α), where α is the correction

for the pair (note that the initial rotational pair can be seen as a pair with a

correction equal to zero). This approach results in better rotational probabilities

compared to the previous one, compare the next examples.

84



5.2. Rotational Pairs with Corrections

For a transformation F (x, y) with fixed rotational input pairs with corrections

(a, a≪r ⊕α) and (b, b≪r ⊕β) the correction of the output pair is defined as:

γ = F (a, b)≪r ⊕F (a≪r ⊕α, b≪r ⊕β).

Depending on the rotational probability of the the function F (x, y) this correction

can possibly take different values for different pairs (a, b) and fixed corrections α

and β.

For the rotational pairs with corrections, the rotational probabilities of XOR

and rotation do not change – they are still equal to 1. Let (a, a ≪r ⊕α),

(b, b≪r ⊕β) be two rotational pairs with corrections. For the correction c of

XOR we have:

γ = (a⊕ b)≪r ⊕(a≪r ⊕α⊕ b≪r ⊕β) = α⊕ β

Hence, the XOR of two pairs with corrections α, β produces another pair with a

correction α⊕ β with a probability 1.

Similarly, for the correction of rotations we have:

a≪r≪r2 ⊕(a≪r ⊕α)≪r2= α≪r2 ,

i.e. the output composes a rotational pair with a correction α≪r2 with proba-

bility 1.

Finally, let us see the impact of an addition.

5.2.1. Definition of Problem

For the correction γ of addition a+b we have to study the following expression:

γ = (a+ b)≪r ⊕[(a≪r ⊕α) + (b≪r ⊕β)]. (5.4)

It might be tempting to analyze this case as follows: if we assume that (a +

b) ≪r= a ≪r +b ≪r (which holds with the rotational probability of one
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5. Analysis of Addition-Rotation-XOR Designs

addition), and introduce the annotation a′ = a≪r, b
′ = b≪r, we get:

γ = (a′ + b′)⊕ [(a′ ⊕ α) + (b′ ⊕ β)]

Hence, the problem of finding the correction, as well as its probability, will be

reduced to the problem of finding the differential property of the addition (which

has been solved in [84]). However, it can be easily checked that for instance:

Pr(0x7 = (a+ b)⊕ [(a⊕ 0x1) + (b⊕ 0x6)]) · Pr((a+ b)≪r= a′ + b′) =

= 2−3 · 2−1.41 = 2−4.41

Pr(0x7 = (a′ + b′)⊕ [(a′ ⊕ 0x1) + (b′ ⊕ 0x6)]) = 2−3.42

for rotational amount r = 1, which shows incorrectness of such an approach. The

reason why we would obtain a wrong probability is caused by some rotational

pairs (a, a≪r) and (b, b≪r), that do not fulfill the first assumption, but produce

solutions to Equation 5.4. Of course there might occur the opposite situation,

there would be much less solutions to the equation. Hence, the estimation cannot

serve either as upper or lower bound on required probability.

To solve this problem we will apply the S-functions methodology described

in [27, 95]. A state function (abbreviation: S-function) is a function of k bits

x0
i , . . . , x

k−1
i and a state Si, for i = 0, . . . , n − 1, that outputs bit yi and next

state value Si+1, that is:

f(x0
i , . . . , x

k−1
i , Si) = (yi, Si+1),

which is in consequence equivalent to some transformation of k n-bit words

x0, . . . , xn−1 and a sequence of states {Si}i=0,...,n−1 into an n-bit word y.

In order to represent our problem with use of S-function we can express Equa-

tion (5.4) in bit-wise manner. Let

γ = G⊕ (A+B),
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5.2. Rotational Pairs with Corrections

where G = (a+ b)≪r, A = a≪r ⊕α,B = b≪r ⊕β, then

Gi+r = ai ⊕ bi ⊕ s1
i , (5.5)

Ai+r = ai ⊕ αi+r, (5.6)

Bi+r = bi ⊕ βi+r, (5.7)

γi+r = Gi+r ⊕Ai+r ⊕Bi+r ⊕ s2
i+r, (5.8)

where state Si consists of values of two carries from (i−1)-th bit position of a+b

and (i+r−1)-th bit position of A+B, respectively. That is Si = (s1
i , s

2
i+r), where

s1
i = Cai−1,bi−1,s1i−1), s

2
i+r = CAi+r−1,Bi+r−1,s2i+r−1

and the initial state S0 = (s1
0, s

2
r)

is defined in the following way:

s1
0 = 0, (5.9)

s2
r = CAr−1,Br−1,s2r−1

, (5.10)

where Cx,y,z is the carry from the sum x+y+z. The S-function defined by (5.5)-

(5.10) updates the state S in the following way:

f(ai, bi, αi+r, βi+r, Si) = (γi+r, Si+1) for 0 ≤ i < n.

In order to compute the state S0 the value of s2
r−1 is required. In a similar way

as in [27] we will iterate over two possible values of s2
r−1 and at the step i = n−1

of computations we are going to discard the states that do not match the chosen

value s2
r−1. Moreover, the state Sn−r has to be treated in a different way, because

the carry s2
n−r−1 (the carry from addition of two most significant bits of A and

B) has to be omitted, so that the following conditions are fulfilled:

s1
n−r = Can−r−1,bn−r−1,s1n−r−1

,

s2
0 = 0.
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Figure 5.1.: A subgraph Si ∪Si+1 for αi+r = βi+r = γi+r = 0, αi+r+1 = βi+r+1 =
1, γi+r+1 = 1.

Let

rotr(α, β → γ) = Pr(γ = (a≪r +b≪r)⊕ [(a≪r ⊕α) + (b≪r ⊕β)])

where a and b are random n-bit variables.

5.2.2. Calculation of Probabilities of Rotational Pairs with

Corrections for Addition

The problem of evaluating the probability rotr(α, β → γ) can be reduced to

enumeration of paths in a special n-partite graph. The graph is composed of

bipartite subgraphs Si = (Vi∪Vi+1, Ei) whose vertices Vi and Vi+1 are all possible

values for states Si and Si+1, respectively. The set of edges Ei represents possible

transformations of state Si into Si+1 in accordance to relations (5.5)-(5.10) for

specific values of correction bits αi+r, βi+r, γi+r. An edge of Ei is labeled with

values for ai and bi that produce appropriate values of Si+1 from Si. For instance

a subgraph Si∪Si+1 for αi+r = βi+r = γi+r = 0, αi+r+1 = βi+r+1 = 1, γi+r+1 = 0

is shown in Fig. 5.1. For 8 possible bipartite subgraphs we have constructed their

adjacency matrices (compare matrices in case of xdp+ in [95]):

A000 =


3 0 0 1
0 0 0 0
0 0 0 0
1 0 0 3

 , A100 = A010 = A001 =


0 1 1 0
0 2 0 0
0 0 2 0
0 1 1 0

 ,
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A110 = A101 = A011 =


2 0 0 0
1 0 0 1
1 0 0 1
0 0 0 2

 , A111 =


0 0 0 0
0 3 1 0
0 1 3 0
0 0 0 0

 ,
where matrices are indexed with concatenation of i-th bits of α, β, γ, that

is αi||βi||γi. Let w(i) = [αi||βi||γi], L0 = (1, 0, 1, 0), L1 = (0, 1, 0, 1), C0 =

(1, 0, 0, 0)T , C1 = (0, 1, 0, 0)T and

R =


1 0 1 0
0 0 0 0
0 1 0 1
0 0 0 0

 .
Following the reasoning from Section 5. in [27] we conclude that

rotr(α, β → γ) = 4−n
∑
j=0,1

LjAw(n−1) · · ·Aw(n−r)RAw(n−r−1) · · ·Aw(0)Cj . (5.11)

Let us verify the formula in case j = 0 (j = 1 is shown in a similar way). The

number of paths in n-partite graph constructed in the above-mentioned way from

bipatite graphs Sw(i) can be calculated with the use of adjacency matrices Aw(i)

in the following way:

(1, 1, 1, 1) ·Aw(n−1) · · ·Aw(0) · (1, 1, 1, 1)T .

In our case for j = 0 vectors C0 and L0 restrict considered paths to the ones

starting from the vertex (0, 0) from V0 and ending at vertex (0, 0) or (1, 0) from

Vn−1, that corresponds to the guess s2
r = 0. Finally the matrix R is an adjacency

matrix for an artificially added bipartite subgraph, which links each vertex (v1, v2)

for v1, v2 ∈ {0, 1} with vertex (v1, 0), that simulates cancellation of the carry from

the most significant bit of A+B.

The following lemma is analogue to Theorem 1. in [27] and can be proven in

a similar way.

Lemma 5.3. Let P0 be a set of all paths from (s1
0, s

2
0) = (0, 0) to any of two

vertices (s1
n−1, s

2
n−1) ∈ {(0, 0), (1, 0)} and P1 be a set of all paths from (s1

0, s
2
0) =

(0, 1) to any of two vertices (s1
n−1, s

2
n−1) ∈ {(0, 1), (1, 1)}. Then there is exactly
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one path in P0 ∪ P1 for every pair (a, b) that fulfills (5.4).

The straightforward consequence of Lemma 5.3 is formula (5.11) for calculating

probability rotr(α, β → γ).

The rotational pairs with corrections are useful when analysing constructions

that have some type of constant additions/XORs since this class is closed under

addition of any constants, whereas the class of pairs without corrections is closed

only if the constants are rotational.

When XOR of a constant K is used, the correction takes the form

γ = (a⊕K)≪r ⊕a≪r ⊕α⊕K = K ⊕K≪r ⊕α

with a probability 1.

When the constant K is added (modularly), we have:

γ = (a+K)≪r ⊕[(a≪r ⊕α) +K] (5.12)

and this part can be dealt with in a similar manner as in case of XOR corrections.

The S-function for Equation (5.12)

(γi+r, Si+1) = g(ai, bi, αi+r, βi+r, Si) for 0 ≤ i < n.

is defined by system of equations:

Hi+r = ai ⊕Ki ⊕ s1
i ,

Ai+r = ai ⊕ αi+r,

γi+r = Hi+r ⊕Ai+r ⊕Ki ⊕ s2
i+r,

s1
i = Cai−1,Ki−1,s1i−1

,

s2
i+r = CAi+r−1+Ki−1+s2i+r−1

,

for A = a ≪r ⊕α,H = (a + K) ≪r (Equation (5.12) has then form γ =

H ⊕ (A+K)).

The corrections in rotational attacks play the role of differences in differential
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attacks. To find the rotational probability of an ARX primitive, one only has to

concentrate on the additions in the primitive. The rotational probabilities of these

additions depend on the corrections in the rotational pairs. To launch a rotational

attack, one has to find optimal corrections such that the total probability of all

corrections is high.

5.3. Rotational Analysis of BMW-512

In this section we will present rotational distinguishers for the compression

functions of the submitted to the SHA-3 competition [98] BMW-512 [48], further

denoted as BMWv1, and for the second, tweaked by the designers, version of

BMW-512 [49], denoted as BMWv2. Thomsen in [106] described pseudo-collision

and pseudo-preimage attacks on BMWv1. Recently, practical differential distin-

guishers on BMWv2 were presented in [3, 50]. Our attack on BMWv1 is for the

original design, while the attack on BMWv2 is for a modified version of the com-

pression function, where one byte of the constant used in the internal function f1

has been altered.

5.3.1. Rotational Properties of Some BMW-512 Transforms

The rotational probabilities of the shifts si in BMW, presented in Table 5.1,

can be found by the method used to prove Lemmas 2.2-2.4.

Table 5.1.: Rotational probabilities of the functions si used in BMW

Function Definition Prob. log2
s0(x) SHR1(x)⊕ SHL3(x)⊕ROTL4(x)⊕ROTL19(x) -4
s1(x) SHR1(x)⊕ SHL2(x)⊕ROTL8(x)⊕ROTL23(x) -4
s2(x) SHR2(x)⊕ SHL1(x)⊕ROTL12(x)⊕ROTL25(x) -4
s3(x) SHR2(x)⊕ SHL2(x)⊕ROTL15(x)⊕ROTL29(x) -4
s4(x) SHR1(x)⊕ x -2
s5(x) SHR2(x)⊕ x -4

Remark The rotational probabilities of the different shifts to the left and to

the right of XH in f2 of BMW are computed simply as 2−4 or 2−2 (the rotation

amount is 2, see Lemma 2.2). A more careful analysis shows that indeed the
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rotational probability of all 8 shifts of XH is 2−14 instead of 2−30 used in the

attacks.

For any rotation amount, the rotational probability of addition is not lower

than 2−2, while the probabilities of XOR and rotation are 1 (see [58]). Further

in our analysis, the rotation amount will be fixed to 1 or 2. For these cases, the

rotational probability of addition is 2−1.41 and 2−1.68 respectively in case of 64-bit

numbers.

5.3.2. Analysis of BMWv1-512

BMWv1 takes two 1024-bit inputs: the message M and the chaining value H

and produces an 1024-bit output. The compression function is constructed using

three functions f0, f1 and f2. Next, we will give a short description of each func-

tion fi. A complete specification of the functions can be found in [48]. All words

in BMW-512 are 64-bit long. Assume that the message is M = (M0, . . . ,M15)

and the chaining value is H = (H0, . . . ,H15).

The f0 function takes as its input the pair: message M and chaining value H

and produces an output (Q0, . . . , Q15) as follows.

1. First intermediate words W0, . . . ,W15 are obtained as a bijective transfor-

mation of M ⊕H defined below as

Wj = (Mj1 ⊕Hj1) ? (Mj2 ⊕Hj2) ? (Mj3 ⊕Hj3) ∗ (Mj4 ⊕Hj4) ? (Mj5 ⊕Hj5),

where ? ∈ {+,−}, j = 0, . . . , 15 and j1, j2, . . . , j5 ∈ {0, . . . , 15}.

2. The words Wi undergo a bijective transformation and the output of f0 are

produced, i.e. Qj = sj(Wj), where sj(x), j = 0, . . . , 15, are XORs of shifts

and rotations of x (see Table 5.1).

The f1 function takes the following pair as its input: message M and output

of f0, and produces words (Q16, . . . , Q31) on its output. For j = 16, 17, Qj are

defined as:

Qj = expand1(j) = s1(Qj−16) + . . .+ s0(Qj−1) +AddElement(j − 16),
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while for j = 18, . . . , 31, they are defined as:

Qj = expand2(j) = Qj−16 + . . .+ s5(Qj−1) +AddElement(j − 16),

where sk(x) are the same functions as in f0, and AddElement(j) = Mj +Mj+3−

Mj+10 + Kj+16. The constants Kj are obtained from the initial constant C =

0x0555555555555555 by multiplication, i.e. Kj = j · C.

The last function (the f2 one) produces 16 words of the new chaining value.

As its input, it takes message M and (Q0, . . . , Q31) (the outputs of f0, f1). First,

it produces the words XL = Q16 ⊕ . . .⊕Q23 and XH = XL⊕Q24 ⊕ . . .⊕Q31.

Then, the first 8 words (out of 16) of the new chaining value are defined as1:

Hj = (SHLij (XH)⊕ SHRkj (Qj+16)⊕Mj) + (XL⊕Qj+24 ⊕Qj),

where j = 0, . . . , 7 and SHLk, SHRk are shifts to left and right by k bits.

We will build a rotational distinguisher for BMWv1 such that the input pairs

of chaining values and message words will compose a rotational pair, but with

some corrections. The output pairs of f0 and f1 will be rotational for all 1024

bits, while the output pairs of f2 will be rotational for at least 384 bits.

Analysis of f1. We will start from f1 because this is the only function that

applies additions of constants. Note that in general, we cannot create a rotational

pair for constants since their values are fixed. To overcome this technical difficulty,

either constant has to be rotational, i.e. Kj = Kj ≪r, or the errors from the

constants have to be canceled with some other errors. In our attack, we will use

the fact that the constants are almost rotational, and we will use small errors,

coming from other words, to make the outputs fully rotational. Recall that

the outputs Qj , j = 16, . . . , 31 of f1 are defined as2 Qj = AddElement(j −

16) + s1(Qj−16) + . . . + s0(Qj−1). Let Tj = s1(Qj−16) + . . . + s0(Qj−1) and

T̃j = s1(Qj−16 ≪r) + . . . + s0(Qj−1 ≪r). To obtain rotational outputs Qj ,

we have to find an input message pair (M,M̃)) for the following system of 16

1We will use only these 8 words in our attack. Therefore we omit the definition of the next 8
words.

2The case when expand2(j) is used can be analyzed similarly.
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equations:

[Mj +Mj+3−Mj+10 +Kj+16 +Tj+16]≪r= M̃j +M̃j+3−M̃j+10 +Kj+16 + T̃j+16,

(5.13)

j = 0, . . . , 15. If we take into account the distributive properties of addition and

rotation, then with some probability (that will be estimated later) this system

can be rewritten as:

Mj≪r +Mj+3 ≪r −Mj+10 ≪r +Kj+16 ≪r +Tj+16 ≪r=

= M̃j + M̃j+3 − M̃j+10 +Kj+16 + T̃j+16.

(5.14)

If we denote M
′
j = Mj≪r −M̃j , then we will obtain the following system:

M
′
j +M

′
j+3 −M

′
j+10 = Kj+16 −Kj+16 ≪r +T̃j+16 − Tj+16 ≪r, (5.15)

for j = 0, . . . , 15. When the amount of rotation equals 2, then the words Kj+16−

Kj+16 ≪2, j = 0, . . . , 15 have zeroes in all bytes except for the first and the last

(the exact values are given in Table 5.2).

Table 5.2.: Rotational properties of the constants of f1 in BMWv1 and BMWv2
BMWv1 BMWv2

i Ki Ki≪2 Ki −Ki≪2 Ki Ki≪2 Ki −Ki≪2

16 5555...5550 5555...5541 0000...000f 5555...5550 5555...5541 0000...000f

17 5aaa...aaa5 6aaa...aa95 f000...0010 aaaa...aaa5 aaaa...aa96 0000...000f

18 5fff...fffa 7fff...ffe9 e000...0011 ffff...fffa ffff...ffeb 0000...000f

19 6555...554f 9555...553d d000...0012 5555...554f 5555...553d 0000...0012

20 6aaa...aaa4 aaaa...aa91 c000...0013 aaaa...aaa4 aaaa...aa92 0000...0012

21 6fff...fff9 bfff...ffe5 b000...0014 ffff...fff9 ffff...ffe7 0000...0012

22 7555...554e d555...5539 a000...0015 5555...554e 5555...5539 0000...0015

23 7aaa...aaa3 eaaa...aa8d 9000...0016 aaaa...aaa3 aaaa...aa8e 0000...0015

24 7fff...fff8 ffff...ffe1 8000...0017 ffff...fff8 ffff...ffe3 0000...0015

25 8555...554d 1555...5536 7000...0017 5555...554d 5555...5535 0000...0018

26 8aaa...aaa2 2aaa...aa8a 6000...0018 aaaa...aaa2 aaaa...aa8a 0000...0018

27 8fff...fff7 3fff...ffde 5000...0019 ffff...fff7 ffff...ffdf 0000...0018

28 9555...554c 5555...5532 4000...001a 5555...554c 5555...5531 0000...001b

29 9aaa...aaa1 6aaa...aa86 3000...001b aaaa...aaa1 aaaa...aa86 0000...001b

30 9fff...fff6 7fff...ffda 2000...001c ffff...fff6 ffff...ffdb 0000...001b

31 a555...554b 9555...552e 1000...001d 5555...554b 5555...552d 0000...001e

On the other hand, for random Qj , j = 0, . . . , 15, the difference T̃j+16 −

Tj+16 ≪2 takes the values 0x16, 0x17 with probability 2−8.4 when expand1(j)

is applied, and 2−5.6 when expand2(j) is applied (this result is obtained ex-
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perimentally, with 227 trials). Hence, we can assume that the constant terms

of System (5.15), have only two non-zero bytes – the first (MSB) and the last

(LSB). For specific values of these terms (different values can be obtained since

T̃j+16−Tj+16 ≪2 takes two values, and there are 16 equations, therefore one can

get 216 systems), the words M
′
j of the solution also have only two non-zero bytes,

i.e. M
′
j can be represented as M

′
j = msbj · 256 + lsbj , where msbj , lsbj < 256.

The exact values of these bytes are given in Table 5.3.

Table 5.3.: Constant terms and solutions for the systems in f1 of BMWv1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T̃j+16 − Tj+16≪2 16 16 16 16 16 16 16 16 17 16 16 16 16 17 16 17

LSB of Rj
a 25 26 27 28 29 2a 2b 2c 2e 2d 2e 2f 30 32 32 34

MSB of Rj
a 00 0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01

msbj 59 18 e7 76 c5 d4 93 52 21 d0 cf ce ad fc 0b ea

lsbj 28 28 29 29 30 32 31 28 25 22 2c 32 34 32 2f 2d

aRj = Kj+16 −Kj+16 ≪2 +T̃j+16 − Tj+16 ≪2

Once we have M
′
j , we can find the message pair. We choose the message words

Mj , M̃j such that M̃j = Mj ≪2 ⊕δj (rotational with corrections δj). Since all

M
′
j were fixed by the system, we get the following equations:

Mj≪2 −Mj≪2 ⊕δj = msbj · 256 + lsbj , j = 0, . . . , 15. (5.16)

We would like to find many solutions (that we will use later) for this system. To

do that, we will fix the MSB of Mj≪2 and δj to msbj and the LSB to lsbj , i.e.

(Mj ≪2)MSB = (δj)MSB = msbj , (Mj ≪2)LSB = (δj)LSB = lsbj . If we fix the

middle 6 bytes of δj to 0, then the message wordsMj≪2= msbj ·256+Xj ·28+lsbj ,

whereXj < 248, are solutions of (5.16). It is important to notice, that δj have only

two non-zero bytes and therefore the input pairs of message words are rotational

for 6 bytes. Hence, we can easily find 216·6·8 = 2768 input rotational pairs of

messages such that if the inputs Q0, . . . , Q15 of f1 are rotational, then the outputs

Q16, . . . , Q31 are rotational as well.

Let us estimate the total probability of obtaining these rotational outputs.

First and foremost, let us find the probability that System (5.13) is equivalent

to System (5.14). For one equation the probability (obtained experimentally)
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is 2−3.8 and hence for the whole system it is 2−61. Now, let us concentrate on

the transformations in f1. Since there are 2 applications of expand1(j) and 14

applications of expand2(j), the probability of obtaining the required differences

T̃j+16−Tj+16 ≪2 for all 16 outputs is 2−2·8.4−14·5.6 = 2−95.2. Therefore, the total

rotational probability (obtained heuristically) of f1 is 2−61−95.2 = 2−156.2.

Analysis of f0. The function f0 uses the words (Mi ⊕ Hi) as inputs. Since

the message pair is (Mi,Mi≪2 ⊕δi), instead of taking simply rotational inputs

for the chaining values Hi, we will also introduce corrections. To obtain a fully

rotational input for f0 we will take the chaining value pairs (Hi, Hi ≪2 ⊕δi).

Then the input pair for f0 is (Mi ⊕ Hi,Mi ≪2 ⊕δi ⊕ Hi ≪2 ⊕δi) = (Mi ⊕

Hi, (Mi ⊕Hi) ≪2), hence it is rotational. Now let us find the probability that

the outputs Q0, . . . , Q15 are also rotational. These words are produced in two

phases:

1. the words W0, . . . ,W15 are generated as linear combinations of five terms

of a type Mi ⊕Hi or −(Mi ⊕Hi),

2. each Qi is obtained from Wi as Qi = si(Wi).

The rotational probabilities of the words Wi are given in Table 5.4. The theoret-

ical basis for these numbers is provided by the Lemmas 5.1 ,5.2. Note that since

we consider rotation amount r = 2 and the number of additions and subtractions

in Wi is limited to 4, the counter j of the sums in the lemmas takes only value 0,

hence the formulas for the probabilities can be significantly simplified for these

specific values. The total probability of the first phase is 2−60.8. To compute the

probability of phase 2 of f0 we only have to find the rotational probabilities of

functions si (see Table 5.1). There are 4, 3, 3, 3, 3 applications of s0, s1, s2, s3, s4

respectively. Therefore, the probability of phase 2 is 2−4·4−3·4−3·4−3·4−3·2 = 2−58,

and hence, the total rotational probability of f0 is 2−118.8.

Analysis of f2. Function f2 takes the M message and the words Q0, . . . , Q31

(outputs of f0, f1) as an input, and produces the next chaining value. We can as-

sume the words Q0, . . . , Q31 to be rotational with some probability (the combined

rotational probabilities of f0 and f1). The terms XL and XH are rotational with
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Table 5.4.: Rotational probabilities of the words in f0 of BMWv1 and BMWv2

W0 W1 W2 W3 W4 W5 W6 W7

log2 -3.82 -1.68 -3.82 -1.68 -1.68 -1.68 -3.82 -10.01

W8 W9 W10 W11 W12 W13 W14 W15

log2 -3.82 -1.68 -3.82 -3.82 -1.68 -10.01 -3.82 -3.82

probability 1 since they are produced as XORs of rotational words. We require

rotational outputs from the shifts of XH and the shifts of Qj , j = 16, . . . , 23. The

rotational probability of all the shifts of XH is 2−4−4−4−2−4−4−4−4 = 2−30, (see

Remark in Section 5.3.1), while for the shifts of Qj we pay 2−4−4−4−4−4−4−4 =

2−28 (see Table 5.1). Since the message pair words are rotational in 6 bytes, it

follows that the words SHLjk(XH) ⊕ SHRjl(Qj) ⊕Mj are also rotational in 6

bytes (all bytes except MSB and LSB). Let Pj = SHLjk(XH)⊕SHRjl(Qj)⊕Mj

and Rj = XL⊕Qj+24⊕Qj . Then the chaining values are defined as Hj = Pj+Rj .

Note that Pj is rotational for 6 bytes, and Rj is fully rotational. For the error of

the new chaining value we have (Pj + Rj)≪2 −[(Pj ≪2 ⊕δj) + Rj ≪2]
2−1.68

=

Pj ≪2 +Rj ≪2 −(Pj ≪2 ⊕δj) − Rj ≪2= Pj ≪2 −(Pj ≪2 ⊕δj), hence the

error can occur in the MSB and LSB only if there are no carries (with probability

2−1) in the LSB. Therefore, for the rotational properties of the first 8 chaining

values in 6 bytes we have to pay in total 2−8·(1.68+1). If we take into account the

previous probabilities of the shifts, we will get the total rotational probability

of f2, which is 2−30−28−21.5 = 2−79.5. The output pair is rotational in at least

8 · 6 = 48 bytes, or 384 bits.

The Attack on the Full BMWv1.

The relations between the pairs of input message words and the chaining value

words are fully fixed. For the first input, the message words Mj are chosen

randomly, except their MSB and LSB which are fixed as explained above. The

chaining values Hj are chosen randomly as well. Then, the message M̃ and the

chaining value H̃ of the second input are defined as M̃j = Mj ≪2 ⊕δj , H̃j =

Hj ≪2 ⊕δj . The probability that such an input pair will produce an output

pair of the chaining values, rotational in 384 bits, is the combined probability
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of f0, f1, f2 which is 2−156.2−118.8−79.5 = 2−354.5. On the other hand, the same

probability for a random function is 2−384, hence BMWv1 can be distinguished

from a random function.

Note that we can obtain non-random properties for the last 8 chaining values

H8, . . . ,H15 as well3. We only have to take into account the termsROTL(j+1)(Hk)

which are rotational in 6 bytes. Also, the complexity of the whole attack can be

reduced to 2223.5 compression function calls by using more advanced techniques

as explained in the next Section.

5.4. Lower Complexity Attack on the Full BMWv1

Further in this dissertation, we will present an algorithm for finding the rota-

tional output pair with a lower complexity.

1. Take random values for A0, . . . , A15, where Aj = Mj ⊕Hj and produce the

outputs Q0, . . . , Q15 of f0. Assign Ãj = Aj ≪2 and produce another out-

puts Q̃0, . . . , Q̃15. Check if the pairs (Qj , Q̃j), j = 0, . . . , 15 are rotational.

If they are not, repeat step 1.

2. Fix the MSB i LSB of Mj≪2 to msbj and lsbj , the middle 6 bytes to zero.

Obtain the second message (by rotation and XOR of δi). Produce the first

output pair of f1, i.e. (Q16, Q̃16), and check if it is rotational. If not, go to

step 1.

3. Assign random values to the middle 6 bytes of the message words Mj≪2

(the MSB and LSB are still fixed to the previous values) and obtain the sec-

ond message (by rotation and XOR). Produce the other outputsQ17, . . . , Q31

of f1(M0, . . . ,M15, Q0, . . . , Q15), and the outputs Q̃17, . . . , Q̃31 of f1(M0 ≪2

⊕δ0, . . . ,M15 ≪2 ⊕δ15, Q̃0, . . . , Q̃15). If (Qj , Q̃j), j = 17, . . . , 31, are not

rotational then repeat step 3.

4. Produce the new pair of chaining values – outputs of f2 and check if they

are rotational in the 384 bits. If not, go to step 3.

3We omit the description since we already have an attack.
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Let us estimate the total complexity of finding the output pair of rotational chain-

ing values in 384 bits. For passing step 1, we have to try 2118.8 different values

for A0, . . . , A15. Step 2 calls step 1 around 212.2 times: 28.4 to get the proper

difference T̃0 − T0 ≪2, and 23.8 times to get equivalence of (5.13) and (5.14)

for j = 16. This is done because: 1) the difference T̃16 − T16 ≪2 depends only

on Q0, . . . , Q15, 2) when the amount of rotation is fixed to 2, the equivalence

of system (5.13) and (5.14) depends on the values of the 2 most significant bits

of M0,M3,M10, M̃0, M̃3, M̃10, T16, T̃16 – they are all fixed or depend on the val-

ues of Q0, . . . , Q15. On the hand, by varying the messages words, the values of

Q17, . . . , Q31 can vary, hence we can obtain rotational pairs for these outputs of

f1 by simply taking different message words. As a result, we have to to take

2156.2−12.2 = 2144 different messages to pass step 3. Finally, step 4 calls step 3

around 279.5 times. Hence the total complexity of finding the rotational pair of

output chaining values equals 2118.8+12.2 + 2144+79.5 ≈ 2223.5 computations.

5.4.1. Analysis of Modified Version of BMWv2-512

The compression function BMWv2 is similar to the one of BMWv1, but a few

tweaks are introduced by the designers. We will only describe the differences

between these two functions. The first tweak is in f0, where the words Qj are

produced as Qj = sj(Wj) +Hj+1. The second tweak is in f1. Now this function

takes the chaining value H as an additional input. The tweak of f1 is in the

AddElement function, which is defined as follows

AddElement(j) = (Mj≪j+1 +Mj+3 ≪j+4 −Mj+10 ≪j+11 +Kj+16)⊕Hj+7.

We attack a modified version of BMWv2, denoted as BMWv2C , where the

above round constants Kj+16 are obtained by multiplying the round indexes

(j + 16) by the constant C = 0x5555555555555555. In the original version the

value of the constant is C = 0x0555555555555555.
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The Attack on BMWv2C .

We will take a different approach for producing rotational pairs in BMWv2C

although the analysis uses the results of the previous section. The input pairs of

messages and chaining values will be fully rotational, while the output chaining

values will be rotational in the first 8 words (512 bits).

Let us fix a random message (M0, . . . ,M15) and a chaining value (H0, . . . ,H15)

for the first input of f0, and the pair (M0 ≪2, . . . ,M15 ≪2), (H0 ≪2, . . . ,

H15 ≪2) for the second. Since f0 in BMWv2 differs from f0 in BMWv1 only in

the extra additions of Hj in BMWv2, in order to find the rotational probability

of f0, we only have to consider these 16 additions. Thus, the probability of the

rotational output pair for f0 is 2−118.8−16·1.68 = 2−145.7.

Now, let us focus on f1. When the constant C is fixed to 0x5555555555555555

then the values of the differences Kj+16−Kj+16 ≪2 are only one byte (see Table

5.2).

On the other hand, all of these differences (rotational errors of the constants)

can be canceled since both the addition and the rotation are not fully distributive.

For example, for some x, y the following holds (x + y)≪2= x≪2 +y≪2 +1.

When more terms are added, these errors can be bigger, i.e. for some x1, . . . , xk

it holds (x1 + . . .+ xk)≪2= x1 ≪2 + . . .+ xk≪2 +e+, where e+ ∈ {1, 2, . . .}.

We have found that all differences Kj+16 − Kj+16 ≪2 can be canceled with

these errors coming from the additions/rotations. When the input pairs of words

Q0, . . . , Q15,M0, . . . ,M15, H0, . . . ,H15 are rotational, then the probabilities of ro-

tational output pairs for expand1(j), j = 16, 17 and expand2(j), j = 18 . . . , 31

(obtained experimentally) are given in the Table 5.5.

Table 5.5.: Rotational properties of the words in f1 (without the shifts) in
BMWv1

Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23

log2 -2.37 -2.38 -3.93 -3.95 -3.97 -3.97 -3.98 -4.00

Q24 Q25 Q26 Q27 Q28 Q29 Q30 Q31

log2 -4.00 -4.02 -4.03 -4.03 -4.03 -4.03 -4.03 -4.04

The total probability of obtaining all the 16 rotational outputs from these
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transformations, i.e. the rotational probability of f1 is around 2−61.

Finally, let us analyze f2. We require rotational outputs only for the first 8

new chaining values, i.e. H0, . . . ,H7. Similarly as for BMWv1, the probability

can be estimated simply by counting the number of shifts and additions required

for producing these 8 values, i.e. the probability is 2−30−28−8·1.68 = 2−71.5. Note

that now there are no corrections in the message words, hence the 512-bit output

is fully rotational.

For the whole BMWv2C , the probability that rotational inputs of messages

and chaining values will produce rotational outputs in the first 8 words is equal

to 2−145.7−61−71.5 = 2−278.2. On the other hand, a rotational input in a random

function will produce a rotational output in 8 words (512 bits) with probability

2−512. The probability of our distinguishers most likely can be raised most likely

if the message modification technique is applied. Then the first phase of f0

(probability 2−61) can be passed for free.

The low attack complexity allows us to launch rotational distinguishers for

the 384-bit version of BMWv2C as well. Note that, increasing the number of

applications of expand1(j) (which is considered to be stronger) from 2 to all 16

does not stop the attack because the rotational probability of expand1(j) is higher

than the one of expand2(j). Also, the probability of rotational output pairs, does

not seems to change significantly, when the order of sj in f0 and f1 is changed.

5.5. Rotational Analysis of SIMD-512

In this section we will present rotational distinguishers for the compression

function of SIMD-512 [80], later revised in [81]. For simplicity, we refer to SIMD-

512 as SIMD for the remainder of this chapter. SIMD passed through to the

second round of the SHA-3 competition [98]. Differential distinguishers for the

full round 1 compression function of SIMD were presented in [89]. Recently, a

high probability distinguisher, exploiting the symmetric properties of round 1,2

SIMD has been found [79]. Our rotational distinguishers work for the compression

functions of the both (round) versions of SIMD, hence we will not make distinc-
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tions between the two versions. First, we shall launch a rotational distinguisher

for 24 rounds of the modified version of SIMD, where the message expansion is

linearized. Next, we will present a rotational distinguisher for the original, but

reduced to 12 rounds, compression function.

The general idea of the construction of SIMD is based on a modified Davies-

Meyer construction with a multiple-pipe Feistel-like block cipher and affine-code

based on a Reed-Solomon code for message expansion. In each iteration of the

compression function, one message block M of 1024 bits is processed by expand-

ing it in 8192 bits. The expansion is done using an affine code that applies the

following three operations: a number theoretic transformation (NTT), a con-

catenated code and a permutation. The expanded message is used as a key for

Feistel-like 32-round block cipher that transforms 32 state words initialized with

XOR-ed message M and chaining value H, and the result is finally transformed

to 32 words (H ′) with similar Feistel-like 4-round block cipher with H as the key

(hence in total there are 36 rounds).

The three message expansion operations are defined in the following way:

1. NTT – a 1024-bit input message block, represented as x = (x0, x1, . . . , x127) ∈

(Z28)128, is mapped into y = (y0, y1, . . . , y255) ∈ (F257)256 and

yi =
127∑
j=0

xjβ
ij + β255i, i = 0, . . . , 255, (5.17)

where β = 41 (β is a 256th root of unity in F257),

2. Concatenated Code – a pair (x, y) ∈ (F257)2 is mapped into word IC(x) +

216IC(y), where IC : F257 → Z216 , and IC(x) = C · x̃, where C takes one

of the two values 185 or 233, and according to the reference implementa-

tion [81] x̃ = x, when x ≤ 128, and x̃ = x− 257, otherwise.

3. Permutation – message words W
(i)
j = Z

(P (i))
j are expended, where Z

(i)
j =

Im(yti , ytj ), where m ∈ {185, 233}, ti, tj ∈ [0, 255].

Observation: The expanded message words in the first 8 rounds of SIMD are

obtained using the mapping I185 only.
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The main part of one round (out of 36) of the compression function consists

of 8 step functions (pipes) processed in parallel. One step function updates four

32-bit words of state, further denoted as A
(i)
j , B

(i)
j , C

(i)
j , D

(i)
j for j = 0, 1, . . . , 7

and rounds i = 0, 1, . . . , 35 in the following way:

A
(i)
j = (D

(i−1)
j +W

(i−1)
j + φ(i)(A

(i−1)
j , B

(i−1)
j , C

(i−1)
j ))≪s(i) +A

(i−1)

p(i)(j)
≪r(i) ,

B
(i)
j = A

(i−1)
j ≪r(i) , C

(i)
j = B

(i−1)
j , D

(i)
j = C

(i−1)
j ,

where φ(i) is either bit-wise MAJ function or bit-wise IF function depending on

the round, p(i) are round dependant permutations, r(i), s(i) are round dependant

rotations amounts and W
(i)
j are expanded message blocks or in the case of the

last four rounds, the old chaining values. For a detailed description of the SIMD

compression function see [81].

In the sequel, first we will find the rotational probability of the Feistel transfor-

mation, and then we will obtain rotational probabilities for the message expan-

sion. We will analyze two versions of the message expansion with and without

additions of the constants in the NTT part of the message expansion.

5.5.1. Analysis of the Feistel of SIMD

In the Feistel transformation of SIMD, there are only three different opera-

tions, namely, additions, rotations, and Boolean functions. More importantly,

the Feistel does not apply any constant. To find the rotational probability of

one round of the Feistel transformation, we only have to count the number of

additions, which is 24: 8 pipes, each with 3 additions. In the rotational pairs we

will use the rotation amount of 1, hence for each addition we will have the prob-

ability 2−1.41. Therefore, the rotational probability of one round of the Feistel

transformation is 2−1.41·3·8 = 2−33.8.

When the expanded message words W
(i)
j , used as a key for the Feistel, equal

zero, then the number of additions per pipe drops from 3 to 2. Therefore, one

round has 16 additions (instead of 24), and the rotational probability of one round

becomes 2−1.41·16 = 2−22.6.
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5.5.2. Analysis of Round-reduced Linearized SIMD

First, we will consider SIMD with linearized message expansion, which can be

achieved by changing the constant β255 in the NTT transformation to 0. This

modification allows us to fix message block m to zero which changes the expanded

message words W
(i)
j also to zeros. In other words, on zero input, all the three

message expansion parts, produce zero output. Also, value 0 is rotational with

respect to any amount (including our target amount of 1).

A rotational distinguisher for this modified version of SIMD works as follows.

The message input in both pairs is fixed to 0, i,e, the message pair (M1,M2) is

(01024, 01024). The chaining value input pair (H1, H2) is simply rotational with

amount 1, i.e. the input pair is (H1, H1 ≪1), where the values of the words

H l
1, l = 0, . . . , 31 of the vector H1 are chosen arbitrarily, and the values of the

words for the second vector H2 are fixed as H l
2 = H l

1 ≪1, l = 0, . . . , 31. Then

the input to the Feistel (M ⊕ H) is also rotational. The expanded message

words are all zeroes, therefore the rotational probability of each round except for

the last four (where the input is the chaining value) is 2−22.6. As a result, we

can launch a rotational distinguisher on 20 round-reduced linearized SIMD: the

rotational probability of the first 16 rounds is 2−22.6·16, and of the last 4 rounds

(the feedforward rounds) is 2−33.8·4, hence the total rotational probability of the

distinguisher is 2−497. On the other hand, in a random function, the probability

that a rotational input will produce rotational output in 1024 bits is 2−1024.

The previous distinguisher can be extended for 4 additional rounds. The first

round can be passed for free, i.e. the rotational probability of the first round can

be equal to 1, if we fix the values of the most and last significant bits of each

chaining value word4 – this is in line with the message modification techniques.

Three additional rounds can be passed for free, if we take into account that we

can produce output pairs rotational in only 512 bits (instead of all 1024 bits). In

the last 4 (feedforward) rounds, we produce rotational pairs only in the first 2 of

these 4 rounds, i.e. A
(k+1)
j , A

(k+2)
j , B

(k+1)
j , B

(k+2)
j , C

(k+1)
j , C

(k+2)
j , D

(k+1)
j , D

(k+2)
j

4The pair is still rotational, only some bits are fixed.
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are rotational. Then, due to the property of the Feistel, C
(k+4)
j = A

(k+2)
j ≪r(k+2) ,

D
(k+4)
j = B

(k+2)
j , hence the words C,D of the last round are rotational. There-

fore, the output pair is rotational in 512 bits. The total probability of the 24

round distinguisher is 20+19·(−22.6)+2·(−33.8)+2·0 = 2−497. The same probability in

a random function is 2−512.

5.5.3. Analysis of Round-reduced SIMD

The designers of SIMD were aware of a potentially dangerous property of the

linear NTT function (see [80] page 8) and intentionally introduced addition of

some powers of β255 in the definition of NTT making the message expansion affine.

This modification no more allows us to obtain any expanded message words all

equal to 0. However, for the first 8 rounds, 128 expanded message words are

constrained by a system of 128 equations in 128 variables (each of them refers to

consecutive 8 bits of input message) and by forcing these 128 words to zero we

obtain a system (see Equations (5.17), where yi = 0 for i = 0, 1, . . . , 127), which

has only one solution in (F257)128 that can be mapped to (Z28)128. The existence

of such a solution allows us to build a distinguisher for 12 rounds of SIMD (8

rounds with words from message expansion and 4 rounds with the chaining value

words).

The expanded message words W
(i)
j are zeroes but the original message words

x0, x1, . . . , x127 are not zeroes. We require the input pair (M l
1 ⊕ H l

1,M
l
2 ⊕ H l

2)

to the Feistel transformation to be rotational, i.e. M l
2 ⊕ H l

2 = (M l
1 ⊕ H l

1) ≪1.

Since we take the same message input in the pair (because this input will produce

expanded message words equal to zero, hence rotational), i.e. M l
1 = M l

2, then

for the pair of chaining values, we will obtain H l
2 = H l

1 ≪1 ⊕(M l
1 ≪1 ⊕M l

1).

Note that now the chaining values are rotational only in 514 bits (out of 1024)

because the sum of the hamming weights of the words M l ≪1 ⊕M l is 510.

After 8 rounds of the Feistel, where W
(i)
j are zeroes, all the intermediate state

words A
(8)
j , B

(8)
j , C

(8)
j , D

(8)
j are rotational with probability 28·(−22.6) = 2−181. In

the ninth round, the inputs W
(i)
j are the chaining values (which are rotational in
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5. Analysis of Addition-Rotation-XOR Designs

roughly half of the bits). Let us find the rotational error e
A

(9)
j

of A
(9)
j (the terms

H1, H2 in the following formulae denote the inputs W
(i)
j in the first and in the

second instance of the rotational pair), which is

e
A

(9)
j

= [(D
(8)
j + φ

(9)
j +H1)≪s(9) +A

(8)

p(9)(j)
≪r(9) ]≪1 −

− [(D
(8)
j ≪1 +φ

(9)
j ≪1 +H2)≪s(9) +(A

(8)

p(9)(j)
≪1)≪r(9) ],

where φ
(9)
j = φ(9)(A

(8)
j , B

(8)
j , C

(8)
j )). With the probability 22·(−1.41) (rotational

probability of two additions), the error can be rewritten as

e
A

(9)
j

= ((D
(8)
j + φ

(9)
j ) +H1)≪(s(9)+1) +(A

(8)

p(9)(j)
≪r(9))≪1 −

− [((D
(8)
j + φ

(9)
j )≪1 +H2)≪s(9) +(A

(8)

p(9)(j)
≪1)≪r(9) ] =

= ((D
(8)
j + φ

(9)
j ) +H1)≪(s(9)+1) −((D

(8)
j + φ

(9)
j )≪1 +H2)≪s(9) .

The rotational probability of addition for any rotation amount is at least 2−2.

Hence, with probability 22·(−2), the error can be rewritten as

e
A

(9)
j

= (D
(8)
j + φ

(9)
j )≪(s(9)+1) +H1 ≪(s(9)+1) −(D

(8)
j + φ

(9)
j )≪(s(9)+1) −

−H2 ≪s(9)= H1 ≪(s(9)+1) −H2 ≪s(9) .

If we take into account that H2 = H1 ≪1 ⊕K (the constant K depends on the

message words), then for the rotational error we will get that e
A

(9)
j

= X−X⊕Kj ,

where X = H1 ≪(s(9)+1), and Kj = (M j
1 ≪1 ⊕M j

1 ) ≪s(9) . For a random X,

the value of e
A

(9)
j

is Kj with the probability 2−hamming(K
j) – X has to have 1 in

the bits where Kj has 1. Since we control the bits of the chaining value, we can

fix the required bits to 1, and get e
A

(9)
j

= Kj with probability 1. Note that we

have to fix roughly half of the bits of the chaining value but we still have enough

freedom (in 512 bits) to launch an attack. As the result, in a single pipe, the

probability that e
A

(9)
j

= Kj is 22·(−1.41)+2·(−2) = 2−6.8.

The values of new chaining words D
(12)
j are defined as D

(12)
j = A

(9)
j ≪r(9) . Let

(D
(12)
j , D̃

(12)
j ) be the output pair of words, obtained with a rotational input pair
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specified as above. Then in all 8 pipes

(D
(12)
j ≫r(9))≪1 −(D̃

(12)
j ≫r(9)) = e

A
(9)
j

= Kj

with probability 2−181−6.8·8 = 2−236. The same property in a random function

holds with probability 2−256 (eight 32-bit words).

5.6. Shift Distinguishers on Shabal

Shabal [25] is a hash function submitted to the SHA-3 competition and it

passed to the second round. There are various published distinguishers on the

permutation of Shabal [2, 4, 65, 99] and among them is a rotational distinguisher

proposed by Van Assche in [1].

The compression function of Shabal is based on a keyed permutation PM,C(A,B),

where B,C,M ∈ {0, 1}lm , A ∈ {0, 1}la (recommended values for the parameters

are lm = 512, la = 384). The inputs can be seen as arrays Ai, Bj , Cj ,Mj , i =

0, . . . , 11, j = 0, . . . , 15 of 32-bit words. The permutation P outputs the new val-

ues of Ai, Bi and is defined as:

for i = 0 to 15 do

Bi ← Bi≪17

end for

for j = 0 to p− 1 do

for i = 0 to 15 do

Ai+16j mod r ← U(Ai+16j mod r ⊕ C8−i mod 16 ⊕ V(Ai−1+16j mod r≪15))

Ai+16j mod r ← Ai+16j mod r ⊕Mi

Ai+16j mod r ← Ai+16j mod r ⊕Bi+13 mod 16 ⊕ (Bi+9 mod 16 ∧Bi+6 mod 16)

Bi ← Bi≪1 ⊕Ai+16j mod r

end for

end for

for j = 0 to 35 do

Aj mod r ← Aj mod r + Cj+3 mod 16

107



5. Analysis of Addition-Rotation-XOR Designs

end for

where U(x) = 3x, V(x) = 5x and the recommended values for the parameters are

(r,p) = (12, 3).

The following lemmas specify the shift probabilities of the transforms used in

P.

Lemma 5.4. Given n-bit words x, y and positive integers r, s, then

Pr((x+ y)�s= x�s +y �s) = 1,

Pr((x⊕ y)�s= x�s ⊕y �s) = 1,

Pr(U(x�s) = U(x)�s)) = 1,

Pr(V(x�s) = V(x)�s)) = 1,

Pr((x ∧ ȳ)�s= (x�s) ∧ y �s) = 1,

Pr((x≪r)�s= (x�s)≪r) = 2−2t,

where t = min(r, s, n− r, n− s).

Lemma 5.5 (Updates of Bi). Given n-bit words x, y, then

Pr((x≪1 ⊕y)�1= ((x�1)≪1 ⊕y �1)) = 2−2.

The proofs for the lemmas are analogous to the ones for rotational property.

Lemma 5.6 (Multiplication). Given a pair of n-bit words x, y and positive inte-

gers r, s, then

Pr(x�r · y �s= (x · y)�(r+s)) = 1.

Let us consider that each n-bit word z can be represented as a concatenation of

two words a, b, i.e. z = a||b, where a are the s most significant bits of z, and b the

n−s least significant bits of z. Let x = a1||b1, y = a2||b2 be such a representation
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of x, y. With Cu,v we denote the carry from u+ v. Then for addition we have:

(x+ y)�s= (a1||b1 + a2||b2)�s= (a1 + a2 + Cb1,b2 ||b1 + b2)�s= b1 + b2|| 0 . . . 0︸ ︷︷ ︸
s

,

x�s +y �s= (a1||b1)�s +(a2||b2)�s= b1|| 0 . . . 0︸ ︷︷ ︸
s

+b2|| 0 . . . 0︸ ︷︷ ︸
s

= b1 + b2|| 0 . . . 0︸ ︷︷ ︸
s

.

A similar reasoning can be applied to XOR as well. Let now x = x12n−r + x2

and y = y12n−s + y2, then

x�r · y �s ≡ x2y22r+s (mod 2n),

(x · y)�r+s = (x1y122n−r−s + x1y22n−r + x2y12n−s + x2y2)�r+s≡ x2y22r+s (mod 2n),

that proves x�r · y �s≡ (x · y)�r+s (mod 2n).

Let us now provide a proof for U (the proof for V is analogous).

U(x)�s= (3x)�s= (2x+ x)�s= (2x)�s +x�s= x�s+1 +x�s,

U(x�s) = 3(x�s) = 2(x�s) + x�s= x�s+1 +x�s .

For the function x ∧ ȳ:

(x ∧ ȳ)�s = (x�s) ∧ (y �s) = (a1||b1 �s) ∧ (a2||b2 �s) = b1|| 0 . . . 0︸ ︷︷ ︸
s

∧b̄2|| 0 . . . 0︸ ︷︷ ︸
s

=

= b1 ∧ b̄2|| 0 . . . 0︸ ︷︷ ︸
s

,

(x�s ∧y �s) = ((a1||b1)�s ∧(a2||b2)�s = b1|| 0 . . . 0︸ ︷︷ ︸
s

∧b̄2|| 1 . . . 1︸ ︷︷ ︸
s

= b1 ∧ b̄2|| 0 . . . 0︸ ︷︷ ︸
s

.

For the proof of the shift probability of rotation compare proof of rotational

probability of shift. Finally, let us prove the Lemma 5.5, i.e. let find the shift

probability (with s = 1) of the function f(x, y) = x≪1 ⊕ȳ. We assume that
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5. Analysis of Addition-Rotation-XOR Designs

x = xn−1xn−2 . . . x0, y = yn−1yn−2 . . . y0, where xi, yi are bits.

f(x, y)�1 = (x≪1 ⊕ȳ)�1= (x≪1)�1 ⊕ȳ �1=

= (xn−2 . . . x0xn−1)�1 ⊕yn−2 . . . y1y00 =

= xn−3 . . . x0xn−10⊕ ȳn−2 . . . ȳ1ȳ00,

f(x�1, y �1) = (x�1)≪1 ⊕y �1 =

= (xn−2 . . . x00)≪1 ⊕yn−2 . . . y1y00 =

= xn−3 . . . x00xn−2 ⊕ ȳn−2 . . . ȳ1ȳ01.

Therefore f(x, y) �1= f(x �1, y �1) ⇐⇒ xn−1 = 0 and xn−2 = 1, hence the

probability is 2−2.

From the lemmas we can see that among all the transformations in P it is

only the rotation and the update function for Bi that have a probability less

than 1 and therefore to find the shift probability of the whole P, i.e. to find the

probability that P(A,B,C,M)�s= P(A�s, B �s, C �s,M �s) for a random

A,B,C,M , we only have to count the number of rotations and updates of Bi

used in P . Their number is 16 + 3 · 16 + 3 · 16 = 112. Therefore, if we fix the

shift amount s to 1, then the shift probability of one rotation and update of Bi

is 2−2, and we obtain a shift distinguisher for the whole P with a probability

2−2·112 = 2−224. If we manipulate the exact values of the inputs Bi we can pass

the beginning 16 rotations (with r = 17)) and the 16 rotations in the updates

of Bi (with r = 1) of the first round, i.e. j = 0. Then the total probability of

the shift distinguisher will drop to 2−160. Furthermore, we can as well control

the input values of Ci and pass for free the rotations in V (with r = 15) in the

first round. In this case, the total probability of our shift distinguisher will equal

2−128.

5.7. Summary

The invention of the rotational analysis has created a new avenue in crypt-

analysis and has invigorated the evaluation process of the SHA-3 competition.
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Table 5.6.: Summary of distinguishers for BMW and Shabal.

Compression Function Distinguisher Complexity Reference

BMWv1 differential 1 [50]

BMWv1 rotational 2223.5 Section 5.4

BMWv2 differential 219 [3]

BMWv2 rotational 2278.2 Section 5.4.1

Shabal differential 1 [2]

Shabal differential 1 [65]

Shabal differential 2 [4]

Shabal differential 221 [99]

Shabal shift 2128 Section 5.6

Shabal rotational 2159 [1]

SIMD symmetric 1 [23]

SIMD differential 2−398 [112]

SIMD rotational 2−236 Section 5.5.3

SIMD rotational 2−497 Section 5.5.2

However, the theory and the application of the rotational analysis and distinguish-

ers is largely unexplored. In this thesis, we have made a step towards extending

the area of applying the rotational analysis to primitives that besides ARX, may

have subtractions, shifts, Boolean functions and a combination of additions and

subtractions. We have derived the rotational probabilities from these operations.

Our findings have allowed us to launch attacks on the modified and original com-

pression functions of BMW-512 and SIMD-512 which were in the second round

of the SHA-3 competition. Furthermore, we have proposed a new type of attack,

a shift analysis. We have found distinguishers based on the shift analysis for the

permutation of the Shabal hash function.

Our distinguishers do not contradict the security claims of all of the hash

functions. Our findings demonstrate that some parts of the analyzed designs

exhibit non random behaviour which might be exploited to mount successfull

attack on full versions of them.
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The study presented in this thesis has covered only a small part of wide sub-

jects of design and analysis of cryptographic hash functions. We have discussed

security of available hashing modes applied to block ciphers and illustrated our

results with examples of attacks on instances of such constructions. Our results

do not only have application in hash function analysis but have also improved

some of the attacks on block ciphers: Crypton, Hierocrypt-3, IDEA, SAFER++

and Square in the open-key model. We have extended application of rotational

distinguishers to larger class of primitives besides additions, rotations and XORs.

Our findings have allowed to mount rotational attacks on two round 2 SHA-3 can-

didates: BMW and SIMD. We have proposed a new kind of shift distinguisher

and applied it to third SHA-3 candidate: Shabal. The theoretical results we

have obtained for: random permutations in terms of differential propagation and

multi additions/subtractions in case of rotational analysis have demonstrated

the beauty of mathematics applied to cryptanalysis of hash functions and block

ciphers.

The SHA-3 competition concluded in 2012 and Keccak has been selected as

a successful winner out of five final candidates: BLAKE, Grøstl, JH, Keccak or

Skein. However, it is not the only output of the Secure Hash Standard comple-

tion. The 4-year selection process has enthused the international cryptographic

community to search for better ways of estimating security level of cryptographic

hash functions. New attacks have been devised and new “unwanted” properties

of cryptographic primitives have been discovered. Without a doubt, the new

SHA-3 attract more attention from the research community, which will bring

more interesting cryptanalytic results and maybe answers to above questions.
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6.1. Contributions

In Chapter 3, we investigated the problem of building hash functions from

block ciphers and have discussed the results for commonly used modes of design-

ing compression functions. We have considered both the known-key and chosen-

key models. Specifically, we have analyzed the collision resistance of compression

functions based on single block ciphers as well as the double-block compression

functions, when specific differential trails for the underlying ciphers can be built.

We have shown that we can build open-key differential distinguishers for some

well known block ciphers: Crypton, Hierocrypt-3, SAFER++ and Square. As

far as we know, the attack on SAFER++ is the first rebound attack with stan-

dard differentials. For these ciphers, we have shown that when the attack model

is switched from secret-key to open-key, the number of rounds that can be at-

tacked increases. In order to demonstrate efficiency of proposed distinguishers,

we have provided formal proof of a lower bound for finding a differential pair that

follows some truncated differential in case of a random permutation. Our hash

analysis has shown that block ciphers used as underlying primitives in considered

modes should be analyzed also in the open-key model in order to prevent possible

collision attacks.

In Chapter 4, we studied the security of the IDEA block cipher when applied

to following block cipher hashing modes: Davies-Meyer, Hirose, Abreast-DM,

Tandem-DM, Peyrin et al.(II) and MJH-Double. We have shown free-start-

collision and preimage attacks for all the modes and semi-free start collisions

attacks for Peyrin et al.(II) and MJH-Double modes. Finally, we have constructed

collision search attack for the whole hash function in Davies-Meyer mode. We

have exploited weak-keys of IDEA, in particular we have used the fact that the

key 0 in IDEA is extremely weak, actually rendering the whole encryption process

to a T-function, already known as dangerous for building a hash function [96].

All our attacks were based on weak-keys utilization, but in contrary to the secret

key model where the goal of the attacker is to exhibit the biggest weak-key class

possible, in the hashing mode the goal is to find and exploit the weakest of all
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keys. While weak-keys are already known to be dangerous for block cipher-based

hash functions, our method used a novel and non-trivial almost half-involution

property for IDEA. We have found that even strengthened versions of the cipher

with any number of rounds can be attacked with about the same complexities.

Our analysis has once again demonstrated in a similar way as in Chapter 3 that

even if this cipher is considered secure in the secret-key model, its security re-

mains an open problem in a hashing mode. In particular, one should strictly

avoid the use of a block cipher for which weak-keys exist, even if only a single

weak-key is known.

In Chapter 5, we investigated recently proposed rotational analysis and rota-

tional distinguishers. Our findings allowed to extend rotational analysis (applied

to additions, rotations and XORs) to wider range of primitives, that is: subtrac-

tions, shifts, Boolean functions and combination of additions and subtractions.

We have derived the rotational probabilities from these operations. In particu-

lar we have presented exact formulas for calculation of rotational probability for

multi additions and multi subtractions. We have also applied S-function frame-

work for rotational analysis with corrections and provided an algorithmic way to

calculate exact probabilities for fixed corrections. We have applied our findings

to rotational analysis of compression functions of SHA-3 candidates: BMW and

SIMD. We have found that round 1 BMW [48] is susceptible to the rotational

analysis. Also, the round 2 BMW [49], with a slightly altered constant, can be

attacked using this method. For SIMD, we have presented various rotational

distinguishers on round-reduced original and modified versions. We have also

proposed new shift distinguisher and applied it to the permutation of the SHA-3

candidate Shabal. The invention of rotational analysis has created a new av-

enue in cryptanalysis and has invigorated the evaluation process of the SHA-3

competition. However, the theory and application of rotational analysis and dis-

tinguishers is largely unexplored. Even though our analysis did not provide best

attacks on analyzed functions: BMW, SIMD or Shabal, we have improved the

rotational framework and have shown possible ways of its further development.
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6.2. Design Guidelines

Our analysis has demonstrated many successful attacks on a variety of block

ciphers in hashing modes and three SHA-3 candidates. The results were exploiting

“weaknesses” of analyzed primitives and might be wrongly considered as negative.

However, they are in a sense warning signs for designers of new constructions.

The tools applied to cryptanalysis in the thesis, that is: differential distinguishers,

rotational distinguishers, almost half-involution property, T/S-functions, etc. can

be as well used for testing of hash function security margin. Of course such an

approach will not replace mathematical proof, but might detect flaws in new

designs and grow designer confidence in a chosen strategy.

What is important, our findings introduced in Chapter 3 and Chapter 4 demon-

strate that block ciphers applied in hashing modes do not only have to be secure

in the secret-key model but should as well be analyzed in the open-key model. In

particular, one should strictly avoid block ciphers for which any weak-key exists

for compression function construction.

Our rotational analysis of BMW and SIMD, and shift analysis of Shabal in

Chapter 5 proved to be effective to some extent, even though the preservation of

rotational/shift pairs does not seem to be probable for such complicated designs.

What we have observed is that “good” constants might even improve our attacks.

In the light of SHA-3 competition requirements, the observed property of the

compression functions is not (pseudo) random, hence it might raise some concern,

even if it is not clear how the property is extended to the entire function. On

the other hand, the tools we have developed for this kind of analysis can help

determine “bad” for attacker constants and alignment of internal operations of

build primitive.

6.3. Open Problems and Future Research Directions

The open-key model and its variants, the known-key and the chosen-key models

are still highly researched. Even if the attacks on block ciphers demonstrated in

these models are not considered as a real threat for this primitive, the application

116



6.3. Open Problems and Future Research Directions

of block ciphers in the construction of compression functions will result in the

designers willing to consider these models seriously. The open problem in this

field of analysis is how the gap between the two models: the secret-key and the

open-key can be closed. That is finding the relation for attacks designed in both

cases.

The second problem we would like to present is the existence of attacks on

hash functions or block ciphers based on available highly efficient distinguishers.

For many cryptographic primitives there exist high probability distinguishers, for

example in case of Shabal there are two differential distinuishers with probability

1 on its keyed permutation [2, 65]. However, there is no straightforward way to

extend them to any kind of non-distinguishing attack on the whole hash function.

The problem has been researched to some extent, for example designers of Shabal

introduced in their analysis [26] a distinguishing oracle, and demonstrated that

the advantage of an attacker interacting with the oracle equipped with effective

distinguisher for compression function is negligible.

Another interesting field of research is the application of the S-function frame-

work for rotational analysis with corrections. The obtained results allow to es-

tablish exact probability for fixed corrections. However, finding optimal config-

uration of input/output corrections in polynomial time is an open problem. An

efficient algorithm could drastically improve rotational analysis. This is to say

that the results would have an immediate application to differential probabili-

ties of modular addition, and might as well lead to improvements to differential

characteristics of ARX designs.
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A. Proofs of Rotational Analysis

Lemmas

The Lemma 2.1 was proven in [37].

Shifts. We will provide evidence for shifts to the right. The case for shifts to the

left can be proven similarly. Recall that for n-bit word x, rotation is defined as

x≪r= (x�r)⊕ (x�(n−r)).

Then,

(x�s)≪r = [(x�s)�r]⊕ [(x�s)�(n−r)],

(x≪r)�s = [(x�r)⊕ (x�(n−r))]�s= [(x�r)�s]⊕ [(x�(n−r))�s]

Hence, we have to find the probability that L ≡ (x �s) �r= (x �r) �s≡ R

holds. Let x = xn−1 . . . x0, where xi are bits of x. When s ≥ r, then,

L ≡ (x�s)�r= 0 . . . 0︸ ︷︷ ︸
s−r

xn−1 . . . xs 0 . . . 0︸ ︷︷ ︸
r

,

R ≡ (x�r)�s= 0 . . . 0︸ ︷︷ ︸
s

xn−1−r . . . xs−r

If 0 ≤ r ≤ s ≤ n
2 , then L = R with probability 2−2r: the bits xn−1, . . . , xn−r

(r bits in total) and the bits xs−1, . . . , xs−r (again r bits) have to be zeros, and

r = min(r, s, n− r, n− s).

If 0 ≤ r ≤ n
2 < s ≤ n, then L = R with probability 2−2 min(r,n−s): if r ≤ n− s

then we have an analogous situation as above mentioned, whereas if n − s < r
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then the bits xn−1, . . . , xn−s (n − s bits in total) and the bits xn−1−r, . . . , xs−r

(n− s bits in total) have to be zeros, and n− s = min(r, s, n− r, n− s).

If n
2 < r ≤ s ≤ n, then n−1− r < n

2 and therefore, the probability that L = R

is 2−2(n−s): the bits xn−1, . . . , xs (total n − s bits) and the bits xn−1−r . . . xs−r

(total n− s bits) have to be zeros, and n− s = min(r, s, n− r, n− s).

Obviously, the case when s < r can be reduced to the above case.

Boolean function. Let x be the n-bit input, i.e. x = xn−1xn−2 . . . x0. Then

f(x) = f(xn−1) . . . f(x0). Therefore, we have f(x≪r) = f(xn−1−r) . . . f(xn−r) =

[f(xn−1) . . . f(x0)]≪r= f(x)≪r.

Multiplication. Let x = x12n−r + x2 and y = y12n−s + y2, then

(x · y)≪r+s = (x1y122n−r−s + x1y22n−r + x2y12n−s + x2y2)≪r+s,

x≪r · y≪s = (x22r + x1) · (y22s + y1) = x2y22r+s + x2y12r + x1y22s + x1y1.

If x1 = 0 and y1 = 0 then the above equations simplify to

(x · y)≪r+s = (x2y2)≪r+s,

x≪r · y≪s = x2y22r+s,

respectively. Because (x2y2) ≪r+s= x2y22r+s with probability 2−r−s, as also

x1 = 0 and y1 = 0 with the same probability, the claimed lower bound is obtained.
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B. mCrypton

mCrypton is a 64-bit block cipher with three possible key sizes 64-bit, 96-

bit and 128-bit, proposed by Lim and Korkishko [83]. It is compact version

of Crypton [82] intended for resource-constrained hardware implementations. A

round transformation of mCrypton consists of an S-box layer γ, linear diffusion

layer composed of two transforms π and τ and subkey addition σ. The encryption

involves 12 rounds applied to an internal state of the cipher.

The internal state of mCrypton can be represented as 4 × 4 matrix of nib-

bles (4-bit words) aij or alternatively as 4 columns Ac[0], . . . , Ac[3] or 4 rows

Ar[0], . . . , Ar[3], where Ac[i] = (a0i, . . . , a3i)
T and Ar[i] = (ai0, . . . , ai3).

Table B.1.: mCrypton internal state representation:
a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

(a) nibble-wise

Ac[0] Ac[1] Ac[2] Ac[3]

(b) column-wise

Ar[0]

Ar[1]

Ar[2]

Ar[3]

(c) row-wise

The encryption process consists of number of rounds build of four types of

transformations:

1. nonlinear substitution γ (S-box),

2. linear π,

3. linear τ ,

4. key addition σ,

described in more detail in the following sections. The i-th round transformation

ρi is a composition of above, that is ρi = σKi ◦ τ ◦ π ◦ γ, where Ki is an i-th
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round key obtained with a key schedule. The key schedule described in B.5 is a

modified version of the Crypton key schedule (compare [82]).

B.1. Nonlinear Substitution γ

This is the only nonlinear part of the cipher. It applies combination of four

nonlinear S-boxes γ0, γ1, γ2, γ3 to 16-nibble state presented in Table B.3, where

γi is defined in Table B.5.

Table B.3.: mCrypton nonlinear substitution γ

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

→
γ0(a00) γ1(a01) γ2(a02) γ3(a03)

γ1(a10) γ2(a11) γ3(a12) γ0(a13)

γ2(a20) γ3(a21) γ0(a22) γ1(a23)

γ3(a30) γ0(a31) γ1(a32) γ2(a33)

Table B.5.: Definition of mCrypton S-boxes γ0, . . . , γ3.

0 1 2 3 4 5 6 7 8 9 a b c d e f

γ0 4 f 3 8 d a c 0 b 5 7 e 2 6 1 9

γ1 1 c 7 a 6 d 5 3 f b 2 0 8 4 9 e

γ2 7 e c 2 0 9 d a 3 f 5 8 6 4 b 1

γ3 b 0 a 7 d 6 4 2 c e 3 9 1 5 f 8

B.2. Column-Wise Bit Permutation π

π is a linear transformation of columns Ac[i]. It is defined in the following way:

πi(Ac[i]) = (b0i, b1i, b2i, b3i)
T

where each bij is calculated as follows:

bji = ⊕3
k=0(m(i+j+k)mod4 ∧ aik)

where ⊕ and ∧ are bit-wise logical operations XOR and AND, respectively. The

constants used to express bij are: m0 = 11102,m1 = 11012,m2 = 10112,m3 =

01112 represented as binary numbers.
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B.3. Column-To-Row Transposition τ

This is also a linear transformation of mCrypton state, which realizes transpo-

sition of the state, that is i-th column is transformed to i-th row.

Table B.6.: mCrypton column-to-row transposition τ

Ac[0] Ac[1] Ac[2] Ac[3] →
Ac[0]T

Ac[1]T

Ac[2]T

Ac[3]T

B.4. Key Addition σ

Let Ki = (Ki[0],Ki[1],Ki[2],Ki[3]) be 64-bit i-th round key, each Ki[j] consists

of 4 nibbles. Key addition σKi is a row-wise state transformation that XORs j-th

row with j-th element of Ki, that is Ki[j].

Table B.8.: mCrypton key addition σ

Ar[0]

Ar[1]

Ar[2]

Ar[3]

→
Ar[0]⊕Ki[0]

Ar[1]⊕Ki[1]

Ar[2]⊕Ki[2]

Ar[3]⊕Ki[3]

B.5. Altered Key Schedule

The altered key schedule adopted from Crypton is defined in the following way:

Let K be a 128-bit encryption key and K = k0 . . . k31 where each ki is four-bit

nibble for i = 0, . . . , 31. At first two temporal values U and V are derived from K

so that U [i] = k8ik8i+2k8i+4k8i+6 and V [i] = k8i+1k8i+3k8i+5k8i+7 for i = 0, 1, 2, 3.

Next for U ′ = γ(U) and V ′ = γ(V ) the eight expanded keys are evaluated as:

E[i] =
⊕
j 6=i

U ′[j] E[i+ 4] =
⊕
j 6=i

V ′[j]

for i = 0, 1, 2, 3 with use of which the 13 subkeys for each encryption round are

generated according to the following procedure:
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1. for the first and the second round:

K0[i] = E[i]⊕ C[0]⊕MCi K1 = E[i+ 4]⊕ C[1]⊕MCi

for i = 0, 1, 2, 3,

2. for the remaining eleven rounds (r = 2, . . . , 12) two steps are executed

alternatively:

a) for r even:

{E[0], E[1], E[2], E[3]} ← {E[1]�12, E[2]�8, E[3]�b3, E[0]�b3},

Kr[i] = E[i]⊕ C[r]⊕MCi,

b) for r odd:

{E[4], E[5], E[6], E[7]} ← {E[7]�b1, E[4]�b1, E[3]�4, E[0]�8},

Kr[i] = E[i+ 4]⊕ C[r]⊕MCi,

for i = 0, 1, 2, 3,

where C[0] = 0xf53a, C[k] = C[k−1]+0xf372 mod 216 for k = 1, . . . , 12, MC0 =

0xacac,MCk = MC�b1
k−1 for i = 0, . . . , 3 and �ba represents bit-left-rotation by a

bits within each four-bit nibble.

B.6. Encryption

The encryption procedure E takes as an input: 64-bit plaintext P and 128-bit

secret key K. The key is expanded to 13 round keys K0, . . . ,K12 with use of key

schedule described in Section B.5. The encryption function EK for given K is

defined as follows:

EK = φ ◦ ρ12 ◦ · · · ◦ ρ1 ◦ σK0
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B.6. Encryption

where i-th round function ρi is defined as:

ρi = σKi ◦ τ ◦ π ◦ γ.

The last part of encryption process the φ function is a linear transformation and

φ = τ ◦ π ◦ τ .
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