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Summary

Many real life problems have to be solved by making rapid decisions in

competitive environments with only partial information available. This thesis

describes the development of an adaptive learning algorithm to maximise

expectancy in such cases. The working example in this thesis is a suite of

computer programs that form an adaptive learning system to play on-line

Texas Hold�em poker. This provides a basis for constructing systems for

various up-scaled problems such as �nancial markets trading.

In this thesis I have opted for a statistical approach to machine learning.

The methods described in this thesis are not based on human cognition.

Rather, they utilise the advantages of modern computing power in database

recall and computational power and do not require the human skills of per-

ception and pattern recognition that modern computers only possess in very

small measure.

This approach is a example of real world applicable unsupervised learning

[8]. It relies heavily on statistical and probabilistic solutions to certain

problems rather than seeking hard and fast deterministic answers.

ix



x SUMMARY

The focus in this thesis is on the mathematics underpinning the system

rather than details such as how to decode on-line sites.

What now follows is a summary of the thesis in more detail:

Much of the research into poker has built on the concepts developed by

Von Neumann [27] and Borel [4]. Game Theory concepts have been devel-

oped and used in conjunction with cutting edge techniques such as Neural

Networks to develop playing algorithms in a similar way to which games

such as Chess or Checkers have been solved. These techniques are not nec-

essarily gambling related, even though poker is usually played as a gambling

game. The problem with the Game Theory approach is that analysis of

full scale poker rapidly becomes intractable. Prominent researchers in the

Game Theory approach ([3], [18], [21],[20],[2], [1]) have recognised this and

much of the subsequent research has centred around reducing the size of the

problem to be solved. Derivation of a Game Tree for a reduced problem was

also the approach adopted by von Neumann and Borel. This approach has

been successful and can be summarised as �nding an exact solution to an

approximating problem. Methods seeking approximations to the full prob-

lem that retain the properties of the real problem have been developed and

are ingenious.

In this thesis a di¤erent approach has been used. Instead of seeking

approximating problems which may be solved exactly, approximate solutions

to the full problem are sought. Regression techniques have been used to

�nd approximate solutions to the full problem. Rather than try to tune a
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strategy engine using Neural Networks to solve the problem in a human-like

way, the population variance in preferences (as measured by coe¢ cients) has

been measured and past data for given contexts is used to estimate where on

the population distribution of preferences a particular context resides. The

resulting system still "learns", but in a di¤erent way to a Neural Network.

The play has been reduced to a sequence of actions which are chosen to max-

imise pro�t expectation. This has much in common with �nancial market

trading where a sequence of trades is likewise chosen to maximise pro�t.

The Game Theory approach also maximises pro�t expectancy, but be-

cause that approach necessitates analysis of a computationally intractable

Game Tree, the expectation actually maximised is that of an approximating

problem.

In a sense the approach adopted here is the opposite of the approach

adopted by the authors mentioned above in that they seek exact solutions to

an approximating problem whereas this research seeks approximate solutions

to the exact problem. It is expected that the methods developed here would

apply to more general problems than poker but, somewhat paradoxically,

there are other variants of poker to which the regression approach developed

here would not be suited. Tournament play and No-Limit poker are not

examples of a possibly in�nite sequence of small trades (bets), and a Game

Theory approach would work better for them.

While the discussion in this thesis focuses on on-line poker, the methods

used are applicable to a wide range of applications not normally regarded
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as gambling. However, many problems can be simpli�ed when it is recog-

nised they can be formulated as gambling problems. In this thesis the term

gambling will be used to denote any activity where �nite resources have to

be invested for returns that are uncertain a priori. It should be stated that

the use of the term gambling does not imply that reliance on luck is the

main factor in these activities. In fact, the poker robot discussed in this

thesis wins with high regularity and this is due in no small part to recognis-

ing some events can only be predicted probabilistically and the appropriate

course of action is the one that maximises expected advantage, that is, one

that maximises

(Probability of occurrence � Expected return) � Expected Investment.

There are many gambling strategies some common examples being

� Reliance on luck or hunches.

� Variance reduction or hedging. A few words should be said about this

because it is quite common, especially in �nancial markets trading and

sports betting. Consider a fair toss of an evenly balanced coin for

which we are given bookmaker odds of 2:1 on heads and 4:6 on tails.

It is shown on page 9 that in this situation both sides can be backed

pro�tably. Suppose we invest $10.00 and bet $3.57 on heads and $6.43

on tails. If heads wins we collect 2 x $3.57 plus our investment of $3.57

for a total of $10.71. If tails wins we collect 4 / 6 x $6.43 + $6.43 back
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or $10.71. Either way we win $0.71 per spin and never lose. Because

pro�ts can be guaranteed, this sort of system is sometimes thought to

be the best.

� Maximising Expectancy. This is the central strategy discussed in this

thesis. The expectancy to be maximised will be pro�t expectancy.

Consider again the coin toss experiment above. If we only take heads,

we win 50% on turnover which can be calculated as 3.00 decimal odds

multiplied by probability 0.5 giving an advantage 1.5 (as return on

investment) or 1.5 - 1 = 0.5 (as pro�t on investment), or an expectancy

of 0.5 x $10.00 = $5.00 per spin instead of $0.71 per spin. This of

course will also entail some �uctuations, half the bets will be losing

bets and we could be behind after some number of bets. But, after a

su¢ ciently high number of trials, our win rate will exceed that of any

other strategy.

To some extent, the "best" strategy to adopt can be a matter of pref-

erence. Various institutions entrusted with shareholders�money are often

forced to adopt a variance reduction approach because of the attitude of

investors to �uctuations in pro�t level.

Central Themes

� The central strategy advocated in this thesis will be to maximise pro�t

expectancy.
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� The modelling strategy employed will be to seek approximations to

pro�t maximimising strategies to the full problem.

� The methods used will be to develop a basic model assuming a homo-

geneous population of opponents and game contexts.

� Assumptions of homogeneity of opponents and game conditions will be

progressively relaxed.

� As part of the relaxation of these assumptions model properties of

adaptation or basic "learning" of the model to adapt to a changing en-

vironment but still exhibit pro�t maximising behavior will be observed.
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Chapter 1

Trading in uncertainty

Yes, I am a very rich man but I�d trade it all for

just a little bit more.� C. Montgomery Burns

This chapter contains an introduction to gambling and a discussion of

its common concepts and terminology. In this thesis, the word gambling

is used broadly to mean any activity that requires the investment of �nite

resources for an uncertain return. This is followed by a discussion of the

poker variant investigated in this thesis, namely Texas Hold�em poker. Some

background on poker terminology is also provided. The chapter concludes

with a discussion of modelling concepts and a rationale for choosing poker

as an application for the ideas developed in this thesis.

1



2 CHAPTER 1. TRADING IN UNCERTAINTY

1.1 Background Material

1.1.1 De�nitions

1. Advantage (A) is the expected value of return per unit investment:

A = E [
Return

Investment
]

Let E[�] = expected pro�t. It can easily be seen that E[�] = A� 1.

2. Imperial odds are expressions of a dividend showing bettor�s pro�t for

a successful wager.

3. Decimal odds are expressions of a dividend showing bettor�s return for

a successful wager. This style is fast becoming the standard and will

be the format adopted in this thesis unless otherwise stated. Almost

always decimal odds have values D > 1. It would be unusual to

make a wager where the return is less than the investment, thereby

guaranteeing a loss.

4. A ��game is a set of events that can be expressed as a sequence of

bets.

5. For a ��game, the (pro�t) expectancy, or expectation is

�� =

NX
n=1

(pnDn � 1)In
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where pn is the bet success, Dn is the decimal odds dividend and In

is the amount invested on the nth bet of the �-game.

6. Strategies that maximise �� are called Expectation Maximisers. The

notation adopted here for these are sup(��). The suprema ofMax(��; 0)

is what is sought.

7. An advantage game is a �-game where there exists some Expectation

Maximiser such that �� > 0:

8. The Implied Probability ( bp )of an event is the dividend required such
thatA = 1. For decimal odds, this is simply the reciprocal, for Imperial

Odds

a : b; bp = b

a+ b

If Implied Probability = Actual Probability, then A = 1 and the bet is

considered "fair".

9. Market percentage M =
NX
n=1

bpn is the sum of the Implied Probabilities

for all of the possible outcomes of an event. (M < 1) () arbitrage

possible.

10. In a ��game, our Turnover is the amount we invest, that is the sum

total of all bets.

11. A respondent is a member of some population under consideration.

Alternatively a population can be thought of as the set of all possible
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respondents.

12. A Generic Opponents model in the context of poker is a model that

assumes opponents are homogeneous throughout the population.

13. A Random Parameters Model is a model that has parameters that may

vary across a possibly heterogeneous population.

14. A Speci�c Opponents model treats opponents as possibly heterogeneous

in that behavioral preferences di¤er.

15. AContext Speci�c model treats the context being considered as possibly

heterogeneous. Thus we may not know much about each individual

player, but may know that for example players play di¤erently on large

limit tables than on small ones. Larger groups of players may also

behave di¤erently than single opponents. This can be regarded as a

generalisation of Speci�c Opponents models. The same players may

play di¤erently when, say on a larger limit table or when confronted

by a larger number of opponents.

1.1.2 Gambling, Probability and Odds

A familiarity with basic notions of probability will be assumed. Dividends

can be expressed in many ways:
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� Common expressions are in the form of odds. A bookmaker may o¤er

odds in the form of, say 3:1. This an Imperial Odds expression. A

winning wager of 1.00 is paid 4.00 for a clear pro�t of 3.00. Odds of 5:4

means that for every four units wagered a winning bet will result in �ve

units of pro�t. Odds expressed in this way are the reverse of odds as

expressed for Binary Logistic regression log-odds transformations [12]

where 1:3 means the same as 3:1 in this context.

� Totalisator agencies often o¤er odds in the form of dividends such as

5.00, where a winning wager of 1.00 returns 5.00 for a pro�t of 4.00

This is a Decimal Odds expression. Decimal odds express the bettor�s

return per unit of investment for a successful wager. By subtracting

the investment unit (usually 1.00) from the dividend, one can express

decimal odds as imperial odds. Thus a tote dividend of 6.00 is the

same as a bookmaker dividend of 5:1 assuming a 1.00 betting unit. In-

creasingly, decimal odds are phasing out imperial odds as the standard

used to express dividends. Unless speci�ed otherwise decimal odds

expressions will be used in this thesis. Normally decimal odds values

are greater than one.

� Dividends can be thought of as probabilities: a fair toss of an evenly

balanced coin should pay a decimal odds dividend of 2.00 to be "fair",

because the Implied Probability would then be the same as the actual

probability. If a bookmaker displays (Imperial) odds of 6:4, they are



6 CHAPTER 1. TRADING IN UNCERTAINTY

paying as if the probability is 4/10. Of course, if the actual probability

is, say 1/5 then the actual dividend should be 4:1 to be "fair". The

bookmaker is building a pro�t into the dividends provided because the

implied probability exceeds the actual probability. It can easily be seen

that the implied probability for decimal odds is the reciprocal. Thus,

a decimal odds dividend of 5.00 has an implied probability of 1/5 and

is the same thing as imperial odds of 4:1.

� The sum of all possible Implied Probabilities is the Market Percentage.

If the market percentage exceeds 1 as is usually the case, the house has

an inbuilt edge and if wagers are made in proportion to each item�s im-

plied probability, the house will pro�t by the market percentage. This

is why bookmakers often move their prices, so they can keep a market

percentage of over 1, but induce the public to wager amounts such that

the proportions are as close as possible to the implied probabilities so

that the bookmaker is guaranteed an overall pro�t.

� If the market percentage is less than 1, it is possible to back all alter-

natives and win. This is called Arbitrage. For instance, if we have a

possibly biased coin and a bookmaker gives 9:10 on heads and 4:5 on

tails, then the market percentage is

10

19
+
5

9
� 1:082:

The bookmaker has an average of a little over 8% built into this market
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and the market percentage here is a little over 108% . It will be shown

shortly that a pro�t cannot be guaranteed from betting in this case and

no arbitrage opportunity exists. On the other hand, if the (Imperial)

odds are 9:10 heads and 5:2 tails the market percentage is

10

19
+
2

7
� 0:812

or an 81.2% market. Then for a 9.00 stake a bettor could bet 6.00 on

heads at 9:10 and 3.00 on tails at 5:2. If heads wins the bettor�s return

is 11.40 and if tails wins the bettor�s return is 10.50, so the bettor will

win with certainty every time no matter what bias the coin may have.

Consider an event with an exhaustive list of implied probabilities; every

possible outcome has a dividend with an associated implied probability. The

return on a wager on the nth possible outcome is Rn = Dn In where Dn is

the (decimal) dividend and In is the investment.. This can also be expressed

as

Rn =
Inbpn

where bpn is the nth implied probability. If a bettor is to make an overall

pro�t for all possible bets that can be made on the event;

Rn >
NX
i=1

Ii:
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That is, return exceeds total investment. Consider the situation where a

bettor wishes to back all alternatives and win. The dividends and therefore

the implied probabilities are all known. Each dividend is assumed to be �nite

and greater than 1, so each results in some pro�t for that particular wager

if the wager is successful. This meets the criterion for implied probabilities

discussed above, putting each in the open interval (0,1). Next, consider what

an implied probability bpk can also mean. Writing
bpk = ak

bk
;

it can be seen from the de�nition of implied probability that a wager of ak

results in a return of bk if the bet is successful. Dividends and therefore

implied probabilities are all rational numbers, but for the purposes of this

discussion we do not even require that. All we require is 0 < ak < bk. For

a collection of implied probabilities relating to an exhaustive list of alterna-

tives where every possible outcome of a bet is covered, each of the implied

probabilities can be expressed as a ratio with a common denominator,

bpk = bak
d
; 8k:

This is still the same implied probability. A wager of bak results in a return
of d. Suppose

NX
k=i

bak
d
< 1:
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Then
NX
k=1

bak < d:
Thus, if the market percentage is less than 1, the sum total of all investments

is less than the return, which has been constructed to be the same in each

case. It follows that if the market percentage is less than 1, a bettor can bet

on each alternative and pro�t irrespective of the result. It can also readily

be seen that if the return is greater than the sum total of all investments

then again the market percentage is less than one. If the market percentage

is greater than 1, then the sum of possible investments exceeds the sum of

all possible returns, so a bettor cannot be guaranteed of a pro�t by backing

every alternative. It therefore follows:

Lemma 1 Arbitrage Opportunity Exists , M =
NX
n=1

bpn < 1

As a very simple example, suppose a bettor has an exhaustive list of two

possible alternatives with dividends D1 = 10:00 and D2 = 1:50. Implied

probabilities are

bp1 = 1

10:00
=
3

30

and

bp2 = 1

1:5
=
20

30
:

The market percentage is 23/30 (less than 1), so in this case an arbitrage

opportunity exists. If the bettor invests ba1 = 3:00 and ba2 = 20:00, then
the bettor has invested a total of 23.00 and will return 30.00 irrespective of
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the outcome.

For decimal odds, a bet�s advantage is A = pD where p is the actual (not

implied) probability of the event and D is the decimal odds dividend. If A is

less than 1, then the bettor can expect to lose in the long term. Conversely,

if A exceeds 1, in the long term the bettor will win. If A = 1 then returns

R! I as the number of trials gets arbitrarily large. This formalises what is

described as "fair" above. Expected pro�t per investment, E[�
I
] can easily

be seen to be A� 1.

Anything that can be described as a sequence of bets will be called a

��game in the context of this thesis (so poker, blackjack, real estate, options

trading would all be ��games). This terminology was adopted so as not to

cause confusion with already existing terminology in the well de�ned area of

Game Theory and also so that the betting of the outcomes of an event can

be seen as distinct from the performance of the event.

1.1.3 The Kelly criterion

Consider how much should be wagered in a given situation. The seminal

work in this area is Kelly [13], which was actually concerned with data com-

munication. He speci�ed the problem as one where a gambler has a private

wire transmitting the results of a chance situation before they become com-

mon knowledge and the gambler may still bet at the original odds. The

speci�ed problem concerned a noisy transmission channel so there was doubt
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as to whether the received signal is the same as the transmitted signal. Kelly

was specifying the problem to investigate how much of their capital a gam-

bler should bet on the result of such a noisy signal. It is unclear how useful

this was to the �eld of data transmission. What is very clear is that his

results are very useful to gambling situations. The essence of Kelly�s paper

is that the criterion to be adopted is to maximise the expected value of the

logarithm of capital. This has nothing to do with any value function the

gambler may have attached to their capital, but merely with the fact that it

is the logarithm which is additive in repeated bets and to which the Law of

Large Numbers applies.

The fraction f � of the entire bankroll that should be wagered is given by

f � =
bp+ p� 1

b

where p is the probability of winning and b is the odds-to-one received upon

winning. Odds-to-one are the odds expressed against a unit investment.

For example 5:1 would have odds-to-one of 5 and 5:2 would have odds-to-one

of 2.5. It can immediately be seen that (b + 1) is simply the decimal odds

representation of the dividend and so

p(b+ 1)� 1 = A� 1 = E[�]

where A is the advantage and E[�] is the expected pro�t per investment. But

if the dividend is odds-on (actual probability exceeds 0.5) , then the bet-to-
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one is less than one. If additionally the expected pro�t is positive, then

the above formula would seem to imply that more than the entire bankroll

be wagered on every proposition that is more than 50% likely and expected

pro�t is positive. This is obviously not what Kelly advocates in his paper

and it is suggested here that this formula, that unfortunately often seems to

be applied as circulated, contains a misprint. The circulation of the alleged

misprint is common enough that the above formulation appears onWikipedia

as the correct formula. It is proposed here to modify the formula slightly to

read

f � =
bp+ p� 1
b+ 1

=
E[�]

!

where ! is the dividend expressed in decimal odds. For E[�] > 0 , A > 1

and so !p > 1. It can now be seen that

f � = p� 1

!

so

f � ! p: as ! !1

If, for example a bettor was o¤ered a dividend of 1000.00 on a certain event,

then under the revised Kelly formula the recommended bet size would be

f � =
p! � 1
!

=
999

1000
;
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or 99.9% of available funds. The di¤erence between this and all of the avail-

able funds is to facilitate betting in proportion to advantage , so theoretically

larger wagers can be made at even more outrageous dividends.

Even adopting the Kelly criterion can result in more volatility than many

are comfortable with. Various re�nements have been proposed such as bet-

ting half Kelly. The view adopted in this thesis� admittedly based on ex-

perience only� is that so long as the (revised) Kelly recommendation is not

exceeded, then the best level is a matter of personal preference and may de-

pend on the speci�c context. Note that for disadvantage and break square

bets (E[�] = 0) the optimal fraction is zero, so the player must have some

positive pro�t expectancy to justify betting at all. Kelly�s criterion was

adopted and popularised by Edward O. Thorpe [25] who analysed casino

games, especially blackjack.

1.2 Texas Hold�em Poker

The only poker variant that will be considered in this thesis is Texas Hold�em.

Texas Hold�em has high and increasing popularity. It is o¤ered on most,

if not all, on-line poker sites. Interested readers may refer to [11] for an

overview or [23] for a detailed and expert discussion.

Texas Hold�em has many subvarieties. There is No Limit Texas Hold�em,

where the bet on any hand can be any amount up to an opponent�s holding.

This is an exciting and cut-throat variant, well suited to television due to
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the knockout nature of the tournament and the size of the bets placed.

In Pot Limit Texas Hold�em players may bet up to the size of the Pot,

the total pooled bets placed so far in the game. This variant is available on

most on-line sites.

This thesis concentrates on modelling Limit Texas Hold�em, where each

table has prede�ned maximum and minimum bets. For the �rst half of the

game all bets are for the minimum amount exactly and for the last half of

the game all bets are for the maximum amount exactly. This is very popular

in on-line sites because of the range of costs to play. So-called "micro-limit"

games can be found where the minimum bet is 2 cents and the maximum

bet is 4 cents, while tables with limits $1000 and $2000 or even larger are

commonly available.

1.2.1 The play in Texas Hold�em

At the start of play, one seat is designated as the dealer and each player

takes it in turn to be the dealer. In the online games the dealing of cards

is automated, while in casino and tournament play a professional dealer is

normally used to actually deal the cards. The seat to the left of the dealer

is the Small Blind the next seat to the left is the Big Blind. The players in

these positions post forced bets at the start of the game, usually half of the

minimum bet for the table for the Small Blind and the table minimum bet

for the Big Blind. Di¤erent tables have di¤erent rounding rules for the small

blind but this rounding error represents such a tiny part of expectancy that



1.2. TEXAS HOLD�EM POKER 15

it may be neglected. When a player joins a table, that player posts a buy in

of the same size as the Big Blind. For this reason, most players wait until

it is their turn to post a Big Blind before sitting down and most online sites

have a feature whereby one can elect to wait for the Big Blind before the

site�s software seats the player. So, usually a game starts with a Big Blind

and a Small Blind in the pot. The pot is the pooled collection of all bets

minus the rakes. A rake is a (usually small) percentage of each pot that the

house keeps for itself.

The game starts once the blinds and buy ins have been posted. The

�rst stage is the Pre-Flop. Each player is dealt two face-down hole cards.

The next stage is the Flop where three community cards are dealt face up

in the middle for all players to use. Then comes the Turn where an extra

community card is dealt and �nally the River where a �fth community card is

dealt. The best hand is the best �ve card poker hand that can be constructed

with the hole cards and the community cards. Each stage has up to three

rounds of betting. For the Pre-Flop and the Flop all bets are for the table

minimum bet, while for the Turn and the River all bets are for the table

maximum bet. If there are no more bets in any round then the game goes

to the next stage. If a player bets, then the other players can call by

matching the bet, they can raise the bet by a further increase, or they can

fold, in which case they no longer participate in that game and surrender

any bets they may have made. Players that have not folded are said to be

active. In the event of a raise all players before the raise must either call
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by matching the raised bet or fold. If no bets have been made a player can

elect to check by doing nothing. If the game is left with only one active

participant at any stage, then that player is deemed the winner and they

take all the money in the pot after any rakes have been deducted. In this

situation the winning player is not obliged to reveal their cards but can elect

to do this. If after the �nal round at the River more than one player is

still active in the game, the game is decided by a showdown where all active

players reveal their hands and the best �ve card poker hand constructed from

the seven cards at any player�s disposal wins. In the event of a tie, the pot

is split equally between all tied players.

The rules of the game are not complicated, but the game is surprisingly

subtle due to the imperfect information available to the players. The fact

that a player can hold a weak hand and play as if holding a very strong

hand and vice versa introduces many dimensions to the strategy. A well-

known strategy is blu¢ ng where a player bets very aggressively with a weak

hand. This is done in the hope that other players will mistakenly think

they are facing a strong hand and fold rather than putting extra money

into the pot. Obviously if the other players do not fold, then the blu¢ ng

player will have invested bets with only a weak hand�s chance of winning.

The opposite of blu¢ ng is slow playing where a player checks and calls and

plays conservatively with a strong hand. They do this in the hope that

other players will not fold and may possibly even raise into this very strong

hand, thereby increasing the pot for the slow player. These are all pre-
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de�ned strategies that have been developed by human players. These will

not be discussed in detail because the modelling developed in this thesis

seeks to arrive at strategies as emergent phenomena, behavior that was not

speci�cally programmed but rather which has been independently "learned"

by the process. The interested reader is referred to any of the books by David

Sklansky [23], [15] a celebrated poker professional whose books provide an

engaging account of human strategies which are detailed enough for the vast

majority of readers.

1.3 Poker as an advantage game

There are many strategies that are used in poker. The strategy that will

be dealt with here is that of maximising pro�t expectancy. A value for

sup(��) (page 3, de�nition 6) is sought. In a ��game (page 2, de�nition

4) a variety of trading strategies could be employed. Strategies that rely on

human intuition are often very successfully employed. However, this research

concerns an automated style of play that can readily be implemented as

computer code, so that the stereotypical view of poker playing that depends

in large part on an intuitive understanding of the psychology of the opposition

will not be considered. As the strategy is one of maximising pro�t expectancy,

solutions where sup(��) have a positive pro�t expectancy (page 2, de�nition

1) are sought.

Consider possible states at the end of the game. At the �nal stage played
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T , there will be a pot size QT . The pot will be divided between NT players.

If a single player has the best hand at the conclusion of the game either by

all other players folding or by having the best hand resolved in a showdown,

then NT = 1. Otherwise NT > 1: The probability of a tie is Ptie. The

probability that we have the best hand is Pbest: It is quite common in Texas

Hold�em that a tie results from having a board hand that is very strong and

on which no players can improve. In that case the pot is divided equally

between the participants. The expected return E[R] is therefore given by

E[R] =

�
Ptie QT
NT

�
+ (Pbest QT )

The expected investment is estimated as the expected cost to play out

the game. The expected cost to play and expected pot size will depend

on current states, some regressors (which are described later) and the action

taken (e.g. bet, raise, call or check). The advantage (page 2, de�nition 1)

is calculated for each of the possible actions available and then a decision is

made as to which action to take. The criterion used is the course of action

that results in the highest pro�t expectancy. This can have some interesting

implications. Even with a fairly weak hand, the pot size can reach a point

where further investment should be made because the e¤ective odds, the �nal

pot size compared to required investment, is su¢ ciently large to warrant such

investment. This is sometimes interpreted by other players as an attempt to

blu¤, but it is no such thing. All that was occurring was pro�t maximising
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behavior.

Poker has traditionally been played face-to-face and many expert players

in this form of the game have developed impressive psychological skills to

exploit nervous or excited looks from opponents or to use their own appear-

ance to create false impressions about their own state of mind. In addition

to this, many techniques for approximating some of the very di¢ cult cal-

culations that need to be undertaken have been developed. In the online

environment one cannot see the opponents and so psychological skill is less

important, while on the other hand players can arm themselves with all sorts

of reference material and computational aids that would never be allowed in

a face-to-face game. The automated system discussed here is an extreme

example of a computational aid that would never be allowed in a face-to-

face game. Even if it were, the information required to make each strategy

decision could not be obtained practically.

Several layers of modelling are introduced, which go beyond simply need-

ing to estimate a probability of "winning". It is not usually known what

the �nal pot size will be or how much will have to be invested to play out

the game. When �tting a model to estimate the probability of winning, the

response variable could be past data and an indicator of whether or not the

hand was won. This can be problematic. What about the event where the

pot is split between more than one winner? A slightly more subtle problem

is the following. To decide whether to continue playing, it is desirable to

know whether or not a given hand will be the best hand at the showdown.
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Hands folded early in the game may have been the strongest hand at the

end of the game. This may be because everyone at the table has a weak

hand and is trying to bully other players out of a pot or possibly because a

hand had potential to be a strong hand but this was not realised until later

in the game. For instance, if a player holds two clubs and then one more

club comes out at the Flop, the player may fold their hand. If subsequently

two more clubs may come out at the Turn and the River the player could

have had the strongest hand at the end of the game. This will be known if

the hand goes to a showdown or if the eventual winner reveals their cards.

To estimate the probability of having the best hand at the end of the game,

the response variable should be whether the hand was the best and not just

whether or not the hand won. This is feasible to do in the online scenario

although it would be very di¢ cult in a face-to-face game.

1.4 Concluding Comments

The work done in this thesis has applications beyond playing online poker.

Interest has been expressed in the methodology by parties engaged in for-

eign exchange trading and indeed, when one views the system in action, it is

easy to see how such applications might provide a natural extension to this

research. This research could have applications in any activity where quick

decisions need to be made about complex issues in a rapidly changing envi-

ronment and especially in an online scenario which seems to be ever more
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prevalent these days. The methods advocated here tend to require large

training data sets.

There are several reasons for using poker as an application of the methods

developed in this thesis.

1. It demonstrates real-world evidence that the methods can result in a

practical system.

2. Although the analysis of poker is di¢ cult, the required bankroll to

actually use the resultant model and demonstrate e¤ectiveness is very

modest when compared to other applications such as �nancial markets.
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Chapter 2

Literature Review

You must learn from the mistakes of others. You can�t possibly

live long enough to make them all yourself� Sam Levenson

Chapter 1 contains a broad introduction to the scope and nature of this

thesis as well as some discussion of the approaches adopted. The current

section discusses and critiques some of the methods that have been used by

other research workers. Some works discussed in this review are from papers

that have been released online, but not published in peer reviewed journals.

This has been a trend in recent years for many articles, some of which have

come to be highly regarded and referenced in future work. This is an inherent

problem of Texas Hold�em and gambling generally and makes it necessary to

review various online-only articles.

The bulk of previous work in the area of poker built on seminal works of

Borel ([4]) and Von Neumann ([27]) to produce Game Theoretic solutions in

23
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([18], [3], [9], [20], [2]). These works and their methods have been referenced,

although in this thesis a completely di¤erent approach was adopted. In the

Game Theoretic approaches, Neural Networks were employed and it was

evident that these were "trained" using starting points as recommended by

the views of a celebrated professional in ([23], [22]). This has necessitated

inclusion of some texts from the popular market. No such initial training

took place with the Adaptive Regression methods developed in this thesis

as Expectancy Maximisation was always the criterion adopted. However, for

the purposes of comparison, referencing of texts from the popular market

became inevitable.

The new direction taken in this thesis of an Adaptive Regression process

meant that only a few references were available. Regression techniques and

Random Parameters estimation are of course not new and referenced works

appear in the bibliography, but adaptively tuning the "best" coe¢ cients as

more data about the current context comes to light is original and few ref-

erences exist. One of the original contributions of this thesis is the way

in which previous well known principles were put together and for which

relevant references are not abundant.

Openly treating a problem as a way to pro�t by gambling also put this

thesis on a less travelled path. Previous poker research such as ([18], [3], [9],

[18], [20], [2]) was conducted on a site developed by those researchers where

no money was involved and competition was machine vs machine. This was

di¤erent to the actual on-line experience where most competition was against
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humans. It has been observed in areas such as �nancial markets trading,

a reluctance exists to describe the activity as gambling and this leads to

researchers describing their work in rather abstract ways. Given that the

application was actual on-line play, it seemed absurd to describe the activity

as anything other than gambling and this placed the thesis in a category

for which very few references exist in mathematical articles. There are of

course many articles about gambling, but not many that advocate methods

to employ in its pursuit.

Even in the well researched area of Game Theory, some previous work

was sourced from areas that are unusual for a doctoral thesis. Indeed, a

ground breaking work was ([9]) which was a prize winning paper presented

at a seminar but never published and ([2]) which was an internal publication

only. The fact that neither of these were published in journals is certainly

no criticism and indeed they are both very signi�cant research achievements.

Rather, it shows that this �eld is young and the availability of reference

material is not as common as in other �elds. This being the case, the key

references have been used. Indeed, it could be argued that this thesis could

have been built on just ([4], [27], [3]) as references.

These same comments obviously apply to the Literature Review under-

taken in this chapter also. There are fewer works referenced than is usual

for a doctoral thesis and for the same reasons as described above.
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2.1 Emile Borel

The book, Applications aux Jeux des Hazard [4], published in 1938, appears

to be the �rst attempt at a mathematical analysis of the problem of poker.

The model La Relance is proposed in Chapter 5. Each player makes a com-

pulsory bet and they then receive cards randomly and independently from

the [0; 1] interval. Player 1 may either make a bet of B > 0 or fold. If

Player 1 bets, then Player 2 responds by either calling with a bet B > 0 or

folding. If Player 2 calls then the hands are compared and the higher hand

wins. The case of a draw occurs with probability 0. The di¤erence between

the Borel and the von Neumann versions ([27] to be discussed below) is that

under the Borel rules, if Player 1 does not bet then Player 1 automatically

loses the pot. Under the von Neumann scheme, if Player 1 does not bet then

the hands are compared and the best hand wins. The von Neumann scheme

better approximates �real�poker, but neither is the same as real poker.

Borel �nds a unique optimal strategy for Player 2 and all of the (non-

unique) optimal strategies for Player 1. The game favours Player 2. Note

that under the von Neumann formulation, the advantage resides with Player

1. In a similar way to von Neumann, Borel �nds that the optimal strategy

is to �blu¤�occasionally. For

c =
B

B + 2
;

Player 1 should blu¤ with probability c � c2 . Again, this is di¤erent from
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our formulation where we estimate the probability of a player folding when

confronted by our betting. However, this was an initial exposition performed

a long time ago and better solutions have become available [23].

Much of the game theory terminology was used here by Borel before von

Neumann [27]. It looks like von Neumann would have acquainted himself

with this work prior to embarking on his own analysis and making the con-

nection with larger issues such as economic theory.

As a �rst analysis this is indeed signi�cant work, but it does appear that

this formulation does not lend itself to further useful development. From

our point of view in developing a successful system, this work is only of

interest in that it was probably the �rst serious research to be undertaken

on this problem. However, it is not obvious why so many of the attempts to

develop this �eld have concentrated on Borel�s work rather than that of von

Neumann. As an example, the work of Sakaguchi and Sakai [21] concerns

itself with relaxing some of the assumptions of La Relance which they address

by specifying a joint distribution of hands as a Farlie-Gumbel-Morgenstern

distribution. They derive some slightly di¤erent optimal strategies which

is unsurprising, given the slightly di¤erent distribution of hands. They use

standard game theoretic methods and the results obtained are very speci�c to

the particular game being analysed under the obscure distribution of hands.

There is little that applies more generally and the analysis is still only for

two player games and so does not extrapolate even to full scale poker. This is

after von Neumann established a research path that gives analyses meaning
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beyond the con�nes of these arti�cial games.

It is now known that the game theoretic approach becomes intractable

so fast that it is unlikely ever to be useful for full scale poker, let alone

bigger systems such as economies. It is possible that such larger systems

will never succumb to having true optimal strategies derived for them. At

present for some smaller problems (such as full scale poker) we can derive

�near optimal�strategies and these show promise for being scalable to much

larger problems. Such near optimal strategies still reveal something of the

structure of the system and the interpretation of the resultant model pro-

vides qualitative assessments of the agents of the system rather than just

quantitative measures. For example, our poker model can identify situations

where it is unwise to blu¤ because at least one active player will call with

high probability. Similarly, it can also identify contexts where more blu¢ ng

than usual should be engaged in because under some circumstances a di¤er-

ent set of players are more likely to fold than the population average. We can

therefore see that we are uncovering something about the particular agents

involved rather than making population level statements such as an overall

blu¢ ng frequency.

2.2 von Neumann and Morgenstern

Although not the �rst discussion on this topic, the ground-breaking work

Theory of Games and Economic Behavior [27] by von Neumann and Mor-



2.2. VON NEUMANN AND MORGENSTERN 29

genstern established the need to investigate games as a model for human

behavior especially in the context of the �eld of economics. This text paved

the way for much of the subsequent development of the �eld which came

to be known as Game Theory. The speci�c investigation of poker advanced

only slightly between this work and the ground breaking work of Billings,

Schae¤er, Davidson and Szafron [3], which will be discussed below.

The authors explain that much development in the more mature sciences

such as physics occurred because simple problems were considered �rst and

that directly attempting to provide a solution to a universal problem is not

usually fruitful. In Section 1.3.2, the authors state their belief that in order

to mathematize economics, it is necessary to know as much as possible about

the behavior of the individual and about the simplest forms of exchange.

They observe that economists frequently point to large �burning�questions

and brush aside everything which prevents them from making statements

about these, while the experience of more advanced sciences, such as physics,

indicates that this impatience merely delays progress, including the treatment

of the �burning�question.

This seems to us a very sensible way to initiate research. However,

the research can stagnate if only a smaller and smaller class of problems is

investigated. Most of the work in poker has been to introduce new hypothet-

ical poker variants that are easier to analyse, and then restrict attention to

them. Apart from going some way to investigate the wider class of problems

for which this methodology was designed, for a long time (over 50 years),
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researchers seemed to be getting progressively further away from being able

to extend the class of problems that the method can handle.

Von Neumann and Morgenstern develop much of their theory around the

search for optimal solutions. In 1944 they would not have had access to the

computational power we have today. They would not have known that even

now we cannot reasonably hope to obtain an optimal solution to this problem

because of the issue of computational intractability. We concern ourselves

with �reasonable�strategies rather than optimal strategies (I use the word

�reasonable� instead of �good� because �good� has a speci�c meaning in

game theory). We regard this as a more pragmatic approach. We refer to

dominating strategies as those which have a positive expectation against the

competitors at hand. If there exists a dominating strategy and we employ

it, we will outperform these competitors given su¢ cient time. An optimal

strategy is also a dominating strategy. If we have a dominant strategy that

is not optimal and we employ it, then the only di¤erence between it and an

optimal strategy is the time taken to obtain any superior position over any

competition. Given su¢ cient time and resources of our own, the dominant

non-optimal strategy will still inherit all the resources of the competitors.

Because these strategic considerations need to be applied to larger prob-

lems (such as poker games extrapolated to economics) the issue of computa-

tional intractability may mean that a dominant strategy is the best one can

hope to obtain in a practical setting.

Von Neumann and Morgenstern begin to address poker speci�cally in
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chapter 19. They reduce the game to a simpler version as follows:

1. There are only two players.

2. There are two betsize possibilities a; b such that 0 < b < a.

3. Each player is dealt a �hand�. This is a draw from one of the S

possibilities with each hand having the same probability. This seems

to imply sampling with replacement, which obviously is not the same

as real poker. Von Neumann�s hand generation is not a uniform [0; 1]

draw because a true uniform draw generates a tie with probability 0,

while Von Neumann explicitly caters for the possibility of a tie. Von

Neumann talks about the continuous case which is uniform on [0; 1],

but this is only to enhance some explanations and avoid combinatorial

algebra where it is not necessary. After he has made his point he reverts

back to the discrete case.

4. Each player makes a secret bet, either a or b.

If both players bid �high�or both �low�the hands are compared and the

stronger hand receives the pro�t of a or b respectively. If the hands are equal,

then no payment is made. If one player bids �high�and the other �low�then

the player with the low bid can �Pass�or �See�. �Passing�means paying the

opponent the amount of the �low�bid (irrespective of their hands). �Seeing�

means that the �low�bid is increased to the �high�bid and the situation is

treated as if both players had bid �high�in the �rst place. Thus, there is a
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restriction on the number of bets that can be played as well as the obvious

restriction to the number of players. This version of the game is similar

to that proposed by Borel with the important di¤erence that in the Borel

version, player 1 can either bet or fold. In the von Neumann version, player

1 can elect to �See� rather than just fold. Von Neumann then calculates

the optimal strategies. When reading his analysis one is immediately struck

by his clarity and perception. While von Neumann had tamed many more

di¢ cult problems than this, we found ourselves in awe of how his analysis

proceeded even though this was a completely new �eld. In 1944 von Neumann

was working on the Manhattan project, so it is remarkable that he was able to

�nd time for anything else, let alone something ground-breaking such as this

work, which even today is still one of the best developments in game theory

ever written. Obviously, this game di¤ers from actual poker and even more so

from the Texas Hold�em variety that we investigate. One must bear in mind

though, that a simple example was exactly what was called for here. Von

Neumann was more concerned with developing a new mathematical discipline

than a winning poker model and a full version of the game would, by its

complexity, have obscured the new methods of analysis that von Neumann

was revealing.

An essential concept in our approach is that of an advantage bet. This

really just means a bet that has a positive expectancy. Von Neumann (and

all later game theory discussions) make no reference to this, because it is

built into the method. By only betting when there is a positive pay-o¤, the
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game theory method advocates folding in situations where the player is at a

disadvantage.

In von Neumann�s version of the game, Player 1 has a unique optimal

strategy. Player 2 has multiple optimal strategies and von Neumann �nds

them all. The game favours Player 1. Von Neumann, from the properties of

his optimal result identi�es situations where Player 1 should behave counter-

intuitively in the sense that he should sometimes bet when he has a poor

hand. This of course is what poker players mean by �blu¢ ng�. In the

Borel version, a player should blu¤ when he has a moderate hand. In

the von Neumann version, players only blu¤ with their worst hands. This

makes the situation more similar to actual poker, but our model advocates

di¤erent behavior in the context of Texas Hold�em. We estimate group level

parameters for the remaining players in the game for a regression on the

probabilities that given players will fold subject to our bet based on their

previous behavior. We then calculate our expectancy for our outlay given

this information and if it is above some threshold, we bet. Otherwise we fold.

It only rarely occurs that our model will advocate blu¢ ng against numerous

opponents as there is usually too much chance of at least one player �calling�

us. This is an important di¤erence between our approach and game theory.

We are much more reliant on modelling the behavior of the competition.

Against some players, our algorithm will blu¤ often, against other players,

our algorithm will never blu¤. There is also another interesting aspect to

this that does not become apparent in the von Neumann or Borel games
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because of their simpli�cations. In full scale Texas Hold�em, we can get a

hand that has no current value, but has a probability of improvement that

is out of proportion to the e¤ective odds from the pot and the expected �nal

pot size. This can mean that even though we have a weak hand now, our

expectation is still positive. So, we bet. If our hand is not developed because

of bad community cards, it can frequently happen that the rest of the game

can be played out at no cost. When this happens, the remaining players

often assume that we have blu¤ed with our original bet. This is not what

happened. We actually took the odds of getting good cards but that event

did not occur. In our view this is di¤erent to blu¢ ng, although it is often

perceived as such by some players.

While von Neumann only really devotes one chapter speci�cally to poker

(chapter 19), it is a very important analysis because it provides an excellent

example of how his new techniques, which came to be known as game theory,

can be applied to an actual game. His work was not signi�cantly improved

until the work of Billings, Schae¤er, Davidson and Szafron well over 50 years

later.

2.3 Dennis Papp

Dennis Papp�s thesis Dealing with imperfect information in poker [18] de-

scribes the author�s system he calls Loki, possibly named after the Norse god

of luck. The full text is available for download through Professor Jonathon



2.3. DENNIS PAPP 35

Schae¤er�s homepage at the University of Alberta1. The thesis, which utilises

a Game Theory approach, provides a basis for extensive developments by

other researchers from the same university and amounts to a careful automa-

tion of the texts by David Sklansky [23],[15] ; human behavior is modelled so

that the style of play is a close approximation to that advocated by Sklan-

sky.

The author is a part of the research community at the University of

Alberta that has conducted extensive and ground breaking research into

poker using Game Theory methods. The approach is quite di¤erent from the

one adopted in this thesis.

Loki uses a weight array for opponent modelling. This is an array of

numbers, one for each possible two card combination hand that represents

the conditional probability that the player would have played in the observed

manner if they had that hand. Generic opponent modelling basically amounts

to having a �xed set of weights and speci�c opponent models result from

updating the weight table for the opponents. Loki retains frequencies for a

number of categories such as the number of active opponents, the number

of raises in the round, bets to call and the game round (e.g. pre-�op, turn).

This method of developing a Speci�c Opponents model is di¤erent from the

method adopted in this thesis namely to progressively relax the assumptions

of the Generic Opponents model.

1http://webdocs.cs.ualberta.ca/~games/poker/publications/papp.msc.pdf
Website last accessed 1 Sept 2011.



36 CHAPTER 2. LITERATURE REVIEW

In section 6.7 Papp critiques his own work. He raises the point that

calculating expected values (perhaps using simulation) may be preferable to

the expert-dependant strategy he uses and he proposes introducing ways of

check-raising and slow-playing that are very similar to very early versions of

the work described in this thesis, but which have subsequently been greatly

re�ned. In later work, including Billings et al ([3], to be discussed below),

some of Papp�s ideas have been implemented, but in a way dependent on

expert strategy.

In chapter 7, Papp discusses in some detail how Loki�s opponent mod-

elling works. For a speci�c opponent model, the heart of the method for Loki

is the reweighting mechanism. If no reweighting takes place, then the model

does not change for speci�c opponents and is thus a generic opponent model.

In section 7.2.3 the three post-�op rounds are considered. Loki calcu-

lates an �out�count in a similar way that a human player would. This will

result in calculated probabilities of winning the hand that get more similar

to ours as the game progresses, but could be quite di¤erent for the earlier

rounds. Calculation of an "out" count is as recommended by Sklansky. The

method advocated in this thesis is to use simulation results as predictors in

a regression function to estimate conditional probabilities. The use of "out"

counts was developed by human experts as a technique for rough mental cal-

culation of probabilities of interest. Usage of this system almost guarantees

a human-like choice of strategy because the probability calculations are the

same (albeit less error prone by computer), which is not necessarily a bad
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thing if a high quality poker playing system is required, but could conceiv-

ably make it more di¢ cult for the computer system to uncover emergent

phenomena about the game. That is, phenomena arising from the strategy

engine without being speci�cally programmed by the researcher.

2.4 Billings et al

The �rst contribution discussed here, entitled The challenge of poker [3]

focuses on Texas Hold�em poker and resulted in Poki, a highly regarded poker

robot. Poki was used on the virtual online site maintained by the authors

(Internet Relay Chat). Games are not for money, but there is su¢ cient

pride at stake to ensure high standards of play. The authors use a mixture of

game theoretic results to base strategy decisions on enumerations performed

in the current context of the game. The focus of their work is on arti�cial

intelligence (AI) which is di¤erent to von Neumann�s reasons for studying

this problem.

In their article, Billings et al [3] contrast poker, a game of imperfect

information, with games like checkers and chess and explain why techniques

that have been successful in perfect information games do not fare so well

with games like poker.

The authors discuss pure game theory approaches, simulation approaches

and enumeration approaches. Game theory is infeasible for full scale poker,

at least for multiplayer games. As assumptions are relaxed, the game tree
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gets larger at an exponential rate. Simulation methods play out a hand

many times and use some statistics from the generated sample. Enumera-

tion approaches consider each possible opponent hand to exactly calculate

probabilities. Typically the enumerations are only for a limited look ahead

and in this application tend to be used to estimate probabilities that the

system currently has the best hand and what some of the more likely hand

improvements may be. This approach uses results from game theory and will

be referred to as Game Theory / Enumeration. They do use some simulation

results, but these are situations that often occur and are simulated outside

the main model which just uses the results of those simulations. Billings et al

mimic human players in that they seem very concerned with whether or not

they are �in front�. The enumeration approach advocated by Billings et al

contrasts the simulation approach advocated in this thesis where simulations

are made to the end of the game and then regression techniques are used to

translate the results of various simulations to the probability of an event and

whether that probability represents a positive expectancy at the conclusion

of the game. Using an enumeration technique for such an analysis rapidly

become intractable.

Poki is an improvement on the Loki system already discussed in [18]. The

main di¤erence between Poki and Loki is Poki�s improved speci�c opponent

modelling. Papp in his thesis [18] suggests several improvements to his own

work, most of which have not been adopted in Poki. Poki seeks to predict

probabilities of opponents behaving in certain ways in the current context of
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the game.

The paper Approximating Game-Theoretic Strategies for Full-scale Poker

[2] outlines the techniques used by the research group at University of Al-

berta to address issues confronting the Game Theoretic analysis of poker and

focuses primarily on reduction of the Game Tree. The authors provide the

result that for 2-player Texas Hold�em, the Game Tree has size O(1018) and

they show how various simpli�cations to the game can result in a Game Tree

of size O(107) while retaining the fundamental structure of the game. After

some introductions to Game Theory and poker, they begin discussing vari-

ous methods of simplifying the game by reducing the number of game states.

These techniques are collectively known as abstractions. The authors dis-

cuss betting round reduction whereby players are allocated a maximum of

3 rather than 4 betting rounds per stage. They then investigate elimina-

tion of betting rounds completely, so for instance a post-�op model can be

employed that ignores the distinction with the pre-�op round. Possibly

the most important abstraction technique is bucketing, where sets of possi-

ble hands are partitioned into equivalence classes. There are a number of

ways this can be done ranging from quite crude buckets such as equivalent

hand strengths to others that cater for the potential of hand strengths. It

is not completely clear which of the bucketing abstractions are data driven

and which depend on an external expert judgement as to which hands are

equivalent especially when the potential for further development of a hand

is considered. This is not a problem as expert judgements can be incorpo-
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rated into an analysis. In this thesis however only data driven mechanisms

are considered. Various software implementations are considered and tested

against each other. The software implementations considered do seem to

bear out the claim that abstractions can be considered that do substantially

reduce the size of the Game Tree, while retaining essential characteristics of

the game. The most successful implementation was tested against a very

high quality human opponent, Guatam Rao (aka "The Count"). After 7,000

hands, the human player won overall in a 2 player game against the robot.

The authors point this out and propose various mechanisms by which their

algorithm can be improved. The variance in the results and especially the

fact that the robot was winning after 4,000 hands can also be interpreted

as a possibly inconclusive result in that further trials may result in a better

outcome (for the robot). The program was a Generic Opponents model, so

the strategy engine was not adaptive. Once some sort of speci�c opponents

model is implemented, it is conceivable that the program could be devel-

oped to defeat even such world class opposition. The most important result

though was not the play, but the development and outline of the various

methods of abstraction. While the research is of only minor relevance to the

work conducted in this thesis, which is not concerned with Game Theory, it

is still a very important document in the �eld of poker research because most

poker research is conducted from a Game Theory perspective.
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2.5 Nicolas Abou Risk

This research, entitled Using Counterfactual Regret Minimisation to create a

Competitive Multiplayer Poker Agent [20], from the Poker Research Group

at the University of Alberta builds on past research by that group using a

Game Theory approach. A central part of the Game Theory development

is the search for Nash Equilibria. This is discussed in section 2.1.3. Issues

whereby the strong results for Nash Equilibria for 2 player games not applying

universally to multiplayer games are discussed as is the ever present (in Game

Theory) problem of computational intractability. The proposal in the thesis

is to adopt the weaker requirements of �-Nash equilibria. The author then

introduces the notion of Counterfactual Regret Minimization (CFR) and cites

previous results that show that strategy pro�les that satisfy this condition

lead to �-Nash equilibria. This is a very elegant result and enables usage

of a calculus of Game Theory that is guaranteed to provide strategy pro�les

with the properties required. As with all the Game Theory approaches

known, computational intractability is an issue and requires simpli�cation

by abstraction of the game in a manner similar to [18].

The author starts with an analysis of 2-player or "heads up" poker. The

resultant Game Tree is manageable and the author notes that many mul-

tiplayer games reduce to heads-up games due to players folding out. The

di¤erent approach used in this thesis makes use of some properties of the

game from players folding, an obvious example being the number of players
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who have folded. So, the modelling in this thesis would suggest that games

where all but 2 players have folded out are not the same as games with only

2 players because the number of players who have folded out contains infor-

mation that can be used. The author uses the 2-player game as a platform

for further development because the much smaller Game Tree in the 2-player

case requires less abstraction to achieve computational tractability.

Computational intractablity is not completely resolved by CFR and some

simpli�cation of the game is still required. The methods used which essen-

tially group similar sorts of contexts together. These methods are outlined in

section 2.2 and relate to such things as grouping hands irrespective of suit,

reducing betting rounds and so-called bucketing whereby hands of similar

strength are regarded as equivalent.

In chapter 3, the author extends the methodology to 3-player games and

shows the resultant system outperformed Poki [3]. This is a signi�cant

achievement.

In chapter 4, the CFR motivated robot is compared with strategies rec-

ommended by various world-class experts. Tests of this nature can be a

bit misleading because often human opponents will not be able to specify

in advance exactly how they will play in any given situation. However, a

test against a �xed strategy can be illuminating and of course if a simple

�xed strategy cannot be comprehensively defeated it can be indicative of a

problem with the model.

The main innovation with this author�s work is the use of CFR. This is
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a signi�cant contribution to the Game Theoretical approach. The concept

of �-Nash equilibria represents an approximation of sorts in that as � ! 0,

the Nash Equilibrium is approached, however there is no guarantee that the

optimum behaviour is "close" to Nash Equilibrium behaviour for an even

small value of � > 0. This of course is an inherent issue (possibly of no

consequence) and is not a criticism of this author�s work.
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Chapter 3

Generic Opponents Model

I pushed and pushed. I just kept pushing. I made every

mistake there was, but I just kept pushing� Rene Descartes.

The reader is reminded of the following de�nition:

De�nition 1 A Generic Opponents Model is a model that assumes homo-

geneity among the population of sets of opponents.

Generalised Linear Models were employed for the purpose of implement-

ing a Generic Opponents Model. Such models are very powerful and are often

hard to surpass in terms of predictive power. They are easy to estimate and

understand. There are a large number of texts on Generalised Linear Models;

some excellent resources are [14] for an in-depth discussion, [7] for a more in-

troductory treatment and [12] for a book length treatment of Binary Logistic

Regression . The Generic Opponents Model was the initial attempt made

45
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in this research to model opponents�play and estimate pro�t expectancy.

The models developed in this chapter represent the rationale around which

the system is built. The more sophisticated models introduced later use

the same formulation, but with di¤erent methods of obtaining expected win

rates subject to actions taken.

3.1 Models implemented

The details of the individual models estimated as well as descriptions of pre-

dictors used appear in the Appendices (page 127 for predictor descriptions

and page 131 for regression output). For the sake of clarity, the models

presented in this thesis are not the �nal versions used. They are earlier and

smaller models. This is because the later models, having more predictors,

were much more complicated and would have required lengthy explanations

without adding signi�cantly to the salient features of the process. The main

features of the process are unchanged by using the smaller models for ex-

planatory purposes.

The following terminology will be used throughout the thesis:

1. P_WIN: The probability of being the sole winner of the game, irre-

spective of hand strength. P_WIN is a measure of the probability of

eventually winning the hand without folding out, either by being the

sole survivor or having the best hand. In the training data set, being

left as the only surviving player allows P_WIN to be recorded as a
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success. Often the sole survivor will reveal their hand even though

they are not required to, possibly to establish a psychological advan-

tage over the opposition. Folding but having a superior hand to the

winner, will also record P_WIN as a success. It is assumed that the

other players�actions would have been unchanged by the decision to

not fold and the hand would eventually have been won. This variable

is estimated directly from a Binary Logistic Regression.

2. P_TIE: The probability of a tie if the robot plays the game out fully.

P_TIE is a measure of the probability that more than one player will

share the winning hand. This can occur when the board cards represent

a strong hand that no player can improve on, but also those remaining

in the game cannot lose. In this case, the pot is divided between

the surviving players. The conservative assumption that no further

players will fold in the eventuality of a tie and that therefore each

player�s return is the �nal pot divided by the number of players at the

time of the decision is adopted. This can of course mean that some

hands are folded when the actual dividend may be a lot higher because

other players may fold, but the conservative assumption is adopted.

The policy that it is better to miss some advantage bets than to take

more disadvantage bets is adopted. This variable is estimated directly

from a Binary Logistic Regression.

3. E_POT: The expected pot size at the end of the game. This is a
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calculated quantity, detailed below.

4. E_COST: The expected cost to play out the rest of the game. This is

a calculated quantity, detailed below.

Many formulations of on-line poker seek to mathematically implement

human methods of play. They typically try to estimate which player is

"in front" at a given stage and to determine how likely this situation is to

remain the case. In contrast, the methods developed in this thesis attempt

to estimate the probability of having the best hand at the end of the game,

the normalised pot size at the end of the game, the cost to play out the

remainder of the game and to seek advantage bets (page 3, de�nition 7).

In all the models, di¤erent coe¢ cients and predictors were employed for

each game stage. Attempts to amalgamate game stages resulted in inferior

out-of-sample tests. Breaking the data down this way was a luxury a¤orded

by having such large quantities of data with which to work.

Every time a strategy decision was required, some quantities are estimated

via regression functions:

1. POT_SIZE_DELTA: The amount that the pot will grow in units of

table minimum bets. This is estimated via an Ordinary Linear Regres-

sion.

2. NORM_COST_TO_PLAY. The cost to play out the hand to conclusion

in units of table minimum bets. . This is estimated via an Ordinary
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Linear Regression. Thus

E_POT = Current Pot Size + Action Cost+(POT_SIZE_DELTA�Table minimum)

E_COST = Action Cost + (NORM_COST_TO_PLAY�Table minimum)

Action Cost is the cost of the strategy decision being contemplated, the

cost to bet or cost to raise or cost to call depending on the action chosen.

Other costs such as cost to check and fold are zero. The Action Cost is

provided by the on-line site.

P_WIN and P_TIE are estimated directly from the regression functions.

Subject to each possible strategy decision, a dividend is estimated. For

action �; the dividend is

D� =
E_POT

E_COST
,

where E_POT and E_COST are both calculated subject to the action �

which may be a bet, raise etc. The convention adopted is that for a fold,

the dividend is zero and obviously the Action Cost for a fold is zero also.

The dividend is received in the event of a win with probability estimated

by P_WIN. A share of the dividend, conservatively estimated as shared

equally among all the active players (OPPONENT_COUNT + 1) is received

with probability estimated by P_TIE. Otherwise, the return is zero. The

estimate of advantage (page 2, de�nition 1) is therefore
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A� = (P_WIN +
P_TIE

OPPONENT_COUNT+ 1
)D�

Recall in the de�nitions the pro�t expectation on a �-game (page 2, def-

inition 5) is

�� =

NX
n=1

(pnDn � 1)In

In this case for a proposed action � the Expectation Maximiser sup(��)

(page 3, de�nition 6) is the action � that results in the highest value of

��j� = (A� � 1)�E_COST. There are only a small number of possible

alternative decisions and so sup(��) can be found quite quickly and easily by

just trying all the alternatives. In the event that the Expectation Maximiser

is not unique, the lowest cost alternative was chosen. This was motivated

by nothing more than a desire to choose the most conservative option. It

happens only very rarely, so makes little di¤erence overall.

3.2 Model Estimation

The output for the model is displayed in Appendix B, page 131, with a de-

scription of predictors shown in Appendix A, page 127. In order to estimate

the more complex models presented later, custom model estimation software

was written. A �rst step was to estimate the models presented in this section

which are nothing more than generalised linear models (GLMs). Commer-
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cial software could have been used for this, but then custom software would

have been required anyway for the models Context Speci�c models needed

later. All the results for the GLMs estimated in this section were checked

against commercial software, usually Arc, LIMDEP, or SPSS. No signi�cant

di¤erences were found. The BFGS (Broyden-Fletcher-Goldfarb-Shannon) al-

gorithm was used exclusively exclusively. A detailed discussion of BFGS and

similar routines can be found in [19]. BFGS is one of the so-called variable

metric minimisation routines (also called quasi-Newton methods) which con-

struct an approximation to the Hessian (called the Arc Hessian) iteratively

rather than needing a speci�c formulation. BFGS was appealing because the

second-derivative matrix for models discussed later can be very expensive to

calculate and avoiding the need to calculate it at every iteration resulted

in a more e¢ cient estimator in terms of the computational e¤ort required.

Texts such as Generalised Latent Variable Modelling [24] point out that a

problem with quasi-Newton methods is that the Arc-Hessian may not be a

good approximation of the actual Hessian and therefore that even though the

optimisation result is valid, the Arc-Hessian should not be used for making

statements about, for example, the signi�cance of predictors. BFGS can still

be employed and at convergence the Hessian can be calculated.
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3.3 Concluding remarks

When the model was implemented it was found that when started against

unfamiliar players, it did better than against familiar players as can be seen

from the graphical output in Appendix C, page 141. This is indicative that

the style of play was predictable and that the opponents were exploiting this.

Typically one or two opponents would bet and raise very aggressively early

in the game knowing that my robot would fold unless it had a very strong

hand. Consequently, at the Pre-Flop and Post-Flop, opponents would play

very aggressively and the robot would usually fold as a result. If it still

hadn�t folded by the time the Turn card came out, all the remaining players

would fold. Thus, the robot was always bullied out of pots when it did not

have an initial strong hand and not played against when it did have a strong

hand. Attempts were made to make the robot "braver" against repeated

bets, but it still played very predictably and opponents simply exploited this

new, but still predictable, play in di¤erent ways. Some human players have a

remarkable ability to spot any element of predictability in very short periods

of time.

To see the nature of this problem in a di¤erent context, consider the

game "Paper, Rock, Scissors". Simple games like this yield to game theo-

retic analysis. It can be shown that the optimal strategy for playing this

game is to randomly choose between the alternatives with equal probability.

Getting a computer to display truly random behavior is extremely di¢ cult.
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If we naively generate equiprobable (often confused with random) choices by

simply cycling through the alternatives, then our play would be predictable

and after a few games most astute human players would have no trouble

defeating us unless we changed our strategy. A more complicated version of

this phenomenon is what happens when poker is played with a �xed strategy.

Astute human players realise very quickly that the strategy is predictable and

exploit this weakness. It is partly because of this that most attempts to play

on-line poker with an automated system result in long term losses. It is very

easy to convince oneself that a model �tted on past data would be pro�table

and then �nd that shortly after using this model, some of the opponents

change the nature of their play to the detriment of the model that looked so

promising.

Some success was observed by introducing a random component into the

play of the suite of programs called THOR, from Texas Holdem Robot.

With a strong hand, instead of always raising, raise with probability p that

could either be pre-determined or could possibly depend on advantage and

check or call with probability (1� p) to stay in the game at minimum cost.

Simply adopting this can have the e¤ect of advanced plays such as:

� "Check/raising" where one �rst checks with a strong hand to embolden

other players to bet and then raises after they have committed an

investment

� "Slow playing" where one plays conservatively with a strong hand.
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This made play a lot less predictable, but good players were still able

to sense the correlation between the robot betting and the robot having

a good hand. The variations to play, being random, did not satisfy the

sup(��) criterion ( page 3, de�nition 6), that is, they did not maximise

pro�t expectancy. Betting with a high advantage was not the same as

betting with a very strong hand. Sometimes the robot would bet with a

weaker hand if the implied dividend from the pot size and cost to raise or

cost to call represented an advantage bet. With the speci�c opponents model

introduced later, the process for determining whether to bet or check/call is

so complicated, that it appears to other opponents to be completely random.

However, the actual system is quite deterministic and indeed is calculated to

maximise expectancy, so departures from set plays are not random but are

actually sup(��) strategies.

It can be seen that the course being adopted here is very di¤erent from

that advocated by Game Theorists such as [18], [3], [21], [20]. Game Theory

is not being employed. No attempt is made to determine which player is "in

front" at any stage. The decision process seeks to estimate an advantage

for investing further into the game. Plays that may be interpreted by the

opposition as, say, blu¢ ng are not embarked on for the reasons assumed of a

typical player. Sometimes calls and bets will be made when holding weaker

hands, but this is because the estimated dividend for investment constitutes

an advantage bet. At this stage, this philosophy reduces to always playing

expected pot-odds [23] which is admittedly naive, but this behaviour will
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be seen to be enriched by the more realistic models employed later. This

highlights the di¤erence in philosophy of trying to approximately solve the

exact problem as advocated here , rather than trying to exactly solve an

approximating problem as most previous research into this area has sought

to do ([18], [3], [21], [20], [2] to name a few).



56 CHAPTER 3. GENERIC OPPONENTS MODEL



Chapter 4

Random Parameters Model

A short jump is certainly easier than a long one, but no one wanting to get

across a wide ditch would begin by jumping half way� Carl von Clausewitz

It was evident the Generic Opponents model had shortcomings. Part

of the reason for this appears to emanate from variation in player styles.

Because a Generic Opponents model always plays the same way, an experi-

enced human player can probe for weaknesses caused by this predictability.

Clearly what is required is a Speci�c Opponents Model (page 4, de�nition

14) at a minimum. Within the framework of this research the �rst step is

to obtain a Random Parameters Model. Recall the following de�nition:

De�nition 1 A Random Parameters Model is a model that has parameters

that may vary across a possibly heterogeneous population.

57
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This type of model is described in [24]. This modelling technique is very

popular in the Econometrics community and an excellent discussion can be

found in [26] Chapter 6. While the setting is a little di¤erent, the concepts

employed are almost the same.

4.1 Background

People respond di¤erently to a given set of circumstances. A regression

estimating some behavioral characteristic performed on a large group of in-

dividuals often estimates the item of interest only for a typical member of

the group. Most regression-type analyses fall into this category; estimated

model parameters are implicitly assumed to apply uniformly across the entire

population.

In estimating the probability of a shopper purchasing some item using

possibly a Binary Logistic Regression model [12], one might expect that

price might plays a signi�cant role for most members of the population and

that price would have a negative regression coe¢ cient, so as price increases

the probability of purchase would go down. However, some members of the

population might have a less negative or possibly zero coe¢ cient, meaning

that price would not be an overriding concern for them and that other factors

may play a larger role in their case. For other members of the population,

price might actually have a positive coe¢ cient. For example higher price may

be interpreted as higher quality. While it may be true that for most members
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of the population, price would have a negative coe¢ cient, a more realistic

speci�cation is that the coe¢ cient (or preference) for price is distributed

among the population with a mean that is negative but with enough variance

to account for discrepancies in behavior. Similar considerations apply to

poker. Take for example the number of bet/raises made at the current

stage. It is reasonable to expect that the number of bet/raises regressor

would have a negative coe¢ cient for the P_WIN model (page 46), in that our

con�dence of having a winning hand may decrease as the number of opponent

bets and raises increases. The logic here is that more opponent bet/raises

would indicate stronger opponent hands and therefore our hand may not be

as strong as thought, so P_WIN decreases. However, some opponents may

blu¤ with uncommonly high frequency and also slow play strong hands with

high frequency. It can be costly if we fail to identify opponents who may have

a zero or possibly even a positive coe¢ cient (or behavioral preference) for

active stage bet/raises. If instead a model is speci�ed where the coe¢ cients

vary according to some probability distribution and then the parameters

of that distribution are estimated, more accurate estimates of behavioral

characteristics can be obtained.

The basic model formulation described in Chapter 3 will be extended to

account for variation in the style of play between opponents. This di¤er-

ent type of regression will form the basis for the very powerful model to be

introduced in Chapter 5. An essential ingredient of long term survival in

the online poker environment is the ability to adapt to di¤erent styles of
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play. This will eventually be developed to a speci�c context model rather

than a speci�c opponents model because changes in playing style are required

for reasons other than opponents�attitudes. The model sought is one that

adapts to various contexts, not just the playing style of the opponents, al-

though opponent style forms a signi�cant part of what is referred to as the

game context. Indicators of opponents� styles to categorise them as "ag-

gressive" or "loose" or any other pre-de�ned category will not be sought as

they are in, for example [3]. This is a di¤erence between this thesis and

systems such as Poki [3], [9]. Soft boundary classi�cations that are de�ned

in some data-driven way by the e¤ect that a particular context has on es-

timates of various quantities such as win probability and pot-size will be

estimated. Then, an adaptive system could be one that identi�es where on

the probability distribution of playing styles a given game context is. This

will form a very loosely de�ned group and that group will be characterised

by a best �tting set of coe¢ cients. Thus, the robot will play di¤erently

in di¤erent circumstances without trying to apply any sort of hard bound-

ary group. Facilitation will be sought to identify contexts where di¤erent

coe¢ cients satisfy sup(��) (page 3, de�nition 6). The resultant categories

will vary continuously rather that putting players in discrete groups. This

continuous spectrum is a fuzzy group. Using this concept, abstract groups

based on the data can be assigned for which no real heuristic explanation

exists. The context categorisation is data driven and not de�ned before-

hand. Many classi�cations of opponents will be signi�cant but not easy to
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interpret.

4.2 Population level model

Within the population, the model parameters will be assumed to have some

probability distribution f , the mixing distribution. The parameters of the

mixing distribution are � and the modelling task becomes estimation of �:

We start by assuming a multivariate normal mix, that is that the coe¢ cients

are multivariate normal distributed, and we seek to estimate the population

level mean vector and covariance matrix of this distribution. The formulation

of the Generic Opponents P_WIN model is Binary Logistic and thus

P (Yn = 1jxn) =
exp(xTn�)

1 + exp(xTn�)
:

If a mixing distribution f is assumed, estimates of parameters of that dis-

tribution � are sought. So the probability becomes

P (Yn = 1jxn) =
Z
�

exp(xTn�)

1 + exp(xTn�)
f (�j�) @� (4.2.1)

There will usually be no closed form solution for this expression, but simu-

lation methods can be used to approximate to any desired level of accuracy.

Choose a su¢ ciently large R and generate R standard normal vectors nr for

r = 1; : : : ; R, that is, each is a k dimensional vector with each component

being a random draw from a standard normal distribution having a mean of
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zero and a variance of 1. Many books on Numerical Analysis show numerous

ways to achieve this, we used "Numerical Recipes in C" [19]. The estimated

value of � provides us with the mean vector � and the covariance matrix

W . We operate with the Cholesky decomposition L of W , with LLT = W .

Again many numerical analysis texts provide details on how to calculate L.

We used the de�nition of the Cholesky decomposition to calculate this ex-

plicitly, but good algorithms can be found in [19]. We generate R draws from

a Multivariate Normal distribution with mean � and covariance W , this is

�r = �+ Lnr where W = LLT :

Converting to a simulation approximation as described in equation (4.2.1)

above, we obtain

P (Yn = 1jxn) �
1

R

RX
r=1

exp(xTn�r)

1 + exp(xTn�r)
: (4.2.2)

Expanding this equation to reveal the explicit form of the simulation gives

P (Yn = 1jxn) �
1

R

RX
r=1

exp(xTn � + xTn Lnr)

1 + exp(xTn � + xTn Lnr)
: (4.2.3)

This is the simulation estimate of the required probability for the nth case.

To obtain the likelihood, multiply out all N cases, or as standard practice to

avoid �oating point under�ow dictates, sum the logarithm of each of the N
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cases to provide the log-likelihood given by

G(�; L) = �n log(R) +
NX
n=1

log

"
RX
r=1

exp(xTn�r)

1 + exp(xTn�r)

#

= �n log(R) +
NX
n=1

log

"
RX
r=1

exp(xTn � + xTn Lnr)

1 + exp(xTn � + xTn Lnr)

#
:

Derivatives are required with respect to each component of � and also each

component of the lower diagonal of L. All components of L above the

main diagonal are zero. Firstly for the components of �, consider a typical

representative [�]a, which is the ath component of the vector �. For a typical

component a of �

�
@G

@�

�
a

=

�
@

@�

�
a

NX
n=1

"
log

"
RX
r=1

exp(xTn � + xTn Lnr)

1 + exp(xTn � + xTn Lnr)

##
;

where �
@

@�

�
a

f (�)

is the derivative of f with respect to the ath component of the vector �.

The N situations relate to every decision made, so if we are called upon to

make, say two decisions at the Pre-Flop, one decision at the Post Flop, two

decisions at the Turn and one at the River, then in that game we have made

six decisions which will each be included as a data row. Consequently, the

N decisions considerably outnumber the number of games played. The k
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components of the gradient will then be the sum over N data rows for each

component, here a typical one, a, is considered. Proceeding with the algebra,

we get

�
@G

@�

�
a

=

NX
n=1

2664
RP
r=1

[xn]a
1 + exp(xTn�r)

: exp(xTn�r)
1 + exp(xTn�r)

RP
r=1

exp(xTn�r)
1 + exp(xTn�r)

3775 ;
where [xn]a is the ath component of the nth data row. This can be expressed

as �
@G

@�

�
a

=
NX
n=1

[xn]a

2664
RP
r=1

Qr;n
Tr;n

RP
r=1

Qr;n

3775 ;
where Zr;n = exp(xTn�r), Tr;n = 1 + Zr;n and Qr;n = Zr;n=Tr;n This notation,

aside from looking neater, shows how the expression was implemented in

computer code and also introduces some terms that will be used next when

the derivative with respect to the components of L are obtained.

The derivatives with respect to each component of the lower triangular

matrix L are also required. All components of this matrix above the main

diagonal are zero and so do not a¤ect any of the calculations. For a k

dimensional mean vector there will be k(k � 1)=2 components below the

main diagonal and k components on the main diagonal giving a total of k(k+

1)=2 possibly distinct components of the Cholesky decomposition matrix L.

Consider a typical representative of this matrix, the b; c element where b � c,
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being part of the lower diagonal of the matrix L.

A straightforward but lengthy calculation leads to

�
@G

@L

�
b;c

=

NX
n=1

[xn]b

RX
r=1

[nr] exp(xTn� + xTnLnr)
(1 + exp(xTn� + xTnLnr))

2

RX
r=1

exp(xTn� + xTnLnr)
1 + exp(xTn� + xTnLnr)

:

Expressing all the parameters of the likelihood function as a packed array

of terms, the �rst N being for the mean vector and after that for the ele-

ments of the covariance matrix, an expression for the gradient has now been

obtained. This was used as the gradient function required by the BFGS

optimisation routine. After optimisation is complete, the packed array of

terms can then be unpacked into the components of � and W .

4.2.1 Implementation

All parameters were estimated simultaneously. A packed array of terms was

constructed. If an intercept term is �tted, then the �rst element of each

data tensor xn is padded with 1 as the �rst element and then

k = number of regressors �tted+ 1;

otherwise

k = number of regressors �tted.
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By default the process was started from the Generic Opponents Model esti-

mate. So, in the case of the P_WIN model, the Logistic Regression ([12])

coe¢ cients were used as the initial value for the mean �. Some experi-

mentation to �nd a good starting value for L was conducted. Among the

candidates tried for starting values for L, were the Cholesky decomposition

of the Hessian matrix for the Generic Opponents model and various, some-

times complicated, functions of the �rst derivative and the data. However,

simply using an identity matrix consistently provided a good starting value

for L. Convergence and converged values always seemed stable and as com-

putationally fast as any other starting values used.

Experimentation with other various ways to produce the R vectors nr was

conducted. So called low discrepancy sequences are described by Neiderreiter

[16], [17] where they are referred to as (t,m,s) nets. This does indeed increase

computational e¢ ciency. Very good convergence properties with R = 2000

uniform draws and about the same with 200 low discrepancy draws. The

extra overhead in generating the low discrepancy draws is not signi�cant as it

occurs only once at the start. Uniform draws were still used in spite of this,

because it was discovered that a few models among the thousands estimated

converged to nonsensical values. It is unclear where the problem was, but

it must be said it is unlikely that the problem was with the (t,m,s) net

methodology. A decision was made to persevere with uniform draws as no

such issues were evident and the di¤erence in estimation time was not huge.

The same problematic model runs using uniform draws had no convergence
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issues. Rather than embarking on a possibly very long debugging run, the

decision was made to use the much simpler uniform draw methodology. The

fact that uniform draws can be easier to work with in terms of software

implementation increases their attractiveness.

4.2.2 Remarks on simulation methods

The issue of simulation bias caused by the logarithmic transform depends on

the relationship between the number of simulation draws R and the sample

size N . If R is �xed then the bias problem prevents convergence to the

correct parameters. because the logarithm function "stretches" bias on the

untransformed scale to arbitrarily large biases on the log scale the closer the

likelihood function gets to zero. If however R rises faster than
p
N then

the optimised estimator from simulation is asymptotically equivalent to the

Maximum Likelihood estimator. See Section 6.2, page 94 for a more in

depth discussion. An outstanding presentation of this can also be found in

[26], Chapter 10. Resolving this problem has been seen as a compelling

reason to adopt Bayesian estimation methods. Bayesian estimates can be

constructed which converge to exact likelihood estimates. Bayesian methods

of estimation via Markov Chain Monte Carlo (MCMC) methods and Gibbs

samplers were initially employed, they were found to be di¢ cult to program

and debug because it cannot be seen iteration by iteration that a diagnostic

statistic is indicating convergence. The simulators can drift around for long

periods of time and it can be di¢ cult to determine whether this is correct
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behavior or whether a mistake has been made. With maximum likelihood

it can be seen that the log likelihood decreases with every iteration. Also, if

using mixing distributions other than a Normal distribution, it can be hard

to specify a conjugate prior distribution. Of course, a non-conjugate prior

distribution could be employed, but then there would be no guarantee that

the convergent distribution is the one we require [10]. A signi�cant improve-

ment to the population level model based on using di¤erent distributions for

each regressor and still specifying a correlation matrix will be presented in 6.

This would cause considerable problems for a Bayesian estimator because no

conjugate prior would be available and a non-conjugate prior would not guar-

antee that the converged estimate would be the same as the data. The ease

with which improvements can be quickly incorporated into the maximum

likelihood approach can more than make up for the admittedly unsatisfying

ways to address the issue of bias incurred by the logarithmic transforma-

tion of simulated probabilities. This application required computational

e¢ ciency and the ability to easily specify non-standard mixing distributions

which favours a frequentist approach. All that would be accomplished by

adopting Bayesian methods would be trading one set of problems for another.

The bias in simulating the log-likelihood function can be expressed by

taking a second degree Taylor expansion of log( bP ), the log simulated proba-
bility around the actual probability P :

log( bP ) � log(P ) + bP � P
P

� ( bP � P )2
2P 2

;
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and taking the expected value of this relationship implies

SML � MLE � �V ar(
bP )

2P 2
< 0;

where SML is the simulated maximum likelihood andMLE is the maximum

likelihood estimate based on the true probability P .

4.2.3 Other mixing distributions

So far, the correlation matrix can still be maintained in the same manner as

for any multivariate normal distribution, with the proviso that coe¢ cients

of known sign have a �1 multiple of their logarithm being expressed as a

correlation. Other mixing distributions can also be speci�ed by simulat-

ing �r appropriately. For instance, to specify heavier tailed distributions,

say, a Multivariate Students t distribution could be employed. Instead of

simulating �r from a normal distribution as above, draw from a Students t

distribution by borrowing from some insights developed by Bayesian analy-

sis. In [10] section 3.1 the Students t distribution is shown to be a mixture

mixed over a �2 distribution and thus one can make random draws from a

Multivariate Students t distribution with location vector �, scaling matrix �

and degrees of freedom � by drawing a vector � from Normal(0, I) and scalar

xr~�
2
� (draw from a Chi-Squared distribution with � degrees of freedom) and

then compute

�r = � +

r
�

xr
L nr;
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where LLT = �. One can then specify � as, say, 4 to then generate much

heavier tailed coe¢ cient distributions.

However, simply being able to specify di¤erent mixing distributions is not

enough. Di¤erent distributions for each regressor can be employed that can

also correctly specify correlations between regressors having di¤erent mixing

distributions. This is a hybrid mixing distribution. Such a probability

distribution is very abstract and di¢ cult to visualise, the resulting correlation

matrix is very di¢ cult to interpret. However, it makes sense that there is

no compelling reason why a population distribution of coe¢ cients for one

regressor should be the same as a di¤erent regressor. The superior �t that

such a model generates is strong evidence of the validity of this approach.

As these regressors will eventually be used in a learning system, this shows

what a complex process learning is and how intricate and subtle poker can

be.

Recall from Section 4.2 that when �r is simulated from a multivariate

normal distribution �r = �+ Lnr. So

E[�r] = E[�+ Lnr] = �+ L:E[nr] = �

because nr is a vector composed of terms each taken from a 1 dimensional

standard normal distribution each term having a mean of zero and a variance

of 1, so component-wise the expected value is a vector of zeroes. The variance
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of

Lnr = E[(Lnr)(Lnr)
T ]

= E[L:nrn
T
r :L

T ]

= L:E[nrn
T
r ]:L

T

= L:I:LT

= LLT = W

and as the variance does not change when a constant is added to each term

in a sequence, this variance is unchanged by adding the constant vector �.

So �r comes from a normal distribution having mean vector � and variance

W , which is of course the required distribution. The random component in

the draw comes from the speci�cation of nr. From the speci�cation above,

a draw for a multivariate students t distribution can be expressed as above

or by

�r = �+ Lbnr;
where

bnr =r �

xr
:nr

and with an additional draw xr~�2v. The vector bnr is a vector that transforms
the draw to achieve the required distribution. Now, if [�]1 is to be Normally

distributed and [�]2 Students t(�) distributed,d[nr] 1 can be speci�ed to be

from a 1 dimensional standard normal distribution andd[nr]2 isp�
x
multiplied



72 CHAPTER 4. RANDOM PARAMETERS MODEL

by a draw from a standard normal distribution. Similarly, a component is

to come from a uniform distribution, then that component can be de�ned

to be from a uniform distribution having a mean of zero and a variance of

1. The correlation matrix is maintained in exactly the same way as for a

multivariate normal distribution, but has the stochastic component updating

the mean vector with what is now a hybrid distribution. All that needs to

be calculated beforehand is how to draw from the required 1 dimensional

distribution with the required mean of 0 and variance of 1. In the case of

distributions such as a gamma variate, that always take a given sign, draw

from the log-gamma distribution and exponentiate on use similarly to the

speci�cation of a log-normal distribution. So, in the estimation phase all

distributions are transformed in such a way that the transformed values can

take any real value. A hybrid distribution can then be speci�ed as above and

then the inverse transformation is used for those coe¢ cients that have been

transformed on use or when calculating log-likelihood values. The following

approach, motivated by experience with many model �ts became standard

adoption. First use a Multivariate Normal mix for all regressors. A uniform

mix for indicator variables can also be tried. The estimated location and

spread of the uniform distribution implies values for the upper and lower

boundaries of the uniform interval. Re�t the model at this stage, accepting

the new hybrid model if the log likelihood goes up signi�cantly. Now try

using log normal mix for regressors that necessarily take a given sign and re�t

and accept if the log likelihood improves. Next then try using a Students t
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(4) model to each of the remaining regressors to test whether the model �t

is improved with the resultant heavier tails. Each Students t regressor used

in this way incurs an extra degree of freedom, tests of "goodness of model"

criteria will need to be satis�ed

Information Criteria Measures Commonly used measures, discussed in

[6] are:

AIC = �2 log(L) + k

BIC = �2 log(L) + (log(N) k)

CAIC = �2 log(L) + (1 + log(N)) k

Bayesian Di¢ culties with Hybrid Mixing Distributions Specifying

a hybrid distribution would be extremely di¢ cult using a Bayesian estimator.

Even just specifying a Students t distribution is di¢ cult because it is not

clear what a conjugate prior should be. Of course a non-conjugate prior can

always be speci�ed, but that is a dangerous practice because there is then

no guarantee of the posterior distribution being in the required family of

distributions. Attempting to �nd a conjugate prior that meets a requirement

for a hybrid distribution across di¤erent dimensions is a di¢ cult problem and

provides further justi�cation for persevering with a frequentist approach.
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Chapter 5

Adaptive Model

When we see men of contrary character we should

turn inward and examine ourselves� Confucius

5.1 Adaptive modelling

Billings et al in [9] present a strong case for the need for adaptive play in

an automated poker system. The approach adopted here is di¤erent in that

no use is made of Neural Networks. The systems Loki [18] and later Poki

[3] use a weight array which is a device whereby a computer can mimic the

style of play advocated by David Sklansky [23] . In this sense, a system

like Poki which uses a Neural Network, is playing in a very similar manner

to an expert human player and the system is a very good example of well

implemented Arti�cial Intelligence. Pre-de�ned player classi�cations such as

75
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"tight" or "aggressive" are used to classify players into a best-�tting group

as their choices reveal their attributes.

In estimating a Random Parameters model (chapter 4) the distribution

of the coe¢ cients was described. Now, that information will be used to

estimate, on the basis of data being revealed, where on the distribution of

coe¢ cients a given context may be and therefore which coe¢ cients should

be used for that particular context. No pre-de�ned classes are invoked

and no attempt is made to interpret player motives. The whole process is

simply geared to using the extra information to form better realisations of the

expectation maximisers sup(��) (page 3, de�nition 6). The more sensitive

and less predictable nature of the process being employed makes play a lot

less predictable, so seeking to maximise expectancy (page 2, de�nition 1)will

no longer amount to just playing pot-odds.

The system learns, but in a di¤erent way to the systems of Neural Net-

works employed in [18] and [3]. The learning system is unsupervised in that

no prior input is required after the population model has been estimated. In

a sense, the attributes of given contexts follow from the assumptions adopted

about the mixing distribution (chapter 4).

5.2 Mathematical analysis

Let the population coe¢ cient probability distribution be f and the parame-

ters of this distribution be �: In the case of the model developed in Chapter 4,
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f will be the Multivariate Normal distribution and � will consist of the mean

vector � and the covariance matrix W . In the case of the P_WIN model

(page 46), consider a given context for which previous data X , the contex-

tual data, and previous responses Y , the contextual responses are available.

Best �tting coe¢ cients � are required subject to X; Y and �:

Consider the joint density of Y and � subject to X; �.

@(Y ; � j X ; �) = q(Y j X; �) : h(� j X; Y; �)

= f (� j X; �) : p(Y j �; X; �):

Hence

h(� j X; Y; �) = f (� j X; �) : p(Y j �; X; �)
q(Y j X; �) :

Conditioning has been conducted both ways. The functions p and q are

probabilities because they describe the variable Y , which is de�ned proba-

bilistically. The functions h and f are probability density functions. The

joint density @ is then an expression for either the probability of Y occurring

in the population weighted by the distribution of contextual parameters or

the probability of Y occurring in our context, weighted against the density of

contextual coe¢ cients occurring in the population. The function q, which is

the probability of Y occurring in the population, is the population parameter

space estimate of Y which is just the population level random parameters
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estimate or,

q(Y j X; �) =
Z
�

Prob(Y j X; �) f (� j �) d�:

Note that the underlying density of coe¢ cients within the population does

not depend on X, and so

f (� j X; �) = f (� j �):

The distribution f will be recognised as the mixing distribution de�ned

in the population level model. Also, once � has been speci�ed, the values

within � no longer matter because � is just a description of the possible values

of �, so

p(Y j �; X; �) = p(Y j �; �) = Prob(Y j �;X)

It is also clear that the distribution h is what is being sought This de�nes

the "category" for the context. Upon rearrangement, we have

h(� j X; Y; �) = Prob(Y j �;X) f (� j X; �)Z
�

Prob(Y j �;X) f (� j �) d�

This expression lends itself to a pleasing interpretation. The conditional dis-
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tribution of the contextual coe¢ cients is the probability of the response data

given those coe¢ cients weighted against the distribution of the coe¢ cients

within the population. The numerator is a normalising term ensuring that

the distribution function h integrates to unity.

Next, the expected value of � under h is calculated. When this expected

value di¤ers from �, the robot will have changed its style of play for the

context under consideration. Let

B = E [� in h]

=

Z
�

�

"
Prob(Y j �;X) f (� j X; �)

(
R
�
Prob(Y j X; �) f (� j �) d�)

#
d�

=

Z
�

� Prob(Y j �;X) f (� j X; �) d�

Z
�

Prob(Y j X; �) f (� j �) d�
: (5.2.1)

There will rarely be a closed form for this expression. However, simulation

methods can be employed to achieve an arbitrarily accurate approximation.

For su¢ ciently large R, we can simulate both the numerator and the denom-

inator by

E[B] �

RX
r=1

�r Prob(Y j �r; X)

RX
r=1

Prob(Y j �r; X)
; where �r � f (� j �): (5.2.2)
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This is the required approximation to the expression (5.2.1). It is easy to

program and debug.

Of course, h represents a mixing distribution by itself and so a variance

estimate can be obtained by calculating

E[BBT ] �

RX
r=1

�r �
T
r Prob(Y j �r; X)

RX
r=1

Prob(Y j �r; X)
;

from which

V ar[B] = E[BBT ] � E[B] E[B]T

= E[BBT ] � E[B] E[BT ]

With the last line being a slightly di¤erent but equivalent notation that

is sometimes preferred. Whether the transpose of the expected value of the

coe¢ cients is preferred or the expected value of the transpose of the coe¢ -

cients is preferred is a matter for personal preference as the two expressions

are equivalent.

Dependencies between the elements of B are captured by the simulation

process because the draws of �r values are made subject toW , the covariance

matrix.
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5.3 Identi�cation issues

In most real world problems there are always limits to how much can be

known about things which cannot be directly observed. An opponent�s

preferences cannot be realistically observed, and therefore their coe¢ cients

(preferences) must be inferred from the data. Unfortunately, if all para-

meters are allowed to vary randomly within the model, then this inference

can be non-unique. Such parameters are referred to as unidenti�ed and the

situation as an identi�cation problem.

Identi�cation problems can occur when all parameters are treated as ran-

dom. Speci�cation of a �xed intercept with the regressor coe¢ cients being

considered as randomly varying within the population was found to �x the

problem. So long as at least one predictor is considered �xed, identi�cation

problems were not evident Of course an underlying distribution will most

likely have variance across all parameters. Solving an identi�cation prob-

lem by specifying some parameters as �xed does not imply that they can�t

change, merely that a convergent model can�t be otherwise estimated.
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Chapter 6

Tree Based Contextual

Coe¢ cients

We all agree that your theory is crazy, but is it crazy enough?� Niels Bohr

Context speci�c coe¢ cients (which can be interpreted as preferences)

can now be assigned using the model developed in Chapter 5. When in-

su¢ cient data are available to assign a context, the model reverts to the

Generic Opponents model developed in Chapter 4. However inhomogeneity

of the population of possible contexts may also be identi�ed in less speci�c

situations. For example, typical player behaviour on small limit tables may

be "di¤erent" to large limit games. "Di¤erence" here means that player

behavioral preferences may result in di¤erent coe¢ cients being appropriate

and that therefore the data can be split into more homogeneous groups with

separate models applying to each. This would enable a di¤erent contextual

83
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model to be employed with the more speci�c models described in Chapter 5

still being available as data pertaining to speci�c contexts is revealed.

6.1 CART models

The idea of Classi�cation and Regression Tree Models, hereafter known as

CART models was developed by Breiman, Freidman, Olshen & Stone [5]

Usage of the techniques published in [5] and via the Salford Systems com-

puter package, also called CART, revealed that additional features would be

required for this research which justi�ed the development of custom soft-

ware. As an example, consider the problem of whether di¤erent coe¢ cients

should be �tted for certain ranges of numbers of opponents in the P_WIN

model (Section 3.1, page 46). Because many of the predictors used (Appen-

dix A, page 127) are based on simulation results and those simulations are

for the number of opponents encountered, the number of opponents (OP-

PONENT_COUNT) has already (indirectly) entered the model and so its

signi�cance as a predictor by itself is reduced. However, even though OP-

PONENT_COUNT is not a signi�cant regressor by itself, it may happen that

other regressors (independent variables) may have best �tting coe¢ cients for

di¤erent ranges of OPPONENT_COUNT. When a predictor is used to di-

vide the data set into groups that display some sort of homogeneity, those

predictors are called auxiliary variables in the CART literature and the same

convention will be adopted here. A regressor (a predictor that enters the
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regression function) can also be an auxiliary variable. Popular splitting rules

for CART models include the twoing and GINI criteria ([5], [8]). Gambling

problems are somewhat dissimilar to many other regression analyses in that

the main focus is not whether or not a candidate regressor is signi�cant.

Rather, it is necessary to require the most accurate probability and expected

value statements from the resultant model. The model output is as impor-

tant as interpretation. More accurate probabilities here are not just "brag

numbers". They could well mean the di¤erence between winning and losing

in the long term.

CART splitting rules are not in general guaranteed to maximise log-

likelihood. New splitting rules were constructed that have this property.

Consider a classi�cation rule such as (OPPONENT_COUNT < 4) or (4 �

OPPONENT_COUNT < 7) where the split results in a higher log-likelihood

by an amount su¢ cient to justify the extra model degrees of freedom. The

regression coe¢ cients are di¤erent in the split regions as a result of empirical

heterogeneity. The construction really amounts to a CART tree with regres-

sion model end-points. This is di¤erent from the Regression Trees developed

in [5]. This is in fact a classi�cation tree of regression models.

6.1.1 Auxiliary variables and split data sets

Consider the auxiliary variable OPPONENT_COUNT (Appendix A, page

127). One hypothesis may be that games with di¤erent ranges of OPPO-

NENT_COUNT may be inhomogeneous. This can be evidenced by di¤erent
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coe¢ cients (or preferences) for di¤erent regions of the data space correspond-

ing to ranges of OPPONENT_COUNT values. For a candidate data space

region, the data are split and a model is �tted on each of the child segments.

The log likelihood for each of the segments is added to arrive at a total log

likelihood value. The best candidate split is that which results in the highest

total log likelihood value. In this way, the log likelihood is guaranteed to at

least not decrease with every split. Of course, every split we select in this

way will not decrease the log likelihood value and whether any increase in

log likelihood is signi�cant should be assessed. If the unsplit model has k

degrees of freedom and one split has been conducted, then the new model has

k degrees of freedom in each split section plus one for the critical value of the

auxiliary variable. Thus the model degrees of freedom are now 2k+1. Some

goodness-of-model criteria need to be satis�ed to balance the increase in log-

likelihood against the extra model parameters. AIC and similar measures

(Section 4.2.3, page 73) were employed for this. The process is repeated until

a stopping rule is satis�ed ( [5]) . The stopping rule adopted here was that if

further splits cannot result in enough increase in log-likelihood to satisfy the

goodness-of-model criteria chosen, the process is halted. Even AIC, being

the most liberal goodness-of-model test of those outlined in Section 4.2.3,

page 73, typically only allows a few splits. Parsimonious models tend to be

chosen.
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6.1.2 Trees and split data sets

A tree consists of a root node, which is the data set prior to any splitting

and child modes if splits have been conducted. On the terminal branches

of the tree are terminal nodes, which are nodes that have not been split.

When a split occurs, a terminal node becomes a splitting node and results

in 2 child nodes. Each terminal node except for the root node prior to any

splits has a parent node, which is the splitting node that results in the split.

Each splitting node has a splitting rule, which is the condition on which the

split occurs. Consistent with the example above a splitting rule may be

OPPONENT_COUNT � 5, which would result in 2 child nodes, namely

an a¢ rmative child node relating to all data meeting the condition and a

negative child node relating to all data not meeting the condition. Splitting

occurs until some stopping rule is satis�ed.

Figure 6.1.1 shows the most basic type of split for a data set. The

splitting node is the oval shape and the terminal nodes are the rectangles.

The splitting rule is the condition displayed in the splitting node oval. In

this case, a variable xk is tested to see whether it is less than or equal to

some critical value c1. The choice of xk and c1 is made by the estimating

process. The convention is that the a¢ rmative data points in the split go

to the left hand side of the diagram and negative values go to the right hand

side.

In the case of regression trees, the data are part of a continuous range

rather than a discrete number of mutually exclusive groups. Typically there
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Figure 6.1.1: Basic split for a dataset

must be some additional criteria used to interpret the terminal nodes of a

regression tree. This could be some convention (used in [5]) such as using the

mean of the data points in each terminal node to be the regression estimate

for data in that node. The process used here classi�es data as belonging to

some group that uses a certain set of coe¢ cients, so the allocation of elements

is discrete in that the data space is divided into a �nite number mutually

exclusive regions each of which is associated with an endpoint model. The

classi�cation groups are decided a posteriori as part of the estimation process

and are not known a priori.

In Figure 6.1.2 a new split has occurred for another variable xm tested

against another constant c2 on what was terminal node T2 in Figure 6.1.1.
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Figure 6.1.2: Resplitting a node

Node 2 changes in character from a terminal node to a splitting node. It is

quite acceptable to re-split on the same variable. Node numbers are retained

even though they may change in character from terminal to splitting nodes,

with the root node always labelled zero. Resplits can occur ad in�nitum

until stopping criteria are satis�ed.

Whenever a split occurs, a terminal node must become a splitting node

and 2 more terminal nodes result. Thus, for each split, the number of nodes

goes up by 2 and the number of terminal nodes increases by 1. For the tree

object T , the number of terminal nodes is jT j : Thus jT j is the number of
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segments into which the data set has been split and by induction the total

number of splitting nodes must be jT j� 1. Hence the total number of nodes

is 2 jT j � 1.

Tree models have advantages and disadvantages. An attractive feature

of the tree model is ease of interpretation. For example, a model classifying

patients into risk groups for heart complications in an emergency ward could

be used by nursing sta¤ via a mechanism as simple as a wall chart. The

various regressors could be traced down the tree which may go something like

"is patient over 65", "is patient male", "does patient smoke" etc. This may

lead to ease of interpretation by sta¤ even if they have little mathematical

background. However, some such models can have over-�tting issues. In

Chapter 8 of reference [5] regression trees are discussed and a typical tree is

grown. The implementation is such that data are dropped into the tree and

found to reside in some terminal node and the predicted value is the mean

of the in-sample values for that terminal node. Out-of-sample data may

well have a much higher variance in a terminal node than the sample data

and such an approach "strati�es" the data in the sense that the tree model�s

predictions will all be exactly the same for data until it varies by more than

a critical amount, whereupon predicted values will then jump to a new level.

This is a little unsatisfying.
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6.2 Implementation

As has been stated, the population is not homogeneous in the sense that

tastes, preferences and behavior patterns (as characterised by coe¢ cients)

vary. Conditioning on previous actions reveals in which segment of the

population a new respondent set might reside. The segmentation of the pop-

ulation data achieved by this mechanism did not result in easily de�ned

groups and they were referred to as "fuzzy groups" in Chapter 5. There

are however many ways that a data set could be divided more simply . It

could conceivably be the case that players on high-limit tables play di¤er-

ently to players on small-limit tables and that these di¤erences in behavior

patterns and preferences would be characterised by di¤erent coe¢ cients. In

such a case it might be expected that some segmentation of the data into

groups de�ned by table limit size might be appropriate. A sub-model �tted

to a small table limit group might have signi�cantly di¤erent coe¢ cients to

a large table limit group and the resultant total �t might be signi�cantly

better.

Searching for optimal segmentations of the data set is a task to which a

tree model is very well suited. Most tree models described in [5] provide a

single number for all data points that come to rest in each terminal node.

This number is a class number in the case of a classi�cation tree or a real

number in the case of a regression tree. The tree developed here yielded a

di¤erent model for each terminal node.
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Figure 6.2.1: Test Model

In Figure 6.2.1 actual data and a very small test model with three regres-

sors and one auxiliary variable is shown. For a table with a small number

of opponents (in this case 4 or fewer), di¤erent best �tting coe¢ cients exist

than for a table with a large number of opponents. This does appear to

be evidence of non-homogeneity in the population with regard to opponent

behavior patterns. Data that resides in the left terminal node is simply

data from tables where OPPONENT_COUNT is in the range {1,2,3,4} and

data residing in the second terminal node is all other data. Data from the

�rst terminal node does not always imply the same probability of having the

best hand because the non-auxiliary data can vary. In this case the tree

models parameter count after one split was 3 regressors in each of 2 termi-

nal nodes plus one split, so the number of parameters is 7. The unsplit
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base model has 3 parameters, an extra 4 parameters are being used. AIC

incurs a unit penalty for each additional parameter and so requires an im-

provement in log-likelihood of 4 to justify the extra model parameters. The

actual observed improvement was 38, providing evidence of heterogeneity in

the manner postulated.

For a GLM (Generalised Linear Model [14]) with k regressors, there will

be k model parameters in each terminal node plus one degree of freedom for

each splitting node. So the tree model degrees of freedom is k jT j + jT j �

1 = (k + 1) jT j + 1. Using AIC, each time a split is made the required

improvement in log likelihood goes up by (k + 1). This very quickly gets

di¢ cult to achieve.

In practice a large amount of data is usually required to �t a model

with a large number of regressors, so if k is large and only very signi�cant

regressors are �tted, then usually the number of cases N being modelled is

also large and therefore there can be potential for large improvements in log-

likelihood if there is some heterogeneity in the data that can be explained by

an auxiliary variable. If on the other hand, a large number of regressors are

�tted and the assumed distribution of errors is in very close agreement with

the actual distribution of data in the data set, then no signi�cant splits will

be found because no splits will result in statistically signi�cant di¤erences in

log-likelihood. The fact that signi�cant splits are found can be considered

evidence that the assumptions made about the distribution of errors in the

chosen model form have been violated to some degree. No further signi�cant
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splits being found in each terminal nodes data can likewise be considered

evidence that (at least locally) the assumed distribution of errors is more

reasonable.

A further improvement is to also require some minimum number of data

points in a terminal node before a split is accepted. Obviously if there are

fewer than k items in a terminal node then the local model cannot even be

estimated, so this could be considered as some absolute minimum. However,

in order to �t any model signi�cantly more data should be used. The task

when estimating any GLM is to �nd parameters � 2 Rq, the q dimensional

vector to be estimated. Random variables are sought that converge in prob-

ability to a value �� or, b� p! ��. This can also be expressed as the probability

limit of b� equals �� or
p limb� = ��

The probability limit �� the is called the pseudo-true value. If, in the

model � = e� and the pseudo-true value is such that e� = b�, then b� is said to
be consistent for e�. GLM estimators b� are usually root-n consistent for ��
and asymptotically normally distributed. For n cases in the data set, the

random variable
p
n(b� � ��) converges in distribution to the Multivariate

Normal distribution with mean vector 0 and covariance matrix C. Or

p
n(b� � ��)

d! N [0;C]
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So, in order to satisfy the dual aims of achieving consistency and also

numerical stability, the required data should have a
p
n value that rises

faster than k.

6.3 Future Directions For Tree Based Models

So far the model improvements considered in this chapter, being tree mod-

els, conduct splits based on critical values which necessarily split the data

into regions parallel to an axis corresponding to an auxiliary variable. This

worked reasonably well for the purposes required, but a more general ap-

proach would involve splits that were not required to be parallel to an axis.

Linear combinations of auxiliary variables have much more chance of reveal-

ing heterogeneity characteristics in the data. Standard tree models are not

well suited to this. Application of these ideas to Support Vector Machines

([8]) could result in better �tting splits being identi�ed because the require-

ment for splitting parallel to an axis can be relaxed.
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Chapter 7

Deployment

The �ght is won or lost far away from witnesses - behind the lines, in the

gym and out there on the road, long before I dance under those lights.

- Muhammad Ali

7.1 Background to THOR

The suite of programs that formulates strategy decisions such as Fold, Call,

Check, Raise, Sit-Out is referred to as THOR (page 53). Each program in

the suite of programs that comprises THOR will be referred to as a layer of

THOR. The �rst layer is a modelling program which implements in code all

of the concepts and particularly the mathematics contained in this thesis.

This layer estimates the Generic Opponents (Chapter 3), Adaptive (Chapter

5) and Tree-Based (Chapter 6) models. It requires data which is stored in a

97
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database back end. The architecture of the database is quite standard and

will only be super�cially discussed. All of the software was written with

Delphi 7 Enterprise.

Many layers of THOR are implemented using a parallel computing cluster,

so even though multiple computer programs may be running, these all use the

resources of a cluster of computers. Each program can utilise the resources

of multiple CPUs on self contained segments of data that can be processed

in parallel with no need for synchronisation. The system evolved to be a

central computer with necessary programs residing on it with many processor

intensive tasks being divided up and delegated to other computers thus saving

processing time by having all computers working together when intensive

tasks are required. This architecture is not new, THOR lends itself to this

sort of parallel computing cluster design.

Figure 7.1.1 gives a pictorial representation of the implementation of

THOR. Note that THOR is not really a single software entity. Rather

it comprises all the software technology pictured below the internet level.

Figure 7.1.1 represents THOR playing on M sites using N robots. The

only required relationships between M , N and K are K � 1; M �

1; N � M . If there are more sites than robots then not all the sites can

be engaged by an active robot, hence the condition N � M . Increasing

the value of K does not directly facilitate playing more sites but increases

the speed at which strategy decisions can be made by using more parallel
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computers. This can be required as the number of active robots increases,

but the requirement is indirect.

7.2 Collusion

A question that sometimes arises is "Do you use multiple clients on the same

table?". That is, is collusion used? The implication here is that there could

be more than one client playing on the same table and sharing information.

The short answer is that collusion was not used. On a practical level the

situation can occur whereby the only remaining clients on the table are the

multiple robots sharing information. In order that this is not highlighted

all hands should still be played to conclusion. One of the tell-tale signs of

collusion would be a player with a strong hand folding early in a game to a

hand slightly stronger. Thus, with collusion the multiple clients can often be

playing against each other and so not generating any pro�t expectancy. The

same number of players could have been playing on other tables generating

pro�t expectancy. It was usually the case that overall expectancy was higher

when extra clients were engaged to play other tables. Rather than colluding

the extra players are better used at other tables.
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7.3 Decoding sites

Each client program "knows" about the site it is playing. The di¤erent

processes by which the output from a particular site is converted to data that

can be used is encapsulated in each client program. The client programs are

what most people think of as the "poker robot". Although this part of the

implementation is very important, it is a very small section of the required

system. The most important part of the system was the strategy engine.

Software to decode poker sites can be purchased, but most of these do not

contain logic to make strategy decisions and the ones that do tend to be

rule-based, very predictable and weak. All of the sites played use their own

custom software to display to the user the information from the site such

as the user�s hole cards, the pot size. These are usually accompanied by

some graphics and animations designed to amuse the user and make the site

software window look like a real world poker game. The information from

the site is displayed in site software that the user runs on their own computer.

The site software also administers security so that other users cannot see our

hole cards etc. Decoding the site is the conversion of this interface to data

THOR can use. This varies from site to site. Some sites use Windows, Apple

or Linux controls which can be accessed via the appropriate API. Some sites

use a stream of bitmap images. Some are ActiveX or Java controls. None

of the sites is easy to decode and viable decoding procedures are speci�c to

each site. The client software is a piece of software that converts the site
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interface into data THOR can use. This is a two way process. After a

strategy decision is made, that decision needs to be recoded into commands

that can be inserted into the site software, so that the site software can

receive commands and thus be appropriately controlled. This is known as

reverse engineering the site interface in the jargon of software engineering.

After appropriate decoding, the state of the game is known, what stage the

game is at (Pre-Flop, Flop, Turn, River) what betting round the game is in

(typically there are 3 betting rounds per stage, but this number can vary

according to the site), the hole cards, any community cards, what the pot

size is and what other player�s actions have been in the game so far. The

interface needs to relay data from the site to the model. That process results

in a strategy decision which is then dispatched back to the site as if a human

user had made a decision and clicked the appropriate control.

7.4 Hand Rating

Classes of hand types were allocated to allow su¢ cient range to include all

possible rankings of hands within that type. The classes are (all expressed

in hexadecimal):
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High Card = 016

One Pair = 1000016

Two Pairs = 2000016

Three of a kind = 4000016

Straight = 8000016

Flush = 10000016

Full House = 20000016

Four of a kind = 40000016

Straight Flush = 80000016

Royal Flush = 100000016

Hexadecimal values were used so that the presence of bits when converted

to base 2 act as switches. This is standard computing practice and is dis-

cussed in detail in [19]. A quantity called the card hand value is introduced.

The card hand value is just 2v where v is the face value of the card with the
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special cases of

v = 11 for Jack

v = 12 for Queen

v = 13 for King

v = 14 for Ace High

v = 1 for Ace Low

The distinction between Ace Low and Ace High is that for a Straight an

Ace can be valued at 1 or 14 as required to make the Straight. By sorting in

order of value, then truncating to use only the top 5 cards and then looking

at consecutive cards after sorting, pairs and three of kind and so on can easily

be identi�ed. By searching for consecutive cards all increasing in value (not

card hand value) by one, Straights can also be identi�ed. A special search

where an ace is temporarily valued at 1 can identify ace low �ushes. A pair

with a "three of a kind" can be identi�ed as a Full House. Then, the cards

are sorted in order of suit. This identi�es Flushes. If a Straight has already

been identi�ed then a Straight Flush has been found and if the top card is

an ace, then a Royal Flush has been identi�ed. Within each class the card

hand values are combined with a Boolean AND operation (^) and added to

the class value. This way, the hands are guaranteed to be ordered in the

sense that if one hand has a higher hand rating than another, then it is the

better hand and if 2 hands have the same hand rating they tie. Due to
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powers of 2 being used to describe card hand values, the top pair dominates

all smaller pairs so high pairs in say 2 pair hands are always correctly ranked.

Obviously the gaps between hands using this system are inconsistent. That

is not a problem, but it should come as no surprise that where hand rating

enters a regression function as a predictor, then the logarithm usually results

in a better �t.

7.5 The Simulator

One way of looking at THOR is that it provides a method of weighting

simulation results against other predictors and contexts of interest. In some

regression functions (Appendix B, page 131), raw simulation results are used.

In others, interest is focused on conditional results such as simulations subject

to all remaining opponents having at least a high board pair, so if the highest

card on the board is a King, then the results in question assume that all

remaining opponents have at least a pair of Kings. In this case players in

the simulation having less than a pair of Kings would be assumed to fold.

Interesting results are obtained where conditions are imposed that players

having less than some sort of "average" hand are assumed to fold. The

measure of "average" that seems to result in the best �tting predictors relates

to Geometric Mean. So all players in a simulation having a hand rating less

than the Geometric Mean are assumed to fold. There is a very large number

of candidate predictors than can be constructed in this manner. Just about
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any assumption about player behavior can be considered by an appropriate

simulation result and then become a candidate predictor.

All simulations are carried through to the conclusion of the simulated

game and all start from the known condition of the hand. The number of

wins, number of losses, number of ties and total simulated number of hands

are the output for any of the simulations. Statistics of interest can be calcu-

lated from those values. Using a �xed set of simulation assumptions would

be unlikely to result in an e¤ective system, but having a system that can

adaptively weight the various simulation assumptions against other predic-

tors and the context at hand can capture su¢ cient variation in behaviour

to estimate quantities of interest and therefore determine whether the cost

associated with any given action (such as raise or call) when compared to

the expected return constitutes an advantage bet.

7.6 Strategy

In order to make strategy decisions, the population and its heterogeneity

requires modelling. This is a base level of modelling and is performed infre-

quently.

1. Estimate Generic Opponents Model (Chapter 3).

2. Optional but often useful step. Use Tree-Based Endpoint model to de-

termine categories and heterogeneity boundaries. This process divides

data into categories (1::T ), Chapter 6.
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3. For each category estimate Random Parameters Model (Chapter 4). If

no Tree-Based categories are determined, there will just be one cate-

gory.

Now, a set of population parameters has been determined. On presen-

tation of new data for each strategy decision required, subject to current

category and past data as it occurs for the current context, the population

preferences (coe¢ cients) are conditioned to contextual coe¢ cients as per for-

mula 5.2.2, page 79. A set of context speci�c coe¢ cients is at this point

available. If the current context di¤ers from the population characteristics

su¢ ciently (if the coe¢ cients are much di¤erent from the population mean),

the context speci�c coe¢ cients will change quickly as more data presents,

ie the system will learn. The coe¢ cients will relate to things such as win

probabilities for the P_WIN model, tie probabilities for the P_TIE model,

expected pot size and expected cost to play. Given these estimates, the

expected cost to play and expected pot size can be calculated for any given

action (Bet, Raise, Call etc.) by using the context speci�c coe¢ cients in the

appropriate regression function. Each action can then be associated with an

E[�] (de�nition 1, page 2) estimate, the action associated with the highest

value of E[�] is the sup(��) (de�nition 6, page 3) action and is the action

undertaken. If cost to play is zero and no advantage bets can be made

with the current hand, then the robot will check. If cost to play is greater

than zero and no advantage bets can be found, then robot will fold. Cost

to play is noti�ed by the site when an action is required. The decision as
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to whether available funds allow play on a given table is determined by the

Kelly criterion (page 10).

Even though the decision process is completely deterministic, it is su¢ -

ciently complex and varies su¢ ciently with given hands in di¤erent contexts

that the play is unpredictable to opponents at the table.

7.7 Other Details

The implementation of THOR is quite computer intensive, but with the low

cost of computing power this does not present a large obstacle. Due to the

very intensive requirements for some of the modelling layers required, partic-

ularly the Random Parameters model, a cluster was employed. Windows XP

Professional operating system and Borland Delphi 7 Enterprise development

environment were used. Both of these technologies would now be considered

to be dated but they were more than adequate for all requirements.

In order for the cluster to do its job, there needs to be some way for

the computers in the cluster to communicate. Delphi 7 provides many

such mechanisms such as DDE, DCOM, SOAP. TCP/IP Socket components

provided as standard with Delphi 7 Enterprise were used purely on the basis

that they worked straight away and seemed easy to master.

MySQL 5 database management system was chosen as the database

back end. This was downloaded free from MySQL, after reaching a pre-

determined pro�t �gure the free Community edition was updated to the
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Cluster edition.

The modelling software was written using Delphi 7. Some of the early

models are merely standard Generalised Linear Models and thus are not very

computationally intensive and any cluster architecture is excessive for such

a task. However, estimating the Random Parameters models is computa-

tionally very intensive and would require weeks of processing on a single PC.

The algorithms for the models are a Pascal translation of the mathematical

algorithms presented in this thesis. The strategy of dividing the modelling

dataset into segments for calculations such as log-likelihoods and gradients

was employed. Each segment is processed in parallel on its own proces-

sor and then the results for each section are collated and summed centrally.

Only tasks that could be divided into obvious segments that could easily

be processed in parallel and in isolation were clustered in this way. For-

tunately this represented well over 90% of the processing load and so the

cluster architecture represented a huge gain in processing power.

When the client "sees" a snapshot of a game, this snapshot must be

converted into information THOR can use. There are many di¤erent ways

of displaying site information. Those sites that use operating system calls

are the easiest to decode because one can write a hook into them and extract

information. Those that display games as a stream of bitmap images are

quite di¢ cult to decode and probably these sites go to some e¤ort to make

their user interfaces even more di¢ cult to decode. Player names and pot

sizes are often displayed in fonts that are very inconsistent and seem designed
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to be di¢ cult for a computer process to decipher.
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Figure 7.1.1: THOR implementation



Chapter 8

Results

It doesn�t matter how beautiful your theory is, it doesn�t matter how smart

you are. If it doesn�t agree with experiment, it�s wrong� Richard Feynman

8.1 Discussion

All hands played cannot be displayed because there were over 2 million.

Some detailed output for a sequence of 1000 hands across 50 robots can be

found in the appendices. The table limits vary. The individual trajectories

are displayed graphically in Appendix C, page 141.

111
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Results all bots

The overall graph in Figure 8.1 (page 112) is typical of tables with strong

players present. To start with, where no context-speci�c data are available,

all the robots are e¤ectively playing with a Generic Opponents strategy.

There tends to be an initial period of pro�tability, then some players adapt

to the �xed strategy. The human skills of pattern recognition appear to take

e¤ect very quickly, and pro�tability typically decreases, in this case turning

into early losses. As more data are gathered for speci�c contexts, the Adap-

tive Model detects the variance in the best-�tting coe¢ cients and changes

strategy accordingly. The model becomes more competitive and gradually

improves. Then, what typically happens is that the pro�t trajectory oscil-

lates as the opponents and then the Adaptive Model change strategy and
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adapt to each other. The hope is that the Adaptive Model, being able to

account for more predictors and being mathematically consistent can out-

perform the human ability to perceive patterns quickly and make intuitive

changes. Overall, the 50 robots were 412 small bets ahead after 1000 hands.

This translates to an average win rate of 0.00824 small bets per hand played.

Previous runs conducted over similar numbers of hands resulted in higher

pro�t rates than this, so this is actually a conservative sample in terms of

pro�tability. Later models provided a much better win rate, but their extra

complexity due to larger numbers of predictors did not serve to illustrate

the methods employed as well as the simpler models discussed in this thesis.

The later models employed the same methodology, the only di¤erence was

the larger number of predictors employed.

Obviously, averaging across 50 instances reduces the variance of the total

by O(
p
n) so one should expect to see much less volatility in the total result

than between individual tables.

The Loki robot (described by Papp [18]) was tested against various as-

sumptions about player behavior and also against other robots. A win rate

of 0.08 small bets per hour was reported. This is signi�cantly better than

the result reported here, but the test was against di¤erent versions of Loki

and other robots, not against human opposition in a real-world setting. The

win rate reported with this early model also falls short of the expected re-

turns claimed by David Sklansky et al in [15]. This is unsurprising, David

Sklansky et al are world-class expert poker players with decades of direct
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experience.

The objective was to develop an original technique of adaptive machine

learning rather than simply to develop a winning poker robot. Poker was

chosen as an application for reasons already discussed in Chapter 1. Fu-

ture applications were of more concern than iteratively re�ning poker robots.

Many players take a dim view of automated play and numerous sites have

taken quite aggressive action to prevent this and other automated systems

playing. For these and other practical reasons, poker is not a long-term fo-

cus. Time is better spent investigating areas where automated trading is

not frowned upon.

An article in New Scientist [1] described the work of a team including

Billings, Bowling, Schae¤er et al who used a new development of the systems

developed at University of Alberta called Polaris to play against some of

the very best players in the world in No-Limit Texas Hold�em which Polaris

won. However, the no limit form of the game is quite di¤erent from the limit

form investigated in this thesis. Texas Hold�em No Limit is di¤erent in

that the game has much more emphasis on how one performs relative to

the opponents. Long term mathematical expectancy is not so much of as

issue when a player can go "all in" and win the game sequence in one hand.

Essentially the di¤erence is assessing whether the current hand is "in-front"

rather than looking at the expectation from a long sequence of small trials as

in the limit game. The system developed in this thesis is not� in its current

form� appropriate for the no limit game.
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A possible weakness with THOR is a lack of a recency weighting system.

Many neural network models generally ( and not just with poker) tend to

put too much stock in short term �uctuations. The result of trying to

avoid this was to go too far the other way. Instead of conditioning on all

of the past contextual data as outlined in Chapter 5 and speci�cally using

Equation (5.2.2), decaying the in�uence of data as it gets older could also

be investigated. How quickly (or even if) this decay should take place is a

subject for future research. It may be that the current system is adequate

but it may also be that recency weighting data may improve the decision

making. That way, if an opponent plays di¤erently now than, say 500 hands

ago, an appropriate adjustment can be made. At the moment adjustments

are made as more data come to light, but the contextual coe¢ cients may be

too slow to react to the dynamics of the situation.
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Chapter 9

Conclusions

It is dangerous to be right in matters on which

the established authorities are wrong� Voltaire

9.1 The application

This thesis has described the development of adaptive models that respond

to the behavior of competitive agents, using as its basis the application to

on-line Limit Texas Hold�em Poker. Although there are other potential

applications of these methods, many attempts to model real world behavior

for applications with uncertain outcomes, such as �nancial markets trading,

would need the support of external bodies such as banks, investment houses

and so on, which has the potential to in�uence the direction of the research.

For this research large quantities of publicly available data were required with
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a small startup cost, no reliance on external funding and complete freedom

of action. Online poker satis�ed these requirements admirably and it was

for this reason that the application was chosen.

The algorithm presented in this thesis is not a supervised learning method.

In supervised learning we have a label and predictor variables for each item

and seek to associate predictor sets with a label. An example of this might

be deciding which cars are "sports cars", based on observable characteristics.

Another example might be to categorise poker players as "aggressive" or

"tight" ( [3] ). This method entails having a priori labels which introduces

subjectivity into the model, which is something that I have sought to avoid.

This is not to denounce supervised learning methods. Some, such as Support

Vector Machines, are incredibly powerful but these methods are not easily

applied when the data are unlabelled. At times the data used in this thesis

has been regarded as only probabilistically labelled and at other times as

labelled by some latent process, so that the labels cannot be directly observed.

Either way, the data does not have any �rm label, so it is always necessary

to consider a context (which may be a single opponent) in light of how

interaction with that context is likely to a¤ect what is being modelled (for

example P_WIN), rather than applying some hard and fast classi�cation such

as "aggressive".

The methodology has some properties of an on-line process in the sense

that it tunes itself as more data presents, but it also has some properties of

a batch process because it relies on a historical training data.
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9.2 Hard vs "Fuzzy" groups

Previous research into modelling poker sought to develop so-called Speci�c

Opponents models ([3], [20]). The approach here is not to attempt to classify

speci�c opponents, but rather to investigate how various contexts impact the

models and what the coe¢ cients (interpreted as strategic preferences) should

be to use those impacts to best advantage. As has been discussed in Chap-

ter 5 as part of the Adaptive Model, contexts are classi�ed by how changes

in various attributes (which are the regressors) a¤ect the quantities being

estimated (such as P_BEST, E_POT etc.) as the context changes. Thus we

are looking for classi�cations that have a signi�cant e¤ect on whether our

strategy is likely to have the envisaged outcome. Hard groups are� by their

nature� �nite and discrete groups. Fuzzy groups vary continuously within

the population. The approach has been to estimate how the population of

games contexts varies and this has been done by interpreting coe¢ cients of

the models as measures of preferences for various behavior patterns. The

population model then seeks to estimate the probability distribution of these

coe¢ cients within the population and thereby estimate how behavioral pref-

erences vary. Assessing an individual context then amounts to using past

data on that context to see where on the population distribution it resides

and therefore what coe¢ cients are best to use. This gives a measure of the

behavioral preferences for that particular set of opponents in a particular

situation.
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A submodel developed in this treatise is the Tree Based Contextual Co-

e¢ cients model discussed in Chapter 6. This was su¢ ciently developed

to handle single auxiliary variables, but the handling of multiple auxiliary

variables was shown to be less than straightforward and potential problems

with many existing tree based classi�cation routines have been highlighted.

The main problem was that splitting on each auxiliary variable parallel to

an axis (and therefore without reference to the other auxiliary variables) can

result in a chronically over�tted model which will fail out-of-sample testing

and that this problem can be avoided by introducing splits that are depen-

dant on the values of other auxiliary variables. This sort of tree based

model has only been super�cially investigated in this thesis. The develop-

ment was only taken to the point required. Further research into this �eld

could produce results far more wide ranging than those considered so far in

this thesis. Methods of specifying dependent splits with soft boundaries and

nonlinear dependence, whereby context speci�c coe¢ cients can be estimated,

would have very far reaching rami�cations. Such models would be viable

competitors for many random parameters and latent variable models because

the model degrees of freedom are much less than the typical latent variable

speci�cation and a best �tting set of submodels could be e¢ ciently obtained

without the need for assumptions about the distribution of the submodels

within the population.
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9.3 Expert opponent vs population tests

A possible test of the validity of the methods presented here would be to

engage high pro�le poker players to test the system. However, this approach

has some shortcomings. In a game such as chess, nothing is lost by treating

an opponent as an expert, but this is not the case in poker. An essential

element of successful play in poker is that weak players need to be exploited

and a system that cannot do this may have disappointing results. Also, in

any sort of high pro�le man vs machine tests, the human player often seems

to play in a di¤erent or unusual way in an attempt to "fool the machine".

Thus even though a test against world class experts is signi�cant, it only tells

part of the story with poker and in some other applications it would be almost

meaningless. For instance, if a �nancial market model can consistently pro�t

from suboptimal decisions by some segment of the market, then that segment

can be targeted and segments where suboptimal behavior is not evident can

simply be avoided.

9.4 Further Research

The work in this thesis provides an alternative to Game Theory for certain

types of problems. An issue with Game Theory is computational intractabil-

ity. As the problem reaches even modest levels of complexity, the Game Tree

grows exponentially. This is one of the properties of Game Theory that was

speci�cally addressed in ([2] and [9]) in the context of poker. A common
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strategy is to remove aspects of the problem that are not seen as vitally im-

portant and to solve an approximating problem. This can be thought of as

�nding an exact solution to an approximating problem. The introduction

of �-Nash equilibria as advocated in ([20]) also introduces some notion of an

approximate solution, but not really comparable to what is accepted more

generally in numerical analysis. The approximations provided by �-Nash

equilibria do not converge smoothly to an exact solution in the way that is

expected in numerical analysis. But, sometimes a �-Nash equilibria can be

seen to have the same properties as an exact solution. The approach advo-

cated in this thesis falls into a widely accepted class of models whereby an

approximate solution is sought for the exact problem. If boundary conditions

could be determined whereby the Adaptive Regression approach advocated

in this thesis converges asymptotically to the full Game Theoretic solution

to classes of problems, then the full Game Theoretic solution could be imple-

mented in a computationally tractable way by using the regression approach

with a su¢ ciently large data set. If such boundary conditions can be de-

�ned and for certain problems shown that the Game Theory and Adaptive

Regression approaches are asymptotically the same, then the Game Theory

solution to some problems can be determined by using the computationally

less demanding Adpative Regression approach. Conversely, for smaller prob-

lems where the two solutions are asymptotically the same, the Game Theory

solution can be invoked as the exact solution. Extra data is often easier

to organise than exponentially increasing computational power. This sort
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of extension work has the potential to open up many problems where Game

Theory solutions are sought, but computational issues prevent implementa-

tion. Investigation of the classes of problems for which the two approaches

are equivalent also invites us to ask for which classes are they not equiva-

lent. As is often found in mathematics, such questions can illuminate further

aspects to the problem that may otherwise be di¢ cult to see. Even just

having the Adaptive Regression approach as a check on Game Theory may

be useful. If for certain problems these two completely di¤erent methodolo-

gies yield similar solutions, then researchers can be more con�dent in those

solutions than if only one methodology had been utilised.

Interest has already been expressed in the methods developed here for

trading in �nancial markets or indeed any sort of trading conducted in an

exchange environment where competitive agents can exploit predictable be-

haviour. The analogies to poker are obvious with actions such as "Raise"

and "Check" etc being replaced by actions such as "Buy", "Sell" and "Sit

Out". The methods advocated here are quite "data hungry". This was at

�rst not seen as a huge issue because interest could be centred on complex

systems with large amounts of data involved which, due to computational

intractability presents signi�cant problems for the Game Theory approach.

Rather than specifying a fully correlated covariance matrix at the population

level model, a speci�cation of a latent class model ([24]) could be employed.

This would result in fewer model parameters and therefore lower data require-

ments. Indeed, this is one area that is being investigated in terms of some
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exotic markets trading for certain �nancial markets. The reduction in the

computational requirements would make the Adaptive Regression approach

more attractive for large problems where intractability poses signi�cant issues

for Game Theoretic methods.

A fascinating possible future application came to light during an informal

discussion with a law enforcement o¢ cial. Evidently, some criminal groups

employ sophisticated methods to minimise the probability of activities being

detected by using techniques such as regression analyses of factors of interest

to estimate such things as probabilities of illegal consignments being detected

subject to certain conditions. Past behaviour and whether or not illegal con-

signments were detected are available currently as crime statistics and details

of investigations (even those that did not result in successful prosecutions).

If some sort of Generic Opponents model (de�nition 12, page 4) such as sim-

ply choosing conditions consistent with the lowest estimate of detection from

a regression model is employed by criminal groups, then the predictable be-

haviour can very easily be exploited by an Adaptive Regression algorithm to

stay "one step ahead" of any such process and to indicate to law enforcement

o¢ cials how to foil such tactics. Given that in this case the opponents strat-

egy would be a simple regression model, the Adaptive model would be pitted

against a "baby" version of itself which would be a very attractive feature.

The adaptive nature of the algorithm would ensure that any change on the

part of the criminal group would be very quickly countered and that further

if the law enforcement o¢ cials could hypothesise which criminal groups were
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involved, the various illegal groups�own histories of behaviour (as investi-

gations would reveal) could very quickly establish contexts from which their

previous actions and the interaction of histories of di¤erent criminal groups

could betray their tactics in an ongoing and adaptive fashion. Of course

such a scheme would not replace investigative policing. It would merely de-

tect patterns from past behaviour and thus provide possible "leads" in a

way that would be di¢ cult for human investigators to uncover. This could

be seen as analagous to a very high stakes game of poker, but one played

against Generic Opponents models and therefore opponents that an adaptive

strategy should have some con�dence in defeating.
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Appendix A

Description of predictors

A pre�x of "LN" indicates a natural logarithm. A pre�x of "SQRT" indicates

a positive square root.

N_POT_SIZE: The normalised pot size, that is pot size divided by the table

minimum bet. This could also have been expressed as table maximum bets,

minimums were chosen to allow for the possibility of No Limit games at some

later stage.

OPPONENT_COUNT: The number of opponents active in the game at the

time a strategy decision (e.g. Fold, Raise, Check) is made.

ACTIVE_STAGE_BETRAISE_COUNT: The count of the number of bets

and raises made at the current stage (e.g. Turn, River) by player still active

in the game. So, if a player bet early in a stage and then folded before the

current decision, that bet would NOT be counted in this predictor.
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ACTIVE_STAGE_CALL_COUNT:

Similar to ACTIVE_STAGE_BETRAISE_COUNT, but number of Calls are

counted.

ACTIVE_PAST_STAGES_BETRAISE_COUNT: The count of bets and raises

made in past stages (not including the current stage) for all players still active

in the game.

FOLD_COUNT: The number of hands folded at the current point in the

game.

HAND_RATING: All the hands are rated on an integer scale such that if 2

hand ratings are the same, then there is a tie between those hands and if one

is greater than the other, then the greater one is the superior hand.

FLOOR_GEOMEAN_RIVER_LWIN: A predictor from simulation results.

Each of the player hands is simulated a large number of times. The geo-

metric mean of the best hand rating at the start of the River is calculated.

Only those opponents having a hand rating at least as high as the geometric

mean of the best one are considered. The empirical probability of the robot

winning against this subset of hands is calculated from the simulation results.

The log-odds of this probability enters as the predictor value. In the event

that this probability is zero, a default value is provided. Default log odds of

-50 was used.

FLOOR_GEOMEAN_RIVER_LTIE:

Similar to FLOOR_GEOMEAN_RIVER_LWIN, except the tie probability
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log-odds is extracted.

FLOOR_GEOMEAN_ALL_OPP_WIN: A simulation result. The hand is

played out to conclusion via simulation. The geometric mean of the best

hand is calculated. Only those hands from the simulated hands for the robot

having a hand rating at least as high as this geometric mean are considered.

The empirical probability is the predictor value.

LOGIT_FLOOR_HIGH_BOARD_PAIR_WIN: The highest card from the

board cards is taken. The simulation results where opponents have a hand

at least as good as a pair against the highest board card are considered.

If the board cards contain a hand that is better than the high board pair,

then all simulations are considered. From the considered simulated hands,

calculate the empirical probability of the robot winning against only those

hands. The log odds of this probability is the predictor value.

IS_FIRST_UP: An indicator variable of one if the robot is the �rst to make

a decision when the decision is required and zero otherwise.

LOGIT_SIM_WIN: The log-odds of the empirical simulated unconditional

win probability.
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Appendix B

Regression output

In order to save space, much of the regression output has been suppressed.

The output displayed is su¢ cient for our discussions. Output such as p-

values, while important does not add to what is being discussed here. The

number of cases in each regression varied, however they were all in the mil-

lions of hands for each game stage. The later output has been suppressed,

with the number of predictors �tted it makes almost no di¤erence given that

the number of cases is always in the millions of hands.

Pre Flop

Cost To Play

Normal distribution used for p-values. Max t DOF = 1000

Number of cases = 4,987,322
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RESPONSE = NORM_COST_TO_PLAY

Model Type = Linear

PREDICTOR COEFF S.E. jCOEFF/SEj

CONSTANT 0.656493 0.004844 135.53618

N_POT_SIZE 0.097776 0.003153 31.009689

OPPONENT_COUNT 0.262832 0.018574 14.150316

ACTIVE_STAGE_BETRAISE_COUNT 0.641382 0.055425 11.572084

Pot Size Delta

Normal distribution used for p-values. Max t DOF = 1000

Number of cases = 4,987,322

RESPONSE = NORM_POT_DELTA

Model Type = Linear

PREDICTOR COEFF S.E. jCOEFF/SEj

N_POT_SIZE 0.465022 0.037056 12.548932

OPPONENT_COUNT 1.779646 0.237575 7.490852

ACTIVE_STAGE_BETRAISE_COUNT 2.925465 0.603145 4.850351

ACTIVE_STAGE_CALL_COUNT 0.452106 0.077653 5.822117

Tie Probability

Normal distribution used for p-values. Max t DOF = 1000

Number of cases = 4,987,322

RESPONSE = P_TIE
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Model Type = Binary Logistic

PREDICTOR COEFF S.E. jCOEFF/SEj

FLOOR_GEOMEAN_RIVER_LWIN 0.628099 0.037056 16.171013

FLOOR_GEOMEAN_RIVER_LTIE 0.715007 0.052094 13.725251

Win Probability

Normal distribution used for p-values. Max t DOF = 1000

Number of cases = 4,987,322

RESPONSE = P_WIN

Model Type = Binary Logistic

PREDICTOR COEFF S.E. jCOEFF/SEj

ACTIVE_STAGE_BETRAISE_COUNT -0.169074 0.008519 19.846970

ACTIVE_STAGE_CALL_COUNT -0.130693 0.01034 12.638947

FLOOR_GEOMEAN_ALL_OPP_LWIN 0.759282 0.071133 10.674110

OPPONENT_COUNT 0.037877 0.00482 7.857564

Post Flop

Cost To Play

Normal distribution used for p-values. Max t DOF = 1000

Number of cases = 4,987,322

RESPONSE = NORM_COST_TO_PLAY

Model Type = Linear
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PREDICTOR COEFF S.E. jCOEFF/SEj

CONSTANT 0.265197 0.001932 137.274916

N_POT_SIZE 0.048521 0.000883 54.940809

OPPONENT_COUNT 0.505495 0.048803 10.357807

ACTIVE_STAGE_BETRAISE_COUNT 0.348189 0.016653 20.907925

ACTIVE_STAGE_CHECK_COUNT -0.274952 0.018875 14.566914

ACTIVE_PAST_BETRAISE_COUNT 0.372685 0.021307 17.490790

Pot Size Delta

Normal distribution used for p-values. Max t DOF = 1000

Number of cases = 4,987,322

RESPONSE = NORM_POT_DELTA

Model Type = Linear

PREDICTOR COEFF S.E. jCOEFF/SEj

N_POT_SIZE 0.314000 0.033273 9.437181

OPPONENT_COUNT 1.608300 0.041939 38.348476

ACTIVE_STAGE_BETRAISE_COUNT 1.080782 0.191566 5.641825

ACTIVE_STAGE_CHECK_COUNT 0.405580 0.085717 4.731596

ACTIVE_PAST_BETRAISE_COUNT -0.775767 0.087325 8.883692

Tie Probability

Normal distribution used for p-values. Max t DOF = 1000

Number of cases = 4,987,322
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RESPONSE = P_TIE

Model Type = Binary Logistic

PREDICTOR COEFF S.E. jCOEFF/SEj

FLOOR_GEOMEAN_ALL_OPP_LOGIT_TIE 0.945817 0.109952 8.602096

ACTIVE_STAGE_CALL_COUNT -0.389042 0.058248 6.679096

Win Probability

Normal distribution used for p-values. Max t DOF = 1000

Number of cases = 4,987,322

RESPONSE = P_WIN

Model Type = Binary Logistic

PREDICTOR COEFF S.E. jCOEFF/SEj

IS_FIRST_UP -0.497617 0.064197 7.751465

ACTIVE_PAST_BETRAISE_COUNT -0.184747 0.021562 8.568024

ACTIVE_STAGE_CALL_COUNT 0.113489 0.018293 6.203868

SQRT_ACTIVE_STAGE_BETRAISE_COUNT -0.393892 0.041234 9.552489

FLOOR_GEOMEAN_ALL_OPP_LWIN 0.122973 0.013293 9.251062

LOGIT_FLOOR_HIGH_BOARD_PAIR_WIN 0.635761 0.07018 9.058961

Turn

Cost To Play

Normal distribution used for p-values. Max t DOF = 1000
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Number of cases = 4,987,322

RESPONSE = NORM_COST_TO_PLAY

Model Type = Linear

PREDICTOR COEFF S.E. jCOEFF/SEj

CONSTANT -4.079826 0.158946 25.668041

N_POT_SIZE 0.026347 0.002476 10.640802

OPPONENT_COUNT 0.387943 0.034575 11.220294

ACTIVE_STAGE_CHECK_COUNT -0.31745 0.045417 6.989680

ACTIVE_PAST_STAGES_BETRAISE_COUNT 0.213455 0.030059 7.101228

LN[HAND_RATING] 0.301350 0.045063 6.687316

Pot Size Delta

Normal distribution used for p-values. Max t DOF = 1000

Number of cases = 4,987,322

RESPONSE = NORM_POT_DELTA

Model Type = Linear
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PREDICTOR COEFF S.E. jCOEFF/SEj

N_POT_SIZE 0.16092 0.020675 7.783343

OPPONENT_COUNT 1.039897 0.07237 14.369183

ACTIVE_STAGE_BETRAISE_COUNT 1.016252 0.087119 11.665118

ACTIVE_STAGE_CALL_COUNT -0.867980 0.079689 10.892057

ACTIVE_PAST_STAGES_CALL_COUNT 0.430135 0.062299 6.904339

ACTIVE_STAGE_CHECK_COUNT -0.665767 0.09481 7.022147

ACTIVE_PAST_STAGES_CHECK_COUNT -0.581202 0.102594 5.665076

LN[HAND_RATING] 0.069903 0.015033 4.649917

Tie Probability

Normal distribution used for p-values. Max t DOF = 1000

Number of cases = 4,987,322

RESPONSE = P_TIE

Model Type = Binary Logistic

PREDICTOR COEFF S.E. jCOEFF/SEj

FLOOR_GEOMEAN_RIVER_LTIE 0.828859 0.049086 16.885924

FLOOR_GEOMEAN_RIVER_LWIN 0.117492 0.006843 17.168966

Win Probability

Normal distribution used for p-values. Max t DOF = 1000

Number of cases = 4,987,322
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RESPONSE = P_WIN

Model Type = Binary Logistic

PREDICTOR COEFF S.E. jCOEFF/SEj

IS_FIRST_UP -0.781897 0.135079 5.788443

ACTIVE_PAST_BETRAISE_COUNT -0.151809 0.014201 10.689828

ACTIVE_STAGE_BETRAISE_COUNT -0.716681 0.0692 10.356619

LOGIT_FLOOR_HIGH_BOARD_PAIR_WIN 0.635761 0.01937 32.821722

FLOOR_GEOMEAN_RIVER_LWIN 0.117492 0.002139 54.928291

FOLD_COUNT_TOTAL -0.041658 0.008523 4.887880

River

Cost To Play

RESPONSE = NORM_COST_TO_PLAY

Model Type = Linear

PREDICTOR COEFF S.E. jCOEFF/SEj

CONSTANT -1.632724 0.011897 137.235829

OPPONENT_COUNT 0.158856 0.02694 5.896608

ACTIVE_PAST_STAGES_BETRAISE_COUNT 0.101966 0.02155 4.731553

LN[HAND_RATING] 0.112281 0.026555 4.228318
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Pot Size Delta

RESPONSE = NORM_POT_DELTA

Model Type = Linear

PREDICTOR COEFF S.E. jCOEFF/SEj

N_POT_SIZE 0.039404 0.000725 54.381300

OPPONENT_COUNT 0.234011 0.017876 13.090716

Tie probability

Normal distribution used for p-values. Max t DOF = 1000

Number of cases = 4,987,322

RESPONSE = P_TIE

Model Type = Binary Logistic

PREDICTOR COEFF S.E. jCOEFF/SEj

CONSTANT -9.9074068 0.182766 54.208240

FLOOR_GEOMEAN_RIVER_LOGIT_TIE 0.258580 0.020436 12.652955

FLOOR_GEOMEAN_RIVER_LOGIT_WIN -0.213782 0.025087 8.521717

FLOOR_GEOMEAN_BEST_OPP_LOGIT_TIE 0.129525 0.006291 20.590200

LN[HAND_RATING] 0.589533 0.069863 8.438359

Win probability

Normal distribution used for p-values. Max t DOF = 1000

Number of cases = 4,987,322

RESPONSE = P_WIN
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Model Type = Binary Logistic

PREDICTOR COEFF S.E. jCOEFF/SEj

CONSTANT -0.626687 0.007151 87.638316

ACTIVE_STAGE_BETRAISE_COUNT -0.747666 0.086408 8.652782

ACTIVE_STAGE_CHECK_COUNT 0.615702 0.145243 4.239102

IS_FIRST_UP -0.513715 0.128792 3.988720

ACTIVE_PAST_STAGES_BETRAISE_COUNT -0.206485 0.04322 4.777521

LOGIT_SIM_WIN 0.805291 0.06107 13.186343

FOLD_COUNT -0.067794 0.006792 9.980794



Appendix C

Graphical presentations

See immediately below. Results trajectory for all 50 bots playing over 1000

hands. In all graphs the vertical axis is the number of small bets pro�t

(negatives indicate losses) and the horizontal axis is the number of hands

played.
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Fig C.0 Results all bots

Groups of 5 bots per graph to aid viewing.
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