

Trust Evaluation in Service-Oriented Environments

by

Lei Li

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Computing Faculty of Science Macquarie University

Supervisor: A/Prof. Yan Wang

2011

© Copyright by Lei Li 2011

Statement of Candidate

I certify that the work in this thesis entitled **"Trust Evaluation in Service-Oriented Environments"** has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree to any other university or institution other than Macquarie University.

I also certify that the thesis is an original piece of research and it has been written by me. Any help and assistance that I have received in my research work and the preparation of the thesis itself have been appropriately acknowledged.

In addition, I certify that all information sources and literature used are indicated in the thesis.

Lei Li 11 November 2011

To my parents, Guoen Li and Xiulan Zhang, who dedicated all their life to me

Abstract

In service-oriented applications, effective and efficient trust evaluation is crucial. It provides valuable information to service clients, enabling them to select trustworthy service providers, consume high quality services and prevent monetary loss.

One aspect of the work presented in this thesis is trust vector based approaches to trust rating aggregations in service-oriented environments. In the single trust vector approach, a trust vector of three values is computed, which can predict the trust trend and represent a set of ratings distributed within a time interval (e.g. a week or a month etc.). With trust vectors, two service providers with similar final trust values can be compared. In the multiple trust vector approach, a two dimensional aggregation is performed, which consists of both vertical and horizontal aggregations of trust ratings. The vertical aggregation calculates the aggregated rating representing the trust level for the services delivered in a small time period. The horizontal aggregation applies our proposed multiple time interval (MTI) greedy and optimal algorithms to determine the minimal number of time intervals, within each of which a trust vector can be calculated to represent all the ratings in that time interval. The proposed algorithms can return a small set of MTI to represent a large set of trust ratings and preserve the trust features well.

The other aspect of the work presented in this thesis is trust-oriented composite service selection and discovery. In service-oriented environments, a service may invoke other services offered by different providers forming composite services. The complex invocations in composite services greatly increase the complexity of trustoriented service selection and discovery. To evaluate the subjective global trust of a composite service based on subjective probability theory, a set of subjective trust evaluation approaches have been proposed, which can map the non-binary discrete subjective ratings to trust values, evaluate the global trust value deductively and maintain the subjective property of trust ratings and trust results. In addition, two algorithms have been proposed for trust-oriented service selection and discovery.

The properties of the above proposed algorithms have been studied both analytically and empirically. These studies illustrate that the proposed algorithms are effective and efficient.

Acknowledgments

First of all, I would like to express my sincere appreciation to my supervisor A/Prof. Yan Wang for his kindness and patience. He has led me in the correct direction over the past few years not only with his knowledge and experience, but also with thoughtfulness about a young man's personal growth. Literally, without his continuous support and endless guidance, this work would not have been possible. It is my great fortune to have him as my supervisor at Macquarie University.

I also would like to thank Prof. Ee-Peng Lim for his help in various stages of my work. This academic journey would not have been so rewarding without his kindness and wisdom.

In addition, my colleagues have helped me to develop this work. I wish to express my thanks to Guanfeng Liu, Yi Wang, Zheng Chen, Hadi Mashinchi, Joe Zou, Weiliang Zhao, Haibin Zhang and Daisy He for providing a friendly and enjoyable environment during these years.

Many thanks to the staff in the Department of Computing for their administrative help. I would like to thank Sylvian Chow, Fiona Yang, Melina Chan, Donna Hua and Jackie Walsh for their warm support and help.

Most important of all, I would like to thank my family. My parents, Guoen Li and Xiulan Zhang, have always been there for me. Their love, support and encouragement have been the foundation for my life. I wish to thank them for all the opportunities they have made available to me, and for the support they have given me during my life. Thanks to my de facto wife, Jun Zhang, for her love, understanding and support. Without their love, unwavering support and inspiration, this work could never have been accomplished.

Publications

This thesis is based on research I have performed with the help of my supervisor and other colleagues during my PhD program at the Department of Computing, Macquarie University between 2008 and 2011. Some parts of my research have been published in the following papers:

- Lei Li and Yan Wang, The Study of Trust Vector Based Trust Rating Aggregation in Service-Oriented Environments, World Wide Web Journal (WWWJ) (ERA rank A journal¹) (Impact Factor 1.0), accepted on 03/10/2011.
- [2] Lei Li and Yan Wang, A Subjective Probability Based Deductive Approach to Global Trust Evaluation in Composite Services, IEEE International Conference on Web Services (ICWS 2011) (ERA rank A conference), pages 604-611, 4-9 July, 2011, Washington DC, USA.
- [3] Hadi Mashinchi, Lei Li, Mehmet Orgun and Yan Wang, The Prediction of Trust Rating Based on the Quality of Services Using Fuzzy Linear Regression, IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011) (ERA rank A conference), pages 1953-1959, 27-30 June, 2011, Taipei, Taiwan.
- [4] Yan Wang and Lei Li, Trust Rating Aggregations in Service-Oriented Applications, IEEE Transactions on Services Computing (TSC) (regarded as the best journal in the field of services computing), accepted on 27/05/2010.
- [5] Lei Li, Yan Wang and Ee-Peng Lim, Trust-Oriented Composite Service Selection with QoS Constraints, Journal of Universal Computer Science (J.UCS), 16(13), pages 1720-1744, 2010.

¹refer to http://www.arc.gov.au/era/era_2010/archive/era_journal_list.htm

- [6] Lei Li and Yan Wang, Context Based Trust Normalization in Service-Oriented Environments, International Conference on Autonomic and Trusted Computing (ATC 2010), Springer, LNCS Vol. 6407, pages 122-138, 26-29 October, 2010, Xi'an, China.
- [7] Lei Li and Yan Wang, Subjective Trust Inference in Composite Services, Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI 2010) (ERA rank A conference), pages 1377-1384, 11-15 July, 2010, Atlanta, Georgia, USA.
- [8] Lei Li, Yan Wang and Ee-Peng Lim, Trust-Oriented Composite Service Selection and Discovery, International Conference on Service Oriented Computing and European ServiceWave Conference series (ICSOC/ServiceWave 2009) (ERA rank A conference), Springer, LNCS Vol. 5900, pages 50-67, 24-27 November, 2009, Stockholm, Sweden.
- [9] Lei Li and Yan Wang, Trust Evaluation in Composite Services Selection and Discovery, IEEE International Conference on Services Computing (SCC 2009) (ERA rank A conference), pages 482-485, 21-25 September, 2009, Bangalore, India.
- [10] Lei Li, Yan Wang and Vijay Varadharajan, Fuzzy Regression Based Trust Prediction in Service-Oriented Applications, International Conference on Autonomic and Trusted Computing (ATC-09), Springer, LNCS Vol. 5586, pages 221-235, 7-9 July, 2009, Brisbane, Australia.
- [11] Lei Li and Yan Wang, A Trust Vector Approach to Service-Oriented Applications, IEEE International Conference on Web Services (ICWS 2008) (ERA rank A conference), pages 270-277, 23-26 September, 2008, Beijing, China.
- [12] Yan Wang, Lei Li and Ee-Peng Lim, Price Trust Evaluation in E-Service Oriented Applications, IEEE Conference on E-Commerce Technology and IEEE Conference on Enterprise Computing, E-Commerce and E-Services (CEC/EEE 2008), pages 165-172, 21-24 July, 2008, Crystal City, Washington DC, USA.

Contents

Al	Abstract					
A	Acknowledgments					
Pı						
1	Intr	oductio	n	1		
	1.1	A Brie	ef Review of Service-Oriented Computing	2		
	1.2	A Brie	ef Preview of Trust	3		
	1.3	Contri	butions of the Work	4		
	1.4	Roadn	nap of the Thesis	8		
2	Lite	rature]	Review on Trust	11		
	2.1	Genera	al Structure of Trust	12		
		2.1.1	Basic Trust	13		
		2.1.2	A Priori Generalized Trust	14		
		2.1.3	Context-Specific Trust	14		
		2.1.4	Inner Dialogicality	15		
	2.2	Bases	of Trust	15		
		2.2.1	Dispositional Trust	15		
		2.2.2	History-based Trust	16		
		2.2.3	Third Parties as Conduits of Trust	16		
		2.2.4	Category-based Trust	17		
		2.2.5	Role-based Trust	18		
		2.2.6	Rule-based Trust	18		
	2.3	Conce	pt of Trust in Multiple Disciplines	19		

	2.4	Trust H	Evaluation in Online Applications	20
		2.4.1	Trust Evaluation in E-Commerce Environments	21
		2.4.2	Trust Evaluation in P2P Information Sharing Networks	21
		2.4.3	Trust Evaluation in Service-Oriented Environments	22
		2.4.4	Trust Evaluation in Multi-Agent Systems	23
		2.4.5	Trust Evaluation in Social Networks	24
	2.5	Trust H	Evaluation Taxonomy	25
		2.5.1	Trust Evaluation Technique Based Taxonomy	25
		2.5.2	Trust Structure Based Taxonomy	26
		2.5.3	Trust Bases Based Taxonomy	26
	2.6	Conclu	usions	27
3	A Ti	rust Vec	ctor Approach in Service-Oriented Applications	29
	3.1	Servic	e Trust Vector and Its Evaluation	30
		3.1.1	Final Trust Level (<i>FTL</i>) Evaluation	31
		3.1.2	Service Trust Trend (STT) Evaluation	31
		3.1.3	Service Performance Consistency Level (SPCL) Evaluation .	34
		3.1.4	Service Trust Vector	36
		3.1.5	Experiments on Trust Vector	38
	3.2	Fuzzy	Regression Based Trust Prediction	46
		3.2.1	Background on Fuzzy Regression	46
		3.2.2	Fuzzy Regression Model Parameters	49
		3.2.3	Fuzzy Regression Methodology	51
		3.2.4	Fuzzy Regression Based Service Trust Vector	53
		3.2.5	Experiments on Fuzzy Regression Based Trust Prediction	55
	3.3	Conclu	usions	60
4	Two	Dimen	sional Trust Rating Aggregations	61
	4.1		al Trust Rating Aggregation	64
		4.1.1	Vertical Aggregation without Service Rating Reputation	64

			Contents	xiii
		4.1.2	Vertical Aggregation with Service Rating Reputation (SRR) .	67
		4.1.3	Experiment on Vertical Rating Aggregation	71
	4.2	Multip	ble Time Intervals (MTI) Analysis	74
		4.2.1	Boundaries of MTI	75
		4.2.2	Boundary Included Greedy MTI Algorithm	77
		4.2.3	Bisection-based Boundary Excluded Greedy MTI Algorithm .	79
		4.2.4	Boundary Included Optimal MTI Algorithm	83
		4.2.5	Boundary Excluded Optimal MTI Algorithm	85
		4.2.6	Boundary Mixed Optimal MTI Algorithm	88
		4.2.7	Experiments on MTI Analysis	91
	4.3	Conclu	usions	111
5	Trus	st-Oriei	nted Composite Service Selection	113
	5.1	Relate	d Work on Trust-Oriented Composite Service Selection	115
	5.2	Servic	e Invocation Model	117
		5.2.1	Composite Services and Invocation Relation	117
		5.2.2	An Example: Travel Plan	119
		5.2.3	Service Invocation Graph	121
		5.2.4	Service Invocation Matrix	122
	5.3	Trust I	Evaluation in Composite Services	123
		5.3.1	Trust Estimation Model	124
		5.3.2	Global Trust Computation in Composite Services	126
	5.4	Trust-	Oriented Composite Service Selection	128
		5.4.1	Longest SEF Algorithm	128
		5.4.2	Monte Carlo Method Based Algorithm (MCBA)	130
		5.4.3	Experiments on Trust-Oriented Composite Service Selection .	133
	5.5	Trust-	Oriented Composite Service Selection with QoS Constraints	139
		5.5.1	Related Work on Composite Service Selection with QoS Con-	
			straints	140

		5.5.2	QoS Constrained Monte Carlo Method Based Algorithm	141
		5.5.3	Experiment on Trust-Oriented Composite Service Selection	
			with QoS Constraints	143
	5.6	Concl	usions	147
6	Sub	jective '	Trust Evaluation in Composite Services	149
	6.1	Trust 1	Normalization in Service-Oriented Environments	151
		6.1.1	Comprehensive Evaluation Index System	153
		6.1.2	Fuzzy Comprehensive Evaluation Model	154
		6.1.3	Experiments on Trust Normalization	160
	6.2	Subjec	ctive Global Trust Evaluation in Composite Services	168
		6.2.1	Trust Estimation of Service Components	169
		6.2.2	Probability Interpretation of Trust Dependency	174
		6.2.3	Joint Subjective Probability Method	178
		6.2.4	Subjective Probability Based Deductive (SELECTIVE) Ap-	
			proach	179
		6.2.5	Experiments and Analysis on Subjective Global Trust Evaluation	n184
	6.3	Concl	usions	193
7	Con	clusion	s and Future Work	195
Aj	ppend	lix A N	Notations Used in This Thesis	199
Aj	ppend	lix B 7	Sechnical Report about Subjective Global Trust Evaluation	207
Bi	bliog	Bibliography 21'		

Contents

List of Figures

2.1	General Structure of Trust	12
3.1	Several STT cases	32
3.2	Weighted least square linear regression	32
3.3	Several SPCL cases	35
3.4	Experiment 1 on Trust Vector	40
3.5	Experiment 2 on Trust Vector	41
3.6	Experiment 3 on Trust Vector	44
3.7	Experiment 4 on Trust Vector	46
3.8	Experiment 1 on Fuzzy Regression Based Trust Prediction	55
3.9	Feedback of a learner's experience of the same teacher in a course	
	between 2005 and 2008 from the Centre for Professional Development	
	at Macquarie University	57
4.1	$R_{SRR_j}^{(t_i)}$ function	69
4.2	Service rating values in Experiment on Vertical Rating Aggregation .	72
4.3	Rating frequency at t_{10} in Experiment on Vertical Rating Aggregation	72
4.4	Error bars and STT in Experiment on Vertical Rating Aggregation	73
4.5	Several MTI examples	75
4.6	MTI examples with different boundaries	76
4.7	The properties of <i>SPCL</i> function $T_{SPCL}^{[t_1,t]}$	79
4.8	Rating frequency examples in Experiment 1 of Section 4.2.7.1	92
4.9	Single trust vector in Experiment 1 of Section 4.2.7.1	93
4.10	MTI in Experiment 1 of Section 4.2.7.1	94
4.11	MTI in Experiment 2 of Section 4.2.7.2	95

4.12	Comparison of five MTI algorithms in Experiment 2 of Section 4.2.7.2	96
4.13	Case 1 in Experiment 3 of Section 4.2.7.3 with the boundary mixed	
	optimal MTI algorithm	98
4.14	Case 2 in Experiment 3 of Section 4.2.7.3 with the boundary mixed	
	optimal MTI algorithm	98
4.15	Case 3 in Experiment 3 of Section 4.2.7.3 with the boundary mixed	
	optimal MTI algorithm	99
5.1	Atomic invocations	118
5.2	Complex invocations examples	118
5.3	The <i>SIG</i> for the travel plan of Smith	120
5.4	A service execution flow	120
5.5	Histograph of O_T for each SEF	134
5.6	O_T in the travel plan example	135
5.7	CPU time of simulation times	136
5.8	O_T in composite service of 100 vertices $\ldots \ldots \ldots \ldots \ldots$	138
5.9	Histograph of $O_{T_{QoS}}$ for each <i>SEF</i> in the travel plan example \ldots	145
5.10	CPU time of <i>QC_MCBA</i> in the travel plan example	145
5.11	$O_{T_{QoS}}$ in the travel plan composite service $\ldots \ldots \ldots \ldots \ldots$	146
5.12	$O_{T_{QoS}}$ in the composite service of 52 vertices	146
6.1	Triangular membership functions with five levels	156
6.2	Ratings from Epinions in Trust Normalization Experiment	160
6.3	Experimental results about Type 1 risk	163
6.4	Experimental results about Type 2 risk	165
6.5	Experimental results about Type 3 risk	167
6.6	The service invocation graph (SIG) for the travel plan	173
6.7	A service execution flow (SEF) in the SIG	173
6.8	A simple <i>SEF</i> example	180
6.9	Certainty with fixed ratio of x_4 and x_5	185

6.10	Certainty with fixed $x_4 + x_5$	185
6.11	Certainty with x_4 and x_5 when $x_1 = x_2 = x_3 = 0$	187
6.12	Certainty with x_4 and x_5 when $x_1 = x_2 = 0$ and $x_3 = 10$	188
6.13	Service execution flow SEF_2	188

List of Tables

3.1	Trust vectors in Experiment 1 on Trust Vector	39
3.2	Experiment 2 on Trust Vector results	43
3.3	Experiment 3 on Trust Vector results with w_{t_i}	44
3.4	Experiment 3 on Trust Vector results without w_{t_i}	44
3.5	Experiment 4 on Trust Vector results	47
3.6	Experiment 1 on Fuzzy Regression Based Trust Prediction results	56
3.7	Feedback of a learner's experience of a teacher for a course taken be-	
	tween 2005 and 2008 from Centre for Professional Development in	
	Macquarie University	58
3.8	Goodness-of-fit results in Experiment 2 on Fuzzy Regression Based	
	Trust Prediction	59
4.1	Trust vectors in Experiment on Vertical Rating Aggregation	74
4.2	Complexity of MTI algorithms proposed in Section 4.2	89
4.3	MTI algorithms compared in Experiments of Section 4.2.7	95
4.4	Consumed CPU time in seconds and the number of returned MTI in	
	Experiment 3 of Section 4.2.7.3	102
4.5	MTI goodness-of-fit for the data sets used in Experiments 2 & 3 of	
	Section 4.2.7.2 & 4.2.7.3	110
5.1	Non-zeros of <i>SIM</i> in Travel Plan	124
5.2	Ratings and subjective belief of each service component in the travel	
	plan	133
5.3	Weights of service components in Pa	133
5.4	Structure of complex composite services	137

5.5	CPU time in seconds of different examples	137
5.6	QoS attribute values of each service component in the travel plan ex-	
	ample	144
5.7	CPU time in seconds of different examples with QoS constraints	147
6.1	Ratings for service components in the SEF in Fig. 6.7	174
6.2	Trust estimation of service components in the SEF in Fig. 6.7	175
6.3	Trustworthiness of each rating in Table 6.1	175
6.4	Trust dependency in the SEF in Fig. 6.7	178
6.5	Trust results in Experiment 1	190
6.6	Trust results in Experiment 2	191
6.7	Trust results in Experiment 3	192
A.1	Notations Used in Chapter 3	199
A.2	Notations Used in Chapter 3 (continued)	200
A.3	Notations Used in Chapter 4	200
A.4	Notations Used in Chapter 4 (continued)	201
A.5	Notations Used in Chapter 4 (continued)	202
A.6	Notations Used in Chapter 5	202
A.7	Notations Used in Chapter 5 (continued)	203
A.8	Notations Used in Chapter 6	204
A.9	Notations Used in Chapter 6 (continued)	205

XX