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Abstract

GDP growth rate and inflation are two of the most critical issues facing China’s

economy. To improve the GDP growth rate and inflation forecasts in a data rich

environment, this thesis studies forecasting of China’s four leading macroeconomic

variables using six models. These variables are the consumer price index (CPI),

industrial production, electricity production, and producer price index:industrial

goods. The three factor models used are: the diffusion index (DI), factor-augmented

autoregressive integrated moving average (FARIMA) model and factor-augmented

vector autoregressive (FAVAR) model. The three univariate time series models are:

autoregressive model (AR), autoregressive integrated model and simple exponential

smoothing model. The predictors are summarised using a small number of indexes

constructed by principal component analysis and then are used to construct one-

,three-, and six-month-ahead forecasts using 36 predictors from 1997 through 2014.

Compared to benchmark AR forecasts, the forecasting results of the factor mod-

els showed that the DI and the FARIMA model generally do not improve fore-

casting performances for CPI, industrial production, and production of electricity

in one-,three-, and six-month-ahead. Rather, the FAVAR model yields significant

improvements over the benchmark AR model except for CPI in one-month-ahead

forecast. Another notable result is that the two wining models in three-, and six-

month-ahead forecasts: exponential smoothing and factor-augmented VAR model

essentially produce the naive forecasts except for PPI:industrial goods. This implies
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that the benefits of using complicated forecasting models such as diffusion index or

factor-augmented VAR model are minor; naive forecasts are sufficient to explain the

predictable dynamics of the CPI, industrial production and electricity production

in three-, and six-month ahead. Overall, this study provides interesting results on

forecasting China’s macroeconomy in a data rich environment.
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Chapter 1

Introduction

Even if growth moderates, China is likely to become a high-income econ-

omy and the world’s largest economy before 2030, notwithstanding the

fact that its per-capita income would still be a fraction of the average in

advanced economies. But two questions arise. Can Chinas growth rate

still be among the highest in the world even if it slows from its current

pace? And can it maintain this rapid growth with little disruption to

the world, the environment, and the fabric of its own society?

-China 2030: Building a Modern, Harmonious, and Creative High-

Income Society, the World Bank report 2012.

Economic forecasting is important for real-world decision-making. In this regard,

forecasting inflation is fundamental, since expectations of inflation affect central

bank decisions regarding the future path of monetary policy and, in turn, private

sector consumption and investment decisions1. Likewise, forecasting China’s eco-

nomic performances is important due to the major role of the China’s economy in

1By informing the public about likely trends in inflation, forecasts can influence expectations
and can therefore serve as a nominal anchor for example in the wage bargaining process or for
other nominally fixed contracts like housing rents or interest rates.
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CHAPTER 1. INTRODUCTION

global content.

China’s impressive economic performances have captured the world’s attention in re-

cent decades. However, questions and doubts have been raised about future China’s

economic activities. In particular the questions about whether the China’s economy

could have a hard landing or soft landing and concerns about property bubble are

continuously debated. Yet, there is no unambiguous consensus as to future trends

and movements concerning China’s economic activities; indeed, this unambiguous

consensus might be because there are no consummate and empirically testable fore-

casting models for China’s economy. This is proved by the existence of only lim-

ited literature about modelling and forecasting China’s economy, especially for post

global financial crisis period. Therefore, having a reliable and empirically testable

model for China’s economy is an immediate priority to enable the China’s govern-

ment to plan a soft landing and intervene in the property bubble.

Moreover, having a reliable and empirically testable forecasting model for China’s

economy is also vitally important for Australia. According to the Australian Depart-

ment of Foreign and Affairs and Trade (2014), China is by far the Australian largest

export market with total value of 84,963 million Australian dollar exported to China,

accounting for 28.1% of the total export value in the financial year 2012-2013. More

importantly, the total value of good exported to China constituted approximately

5% of total real GDP in year 2012-2013, which is an important and indispensable

source of Australian GDP. The global financial crisis hurt many countries includ-

ing American and UK and these countries suffered from the downturn of property

market, slow growth rate of GDP and high rate of unemployment. Australian, in

comparison, did not experience negative impacts from global financial crisis; in-

deed, according to Australian Bureau of Statistics (2014) the Australia even had a

real GDP growth of 5% per year over last the 5 year and this is surprising growth

of the Australian GDP has been contributed to by the mining sector boom. The

biggest of contribution of the mining boom in Australia is from exponential growth

13



of China’s economy. Therefore, the future trend as to whether the China’s economy

could have a hard landing is extremely important to Australian export sector and

economy activities and forecasting China’s economy is first necessary to predict this.

The objective of this study is to examine whether the large dimensional appropriate

factor model is a sensible way of forecasting China’s consumer price index (CPI),

industrial production, production of electricity and producer price index:industrial

goods (PPI:industrial goods). With recent advances in information technique and

data mining, it is possible to access thousands of economic time series data which

might be potentially useful for forecasting purpose. In this matter, it is of paramount

importance to develop an appropriate model within a data-rich environment which

allows analysts forecasting several leading China’s macroeconomic variables using

large number of predictors. The original motivations of this study are twofold:

(1) although there is extensively amount of literature on modelling and forecasting

China’s macroeconomic, those that use large number of predictors are rather lim-

ited, and (2) the concern the scepticism about the unreliability of China’s official

data. Given that the possibility of China’s statistical authority falsifying the official

reported output is relatively higher than in Western countries, the statistical factor

models ,in particular the factor-augmented vector autoregressive (FAVAR), are very

appropriate to model and forecast the China’s economy(Fernald et al., 2014).

Economic forecasting has a long tradition. Policy makers, central banks, the gen-

eral public and academics have all been interested in producing accurate forecasts.

However, traditional economic models, such as univariate time series and multi-

variate vector autoressive (VAR) models, are limited in the sense that they cannot

accommodate large numbers of time series. Stock and Watson (2002b) began a new

promising strand of forecasting literature in which they proposed a statistical factor

model the so called diffusion index (DI) forecasting methodology. The DI allows

analysts to forecast macroeconomic variables using large number of predictors and

conduct the forecasts in a handful manner. Stock and Watson (2002b) confirmed

14



CHAPTER 1. INTRODUCTION

the view that the use of a large number of data series significantly improves the fore-

casts of key macroeconomic variables significantly. Bernanke and Boivin (2003) also

stated that “Factor models provide a methodology that allows us to remain agnostic

about the structure of the economy.” Therefore, factor modelling provides potential

benefits to forecasting models by incorporating the structure of the economy into

models.

The DI forecasting methodology was first introduced by Stock and Watson (1998,

1999, 2002b) in which they used the static factor forecasting model or more com-

monly known as the DI forecasting methodology to forecast UK’s inflation and a

several leading US macroeconomic variables. After that, the DI has been eagerly

taken on board by extensive literature. For instance, Artis et al. (2005) used DI to

forecast UK inflatinon; Schumacher and Dreger (2002) used a dynamic factor model

to forecast German GDP growth rate; Forni et al. (2003) used 447 monthly macroe-

conomic time series to predict the main countries of Euro area industrial production

and the consumer price index. Factor model has also been applied to other fields.

Bernanke and Boivin (2003) applied FAVAR in estimating policy reaction functions

for the Federal Reserve Board in a data- rich environment.

With regards to applying factor model to China. The first attempt was on Mehrotra

and Sánchez-Fung (2008) who applied 15 models including the DI and the FAVAR

to forecast China’s inflation. Motivated by Mehrotra and Sánchez-Fung (2008), Lin

and Wang (2013) applied three dimensional reduction techniques including principle

component analysis (PCA) to construct three different types of factor-augmented

AR models and then used them to forecast China’s inflation for three-month, six-

month and twelve-month ahead. Although they found that all three factor models

outperform the benchmark autoregressive (AR) model, they studies have three lim-

itations that needs further research2

2Three shortcoming are:(1) the within-sample forecasting horizons are fixed. The common
forecasting literature, in contrast, conduct the forecasts in the way that augmenting the length
of within-sample-forecasting by one month for each forecast;(2) the CPI series in they study is
year-on-year based, which is not a perfect measurement for monthly change of CPI; and (3) the

15



This study aims to narrow the research gaps and limitations in Lin and Wang (2013).

The focus of this study is on the comparison of forecasting performances of six models

for four leading China’s macroeconomic variables for one-month, three-month and

six-month ahead3. This study collects 36 monthly macroeconomic time series that

represent an exhaustive description of the China’s economy including measures of

government activity such as government revenue and government expenditure; real

economic indicators such as industrial sales and production of electricity; financial

indicators such as money supply and interest rate; and trade activity such as import

and export.

Using relative mean square forecasting error (MSFE), this study made two important

findings. Firstly, the DI and factor-augmented autoregressive integrated moving av-

erage (FARIMA) generally do not contribute substantial improvements over bench-

mark AR forecasts except for PPI:industrial goods series. The FAVAR forecasts, on

the other hand, yield improvements with respect to benchmark AR forecasts except

for the CPI in one-month-ahead. In some case, improvements over benchmark AR

are substantial (at least 25% improvement by MSFE). This result implies that the

predictable dynamics of four China’s leading macroeconomic variables can be ex-

plained by the vector structure of lag factors and lag variables. Secondly, the naive

forecasts can sufficiently explain the predictability of CPI, industrial production,

and production of electricity series in three-month-ahead and six-month-ahead fore-

casting horizon. This is a rather surprising result because it essentially insinuates

that the best approach to predict CPI, industrial production and production of elec-

tricity three-month and six-month-ahead is today’s CPI, industrial production and

production of electricity.

This study is divided into five chapters:

CPI is not seasonally adjusted which might be heavily impacted by China’s New Year.
3Three univariate time series models are: (1) a well-defined AR model with the lag length of

AR model is chosen by AIC, (2) well-defined ARIMA model which orders of AR term and MA
term are chosen by AIC, (3) a simple exponential smoothing model. Three statistical factor models
which factors are estimated by PCA and selected by Bai and Ng (2002)’s information criteria
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CHAPTER 1. INTRODUCTION

Chapter 1 is the introductory part of the study and establishes the motivations

and significances of the study.

Chapter 2 presents and discusses the relevant literature which underpins the factor

forecasting models. The literature on econometric model of the China’s economy

is discussed in detail in order to find out the shortcomings of each paper and how

to improve them. The literature on the application of factor model is reviewed

extensively in order to see what previous research has concluded about whether

factor model can generate accurate forecasts than competing models.

Chapter 3 lays out the theoretical review of factor models and alternative rival

models. The focuses of this chapter are on underlying assumptions of factor models

and the form of factor forecasting methodology. Reviewing the assumptions of

factor models is important because it gives guidelines on how to transform data

appropriately in order to determine a true representation of factors. The form

of factor forecasting methodology provides forecasting equations that are used to

construct out-of-sample forecasts. This chapter also provides evaluation criteria to

examine the forecasting performances.

Chapter 4 discusses data in depth. This chapter begins with the motivations for

using the production of electricity and PPI: industrial goods. This is necessary

because the falsification of China’s official reported output in much of the literature,

for example Rawski and Mead (1998), Holz and Lin (2001b), and Nakamura et al.

(2014). PPI: industrial goods provides a measure of rate of inflation from producer

perspective. This chapter also presents a discussion on the process of transforming

each series including screening outlier, and whether a series should take the difference

or difference of logarithm and standardisation of transformed data.

Chapter 5 deal with the empirical work done for the study. This section begin

how to construct forecasts and how to compare forecasting performance based on

relative MSFE. The relative MSFE is computed relatively to the MSFE and MAFE

17



of the univariate AR model (so the AR forecast has relative MSFE of 1.00). In

depth discussion of empirical results is also presented in this chapter.

Chapter 6 concludes the study and discusses the future directions of research which

could further enhance the forecasting accuracy of China’s macroeconomic variables

in a data rich environment.
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Chapter 2

Review of the literature

2.1 Introduction

The empirical literature on modelling and forecasting China’s leading macroeco-

nomic variables using large number of predictors is rather limited compared to that

of Western countries. As China’s economy has experienced tremendous economic

reform and record-high GDP growth in past decades, the reform in 1978 progressed

the China’s economy gradually from an agriculture based economy to a commerce

and state-owned enterprises based economy. A so-called socialist market economic

system was established which means that the price of the majority of products are

demand driven and a small proportion of products are still supply driven (Adler,

2013). This rapid structural transformation makes forecasting China’s economy

more difficult than for Western economies. On top of that, the scepticism about

the unreliability of China’s official data also enhanced the difficulty of forecasting

China’s macroeconomic variables.

Section 2.2 reviews the literature concerning the modelling and forecasting of China’s

economy. To facilitate the need for forecasting and policy implications, it is necessary

19



2.2. REVIEW OF CHINA’S ECONOMETRIC MODELS

to define what is considered as an appropriate model for the China’s economy. An

appropriate model is guided by the main criteria that all behavioural equations

should be economically meaningful, all parameter should be time invariant, and

dummy variables should be used as rarely as possible Qin et al. (2007). These main

criteria provide the foundation to foundation to review and appraise the literature.

Section 2.3 presents a literature review concerning on the application of the statis-

tical factor model. With recent advances in information technology and statistical

theories, it is an inevitable fact that data will be available for many more series

over an increasingly long time span. As a result, there is increasingly a need for

information to mimic economic relationship. However, conventional univariate and

multivariate forecasting model such VAR models can not accommodate large num-

bers of predictors. The factor model summarises the large number of predictors into

a relative few number of factors. As such, it is capable of exploiting the information

in a large dimensional data while keeping the size of the forecasting model small.

2.2 Review of China’s econometric models

Academic literature on modelling the China’s economy has a long traditions on

macro-econometric research and is of great interest to economists and academia

alike. The first attempt to formulate a large, complicated and economic theory

based model started in the early 1980s, when the first macro-econometric model

was closely linked to the government project LINK (Qin et al., 2007). The model

was large in size and based on annual data. Models built using quarterly series

and following the dynamic specification approach were first experimented by the

Institute of Quantitative and Technical Economics of CASS. However, their models

are currently out of maintenance (Liu 2003). Existing dynamic specification of

models are described by Zheng and Guo (2013), Qin et al. (2007), Bennett and

Dixon (1996), Fernald et al. (2014), Lin and Wang (2013), Mehrotra and Sánchez-
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CHAPTER 2. REVIEW OF THE LITERATURE

Fung (2008), and many others.

The stated goal of econometric models is to model a state of economy using statistical

models such as time series models. Chow (1985) developed a crude model of China’s

economy which consisted of a consumption function and an investment function to

explain China’s national account identity having a constant annual price from 1953

to 1982. The model Chow used was two-stage linear regression in which in the first

stage he estimated a consumption function and an investment function then in the

second stage he combined them into national account identity. His findings are two

folds: (1) the data confirm Robert Halls version of the permanent income hypothesis

and the accelerations investment principle in China and (2) the model serves as a

crude model for further research. In addition, Chow (2010) reaffirmed that exactly

the same model can still successfully explain China’s annual data from 19781 to 2006

and the permanent income hypothesis and the accelerations investment principle

theory are still valid even after the great cultural revolution. His findings explained

China’s national income identity in a proper way but two primary shortcoming

are noteworthy. The first limitation is that the model serves no forecasting purpose.

Secondly, although Chows two papers are forerunners in the history of modelling the

China’s economy, the ordinary least square entails economic data are cross-sectional

and time uncorrelated; these are too strong assumptions in reality.

Based on key features of the Asian Development Bank, another macroeconometric

model of the China’s economy was conducted by Qin et al. (2007). The model

comprised household income and consumption function, investment, government,

trade, production, prices, money and the labour market. The authors used an

equilibrium-correction model to formulate all the behavioural elements which re-

flected the essence of a transitional economy such as China. Stochastic simulations

were performed to forecast a few key variables and empirical results showed the

1China implemented a policy called Reform and Opening which reformed Chinas economy from
a pure central plan economic towards to a mixed of market and central plan economy. This year is
important in the study of China’s economy partly because it brought the availability of economic
data
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2.2. REVIEW OF CHINA’S ECONOMETRIC MODELS

model is immensely useful to capture the stochastic variation of the China’s econ-

omy. However, although Qin et al. (2007)’s study is invaluable to measure and

forecast effects of stochastic shock on China’s economy, they model can not be used

to forecast future economic activity.

Zhou et al. (2013) predicted China’s CPI, growth rate of industrial added value,

exchange rate and money supply using the term structure of credit spreads. They

used the traditional Svensson model with genetic algorithms to obtain the interest

rate term structures of government bonds and corporate bonds and calculates credit

spreads as their differences and then incorporated these term structure of credit

sppeads to VAR model. They found VAR models can predict the changes of Chi-

nas macroeconomics well, which indicates that the term structure of credit spreads

contains information of future changes of macroeconomic variables. However, two

major limitations are: (1) they had no benchmark model to compare with, and (2)

they used a fixed with-in-sample forecasting period.

Mehrotra and Sánchez-Fung (2008) studied the forecasting performances of 15 alter-

native models for China’s inflation. More precisely, the investigation of their study

tackled the following questions: Can the forecasting of inflation in China benefit

from using many predictors? Using 36 predictors that represent exhaustive descrip-

tion of China’s economy, they found only those models (factor-augmented VAR and

factor-augmented AR) with large number of predictors via PCA outperform bench-

mark AR forecasts. However, one of major shortcomings is that their paper was

published in 2008-in that time the global financial crisis had not emerged. There-

fore, there is a need to re-examine the performances of factor model using data after

the global financial crisis2.

Motivated by Mehrotra and Sánchez-Fung (2008), Lin and Wang (2013) predicted

2As will be discussed in Chapter 5 as well as in Conclusion chapter, my results uphold the
superiority of factor-augmented VAR model but reverse the forecasting performances of DI. This
reversion might be because DI produces extremely bad forecasts during global financial crisis which
can not be compensated by satisfying performances in non-crisis period.
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China’s inflation using AR forecast, ARMA forecast, factor-augmented AR through

PCA, sliced inverse regression and partial least square. They found the factor-

augmented AR model with optimal number of principal component outperformed

rival models in out-of-sample forecasting horizon (three-month, six-month, and

twelve-month ahead). However, their study has three shortcomings that require

further research. First, they used year-on-year CPI as a measure of monthly in-

flation rate, which is not very appropriate to truly measure the month-on-month

change of inflation. Second, they did not seasonally adjusted CPI. As a results,

unadjusted CPI includes the effect of China’s New Year, making a high probability

of over-fitting the AR model. Third, they used a single within-sample period to con-

struct forecasts for three-month, six-month, and twelve-month ahead. In contrast,

conventional forecasting literature such as Stock and Watson (2002b) and Stock and

Watson (1999) augmented the within-sample period by one month to obtain next

out-of-sample forecast.

Nevertheless, there two remarkable limitations arising from reviewing the literature

on modelling and forecasting China’s economy. First, these studies did not consider

the quality of China’s data. As mentioned in Fernald et al. (2014), one of the urgent

challenges of forecasting Chinas economy is the weak quality of reported output

and inflation figures-which even Vice Premier Li Keqiang questioned as unreliable

(Fernald et al., 2014). Academia also questions about quality of the China’s official

data. Holz and Lin (2001a) argued that China’s National Bureau of Statistics’

1998 revisions to industrial enterprise categorization caused massive confusion and

misinterpretations. Rawski and Mead (1998) used information from cost surveys to

derive new estimated of China’s farm workforce and found that standard yearbook

data for China’s farm labor force massively overestimated the number of China’s

farm workers and such overestimated may easily surpass 10 millions.

Holz and Lin (2001b) study the reliability of the China’s industrial statistics and

found two major structural breaks in 1993 and 1998 along with numerous partial
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revisions have cased severe comparability in both time series and cross-sectional

data. Holz (2003) reviewed and examined some of the most recent criticism of

statistics on China’s industrial value-added and Gross Domestic Product. He argued

that even through some of famous economists such as Rawski (1976) and Chow

(1986) 3 believed the reliability of China’s official data, the margin of error in much of

the published data is likely to be sufficiently large to allow the statistical authorities

having a choice of final value from a relatively wide range of equally correct value.

In 2006, China’s National Bureau of Statistics undertook a benchmark revision of

national income and product accounts statistics based on the findings of the 2004

economic census. Holz (2008) studied the this benchmark revision in depth and

found three doubtful implications. First, the 2004 economic census results validate

the provincial aggregate output values but invalidate the centre’s national ones which

is not plausible. Second, economy-wide as well as sectoral nominal values were

revised but real growth rates of some sectors remained unchanged, which implies

that at least the real growth rates for secondary sector are erroneous. Third, the

benchmark revision raises questions about the quality and meaning of a large body

of official statistics, and it casts doubt on the professionalism and sincerity of Chinas

statistical authority

Nakamura and Steinsson (2014) conducted an alternative estimates of China’s growth

and inflation using detailed information on China’s household purchasing patterns.

They argued that as households become richer, a smaller fraction of total expendi-

tures are spent on necessities such as grain and a larger fraction on luxuries such

as eating out. To test it, they use systematic discrepancies between cross-sectional

and time-series Engel curves to construct alternative estimates of China’s growth

and inflation. The results showed that the official inflation was understated while

the growth rate of consumption were overstated in 2000’s.

3Rawski (1976) argued that “most foreign specialists now agree that statistical information
published in China’s sources provides a generally accurate and reliable foundation on which to
base further investigations.” and Chow (1986) judged that “by and large China’s statistics officials
are honest.”
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In additional to the weak quality of China’s reported data, the second limitation

is concerned about the rapid change of economic structure. The rapid pace of

institutional and structural change in China motivates our focus on the data on

the recent period. Such institutional and structural change makes the availability

of data relatively short. To deal with weak quality data and the rapid change

of economic structure, Fernald et al. (2014) suggested using the factor model, in

particular FAVAR. The FAVAR is an adapted version of a factor model in which

explanatory variables are firstly estimated through a large number of predictors

and then a conventional VAR model is estimated using these factors. The FAVAR

approach is particularly well suited to economic modelling when output and inflation

are imperfectly observed-latent variables (Bernanke and Boivin, 2003). Bernanke

and Boivin (2003) and Bernanke et al. (2004) also suggested that if economic time

series data such as output and CPI are not directly observable or the quality of data

are not reliable, the FAVAR approach leads to better empirical estimates than other

models.

2.3 Applications of factor model

The initial works of factor analysis were conducted by Sargent et al. (1977) and

John (1977) who introduced the dynamic factor approach to macroeconomics. Sar-

gent et al. (1977) examined a small system and conclude that two dynamic factors

can explain 80% or more of the variance of major economic variables, including the

unemployment rate, industrial production growth, employment growth, and whole-

sale price inflation. John (1977) in his PhD thesis applied dynamic factor models

to macroeconomic data and analysed these models in the frequency domain for a

small number of variables. However, assumptions on John (1977) and Sargent et al.

(1977) is too restrictive in the sense they imposes orthogonality on the idiosyncratic

components which is not appropriate for macroeconomic data.
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The improvements on statistical factor model have been conducted by Stock and

Waston (1998,1999, 2002a,2002b) and Forni et al. (2000) which they allowed serial

correlation and weakly cross-sectional correlation of idiosyncratic components. Fol-

lowing this, the use of factor models to forecast macroeconomic variables can be

seen extensively studied in forecasting literature such as Stock and Watson (2006),

Giannone et al. (2008), Breitung and Eickmeier (2006) and Reichlin (2002), den

Reijer (2005), Schumacher (2007), Marcellino et al. (2003), Graff et al. (2004), Artis

et al. (2005), Gupta and Kabundi (2010), Moser et al. (2007). Literature on using

the factor model to analyse the effectiveness of monetary policy can be seen in the

work of Bernanke et al. (2004), Fernald et al. (2014) and many others.

2.3.1 Literature for factor model forecasting

Stock and Watson (1998) developed a DI forecast methodology and applied it to

forecast US industrial production and inflation. They used a balanced panel of 170

monthly macro time series variables covering 1960:01-1997:09 and an unbalanced

panel in which these 170 series variables were augmented by 54 additional monthly

series. Measured by relative mean square forecast errors in which they set MSFE of

AR to be 1, they found that DI forecasts outperform benchmark AR forecasts. How-

ever, they pointed out that one of future research’s emphasis related to usefulness of

DI is that even if the factor model captured the joint behaviours of macroeconomic

time series and demonstrates superiority over benchmark AR forecasts, there is no

apparent mathematical theory that explains why forecast based on DI should out-

perform AR model or other specialized model that have been shown to be empirically

useful.

Similarly, Stock and Watson (1999) used large number of predictors to forecast U.S.

inflation. Starting through conventional Phillips curve forecasts model, they pro-

posed two research interests: (1) is the traditional Philips curve stable over time?
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And if the answer is no then is there any alternative version of Philips curve that pro-

vides better empirical forecasts performances than the conventional Philips curve?

(2) Can we incorporate other economic activities data when forecasting inflation?

To answer these two questions, they used monthly US macroeconomic data covering

from 1959:1 to 1997:9 to compare. They found that firstly Phillips curves speci-

fied with alternative measures of real economic activity can provide forecasts with

smaller mean squared errors than those from unemployment-based Phillips curves.

For instance, incorporating housing starts, capacity utilisation, the rate of growth of

manufacturing and trades sales produces forecasts that are generally more accurate

than forecasts constructed from Phillips curves using the unemployment rate. Sec-

ondly, relying simply on the conventional Phillips curve might be a mistake; instead

it is possible to improve conventional Phillips curve forecasts using the DI through

PCA. The factor model benefits the forecasting performances through the inclusion

of many predictors hence it provides more information than conventional Phillips

curve does.

Moreover, Stock and Watson (2002b) conducted a model the so called DI which they

used a large number of predictors (215 predictors) to forecast eight US important

real economic variables in six-month-, twelve-month- and twenty-four-month-ahead.

The forecasting process is separated into two steps. Step one involves the data

dimension reduction process in which large dimensional data are summarized into

relatively small factors through PCAs and in step two the estimated factors are

used to forecast eight leading variables in the US economy. Compared by MSFE,

they found that majority of DI forecasts outperform the benchmark AR forecasts.

However, one of limitation in the Stock and Watson (1998,1999 and 2002b) is that

they used Bayesian information criterion (BIC) to select the number of factors in DI

model, which works well in simple forecasting models such as AR or autoregressive

integrated moving average (ARIMA) but has not been proved its usefulness in large

dimensional factor models.
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Followed by Stock and Watsons applications of the DI to forecast leading macroe-

conomic variables in US and UK, applied applications of the factor model have

been shifted extensively to other economies which provided both favourable and

unfavourable evidence for the usefulness of the factor models. There has also been

theoretical improvement with regards to selecting the number of factors. Bai and

Ng (2002) developed a set of information criteria to determine the number of factors

to be retained in factor model. These criteria add penalty terms to the minimised

objective function4 so that they ensure consistency, i.e. the true number of factors

is selected with probability one when N and T diverge (Artis et al., 2005). Hallin

and Lǐska (2007) developed information criteria to select a number of factors in the

dynamic factor model as opposed to the static factor model by Bai and Ng (2002).

Various other empirical studies provided additional favourable evidence for the fore-

casting accuracy of the factors models. The Euro area is most popular destination,

in terms of the number of studies that have been conducted to there. Artis et al.

(2005) used the DI model with about 80 variables to explain UKs economic activity

and concluded that DI model with as less as six factors can substantially improve

the forecasts accuracy. However, the difference between Artis et al. (2005) and Stock

and Watson (2002b) is that Artis et al. (2005) used Bai and Ng (2002)’s information

criteria to select the number of factor in DI forecasting model whereas Stock and

Watson (2002b) used BIC model which does not guarantee to have consistency in

the static factor model.

Moser et al. (2007) compared the forecasting performances of three models: DI,

VAR and ARIMA. They proposed twelve-month out-of-sample forecasts of Austrian

diverse types of inflation measurement. By applying data from aggregate HICP as

well as its five sub-indices (processed food, unprocessed food, energy, industrial

goods and services), they found that factor models outperform ARIMA models in

terms of forecasting accuracy. In addition, the factor model turned out to be more

4Details of these criteria are discussed in Chapter 3
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accurate than VAR models, except for the processed food index, for which factor

model and VAR models show a fairly similar performances. Their analysis also

suggested that the predictive accuracy of aggregate inflation can be improved by

combining subindices into factor models.

Schumacher (2007) used both static and dynamic factor models to forecast German

GDP and found that, based on mean forecast square error, both static and dynamic

factor models outperform the simple AR model and VAR. Similarly, Camacho and

Sancho (2003) applied DI to Spain and they found: firstly, two factors can suffi-

ciently explained the predictable dynamic of core inflation and Spanish economy

activity; and secondly, the forecasting performances of DI outperform benchmark

AR forecasts. den Reijer (2005) studied the application of DI to forecast Dutch

GDP growth rate and found DI generated better forecasts than AR did. Forni et al.

(2003) used 447 monthly macroeconomic time series to predict the main countries

of Euro area industrial production and consumer price index. Following Forni et al.

(2000)’s generalized dynamic factor model and Stock and Watson (2002b)’s DI fore-

casting model, they found both factor models outperformed univariate AR forecasts

for inflation at one-, three-, six-, and twelve-month ahead and industrial production

at one- and three-month ahead. Based on large panel time series, Cristadoro et al.

(2005) used factor model to project monthly inflation in Euro area. They found

forecasts of factor model outperformeded competing models such as AR model and

random walk model.

There is also large amount of forecasting literature for factor model outside of Euro.

Gupta and Kabundi (2011) examined the performances of DI forecasting model

in Stock and Watson (2002b) to South Africa. In additional to univariate AR

model, they compared the performances of DI with unrestricted VAR, Bayesian

VARs (BVARs) and a typical New Keynesian Dynamic Stochastic General Equilib-

rium (NKDSGE) model. They found that a specific form of a factor model exists,

whether based on Bayesian assumptions or incorporating both static and dynamic
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factors, which tends to outperform all other competing models.

Liu and Jansen (2007) proposed several types of general structural the factor model

and use these models to forecast U.S macro economic variables. Unlike Stock and

Watson (2002b), who estimated factors from full datasets which do not usually had

a structural interpretation, the choice of factors in Liu and Jansen (2007) are more

structurally meaningful in the sense that they estimated factors from subsets of

information variables, where these variables can be assigned to subsets on the basis

of economic theory. They compared the forecasting performances of the various

types of general structural components in the factor model with that of an AR, a

standard VAR and some non-structural factor forecasting model. The analysis of

results suggested that the accuracy and performances generated by the structural

factor model are significantly better than competing models, especially at short

horizons such as six- and twelve-month ahead forecasts.

Brisson et al. (2003) examines the usefulness of DI model using data of growth rate

of real output and real investment in Canada. They compared forecast performances

of DI to a variety of alternatives, including benchmark AR model and the forecasts

made by the OECD. They found forecasting accuracy can be gained by using DI

at short horizons but did not find such evidences for long horizons. Gosselin and

Tkacz (2001) also studied the application of DI on forecasting Canada inflation.

Using similar techniques to PCA, they extracted factors from a sample dataset

consisting both Canadian and US macroeconomic data and found DI on average

produced 30% less MSFE than that of AR forecast. Therefore, factor models are as

good as more elaborate models in in forecasting Canadian inflation.

Giannone and Matheson (2007) introduced a new indicator of core inflation for New

Zealand which is estimated through a dynamic factor model. They found this new

indicator of core inflation provides relatively good forecasting performances when

compared to a range of competing other models. Likewise, Graff et al. (2004) in the
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conference of Reserve Bank of New Zealand presented that although the primary

source of formulating monetary policy and forecasting inflation by Reserve Bank of

New Zealand is the Reserve Bank macro model, the leading indicators constructed

through PCA is at least as useful and informative as the more preferred structural-

based approaches to forecasting inflation in New Zealand.

2.3.2 Literature against forecasting ability of factor model

Just as a coin has two sides, there is literature against the forecasting ability of the

factor model. Banerjee et al. (2005) evaluated the forecasting performances of many

single indicators from European and US, factors extracted from a set of indicators,

and groups of factors for inflation and GDP growth rate in Euro area. They found

that static factor models - factors extracted from a set of indicators through PCA -

do not always outperform single indicator methods and the best forecasting methods

change over time. Schumacher and Dreger (2002) predicted German GDP using two

classes of factor model: static factor model and dynamic factor model. In order to

compare the performances of forecasting models, they presented a table that provides

information on the ranking of forecasting performance of each model.

Table 2.1: Ranking of forecasting models by relative mean square forecasting error

1 2 3 4 5 6 7 8
Static factor model 4 4 4 3 3 3 4 4

Dynamic factor model 1 1 1 1 1 1 1 1
ifo climate 2 2 2 2 2 2 2 2

VAR 3 3 3 4 4 4 3 3
Note: the numbers 1 to 8 in column reflect the forecasting horizon. For instance, 5

means five-month ahead forecast

A first glance at Table 2.1 reveals that the dynamic factor model produced the

best forecasts among four competing models, but they used a test for equal fore-

casting accuracy which tested the improvements of dynamic factor model based on
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forecasting combing regression as below

yt = (1− λ)yA,t|t−h + λyB,t|t−h + εt (2.1)

They concluded that such improvements are statistically insignificant; therefore,

the efficiency gains of using a large data set with dynamic factor models seem to be

limited.

In order to examine the inflation forecasting performances of extracted factors at

the aggregate Euro area level, Angelini et al. (2001) applied DI to forecast Euro-

wide inflation using a multi-country data set and a broad array of variables. Their

analysis of results were vague. On one hand, they have concluded that the factors

extracted from aggregate Euro dataset through PCA are the most relevant for infla-

tion forecasting in the with-in-sample forecasting horizon. On the other hand, they

partially reversed the finding in the within-sample forecasting horizon and have con-

cluded that the factors are not relevant for inflation forecasting in the out-of-sample

forecasting period and the efficiency of the factors is blurred.

Schumacher and Breitung (2008) used the DI to forecast German GDP with monthly

and quarterly data. To deal with mixed frequency of data and missing observations,

they employed an expectation-maximisation algorithm and PCA to extract factors.

Although their analysis of results suggested the dynamic factor model can generate

superior forecasts than AR model, these improvement are moderate or even minor.

Likewise, the study conducted by DAgostino et al. (2006) showed the improvements

of the factor model were unclear. They predicted diverse measures of inflation:

consumer price index, producer price index and personal consumption expenditure

deflator using naive forecast, univariate AR model, factor-augmented AR model and

pooling of bivariate forecasts. They found that, even though the vast majority of

factor-augmented AR models outperform the benchmark naive model, they were

not necessary to outperform univariate AR model for three measures of inflation.

32



CHAPTER 2. REVIEW OF THE LITERATURE

Therefore they concluded that the simple AR model can hardly be outperformed by

more sophisticated models.

2.4 Conclusion

This chapter has been focused on reviewing the empirical literature concerning eco-

nomic models of China’s economy as well as both literature for and against factor

model.

Section 2.2 reviewed and examined the existing literature on the appropriateness

of models of China’s economy, some of which focused on using econometric models

such as error correction model in Qin et al. (2007) or time series model such as

Lin and Wang (2013) and Mehrotra and Sánchez-Fung (2008). Two of the major

shortcomings in these studies are concerned with weak quality of data and rapid

chnage of economic structure. This makes the factor model, especially FAVAR

model, very appropriate (Bernanke et al., 2004; Fernald et al., 2014). In additional,

because of the ability of summarising all the relevant information in China which

which includes demand-oriented behaviour such as the price of commodities and

retail sales as well as supply-driven component such as production of oil, the factor

model is able to reflect the essence of the unique structure of the China’s economy5.

Section 2.3 reviewed the relevant literature on the effectiveness of the factor forecast-

ing model and found there is limited consensus as to what makes forecasting perfor-

mances effective. Despite that, there is overwhelmingly more evidence to support

the fact factor forecasting model contributing improvements to forecasting accuracy

and some literature such as Stock and Watson (2002b) and Forni et al. (2003) found

these improvement can be substantial, there is also literature against the effective-

ness and usefulness of the factor model like Angelini et al. (2001), DAgostino et al.

5the vast majority of components in the model are demand-oriented to reflect a high-degree of
marketisation and it also has a number of supply-driven components.
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(2006) and Schumacher and Breitung (2008). The conclusion that has the most

empirical literature support is that factor model is better tool to forecast Euro and

U.S. leading macroeconomic variables than AR model.
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Chapter 3

Methodologies of forecasting

3.1 Introduction

This chapter lays out the theoretical underpinnings of the AR and the factor models

used for forecasting China’s leading macroeconomic variables multi-periods ahead.

In order to evaluate the performances of forecasts, one must have a competing model

or a benchmark model. A well defined order of AR model is suggested by many

forecasting literature such as Stock and Watson (2002b) and Reichlin (2002) as the

most common benchmark model to compare forecasts accuracy among various rival

models. Motivated by Lin and Wang (2013), this paper also considers two classes

of traditional univariate time series model: ARIMA model and simple exponential

smoothing model.

The factor models used are motivated by Stock and Watson (2002b) and Mehrotra

and Sánchez-Fung (2008) in which they used DI and FAVAR model to forecast

US and China’s leading variables. To examine the effectiveness of factor models

further, this study also augments factors to a standard ARIMA and VAR to form

a FARIM and FAVAR forecasting methodology. Suggested by Stock and Watson
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(2002b) and Bai and Ng (2008), this study uses PCA to estimate factors because

when N is sufficiently large then they are precisely adequate to be the proxy of data

in subsequent forecasting models.

3.2 Theoretical underpinnings of factor model

This section surveys the theoretical works on the three statistical factor models: the

DI, the FARIMA and the FAVAR model. The factor model has received considerable

attention in the past decades because of its ability to appropriately and consistently

forecast macroeconomic variables under a data-rich environment by reducing large

amount of information or predictors to a manageable size. Theoretically speaking,

the premise of the factor model is that one can admit there exist few latent and

unobservable factors - ft driving the co-movements of high-dimensional vector of

time series, Xt, which is also affected by a by a vector of mean-zero idiosyncratic

disturbances, et. In practice, the high-dimensional vector of time series Xt could

be a state of economy, in the case of this thesis, the China’s economy. As for

mean-zero idiosyncratic disturbances, the et could be, for example, measurement

error from data collection process. Therefore, the idea of using the factor model to

forecast China’s macroeconomic variables arises from two parts. The first part is

associated with diverse range but short history data from China’s Bureau Statistic1.

The second part is the premise of the factor model in which one can estimate latent

and unobservable factors first which contains a large amount of information from a

great number of predictors and then use some of these factors to forecast China’s

macroeconomic variables.

To understand the theoretical underpinnings of the factor model, we begin by a

discussion of the statistical model that motivates the DI. Let N be the number

1as mentioned before,there are over 500 predictors available in China’s Bureau Statistic but for
the majority of predictors the availability of time horizons is less than 20 years
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of variables and T be the number of time series observations. Following Stock

and Watson (2005), we suppose that (Xt, Ft+1) admits a dynamic factor model

representation with:

Xt = ΛFt +D(L)Xt−1 + νt (3.1)

Ft = Θ(L)Ft−1 + η, (3.2)

where Xt is an n × 1 vector of stationary economic variables, Ft is a r × 1 vector

of unobserved common factors, with r < n. The equation (3.1) and (3.2) is known

as the dynamic factor model in statistical literature. Stock and Watson (2002b)

imposed two important modifications to the dynamic factor model. First, the lag

polynomials λi(L)ft, β(L)ft, and γ(L)yt are restricted to have finite orders of max-

imum q orders2. The finite lag assumption allow the dynamic factor model to be

written as a static factor model and rewrite as:

yt+1 = β′Ft + γ(L)yt + εt+1 (3.3)

Xt = ΛFt + et, (3.4)

where Ft=(f ′t , f
′
t−1,.........,ft− q′)’ is r×1 (r ≤ (q + 1)r̄), the ith row of Λ in equa-

tion(9) is (λi0, λi1.........,λiq), and β =(β0,β1........,βq)’.

Although the knowledge of the dynamic representation of factor model is useful to

some extent such as in precisely establishing the number of primitive shocks in the

economy, the static representation of factor model is much better to understand in

terms of theoretical standpoint and many econometric frameworks can be developed

within a static framework (Bai and Ng, 2008). From a practical perspective, the

primary benefit of rewriting an approximate dynamic factor model as a static repre-

sentation is that latent and unobservable factors can be estimated by time domain

methods such as PCA (Bai and Ng, 2008). It also involves few choices of auxiliary

parameters. On the other hand, the estimation of the dynamic factor model entails

2so that λi(L)=
∑q

j=0 λijL
j and β(L) =

∑q
j=0 βjL

j .
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tools of frequency domain analysis which is harder to execute than time domain

method does (Stock and Watson, 2011).

The second assumption is associated with the selection of form of the factor forecast

model. Since the emphasis of this thesis is the h-month-ahead forecasts, Stock

and Watson (2002b) suggested two possible approaches. The first approach is to

develop a vector time series model for Ft and yt and roll the (yt, Ft) model forward.

This approach entails a great number of parameters and in doing so the forecast

performances would be eroded. The second approach is to recognise that a linear

relationship exists between Ft and yt (and its lags) and to construct the forecasts

directly. This approach is better because it entails less parameters and and allows

the estimation of factors to be done by PCA. Therefore, the econometric framework

of factor models involves two steps: (1) the high dimensional dataset (the case of

this thesis the 36 China’s predictors) is linearly related to these unobservable and

latent static factors in DI and FARIMA and dynamic factors in FAVAR; (2) China’s

macroeconomic variables of interests are also linearly related to these unobservable

factors (both static and dynamic) and previous variables.

3.2.1 Assumptions underlining the diffusion index and the-

ory of stationary data

The classical factor analysis has been widely used in psychology and social science

but less so in disciplines of economics. This is perhaps because the assumptions

made to classical factor analysis are too strong for economic data. The classical

factor analysis assumes the factors and errors are serially and cross-sectionally un-

correlated3, but economic data show a clear pattern of serial and cross-sectional

correlation. Works on relaxing the assumptions of the classical factor model were

3The classical factor model has three assumptions: (1) et is iid over t; (2) N is fixed as T tends
to be infinity; and (3) both Ft and et are normally distributed
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conducted by Stock and Waston (1998, 2002a and 2005). Their efforts were to

advance the theory of the static factor model towards to large approximate factor

model. By large dimensional it means the N and T tend to be infinite regard-

less the ratio of N and T . Approximate means the factors and idiosyncratic errors

are allowed to be serially and cross-sectionally correlated (weakly) which is more

compatible to macroeconomic data.

To apply the factor model to China’s data, the assumptions underlying the proper-

ties of stationary data are very important. Let F 0
t and λ0

t denote the true factors

and the loadings respectively and M be a generic constant. Consider the following

five assumptions (Bai and Ng 2008)

Assumption F(0): E ‖ F 0
t ‖4≤ M and 1

T

∑T
t=1 F

0
t F

0
t
′→

∑
F > 0 for an r × r

non-random matrix
∑

F .

Assumption L: λ0
i is either deterministic such that ‖ λ0

i ‖≤ M or it is stochastic

such that E ‖ λ0
i ‖4≤ M . In either case, N−1Λ0′Λ0→

∑
Λ > 0 for an r × r non-

random matrix
∑

F as N →∞.

Both assumptions F (0) and L are moment conditions on the factors and the load-

ings and are standard assumptions in the factor models. Assumption F (0) refers to

the stationary factors and Assumption L concerns the factor loading. They jointly

ensure that the factors are non-degenerate and each factor has a nontrivial contri-

bution to the variance of Xit.

Assumption E:

(a) E(eit) = 0, E|eit|8 ≤M

(b) E(eitejs) = σis,ts, |σis,ts| ≤ σij for all (t,s) and |σis,ts| ≤ τ for all (i, j) such that

N−1
∑N

i,j=1 σi,j ≤M , T−1
∑T

t,s=1 τ t,s ≤M and NT−1
∑

i,j,t,s=1 |σi,j,t,s| ≤M

(c) For every (t, s), E|N (−1/2)
∑N

i=1[eiseit − E(eiseit)]|4 ≤M

(d) For each t, 1√
N

∑N
i=1 λieit → (0,Γt) as N →∞ where

Γ = lim
N→∞

1

N

T∑
s=1

T∑
t=1

E(λ0
t
′λ0
s
′eiseit) (3.5)
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(e) For each i, 1√
T

∑T
t=1 Fteit(0,Φi) as T →∞ where

Φi = lim
T→∞

T−1

T∑
s=1

T∑
t=1

E(F 0
t F

0
s
′eiseit) (3.6)

Assumption E deals with the idiosyncratic errors. Part (a) assumes that the idiosyn-

cratic errors is mean of zero and parts (b) and (c) assume the idiosyncratic can be

weakly autocorrelated, weakly cross-sectional correlated, and heteroscedastic. Also,

under the stationary data environment with E(eitejt) = σij, the eigenvalue of Ω is

bounded by maximum value of
∑N

j=1 = |σi,j| (Bai and Ng 2002).By assuming that

the maximum eigenvalue of population covariance Ω is bounded and less than the

generic constant M (
∑N

j=1 = |σi,j| ≤ M). Therefore the proprieties of the large

dimensonal approximate model are satisfied which means the macroeconomic data

is compatible to the DI forecasts model (Bai and Ng, 2008). Parts (d) and (e) per-

mit weak correlation between the factors and the idiosyncratic errors and also weak

correlation between the loadings and the idiosyncratic errors.

Assumption LFE: (λi), (Ft) and (eit) are three mutually independent groups.Dependence

within each group is allowed.

Assumption IE: For all t ≤, t ≤ N ,
∑T

s=1 |Γs,t| ≤M , and
∑T

i=1 |σij| ≤M .

Assumption LFE means there exist three within-group dependences. They are (1)

the factors Ft can be serially correlated (but cross-sectional independent), (2) the

loadings λican be serially correlated over time and (3) the idiosyncratic errors eit

can be both serially correlated and cross-sectional correlated. Note that there is

no assumption imposed on the dependence between the factors and the loadings.

Assumption IE strengthens assumption E in the sense that eit is independent over

time and cross-section independence, the assumption IE is implied by assumption

E.
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3.2.2 Estimating and selecting the factors

Two vitally important questions in applying the factor model to forecast variables

of interest are: (1) what method is appropriate to estimate factors? and (2) what

are the number of factors in subsequent regression?

Following Stock and Watson’s (2002b) DI econometric framework, the estimation

of the factor loading and factor scores are through the PCA. The PCA can deal

with large or even infinite N and T regardless the ratio of N and T, and Stock

and Watson (1998) suggested that the PCA is consistent estimation of the factors

and the loadings even there is small amounts of data contamination as long as N

is large. This suggestion makes PCA more compatible for China’s data due to the

weak quality of China’s official data Fernald et al. (2014). Moreover, Stock and

Watson (2011) and Bai and Ng (2008) show that if N is sufficiently large, then the

factors estimated by PCA are precisely adequately to be the proxy of data in the

subsequent forecasting model.

PCA is a data reduction technique which is used to re-express multivariate and

large dimensional data with fewer dimensional components which contains the max-

imum amount of information from the original data. The method of PCA pro-

duces a T×k matrix of estimated factors4 and a corresponding N × k of estimated

factor loadings by solving the optimization problem Λk,FkminS(k)whereS(k) =

(NT )−1
∑N

i=1

∑T
i=1(xit − λk

′
i F

k
t )2(3.7)subject to the normalization that Λk′Λk/N =

Ik and F k′F k being diagonal.

The only observable quantities is the dataset Xit, neither the factor scores, the

factor loading, nor the idiosyncratic errors are physically observed. Factor scores

and the factor loading in static factor model can be estimated simultaneously, that

is, one can treat both factor scores and the factor loading as parameters (Bai and

4The number of factors estimated by principal component k does not necessarily equal to the
true number of factor r
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Ng, 2008). Let Σx be the covariance matrix of Xit, (λ1, e1),........,(λk, ek) be the

corresponding eigenvalue-eigenvector pairs of Σx where λ1 ≥ λ2 ≥ ......... ≥ λk and

ei = (ei1, .....eik)
′. The ith principal component of Xit is generated as follows:

Results: Let fi denoted the ith principal component of Xit for i = 1, 2, .....k., we

have

fi = e′iXit (3.8)

var(fi) = e′iΣxei = λi (3.9)

Cov(fi, fj) = e′iΣxei = 0 (3.10)

Similarly, the estimation of the matrix of factor loadings is through

Λ ≡ [Λij] = [
√
λ1e1|

√
λ2e2 · · · |

√
λkek (3.11)

By equation (3.9) and (3.11), we have

k∑
i=1

V ar(Xit) =
k∑
i=1

λi =
k∑
i=1

V ar(fi) (3.12)

The equation (3.12) implies that the proportion of total variance in Xit explained

by the ith principal component is simply the ratio between the ith eigenvalue and

the sum of all eigenvalues of covariance matrix of Xit.

With regards to determining the number of factors to retain in the subsequent

factor forecasting models, Bai and Ng (2002) proposed three information criteria

to determine the number of factors in the static factor model. Three information

criteria trade off the benefit of including additional factors (or specifically additional

parameters) in the candidate model against the cost of increased forecasts inaccuracy

arising from additional parameters. So the Bai and Ng (2002)’s information criteria

select the number of factors by minimizing a penalized likelihood function, where
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the penalty factor increases linearly with the number of factors. In theory, the Bai

and Ng (2002)’s information criteria is based on the observation that the eigenvalue-

eigenvector analysis of covariance matrix of China’s macroeconomic dataset Xit and

estimate the number of factors k that satisfies following optimisation problem

V(k) = min
Λ,Fk

1

NT

N∑
i=1

T∑
i=1

Xit − λkiF k
t )2 (3.13)

where k is the number of factors estimated by Bai and Ng (2002)’s information

criteria, λki is k vector of factor loadings and F k
t is k number of factor scores.

According to Bai and Ng (2002), if assumption F(0), L,E and LFE hold 5, the

equation (3.13) leads to three information criteria:

ICp1(k) = ln(V (k, F̂ k)) + k(
N + T

NT
)ln(

NT

N + T
) (3.14)

ICp2(k) = ln(V (k, F̂ k)) + k(
N + T

NT
)lnC2

NT (3.15)

ICp3(k) = ln(V (k, F̂ k)) + k(
lnC2

NT

C2
NT

) (3.16)

There are some other methods to determine the number of factors such as scree

plots which plots the ordered eigenvalues of
∑̂

x against the rank of that eigenval-

ues. Scree plot is a useful method to access the marginal contribution of the ith

principal component to total variance of Xit; however, this method fails to measure

the correlation between Yt and Xit. In the other word, even through the first ith

component captures vast majority of variance from Xit, the correlation between Yt

and i number of component might be weak, resulting in eroding the appropriateness

of subsequent forecasting models. On the other hand, Bai and Ng (2008) showed

that if assumption F(0), L, E and LFE hold and the method of PCA is used to

5These assumptions state that in additional to standard assumptions on factor model, each
factor has a nontrivial contribution to variance of Xit, allow for the limited time-series and cross-
section dependence in the idiosyncratic component. Heteroskedasticity in both the time and cross-
section dimensions is also allowed
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estimated factor loadings and scores, their information criteria estimates k that is

consistent with true number of factors r assuming that true value of r is finite and

does not increase with N and T . Therefore, in what follows this study applies equa-

tion (3.14) to select the number of factors to retain in subsequent DI forecasting

methodology.

3.3 The factor forecasting methodology

3.3.1 Diffusion index

The first statistical factor forecasting model in this study is the DI forecasting model

developed by Stock and Watson (2002b). The distinctive feature of it is to add

factors estimated by PCA to an otherwise AR model. It has the following form:

yt+h = α′F̃t + β′Wt + εt+h, (3.17)

where h > 0, β′Wt is predetermined variables (the lags of dependent variables as of

in the Stock and Watson (2002), the F̃t is the factors estimated by PCA and the

εt+h is the error.

Furthermore, Bai and Ng(2008) added the assumption FAR as stated below to the

DI forecast model.

Assumption FAR:

(a) Letzt = (F ′tW
′
t)
′, E||zt||4 ≤M ; E(εt+h|yt, zt, yt−1, zt−1, .....) = 0 for any h > 0; zt

and εt are independent of the idiosyncratic errors eis for all i and s. Furthermore,

T−1
∑T

t=1 ztz
′
t

p→
∑

zz > 0

(b) 1√
T

∑T
t=1 ztεt+h

d→ N(0,
∑

zz,ε), where
∑

zz,ε = lim 1
T

∑T
t=1(ε2t+hztz

′
t) > 0

With assumptions F(0), L, E, LFE, IE and FAR on hold, the forecasting equation
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(7) is so-called DI forecasting methodology of Stock and Watson (2002b). Because

DI is capable of exploiting the information in large dimensional panel data while

keep the size of the forecasting model small, the DI forecasting methodology are

indeed now used by various government agencies across a number of countries as

well as for independent consultations and professional forecasts companies alike.

Following the framework of DI methodology of Stock and Watson (2002b), the one-

month-ahead point forecasts for four China’s variables are

ŷt+1 = α̂h + βhF̂t +

p∑
j=1

γ̂jyt−j+1, (3.18)

where F̂t is the vector of k factors estimated by PCA and selected by Bai and Ng

(2002) information criteria.

The h-month-ahead point forecasts model is

ŷt+h|t = α̂h + βhF̂t +

p∑
j=1

γ̂hjyt−j+1, (3.19)

where ŷt+h|t is the h-step-ahead variable to be forecast, the constant term is in-

troduced explicitly, F̂t are factors estimated by principal component, yt−j+1 is lags

of variables, γ̂ are coefficients associated with lags and the subscripts t reflect the

time horizon of variable, and the lag of AR terms is selected by Akaike information

criterion (AIC).

In order to examine the effectiveness of the statistical factor model further, two

additional statistical factor models are conducted in this study. They are FARIMA

and FAVAR models.
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3.3. THE FACTOR FORECASTING METHODOLOGY

3.3.2 Factor-augmented autoregressive integrated moving

average

FARIMA adds the factors esimated by PCA to the that of a standard ARIMA

model. Similar to DI forecasting methodology, the FARMA also incorporates the

latent factors from the China’s economy and applies them to the subsequent fore-

casting model. However, the differences between FARMA and DI models is that

FARMA incorporates a moving average term to explain China’s leading macroeco-

nomic variables.

The one-month-ahead factor-augmented ARIMA forecasting model has following

form:

ŷt+1 = α̂h + βhF̂t +

p∑
j=1

γ̂jyt−j+1 +

q∑
i=1

δ̂jεt−i+1 + εt, (3.20)

where F̂t is the vector of k factors estimated by PCA and selected by Bai and Ng

(2002) information criteria, and the lag order of p in AR term and q in MA term

are selected recursively by AIC with maximum lag order of 16.

3.3.3 Factor-augmented VAR

The VAR methodology is based on the specification of as many equations as there

are variables in the system. Each variable is explained by its own past and the past

of the other variables in the system. There are no exogenous variables other than

deterministic variables. The FAVAR is a VAR model that one of the variables are

factors and other variables are China’s leading macroeconomic variables to forecast.

In general, the FAVAR representation can be writen as:

 Ft

Xt

 =

 Φ(L) 0

ΛΦ(L) D(L)


 Ft−1

Xt−1

 +

 δFt

εXt


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where  δFt

εXt

 =

 I

Λ

 ηt +

 0

νt



The one-month-ahead point forecast FAVAR is given by:

yt+1 =

p∑
k=0

a11yt−k +

p∑
k=0

a12F̃t−k + ε1t+1 (3.21)

F̃t+1 =

p∑
k=0

a21yt−k +

p∑
k=0

a22F̃t−k + ε2t+1 (3.22)

and the h-month-ahead point forecast is given by:

yt+h =

p∑
k=0

a11yt−k+(h−1) +

p∑
k=0

a12F̃t−k+(h+1) + ε1t+h (3.23)

F̃t+h =

p∑
k=0

a21yt−k+(h−1) +

p∑
k=0

a22F̃t−k+(h−1) + ε2t+h, (3.24)

where the lag order of FAVAR is determined by AIC and number of factor in F̃ is

estimated by PCA and determined by Bai and Ng (2002) information criteria.

3.4 Theoretical underpinnings of competing mod-

els

This study proposes three conventional time series models as competing model. The

first competing model is an AR model with lag length determined by AIC up to a

maximum of 24 lag. The second competing model is an ARMA model with order of

p (lag in AR term) and q (lag in MA term) are selected by AIC up to a maximum of

12 lag respectively. The third competing model is a simple exponential smoothing

model. Among these three univariate time series models, the AR model is widely

used as benchmark model in forecasting journals and this study will use it as the
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benchmark model.

3.4.1 Autoregressive model

A natural starting point for a forecasting model is to use only the previous value

of Y (that is Yt−1, Yt−2.) to forecast Yt. This approach is known as AR forecasting

model which specifics that the dependent variable depends linearly on its previous

values. The AR model is defined as

Yt = β0 +

p∑
i=1

βiYt−i + ut, (3.25)

where E(ut|Yt−1, Yt−2, .......) = 0.

The lag length of AR forecasting model is selected recursively by AIC. Choosing

the lag order in the AR model is a very influential decision as the forecasting per-

formances is very sensitive to the lag order. On the one hand, if the lag order is

too low, we will omit potentially valuable information contained in the more distant

lagged values. On the other hand, if the lag order is too high, we will estimate more

parameters than necessary and introduce additional forecasting errors. In theory,

choosing the lag order p of an AR model requires balancing the marginal benefit of

including more lags against the marginal cost of additional estimation models error.

A practical and common way to determine the order of the lag in AR model is by

minimizing an information criteria. One of the extensively used information crite-

rion in forecasting literature is the Akaike information criteria (AIC). In practice,

the model with minimum AIC is selected and used for forecasting. The one-month-

ahead AR forecasting model is defined as:

ŷ1
T+1 = α̂1 +

p∑
j=1

γ̂jyT−j+1 (3.26)

where α̂1 is the intercept term, the γ̂ are the coefficients corresponding to the lags

48



CHAPTER 3. METHODOLOGIES OF FORECASTING

yT−j+1 and n-month-ahead AR forecasting model is defined as:

ŷnT+n = α̂n +

p∑
j=1

γ̂jyT−j+n (3.27)

where α̂n is the intercept term, the γ̂ are the coefficients corresponding to the lags

yT−j+1. Lag length are recursively selected by AIC with maximum lag order of 24.

3.4.2 Autoregressive integrated moving average model

Extending the AR model to ARMA model by considering the autocorrelation in

the error term is straightforward. The ARMA model specifies that the dependent

variable depends linearly on its previous values and some unobservable random error.

The one-month-ahead forecast ARMA model is given by:

ŷt+1 = α̂h +

p∑
j=1

γ̂jyt−j+1 +

q∑
i=1

δ̂jεt−i+1 + εt+1 (3.28)

and h-month-ahead forecast is:

ŷt+h = α̂h +

p∑
j=1

γ̂jyt−j+h +

q∑
i=1

δ̂jεt−i+h + εt+h, (3.29)

where lag length of p and q are selected by AIC.

3.4.3 Exponential smoothing

Simple exponential smoothing model is also an univariate time series model that

can predict variables of interest. The simple exponential smoothing model is a

forecasting model where forecasts are calculated using weighted averages and where

the weights decrease exponentially as observations come from further in the past -

the smallest weights are associated with the oldest observations. The one-month-
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ahead exponential smoothing model is given by:

ŷt+1 = ayt + a(1− a)yt−1 + a(1− a)2yt−2 · · · (3.30)

and the h-month-ahead forecast is given by:

ŷt+h = ayt + a(1− a)yt+h−1 + a(1− a)2yt+h−2 · · · , (3.31)

3.5 Forecasting performances evaluation

This section reviews the methods of forecasting performances evaluation related

to AR forecasts, ARIMA forecasts, exponential smoothing forecasts, DI forecasts,

FARMA forecasts and FAVAR forecasts. Such measures are indispensable for help-

ing us to: (1)select the best model to forecast China’s core macroeconomic variables

among six candidate models, (2) evaluate and report the likely size of forecasting

error.

This study focuses on the h-month-ahead prediction and the forecasting regressions

are projections of an h-month-ahead variable yt+h onto t-dated predictors. In order

to compare the forecasting performances of six models, this study uses the most com-

mon forecasting performances’ evaluation methods - the mean square forecast error

(MSFE). The MSFE has been widely used to compare and examine the forecasting

performances of forecasting models, see Stock and Watson (2002b), Giannone et al.

(2008) and many others.

The MSFE gives the sum of the square of forecasts’ error which allows analysis to

compare the forecast performance in a easy-to-interpret-manner , regardless the sign

of the forecasting errors in each month. In practice, the model with lowest MSFE

is the best forecasting model.
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The MSFE is defined as follows:

MSE =

∑
(Yt − Ft)2

n
=

∑
e2
t

n
, (3.32)

where Yt is the actual data observed at period t, Ft is the forecast value generate

by candidate models, n is the total number of out-sample-period, and e2
t is the

difference between actual data and forecast value and is known as the forecast error

at period t.

To express comparisons into a easy-to-interpret-manner, this study sets the MSFE

of AR forecast as a benchmark and assigns the value of it as 1. Therefore, the

range of the MSFEs are narrowed down to a small percentage number. However,

the biggest disadvantage of the MSFE measure is because the MSFE is quadratic

loss function; hence it is influenced dramatically by extreme values. To deal with

this disadvantage, the proper data transformation and screening for the outlier are

vitally important.

3.6 Conclusion

The intention of this chapter has been focused on reviewing the main theoretical

underpinnings of the AR model and the factor model. The theoretical reviews of

univariate time series models include estimation of parameters, lag length selection

and form of AR, ARMA and exponential smoothing model for one-month-ahead and

h-month-ahead forecasts. The theoretical reviews on the statistical factor model

include the premise of factor model, the theory of stationary data, the estimation

method through PCA, how determine the number of factors in static factor model

though Bai and Ng (2002)’s information criteria and form of three factor forecasting

models, factor-augmented ARMA and FAVAR one-month-ahead and h-month-ahead

forecasts.
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The well defined AR forecast model is regarded as the most common benchmark

forecast in forecasting literature. It is simple model but empirically proved to be

a useful model to forecast macroeconomic variables in many countries. The factor

model, on the other hand, is one of a recent developed statistical model that can

organise large dimensional data into a manageable manner. The premise of the

factor model is based on the belief that a few latent and unobservable factors exist

which jointly drive the co-movment of economies, and perhaps that there are only

a few important factors that influence the variability of macroeconomic.

Following (Stock and Watson, 2002b), the estimation of the factor model is through

two steps. In the first step, the latent and unobservable factor are estimated by

PCA and selected by Bai and Ng (2002)’ information criteria. In the second step,

we incorporate these estimated factors to subsequent forecasting models. Then,

the relative MSFE and is computed to examine the forecasting performances of six

models.
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Chapter 4

Data

4.1 Introduction

This chapter presents a detailed discussion of data, including the sources of data,

technique of data transformation, and analysis of reasons for transformation. The

reason for writing this chapter individually, in stead of classifying it as a section

in results and discussion chapter, is because there is a widely held view academic

literature that scepticism exists about the quality of China’s data, which is worth

discussing in a separate chapter. Literature on discussing quality of China’s data

can be seen in Rawski and Mead (1998), Chow (2006), Holz (2004), Holz and Lin

(2001a), Holz (2008), Holz and Lin (2001b),and Nakamura and Steinsson (2014).

The scepticism about the unreliability of China’s official data comes from the view

that data falsification is conducted by National Bureau Statistics of China in order to

meet economic growth targets and is increasingly the norm (Holz, 2004). Although

there is no certain evidence on data falsification, it does not mean China’s statistical

system is necessarily honest in its statistical reporting. Also, even if National Bureau

Statistics of China is not engaged to purposefully falsify the data, the margin of
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error in much of published data is likely to be sufficiently large to allow statistical

authority to have a choice of final value to be reported from a relatively wide range

of collected value (Holz, 2004).

Given the unreliability of China’s official output data, this study intends to forecast

economic activity indicators. Due to lack of availability of monthly GDP data1,

the forecasting literature usually forecasts industrial production instead. Although

China’s industrial production has also received a critique on reliability, Holz and Lin

(2001a), this study still forecasts it because it is the most common output indicators

in forecasting literature. In additional to forecast industrial production this study

utilises two macroeconomic variables as a proxy of economic activity and inflation:

production of electricity and producer price index:industrial goods.

Using the production of electricity as an indicator of economic activity is a sensi-

ble choice and has two benefits. Firstly, the production of electricity is not on the

government target list; that is, neither does the statistical authority needs to self-

motivatedly involve itself in falsifying the data in order to meet certain growth target

nor does the statistical authority need to choose the margin error and final value

of production of electricity that satisfies the media and public. Secondly, the infor-

mation on the volume of production of electricity is relatively easier to collect than

GDP or industrial production . To collect a GDP data, National Bureau Statistics

of China employs professional data collectors to do surveys for every industry which

may generate considerable error. Collecting the volume of production of electricity,

by comparison, is a straightforward task - all data collectors need to do is go to

power plant and read the volume number on the machines. In this way the size

of collection errors is minimised. For these two reasons, production of electricity

is an appropriate indicator of industrial production because high level of industrial

production entails consuming large volume of electricity.

1GDP is available at quarterly and anually
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Producer price index (PPI):industrial goods is indicator for the output and inflation.

PPI: industrial goods measures the average changes in prices received by domestic

producers for their output (industrial goods). The PPI:industrial is not a prefect

substitute for the industrial production or rate of inflation, rather it provides in-

formation on how producers would price their industrial goods given the economic

conditions. Normally, the producer would charge a high price when demands for

industrial goods are high or rate of inflation is high. So PPI:industrial goods is an

indicator that jointly reflects the economic activity and rate of inflation from the

producer perspective.

4.2 Data description

This study uses a time series dataset covering monthly inflation rate measured as

CPI, monthly volume of industrial production, the monthly volume of production of

electricity and the producer price index:industrial and other 32 important macroe-

conomic variables. The complete dataset spans 1997:01 to 2014:03. The full dataset

therefore contains 36 macroeconomic variables over the period between 1997:01 to

2014:03. All 36 macroeconomic variables can be found and downloaded at CEIC

data manager2. Table 4.1 lists the names of the variables, their sources and trans-

formation technique used to every series.

2CEIC is Macroeconomic, Industry, and Financial time series databases for Global Emerging
and Developed Markets. It collects China’s data from the National Bureau of Statistics of China
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Table 4.1: Sources of data

Variables Sources
1 Government Revenue CEIC
2 Government Expenditure CEIC
3 Industrial Sales: Light Industry CEIC
4 Industrial Sales: Heavy Industry CEIC
5 Industrial Sales: State Owned CEIC
6 Industrial Sales: Collective Ownership CEIC
7 Consumer Price Index: MoM CEIC
8 Production of Primary Energy: Crude Oil CEIC
9 Production of Primary Energy: Natural Gas CEIC

10 Production of Primary Energy: Electricity CEIC
11 Financial Institution Deposits: Savings Deposits CEIC
12 Index: Shanghai Stock Exchange: Composite CEIC
13 Index: Shenzhen Stock Exchange: Composite CEIC
14 Spot Exchange Rate: Period Avg: SAFE: RMB to US Dollar CEIC
15 Spot Exchange Rate: Period Avg: SAFE: RMB to Japanese Yen CEIC
16 Spot Exchange Rate: Period Avg: SAFE: RMB to Bistish Pound CEIC
17 Money Supply M0 CEIC
18 Money Supply M1 CEIC
19 Money Supply M2 CEIC
20 Purchasing PI: Raw Materials (RM): Total CEIC
21 Producer Price Index: Industrial Products CEIC
22 PPI: IP: Producer Goods CEIC
23 Retail Price Index CEIC
24 Retail Price Index:Urban CEIC
25 Retail Price Index: Rural CEIC
26 Industrial production CEIC
27 Interest rate: discount rate CEIC
28 Interest rate:lending rate CEIC
29 Interest rate: borrowing rate CEIC
30 Oil price CEIC
31 Commodity Agricultural Raw Materials Index CEIC
32 Commodity Metals Price Index Monthly Price CEIC
33 CN: Export FOB CEIC
34 CN: Import CIF CEIC
35 CN: Effective Exchange Rate Index: BIS: Real CEIC
36 CN: Effective Exchange Rate Index: BIS: Nominal CEIC

Notes:CEIC is Macroeconomic, Industry, and Financial time series databases for
Global Emerging and Developed Markets. It collects China’s data from NBSC the

National Bureau of Statistics of China.

Data on the CPI is obtained in CEIC data manager and is month-on-month basis.

That is, the monthly CPI is computed by setting up the previous month CPI to 100

and thus each month’s CPI is a proxy of the actual rate of inflation during one month.
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Data on the monthly industrial production and monthly production of electricity

is the actual volume of productions collected by the National Bureau Statistics of

China. Data on producer price index:industrial product is a index number which

sets up previous year value equal to 100. Data for other 32 macroeconomic variables

include measures of financial policy such as government revenue and government

expenditure, real activity such as industrial sales and production of crude oil, stock

prices index, exchange rates, monetary policy such as money supply and interest

rate, commodity such agriculture and metals price, volume of international trade,

and world oil price.

4.3 Data transformation

The theory outlined in Chapter 3 states that stationarity of Xit is moment con-

dition for factor analysis (Bai and Ng, 2008)3. So these 36 series were subjected

to three preliminary steps: possible transformation by taking first difference, possi-

ble transformation by taking the first difference of logarithms implying the growth

rate of the variables, and screening for the possible outliers4. The decision to take

first difference or the difference of the logarithms was made judgmentally including

inspection of the time series plot of the data and the unit root test. In general,

the first differences of logarithms are taken to the series with the actual quantity

that are not already in index or percentage, and first differences are taken to those

series that are already in index or percentage number. The transformation details

for each series are reported in Table 4.2.After these transformations, all series were

further standardised to have a sample mean zero and a unit sample variance. These

3In theory, if any of 36 series is integrated or non-stationary, then the covariance matrix of Xit

does not exit thus there is no a factor representation at all
4Screening for outliers is other vitally important step. Outliers can have deleterious effects

on statistical analysis of regression results and performances of forecasting. First, they generally
increase the variance of data and hence reduce the power of statistical tests such as t-test for coef-
ficients. Secondly, they can seriously bias or influence the estimated forecasts value and forecasts
error (Osborne and Overbay, 2004).
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data transformations satisfy the assumption of stationartity of Xit. Finally, the

transformed data were screened for outliers. Following Stock and Watson (2002b),

observations that exceeded 10 times of the series mean were replaced by the series

mean.

Table 4.2: Transformation for each series

Variables Transformation
1 Government Revenue DL
2 Government Expenditure DL
3 Industrial Sales: Light Industry DL
4 Industrial Sales: Heavy Industry DL
5 Industrial Sales: State Owned DL
6 Industrial Sales: Collective Ownership DL
7 Consumer Price Index: MoM D
8 Production of Primary Energy: Crude Oil DL
9 Production of Primary Energy: Natural Gas DL

10 Production of Primary Energy: Electricity DL
11 Financial Institution Deposits: Savings Deposits DL
12 Index: Shanghai Stock Exchange: Composite DL
13 Index: Shenzhen Stock Exchange: Composite DL
14 Spot Exchange Rate: Period Avg: SAFE: RMB to US Dollar DL
15 Spot Exchange Rate: Period Avg: SAFE: RMB to Japanese Yen DL
16 Spot Exchange Rate: Period Avg: SAFE: RMB to Bistish Pound DL
17 Money Supply M0 DL
18 Money Supply M1 DL
19 Money Supply M2 DL
20 Purchasing PI: Raw Materials (RM): Total D
21 Producer Price Index: Industrial Products D
22 PPI: IP: Producer Goods D
23 Retail Price Index D
24 Retail Price Index:Urban D
25 Retail Price Index: Rural D
26 Industrial production DL
27 Interest rate: discount rate D
28 Interest rate:lending rate D
29 Interest rate: borrowing rate D
30 Oil price DL
31 Commodity Agricultural Raw Materials Index D
32 Commodity Metals Price Index Monthly Price D
33 CN: Export FOB DL
34 CN: Import CIF DL
35 CN: Effective Exchange Rate Index: BIS: Real DL
36 CN: Effective Exchange Rate Index: BIS: Nominal DL
Note: D means the series is taken the first difference, and DL means the series is

taken the first difference of logarithms
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Another noteworthy point is the effect of Chinese New Year on the 4 series. The

primary step taken to eliminate such effect in this thesis is through R package X13-

seasonal-R interface to X-13ARIMA-SEATS. Although it is a ideal to include a

dummy variable that reflect the effect of Chinese New Year effect, two main reasons

make it unpractical. First, the X-13 package is sufficiently enough to soften such

effect as proved by Figure 4.1, and 4.5. Second, the inclusion of dummy variable

into model makes little contribution to solve the Chinese New Year effect but it

increases the uncertainty of forecasts as the number of predictors in models goes to

larger.

4.3.1 Consumer price index

In terms of the transformation of four real variables, the CPI to be predicted in this

study is the seasonally adjusted month-on-month CPI. The reason to take seasonal

adjustment to the CPI is because separating the seasonal components from the

month-on-month CPI allows us to remove the effect of China’s New Year. As China’s

New Year typically jumps between January and February, the seasonal adjustment

is a sensible approach to remove the fluctuation of China’s New Year and therefore

clearly reveal the magnitude and direction of the CPI from month to month. The

effect of seasonal adjustment is confirmed by Figure 4.1.
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Figure 4.1: Autocorrelation function of adjusted and unadjusted CPI

(a) ACF of unadjusted CPI (b) ACF of adjusted CPI

Notes: This seasonally adjusted CPI is transferred in R by the package:
X13-seasaonl-R interface to X-13ARIMA-SEATS. The package performs a

seasonal adjustment that works well in most circumstances.

Figure 4.1 depict the autocorrelation function (A CF) of Month-on-Month CPI (in

the left) and seasonally adjusted CPI (in the right) respectively. As can be seen the

ACF of month-on-month CPI (a in Figure 4.1) clearly reveals that current month-

on-month CPI is weakly correlated with the past 10 months’ CPI but is strongly

correlated with last year CPI and even correlated with CPI in two years ago. In

contrast, the ACF of seasonally adjusted month-on-month CPI (b in Figure 4.1)

provides a better explanation of current CPI as it suggests that the current CPI

is correlated with previous CPI over the past eight months and has nothing to do

with last year or last two years’ CPI. Also, Figure 4.2 shows time series plots of

month-on-month CPI and seasonally adjusted CPI. The plot of seasonally adjusted

CPI clearly shows a smooth version except period during 2007-20085.

5This big structural break might be due to the global financial crisis
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Figure 4.2: Time series plots of unadjusted and adjusted CPI

(a) Unadjusted CPI (b) Adjusted CPI

Therefore, the seasonal adjustment successfully removes the effect of China’s New

Year on CPI. In addition to seasonal adjustment, the CPI is modeled as being I(1).

Although the seasonally adjusted CPI itself is stationary, but not every within-

sample period is stationary. Thus modelling CPI as I(1) ensures the CPI in every

with-in-sample periods are stationary.

4.3.2 Industrial production

Industrial production is a measure of the output of the industrial sector of the econ-

omy. The industrial sector includes manufacturing, mining, and utilities. Because

industrial production is highly sensitive to interest rates and consumer demand, it

often serves an important tool for forecasting GDP and economic activity. Unlike

the CPI and production of electricity, the industrial production does not need to be

seasonally adjusted. Figure 4.3 displays time series plots of unadjusted and adjusted

monthly industrial production.
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Figure 4.3: Time series plots of industrial production

(a) Unadjusted industrial production (b) Adjusted industrial production

Notes: This seasonally adjusted industrial production is conducted by decompose()
function in R. The X13-seasonal package returns exact same value before and after

seasonal adjustment.

Figure 4.4 shows the ACF of unadjusted and adjusted industrial production.

Figure 4.4: ACF of industrial production

(a) Unadjusted Industrial Production (b) Adjusted Industrial Production

As shown in Figure 4.4, seasonal adjusted has no effects on the ACF of industrial

production which means there is no need for the seasonal adjustment. To be con-

sistent with Stock and Watson (2002b) and many other forecasting literature, the

industrial production is transformed into the difference of the logarithm, implying

the growth rate of industrial production.
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4.3.3 Production of electricity

Like the CPI, the monthly production of electricity needs to be seasonally adjusted.

Figure 4.5 reveals time series plots of unadjusted and adjusted production of elec-

tricity. Looking at unadjusted plot at Figure 4.5 (a), there are a great number of

spike during each year. These extreme fluctuations could be explained by the large

amount of electricity demand in summer and the low demand in the winter6.

Figure 4.5: Time series plots of unadjusted and adjusted production of electricity

(a) Unadjusted production of electricity (b) Adjusted production of electricity

Note: This seasonally adjusted production of electricity is conducted by the R
package X13-seasonal.

The seasonally adjusted monthly production of electricity in Figure 4.5 (b) ,on the

other hand, represents the smoothed production of electricity which removes the

seasonal effects. Furthermore, the seasonally adjusted production of electricity is

modelled as being the first difference of logarithms, representing the growth rate of

production of electricity each month. By doing so, the series are stationary in every

with-in-sample period.

6From my experiences, households and businesses need to turn the air conditioning on in order
to resist the hot summer weather and this applies to the vast majority of cities. However, in
winter, households and business tend not to use heater to warm them up, especially in South part
of China. Therefore, the demand and usage of electricity is high in summer and low in winter
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4.3.4 Producer price index:industrial goods

The data transformation techniques applied to PPI:industrial goods7 differ from

those applied to CPI. The seasonal adjustment has no effects on the PPI:industrial

goods. This is proved by Figure 4.6 and 4.7.

Figure 4.6: Time series plots of PPI:industrial goods

(a) Unadjusted PPI:industrial goods (b) Adjusted PPI:industrial goods

Notes: The X13-seasonal package and decompose() function in R have been used to
detect the seasonal effects. None of them produce adjusted series.

Figure 4.7: ACF of PPI:industrial goods

(a) Unadjusted PPI:industrial goods (b) Adjusted PPI:industrial goods

Figure 4.8 shows the time series plots of adjusted and unadjusted PPI:industrial

goods. Figure 4.9 depicts ACF of them. Both figures demonstrate that there is no

need to take seasonal adjustment to PPI:industrial goods.

7The base period of the monthly PPI series reported in the National Bureau of Statistics of
China (NBSC) is the same month of the previous year, which differs from the US standards. For
example, the base period of PPI in January 2010 is January 2009 and the base period of CPI in
February 2010 is February 2009.
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4.4 Conclusion

This chapter discusses the sources of the data, and the techniques applied to transfer

data including taking difference of logarithms or first difference, and applying sea-

sonal adjustment to four leading China’s macroeconomic variables. The motivation

of using production of electricity and PPI:industrial goods as proxy of economic

activity are discussed in depth.

Due to the extensive critique on the quality of China’s officially reported output,

this study forecasts three economic indicators that are believed to be appropriate

substitutions for GDP. The first indicator is industrial production. Although there

are still some criticism on quality of reported industrial production figures (Holz and

Lin, 2001a), the level of motivation of statistical authorities to falsify the data is less

than to falsify GDP, partly because there is no certain industrial production target

that they have to meet and partly because media and public pay less interest to

industrial production than to GDP. Production of electricity is a sensible indicators

when the quality of industrial production is questioned. Strong economic growth

normally requires a high level of electricity consumption. PPI:industrial goods is an

appropriate indicator to reflect both economic activity and inflation from producer

perspective.

Consistent with theories outlined in Chapter 3 and many forecasting literature such

as Stock and Watson (2002b) and Forni et al. (2003), the Xit needs to be I(0) pro-

cess. If it is not, then the covariance matrix of Xit does not exist, which means there

is no factor representation at all. Hence, the transformation of data are processed

as follows. In step one, possible transformation by taking difference of logarithms

is taken to the variables that are not in percentage. In step two, possible trans-

formation by difference is taken to the variables that are already in percentage or

index. Step three is about screening for outliers. After these transformations, all

series were further standardised to have a zero mean and unit variance.
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As for four leading macroeconomic variables, the CPI firstly is being seasonally

adjusted and is processed being I(0). The industrial production is taken difference

of logarithms, implying the growth rate. Production of electricity is also seasonally

adjusted and transferred by taking difference of logarithms. The PPI:industrial

goods is transferred by differencing.
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Chapter 5

Results and discussion

5.1 Introduction

This chapter provides the detailed empirical results of forecasting of four China’s

leading variables for six models. In order to access the forecasting performances of

the six models, the results of relative MSFE are reported.

The emphasises of the discussion section are on the twofold: (1) the hypothesis

testing, looking at whether the statistical factors forecasts can contribute significant

improvements over AR forecasts1? and (2) a surprising but sensible results by the

exponential smoothing forecasts and FAVAR forecasts.

This chapter is organized as follows: Section 5.2 describes the forecast experimental

design including estimation of parameters and factors, the model selection and so

forth. Section 5.3 presents the empirical results of forecasting measured by relative

MSFE discuss the results in depth. Section 5.4 draw a concluding comment.

1By significant improvements I define it by the majority of factor forecasts should contribute
at least 20% forecasting error reduction. For instance, in Stock and Watson (2002b) they found
that for 12-month-ahead forecasting horizon the 15 out of 17 DI and DI forecasts outperform AR
forecast at more than 30%
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5.2 Forecast experimental design

The forecast comparison is performed in a simulated out-of-sample frame-work where

all statistical calculations are done using a fully recursive methodology. To ensure

sufficient within sample and out of sample forecasting period, the six models are

first estimated on data from 1997:02 to 2005:082. The h-step-ahead forecasts are

then computed based on predictors and factors in 2005:08. The estimation sample

period is then augmented by one month and the corresponding h-step-ahead forecast

is computed again. This process repeats all the way up until the final out-of-sample

forecast (2014:03) was computed based on predictors and factors on 2014:02 (for

one-month-ahead), 2013:12 (for three-month-ahead) and 2013:09 (for six-month-

ahead). Every month (i.e. for every augmentation of the sample period) all model

estimations, standardization of the data, calculation of the estimated factors, etc.,

are repeated. Finally, out-of-sample MSFE is then computed in order to compare

the forecasting performances of 6 candidate models.

5.3 Empirical results and discussion

5.3.1 One-month-ahead forecasts

Empirical results

The relative MSFEs for the four China’s leading variables are reported for one-

month-ahead forecasts in detail in Table 5.13.

2The full data spans from 1997:01 to 2014:03, the estimation starts with 1997:02 is because 4
series have been transformed either by difference of difference of logarithm

3where CPI denotes to consumer price index, IP means industrial production. PE refers to
production of electricity. PPI is producer price index: industrial goods. AR is referred to au-
toregressive model, ARIMA means autoregressive integrated moving average model, ES denotes
to exponential smoothing model, DI means difussion index model. FARIMA is factor-augmented
autoregrssive integrated moving average model. FAVAR is factor-augmented vector autoregressive.
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Table 5.1: Relative mean square forecasting errors for one-month-ahead forecast

CPI IP PE PPI
AR 1.00 1.00 1.00 1.00

ARIMA 0.89 1.09 0.95 0.74
ES 1.67 0.55 1.18 1.11
DI 1.15 1.15 0.98 0.87

FARIMA 0.92 1.09 1.23 0.82
FAVAR 1.26 0.80 0.96 0.89

The relative MSFE is computed relatively to MSFE of AR forecasts so that the

AR forecasting model has a relative MSFE of 1.00. For example, the out-of-sample

MSFE of the DI model of CPI is 115% that of AR forecast of CPI at the one-month-

ahead forecasting horizon. According to Table 5.1, the ARIMA models generate the

best forecasts except for the industrial production series. As can be seen, ARIMA

forecasts of CPI and PPI series significantly outperform the benchmark AR model

(0.89% and 0.75% of AR forecasts respectively) and ARIMA forecasts of produc-

tion of electricity moderately outperform the benchmark AR model (0.95% of AR

forecast). Exponential smoothing produces the worst forecasts except for industrial

production series.

In terms of the forecasting performances of the statistical factor models, the first

comparison is between the DI forecasts and the AR forecasts. DI forecasts of CPI

and industrial production series apparently underperform the benchmark AR fore-

casts, producing 15% more forecasting errors. The DI forecast for production of the

electricity series barely outperforms the benchmark AR model (2% better) and the

DI forecast for PPI:industrial goods series dramatically outperforms the benchmark

AR model (13% better).

The second comparison considers the difference between FARIMA forecasts and

benchmark AR forecasts. Both CPI and PPI produce FARIMA forecasts that are

better than those of AR forecasts (8% and 18% better respectively) while industrial

production and production of electricity generates FARIMA forecasts that are worse
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than those of AR forecasts (9% and 23% worse).

The third comparison considers the differences between FAVAR model and bench-

mark AR model. It is apparent that FAVAR forecasts of IP, production of electric-

ity and PPI:industrial goods series outperform the benchmark AR forecasts while

FAVAR of CPI forecasts significantly underperform the benchmark AR model. In

some case, the improvement of factor models over benchmark AR model are sub-

stantial; for example, for industrial production, the FAVAR forecast only produces

80% of MSFE than that of the benchmark AR model. FARIMA forecast of PPI is

82% of that of AR forecast.

Discussion

One-month-ahead results suggest that the performances of comparable models is

indefinite when the estimated factors are used. On the one hand, DI forecasts of

production of electricity and PPI series outperform the benchmark AR forecasts

which are favourable for factor forecasts. On the other hand, the DI forecast of

CPI and IP underperform substantially those of AR models at 15% more MSFE.

However, the performances of forecasts is usually better when a dynamic vector

structure exists between lag factors and lag variables.

Inspection of Table 5.1 reveals a striking finding: simply using DI or FARIMA

forecasts is not guaranteed to generate improvements over benchmark AR forecasts

except for PPI series; rather, the forecasting performances are usually improved by

incorporating estimated factors to a VAR model except for CPI series.

The performances of DI forecasts is inconsistent with Stock and Watson (2002b).

They found the DI model to be very useful to improve forecasting accuracy for US

macroeconomic variables but this is not the case in China. The performances of

FAVAR forecasts, on the other hand, is consistent with Fernald et al. (2014) and
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Bernanke et al. (2004).

Another notable result is that exponential smoothing generates the best forecasts

for industrial production series - far more than other five models. The exponential

smoothing basically generate a forecast that is almost same as naive forecast as

shown in Figure 5.1.

Figure 5.1: Plot of exponential smoothing forecast versus actual for IP

The dotted line is the forecast and the solid line is the actual value. This applies to remaining
figures in the Chapter.

As can be seen from Figure 5.1, the exponential smoothing model generates almost

a mean zero forecast across out-of-sample period (a naive forecasting) which implies

that the best forecasts of industrial production for the next month is simply today’s

industrial production.

5.3.2 Three-month-ahead forecasts

Empirical results

Table 5.2 reports the relative MSFEs three-month-ahead forecasts.
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Table 5.2: Relative mean square forecasting errors for three-month-ahead forecast

CPI IP PE PPI
AR 1.00 1.00 1.00 1.00

ARIMA 0.72 1.48 1.07 0.85
ES 0.75 0.69 0.93 0.63
DI 1.00 1.17 1.05 0.66

FARIMA 0.75 1.50 1.05 0.61
FAVAR 0.69 0.74 0.83 0.77

According to Table 5.2, the competition between ARIMA forecasts and benchmark

AR forecasts ends in a tie, as CPI and PPI forecasts significantly outperform the

benchmark AR forecasts (28% and 15% better) while industrial production and pro-

duction of electricity dramatically underperform compared to the AR forecasts (48%

and 7% worse). In contrast to the performances of one-month-ahead forecasts, the

exponential smoothing model dramatically outperforms the benchmark AR model

for all four series. In the most case, the improvements are considerable. The MSFE

of exponential smoothing of the CPI and the industrial production are only 75%

and 69% of AR’s respectively.

With regards to the forecasting performances of the statistical factor models, the

DI model seems not improving forecasting accuracy over the benchmark AR model

except for PPI:industrial goods. More precisely, the MSFE of the DI forecasts of

the industrial production and the production of electricity are greater than those

of AR forecasts’ (17% and 5% more). The MSFE of the DI forecast of the CPI is

same as AR forecast. The FARIMA model contributes a substantial improvement

for CPI (25%) and PPI (39%) series while it produces extra forecasting error for

industrial production (50%) and production of electricity (5%). Unlike performances

of DI and FARIMA, FAVAR forecasts reveal significant forecasting improvements (at

least 15%) over benchmark AR forecasts for all four China’s leading macroeconomic

variables.
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Discussion

The performances of DI and FARIMA model in three-month-ahead forecasting is

vague. One the one hand, DI and the FARIMA show superiority over the benchmark

AR model in some cases. For instance, DI forecast of PPI:industrial goods and

FARIMA forecasts of CPI significantly outperform the AR forecasts at 34% and 25%

respectively. On the other hand, DI and FARIMA produces some underperformed

results such as FARIMA of industrial production (50% worse) and DI forecast of

production of electricity (5% worse). FAVAR model, however, demonstrates superior

forecasting performances than AR forecasts for all 4 series.

Inspection of Table 5.2 reveals an apparent finding: augmenting contemporaneous

factors to standard AR and ARIMA models does not necessarily improve forecasting

accuracy for CPI, industrial production and production of electricity. In some cases,

it even produces worse results. Rather, the predictable dynamic of four series can

be explained by vector structure of lag factors and lag series (the FAVAR model).

Similar to results of one-month-ahead forecast, this finding is inconsistent with Stock

and Watson (2002b) but is consistent with Fernald et al. (2014) and Bernanke

et al. (2004). The reason for the superiority of FAVAR might be because of the

weak quality of China’s official reported data and rapid change of China’s economic

structure, which makes FAVAR very appropriate.

Another notable result is concerned with performances of exponential smoothing

and FAVAR as shown in figure 5.2 and figure 5.3:
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Figure 5.2: Plot of EM forecasts versus actual value

(a) CPI (b) Industrial production

(c) Production of electricity (d) PPI:industrial goods

As can be seen from Figure 5.2, the exponential smoothing model generates straight

lines forecasts around zero except for the PPI series. This implies that the expo-

nential smoothing forecasts are naive forecasts. As for PPI series, the exponential

smoothing model generate a forecast that is one period lag to actual value.
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Figure 5.3: Plot of FAVAR forecast vs actual value

(a) CPI (b) Industrial Production

(c) Production of Electricity (d) PPI:industrial goods

The forecasting performances of the FAVAR model is somehow similar to those of

forecasts of exponential smoothing models. According to Figure 5.3, the FAVAR

forecasts of CPI and PE series generate naive forecasts implying that the predicted

differences of rate of inflation and growth rates of production electricity are almost

zero for entire out-of-sample forecast periods. The FAVAR forecast of industrial

production series generates a naive forecast except for the period between late of

2008 and early of 2009.

Results from Figure 5.2 and 5.3 are surprising and unexpected because they es-

sentially indicate that the better approach to reduce the forecasting errors and in-

crease the predictable dynamic for the CPI, industrial production and production of

electricity three-month-ahead is to look at today’s CPI, industrial production and

production of electricity.
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5.3.3 Six-month-ahead forecasts

Empirical resutls

The relative MSFEs for four leading variables in six-month-ahead is given in Table

5.3

Table 5.3: Relative mean square forecasting errors for six-month-ahead forecast

CPI IP PE PPI
AR 1.00 1.00 1.00 1.00

ARIMA 0.89 1.30 1.18 0.97
ES 0.81 0.84 1.01 0.48
DI 1.02 1.02 1.04 0.54

FARIMA 0.91 1.27 1.09 0.52
FAVAR 0.81 0.82 0.99 0.81

According to Table 5.3, ARIMA forecasts of four series end a draw with bench-

mark AR forecast. More specifically, ARIMA forecasts of CPI and PPI outperform

the benchmark AR forecasts at 11% and 3% respectively while industrial produc-

tion (30% worse) and production of electricity (18%) significantly underperform

to benchmark AR forecasts. Similar to performances in three-month-ahead, the

exponential smoothing forecasts show marked improvements over benchmark AR

forecasts, with one exception being production of electricity marginally worse (1%)

than that of AR forecast.

With regards to the forecasting performances of the statistical factor models, both

DI and FARIMA show superior and inferior performances. The only DI forecast that

has better performance than AR forecasts is the PPI series (producing 54% MSFE

of AR forecast) while DI forecasts of CPI, industrial production and production of

electricity are slightly worse than those of AR forecasts. FARIMA forecasts of CPI

(0.91% MSFE of AR forecast) and PPI (0.52% MSFE of AR forecast) have better

forecasting performances than AR forecasts while industrial production (27% worse)

and production of electricity (9%) generate worse forecasting performances than AR
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forecasts.

Unlike performances of DI and FARIMA forecasts, FAVAR forecasts of four variables

show superior forecasting ability over benchmark AR forecasts. In some case, the

improvements are substantial. The FAVAR of CPI and PPI, for instance, generate

81% forecasting error that of AR forecast, representing 19% improvement.

Discussion

According to results of relative MSFE in six-month-ahead forecasts, three out of four

DI forecasts4 underperform the benchmark AR forecasts, and two out four FARIMA

forecasts5 are better than those of AR forecasts. This implies that simply augment-

ing contemporaneous factors to the standard AR and ARIMA model does not nec-

essarily improve forecasting accuracy for the CPI, the industrial production and the

production of electricity series. In fact, augmenting contemporaneous factors to AR

even generates worse performances. This results is inconsistent with Stock and Wat-

son (2002b), suggesting DI and FARIMA forecasting methodology might not to be

a sensible way to improve forecasting performances except for PPI:industrial goods

series. The FAVAR forecasts, on the other hand, reveals substantial improvements

over benchmark AR forecasts for all four series.

These results suggest the contemporaneous factors can not explain predictable dy-

namic of CPI, industrial production and production of electricity series. The per-

formances of forecasts are always better when there exist a dynamic vector struc-

ture between lag factors and lag variables (FAVAR model). This is consistent with

Bernanke et al. (2004) and Fernald et al. (2014).

Another notable result is that, for the CPI, the industrial production and the produc-

tion of electricity, the exponential smoothing and the FAVAR forecasts essentially

4they are the CPI, the industrial production and the electricity production
5the industrial production and production of electricity
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generates naive forecasts as shown in Figure 5.4 below:

Figure 5.4: Plot of FAVAR and exponential smoothing forecasts versus actual value

(a) CPI (b) Industrial production

(c) Production of electricity (d) CPI

(e) Industrial production (f) Production of electricity

As exponential smoothing and FAVAR forecasts of CPI,industrial production and

production of electricity significantly outperform the benchmark AR forecasts, this

notable result suggest that the best approach to reduce forecasting error for six-

month-ahead forecast is naive forecasting methodology.
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5.4 Overall discussion and conclusion

The summary of performances of DI model and FARIMA model for the CPI, the

industry production and the production of electricity can be seen in Table 5.4.

Measured by relative MSFE, Table 5.4 presents number of DI and FARIMA forecasts

that outperform, end with draw and underperform the benchmark AR forecasts6

Table 5.4: The number of diffusion index and factor-augmented autoregressive in-
tegrated moving average win, make a draw and lose to AR model for the CPI, the
industry production and the production of electricity series

Win Draw Loss
one-month-ahead 2 0 4
three-month-ahead 1 1 4
six-month-ahead 1 0 5
total 4 1 13

A first glance to table 5.4 reveals that total number of DI and FARIM forecasts

that outperform AR forecasts is less than those of underperformed. The results of

Table 5.4 that the static factor models that are estimated by PCA and have shown to

have intrinsic value to forecast eight leading US macroeconomic in Stock and Watson

(2002b) generally do not contribute forecasting improvements over benchmark AR

forecasts for China’s CPI, industrial production and production of electricity series.

In most case, augmenting contemporaneous factors to AR and ARIMA model even

produces additional forecasting errors. As for the PPI:industrial goods series, the DI

and FARIMA model are useful to significatly improve the forecasting performances

over benchmark AR forecasts.

The summary of performances of FAVAR model for four series is presented in table

5.57.

6There are 3 DI and 3 FARIMA models in each forecasting horizon so that total DI and FARIMA
forecast are 24.

7There are 4 FAVAR forecasts in each forecasting horizon so that total forecasts are 12. The
only 1 underperformed is FAVAR forecast of CPI at one-month-ahead
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5.4. OVERALL DISCUSSION AND CONCLUSION

Table 5.5: The number of FAVAR wins, makes a draw and loses to AR by MSFE
(four series)

Win Draw Loss
MSFE 11 0 1
Total 11 0 1

As can be seen in Table 5.5, the number of FAVAR that outperform AR forecasts

significantly outweigh to those of underperformed at 11-1. The inspection of Table

5.5 reveals a striking finding: simply using vector structure of lag factors and lag

values captures vast majority of the forecasting improvements.

The performances of DI and FAVAR reverse the finding in Stock and Watson (2002b)

but confirm Bernanke et al. (2004) and Fernald et al. (2014). These results might be

explained by the concern about weak quality of China’s data and dramatic change

economic structure. As suggested by Bernanke et al. (2004), the FAVAR model is

very appropriate when the economy is transforming its economic structure or the

quality some of series in dataset might be unreliable (treated as latent variables),

which is the case in this study. However, there is no evidence to show DI model is

appropriate when some of series in dataset might be unreliable. Most of literature

on applications of DI are Western countries where official data is generally reliable.

Nevertheless, it is important to note that even through the results of this study do

not support the superiority of DI, it does not mean the DI is completely useless to

forecasting China’s leading variables. As Boivin and Ng (2005) claimed that “the

composition of the data set and the dimensions of the cross-section are important

in producing better forecasts from factor models.” This arises the need of further

research.

Another notable result is that the two winning forecasts in three-month-ahead and

six-month-ahead: exponential smoothing forecast and FAVAR forecasts essentially

generate naive forecasts for CPI, industrial production and production of electricity
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across out-of-sample forecasting periods (see Figure 5.2, 5.3 and 5.4) This is rather

surprising result because it says the best model to forecast China’s CPI, industrial

production and production of electricity in next three and six months is just look

at today’s value. This raises a very interesting question: why the more compli-

cated models do not improve forecasts over simpler models as the forecast horizon

increases? It might be because Chinese statistical authorities have motivations to

falsify the some of important macroeconomic data such as CPI and GDP in order

to meet certain annual target and general public expectations. Also the margin of

error in much of the published data is likely to be sufficiently large to allow the

statistical authorities having a choice of final value from a relatively wide range of

equally correct value.
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Conclusion

The focus of this study is to assess the forecasting performances of large dimensional

approximate factor models for four China’s leading macroeconomic variables - CPI,

industrial production, production of electricity and PPI:industrial goods. The three

factor models being used in this study are (1) DI that of Stock and Watson (2002b)

which is augmenting static factor through PCA to standard AR model, (2) FARIMA

which is augmenting static factor to a standard ARIMA model and (3) FAVAR

which is dynamic structure of lag factors and lag variables. This study also assess

the forecasting performances of ARIMA model and simple exponential smoothing

model.

The factor forecasting is conducted into two steps. In step one, factors are estimated

through PCA as suggested by Stock and Watson (2002b). This is because factors

estimated by PCA is proxy of data in subsequent forecasting regression when N

is sufficiently large, regardless ratio of N and T. The number of factor is selected

by Bai and Ng (2002)’s information criteria to ensure the consistency between true

number of factors and selected number of factors. Once factors are estimated and

selected, they are used to forecast four leading variables in one-month, three-month

and six-month-ahead. The lag length of AR, ARIMA, DI, FARIMA and FAVAR
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models are all selected recursively by AIC with maximum lag order of 24.

The full dataset contains 36 predictors representing an exhaustive description of

China’s economy including measure of government activity such as government rev-

enue and government expenditure, real economic indicators such as industrial sales

and production of electricity, financial indicators such as money supply and interest

rate, and trade activity such as import and export. As suggested by Stock and Wat-

son (2002b), the data are pre-processed in three stages before being modelled with

a factor representation. In first stage, data are transformed into either difference or

difference logarithms 1. In second stage, transformed data are further standardised

to have mean zero and unit variance. In final stage, the standardised data were

screened for outliers.

Overall, the analysis of results suggests two findings. Firstly, the DI and FARIMA

do not generaly improve forecasting accuracy except for PPI:industrial goods series

in one-month, three-month and six-month ahead forecasts. Rather, the FAVAR

model is a superior model to forecast four Chinese leading variables in one-,three-,

and six-month-ahead. The favourable results of FAVAR model might be because of

concerns about weak quality of China’s official data and rapid change of economic

structure.

Secondly, the naive forecast is a sensible approach to forecast the CPI, the industrial

production and the production of electricity in the three-month and the six-month

ahead forecasting horizons. This is a rather surprising result. It essentially implies

that using complicated forecasting models such as DI and FARIMA forecasting

methodology is unnecessary and might even generate extra forecasting errors to

that of naive forecast.

1The decision to take difference or difference of logarithms was made judgmentally after prelim-
inary data analysis, including inspection of time series plot of data and unit root test. In general,
difference is taken for those already in index and percentage and difference of logarithm is taken
for those are not in percentage change.
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In terms of further research, it appears that the performances of forecasting models

are sensitive to the model selection and the forecasting evaluation method. The

relative MSFE is conventional forecasting evaluation method in many forecasting

literature, but one question arising from using MSFE to measure forecasting per-

formances is that even though DI forecasts generate the higher MSFE than that of

AR forecasts (for instance DI forecast of industrial production generate 15% more

forecasting error in one-month-ahead forecast), does it mean DI forecasting model

have no intrinsic value to improve forecasting accuracy at all? Based on inspec-

tion of MSFE results in Table 5.2, a short answer to that question is “Yes”, but

the reason we have “Yes” is because DI performed extremely bad forecasts during

global financial crisis. Indeed, it generates forecast that well capture the predictable

dynamic during non-crisis period (the plot of it can be seen in appendix A). As a

results, the under-performances in crisis period contribute considerable amount of

forecasting error which out-performances in non-crisis period are insufficient to com-

pensate. This particular example rises the need of more appropriate measurement

of forecasting evaluation.

Furthermore, in what follows Schumacher and Dreger (2002) and Stock and Watson

(2002b) they conducted a statistical test on whether the improvements from factor

models are significant. Stock and Watson (2002b) found vast majority of improve-

ments were statistically significant whereas Schumacher and Dreger (2002) found

majority of improvements were insignificant. These conflicted results arise the ques-

tion as to whether forecasting gains from FAVAR model are statistical significant

for four China’s leading macroeconomic variables.

There are five more possible ways to improve this study further. Firstly, this study

only uses the balanced pool of data with same frequency. Stock and Watson (2002b)

found that the performances of factor forecasts are generally better when unbalanced

pool of data with mixed frequency are used. This findings rises possibility that fur-

ther forecasting gains can be realized using unbalanced pool of data with mixed
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frequency. Secondly, some theoretical and applied literature (Lin and Wang, 2013)

(Li, 1991) (Wold, 1985) developed and used different methodology to estimate fac-

tors such as sliced inverse regression and partial least square. These estimations of

factors might potentially improve forecasting accuracy. Thirdly, the results of this

study are based on 36 predictors chosen judgementally from large number of avail-

able macroeconomic time series. Would there be additional improvements if this

study was to use 100 series or even more series? Fourthly, Marcellino et al. (2003)

used a different data transformation technique to this study. They took difference

of logarithms to all series whereas this study takes either difference or difference of

logarithms. Also they seasonally adjusted all series whereas this study only season-

ally CPI and production electricity. The different data transformation technique

might produces different results. Finally, as the global financial crisis affected China

greatly, mean GRAH model might be appropriate to model and forecasting China’s

leading variables in post crisis period.

Nevertheless, this study sheds light on China’s macroeconomic forecasting in a

data-rich environment which is essential for policy makers in China, exporters in

Australia, investors who are extremely concern about future of China’s economic

condition and many more. Of particular importance is that this study contributes

significance to existing literature in the sense that this is first study that uses large

number of predictors to predict industrial production, electricity production and

PPI:industrial goods which jointly reflect China’s economic activity. This study

also reaffirms the findings in (Fernald et al., 2014) and Bernanke et al. (2004) that

FAVAR model is very appropriate when some of series in dataset might be unreliable

and economic structure is rapidly changing, which is the case of China.
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Appendix A

Plot of DI and exponential

smoothing forecasts

Figure A.1: DI forecasts of IP versus actual value in 3-month-ahead
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Figure A.2: Plot of exponential smoothing forecast versus actual for IP

By relative MSFE, the exponential smoothing forecast of the industrial produc-

tion far more outweigh DI forecast; however, according to Figures above, the DI

model produces relatively good forecasts during non-financial crisis period while the

exponential smoothing generates a naive forecasts. This arises the need of more

appropriate forecasting evaluation methods.
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Relativel mean absoulte

forecasting error

The relativel mean absolute forecasting error is another popular forecasting perfor-

mance evaluation used in forecasting literature. Similar to relative MSFE, relative

MAFE is computed by setting up the MAFE of AR to be 1. Essentially, relative

MAFE produced very similar results those of relative MSFE. Tables below reveal

the relative MAFE for 1-month, 3-month and 6-month ahead forecasting.

Table B.1: Relative mean absoulte forecasting errors for one-month-ahead forecast

CPI IP PE PPI
AR 1.00 1.00 1.00 1.00

ARIMA 0.93 1.14 1.01 0.85
ES 1.26 0.67 0.96 1.11
DI 1.09 1.07 1.02 0.91

FARIMA 0.94 1.11 1.14 0.90
FAVAR 1.12 0.86 0.96 0.91

As can be seen in the table, DI and FARIMA models do not general improve the

forecasting performances; however the FAVAR model yield moderate improvement

over benchmark AR model for the IP, PE and PPI series.
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Table B.2: Relative mean absoulte forecasting errors for three-month-ahead forecast

CPI IP PE PPI
AR 1.00 1.00 1.00 1.00

ARIMA 0.82 1.28 1.10 0.95
ES 0.81 0.80 0.93 0.86
DI 1.00 1.06 1.02 0.79

FARIMA 0.83 1.29 1.08 0.75
FAVAR 0.78 0.85 0.91 0.85

According to the table, ES and FAVAR forecasts yield some huge improvements

over the benchmark AR forecasts; however the DI and FARIMA generally perform

worse than benchmark AR forecasts.

Table B.3: Relative mean absoulte forecasting errors for six-month-ahead forecast

CPI IP PE PPI
AR 1.00 1.00 1.00 1.00

ARIMA 0.89 1.17 1.15 0.96
ES 0.79 0.85 0.98 0.71
DI 0.99 1.00 1.02 0.65

FARIMA 0.90 1.16 1.12 0.65
FAVAR 0.79 0.85 0.98 0.84

The results of relative MAFE for six-month-ahead forecast reveal a similar pattern

to the one for three-month-ahead. More specifically, the ES and FAVAR still to

produce superior forecasts than benchmark AR forecasts while the DI and FARIMA

generally produced inferior forecasts.
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Appendix C

R code

This is R script I have done to generate results. The R packages required are

seasonal (X-13), var, tseries,forecast and ggplot2. Note that seasonal (X-13) package

is unavailable in Mac so I use my friend’s PC to generate seasonally adjusted CPI

and PE and then copy to my mac. All codes and data are upon requested.

ADcpi<- ts(adcpi,start=1997,frequency=12)

dim(ADcpi)

plot(ADcpi, main="seasonally adjusted month-on-month CPI",

xlab="time", ylab="%")

adf.test(ADcpi)

China’scpi <- ts(China’s.CPI.MoM, start=1997,frequency=12)

plot(China’scpi)

acf(China’scpi,lag.max=24)

acf(ADcpi, lag.max=24)

dADcpi <- diff(ADcpi) # take first difference

plot(dADcpi, main="seasonally adjusted China’s monthly inflation rate"

, xlab="time", ylab="percentage", col="blue")

# now fit to ar model first
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dADcpi1 <- ts(dADcpi[1:103],start=c(1997,02),frequency=12)

model1 <- ar(dADcpi1,method="ols",aic=TRUE)

model1

predict(model1,n.ahead=1)

# now doing a loop

T <- 205

start <- 103

forecasts <- NA

orders <- NA

for (i in start:T){

CPIs<- ts(dADcpi[1:i], start=c(1997, 02), frequency=12)

model <- ar(CPIs, method="ols", aic=TRUE)

orders[i] <- model$order

forecastm <- predict(model, n.ahead=1)

forecastmt <- forecastm$pred

forecasts[i+1] <- forecastmt

}

orderar <- ts(orders, start=c(1997,02), frequency=12)

cpiar <- ts(forecasts, start=c(1997,02), frequency=12)

cpiar #this is AR forecast for CPI

orderar # this is AR order that we need to use in later factor model

# now doing arima for AR

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

CPIs<- ts(dADcpi[1:i], start=c(1997, 02), frequency=12)

model <- auto.arima(CPIs,ic=c("aic"))

forecastm <- predict(model, n.ahead=1)
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forecastmt <- forecastm$pred

forecasts[i+1] <- forecastmt

}

cpiarima <- ts(forecasts, start=c(1997,02), frequency=12)

cpiarima

# now doing a exponential smoothing model

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

CPIs<- ts(dADcpi[1:i], start=c(1997, 02), frequency=12)

model <- HoltWinters(CPIs, beta=FALSE,gamma=FALSE)

forecastm <- forecast(model, h=1)

forecastmt <- matrix(forecastm$mean)

forecasts[i+1] <- forecastmt[1,1]

}

cpies <- ts(forecasts, start=c(1997,02), frequency=12)

cpies

# now doing a factor model

totaldatacpi<- ts(paper.data.editedCPI,start=1997,frequency=12)

class(totaldatacpi)

dim(totaldatacpi)

a <- diff(log(totaldatacpi[,1:22]))

dim(a)

head(a)

b<- diff(totaldatacpi[,23:35])

head(b)

dtotaldata <- cbind(a,b)
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dim(dtotaldata)

head(dtotaldata)

dtotaledited <- scale(dtotaldata, center=TRUE, scale=TRUE)

class(dtotaldata)

dtotaledited

class(dtotaledited)

dim(dtotaledited)

dtotaledited1 <- ts(dtotaledited[1:103,],

start=c(1997,02),frequency=12)

dim(dtotaledited1)

pca1 <- princomp(dtotaledited1, cor=TRUE)

summary(pca1)

class(pca1$scores)

dim(pca1$scores)

POETKhat(dtotaledited1)

factor1 <- ts(pca1$scores[1:103,1:1], start=c(1997,02),frequency=12)

factor1

class(factor1) # it is time series and ready to fit DI model

modelDI1 <- arima(dADcpi1,order=c(orderar[103],0,0),xreg=factor1)

modelDI1

forecastDI1 <- predict(modelDI1,n.ahead=1,newxreg=factor1[103])

forecastDI1

modelDI2 <-auto.arima(dADcpi1,d=NA,D=NA,

max.p=24,max.q=0,max.P=0,max.Q=0,

max.d=0,max.D=0,ic=c("aic"), xreg=factor1)

modelDI2

forecastDI2 <- predict(modelDI2,n.ahead=1,newxreg=factor1[103])

forecastDI2

# now rolling it up
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T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

CPIs<- ts(dADcpi[1:i], start=c(1997, 02), frequency=12)

dtotalediteds <- ts(dtotaledited[1:i,],

start=c(1997,02),frequency=12)

pca1 <- princomp(dtotalediteds, cor=TRUE)

m<- POETKhat(dtotalediteds)

factors <- ts(pca1$scores[1:i,1:m$K1BN], start=c(1997,02),frequency=12)

model <- auto.arima(CPIs,d=NA,D=NA,

max.p=24,max.q=0,max.P=0,max.Q=0,max.

d=0,max.D=0,ic=c("aic"), xreg=factors)

forecastm <- predict(model, n.ahead=1,newxreg=factors[i])

forecastmt <- forecastm$pred

forecasts[i+1] <- forecastmt

}

dicpi <- ts(forecasts, start=c(1997,02), frequency=12)

dicpi

# now adding factors to arima

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

CPIs<- ts(dADcpi[1:i], start=c(1997, 02), frequency=12)

dtotalediteds <- ts(dtotaledited[1:i,],

start=c(1997,02),frequency=12)

pca1 <- princomp(dtotalediteds, cor=TRUE)
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m<- POETKhat(dtotalediteds)

factors <- ts(pca1$scores[1:i,1:m$K1BN],

start=c(1997,02),frequency=12)

model <- auto.arima(CPIs,xreg=factors)

forecastm <- predict(model, n.ahead=1,newxreg=factors[i])

forecastmt <- forecastm$pred

forecasts[i+1] <- forecastmt

}

FARIMAcpi <- ts(forecasts, start=c(1997,02), frequency=12)

FARIMAcpi

# trying to do a FAVAR approach

pca1 <- princomp(dtotaledited1, cor=TRUE)

summary(pca1)

class(pca1$scores)

dim(pca1$scores)

POETKhat(dtotaledited1)

factor1 <- ts(pca1$scores[1:103,1], start=c(1997,02),frequency=12) #

factor1

varobject <-cbind(dADcpi1,factor1)

class(varobject)

head(varobject)

dim(varobject)

plot(varobject)

var1 <- VAR(varobject,p=1,type=c("const"),ic=c("AIC"))

forecast1=forecast(var1,h=1)

forecast1$mean$dADcpi1

# now doing var loop

T <- 205

start <- 103
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forecasts <- NA

for (i in start:T){

CPIs<- ts(dADcpi[1:i], start=c(1997, 02), frequency=12)

dtotalediteds <- ts(dtotaledited[1:i,],

start=c(1997,02),frequency=12)

pca1 <- princomp(dtotalediteds, cor=TRUE)

m<- POETKhat(dtotalediteds)

factors <- ts(pca1$scores[1:i,1:m$K1BN],

start=c(1997,02),frequency=12)

varcpidata <- cbind(CPIs,factors)

model <- VAR(varcpidata,p=1,type=c("const"),ic=c("AIC"))

forecastm <- forecast(model,h=1)

forecastmt <- forecastm$mean$CPIs

forecasts[i+1] <- forecastmt

}

FAVARcpi <- ts(forecasts, start=c(1997,02), frequency=12)

FAVARcpi

#now doing IP

tIP <- ts(adip,start=1997,frequency=12)

class(tIP)

dim(tIP)

plot(tIP, main="China’s monthly seasonal adjusted industrial

production", xlab="time", ylab="billion Yuan")

adf.test(tIP)

lIP=log(tIP)

lIP

ldIP=diff(lIP)

class(ldIP[1:103])
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IP1 <- ts(ldIP[1:103,],start=c(1997,02),frequency=12)

class(IP1)

# now doing a loop for AR

T <- 205

start <- 103

forecasts2 <- NA

orders2 <- NA

for (i in start:T){

IPc<- ts(ldIP[1:i], start=c(1997, 02), frequency=12)

model <- ar(IPc, method="ols", aic=TRUE)

orders2[i] <- model$order

forecastm <- forecast(model, h=1)

forecastmt <- matrix(forecastm$mean)

forecasts2[i+1] <- forecastmt[1,1]

}

orderip <- ts(orders2, start=c(1997,02), frequency=12)

arip <- ts(forecasts2, start=c(1997,02), frequency=12)

orderip

arip

# doing arima loop

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

IPc<- ts(ldIP[1:i], start=c(1997, 02), frequency=12)

model <- auto.arima(IPc,ic=c("aic"))

forecastm <- forecast(model, h=1)

forecastmt <- matrix(forecastm$mean)
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forecasts[i+1] <- forecastmt[1,1]

}

iparima <- ts(forecasts, start=c(1997,02), frequency=12)

iparima

#finally doing exponential smoothing for IP

T <- 205

start <- 103

forecasts <- NA

orders <- NA

for (i in start:T){

dtc<- ts(ldIP[1:i], start=c(1997, 02), frequency=12)

model <- HoltWinters(dtc, beta=FALSE,gamma=FALSE)

forecastm <- forecast(model, h=1)

forecastmt <- matrix(forecastm$mean)

forecasts[i+1] <- forecastmt[1,1]

}

ipes <- ts(forecasts, start=c(1997,02), frequency=12)

ipes

# now doing diffusion index

totaldataIP<- ts(paper.data.editedIP,start=1997,frequency=12)

class(totaldataIP)

c <- diff(log(totaldataIP[,1:21]))

dim(c)

d <- diff(totaldataIP[,22:35])

head(d)

dtotaldataIP <- cbind(c,d)

dtotaleditedIP <- scale(dtotaldataIP, center=TRUE, scale=TRUE)
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dtotaleditedIP

class(dtotaleditedIP)

dim(dtotaleditedIP)

dtotaledited1IP <- ts(dtotaleditedIP[1:103,],

start=c(1997,02),frequency=12)

dim(dtotaledited1IP)

pca1IP <- princomp(dtotaledited1IP, cor=TRUE)

summary(pca1IP)

class(pca1IP$scores)

dim(pca1IP$scores)

POETKhat(dtotaledited1IP)

factor1IP <- ts(pca1IP$scores[1:103,1],

start=c(1997,02),frequency=12)

class(factor1IP)

modelDI1IP <- arima(IP1,order=c(12,0,0),xreg=factor1IP)

forecastDI1IP <- predict(modelDI1IP,n.ahead=1,newxreg=factor1IP[103])

forecastDI1IP

# now rolling it up

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

IPs<- ts(ldIP[1:i], start=c(1997, 02), frequency=12)

dtotalediteds <-

ts(dtotaleditedIP[1:i,],start=c(1997,02),frequency=12)

pca1 <- princomp(dtotalediteds, cor=TRUE)

m <- POETKhat(dtotalediteds)

factors <- ts(pca1$scores[1:i,1:m$K1BN],

start=c(1997,02),frequency=12)
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model <- auto.arima(IPs,d=NA,D=NA,max.p=24,

max.q=0,max.P=0,max.Q=0,max.d=0,

max.D=0,ic=c("aic"), xreg=factors)

forecastm <- predict(model, n.ahead=1,newxreg=factors[i])

forecastmt <- forecastm$pred

forecasts[i+1] <- forecastmt

}

diip <- ts(forecasts, start=c(1997,02), frequency=12)

diip

# now adding factor model to arima

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

IPs<- ts(ldIP[1:i], start=c(1997, 02), frequency=12)

dtotalediteds <-ts(dtotaleditedIP[1:i,],

start=c(1997,02),frequency=12)

pca1 <- princomp(dtotalediteds, cor=TRUE)

m <- POETKhat(dtotalediteds)

factors <- ts(pca1$scores[1:i,1:m$K1BN],

start=c(1997,02),frequency=12)

model <- auto.arima(IPs,xreg=factors)

forecastm <- predict(model, n.ahead=1,newxreg=factors[i])

forecastmt <- forecastm$pred

forecasts[i+1] <- forecastmt

}

FARIMAip <- ts(forecasts, start=c(1997,02), frequency=12)

FARIMAip

# now doing a FAVAR for ip
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T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

IPs<- ts(ldIP[1:i], start=c(1997, 02), frequency=12)

dtotalediteds <- ts(dtotaleditedIP[1:i,],

start=c(1997,02),frequency=12)

pca1 <- princomp(dtotalediteds, cor=TRUE)

m <- POETKhat(dtotalediteds)

factors <- ts(pca1$scores[1:i,1:m$K1BN],

start=c(1997,02),frequency=12)

varipdata <- cbind(IPs,factors)

model <- VAR(varipdata,p=1,type=c("const"),ic=c("AIC"))

forecastm <- forecast(model,h=1)

forecastmt <- forecastm$mean$IPs

forecasts[i+1] <- forecastmt

}

FAVARIP <- ts(forecasts, start=c(1997,02), frequency=12)

FAVARIP

# now doing a electricity production

adPE <- ts(adpe,start=1997,frequency=12)

dim(adPE)

plot(adPE)

adf.test(adPE)

dladPE <- diff(log(adPE)) # take first difference

plot(dladPE, main="percentage change of prodcution of electricity",

xlab="time", ylab="percentage", col="blue")

plot(adPE, main="volume of production of electricity",

xlab="time", ylab="volume")
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# now fit to ar model first

dladPE1 <- ts(dladPE[1:103],start=c(1997,02),frequency=12)

model1 <- ar(dladPE,method="ols",aic=TRUE)

model1

predict(model1,n.ahead=1)

# now doing a loop

T <- 205

start <- 103

forecasts <- NA

orders <- NA

for (i in start:T){

PEs<- ts(dladPE[1:i], start=c(1997, 02), frequency=12)

model <- ar(PEs, method="ols", aic=TRUE)

orders[i] <- model$order

forecastm <- predict(model, n.ahead=1)

forecastmt <- forecastm$pred

forecasts[i+1] <- forecastmt

}

orderpe <- ts(orders, start=c(1997,02), frequency=12)

pear <- ts(forecasts, start=c(1997,02), frequency=12)

pear

orderpe

# now doing arima for AR

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

PEs<- ts(dladPE[1:i], start=c(1997, 02), frequency=12)

model <- auto.arima(PEs,ic=c("aic"))
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forecastm <- predict(model, n.ahead=1)

forecastmt <- forecastm$pred

forecasts[i+1] <- forecastmt

}

pearima <- ts(forecasts, start=c(1997,02), frequency=12)

pearima

# now doing a exponential smoothing model

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

PEs<- ts(dladPE[1:i], start=c(1997, 02), frequency=12)

model <- HoltWinters(PEs, beta=FALSE,gamma=FALSE)

forecastm <- forecast(model, h=1)

forecastmt <- matrix(forecastm$mean)

forecasts[i+1] <- forecastmt[1,1]

}

pees <- ts(forecasts, start=c(1997,02), frequency=12)

pees

# now doing a factor model

totaldatape<- ts(paper.data.editedPE,start=1997,frequency=12)

class(totaldatape)

e <- diff(log(totaldatacpi[,1:21]))

dim(e)

head(e)

f<- diff(totaldatacpi[,22:35])

head(f)

dtotaldatape <- cbind(e,f)
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dtotaleditedpe <- scale(dtotaldatape, center=TRUE, scale=TRUE)

dtotaleditedpe

class(dtotaleditedpe)

dim(dtotaleditedpe)

dtotaleditedpe1 <- ts(dtotaleditedpe[1:103,],

start=c(1997,02),frequency=12)

dim(dtotaleditedpe1)

pca1 <- princomp(dtotaleditedpe1, cor=TRUE)

summary(pca1)

class(pca1$scores)

dim(pca1$scores)

POETKhat(dtotaleditedpe1)

factor1 <- ts(pca1$scores[1:103,1], start=c(1997,02),frequency=12) #

factor1

class(factor1) # it is time series and ready to fit DI model

modelDI1 <- arima(dladPE1,order=c(orderpe[103],0,0),xreg=factor1)

forecastDI1 <- predict(modelDI1,n.ahead=1,newxreg=factor1[103])

forecastDI1

# now rolling it up

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

PEs<- ts(dladPE[1:i], start=c(1997, 02), frequency=12)

dtotaleditedpes <-

ts(dtotaleditedpe[1:i,],start=c(1997,02),frequency=12)

pca1 <- princomp(dtotaleditedpes, cor=TRUE)

m<- POETKhat(dtotaleditedpes)

factors <- ts(pca1$scores[1:i,1:m$K1BN],
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start=c(1997,02),frequency=12)

model <- auto.arima(PEs,d=NA,D=NA,max.p=24,max.q=0,max.P=0,

max.Q=0,max.d=0,max.D=0,ic=c("aic"), xreg=factors)

forecastm <- predict(model, n.ahead=1,newxreg=factors[i])

forecastmt <- forecastm$pred

forecasts[i+1] <- forecastmt

}

dipe <- ts(forecasts, start=c(1997,02), frequency=12)

dipe

# now adding the factor to arima model

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

PEs<- ts(dladPE[1:i], start=c(1997, 02), frequency=12)

dtotaleditedpes <- ts(dtotaleditedpe[1:i,],

start=c(1997,02),frequency=12)

pca1 <- princomp(dtotaleditedpes, cor=TRUE)

m<- POETKhat(dtotaleditedpes)

factors <- ts(pca1$scores[1:i,1:m$K1BN],

start=c(1997,02),frequency=12)

model <- auto.arima(PEs,xreg=factors)

forecastm <- predict(model, n.ahead=1,newxreg=factors[i])

forecastmt <- forecastm$pred

forecasts[i+1] <- forecastmt

}

FARIMApe <- ts(forecasts, start=c(1997,02), frequency=12)

FARIMApe

# now doing FAVAR for PE
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T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

PEs<- ts(dladPE[1:i], start=c(1997, 02), frequency=12)

dtotaleditedpes <- ts(dtotaleditedpe[1:i,],

start=c(1997,02),frequency=12)

pca1 <- princomp(dtotaleditedpes, cor=TRUE)

m<- POETKhat(dtotaleditedpes)

factors <- ts(pca1$scores[1:i,1:m$K1BN],

start=c(1997,02),frequency=12)

varipdata <- cbind(PEs,factors)

model <- VAR(varipdata,p=1,type=c("const"),ic=c("AIC"))

forecastm <- forecast(model,h=1)

forecastmt <- forecastm$mean$PEs

forecasts[i+1] <- forecastmt

}

FAVARpe <- ts(forecasts, start=c(1997,02), frequency=12)

FAVARpe

# now doing producer price index

adPPI <- ts(adppi,start=1997,frequency=12)

dim(adPPI )

plot(adPPI )

adf.test(adPPI )

dadPPI <- diff(adPPI ) # take first difference

plot(dadPPI , main="first difference of producer price index",

xlab="time", ylab="%change", col="blue")

plot(adPPI, main="adjusted monthly producer price index",
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xlab="time", ylab="%")

# now fit to ar model first

dadPPI1 <- ts(dadPPI[1:103],start=c(1997,02),frequency=12)

model1 <- ar(dadPPI1,method="mle",aic=TRUE)

model1

predict(model1,n.ahead=1)

# now doing a loop

T <- 205

start <- 103

forecasts <- NA

orders <- NA

for (i in start:T){

PPIs<- ts(dadPPI[1:i], start=c(1997, 02), frequency=12)

model <- ar(PPIs, method="mle", aic=TRUE)

orders[i] <- model$order

forecastm <- predict(model, n.ahead=1)

forecastmt <- forecastm$pred

forecasts[i+1] <- forecastmt

}

orderppi <- ts(orders, start=c(1997,02), frequency=12)

ppiar <- ts(forecasts, start=c(1997,02), frequency=12)

ppiar #this is AR forecast for CPI

orderppi # this is AR order that we need to use in later factor model

# now doing arima for AR

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

PPIs<- ts(dadPPI[1:i], start=c(1997, 02), frequency=12)
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model <- auto.arima(PPIs,ic=c("aic"))

forecastm <- predict(model, n.ahead=1)

forecastmt <- forecastm$pred

forecasts[i+1] <- forecastmt

}

ppiarima <- ts(forecasts, start=c(1997,02), frequency=12)

ppiarima

# now doing a exponential smoothing model

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

PPIs<- ts(dadPPI[1:i], start=c(1997, 02), frequency=12)

model <- HoltWinters(PPIs, beta=FALSE,gamma=FALSE)

forecastm <- forecast(model, h=1)

forecastmt <- matrix(forecastm$mean)

forecasts[i+1] <- forecastmt[1,1]

}

ppies <- ts(forecasts, start=c(1997,02), frequency=12)

ppies

# now doing a factor model

totaldatappi<- ts(paper.data.editedPPI,start=1997,frequency=12)

class(totaldatappi)

g <- diff(log(totaldatacpi[,1:22]))

dim(g)

head(g)

h<- diff(totaldatacpi[,23:35])

head(h)
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dtotaldatappi <- cbind(g,h)

dim(totaldatappi)

dtotaldatappied <- scale(dtotaldatappi, center=TRUE, scale=TRUE)

class(dtotaldatappied)

dim(dtotaldatappied)

dtotaldatappied1 <- ts(dtotaldatappied[1:103,],

start=c(1997,02),frequency=12)

dim(dtotaldatappied1)

pca1 <- princomp(dtotaldatappied1, cor=TRUE)

summary(pca1)

class(pca1$scores)

dim(pca1$scores)

POETKhat(dtotaldatappied1)

factor1 <- ts(pca1$scores[1:103,1], start=c(1997,02),frequency=12) #

factor1

class(factor1)

modelDI1 <- arima(dadPPI1,order=c(orderpe[103],0,0),xreg=factor1)

forecastDI1 <- predict(modelDI1,n.ahead=1,newxreg=factor1[103])

forecastDI1

# now rolling it up

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

PPIs<- ts(dadPPI[1:i], start=c(1997, 02), frequency=12)

dtotaldatappieds <- ts(dtotaldatappied[1:i,],

start=c(1997,02),frequency=12)

pca1 <- princomp(dtotaldatappieds, cor=TRUE)

m<- POETKhat(dtotaldatappieds)

110



APPENDIX C. R CODE

factors <- ts(pca1$scores[1:i,1:m$K1BN],

start=c(1997,02),frequency=12)

model <- auto.arima(PPIs,d=NA,D=NA,max.p=24,max.q=0,

max.P=0,max.Q=0,max.d=0,max.D=0,ic=c("aic"), xreg=factors)

forecastm <- predict(model, n.ahead=1,newxreg=factors[i])

forecastmt <- forecastm$pred

forecasts[i+1] <- forecastmt

}

dippi <- ts(forecasts, start=c(1997,02), frequency=12)

dippi

# now adding the factors to arima model

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

PPIs<- ts(dadPPI[1:i], start=c(1997, 02), frequency=12)

dtotaldatappieds <- ts(dtotaldatappied[1:i,],

start=c(1997,02),frequency=12)

pca1 <- princomp(dtotaldatappieds, cor=TRUE)

m<- POETKhat(dtotaldatappieds)

factors <- ts(pca1$scores[1:i,1:m$K1BN],

start=c(1997,02),frequency=12)

model <- auto.arima(PPIs,xreg=factors)

forecastm <- predict(model, n.ahead=1,newxreg=factors[i])

forecastmt <- forecastm$pred

forecasts[i+1] <- forecastmt

}

FARIMAppi <- ts(forecasts, start=c(1997,02), frequency=12)

FARIMAppi
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# now doing FAVAR for PPI

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

PPIs<- ts(dadPPI[1:i], start=c(1997, 02), frequency=12)

dtotaldatappieds <- ts(dtotaldatappied[1:i,],

start=c(1997,02),frequency=12)

pca1 <- princomp(dtotaldatappieds, cor=TRUE)

m<- POETKhat(dtotaldatappieds)

factors <- ts(pca1$scores[1:i,1:m$K1BN],

start=c(1997,02),frequency=12)

varipdata <- cbind(PPIs,factors)

model <- VAR(varipdata,p=1,type=c("const"),ic=c("AIC"))

forecastm <- forecast(model,h=1)

forecastmt <- forecastm$mean$PPIs

forecasts[i+1] <- forecastmt

}

FAVARppi <- ts(forecasts, start=c(1997,02), frequency=12)

FAVARppi

# now writing user defined functions to compute MSE and AME

mse <- function(x,y,n){

sum((x-y)^2)/n

}

n <- 103 # this is total number of out-of-samle period

cpiAR <- mse(dADcpi[104:206],cpiar[104:206],n)

cpiARIMA <- mse(dADcpi[104:206],cpiarima[104:206],n)

cpiES <- mse(dADcpi[104:206],cpies[104:206],n)
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cpiDI <- mse(dADcpi[104:206],dicpi[104:206],n)

cpiFARIMA <- mse(dADcpi[104:206],FARIMAcpi[104:206],n)

cpiFAVAR <- mse(dADcpi[104:206],FAVARcpi[104:206],n)

RcpiAR <-cpiAR/cpiAR

RcpiARIMA <-cpiARIMA/cpiAR

RcpiES=cpiES/cpiAR

RcpiDI=cpiDI/cpiAR

RcpiFARIMA=cpiFARIMA/cpiAR

RcpiFAVAR=cpiFAVAR/cpiAR

CPIforecastMSE <-cbind(RcpiAR,RcpiARIMA,RcpiES,

RcpiDI,RcpiFARIMA,RcpiFAVAR)

CPIforecastMSE

tsdADcpi <- ts(dADcpi[104:206],start=c(2005,09),frequency=12)

tscpiar <- ts(cpiar[104:206],start=c(2005,09),frequency=12)

ts.plot(tsdADcpi,tscpiar,

gpars=list(main="plot of CPI AR forecast and actual

value",xlab="time",ylab="differecen of CPI",lty=c(1:2)))

tscpiarima <-ts(cpiarima[104:206],start=c(2005,09),frequency=12)

ts.plot(tsdADcpi,tscpiarima,

gpars=list(main="plot of CPI ARIMA forecast and actual

value",xlab="time",ylab="differecen of CPI",lty=c(1:2)))

tscpies <-ts(cpies[104:206],start=c(2005,09),frequency=12)

ts.plot(tsdADcpi,tscpies,

gpars=list(main="plot of CPI EM forecast and actual

value",xlab="time",ylab="differecen of CPI",lty=c(1:2)))

tsdicpi <-ts(dicpi[104:206],start=c(2005,09),frequency=12)

ts.plot(tsdADcpi,tsdicpi,

gpars=list(main="plot of CPI DI forecast and actual

value",xlab="time",ylab="differecen of CPI",lty=c(1:2)))

113



tsFARIMAcpi <-ts(FARIMAcpi[104:206],start=c(2005,09),frequency=12)

ts.plot(tsdADcpi,tsFARIMAcpi,

gpars=list(main="plot of CPI FARIMA forecast and actual

value",xlab="time",ylab="differecen of CPI",lty=c(1:2)))

tsFAVARcpi <-ts(FAVARcpi[104:206],start=c(2005,09),frequency=12)

ts.plot(tsdADcpi,tsFAVARcpi,

gpars=list(main="plot of CPI FAVAR forecast and actual

value",xlab="time",ylab="differecen of CPI",lty=c(1:2)))

# now for IP

ipAR <- mse(ldIP[104:206],arip[104:206],n)

ipARIMA <- mse(ldIP[104:206],iparima[104:206],n)

ipES <- mse(ldIP[104:206],ipes[104:206],n)

ipDI <- mse(ldIP[104:206],diip[104:206],n)

ipFARIMA <- mse(ldIP[104:206],FARIMAip[104:206],n)

ipFAVAR <-mse(ldIP[104:206],FAVARIP[104:206],n)

IPforecastMSE <-cbind((ipAR\ipAR),(ipARIMA\ipAR),

(ipES\\ipAR),(ipDI\ipAR),(ipFARIMA\ipAR),(ipFAVAR\ipAR)

IPforecastMSE

tsIP <- ts(ldIP[104:206],start=c(2005,09),frequency=12)

tsarip <- ts(arip[104:206],start=c(2005,09),frequency=12)

ts.plot(tsIP,tsarip,

gpars=list(main="plot of IP AR forecast and actual

value",xlab="time",ylab="percentage change of

IP",lty=c(1:2)))

tsiparima <-ts(iparima[104:206],start=c(2005,09),frequency=12)

ts.plot(tsIP,tsiparima,

gpars=list(main="plot of IP ARIMA forecast and actual

value",xlab="time",ylab="percentage change of

IP",lty=c(1:2)))
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tsipes <-ts(ipes[104:206],start=c(2005,09),frequency=12)

ts.plot(tsIP,tsipes,

gpars=list(main="plot of IP EM forecast and actual

value",xlab="time",ylab="percentage change of

IP",lty=c(1:2)))

tsdiip <-ts(diip[104:206],start=c(2005,09),frequency=12)

ts.plot(tsIP,tsdiip,

gpars=list(main="plot of IP DI forecast and actual

value",xlab="time",ylab="percentage change of

IP",lty=c(1:2)))

tsFARIMAip <-ts(FARIMAip[104:206],start=c(2005,09),frequency=12)

ts.plot(tsIP,tsFARIMAip,

gpars=list(main="plot of IP FARIMA forecast and actual

value",xlab="time",ylab="percentage change of

IP",lty=c(1:2)))

tsFAVARip <-ts(FAVARIP[104:206],start=c(2005,09),frequency=12)

ts.plot(tsIP,tsFAVARip,

gpars=list(main="plot of PE FAVAR forecast and actual

value",xlab="time",ylab="percentage change of

IP",lty=c(1:2)))

# now for Production of electricity

peAR <- mse(dladPE[104:206],pear[104:206],n)

peARIMA <- mse(dladPE[104:206],pearima[104:206],n)

peES <- mse(dladPE[104:206],pees[104:206],n)

peDI <- mse(dladPE[104:206],dipe[104:206],n)

peFARIMA <- mse(dladPE[104:206],FARIMApe[104:206],n)

peFAVAR <- mse(dladPE[104:206],FAVARpe[104:206],n)

PEforecastMSE<-cbind(peAR,peARIMA,peES,peDI,peFARIMA,peFAVAR)

tsPE <- ts(dladPE[104:206],start=c(2005,09),frequency=12)
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tspear <- ts(pear[104:206],start=c(2005,09),frequency=12)

ts.plot(tsPE,tspear,

gpars=list(main="plot of PE AR forecast and actual

value",xlab="time",ylab="percentage change of

PE",lty=c(1:2)))

tspearima <-ts(pearima[104:206],start=c(2005,09),frequency=12)

ts.plot(tsPE,tspearima,

gpars=list(main="plot of PE ARIMA forecast and actual

value",xlab="time",ylab="percentage change of

PE",lty=c(1:2)))

tspees <-ts(pees[104:206],start=c(2005,09),frequency=12)

ts.plot(tsPE,tspees,

gpars=list(main="plot of PE EM forecast and actual

value",xlab="time",ylab="percentage change of

PE",lty=c(1:2)))

tsdipe <-ts(dipe[104:206],start=c(2005,09),frequency=12)

ts.plot(tsPE,tsdipe,

gpars=list(main="plot of PE DI forecast and actual

value",xlab="time",ylab="percentage change of

PE",lty=c(1:2)))

tsFARIMApe <-ts(FARIMApe[104:206],start=c(2005,09),frequency=12)

ts.plot(tsPE,tsFARIMApe,

gpars=list(main="plot of PE FARIMA forecast and actual

value",xlab="time",ylab="percentage change of

PE",lty=c(1:2)))

tsFAVARpe <-ts(FAVARpe[104:206],start=c(2005,09),frequency=12)

ts.plot(tsPE,tsFAVARpe,

gpars=list(main="plot of PE FAVAR forecast and actual

value",xlab="time",ylab="percentage change of
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PE",lty=c(1:2)))

#now for PPI

ppiAR <- mse(dadPPI[104:206],ppiar[104:206],n)

ppiARIMA <- mse(dadPPI[104:206],ppiarima[104:206],n)

ppiES <- mse(dadPPI[104:206],ppies[104:206],n)

ppiDI <- mse(dadPPI[104:206],dippi[104:206],n)

ppiFARIMA <- mse(dadPPI[104:206],FARIMAppi[104:206],n)

ppiFAVAR <- mse(dadPPI[104:206],FAVARppi[104:206],n)

PPIforecastMSE <- cbind(ppiAR,ppiARIMA,ppiES,

ppiDI,ppiFARIMA,ppiFAVAR)

CPIforecastMSE

IPforecastMSE

PEforecastMSE

PPIforecastMSE

totalforecast <-rbind(CPIforecastMSE,IPforecastMSE,PEforecastMSE,PPIforecastMSE)

totalforecast

colnames(totalforecast) <- c("AR","ARIMA","ES","DI","FARIMA","FAVAR")

rownames(totalforecast) <- c("CPI","IP","PE","PPI")

totalMSE <-t(totalforecast)

totalMSE

tsPPI <- ts(dadPPI[104:206],start=c(2005,09),frequency=12)

tsppiar <- ts(ppiar[104:206],start=c(2005,09),frequency=12)

ts.plot(tsPPI,tsppiar,

gpars=list(main="plot of PPI AR forecast and actual

value",xlab="time",ylab="difference of PPI",lty=c(1:2)))

tsppiarima <-ts(ppiarima[104:206],start=c(2005,09),frequency=12)

ts.plot(tsPPI,tsppiarima,

gpars=list(main="plot of PPI ARIMA forecast and actual
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value",xlab="time",ylab="difference of PPI",lty=c(1:2)))

tsppies <-ts(ppies[104:206],start=c(2005,09),frequency=12)

ts.plot(tsPPI,tsppies,

gpars=list(main="plot of PPI EM forecast and actual

value",xlab="time",ylab="difference of PPI",lty=c(1:2)))

tsdippi <-ts(dippi[104:206],start=c(2005,09),frequency=12)

ts.plot(tsPPI,tsdippi,

gpars=list(main="plot of PPI DI forecast and actual

value",xlab="time",ylab="difference of PPI",lty=c(1:2)))

tsFARIMAppi <-ts(FARIMAppi[104:206],start=c(2005,09),frequency=12)

ts.plot(tsPPI,tsFARIMAppi,

gpars=list(main="plot of PPI FARIMA forecast and actual

value",xlab="time",ylab="difference of PPI",lty=c(1:2)))

tsFAVARppi <-ts(FAVARppi[104:206],start=c(2005,09),frequency=12)

ts.plot(tsPPI,tsFAVARppi,

gpars=list(main="plot of PPI FAVAR forecast and actual

value",xlab="time",ylab="difference of PPI",lty=c(1:2)))

totalMSE

totalMSE3

totalMSE6

# now doing relatively MSE and MAE

RCPImse <- totalMSE[,1]/totalMSE[1,1]

RIPmse <- totalMSE[,2]/totalMSE[1,2]

RPEmse <- totalMSE[,3]/totalMSE[1,3]

RPPImse <-totalMSE[,4]/totalMSE[1,4]

RCPImse

RIPmse
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RPEmse

RPPImse

rbind(RCPImse,RIPmse,RPEmse,RPPImse)

RtotalMSE <- t(rbind(RCPImse,RIPmse,RPEmse,RPPImse))

colnames(RtotalMSE) <- c("CPI","IP","PE","PPI")

RtotalMSE

totalMAFE <- xtable(RtotalMAE)

totalMSFE <- xtable(RtotalMSE)

print.xtable(totalMAFE,type="latex", file="",floating=TRUE,table.placement="H")

print.xtable(totalMSFE,type="latex", file="",floating=TRUE,table.placement="H")

tsIP <- ts(IP,start=1997,frequency=12)

tsCPI <- ts(China’s.CPI.MoM, start=1997,frequency=12)

tsPE <- ts(production.electrictity, start=1997,frequency=12)

tsPPI <- ts(Producer.Price.Index..Industrial.Products,

start=1997,frequency=12)

plot(tsIP, main="Monthly Volume of China’s Industrial Production",

ylab="Billion Yuan")

plot(tsCPI, main="Month-on-Month China’s CPI last month=100",

ylab="%", col="red")

plot(tsPE, main="Monthly Volume of China’s Electricity

production",ylab="KWH Billion",col="blue")

plot(tsPPI, main="Monthly PPI:Industrial Products last year=100",

ylab="%")

plot(adPE, main="Seasonally Adjusted Production of

Electricity",ylab="KWH Billion")

rownames(resultsummary)<-

c("one-month-ahead","three-month-ahead","six-month-ahead","total")
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MSFEresult <- resultsummary[1:4,1:3]

MAFEresult <- resultsummary[1:4,4:6]

colnames(MAFEresult) <-c("Win","Draw","Lose")

xMSFEresult <-xtable(MSFEresult)

xMAFEresult <-xtable(MAFEresult)

print.xtable(xMSFEresult,type="latex",

file="",floating=TRUE,table.placement="H")

print.xtable(xMAFEresult,type="latex",

file="",floating=TRUE,table.placement="H")

#Three month ahead forecasts

ADcpi<- ts(adcpi,start=1997,frequency=12)

dim(ADcpi)

plot(ADcpi, main="month-on-month CPI", xlab="time", ylab="%")

adf.test(ADcpi)

China’scpi <- ts(China’s.CPI.MoM, start=1997,frequency=12)

plot(China’scpi)

acf(China’scpi,lag.max=24)

acf(ADcpi, lag.max=24)

dADcpi <- diff(ADcpi) # take first difference

plot(dADcpi, main="seasonally adjusted China’s monthly inflation

rate", xlab="time", ylab="percentage", col="blue")

# now fit to ar model first

dADcpi1 <- ts(dADcpi[1:103],start=c(1997,02),frequency=12)

model1 <- ar(dADcpi1,method="ols",aic=TRUE)

model1

predict(model1,n.ahead=3)

forecast3month <- predict(model1,n.ahead=3)$pred[3]

forecast3month
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dADcpi2 <- ts(dADcpi[1:106],start=c(1997,02),frequency=12)

model2<- ar(dADcpi2,method="ols",aic=TRUE)

predict(model2,n.ahead=3)

# now doing a loop

T <- 205

start <- 103

forecasts <- NA

orders <- NA

for (i in start:T){

CPIs<- ts(dADcpi[1:i], start=c(1997, 02), frequency=12)

model <- ar(CPIs, method="ols", aic=TRUE)

orders[i] <- model$order

forecastm <- predict(model, n.ahead=3)

forecastmt <- forecastm$pred[3]

forecasts[i+1] <- forecastmt

}

orderar3 <- ts(orders, start=c(1997,02), frequency=12)

cpiar3 <- ts(forecasts, start=c(1997,04), frequency=12)

cpiar3 #this is AR forecast for CPI

orderar3 # this is AR order that we need to use in later factor model

# now doing arima for AR

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

CPIs<- ts(dADcpi[1:i], start=c(1997, 02), frequency=12)

model <- auto.arima(CPIs,ic=c("aic"))

forecastm <- predict(model, n.ahead=3)
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forecastmt <- forecastm$pred[3]

forecasts[i+1] <- forecastmt

}

cpiarima3 <- ts(forecasts, start=c(1997,04), frequency=12)

cpiarima3

# now doing a exponential smoothing model

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

CPIs<- ts(dADcpi[1:i], start=c(1997, 02), frequency=12)

model <- HoltWinters(CPIs, beta=FALSE,gamma=FALSE)

forecastm <- predict(model,n.ahead=3)

forecastmt <-forecastm[3]

forecasts[i+1] <- forecastmt

}

cpies3 <- ts(forecasts, start=c(1997,04), frequency=12)

cpies3

# now doing a factor model

totaldatacpi<- ts(paper.data.editedCPI,start=1997,frequency=12)

class(totaldatacpi)

dim(totaldatacpi)

a <- diff(log(totaldatacpi[,1:22]))

dim(a)

head(a)

b<- diff(totaldatacpi[,23:35])

head(b)

dtotaldata <- cbind(a,b)
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dim(dtotaldata)

head(dtotaldata)

dtotaledited <- scale(dtotaldata, center=TRUE, scale=TRUE)

class(dtotaldata)

dtotaledited

class(dtotaledited)

dim(dtotaledited)

dtotaledited1 <- ts(dtotaledited[1:103,],

start=c(1997,02),frequency=12)

dim(dtotaledited1)

pca1 <- princomp(dtotaledited1, cor=TRUE)

summary(pca1)

class(pca1$scores)

dim(pca1$scores)

POETKhat(dtotaledited1)

factor1 <- ts(pca1$scores[1:103,1:1], start=c(1997,02),frequency=12)

factor1

class(factor1) # it is time series and ready to fit DI model

modelDI1 <- arima(dADcpi1,order=c(orderar[103],0,0),xreg=factor1)

forecastDI3 <- predict(modelDI1,n.ahead=3,newxreg=factor1[103])

forecastDI3

forecastDI3$pred[3]

# now rolling it up

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

CPIs<- ts(dADcpi[1:i], start=c(1997, 02), frequency=12)

dtotalediteds <- ts(dtotaledited[1:i,],
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start=c(1997,02),frequency=12)

pca1 <- princomp(dtotalediteds, cor=TRUE)

m<- POETKhat(dtotalediteds)

factors <- ts(pca1$scores[1:i,1:m$K1BN],

start=c(1997,02),frequency=12)

model <- auto.arima(CPIs,d=NA,D=NA,max.p=24,max.q=0,

max.P=0,max.Q=0,max.d=0,max.D=0,ic=c("aic"), xreg=factors)

forecastm <- predict(model, n.ahead=3,newxreg=factors[i])

forecastmt <- forecastm$pred[3]

forecasts[i+1] <- forecastmt

}

dicpi3 <- ts(forecasts, start=c(1997,04), frequency=12)

dicpi3

# now adding factors to arima

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

CPIs<- ts(dADcpi[1:i], start=c(1997, 02), frequency=12)

dtotalediteds <- ts(dtotaledited[1:i,],

start=c(1997,02),frequency=12)

pca1 <- princomp(dtotalediteds, cor=TRUE)

m<- POETKhat(dtotalediteds)

factors <- ts(pca1$scores[1:i,1:m$K1BN],

start=c(1997,02),frequency=12)

model <- auto.arima(CPIs,xreg=factors,ic=c("aic"))

forecastm <- predict(model, n.ahead=3,newxreg=factors[i])

forecastmt <- forecastm$pred[3]
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forecasts[i+1] <- forecastmt

}

FARIMAcpi3 <- ts(forecasts, start=c(1997,04), frequency=12)

FARIMAcpi3

# trying to do a FAVAR approach

pca1 <- princomp(dtotaledited1, cor=TRUE)\

summary(pca1)

class(pca1$scores)

dim(pca1$scores)

POETKhat(dtotaledited1)

factor1 <- ts(pca1$scores[1:103,1], start=c(1997,02),frequency=12) #

factor1

varobject <-cbind(dADcpi1,factor1)

class(varobject)

head(varobject)

dim(varobject)

plot(varobject)

var1 <- VAR(varobject,p=1,type=c("const"),ic=c("AIC"))

predict(var1,n.ahead=1)

forecast1=forecast(var1,h=3)

forecast1$mean$dADcpi1[3]

# now doing var loop

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

CPIs<- ts(dADcpi[1:i], start=c(1997, 02), frequency=12)

dtotalediteds <- ts(dtotaledited[1:i,],

start=c(1997,02),frequency=12)
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pca1 <- princomp(dtotalediteds, cor=TRUE)

m<- POETKhat(dtotalediteds)

factors <- ts(pca1$scores[1:i,1:m$K1BN],

start=c(1997,02),frequency=12)

varcpidata <- cbind(CPIs,factors)

model <- VAR(varcpidata,p=1,type=c("const"),ic=c("AIC"))

forecastm <- forecast(model,h=3)

forecastmt <- forecastm$mean$CPIs[3]

forecasts[i+1] <- forecastmt

}

FAVARcpi3 <- ts(forecasts, start=c(1997,04), frequency=12)

FAVARcpi3

#now doing IP

tIP <- ts(adip,start=1997,frequency=12)

class(tIP)

dim(tIP)

plot(tIP, main="China’s monthly seasonal adjusted industrial

production", xlab="time", ylab="billion Yuan")

adf.test(tIP)

# seems like we need to take log of first difference

lIP=log(tIP)

lIP

ldIP=diff(lIP)

class(ldIP[1:103])

IP1 <- ts(ldIP[1:103,],start=c(1997,02),frequency=12)

class(IP1)

# now doing a loop for AR

T <- 205
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start <- 103

forecasts <- NA

orders <- NA

for (i in start:T){

IPc<- ts(ldIP[1:i], start=c(1997, 02), frequency=12)

model <- ar(IPc, method="ols", aic=TRUE)

orders[i] <- model$order

forecastm <- predict(model, n.ahead=3)

forecastmt <- forecastm$pred[3]

forecasts[i+1] <- forecastmt

}

orderip3 <- ts(orders, start=c(1997,02), frequency=12)

arip3 <- ts(forecasts, start=c(1997,04), frequency=12)

orderip3

arip3

# doing arima loop

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

IPc<- ts(ldIP[1:i], start=c(1997, 02), frequency=12)

model <- auto.arima(IPc,ic=c("aic"))

forecastm <- predict(model, n.ahead=3)

forecastmt <- forecastm$pred[3]

forecasts[i+1] <- forecastmt

}

iparima3 <- ts(forecasts, start=c(1997,04), frequency=12)

iparima3
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#finally doing exponential smoothing for IP

T <- 205

start <- 103

forecasts <- NA

orders <- NA

for (i in start:T){

dtc<- ts(ldIP[1:i], start=c(1997, 02), frequency=12)

model <- HoltWinters(dtc, beta=FALSE,gamma=FALSE)

forecastm <- predict(model,n.ahead=3)

forecastmt <-forecastm[3]

forecasts[i+1] <- forecastmt

}

ipes3 <- ts(forecasts, start=c(1997,04), frequency=12)

ipes3

# now doing diffusion index

totaldataIP<- ts(paper.data.editedIP,start=1997,frequency=12)

class(totaldataIP)

c <- diff(log(totaldataIP[,1:21]))

dim(c)

d <- diff(totaldataIP[,22:35])

head(d)

dtotaldataIP <- cbind(c,d)

dtotaleditedIP <- scale(dtotaldataIP, center=TRUE, scale=TRUE)

dtotaleditedIP

class(dtotaleditedIP)

dim(dtotaleditedIP)

dtotaledited1IP <- ts(dtotaleditedIP[1:103,],
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start=c(1997,02),frequency=12) #first within-sample period

dim(dtotaledited1IP)

pca1IP <- princomp(dtotaledited1IP, cor=TRUE)

summary(pca1IP)

class(pca1IP$scores)

dim(pca1IP$scores)

POETKhat(dtotaledited1IP)

factor1IP <- ts(pca1IP$scores[1:103,1], start=c(1997,02),frequency=12)

factor1IP

class(factor1IP)

modelDI1IP <- arima(IP1,order=c(12,0,0),xreg=factor1IP)

forecastDI1IP <- predict(modelDI1IP,n.ahead=3,newxreg=factor1IP[103])

forecastDI1IP$pred[3]

# now rolling it up

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

IPs<- ts(ldIP[1:i], start=c(1997, 02), frequency=12)

dtotalediteds <-

ts(dtotaleditedIP[1:i,],start=c(1997,02),frequency=12)

pca1 <- princomp(dtotalediteds, cor=TRUE)

m <- POETKhat(dtotalediteds)

factors <- ts(pca1$scores[1:i,1:m$K1BN],

start=c(1997,02),frequency=12)

model <- auto.arima(IPs,d=NA,D=NA,max.p=24,max.q=0,

max.P=0,max.Q=0,max.d=0,max.D=0,ic=c("aic"), xreg=factors)

forecastm <- predict(model, n.ahead=3,newxreg=factors[i])

forecastmt <- forecastm$pred[3]

129



forecasts[i+1] <- forecastmt

}

diip3 <- ts(forecasts, start=c(1997,04), frequency=12)

diip3

# now adding factor model to arima

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

IPs<- ts(ldIP[1:i], start=c(1997, 02), frequency=12)

dtotalediteds <- ts(dtotaleditedIP[1:i,],

=c(1997,02),frequency=12)

pca1 <- princomp(dtotalediteds, cor=TRUE)

m <- POETKhat(dtotalediteds)

factors <- ts(pca1$scores[1:i,1:m$K1BN],

start=c(1997,02),frequency=12)

model <- auto.arima(IPs,xreg=factors,ic=c("aic"))

forecastm <- predict(model, n.ahead=3,newxreg=factors[i])

forecastmt <- forecastm$pred[3]

forecasts[i+1] <- forecastmt

}

FARIMAip3 <- ts(forecasts, start=c(1997,04), frequency=12)

FARIMAip3

# now doing a FAVAR for ip

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

IPs<- ts(ldIP[1:i], start=c(1997, 02), frequency=12)
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dtotalediteds <- ts(dtotaleditedIP[1:i,],

start=c(1997,02),frequency=12)

pca1 <- princomp(dtotalediteds, cor=TRUE)

m <- POETKhat(dtotalediteds)

factors <- ts(pca1$scores[1:i,1:m$K1BN],

start=c(1997,02),frequency=12)

varipdata <- cbind(IPs,factors)

model <- VAR(varipdata,p=1,type=c("const"),ic=c("AIC"))

forecastm <- forecast(model,h=3)

forecastmt <- forecastm$mean$IPs[3]

forecasts[i+1] <- forecastmt

}

FAVARIP3 <- ts(forecasts, start=c(1997,04), frequency=12)

FAVARIP3

# now doing a electricity production

adPE <- ts(adpe,start=1997,frequency=12)

dim(adPE)

plot(adPE)

adf.test(adPE)

dladPE <- diff(log(adPE)) # take first difference

plot(dladPE, main="percentage change of prodcution of electricity",

xlab="time", ylab="percentage", col="blue")

plot(adPE, main="volume of production of electricity", xlab="time",

ylab="volume")

# now fit to ar model first

dladPE1 <- ts(dladPE[1:103],start=c(1997,02),frequency=12)

model1 <- ar(dladPE,method="ols",aic=TRUE)

model1

predict(model1,n.ahead=1)
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forecast(model1,h=1)

forecast(model1,h=3)

predict(model1,n.ahead=3)$pred[3]

# now doing a loop

T <- 205

start <- 103

forecasts <- NA

orders <- NA

for (i in start:T){

PEs<- ts(dladPE[1:i], start=c(1997, 02), frequency=12)

model <- ar(PEs, method="ols", aic=TRUE)

orders[i] <- model$order

forecastm <- predict(model, n.ahead=3)

forecastmt <- forecastm$pred[3]

forecasts[i+1] <- forecastmt

}

orderpe3 <- ts(orders, start=c(1997,02), frequency=12)

pear3 <- ts(forecasts, start=c(1997,04), frequency=12)

pear3 #this is AR forecast for PPI

orderpe3 # this is AR order that we need to use in later factor model

# now doing arima for AR

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

PEs<- ts(dladPE[1:i], start=c(1997, 02), frequency=12)

model <- auto.arima(PEs,ic=c("aic"))

forecastm <- predict(model, n.ahead=3)
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forecastmt <- forecastm$pred[3]

forecasts[i+1] <- forecastmt

}

pearima3 <- ts(forecasts, start=c(1997,04), frequency=12)

pearima3

# now doing a exponential smoothing model

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

PEs<- ts(dladPE[1:i], start=c(1997, 02), frequency=12)

model <- HoltWinters(PEs, beta=FALSE,gamma=FALSE)

forecastm <- predict(model,n.ahead=3)

forecastmt <-forecastm[3]

forecasts[i+1] <- forecastmt

}

pees3 <- ts(forecasts, start=c(1997,04), frequency=12)

pees3

# now doing a factor model

totaldatape<- ts(paper.data.editedPE,start=1997,frequency=12)

class(totaldatape)

e <- diff(log(totaldatacpi[,1:21]))

dim(e)

head(e)

f<- diff(totaldatacpi[,22:35])

head(f)

dtotaldatape <- cbind(e,f)

dtotaleditedpe <- scale(dtotaldatape, center=TRUE, scale=TRUE)
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dtotaleditedpe

class(dtotaleditedpe)

dim(dtotaleditedpe)

dtotaleditedpe1 <- ts(dtotaleditedpe[1:103,],

start=c(1997,02),frequency=12)

dim(dtotaleditedpe1)

pca1 <- princomp(dtotaleditedpe1, cor=TRUE)

summary(pca1)

class(pca1$scores)

dim(pca1$scores)

POETKhat(dtotaleditedpe1)

factor1 <- ts(pca1$scores[1:103,1], start=c(1997,02),frequency=12) #

factor1

class(factor1) # it is time series and ready to fit DI model

modelDI1 <- arima(dladPE1,order=c(orderpe[103],0,0),xreg=factor1)

forecastDI1 <- predict(modelDI1,n.ahead=1,newxreg=factor1[103])

forecastDI1

# now rolling it up

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

PEs<- ts(dladPE[1:i], start=c(1997, 02), frequency=12)

dtotaleditedpes <- ts(dtotaleditedpe[1:i,],

start=c(1997,02),frequency=12)

pca1 <- princomp(dtotaleditedpes, cor=TRUE)

m<- POETKhat(dtotaleditedpes)

factors <- ts(pca1$scores[1:i,1:m$K1BN],

start=c(1997,02),frequency=12)
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model <- auto.arima(PEs,d=NA,D=NA,max.p=24,max.q=0,

max.P=0,max.Q=0,max.d=0,max.D=0,ic=c("aic"), xreg=factors)

forecastm <- predict(model, n.ahead=3,newxreg=factors[i])

forecastmt <- forecastm$pred[3]

forecasts[i+1] <- forecastmt

}

dipe3 <- ts(forecasts, start=c(1997,04), frequency=12)

dipe3

# now adding the factor to arima model

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

PEs<- ts(dladPE[1:i], start=c(1997, 02), frequency=12)

dtotaleditedpes <- ts(dtotaleditedpe[1:i,],

start=c(1997,02),frequency=12)

pca1 <- princomp(dtotaleditedpes, cor=TRUE)

m<- POETKhat(dtotaleditedpes)

factors <- ts(pca1$scores[1:i,1:m$K1BN],

start=c(1997,02),frequency=12)

model <- auto.arima(PEs,xreg=factors,ic=c("aic"))

forecastm <- predict(model, n.ahead=3,newxreg=factors[i])

forecastmt <- forecastm$pred[3]

forecasts[i+1] <- forecastmt

}

FARIMApe3 <- ts(forecasts, start=c(1997,04), frequency=12)

FARIMApe3

# now doing FAVAR for PE

T <- 205
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start <- 103

forecasts <- NA

for (i in start:T){

PEs<- ts(dladPE[1:i], start=c(1997, 02), frequency=12)

dtotaleditedpes <- ts(dtotaleditedpe[1:i,],

start=c(1997,02),frequency=12)

pca1 <- princomp(dtotaleditedpes, cor=TRUE)

m<- POETKhat(dtotaleditedpes)

factors <- ts(pca1$scores[1:i,1:m$K1BN],

start=c(1997,02),frequency=12)

varipdata <- cbind(PEs,factors)

model <- VAR(varipdata,p=1,type=c("const"),ic=c("AIC"))

forecastm <- forecast(model,h=3)

forecastmt <- forecastm$mean$PEs[3]

forecasts[i+1] <- forecastmt

}

FAVARpe3 <- ts(forecasts, start=c(1997,04), frequency=12)

FAVARpe3

# now doing producer price index

adPPI <- ts(adppi,start=1997,frequency=12)

dim(adPPI )

plot(adPPI )

adf.test(adPPI )

dadPPI <- diff(adPPI ) # take first difference

plot(dadPPI , main="first difference of producer price index",

xlab="time", ylab="%change", col="blue")

plot(adPPI, main="monthly producer price index", xlab="time",

ylab="%")
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# now fit to ar model first

dadPPI1 <- ts(dadPPI[1:103],start=c(1997,02),frequency=12)

model1 <- ar(dadPPI1,method="ols",aic=TRUE)

model1

predict(model1,n.ahead=3)

# now doing a loop

T <- 205

start <- 103

forecasts <- NA

orders <- NA

for (i in start:T){

PPIs<- ts(dadPPI[1:i], start=c(1997, 02), frequency=12)

model <- ar(PPIs, method="ols", aic=TRUE)

orders[i] <- model$order

forecastm <- predict(model, n.ahead=3)

forecastmt <- forecastm$pred[3]

forecasts[i+1] <- forecastmt

}

orderppi3 <- ts(orders, start=c(1997,02), frequency=12)

ppiar3 <- ts(forecasts, start=c(1997,04), frequency=12)

ppiar3 #this is AR forecast for CPI

orderppi3

# now doing arima for AR

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

PPIs<- ts(dadPPI[1:i], start=c(1997, 02), frequency=12)

model <- auto.arima(PPIs,ic=c("aic"))
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forecastm <- predict(model, n.ahead=3)

forecastmt <- forecastm$pred[3]

forecasts[i+1] <- forecastmt

}

ppiarima3 <- ts(forecasts, start=c(1997,04), frequency=12)

ppiarima3

# now doing a exponential smoothing model

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

PPIs<- ts(dadPPI[1:i], start=c(1997, 02), frequency=12)

model <- HoltWinters(PPIs, beta=FALSE,gamma=FALSE)

forecastm <- predict(model,n.ahead=3)

forecastmt <-forecastm[3]

forecasts[i+1] <- forecastmt

}

ppies3 <- ts(forecasts, start=c(1997,04), frequency=12)

ppies3

# now doing a factor model

totaldatappi<- ts(paper.data.editedPPI,start=1997,frequency=12)

class(totaldatappi)

g <- diff(log(totaldatacpi[,1:22]))

dim(g)

head(g)

h<- diff(totaldatacpi[,23:35])

head(h)

dtotaldatappi <- cbind(g,h)
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dim(totaldatappi)

dtotaldatappied <- scale(dtotaldatappi, center=TRUE, scale=TRUE)

class(dtotaldatappied)

dim(dtotaldatappied)

dtotaldatappied1 <- ts(dtotaldatappied[1:103,],

start=c(1997,02),frequency=12) #first within-sample period

dim(dtotaldatappied1)

pca1 <- princomp(dtotaldatappied1, cor=TRUE)

summary(pca1)

class(pca1$scores)

dim(pca1$scores)

POETKhat(dtotaldatappied1)

factor1 <- ts(pca1$scores[1:103,1], start=c(1997,02),frequency=12) #

factor1

class(factor1)

modelDI1 <- arima(dadPPI1,order=c(orderpe[103],0,0),xreg=factor1)

forecastDI1 <- predict(modelDI1,n.ahead=1,newxreg=factor1[103])

forecastDI1

# now rolling it up

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

PPIs<- ts(dadPPI[1:i], start=c(1997, 02), frequency=12)

dtotaldatappieds <- ts(dtotaldatappied[1:i,],

start=c(1997,02),frequency=12)

pca1 <- princomp(dtotaldatappieds, cor=TRUE)

m<- POETKhat(dtotaldatappieds)

factors <- ts(pca1$scores[1:i,1:m$K1BN],
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start=c(1997,02),frequency=12)

model <- auto.arima(PPIs,d=NA,D=NA,max.p=24,max.q=0,

max.P=0,max.Q=0,max.d=0,max.D=0,ic=c("aic"), xreg=factors)

forecastm <- predict(model, n.ahead=3,newxreg=factors[i])

forecastmt <- forecastm$pred[3]

forecasts[i+1] <- forecastmt

}

dippi3 <- ts(forecasts, start=c(1997,04), frequency=12)

dippi3

# now adding the factors to arima model

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

PPIs<- ts(dadPPI[1:i], start=c(1997, 02), frequency=12)

dtotaldatappieds <- ts(dtotaldatappied[1:i,],

start=c(1997,02),frequency=12)

pca1 <- princomp(dtotaldatappieds, cor=TRUE)

m<- POETKhat(dtotaldatappieds)

factors <- ts(pca1$scores[1:i,1:m$K1BN],

start=c(1997,02),frequency=12)

model <- auto.arima(PPIs,xreg=factors,ic=c("aic"))

forecastm <- predict(model, n.ahead=3,newxreg=factors[i])

forecastmt <- forecastm$pred[3]

forecasts[i+1] <- forecastmt

}

FARIMAppi3 <- ts(forecasts, start=c(1997,04), frequency=12)

FARIMAppi3

# now doing FAVAR for PPI
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T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

PPIs<- ts(dadPPI[1:i], start=c(1997, 02), frequency=12)

dtotaldatappieds <- ts(dtotaldatappied[1:i,],

start=c(1997,02),frequency=12)

pca1 <- princomp(dtotaldatappieds, cor=TRUE)

m<- POETKhat(dtotaldatappieds)

factors <- ts(pca1$scores[1:i,1:m$K1BN],

start=c(1997,02),frequency=12)

varipdata <- cbind(PPIs,factors)

model <- VAR(varipdata,p=1,type=c("const"),ic=c("AIC"))

forecastm <- forecast(model,h=3)

forecastmt <- forecastm$mean$PPIs[3]

forecasts[i+1] <- forecastmt

}

FAVARppi3 <- ts(forecasts, start=c(1997,04), frequency=12)

FAVARppi3

# now writing user defined functions to compute MSE and AME

mse <- function(x,y,n){

sum((x-y)^2)/n

}

n <- 101 # this is total number of out-of-samle period

cpiAR3 <- mse(dADcpi[106:206],cpiar3[106:206],n)

cpiARIMA3 <- mse(dADcpi[106:206],cpiarima3[106:206],n)

cpiES3 <- mse(dADcpi[106:206],cpies3[106:206],n)

cpiDI3 <- mse(dADcpi[106:206],dicpi3[106:206],n)
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cpiFARIMA3 <- mse(dADcpi[106:206],FARIMAcpi3[106:206],n)

cpiFAVAR3 <- mse(dADcpi[106:206],FAVARcpi3[106:206],n)

CPIforecastMSE3 <-cbind(cpiAR3,cpiARIMA3,

cpiES3,cpiDI3,cpiFARIMA3,cpiFAVAR3)

CPIforecastMSE3

tsCPI3 <- ts(dADcpi[106:206],start=c(2005,11),frequency=12)

tscpiar3 <-ts(cpiar3[106:206],start=c(2005,11),frequency=12)

tscpiarima3 <-ts(cpiarima3[106:206],start=c(2005,11),frequency=12)

tscpies3 <-ts(cpies3[106:206],start=c(2005,11),frequency=12)

tscpidi3 <-ts(dicpi3[106:206],start=c(2005,11),frequency=12)

tscpiFARIMA3 <-ts(FARIMAcpi3[106:206],start=c(2005,11),frequency=12)

tscpiFAVAR3 <-ts(FAVARcpi3[106:206],start=c(2005,11),frequency=12)

ts.plot(tsCPI3,tscpiar3,

gpars=list(main="plot of CPI AR forecast and actual

value",xlab="time",ylab="difference of CPI",lty=c(1:2)))

ts.plot(tsCPI3,tscpiarima3,

gpars=list(main="plot of CPI ARIMA forecast and actual

value",xlab="time",ylab="difference of CPI",lty=c(1:2)))

ts.plot(tsCPI3,tscpies3,

gpars=list(main="plot of CPI EM forecast and actual

value",xlab="time",ylab="difference of CPI",lty=c(1:2)))

ts.plot(tsCPI3,tscpidi3,

gpars=list(main="plot of CPI DI forecast and actual

value",xlab="time",ylab="difference of CPI",lty=c(1:2)))

ts.plot(tsCPI3,tscpiFARIMA3,

gpars=list(main="plot of CPI FARIMA forecast and actual

value",xlab="time",ylab="difference of CPI",lty=c(1:2)))

ts.plot(tsCPI3,tscpiFAVAR3,

gpars=list(main="plot of CPI FAVAR forecast and actual
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value",xlab="time",ylab="difference of CPI",lty=c(1:2)))

# now for IP

ipAR3 <- mse(ldIP[106:206],arip3[106:206],n)

ipARIMA3 <- mse(ldIP[106:206],iparima3[106:206],n)

ipES3 <- mse(ldIP[106:206],ipes3[106:206],n)

ipDI3 <- mse(ldIP[106:206],diip3[106:206],n)

ipFARIMA3 <- mse(ldIP[106:206],FARIMAip3[106:206],n)

ipFAVAR3 <-mse(ldIP[106:206],FAVARIP3[106:206],n)

IPforecastMSE3 <-cbind(ipAR3,ipARIMA3,ipES3,ipDI3,ipFARIMA3,ipFAVAR3)

IPforecastMSE3

IP3 <- ts(ldIP[106:206],start=c(2005,11),frequency=12)

tsipar3 <-ts(arip3[106:206],start=c(2005,11),frequency=12)

tsiparima3 <-ts(iparima3[106:206],start=c(2005,11),frequency=12)

tsipes3 <-ts(ipes3[106:206],start=c(2005,11),frequency=12)

tsipdi3 <-ts(diip3[106:206],start=c(2005,11),frequency=12)

tsipFARIMA3 <-ts(FARIMAip3[106:206],start=c(2005,11),frequency=12)

tsipFAVAR3 <-ts(FAVARIP3[106:206],start=c(2005,11),frequency=12)

ts.plot(tsIP3,tsipar3,

gpars=list(main="plot of IP AR forecast and actual

value",xlab="time",ylab="Percentage change",lty=c(1:2)))

ts.plot(tsIP3,tsiparima3,

gpars=list(main="plot of IP ARIMA forecast and actual

value",xlab="time",ylab="Percentage change",lty=c(1:2)))

ts.plot(tsIP3,tsipes3,

gpars=list(main="plot of IP EM forecast and actual

value",xlab="time",ylab="Percentage change",lty=c(1:2)))

ts.plot(tsIP3,tsipdi3,

gpars=list(main="plot of IP DI forecast and actual

value",xlab="time",ylab="Percentage change",lty=c(1:2)))
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ts.plot(tsIP3,tsipFARIMA3,

gpars=list(main="plot of IP FARIMA forecast and actual

value",xlab="time",ylab="Percentage change",lty=c(1:2)))

ts.plot(tsIP3,tsipFAVAR3,

gpars=list(main="plot of IP FAVAR forecast and actual

value",xlab="time",ylab="Percentage change",lty=c(1:2)))

# now for Production of electricity

peAR3 <- mse(dladPE[106:206],pear3[106:206],n)

peARIMA3 <- mse(dladPE[106:206],pearima3[106:206],n)

peES3 <- mse(dladPE[106:206],pees3[106:206],n)

peDI3 <- mse(dladPE[106:206],dipe3[106:206],n)

peFARIMA3 <- mse(dladPE[106:206],FARIMApe3[106:206],n)

peFAVAR3 <- mse(dladPE[106:206],FAVARpe3[106:206],n)

PEforecastMSE3<-cbind(peAR3,peARIMA3,peES3,peDI3,peFARIMA3,peFAVAR3)

PEforecastMSE3

PE3 <- ts(dladPE[106:206],start=c(2005,11),frequency=12)

tspear3 <-ts(pear3[106:206],start=c(2005,11),frequency=12)

tspearima3 <-ts(pearima3[106:206],start=c(2005,11),frequency=12)

tspees3 <-ts(pees3[106:206],start=c(2005,11),frequency=12)

tspedi3 <-ts(dipe3[106:206],start=c(2005,11),frequency=12)

tspeFARIMA3 <-ts(FARIMApe3[106:206],start=c(2005,11),frequency=12)

tspeFAVAR3 <-ts(FAVARpe3[106:206],start=c(2005,11),frequency=12)

ts.plot(tsPE3,tspear3,

gpars=list(main="plot of PE AR forecast and actual

value",xlab="time",ylab="Percentage change",lty=c(1:2)))

ts.plot(tsPE3,tspearima3,

gpars=list(main="plot of PE ARIMA forecast and actual

value",xlab="time",ylab="Percentage change",lty=c(1:2)))
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ts.plot(tsPE3,tspees3,

gpars=list(main="plot of PE EM forecast and actual

value",xlab="time",ylab="Percentage change",lty=c(1:2)))

ts.plot(tsPE3,tspedi3,

gpars=list(main="plot of PE DI forecast and actual

value",xlab="time",ylab="Percentage change",lty=c(1:2)))

ts.plot(tsPE3,tspeFARIMA3,

gpars=list(main="plot of PE FARIMA forecast and actual

value",xlab="time",ylab="Percentage change",lty=c(1:2)))

ts.plot(tsPE3,tspeFAVAR3,

gpars=list(main="plot of PE FAVAR forecast and actual

value",xlab="time",ylab="Percentage change",lty=c(1:2)))

#now for PPI

ppiAR3 <- mse(dadPPI[106:206],ppiar3[106:206],n)

ppiARIMA3 <- mse(dadPPI[106:206],ppiarima3[106:206],n)

ppiES3 <- mse(dadPPI[106:206],ppies3[106:206],n)

ppiDI3 <- mse(dadPPI[106:206],dippi3[106:206],n)

ppiFARIMA3 <- mse(dadPPI[106:206],FARIMAppi3[106:206],n)

ppiFAVAR3 <- mse(dadPPI[106:206],FAVARppi3[106:206],n)

tsPPI3 <- ts(dadPPI[106:206],start=c(2005,11),frequency=12)

tsppiar3 <-ts(ppiar3[106:206],start=c(2005,11),frequency=12)

tsppiarima3 <-ts(ppiarima3[106:206],start=c(2005,11),frequency=12)

tsppies3 <-ts(ppies3[106:206],start=c(2005,11),frequency=12)

tsppidi3 <-ts(dippi3[106:206],start=c(2005,11),frequency=12)

tsppiFARIMA3 <-ts(FARIMAppi3[106:206],start=c(2005,11),frequency=12)

tsppiFAVAR3 <-ts(FAVARppi3[106:206],start=c(2005,11),frequency=12)

ts.plot(tsPPI3,tsppiar3,
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gpars=list(main="plot of PPI AR forecast and actual

value",xlab="time",ylab="Percentage change",lty=c(1:2)))

ts.plot(tsPPI3,tsppiarima3,

gpars=list(main="plot of PPI ARIMA forecast and actual

value",xlab="time",ylab="Percentage change",lty=c(1:2)))

ts.plot(tsPPI3,tsppies3,

gpars=list(main="plot of PPI EM forecast and actual

value",xlab="time",ylab="Percentage change",lty=c(1:2)))

ts.plot(tsPPI3,tsppidi3,

gpars=list(main="plot of PPI DI forecast and actual

value",xlab="time",ylab="Percentage change",lty=c(1:2)))

ts.plot(tsPPI3,tsppiFARIMA3,

gpars=list(main="plot of PPI FARIMA forecast and actual

value",xlab="time",ylab="Percentage change",lty=c(1:2)))

ts.plot(tsPPI3,tsppiFAVAR3,

gpars=list(main="plot of PPI FAVAR forecast and actual

value",xlab="time",ylab="Percentage change",lty=c(1:2)))

PPIforecastMSE3 <- cbind(ppiAR3,ppiARIMA3,

ppiES3,ppiDI3,ppiFARIMA3,ppiFAVAR3)

CPIforecastMSE3

IPforecastMSE3

PEforecastMSE3

PPIforecastMSE3

totalforecast3 <-rbind(CPIforecastMSE3,

IPforecastMSE3,PEforecastMSE3,PPIforecastMSE3)

totalforecast3

colnames(totalforecast3) <-

c("AR","ARIMA","ES","DI","FARIMA","FAVAR")

rownames(totalforecast3) <- c("CPI","IP","PE","PPI")
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totalMSE3 <-t(totalforecast3)

totalMSE3

# now doing relatively MSE and MAS

RCPImse3 <- totalMSE3[,1]/totalMSE3[1,1]

RIPmse3 <- totalMSE3[,2]/totalMSE3[1,2]

RPEmse3 <- totalMSE3[,3]/totalMSE3[1,3]

RPPImse3 <-totalMSE3[,4]/totalMSE3[1,4]

RCPImse3

RIPmse3

RPEmse3

RPPImse3

rbind(RCPImse3,RIPmse3,RPEmse3,RPPImse3)

RtotalMSE3 <- t(rbind(RCPImse3,RIPmse3,RPEmse3,RPPImse3))

colnames(RtotalMSE3) <- c("CPI","IP","PE","PPI")

RtotalMSE3

totalMSFE3 <- xtable(RtotalMSE3)

print.xtable(totalMAFE3,type="latex", file="",floating=FALSE,table.placement="H")

print.xtable(totalMSFE3,type="latex", file="",floating=TRUE,table.placement="H")

#six-month-ahead forecasts

ADcpi<- ts(adcpi,start=1997,frequency=12)

dim(ADcpi)

plot(ADcpi, main="month-on-month CPI", xlab="time", ylab="%")

adf.test(ADcpi)

China’scpi <- ts(China’s.CPI.MoM, start=1997,frequency=12)

plot(China’scpi)

acf(China’scpi,lag.max=24)

acf(ADcpi, lag.max=24)
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dADcpi <- diff(ADcpi) # take first difference

plot(dADcpi, main="seasonally adjusted China’s monthly inflation

rate", xlab="time", ylab="percentage", col="blue")

# now fit to ar model first

dADcpi1 <- ts(dADcpi[1:103],start=c(1997,02),frequency=12)

model1 <- ar(dADcpi1,method="ols",aic=TRUE)

model1

predict(model1,n.ahead=1)

predict(model1,n.ahead=6)$pred[6]

forecast(model1,h=6)

dADcpi2 <- ts(dADcpi[1:104],start=c(1997,02),frequency=12)

model2<- ar(dADcpi2,method="ols",aic=TRUE)

forecast(model2,h=6)

predict(model2,n.ahead=6)

predict(model2,n.ahead=6)$pred[6]

# now doing a loop

T <- 205

start <- 103

forecasts <- NA

orders <- NA

for (i in start:T){

CPIs<- ts(dADcpi[1:i], start=c(1997, 02), frequency=12)

model <- ar(CPIs, method="ols", aic=TRUE)

orders[i] <- model$order

forecastm <- predict(model, n.ahead=6)

forecastmt <- forecastm$pred[6]

forecasts[i+1] <- forecastmt
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}

orderar6 <- ts(orders, start=c(1997,02), frequency=12)

cpiar6 <- ts(forecasts, start=c(1997,07), frequency=12)

cpiar6 #this is AR forecast for CPI

orderar6 # this is AR order that we need to use in later factor model

# now doing arima for AR

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

CPIs<- ts(dADcpi[1:i], start=c(1997, 02), frequency=12)

model <- auto.arima(CPIs,ic=c("aic"))

forecastm <- predict(model, n.ahead=6)

forecastmt <- forecastm$pred[6]

forecasts[i+1] <- forecastmt

}

cpiarima6 <- ts(forecasts, start=c(1997,07), frequency=12)

cpiarima6

# now doing a exponential smoothing model

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

CPIs<- ts(dADcpi[1:i], start=c(1997, 02), frequency=12)

model <- HoltWinters(CPIs, beta=FALSE,gamma=FALSE)

forecastm <- predict(model,n.ahead=6)

forecastmt <-forecastm[6]

forecasts[i+1] <- forecastmt

}
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cpies6 <- ts(forecasts, start=c(1997,07), frequency=12)

cpies6

# now doing a factor model

totaldatacpi<- ts(paper.data.editedCPI,start=1997,frequency=12)

class(totaldatacpi)

dim(totaldatacpi)

a <- diff(log(totaldatacpi[,1:22]))

dim(a)

head(a)

b<- diff(totaldatacpi[,23:35])

head(b)

dtotaldata <- cbind(a,b)

dim(dtotaldata)

head(dtotaldata)

dtotaledited <- scale(dtotaldata, center=TRUE, scale=TRUE)

class(dtotaldata)

dtotaledited

class(dtotaledited)

dim(dtotaledited)

dtotaledited1 <- ts(dtotaledited[1:103,],

start=c(1997,02),frequency=12)

dim(dtotaledited1)

pca1 <- princomp(dtotaledited1, cor=TRUE)

summary(pca1)

class(pca1$scores)

dim(pca1$scores)

POETKhat(dtotaledited1)

factor1 <- ts(pca1$scores[1:103,1:1], start=c(1997,02),frequency=12)
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factor1

class(factor1)

modelDI1 <- arima(dADcpi1,order=c(orderar6[103],0,0),xreg=factor1)

forecastDI6 <- predict(modelDI1,n.ahead=6,newxreg=factor1[103])

forecastDI6

forecastDI6$pred[6]

# now rolling it up

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

CPIs<- ts(dADcpi[1:i], start=c(1997, 02), frequency=12)

dtotalediteds <- ts(dtotaledited[1:i,],

start=c(1997,02),frequency=12)

pca1 <- princomp(dtotalediteds, cor=TRUE)

m<- POETKhat(dtotalediteds)

factors <- ts(pca1$scores[1:i,1:m$K1BN],

start=c(1997,02),frequency=12)

model <- auto.arima(CPIs,d=NA,D=NA,max.p=24,max.q=0,max.P=0,

max.Q=0,max.d=0,max.D=0,ic=c("aic"), xreg=factors)

forecastm <- predict(model, n.ahead=6,newxreg=factors[i])

forecastmt <- forecastm$pred[6]

forecasts[i+1] <- forecastmt

}

dicpi6 <- ts(forecasts, start=c(1997,07), frequency=12)

dicpi6

# now adding factors to arima

T <- 205
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start <- 103

forecasts <- NA

for (i in start:T){

CPIs<- ts(dADcpi[1:i], start=c(1997, 02), frequency=12)

dtotalediteds <- ts(dtotaledited[1:i,],

start=c(1997,02),frequency=12)

pca1 <- princomp(dtotalediteds, cor=TRUE)

m<- POETKhat(dtotalediteds)

factors <- ts(pca1$scores[1:i,1:m$K1BN],

start=c(1997,02),frequency=12)

model <- auto.arima(CPIs,xreg=factors,ic=c("aic"))

forecastm <- predict(model, n.ahead=6,newxreg=factors[i])

forecastmt <- forecastm$pred[6]

forecasts[i+1] <- forecastmt

}

FARIMAcpi6 <- ts(forecasts, start=c(1997,07), frequency=12)

FARIMAcpi6

# trying to do a FAVAR approach

pca1 <- princomp(dtotaledited1, cor=TRUE)

summary(pca1)

class(pca1$scores)

dim(pca1$scores)

POETKhat(dtotaledited1)

factor1 <- ts(pca1$scores[1:103,1], start=c(1997,02),frequency=12) #

factor1

varobject <-cbind(dADcpi1,factor1)

class(varobject)

head(varobject)

dim(varobject)
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plot(varobject)

var1 <- VAR(varobject,p=1,type=c("const"),ic=c("AIC"))

predict(var1,n.ahead=6)

forecast1=forecast(var1,h=6)

forecast1$mean$dADcpi1[6]

# now doing var loop

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

CPIs<- ts(dADcpi[1:i], start=c(1997, 02), frequency=12)

dtotalediteds <- ts(dtotaledited[1:i,],

start=c(1997,02),frequency=12)

pca1 <- princomp(dtotalediteds, cor=TRUE)

m<- POETKhat(dtotalediteds)

factors <- ts(pca1$scores[1:i,1:m$K1BN],

start=c(1997,02),frequency=12)

varcpidata <- cbind(CPIs,factors)

model <- VAR(varcpidata,p=1,type=c("const"),ic=c("AIC"))

forecastm <- forecast(model,h=6)

forecastmt <- forecastm$mean$CPIs[6]

forecasts[i+1] <- forecastmt

}

FAVARcpi6 <- ts(forecasts, start=c(1997,07), frequency=12)

FAVARcpi6

#now doing IP

tIP <- ts(adip,start=1997,frequency=12)
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class(tIP)

dim(tIP)

plot(tIP, main="China’s monthly seasonal adjusted industrial

production", xlab="time", ylab="billion Yuan")

adf.test(tIP)

# seems like we need to take log of first difference

lIP=log(tIP)

lIP

ldIP=diff(lIP)

class(ldIP[1:103])

IP1 <- ts(ldIP[1:103,],start=c(1997,02),frequency=12)

class(IP1)

# now doing a loop for AR

T <- 205

start <- 103

forecasts <- NA

orders <- NA

for (i in start:T){

IPc<- ts(ldIP[1:i], start=c(1997, 02), frequency=12)

model <- ar(IPc, method="ols", aic=TRUE)

orders[i] <- model$order

forecastm <- predict(model, n.ahead=6)

forecastmt <- forecastm$pred[6]

forecasts[i+1] <- forecastmt

}

orderip6 <- ts(orders, start=c(1997,02), frequency=12)

arip6 <- ts(forecasts, start=c(1997,07), frequency=12)

orderip6

arip6
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# doing arima loop

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

IPc<- ts(ldIP[1:i], start=c(1997, 02), frequency=12)

model <- auto.arima(IPc,ic=c("aic"))

forecastm <- predict(model, n.ahead=6)

forecastmt <- forecastm$pred[6]

forecasts[i+1] <- forecastmt

}

iparima6 <- ts(forecasts, start=c(1997,07), frequency=12)

iparima6

#finally doing exponential smoothing for IP

T <- 205

start <- 103

forecasts <- NA

orders <- NA

for (i in start:T){

dtc<- ts(ldIP[1:i], start=c(1997, 02), frequency=12)

model <- HoltWinters(dtc, beta=FALSE,gamma=FALSE)

forecastm <- predict(model,n.ahead=6)

forecastmt <-forecastm[6]

forecasts[i+1] <- forecastmt

}

ipes6 <- ts(forecasts, start=c(1997,07), frequency=12)

ipes6
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# now doing diffusion index

totaldataIP<- ts(paper.data.editedIP,start=1997,frequency=12)

class(totaldataIP)

c <- diff(log(totaldataIP[,1:21]))

dim(c)

d <- diff(totaldataIP[,22:35])

head(d)

dtotaldataIP <- cbind(c,d)

dtotaleditedIP <- scale(dtotaldataIP, center=TRUE, scale=TRUE)

dtotaleditedIP

class(dtotaleditedIP)

dim(dtotaleditedIP)

dtotaledited1IP <-

ts(dtotaleditedIP[1:103,],start=c(1997,02),frequency=12)

dim(dtotaledited1IP)

pca1IP <- princomp(dtotaledited1IP, cor=TRUE)

summary(pca1IP)

class(pca1IP$scores)

dim(pca1IP$scores)

POETKhat(dtotaledited1IP)

factor1IP <- ts(pca1IP$scores[1:103,1],

start=c(1997,02),frequency=12)

factor1IP

class(factor1IP)

modelDI1IP <- arima(IP1,order=c(12,0,0),xreg=factor1IP)

forecastDI1IP <- predict(modelDI1IP,n.ahead=6,newxreg=factor1IP[103])

forecastDI1IP$pred

forecastDI1IP$pred[6]
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# now rolling it up

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

IPs<- ts(ldIP[1:i], start=c(1997, 02), frequency=12)

dtotalediteds <- ts(dtotaleditedIP[1:i,],

start=c(1997,02),frequency=12)

pca1 <- princomp(dtotalediteds, cor=TRUE)

m <- POETKhat(dtotalediteds)

factors <- ts(pca1$scores[1:i,1:m$K1BN],

start=c(1997,02),frequency=12)

model <- auto.arima(IPs,d=NA,D=NA,max.p=24,max.q=0,max.P=0,

max.Q=0,max.d=0,max.D=0,ic=c("aic"), xreg=factors)

forecastm <- predict(model, n.ahead=6,newxreg=factors[i])

forecastmt <- forecastm$pred[6]

forecasts[i+1] <- forecastmt

}

diip6 <- ts(forecasts, start=c(1997,07), frequency=12)

diip6

# now adding factor model to arima

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

IPs<- ts(ldIP[1:i], start=c(1997, 02), frequency=12)

dtotalediteds <- ts(dtotaleditedIP[1:i,],

start=c(1997,02),frequency=12)

pca1 <- princomp(dtotalediteds, cor=TRUE)
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m <- POETKhat(dtotalediteds)

factors <- ts(pca1$scores[1:i,1:m$K1BN],

start=c(1997,02),frequency=12)

model <- auto.arima(IPs,xreg=factors)

forecastm <- predict(model, n.ahead=6,newxreg=factors[i])

forecastmt <- forecastm$pred[6]

forecasts[i+1] <- forecastmt

}

FARIMAip6 <- ts(forecasts, start=c(1997,07), frequency=12)

FARIMAip6

# now doing a FAVAR for ip

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

IPs<- ts(ldIP[1:i], start=c(1997, 02), frequency=12)

dtotalediteds <- ts(dtotaleditedIP[1:i,],

start=c(1997,02),frequency=12)

pca1 <- princomp(dtotalediteds, cor=TRUE)

m <- POETKhat(dtotalediteds)

factors <- ts(pca1$scores[1:i,1:m$K1BN],

start=c(1997,02),frequency=12)

varipdata <- cbind(IPs,factors)

model <- VAR(varipdata,p=1,type=c("const"),ic=c("AIC"))

forecastm <- forecast(model,h=6)

forecastmt <- forecastm$mean$IPs[6]

forecasts[i+1] <- forecastmt

}

FAVARIP6 <- ts(forecasts, start=c(1997,07), frequency=12)
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FAVARIP6

# now doing a electricity production

adPE <- ts(adpe,start=1997,frequency=12)

dim(adPE)

plot(adPE)

adf.test(adPE)

dladPE <- diff(log(adPE)) # take first difference

plot(dladPE, main="percentage change of prodcution of electricity",

xlab="time", ylab="percentage", col="blue")

plot(adPE, main="volume of production of electricity", xlab="time",

ylab="volume")

# now fit to ar model first

dladPE1 <- ts(dladPE[1:103],start=c(1997,02),frequency=12)

model1 <- ar(dladPE,method="ols",aic=TRUE)

model1

predict(model1,n.ahead=1)

forecast(model1,h=1)

forecast(model1,h=6)

predict(model1,n.ahead=6)$pred[6]

# now doing a loop

T <- 205

start <- 103

forecasts <- NA

orders <- NA

for (i in start:T){

PEs<- ts(dladPE[1:i], start=c(1997, 02), frequency=12)

model <- ar(PEs, method="ols", aic=TRUE)

orders[i] <- model$order
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forecastm <- predict(model, n.ahead=6)

forecastmt <- forecastm$pred[6]

forecasts[i+1] <- forecastmt

}

orderpe6 <- ts(orders, start=c(1997,02), frequency=12)

pear6 <- ts(forecasts, start=c(1997,07), frequency=12)

pear6 #this is AR forecast for CPI

orderpe6 # this is AR order that we need to use in later factor model

# now doing arima for AR

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

PEs<- ts(dladPE[1:i], start=c(1997, 02), frequency=12)

model <- auto.arima(PEs,ic=c("aic"))

forecastm <- predict(model, n.ahead=6)

forecastmt <- forecastm$pred[6]

forecasts[i+1] <- forecastmt

}

pearima6 <- ts(forecasts, start=c(1997,07), frequency=12)

pearima6

# now doing a exponential smoothing model

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

PEs<- ts(dladPE[1:i], start=c(1997, 02), frequency=12)

model <- HoltWinters(PEs, beta=FALSE,gamma=FALSE)

forecastm <- predict(model,n.ahead=6)
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forecastmt <-forecastm[6]

forecasts[i+1] <- forecastmt

}

pees6 <- ts(forecasts, start=c(1997,07), frequency=12)

pees6

# now doing a factor model

totaldatape<- ts(paper.data.editedPE,start=1997,frequency=12)

class(totaldatape)

e <- diff(log(totaldatacpi[,1:21]))

dim(e)

head(e)

f<- diff(totaldatacpi[,22:35])

head(f)

dtotaldatape <- cbind(e,f)

dtotaleditedpe <- scale(dtotaldatape, center=TRUE, scale=TRUE)

dtotaleditedpe

class(dtotaleditedpe)

dim(dtotaleditedpe)

dtotaleditedpe1 <- ts(dtotaleditedpe[1:103,],

start=c(1997,02),frequency=12) #first within-sample period

dim(dtotaleditedpe1)

pca1 <- princomp(dtotaleditedpe1, cor=TRUE)

summary(pca1)

class(pca1$scores)

dim(pca1$scores)

POETKhat(dtotaleditedpe1)

factor1 <- ts(pca1$scores[1:103,1], start=c(1997,02),frequency=12) #

factor1
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class(factor1)

modelDI1 <- arima(dladPE1,order=c(orderpe[103],0,0),xreg=factor1)

forecastDI1 <- predict(modelDI1,n.ahead=6,newxreg=factor1[103])

forecastDI1$pred[6]

# now rolling it up

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

PEs<- ts(dladPE[1:i], start=c(1997, 02), frequency=12)

dtotaleditedpes <- ts(dtotaleditedpe[1:i,],s

tart=c(1997,02),frequency=12)

pca1 <- princomp(dtotaleditedpes, cor=TRUE)

m<- POETKhat(dtotaleditedpes)

factors <- ts(pca1$scores[1:i,1:m$K1BN],

start=c(1997,02),frequency=12)

model <- auto.arima(PEs,d=NA,D=NA,max.p=24,max.q=0,max.P=0,

max.Q=0,max.d=0,max.D=0,ic=c("aic"), xreg=factors)

forecastm <- predict(model, n.ahead=6,newxreg=factors[i])

forecastmt <- forecastm$pred[6]

forecasts[i+1] <- forecastmt

}

dipe6 <- ts(forecasts, start=c(1997,07), frequency=12)

dipe6

# now adding the factor to arima model

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){
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PEs<- ts(dladPE[1:i], start=c(1997, 02), frequency=12)

dtotaleditedpes <- ts(dtotaleditedpe[1:i,],

start=c(1997,02),frequency=12)

pca1 <- princomp(dtotaleditedpes, cor=TRUE)

m<- POETKhat(dtotaleditedpes)

factors <- ts(pca1$scores[1:i,1:m$K1BN],

start=c(1997,02),frequency=12)

model <- auto.arima(PEs,xreg=factors,ic=c("aic"))

forecastm <- predict(model, n.ahead=6,newxreg=factors[i])

forecastmt <- forecastm$pred[6]

forecasts[i+1] <- forecastmt

}

FARIMApe6 <- ts(forecasts, start=c(1997,07), frequency=12)

FARIMApe6

# now doing FAVAR for PE

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

PEs<- ts(dladPE[1:i], start=c(1997, 02), frequency=12)

dtotaleditedpes <- ts(dtotaleditedpe[1:i,],

start=c(1997,02),frequency=12)

pca1 <- princomp(dtotaleditedpes, cor=TRUE)

m<- POETKhat(dtotaleditedpes)

factors <- ts(pca1$scores[1:i,1:m$K1BN],

start=c(1997,02),frequency=12)

varipdata <- cbind(PEs,factors)

model <- VAR(varipdata,p=1,type=c("const"),ic=c("AIC"))

forecastm <- forecast(model,h=6)
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forecastmt <- forecastm$mean$PEs[6]

forecasts[i+1] <- forecastmt

}

FAVARpe6 <- ts(forecasts, start=c(1997,07), frequency=12)

FAVARpe6

# now doing producer price index

adPPI <- ts(adppi,start=1997,frequency=12)

dim(adPPI )

plot(adPPI )

adf.test(adPPI )

dadPPI <- diff(adPPI ) # take first difference

plot(dadPPI , main="first difference of producer price index"

, xlab="time", ylab="%change", col="blue")

plot(adPPI, main="monthly producer price index", xlab="time",

ylab="%")

# now fit to ar model first

dadPPI1 <- ts(dadPPI[1:103],start=c(1997,02),frequency=12)

model1 <- ar(dadPPI1,method="ml",aic=TRUE)

model1

predict(model1,n.ahead=3)

# now doing a loop

T <- 205

start <- 103

forecasts <- NA

orders <- NA

for (i in start:T){

PPIs<- ts(dadPPI[1:i], start=c(1997, 02), frequency=12)

model <- ar(PPIs, method="ols", aic=TRUE)
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orders[i] <- model$order

forecastm <- predict(model, n.ahead=6)

forecastmt <- forecastm$pred[6]

forecasts[i+1] <- forecastmt

}

orderppi6 <- ts(orders, start=c(1997,02), frequency=12)

ppiar6 <- ts(forecasts, start=c(1997,07), frequency=12)

ppiar6 #this is AR forecast for CPI

orderppi6

# now doing arima for AR

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

PPIs<- ts(dadPPI[1:i], start=c(1997, 02), frequency=12)

model <- auto.arima(PPIs,ic=c("aic"))

forecastm <- predict(model, n.ahead=6)

forecastmt <- forecastm$pred[6]

forecasts[i+1] <- forecastmt

}

ppiarima6 <- ts(forecasts, start=c(1997,07), frequency=12)

ppiarima6

# now doing a exponential smoothing model

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

PPIs<- ts(dadPPI[1:i], start=c(1997, 02), frequency=12)

model <- HoltWinters(PPIs, beta=FALSE,gamma=FALSE)
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forecastm <- predict(model,n.ahead=6)

forecastmt <-forecastm[6]

forecasts[i+1] <- forecastmt

}

ppies6 <- ts(forecasts, start=c(1997,07), frequency=12)

ppies6

# now doing a factor model

totaldatappi<- ts(paper.data.editedPPI,start=1997,frequency=12)

class(totaldatappi)

g <- diff(log(totaldatacpi[,1:22]))

dim(g)

head(g)

h<- diff(totaldatacpi[,23:35])

head(h)

dtotaldatappi <- cbind(g,h)

dim(totaldatappi)

dtotaldatappied <- scale(dtotaldatappi, center=TRUE, scale=TRUE)

class(dtotaldatappied)

dim(dtotaldatappied)

dtotaldatappied1 <- ts(dtotaldatappied[1:103,],

start=c(1997,02),frequency=12)

dim(dtotaldatappied1)

pca1 <- princomp(dtotaldatappied1, cor=TRUE)

summary(pca1)

class(pca1$scores)

dim(pca1$scores)

POETKhat(dtotaldatappied1)

factor1 <- ts(pca1$scores[1:103,1], start=c(1997,02),frequency=12) #
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factor1

class(factor1)

modelDI1 <- arima(dadPPI1,order=c(orderpe[103],0,0),xreg=factor1)

forecastDI1 <- predict(modelDI1,n.ahead=1,newxreg=factor1[103])

forecastDI1

# now rolling it up

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

PPIs<- ts(dadPPI[1:i], start=c(1997, 02), frequency=12)

dtotaldatappieds <-

ts(dtotaldatappied[1:i,],start=c(1997,02),frequency=12)

pca1 <- princomp(dtotaldatappieds, cor=TRUE)

m<- POETKhat(dtotaldatappieds)

factors <- ts(pca1$scores[1:i,1:m$K1BN],

start=c(1997,02),frequency=12)

model <- auto.arima(PPIs,d=NA,D=NA,max.p=24,max.q=0,max.P=0,

max.Q=0,max.d=0,max.D=0,ic=c("aic"), xreg=factors)

forecastm <- predict(model, n.ahead=6,newxreg=factors[i])

forecastmt <- forecastm$pred[6]

forecasts[i+1] <- forecastmt

}

dippi6 <- ts(forecasts, start=c(1997,07), frequency=12)

dippi6

# now adding the factors to arima model

T <- 205

start <- 103

forecasts <- NA
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for (i in start:T){

PPIs<- ts(dadPPI[1:i], start=c(1997, 02), frequency=12)

dtotaldatappieds <- ts(dtotaldatappied[1:i,],

start=c(1997,02),frequency=12)

pca1 <- princomp(dtotaldatappieds, cor=TRUE)

m<- POETKhat(dtotaldatappieds)

factors <- ts(pca1$scores[1:i,1:m$K1BN],

start=c(1997,02),frequency=12)

model <- auto.arima(PPIs,xreg=factors,ic=c("aic"))

forecastm <- predict(model, n.ahead=6,newxreg=factors[i])

forecastmt <- forecastm$pred[6]

forecasts[i+1] <- forecastmt

}

FARIMAppi6 <- ts(forecasts, start=c(1997,07), frequency=12)

FARIMAppi6

# now doing FAVAR for PPI

T <- 205

start <- 103

forecasts <- NA

for (i in start:T){

PPIs<- ts(dadPPI[1:i], start=c(1997, 02), frequency=12)

dtotaldatappieds <- ts(dtotaldatappied[1:i,],

start=c(1997,02),frequency=12)

pca1 <- princomp(dtotaldatappieds, cor=TRUE)

m<- POETKhat(dtotaldatappieds)

factors <- ts(pca1$scores[1:i,1:m$K1BN],

start=c(1997,02),frequency=12)

varipdata <- cbind(PPIs,factors)

model <- VAR(varipdata,p=1,type=c("const"),ic=c("AIC"))
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forecastm <- forecast(model,h=6)

forecastmt <- forecastm$mean$PPIs[6]

forecasts[i+1] <- forecastmt

}

FAVARppi6 <- ts(forecasts, start=c(1997,07), frequency=12)

FAVARppi6

# now writing user defined functions to compute MSE and AME

mse <- function(x,y,n){

sum((x-y)^2)/n

}

n <- 98 # this is total number of out-of-samle period

cpiAR6 <- mse(dADcpi[109:206],cpiar6[109:206],n1)

cpiARIMA6 <- mse(dADcpi[109:206],cpiarima6[109:206],n)

cpiES6 <- mse(dADcpi[109:206],cpies6[109:206],n)

cpiDI6 <- mse(dADcpi[109:206],dicpi6[109:206],n)

cpiFARIMA6 <- mse(dADcpi[109:206],FARIMAcpi6[109:206],n)

cpiFAVAR6 <- mse(dADcpi[109:206],FAVARcpi6[109:206],n)

CPIforecastMSE6 <-cbind(cpiAR6,cpiARIMA6,cpiES6,cpiDI6,

cpiFARIMA6,cpiFAVAR6)

CPIforecastMSE6

# now for IP

ipAR6 <- mse(ldIP[109:206],arip6[109:206],n)

ipARIMA6 <- mse(ldIP[109:206],iparima6[109:206],n)

ipES6 <- mse(ldIP[109:206],ipes6[109:206],n)

ipDI6 <- mse(ldIP[109:206],diip6[109:206],n)

ipFARIMA6 <- mse(ldIP[109:206],FARIMAip6[109:206],n)

ipFAVAR6 <-mse(ldIP[109:206],FAVARIP6[109:206],n)

IPforecastMSE6 <-cbind(ipAR6,ipARIMA6,ipES6,ipDI6,ipFARIMA6,ipFAVAR6)
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IPforecastMSE6

# now for Production of electricity

peAR6 <- mse(dladPE[109:206],pear6[109:206],n)

peARIMA6 <- mse(dladPE[109:206],pearima6[109:206],n)

peES6 <- mse(dladPE[109:206],pees6[109:206],n)

peDI6 <- mse(dladPE[109:206],dipe6[109:206],n)

peFARIMA6 <- mse(dladPE[109:206],FARIMApe6[109:206],n)

peFAVAR6 <- mse(dladPE[109:206],FAVARpe6[109:206],n)

PEforecastMSE6<-cbind(peAR6,peARIMA6,peES6,peDI6,peFARIMA6,peFAVAR6)

PEforecastMSE6

#now for PPI

ppiAR6 <- mse(dadPPI[109:206],ppiar6[109:206],n)

ppiARIMA6 <- mse(dadPPI[109:206],ppiarima6[109:206],n)

ppiES6 <- mse(dadPPI[109:206],ppies6[109:206],n)

ppiDI6 <- mse(dadPPI[109:206],dippi6[109:206],n)

ppiFARIMA6 <- mse(dadPPI[109:206],FARIMAppi6[109:206],n)

ppiFAVAR6 <- mse(dadPPI[109:206],FAVARppi6[109:206],n)

PPIforecastMSE6 <- cbind(ppiAR6,ppiARIMA6,ppiES6,

ppiDI6,ppiFARIMA6,ppiFAVAR6)

CPIforecastMSE6

IPforecastMSE6

PEforecastMSE6

PPIforecastMSE6

totalforecast6 <-rbind(CPIforecastMSE6,

IPforecastMSE6,PEforecastMSE6,PPIforecastMSE6)

totalforecast6

colnames(totalforecast6) <- c("AR","ARIMA","ES","DI",

"FARIMA","FAVAR")

rownames(totalforecast6) <- c("CPI","IP","PE","PPI")
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totalMSE6 <-t(totalforecast6)

totalMSE6

#now doing a relatively MSE and MFE

RCPImse6 <- totalMSE6[,1]/totalMSE6[1,1]

RIPmse6 <- totalMSE6[,2]/totalMSE6[1,2]

RPEmse6 <- totalMSE6[,3]/totalMSE6[1,3]

RPPImse6 <-totalMSE6[,4]/totalMSE6[1,4]

RCPImse6

RIPmse6

RPEmse6

RPPImse6

rbind(RCPImse6,RIPmse6,RPEmse6,RPPImse6)

RtotalMSE6 <- t(rbind(RCPImse6,RIPmse6,RPEmse6,RPPImse6))

colnames(RtotalMSE6) <- c("CPI","IP","PE","PPI")

RtotalMSE6

totalMAFE6 <- xtable(RtotalMAE6)

totalMSFE6 <- xtable(RtotalMSE6)

print.xtable(totalMAFE6,type="latex", file="",floating=TRUE,table.placement="H")

print.xtable(totalMSFE6,type="latex", file="",floating=TRUE,table.placement="H")

tsCPI6 <- ts(dADcpi[109:206],start=c(2006,02),frequency=12)

tscpiar6 <-ts(cpiar6[109:206],start=c(2006,02),frequency=12)

tscpiarima6 <-ts(cpiarima6[109:206],start=c(2006,02),frequency=12)

tscpies6 <-ts(cpies6[109:206],start=c(2006,02),frequency=12)

tscpidi6 <-ts(dicpi6[109:206],start=c(2006,02),frequency=12)

tscpiFARIMA6 <-ts(FARIMAcpi6[109:206],start=c(2006,02),frequency=12)

tscpiFAVAR6 <-ts(FAVARcpi6[109:206],start=c(2006,02),frequency=12)

ts.plot(tsCPI6,tscpiar6,
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gpars=list(main="plot of CPI AR forecast and actual

value",xlab="time",ylab="difference of CPI",lty=c(1:2)))

ts.plot(tsCPI6,tscpiarima6,

gpars=list(main="plot of CPI ARIMA forecast and actual

value",xlab="time",ylab="difference of CPI",lty=c(1:2)))

ts.plot(tsCPI6,tscpies6,

gpars=list(main="plot of CPI EM forecast and actual

value",xlab="time",ylab="difference of CPI",lty=c(1:2)))

ts.plot(tsCPI6,tscpidi6,

gpars=list(main="plot of CPI DI forecast and actual

value",xlab="time",ylab="difference of CPI",lty=c(1:2)))

ts.plot(tsCPI6,tscpiFARIMA6,

gpars=list(main="plot of CPI FARIMA forecast and actual

value",xlab="time",ylab="difference of CPI",lty=c(1:2)))

ts.plot(tsCPI6,tscpiFAVAR6,

gpars=list(main="plot of CPI FAVAR forecast and actual

value",xlab="time",ylab="difference of CPI",lty=c(1:2)))

tsIP6 <- ts(ldIP[109:206],start=c(2006,02),frequency=12)

tsipar6 <-ts(arip6[109:206],start=c(2006,02),frequency=12)

tsiparima6 <-ts(iparima6[109:206],start=c(2006,02),frequency=12)

tsipes6 <-ts(ipes6[109:206],start=c(2006,02),frequency=12)

tsipdi6 <-ts(diip6[109:206],start=c(2006,02),frequency=12)

tsipFARIMA6 <-ts(FARIMAip6[109:206],start=c(2006,02),frequency=12)

tsipFAVAR6 <-ts(FAVARIP6[109:206],start=c(2006,02),frequency=12)

ts.plot(tsIP6,tsipar6,

gpars=list(main="plot of IP AR forecast and actual

value",xlab="time",ylab="Percentage change",lty=c(1:2)))

ts.plot(tsIP6,tsiparima6,

gpars=list(main="plot of IP ARIMA forecast and actual
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value",xlab="time",ylab="Percentage change",lty=c(1:2)))

ts.plot(tsIP6,tsipes6,

gpars=list(main="plot of IP EM forecast and actual

value",xlab="time",ylab="Percentage change",lty=c(1:2)))

ts.plot(tsIP6,tsipdi6,

gpars=list(main="plot of IP DI forecast and actual

value",xlab="time",ylab="Percentage change",lty=c(1:2)))

ts.plot(tsIP6,tsipFARIMA6,

gpars=list(main="plot of IP FARIMA forecast and actual

value",xlab="time",ylab="Percentage change",lty=c(1:2)))

ts.plot(tsIP6,tsipFAVAR6,

gpars=list(main="plot of IP FAVAR forecast and actual

value",xlab="time",ylab="Percentage change",lty=c(1:2)))

tsPE6 <- ts(dladPE[109:206],start=c(2006,02),frequency=12)

tspear6 <-ts(pear6[109:206],start=c(2006,02),frequency=12)

tspearima6 <-ts(pearima6[109:206],start=c(2006,02),frequency=12)

tspees6 <-ts(pees6[109:206],start=c(2006,02),frequency=12)

tspedi6 <-ts(dipe6[109:206],start=c(2006,02),frequency=12)

tspeFARIMA6 <-ts(FARIMApe6[109:206],start=c(2006,02),frequency=12)

tspeFAVAR6 <-ts(FAVARpe6[109:206],start=c(2006,02),frequency=12)

ts.plot(tsPE6,tspear6,

gpars=list(main="plot of PE AR forecast and actual

value",xlab="time",ylab="Percentage change",lty=c(1:2)))

ts.plot(tsPE6,tspearima6,

gpars=list(main="plot of PE ARIMA forecast and actual

value",xlab="time",ylab="Percentage change",lty=c(1:2)))

ts.plot(tsPE6,tspees6,

gpars=list(main="plot of PE EM forecast and actual
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value",xlab="time",ylab="Percentage change",lty=c(1:2)))

ts.plot(tsPE6,tspedi6,

gpars=list(main="plot of PE DI forecast and actual

value",xlab="time",ylab="Percentage change",lty=c(1:2)))

ts.plot(tsPE6,tspeFARIMA6,

gpars=list(main="plot of PE FARIMA forecast and actual

value",xlab="time",ylab="Percentage change",lty=c(1:2)))

ts.plot(tsPE6,tspeFAVAR6,

gpars=list(main="plot of PE FAVAR forecast and actual

value",xlab="time",ylab="Percentage change",lty=c(1:2)))

tsPPI6 <- ts(dadPPI[109:206],start=c(2006,02),frequency=12)

tsppiar6 <-ts(ppiar6[109:206],start=c(2006,02),frequency=12)

tsppiarima6 <-ts(ppiarima6[109:206],start=c(2006,02),frequency=12)

tsppies6 <-ts(ppies6[109:206],start=c(2006,02),frequency=12)

tsppidi6 <-ts(dippi6[109:206],start=c(2006,02),frequency=12)

tsppiFARIMA6 <-ts(FARIMAppi6[109:206],start=c(2006,02),frequency=12)

tsppiFAVAR6 <-ts(FAVARppi6[109:206],start=c(2006,02),frequency=12)

ts.plot(tsPPI6,tsppiar6,

gpars=list(main="plot of PPI AR forecast and actual

value",xlab="time",ylab="Percentage change",lty=c(1:2)))

ts.plot(tsPPI6,tsppiarima6,

gpars=list(main="plot of PPI ARIMA forecast and actual

value",xlab="time",ylab="Percentage change",lty=c(1:2)))

ts.plot(tsPPI6,tsppies6,

gpars=list(main="plot of PPI EM forecast and actual

value",xlab="time",ylab="Percentage change",lty=c(1:2)))

ts.plot(tsPPI6,tsppidi6,

gpars=list(main="plot of PPI DI forecast and actual
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value",xlab="time",ylab="Percentage change",lty=c(1:2)))

ts.plot(tsPPI6,tsppiFARIMA6,

gpars=list(main="plot of PPI FARIMA forecast and actual

value",xlab="time",ylab="Percentage change",lty=c(1:2)))

ts.plot(tsPPI6,tsppiFAVAR6,

gpars=list(main="plot of PPI FAVAR forecast and actual \

value",xlab="time",ylab="Percentage change",lty=c(1:2)))
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