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Abstract

The strong gravitational tidal field of supermassive black holes is thought to disrupt nearby
interstellar gas clouds, preventing star formation. Recently, bipolar outflows, a “smoking-
gun” for recent star formation, have been found within 2 parsecs of Sgr A* - the 4 × 106 M�
black hole at the centre of our galaxy.

This work employs a semi-analytic approach based on the tensor virial theorem to describe
the gross dynamics of interstellar clouds including tidal fields, external pressure, figure
rotation, and internal streaming. A set of coupled ordinary differential equations describing
the evolution of the cloud’s axes, velocities, and figure are solved for equilibrium states, and
their stability is examined by following their evolution in response to a transient perturbation.

Solutions are presented where the physical sizes of the clouds are found as a function
of density and axis ratios, which are dependent on the strength of the tidal field. Allowing
counter-rotating internal streaming gives rise to two new classes of equilibria, one of which
is stable, and for low masses, violates the Roche criterion for tidal disruption.
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1
Introduction

Star formation in the centre of galaxies is thought to be inhibited by the extreme tidal
field of supermassive black holes (SMBH) [1]. This made the discovery of an early type
star in the Galactic centre, the “Allen-Forrest” star [2,3], surprising. Currently ∼ 120 young
(<6 Myr) massive (10–100 M�) Wolf-Rayet/O-B type stars have been found within ∼ 0.5 pc
of Sagittarius A* (Sgr A*) [4–6], our galaxy’s supermassive black hole. These stars are now
thought to have formed due to gravitational instabilities in a disk of rotating material which
was captured from a transiting interstellar cloud [7,8]. There is now emerging evidence of
ongoing star formation within 2 pc of Sgr A* which is not associated with this process [9–15]
and has prompted a renewed investigation into star formation at the Galactic centre. This
thesis therefore attempts to address if effects such as the high interstellar pressures, known
to be present in the Galactic centre, or rotation can permit tidally stable gas clouds in the
presence of supermassive black holes.

1.1 The Galactic centre

The Galactic centre of the Milky Way galaxy lies ∼ 8 kpc from Earth [16–20]. This proximity
allows for the unique opportunity to observe individual stars and their motions around a
≈ 4 × 106 M� SMBH [6,18,21]. Furthermore, this has allowed for observation of the dynamics
of gas clouds in the presence of strong tidal fields [22]. The gas and dust content of the
centre of the Milky Way can be broken down into several distinct zones; The central cavity,
which extends from the central SMBH out to ∼ 1.5 pc, the circumnuclear ring (CNR) which
extends from central cavity to ∼ 4 pc, and the central molecular zone (CMZ) which extends
outwards from ∼ 4 pc. This work will focus on the central cavity and CNR—for a further
detailed discussion of the conditions in the CNR and CMZ see the recent work by Ferriere [23];
additionally a general review of the Galactic centre is given by Genzel [24].
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The central cavity is characterised by an evacuated region devoid of dense gas and dust
containing several isolated streams of Hydrogen, usually referred to as Sgr A West or the
Mini Spiral [25]. This region is considered devoid of gas as the average gas density is at least
one order of magnitude lower than the surrounding CNR [26]. The streams of the Mini Spiral
appear as a three armed spiral structure stretching out to the CNR as shown in Figure 1.1
where the streams are differentiated into the Northern Arm, Eastern Arm, Western Arc, and
a short Bar. The entire structure has an ionized surface from the intense ultra-violet (UV)
radiation emitted from the nearby population of young bright stars. The total mass of the
ionized component of the Mini Spiral is ≈ 60 M� with the distribution being ≈ 10, 10, 35,
and 5 M� in the Northern arm, Eastern arm, Western arc, and Bar [25]. The Northern and
Eastern arms are infalling material from the CNR and the western arc is likely the ionized
inner surface of the CNR [27]. The electron temperature of the ionized components is best
fitted by temperatures within the range 5000–11 000 K in the arms and up to 13 000 K in the
bar region [28]. While determining the internal composition of these clouds is challenging the
most likely outcome is atomic gas [26,29]. Themass of this atomic gas is roughly∼ 300 M� [26],
which is associated with the northern and eastern arms of theMini Spiral—with temperatures
of ∼ 150 K. Additionally, thermal emission from a few solar masses of dust [30] has been
observed with a temperatures of 70–130 K, the presence of this dust implies a few 100 M�
of atomic or molecular gas. Little molecular gas has been found in the cavity [31] however,
which is to be expected and is readily explained by the intense UV radiation from the young
bright stars photo-dissociating the molecules.

The CNR surrounding the central cavity is observed to be a warped, asymmetric,
kinematically-unsettled, clumpy torus with a sharp cut-off on the inner-face [22,26,34–36], the
ring is argued to be a transient feature of the Galactic centre with an age of ∼ 105 years [36,37].
The composition of the ring is observed to be a mix of molecular and atomic gas (see Fer-
riere [23] and references within section 2.2). Recent mass estimates for the ring range from
2 × 105–4 × 105 M� with associated temperatures of ) ∼ 60 K [35,36]. The density of the
ring varies due to the “clumpiness” of the structure, but recent estimates indicate values
in the range ∼ 4.5 × 104.5–2 × 106 cm−3 [36–38]—significantly lower than earlier estimates
which ranged as high as 4 × 107 cm−3 [24]. These densities, when considered in isolation,
are too low for star formation to occur without a triggering event [36]. However, 13 water
masers—indicative of densities sufficient to overcome the tidal field of Sgr A*—have been
observed [32,39].

Early infrared observations of the inner 2 pc of the Milky Way revealed a large number
of very bright stars [40–42]. Spectroscopic follow up revealed many of these stars were old
(> 1 Gyr), rotated with the galactic rotation, and with an isotropic distribution consistent with
accretion of gas or star clusters from the galactic disk [43]. In contrast the population of young
stars form 2 (arguably 3) distinct dynamical groups. A group ofO andB type stars reside in the
“S cluster”, a group of starswith highly eccentric orbits about SgrA*with randomorientations
with respect to each other [17], while being in a statistically isotropic distribution [44]. The
remaining stars are distributed into two distinct rotating disks. These disks rotate in opposite
directions in projection, with large (∼ 115°) orientation angles from each other, and orbit
in opposite directions, although these stars are coeval to within 1 Myr [45]. These different
orbital dynamics resulted in several different star formation theories attempting to describe
their formation as the tidal shear force from Sgr A* should inhibit star formation in this
close vicinity [1,44]. Two main models were proposed to explain this star formation. The in
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Figure 1.1: Multi-wavelength image of the Galactic centre showing (in red) the 3.4 mm Hydrogen
cyanide (HCN) (J = 1 → 0) line emission from the CNR and (in green) the 3.6 cm radio
continuum emission from the warm ionised gas in the Mini Spiral. North is up and East is left.
Inset: True colour image of 13CO (J = 2 → 1) with velocities between 110–112, 113–114,
and 115–117 km/sec in red, green, and blue respectively, showing the CNR and bipolar outflow
1—see Yusef-Zadeh [15]. Main image reproduced from Figure 2 of Ferriere [23] which was created
with radio continuum data from Yusef-Zadeh [32] and HCN data from Wright [33]. Figure credit:
Farhad Yused-Zadeh. Inset image reproduced from Figure 1 of Yusef-Zadeh [15].

situ formation theory, which proposes a giant molecular cloud came ‘close’ to Sgr A*, was
tidally disrupted, captured, and formed a gravitationally unstable disk around Sgr A* which
then fragmented and formed the observed stars [46]. The second theory, the infall theory,
proposes a massive cluster of stars forms outside the CNR and spirals into the centre through
tidal friction with the old stellar population [47]. Both theories fail to completely explain the
observed dynamics. For example, in situ formation predicts less eccentric, more coplanar
orbits than observed in the two rotating disks; [48] and the infall theory predicts the tidal decay
time is significantly longer than the observed ages [45]. Currently the favoured star formation
scenario is through the partial accretion of a giant molecular cloud [7].
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The mechanism of star formation of the recently observed sources must be significantly
different then the scenarios used to explain star formation in the past, this is because the recent
observations allure to in situ star formation—not fragmentation of accreting matter. IRS 13N
is a cluster of compact sources within ∼ 0.15 pc of Sgr A* [9–11,49] that due to their IR excess
could be young stellar objects with ages between 0.1–1 Myr. Further out at ≈ 0.6 pc from Sgr
A*, located mainly to the North-East of theMini Spiral 11 clumps of molecular gas indicative
of highly embedded protostars have been observed [13]. Further evidence of star formation
is provided through observations of the Eastern arm where 44 compact sources, which are
candidate photoevaporative protoplanteary disks, and hence newly formed lowmass stars [14].
Most recently 11 bipolar outflows within 1 pc of Sgr A* have been found [15]. These outflows
are characteristic of young star formation [50,51] and thus provide compelling evidence for in
situ star formation in the Galactic centre within the extreme tidal force of Sgr A*.

This evidence for star formation presents a conundrum however, The canonical Roche
density, the minimum density a cloud requires to be stable via self-gravity in the presence

of an external tidal field, requires cloud densities on the order of = ∼ 1 × 108
(
A
pc

)−3
to

be stable with respect to the tidal field of Sgr A*—this readily surpasses typical densities
found in molecular clouds, = / 106 cm−3. However, interior to ∼ 3 pc of the Galactic
centre are several components need to be considered to determine the strength of exter-
nal pressures. Inside the CNR magnetic fields strengths of order 2–3 mG have been ob-
served [52,53] which recently have been shown to trace the Mini Spiral [54]; these fields result
in a magnetic pressure of ?ext/:B ∼ 2 × 109 K cm−3 where ?ext is the external pressure
and :B is the Boltzmann constant. Furthermore, the temperatures (5000–11 000 K) and
electron densities (=4 ∼ 1 × 105 cm−3) of the ionized regions of the Mini Spiral also sug-
gest a pressure of ?ext/:B ∼ 2 × 109 K cm−3. While the thermal pressure in the inner
regions of the CNR is slightly less, ?ext/:B ∼ 3 × 108 K cm−3 there is a significant contri-
bution from the turbulent velocity dispersion in the CNR which can yields pressures up to
?ext/:B ∼ 4 × 1010 K cm−3 [55]. These increased pressures, ∼ 102–103 interstellar medium
values at the galactic disk, could act to compress the clouds aiding stability and thus must be
accounted for in the analysis.

1.2 Approach

There is clearly tension between the standard expectations based on the Roche limit and
observations of what appear to be isolated young stellar objects (YSO) in the Galactic
centre. The canonical formulation of the Roche limit considers a satellite in which its own
gravitational force dominates its stability and is tidally locked to the object it orbits. Thus,
the Roche limit fails to capture two key characteristics of gas clouds at the Galactic centre.
Firstly, external pressures, which are known to be present in the Galactic centre; secondly,
tidally locking gas-clouds is difficult due to their low viscosity. Thus, any proper treatment
of tidal stability of gas clouds at the Galactic centre requires a proper treatment of external
pressures and rotation. The aim of this thesis therefore, is to explore these effects using a
robust model with a simple formulation for the combined treatment of external pressures and
rotational effects on the stability of gas cloud in the Galactic centre subject to tidal fields from
Sgr A*.
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To consider the effect of external pressures on gas clouds this thesis will use Bonnor-
Ebert Spheres [56,57], self-gravitating isothermal gas clouds with internal and external pressure
forces which are in equilibrium. To consider the effect of rotation on the dynamics of the
clouds they will be treated as Roche ellipsoids. The Roche ellipsoids describe a homogenous,
self-gravitating, and rotating ellipsoid orbiting another body—whose presence is the origin
of a tidal force on the ellipsoid. These approximations are sufficiently realistic for gas clouds
in the galactic centre; while gas cloud cores are generally centrally clumped the difference in
the gravitational force is of order 5/3. Hence, this thesis aims to create a robust semi-analytic
model with a simple formulation for the combined treatment of Bonnor-Ebert Spheres and
Roche ellipsoids to assert their stability in the presence of tides and external pressures, the
tensor virial theorem provides a direct procedure for this.

The virial theorem (see, e.g. Chandrasekhar [58]) is a way of solving the complex integro-
differential equations of physics for an exact solution. The virial theorem describes the
dynamics of systems through analysis of its moments, and is an exact relation between them.
Applying the virial theorem technique to the Euler equations [59], the idealised equations
of fluid mechanics, representing the conservation laws of mass, momentum, and energy,
results in quantities representing the density distribution of the system. Adopting a non-exact
model, e.g. homogenous ellipsoid, allows the resulting integrals to be analytically evaluated.
Integrating over the volume of the cloud results in the limitation that onlymonolithic evolution
of the cloud can be followed; there is no description for the evolution of substructure, however
this work interested in the global dynamics—if a cloud is tidally disrupted by a black hole
variations in substructure, such as fragmentation, are not of key importance. By considering
the temporal evolution of the density distribution, the gross dynamics of the system can be
obtained.

The virial theorem technique has been used since the early 20th century [60,61] with signif-
icant work applying the techniques to hydrodynamical problems, specifically, the formation
of stars [62–65]. This has allowed authors to numerically solve the steady state conditions of
ellipsoids under the gravitational influence of another body [66]. Recently, authors such as
Chen [55] have used the virial theorem approach with the inclusion of external pressures and
tidal fields in their calculations of cloud mass and densities for the Galactic centre; specifi-
cally finding external pressures which could compress spherical cloud cores in the CNR to
densities capable of providing tidal stability.

This thesis will therefore will build on the previous literature to model the evolution of
non-spherical pressurised clouds with internal rotation. The equilibrium Roche ellipsoids
will be used as the starting point for analysis of Bonnor-Ebert Spheres. The analysis will
then be extended to model the additional effects of external tidal fields, and internal rotation
to characterise the temporal evolution of gas clouds at the Galactic centre.

1.3 Project outline

This project details the derivation, results, and physical insights from a semi-analytical model
describing the evolution of a homogenous, compressible, constant spatial density, isothermal
tri-axial ellipsoidal gas cloud in the pressure of tidal fields and external pressures. This work
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adopts a simple model on the clouds structure, it is free to rotate in the orbital plane, and has
linear velocity fields consistent with the evolving axis ratios, orientation, and streaming of
fluid within. The tensor virial theorem is used to obtain the ordinary differential equations
(ODEs) describing the evolution of this cloud from which insights into star formation in the
strong gravitational regime are obtained.

Chapter 2 outlines the derivation of the model’s ODEs from their formulation based
on the tensor virial theorem, their numerical implementation, and tests of their numerical
reliability. A comparison of the model’s observed behaviour and the literature is presented
in the first part of Chapter 3 where steady state solutions and perturbations from are given
where the model is found to evolve as expected subject to transient perturbations. The unique
physical sizes of the clouds is then found as a function of their density and axis ratios which
are dependent on the tidal strength. The latter part of the chapters presents an investigation
into the competing effects of tides, external pressures, and internal rotation and their effect
on the stability where two new equilibria classes for clouds with counter-rotating internal
fluid is found. In low mass clouds, one of these solutions is found to be stable, despite being
unstable according to the Roche criterion. Following this, in Chapter 4 I conclude with the
findings of this research, which is applied to the stability of clouds in the Galactic centre,
before mentioning the future prospects.



2
Semi-Analytic Model

This chapter details the derivation and numerical implementation of a semi-analytic model
based on the tensor virial theorem to characterise the evolution of gas clouds applicable to
the Galactic centre. The evolution of a compressible isothermal fluid under the influence
of gravity, pressure, and an external gravitational potential in a rotating reference frame is
specified by the equations:

d
mv
mC
+ d(v · ∇)v = −∇? − d∇q − d 
 × (
 × r) − 2d 
 × v, (2.1)

md

mC
+ ∇ · (dv) = 0, (2.2)

?(d) = d22
B , (2.3)

where d is the density, v is the velocity of the fluid, ? is the pressure, q is the gravitational
potential; r is the distance from the origin of the rotating frame to the point of interest and

is the angular velocity of the point r about the origin; boldface represents a three-dimensional
vector, and 2B is the isothermal sound speed.

These equations are used to create a model of a compressible isothermal tri-axial ellip-
soidal gas cloud with constant spatial density orbiting a black hole. The external pressure,
?ext, is accounted for by asserting that ? = ?ext at the cloud surface. The gravitational
potential is be split into contributions from the cloud and the black hole. The figure of the
cloud is allowed to rotate in the orbital plane, additionally, the internal fluid is allowed to
stream relative to the figure rotation. The mass of the cloud is constant because the boundary
moves with the fluid.

Multiplying Equation 2.1 by the spatial component G 9 , 9 = 1, 2, 3 and integrating it over
the instantaneous volume, + (C), occupied by the cloud yields the 2nd order tensor virial
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theorem equation in a rotating reference frame,

¤H8 9 = 2 8 9 + Π8 9 +,8 9 +W8 9 + �8 9 , (2.4)

where the subscript 8 9 represents the index in a 3 × 3 tensor [cf. The work by Chan-
drasekhar [58,66]]. ¤H represents the inertial term,  the bulk kinetic energy, Π the pressure,
, the self-gravitational potential energy, W the net tidal force from the black hole and
centrifugal force, and � is the Coriolis force. Previous works have considered systems in
which diagonal symmetry of the tensors is imposed, in this case ¤H becomes the canonical
variable ¥�, representing the second derivative of the moment of inertia—the model presented
in this work does not symmetrise the tensors—allowing for asymmetries in the forces and
velocities. For a reference frame rotating about the 8 = 3 axis the tensor terms are explicitly
given by:

¤H8 9 = 3

3C

∫
+
dE8G 9 3+, (2.5)

 8 9 =
1
2

∫
+
dE8E 9 3+, (2.6)

Π8 9 = −
∫
+
G 9

m

mG8
? 3+, (2.7)

,8 9 =
∫
+
dG 9

m

mG8
qBH 3+, (2.8)

W8 9 = −
∫
+
dG 9

(
m

mG8
qext − n8:3n;:3Ω

2G;

)
3+, (2.9)

�8 9 = 2Ω
∫
+
n8;3dE;G 9 3+, (2.10)

where n8 9 : is the Levi-Civita symbol and Einstein summation notation is implied on the
repeated indices, : and ;. The integrals are calculated over the volume of the cloud which
is not fixed in space. A schematic of the system is shown in Figure 2.1, where a tri-axial
ellipsoid rotates in the Ĝ1, Ĝ2 plane at a distance A0Ĝ1 from a central potential (black hole)
where the reference frame rotates at the Keplerian orbital velocity of the cloud [Ω2

0 =
�<bh
|r0 |3 ,

where <bh is the mass of the black hole and � is the gravitational constant].

Figure 2.1: Geometric configuration for a tri-axial ellipsoid in a spherical orbit in the Ĝ1, Ĝ2 plane
centred at a distance A0Ĝ1 from a black hole with angular rotation Ω0 about the Ĝ3 axis. The
ellipsoid is allowed to rotate around its centre about the Ĝ3 direction.
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The integrals over the cloud volume (Equations 2.5 – 2.10) at each instant in time are
most straightforwardly calculated in a static reference frame where the principal axes of the
cloud are along the canonical unit vectors of a Cartesian coordinate system. To change from
the orbital framewith variables G1, G2, G3 into the cloud framewith variables b1, b2, b3, that
is, from the rotating reference frame centred on the black hole [where Equations 2.5 – 2.10
are formulated], into a frame characterising an ellipsoid with major axes along the unit vector
directions, a rotation by an angle \ (C) is required. In the cloud frame each point ξ1, ξ2, ξ3
can be transformed into the orbital frame through the linear mapping

©«
G1
G2
G3

ª®¬ = ©«
cos(\) − sin(\) 0
sin(\) cos(\) 0

0 0 1

ª®¬ ©«
b1
b2
b3

ª®¬ . (2.11)

This allows for analytic solutions to the integrals to be readily calculated and expressed in the
orbital frame. A schematic of this rotation is shown in Figure 2.2 where the major axes of the
ellipsoid (black) are now rotated by an angle \ with respect to the static coordinate system of
the black hole (green) where the vector from the black hole to the centre of the ellipsoid is
purely in the Ĝ1 direction.

To BH

Figure 2.2: Top-down diagram showing the mapping of the orbital frame unit vectors (green) to
the cloud frame unit vectors (black) through a rotation by an angle \ (C). Additionally shown is a
fluid particle at time C located at position (b1, b2) which is allowed to rotate to a position (b ′1, b ′2)
at time C ′ with respect to the figure.
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2.1 Velocity field
The model adopts a linear velocity field in the cloud, constrained to be consistent with the
evolution of the cloud’s figure, but allowing for internal fluid streaming with respect to the
figure of the ellipsoid, restricted to be parallel to the plane of orbit. In the orbital plane the
components of the b1 and b2 axes are coupled, while the b3 velocity in the perpendicular
plane is decoupled. This coupling of the b1 and b2 axes allows the fluid to rotate at a rate, ¤q,
with respect to its initial position on the figure—allowing it to drift. However, it is required
that the fluid particles maintain their position with respect to each other—i.e. a fluid particle
initially on the boundary must always be the boundary. A schematic showing a fluid particle
at location (b1, b2) at time C moving to location (b′1, b2) at time C′ is shown in Figure 2.2.

The velocities of the fluid inside the cloud are therefore given by

3

3C
b1 = Ub1 + Vb2, (2.12)

3

3C
b2 = Wb1 + Xb2, (2.13)

3

3C
b3 = _b3, (2.14)

where U, V, W, X, and _ are constants to be found such that the ellipsoid does not deform
from its characteristic shape. Differentiating the equation for a tri-axial ellipsoid with respect
to position, substituting these constants in, yields the relationships

U =
¤01
01
, (2.15)

X =
¤02
02
, (2.16)

V

02
1
= − W

02
2
, (2.17)

_ =
¤03
03
, (2.18)

where 08 is the length of the axis in the 8 direction and ¤08 its temporal derivative. This thesis
adopts the symbol ¤q ≡ W as it corresponds to the angular velocity of the fluid with respect
to the 01 axis. This definition along with Equation 2.13 allows the velocity relationship
(Equation 2.17) to be obtained as

W = ¤q =⇒ V = −0
2
1

02
2

¤q. (2.19)

Thus, the three velocity equations in the cloud frame are given by:

¤b1 =
¤01
01
b1 − 01

02
¤qb2, (2.20)

¤b2 =
02
01
¤qb1 + ¤02

02
b2, (2.21)

¤b3 =
¤03
03
b3. (2.22)



2.2 Evaluation of the tensors 11

In the orbital frame the velocity field inside the gas cloud is

3

3C
G1 =

3

3C
(b1 cos(\) − b2 sin(\)) = ¤b1 cos(\) − b1 ¤\ sin(\) − ¤b2 sin(\) − b2 ¤\ cos(\), (2.23)

3

3C
G2 =

3

3C
(b1 sin(\) + b2 cos(\)) = ¤b2 sin(\) + b1 ¤\ cos(\) + ¤b2 cos(\) − b2 ¤\ sin(\), (2.24)

3

3C
G3 =

3

3C
b3 = ¤b3, (2.25)

where substituting the relations from Equation 2.20–2.22 yields

¤G1 = b1

[ ¤01
01

cos(\) −
(
02
01
¤q + ¤\

)
sin(\)

]
+ b2

[
− ¤02
02

sin(\) −
(
01
02
¤q + ¤\

)
cos(\)

]
, (2.26)

¤G2 = b1

[ ¤01
01

sin(\) +
(
02
01
¤q + ¤\

)
cos(\)

]
+ b2

[ ¤02
02

cos(\) −
(
01
02
¤q + ¤\

)
sin(\)

]
, (2.27)

¤G3 = b3

[ ¤03
03

]
. (2.28)

These correspond to the E8 terms appearing in the virial theorem integrals.

2.2 Evaluation of the tensors

In the orbital frame the linearity of the component moments, fluid velocities, and gravitational
potentials results in the evolution of the cloud being characterised by integrals of the form∫

+
G8G 9 3+. (2.29)

The linearity of the coordinate transformation between the orbital frame and the cloud frame
allows these to be expressed in the cloud frame as combinations of∫

+
b8b 9 3+ =

{
4
15c0102030

2
8 8 = 9 ,

0 8 ≠ 9 .
(2.30)

This description allows for the straightforward evaluation of integrals with analytic solutions.
For example, consider the object G1G1, the integral over the volume of the cloud is given by∫

+
dG1G1 3+ = d

∫
+
b2

1 cos2(\) + b2
2 sin2(\) − b1b2 sin(2\) 3+, (2.31)

where the condition of constant spatial density was used to bring d outside the integral sign.
By symmetry any term b8b 9 , 8 ≠ 9 under the integral sign will vanish. This is because any
plane of symmetry ofmass is a plane of symmetry of the product of inertia

(∫
+
b8b 9 3+, 8 ≠ 9

)
,

and in the ellipsoids own reference frame [cloud frame] every plane is a plane of symmetry
of mass and will be strictly zero. Thus, the quantity evaluates to

d

∫
+

(
b2

1 cos2(\) + b2
2 sin2(\)

)
3+ =

1
5
<

(
02

1 cos2(\) + 02
2 sin2(\)

)
, (2.32)

where < is the mass of the cloud.
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2.2.1 Inertial term, ¤H8 9

The left-hand-side of the tensor virial theorem (Equation 2.4) is

¤H8 9 = 3

3C

∫
+
dE8G 9 3+. (2.33)

Substituting the relations from Equations 2.11 and 2.26–2.28 for G 9 and E8 and integrating in
the manner described in Section 2.2 results in five non-zero components of ¤H8 9 . Taking the
temporal derivative of these equations yields,

¤H11 =
<

5

[
¥0101 cos2(\) + ¥0202 sin2(\) − 1

2
¥\
(
02

1 − 02
2

)
sin(2\)

+ ¤01

(
¤01 cos2(\) − 201 ¤\ sin(2\))

)
+ ¤02

(
¤02 sin2(\) + 202 ¤\ sin(2\)

)
− ¤\2

(
02

1 − 02
2

)
cos(2\)

]
,

(2.34)

¤H22 =
<

5

[
¥0101 sin2(\) + ¥0202 cos2(\) + 1

2
¥\
(
02

1 − 02
2

)
sin(2\)

+ ¤01

(
¤01 sin2(\) + 201 ¤\ sin(2\))

)
+ ¤02

(
¤02 cos2(\) − 202 ¤\ sin(2\)

)
+ ¤\2

(
02

1 − 02
2

)
cos(2\)

]
,

(2.35)

¤H33 =
<

5

[
¥0302 + ¤02

3

]
, (2.36)

¤H12 =
<

5

[
1
2
( ¥0101 − ¥0202) sin(2\) − ¥\

(
02

1 sin2(\) + 02
2 cos2(\)

)
− ¥q0102

+ 1
2

(
¤02
1 − ¤02

2

)
sin(2\) − ¤\2

(
02

1 − 02
2

)
sin(2\) − ¤q( ¤0102 + ¤0201)

+ ¤\
(
¤0101

(
cos2(\) − 3 sin2(\)

)
+ ¤0202

(
sin2(\) − 3 cos2(\)

))]
,

(2.37)

¤H21 =
<

5

[
1
2
( ¥0101 − ¥0202) sin(2\) + ¥\

(
02

1 cos2(\) + 02
2 sin2(\)

)
+ ¥q0102

+ 1
2

(
¤02
1 − ¤02

2

)
sin(2\) − ¤\2

(
02

1 − 02
2

)
sin(2\) + ¤q( ¤0102 + ¤0201)

− ¤\
(
¤0101

(
sin2(\) − 3 cos2(\)

)
+ ¤0202

(
cos2(\) − 3 sin2(\)

))]
.

(2.38)

A further detailed derivation of the inertial term is given in Appendix A.
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2.2.2 Kinetic energy,  8 9

The kinetic energy tensor components are

 8 9 =
1
2

∫
+
dE8E 9 3+. (2.39)

Evaluating the tensor terms in the prescribed manner of Section 2.2 where E8 and E 9 are given
by Equations 2.26 – 2.28 yields five non-zero kinetic energy tensor components,

 11 =
<

10

[
¤01

(
¤01 cos2(\) − 01 sin(2\)

(
02
01
¤q + ¤\

))
+ ¤02

(
¤02 sin2(\) + 02 sin(2\)

(
01
02
¤q + ¤\

))
+ ¤\2

(
02

1 sin2(\) + 02
2 cos2(\)

)
+ ¤q2

(
02

1 cos2(\) + 02
2 sin2(\)

)
+ 20102 ¤\ ¤q

]
,

(2.40)

 22 =
<

10

[
¤01

(
¤01 sin2(\) + 01 sin(2\)

(
02
01
¤q + ¤\

))
+ ¤02

(
¤02 cos2(\) − 02 sin(2\)

(
01
02
¤q + ¤\

))
+ ¤\2

(
02

1 cos2(\) + 02
2 sin2(\)

)
+ ¤q2

(
02

1 sin2(\) + 02
2 cos2(\)

)
+ 20102 ¤\ ¤q

]
,

(2.41)

 33 =
<

10

[
¤02
3

]
, (2.42)

 12 =  21 =
<

10

[
1
2

(
¤02
1 − ¤02

2 +
(
¤q2 − ¤\2

) (
02

1 − 02
2

))
sin(2\)

+
(
¤\ ( ¤0101 − ¤0202) + ¤q( ¤0102 − ¤0201)

)
cos(2\)

]
.

(2.43)



14 Semi-Analytic Model

2.2.3 Pressure tensor, Π8 9

The pressure tensor is calculated using

Π8 9 = −
∫
+
G 9
m?

mG8
3+, (2.44)

where on the surface of the cloud ? obtains a value of ?ext = constant. Using the product
rule in reverse yields

Π8 9 = −
∫
+

m

mG8

(
G 9 ?

)
3+ +

∫
+
?
m

mG8
G 9 3+, (2.45)

which by applying the divergence theorem to the first integral and simplifying the second
results in

Π8 9 = −
∮
(
G 9 ? · 3B8 + X8 9

∫
+
? 3+. (2.46)

Thus, the net pressure terms are given by

Π11 = Π22 = Π33 = (? − ?ext)+ ≡ <22
B − ?ext+, (2.47)

where 2B =
√

:B)
`<H

is the isothermal sound speed, and + is the volume of the ellipsoid.
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2.2.4 Self-gravity,,8 9

The clouds self-gravitational contribution is calculated by

,8 9 =
∫
+
G 9

m

mG8
qself 3+, (2.48)

where qself is the self-gravitational potential in the orbital frame. This is expressed in terms
of the self-gravity components in the cloud frame, where [65],

m

mb8
q′self = −2dc�010203�8b8, (2.49)

and �8 are constants related to the geometry of the ellipsoid given by [65]

�8 =
∫ ∞

0

3_

Δ (02
8 + _)

, (2.50)

and Δ2 = (02
1 + _) (02

2 + _) (02
3 + _). These integrals are readily expressible in terms of the

degenerate Carlson symmetric form of the third elliptic integral,

'� (G, H, I) = '� (G, H, I, I) = 3
2

∫ ∞

0

3_

(_ + I)
√
(_ + G) (_ + H) (_ + I)

. (2.51)

Transforming back to the orbital frame yields five non-zero self-gravitational components:

,11 = −3�<2

10

[
02

1�1 cos2(\) + 02
2�2 sin2(\)

]
, (2.52)

,22 = −3�<2

10

[
02

1�1 sin2(\) + 02
2�2 cos2(\)

]
, (2.53)

,33 = −3�<2

10

[
02

3�3

]
, (2.54)

,12 = ,21 = −3�<2

20

[(
02

1�1 − 02
2�2

)
sin(2\)

]
. (2.55)
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2.2.5 Tidal field,W8 9

The net contribution from the black hole’s gravitational force and the centrifugal force is

W8 9 = −
∫
+
dG 9

[
m

mG8
qBH − n8:3n;:3Ω

2G;

]
3+. (2.56)

The distance between the black hole and the gas clouds is orders of magnitude larger than the
Schwarzschild radius (∼ 0.1 AU), thus the force of the black hole is

m

mG8
qBH =

�<BH

A2 Â ≡ Ω2r, (2.57)

where r is the distance from the black hole to a point inside the cloud. The definition of the
angular rotation, Ω, being about the Ĝ3 axis results in the only non-zero term of m

mG8
Ω being

m
mG1
Ω. As A0 � b8 ∀8 a linear Taylor series approximation is used to compute the effect of

tides from the black hole. Performing an expansion for (A0 + ξ ≡ (A0 + b1, b2, b3)) about the
centre of the cloud yields,

rΩ2 ≈
[
A0 + b1, b2, b3

] [
Ω2(A0 + ξ) + m

mG1
Ω2(A0 + ξ) × [A0 + b1 − A0],

Ω2(A0 + ξ), Ω2(A0 + ξ)
]
,

(2.58)

where 2nd order and higher terms have been neglected. The value of Ω is approximated by

Ω2(A0 + ξ) = Ω2(A0 + b1) def
=

�<BH

[A0 + b1]3
≈ �<BH

A3
0

def
= Ω2

0. (2.59)

Thus,

rΩ2 ≈ [A0 + b1, b2, b3]
[
Ω2

0 +
m

mG1
Ω2(A0 + b1) [b1Ĝ1], Ω2

0, Ω
2
0

]
. (2.60)

The derivative term,
m

mG1
Ω2 =

m

mG1

<BH

|A0 + b1 |3
, (2.61)

yields
m

mG1
Ω2

���
A0+b1

= −3Ω2
0

|A0 | Ĝ1. (2.62)

Thus, the gravitational acceleration from the black hole is given by

m

mG8
qBH = rΩ2 ≈ [A0 + b1, b2, b3]

[
Ω2

0 −
3b1Ω2

0
A0

, Ω2
0, Ω

2
0

]
, (2.63)

which by neglecting second order terms yields

m

mG8
qBH = Ω

2
0 [A0 − 2b1, b2, b3] . (2.64)

The centrifugal force is calculated in a similar way also using a first order Taylor series
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approximation. The contribution is calculated by

n8:3n;:3Ω
2 ≈ Ω2

0

[
X1; [A0 + b;]Ĝ + X2;b; Ĥ

]
= Ω2

0 [A0 + b1, b2, 0] . (2.65)

Thus the net gravitational force by the black hole and the centrifugal force is approximated
by

m

mG8
qBH − n8:3n;:3Ω

2 ≈ Ω2
0 [A0 − 2b1, b2, b3] −Ω2

0 [A0 + b1, b2, 0], (2.66)

= Ω2
0 [−3b1, 0, b3] . (2.67)

Thus, the virial integrals are of the form

W8 9 = dΩ
2
0

∫
+
Γ8G8G 9 3+, (2.68)

where Γ8 = (3, 0, −1) and the initial minus sign of Equation 2.56 has been factored into Γ.
Integrating gives

W11 =
<Ω2

0
5

[
302

1 cos2(\) + 302
2 sin2(\)

]
, (2.69)

W12 =
<Ω2

0
5

[
3
2

(
02

1 − 02
2

)
sin(2\)

]
, (2.70)

W33 = −
<Ω2

0
5

[
02

3

]
. (2.71)

with the other components being identically zero.
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2.2.6 Coriolis force, �8 9

The Coriolis term is
�8 9 = 2dΩn8;3

∫
+
E;G 9 3+, (2.72)

where summation over the repeated index ; is implied. Using the velocity equations (Equa-
tions 2.26 – 2.28) and integrating in the same manner as section 2.2 the non-zero Coriolis
terms are obtained,

�11 =
2
5
<Ω0

[
1
2
( ¤0101 − ¤0202) sin(2\) + ¤\

(
02

1 cos2(\) + 02
2 sin2(\)

)
+ 0102 ¤q

]
, (2.73)

�22 =
2
5
<Ω0

[
−1

2
( ¤0101 − ¤0202) sin(2\) + ¤\

(
02

1 sin2(\) + 02
2 cos2(\)

)
+ 0102 ¤q

]
, (2.74)

�12 =
2
5
<Ω0

[
¤0101 sin2(\) + ¤0202 cos2(\) + 1

2
¤\
(
02

1 − 02
2

)
sin(2\)

]
, (2.75)

�21 =
2
5
<Ω0

[
− ¤0101 cos2(\) − ¤0202 sin2(\) + 1

2
¤\
(
02

1 − 02
2

)
sin(2\)

]
. (2.76)
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2.3 Equations of Motion

By substituting the results from Equations 2.34–2.37, 2.40–2.43, 2.47, 2.52–2.55, 2.69–2.71,
and 2.73–2.76 into the tensor virial theorem equation (Equation 2.4) a set of five coupled
ODEs describing the evolution of the cloud is obtained. These equations, corresponding to
the 11, 22, 33, 12, and 21 indices are:

2 ¥0101 cos2(\) + 2 ¥0202 sin2(\) − ¥\
(
02

1 − 02
2

)
sin(2\) =

2( ¤0101 − ¤0202)
( ¤\ +Ω0

)
sin(2\) − 2 ¤q( ¤0102 − ¤0201) sin(2\) + 40102 ¤q

( ¤\ +Ω0
)

+ 202
1

(
¤\2 + ¤q2 + 3Ω2

0 + 2Ω0 ¤\ − 3
2
�<�1

)
cos2(\)

+ 202
2

(
¤\2 + ¤q2 + 3Ω2

0 + 2Ω0 ¤\ − 3
2
�<�2

)
sin2(\)

+ 10
(
22
B −

?ext
d

)
,

(2.77)

2 ¥0101 sin2(\) + 2 ¥0202 cos2(\) + ¥\
(
02

1 − 02
2

)
sin(2\) =

− 2( ¤0101 − ¤0202)
( ¤\ +Ω0

)
sin(2\) + 2 ¤q( ¤0102 − ¤0201) sin(2\) + 40102 ¤q

( ¤\ +Ω0
)

+ 202
1

(
¤\2 + ¤q2 + 2Ω0 ¤\ − 3

2
�<�1

)
sin2(\)

+ 202
2

(
¤\2 + ¤q2 + 2Ω0 ¤\ − 3

2
�<�2

)
cos2(\)

+ 10
(
22
B −

?ext
d

)
,

(2.78)

2 ¥0303 = −02
3

(
3�<�3 + 2Ω2

0

)
+ 10

(
22
B −

?ext
d

)
, (2.79)

( ¥0101 − ¥0202) sin(2\) − 2 ¥\
(
02

1 sin2(\) + 02
2 cos2(\)

)
− 2 ¥q0102 =

4
( ¤\ +Ω0

) ( ¤0101 sin2(\) + ¤0202 cos2(\)
)
+ 4 ¤q

(
¤0102 cos2(\) + ¤0201 sin2(\)

)
+ 02

1( ¤\2 + ¤q2 + 3Ω2
0 + 2Ω0 ¤\ − 3

2
�<�1) sin(2\)

− 02
2( ¤\2 + ¤q2 + 3Ω2

0 + 2Ω0 ¤\ − 3
2
�<�2) sin(2\),

(2.80)

( ¥0101 − ¥0202) sin(2\) + 2 ¥\
(
02

1 cos2(\) + 02
2 sin2(\)

)
+ 2 ¥q0102 =

− 4
( ¤\ +Ω0

) ( ¤0101 cos2(\) + ¤0202 sin2(\)
)
− 4 ¤q

(
¤0102 sin2(\) + ¤0201 cos2(\)

)
+ 02

1( ¤\2 + ¤q2 + 3Ω2
0 + 2Ω0 ¤\ − 3

2
�<�1) sin(2\)

− 02
2( ¤\2 + ¤q2 + 3Ω2

0 + 2Ω0 ¤\ − 3
2
�<�1) sin(2\).

(2.81)
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By adding [subtracting] Equation 2.78 to [from] Equation 2.77 the following two rela-
tionships are obtained,

¥0101 + ¥0202 = 0
2
1

[
¤\2 + ¤q2 + 2 ¤\Ω0 + 3Ω2

0 cos2(\) − 3
2
�<�1

]
+ 02

2

[
¤\2 + ¤q2 + 2 ¤\Ω0 + 3Ω2

0 sin2(\) − 3
2
�<�2

]
+ 40102 ¤q

( ¤\ +Ω0
) + 10

(
22
B −

?ext
d

)
,

(2.82)

( ¥0101 + ¥0202) cos(2\) − ¥\
(
02

1 − 02
2

)
sin(2\) =

2( ¤0101 − ¤0202)
( ¤\ +Ω0

)
sin(2\) − 2 ¤q( ¤0102 − ¤0201)

+ 02
1

[
¤\2 + ¤q2 + 2 ¤\Ω0 − 3

2
�<�1

]
cos(2\) + 302

1Ω
2
0 cos2(\)

− 02
2

[
¤\2 + ¤q2 + 2 ¤\Ω0 − 3

2
�<�2

]
cos(2\) + 302

2Ω
2
0 sin2(\).

(2.83)

Similarly, adding [subtracting] Equation 2.80 to [from] Equation 2.81 yields the relationships,

( ¤0101 − ¤0202) sin(2\) + ¥\
(
02

1 − 02
2

)
cos(2\) =

− ( ¤\ +Ω0
) ( ¤0101 − ¤0202) cos(2\) + 2 ¤q( ¤0102 − ¤0201) cos(2\)

+ 02
1

(
¤\2 + ¤q2 + 2 ¤\Ω0 + 3

2
Ω2

0 −
3
2
�<�1

)
sin(2\)

− 02
2

(
¤\2 + ¤q2 + 2 ¤\Ω0 + 3

2
Ω2

0 −
3
2
�<�2

)
sin(2\),

(2.84)

¥\
(
02

1 + 02
2

)
+ 2 ¥q0102 =

− 2
( ¤\ +Ω0

) ( ¤0101 + ¤0202) − 2 ¤q( ¤0102 + ¤0201)
− 3

2
Ω2

0

(
02

1 + 02
2

)
sin(2\).

(2.85)

Taking Equation 2.82 and adding [subtracting] Equation 2.84 × sin(2\) + Equation 2.83
× cos(2\) yields expressions for ¥01 and ¥02,

¥0101 = 0
2
1

(
¤\2 + ¤q2 + 2 ¤\Ω0 + 3Ω2

0 cos2(\) − 3
2
�<�1

)
+ 2 ¤q0102

( ¤\ +Ω0
) + 5

(
22
B −

?ext
d

)
,

(2.86)

¥0202 = 0
2
2

(
¤\2 + ¤q2 + 2 ¤\Ω0 + 3Ω2

0 sin2(\) − 3
2
�<�2

)
+ 2 ¤q0102

( ¤\ +Ω0
) + 5

(
22
B −

?ext
d

)
.

(2.87)
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The equation for ¥03 is obtained from simplification of Equation 2.79,

¥0303 = − 02
3

(
3
2
�<�3 +Ω2

0

)
+ 5

(
22
B −

?ext
d

)
. (2.88)

The expression for ¥\ is obtained through Equation 2.84 × cos(2\) - Equation 2.83 × sin(2\),

¥\
(
02

1 − 02
2

)
= −2

( ¤\ +Ω0
) ( ¤0101 + ¤0202)+2 ¤q( ¤0102 − ¤0201)− 3

2
Ω2

0

(
02

1 − 02
2

)
sin(2\). (2.89)

Using this relationship in Equation 2.85×(02
1 − 02

2
)
- Equation 2.89 ×(02

1 + 02
2
)
yields the

equation for ¥q,

¥q
(
02

1 − 02
2

)
= −2 ¤q( ¤0101 − ¤0202) + 2

( ¤\ +Ω0
) ( ¤0102 − ¤0201) + 30102Ω

2
0 sin(2\). (2.90)

Together these 5 coupled ODEs represent the equations of motion (EoM) for the gas cloud.

2.4 Numerical Implementation

It is convenient to adopt unit definitions based on the sound speed of the cloud and the external
pressure, with the resulting characteristic length, timescale, mass, and density as,

L = 322
B√

4c�?ext
, (2.91)

T = 32B√
4c�?ext

, (2.92)

M =
924

B√
4c�3?ext

, (2.93)

dp =
3M

4cL3 =
?ext

22
B

. (2.94)

Additionally defined is the magnitude of the tidal force expressed as a density,

dt =
9

4c
Ω2

0
�
, (2.95)

which will be used to express the strength of tides relative to the real density, d. The tidal
density, dt is related to the Roche density, dRoche, via dt = 9

4×0.090068dRoche
[66].

The singularities apparent in Equations 2.89 and 2.90 when 01 = 02 deserve examination.
One of these singularities can be eliminated by combining the two equations, resulting in

¥q + ¥\ = − 1
01 + 02

[
( ¤01 + ¤02)

( ¤q + ¤\ +Ω0
) + 3

2
Ω2

0(01 − 02) sin(2\)
]
, (2.96)

which represents the angular acceleration of the internal fluid, when 01 = 02, and shows that
the orbital-frame velocity field is well behaved. This equation is numerically integrated as
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opposed to Equation 2.90. The value of ¥q, representing the fluid sliding with respect to the
figure is obtained through subtraction of ¥\ from this equation. Equation 2.89, specifying ¥\, is
numerically integrated as is, with the singularity, however as will be shown in Section 2.4.1
evolution around the singularity is well-handled by the numerical integrator.

The equations of motion (Equations 2.86 – 2.89 and 2.96), after being normalised as
mentioned above, are numerically integrated1 in the Python programming language using the
SunDials [67] numerical integrator module implemented the in scikits ODES [68] package. The
relative and absolute errors of the numerical integrator are set to 1 × 10−12 as amiddle-ground
between speed and accuracy. AppendixB presents computation time vs error threshold graphs
in addition to showing the numerical precision loss due to lower specified error tolerances.
Thiswork additionallymakes use of the software packages and applications listed inAppendix
C.

Unless otherwise stated the models are initially in a static equilibrium, ¤01 = ¤02 = ¤03 =
¤\ = ¤q = \ = q = 0. The singularity in Equation 2.89 is avoided by slightly perturbing the
equilibrium axes lengths, they are set to 01 = 1.005 req, 02 = 1

1.005 = 0.995 req and 03 = req,
where req represents the equilibrium radius for a Bonnor-Ebert Sphere. The equilibrium
radius for a Bonnor-Ebert Sphere of a given mass is obtained by solving the roots of [69]

4c?extA3 + 3
5
�<

A
− 3<22

B = 0 (2.97)

for a chosen cloud mass, sound speed, and external pressure. Two positive non-zero roots are
obtained for each set of parameters, the larger root is taken as it corresponds to the real radius
of the cloud [55]—the smaller root corresponds to an unstable Bonnor-Ebert equilibrium point.

2.4.1 Numerical behaviour of singularities

Equations 2.89 and 2.90 exhibit a numerical singularity at 01 = 02. This singularity arises
as the variables \ and q represent the difference in the angle between the unit vectors in the
orbital frame and the cloud frame. When the lengths of the cloud’s in-plane axes are identical
the system becomes degenerate as there is no distinction between the Ĝ1 and Ĝ2 directions of
the cloud frame. This singularity reflects how small changes in fluid location can result in
large changes in \ when 01 = 02.

When 01 = 02 the angular velocity of the fluid is given by ¤\ + ¤q, not ¤q. As a result of
this, the angular acceleration of the fluid (Equation 2.96), which is well behaved, indicates
the velocity, and hence the evolution is also well behaved. Thus, large values of ¥\ and ¥q are
physical and the figure can change orientation rapidly when 01 and 02 become close while
the velocity field need not change much. The numerical integrator’s behaviour around the
singularity at 01 = 02 is shown in Figure 2.3, where as the 01 and 02 axis lengths of the cloud
approach the orientation of the figure (represented by \) rapidly rotates ≈ 90 degrees while
the fluid in the orbital frame does not rotate.

1The code used to generate the results is available online at https://github.com/YourLocalBlake/TidalStability
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Figure 2.3: Top Left: Evolution of the 01 and 02 axes for a Bonnor-Ebert sphere in the absence of
tides with < = <BE showing the axes rebound off one another. Top Right: Angles of figure and
fluid rotation. Bottom Left: Axes velocities of the cloud showing that the velocities flip as the
axes rebound. Bottom Right: Zoomed in version of the top left plot about the first axes rebound.
The straight lines are a result of the granularity of time-steps plotted, increasing the number of
points plotted results in a smoother curve to the integrator threshold error precision.

An examination of the internal velocity field of the cloud around the time period when
the axes rebound off another is shown in Figure 2.4 to further confirm that this behaviour is
physical. As the axes approach the cloud figure rotates ≈ 90 deg counter-clockwise, while
the major axes rotate ≈ 90 deg clockwise—this behaviour is shown in the second image by
the b̂1, b̂2 unit vectors rotating. The green circle represents a fluid particle on the boundary
rotating. Although the fluid particle appears to rotate in the graphs, physically the particle
has not changed it’s location [\ + q] in space; according to the numerical integrator the black
hole is now located on the left. By orientating the axes of the second figure with the first it
can be shown that the velocity field of the cloud is identical to before the ‘rotations’. This
again indicates that the singularity is easily handled by the numerical integrator and that no
unphysical abnormalities occur over the time period of the flip.

For the remainder of this thesis the solutions presented will have the axis length values
displayed in a manner that represents the physical evolution of the cloud and not the numerical
interpretation. This is preformed by swapping the colours of the 01 and 02 axes when the
numerical integrator has the axes rebound off each other.
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Figure 2.4: Internal velocity field of a Bonnor-Ebert Sphere before and after the 01, 02 axes
rebound. The magnitude of the arrows between plots are relative. The b̂1 orientations relative
to the bottom of the figures are 1.38 deg and 88.7 deg in the left and right plots respectively.
Orientating the axes of the right and left plot shows that over the axes rebound period the cloud
does not physically undergo any violent changes.

2.4.2 Numerical tests

To check the numerical reliability of the results, two numerical tests were undertaken on each
calculated solution. The first check is requiring that the solutions satisfy the coupled tensor
virial theorem component equations, Equations 2.77 – 2.81, to a specified tolerance level.
The evolution of a cloud is calculated and then the solved variables are plugged into the fully
coupled equations. By requiring that the difference (relative to zero, representing no error) is
less than two orders of magnitude larger than the numerical precision level over the evolution
of a solution, an upper-bound of the errors of the model is placed.

The second check is a requirement that analytically constant equations are numerically
constant to the specified error tolerance. By considering the equation

1
02

1−02
2

(
20102(2.89) +

(
02

1 + 02
2
)
(2.90)

)
the relationship

2 ¥\0102 + ¥q
(
02

1 + 02
2

)
+ 2 ¤q( ¤0101 + ¤0202) + 2

( ¤\ +Ω) ¤0102 + ¤0201 = 0 (2.98)

is obtained, i.e.
3

3C

[
20102

( ¤\ +Ω0
) + (

02
1 + 02

2

)
¤q
]
= 0. (2.99)

Thus, this equation must be constant to the specified error tolerance over the entire solved
time period. It was found in the simulation results presented that this equation was constant
to the order of magnitude of the specified numerical integrator error tolerance, numerically
constant to ≈ 1 × 10−12.



3
Tidal stability

This chapter is devoted to firstly, recovering the results and equilibrium solutions of previous
work, and secondly, analysis of the effect fluid streaming has on the stability of clouds. To
assess the reliability of the derived model Section 3.1 presents solutions in absence of a
tidal field, which are compared to known results. Section 3.2 presents the derivation of
equilibrium solutions for initially static Roche ellipsoids and pressure-bound Bonnor-Ebert
Spheres. Additionally, a comparison of tidal stability to the literature is presented. Following
this, in Section 3.3 the equilibrium results are modified to include fluid streaming. A
preliminary analysis of the effect fluid streaming has on stability is conducted as well as a
brief discussion of the unanswered questions.

The equation for a Bonnor-Ebert Mass, which specifies the limit on the maximum cloud
mass that can be in a stable equilibrium, is given by [69]

<BE(?ext) = 225
32
√

5c
24
B

0�3/2
1√
?ext

, (3.1)

where 0 is a constant related to the density distribution of the cloud which has a value
of unity for constant spatial density. This chapter focuses on two representative cloud
masses: < = 0.9<BE where self-gravity plays an important role in the stability and evolution,
< = 0.1<BE where self-gravity does not play a crucial role in the clouds dynamics.

3.1 Absence of tides
In the absence of tides the only free parameter of the model is the cloud mass, </<BE.
This results in models where the clouds evolves only with the effects of internal and external
pressure, and self-gravity—whose importance to evolution is dictated by the choice of</<BE.
Slightly perturbed quasi-spherical1 Bonnor-Ebert Spheres were modelled in the absence of

1As a result of requiring 01 ≠ 02. See Section 2.4



26 Tidal stability

tides and are shown in Figure 3.1. The axis lengths of the clouds oscillate as expected about
their equilibrium position. The system is perturbed through non-equal axis lengths from a
stable equilibrium and thus attempts to return to it. Furthermore, the density can be seen
to beat from the different periods of oscillations between the 01, 02 axes and the 03 axis, in
addition to the 01 and 02 axes having different oscillation magnitudes.

These slightly out-of-equilibrium clouds were further perturbed through temporarily
increasing ?ext. Figure 3.2 shows the result of perturbing the clouds though increasing ?ext
by 1% for a time period of 0.1T—the adopted unit definitions (see Section 2.4) require some
variables, e.g. 01 be scaled such that 2B (equivalently the temperature) remains constant.

It is found that both the < = 0.1<BE and < = 0.9<BE clouds begin to oscillate with
greater magnitude as a result of the energy injected into the system. Additionally, both clouds
beating features, as a result of the magnitude of 03 oscillations increasing, become more
prominent from the increased oscillation magnitudes. Both clouds clouds remain stable as
expected.
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Figure 3.1: Evolution of the axes lengths and density of Bonnor-Ebert Spheres with masses of
< = 0.1<BE (left) and < = 0.9<BE (right) in the absence of tides.
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Figure 3.2: Evolution of the axes lengths and density of Bonnor-Ebert Spheres with masses of
< = 0.1<BE (left) and < = 0.9<BE (right) in the absence of tides. The grey regions represent
an increase in ?ext by 1% for 0.1T occurring at T = 5. During the increased external pressure
period the axis lengths change as a result of rescaling dp to be consistent with an increase in
external pressure only.
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Figure 3.3: Evolution of the axes lengths and density of a < = 1.01<BE in the absence of tides.
Left: Cloud is initially at rest. Right: Cloud is initially expanding in all directions with a rate of
20% the radius of the cloud per unit of time.

Increasing the clouds mass beyond the Bonnor-Ebert Mass (Equation 3.1) should result
in a cloud which is gravitationally unstable—resulting in collapse. By considering a cloud
of < = 1.01<BE a gravitationally unstable cloud is modelled. Furthermore, if the cloud is
initially expanding outwards it should still collapse. This is because as the clouds expands the
force of the external pressure on the cloud increases, which ultimately halts the expansion.
Once the cloud has stopped expanding the imbalance between self-gravity, and external and
internal pressure will result in the contraction of the cloud. Additionally, as the cloud is more
massive than <BE gravitational collapse will occur. The semi-analytical model recovers this
behaviour and is shown in Figure 3.3.

3.2 Roche ellipsoid equilibrium solutions

The dependence of ellipsoidal axis ratios onΩ2
0/d for equilibrium solutions of incompressible

triaxial-ellipsoids in the absence of external pressures were calculated by Chandrasekhar [66].
As there was no external variable to compare to in his calculations, the physical size (or
equivalently, the mass) of the ellipsoids scaled out of the problem. The additional constraint
provided by the introduction of external pressure and compressibility fixes the scale of the
ellipsoids—which will now be calculated. By choosing an initial axis length ratio, 03/01,
the ratio 02/01 can obtained in the same manner as Chandrasekhar, addition of an external
pressure makes no difference because it is isotropic. The ratio 02/01 is found through solving
the corresponding root of

�10
2
1 − �30

2
3

�20
2
2 − �30

2
3
− 0

2
1

02
3
− 1 = 0, (3.2)

where Equation 3.2 is obtained through the diagonal components of the symmetric tensor
virial theorem when no motions are occurring in the system [66]. After obtaining 02/01 the
strength of tides can be calculated through [66]

dt
d
=

9
4c

Ω2
0

�d
=

9
2
010202

(
�10

2
1 − �30

2
3

302
1 + 02

3

)
. (3.3)
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Substituting the resulting values into the static case of the 11 component of the tensor virial
theorem (Equation 2.86), and choosing a specific cloud density allows the axis length of 01 to
be found through solving the positive root of the equation. This in turn allows for calculation
of the physical magnitudes of, respectively, 02, 03 =⇒ < =⇒ dt ∝ <BH/A3

0 . Figure 3.4
presents the axis ratio 02/01 and the equilibrium solutions for clouds (in d/dt) in terms of
the specified input parameter 03/01. Additionally included in this figure are the critical axis
ratios calculated by Chandrasekhar [58], �max representing the 03/01 ratio corresponding to
the maximum value of Ω0, and �dissolve corresponding the smallest stable ratio of 03/01 after
which instability arises in the clouds due to second-harmonic oscillations [66]. This work
finds a similar value for �max, which is not distinguishable when plotted. The grey shaded
region in Figure 3.4 represents the Roche limit where it should be noted that no equilibrium
configurations exist in this region.

As mentioned above the addition of compressibility and an external pressure allows for
unique cloud masses to be associated with tidal strengths. Displayed in Figure 3.5 is the
mass of a Bonnor-Ebert Sphere in equilibrium relative to the strength of tides where solutions
are plotted as constant ratios of 03/01. The solid lines indicate clouds which are stable
to perturbations and the dashed lines indicate unstable clouds by Chandrasekhar’s second-
harmonic oscillation criterion [66]—the shaded region represents the instability region where
no equilibrium configuration exists.
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To assess the applicabilities of Chandraskar’s conclusions, regarding stability, to com-
pressible pressured ellipsoids several clouds were evolved which were subject to a small
perturbation away from equilibrium. Models were calculated for an 03/01 axis ratio smaller
than �dissolve, between �dissolve and �max and greater than �max. The clouds were perturbed
by increasing ?ext by 1% for a time period of 1% of a dimensionless orbital period, 2c

Ω0T . The
perturbations to the clouds were performed after one of these dimensionless orbital periods
had been completed—this was to assert the equilibrium position is maintained without per-
turbations. It was found that the clouds to the left of �dissolve and right of �max behaved as
expected, i.e. were unstable and stable, respectively. However, the cloud between the two
values was unstable to perturbations. Additionally, the< = 0.9<BE was found to gravitation-
ally collapse along the 01 axis—in contrast to the other unstable models which all diverged.
These models are presented in Figure 3.6.

It is thought the middle-valued < = 0.1<BE cloud is unstable to perturbations due to its
compressibility. This compressibility allows the axis ratios of the cloud to evolve and it is
found the density fluctuations lead to axis ratios which are unstable to the second-harmonic
criterion. Shown in Figure 3.7 is the axis ratio, 03/01, after the perturbation where the ratio
decreases below the second-harmonic oscillation limit, additionally plotted in the top half
of the graph is the density and the Roche limit. The < = 0.9<BE cloud does not display
the same behaviour and it is still unclear why the cloud diverges—the < = 0.9<BE cloud is
already gravitationally collapsing before its density exceeds that of a spherical Bonnor-Ebert
Mass.
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Figure 3.6: Left: Clouds of mass< = 0.1<BE. Right: Clouds of mass< = 0.9<BE. Top: Clouds
with 03/01 = 0.751 > �max. Middle: Clouds with �dissolve < 03/01 = 0.479 < �max. Bottom:
Clouds with 03/01 = 0.249 < �dissolve. The grey vertical line represents the period in which the
clouds were perturbed by increasing ?ext by 1% starting after one dimensionless orbital period
2c
Ω0T has been completed and lasting 1% of the following orbital period.
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Figure 3.7: Cloud of mass < = 0.1<BE displaying the evolution of the axis ratio 03/01 going
below the second harmonic criterion (represented by the grey shaded region) and thus becoming
unstable. Additionally shown in the top of the plot is the density of the cloud compared to the
Roche limit (horizontal grey line). The grey vertical line at T ≈ 13 represents the perturbation.

For completeness the clouds were also perturbed by decreasing ?ext by 1% for a time
period of 1% of a dimensionless orbital period, 2c

Ω0T . Once again the clouds with a ratio of
03/01 > �max were found to be stable. This clouds with �dissolve < 03/01 < �max where
found to be stable and unstable for the < = 0.1<BE and < = 0.9<BE respectively. However,
this time the< = 0.9<BE cloud diverged as expected due to violation of the second-harmonic
criterion. The< = 0.9<BE cloud with 03/01 < �dissolve was found to gravitationally collapse,
the cause of which is still unknown. The < = 0.1<BE cloud with 03/01 < �max was initially
enigmatic as it was also found to stably oscillate. This result is thought to be physical
because this form of perturbation has compressed the originally pressure-bound cloud which
was initially in equilibrium, removing the compressive force results in the cloud wanting to
expand—thus leading to the oscillations. The figures showing the evolution of these clouds
are presented in Figure 3.8.

As explored in the preceding paragraphs, the equilibrium positions in the presence of
strong tides are close to oblate ellipsoids with a 2 − 1 axis ratio. Before exploring the effects
of internal fluid slippage, another reliability assessment of the model is conducted. Quasi-
spherical Bonnor-Ebert Spheres were modelled near the Roche limit analogous to geometric
perturbations from the equilibrium solution. Themodels in this thesis, although compressible,
should still disrupt close to the Roche limit (as the are significantly geometrically perturbed
from the equilibrium position). Shown in Figure 3.9 are these geometrically perturbed clouds.
As expected, when the clouds are moderately far away from the Roche limit they oscillate
wildly, due to the tidal field and displacement from equilibrium, and when the Roche limit is
exceeded the clouds are torn apart—as expected.
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Figure 3.8: Left: Clouds of mass< = 0.1<BE. Right: Clouds of mass< = 0.9<BE. Top: Clouds
with03/01 = 0.751 > �max. Middle: Clouds with �dissolve < 03/01 = 0.479 < �max. Bottom:
Clouds with 03/01 = 0.249 < �dissolve. The grey vertical line represents the period in which the
clouds were perturbed decreasing dnorm by 1% starting after one dimensionless orbital period has
been completed and lasting 1% of the following period.
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Figure 3.9: The top 4 panels show the evolution of a cloud of mass < = 0.9<BE and the bottom
4 panels show the evolution for a mass of < = 0.1<BE. Left: Axes length evolution of a Bonnor-
Ebert sphere in the presence of moderate strength tidal fields (1st and 3rd) and with a tidal field
consistent with placing the cloud at the Roche limit (2nd and 4th). Right: The density of the
clouds compared to the Roche limit, shown in grey. The top black dashed line represents a density
of < = <BE which should the cloud exceed is unstable to self-induced gravitational collapse; the
bottom black line represents the density equivalent to the limit as < → 0.
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3.3 Internal streaming

We now consider the evolution of an initially static pressure-bound sphere with fluid stream-
ing. Physically, the streaming allows the gas to flow separately from changes to the geometry
of the cloud e.g. stretching, compression, and orientation of the major axes of the ellipsoid.
A gas cloud can be statically stretched towards the black hole and with it’s major axes aligned
with the orbital frame axes (\ = 0) but with the fluid of the cloud streaming with the figure
while preserving the shape. This is physically motivated as tidal locking is not expected due
to the low viscosity of the clouds.

By seeking an equilibrium in which the axes length are not changing in time, self-gravity
is negligible (< � <BE), with no figure rotation, and allowing for internal fluid slippage at a
fixed rate ( ¤q = constant) the EoM (Equations 2.86 – 2.90) reduce to three non-zero equations:

0 = 02
1

(
¤q2 + 3Ω2

0

)
+ 2Ω00102 ¤q + 5

(
22
B + ?ext/d

)
, (3.4)

0 = 02
2

(
¤q2
)
+ 2Ω00102 ¤q + 5

(
22
B + ?ext/d

)
, (3.5)

0 = − 02
3

(
Ω2

0

)
+ 5

(
22
B + ?ext/d

)
. (3.6)

Subtracting Equation 3.5 from Equation 3.4 and dividing by 02
1 yields the first axis length

relationship, (
02
01

)2
= 1 + 3

U2 , (3.7)

where U = ¤q/Ω0. Substituting this relationship into Equation 3.5 and subtracting Equation
3.6 yields (

03
01

)2
= −

(
3 + U2

)
− 2

√
3 + U2 × sgn(U). (3.8)

Requiring that this ratio be real valued implies that

− 1 < U < 0, (3.9)

i.e. −Ω0 < ¤q < 0. This is suggestive that an equilibrium solution in the presence of a strong
tidal field exists when a cloud has counter-rotating internal fluid. However, inspection of
equations 3.7 and 3.8 shows that for low rotation rates 02 � 01 and as ¤q approaches Ω0
the 03 axis length reduces to zero—these wildly distorted ellipsoids pose a serious question
about their stability in the presence of strong tides. The solutions of the 01 axis length were
obtained through the following procedure—which is similar to Section 3.2. Firstly, a fixed
value of U is chosen and the axis length ratios are obtained through Equations 3.7 and 3.8.
Following this, a specific value of Ω0 and d is chosen. These values and axis ratios are then
substituted into Equation 3.6 which has previously been divided by 02

1, to obtain an equation
in 01 from which the value is numerically found through a root solving routine.
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3.3.1 Stability

To assess the effect internal streaming has on the stability of the clouds two values of U,
−0.1 and −0.5, were chosen to be investigated. The axis lengths corresponding to these
values of U were used as an initial guess for a self-gravitating cloud with mass < = 0.01<BE
for a multi-dimensional root finding algorithm which was solving the complete set of the
EoM (Equation 2.86 – 2.90). The equilibrium semi-axes were obtained, the mass was then
increased slightly (≈ 0.001<BE), and the new equilibrium lengths calculated—this process
was repeated until the desired mass was obtained. Shown in the left panel of Figure 3.10 are
the equilibrium axes lengths obtained.

The root solver was temperamental. Because, there exists at least two strictly positive
equilibrium solutions with fluid streaming—the root solver jumped between these solutions,
occasionally converging to unphysical (negative) roots for the axes lengths. A strict thesis
deadline prevented full investigation of this behaviour. Shown in the right panels of Figure
3.10 are the other two physical equilibrium solutions found. The right panels of Figure 3.10
additionally show the unreliable results for masses below 0.1<BE where the root finder has
discontinuities in the curves. The 0.1<BE solutions found appear reliable, it was confirmed
these equilibria were real through substituting the values into the full EoM (Equations 2.86
– 2.90), where it was checked that these solutions remained static unless perturbed.

The right panel of Figure 3.10 shows that the smaller equilibria solution set appears not
to depend significantly on the choice of U. This behaviour was investigated and is shown in
Figure 3.11 where it is seen these axis lengths do not vary much over the range of U values.
Equilibrium solutions for sample values of U were calculated, represented by the points on
the plot; the curves are interpolated. The smaller solutions appear to contain an approximate
2− 1 axis ratio, 201 ≈ 02 ≈ 03. This ratio is oddly suggestive of the 2− 1 equilibria solutions
of the Roche ellipsoids near the Roche density when U = 0 (See Figure 3.4)—this possible
connection will be investigated in future work.

Interestingly to note is that highly distorted clouds, shown on the left of Figure 3.10, have
02, the in-plane orbital axis orthogonal to the tidal force, as the longest axis; this is different
from the smaller equilibria, which is consistent with the finding of Chandrasekhar presented
in Section 3.2, where 01, the axis directed towards the black hole is the longest. It is thought
the large 02 axis length could be a result of the cancelling of the tidal force by the centrifugal
force (Section 2.2.5) which creates the asymmetry in Equations 3.4 and 3.5 and leads to the
significant deviation from sphericity.
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Figure 3.10: The equilibrium axes lengths for a Bonnor-Ebert Spheres for varying mass, with
U = −0.1 (top panels), and U = −0.5 (bottom panels). Two plots (left and right panels) are shown
for each of the U values as two unique solutions were found in each case. The lines represent
the equilibrium solutions. The values near < = 0 have been plotted to show the instability of
solutions with masses below 0.1<BE.
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Figure 3.11: Equilibrium axis lengths for Bonnor-Ebert Spheres with < = 0.1<BE and varying
U values. The solid and dashed lines represent the two different physical equilibria solution sets
found by the root solver.
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3.3.2 Violation of the Roche limit

The impact of fluid streaming on the stability and equilibrium configurations of pressure-
bound self-gravitating Bonnor-Ebert spheres with densities slightly below the Roche density
were investigated. The two equilibria solutions for a cloud with mass (< = 0.1<BE) were
obtained as specified in Section 3.3.1. The evolution of these clouds was then subject to
a temporary increase in external pressure, as in the preceding sections. The results are
presented in Figure 3.12. The compactor equilibria solution oscillates stably. Additionally,
the densities oscillate even further below the Roche density, violating the criterion, even more
severely, than the initial equilibrium.

As the clouds oscillate, in addition to the size of the smaller equilibria clouds not varying
significantly with a change in U, suggests the internal streaming may have a more dynamic
effect on the stability of the clouds—not an initial effect on the geometry. This could similar
to the epicyclic motion in disks. As a result of this, and the approximate axis ratio of a Roche
ellipsoid, future work will investigate the effect of the streaming velocity on the evolution of
Roche ellipsoids. Additionally, the observed stability that the counterrotating fluid provides
to the smaller equilibria solutions suggests rotation has a significant effect of the stability of
the clouds. After a more thorough investigation of this effect, if this rotation is found to play
a substantial role, then a model allowing for fluid streaming in three dimensions (opposed
to the restricted two dimensional in-plane rotation of this model) will be formulated and the
effects characterised.

The clouds with larger axis lengths, as shown in Figure 3.11, collapse as a result of the
perturbation. This is suggestive of the unstable equilibrium axis length which for varying
mass values is highly gravitationally unstable. This is believed to be consistent with the two
equilibrium radii for quasi-spherical Bonnor-Ebert Spheres where one radius is stable, and
the other is an unstable equilibrium point. This instability is additionally physically motivated
as the 02 axis is at least an order of magnitude larger than the other axes and hence is widely
distorted from a sphere - the distortion is easily seen in the bottom panels of Figure 3.12.

An investigation into the equilibrium solutions and stability of differing density clouds,
with a wider range of U values (including the U = 0, −1 limits), and in the presence of
stronger tides is left for future work.
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Figure 3.12: Evolution of< = 0.1<BE Bonnor-Ebert Spheres with internal streaming and initially
violating the Roche density, d < dRoche. Left: U = −0.1. Right: U = −0.5. Top two rows: The
smaller equilibrium axis set from Figure 3.10 with the top panels displaying the axis evolution
and the bottom panels displaying the density compared to the Roche Density (Shaded region).
Bottom two rows: The same as above except using the larger equilibrium set values. The vertical
line indicates the time of perturbation and the dashed bottom black line represents the density
equivalent to the limit as < → 0.



4
Discussion and conclusion

This research wasmotivated by the emerging evidence of lowmass star formationwith several
parsecs of the Galactic centre. A semi-analytic approach was undertaken to model the evo-
lution of an isothermal compressible tri-axial ellipsoid characterising a Bonnor-Ebert sphere
in the presence of tides; physically corresponding to self-gravitating gas clouds embedded in
a high pressure medium under the influence of a black hole, such as at the Galactic centre.
The derivation of the equations of motion for the cloud with an approximation of constant
spatial density, but with a linear velocity field consistent with the cloud’s figure, and allowing
internal streaming of fluid were presented. The accompanying tensor virial theorem integrals
were evaluated to obtain the 2nd order coupled ODES for the evolution of the semi-axes,
orientation, and velocity field. The results are as follows:

1. The model reproduces expected behaviour of Bonnor-Ebert spheres—where perturba-
tions led, to oscillations, collapse, or expansion as predicted.

2. The reproduction of Chandrasekhar’s results regarding the equilibrium configurations
of ellipsoids subject to tidal fields, and the confirmation of stability to the second-
harmonic oscillation criterion. Both which provide validation and confidence for the
model and approach.

3. The extension of Chandrasekhar’s equilibrium configuration, whereby the introduction
of the new elements of compressibility and external pressure allowed for axis ratios
and densities to be obtained as a function of Bonnor-Ebert mass—obtaining a unique
physical mass-size-shape relationship for a given tidal strength, where increasing the
mass results in greater stability.

4. Two new classes of equilibrium solutions with internal streaming were discovered,
showing rotation has a significant effect on stability. One class, characterised by
02 � 01, 03 proved to be unstable. The other class was stable and more compacted,
with 201 ≈ 02 ≈ 03. The low masses had d < dRoche, and merit further investigation.
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The violation of the Roche limit for stable low (< = 0.1<BE) mass Bonnor-Ebert spheres
with internal fluid streaming occurs in the presence of moderate tides dRoche ∼ 1.15?ext/22

B

Applying this to the central few parsecs of the galaxy, adopting an external pressure of
∼ 1.5 × 109 K cm−3, and a cloud sound speed of 2B ∼ 0.6 km s−1 (cloud temperature= 100 K),
implies a Bonnor-Ebert mass of ∼ 1.5 M�. Additionally it leads to a characteristic length
of 2BT ∼ 0.0084 pc = 1732 AU. Which applied to Sgr A* yields a distance to the Roche
limit of 2.5 pc. This is too large to be immediately relevant to the emerging evidence for star
formation at 0.1–1 pc, but it is likely that these solutions exist for stronger tides (larger dt or
dRoche), and this is an avenue for future research.

While the results do not yet solve the disparity between observation of stable dense gas
clouds in the Galactic centre and theory it is, in the author’s opinion, that the solution lies in
a more thorough analysis of effect of rotation. It is evident there was significant numerical
problems hindering a complete analysis on the effects rotation has on the stability of clouds.
In addition, a better characterisation of the strength of the pressure in the galactic centre,
such as the effect of turbulence in the clouds, is thought to aid stability and help explain the
observations.

The main limitations in the model are the approximation of constant density and the
lack of substructure information as a result of the virial technique. While the CNR shows
‘clumpiness’ in it’s structure and clouds cores are known to be centrally concentrated the
approximation of constant density only yields weaker self-gravity. The effect is negligible
in the results presented in the latter section of this work—models applicable to the clouds in
the Galactic centre—where the choice of < = 0.1<BE creates clouds where the contribution
from self-gravity is small compared to the other competing forces. Additionally, the model
presented describes a monolithic evolution of a cloud. This is sufficient for the investigation
undertaken in this work as fluctuations on the smaller scale are arguable less important in
maintaining the tidal stability of the clouds with respect to the black hole than the competition
between tides and external pressure.

There are several future prospects for this work which could not be initially carried
out in this work. Firstly, a more robust root finding method needs to be developed and
applied to low mass clouds. While the single-dimensional roots are quickly and accurately
obtained through an implementation based on Muller’s method [70] the multi-dimensional
roots pose a significant problem. The current implementation uses algorithms such as
hybr—a modified Powell method [71], and Broyden [72] methods as the back-end to find the
roots. Future work aims to implement the equations in a numerically simpler form, with
higher numerical resolution, aided by non-restrictive time-restrains to obtain roots for varying
streaming velocities. Which, in addition to a broader range of streaming velocities, will allow
for a wider exploration of the equilibrium and stability effects internal streaming can have
on the stability of clouds. This will allow for analysis of stronger tidal fields, and further
possible violation of the Roche limit for varying cloud masses. A more general description
of the cloud’s dynamics will be derived, where the internal fluid and figure orientation can
vary in all three dimensions with respect to the black hole. Work will be continued into
the effects of dynamic processes on the cloud, i.e. time-varying tidal fields resulting from
elliptic orbits, and varying external pressures which can model its evolution of dynamic
effects e.g. turbulence inside the CNR. This will allow for more comprehensive analysis into
cloud collapse around Sgr A* and hence star formation in the centre of galaxies.



A
Inertia tensor derivation

The left-hand-side of the tensor virial theorem (Equation 2.4) is

¤H8 9 = 3

3C

∫
+
dE8G 9 3+. (A.1)

Substituting the relations from Equations 2.11 and 2.26–2.28 for G 9 and E8 in Equation A.1
yields the five components:
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where the terms under the integral sign with b8b 9 , 8 ≠ 9 have been suppressed as they will
integrate to zero.

Moving d outside the integral, integrating, and simplifying yields:
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Taking the temporal derivative yields Equations 2.34 – 2.37.



B
Numerical integrator error comparison

A comparison of the computational time relative to error thresholds of the SunDials CVODE
numerical integrator [used in this work] compared to other available numerical integrators is
provided by the authors of the ODES package at https://scikits-odes.readthedocs.io/en/latest/
solvers.html#performance-of-the-solvers, where it is shown SunDials is the fastest solver at
all error tolerances.
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Figure B.1: Computation time of simulations for varying specified error thresholds for several
cases with differing tidal strengths. The simulation times are represented by + symbols with
the curve being extrapolated from the data points. A value of 10−16 represents approximately
numerical precision.

https://scikits-odes.readthedocs.io/en/latest/solvers.html#performance-of-the-solvers
https://scikits-odes.readthedocs.io/en/latest/solvers.html#performance-of-the-solvers
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Figure B.2: Comparison of density values for varying error tolerances for tidal strengths of
(clockwise from top right) d/dt = 5, 10, 25, 10000. In the legend 4−G represents a specified
relative and absolute error threshold of 10−G . The value of 10−15 represents the smallest calculable
error, choosing a smaller value is in the regime of numerical precision. Typical density values
are of order unity and hence choosing a error of 10−12 yields no significant error in calculations.



C
List of software applications and packages

This thesis used the following web applications:

NASA’s Astrophysics Data System Bibliographic Services - A Digital Library portal for re-
searchers in Astronomy and Physics. https://ui.adsabs.harvard.edu.

This results of this thesiswere calculated using the Python programming language (Python
Software Foundation, https://www.python.org) with the addition of the following software
packages:

attrs [73] - Classes without boilerplate.

Cython [74] - An optimising static compiler for both the Python programming language
and the extended Cython programming language

Matplotlib [75] - A Python 2D plotting library.

Mpmath [76] - A Python library for real and complex floating-point arithmetic.

NumPy [77,78] - A scientific computing package.

ODES [68] - A high level interface to ODE and DAE solvers, provided through scikits.

Scipy [79,80] -APython-based ecosystemof open-source software formathematics, science,
and engineering.

SunDials [67] - A suite of nonlinear and differential/algebraic equation solvers.

https://ui.adsabs.harvard.edu
https://www.python.org
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