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Abstract

This thesis reports on the implementation of a CO2 laser-machining setup for making smooth
concave mirror substrates at the end of optical fibres. Once coated with a highly-reflective
DBR mirror (reflectivity larger than 99.9999%), the mirrors serve as one end of an open,
tunable fibre coupled microcavity, so called fibre cavities. The main characteristic of the
mirror substrates machined with the present setup is their very small curvature radius in the
range of 8-10µm. Through systematic variation of the main laser parameters, such as pulse
duration, power and position of the beam waist a large parameter range can be accessed.
Beside the capability for making small mirror substrates, other key features of the setup
include the high reproducibility and the large number of fibres that can be machined and
analysed in parallel. An integrated interferometric setup allows for in-situ analysis of the
machined fibre surfaces. In the course of this work, a first batch of 96 fibres, mainly with
small curvature radii, was fabricated and sent for coating. The small curvature radii achieved
with the setup are expected to be favourable for the realization of the polariton blockade
effect with semiconductor quantum-well polaritons.
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Chapter 1

Introduction

The field of cavity-quantum electrodynamics (cavity-QED or cQED) focuses on light-matter
interactions at the quantum level with one or more two-level quantum emitters coupled
to a single radiation field mode of an optical cavity [1]. When the coupling rate between
emitter and cavity mode exceeds the dissipation rates due to cavity and emitter decay, the
systems enters the strong coupling regime of cavity QED. As a result of strong coupling,
a set of new eigenstates or dressed states arises, so-called polaritons, which are a coherent
superposition of the quantum emitter and the cavity field. Polaritons can be viewed as quasi-
particles that are half-light/half-matter in character with distinct spectral separation. With
the ability to probe polaritons through their photonic component and possibly the presence of
strong interactions mediated through the matter-part of the dressed state, polariton systems
are both interesting from a fundamental point of view but also for a range of possible
applications. In particular, engineering of polariton systems exhibiting strong single-photon
non-linearities, i.e. systems where the response to light can be altered through the presence of
a single photon, is a primary goal in the field. Applications range from quantum information
processing with light [2] to quantum simulations in coupled non-linear cavity arrays [3–5]
for the exploration of new material systems and phase transitions. In this sense, polariton
systems, which are the main context/focus of this Masters thesis, are a prime example for an
engineered quantum system with the potential for real-world impact. This introduction gives
a short overview of the main concepts and the main development in cavity QED/polaritonic
systems over the past decades with a main focus on semiconductor systems which are clearly
desirable in light of applications.

Single Emitter Cavity-QED The most fundamental system for light-matter interaction
is the single, two level quantum emitter coupled to a single cavity mode. For a system far in
the strong coupling regime, the resulting excitation spectrum, called the Jaynes-Cummings
ladder of excitations [6], is anharmonic at the single-photon level. This an-harmonicity
is directly inherited from the anharmonic two-level nature of the quantum emitter and is
ultimately due to the quantization of the cavity field. A direct consequence of this an-
harmonicity is the non-linear behaviour of single photons. Due to energy mismatch, a first
photon resonant with the fundamental polariton transition will block the entrance of a second
photon of the same colour into the system. This effect is called photon blockade [7] and was
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2 Introduction

termed in analogy to the electron blockade effect in condensed matter. Photon blockade was
first demonstrated using caesium atoms in a Fabry-Perot cavity in 2005 [8] by looking at
the photon statistics of photons transmitted through the cavity: Since there is only ever one
photon in the cavity, the photons exhibit strong anti-bunching. Shortly after this discovery,
photon blockade was also demonstrated with atoms coupled to toroidal cavities [9] and
at about the same time first traces of quantum correlations were detected for a quantum
dot (QD) strongly coupled to a photonic crystal cavity [10]. Clear photon blockade in
quantum-dot cavity QED, however, was only demonstrated in 2012 [11]. In the microwave
domain, photon blockade was observed with superconducting qubits coupled to stripline
resonators [12]. Meanwhile, several experiments working with semiconductor quantum dots
in microcavities have made use of the strong (single-photon) non-linearities to demonstrate
potential applications in ultrafast single-photon switching [13–16] and quantum information
processing [2]. Quantum dots coupled to so-called photonic-crystal cavities that confine
light on extremely small length scales are ideal candidates to observe ultrafast conditional
dynamics for photons due to their large coupling strength combined with relatively fast cavity
decay rate. While being ideal in many ways, quantum dots unfortunately suffer from a major
drawback due the random nature of the quantum-dot growth process: their fundamental
transition frequencies and their spatial position exhibit a strong variability hindering the
easy scalability of coupled QD-cavity systems to coupled, non-linear many-cavity systems.
Hence, for realizing the anticipated applications that rely on identical non-linear coupled
systems, a different approach, preferably also on a semiconductor chip, is desirable.

Multi-emitter cavity QED with quantum wells Alternative semiconductor systems
with the potential to provide strong-non-linearities for photons are quantum-well (QW)
cavity polaritons in micro-cavities. These half-matter/half-light quasi particles are formed
by the collective coupling of 2D quantum-well excitons to a planar micro-cavity. The first
experimental demonstration of quantum-well cavity polaritons in a planar DBR micro-cavity
was reported in a seminal paper by Weisbuch et al. [17]. Since then, the QW polariton
field has been highly active. Due to the collective nature of the coupling and the underlying
bosonic nature of the quantum-well excitons, however, quantum-well cavity polariton systems
are intrinsically linear in the low excitation regime. While this absence of intrinsic non-
linearity is not ideal for easily creating single-photon non-linearities, other experimentation
is possible. In particular, cavity polaritons are an ideal system to demonstrate Bose-Einstein
condensation in the solid state [18]. We briefly turn our attention to this very active branch
of research before returning again to the question of single-photon non-linearities:

Due to their photonic nature, quantum-well cavity polaritons have a very small effective
mass, several orders of magnitude smaller than that of a single atom. This means that
Bose-Einstein condensation of polaritons should occur at normal cryogenic temperatures in
stark contrast to the case of atomic BECs [19, 20]. In 2006, Kasprzak et al [21] published
observations consistent with the formation of a polariton BEC in a semi-conductor micro-
cavity containing CdSe quantum wells. In traditional atomic BEC, the temperature is the
main factor driving the phase transition as the atoms are in thermal equilibrium. In contrast,
the polaritons have a very short lifetime on the order of a few picoseconds. This would not
enable the polariton gas to reach thermal equilibrium. However, exciton-exciton interactions
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[22], which lead to a blue-shift of the polariton energy, are shown to be fast enough to
quasi-thermalize the polariton gas compensating for the continuous leaking of polaritons (or
rather photons) out of the cavity. To replenish polaritons lost out of the system and to
encourage a high-enough interaction rate between polaritons, large polariton densities are
needed. This requires high excitation power indicating that the excitation laser power is
the driving factor behind the formation of polariton BEC rather than temperature as in the
atomic case. Under non-resonant, high-power excitation, the polaritons relax down into the
lower polariton branch via phonon emission and into the system ground state, forming a
nonequilibrium BEC.

A main drive in polariton research after the initial demonstration of polariton BEC by
several groups [21, 23, 24] was aimed at revealing the quantum fluid behaviour of polaritons
[25]. In the following years, experiments reported the observation of superfluid or frictionless
flow around obstacles [26], the observation of Bogoliubov excitations [27, 28], Josephson
oscillations [29], vortices [30–32] and solitons [33] all highlighting the quantum-fluid nature
of weakly-confined polaritons. While for all of these phenomena, including the formation
of BEC itself, polariton interactions are essential, the parameters in these experiments were
such that the polariton ensembles were still in the so-called weakly interacting regime [25].
However, for the purpose of this work, we are particularly interested in the opposite limit,
the regime of strong interactions between single polaritons.

Quantum-well cavity polariton blockade The regime of strong polariton interactions
was first anticipated in a paper by Verger et al in 2006 [34]. In this paper, the authors sketch
the idea of polariton blockade that is somewhat reminiscent of the Rydberg blockade effect
in atomic physics [35]: The basic idea is to engineer the photonic part of the wavefunction
of quantum-well cavity polaritons through strong confinement of the cavity mode and at the
same time keep the quality factor of the cavity high. The strong confinement results in a
strong overlap integral between two polaritons leading to an enhanced non-linear interaction
coefficient. As a result, the two-polariton state experiences a strong interaction shift. On
the other hand, assuming the dominant polariton loss channel to be given by the leakage of
photons out of the cavity, a high Q-factor ensures a narrow linewidth for the two-polariton
state. If the polariton interaction strength exceeds the linewidth, the resulting polariton
excitation spectrum becomes anharmonic. Hence, a first photon resonantly exciting a po-
lariton in the system will block the entrance of a second photon of the same colour due to
the strong polariton-polariton interaction hence the term polariton blockade. As in the case
of photon blockade, the signature would be the observation of anti-bunching for resonantly
scattered/transmitted photons. A few years after the first prediction of the polariton block-
ade effect, another proposal suggested to yet enhance polariton interactions even further by
addressing a biexciton Feshbach resonance, reminiscent of the Feshbach resonance effect in
atomic gases [36]: through the resonant coupling to the bound biexciton state, two interact-
ing polaritons pick up a resonant phase shift that is potentially much larger than in a normal
polariton-polariton collision. The authors argue that with the help of a Feshbach resonance,
the blockade regime could be accessed more easily and coined the term Feshbach blockade
[37]. In 2013, a group in Lausanne reported the first observation of the biexciton Feshbach
resonance [38] but could not show blockade in their system. Many groups at present are
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actively pursuing research in the direction of polariton blockade but to date the blockade
regime has not been reported.

The confinement necessary for achieving polariton blockade can be induced through post-
growth engineering of the photonic part but also of the excitonic part of the wavefunction.
Exciton confinement has been achieved by controlled application of sample stress [23, 39]
and recently by light-induced creation of spatially modulated excitonic reservoirs [40, 41].
In particular the latter method provides very precise control over the potential landscape
but the achievable confinement length scales are limited by the excitonic diffusion length of
several µm. Polariton confinement through its photonic part has been demonstrated by the
use of mesa structures [42], micropillars [43], photonic-crystal cavities [44] and plasmonic
structures [45]. However, these systems typically suffer from enhanced excitonic or photonic
losses, once the spatial dimensions approach the µ-scale. In addition, their spectral tunability
is limited.

Mechanically tunable confined polariton systems Very recently, two groups have
reported the realization of high-Q mechanically tuneable confined polariton systems based
on similar approaches: the main idea is to use only one semiconductor-grown DBR mirror
with a single quantum well on top. The second mirror consists of a concave indent either in
a glass cover slip [46] or at the end of an optical fiber [47], coated with a highly reflective
dielectric DBR coating. The two parts are spatially separated and the distance is controlled
using piezo positioners allowing for tuning the cavity resonance frequency and the polariton
lifetime. The mirror curvature can be rather small and hence rather strong confinement can
be achieved. At the same time, the high-quality coating ensures a high cavity finesse implying
a long polariton lifetime. Hence, such mechanically tuneable systems seem favourable for
entering the polariton blockade regime. In addition, due to the tunability a detailed study
of the Feshbach resonance effect seems feasible.

In this thesis, we pursue the fiber-cavity approach described in Reference [47, 48]. The
ongoing work in the Quantum Materials and Applications Group (QMAPP) at Macquarie
University is a direct follow-up on the work described in that reference. The main topic of
this Masters thesis is the description of a laser machining and fiber imaging setup aimed at
the fabrication of improved fibers for polariton experiments. In particular, the fibers made
with the new setup exhibit much smaller curvature radii than before which should enable
much stronger polariton confinement. The improved fibers described in this work together
with a new batch of samples showing less disorder than described in Reference [47] will allow
for a new generation of polariton experiments.

Scope of this thesis The thesis is structured as follows:
Chapter 2 introduces the physics of a single quantum emitter coupled to a single mode

of a cavity. The conditions for reaching strong coupling are discussed. Next, the effect of
photon blockade is introduced, and quantum dots as prime semiconductor systems exhibiting
strong single-photon non-linearities are presented.

Chapter 3 starts off by exploring a simple model for the coupling of many emitters to
a single cavity mode. Quantum well polaritons are introduced and after a short discussion
of a typical polariton dispersion relation and polariton interactions, the effect of polariton
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blockade is discussed. The chapter ends with a detailed description of fibre Fabry-Perot
micro-cavities including a discussion of the relevant parameters for entering the blockade
regime.

In Chapter 4, the experimental assembly for our fibre laser machining is presented. The
analytical tools used to characterise the machined fibres are introduced. The chapter closes
with a discussion of the ideal Bragg layers for the anticipated polariton experiments.

Chapter 5 presents the results from a detailed characterization of the first batch of
fibres machined with the newly built setup. The analysis reveals small curvature radii down
to ∼8-10µm.

Finally, Chapter 6 concludes with an outlook and gives a broader perspective on the
possible directions of research opened up by the work described in this thesis.



Chapter 2

Single Emitter Cavity-QED

In this chapter, the physics of a single, two-level quantum emitter coupled to the electromag-
netic field of a single cavity mode is described using the Jaynes-Cummings model (section
2.1) . This description is followed by studying the results from the Jaynes-Cummings model
in the strong coupling regime of CQED (section 2.2) , introducing the known anharmonic
Jaynes-Cummings energy ladder. Based on the anharmonicity of the Jaynes-Cummings lad-
der, the effect of photon blockade (section 2.3) is introduced and a particular realisation with
semiconductor Quantum Dots is discussed (section 2.4).

2.1 Jaynes-Cummings Model

The two-level quantum emitter coupled to a single mode of a radiation field is one of the
most fundamental system in quantum physics. Atoms, which are inherently multi-energy
level quantum emitters, can be simplified to a two-level energy system. This view can be
taken due to the anharmonic nature of the energy level structure. The simplest case then to
consider is a single emitter which interacts with a single cavity mode shown in Fig[2.2]. For
the strongest interaction, the emitter is placed at an anti-node of the cavity electric field.
Although cavities operating at microwave frequencies have been shown to achieve better
results in terms of non-linearity, for the scope of this thesis, only optical frequency modes
of linear polarisation will be considered. This line of inquiry is taken as there is significant
scope for study of these systems in the optical frequencies, even though they do not produce
the same quality of results as for the microwave frequencies. Also as a consideration, the
detection of photons in the optical frequencies is far easier than those in the microwave
frequencies. To study the mechanics of the single emitter interacting with a single cavity
mode, the remainder of this chapter will closely follow theory given in [49]. The interaction
of the single emitter with the single cavity mode is modelled using the well known Jaynes-
Cummings model Hamiltonian which has the form of [6],

ĤJC = ĤA + ĤC + Ĥint, (2.1)

where ĤA, ĤC and Ĥint are the Hamiltonians for the atom, cavity and atom-cavity inter-
action respectively. The ĤA and ĤC are defined with the use of the photon creation and
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2.1 Jaynes-Cummings Model 7

annihilation operators â† and â and the atomic raising and lowering operators σ̂+ and σ̂−

ĤA = ~ωAσ̂+σ̂−, (2.2)

ĤC = ~ωC â†â, (2.3)

where ωA and ωC are the resonant frequencies of the atomic transition and the cavity mode
respectively. The Ĥint is the interaction term which describes the interaction between the
atom and the cavity field. Under the electric dipole approximation, this Hamiltonian is
defined by,

Ĥint = −er̂· Ê(rA), (2.4)

where −er̂ is the dipole operator which represents the atomic transition and Ê(rA) is the
electric field operator at the point where the atom is situated. Both these operators can be
written as follows,

er̂ = degσ̂+ + dgeσ̂−, (2.5)

Ê(r) = i

√
~ωc

2ε0n2Veff
(φ(r) â− φ∗(r)â†), (2.6)

with deg = 〈ea| er̂ |ga〉 being the atomic transition dipole element and φ(r) the complex
electric field wavefunction defined by,

φ(r) =
E(r)

|E(rmax)|
, (2.7)

which is given at the position, rmax, of the maximum of the intra-cavity field. The mode
volume, Veff normalises the electric field operator and is given by,

Veff =

∫∫∫
n2(r)

n2
|φ (r)|2 d3r =

∫∫∫
n2(r)

n2

∣∣∣∣ E(r)

|E(rmax)|

∣∣∣∣2 d3r, (2.8)

where n = n(rmax) is the index of refraction at the maximum of the cavity field and n(r) is he
position dependent refractive index. By substituting eq. 2.5 and 2.6 into eq. 2.4, the rotat-
ing wave approximation (RWA) is now applied [50] by placing the interaction Hamiltonian
into the interaction picture. The RWA arises from the interaction Hamiltonian containing
different time scales and is a standard approximation for cavity-QED systems. For Eq. 2.4,
the time dependent Hamiltonian has the form,

Ĥint =− ~
(

Ωe−i(ωc−ωA)t + Ω̃ei(ωC+ωA)t
)
|e〉 〈g|

−~(Ω∗ei(ωc−ωA)t + Ω̃∗e−i(ωC+ωA)t) |g〉 〈e| , (2.9)

where Ω = ~−1deg.E0 is the Rabi frequency and Ω̃ = ~−1deg.E∗0 is the counter-rotating
frequency. The terms with ωC + ωA oscillate at optical frequencies and due to their rapid
oscillations, time average to zero. The RWA thus neglects these terms which, upon going
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back to the Schrödinger picture, finally leaves the interaction Hamiltonian in the form,

Ĥint = ~g
(
σ̂+â+ â†σ̂−

)
, (2.10)

with

g =

√
ωC

2~ε0n2Veff
|φ(ra)·deg| , (2.11)

as the coherent coupling constant for this system. The Hamiltonian for the system can be
written in the Jaynes Cummings form as,

ĤJC = ~ωAσ̂+σ̂− + ~ωC â†â+ ~g
(
σ̂+â+ â†σ̂−

)
. (2.12)

The dressed eigenstates of the system present themselves [49],

|g〉 = |g, 0〉 , (2.13)

|n,+〉 = cosθn |e, n− 1〉+ sinθn |g, n〉 , (2.14)

|n,−〉 = sinθn |e, n− 1〉 − cosθn |g, n〉 , n ≥ 1, (2.15)

with corresponding eigenenergies:

E0 = 0, (2.16)

E+
n = ~

(
nωA +

δ

2
+

√
ng2 +

δ2

4

)
, (2.17)

E−n = ~

(
nωA +

δ

2
−
√
ng2 +

δ2

4

)
, n ≥ 1, (2.18)

With the detuning δ = ωC − ωA as the difference between the cavity mode frequency and
the atomic transition resonant frequency. At δ = 0 in the lowest manifold of the Jaynes-
Cummings ladder, the distinct spectral separation of the normal modes is called the Vacuum
Rabi splitting (ΩR = 2g) shown in Fig[2.1]. As a function of detuning, the coupling between
the atom and cavity field results in a typical avoided crossing. These eigenstates of the
system and their distinct spectral identity are know as dressed states which are a coherent
super-position of the atom and cavity photon parts. This new system has an intrinsic
anharmonicity present as the higher manifold energy splitting scales as

√
n as shown in

Fig[2.1].
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Figure 2.1: The left figure shows Jaynes-Cummings energy ladder for the two lowest manifolds
at zero detuning. The right figure shows spectral anti-crossing for the first Jaynes-Cummings man-
ifold as a function of detuning. The splitting between first manifold dressed states, on resonance,
is 2~g.
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2.2 Weak and Strong Coupling Regime

All quantum systems suffer from losses which limit the light-matter interactions. In the
case of the interaction between the cavity field and the quantum emitter, losses result from
different mechanisms. The main sources of loss arise from light escaping from the cavity due
to imperfect mirrors at rate ‘κ’.

Figure 2.2: A two-level quantum emitter, with the ground state |g〉 and the excited state |e〉
coupled to a cavity mode with coupling strength ‘g’. The cavity energy loss rate is given by ‘κ’
which includes absorption losses and out-coupling through the mirrors. The spontaneous emitter
decay rate into free space given by ‘γ’.

Inside the cavity, the photons are retained only until they are transmitted through,
scattered or absorbed by the cavity mirrors. This means that the photons remain confined
for a finite time inside the cavity which is described by the exponential decay of the intensity,

I(t) = I0exp

[
− t
τ

]
, (2.19)

where I(t) is the intra-cavity intensity at time t, τ = 1/κ is the cavity lifetime and I0 = I(0).
The cavity lifetime τ can also be described with regard to the Q-factor of the cavity, which
is the ratio of the round trip loss of the cavity with respect to the total energy inside the
cavity,

τ =
Q

ωC
, (2.20)

Where ωC is the frequency of the cavity. However, having some light transmitted by the
mirrors is not all together an undesirable trait, as this allows probing to be performed
on the system. The other main loss mechanism present is the spontaneous decay of the
emitter, which can emit photons into modes other than the cavity mode which are lost
to the environment. This loss mechanism occurs at rate ‘γ’. Cavity and emitter losses
need to be considered in the Jaynes-Cummings model. In order to accurately incorporate
decoherence into the evolution of the system the master equation must be solved,

∂ρ

∂t
= − i

~

[
Ĥ, ρ

]
+ L(ρ), (2.21)
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which contains the term L(ρ) which describes the losses of the system and the corresponding
dephasing,

L(ρ) =
γ

2
(2σ̂−ρσ̂+ − σ̂+σ̂−ρ− ρσ̂+σ̂−) +

κ

2
(2âρâ† − â†âρ− ρâ†â). (2.22)

This expression results in the linear differential equation describing the time evolution of the
expectation values 〈σ̂+(t)〉 and

〈
â†(t)

〉
[49],

∂

∂t

(
〈σ̂+(t)〉〈
â†(t)

〉 ) =

[
−
(
κ+ γ

4
− iδ

2
− iωa

)
+

(
κ−γ
4
− i δ

2
ig

ig −κ−γ
4

+ i δ
2

)]
�

(
〈σ̂+(t)〉〈
â†(t)

〉 ) (2.23)

Solving theses linear differential equations describing the time evolution of the expectation
values, the complex eigenenergies emerge with the real part [49],

E± = ~

ωA +
δ

2
± Re

√
g2 −

(
κ− γ

4
− iδ

2

)2
 , (2.24)

which are the energies of the excited state of the system. The imaginary components describe
the corresponding dissipation rates of the system [49],

Υ±

2
= −

κ+ γ

4
± Im

√
g2 −

(
κ− γ

4
− iδ

2

)2
 . (2.25)

From these two equations, it is clear that at zero detuning δ = 0, the sign of the square root
term will depend on the ratio of g to κ−γ

4
. If g < κ−γ

4
, the square root is imaginary, such

that the losses do not allow the formation of polaritons. This scenario is known as the weak
coupling regime of cavity-QED. If, on the other hand, g > κ−γ

4
, the square root is real, thus

the coherent coupling of the cavity and emitter dominates over the the decoherence of the
system. This results in the excited energy levels splitting with the formation of the dressed
states. This is known as the strong coupling regime of cavity-QED. To realise a strongly
coupled, single atom-cavity system, losses must be minimised by large Q-factors (see eq.
2.24) and the coupling strength ‘g’ maximised by reducing the cavity mode volume Veff (see
eq. (2.11)).

2.3 Photon Blockade

As was mentioned above, the Jaynes-Cummings ladder is intrinsically anharmonic. This
characteristic stems from the quantised nature of the cavity field and the inherent anhar-
monicity of the two-level emitter. This anharmonicity becomes clear when describing the
transition energy from nth to the (n + 1)th eigenstates of the Jaynes Cummings manifold.
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On resonance, this transition energy is given by,

E−n→n+1 = ~(ωC − (
√
n+ 1−

√
n)g), (2.26)

using eq.(2.24). Even though this equation clearly shows the anharmonic separation of the
energy levels, the polariton linewidth must also be sufficiently small such that energies are
distinguishable between successive transitions. With the polariton linewidth given as ~κ/2
where κ is the cavity energy loss rate, the ratio of the energy level difference with respect to
the linewidth must be greater than one [49],

|E−0→1 − E−1→2|
~κ/2

= 2(2−
√

2)
g

κ
> 1, (2.27)

which is the case when g >> κ. The rate γ is not included in these calculations as the rate
κ is typically the dominant loss mechanism in such systems. One such phenomenon with
great potential that has been shown in such non-linear systems is the photon blockade. The
photon blockade was first proposed by Imamoğlu et.al. [7] in 1997, whereby the presence of
one photon impedes the transmission of a second photon due to photon-photon interactions
mediated through the ‘matter’ part of strongly coupled systems.

Figure 2.3: The Jaynes-Cummings energy ladder showing the two lowest energy manifolds. At
zero detuning (ωC = ωA) two photon absorption of the probe field ωLP tuned to the lower state of
the first energy manifold is inhibited.

In this case, a light field with energy equal to the transition energy of the lower polariton
branch of the first Jaynes-Cummings manifold, ωLP , drives the lower polariton transition. A
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further addition of a photon of frequency ωLP into the system, however, would not excite the
system into higher energy states as the photon is no longer in resonance with the excitation
frequency (see Fig[2.3]). This would result in a phenomenon known as photon anti-bunching.
Photon anti-bunching is a characteristic of photon number with sub-Poissonian statistics [51].
Anti-bunching of photons occurs when an emitter only emits one photon at a time which is
observed by the use of a Hanbury Brown and Twiss interferometer [52] shown in Fig[2.4].

Figure 2.4: Hanbury Brown and Twiss interferometer. One detector has a time delay which
correlates the photons detected within this time window between the two detectors.

This interferometer functions by the use of two detectors measuring photon numbers after
a photon beams passes through a 50/50 beamsplitter. When a photon is detected by one of
the detectors, a timer is started which is stopped when the other detector registers a photon.
This is known as a coincidence event. Over time, a histogram is formed of the number of
coincidence events. The coincidence events as a function of time delay between detectors is
represented by the normalised second order auto-correlation function. This function, for a
single mode light field is defined by [53],

g(2)(t, τ) =

〈
â†(t)â†(t+ τ)â(t+ τ)â(t)

〉
〈â†(t)â(t)〉 〈â†(t+ τ)â(t+ τ)〉

, (2.28)

where â†(t) and â(t) are the photon creation and annihilation operators respectively. This
correlation function stipulates the probability of detecting two photons with a time delay
τ under both continuous wave (CW) and pulsed laser regimes. Anti-bunching is the situa-
tion when photons have a lower probability of arriving at the detectors at the same time.
This means that as τ approaches zero, there is a distinctive ‘dip’ in the second order auto-
correlation function as g(2)(0) should be smaller than one. The first instance of the photon
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blockade was observed using g(2)(τ) measurements in 2005 by Birnbaun et.al.[8] using Cae-
sium atoms.

Figure 2.5: The second order auto-correlation function for strongly coupled atom-cavity system.
Note the pronounced ‘dip’ at τ = 0 which indicates photon anti-bunching [8]

2.4 Quantum Dots

While atom-cavity system have reached an exquisite level of control, in light of applications,
there is great emphasis to develop semi-conductor, ‘on chip’ based systems which employ
light-emitter interactions. In the past decades, Quantum Dot (QD) technology has proven
an alternative into probing coupled, non-linear systems, while maintaining the single, two-
level quantum emitter properties of the single atom. Quantum dots are nano-structures
composed of semi-conductor materials which exhibit atom like narrow emission lines. The
QD is formed by a droplet of low band gap semiconductor material surrounded by a higher
band gap semiconductor material, allowing for 3D confinement of electron-hole pair. As
such, QD are sometimes referred to as artificial atoms. This, together with anti-bunching
characteristics [54], QD are ideal candidates for engineering light-emitter interfaces with
strong Jaynes-Cummings non-linearity.

Quantum Dot Growth Optically active QD are typically grown by Molecular Beam
Epitaxy (MBE) [55] and are formed using a ‘self-assembling’ technique [56]. This involves
the spontaneous release of mechanical strain of different semi-conductor material to form
small ’droplets’ of low energy gap semi-conductor material, hence the ‘self-assembling’ name.
A semiconductor wafer of Gallium Arsenide (GaAs) in an ultra-high vacuum is deposited
with Indium (In) and Arsenic (As). Because of a lattice constant mismatch of ∼7% between
the GaAs and InAs, the InAs layer is intrinsically strained when grown on a GaAs matrix.
This strain can be released by the careful choice of growth temperature and materials such
that there is a spontaneous formation of small droplets of InAs at random locations on the
wafer [57]. These droplets typically have an in-plane size of 5-20nm and a height of ∼4nm
which typically varies strongly from QD to QD. A capping layer of GaAs is grown on the
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substrate while simultaneously, an “annealing” process takes place to reduce the height of
the QD droplet by evaporation. The final step in the fabrication process is the growth of a
GaAs protective layer to protect the QD from surface effects, diffusion and oxidation.

Quantum Dot Energy Level Structure The different semiconductor materials in QD
growth create a potential trap in the structure due to InAs possessing a smaller energy
gap (4Eg = 0.36eV ) compared to the GaAs (4Eg = 1.43eV ) [58]. The strong confinement
provided by the nanoscale band deformation within the QD, leads to a quantised, anharmonic
energy level structure for both electron and hole wavefunctions. These ‘electrons’ and ‘holes’
referred to here result from the absorption of a photon equal to or greater than the energy of
the energy band gap. Hence, an electron is lifted from the valence band into the conduction
band leaving a positive ‘hole’ in the valence band. Due to coulomb attraction, this electron-
hole pair form a quasi-particle known as an exciton which resembles the configuration of a
Hydrogen atom. Eventually, an exciton decays or ‘recombines’, emitting a photon. In the
case of QD, confinement of the electron and holes on a size comparable with the exciton
Bohr radius aX , results in bound exciton states which display distinct transition energies
(see fig[2.6]). This occurs by virtue of different charge configurations within the quantised
electron-hole structure.

Figure 2.6: Excitons in a Quantum Dot. A photon is absorbed by the system, promoting an
electron into the conduction band, forming an exciton. Note the discrete energy states within the
band structure. Taken from [49].

The most typical form of an exciton state is the neutral exciton (X0) which is a single
electron-hole pair. This gives rise to four excitonic configurations which are degenerate.
The neutral biexciton(XX0) is a state occurring from two electron-hole pairs within the
QD. However, when one of the electron-hole pairs recombine, the emitted photon is slightly
red-shifted in energy to that of the neutral exciton recombination energy by virtue of the
complex interactions between the charge carriers which red-shifts the XX0 line compared to
the neutral exciton transition energy. Other excitonic states which can occur are the trion
states whereby a net charge is carried by the excitons. In the case of an extra electron
present, the creation of an electron-hole pair will form the negatively charged X− state with
the positively charged X+ forming due to the presence of an extra hole.
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Figure 2.7: Quantum Dot spectrum. The peaks show the neutral, biexciton and trion exciton
excitations. Taken from [58].

Photonic-Crystal Microcavities Implementation of QD into strongly coupled systems
requires a means by which photons are confined for a sufficiently long time. A method which
has proven highly effective is the photonic-Crystal (PC) microcavity [59]. PC is typically
a 2-dimensional dielectric substrates which have holes periodically drilled into it, usually
forming a triangle lattice. The periodic lattice structure results in an optical ‘band gap’
in the dispersion relation architecture which inhibits the propagation of all in-plane wave-
vectors within this band gap. The incorporation of a defect into the lattice is accomplished
by not drilling holes at one or more lattice sites, ensures that wave-vectors within the band
gap can only exist within this defect site and do not propagate out. This defect creates the
‘cavity’ with the lattice acting as the ‘highly reflective mirrors’. With careful choice of hole
sizes and defect lengths, strong coupling to QD can be achieved in such devices [60].

Figure 2.8: A photonic crystal microcavity. Note that the white lump is not the QD but the
capping layer over QD. Taken from [60].

Photon Blockade in Quantum Dots Quantum dots exhibit distinct and well separated
energy levels similar to those of the atom and as such, can be treated as a two-level system.
This enables the use of the Jaynes-Cummings model to describe the coupling of a cavity field
mode to a single quantum emitter as already outlined earlier in this chapter. With the ability
to place QD in high Q-factor microcavities, the strong single photon non-linearity has been
realised with QDs. While early works have demonstrated some degree of anti-bunching [10],
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single photon non-linearity has been shown in the work by Reinhard et.al. (2012) [11] where
the second order autocorrelation function exhibiting distinct anti-bunching (see Fig[2.9]).

Figure 2.9: Auto-correlation graph for a QD in a photonic crystal demonstrating photon anti-
bunching under pulsed resonant pumping of the polariton states [11]

QD systems has proven that single photon non-linearities can be realised in fully inte-
grated semiconductor devices. As pointed out in the introduction, the next step towards
quantum information processing and quantum simulation would be to scale up the system
by coupling several identical cavity-QD systems and to be able to observe nonlinearity in
larger systems. However, as mentioned in section 2.4, QD growth occurs randomly on the
wafer and can vary greatly in size (see Fig[2.10]). Thus, uniformity is difficult to maintain
when attempting to grow QDs [61]. For this reason, QD systems have limited scalability
and thus an alternative is needed.

Figure 2.10: QDs grown on photonic crystal. Due spontaneous nature of the growth process,QD
positioning and sizes are random. Taken from [62].



Chapter 3

Cavity-QED with Quantum Well
Polaritons

This chapter describes the Quantum Well as a means of scaling up strongly coupled systems.
The physics of coupling a quantum well to a single cavity mode is explored by considering
the quantum well as a system of N emitters (section 3.1). Quantum well 2D microcavity
polariton generation is then discussed (section 3.1.2). The introduction of nonlinearity orig-
inating in polariton-polariton interaction leads into the proposal of the polariton blockade
(section 3.2). Finally, Fabry-Pérot fibre microcavities are introduced as an experimental
means of accessing the Polariton Blockade (section 3.3).

In the previous chapter, the non-linear capabilities of the Jaynes-Cummings model have
been effectively demonstrated in QD systems. However, due to the random nature of the QD
fabrication process, the size and placement of the QDs is difficult to control despite extensive
efforts using in situ lithography [63] and site-controlled QD nucleation [64]. This results in
differing spectral qualities from one to another which makes QD unsuited for scaling up
these systems. This prompts the step towards using many, two level emitter systems which
have greater uniformity in their construction. However, as we will see, in the low excitation
regime, anharmonicity is not present for N two level emitters and thus, N two level emitters
can be considered as a single linear system.

3.1 Quantum Wells

Quantum wells (QW) are ideal structures for an N emitters system whose parameters are
considerably easier to control when they are grown, unlike the QDs mentioned previously.
The QW is a two dimensional planar structure composed of layered, low energy band-gap
semiconductor material sandwiched between high energy band-gap material, for example,
InGaAs sandwiched between GaAs, with a thickness close to the exciton (see section 2.4)
Bohr radius aX ∼ 10 nm (see Fig[3.1]). This layering creates a potential well, quantising the
energy level structure in the growth direction.

18
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Figure 3.1: Quantum Well structure. Confinement in the growth direction (z axis), quantises
the exciton energy levels in one dimension. Excitons are free to move in the XY plane.

However, excitons have free movement in-plane unlike QD, which confines excitons in
all three dimensions. This allows the creation of several excitons within the QW. As a first
approximation, these exctions can be considered as a system of N two level emitters. As we
will see, the N emitters can be approximated by a harmonic oscillator in the low excitation
regime. Indeed, because of the charge carriers that compose the exciton are able to be
delocalised over a distance greater than the Bohr radius aX , the Pauli exclusion principle

will begin to take effect when the 2D density dX is such that d
− 1

2
x & aX . As QW excitons

can occupy the same quantum state at low densities, they can be considered a boson like
particle.

3.1.1 From N Quantum Emitters coupled to a cavity mode to two
coupled harmonic oscillators

To describe the QW in a strongly coupled light-matter interface, the following theory draws
extensively from [49]. For the strongly coupled system, the QW can be viewed as a system of
N two-level emitters interacting with a single cavity mode. It is assumed that the emitters do
not interact with each other and couple with the same strength ‘g0’ to a single cavity mode.
The atomic occupation states are given by the Dicke states in the spin angular momentum
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basis [49],

{|m〉} , m = −N
2
,−N

2
+ 1, ...,

N

2
− 1,

N

2
, (3.1)∣∣∣∣−N2

〉
= |g〉1 |g〉2 ... |g〉N ,∣∣∣∣N2

〉
= |e〉1 |e〉2 ... |e〉N , (3.2)∣∣∣∣−N2 + 1

〉
=

1√
N

N∑
j=1

|g〉1 |g〉2 ... |e〉j ... |g〉n ,

where the subscript ‘j’ is the exciton label. The states
∣∣−N

2

〉
and

∣∣N
2

〉
define the all the

emitters in the ground (|g〉j) and excited (|e〉j) states respectively. For instance the state∣∣−N
2

+ 1
〉

describes a single excitation shared by all the emitters. The angular momentum

operators, Ĵz,Ĵ+ and Ĵ− which are the pseudo-spin, raising and lowering operators respec-
tively, describe the system of N emitters defined as,

Ĵz |m〉 = m |m〉 ,

Ĵ+ |m〉 =

√
N

2
(
N

2
+ 1)−m(m+ 1) |m+ 1〉 , (3.3)

Ĵ− |m〉 =

√
N

2
(
N

2
+ 1)−m(m− 1) |m− 1〉 ,

with,

Ĵ−

∣∣∣∣−N2
〉

= Ĵ+

∣∣∣∣N2
〉

= 0. (3.4)

The ensemble of N emitters coupled to a single cavity mode is then described by the Tavis-
Cummings Hamiltonian given by [65],

Ĥ = ~ωAĴz + ~ωC â†â+ ~g0(âĴ+ + â†Ĵ−) (3.5)

where ωA and ωC are the resonant atomic and cavity frequency respectively, â† and â are the
creation and annihilation operators respectively. The entire system in the uncoupled basis
of the emitters and cavity mode can be defined by the tensor product of the Dicke and Fock
states |m〉 ⊗ |n〉 = |m,n〉. The eigenstates emerging from the coupling of the cavity mode
to the excitons are called polaritons. On resonance (ωA = ωC), the polaritonic states for a
single quanta of energy, can be shown to be [49],∣∣∣Ψ+1/2

1

〉
=

1√
2

(∣∣∣∣−N2 , 1
〉

+

∣∣∣∣−N2 + 1, 0

〉)
,∣∣∣Ψ−1/21

〉
=

1√
2

(∣∣∣∣−N2 , 1
〉
−
∣∣∣∣−N2 + 1, 0

〉)
, (3.6)
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with the corresponding eigenenergies,

E
+1/2
1 = ~(ωA +

√
Ng0) Upper Polariton,

E
−1/2
1 = ~(ωA −

√
Ng0) Lower Polartion. (3.7)

The Vacuum Rabi splitting for N emitters is thus given as [49],

4E = 2
√
N~g0, (3.8)

with the energy separation scaling with
√
N . For larger numbers of quanta q (still with

q < N) in the system, the number of eigenstates of the system scales as q + 1. For these
states, the eigenenergies are given as [49],

Es
q = ~(qωA + 2s

√
Ng0), s = −q

2
,−q

2
+ 1, ......,

q

2
. (3.9)

This shows that transition energies for successive manifolds are 4E = ~(ωA±
√
Ng0) which

clearly shows the linearity of the polariton states. The inherent linear nature of N emitter
systems is in stark contrast to the single emitter case. In the low excitation regime, this
system of N two level emitters can be considered as a single linear system which has boson
like properties. When this view is taken, the model of N emitters coupled to a cavity
mode is equivalent to the the two coupled harmonic oscillators model (Holstein Primakoff
approximation [66]). The collective coupling constant ‘gQW ’ is defined by,

gQW =
√
Ng0. (3.10)

This shows a marked increase in comparison with the single emitter coupling constant ‘gQD’
(see eq.(2.11)) due to the collective coupling of N emitters. The energy splitting between
polariton states can therefore be written as [49],

4E = 2~gQW = 2~

√
4πωCf2D
Leff

|φ(ra)|, (3.11)

where f2D is the oscillator between the two-dimensional QW exciton and cavity field, Leff
is the effective cavity length and φ(ra) is the transverse complex electric field function.

3.1.2 2D Microcavity Polaritons

Quantum well structures requires a large intensity light field with small cavity lengths to
achieve high coupling strengths. One means of providing these requirements is an optical
microcavity. A microcavity is very small optical resonator, whose length is on the order of
the wavelength of light. This feature facilitates the creation of large electric fields, confining
the field along the longitudinal axis. As we are interested in semiconductor emitters, one
way is to build the microcavity directly around them. This result in a fully integrated, solid
state design. A solid state microcavity is made of two mirrors sandwiching the emitter.
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The mirrors are made by layers of semiconductor materials known as Distributed Bragg
Reflectors (DBR) (see section [4.4]) and the emitter placed at one antinode of the field as
shown in Fig[3.2].

Figure 3.2: 2D microcavity formed by a QW in between two DBR mirrors. The QW is placed at
the anti-node of the electric field to ensure maximum coupling between the 2D excitons and cavity
field. The polariton dispersion curves can be obtained using angle resolved photoluminescence.
Taken from [21].

The DBRs provide a high reflectivity of the cavity field, ensuring large electric fields
are maintained inside the cavity. Due to the 2D symmetry of the microcavity, the in-plane

wavevector
−→
k || is conserved and the eignenstates of the system can be expressed in the

wavevector basis. So the eigenenergies of the system can be written in terms of the in-plane
wavevector of the excitons and cavity photons [49],

E±(
−→
k ||) =

~
2

(ωC(
−→
k ||) + ωX(

−→
k ||))± ~

√
gQW +

1

4
(ωC(
−→
k ||)− ωX(

−→
k ||)2, (3.12)

where ωC(
−→
k ||) and ωX(

−→
k ||) are the cavity and exciton in-plane dispersion relations respec-

tively. In 1992, Weisbuch et.al. [17] recorded the first observations of polaritons in a QW
semiconductor microcavity achieving strong coupling through the detection of normal mode
splitting shown in Fig[3.3].
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Figure 3.3: Reflection spectra showing the exciton-photon mode splitting in a seven QWs
microcavity. Taken from [17].

Because of the in-plane wave vector dependence on the polariton energy, the dispersion
for such a system can be obtained using angle resolved photo-luminescence spectroscopy (see
Fig[3.4]), as

−→
k || =

ω

c
sinθ. (3.13)

This technique involves the pumping the system with a high photon energy such that elec-
trons are excited into high energy states. The electrons relax down into the lowest energy
state via phonon emission, where they recombine and emit photons. By measuring the
in-plane momentum and energy of the photons escaping the microcavity, the polariton dis-
persion can be obtained (see Fig[3.4]).

Figure 3.4: Angle resolved photoluminescence spectroscopy of the upper and lower branch 2D
Quantum well polaritons. The dashed lines show the bare photon and exciton energies. Taken
from [67].
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From polariton dispersion, one can extract the effective mass of the polariton which is
given by [68],

kBTC ∼
~2neff
2mP

(3.14)

where neff is the effective refractive index. Polariton mass is on the order of ∼ 10−4me.
The bosonic character of polartions and their very low mass (orders of magnitude smaller
than atoms) make polaritons ideal for Bose-Einstein condensation (BEC), even at high tem-
peratures. Indeed, in 2006, Kasprzak et.al. [21] observed the Bose-Einstein condensation of
exciton-polaritons in microcavity containing CdSe QWs (see Fig[3.5]).

Figure 3.5: The energy and angle resolved emission from microcavity polaritons for increasing
pump power. The far right image shows polariton condensation. Taken from [21].

Together with BEC of polaritons, the quantum behaviour of polaritonic systems was
studied [26]. However these experiment were carried out in the weakly interacting regime.
To be able to exploit a nonlineraity in polaritonic systems, one needs to increase polariton
interactions. As we will see, this could be achieved through in-plane confinement leading to
zero dimensional (0D) polaritons.

3.2 Polariton Interaction

3.2.1 Polariton Blockade

Strongly coupled systems using QW have been shown to have a distinct linear structure
at low system energies, unlike the single emitter QD. However, if non-linearity could be
introduced into this linear system, the polariton equivalent of the photon blockade could be
achieved without the non-uniformity and coupling issues of the QD [11]. In 2008, Verger
et.al. [34] proposed a polariton quantum blockade effect, a non-linear phenomenon, which
could be realised in QW polaritons. They theorised that by having strong polariton-polariton
interactions through its excitonic part, that this will blue shift the polariton resonant fre-
quency such that the presence of one polariton inhibits the injection of another polariton.
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Unlike the photon blockade where non-linearity is due to the anharmonic Jaynes-Cummings
energy ladder, the polariton blockade relies on nonlinearity due to interactions. In previous
discussions, interactions between emitters and hence excitons, have been excluded from con-
sideration to describe the dynamics of the strong coupling of quantum emitters to a single
cavity mode. This, in reality, is not the case as excitons do interact with each other due to
Coulomb dipole repulsion. As such, the Hamiltonian for the system, as given in [34], in the

rotating frame described after the unitary transformation R(t) = eiωLt(â
†â+b̂†b̂) is given by

[34],

Ĥeff =~
[
ωX b̂

†b̂+ ωC â
†â+ ΩRb̂â

† +
ωnl
2
b̂†b̂†b̂b̂− αsatΩRb̂

†b̂†âb̂

− αsatΩâ†b̂†b̂b̂+ F0(t)e
−iωptâ† + F∗0 (t)e−ωptâ

]
(3.15)

where â and b̂ are the creation and annihilation operators of the ‘photonic dot’ and the
excitons respectively. This is Hamiltonian is a standard, but extensive derivation with the
first and second term defining the exciton and cavity mode energies respectively. The the
next term along with the fifth and sixth term describe the interaction between the exciton
reservoir and cavity mode, with ΩR is the vacuum Rabi frequency and αsat is the saturation
co-efficient. The final two terms are the projection of the pump laser on the cavity mode
F0(t) and its complex conjugate, given by,

F0(t) =

∫
dxFp(x, t)φ

∗
C(x), (3.16)

where Fp(x, t) describes the applied pump field with frequency ωp and φ∗C(x) is the complex
conjugate of the the ‘photonic dot’ (polariton mode) spatial wavefunction. The fourth term
of this Hamiltonian holds the greatest interest as this term describes the exciton-exciton
interaction and is given by [34],

~ωnl
2
b̂†b̂†b̂b̂, (3.17)

where ~ωnl is the interaction energy between two excitons and ωnl is the effective non-linear
co-efficient defined by the integral,

ωnl = κint
∫
dx |φC(x)|4 (3.18)

where κint is the interaction constant and φC(x) is the exciton spatial wavefunction. Since
exciton generation occurs only within the region of the interaction between the quantum
emitter and the cavity mode, the exciton and cavity mode have the same spatial wave-
function. With the non-linear co-efficient defined as above and possessing the same spatial
wavefunction as the cavity mode, the dependence on photonic confinement can be clearly
shown by integrating over different geometries such as a micropillar, for example, which is
cylindrical, ∫

cylinder

dx |φC(x)|4 = 2.67/(2R)2, (3.19)
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where R is the radius of the micropillar. This clearly shows an inverse proportionality of
ωnl to the lateral area of the cavity mode. This inverse proportionality becomes significant
when describing the second order coherence function for the system. The signature of such a
system in the polariton blockade is distinctive anti-bunching g2phot(0) < 1. The second order
auto-correlation function depends critically on the ratio of the non-linear co-efficient to the
polariton linewidth ωnl

γ
shown in Fig[3.6].

Figure 3.6: The left figure shows second order auto-correlation function for photons (circles)
and excitons (triangles) as a function of normalised non-linear co-efficient ωnl/γ for three different
detunings, δ =5meV,δ =-5meV and δ =0 where δ = ~(ωC − ωX). ~γC = ~γX = 0.1meV and
ωpump = ωLP . Experimentally, only the photon components can be probed. the right figure shows
the second order auto-correlation function at fixed t′ as a function of time for two different pump
powers. ~(ωC − ωX) = 5meV , ~ωnl = 1meV and ~γC = ~γX = 0.1meV where γC and γX are the
homogeneous broadening of the exciton and cavity modes respectively. Both figures taken from
[34].

The three curves on the left-hand figure in Fig[3.6] demonstrate the effect of the excitonic
fraction of the polariton mode on the overall blockade effect, since the interaction strength is
dependent on this excitonic fraction. For positive detunings, δ > 0, the polariton mode has
a higher excitonic fraction which promotes increased polariton-polariton interactions. For
values of ωnl

γ
∼ 1, anti-bunching behaviour starts to become significant. At values ωnl

γ
� 1,

the system enters the strong polariton blockade regime. Thus, only one polariton is present in
the system with the probability of having two polaritons at the same time rapidly vanishing
due to the interaction-induced blue shift of polariton resonance energy shown in Fig[3.7].
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Figure 3.7: The symmetry of the polariton energy structure is broken with a blue shift of the
higher polariton energy states induced by strong polariton-polariton interactions.

With the critical dependence on ωnl

γ
which itself is inversely proportional to the lateral

extent of the cavity mode, a means must be introduced that reduces the cavity lateral size
(ω0) to produce an increased photonic confinement of the exciton wavefunction.

3.2.2 Polariton Confinement

In their paper, Verger et.al. suggest that strong polariton-polariton interactions can be
achieved through polariton confinement through its photonic component to reach the polari-
ton blockade regime. As such, several techniques have been in development to realise this
regime. One such technique is the micropillar microcavity [69]. The micropillar is a microm-
eter sized pillar etched from a 2D microcavity using electron beam lithography. The small
lateral extent of the micropillar (∼2-4µm) provides the lateral confinement. In such systems,
strong polariton-polariton interactions have been shown through polariton condensation [70]
which demonstrate characteristic blue shift in the condensate emissions.

Figure 3.8: A SEM image of a high finesse micropillar cavity. The large gap in the middle of
the pillar is the quantum well. Diameter of the pillar is ∼0.8µm. Take from [71].
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Other techniques shown include the use of mesa structures which locally lowers the cavity
mode energy through differently spaced DBR layers [42]. However, there is considerable
photon losses due to the high intensity emissions from the cavity. This restricts the ability
to enter the non-linear regime even though confinement is small ∼3µm. This limitation is
also compounded by limited tunability which inhibits the ability to probe over a range of
polariton energies. As such, these systems, while able to offer photonic confinement, incur
significant losses through their sides, such that they are unsuitable to reach the strong,
non-linear regime.

Figure 3.9: Circular mesa microcavity structures. The DBR layers are displaced, slightly
lengthening the cavity, spatially and spectrally separating the mesa structure from the rest of the
cavity. The middle picture shows the energy level diagram for the mesa with an AFM image of the
circular mesa structure. Taken from [42].
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3.3 Fabry-Pérot Fibre Microcavities

Recently, a new type of microcavity has been shown to generate polaritons, without the
restrictions of the fully integrated, semi-conductor microcavity; the semi-integrated, Fabry-
Pérot fibre Microcavity [47].

Figure 3.10: Semi-integrated fibre microcavity showing the concave fibre mirror with DBR
layers. The insert shows the electric field distribution inside the cavity with the Quantum Well
placed at an anti-node of the field. Taken from [47].

These fibre microcavities are composed of two separate parts. One half is composed of
the familiar emitter with only one side deposited with a semiconductor DBR. The other half
of the device is comprised of a cleaved optical fibre, whose end facet has a small concave
impression manufactured upon it, with a dielectric DBR deposited over this impression. This
forms the other mirror of the cavity which is shown in Fig[3.10]. With the fibre separate from
the QW substrate, it is possible to change the cavity length, hence change the frequency
of the cavity field and the polariton lifetime. With these improvements and others such as
enhanced Q-factors and reduced mode volume due to the ability to machine small Radius
of Curvature (ROC) onto the fibres, the Fabry-Pérot Fibre microcavity has been shown [47]
as a clear alternative for realising the polariton blockade regime.

3.3.1 Gaussian Optics and TEM00 Fundamental Mode

Gaussian optics are used extensively to illustrate the workings of electromagnetic fields as
they propagate inside optical resonators. Using the Helmholtz equation under the paraxial
wave approximation, the scalar electric field wave equation propagating in free space is given
by [72], (

∂2

∂x2
+

∂2

∂y2
− 2ik

∂

∂z

)
E(x, y, z) = 0 (3.20)
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where k = 2π/λ is the wavenumber and E(x, y, z) is the complex wave amplitude. The
fundamental mode TEM00 solution to this equation is given by [72],

E(r, z) = E0
W0

W (z)
exp

(
− r2

W 2(z)

)
exp

(
−i
(
k

r2

2R2(z)
+ q(z)

))
, (3.21)

where r2 = x2 + y2, W (z) is the spot size, R(z) is the radius of curvature of the phase front
and q(z) is the Gouy phase,

W0 beam waist,

z0 =
πW 2

0

λ
Rayleigh range,

W (z) = W0

√
1 +

(
z

z0

)2

,

R(z) = z

[
1 +

(z0
z

)2]
,

q(z) = tan−1
(
z

z0

)
.

The radial distribution for the intensity is given by,

I(r) = I0exp

(
− 2r2

W 2(z)

)
. (3.22)

3.3.2 The Optical Resonator

An optical resonator is, in its most basic form, two highly reflective mirrors which bounce
light between them known as a Fabry-Pérot cavity. To produce a stable cavity mode the
phase front curvature of the intracavity field must match to the mirror curvature. In this
respect, the mode waist of the cavity field W0 is related to the length L between the mirrors
as [72],

W 2
0 =

Lλ

π

√
g1g2 (1− g1g2)

(g1 + g2 − 2g1g2)
2 , (3.23)

with,

g1,2 = 1− L

R1,2

, (3.24)

where R1,2 refer to the radius of curvature of each mirror and λ is the wavelength and where
the stability range must fall within,

0 ≤ g1g2 ≤ 1. (3.25)
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The next consideration, which is of particular importance in cavity-QED, is the mode volume
of the cavity mode. For a typical gaussian standing wave in the cavity the mode function is
given by,

ψ(r, z) ∝ sin (kz) exp

(
− r2

W 2
0

)
. (3.26)

By integrating over both r and z, this will give us the volume under the curve, hence the
mode volume V ,

V = 2π

∫ ∞
0

L/2∫
−L/2

r|ψ(r, z)|2drdz, (3.27)

=
πW 2

0L

4
. (3.28)

Finally, considerations need to be addressed regarding the spectral qualities of the cavity.
The transmission function from the cavity has distinct spectral peaks at resonance. Between
successive TEM00 peaks, this spacing is known as the Free Spectral Range or FSR and relates
to the separation between the cavity mirrors as defined by [72],

4vFSR =
c

2L
. (3.29)

Another important quality of the resonator also is the FWHM or more commonly known as
the linewidth of the peak transmission is given by [72],

δv =
1−R√
πR
4v, (3.30)

where R is the reflectivity of the mirrors used. Here it is assumed that both mirrors have
the same reflectivity. This leads to the quantity known as the Finesse F which demonstrates
the spectral resolution of the cavity defined by the ratio between the FSR and the linewidth,

F =
4vFSR
δv

=
π
√
R

1−R
' π

1−R
=

π

T + L
, (3.31)

where L is the round trip losses and T is the transmitivity and T + L + R = 1 . A more
appropriate way to look at the Finesse can be be expressed in the form of the number of
round trips N a photon takes through the cavity before it is lost out of the cavity mode,

F = πN. (3.32)

A final quantity extensively used describe to the quality of a particular cavity is the Q-factor
(Quality factor). This is defined by the resonant frequency divided by the linewidth [72],

Q =
v

δv
=

2Lv

c
F, (3.33)
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where L is the cavity length. Q-factor can also be explained as the ratio of round trip loss of
the cavity with respect to the total energy inside the cavity. For cavity-QED, it is a necessity
to attain high Q-factors on the order of ∼ 105.

3.3.3 Fibre Microcavities

Fibre microcavities are hemispherical type resonators as shown in Fig[3.11].

Figure 3.11: The hemispherical resonator. The fibre has a radius of curvature R while the
quantum well is a planar structure with ROC=∞. L is the cavity length and ω0 is the mode field
diameter.

By substituting g1 = 1 and g2 = 1− L
R2

into eq. 3.23, the mode field diameter simplifies
to,

W 2
o =

λ

π

√
L(R2 − L), (3.34)

where λ is the wavelength, L is the length of the cavity and R2 is the ROC of the curved
mirror. With the ability to tune the cavity length with these microcavities, the mode field
diameter then as a function of the cavity length for a given ROC is shown in Fig[3.12].
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Figure 3.12: The mode field diameter of a cavity as a function of cavity length for several
values of radius of curvature (R).



Chapter 4

Fabry-Pérot Fibre Microcavity
Fabrication

This chapter explains the experimental setup for machining fibre microcavities to reach the
polariton blockade regime. As an introduction, we give a brief description of the CO2 laser
ablation process. Secondly, a summary of the CO2 laser setup is given to explain key pa-
rameter control for desired indentation machining (section 4.2). Thirdly, an outline of the
experimental setup with emphasis placed upon the imaging system capabilities (section 4.1).
Fourthly, indentation analysis is explained using optical profilometry (section 4.3). Finally,
Distributed Bragg Reflectors are discussed and their function explained using the Transfer
Matrix Method (section 4.4).

To reach the polariton blockade regime stated in the previous chapter, a Fabry-Pérot
Fibre microcavity approach is chosen due to its controllability and excellent optical qualities.
However, to achieve the necessary polariton confinement through its photonic component,
the fibre components of the microcavity must be machined to produce a reduced mode
volume while maintaining high Q-factors. To this end, concave indentations with small
ROC and low surface roughness are required to be machined onto cleaved fibre facets which
can then be coated with a dielectric DBR. In our experimental setup, we develop a system
to manufacture a large number of fibres with ROCs as small as 10µm using a 10.6µm, CO2

based laser ablation system equipped with a laser interferometry characterisation capability
in real time.

CO2 laser systems are the ideal tool for fused silica machining. These types of laser
systems produce a wavelength in the 10µm region which is readily absorbed within the first
few µm of the fibre due to side band absorption from the asymmetrical stretching of the Si-
O-Si mode at 9.3µm. This means that the laser radiation is absorbed in a localised area well
suited to the small structures intended for our fibre machining. To better understand the
energy process occurring when the laser radiation impinges on the fibre, the heat conduction
equation describes the evolution of temperature T (r, t) at time t and position r [72],

ρC
∂T (r, t)

∂t
−∇(κ∇T (r, t)) = Q(r, t), (4.1)

34
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where ρ is the density of the fused silica, C is the specific heat capacity, κ is the thermal
conductivity, T (r, t) is the fibre surface temperature profile and Q(r, t) is the heat source.
In the case of the CO2 laser radiation, Q(r, t) has a Gaussian shape given by the gaussian
profile of the CO2 beam [72],

Q(r, t) ∝ P

πω2
0

exp[−2(x2 + y2)

ω2
0

], (4.2)

where P is the power of the beam and ω0 is the waist. The solution to the surface temperature
profile is evaluated using cylindrical co-ordinates (ρ,ϕ,z) due to the shape of the fibre using
the appropriate Green function [72]

T (ρ, z = 0, τ) =
P (1−R)

π3/2

√
D

κ

τ∫
0

exp
[
− ρ2

4Dt+ω2
0/
√
2

]
t1/2(4Dt+ ω2

0/
√

2)
dt, (4.3)

where τ is the pulselength, D is the diffusion constant D = κ/ρC. The temperature at the
centre of the beam is given by [72],

T (ρ = 0, z = 0, τ) =
(1−R)P√

2π3ω0κ
arctan

√
t

τ0
, (4.4)

where τ0 is the diffusion time τ0 = ω2
0/2D. The material from the fibre will thus be removed

predominately from the centre of the incident laser beam. Using a parabolic approximation
for the central temperature T (ρ, τ) ' T (0, τ)(1 − ρ2/ω2

0), the expected ablation structures
will have a near gaussian shape [72]. These near gaussian ablation structures are then
approximated to be spherical near the centre of the structure as the ROC variation is small
in this area (see section 4.3). To achieve these ablation structures with high quality and
previously mentioned specifications, laser parameters such as beam waist, power and pulse
duration τ , must be carefully chosen and very well controlled. This will allow the ablation
process to be in the regime of evaporation with a smoothing effect due to surface tension,
reducing surface roughness. The created geometries are exponentially dependent upon the
control parameters, P, ω0 and τ. For a more complete analysis of the complex processes that
occur for CO2 laser ablation of silica surfaces, refer to [72].

4.1 Fibre Imaging and Machining System - FIMS

Our experimental setup for the FIMS incorporates a CO2 laser ablation system for fibre
machining and a laser interferometry imaging system for real-time fibre indentation analysis.
The experimental setup was constructed as shown in Fig[4.1].
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Figure 4.1: FIMS experimental setup. This system comprises of two subsystems, the CO2 laser
ablation system and laser interferometry imaging system. The CO2 laser ablation system starts in
the top right corner with the water-cooled Synrad Firestar v30 CO2 laser. Following the path of the
beam left out of the laser is M0 which is a silicon coated mirror to guide the beam into the Brewster
attenuators. The beam passes through BP1 and BP2 which are the Brewster attenuators which
control beam power and polarisation. The beam exits BP2 into the beam expander BX which alters
the size and position of the beam waist. The beam then reflects from M1 which is a silicon coated
mirror onto M2 which is a λ/4 reflecting phase retarder for conversion of linearly polarised light into
circularly polarised light. The CO2 beam then passes through CO2 OBJ which is the aberration free
focussing double lens for beam focussing onto the fibre, with a working distance of 20.5mm. The
laser interferometry imaging system starts in the lower right corner with a HeNe laser (632.8nm)
coupled into the system with the fibre coupler, FC, which incorporates a focal screw and polariser
for maximum interference contrast. The beam then impinges on the large fused silica beamsplitter,
BS, used to create the two arms of the interferometer. The split beams are reflected off the silver
mirrors M3 then M4. The beams travel towards the beamsplitter/mirror combination, BSM (see
section 4.2.1). The beams are collected by COBJ which is a Mitotuyo microscope objective with a
50x magnification. Finally, the camera is a DSLR Cannon CCD camera for image capture of the
fibre facet.
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The most notable and novel aspect of this design, utilises an unusual beam splitter and
mirror combination (BS/M) to perform interferometry on the cleaved fibre facet for inden-
tation analysis. This unique combination serves twofold. It reduces the size of the interfer-
ometer as to fit in the available working space as well as to characterise the indentations in
situ without the need to remove the fibre.

4.2 CO2 Laser Ablation System

This experimental setup employed the use of a pulsed 10.6µm CO2 laser system for the
indentation machining on the fibre end facet. The model of laser used was the Synrad Firestar
v30, water-cooled CO2 laser producing 30W, horizontally polarised, 10.6µm laser radiation.
To produce fibres with low surface roughness, small ROC and non-elliptical indentations,
key parameters such as laser power, pulse duration, beam waist and polarisation must be
controlled. Power is of critical importance to this type of procedure. As such, a careful
choice of laser power is required to create indentation with different characteristics.

In this experimental setup, laser power was controlled by beam attenuation. Attenuation
of the beam was accomplished by the use of two coupled, water-cooled, ZnSe coated, Brewster
window attenuators supplied by ULO optics. These brewster attenuator work using the
brewster angle principle whereby transmission of the beam is dependent upon the incident
polarisation compared to the ZnSe coated window titled at the brewster angle. By coupling
two attenuators together, the first attenuator acts as the main power attenuation for the
beam while the second attenuator, while still attenuating the beam to a lesser extent, sets
the polarisation angle of the beam. This polarisation becomes important for conversion into
circularly polarised light.

In the past, when machining with CO2 laser based systems, it was found that material
being machined responded differently to the polarisation of the laser radiation. Figure 4.2
shows a cut made with linearly polarised light as well as by circularly polarised light.

Figure 4.2: Two cuts produced by a CO2 laser system, The left figure shows a cut made by
linearly polarised light while the right shows a cut made by circularly polarised light. Taken from
[73].
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This clearly shows that circularly polarised light produces better results. This result
occurs for linearly polarised light due to the increasing angle of incidence of the beam as the
cut is made. This means that one polarisation axis is reflected more than the other, depend-
ing on the direction of the cut. This leads to a reduced cut quality due to differing energy
deposition into the material [73]. Circularly polarised light ensures that equal amounts of
both polarisation axes are experienced, regardless of orientation, ensuring uniformity. For
this reason, a λ/4 reflecting phase retarder is included in the experimental setup. However,
for effect use of the phase retarder, the incident beam path must be 450 to the phase retarder
as well as the incident polarisation must be 450 to the phase retarder’s axis of rotation from
the normal. This design principle is shown in Fig[4.3].

Figure 4.3: Silicon λ/4 Phase Retarder function. The incoming light must have a 45 degree
incident angle with linear polarisation orientated 450 to the axis of rotation of the phase retarder
from the normal. Taken from [73].

The use of circularly polarised light also eliminates non-paraxial focussing issues [74]. By
utilising circularly polarised light, the polarisation vector is rotating so no preference is given
to any one polarisation vector. This ensures that the indentations are nearly circular which
is essential for effective microcavities. To produce small ROC indentations, focussing of the
laser beam is required. The CO2 laser produces a beam waist on the order of ∼2.5mm, thus
the beam requires a focussing mechanism to reduce the beam waist to near the wavelength
of the light used. As such, a beam expander and an aberration corrected, aspheric double
focussing lens assembly are incorporated. The beam expander, as the name suggests, expands
the beam before focussing through the double lens. This allows the lenses to reduce the
beam waist due to the larger incident beam size. With an aberration free lens assembly and
a working distance of 24mm, this ensures most optical aberrations are removed so that the
indentations are not distorted. To finally machine the indentations on the fibre facets, short
pulses of laser radiation is used to control the amount of radiation released as to not damage
the fibre. The duration of these short pulses are controlled by the application of voltage
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to the laser RF controller, which in turn drives the RF oscillator which directly stimulates
the CO2 gases. Thus, a digital signal generator is employed which sends a single square
wave pulse of set duration to the RF controller. Pulse durations as small as 100µs could be
attained. With pulse duration, power, and beam waist control, indentation characteristics
such as ROC and depth can altered to meet desired applications.

A consideration of large importance when attempting to fabricate fibre cavities using this
technique is ellipticity. The main reason for ellipticity in the indentations is the presence of
an astigmatism in the beam profile. This results in different intensities between the two axes
along the beam, such that the intensity profile is elliptic rather than circular. Therefore, the
beam profile of the laser was tested and analysed for determination of the beam astigmatism.
This was performed by incrementally moving a razor blade across the beam cross section
and measuring the power in both the horizontal and vertical directions. The results of this
profiling is shown in Fig[4.4]. It should be noted here that we used a beam expander to
increase the size of the cross section.

Figure 4.4: CO2 beam profile. The error function is fitted to these profiles to extract the beam
profile.

The beam waist was extracted from the beam profiles by applying the gaussian error
function [75]. This gave a beam waist of 6.6mm and 7.2mm in the horizontal and vertical
axes respectively. This clearly shows that an astigmatism is present and thus will affect the
ellipticity of the indentations. However, this was mostly compensated for by a repositioning
of the fibres along the beam path to find a position where the effects of the astigmatism
are minimal. This position can be found by analysing the ellipticity of the indentations.
Analysing the fibre indentation ellipticity was performed by first incrementally displacing
the fibre shooting position in the direction of beam propagation i.e. moving away from the
beam focus. The ellipticity of the indentations created at each incrementation can thus be
calculated through the ratio of the ROC of the horizontal axis to the ROC of the vertical
axis as the axes are rotated around the indentations,
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Figure 4.5: Ellipticity as a function of focal displacement. The ellipticity becomes worse as the
value moves away from unity.

For the least ellipticity, a position with a value as close as possible to one must be used.
Fig[4.5] shows that an ellipticity of 1 can be achieved at displacement of ∼0.87mm. Thus,
the fibre machining position was moved to coincide with the this value. However, by shifting
the fibre machining position away from the beam focus ω0, the beam waist will increase in
size as dictated by,

W (z) = W0

√
1 +

(
z

z0

)2

.

This change in beam waist will affect indentation geometries for a given set of laser pa-
rameters. This deviation, however, can be mostly compensated for by altering these laser
parameters.

4.2.1 Laser Interferometry Imaging System

In a normal interferometer, the beamsplitter equally splits the intensity of the incident laser
beam into two perpendicular arms. In Fig [4.1], the large fused silica beamsplitter after the
fibre coupler, produces two horizontally separated parallel beams via internal reflection of
the beamsplitter shown in Fig[4.6].
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Figure 4.6: The laser interferometry imaging system. The large beamsplitter creates two beam
paths of different intensities. The two beam paths recombine after the BS/M combination where
both beams now have the same intensity.

Theses two beams, however, are of different intensities as the main portion of the light
is transmitted at the surface (∼ 96%). These strong and weak intensity beams, are guided
into the BS/M combination which is angled at 45o to the incoming beams, so that the strong
intensity beam is incident on the mirror and the weak beam is incident on the fused silica
beamsplitter. The beamsplitter transmits the the weak intensity beam while the strong
intensity beam is reflected perpendicularly into the beamsplitter and partially transmitted
through to the fibre facet. The strong intensity beam is reflected from the fibre facet (mea-
surement beam) returns to the beamsplitter where it is partially reflected and combines with
the weak intensity beam (reference beam), thus producing an interference pattern image of
the fibre facet, which is captured by the CCD camera. The images are later analysed in
a custom Python Programme (see section 4.3). An important consideration must be made
with regard to the final intensities of the two beams to achieve maximum visibility, thus,
both beams must have the same intensity when they recombine. In the case for this setup,
the number of reflection off both the beamsplitters and the fibre facet must be taken into
account. Since both beamsplitters and fibre is composed of fused silica, the reflections off any
of these surfaces can be considered to have the same loss (∼ 4%). In the case of the strong
intensity beam, there are only two reflections along the beam path, one from the fibre facet
and the other from the BS/M combination. The weak beam also undergoes two reflections
along its beam path, inside the first large beamsplitter. At the other points were the two
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beams interact with the beamsplitters, they are transmitted through the beamsplitters. In
this case, each beam is transmitted through at three places. So with equal number of reflec-
tions of both beam paths, this gives two equal intensity beams of 0.963 x 0.042 ' 0.14% of the
initial laser intensity. It should be noted that clipping losses at the fibre i.e the beamspot is
larger than the fibre facet area, as well as dispersion have been neglected in this calculation.

For accurate and reliable measurements with interferometry, visibility of the interference
fringes is of significant importance. This requires that the measurement and reference beam
intensities must be equal. The large silica beamsplitter is used to creates two beam paths.
However, the intensity of the beam paths are dependent of the polarisation orientation of the
incident laser radiation. This is due to the reflected intensity dependence upon polarisation.
This requires that the incident polarisation must be orientated such that both beams paths
have equal intensity at the second beamsplitter. This was experimentally achieved through
the use of a linear polariser situated just after the fibre coupler (see Fig[4.1) as the HeNe
laser used in this setup is un-polarised.

Figure 4.7: Visibility as a function of polariser orientation.

As shown from Fig[4.7], the best visibility of 0.61 was achieved. Fringe visibility was
calculated using the following equation,

V isibility =
Imax − Imin
Imax + Imin

,

where Imax and Imin are the respective maxima and minima intensity of the interference
fringes. These intensity values were collected using a the pixel intensity values from images
of interference fringes from a cleaved fibre. To ensure the best image contrast for the most
reliable interference fringe detection, several camera settings were tested to produce an image
of the interference fringes with the best contrast. The camera settings, while not having a
direct effect upon the actual visibility, artificially ‘improve’ the contrast between the fringes
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for later analysis. Previously, the laser intensity was optimised via a linear polariser to
produce a visibility of 0.61.

Figure 4.8: Interference visibility as a function of ISO (sensitivity) camera settings for four
different shutter speeds. Due to shorter exposure times, brightness of the image is slightly reduced.

In Fig[4.8], the visibility clearly increases for decreasing sensitivity (ISO) and shutter
speeds. This suggests that the camera CCD is saturating at high sensitivities and longer
exposures. Using this data, visibility was further increased to 0.91 through changes to camera
settings, with the best settings found at an ISO (sensitivity) value of 1600 and a shutter
speed (exposure time) of 1/13 seconds.

For the BS/M combination to work effectively, the beamsplitter and mirror must be
perpendicular to each other and to the horizontal plane, as well as, 450 to the incident laser
beam. These requirements are to guarantee that the two different intensity beams overlap as
they pass through to the CCD camera, ensuring maximum fringe visibility. Several design
iterations culminated in a final design shown in Fig[4.9]
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Figure 4.9: BS/M combination Holder. The four holes in the base are for screws to attach the
holder to the attocube nanopositioner.

Figure 4.10: BS/M combination complete holder mounted on an Aluminium block. The third
nylon screw can be seen on the right side of the holder.

The three-sided slot provides a housing for the beamsplitter, the fourth side remains
exposed to allow easy of manufacture and for two small dowel pins to be inserted into the
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pillar to provide a ‘seat’ for the beamsplitter. On the exposed side of the slot, a retaining
plate is clamped down onto the beamsplitter as shown in Fig[4.9]. This retaining plate is
fixed by one metal screw underneath and two nylon screws. The metal screw mostly holds the
beamsplitter in place, while the two nylon screws secures the beamsplitter. These two nylon
screws would also serve as a means to align the BS/M combination. A third nylon screw
was inserted into the opposite side of the recess later to provide sufficient leverage for good
alignment. The bottom half of the mirror recess was retained to provide the perpendicular
orientation for the mirror, with the top half removed for fabrication simplicity.

To mount this holder so that the BS/M combination could be easily removed for fibre
machining and replaced for imaging and alignment, a (attocube ECS3030/AL/NUM/RT
closed loop) nanopositioner stage mounted on an Aluminium block was employed. With
the closed loop feature of this computer-controlled positioner, the BS/M combination can
be removed and returned to it’s necessary imaging position with sub-nanometre precision.
This ensures reliable imaging of the fibre for analysis as well as reproducible alignment of
the fibre to the CO2 laser.

The images produced by our setup are shown in Fig[4.11].

Figure 4.11: Images of fibres using our interferometry system. The left image shows the fibre
with the weak intensity beam (reference beam) blocked. The right image shows the reference beam
unblocked, with the resulting interference pattern.
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4.3 Fibre Indentation Analysis

Fibre indentation characterisation is performed by pixel analysis of CCD images of the
interference patterns in a custom Python programme. The false colour images employed
by the Python programme interface shown in Fig[4.12], are a graphic representation of the
topography of the fibre facet due to constructive and destructive interference of light reflected
from the fibre facet.

Figure 4.12: A false colour interference image for analysis within the Python progamme inter-
face.

Constructive interference occurs only when the difference of the phases of two overlapping
EM waves are zero. Similarly, destructive interference only occurs when the phase difference
is exactly π or λ/2. Because the total optical path length is twice the distance between the
fibre and BS/M combination, this means for successive maximums and minimums of the
interference patterns, there is a λ/4 difference in depth. This is the principle on which this
programme operates.

After fibre indentation machining, the captured CCD image is imported into the Python
programme (see Fig[4.12]). As explained at the beginning of this chapter, the concave
indentation will have a gaussian form. As such the profile of the indentation is not spherical
and varies in ROC. However, at the centre of the profile, the ROC variation is small, and as
such, can be approximated to being spherical, thus giving an ROC for this mirror [76].
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Figure 4.13: A zoomed graph of a Gaussian profile (red) compared to a circle at x=0. Over a
small region, the ROC of the guassian profile can be approximated by a circle. Taken from [76].

The ROC is therefore calculated by the following; first, consider the general form of a
Gaussian function and the equation for a circle,

z(x) = −Aexp
[
−(x− x0)2

2σ2

]
(Gaussian), (4.5)

z(x,R) =
√
R2 − (x− x0)2 (Circle). (4.6)

The second derivatives with respect to x of both functions are taken and equated at x = 0.
This is not done with the first derivative as this will simply yield the result that the gradient
of both functions is equal to zero,

∂2z

∂x2
=
A

σ2

(
1− (x− x0)2

σ2

)
exp

[
−(x− x0)2

2σ2

]
(Gaussian), (4.7)

∂2z

∂x2
=

R2

(R2 − (x− xo)2)3/2
(Circle). (4.8)

Equating eqs. (4.7) and (4.8) at x = 0 gives,

R =
σ2

A
, (4.9)

where R is the ROC at the centre of the Gaussian profile and 2σ is the diameter of
the indentation and A is the depth of the structure. Analysis begins with the programme
properly configured to the correct pixel size and wavelength. The pixel size is adjusted using
the known diameter of the fibre (125µm). The illumination wavelength is 632.8nm provided
by a HeNe laser. Within the interface, the white cursor is placed over the indentation and
the radius adjusted so that the cursor encapsulates the indentation as seen in Fig[4.14].
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Figure 4.14: Fibre indentation inside white circle cursor for analysis

At this point, the programme attempts to determine the positions of relative maximum
and minimum intensity which is indicated by red (maximum) and green (minimum) cross
indicators shown in Fig[4.15]. The programme takes into account all the data points along
the plot and attempts to extract the maximum and minimum values. However, some user
input is needed to ensure that interference, rather pixel-to-pixel maximums and minimums
are found for analysis.

Figure 4.15: Pixel intensity values for the horizontal axis. A similar window also opens for the
vertical axis.

Within these newly opened windows, the user has a their disposal, the spline error and
integration width options to correctly identify the maximas and minimas. The spline error
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defines how much deviation the programme is allowed shift the indicated relative maximums
and minimums indicators, while the integration width allows the program to ‘smooth’ the
image taking an average value over several pixels. Both these settings are modified so that the
relative maximum and minimum indicators are correctly placed over respective maximums
and minimums of the fringes. These values are kept as low as possible for the highest
accuracy. However, at very low settings and depending on the quality of the images, the
programme will detect individual pixels and allocate data points to them which will clearly
give a false reading. With the correct data points, the third window (see Fig[4.16]) displays
the Gaussian profile fitting for both axes. Here, the programme produces a Gaussian profile
based on the λ/4 spacing between successive maximums and minimums and calculates the
ROC, radius (σ) and depth calculations using eq.(4.9). A quadratic fit is also given as in some
cases for larger ROC, this fit gives a higher confidence value for the ROC as there typically
fewer data points for a satisfactory gaussian fit. However, it should be noted that this type
of fitting typically gives and over-estimation of the ROC. As a means for determining the
ellipticity of the indentation, the analysis axes can be rotated allowing the ellipticity to be
calculated by the aspect ratio of the largest ROC with the smallest ROC at a given axis
rotation.

Figure 4.16: Gaussian profile fitting to data points. ROC, radius and depth calculations are
given for both Gaussian (red) and quadratic (blue) fits. A similar graph is also given for the vertical
axis. For this particular fibre the ROC was found to be 23.8µm with a depth of 1.18µm on the
horizontal axis and 27.6µm with a depth of 1.21µm on the vertical axis.



50 Fabry-Pérot Fibre Microcavity Fabrication

4.3.1 Multiple Fibre Holder

To facilitate production of large numbers of fibres in a single production run, a fibre holder
that could hold sixteen fibres was designed and is shown in Fig[4.17]. Fabricated from
Aluminium, this would allow successive machining of sixteen fibres without the need to
individually handle each fibre. This holder design is able to also hold the fibres for the DBR
coating process and as such, is bead blasted to reduce flacking of material from the DBR
process. The holder utilises 1.6mm diameter teflon tubes with a hollow center which allows
the fibres to be held without breaking them. The teflon tubing are feed into the drilled bores
and clamped in place by small screws. Teflon is used for minimal outgassing in the DBR
coating process.

Figure 4.17: Fibre Holder for sixteen fibres protected with teflon tubing and secured in place
with screws. This was designed using CATIA design programme and machined at Macquarie
Engineering a Technical Services (METS).

To provide this fibre holder with the necessary positioning provision, a large 3-D trans-
lation stage mounting was designed and is also constructed out of Aluminium. This design
employs commercially available X-Y and single Z axis translation stages to provide quick and
precise positioning of the fibres for machining in a highly stable mounting. For transporting
and storing these fibres once they have been machined, six fibre holders are secured on an
Aluminium disk which also serves as the platform from which the fibres will be coated (see
Fig[4.18]).

To transport these fibres to the coating facility, a travel holder was deigned and con-
structed out of High Density Poly Ethylene (HDPE). This material is chosen due to very
low outgassing and minimal loose particle matter qualities.
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Figure 4.18: Fibre Transport Holding plate. The plate also serves as the platform for the DBR
coating process.

Figure 4.19: The complete assembly of the multiple fibre holder with fibres ready to be sent
for coating.

4.4 Distributed Bragg Reflectors (DBR)

After machining the fibres, they are dispatched to Laseroptic GmbH Germany, to be coated
with layers of dielectric material to form highly reflective mirrors (99.995%) required for the
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cavity. These coatings are more commonly known as Distributed Bragg Reflectors (DBR)
and are crucial to ensure high finesse, thus large Q-factors. The concept behind the operation
of the DBR is similar to that of thin film reflectors. When light meets the interface between
a low refractive index material and a higher refractive index material, some light is reflected
and some is transmitted. The reflected light, however, has a π phase shift imparted on it.
If the transmitted light meets a third, higher refractive index material, the reflected light
will also gain a π phase shift. If the materials are designed to have a thickness equal to a
quarter of the effective wavelength of light in each material i.e. λ/4n, all the reflected light
will constructively interfere. In the case of DBRs, several layers of alternating refractive
index dielectric material is used to the point that no light penetrates through the stack and
so the reflected light back into the cavity is near unity (see Fig[3.10]). However, the DBR is
only effective over a range of wavelengths centred at λ0. This is the so called “stop band”
[77] and is a function of the number alternating layers.

A parameter of great importance to any experimentation with polaritons is the require-
ment of large electric fields inside the cavity to increase the coupling strength ‘g’. This
enforces the need to engineer the electric field distribution inside the cavity. The electric
field inside the cavity will depend strongly on the construction of the DBR. The electric
field distribution can be described using the transfer matrix method [78]. Considering a
homogeneous, arbitrary planar structure in one dimension, the electric field of the forward
propagating (E1) and back reflected (Er) electric fields at the boundary can be described as
a two dimensional vector, [

Er
E1

]
, (4.10)

When both boundaries of this structure (see Fig[4.20]) are considered, the counter-propagating
electric fields on both sides can be defined by solving the Maxwell equations across the struc-
ture.

Figure 4.20: Transfer Matrix approach. The externally propagating fields evolve after passing
through the planar structure.
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This will result in a linear relationship of the electric field at both boundaries z1 and z2
given by [78], [

E
(2)
r

E
(2)
1

]
=

[
M11 M12

M21 M22

] [
E

(1)
r

E
(1)
r

]
, (4.11)

with the matrix M known as the transfer matrix. For the DBR, each layer possesses a
transfer matrix. The simple matrix multiplication of all these matrices give a final transfer
matrix for the entire structure and hence the electric field inside the cavity (see Fig[4.21]).

Figure 4.21: The electric field distribution using the transfer matrix method for a solid state
microcavity. Taken from [79].

For the fibres that we produced, it was chosen that the DBR coatings will consist of 33
layers of Tantalite/Silicon dioxide (Ta205/SiO2) dielectric material with the stop band centre
wavelength of 830nm at normal incidence shown in Fig[4.22].
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Figure 4.22: The function of the Ta205/SiO2 DBR coating. The red curve shows transmission
and the blue curve shows reflection.

The electric field distribution inside the DBR coating and cavity is shown in Fig[4.23],
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Figure 4.23: Electric field distribution for the dielectric DBR coating. The blue line shows the
electric field inside the DBR and the red line shows the DBR profile.

and finally, the absolute transmission is shown in Fig[4.24].
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Figure 4.24: Transmission of the DBR coating vs. wavelength. At our operating wavelength
of 830nm, transmission is approx 15ppm.

With the information provided by transfert matrix calculations (see Fig[4.24]), the trans-
mission at 830nm is T =15ppm. We also estimate the absorption and scattering losses to
be A ∼20ppm of S ∼20ppm respectively. Excluding clipping and surface roughness losses,
these values give an estimate for the expected cavity Finesse of ∼57000.
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Results

This chapter presents the results of the characterisation of the fibre indentations we have
produced with our FIMS setup. We will first describe the results of a surface characterization
using an atomic-force microscope (AFM). In the next step we will discuss the influence of
different control parameters on the fiber indentation geometries.

The fibres used in our machining process have been supplied to us by IVG Fibers and
have the following specifications;

Cu800 Single mode Multi-mode
Jacket Copper Alloy Copper Alloy
Wavelength Range 800-900nm 800-900nm
Mode Field Diameter 6±0.5µm Core diameter: 50µm
Cladding Diameter 125±1µm 125±1µm

A copper alloy jacket was chosen for these fibres as they will need to resist the DBR
coating process. However, these fibres must be stripped using a 70% nitric acid (HNO3)
solution.

AFM Characterisation

Atomic force microscopy (AFM) scans of some of our fibre indentations were performed to
provide a high resolution picture of the geometries we created. These scans, while highly
detailed, are time consuming and require substantial handling of the fibres after they have
been machined. It is for these reasons that a laser profilometry system was chosen which
provides real-time characterisation of the indentations without the need for external han-
dling. Therefore, these AFM scans are used only as a reference to indicate the accuracy and
hence validity of the laser profilometry setup. Fig[5.2] and Fig[5.1] show the AFM scans of
a fibre,
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Figure 5.1: An 80x80 µm AFM scan of a machined fibre facet. The smoothing effect of the
CO2 machining can be seen in the centre of the indentation.

Figure 5.2: AFM scan of the machined indentations. The radius of curvature can be extroplated
by taking a cut through the middle of the indentation.

With data points taken 80nm apart, these scans can be used to extract very precisely
the geometry of the indentations with a high degree of precision. Taking a cut through the
centre of the indentation produces a cross-section profile of the indentation shown in Fig[5.3].
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Figure 5.3: The indentation cross-section extracted from the AFM scan. The black curve shows
the data points, the red curve shows a gaussian profile fit and the blue curve shows a quadratic fit.

This profile has both a gaussian and quadratic profile fitted from which a ROC is ex-
tracted. Using the quadratic fit, we obtain an ROC=35.8µm. From the gaussian fit we find
that the depth and diameter of the indentation are A=0.7µm and 2σ=8.7µm respectively.
This result is compared with the laser profilmetry measurements shown in Fig[5.4].
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Figure 5.4: Laser profilmetry analysis of the fibre indentation used in the AFM reading. The
red curve is the gaussian fit and the blue curve is the quadratic fit.
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The results obtained from the laser profilmetry show that a quadratic fit yields an
ROC=36µm, and the peak-to-valley value extracted is 0.8µm. These values are in good
agreement with the AFM characterisation, which validates the optical characterisation of
the created indentations using our profilometry setup.
AFM scans such as the ones taken here, also allows surface roughness to be extracted. Sur-
face roughness is one of the key factors affecting the finesse and must be kept as low as
possible to reduce scattering losses. The RMS-surface roughness can be calculated by inte-
grating over the spatial frequency band of the Power Spectral Density (PSD) function given
by [80],

σ2 =

fxmax∫
fxmin

fymax∫
fymin

S(fx, fy)dfxdfy, (5.1)

where S(fx, fy) is the PSD function. The PSD function represents the spatial frequency
spectrum of the surface deviations. The spatial frequency band is selected such that the
lowest spatial frequency is limited to fmin = 1/Lscan where Lscan is the AFM scan length.
The largest spatial frequency satisfies fmax = 2/λ, as higher frequencies do not contribute
to the scattering losses. At the time of writing, time limitations prohibited an analysis of
the surface roughness, however, this will be carried out in future work.

Created Fibre Indentation geometries

We present here the created geometries’ dependence with the experimental control param-
eters. Characterisation of the parameter space for the indentation involved three degrees
of freedom which were the attenuation of the laser power, pulse duration and displacement
from the beam focus. Fig[5.5] and Fig[5.6] show the depth and radius σ values for constant
power and beam waist. The shallow depth of the indentations of ∼0.8-1.8µm are ideal as this
allows the ability to create short cavities thus enabling a further reduction in mode volume
(see eq.(3.28)) and reduced clipping losses [76]. For a more complete analysis of clipping
losses in these types of system, refer to [81]. However, in shorter cavities, Q-factor values
will diminish (see eq.(3.33)) and must be considered in the final experiment. The σ values
give the radius of the indentations which, preferably, need to be as large as possible in order
to limit clipping losses for longer cavity lengths [76]. The ROC values as a function of pulse
duration for individual fibres are given in Fig[5.7].
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Figure 5.5: Indentation depth as a function of pulse duration for constant CO2 beam waist
and power. The small depth of the indentation allows the possibility for small cavity lengths.

Figure 5.6: σ as a function of pulse duration for constant CO2 beam waist and power. Larger
σ (radius) values are preferable to ensure complete intra-cavity light collection.
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Figure 5.7: ROC measurements as a function of pulse duration for constant CO2 beam waist
and power. The red curve is an exponential fit to the data.

The smallest ROC values gained were ∼10µm with an estimated uncertainty of ±18-
20% for all ROC values. This estimate for the uncertainty originates from the variation
of laser power output of ±3-5% and the maximum fitting errors of Python program of
approximately ∼15%. Increasing the pulse duration further than those indicated, resulted
in excessive heating and rippling of the fibre surface. It should be noted that in the actual
production run, two fibres were made using the same parameters which did not allow for
rigorous statistically analysis of the uncertainties.

Figure 5.8: Interference image of fibre indentation. This indentation has an ROC=9.7µm,
Depth=1.07µm and σ=2.95µm. The pulse duration was 265µs.



62 Results

The smaller ROC values we obtained with this setup compare favourably with those
produced in similar systems which use fused ion beam milling on planar substrates [82].
With the ability to create indentations with ROCs smaller than the intended 10µm, large
ROCs indentations are also explored through displacement of fibres from the beam focus.
By displacing the fibres out of focus of the CO2 beam, the transverse beam size increases,
flattening the intensity profile, thus enlarging the ROC. For constant attenuation and pulse
duration, the ROC values for increasing displacement from the focus is shown in Fig[5.9].

Figure 5.9: ROC as a function of displacement from the CO2 focus. ROC is generally larger
for increasing distance from the focus of the CO2 laser beam. The pulse duration is 500µs.

Generally, there is a trend for larger ROC with increasing displacement, however, due
to beam astigmatism, ellipticity begins to deteriorate as the fibre is moved away from the
focus. As a means of overcoming this limitation, beam expander manipulation is used to
changed the beam waist size without changing the position of the beam focus. The ROC
values for a another beam expander setting are given in Fig[5.10].
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Figure 5.10: ROC as a function of pulse duration. The beam expander is moved from its ideal
smaller ROC position. The red curve is an exponential fit to the data. A slight increase in power
(7% compared to the previous data sets) is required to compensate for the larger transverse beam
size.

It should be noted for Fig[5.10], the ROC values are calculated using quadratic fitting.
This fitting is used in this case due to the lack of data points extracted from the interference
image due to the very shallow structure created for these particular parameters. However,
there is a clear increase in ROC for decreasing pulse duration. This defines the range of
ROCs accessible in our setup to 8-150 µm. In this case, the ROC values are too large for our
needs. Further beam expander adjustments were made by moving back closer the original
setting such that ROC values in the 20-60µm range were achieved (see Fig[5.11]). As a point
of interest, several fibres were machined with multiple indentations as shown in Fig[5.12].

Figure 5.11: Interference image of a large ROC indentation. ROC=29.1µm, depth=1.07µm,
σ=5.6µm. pulse duration=510µs.
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Figure 5.12: Multi-structure indentations. The fibre on the left has a large diameter indentation
in the centre, surrounded by four smaller diameter indentations, with different spacing from the
centre. The other two fibres show a triplet and doublet of indentations centred around the fibre
core.

These structure have never been attempted in fiber-microcavity studies before, and it is
anticipated that using these multiple indents it may be possible to create a small array of
coupled cavities.

5.1 Next Steps

At the time of writing, we have prepared, machined and shipped the fibres which are currently
undergoing the DBR coating process. Upon receiving the fibres, experimentation will take
place in our low-temperature cavity lab at CSIRO Lindfield. We will first characterize the
coatings once the fibers are returned. Potentially the fibers will have to be annealed to
make sure the coatings reach their specifications. Once this is done, we will use the fibres
to study mechanically tunable polariton systems with the particular goal of reaching the
regime of strongly interacting polaritons. Based on the parameters of the fibre mirrors we
have fabricated we can estimate the expected interaction strength for our polaritons. Using
an estimated interaction constant of κint=10µeV/µm2 for the Quantum well samples, we
estimate the nonlinear co-efficient as function of indentation ROC for constant cavity length
using the definition,

ωnl =
κint

λ
√
L(R− L)

, (5.2)

where R is the ROC of the mirror, L is the cavity length and λ is the wavelength.The
resulting graphs are shown in Fig[5.13].
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Figure 5.13: The nonlinear co-efficient as function of fibre indentation ROC at three different
constant cavity lengths of 1, 1.5 and 2 µm.

The values given here for the nonlinear co-efficient should be seen as an upper limit for
this parameter. It is uncertain at this time if these results are adequate to reach the regime
of strongly interacting polaritons and will depend on the quality of the externally-sourced
narrow linewidth quantum well samples. However, comparing these values of the nonlinear
co-efficient to other literature [82], values of 6.8µeV are achievable using our estimated
interaction constant and cavity length of 1µm. While our results are inferior, they are
adequate, provided that the QW linewidth is sufficiently small. The experiment will employ
these samples centred at 830 nm and cooled down to liquid-Helium temperatures. In order to
probe potential quantum correlations between polaritons, we will carry out autocorrelation
measurements determining g(2)(τ) both in resonant and photo-luminescence spectroscopy.
The sample will be held inside a cylinder suspended at the end of a cage system which is
called a “cane”. Photographs of the cane and the cylinder with the sample and the cavity
are shown in Fig[5.14].
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Figure 5.14: The left images shows the “cane”. The cylinder at the end of the cane (right
image) houses the sample and the fibre microcavity. The light from the cavity is collected through
a lens at the top of the cylinder and propagates up the cane through a vacuum window at the very
top. The light is then collected and sent to the spectrometer for analysis. The relative position
of fiber tip and sample is controlled through a stack of low-temperature slip-stick nanopositioners
from attocube. The whole dewar is standing in a home-built acoustically shielded box shown in
the background of the left photo.

The fibre is fed down the cane to the cylinder through one of the support tubes. In the
cylinder, the fibre is held in place by a V-groove holder and is facing back up towards the
top. Three low temperature, nanopositioning attocube translation stages are used to control
the accurate alignment of fibre and sample. The sample is suspended above the fibre and
the light transmitted by the cavity travels through the top of the cylinder, is collected and
focussed by a lens and sent up through the middle of the cane. The light is then extracted
from the cane through the top port. The entire device is then placed inside a liquid-Helium
dewar and cooled down to 4K. The dewar itself is placed inside a acoustically insulated booth
shown in the background of Fig[5.14].

The laser sources available are a pulsed Ti:Sapphire laser (Coherent, MIRA) capable of
operating both in CW and picosecond mode, as well as a widely tunable CW Ti:Sapphire
laser (M Squared, SOLSTIS). Both lasers can operate between 700nm and 1000nm, but will
be used in the 800nm wavelength range for the polariton experiments. Beam preparation
incorporates power stabilisation through the use of AOMs and electronic feedback loops.

Experimental measurements will include resonant probing, photo-luminescence spec-
troscopy and most importantly g(2)(τ) measurements. For resonant probing, the wavelength
of the cw laser is scanned across the polariton/cavity resonances and the intensity of the
signal transmitted through the system is detected using APDs. The MIRA (CW mode)
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will be used around 780nm to off-resonantly excite the polaritonic system for performing
photo-luminescence spectroscopy. The photo-luminescence signal is analysed using a high-
resolution spectrometer from ACTON with an integrated Princeton CCD camera. Auto-
correlation measurements of g(2)(τ) will be carried out using a Hanbury Brown and Twiss
interferometer setup as outlined in section 2.3. If necessary, the collected photons can be
filtered through the spectrometer before sending them for autocorrelation analysis. The
APDs from idQuantique have a timing resolution of 40ps and 7% efficiency at 800nm. We
also plan to image the back/plane of the polariton system using a CCD camera to gather
information about the spatial mode structure in the fiber cavity.
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Future Work

The present work on setting up a fibre machining system capable of producing large quantities
fibres with small curvature radii with direct capability to image and analyze the mirror
indents is a real technological advancement for the our group. This setup is the first of
its kind in Australia and gives the group a unique capability in the Australian scientific
community.

In terms of polariton research: with small curvature radii fibre cavities, there is a di-
rect route towards entering the regime of polariton blockade. Besides fibres, new samples
with very small amount of disorder will be sourced from LPN through a collaboration with
Arisitide Lemaitre, Alberto Amo, and Jaqueline Bloch. This should allow for clean studies
of polariton interactions (in particular polariton blockade) and for detailed studies of the
Feshbach resonance effect through correlation measurements. A fibre-cavity investigation on
Feshbach resonances could yield new insights since the Deveaud group used planar samples
in their study [83]. On a more practical side we plan to investigate an electrically driven
polariton laser with our fibre cavity system in collaboration with the LPN team. Next steps
will also include the study of light carrying orbital angular momentum and the potential
creation of quantum-Hall states of light [84] with our fibre cavity setup. Another direction
to explore is coupled cavities: the very preliminary multi-indent structures presented in
chapter 5 will be interesting to study. The goal here could be to create a small scale Tonks-
Girardeau gas of polaritons/photons as suggested in [85]. Once the optimal parameters for
reaching strongly interacting polaritons are found, integrated designs based on fibre cavities
and on-chip waveguides could be envisaged. Ultimately, the information gained with our
fibre-cavity setup could also be employed to design fully-integrated coupled cavity arrays on
a chip, similar to [86], for large scale quantum simulation with polaritons/photons [87].

Besides research on quantum-well polaritons, fibre cavities will also be used to study other
emitter systems. An immediate project involves the coupling of up-conversion nanocrystals
[88] to the fibre cavities in the quest for single-particle nanolasing. Another very active area
of research in the group are diamond-based colour centres, in particular NV centres and SiV
centres. While NV centers have been coupled to fiber cavities at room temperature [89, 90],
there is no report of low-temperature coupling, let alone of reaching the strong coupling
regime.

At present, the group is fabricating a second batch of fibre mirrors that will have a
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coating suitable for both NV centres and SiV centres. With our low-temperature fibre cavity
microscope, we will be ready to perform low-temperature cavity experiments immediately. In
particular, there is good prospect of reaching the strong coupling regime for SiV centres due
to their favourable optical properties [91]. In terms of NV centres coupled to fibre cavities,
there are ideas for building a fibre cavity quantum interface to optically interconnect distant
superconducting quantum chips [92].

In addition to the many research directions opened up within the group itself, other
researchers in Australia working on atomic physics experiments have already shown interest
in using our fibre machining setup to make fibres for atomic cavity-QED experiments. With
all of these prospects and open research directions, the fibre machining setup described in
this thesis will be a catalyst for many future experiments.



References

[1] H. Mabuchi and A. C. Doherty. Cavity quantum electrodynamics: Coherence in context.
Science 298(5597), 1372 (2002).

[2] H. Kim, R. Bose, T. Shen, G. Solomon, and E. Waks. A quantum logic gate between a
solid-state quantum bit and a photon. Nature Photonics 7, 373 (2013).

[3] D. G. Angelakis, M. F. Santos, and S. Bose. Photon-blockade-induced Mott transitions
and xy spin models in coupled cavity arrays. Phys. Rev. A 76, 031805 (2007).

[4] M. J. Hartmann, F. G. S. L. Brandao, and M. B. Plenio. Strongly interacting polaritons
in coupled arrays of cavities. Nature Physics 2, 849 (2006).

[5] A. Greentree, C. Tahan, J. Cole, and L. Hollenberg. Quantum phase transitions of light.
Nature Physics 2, 856 (2006).

[6] E. Jaynes and F. W. Cummings. Comparison of quantum and semiclassical radiation
theories with application to the beam maser. Proceedings of the IEEE 51(1), 89 (1963).

[7] A. Imamoglu, H. Schmidt, G. Woods, and M. Deutsch. Strongly interacting photons in
a nonlinear cavity. Phys. Rev. Lett. 79, 1467 (1997).

[8] K. M. Birnbaum, A. Boca1, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble.
Photon blockade in an optical cavity with one trapped atom. Nature 436, 87 (2005).

[9] B. Dayan, A. Parkins, T. Aoki, E. Ostby, K. Vahala, and H. Kimble. Photon turnstile
dynamically regulated by one atom. Science 319, 1062 (2008).

[10] A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic. Coherent
generation of non-classical light on a chip via photon-induced tunnelling and blockade.
Nature Physics 4, 859 to 863 (2008).

[11] A. Reinhard, T. Volz, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and
A. Imamoglu. Strongly correlated photons on a chip. Nature Photonics 6, 93 to 96
(2012).

[12] C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. M. Fink, A. A. Abdumalikov, M. Baur,
S. Filipp, M. P. da Silva, A. Blais, and A. Wallraff. Observation of resonant photon
blockade at microwave frequencies using correlation function measurements. Phys. Rev.
Lett. 106, 243601 (2011).

70



References 71

[13] T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and
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