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ABSTRACT 

 

The search for pharmaceutically interesting compounds using computational methods is 

the core idea in chemoinformatics. With the advent of combinatorial synthesis and high-

throughput screening (HTS), researchers and drug industries are currently able to screen 

millions of compounds each day. However, improvements in screening capabilities have 

failed to yield a proportionate increase in novel chemotypes. Given the magnitude of 

compounds in one of the most popular chemistry databases, PubChem, it is irrational to 

experimentally screen all compounds for a potential target.  

 

This thesis aims to study the property space occupied by therapeutic compounds of 

economic importance obtained from public datasets, using chemoinformatics tools and 

computational technologies. 

 

With this objective in mind, a comprehensive review of current chemoinformatics 

research, with a particular emphasis on drug discovery was carried out. In addition, the 

most commonly used, freely available small molecule databases and algorithms for small 

molecule analysis were also reviewed. Further, recent developments in computational 

library design techniques were summarized in a separate review article.  

 

For web-based analysis and visualization of small molecules, I have developed the 

chemoinformatics analysis module for the Customary Medicinal Knowledgebase (CMKb; 

http://www.biolinfo.org/cmkb) which has served as a prototype to integrate the use of 

medicinal plant among Australian Aboriginals with bioactives, for identifying potential 

lead compounds.  

 

In order to examine the similarity of current drug molecules with human metabolites and 

toxics, a preliminary comparative study based on several computed physicochemical 

properties and functional groups was carried out. We established that searching against 

complete datasets was comparable to results obtained from clustered data. We then used a 

multi-criteria approach to analyse physicochemical properties, scaffold architecture and 

fragment occurrence among large public datasets of biological interest viz. drugs, 

metabolites, toxics, natural products, lead compounds and the ChEMBL dataset. Fragments 

are often dependent on each other and therefore, fragment co-occurrences were further 

assessed by association analysis. Going beyond the general datasets, a nematode-specific 



 

xv 

anthelmintic dataset was also analysed. Machine learning methods were used to screen 

potential anthelmintic compounds from public collections and novel anthelmintics have 

been identified. 

 

From our preliminary analysis, it was established that although the physicochemical 

property space occupied by the drugs, human metabolites and toxics was distinct, present-

day drugs are more akin to toxic compounds than to metabolites. This result was in 

accordance with high attrition rates in drug discovery projects. Furthermore, we concluded 

that empirical rules such as Lipinski’s “rule of five” can be supplemented to include 

toxicity information. Following preliminary study on physicochemical properties, we 

corroborated our earlier finding that metabolites are least similar to current day drugs in 

our subsequent comprehensive analysis. However, in scaffold analysis we found that over 

42.0% of the non-redundant metabolite scaffolds are represented among drugs which 

suggest that drugs and metabolites largely differ in side chains and linkers but vastly share 

the scaffold space. Additionally, a robust statistical technique known as association 

analysis was explored for the first time in chemoinformatics to carry out efficient mining 

and fragment co-occurrence analysis.  



 

xvi 



 

 1

 Chapter 1: Introduction and literature survey 

1.1 Overview 

The drug discovery process is time consuming and an expensive endeavour. Moreover it is 

tedious and failure at any stage of development is a strong possibility. The total cost 

estimated to bring a drug to the market is estimated to be between $500 million and $1.2 

billion dollars [1]. Traditionally, drugs were discovered by synthesizing compounds in a 

multi-step process, followed by screening against a number of biological targets in vitro 

and in vivo. Pharmacokinetic properties, toxicity, metabolism and efficacy were further 

accessed for promising candidates obtained from the screening experiments. Given the 

significant advances in genomics, proteomics, computational chemistry and virtual 

screening (VS), in silico drug design can help speed up some of the rate limiting steps in 

the traditional drug discovery pipeline. Briefly, in silico drug design refers to the use of 

chemical information to build computational models that can make predictions and suggest 

hypothesis which ultimately advance our knowledge of medicines and therapeutics. In 

silico methods can help in identifying drug targets, analysing their structure for possible 

binding sites, designing and screening virtual libraries, checking lead/drug-likeness, 

docking selected ligands to their respective targets, accessing binding affinities and further 

optimizing molecules for enhancing efficacy and reducing toxicity. 

 

Following on from the significant advancements in combinatorial synthesis (parallel 

synthesis of molecules) and high-throughput screening (HTS) techniques, pharmaceutical 

industries are now able to synthesize and assay a vast number of compounds per target per 

year. Nevertheless, an exhaustive search of the biologically relevant chemical space, which 

is estimated to be the order of 1060, is not feasible by traditional methods [2]. In order to 

consider this vast chemical space for screening, it is essential to deploy computational 

resources and develop methods that can eliminate unwanted or redundant compounds early 

in the screening process. Consequently, drug-likeness and related concepts are being 

explored in detail since mid 1990’s. However, these efforts and increasing screening 

capabilities have not yielded a proportionate increase in novel chemotypes [3]. In addition, 

it is becoming increasingly clear that too many promising compounds are eliminated 

during clinical testing due to various reasons, with the recent report that drugs often fail 

due to toxicity [4].  
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In this thesis, we study the property space occupied by freely available biologically 

relevant compound datasets, especially drugs, human metabolites, natural products and 

toxic compounds. In addition, some of the computational chemistry techniques applied in 

the early stages of drug discovery and their application to discover novel anthelmintic 

compounds is further investigated. Improved and faster methods to analyse large amounts 

of chemical data are suggested and more importantly, several novel potential anthelmintic 

compounds have been identified.  

 

1.2 Bioinformatics, chemoinformatics and drug discovery 

Modern drug design methodology has enormously benefited from the computational 

resources available today. Bioinformatics is defined as the application of computational 

techniques for the analysis of biological or sequence data obtained from experiments, 

modeling and database searching [5]. Until recently, drug development was restricted to a 

small fraction of possible targets since most of the human genes were unknown. Usually 

pharmaceutical companies follow those targets that are identified and well studied. 

Bioinformatics, in the drug design context, aims to facilitate the identification and 

validation of novel drug targets. Chemoinformatics, on the other hand, deals with structural 

information of small molecules and is defined as the use of computers and information 

techniques, applied in the field of chemistry with the intended purpose of guiding drug 

discovery and development [6]. It is an evolving area of research and has been frequently 

reviewed by number of authors in the past [6, 7] and in recent times [8, 9] . A good critique 

on the origin of chemoinformatics was given by Hann and Green [10]. Recently, a new 

term “Bio-Chemo-informatics” comprising both bioinformatics and chemoinformatics has 

emerged in the literature [11, 12]. It has been used to describe the research efforts on 

meeting the emerging need for the integration of bioinformatics and chemoinformatics [11, 

12]. Due to the applied nature of the field, chemoinformatics has found many applications 

in drug discovery and development. Drug discovery generally follows a set of common 

stages as shown in Figure 1.1.  

 

The first stage is target identification, usually by analysing the lifecycle of pathogen to 

indentify the critical points of intervention followed by target validation. Druggability and 

similarity to human proteins is also analysed with the help of various bioinformatics 

techniques. A validated target is screened against millions of compounds in parallel in 

HTS assays and the successful results of these screens are known as hits. A number of hits 

are followed up as leads to determine whether any of these can be converted to candidates 
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with further optimization of absorption, distribution, metabolism, excretion, toxicity 

(ADMETox) properties and biological activity. Once appropriate candidates are 

indentified, they proceed further along the pipeline for preclinical development. 

Applications of chemoinformatics in drug design include molecular similarity and 

diversity analyses, data mining, library generation, lead screening and optimization, 

exploration of quantitative structure activity relationships (QSAR), and the analysis of 

drug-like features. All these studies require chemicals to be represented in a suitable 

format that can be recognized by computers. These representations range from one-

dimensional (1D) line notations to three-dimensional (3D) molecular models which result 

in various descriptors. The following section describes molecular similarity and diversity 

analyses as a major application of chemoinformatics in drug discovery. 
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Figure 1.1: Steps in a typical drug design program. Identification and validation of 

biological target is followed by identification and optimization of leads. After testing the 

potential drug in the laboratory, it is approved by FDA to release into the market. The 

whole process on an average takes around 15 years and $ 1billion of investment. 

 

 

1.2.1 Molecular similarity and diversity analyses 

Molecular similarity and diversity are the core concepts in chemoinformatics and have 

found particular favour in pharmaceutical industry. According to the “similar-structure, 

similar-property principle” which is often known as “similarity property principle” 

structurally similar compounds tend to have similar properties – both physicochemical and 

functional, more often than structurally dissimilar compounds [13, 14]. In large part, this is 

true however it can break down in certain cases [15]. The opioid ligands shown in Figure 

1.2 are the good examples where “similarity property principle” breaks down: 
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Figure 1.2: Examples to show compounds with the same biological function but 

different scaffolds. The Tanimoto similarity of methadone is quite low to typical opioid 

receptor agonist such as morphine and codeine; however, it performs the same function as 

others.  

 

Morphine, codeine and heroin all share the same basic scaffold and show similar 

bioactivity, i.e. opioid receptor agonist. Methadone also binds to the opioid receptor and 

acts as an opioid receptor agonist; however, it does not share any structural resemblance to 

other ligand members of the typical opioid receptor agonist family.  

 

Molecular similarity provides a simple but elegant method for VS and lies at the core of all 

the clustering methods available [16]. On the other hand, molecular diversity explores the 

structural coverage of a set of molecules in the chemical space and underlies many 

approaches for novel compound selection and design of combinatorial libraries [16]. 

Molecular similarity and diversity are complementary concepts and the correct choice of 

similarity/diversity measures can help us place molecules at an optimal location in 

chemical space, in order to maximize diversity and minimize redundancy. Measuring 

molecular similarity and diversity involve, in general, three main components: structural 

descriptors that represent chemical compounds in a way that they can easily be compared, 

molecular coefficients that provide mathematical function to calculate similarity or 

diversity and weighting schemes that assign the relative importance to different structural 



 

5 

descriptors. While there are few reports on weighting schemes [17, 18] and their effects on 

the utility of molecular coefficients, much interest has been shown in the type of 

descriptors [16, 19, 20] and coefficients [21, 22] used for similarity or diversity analyses. 

Various descriptors and their uses in chemoinformatics are described below. 

 

1.2.2 Descriptors used in chemoinformatics  

Descriptors are used to encode a variety of structural features in a molecule. A descriptor 

places two molecules in a chemical space at a distance that is proportional to their distance 

in bioactivity or some other property under study as shown in Figure 1.3.  

Descriptor
1

Descriptor2

Descriptor n

Descriptor1 (i) 

Descriptor n (i) 

Des
cr

ipt
or 2 

(i)
 

Mi(descriptor1(i), …descriptor n (i))

 

Figure 1.3: Representation of a molecule M at position i in N dimensional descriptor 

space. The molecules that lie close to each other in the descriptor space are likely to 

exhibit similar biological properties.  

 

Descriptors can be determined using structure (constitution, configuration and 

conformations) or properties (physical, chemical or biological) of the molecule [16]. This 

section deals with the recent developments in the representation of a molecule in chemical 

space and the generation of molecular descriptors. A large number of descriptors have 

been developed that can be used in similarity calculations. Figure 1.4 shows three 

representations of the same molecule. The chemical formula (1D representation) conveys 

maximum information about the chemical constituents of the molecule while two-dimensional 

(2D) representations add knowledge about the molecular connectivity. 3D representations, on 

the other hand, deal with the conformation, without losing any information present in 1D 

descriptors. Nonetheless, it can be argued that the chemical composition is most easily seen in 

1D representation than in 2D or 3D representations. The colour-coded isodensity surface (3D 
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representation) contains little, if any, information about the chemical composition. However, 

3D representations contain by far the most information about the ability of the molecule to 

interact with biological target. 

C11H12N2O

1D
Number of heteroatoms

Molecular weight

Line notations

Number of bonds

2D

3D

Number of rotatable bonds

Molecular connectivity index

Log P

Solvent accessible surface area

van der Waals volume

3D pharmacophores

 

Figure 1.4: Sample molecular descriptors for vasicine. 1D descriptors are the simplest 

and mostly refer to whole molecule properties like molecular weight, while 2D descriptors 

refer to topological characteristics of the molecule.  3D descriptors on the other hand 

encode information regarding ligand-receptor binding. 

 

Several software packages are available to calculate a wide variety of descriptors. 

Examples include the Chemistry Development Kit [23], JoELib [24], PowerMV [25], 

Pipeline Pilot [26], Molecular Operating Environment [27], Bioclipse [28] and CODESSA 

[29]. Owing to the large number of descriptors available, this discussion is confined only 

to descriptors that are relevant to the drug discovery paradigm. Classically, descriptors are 

categorized into three groups and vary in complexity and encoded information. 

 

1.2.2.1 1D descriptors 

1D property descriptors are the simplest descriptors and include physicochemical 

properties and the numerical count of features such as rings systems, hydrogen bond 

donors and hydrogen bond acceptors. Hydrophobicity is measured in terms of log P, 

defined as the logarithm of partition coefficient between n-octanol and water. Since no 

geometrical information is contained in 1D property descriptors, they are easily calculated 

from molecular structure alone and hence are often employed to predict physical 

properties. These descriptors are also called whole molecule descriptors because a single 
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value is derived from them (e.g. molecular weight, log P, number of heavy atoms), which 

describes the property of whole molecule.  

 

1.2.2.1.1 Representing molecules in 1D 

 
1D line notations are quite popular representation where a molecule is represented as a 

linear string and nodes represent atoms. Molecular formula and linear notations such as 

Simplified Molecular Input Line Entry Specification (SMILES) are common examples of 

1D line notations. 

 

 Chemical Formula  

The most common way to represent the chemical structure is a chemical formula. It is 

not only compact and easy to interpret but also conveys chemical constituents and 

number of atoms in a compound. It, however, lacks information regarding connectivity, 

stereochemical configuration and 3D coordinates which are essential for advanced 

studies. If a molecule contains more than one atom of a particular element, the number 

is represented as a subscript following the chemical symbol in the formula. The 

chemical formula for vasicine (shown in Figure 1.4) is C11H10N2O. This gives a clear 

picture of atom constituents and molecular mass of the molecule. 

 

 1D Line Notations 

Linear notation represents complete constitution and connectivity of the chemical 

compound as linear sequence of characters. A number of line notations have been 

introduced over the years and were popular during 1960 to early 70's. The most 

common are Wiswesser Line Notation [30], Representation of Organic Structures 

Description Arranged Linearly [31], SMILES [32] and SYBYL Line Notation [33]. 

Among these 1D notations, SMILES has found widespread use in representation and 

exchange of chemical information over the internet. Nevertheless, one major problem 

recognized early in SMILES representation was the lack of unique encoding because 

the same molecule can be represented by different SMILES codes. This issue has 

largely been resolved by using the Morgan algorithm, which was proposed in 1965 to 

provide canonical ordering of atoms in a molecule. Additionally, since its origin 

SMILES has been subjected to various modifications (SMARTS, SMIRKS) [34]. 
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Beside these, International Union of Pure and Applied Chemistry (IUPAC) 

nomenclature and the recently introduced International Chemical Identifier (InChI) can 

also be considered as 1D Line notations. Although not widely accepted, InChI tries to 

overcome the limitations in IUPAC nomenclature but is more difficult to interpret. 

 

1.2.2.2 2D descriptors 

Descriptors derived from the knowledge of molecular topology are called 2D descriptors 

such as topological indexes (molecular connectivity index,  shape index), 2D fingerprints 

(dictionary-based and hash-based) and 2D fragment descriptors (atom pairs, augmented 

atoms and atom sequence). Several of these descriptors are based on the representation of a 

molecular structure as a graph. 

 

1.2.2.2.1 Representing molecules in 2D 

The most commonly used representations of compounds in 2D format are listed below: 

 

 Graphs 

The most acceptable way of representing chemical structure is by molecular graphs or 

structure diagrams. Similar to line notations, chemical graphs are also hydrogen-

suppressed notations. The molecular graph is a collection of nodes representing atoms 

connected by edges, which are bonds, linking the atoms. Despite its popularity, there 

are problems related to this method and the most evident problem is graph 

isomorphism. Two graphs G1 and G1′ are said to be isomorphic if they contain same 

number of graph vertices (nodes) and are connected in the same manner, which could 

lead to two different chemical structures being isomorphic. Fortunately, there are well 

established algorithms that can be used to establish whether two molecular graphs are 

isomorphic or not. Further matrices, can be used to extend molecular graphs to include 

connectivity and chemical bond information.  

 

 Matrix 

There are two common ways to encode a molecule from a graph to a machine readable 

matrix format: graph adjacency or a bond matrix and a connection table. It is 

conventional to assume that the unlabeled nodes are carbon atoms, and hydrogens are 

added based on valence state of the atoms when computing an adjacency or bond 

matrix of the molecule. Such a matrix M is composed of one row and column for each 
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atom with each element M[ij] equal to the bond order between the atoms i and j of the 

molecule or zero if the atoms are not connected (Figure 1.5).  
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Figure 1.5. Representing a. a labelled graph as b. a bond (adjacency) matrix. 

Connected nodes are represented as 1 while nodes with no connection are represented as 0.  
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Figure 1.6. Connection table for the chemical compound, aspirin. The connection table 

is divided into two blocks: atom block and bond block. The atom block comprises all the 

information regarding atoms, including 3D coordinates while the bond block contains 
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information on all the bonds present in the molecule. The first row of the connection table 

contains the total number of atoms in a molecule followed by total number of bonds.  

 

The other way of representing a molecule in matrix form is a connection table, 

indexing all the atoms and the bonds which exist between them. Figure 1.6 illustrates 

the connection table for the aspirin molecule.  

 

The first three columns in the connection table specify the X, Y, Z coordinates of the 

atoms. The next few column stores the atom symbols, formal charge, bond type, 

chirality and other atom or bond properties like isotope, charge, stereocode etc. Despite 

the effort to standardize the format of connection tables there are still various format 

available. Most commonly used connection table format is MDL a proprietary file 

format developed by MDL. There are many flavours available: Molfiles, Rgfiles, 

Rxnfiles, SDfiles , RDfiles and XDfiles.  

 

 Topological indices (TI) descriptors 

TIs are numerical quantities based on certain characteristics of the molecular graph and 

encode for molecular properties, such as ring structure, the number of atoms, 

branching, heteroatom content and bond order. They are easy to calculate and hence 

have found widespread use among researchers. Many indices have been reported in the 

literature. TIs are subdivided into three generations. The first generation TIs are the 

simplest and are based on integer graph properties like topological distances, degree of 

branching and overall shape. The most representative of this class is the Wiener index 

W and the centric indices of Balaban, B and C. Second generation indices, such as 

molecular connectivity indices are real numbers, derived from the integer graph 

properties. The most successful indices of this class are molecular connectivity indices, 

Kier and Hall indices [35] and  shape indices [36]. Third generation indices are real 

value numbers derived from graph properties. They were recently introduced and offer 

a wide range of selection possibilities. Estrada and Uriarte have published an excellent 

review on the role of TI in drug discovery [37]. 

 

 2D fingerprint descriptors 

Perhaps the most commonly used descriptors are 2D fingerprints. They encode the 

presence or absence of substructural fragments within a molecule as a binary vector. 

There are two types of fingerprints described in the literature: dictionary-based and 
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hash-based. The dictionary-based fingerprints consist of a binary vector with those bits 

set 1 (ON) that correspond to the substructural fragment found in the fragment 

dictionary. The fragments that are present in the dictionary should be chosen carefully 

as dictionary-based fingerprints are dataset-dependent. Hence, a limitation of the 

dictionary-based approach is that, every time a dataset changes, a new dictionary has to 

be created. Molecular complexity [38] is yet another complication that can introduce 

bias in fingerprint comparisons. More complex structures tend to have more bits which 

are set to 1 (ON) in the bit string than simple or topologically less complex structures.  

A recent paper by Wang and Bajorath [39], discusses a new approach, called bit 

silencing, for selecting important bits from a fingerprint based on the structural 

features. Examples of dictionary-based fingerprints are Barnard Chemical Information 

(BCI) fingerprints [40] and the Molecular Access System (MACCS) structural keys. 

 

Hash-based fingerprints eliminate the reliance on a pre-defined list of substructural 

fragments and thus avoid the shortcomings of dictionary-based fingerprints. Patterns 

are generated from the molecule itself by enumerating all the paths in the molecule. 

The bits in different patterns may overlap, due to finite length of the bit string and the 

large number of possible patterns generated by the hashing function. The most 

commonly used hash-based fingerprints are Daylight [34] and UNITY fingerprints 

[41]. 

 

 2D fragment descriptors 

The next group of descriptors are fragment descriptors. Examples of fragments include 

atom pairs, augmented atoms, atom sequences, bond sequences and various ring 

fragments. Atom pairs consist of all unique bonded atom pairs in a molecule. 

Augmented atoms consist of atoms and theirs neighbours, while atoms sequences 

consist of atom pairs along with their bond information. Ring fragments, on the other 

hand, include rings along with the atoms surrounding the rings. Recently, Pipeline Pilot 

[26] circular substructure fingerprints have proven useful, and provide fingerprints with 

extended connectivity (ECFP) and functional connectivity (FCFP). An extensive 

review on Pipeline Pilot fingerprints has been recently published [42]. 

 
1.2.2.3 3D descriptors 

The physical, biochemical and the molecular recognition properties of a compound often 

depends on the conformations that it can adopt hence, it is quite informative to compare 
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molecules using their 3D characteristics. Since, 3D descriptors require conformational 

properties to be considered, they are more computationally demanding than 1D or 2D 

descriptors. The issues of conformation generation, sampling and refinement have 

hindered the use of 3D descriptors in VS. There are two generations of 3D descriptors: the 

traditional alignment-dependent, descriptors generated from Comparative Molecular Field 

Analysis (CoMFA) or Comparative Molecular Similarity Indices Analysis (CoMSIA) 

approach and the alignment-independent descriptors such as Grid-Independent Descriptors 

(GRIND) and VolSurf descriptors.  

 

1.2.2.3.1 Alignment-dependent descriptors 

 CoMFA  

The aim of the CoMFA [43] is to elucidate the correlation between biological activity 

and the Molecular Interaction Potentials (MIP) of a set of molecules with a common 

binding mode. The MIP contains the information regarding the interaction energies 

between the probes and the compound placed on a 3D grid. At each point on the grid, 

steric, electrostatic and hydrophobic field values are measured for each molecule by 

interaction with the probe atom. Collectively, all the above calculated fields are 

referred to as MIP, which contains a full set of information related to the interaction 

potential of a molecule. For comparing a series of molecules based on their MIP, it is 

important to align the molecules so that the same grid box can be used for all the 

compounds. Unfortunately, alignment is not a trivial task especially when molecules 

are structurally diverse. There are a number of techniques proposed for aligning diverse 

compounds with varied levels of similarity [44]. The quality of the alignment 

determines the quality of all further calculations. Therefore, the quality of alignment 

poses a major challenge in the use of alignment-dependent descriptors. Once the 

compounds are aligned, MIP can be calculated using a grid box which generally results 

in thousands of descriptors. Following the calculation of descriptors, multivariate 

techniques are used to analyse the data further.  

 

 CoMSIA 

The CoMSIA [45] is similar to CoMFA, where the molecular fields are expressed in 

terms of similarity indices between the compounds of interest calculated via a common 

probe atom. It is believed to be less affected by changes in molecular alignment. 

Compared to CoMFA, CoMSIA uses a different potential function called the Gaussian-

type function instead of Lennard-Jones and Coulombic function which provide 
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accurate information in grid points and easily interpretable contour maps. Furthermore, 

the CoMSIA method takes into account various properties that potentially contribute 

significantly to ligand binding such as steric, electrostatic, hydrophobic, hydrogen bond 

acceptor and hydrogen bond donors. Like CoMFA, leave-one-out and other cross-

validation procedures are used to validate the models developed by CoMSIA 

methodology.  

 

1.2.2.3.2 Alignment-independent descriptors 

Due to the limitation of the alignment step mentioned above, alignment-free descriptors 

were developed. The idea is to retain the MIP information as far as possible without the 

need for structural superimposition of the compounds under study. The simplest 

alignment-independent descriptor is the dipole moment. Another important descriptor of 

this class includes pharmacophoric fingerprints which makes use of the “lock and key” 

concept and relies on the internal distance of the molecule. A set of pharmacophoric 

features that have critical interaction with the receptor such as hydrophobic centres, 

hydrogen bond acceptors and hydrogen bond donors are calculated. Hundreds of 

combinations of two-point, three-point and four-point pharmacophores are computed. 

Two-point pharmacophores represent all the possible combinations of atom pairs in a 

molecule while three-point pharmacophores provide a clearer representation of the 

interatomic distances and their relative orientation, while four-point pharmacophores can 

distinguish between stereoisomers. Like 2D fingerprint descriptors, pharmacophore 

features present in the molecule are set to 1 otherwise 0 and can successfully be used for 

database searching. 

 

 VolSurf descriptors  

VolSurf [46] is a procedure to derive simple relevant physicochemical descriptors from 

3D molecular field maps. The molecular descriptors obtained contain information 

regarding size and shape of hydrophilic and hydrophobic regions, as well as the 

balance between them. Critical packing, amphiphilic moment, hydrogen bonding 

polarisability and energy minima distances are other useful descriptors. VolSurf 

descriptors are hardly influenced by conformational sampling, fast to calculate and 

independent of alignment of molecules. In order to calculate VolSurf descriptors, the 

MIP is first calculated with a probe using the program GRID, following which it is 

analysed to extract the relevant information required to compute the VolSurf 

descriptors.  
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 GRIND descriptor 

GRIND [47] descriptors  are another type of 3D alignment-independent descriptors 

designed to characterize ligand-receptor interactions [47]. They are obtained from a set 

of molecular interaction fields which are first simplified and the results are encoded in 

alignment-independent descriptors, using a particular type of autocorrelation 

transformation. The descriptors calculated can be used in a variety of chemometric 

analyses such as principal component analysis or partial least square analysis, and even 

the analysis of correlograms, colour-coded according to chemical groups or activity. 

Like other alignment-free descriptors, GRIND descriptors are unaffected by the 

position and orientation of molecules in the space. The calculation of GRIND 

descriptors involves three steps: (i) computing a set of MIF, (ii) filtering the MIF to 

extract the most relevant regions that can describe the receptor site and, (iii) encoding 

the extracted regions into GRIND variables. After calculating the MIF, probes 

generally used for the calculating the GRIND descriptors are the hydrophobic probe 

(DRY), the hydrogen bond donor amide nitrogen probe and (N1) and the hydrogen 

bond acceptor carbonyl oxygen probe (O). 

 

Many researchers have concluded that overall 2D descriptors perform better than 3D 

because they are conformation-independent and easy to calculate [48-50]. However, 

counterclaims have also been made by several others [51, 52]. A comparative study has 

shown that different type of descriptors have their own use and therefore, a choice must be 

made in individual cases [53].  

 

1.2.3 Descriptor selection (feature or variable selection) 

As the dimensionality of the data increases, the data becomes increasingly sparse in the 

space it occupies. This is referred to as the “curse of dimensionality” and can lead to 

problems for both supervised and unsupervised learning. Usually not all the descriptors 

contribute equally to explain the property of interest and some may even add noise to the 

model. Considering that so many descriptors are available, few important questions arise. 

Why and how should descriptors be selected for similarity or diversity analysis and QSAR 

studies? Are there are any descriptors which perform best for a particular kind of study? Is 

the performance of simple descriptors comparable to complex 3D descriptors? It is too 

computationally expensive to examine all descriptors; moreover, some descriptors or 

combinations of descriptors are redundant and thus can be set aside, with no or little 

information loss. A group of descriptors might work brilliantly for one target, but may be 
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poor choice for another target. It is therefore, essential to select a good subset of 

descriptors that are suitable to study the bioactivity of compounds. This requires a 

systematic exploration of the descriptor space in order to examine all combinations of the 

best descriptor subsets. Several subset solutions are possible and thus, a tool is required 

that could inspect all the possible solutions that determine the best possible solution subset. 

Ideally descriptors calculated should be free of correlation (r < 0.6) [54] proposed for 

further chemoinformatics analysis. For feature selection in unsupervised learning, learning 

algorithms aim to find a good subset of features that form high quality clusters.  

 

There are two main approaches to select of descriptors in a supervised learning context 

(Figure 1.7).  These are the wrapper-based methods and the filter-based methods. 
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Figure 1.7 Generic scheme for filter- and wrapper-based feature selection. Filter-

based methods are fast and easy to apply especially in case of large dataset whereas 

wrapper-based approaches require higher computational resources but are more accurate. 

 

1.2.3.1 Wrapper method 

The first method of feature selection is the wrapper approach [55]. It consists of using a 

classifier as a black box for selecting the best subset of features and uses cross-validation 
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to compare the error rate of the candidate subsets. In the wrapper approach, the result relies 

heavily on the search algorithm and on the assessment of the performance. Most often, the 

performance criterion is the error rate. Nevertheless, other criteria can be used. This may 

be the cost if a misclassification cost matrix is used. The area under the curve (AUC) can 

also be used, when we assess the classifier using different Receiver Operation 

Characteristic (ROC) curves. There are two types of search strategies that can be employed 

by wrapper approaches for feature selection − statistical and optimization.  

 

1.2.3.1.1 Statistical approaches 

The well known statistical algorithms used for descriptor selection are forward selection 

(FS) and backward elimination (BE). In the FS, at each step, the variable that really 

contributes to the discrimination between the groups is determined. The feature is added to 

the selection group if its contribution is significant. The process stops when there is no 

feature to add in the model or the required number of features is reached. BE algorithm, 

successively eliminates descriptors starting from the complete set of descriptors. The 

algorithm searches for the less relevant features and removes it, if the removal does not 

significantly reduce the discrimination between groups. The process stops when there is no 

variable to remove. Both these algorithms have a drawback of “nesting”. In the FS context, 

nesting refers to the fact that once a particular feature is added it cannot be removed later 

on even if the removal of the feature may improve the objective function. More 

sophisticated algorithms with a backtracking phase after addition of a feature have been 

introduced [56] to overcome nesting. The optimization algorithm avoids the nesting 

problem by introducing some degree of randomness into the search strategy.  

 

1.2.3.1.2 Optimization approaches 

Optimization methods can be divided into two broad classes − deterministic and stochastic. 

The best known examples of deterministic methods are the Broyden–Fletcher–Goldfarb–

Shanno (BFGS) algorithm [57] and the Nelder-Mead simplex algorithm [58]. Examples of 

stochastic methods include the genetic algorithm (GA) [59], the simulated annealing (SA) 

algorithm [60] and particle swarm optimization [61]. GA mimics the biological process of 

evolution and natural selection therefore, much of the vocabulary from evolution has been 

adopted for the use in the field of GA. Thus a chromosome in the feature selection context 

refers to a subset of descriptors associated with a fitness value. A population is defined as 

the collection of such chromosomes. A number of models (which can be linear or non-

linear models) are created randomly in the first generation, the best of which (as measured 
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by root mean square error of each model) are selected and interbred to create new 

generations. The genetic operators such as crossover and mutation are applied to generate 

new chromosomes with better features than the parent chromosomes. The objective 

function is optimized over the course of many generations. GA was first used for feature 

selection in QSAR by Rogers and Hopfinger [62]. Subsequently, GAs have been used in 

feature selection for QSAR with a number of mapping methods, such as Artificial Neural 

Network [63] and Random Forest [64].  

 

Another stochastic method for function optimization applied in QSAR is SA. It was 

introduced independently by Kirkpatrick et al. [60] in 1983 and Gelatt and Vecchi [65] in 

1985. The SA process is also inspired by nature. Annealing, in general, refers to the 

cooling of glass or metal; if the cooling is slow enough it results in ordered states and when 

the final temperature is reached the configuration of the atoms is at the most stable state, 

whereas rapid cooling produces states with low order. It should be noted that both SA and 

GA share the fundamental assumption that it is highly likely to find better solutions in the 

vicinity of optimal solutions, than by randomly searching the whole solution space. 

However, the key difference between SA and GA is that while SA creates new solutions 

by modifying only one solution, GA creates solutions by combining two different 

solutions. SA is a generalization of the Metropolis algorithm.  

 

In the Metropolis algorithm, each point s of the search space represents a state of some 

physical system with internal energy, E(s). The current state of the system is disturbed by 

iterative mutation s′ and the change in energy, called ΔE (ΔE = E(s) − E(s′)) is evaluated. 

For a minimization task, the change is accepted if ΔE is negative and in case it is positive, 

the new state is accepted with the probability equal to Boltzmann factor, exp (−ΔE/kT). 

Occasional acceptance of positive ΔE does not allow the algorithm to get stuck in a local 

minimum; therefore, the solutions obtained from SA are often of high quality. This step is 

repeated until the threshold criterion is reached, usually in terms of a predefined ΔE cut-

off. In SA, the temperature term is often added, so that SA consists of an outer temperature 

loop and an inner Metropolis algorithm. 

 

1.2.3.2 Filter method 

Although the wrapper approach may achieve better performance, it presents two main 

disadvantages: it requires more computational resources and is prone to overfitting. The 

second method of feature selection is the filter approach. It consists of selecting the best 
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subset of features, using an ad hoc criterion. Filter methods rank the subset of features 

independent of the classifier. As a result, feature selection needs to be carried out only 

once, and then different classifiers can be evaluated. For large datasets, filter approaches 

are more practical than wrapper approaches because they are much faster. However, the 

common disadvantage of filter methods is that most of the proposed techniques are 

univariate and thus cannot handle redundancies among features. In order to overcome this 

problem, a few multivariate techniques have also been proposed. There are many types of 

filter-based methods such as inter-descriptor correlation and ranking methods. 

 

1.2.3.2.1 Correlation-based filter methods  

With hundred of descriptors available, it is likely that many descriptors are inter-

correlated. Therefore, Pearson’s correlation coefficient may serve as a preliminary filter for 

discarding these descriptors. This can be done by measuring the association between pairs 

of descriptors and discarding the descriptors if their correlation coefficient exceeds a 

predefined threshold, rather than randomly discarding one of the descriptors [66]. 

However, if one of the descriptors from the pair is a topological descriptor, then the 

topological descriptor is preferentially retained while the other is discarded.  

 

1.2.3.2.2 Ranking-based filter methods 

Ranking methods are based on the association between descriptors and the target attribute. 

This association may be correlation-based ranking, based on a correlation coefficient or 

any other statistically relevant parameter. For correlation-based ranking, the correlation of 

each descriptor with the target attribute is calculated initially and then ranked according to 

the decreasing order of the correlation coefficient. Other methods attempt to rank features 

according to a different relevancy score such as the F-ratio [67]. 

 

1.2.4 Molecular coefficients in chemoinformatics  

The second main component required for similarity and diversity analysis or to compare 

two objects with a common set of attributes, are molecular coefficients. This section deals 

with those coefficients that are widely used in chemoinformatics. Some coefficients 

directly measure the similarity between the molecules and are termed as similarity 

coefficients; while others which measure the distance or dissimilarity are called distance 

coefficients. The similarity between two molecules can be judged from distance 

coefficients by subtracting the value from unity.  
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Table 1.1: Common molecular coefficients used in chemoinformatics analysis.  

 

Molecular Coefficient Formula Range Reference

Associative coefficients 

Tanimoto  

cba

c


 

0 to 1 [68] 

Size modified Tanimoto 
0,

3

1

3

2
Tc

p
Tc

p 



 

0 to 1 [69] 

Russel-Rao 

n

c
 

0 to 1 [70] 

Cosine/Ochiai 

ab

c
 

0 to 1 [71] 

Tversky 

cba

c

 
 

0 to 1 [34] 

Simpson  

 caba

a

 ,min
 

0 to 1 [72] 

Forbes 

ab

cn
 

0 to ∞ [73] 

Fossum   
ab

cn 25.0
 

0 to ∞ [34] 

Dice/Sorenson/ Czekanowski  

ba

c


2

 
0 to 1 [74] 

Correlation coefficients 

Dennis  

nab

abcd )()( 
 

0 to ∞ [75] 

Pearson  

))()()(( dcdbcaba

bcad




 
-1 to 1 [76] 

Yule 

bcad

bcad




 
-1 to 1 [77] 

Distance coefficients 

Euclidean distance  cba 2  0 to 1 [78] 

Soergel distance 

cba

cba


 2

 
0 to 1 [22] 

Hamming/Manhattan/City-block cba 2  0 to 1 [76] 

 



 

20 

Comprehensive reviews on molecular coefficients are available [22, 76], with several 

studies comparing the performance of the different molecular coefficients [77, 79, 80], 

which can be characterized into three groups. Association coefficients are mainly used for 

binary representation and their values vary in direct  proportion  to  the degree  of  

similarity  i.e. greater  similarity is indicated by higher values. Correlation coefficients 

measure the degree of correlation and range from -1 to +1 where -1 indicates that any 

change in one property would be accompanied by equal and opposite change in the other 

and vice versa. Distance coefficients measure the degree of dissimilarity between the 

objects and their values are inversely proportional to the degree of similarity, so that the 

higher the value, the lower the similarity. A fundamental difference between association 

and distance coefficients is that the latter takes the common absence of features as an 

attribute of similarity. In chemoinformatics, it has been argued that, as many of the 

descriptor features are absent in the majority of molecules, the use of distance coefficients 

should be avoided during similarity and diversity analysis [34]. Table 1.1 lists the most 

common molecular coefficients used for various chemoinformatics analyses.  

 

1.2.5 Comparison of drug-like and non drug-like compounds 

Many previous analyses have led to the widespread acceptance of concepts describing 

what makes a drug, to act as drug (drug-likeness) or a lead (lead-likeness) as well as what 

leads to a molecule not being a drug (non drug-likeness). More recently similarity to 

metabolites (metabolite-likeness) is increasingly being used as a drug design concept, to 

reduce attrition rates in drug discovery and development. Generally speaking, drug-like 

properties refer to the physicochemical, absorption, distribution, metabolism, excretion and 

toxicity properties of a molecule. Lacking drug-like properties often results in drug 

failures. A number of studies including simple counting schemes, shape analysis, statistical 

analysis and machine learning methods have been carried out, to characterize the 

properties of drug-like and non drug-like molecules  

 

1.2.5.1 Physicochemical properties analyses 

The pioneering work of Lipinski et al. [81], in recognizing and listing the important 

molecular descriptors that contribute to drug-likeness, is commendable. Lipinski’s rule of 

five (Ro5) describes a set of simple criteria for bioavailability of drugs. The rule was 

derived from the analysis of 2,245 drugs obtained from the World Drug Index database, at 

that time. The assumption was that since these compounds have entered human clinical 

trials, they must therefore possess many of the desirable characteristics of drugs. The rule 
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states that poor absorption and permeation is more likely if compounds have more than 5 

H-bond donors, 10 H-bond acceptors, a molecular weight of more than 500 and a logP 

value greater than 5. If a compound fails the Ro5 test, then there is a high probability that 

oral activity problems will occur. However, passing Ro5 is no guarantee that a compound 

is a drug. Since its publication, Ro5 has dominated drug design. The analysis carried out 

by Lesson and Davis [82] of the approved drugs released pre-Ro5 and post-Ro5 era gives 

an idea of the impact of Ro5 on drug discovery programmes. The publication of Ro5 

spurred enormous interest in new approaches to classify drugs from non-drug molecules. 

However, there are exceptions to Ro5 and these mostly belong to a small number of 

therapeutic classes such as antibiotics, antifungal, vitamins, cardiac glycosides, macrolides 

and cyclic peptides.  

 

Ghose et al. [83], extended Lipinski’s original work by characterizing 6,304 compounds 

(taken from the Comprehensive Medicinal Chemistry database) and seven different subsets 

belonging to different classes of drug molecules based on computed physicochemical 

properties such as logP, molar refractivity, molecular weight, and number of atoms. The 

authors further characterized the occurrence of functional groups and important 

substructures in these compounds. They were able to establish qualifying ranges which 

cover more than 80% of the compounds in the set. Ranges were established for logP (−0.4 

and 5.6), with an average value of 2.52, molecular weight (160 to 480), molecular 

refractivity (40 to 130) and for total number of atoms (20 to 70).  

 

Other studies have led to the similar concept of lead-likeness [84], natural product-likeness 

[85], peptide-likeness [86] and more recently metabolite-likeness [87, 88]. A ‘rule-of-

three’ (Ro3) [89] which states that molecular weight < 300, clogP < 3, hydrogen-bond 

donors < 3, hydrogen-bond acceptors < 3, rotatable bond count < 3 and polar surface area 

< 60, has been proposed to design lead fragments. 

 

1.2.5.2 Scaffold and molecular fragment data analysis 

Over the past decade, scaffold- and fragment-based analysis have been widely used in drug 

discovery [90-95]. Analysing the scaffold content of small molecule databases has led to 

the concepts of scaffold hopping [96] and privileged substructures [97]. As shown in 

Figure 1.8, it is possible to apply different levels of abstraction to the core molecule. 

Molecular graphs are decomposed by distinguishing ring assemblies, linkers connecting 

these ring assemblies, and side chains. The linker atoms form the direct path connecting 
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two rings while side chain atoms are any non-ring, non-linker atoms. Rings and linkers 

without side chains constitute molecular scaffolds. The molecular framework can be 

obtained from scaffolds by replacing all the heteroatoms with carbon atoms. Furthermore, 

bond types can be reduced to single bonds in order to obtain carbon skeletons, which 

represent the highest level of structural abstraction. Finally, ring assemblies can be 

obtained by breaking molecular scaffolds at linker atoms.  

 

Scaffold

Molecular framework

Carbon skeleton

Rings

Molecule

 

Figure 1.8: Different levels of abstraction used in the literature for molecular scaffold 

analysis. The scaffold is obtained by deleting all side chains. A molecular framework is 

obtained by replacing all heteroatoms by carbons from a scaffold while a carbon skeleton 

is generated by setting all bond orders to single bonds in molecular framework. 

 

Similarly, there are different ways to get molecular fragments for example, by breaking the 

molecule at predefined bonds such as retro-synthetic criteria [98], random fragmentation 

approaches [99] and circular substructural fingerprints [42]. 

 

In one of the significant studies by Bemis and Murcko [90], 5,120 drugs (from the 

Comprehensive Medicinal Chemistry database) were analysed to identify common types of 

scaffolds. The compounds were fragmented into rings, linkers, frameworks and side 

chains. Using 2D topological graph-based molecular descriptors, the authors found 2,506 

different frameworks for a set of 5,120 drug compounds, with the top 32 accounting for the 
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topologies of 50% of the database compounds. In conclusion, they suggested a skewed 

distribution of molecular frameworks in drugs. Recently, Franco et al. [91] examined the 

scaffold diversity of 16 datasets of active compounds, targeting five protein classes, using 

an entropy-based information metric. The authors concluded that the compounds targeted 

to the vascular endothelial growth factor receptor kinase, followed by compounds targeted 

to HIV reverse transcriptase and phosphodiesterase V, are maximally diverse. On the other 

hand, molecules in the glucocorticoid receptor, neuraminidase and glycogen phosphorylase 

datasets are least diverse. Wang et al. [100] structurally analysed molecular fragments in 

two drug datasets which they termed as “building block analysis”. The first dataset, 

ADDS, comprised 1,240 FDA-approved drugs, and the second drug dataset, EDDS, was a 

non-redundant collection of FDA-approved drugs and experimental drugs in different 

phases of clinical trials from several drug databases (6,932 entries). For each molecule in 

the two datasets, a brute force fragmentation method was applied to enumerate all possible 

fragments. Three kind of fragments were collected, namely, drug scaffolds, rings and small 

fragments. All the fragments were ranked according to the frequencies of occurrence in the 

dataset. The authors found that the top 50% of the fragments cover 52.6% and 48.6% of 

drugs in the ADDS and EDDS datasets, respectively. Hu and Bajorath [101] analyzed 

scaffolds and associated compound activity data in the public databases, namely ChEMBL 

and BindingDB, in order to compare their availability of target-selective scaffolds. The 

authors identified 143 scaffolds with varying complexity that are represented in multiple 

compounds and are promiscuous binders (i.e. compounds containing these scaffolds bind 

to multiple targets). 

 

1.2.5.3 Data mining and machine learning methods 

Data mining is the process of discovering the hidden predictive information and analysing 

it from different perspectives in order to summarize useful information. In other words, 

data mining is the process of finding correlations or patterns from large amount of data 

stored in data repositories. Data mining involves three major tasks. Clustering − is a task to 

group objects in such a manner that objects within the group possess high intra-group 

similarity while low inter-group similarity. Classification and regression − this involves 

learning the properties of known data and apply it to unknown data in order to classify 

objects in a classification task or to find a function that can model the data in a regression 

task. Common algorithms include decision trees, neural networks and support vector 

machines, and linear regression. Association rule learning − is a task to find correlations 
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and patterns among the attributes especially in a transaction database. In this section we 

describe common machine learning algorithms and association rule mining method. 

 

Machine learning is a collection of methods that focuses on making machines learn from a 

given dataset and make predictions on unseen data. In recent years, machine learning 

methods have become increasingly popular in drug design, compared to conventional 

statistical and modelling methods. Machine learning methods can be divided into two 

categories, supervised and unsupervised learning. In supervised learning the data are 

labelled with predefined classes whereas in unsupervised learning, class labels of the data 

are unknown. If the target class is discrete, then the task is classification while if it is 

continuous, it poses a regression problem. 

 

The goal of a supervised learning task is to optimize the mapping function that correlates 

the input descriptors or properties with the target variable.  The function is optimized using 

the training data and validated using the validation set, which is withheld during training. 

In n-fold cross-validation, the training set is split into n subsets, and the model is built 

using n-1 subsets while, the validation is done on the remaining subset. The process is 

repeated n times; therefore, each subset is used as the validation set at least once. In leave-

one-out cross-validation, n equals the total number of objects (molecules) in the training 

set. Besides cross-validation, an external test dataset is also used which is independent of 

the training data and is not used for model building or optimization. The best known 

examples of supervised learning algorithms are decision trees, artificial neural networks, 

and support vector machines.  

 

1.2.5.3.1 Decision trees  

Decision trees (DT) are rule-based methods that classify patterns using a sequence of well 

defined rules [102]. The method uses a process called recursive partitioning [103], where 

each descriptor of the data is examined and ranked according to its ability to partition the 

remaining data. The best descriptors are selected to split the training samples into child 

nodes. The whole process is recursively repeated until some predefined completion 

criterion is met. The trained classifier has a tree-like structure and the nodes without 

children are called leaf nodes, while the others are internal nodes. An example of a 

decision tree network is shown below in Figure 1.9. 
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Wagener and Geerestein [104] successfully employed decision trees to discriminate 

between potential drugs and non-drugs, obtained from the Available Chemical Directory 

and the World Drug Index. They found that 75% of all drugs can be predicted based on the 

occurrence of six chemical groups (hydroxyl, tertiary or secondary amino, carboxyl, 

phenol and enol groups). Likewise, the majority of unsuitable compounds can be ruled out 

from further analysis based on the presence of specific chemical groups that result in a 

substance being reactive, toxic or difficult to synthesize. In addition, they found that non-

drugs are mostly aromatic and characterized by a low content of functional groups, except 

halogens. Rusinko et al. [105] used recursive partitioning for the analysis of structure-

activity data in diverse, large datasets. The authors created a program called SCAM 

(Statistical Classification of Activities of Molecules), which can be used to analyse large 

numbers of binary descriptors and partition the data into activity classes.  

 

SMR_VSA3

> -1.059 ≤ -1.059

PmiX

> 0.452 ≤ 0.452
Actives

Chi1_C

Inactives

> 0.380 ≤ 0.380

Inactives Actives  

Figure 1.9: A pictorial representation of a decision tree. As shown in the decision tree, 

each internal node has a splitting predicate, with binary predicates being most common.  

 

1.2.5.3.2 Artificial neural networks 

The human brain is composed of 100 billion basic units (cells) called neurons. An artificial 

neural network (ANN) is a system inspired from the operation of biological neurons. The 

neuron has three main components a cell body, branching extensions called dendrites, for 

receiving inputs and an axon, that carries an the neuron’s output to other neurons. The 

axon of each neuron is connected to the dendrites of several others neurons via synapses 
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and communicates with them through electrochemical signals. The neuron continuously 

receives signals and sums up the all input signals to evaluate them against a threshold 

value. If the summation is greater than a threshold, a neuron is activated and fires an 

electrochemical signal, which generates a voltage and propagates the signal to other 

neurons. Emulating the design of biological neurons, ANN works in a similar manner. The 

synapses of the biological neuron are modeled as weights in ANN. A positive weight 

designates excitatory connection, while a negative weight corresponds to an inhibitory 

connection. All inputs are summed altogether and modified by the weights. Finally, an 

activation function controls the amplitude of the output. For example, an acceptable range 

of output is usually between -1 and 1, or it could be 0 and 1 as shown in Figure 1.10. 
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Figure 1.10: An example of the basic ANN derived by emulating biological neurons. 

Each input signal is associated with its own weight, which can be positive or negative.  All 

the inputs are summed using a summing function and supplied to the activation unit. If the 

summation is greater than the threshold, then the output is 1, otherwise 0.  

 

There are different types of neural networks available.  

 
1. Feed forward network  

The simplest type of neural networks is feed forward networks and involves a 

unidirectional flow of information. The data processing can extend over several units, but 

no feedback connections are present. There are no cycles or loops involved, so that 

information flow is from input to hidden layers to output.  
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2. Recurrent neural networks 

A feed forward ANN propagates data linearly whereas; recurrent ANN can propagate data 

from later processing stages to earlier stages. 

 

3. Kohonen self organizing maps  

Kohonen self-organising maps (SOMs) were invented by Teuvo Kohonen [106] and do not 

require a target output to be specified. SOMs provide an elegant way to represent 

multidimensional data in lower dimensions - usually one or two dimensions. In addition, 

SOM creates a network that stores information in such a way that, while reducing the data 

dimensionality, there is minimum loss of information within the training set. 

 

More extensive introduction to the theory of neural networks and applications in 

chemoinformatics, QSAR and drug design are also available [107, 108]. Anzali et al. [109] 

have discussed two principal types of ANN that have application in combinatorial 

chemistry: SOMs and feed-forward neural networks. Kohonen maps, with their ability to 

represent high dimensional data in lower dimensions, can be used as a clustering tool, 

complementing the classical clustering techniques. Feed-forward networks can be used for 

classification of compounds or prediction of specific compound properties. A comparative 

study by Ajay et al. [110] that investigated the predictive performance of Bayesian neural 

networks and DT for classifying drugs and non-drug molecules revealed that Bayesian 

neural networks performed well in all instances, compared to decision trees. In their study, 

the training and test sets consisted of 3,500 and 2,000 compounds each, from the 

Comprehensive Medicinal Chemistry (CMC) and Available Chemicals Directory (ACD) 

databases, respectively; and each compound was described by an appropriate vector 

representation. The authors were able to classify 90% of the compounds in CMC and ACD 

and applied this method to classify 80% of the compounds from the MDL Drug Data 

Report (MDDR) database.  

 

Often, ANN provides higher accuracy than DT; nevertheless, ANN approaches suffer from 

problems such as over-fitting the training data, lack of reproducibility of results and the 

lack of information regarding the classification produced. On the other hand, DT may also 

suffer from the over-fitting problem but provides an ample amount of information on the 

splitting criteria, in the form of predictive rules. 
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Figure 1.11: Separation of data by Support Vector Machine hyperplanes. (A) There 

are n number of possible hyperplanes that can correctly classify the data. (B) The SVM 

algorithm seeks to maximise the margin around a hyperplane (optimum hyperplane) that 

separates a positive class (circles) from a negative class (in crossed circles).  

 

 

1.2.5.3.3 Support vector machines 

Support vector machines (SVM) are a new type of machine learning algorithm, based on 

the structural risk minimization principle i.e. they search for the hypothesis with the lowest 

error on the training set [111, 112]. Recently, SVMs have been extensively applied in 

chemoinformatics, due to their robustness and ability to classify objects into two classes, as 

a function of their features [113-115]. Features encoding 1D, 2D and 3D properties of 

molecules, such as molecular weight, solvent accessibility, volume, charge, surface area, 

polarity and hydrophobicity are used to construct specific feature vectors that serve as 
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input to SVM. Binary classification of data (e.g. active, inactive or benign, malignant) 

within a linear SVM is done by separating the data optimally into categories, by 

constructing a hyperplane that divides the descriptor space into two parts. Actives lie in the 

positive half of the hyperplane, with inactive compounds in the negative half. In fact, a 

variety of different hyperplanes exist that may separate the data correctly as shown in 

Figure 1.11.   

 

The margin between actives and inactives is maximized after mapping input vectors into a 

high dimensional feature space. Many studies in the past have shown SVM to be one of the 

best methods for correctly classifying molecules [116-119]. In one of the comparative 

studies where the SVM method was compared to other 16 classification methods and 9 

regression methods, it was found that although SVM performed well in all the cases, the 

other methods also proved to be quite competitive [119]. Burbidge et al. [118] carried out a 

classification study that involved predication of the inhibition of dihydrofolate reductase 

by pyrimidines. The authors compared SVM with ANN and decision trees. They found 

that SVM outperformed most of the methods except a manually capacity-controlled neural 

network, although it took considerably longer to train. Nevertheless, SVM remains the 

most advanced machine learning method currently available. 

 

1.2.5.3.4 Association analysis  

Association analysis [120] is an important data mining technique to discover hidden 

relationship among items and transactions. It is a supervised learning technique in the 

sense that we feed the association algorithm with a training data set (as called Experience e 

in machine learning context) to formulate hypothesis (h). A typical and widely used 

example of association rule mining is “market basket analysis”. In retail stores data 

consists of large number of transaction records. Each record contains the information of all 

the goods purchased by a customer as a part of single bill. This kind of data is called 

“market basket data” and the analysis is termed as “market basket analysis”. In market 

basket analysis different buying habits of customers are identified and analysed to find 

association among items purchased by customers. For example customer who buy pencil 

are more likely to buy eraser. These kinds of patterns can be identified using association 

rules. Other applications include in the field of bioinformatics [121], graph mining [122] 

business intelligence [123], document analysis [124] and weblog mining [125]. 

 

 



 

30 

An association rule is made of two parts, an antecedent (head) and a consequent (body):  

X (buys, milk) antecedent  X (buys, bread), [support =0.75%, confidence =50%] 

where antecedent  =  Milk and consequent  =  Bread.  

 

The above hypothetical rule can be interpreted as “Purchase of milk implies purchase of 

bread”. To measure the extent of implication, three measures are most commonly used. 

The first one is called support of the rule. The support is simply the number of transactions 

that include all items in the antecedent and consequent parts of the rule. The support is 

sometimes expressed as a percentage of the total number of records in the database. For 

example, if 75 transactions involve the above rule, then the support value is 0.75 which 

indicates the rule is significant. The second measure is the confidence. A confidence 

measure quantifies the confidence as a ratio of number of transaction holding this rule 

valid against the number of transactions involving this rule. Higher the value, more reliable 

is the rule. The third measure is the lift and it indicates the strength of an association rule 

over the random co-occurrences of the antecedent and the consequent, given their 

individual support. It can be calculated as lift = support (rule) / (support (antecedent) * 

support (consequent)). If an association rule has the lift less than 1, it suggests that the 

presence of the antecedent, causes a reduction is the probability of purchase of the 

consequent, compared to random chance and vice versa. 

 

1.3 Databases and resources available 

Availability of quality data is a vital first step towards any analysis. Unfortunately, public 

databases, large collaborative efforts to annotate the small molecules and analysis software 

are relatively scarce in chemical research [126], until 2005. In an analogy to the related 

field bioinformatics, the chemoinformatics equivalent of GenBank and BLAST had not 

been created in 2006 [127]. However, now there are increasing numbers of attempts to 

address the issue [128] and quite a few public databases have become available in 

chemoinformatics. In this section, the various public databases relevant to drug discovery 

are discussed. The most important and commonly used databases and resources for the 

chemoinformatics analysis are presented in Table1.2 (current as of 15 March 2011). For a 

summary of first five databases, please refer to Publication 2, in this thesis. A brief 

description of the remaining databases can be found below. 
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1.3.1 ZINC  

ZINC [129] is a public database for commercially available compounds for virtual 

screening. ZINC contains over 13 million compounds in 3D format, suitable for docking 

studies. A web-based query tool can be used for browsing using ZINC identifier or 

molecular properties such as xlogP, net charge, molecular weight and the number of 

rotatable bonds. 2D similarity and substructure searches are also possible with user 

specified structures. Various pre-compiled subsets such as “drug-like”, “lead-like” and 

“fragment-like” are particularly useful. Furthermore, users can customize their own subsets 

for download. 

 

Table 1.2: List of public databases and resources used in chemoinformatics. 

Name Homepage 
Number of 
compounds 

Data 
format# 

Data type 

PubChem 

[130] 
pubchem.ncbi.nlm.nih.gov 

>50,000, 
000 

SDF 
Small 

molecules 

ChEBI 

[131] 
ebi.ac.uk/chebi 19,000 mol 

Biologically 
relevant 

molecules 

ChemBank 

[132] 
chembank.broad.harvard.edu >800,000 Text 

Small 
molecules 

ChemIDplus 

[133] 
chem.sis.nlm.nih.gov/chemidplus >370,000 mol 

Small 
molecules 

ChemDB 

[127] 
cdb.ics.uci.edu/index.htm >5,000,000 

SMILES, 
SDF  

Small 
molecules 

ZINC 

[129] 
zinc.docking.org 

>13,000, 
000 

SMILES, 
SDF or 

mol 

Small 
molecules 

KEGG ligand 
[134] 

genome.jp/kegg/ligand.html 16,948 SDF 
Small 

molecules 

DUD dataset 

[135] 
dud.docking.org 98,266 SDF 

Small 
molecules 

Ligand.Info 

[136] 
ligand.info 1,159,274 SDF 

Small 
molecules 
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Name Homepage 
Number of 
compounds 

Data 
format# 

Data type 

NCI open 

[137] 
cactus.nci.nih.gov/ncidb2 260,071 SDF Toxicity 

SuperToxic 

[138] 

bioinf-
services.charite.de/supertoxic 

>60,000 mol Toxicity 

CPDB 

[139] 
epa.gov/NCCT/dsstox/index.html >1,500 SDF Toxicity 

DrugBank 

[140] 
www.drugbank.ca >6,827 SDF Drugs 

HMDB 

[141] 
www.hmdb.ca >7,900 SDF 

Human 
metabolites 

BindingDB 

[142] 
bindingdb.org/ 284,206 SDF 

Small 
molecules 

TTD 

[143] 
bidd.nus.edu.sg/group/ttd/ttd.asp 5,124 

SDF, 
mol 

Drugs, 
Protein 
targets 

UniProt 
[144] 

uniprot.org/ − − 
Protein 
targets 

SuperTarget 
and Matador 

[145] 

 

bioinf-
tomcat.charite.de/supertarget/ 

1500 mol 
Drugs, 
Protein 
targets 

ChEMBL 

[146] 
ebi.ac.uk/chembldb/ >600,000 SDF 

Small 
molecules 

PharmGKB 

[147] 
pharmgkb.org >3,100 Text Drugs 

 

1.3.2 Kyoto Encyclopaedia of Genes and Genomes (KEGG) Ligand 

Database 

KEGG Ligand [134] is a composite, public database and contain chemical compounds that 

are relevant to life. It is made up six sub-datasets: COMPOUND comprising small 



 

33 

molecules and metabolites; REACTION, the collection of substrate-product and other 

metabolic reactions; ENZYME representing the set of enzyme molecules; DRUG dataset 

for drug collection including different salt forms and drug carriers; GLYCAN, a collection 

for experimentally determined glycan structures and RPAIR consisting of reactant pair 

alignments. Currently, the database contains 16,948 entries in the COMPOUND dataset, 

8,451 reactions and 5,342 enzymes, 9,724 entries in drug dataset and 10,978 glycan 

structures. 

 
1.3.3 Directory of useful decoys (DUD) dataset 

The DUD dataset [135] is derived from ZINC database to benchmark docking algorithms 

by providing challenging decoys. The database spans 40 different receptors and contains a 

total of 2,950 compounds active against those receptors. For each active compound, a set 

of 36 drug-like molecules were chosen form ZINC database to serve as decoys. The decoys 

have similar physicochemical properties (molecular weight, hydrophobicity, number of 

hydrogen donor/acceptors) but different topology leading to the database of 98,266 

compounds. The actives included for each target comprise as few as 10–20 ligands in some 

cases, up to as many as a few hundred, in others. 

 
1.3.4 Ligand.Info 

Ligand.Info [136] is a collection of various publicly available databases of small molecules 

such as ChemBank (2,344 entries), KEGG ligands (10,005 entries), AsinexLtd (348,276 

entries), ChemPDB (4,009 entries), Anti-HIV NCI (42,689 entries) and TimTec (7,500 

entries) subset. The database contains over a million entries. The compounds are present in 

3D format and contain bioactivity information if possible. Some molecules have additional 

information about FDA drug approval status or about anti-HIV activity. Ligand.Info allows 

interactive clustering and searching of similar molecules using a Java-based tool. The 

whole database or individual datasets can be downloaded in structure data (SD) format .  

 
1.3.5 National Cancer Institute (NCI) open  

The NCI open database [137] is a public part of the NCI database that was built and is 

maintained by the Developmental Therapuetics Program Division of Cancer Treatment, 

National Cancer Institute, USA. The current size of the NCI database is around 500,000 

entries. The public part (NCI open database) contains almost half the compounds 
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(260,071). The data is available for download in SD format. A web-based graphical user 

interface, called Enhanced NCI Database Browser, can be used to browse the database. It 

is also possible to carry out similarity and substructure searches, beside searching the 

database using the unique database identifies (NSC ID), physicochemical properties or 

functional groups.   

1.3.6 SuperToxic  

The SuperToxic database [138] provides information on toxins obtained form different 

sources (such as animals, plants, synthetics). Besides providing the chemical properties of 

the searched toxins, it also presents the user with information on commercial availability of 

toxins. The data in the SuperToxic database is cross-linked to various other external 

databases, such as the Protein Data Bank (PDB), UniProt and KEGG, to allow easy 

identification of targets and pathways linked with the toxin. Currently the database 

contains 60,000 compounds with structural information. The database can be browsed 

using the alphabetic listing or can be searched by various search techniques, including 

structure and substructure search, property search using molecular properties e.g. logP, 

hydrogen bond acceptors/donors and molecular weight The database can also be queried 

using name of the toxin, the Chemical Abstract Service Reference Number (CASRN) and 

measured values of toxicity.  

 
1.3.7 The Carcinogenic Potency Database (CPDB) 

The CPDB database is a unique and widely recognized resource of the results of 6,540 

chronic, long-term animal cancer tests on 1,547 chemicals. The CPDB provides easy 

access to the bioassay literature, with qualitative and quantitative analyses of both positive 

and negative experiments. The results of each experiment include a range of information 

that is important in the interpretation of bioassays: species, strain, and sex of test animal, 

route of administration, duration of dosing, average daily dose-rate in mg/kg body 

weight/day, target organ, tumor type, carcinogenic potency (TD50) and its statistical 

significance and literature citation. The result of carcinogenicity bioassays are represented 

by TD50 values (the dose at which tumorogenesis was found in 50% of the tested animals) 

of each species (rats and mice). The data is available for download in SD format. 
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1.3.8 DrugBank  

The Drugbank [140] database is one of the largest, richly annotated and blended resource 

of chemoinformatics and bioinformatics datasets. It contains detailed chemical, medical 

and biological information on over 6,827 drugs including more than 1,431 FDA-approved 

small molecule drugs, 133 FDA approved biotech (protein/peptide drugs), 83 

nutraceuticals and 5,212 experimental drugs. Furthermore, around 4,481 non-redundant 

protein (drug-targets, enzymes) sequences are available for download. Each drug entry in 

the database has more than 150 data fields, with first half of the information dedicated to 

drug-chemical data and the remaining half on drug-target or protein data.  

The database supports several search methods like Boolean text search, structure search, 

local BLAST type sequence search for drug-targets and a relational data extractor tool. In 

the data extractor tool, various drug fields can be turned on or off during the search and the 

output can be obtained in different formats. The database can also be searched for similar 

structures which can be a useful tool for virtual screening programs. The SD format files of 

drugs and corresponding drug-target sequence files are available for download for seven 

different categories, namely approved drugs, small molecule drugs, nutraceutical drugs, 

experimental, biotech, withdrawn and illicit drugs. 

1.3.9 Human Metabolome database (HMDB)  

The Human Metabolome database is a comprehensive, organism specific, highly 

annotated, and freely available electronic dataset which contains spectroscopic, 

quantitative, analytic and molecular scale information on human metabolites. The database 

is intended to contain three types of data namely chemical data, clinical data, and 

molecular biology/biochemistry data.  

Currently, the database holds (>7,900) metabolites and approximately 7,200 protein (and 

DNA) sequences are linked to these metabolite entries. The protein sequences can be 

downloaded form the website in FASTA format and the molecular structures are available 

in SD format. Clinical and biochemical information related to the metabolites are present 

in a MetaboCard Flat Files which nearly contains 110 data fields with 66% devoted to 

chemical/clinical data while the rest dedicated to enzymatic or biochemical data. The 

database can be browsed through variety of methods which include search by pathways, 

diseases, chemical substructure, text, sequences or chemical classes (inbuilt chemical 
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ontology). The database also supports spectral search like NMR, MS/MS and GC/MS 

search. 

 
1.3.10 BindingDB 

BindingDB is a publicly accessible small molecule-protein interaction database of 

experimentally determined binding affinities. Currently the database comprises of 648,915 

protein–ligand complexes, for 5,662 protein targets and approximately 284,206 small 

molecule ligands. The data in BindingDB is collected from various scientific literatures 

and the focus of data collection is proteins that are either drug-targets or potential drug-

targets. The BindingDB website can be queried through various methods like search by 

chemical structure, substructure search and similarity search. Search by protein sequence, 

ligand and protein names, affinity ranges and molecular weight is also possible. The results 

can be downloadable in SD format. The structural data in BindingDB is cross linked to 

PDB and chemical and sequence data to the literature sources. Virtual screening by SVM, 

Binary kernel discrimination and maximum similarity are also implemented. 

 
1.3.11  Therapeutic Target Database (TTD) 

TTD is a molecular target database that provides comprehensive information about the 

known and explored therapeutic protein and nucleic acid targets published in the literature. 

In addition, the database also provides information on targeted disease conditions, pathway 

information and the corresponding drugs/ligands for each of these targets. The database is 

searchable by target name, drug/ligand name disease name, drug/ligand function or drug 

therapeutic classification. TTD is cross-linked to various other databases that contain 

information about the function, sequence, 3D structure, ligand binding properties, enzyme 

nomenclature and related literature of each target. The database currently contains 1,906 

targets (358 are successful, 251 in clinical trials, 1,254 are research targets) and 5,124 

drugs/ligands (1,511 are approved, 1,118 in clinical trials and 2,331 are experimental 

drugs). 

 
1.3.12 UniProt database 

UniProt [144] is a comprehensive, high-quality and freely accessible resource of protein 

sequence that provides a non-redundant high level of annotation. It is a unified 

knowledgebase that combines databases such as Swiss-Prot (a manually curated and 
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annotated protein sequence database), TrEMBL (Translated EMBL, a computer-annotated 

supplement to Swiss-Prot), UniRef (a database of protein sequence clusters, developed to 

speed up sequence similarity searches) and UniPrac (an archive for protein sequences, used 

to keep track of protein sequence identifiers and changes in protein sequences). The 

primary object of this database is proteins, for which sequence data, references and the 

taxonomic data is provided. Currently, the UniProt knowledgebase holds over 13 million 

sequences and is updated regularly.  

 
 
1.3.13  SuperTarget and Matador 

SuperTarget [145] is drug-target interaction database and currently includes more than 

2,500 target proteins which are annotated for about 7,300 drug-target interactions to 1,500 

drugs. The database also includes information on adverse drug effects, drug 

metabolization, pathways, gene ontology terms and sequence comparison data of target 

proteins.  

Matador (Manually Annotated Targets and Drugs Online Resource), which is a highly 

annotated subset of the SuperTarget database, lists 775 drugs and contains additional 

binding and indirect interaction information.  The database can be searched using drug 

name, target name, The Chemical Abstract Service (CAS) Number, PDB Ligand identifier, 

KEGG Human Pathways and WHO developed Anatomical Therapeutic Chemical 

Classification System codes (ATC-codes). Complex queries with Boolean operators can 

also be easily performed. SuperTarget is also cross-referenced to other databases like 

KEGG for pathway information, SuperDrug for information on similar drugs and 

SuperLigand on durg-like ligand information. Tanimoto score is used for similarity 

calculation and fingerprints calculated from (Chemistry Development Kit) CDK allow for 

fast identification of drugs that may interact with same target protein. 

 
1.3.14 ChEMBL 

The ChEMBL database [146] is a freely available chemogenomics data resource of 

bioactive drug-like compounds. The data is obtained from primary scientific literature and 

covers a significant portion of known targets, small molecules and their SAR information. 

The database can be searched for targets by using the text search for protein names and 

sequence search using BLAST which can also identify related proteins. The compounds 

can be searched using the compound name, SMILES, or chemical identifier. Substructure 
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or similarity search can also be employed for compound searching. Currently the database 

contains 8,091 targets, 658,075 distinct compounds and over 3 million activity records and 

is updated monthly.  

 
1.3.15 PharmGKB 

The PharmGKB [147] is central repository on pharmacogenomics and pharmacogenetics 

data and promotes research into the relationship between human genotype, phenotype and 

drugs. Its main objective is to aid the researchers in understanding the genetic basis for 

variation in response to drugs. In addition to the data on the gene-drug relationship, the 

database also contains information on gene variations, genomics, drug-action and 

pathways. PharmGKB contains highly curated pathways documenting genes involved in 

pharmacodynamics and pharmacokinetics of selected drugs. The database currently holds 

information on (>3100) drugs, (>3200) diseases and (>27000) genes and 72 pathways. It 

also has the detailed information on gene variants (SNP data) affecting drug metabolism. 

 

While a comprehensive overview of chemoinformatics and its applications in ligand based 

drug design has been presented above, an in-depth explanation pertaining to virtual library 

design is presented in publication 1 along with an overview of molecular similarity and 

diversity analyses. Following this, previous work on ligand based virtual screening 

methods including successful application of machine leaning approaches [104, 110] has 

been reviewed in publication 2. 

 
 



Due to copyright restrictions, from page 39 – 71, the following articles have been 
omitted from the thesis. Please refer to the following citations for details. 
 
 
Khanna V, Ranganathan S: Molecular similarity and diversity approaches in drug 
discovery. Drug Development Research, 2010, 72(1), 74-84. 
 
 
Khanna V, Ranganathan S: In Silico Methods for the Analysis of Metabolites and 
Drug Molecules, In Algorithms in Computational Molecular Biology: Techniques, 
Approaches and Applications, eds. M. Elloumi and A.Y. Zomaya, Wiley, pp.363-383 
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1.4 Objectives 

Currently, there is an immense need to develop quick and efficient methods for 

identification and characterization of biologically relevant molecules in order to cut down 

the time involved in a typical drug discovery pipeline. Although information on the 

traditional use of plants is available through databases and monographs, relatively little 

information is available for Australia Aboriginal medicinal plants [148]. Over 25% of the 

currently used modern medicines are a direct result of ethnopharmacological studies [149]. 

Natural products can thus play a major role in discovering biologically relevant molecules. 

Given the exponential expansion of PubChem [130], experimental screening of potential 

ligands using traditional methods would be an impossible and irrational exercise. However, 

recently developed complementary computer based drug design approaches such as 

similarity-based virtual screenings have looked promising. Similarity-based virtual 

screening has been particularly useful when information regarding the biological target is 

scarce. Where the information is available, structure-based screening methods such as 

docking have been successfully employed [150]. 

 

Since the publication by Lipinski et al. [81], a number of studies have attempted to identify 

the chemical space occupied by drug-like molecules. These include comparing 

physicochemical properties, scaffold and fragment data analysis, machine learning and 

building statistical models. Until now only a few studies have used human metabolites and 

toxics compounds in their analysis. This might be primarily due to the limited availability 

of high quality, public human metabolome and toxic data. Furthermore, only a couple of 

studies involving scaffold and fragment data analysis have taken into consideration the 

influence of co-occurring fragments in virtual screening. Also, little work has been done to 

compare public databases of bioactive compounds often used in various chemoinformatics 

analysis. 

 
The above objectives were sub-divided into specific aims, described in the following 

sections and addressed in detail in five publications presented in this thesis: 

 

I. Review the current status of chemoinformatics and its potential application in drug 

discovery and development (Publications 1 and 2). 
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II. To develop a web-based chemoinformatics module for Customary Medicinal 

Knowledgebase (CMKb database) in order to store, analyse and visualize natural 

products available from Australian Aboriginal medicinal plants (Publication 3).  

 

III. Preliminary comparison of the distribution of physicochemical properties in current 

drugs, human metabolites and toxic compounds so as to examine the similarity of 

current drugs with human metabolites and toxic molecules (Publication 4). 

 

IV. Detailed analysis of publicly available chemoinformatics databases for drugs, human 

metabolites, toxics, natural products and current lead compounds in order to confirm 

our preliminary findings and to identify frequently occurring scaffolds or fragments. 

In addition we also wanted to study the possible pairs of co-occurring fragments in 

these datasets (Publication 5). 

 

V. Virtually screening for compounds active against parasitic nematodes using machine 

learning approaches and fragment co-occurrence data (Publication 6). 
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Chapter 2: Methodology and Implementation  

A list of the methods and analyses carried out during this study are provided in Table 2.1.  

The ensuing publications have also been listed and included in the relevant chapter. 

Table 2.1: Tools, resources and publications 

Methods/Applications Chapter Refer to 

publication 

Molecular similarity and diversity approaches in drug 

discovery. 

1 1 

In silico methods for the analysis of metabolites and 

drug molecules. 

1 2 

CMKb: a web-based prototype for integrating 

Australian Aboriginal customary medicinal plant 

knowledge. 

3 3 

Physicochemical property space distribution among 

human metabolites, drugs and toxins. 

4 4 

Scaffold and fragment co-occurrence studies on 

datasets of biological interest. 

5 5 

In silico approach to screen compounds active against 

parasitic nematodes of major socio-economic 

importance. 

6 6 

 

 

 

 

 

 

 

 

 

 



76 

Chapter 3: Development of the CMKb chemoinformatics 

module to digitize and store chemical information.  

 

3.1. Summary  

Indigenous medicinal plants are a major resource for safe alternative medicines and new 

drugs. Approximately 80% of the drugs derived from plants were discovered as a direct 

result of the study on ethno-medicinal aspects of plants used by humans [151]. Australian 

customary medicinal knowledge aggregates traditional (native) and contemporary (exotic) 

use of medicinal plants, which is unfortunately diminishing as elders die and is poorly 

documented. Systematic documentation of this knowledge can lead to novel drug 

discovery. Customary Medicinal Knowledgebase (CMKb) is a web-based relational 

database system to document multidisciplinary data including ethnobotany, taxonomy, 

biogeography, medicinal and chemical information. In order to digitize and store chemical 

information, obtained from medicinal plants used by Australian Aborigines, we developed 

the chemoinformatics analysis and visualization module for the Customary Medicinal 

Knowledgebase (http://www.biolinfo.org/cmkb).  

 

Therefore, this paper presents CMKb, a relational database, with user-defined search 

capabilities. The chemoinformatics module comprises the chemical table which includes 

information on various physicochemical properties (molecular weight, logP, melting point, 

boiling point etc) of the molecule. It also stores the IUPAC name, common names, CAS 

number, SMILES, biological activity, reported literature (DSN) and external database links 

such as PubChem and ChEBI chemical identifier. In addition, the chemoinformatics 

module incorporates Jmol, a java applet for visualization and Marvin sketch applet for 

creating and editing chemical structures. Chemical information in CMKb can be queried 

based on the IUPAC name, the CAS number and the common name using queries. The 

view link provides platform-independent structure visualization using Jmol.  
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Abstract
Background: The customary medicinal plant knowledge possessed by the Australian Aboriginal
people is a significant resource. Published information on it is scattered throughout the literature,
in heterogeneous data formats, and is scattered among various Aboriginal communities across
Australia, due to a multiplicity of languages. This ancient knowledge is at risk due to loss of
biodiversity, cultural impact and the demise of many of its custodians. We have developed the
Customary Medicinal Knowledgebase (CMKb), an integrated multidisciplinary resource, to
document, conserve and disseminate this knowledge.

Description: CMKb is an online relational database for collating, disseminating, visualising and
analysing initially public domain data on customary medicinal plants. The database stores
information related to taxonomy, phytochemistry, biogeography, biological activities of customary
medicinal plant species as well as images of individual species. The database can be accessed at http:/
/biolinfo.org/cmkb. Known bioactive molecules are characterized within the chemoinformatics
module of CMKb, with functions available for molecular editing and visualization.

Conclusion: CMKb has been developed as a prototype data resource for documenting,
integrating, disseminating, analysing multidisciplinary customary medicinal plant data from Australia
and to facilitate user-defined complex querying. Each species in CMKb is linked to online resources
such as the Integrated Taxonomic Information System (ITIS), NCBI Taxonomy, Australia's
SpeciesLinks-Integrated Botanical Information System (IBIS) and Google images. The bioactive
compounds are linked to the PubChem database. Overall, CMKb serves as a single knowledgebase

from Asia Pacific Bioinformatics Network (APBioNet) Seventh International Conference on Bioinformatics (InCoB2008)
Taipei, Taiwan. 20–23 October 2008

Published: 12 December 2008

BMC Bioinformatics 2008, 9(Suppl 12):S25 doi:10.1186/1471-2105-9-S12-S25

<supplement> <title> <p>Seventh International Conference on Bioinformatics (InCoB2008)</p> </title> <editor>Shoba Ranganathan, Wen-Lian Hsu, Ueng-Cheng Yang and Tin Wee Tan</editor> <note>Proceedings</note> </supplement>

This article is available from: http://www.biomedcentral.com/1471-2105/9/S12/S25

© 2008 Gaikwad et al; licensee BioMed Central Ltd. 
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

77



BMC Bioinformatics 2008, 9(Suppl 12):S25 http://www.biomedcentral.com/1471-2105/9/S12/S25

Page 2 of 8
(page number not for citation purposes)

for holistic plant-derived therapeutics and can be used as an information resource for biodiversity
conservation, to lead discovery and conservation of customary medicinal knowledge.

Background
Australia is among the 34 biodiversity hotspot countries
in the world [1] endowed with unique endemic plant
diversity. It is estimated that 85 percent of over 21,000
vascular plant species are endemic to Australia [2]. More
than 40,000 years of Aboriginal inhabitation [3] has led to
the use of medicinal plants from this vast bioresource for
maintaining and treating health-related problems [4].
Aboriginal remedies vary between clans and in different
parts of the country, with no single set of aboriginal med-
icines and remedies [5]. The indigenous knowledge has
been passed on from one generation to the next orally
through traditional songs, stories, poetry and legends [6].
Unfortunately, Aboriginal customary medicinal knowl-
edge is poorly documented and is on the verge of being
lost due to dislocation and the westernisation of the com-
munities [7,8].

Documented Australian medicinal plant knowledge is in
the main, fragmented, restricted to specific locales and of
limited applicability, usually to pharmacology or phyto-
chemistry. Several studies have focussed on the Northern
Territory, where the use of medicinal plants has been doc-
umented, with limited data on chemical components and
pharmacological assay work [9,10]. A database of plants
used as bush foods and medicines by New South Wales
Aboriginal communities comprises information largely
obtained from published sources or early manuscripts
[11], but does not include chemical or pharmacological
data. The CSIRO Australian phytochemical database com-
prises a compendium of published work, searchable by
plant and chemical names alone [12]. Thus, there is no
single comprehensive inventory of Aboriginal medicinal
plants available similar to initiatives such as Native Amer-
ican Ethnobotany database [13] and Prelude Medicinal
Plants Database from Africa [14]. The available informa-
tion in published literature is species-specific, scattered
and in different formats, making data integration chal-
lenging.

Customary knowledge of medicinal plants and practices is
a significant contributor to scientific research and devel-
opment in pharmaceuticals, cosmetics, foodstuffs, agri-
cultural products and a wide range of other biologically
based products and processes [15]. Access to public
domain information on Australian customary medicinal
plants will advance research in bioinformatics, ethnobot-
any, taxonomy, biogeography and phytochemistry. Here,
we report the development of a comprehensive knowl-
edgebase for Australian customary medicinal plants,

CMKb. To the best of our knowledge, this is the first such
knowledgebase of its kind.

Construction and content
System architecture
The goal was to design a database which could be flexible
and could accommodate heterogeneous data from pub-
lished literature or bibliographic search. CMKb is devel-
oped using MySQL 5 relational database [16] for
systematic and efficient content management. The user-
friendly interface, consisting of dynamic web pages, is
developed using PHP 5 [17] for data visualisation and
data management. The chemoinformatics module incor-
porates Jmol, a Java based applet program [18] for visual-
ization and Marvin Sketch [19] for drawing and editing of
chemical structures. The data is served using Apache web-
server [20] (Figure 1).

Construction method
Before developing the database schema, end user and data
resource availability assessment was carried out. The
assessment results showed that the potential end users
range from members of Aboriginal communities to scien-
tists with interests in ethnobotany, phytochemistry, biol-
ogy and microbiology. The major data resource is the
information collated from an exhaustive literature survey.

We have created a novel schema for integrating multidis-
ciplinary information on medicinal plant species, such as
taxonomy, habit and habitat, phytochemistry, bioactivity,
biogeography, data sources, medicinal preparation meth-
ods and usage, community information, and images into
CMKb. Since the species name is the fundamental biolog-
ical descriptor [21], all the information is linked to the sci-
entific name. Thus, the species information table is central
to our schema, and is connected to the other tables (Figure
2). CMKb is designed with the possibility of future expan-
sion including scaling to accommodate very large data-
sets, and the addition of other multidisciplinary
components, described later.

Content of the database
Information related to medicinal plant species is stored in
seven major tables (Figure 2) which are briefly described
below. Mandatory information comprises the species
name, the published reference and the medicinal use.

1. Species information
Information related to customary medicinal plant species
such as kingdom, family, scientific name, synonym, com-
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mon name, native language name, habit and habitat as
well as author citation, is stored in this table. This table is
the hub to which all other tables are connected. The scien-
tific name from this table is also used for cross-linking to
external data portals, such as IBIS, ITIS and NCBI Taxon-
omy.

2. Data Source Number (DSN)
Each published article in the literature used to collate and
populate the database, is assigned a unique DSN identi-
fier. The DSN table contains fields such as the title of the
article, reference type (such as thesis, journal or book),
names of authors and citation details.

3. Medicinal information
Species-specific customary medicinal information such as
the parts of the plant used, preparation method, taste,
odour, colour, application and storage method, is collated
in this table.

4. Biological activity information
This table records the biological activity associated with
the medicinal plant. The type of assay used to identify bio-
logical activity (such as antifungal, antiviral, antibacte-
rial), the specific assay used, assay targets (such as cell line,
enzyme and organism name) are recorded in this table.

5. Chemical information
This table is used to store the chemical information and
structure of bioactives derived from the medicinal plants
such as IUPAC name, CAS number, PubChem [20] iden-
tifier, common chemical name, chemical structures in
SMILES and MOL formats, biological activity related to
that chemical compound, spectral data and other physical
properties. The chemical structures are created locally
using Marvin Sketch and are displayed using Jmol, a freely
available Java applet. PubChem identifier stored in this
table is used to link to PubChem database [22] from
CMKb (Figure 3).

6. Biogeography information
The biogeography table collates observational data of the
species from the published literature such as locality
name, latitude and longitude in decimal units, district/
town, state and country.

7. Multimedia information
CMKb will also accept data in multimedia formats. This
table is used to store multimedia information for each
species, in the form of videos, drawings and photographs.
Multimedia file formats such as jpeg, mpeg and avi can be
uploaded to the database, with detailed text description.

Utility and discussion
CMKb provides a user friendly web interface for accessing
and managing the customary medicinal plant data. The

Schematic presentation of system architecture of CMKbFigure 1
Schematic presentation of system architecture of CMKb.
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database consists of three main modules: Browse, Search
and Data Management. Links to these modules are pro-
vided as a menu on the LHS of the CMKb website, as
"Browse," "Search" and "Login," respectively. A brief
description of each module is given below.

• Browse module
The database contents can be browsed (Figure 4a) using
the alphabetical listing of scientific names and these are
hyperlinked to a species list (Figure 4b), each of which is
linked to a detailed information page.

Since CMKb is a web-based application, we have provided
external links to other relevant global databases and data
portals. Linking with other databases providing taxo-
nomic, geospatial and molecular information, and search
engines for images will help in data mining and facilitate
the exploration of questions that, at present, cannot read-
ily be answered [23] and would provide additional value
to the information. Using the scientific name from CMKb
we have provided external links to public domain data
portals such as Integrated Botanical Information System
(IBIS) [24] which provides links to a range of Australian
data portals, Integrated Taxonomy Information System

Dataflow in CMKb, showing external linksFigure 2
Dataflow in CMKb, showing external links.
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(ITIS) [25], NCBI Taxonomy [26,27] and Google images
[28] for species images.

• Search module
The database can be searched using its comprehensive
search engine. The "Quick Search" option provides users
with the facility to query the database by scientific name,
species common name, native name, locality or chemical
name using different logical parameters such as "con-
tains", "begins with", "ends with" and "is" (Figure 5a).

For more complex queries, the "Advanced Search" option
can be used, where the user can combine different search
fields, using AND as the logical parameter (Figure 5b)

• Data management module
Efficient online content management is coordinated by
CMKb's data management module, accessible to author-
ized users via the Login link. The data management mod-
ule is provided with ADD, EDIT and DELETE
functionality for managing data present in different
tables.

Chemical information page with structure visualizationFigure 3
Chemical information page with structure visualization.
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The overall contents of the database can be accessed from
the "Content Summary" link.

Conclusion
Customary Medicinal Knowledgebase (CMKb) is a proto-
type for collating, integrating, visualising, disseminating
and analysing multidisciplinary public domain data on
customary medicinal plants. It is a holistic knowledgebase
with data on taxonomy, biogeography, ethnobotany, phy-
tochemistry, and bioactivity of the customary medicinal
plants used by the Australian Aboriginals. The goal of
CMKb is to collate information from scientific publica-
tions which are peer reviewed along with documenting
and conserving the dwindling customary medicinal plant
knowledge. The data will be constantly scrutinised by the
experts and will be updated accordingly. Overall, CMKb is
developed as a single knowledgebase for holistic plant-
derived therapeutic substances and can be used as an inte-
grated resource by researchers, policy makers, students
and Aboriginal communities. As the database grows
CMKb can be used for research in areas such as Geograph-
ical Information System (GIS) studies, chemoinformatics
and biodiversity informatics. Further, the goal is to help
address global and national priorities of biodiversity con-
servation, better human health, and smart use of informa-
tion using information technology.

Availability and requirements
CMKb is freely available online at http://biolinfo.org/
cmkb/
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3.2. Conclusion 

The chemoinformatics module is a part of our effort to help preserve customary medicinal 

knowledge and serves to integrate chemoinformatics data with the customary knowledge. 

This will assist in discovery of novel uses of medicinal plants other than customarily 

known and thus could be helpful in new lead discovery. The module also provides a 

prototype for developing other small molecule databases that integrate traditional 

medicinal knowledge with the current biochemical data. Tools for the creation, editing, and 

interactive visualization are integrated in web pages. The chemical records in the database 

are also cross referenced to pertinent chemoinformatic databases. 
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Chapter 4: Comparison of physicochemical property space 

among human metabolites, drugs and toxins 

 

4.1 Summary  

With the advent of combinatorial chemistry and HTS techniques in 1980’s, it is now 

possible to simultaneously design and screen thousands or even million of compounds in a 

day. Nevertheless, even with these techniques it would take thousands of years to 

thoroughly explore the chemical universe. Fortunately, biology survives with only a tiny 

percentage of small molecules and a surprisingly small number of proteins. It is therefore 

necessary to carry out the chemical expeditions to the pharmaceutically interesting island 

in chemical space. Many studies in the past have compared the chemical space occupied by 

various molecular datasets including drugs, natural products, synthetic compounds and 

lead libraries. 

 

Subsequently, the knowledge of the physicochemical properties of chemical compounds 

has lead to the concept of drug-like molecules. In this paper, we examined the similarity of 

current drug molecules with human metabolites and toxics, using a range of computed 

molecular descriptors and functional groups. Moreover, the effect of using clustered data 

compared to complete datasets was also investigated  
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Abstract

Background: The current approach to screen for drug-like molecules is to sieve for molecules
with biochemical properties suitable for desirable pharmacokinetics and reduced toxicity, using
predominantly biophysical properties of chemical compounds, based on empirical rules such as
Lipinski’s “rule of five” (Ro5). For over a decade, Ro5 has been applied to combinatorial
compounds, drugs and ligands, in the search for suitable lead compounds. Unfortunately, till date, a
clear distinction between drugs and non-drugs has not been achieved. The current trend is to seek
out drugs which show metabolite-likeness. In identifying similar physicochemical characteristics,
compounds have usually been clustered based on some characteristic, to reduce the search space
presented by large molecular datasets. This paper examines the similarity of current drug
molecules with human metabolites and toxins, using a range of computed molecular descriptors as
well as the effect of comparison to clustered data compared to searches against complete datasets.

Results: We have carried out statistical and substructure functional group analyses of three
datasets, namely human metabolites, drugs and toxin molecules. The distributions of various
molecular descriptors were investigated. Our analyses show that, although the three groups are
distinct, present-day drugs are closer to toxin molecules than to metabolites. Furthermore, these
distributions are quite similar for both clustered data as well as complete or unclustered datasets.

Conclusion: The property space occupied by metabolites is dissimilar to that of drugs or toxin
molecules, with current drugs showing greater similarity to toxins than to metabolites.
Additionally, empirical rules like Ro5 can be refined to identify drugs or drug-like molecules that
are clearly distinct from toxic compounds and more metabolite-like. The inclusion of human
metabolites in this study provides a deeper insight into metabolite/drug/toxin-like properties and
will also prove to be valuable in the prediction or optimization of small molecules as ligands for
therapeutic applications.
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Background
To search for biologically active compounds, with
favorable ADMET [1] (Absorption, Distribution, Meta-
bolism, Excretion, and Toxicity) properties from the
immense “chemical space” is a non-trivial task [2]. Drug-
likeness has been dominated, in the past decade, by
Lipinski’s “Rule of Five” (Ro5) [3], which states that a
compound is likely to be “non-drug-like” if it has more
than five hydrogen bond donors, more than 10 hydro-
gen bond acceptors, molecular mass is greater than 500
and lipophilicity is above 5. The analysis carried out by
Leeson and Davis [4] of the approved drugs released
before 1983 (i.e. pre-Ro5 era) and the drugs released in
between 1983 and 2002 clearly indicates the impact of
Ro5 on drug discovery projects.

However, Lipinski’s rule has many exceptions and in one
of the studies [5] it was shown that using the above
criteria, only 66% of approved drugs in the MDL Drug
Data Report (MDDR) database, were classified as drug-
like; whereas 75% of the theoretically non-drug-like
compounds from the Available Chemical Directory
(ACD) were in fact regarded as drug-like by Ro5.
Moreover, Ro5 does not select metabolites because
metabolite-likeness is a recent measure, since Ro5 was
formulated a decade ago, with little knowledge on
metabolites and pathways. Similar studies have spurred
the quest for new approaches to classify drugs from non-
drug molecules [6,7], and to characterize the properties
of drug-like or lead-like compounds [8,9]. Subsequently,
the “rule-of-three” (Ro3) [10] was proposed for frag-
ment-based lead discovery. Ro3 states that successful hits
possess an average Molecular weight <= 300, the number
of hydrogen bond donors <= 3, the number of hydrogen
bond acceptors <= 3 and Clog P <= 3. In addition, the
number of rotatable bonds <= 3 and the polar surface
area <= 60 are also useful in characterizing drug-like and
non-drug-like molecules. In past few years, researchers
have developed a range of indices, such as the natural
product index [11], the metabolite index [12], peptide-
likeness [13], lead-likeness [14-16], and drug-likeness
[3], in an attempt to achieve a better classification
between drugs and non-drugs. In conjunction with
machine learning techniques, like Artificial Neural Net-
works (ANN) [6,7], Support Vector Machine (SVM) [17]
and Hidden Markov Models (HMM), statistical [18] and
substructure analyses have become widely accepted to
characterize the properties of drug-like datasets and
reduce the attrition rates in drug development.

Drug-likeness in natural products and synthetic
compounds
In this section, we present a summary of analysis reports
primarily focused on identifying drug-likeness in natural

products and synthetic organic compounds, derived
from combinatorial functional group replacement.
Henkel et al. [18] carried out statistical analysis to determine
the properties and structural differences between natural
products (NPs) and combinatorial molecules. In their
analysis, NPs were derived from Chapman and Hall
Dictionary of Natural products and the bioactive natural
product database (BNPD) obtained from Szenzor
Management Consulting Company. These were com-
pared with synthetic compounds from the Available
Chemical Directory (ACD) and Bayers database and
representative bioactive molecules from drug databases.
Stahura et al. [19] used Shannon entropy to analyze the
differences between NPs obtained from the Dictionary of
Natural Products and synthetic molecules obtained from
ACD database. Feher and Schmidt [20] examined
representative set of molecules from NPs obtained
from four databases namely BioSPECS natural product
database, ChemDiv natural product database, Interbio-
screeen IBS2001N and HTS-NC database, drugs obtained
from (Chapman and Hall Dictionary of Drugs) and
combinatorial molecules obtained from (MayBridge HTS
database, ChemBridge EXPRESS-Pick database Com-
Genex Collection, ChemDiv Collection and SPECS
screening compound database). The authors concluded
that the number of chiral centers, the number of
rotatable bonds and the ratio of aromatic atoms to
ring atoms are the most distinguishing features among
the three classes of compounds. In their study, drugs
occupied the property space between NPs and combi-
natorial compounds, consistent with drugs being
obtained from NPs as well as combinatorial libraries.
The first three principal components accounted for about
66% of the variance. Feher and Schmidt were thus the
first to introduce the idea of NP-like filters. Lee and
Schneider [21] utilized Self Organizing Maps (SOM) for
the classification of drugs, non-drugs and NPs. Their
study revealed several pharmacophoric patterns in
common between NPs and drugs, suggesting the use of
such patterns for exploring drug relevant pharmaco-
phoric space.

Metabolite-likeness as the criterion for lead discovery
With the growing knowledge of biochemical pathways
and their cognate metabolites, Hattori et al. [22]
analyzed the molecular diversity of KEGG (Kyoto
Encyclopedia of Genes and Genomes) Ligand database
which includes 9,383 chemical structures. Nobeli et al.
[23] have produced an interesting classification of
Escherichia coli metabolome according to fragment-
based fingerprints and maximum common subgraphs.
Gupta and Aires-de-Sousa [12] compared the structural
coverage of the metabolite molecules from the KEGG
database and purchasable molecules from the ZINC

BMC Bioinformatics 2009, 10(Suppl 15):S10 http://www.biomedcentral.com/1471-2105/10/S15/S10

Page 2 of 18
(page number not for citation purposes)

88



library, a free database of commercially available
compounds. They reported the use of various machine
learning techniques like Kohonen maps, random forest
(RFs) and classification trees to distinguish between
metabolites and non-metabolites. Cherkasov [24] and
coworkers derived 20 binary classifiers and achieved
99% of the accurate separation between drugs, drug-like
compounds (“druglikes”), bacterial and human meta-
bolites and antimicrobial compounds, and proposed
metabolite-likeness as a potential tool for discovering
novel antimicrobials. Recently, Dobson et al. [25]
compared different molecular properties among human
metabolites, drugs and “predrugs” (precursor drug
molecules). They concluded that although metabolites
are a distinct class of compounds, metabolites and drugs
occupy a significant amount of common property space.
They further suggested that metabolite-likeness may be
used as a filter for designing drugs which are functionally
similar to metabolites and thus have better ADMET
properties.

The several excellent studies described above have each
compared different datasets, using a variety of chemoin-
formatics tools and molecular descriptors. Furthermore,
some of the studies used datasets that were clustered [25],
while others have searched or compared complete
(unclustered) datasets [24]. Most importantly, the prop-
erty space of toxic compounds has not been included in
any of these studies, whereas one of the basic tenets of
drug development to reduce or eliminate toxicity [26].

The analysis carried out of the drug failures during past
few decades have shown that over 90% of the failures are
due to high toxicity [27,28]. It is therefore essential that
the property space of toxins is explored along with drugs
and metabolites to develop filters for toxicity.

Our aim is to compare freely available datasets of
metabolites, drugs and toxins, as benchmark datasets,
using a range of available molecular descriptors, to
identify the property space occupied by these three data
types. We also present analysis results from complete
datasets, as well as clustered datasets, to determine
whether clustering molecules would affect the analysis
results. Our results indicate that clustering does not

affect property distributions to a significant level and
that unclustered datasets can be used in drug discovery
pipelines. We also report, for the first time to the best of
our knowledge, that current drug molecules are more
akin to toxins than to metabolites, in physicochemical
property space.

Results
Rule of five (Ro5) analysis
The number of molecules adhering to Ro5 was calcu-
lated and the results are reported in Table 1. It is
surprising to note that although Ro5 was formulated to
pick out drugs or drug-like molecules, it actually does
well in identifying toxin molecules. Over 90% of the
toxin molecules satisfy all Ro5 criteria. On the other
hand, metabolites perform worst among the three
datasets while drugs do fairly well, as expected due to
the predominance of Ro5 over the past decade. It should
also be noted that among the four properties compared,
the numbers of hydrogen bond donor and acceptor seem
to be more robust properties, as over 84% of the
molecules in all the datasets satisfy Ro5 requirements.

Examining the molecular properties of three datasets
The distribution of various descriptors (properties)
among drugs, human metabolites and toxin molecules
are available from Table 2 and Fig. 1, 2, 3, 4, based on
the analyses of clustered datasets (details in the Methods
section). There is very little overlap in the clustered
datasets and so no further reduction in redundant data
has been carried out (details in the Methods section and
Fig. 5).

While there is a multitude of molecular descriptors
available for carrying out comparison studies, given the
large size of the datasets, we need a set of rapidly
computable molecular descriptors, for efficient analysis.
Furthermore, to account for 70% of the drugs, Oprea et
al. [9] used simple descriptors such as the count of rings
and rotatable bonds along with Lipinski descriptors. We
have considered a range of 1D and 3D properties for the
current analysis. The results are presented as Lipinski
(Ro5) properties, 1D properties (non-Ro5 measures) and
3D properties.

Table 1: Distribution of molecules following Lipinski's rule

Datasets Lipinski Properties

Molecular weight < 500 Da H-bond Donor <=5 H-bond Acceptor <=10 Log P < 5

HMDB (Metabolites) 34% 84% 84% 35%
DDB (Drugs) 84% 86% 87% 92%
CPDB (Toxins) 94% 98% 97% 92%
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Lipinski properties
Molecular weight
Metabolites follow a bimodal distribution in molecular
weight, with the first peak at 100-400 (almost 31% of
the dataset) and the second and larger peak at 700-1000,
containing 48% of the dataset. On the other hand, the
molecular weight of drugs follows a Gaussian distribu-
tion with the majority of drugs (82%) under the range of
500. This is in accordance with the Lipinski restriction of
weight less than or equal to 500. Despite the Ro5
restriction, 18% of the drug molecules possess a
molecular weight in excess of 500. Toxin molecules
more or less follow the same pattern as drugs, with the
gradual decrease in number of compounds as molecular
weight increases from 100 to 500 (Fig. 1a).

From the calculated mean and median values for the
molecular weight, it appears that the metabolite data is
skewed towards high molecular weight compounds
whereas drugs and toxin molecules prefer a lower
molecular weight distribution. The statistics of the
molecular weight property for the three datasets are
available in Table 2.

Lipophilicity (Alog P)
Lipid solubility is a direct measure of transport abilities
of the compound across biological membranes [29].

Drug molecules should have enough solubility to
traverse the membrane but should not be too soluble
so as to get trapped in them. Thus, lipophilicity of a
compound is of special significance in drug discovery
programs. The most commonly used parameter to
evaluate lipid solubility is the n-octanol/water partition
coefficient (Alog P). Positive values of this partition
coefficient correspond to a preference for lipophilic or
hydrophobic environment while negative values indicate
a preference for lipophobic or hydrophilic environment.
It is clear from Table 2 and Fig. 1b, that metabolites in
general are more lipophilic than drugs or toxic com-
pounds. Only 17% of the metabolites have negative Alog
P values confirming that the majority of the metabolites
are lipophilic. On the other hand, 39% of the drugs have
Alog P values in negative territory, indicating that two-
fifths of the drugs are lipophobic. Like metabolites, only
19% of the toxin molecules have negative Alog P values
while the majority of the molecules are in the range 0 to
+5 which is much smaller range as compared to
metabolites (Fig. 1b).

Lipinski hydrogen bond donors
Lipinski hydrogen bond donors (LHBDs) are determined
by counting the numbers of OH and NH bonds in each
molecule [3]. Approximately 21% of the metabolites,
12% of the drugs and 34% of the toxin molecules do not

Table 2: Comparison of molecular properties among the three datasets

Molecular Property Mean (Median) ± std. dev.

Metabolites Drugs Toxins

Lipinski properties
Molecular weight 621 (701) ± 322 355 (309) ± 259 275 (239) ± 167
Alog P 7 (10) ± 7 .08 (1) ± 3.5 2 (2) ± 2
Lipinski HB acceptors 9 (9) ± 6 7 (6) ± 7 5 (4) ± 4
Lipinski HB donor 3 (3) ± 3 3 (3) ± 4 2 (1) ± 2
1D properties
Number of atoms 43 (51) ± 22 24 (21) ± 8 16 (14) ± 11
Number of carbon atoms 34 (41) ± 18 16 (14) ± 12 12 (10) ± 9
Number of hydrogen atoms 60 (72) ± 33 23 (19) ± 18 16 (12) ± 12
Number of nitrogen atoms 1 (1) ± 2 3 (2) ± 3 2 (1) ± 2
Number of oxygen atoms 8 (8) ± 5 5 (4) ± 5 3 (2) ± 3
Number of rings 1 (0) ± 2 3 (2) ± 2 2 (2) ± 2
Number of ring assemblies 1 (0) ± 1 2 (2) ± 1 1 (1) ± 1
Number of rotatable bonds 27 (37) ± 20 6 (4) ± 7 3 (2) ± 4
Number of aromatic bonds 1 (0) ± 4 8 (6) ± 7 6 (6) ± 6
Log D 6 (9) ± 7 0.4 (0.9) ± 4 2 (1.4) ± 2.6
Mol. solubility -10 (-13) ± 8 -3 (-3) ± 3 -3 (-2) ± 3
3D properties
Mol. SA 651 (788) ± 343 364 (316) ± 252 270 (233) ± 159
Mol. volume 450 (548) ± 244 245 (214) ± 170 179 (153) ± 110
Mol. polar SA 143 (126) ± 94 121 (95) ± 117 84 (63) ± 76
Mol. SA volume 866 (1051) ± 420 510 (464) ± 272 401 (366) ± 164
Mol. polar sa SA 216 (195) ± 138 191 (156) ± 173 126 (105) ± 91
Mol. sa SA 1034 (1205) ± 472 578 (523) ± 313 451 (408) ± 187

For each dataset, the mean, median and standard deviation values are provided, with properties ordered as Lipinski properties, 1D properties and 3D
properties. HB: hydrogen bond; Mol.: Molecular; sa: solvent accessible; SA: Surface Area.
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possess any LHBDs. Almost the same percentage of
molecules in the drug (~41%) and toxin (~36%) dataset
have one or two LHBDs, respectively, while only 17% of
the metabolite dataset has the same number of LHBDs.
Only 5% of the toxins, 14% of the drugs and 16% of the
metabolites have LHBD greater than five (Fig. 1c).

Lipinski hydrogen bond acceptor
Only a fraction of molecules in all the datasets (0.35% of
metabolites, 0.40% of drugs and 3.6% of toxins) do not
possess Lipinski hydrogen bond acceptors (LHBAs),
computed by summing the numbers of nitrogen and
oxygen atoms in each molecule [3]. Drugs and toxins
follow almost the same distribution with the highest
percentage of molecules in the range 2-7 LHBA atoms
per molecule. On the other hand, metabolites have a
wide spread distribution with an unusually high peak at
9 LHBA (Fig. 1d).

1D properties
Total number of Atoms
The distribution of the total number of atoms in
metabolites follows a bimodal pattern (Fig. 2a), with
the larger peak at 50-70 atoms, containing 47% percent
molecules and the smaller peak at 10-30 atoms, contain-
ing 28% of molecules. The maximum number of atoms
in a metabolite molecule is 124, while the mean value is
43 atoms per molecule. In contrast to human metabo-
lites, the drug dataset follows a bell-shaped curve,
skewed towards low numbers of atoms per molecule.
Approximately 79% of drugs contain 10-40 atoms per
molecule. The average number of atoms per molecule in
the drug dataset is 24, while in metabolites, the average
is 43. Like drugs, toxin molecules also favor smaller
numbers of atoms per molecule, with a mean of 16 and a
gradual decrease in the number of compounds as the
number of atoms increases per molecule. The majority of

Figure 1
Comparison of Lipinski properties among human metabolites, drugs and toxins. Compared properties include
a. Molecular weight, b. AlogP, c. Number of Lipinski hydrogen bond donors and d. Number of Lipinski hydrogen bond acceptors.
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the toxin dataset (91%) contains 10-30 atoms per molecule
while only 9%of toxinmolecules contain 30 ormore atoms
per molecule. The overall statistics of the three datasets is
given in Table 2 and show that metabolites tend to have
more atoms than drugs and toxin molecules.

Carbon content
Almost half of the molecules in the metabolite dataset
have carbon atoms in the range 35-55 while 32% have
5-25 carbon atoms per molecule (Fig. 2b). The carbon
atom distribution in metabolites has a mean of 33 atoms
and a maximum of 100. On the other hand, drugs have a
mean of 18 carbon atoms per molecule, with a
maximum of 256 and 76% of drugs have carbon
atoms in the range 5-25. Similar to drugs, toxin
molecules also seem to prefer fewer carbons. In the
toxin dataset, 77% of the molecules have 5-25 carbon

atoms, while 16% have five or fewer carbon atoms. Only
7% of the molecules have more than 25 carbon atoms in
toxin dataset. The distribution of carbon atoms in the
toxin dataset has a mean of 12 and a maximum of 62.
From Table 2, we note that metabolites contain more
carbon atoms than drugs, which in turn have greater
carbon content than toxin molecules.

Nitrogen content
Approximately 40% of metabolites do not have any
nitrogen atom (Fig. 2c), while 45% have only one
nitrogen atom and 16% have two or more nitrogen
atoms per molecule. In sharp contrast to metabolites,
only 15% of drug molecules do not posses nitrogen
atoms while 74% of the molecules have nitrogen atoms
in the range 1-5. On the other hand, 30% of the toxin
molecules are devoid of any nitrogen atom while 66% of

Figure 2
1D Atomic property differences between human metabolites, drugs and toxins. Compared properties include a.
Number of atoms, b. Number of carbon atoms c. Number of nitrogen atoms d. Number of oxygen atoms e. Number of
positively charged atoms f. Number of negatively charged atoms
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toxin molecules contain nitrogen atoms in the range 1-5
and only 3% have six or more nitrogen atoms. From
Table 2 and the values presented above, drugs molecules
clearly possess the most number of nitrogen atoms,
followed by toxin molecules and lastly, metabolites.

Oxygen content
For the three datasets, there is a clear reversal of the trend
for the oxygen atom distribution compared to the
nitrogen atom distribution presented in the previous
section. Only 1% of the metabolite molecules do not

have an oxygen atom as compared to 8% of drugs and 15%
of toxin molecules (Fig. 2d). Furthermore, in metabolite
dataset, 73% of the molecules possess oxygen atoms in the
range 2-8, compared to 68%of drugs and 65%of the toxins.
Metabolites comprise more oxygen atoms than drugs,
followed by toxic compounds, with mean values of eight,
five and three, respectively (Table 2).

Number of negatively and positively charged atoms
The fraction of molecules with a single negatively
charged atom in the metabolite dataset (16%) is almost

Figure 3
Other 1D properties compared among human metabolites, drugs and toxins. Compared properties include a.
Number of rings, b. Number of ring assemblies c. Number of rotatable bonds, d. Number of aromatic bonds, e. Log D, f.
Molecular solubility.
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the same as that containing one positively charged atom
(17%). While the metabolite dataset contains molecules
with more than one negatively charged atom, there are
no molecules with more than one positively charged
atom. The percentage of negatively charged atoms is
smaller in the drug dataset as compared to metabolite
dataset (Fig. 2e and Fig. 2f). Only 5% of drug molecules
contain a negatively charged atom, with only 2%
containing two or more negatively charged atoms,

whereas 8% contain one positively charged atom. On
the other hand, in the toxin dataset, 13% of the
molecules contain one negatively charged atom per
molecule and 5% of molecules contain two or more
negatively charged atoms, whereas 14% of the molecules
in the same dataset contain one positively charged atom
per molecule and 4% contain two or higher positively
charged atoms. The trend of charged atoms among the
three datasets is Metabolites > Toxin molecules > Drugs,

Figure 4
Comparison of 3D properties among human metabolites, drugs and toxins. Compared properties include a.
Molecular surface area, b. Molecular volume c. Molecular polar surface area, d. Molecular solvent accessible volume, e.
Molecular polar solvent accessible surface area, f. Molecular solvent accessible surface area.
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with the drug dataset favouring negatively charged atoms
over positively charged ones.

Number of rings
The distribution of number of rings is shown in Fig. 3a.
Although more than 55% of the molecules in the
metabolite dataset are acyclic, 19% contain a single
ring and 21% contain 2-5 rings. In sharp contrast to
metabolites, only 9% of the drugs are acyclic, while
almost 60% contains rings, with a three-way distribution
(~20% each) between one, two and three rings per
molecule. The remaining 23% of drug molecules
contains 4-6 rings, the maximum number of rings
being 38. In the toxin dataset, 19% of the molecules
are acyclic, whereas 68% contain 1-3 rings per molecule.
The remaining 10% of toxins contain four or more rings
per molecule. Thus, the pattern of ring distribution
among the three datasets is Drugs > Toxin molecules >
Metabolites.

Number of ring assemblies
After removing the non-ring bonds from a molecule the
remaining backbone is termed as the ring assembly. As
shown in the Fig. 3b, more than half of the molecules
(57%) in the metabolite dataset have no ring assembly,
while 30% of the molecules have one ring assembly and
13% have two or more ring assemblies per molecule. On
the other hand, in the drug dataset, only 10% of the
molecules are free of ring assembly, whereas 36% and
32% have one and two ring assemblies, respectively.
Furthermore, in the same dataset, 23% molecules
contain more than three ring assemblies per molecule.
Similar to drugs, most of the toxins possess ring
assemblies with only 19% are devoid of any ring

assembly, while 45% molecule have a single ring
assembly. The percentage of molecules with two ring
assemblies in the same dataset is 21% whereas 6% of the
molecules have three or more ring assemblies. The
pattern of ring assemblies is similar to that obtained for
ring distribution in three datasets, being Drugs > Toxin
molecules > Metabolites.

Number of rotatable bonds
The number of rotatable bonds is a measure of
molecular flexibility and is important in determining
oral bioavailability of the drugs [30]. Only 4% of the
molecules in the human metabolite dataset have no
rotatable bonds, whereas 32% have 1-10 rotatable bonds
and 47% of the molecules have rotatable bonds in the
range 36-50 (Fig. 3c). The mean value for rotatable bond
distribution in metabolite dataset is 27, with the
maximum number of rotatable bonds in a metabolite
molecule being 83 (Table 2). Among the drug molecules,
7% are devoid of rotatable bonds, while 79% of
molecules have 1-10 rotatable bonds. Another 12% of
the molecules in this dataset have rotatable bonds in the
range of 10-20. The mean value for rotatable bonds per
molecule in drugs is 6, with a maximum of 170. In
contrast to metabolites and drugs, 15% of toxin
molecules do not possess any rotatable bonds, while
79% of the molecules contain rotatable bonds in the
range of 1-10. The mean value for rotatable bonds in
toxin molecules is 3 and the maximum number of
rotatable bonds in a toxin dataset is 31. Thus,
metabolites are more flexible than drugs and toxins.

Number of aromatic bonds
More than 80% of metabolites do not possess any
aromatic bond. The remaining metabolites have several
aromatic bonds, usually as multiples of five or six. As
shown in Fig. 3d, 6% of the molecules have either five or
ten aromatic bonds, while 8% of molecules have either
six or twelve aromatic bonds. The maximum number of
aromatic bonds in metabolites is 36.

In contrast to metabolites, only 29% molecules of drugs
have no any aromatic bonds. Of the remaining, 12% and
36%, respectively, of drug molecules have aromatic
bonds as multiple of five and six. The maximum number
of aromatic bonds in the drug dataset is 62. On the other
hand, toxin molecules are predominantly aromatic
(61%) with 7% and 42% having aromatic bonds as
multiples of five and six, respectively. The maximum
number of aromatic bonds in the toxin dataset is 46. The
order of aromatic bond distribution is Drugs ≈ Toxin
molecules > Human metabolites, with almost half the
aromatic bonds in all the three datasets being multiples
of five or six.

Figure 5
Venn diagram showing the overlap between the
three clustered datasets.
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Log D
For solutes that can ionize, the distribution coefficient
(D) is the ratio of the sum of the concentrations of all
forms of the compound (ionized plus un-ionized) in
each of the two solution phases. logD is thus considered
a better measure of lipophilicity that Alog P. However,
for all three datasets, logD follows the same distribution
as Alog P (Fig 3e and Table 2).

Molecular solubility
Human metabolites have large range of molecular
solubility values for example more than 85% of the
molecules in metabolite dataset have molecular solubi-
lity in the range of -20 to 0. Drug molecules have a
smaller range of molecular solubility as compared to
metabolites, with 87% of the molecules in drug dataset
having molecular solubility values spanning -10 to 0.
Similarly, more than 90% of toxin molecules have a
solubility value in the range -10 to 0. Thus, the most
preferred and common range of molecular solubility
among the three datasets is -10 to 0, which comprises
~85% of the drug and toxin datasets but only 38% of the
metabolite dataset (Fig. 3f and Table 2). The molecular
solubility of metabolites is more than that of drugs,
followed by toxin molecules, which suggests that
metabolites tend to dissolve more easily than drugs
and toxins in vivo (aqueous media).

Chirality
Chirality seems to be a distinguishing feature among the
three datasets. The majority of the molecules in the
metabolite dataset (74%) are chiral. Chirality falls
sharply in drugs and toxic compounds to 31% and
14%, respectively.

Number of halogen atoms per molecule
As expected, toxin molecules have the highest number of
halogen atoms per molecule compared to metabolites
and drugs. 31% of molecules in toxin dataset possess a
single halogen atom (F, Cl, Br, I) per molecule while in
case of drugs close to 18% contain halogen atoms. In
sharp contrast, to these two datasets, metabolites have
far fewer halogen atoms per molecule. Only 15 out of
4568 molecules, i.e. only 0.3% of the molecules, studied
are reported to have any halogen atom. The trend for
halogens is Toxin molecules > Drugs >> Metabolites. The

statistics provided in Table 3 provides information on
the number of halogen containing molecules in each
dataset.

Number of Sulphur and Phosphorus atoms per molecule
Only 5% of the molecules in metabolite dataset, 20% of
the drugs and almost the same percentage (16%) of
toxin molecules contain one or more sulphur atoms in
their molecule. For sulphur atoms, the trend is Drugs ≈
Toxin molecules > Metabolites. The trend gets reversed in
the case of phosphorus atoms, with 46% of molecules in
metabolites, 13% of drug molecules and only 3% of the
toxic dataset having one or more phosphorus atoms. So
the trend in phosphorus atomdistribution isMetabolites >>
Drugs > Toxin molecules.

Average bond length per molecule
The metabolite molecules form two groups, with 48%
having a mean value of 0.82 Å bond length, while
another 51% have 0.83 Å. The majority of drug
molecules (65%) also have either 0.82 or 0.83 Å bond
length. In sharp contrast to the other two datasets, the
average bond length for 92% of molecules in toxic
dataset is 1.33 Å, while another 7% of the molecules
have 1.40 Å as the average bond length. As far as average
bond length is concerned, metabolites and drugs have a
much shorter average bond length compared to toxin
molecules, the trend being Toxin molecules > Metabo-
lites ≈ Drugs.

3D Descriptors: molecular volume and surface area
Molecular surface area
Molecular surface area distribution in metabolites is
bimodal (Fig. 4a) with the first smaller peak at 100-400
Å2, containing 37% of the molecules and the second
larger peak at 700-1100 Å2, with 53% of the molecules.
On the other hand, 83% of drugs molecules have
molecular surface area between 100-500 Å2. A similar
distribution is obtained for toxin molecules with 89% of
the compound in the toxin dataset having a molecular
surface area in the range 100-500 Å2 and only 4% are in
the range 0-100 Å2. From these values and the statistics
in Table 2, metabolites have greater molecular surface
area than drugs and toxin molecules.

Table 3: Halogen atom frequency distribution. The number of times different halogens are reported in each of the dataset is listed
below

Database Fluorine Chlorine Bromine Iodine

Metabolites 15 32 0 27
Drugs 496 477 110 63
Toxins 62 473 38 5
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Molecular volume
The results of molecular volume distribution in three
datasets are reflected in the related property of molecular
weight distribution. As depicted in Fig. 4b the molecular
volume range in metabolites is much wider and in
accordance with molecular weight data when compared
to the other two datasets. Almost 47% of the molecules
have molecular volume in the range of 500-700 Å3. The
majority of molecular volume distribution of the drug
dataset is narrow compared to that of human metabo-
lites with 81% of the molecules are in the range form
100-400 Å3, although the tails extend further, with some
molecules found to have volumes above 1700 Å3. The
molecular volume range is even more restricted in toxic
compounds with 90% of the molecules in the range
0-300 Å3 with ~49% of these having a molecular volume
of 100-200 Å3. So, the trend for molecular volume
distribution is the same as that observed for molecular
weight distribution among the three datasets: Metabo-
lites > Drugs > Toxin molecules.

Molecular polar surface area
The polar surface area is defined as the surface area
summed over all polar atoms, (usually oxygen and
nitrogen), including the attached hydrogen atoms. It is
often correlated with drug transport capabilities and is
important for penetrating the blood-brain barrier (BBB).
As most of the metabolites do not need to be shuttled
through barriers like BBB, they can afford to have more
polar surface area than drugs and toxins. More than 95%
of the metabolites have polar surface area in the range
0-350 Å2 (Fig. 4c) while 92% of polar surface area of
drugs is contained within 0-250 Å2. The distribution is
even narrower for the toxin dataset with 90% of the
molecules in the range 0-150 Å2.

Molecular solvent accessible volume
Molecular solvent accessible volume distribution is
similar to the distribution of the molecular volume. In
the case of metabolites (Fig. 4d), it also follows a
bimodal distribution with a smaller peak of 36%
molecules around 200-600 Å3 and a larger peak contain-
ing 46% of the molecules around 1000-1300 Å3.
However, there is no molecule with accessible volume
less than or equal to 100 Å3. Unlike metabolites, drugs
molecules have only one peak covering almost the entire
dataset. About 91% of the drug molecules have solvent
accessible volume from 200 to 800 Å3. Like metabolites
there is no molecule with solvent accessible volume less
than or equal to 100 in drug dataset. The distribution of
solvent accessible volume in toxin molecules is even
thinner with 89% of the molecules in the range 200-600
Å3. Other 7% are present in the range 600-1000 Å3.
According to the statistics shown in Table 2 and Fig. 4d,

the order of molecular solvent accessible volume is
Metabolites > Drugs > Toxin molecules.

Molecular polar solvent accessible surface area
Drugs and toxin molecules follow a perfect Gaussian
distribution for polar solvent accessible surface area
while metabolites follow a bimodal pattern (Fig. 4e).
The maximum number of molecules in toxic dataset has
molecular polar solvent accessible surface area is in the
range 0-200 Å2 while for drugs the range is 0-350 Å2. On
the other hand maximum numbers of metabolites are
covered in between 100-250 Å2. The statistics in Table 2
suggests that metabolites tend to have larger molecular
polar solvent accessible surface area compared to drugs
which in turn are larger than toxins.

Molecular solvent accessible surface area
Differences among metabolites, drugs and toxin mole-
cules are readily observable for molecular solvent
accessible surface area. Metabolites follow a bimodal
distribution whereas drugs and toxins follow a Gaussian
distribution (Fig. 4f). Toxin molecules peak at 300-500
Å2 while drugs peak at 400-600 Å2. Metabolites, on the
other hand, form a lower peak at 300-400 Å2 with a
second larger peak at 1200-1500 Å2. Form Table 2,
metabolites have clearly larger values for molecular
solvent accessible surface area than drugs and toxins.

Functional group analysis
The frequency of functional group occurrence among the
three datasets was carried out in this study with the
Scitegic Pipeline pilot software (details in the Methods
section). The occurrence of specific functional groups of
interest to drug design is given in Table 4 and Additional
file 1. Aromatic atoms are a prominent feature among
drugs and toxins while only a sixth of metabolites have
aromatic atoms. The same trend is observed in benzene
ring distribution among the datasets. Further, primary
and quaternary amines occur more frequently in
metabolites than secondary and tertiary amines when
compared to drugs and toxin molecules, respectively.
Additionally, drugs are found to possess a greater
number of amides than metabolites or toxins. Finally,
toxic functional groups (like nitro, azo and cyanide) are
only found in toxins while they are either absent or very
limited in drugs and metabolites.

Clustered vs. unclustered datasets
We have compared all the above property distributions
for clustered and unclustered (raw) datasets (data not
shown). Correlation coefficients were calculated for all
the properties and eight properties which are not
significantly correlated are presented here, viz. Alog P,
molecular weight, the number of oxygen atoms, the
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number of nitrogen atoms, molecular polar surface
area, molecular solubility, the number of rings and the
number of aromatic bonds (Figs. 6, 7, 8, 9). Alog P and
molecular weight values (Fig. 6) do not deviate
significantly with clustering. Nitrogen atom distribu-
tion (Fig. 7) for clustered and unclustered molecules
also remains fairly similar for all the datasets. The
analysis also shows that the number of aromatic bonds
(Fig. 8) and the molecular solubility distribution
(Fig. 9) are also fairly conserved between clustered
and unclustered datasets. We note that, by and large,
the two distributions are very similar except in
following cases:

Number of oxygen atoms
There is an exception at five oxygen atoms per molecule
in the unclustered metabolite dataset (Fig. 7b).

Number of rings
The number of molecules with zero rings drops for drugs
(~8% decrease) and toxins (~9% decrease) whereas
metabolites follow a similar distribution in clustered and
unclustered dataset comparison (Fig. 8a).

Molecular polar surface area
Clustered metabolites show a 10% decrease in molecules
with polar surface area in the range 50-100 Å2 while
clustered toxins show a 15% increase in the number of
molecules with polar surface area between 0 to 50 Å2.
Drugs, on the other hand, follow a similar distribution
for clustered and unclustered datasets (Fig. 9a).

Conclusion
We have carried out a comprehensive analysis of three
publicly available datasets, comprising drug, metabolite
and toxin molecules. We have also, for the first time, to
the best of our knowledge, compared the distributions of
various properties for complete datasets (unclustered
data) as well as reduced or clustered datasets. We note
that, in the main, the distributions for the two data
groups, clustered and unclustered, are very similar,
supporting the use of clustered datasets, except in the
case of the number of oxygen atoms, the molecular polar
surface area and the number of rings. Based on this
result, these properties should be treated with caution
for lead discovery in drug discovery pipelines with
unclustered datasets.

From the analyses of clustered datasets, we find that two-
thirds of the human metabolites lie outside the Lipinski
universe. On the other hand, over 90% of the toxin
molecules abide by Lipinski’s rule, implying that since
Ro5 does not explicitly take toxicity into account,
present-day drugs are consequently similar to toxins
than to metabolites.

Results from the analysis of 1D and 3D molecular
properties consolidate our finding of drugs and toxins
sharing a larger property space, than drugs and metabo-
lites. 1D properties such as the total number of atoms
advocate that metabolites are bulky, with more carbon
and hydrogen atoms than drug and toxins. This is
consistent with the idea that metabolites are produced at
the required subcellular location and thus do not need
to be transferred from one location to another. In order
to design metabolite-like drugs, it would be beneficial to
attempt alternative ways for drug delivery, since tradi-
tionally, drugs are required to pass through the blood-
brain-barrier, which limits the size of drug molecules.
Considering the numbers of nitrogen and oxygen atoms,
metabolites prefer oxygen over nitrogen containing
groups. Above 50% of the metabolites are acyclic while
only 9% of the drugs and 19% of the toxin molecules are
acyclic. The number of rotatable bonds measuring
molecular flexibility and consequently, oral bioavail-
ability, suggests that metabolites are far more flexible
than drugs and toxin molecules. Over 70% of the drugs
and 62% of toxin molecules are aromatic while only
20% of the metabolites are aromatic. This result is in
accordance with the fact that drugs are derived from
various sources including NPs which are mostly aromatic
in nature. In all the datasets examined, the majority of
molecules have negative solubility values, suggesting
that a large proportion of these compounds are soluble
in aqueous solutions. Chirality falls sharply from
metabolites to drugs and toxin molecules while as
expected, the number of halogen atoms are found to

Table 4: Occurrence of functional groups in the three datasets

Functional Group Metabolite
dataset

Drugs
dataset

Toxin dataset

Alkyl halide <0.5% <0.5% 3.2%
Aromatic atom 17.4% 70.6% 62.3%
Benzene 10.3% 56.0% 53%
Steroid backbone 2.9% 0.6% <0.5%
HBA Ester 56.3% 13.8% 15.4%
Pyridine 1.2% 6.4% 5.3%
Pyrimidine 3.2% 7.5% 1.9%
Enamine 3.2% 10.31% 3.41%
Primary amine 28% 14.4% 12.0%
Secondary amine 11.4% 64.0% 41.2%
Tertiary amine 44.6% 80.0% 60.0%
Quaternary Amine 15.3% 2.1% 0.5%
Primary amide 1.5% 4.5% 3.9%
Secondary amide 11.4% 31.0% 14.5%
Tertiary amide 2.8% 16.8% 9.2%
Imines 4.1% 14.0% 6.4%
Azo 0% <0.5% 3.4%
Carbamic acid <0.5% 3.1% 1.9%
Urea 2.5% 8.0% 6.5%

Those functional groups which can discriminate between the three
datasets are presented here. The complete list is in Additional File 1.
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be higher in toxins than in drugs and metabolites. The
average bond length of 90% metabolites and more than
65% of drugs is much smaller than majority of toxins,
suggesting multiple bonds in the former datasets. The
analysis results from 3D descriptors such as molecular
volume and molecular surface area are reflected in the
related property of molecular weight and confirm that
present day drugs are more like toxins than metabolites.

The analysis also shows that although drugs share a
relatively larger property space with toxins than with
metabolites, drugs and toxins are two different classes of

compounds as reflected in specific physicochemical
characteristics. Drugs tend to have higher values for
properties such as molecular weight, the number of
oxygen atoms, the number of rotatable bonds and
molecular polar surface area whereas toxin molecules
have considerably higher Alog P and Log D values.

Additionally, empirical rules like the “rule of five” can be
refined to increase the coverage of drugs or drug-like
molecules that are clearly not close to toxic compounds,
because toxicity reduction is one of the key aspects of
drug discovery programs. Our results have implications

Figure 6
Comparison of example Lipinski properties for clustered and unclustered (raw) data. Properties compared are
a. Alog P, b. Molecular weight,, for human metabolites (M), drugs (D) and toxin molecules (T).
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for the analysis of novel compounds in lead discovery
pipelines, to uncover novel target molecules.

Methods
Preparation of the dataset
Three publicly available databases, relevant to human
diseases and their treatment have been used in this
study. The human metabolome database [31] contains
information on nearly 7000 small molecule metabolites
found in human body. Similarly, DrugBank [32] is a
comprehensive resource on drugs and drug targets, with
detailed chemical, pharmaceutical and medical informa-
tion on nearly 3000 drug targets and 4800 drugs
including >1,350 FDA-approved small drugs and experi-
mental drugs derived from the PDB-Ligand database
[33], containing compounds bound to biomolecules.
Distributed Structure-Searchable Toxicity (DSSTox)

Carcinogenic Potency Database [34] is hosted by the
US Environmental Protection Agency’s National Center
for Computational Toxicology aiming to provide a
public data repository on toxicity data. DSSTox contains
experimental results and carcinogenicity information for
1547 substances tested against different species.

Preliminary datasets containing 6668 human metabolites
from the human metabolome database (as on 23-Dec-
2008), 4883 drugs from DrugBank (as on 6-Jan-2009) and
1547 toxin molecules from DSSTox (as on 16-Jan-2009)
were extracted.

From these preliminary datasets duplicates and inorganic
molecules (individual atoms, metal salts, inorganic oxides,
hydroxides, cations and anions) were removed. Any
“missing” compounds (either with no or incomplete
structure) were also removed. The “cleaned” collections of

Figure 7
Comparison of example 1D atomic properties for clustered and unclustered (raw) data. Properties compared a.
Number of nitrogen atoms, b. Number of oxygen atoms, for human metabolites (M), drugs (D) and toxin molecules (T).
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unique compounds were compiled into analysis datasets
containing 6582 metabolites, 4829 drug molecules and
1448 toxin molecules. Finally, clusters were generated from
each dataset, using the Cluster “Clara” algorithm embedded
in the Scitegic Pipeline Pilot software [35], which is an
approximate version of “partitioning around medoids”
(pam) method comprising 70% of the entire raw data,
similar to that reported inDobson et al. [25]. Clusteringwas
performed to address the issue of possible overrepresenta-
tion of the chemical space, which might bias the analysis
results towards these redundant molecules. Representative
sets ofmolecules were produced by employing the extended
connectivity fingerprint (ECFP) [36,37] as a molecular
descriptor and Euclidean distance was the distance metric
selected. ECFP generates an array of structural features by
encoding each atom and its molecular environment within
a sphere of specified diameter. Cluster centres were selected
as the representatives, for clusters containingmore than one
molecule while singletons were directly used as cluster

centres in non-cluster situations. The contents of unclus-
tered and clustered datasets, prepared for analyses are
presented in Table 5.

The overlap among the three clustered datasets (CM, CD
and CT) was calculated and it was found that more
compounds are common in between drugs and toxin
molecules than any other combination. The results are
displayed in Figure 5. As the binary overlap is very small
(<5%) and the ternary overlap is negligible, the datasets
were retained as such, without further size reduction.

Calculations of the physicochemical properties
The calculation of all the molecular properties was
carried out through the Scitegic pipeline pilot [35] and
in-house Perl scripts.

Two types of hydrogen bond acceptors and donors were
taken into account. Firstly, the Lipinski type donors (sum

Figure 8
Comparison of example 1D aromatic properties for clustered and unclustered (raw) data. Properties compared
are a. Number of rings, b. Number of aromatic bonds, for human metabolites (M), drugs (D) and toxin molecules (T).
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of OH and NH) and acceptors (sum of N and O atoms)
were calculated as defined by Lipinski et al. [3] and then,
all available hydrogen bond donors and acceptors were
summed up.

The octanol-water partition coefficient was either
retained if provided with the data, or was calculated
from Scitegic software. The hydrophobicity measure,
Alog P, was calculated using the Ghose-Crippen method
[38] which takes into account the group contribution to
Log P. Another partition coefficient, Log D (the
distribution coefficient), which take into account union-
ized and ionized species, was also calculated. Log D is
equal to Log P for unionizable compounds but with
ionized species, Log D is considered better than Log P, as
it takes ionized species into account, along with union-
ized forms. A positive value of Log P or Log D suggests a

Figure 9
Comparison of example molecular properties important in drug design, for clustered and unclustered (raw)
data. Properties compared are a. Molecular polar surface area, b. Molecular solubility, for human metabolites (M), drugs (D)
and toxin molecules (T).

Table 5: Clustered and Unclustered datasets

Dataset Metabolites Drugs Toxin molecules

Unclustered M: 6582 D: 4829 T: 1448
Clustered CM: 4568 CD: 3248 CT: 995
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preference to lipophilic surroundings, whereas a negative
value indicates preference to lipophobic (or hydrophilic)
environment.

Log D C Ci oct i aq� ��[ ] / [ ] (1)

Other simple count-based molecular descriptors enu-
merating aromatic bonds, atoms, carbon atoms, nitrogen
atoms, oxygen atoms, hydrogen atoms and rings were
also calculated. Beside these, one-dimensional (1D)
descriptors calculated include molecular weight and
molecular solubility. Three-dimensional (3D) descrip-
tors like molecular volume, molecular surface area,
molecular polar surface area and molecular solvent
accessible surface area were also computed. The mole-
cular polar surface area is defined as the sum of all the
polar atoms (usually oxygen and nitrogen atoms, and
the attached hydrogen atoms). This descriptor is often
correlated with drug transport capabilities and is
important in penetrating the blood-brain barrier.
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Additional File 1 

Physiochemical property space distribution among human metabolites, 

drugs and toxins 

Varun Khanna, Shoba Ranganathan 

Table S1. Occurrence of discriminatory functional groups in the three 

datasets.  

The functional groups which are most distinguishable among the three datasets 

are shown in bold.  

Functional Group  Metabolite dataset Drugs dataset Toxin dataset 

Aldehyde 2.1% 1.5% 1.0% 

Alkyl halide <0.5% <0.5% 3.2% 

Aromatic atom  17.4% 70.6% 62.3% 

Benzene  10.3% 56.0% 53% 

Benzoic Acid 1.0% 3.4% 3.5% 

Benzoic acid amide 0.5% 6.3% 1.5% 

Indole 2.7% 3.8% 1.5% 

Flavone core 0.5% 0.7% 0.7% 

Lactam 0.6% 3.6% 4.4% 

Prostaglandins 0.7% <0.5 % <0.5% 

Steroid backbone 2.9% 0.6% <0.5% 

HBA Ester 56.3% 13.8% 15.4% 

SP hybrid atom  <0.5% 2.5% 2.9% 

Pyridine 1.2% 6.4% 5.3% 

Pyrimidine 3.2% 7.5% 1.9% 

Carboxylic acid  21.0% 24.1% 10.3% 

Enamine 3.2% 10.31% 3.41% 

Enol <0.5% 1.5% 1.3% 

Enol-Ether 5.5% 3.0% 3.3% 

Guanadine 2.3% 4.8% 1.8% 
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Functional Group  Metabolite dataset Drugs dataset Toxin dataset 

Primary amine 28% 14.4% 12.0% 

Secondary amine 11.4% 64.0% 41.2% 

Tertiary amine 44.6% 80.0% 60.0% 

Quaternary Amine 15.3% 2.1% 0.5% 

Primary amide 1.5% 4.5% 3.9% 

Secondary amide 11.4% 31.0% 14.5% 

Tertiary amide 2.8% 16.8% 9.2% 

Imines 4.1% 14.0% 6.4% 

Isourea 0% <0.5% <0.5% 

Nitrate 0% 0% 0% 

Nitrite 0% <0.5% <0.5% 

Nitro 0% 0% 0% 

Nitroso <0.5 % 0.6% 8.4% 

Oxime-Ether <0.5% 1.1% <0.5% 

Semicarbazide 0% 0.7% 2.9% 

Isocynate 0% 0% <0.5% 

Hydrazine 0% <0.5% 2.1% 

Diazo 0% <0.5% <0.5% 

Azide 0% 0% 0% 

Azo 0% <0.5% 3.4% 

Carbamic acid <0.5% 3.1% 1.9% 

Carbamic acid ester <0.5% 2.3% 1.0% 

Urea 2.5% 8.0% 6.5% 
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4.2 Conclusion 

A number of physicochemical descriptors have been utilized to analyze three publicly 

available datasets, comprising drug, metabolite and toxics. We have also, for the first time, 

to the best of our knowledge, compared the distributions of various properties for 

unclustered data as well as clustered datasets. We note that distribution of the two groups 

clustered and unclustred is quite similar, arguing the case for the use of clustered datasets. 

From our analysis, we note that over 70% of the metabolites do not follow Lipinski’s rule 

while over 90% of the toxics lie within Lipinski’s universe implying that Ro5 does 

explicitly takes toxicity into consideration, which could explain the high attrition rates due 

to drug failures from toxicity.  

 

We also found that physicochemical property space occupied by current drugs is relatively 

similar to toxics as compared to metabolites. In our study over 50% of the metabolites are 

acyclic while only 9% and 19% of the drugs and toxics are acyclic respectively. The 

number of rotatable bonds measuring molecular flexibility and consequently, oral 

bioavailability, suggests that metabolites are far more flexible than drugs and toxics 

molecules. Further we note that only 20% of the metabolites are aromatic while 70% of the 

drugs and 62% of the toxic molecules are aromatic. Finally we note that although drugs 

share a relatively larger physicochemical property space with toxics than with metabolites, 

drugs and toxics are two different classes of compounds as reflected in specific 

physicochemical characteristics. In our analysis we find that drugs have higher values for 

properties such as molecular weight, the number of oxygen atoms, the number of rotatable 

bonds and molecular polar surface area whereas toxics have considerably higher Alog P 

and Log D. Furthermore, human metabolites are a distinct class of compounds as 

compared to drugs. Therefore, metabolite-like space could be explored while designing 

lead libraries. 

 

Empirical rules like the Ro5 can be refined and complemented with other measures to 

include the toxicity information so as to increase the coverage of drugs or drug-like 

molecules that are clearly not close to toxic compounds. The distribution of many 

physicochemical properties is similar in clustered and unclustered datasets, except in the 

case of the number of oxygen atoms, the molecular polar surface area and the number of 

rings. 
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Chapter 5: Scaffold and fragment co-occurrence studies on datasets of 

biological interest. 

 

5.1 Summary  

The drug discovery process screens potential lead compounds using dictionary-based and 

hash-based binary fingerprints, for drug-likeness or lead-likeness. With the availability of 

the human metabolome, metabolite-likeness is now increasingly used as a drug design 

concept [88] for targeting specific pathways.  

 

In chapter 4, we reported a comprehensive analysis of the physicochemical property space 

occupied by drugs, metabolites and toxics, using public datasets suggesting that present 

day drugs are more akin to toxics than to metabolites [152]. In this manuscript, we used a 

multi-criteria approach to study the differences among various datasets of biological 

interest viz. drugs, human metabolites, toxics, natural products and lead compounds. 

Further, we included molecules from two well known public databases, NCI and 

ChEMBL. We extended our earlier physicochemical analysis to include fingerprints, in 

order to identify commonly found fragments in bioactive compounds found in these 

datasets. Thus, we analysed physicochemical properties, scaffold architecture and fragment 

co-occurrence data in these datasets. In order to prioritize the enormous fingerprint data 

obtained, we have applied association or market basket analysis, to determine statistically 

significant co-occurring fingerprints. Association rules were generated, with “support” and 

“confidence” values for frequently occurring fragments. 
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Abstract  

Background 

The recent availability of the human metabolome has revitalized “metabolite-likeness” as a drug 

design concept to design lead libraries, targeting specific pathways. Many reports have analyzed the 

property space of biologically important datasets, with only a few studying the co-occurrences of 

fragments. With large collections of high quality public data currently available, we carried out a 

comparative analysis of current day leads with other biologically relevant datasets. 

Results 

In this study, we note a two-fold enrichment of metabolite scaffolds in drug dataset (42%) as 

compared to presently used lead libraries (23%). Further, we note that only a small percentage (5%) 

of natural product scaffolds space is shared by the lead dataset. We have identified specific scaffolds 

that are present in metabolites and natural products, with close counterparts in the drug dataset, but 

missing in the lead dataset. To determine statistically significant co-occurring fragments, we applied 

association rules. Here, we note that metabolites produce a large number of association rules (96, 

support 0.1) compared to drugs and toxics (4 and 2 respectively, support 0.1 each), signifying that 

metabolites extensively reuse fragments to produce novel molecules. 

Conclusions 

Currently used lead libraries make little use of the metabolites and natural products scaffold space. 

We believe that since metabolites, natural products are recognized by at least one protein in the 

biosphere, sampling the fragment, and scaffold space of these compounds, along with the knowledge 

of co-occurring fragments, can result in better lead libraries. Nevertheless, metabolites have a limited 

distribution in chemical space that limits the usage of metabolites in library design.  
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Background 

An established idea of similarity-based virtual screening is that similar structures tend to have 

similar properties [1]. Diversifying the compound library collection for in silico and in vitro high-

throughput screening without compromising biological activity remains an active research area. 

Chemical space is enormous but mostly biologically insignificant [2] and therefore, uninteresting 

from a drug design perspective. Given the large number of currently available chemical compounds 

in PubChem [3], it is impossible and irrational to screen all known compounds for potential ligands. 

One key methodology, fragment-based virtual screening (FBVS) or fragment-based drug discovery 

(FBDD), is an emerging area to identify novel, small molecules for preclinical studies. In FBDD, the 

starting points are small low molecular weight, drug-like fragments. Examples of such fragments are 

ring systems, functional groups, side chains, linkers and fingerprints.  

Over the past decade, substructures contributing to drug-like or lead-like properties have governed 

library design [4]. In one of the pioneering works to understand the distribution of common 

fragments in drugs, Bemis and Murcko [5] fragmented a drug dataset (taken from the 

Comprehensive Medicinal Chemistry database) into rings, linkers, frameworks and side chains.  

Using two-dimensional topological graph-based molecular descriptors, they found 2506 different 

frameworks for a set of 5120 drug compounds, with the top 32 accounting for the topologies of 50% 

of the database compounds. They concluded a skewed distribution of molecular frameworks in 

drugs. Metabolite-likeness is increasingly being used as filter to design lead libraries similar to 

metabolites with better absorption, distribution, metabolism, elimination and toxicology (ADMET) 

properties [6]. Many recent studies have compared chemical space occupied by compounds of 

pharmaceutical interest [7-12]. Grabowski and Schneider [7] studied the molecular properties and 

chemotype diversity of drugs, pure natural products (NPs), and natural product derived compounds. 

Following the approach described by Bemis and Murcko [5], they virtually dissected the molecules 

into frameworks, corresponding to scaffolds and side-chains. The drug dataset was ranked most 

structurally diverse, followed by marine and plant derived NPs, respectively. However, in contrast to 

the observation of Bemis and Murcko that only 32 frameworks form the basis of nearly 50% of the 
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compounds in CMC drug database, Grabowski and Schneider found that 160 graph-based 

frameworks are needed to explain the chemotype of 50% of the compounds in the COBRA drug 

dataset. In the same year, Siegel and Vieth [8] examined a set of 1386 marketed drugs and found that 

15% of the drugs are embedded within other larger drugs, differing by one or more chemical 

fragments while 30% of drugs contain other drugs as building blocks. Recently, Franco et al. [9] 

analyzed scaffold diversity of 16 datasets of active compounds, targeting five protein classes, using 

an entropy-based information metric. They found that compounds targeted to the vascular 

endothelial growth factor receptor kinase, followed by compounds targeted to HIV reverse 

transcriptase and phosphodiesterase V, are maximally diverse. On the other hand, molecules in the 

glucocorticoid receptor, neuraminidase and glycogen phosphorylase � datasets are least diverse. 

Singh et al. [10] employed multiple criteria to compare libraries of drugs, small molecules and NPs, 

in terms of physicochemical properties, molecular scaffolds and fingerprints. The degree of overlap 

between libraries was assessed using the R-NN curve technique and the biologically relevant 

chemical space occupied by various compound datasets delineated. Hert et al. [11] compared a 

comprehensive dataset of 26 million compounds (i.e. the full chemical space) with 25810 

purchasable screening compounds, metabolites, and natural product dataset. They found that almost 

1300 ring systems present in NPs are missing in current day screening or lead libraries and suggest 

introducing bias in screening libraries towards molecules that are likely to bind protein targets. 

Khanna and Ranganathan [12] compared current day drugs with toxics and metabolites and found 

that drugs are more similar to toxics than to metabolites in physicochemical property space 

distribution.   

However, there are only a few reports discussing the co-occurrence of fragments in 

pharmaceutically interesting datasets [13, 14], to identify an extensive list of fragments that may be 

used in drug discovery and to also provide a deeper insight into biologically relevant chemical space. 

In addition, questions such as how the occurrence of one fragment in a molecule is related to the 

occurrence of another and what are the most common fragments in a class of compounds need to be 

addressed. We believe that fragment co-occurrence data will help researchers to determine which 
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pairs of fragments are known to co-occur more often and therefore are more suitable for synthetic 

feasibility, and vice-versa. 

In this study, we aim to answer questions such as 1) What is the physicochemical property space 

distribution of compounds for the datasets under comparison? 2) Are there any scaffolds or 

fragments missing in current lead libraries? 3) Are there any preferred or frequently occurring 

fragments and scaffolds in these datasets? 4) What fragments co-occur in drugs, metabolites and 

NPs? 5) What is the percentage similarity of drugs to other datasets? 

We also report, for the first time in chemoinformatics, to the best of our knowledge, results on 

fragment co-occurrences, based on a data mining technique called association analysis (AA) [15]. 

We found patterns of commonly occurring fragments using extended connectivity functional class 

fingerprint (FCFP_4; details in Methods section). FCFP is a variant of extended connectivity atom 

type (ECFP) fingerprint and the only difference between ECFP and FCFP fingerprint is the 

assignment of initial code [16]. The highly specific initial atoms types in ECFP fingerprints are 

replaced with more general atom types, with functional meaning in FCFP fingerprints. For example, 

a single initial code is assigned for all halogens in FCFP fingerprints as they can often substitute 

each other functionally. In accord with their definition, ECFP fingerprints are a better choice to 

measure diversity. Therefore, we used ECFP fingerprints for diversity analysis while the more 

generic FCFP fingerprints have been selected for Tanimoto and co-occurrence analyses. The 

fragment list and co-occurrence information obtained by association analysis can be used to design 

effective combinatorial lead libraries. 

 

Results and Discussion 

Five different types of pharmaceutically relevant public molecular datasets were selected for this 

study: drugs, human metabolites, toxics, natural products and a sample of currently used lead 

compounds. Furthermore, we have also considered two popular small molecule databases viz. 

National Cancer Institute (NCI) database and ChEMBL database (details in the Methods section). 

Our results are presented in three sections, viz. preliminary analysis (calculating physicochemical 
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properties, measuring diversity and Tanimoto similarity), scaffold analysis and fragment co-

occurrence analysis based on association rules. 

After carefully pruning and filtering the datasets, all the datasets were clustered (see Methods 

section) to avoid biased results due to overrepresentation of similar molecules.  

 

1. Preliminary analysis 

1.1 Physicochemical property analysis  

1.1.1 Lipinski’s properties for “rule of five” (Ro5) compliance: 

Ro5 has dominated drug design since 1997 and therefore, we believe it would be useful to analyze 

these datasets for compliance with the Ro5 test. Ro5 predicts passive and oral absorption based on 

log P, molecular weight, hydrogen bond donors and hydrogen bond acceptors. We have performed 

this test on both the clustered datasets as well as a subset of 2000 molecules, randomly selected from 

the clustered datasets, in order to check whether the random subsets are sufficient for other 

physicochemical property analyses. We report in Table 1, the percentage of molecules “failing” the 

Ro5 test, i.e. at least not meeting one condition of the Ro5 test. The results are comparable for both 

kinds of datasets, showing that randomly selected subsets are representative of the clustered datasets. 

Also, for the clustered datasets, initially, over 25% of drugs do not adhere to Ro5 while 20% of the 

metabolites are outside Lipinski’s universe. Further, we found that similar to drugs, only 26.5% of 

the toxics fail the Ro5 test. This result highlights one of the shortcomings of Lipinski’s rule, which 

overlooks toxicity resulting, in high attrition rates during drug discovery programs as has been 

reported in the literature [17, 18]. This is due to the fact that Lipinski’s rule was originally designed 

to estimate bioavailability of compounds rather than toxicity. Further, we found that only 16% of 

NPs failed Lipinski’s test. Many other related studies on NPs have reported similar results [7, 19].  

Grabowski and Schneider [7] analyzed pure natural products from MEGAbolite and Interbioscreen, 

natural products and derivatives from BioSpecs and marine natural products from the literature. 

They found that 18% of natural products, 30% of the marine natural products and only 8% of the 

natural product derived compounds violate Lipinski’s rule, averaging 18.7%. While Grabowski and 
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Schneider have reported results very similar to ours, Ganesan [19] analyzed a focused set of 24 

natural products that were the starting point for marketed drugs in the 25-year period from 1981-

2006 and found that 50% of these failed Lipinski’s rule. Overall, the results of Ganesan are in accord 

with our study that NPs adhere to Lipinski’s rule, although in general, NPs do not necessarily abide 

by Lipinski’s rule because they are thought to enter the human body not by passive diffusion but by 

more complex mechanisms such as active transportation, and so are not expected to comply with the 

rules for bioavailability. The probable explanation of our results could be the manner in which the 

NP dataset is pooled at the ZINC database. ZINC is a public database for commercially available 

compounds and NPs present in ZINC are pre-filtered to cover more drug-like space, contributing 

towards Ro5-like characteristics. Lead molecules on the other hand did reasonably well in the Ro5 

test. This is in accordance with the lead-likeness concept proposed earlier [20] which states that 

leads should be simple, low molecular weight molecules and thus, should fall well within Lipinski’s 

universe. Further, our results indicate that, NCI compounds follow Lipinski’s rule more strictly than 

compounds present in ChEMBL dataset.   

1.1.2 Lipinski’s properties as boxplots:  

Box plots for Lipinski properties for random subsets are available from Additional File 1. We find 

that the mean value for the molecular weight in the metabolite dataset is relatively low when 

compared to the other datasets such as drugs, leads and natural products. We also observe that the 

lead dataset is well within Lipinski’s universe and covers a fair amount of drug space. Further, we 

find a noticeable difference in lipophilicity values of metabolites as compared to drugs and leads. 

The mean value of lipophilicity (measured as AlogP) suggests that metabolites prefer a hydrophilic 

environment. Our results are comparable to the recent study using similar datasets [6]. In this study, 

lipophilicity (measured by a similar parameter, clogD) for drugs, metabolites and library compounds 

showed that the distribution of library compounds is similar to that of drugs, but differ markedly 

from metabolites and that metabolites are more hydrophilic than both drugs and library compounds. 

 

 

115



8 

1.1.3 Other physicochemical properties:  

To comprehensively study the physicochemical property space distribution, we computed four 

more common whole molecule descriptors: the molecular polar surface area, the number of rotatable 

bonds, the molecular solubility and the number of rings (details in the Methods section). 

Distributions of these physicochemical properties as box plots are available from Additional File 2. 

We note that metabolites show relatively higher solubility, higher molecular polar surface area but 

lower complexity (less rings, less rotatable bonds and lower molecular weight) compared to drugs. 

Further, our results indicate that, in general, NCI molecules are also low molecular weight 

compounds with less complexity and slightly higher solubility than drug molecules. In addition, we 

note that a large part of the ChEMBL database contain drug-like compounds with higher molecular 

weight and more complex molecules than drugs. 

1.2 Diversity analysis 

In order to compare the diversity of features (fragments) present in each dataset, we have plotted 

the total number of non-redundant (nr) fingerprint features calculated, using ECFP fingerprints, up to 

order 8 (Figure 1). Our results indicate that overall, the ChEMBL dataset generates the maximum 

number of fragments and is highly diverse, while the metabolite dataset is the least diverse. From 

Figure 1a, we note that initially toxics outnumber other molecular datasets in generating features. 

This could be due to the high heteroatom content in toxics, resulting in large numbers of ECFP 

features generated during the first iteration step of fingerprinting. Similarly, the NCI dataset contains 

a large number of features during the initial iteration step of fingerprint feature generation. 

Metabolites, on the other hand, produce the least number of features, which suggests a limited 

occupancy of chemical space. Drugs were moderately diverse throughout and we find an increase in 

fragment diversity with increasing order of fingerprints.  

1.3 Tanimoto analysis  

 The Tanimoto similarity coefficient (equation 1) compares two molecules, A and B, having NA as 

the number of features in A, NB as the number of features in B, and NAB as the number of features 

common to both A and B: 
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We extend this concept to compare different datasets used in this study. To calculate how similar 

two datasets are, we first calculated the Scitegic Pipeline Pilot connectivity fingerprints, FCFP_4 

(details in the Methods section) for all the datasets. Subsequently, a set of nr fingerprint features (NA 

and NB) was extracted for each dataset. Finally, the common features present in both datasets (NAB) 

were counted, by comparing the nr fingerprint sets generated above, to determine T. 

 For the five different datasets described in the Methods section, as well as the two reference 

datasets, NCI and ChEMBL, the Tanimoto coefficient values are shown in Table 2. We note that the 

FCFP fingerprint patterns (of order 4; FCFP_4) found in drugs are most similar to toxics (FCFP_4: 

0.3) than to any other dataset, except for the fingerprint patterns found in ChEMBL dataset. On the 

other hand, drugs are least similar to metabolites (FCFP_4: 0.23). These observations are consistent 

with our earlier study on smaller datasets [12]. Further, we note that ChEMBL contains more drug-

like fragments than any other biologically relevant fragment type present in this study (FCFP_4: 

0.36).  Additionally, with the increasing order of fingerprints (FCFP_6 and so on), although the 

number of fragments generated increases, the Tanimoto similarity coefficient values fall for all the 

datasets compared (data not shown). This suggests an inverse relationship between the size of the 

fragment and the probability of its occurrence in two separate datasets, i.e. the larger the fragment, 

the less likely that it will be found in the two datasets being compared.  

 

2. Scaffold or cyclic system analysis 

It is quite informative to study the molecular frameworks while comparing different datasets of 

chemical compounds. Since the publication of Bemis and  Murcko [5], many attempts have been 

made to explore the chemical space occupied by bioactive scaffolds [21] as scaffold hopping 

remains an active area under research [22]. In this study, we define scaffolds as the core structure of 

the molecule after removing side chains but not the linkers, similar to the definition of atomic 

frameworks used by Bemis and Murcko. A detailed analysis of the total number of nr scaffolds 
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present in the different datasets is available in Table 3. The percentage of singletons (scaffolds 

occurring only once) relative to the total number of scaffolds in a dataset has also been reported. In 

addition, we have tabulated the proportion of nr scaffolds containing aromatic and non-aromatic 

rings.  

The drug dataset generates the largest proportion of nr scaffolds (50.0%) relative to the dataset 

size, followed by the toxics (42%), ChEMBL (33.4%), leads (32%) and NCI dataset (28%). 

Exceptionally low number of scaffolds in metabolites (14.3%) and natural products (21.2%) suggest 

lower scaffold diversity in these datasets. The higher scaffold diversity in drugs could be attributed 

to the fact that drugs are derived from various biologically relevant compounds thereby contributing 

to the scaffold diversity. Similarly, large number of scaffolds in toxic compound set is indicative of 

the high diversity of compounds with toxicity potential. Further, we note that distribution of 

scaffolds in all the datasets in highly skewed with large number of them occurring only once 

(singletons). In fact, almost 70% of the scaffolds in drugs, toxics, NCI and ChEMBL dataset occur 

only once. We also found that natural products comprise maximum number of recurring scaffolds 

(100 - % of singletons = 64%) followed by metabolites (38.9%) and leads (35.7%) suggesting that 

the compounds in these datasets revolve around certain preferred types of scaffolds. Our results 

agree with the recent study using similar natural product and drug dataset [10]. In their study, 

authors found high scaffold diversity in drugs (39.7%) while low diversity in natural products 

(17.9%) which is in accordance with our results. By counting the number of aromatic rings in nr 

scaffolds, we note that metabolites contain least number of aromatic rings (only 47.3% contain one 

or more aromatic rings in a scaffold) as compared to other datasets. 85% of the drugs on the other 

hand have scaffolds with aromatic rings. Furthermore, we note that 97.2% of the scaffolds found in 

lead dataset contain aromatic rings. There seems to be a bias towards aromatic ring containing 

scaffolds in presently used lead libraries.  

The top five scaffolds and their relative percentages based on the total number of scaffolds found 

in each dataset are shown in Figure 2. Benzene is the most abundant scaffold system in all the 

datasets, particularly in metabolites (over 36%). Apart from metabolites, toxics (15%) and NCI 
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compounds (13%) also contain benzene in high percentages. Drugs and leads, on the other hand 

contain benzene in moderate amounts (10% and 7% respectively). While benzene is the most 

common scaffold type in NP (2.2%) and ChEMBL datasets (3.4%), the relative abundance of 

benzene in these datasets is far lower than that in the other datasets. Following benzene, pyridine is 

the second most commonly occurring scaffold type in four out of seven datasets: metabolites (5.2%), 

drugs (1%), leads (1%), and NCI (1.2%). We also note that steroid derivatives are largely present in 

drugs and NPs. Similarly, most of the fused large scaffolds are found in NPs (four of the top five 

scaffolds) followed by drugs and the ChEMBL dataset. Metabolites, on the other hand, seem to 

prefer smaller, less complex systems. Likewise, toxics and lead compounds also have few complex 

fused systems. Other commonly occurring scaffold systems are purine and purine derivatives (found 

mainly in metabolites and ChEMBL dataset), imidazole and biphenyls.  

 

In Table 4, we tabulate the percentages of nr shared scaffolds between pairs of different datasets. 

From Table 4 we note that drugs and metabolites share 6% of the total nr scaffolds whereas NPs, 

leads and toxics share overall 2.4%, 1.4% and 7.5% of scaffolds with drugs, respectively. It is 

interesting to note that metabolites and leads do not share as many scaffolds (0.3%) as drugs and 

metabolites (6%). Due to the uneven size of the datasets, we have also reported the contribution of 

each dataset to the set of shared scaffolds. We find that of the total 296 nr scaffolds found in 

metabolites (Table 3), 123 (42%) are shared by drugs whereas only 68 (23%) are shared by the lead 

dataset. This suggests that lead compounds need further optimization to become more metabolite-

like. Similarly, there seems to be little overlap between the scaffolds of presently used lead libraries 

and NPs (2.1%). Since metabolites and NPs are recognized by at least one protein in the biosphere, 

they seem to be appropriate candidates in lead library design. Our results however, indicate that 

neither metabolites nor NP scaffolds are being sampled enough while designing lead libraries. In 

addition, we note that over 7% of scaffolds are shared between drugs and toxics while metabolites 

and toxics share over 6% of the scaffolds, suggesting the recurrence of common scaffolds between 

these datasets. Compounds in the NCI and ChEMBL datasets are quite diversified; however, the NCI 
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dataset clearly contains more toxic scaffolds than the ChEMBL dataset. Furthermore, we note that 

large part of the drug scaffold space is present in NCI (45%) and ChEMBL (72%) implying that 

these datasets cover good amount of drug-like compounds. We also note that a large part of 

metabolite scaffold space is present in natural product (47%), NCI (78%) and ChEMBL (73%) 

datasets.  

We expect that lead libraries biased towards molecules that biological targets have evolved to 

recognize, would yield better hits rates, than unbiased or universal libraries. Metabolites and NPs 

could potentially provide suitable lead molecules. Consequently, we further analyzed these datasets 

for the type of scaffolds that are currently missing in lead libraries. In fact, we note a very slight 

overlap in the scaffold space of lead libraries and these datasets as discussed above. We therefore, 

suggest that with the optimum coverage of biologically relevant scaffold space, hit rates in high 

throughput screening experiments can be improved. We report a set of scaffolds that occur in NPs 

(Figure 3) and metabolites (Figure 4), with a minimum Tanimoto similarity of 0.9 to the scaffolds 

found in drugs, which are actually missing in currently used lead datasets. 

3. Co-occurrence (or Association) analysis 

It would be interesting to determine which fragments occur together and in what order. Co-

occurrence can be evaluated using association rules (AR) [23]. While Piatetsky-Shapiro [24] define 

AR analysis as the general problem of finding recurrent patterns in data, much of the work in the 

past has been concerned with finding relations between different items in a database of a sales 

transaction, typically of supermarket data. An AR is composed of two parts, an antecedent (head) 

and a consequent (body), and is usually denoted as antecedent � consequent, where the presence of 

an antecedent in a database implies to some extent, the presence of the consequent. To determine the 

extent of this implication, two measures called support and confidence are most commonly reported. 

The value of support for a rule tells us in how many instances (rows or records) the rule (both 

antecedent and consequent) can be observed, usually as a fraction of the total number of instances. 

The value of confidence of the rule tells us what percentage of records containing the antecedent also 

contains the consequent of the rule. Confidence gives us an idea of the strength of the influence that 
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an antecedent has on the presence of a consequent of the rule. Clearly, the confidence measure is 

merely an estimate of the conditional probability of the consequent given the antecedent. The higher 

the confidence value, the more often the items co-occur. We report support and confidence as 

appropriate measures for fingerprint analysis.  

The AR mining problem consists of finding all association rules existing in a database, having 

support and confidence values greater than a pre-defined threshold. In part A of Table 5, each row 

represents an item set and each column denotes an item. A Boolean variable is associated with each 

item. The presence of a specific item in a transaction is indicated by a value of “1” while “0” denotes 

its absence. Using the three items X, Y, Z in part A, we can develop example association rules (part 

B of Table 5), for which we can compute support and confidence values. Support for the first rule, 

where X,Y�Z , is 0.5 (50%) with a confidence of 0.75 (75%) which implies that rule has 50% 

probability of occurrence and we can be 75% confident that Z will be present if both X and Y are 

present.  

ARs were generated for all the datasets using FCFP_4 fingerprints. Although there are many other 

fingerprints available we believe more the abstract nature of FCFP_4 fingerprints serve our purpose 

well. It is often desirable to consider all halogens at par during lead design process and FCFP 

fingerprints are capable of doing the same. We tabulate the total numbers of association rules 

generated per dataset in the Table 6. 

We observe that with an increase in the support value, the number of co-occurring fragments (or 

association rules) decreases. Metabolites produce the largest number of association rules (using 

FCFP_4 fingerprints) even with the high support value of 0.2, while toxics and drugs produced an 

insignificant number of rules (1 and 0 respectively; support = 0.2). This signifies that metabolites 

occupy limited chemical space and therefore, tend to use selected fragments combinatorially to 

produce novel metabolites. Association analysis thus corroborates our earlier observation from our 

Tanimoto study that metabolites have limited diversity. On the other hand, the minimal number of 

ARs in drugs and toxics implies excellent diversity in these datasets. Table 7 lists the top two co-

occurring fragments generated per dataset using FCFP_4 fingerprints while for top five co-occurring 
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(see additional file 3). From Table 7 and additional file 3, we note that fragments appearing in 

different datasets are largely restricted to the dataset, which could prove useful in library design.  

 

Conclusions: 

In this study, we have carried out a detailed analysis of commonly occurring fragments in various 

datasets of biological interest. For the first time, to the best of our knowledge, the data mining 

technique known as association analysis, was employed in chemoinformatics to search for patterns 

in fragments space. The results obtained give the frequencies and co-occurrences of these fragments 

in each dataset.  

Dataset comparison using the Tanimoto coefficient shows that drugs and toxics share a large 

number of topological fragments whereas drugs are least similar to metabolites than to any other 

dataset studied. However, in scaffold analysis we found that current drugs and metabolites share 

7.0% of the total nr scaffolds, i.e. over 42% of the metabolite scaffolds are present in drugs, whereas 

only 23% of the metabolite scaffolds are shared between leads and metabolites. This shows that 

although drugs and metabolites share many scaffolds, they largely differ in topological fragment 

space. Further, we conclude that current lead libraries do not cover much of metabolite scaffold 

space.    

Library design is a multi-class optimization problem. It often presents a trade-off between several 

factors, including diversity and ADMET properties. Since metabolites and NPs are already 

optimized by millions of years of evolution to bind to at least one biological macromolecule 

therefore, it is highly likely that libraries designed based on the scaffolds and fragments occurring in 

metabolite and NP space will result in molecules with better ADMET properties. However, it should 

be kept in mind that metabolites occupy a limited space in chemical universe that limits the usage of 

metabolites in library design.  

From physicochemical properties analysis, we note that there is a need to diversify present day 

lead libraries in order to optimize the coverage of chemical space. Our studies on scaffolds systems 

suggest that drugs are most diverse (50% scaffolds relative to the dataset size) and prefer aromatic to 
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non-aromatic ring-containing scaffolds. Metabolites, on the other hand, have a very narrow 

distribution of scaffolds (only 14.3% scaffolds relative to the dataset size) of which 38.9% recur. The 

exceptionally low number of cyclic systems in metabolites implies lower scaffold diversity in 

metabolites. This reaffirms our conclusions from Tanimoto and association analyses. Furthermore, 

we confirm earlier reports of skewed distribution of scaffolds, with many more singletons than 

recurring scaffolds.  

Following on from these results, co-occurrence studies also revealed that metabolites utilize only a 

very limited set of fragments, while drug and toxic datasets contain a wide variety of fragments, 

indicating high molecular diversity. This result is in accordance with the fact that drugs are produced 

from different sources, like synthetic molecules, natural products, leads libraries, and hence, are 

diverse in distribution. The fragment list and co-occurrence information obtained by association 

analysis can be used to enrich combinatorial lead libraries for enhancing metabolite-likeness.  

 

Methods  

Preparation of datasets  

Five different types of biologically relevant molecular datasets have been considered in this study. 

Beside these, the contents of public databases like NCI and ChEMBL were also analyzed. Table 8 

presents a summary of all the databases used in this study. The drug dataset was assembled by 

merging molecules obtained from the DrugBank [25] and a subset of Kyoto Encyclopedia of Genes 

and Genomes database (KEGG DRUG) [26]. DrugBank is a comprehensive resource on drugs and 

includes over 1350 FDA-approved small drugs. KEGG is a bioinformatics resource and currently 

provides 19 databases; we used the KEGG DRUG subset as it contains all the drugs approved in the 

USA and Japan. It not only contains prescription drugs but also “over-the-counter” (OTC) drugs. 

Similarly, for metabolite dataset we used the Human Metabolome Database (HMDB) [27], 

HumanCYC [28] database and BiGG [29]  database. HMDB contains information on nearly 8,000 

metabolites found in the human body. HumanCYC is a bioinformatics database that combines 

human metabolic pathway and genome information, providing KEGG, PubChem and ChEBI 
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identifiers for the metabolites present in this database. BiGG stores manually annotated human 

metabolic network information, with links to KEGG metabolites.  

Likewise, for the toxics dataset, compounds from various public sources were integrated to make a 

single dataset focusing largely on carcinogenic molecules. The Distributed Structure-Searchable 

Toxicity (DSSTox) Carcinogenic Potency Database [30] contains experimental results and 

carcinogenicity information for 1547 substances tested against different species. Contrera et al. [31] 

published a dataset of 282 human pharmaceuticals obtained from FDA database for carcinogenicity 

studies on mouse and rat. They reported 125 (44% of the above 282) of the positive chemicals that 

were used in this study. Toxicology Excellence for Risk Assessment (TERA) is an independent non-

profit organization dedicated to the public health. Since 1996, TERA has maintained an International 

Toxicity Estimate for Risk database [32] which provides chronic human risk assessment data from 

organization around the world for over 650 chemicals [33]. Finally, ~1000 molecules with medium 

and high toxicity were downloaded from the SuperToxic database [34]. The dataset for NPs was 

obtained  from the ZINC database[35]. These molecules can be searched under the subset tab, as 

“Meta subsets”. For lead dataset, we merged two independent screening sets obtained from BioNET 

[36] and Maybridge database [37]. The molecules in these two databases are well diversified and we 

integrated them to form a dataset of lead compounds as found in pharmaceutical collections. Further, 

we included molecules from NCI open database [38]. The latest September 2003 release of the 

database stores 260071 organic compounds tested by NCI for anticancer activity. Since many of the 

compounds are experimental, have not been tested for human consumption and covers high diversity 

therefore, we believe it would be good choice to include this dataset in our study. One other public 

dataset, ChEMBL [39] was used as the reference dataset for biologically interesting molecules. 

ChEMBL is a chemogenomics data resource with over 8000 targets and about 622,884 bioactive 

compounds.  

All datasets are current as of 10-November-2010. 
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Cleaning and processing of the datasets 

We followed a standard cleaning procedure (see additional file 4) to obtain a nr dataset in each 

category. Finally, clustering was performed to address the issue of possible overrepresentation of the 

chemical space, which might bias the analysis results towards similar molecules [6]. Clusters were 

generated, using the Cluster “Clara” algorithm embedded in the Pipeline Pilot (PP) software [40] by 

employing an atom type fingerprint as a chemical descriptor and Euclidean distance was the distance 

metric selected. Cluster centers served as the representatives for clusters containing more than one 

molecule while singletons were directly used as cluster centers. This resulted in 30% decreases of 

each dataset. Upon further analysis, we found that clustered metabolite set contains lipids in large 

numbers. In order to remove the bias towards lipids and large molecules, we filtered out lipids 

resulting in 2072 molecules in the “lipid-free” metabolite dataset, used for analysis in this study.  

To simplify the analysis, we randomly selected 2000 compounds from each of the clustered 

datasets and lipid-free metabolite dataset in case of metabolites. The majority of the analysis was 

carried out using the clustered datasets and lipid-free metabolite dataset, except for preliminary 

analysis, where these randomly selected molecules were used and in the case of Ro5 test, where both 

datasets were compared.  

Molecular descriptors 

All the descriptors were calculated using PP. Beside the four Lipinski properties: molecular 

weight, the number of hydrogen bond acceptors, AlogP (a hydrophobicity measure) and the number 

of hydrogen bond donors [4], other descriptors such as molecular polar surface area (MPSA), 

molecular solubility (MS), the number of rings (NR) and the number of rotatable bonds (NRB) were 

also computed. AlogP was calculated using the Ghose-Crippen method [41] which takes into 

account the group’s contribution to Log P. MPSA is defined as the sum over all the polar atoms. 

This descriptor is correlated with drug transport capabilities and is important in penetrating the 

blood-brain barrier. The NRB is a direct measure of the flexibility of molecules thus related to 

MPSA. Binary descriptors (ECFP_4 and FCFP_4) were calculated using a structural property 

calculator embedded in PP. Initially, each atom is assigned a code based on its properties and 
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connectivity. With increasing iteration, each atom code is combined with the code of its immediate 

neighbours to produce the next order code. This process is repeated until the desired number of 

iterations has been achieved, typically to four iterations, generating ECFP_4, or FCFP_4 

fingerprints.  

Cyclic systems 

In addition to examining the physicochemical properties, each dataset was also explored for the 

frequent scaffold systems. We used an inbuilt PP protocol to identify the most common fragments, 

by setting “FragmentType” to MurckoAssemblies and adjusting “MaxFragSize” parameter at the 

required level.  

Association rules 

We employed the cover rules algorithm described by Cristofor and Simovici [42] for calculating 

ARs that are implemented in the java-based open source software ARtool [43]. ARtool has a special 

file format requirement for the data analysis. Therefore, all the files containing fingerprints were 

converted into the correct input format. Before that, a nr fingerprint set was extracted from the 

fingerprint files containing information regarding fingerprints and corresponding SMILES patterns. 

Since higher order extended connectivity fingerprints include all the information of lower order 

fingerprints therefore, it is important to filter out lower order fingerprints from the nr set of higher 

order fingerprints, in our case we filtered out FCFP_2 fingerprints from FCFP_4 set. Finally, an 

inbuilt utility in ARtool called asc2db was used to convert these asc files into db files that can be 

read by ARtool for further processing.  
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FIGURE LEGENDS 

Figure 1. The number of non-redundant fingerprint features as a function of ECFP fingerprint 

order. 

Fingerprints of orders 2, 4, 6 and 8 for datasets comprising drugs, metabolites, toxics, natural 

products, leads, NCI and ChEMBL are presented. 

Figure 2. Top 5 scaffolds derived from A. drugs, B. metabolites, C. toxins, D. natural products, E. 

leads, F. NCI and G. ChEMBL. The extent of occurrence of the scaffold relative to the total number 

of scaffolds in the dataset (as %) are listed. 

Figure 3. A set of scaffolds present in metabolites but are missing in lead dataset. The Tanimoto 

distance of these scaffolds with the closest counterparts in drugs is also reported. 

Figure 4. A set of scaffolds present in NPs but are missing in lead dataset. The Tanimoto distance of 

these scaffolds with the closest counterparts in drugs is also reported. 

Additional File 1: (*.pdf) 
Figure S1: Box plots for the Lipinski physicochemical properties: (a) molecular weight, (b) the 

number of hydrogen bond acceptors, (c) AlogP and (d) the number of hydrogen bond donors. 

Additional File 2: (*.pdf) 

Figure S2: Box plots for other significant physicochemical properties: (a) molecular polar surface   

area, (b) the number of rotatable bonds, (c) molecular solubility and (d) the number of rings. 

Additional File 3: (*.pdf) 

Table S1. Top five association rules for various datasets using FCFP_4 fingerprints at minimum 

support 0.1 and confidence 0.5. 

Additional File 4: (*.pdf) 

Figure S3: Flowchart adapted for the overall methodology. 
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Table 1. Number of molecules failing Lipinski’s “rule of five” (Ro5). 

Dataset  Total no. of molecules 
(in clustered dataset) 

% of molecules failing 
Ro5 in clustered datasets 

 

% of molecules 
failing Ro5 in 

randomly selected sets 
 

Drugs 3788 25.7 23.0 

Metabolites 6124 68.0 20.0* 

Toxics 2166 26.5 21.5 

NPs 61972 16.2 15.0 

Leads 67983 19.8 19.5 

NCI 161336 19.5 15.5 

ChEMBL 379827 36.4 36.0 

*Metabolite dataset excluding lipids and large molecules (details in the Methods section) 
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Table 2: Tanimoto similarity values using circular connectivity fingerprint descriptors for 

different datasets under study.  

The upper half of the diagonal contains similarity values calculated using FCFP_4 fingerprint. 

Datasets Drugs Metabolites Toxics NPs Leads NCI ChEMBL 

Drugs 1 0.23 0.30 0.26 0.26 0.30 0.36 

Metabolites  1 0.19 0.20 0.16 0.18 0.19 

Toxics   1 0.22 0.21 0.27 0.27 

NPs    1 0.24 0.24 0.25 

Leads     1 0.27 0.28 

NCI      1 0.29 

ChEMBL       1 
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Table 3. Scaffold analysis of various datasets under study.  

Frequency of occurrence for non-redundant scaffolds (relative to the dataset size) and number of 

aromatic ring containing scaffolds (relative to the total number of nr scaffolds) have been reported in 

table. 

Occurrence of scaffolds 
(% relative to dataset size) 

No. of singletons (% 
relative to number of 
scaffolds)  

Aromatic scaffolds (% 
relative to number of 
scaffolds) 

Dataset 

No. % No. % No. % 

Drugs 1874 50.0 1411 75.3 1588 85.0 

Metabolites 296 14.3 181 61.1 140 47.3 

Toxics 905 42.0 689 76.1 656 72.3 

NPs 13151 21.2 6053 46.0 11776 90.0 

Leads 21621 32.0 13819 64.0 21057 97.4 

NCI 44324 28.0 31880 72.0 36778 83.0 

ChEMBL 126843 33.4 87750 69.2 119419 94.1 
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Table 5. An example Boolean matrix and association rules derived from it. 

 X, Y and Z are items and A and C refer to the antecedent and consequent in association rules 

involving these items. 

Category X Y Z 

1 1 1 

0 1 1 

1 0 1 

1 1 0 

1 1 1 

A. Example of 
transactions 

1 1 1 

A � C Support  Confidence 

X, Y � Z 3/6 = 0.5 3/4 = 0.75 

B. Examples of 
association rules 
using the above 
transactions  X � Y, Z 3/6 = 0.5 3/5 = 0.6 
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Table 6. Association rules generated using binary fingerprints at different support levels.  

Number of association rules generated 

Using FCFP_4 at following min. support values and confidence 0.5 Datasets 

0.02 0.05 0.1 0.2 

Drugs 147 24 4 1 

Metabolites >40000 146 96 27 

Toxics 66 8 2 0 

NP 532 94 21 5 

Leads 220 44 13 4 

NCI 77 13 3 1 

ChEMBL 298 52 11 1 
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Table 7. Top two association rules for various datasets using FCFP_4 fingerprints at minimum 
support 0.1 and confidence 0.5. 

 

 

Datasets S.No. Antecedent Consequent Support Confidence 

1.  

  
0.31 0.64 

Drugs 

2.  

  
0.14 0.67 

1.  

  

0.19 0.60 
Toxics 

2.  

  
0.11 0.59 

1.  

  
0.39 0.65 

 NPs 

2.  

  
0.34 0.56 

1.  

  
0.35 0.59 

Leads 

2.  

 
 

0.26 0.73 

1.  

  
0.32 0.69 

NCI 

2.  

  

0.15 0.64 

1.  

  

0.42 0.67 
ChEMBL 

2.  

  

0.22 0.73 
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Table 8: Databases used in this study 

Datasets Number of molecules  Clustered dataset Reference  

DrugBank  1372  [25] 
Drugs 

KEGG drugs  7057 
3788 

 [26] 

HMDB  7888  [27] 

HumanCYC  984  [28] Metabolites 

BiGG  730 

6124, 2072* 

[29]  

DSSTox  582  [30] 

FDA  Carcinogenicity 125  [31] 

ITER 514  [33] 
Toxics 

SuperToxic  1097 

2166 

 [34] 

NPs ZINC NP database 89425 61972  [35] 

BioNET 42699  [36] 
Leads 

Maybridge 60550 
67983 

 [37] 

NCI NCI database 260071 161336  [44] 

ChEMBL ChEMBL dataset 600625 379827  [39] 

*Metabolite dataset excluding lipids and large molecules (details in the Methods section)  
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Figure 1. The number of non-redundant fingerprint features as a function of ECFP fingerprint 

order. 

Fingerprints of orders 2, 4, 6 and 8 for datasets comprising drugs, metabolites, toxics, natural 

products, leads, NCI and ChEMBL are presented. 
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Figure 2. Top 5 scaffolds derived from A. drugs, B. metabolites, C. toxins, D. natural products, E. 

leads, F. NCI and G. ChEMBL. The extent of occurrence of the scaffold relative to the total number 

of scaffolds in the dataset (as %) are listed. 
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Figure 3. A set of scaffolds present in metabolites but are missing in lead dataset. The Tanimoto 

distance of these scaffolds with the closest counterparts in drugs is also reported. 
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Figure 4. A set of scaffolds present in NPs but are missing in lead dataset. The Tanimoto distance of 

these scaffolds with the closest counterparts in drugs is also reported. 
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Additional File 1 

Scaffold and fragment co-occurrence studies on datasets of biological interest 

Varun Khanna, Shoba Ranganathan 

Figure S1: Box plots for the Lipinski physicochemical properties.

The randomly selected subsets of drugs, metabolites, toxics, natural products, NCI and ChEMBL 

are obtained from their respective clustered datasets. The physicochemical properties plotted are 

(a) molecular weight, (b) the number of hydrogen bond acceptors, (c) AlogP and (d) the number 

of hydrogen bond donors. 
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Additional File 2 

Scaffold and fragment co-occurrence studies on datasets of biological interest 

Varun Khanna, Shoba Ranganathan 

Figure S2: Box plots for other significant physicochemical properties.

The randomly selected subsets of drugs, metabolites, toxics, natural products, NCI and ChEMBL 

are obtained from their respective clustered datasets. The physicochemical properties plotted are 

(a) molecular polar surface area, (b) the number of rotatable bonds, (c) molecular solubility and 

(d) the number of rings. 
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Additional File 3 

Scaffold and fragment co-occurrence studies on datasets of biological interest  

Varun Khanna, Shoba Ranganathan 

Table S1. Top five association rules for various clustered datasets used in this study. 

FCFP_4 is the fingerprint employed to calculate association rules at minimum support 

level 0.1 and confidence 0.5. 

Datasets S.No. Antecedent Consequent Support Confidence 

1.  

  
0.31 0.64 

2.  

  
0.14 0.67 

3.  

  
0.12 0.56 

Drugs 

4.   

  
0.11 0.78 

1.  

  

0.19 0.60 
Toxics 

2.  

  
0.11 0.59 

1.  

  
0.39 0.65 

2.  

  
0.34 0.56 

 NPs 

3.  

  
0.23 0.55 
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4.  

  

0.22 0.53 

5.  

  
0.21 0.50 

1.  

  
0.35 0.59 

2.  

 
 

0.26 0.73 

3.   

  
0.21 0.61 

Leads 

4.  

  
0.21 0.60 

1.  

  
0.32 0.69 

2.  

  

0.15 0.64 

NCI 

3.  

  

0.14 0.60 

1.  

  

0.42 0.67 

2.  

  

0.22 0.73 

ChEMBL 

3.  

  

0.18 0.60 
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4.  

, 

  

0.14 0.64 

5.  

  

0.14 0.72 
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5.2 Conclusion 

From physicochemical analysis, we corroborated our earlier finding (Chapter 4 and 

Publication 4) that metabolites occupy a distinct physicochemical property space. In this 

study, we have carried out a detailed analysis of commonly occurring fragments in various 

datasets of biological interest.  

 

We found that over 42% of the metabolite scaffolds are present in drugs, whereas only half of 

that amount is shared between leads and metabolites. Similarly, we found that current lead 

libraries also lack much of the natural product scaffold space. Metabolites and natural products 

bind to at least one protein in biosphere. Therefore, they can be a good source of 

pharmaceutically relevant molecular fragments and scaffolds. Further we found that drugs and 

toxics are most diverse while metabolites and natural products have a narrow distribution of 

scaffolds which limits there use in library design. We also found that ChEMBL database is 

quite diverse and contain many drug-like compounds hereby recommending its use in drug 

discovery programs.  

 

For efficient mining of co-occurring fragments, association rules were generated using a 

statistical technique called market basket analysis. The fragment list and co-occurrence 

information obtained reveals fragments unique to its parent dataset which can be used to enrich 

combinatorial lead libraries for enhancing drug-likeness, metabolite-likeness or natural-

product likeness. 
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Chapter 6: In silico approach to screen compounds active against 

parasitic nematodes of major socio-economic importance. 

 

6.1 Summary  

There are only three major classes of anthelmintic drugs available in the market. 

Benzimidazoles are a broad spectrum anthhelmintics and inhibit the ß-tubulin resulting in 

impaired microtubule formation during cell division [153]. The benzimidazoles have much 

more affinity for tubulin in helminth cells than the tubulin found in the cells of mammals. 

Macrocyclic lactones interact with a range of ion channels including glutamate-gated 

chloride channels [154], -aminobutyric acid-gated chloride channels [155] and 

acetylcholine-gated chloride channels [156]. Levamisole, pyrantel and morantel belong to 

the third class and bind to the nicotinic acetylcholine receptors and cause and muscle 

paralysis due to prolonged muscle contraction and spastic paralysis of the parasite [157].  

 

Unfortunately, resistance has been developed against two of these classes [158, 159]. In 

this manuscript, a systematic approach was used to screen for potentially antihelmintic 

compounds, using a robust machine learning method called support vector machine. 

Historically, anti-parasitic drugs were discovered by empirical screening against intact 

parasites, but due to the enormity of the task and availability of better computational 

facilities, there has been a shift towards computational screening. The compounds active 

against parasitic nematodes were collected from various literature sources, while inactive 

compounds were obtained from DrugBank database with no reported anthelmintic activity, 

as no true inactive compounds have been reported, to best of my knowledge. Also, we 

believe DrugBank is good choice for our inactive set because it will allow us to explore 

novel compounds by avoiding the already known drug space. Following on from our 

previous analysis results in Chapter 5, we used the ChEMBL database as a source of novel 

compounds, to obtain our prediction set. Currently, ChEMBL contains a diverse set of over 

600,000 unique drug-like small molecules. We randomly selected a small portion of the 

ChEMBL dataset to obtain 10,000 molecules for our prediction set.   
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In silico approach to screen compounds active against parasitic 

nematodes of major socio-economic importance 

 

Varun Khanna1, Shoba Ranganathan1,2 

[1] Dept. of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, 

Australia.  

[2] Dept. of Biochemistry, Yong Loo Lin School of Medicine, National University of 

Singapore 

 

Email: varun.khanna@mq.edu.au; shoba.ranganathan@mq.edu.au 

 

Abstract  

Infections due to parasitic nematodes are common causes of morbidity and fatality 

around the world especially in developing nations. At present however, there are 

only three major classes of drugs for treating human nematodes infections. 

Additionally the scientific knowledge on the mechanism of action and the reason 

for the resistance to these drugs is poorly understood. Commercial incentives to 

design drugs that are endemic to developing countries are limited therefore, virtual 

screening in academic settings can play a vital role is discovering novel drugs 

useful against neglected diseases. In this study we propose to build robust 

machine learning model to classify and screen compounds active against parasitic 

nematodes. Different learning algorithms were used for model development, and 

stratified 10-fold cross validation was used to evaluate the performance of each 

classifier. The best result were obtained using support vector machine (RBF 

kernel). Using the model developed above we were able to indentify novel 

compounds with potential anthelmintic activity.  
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Keywords: Anthelemintics, virtual screening, machine learning, support vector 

machine, nematodes, scaffolds analysis 

 

Introduction 

Besides malaria, infections due to nematodes are the leading cause of 

ailment to human beings. In particular, parasitic flatworms (trematodes and 

cestodes) and roundworms (nematodes) are a major cause of substantial 

suffering, particularly in children. The World Health Organization (WHO) estimates 

that 2.9 billion people are infected with nematodes.1 Therefore, to search for 

nematode specific targets is an active area under research. With the availability of 

the completely sequenced nematode genomes, currently there is much interest to 

investigate drugs targeting their gene products. 

At present however, only a couple of drugs are being used to control most 

worm infections in humans and animals. The excessive use of anthelmintics has 

resulted in serious problems with drug resistance in farm animals. 2; 3 Furthermore, 

with a limited number of drugs being used, it is a favourable environment for a 

resistant worm strains to evolve. In fact, there have been reports of resistance for 

the present day anthelmintic drugs in humans.4 Nematodes infect most of the farm 

animals, as a consequence present a huge risk to livestock industry and 

exacerbate the global food shortages. It is therefore, not surprising that most of the 

anthelmintic drugs were originally developed to treat animal infections but were 

subsequently approved for human use with little or no modification.  

Due to poor economic gains, it takes extraordinary incentives for a 

pharmaceutical industry to invest in tropical diseases like nematode infections. 

The most recent class of anthelmintic drug, the macrocyclic lactones, was 
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introduced in early 1980’s.5 Although some potent drugs are found in this class, 

their biological mode of action and resistance to this class by worms remains 

unclear more than 25 years after introduction. With the rapid progression in 

genomics and bioinformatics a plethora of tools are now available for target 

identification and validation. However, the challenge still remains, to identify novel 

chemical entities with desirable pharmacokinetics.  

Historically, antiparasitic drugs were discovered by empirical screening 

against intact parasites, but due to the enormity of the task and availability of 

better computational facilities there has been a shift towards computational 

screening. Computational screening (also known as virtual screening) has inherent 

advantage over traditional and even experimental high throughput screening 

(HTS) due to its massive parallel processing ability; millions of compounds per 

week can be tested. Virtual screening (VS) has been widely used to discover new 

lead compounds by computationally identifying compounds with higher probability 

of strong binding affinity to the target protein. Successful studies have led to the 

identification of molecules either resembling the native ligands of a particular 

target or novel compounds.6; 7 VS methods can be classified based on the amount 

of structural and bioactivity data available − structure-based and ligand-based. If 

the 3D structure of the receptor is known, one of the structure-based VS methods 

that can be used is high-throughput docking8 but where the information of receptor 

is scant ligand-based methods9 like similarity searching are commonly used. 

Moreover, ligand-based methods are popular because they are computationally 

inexpensive and easy to use. Furthermore, the assumption that structurally similar 

molecules exhibit similar biological activity than dissimilar or less similar molecules 

is generally valid. Thus with the little 3D information ligand-based methods can be 
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used at the beginning of the drug discovery projects. Nonetheless, VS still remains 

an unproven approach in the discovery of antiparasitic medicines.10 

In this investigation, we have developed an in silico classification model 

using current machine learning approaches to predict potential anthelmintic leads 

targeted towards parasitic nematodes. Our model has an estimated accuracy of 

82% for the test dataset. We have applied this model to a large public database to 

predict novel anthelmintic compounds.  

 

Material and Methods 

Datasets for the classification study 

The quality of any machine learning model depends highly on the quality of 

the data available.11 Our primary dataset contains 295 unique compounds (148 

actives and 147 inactives). The library of active molecules (compounds active 

against parasitic nematodes) was carefully collated from Pubchem12 and other 

literature sources.13-16 For inactive compounds, we searched the DrugBank17 

database for similar molecules to the ones present in active set with a Tanimoto 

cut-off range of 0.25 to 0.75. As a result, compounds from various 

pharmacological uses (anticancer, antibacterial, sedatives, antifungal) were 

collected into inactive dataset. Since no true negatives (compounds without any 

anthelmintic activity) are reported in the literature, inactive compounds used in this 

study may possess residual anthelmintic activity. In Figure 1, we present 

representative active and inactive compounds used in this study for developing 

models. Further, the dataset was divided into training (80%) and testing sets 

(20%). The sampling was carried out at random and compounds in the test set 

were excluded from the model development. In Table 1, we present the 

composition of the dataset used in this study. For the prediction set we used the 
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ChEMBL18 database, based on our previous study, where we reported that the 

ChEMBL database is quite diverse, contains many drug-like and interesting 

compounds. Currently, the database holds over 650,000 compounds with 

calculated physicochemical properties (log P, molecular weight, Lipinski 

properties) and abstracted bioactivities (binding constant, pharmacology and 

ADMET data). We downloaded the ChEMBL dataset in SD format. After cleaning 

the dataset of any inconsistencies and inorganic structures, we clustered the 

dataset to remove similar structures. Cluster centres were selected from each 

cluster while singletons were retained as such. For clustering, we employed 

functional class substructural fingerprint as implemented in Pipeline Pilot 

software19 with the Tanimoto cut-off value 0.7. Further, compounds with 0.8 or 

greater Tanimoto similarity to the compounds in primary dataset were also 

removed. This reduced our dataset to around 300,000 compounds. Finally, we 

randomly selected 10,000 compounds from ChEMBL dataset for descriptor 

calculation and further analysis.  

 

1. Training datasets 

Training datasets were used for optimizing the support vector machine20 

(SVM) parameters and for training the SVM classifier to predict unseen test 

examples. The training dataset contain 240 compounds (126 active and 114 

inactive examples). All the compounds present in training set are available in 

Additional file 1. 

 

2. Testing datasets 
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Test datasets were used for evaluating the performance of the SVM 

method. The test dataset contains 55 compounds (22 active and 33 inactive 

examples). 

 

Scaffold analysis 

In order to study the patterns in chemical compounds, it is important to decompose 

the molecules into fragments. There are a number of other ways to fragment 

molecules as described elsewhere.21 We describe below the specific methods 

used in this study to obtain molecular scaffolds, where the term scaffold describes 

the core structure of the molecule (carbon skeleton). To obtain the carbon skeleton 

of the molecule, all the heavy atoms are represented as carbon and all bonds are 

converted to single bonds as shown in Figure 2.  

 

Descriptor calculation and selection 

The determination of relevant features is an important step in any machine 

learning process.22 Moreover, with hundreds of descriptors available it is essential 

to choose the best subset of descriptors because many of the descriptors are 

noisy and irrelevant to the target activity. Feature selection is the effective way to 

remove irrelevant descriptors and reduce the dimensionality of the feature space 

in order to avoid overfitting. This improves the prediction accuracy and leads to 

simple and robust computational models.  

There are two main approaches for feature selection in a supervised 

learning context. The first one is the filter method.23 Filter method is fast and easy 

to implement, selecting the best subset of features in an independent way, with ad 

hoc criteria. The drawback of the filter method is that there is no guarantee that the 

best subset of descriptors have been selected. The second method is the wrapper 
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approach24. This requires a predetermined learning algorithm and uses its 

performance as an evaluation criterion to select subset of features. 

The Molecular Operating Environment25 (MOE) software was used for 

descriptor calculation. It calculates 333 descriptors, which are classified as one-

dimensional (physicochemical properties), two-dimensional (topological) and 

three-dimensional (volume and surface area) descriptors. Due to the large number 

of descriptors available, we first filtered out constant and near constant descriptors 

(descriptors with <0.3 standard deviation). This resulted in the removal of 81 

descriptors from the dataset. Following this, we removed descriptors with a 

correlation coefficient greater than or equal to 0.8. The removal of correlated 

descriptors resulted in a set of 113 descriptors. Before performing univariate 

analysis, we normalized the dataset using the z-transformation. We then 

performed the normality test to check for the distribution of the remaining 

descriptors in all the datasets.  Those descriptors that passed the normality test 

were retained while the others were rejected. This reduced our set of previous 113 

descriptors to 34 descriptors. For further selection of descriptors, we used the 

Stepwise Discriminant Analysis26 (SDA) using a free data mining software 

Tanagra27. SDA is often associated with discriminant analysis but in fact, it could 

be useful for various linear models such as linear support vector machines and 

logistic regression. However, it is not adapted to non-linear models such as multi-

layer neural networks and nearest neighbours. We implemented forward and 

backward elimination strategies. In the forward approach, at each step, all the 

variables are evaluated to determine which variables contribute maximum to the 

discrimination between the groups. Variables with significant contributions are 

included and the process starts again till there is no attribute to add to the model. 

In the backward approach, all the descriptors are included in the model and then, 
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at each step, the descriptor that contributes least to the discrimination is 

eliminated, terminating when there is no descriptor to remove. For our problem, we 

found that the forward approach performs better than the backward elimination 

strategy. As a termination criterion, we used F statistics with a predefined 

threshold value of 3.44, where the F value for a descriptor indicates its statistical 

significance to discriminate between the positive and negative data groups. This 

resulted in the selection of final 14 descriptors out of 34.  

 

SVM algorithm 

The SVM algorithm was developed by Vapnik.28 Recently, SVM has been 

applied to chemoinformatics, due to its robustness and ability to classify objects 

into two classes as a function of their features.29; 30 Many studies in the past have 

shown SVM to be one of the best methods for correctly classifying molecules.31; 32 

A standard application of SVM involves defining two classes of objects, 

determining the set of features that distinguish these objects and use the trained 

SVM model to predict the classes of unknown data. Details of the SVM 

methodology can be obtained in literature.20; 33 Briefly, SVM is based on structural 

risk minimization principle from statistical learning theory. Each molecule to be 

classified by SVM is represented by a feature vector xi (i=1,2…N) of M real 

numbers (descriptors) with the corresponding label yi ε {+1,-1}, where yi = -1 

means inactive and yi = +1 means active. To classify the data, the SVM attempts 

to find the optimal hyperplane {x ε Rm: w.x +b =0} that best separates the input 

data into two classes in M dimensional space. The optimal hyperplane is defined 

in such a way that margin of separation between positive {x ε Rm: w.x +b ≥ 0} and 

negative {x ε Rm: w.x +b ≤ 0} examples is maximized with minimal error; where w is 

the normal vector of the hyperplane and b is the scalar. In other words, the optimal 
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hyperplane passes through the “midpoint” between these sets. The decision 

function for new predictions on unseen examples is given in equation 1. 
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The penalty constant C serves as a regularization parameter and represents the 

trade-off between minimizing the training set error and maximizing the margin. The 

large number of support vectors is due to a small C and vice versa. If we use an 

extremely small C value, then all the samples have almost the same influence to 

build a decision boundary regardless of how close they are to a decision 

boundary. As a result, almost all the samples become support vectors. On the 

other hand, if we use a large C it may cause overfitting. 

Since there are different types of kernels present (linear, polynomial, radial 

basis function, sigmoid) we explored various kernels for the efficacy of SVM 

prediction. We have chosen the radial basis function (RBF) kernel (equation 4) as 

it was found to be most effective (data not shown).  
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Two parameters are required for optimization of SVM classifiers:  , which 

determines the capacity of the RBF kernel and the regularization parameter, C. To 

optimize the SVM parameters, C and  , we carried out an extensive grid search to 

build accurate models. The resulting optimized parameters were as follows C = 

1.4 and  = 0.43. 

 

Model validation 

The prediction accuracy of the models developed was tested using ten-fold cross-

validation technique. In a ten-fold cross-validation, the dataset was split into ten 

subsets of equal proportions. One of the subset was used as the test data while 

the rest were used for training the classifier. The trained classifier was tested using 

the test set. This was repeated ten times using a different subset for testing and 

thus ensuring that every compound was used in prediction once. The 295 

compounds in the dataset were randomly divided into training set of 240 

compounds and a test set of 55 compounds. The total number of actives and 

inactive compounds in the dataset are given in the Table 1. 

 

Performance measure 

The prediction results from SVM were evaluated for test dataset using the 

following statistical measures. 

(i) TP, true positive – the number of correctly classified active compounds. 

160



 11

(ii) TN, true negative – the number of correctly classified non-active 

compounds. 

(iii) FP, false positives – the number of incorrectly classified non-active 

compounds. 

(iv) FN, false negative – the number of incorrectly classified active 

compounds. 

Using the variables above, a series of metrics were computed sensitivity (SN), 

specificity (SP), balanced accuracy (BA), F−measure and Matthews correlation 

coefficient (MCC).  

The recall rate for the members of positive class (actives) is given by sensitivity, 

equation 5 

 5                                                  100*
FNTP

TP
ysensitivit


  

Similarly, the recall rate for the members of the negative class (inactives) is given 

by the specificity, equation 6 

 6                                                100*
FPTN

TN
yspecificit


  

 

Accuracy measures the ratio of correct predictions to the total number of classes 

evaluated. We calculated balanced accuracy which is given by the equation 7. 

 7                             
2

 
ysensitivityspecificit

accuracybalanced


  

Further we calculated F−measure which is given by equation 8 or equation 9 if 

precision and recall are known  

 8                                               
2

 2

FPFNTP

TP
measureF


  

 9                                                 
   

  *  
.2

recallprecision

recallprecision
F
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Finally we calculated MCC from equation 10, the coefficient returns a value 

between +1 and -1. The higher the value of MCC, the better the classification 

result. 

 10      
)( )( )( )(

**
  

FNTNFPTNFNTPFPTP

FNFPTNTP
coffecientncorrelatiomatthews




  

 

Results  

The main aim of this study was to classify and predict novel compounds active 

against parasitic nematodes. The various molecular descriptors (333 in total) were 

calculated initially, using MOE25 After removing insignificant attributes (standard 

deviation ≤ 0.3) and applying correlation test with a cutoff value of 0.8 we were 

able to reduce the total number of attributes to 113. Further, SDA algorithm was 

applied and finally a set of 14 descriptors was selected for the development of 

classification model (details in Methods section).  

The obtained model correctly classified 87.56% of the active compounds and 

85.30% of the inactive compounds with the overall accuracy of 86.43% in the 

training set while 81.82% in the test set. The F−measure of the training and test 

are 86.52% and 79.17% respectively. Table 2 depicts the result of the 

classification for the training set and testing set. In Figure 4, we present some of 

the compounds predicted active. All the predicted compounds can be found in 

Additional File 2.   

 

Discussion 

The machine learning systems such as this could clearly reduce the cost involved 

in experimental methods involved in drug discovery pipeline. As the SVM 

algorithm has been successfully applied in various classification problems, we 

investigated the utility of SVM approach for the prediction of potential anthelmintic 
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lead compounds. Based on the extensive literature survey we compiled the 

database of active compounds with 148 unique structures. As there were no 

experimentally reported inactives against parasitic nematodes, we searched 

DrugBank database for compounds within a Tanimoto range of 0.25 (minimum) to 

0.75 (maximum) of active compounds and with no reported anthelmintic activity. 

The idea was to build a robust model that can classify compounds into separate 

groups even with the similar chemistry. One inactive compound was extracted for 

each active compound. Since DrugBank cover most of the FDA approved drugs, 

we surmise that including DrugBank compounds in our inactive dataset would 

allow us to navigate to the unexplored regions of drug-like space. Together, a 

primary dataset of 295 compounds (consisting of 148 actives and 147 inactives) 

was constructed. Next, we divided the primary dataset into training and test set. 

The training set was used to optimize the parameters of the SVM kernel using a 

10-fold cross-validation. We then developed a SVM-based prediction model for 

anthelmintic compounds. The accuracy of the training dataset may indicate the 

effectiveness of a prediction model however; it may not be able to accurately show 

how the model will perform on novel compounds. Therefore, it is critical to test the 

model on an independent dataset, not used in training. In our case we applied the 

SVM classifier, trained and optimized separately using the entire training set on 

the test set and evaluated the results. As shown in Table 3, for the test set the 

SVM model obtained an accuracy of 81.79%. To best of our knowledge there are 

not many reported studies on the prediction of anthlemintics compounds there we 

were able to compare our results with only one study. We find that our results are 

comparable to that study. Marrero-Ponce et al.34 used linear discriminant analysis 

to classify anthelmintic and non-anthelmintic drug-like compounds. The authors 

reported the accuracy of around 90.4 % in the training set while 88.2% which is 
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slightly higher than ours. However, we believe our model is more robust because 

our selection criterion to pick inactive compounds was quite stringent. We selected 

molecules within the Tanimoto range of 0.25 to 0.75 of the compounds present in 

the active set which would make it relatively difficult to classify than if chosen 

randomly.  

The results obtained are particularly interesting from a clinical perspective. From 

our scaffold analysis, we note that even though the size of both datasets (active 

and inactive) is same, yet the number of unique scaffolds found in the inactive set 

is almost twice the number of unique scaffolds found in the active set. This clearly 

indicates that the inactive set is more diverse than the active set. The number of 

unique scaffolds, along with the relative percentage according to the total number 

of molecules present in the dataset is reported in Table 3 and in Figure 3, we 

report top ten molecular scaffolds in both the datasets. We note that over 70.0% of 

the active compounds are represented by top 10 scaffolds whereas, 51.1% of the 

inactive compounds are represented by the same number of scaffolds, again 

suggesting high scaffold diversity in the inactive dataset. It should also be noted 

that five of the top ten scaffolds shown in Figure 3 are shared by both datasets.  

In the 45 predicted compounds, we note that piperazine-like substructures appear 

frequently, suggesting that nitrogen in the piperazine ring might be involved in 

important bonding with the receptors of the drugs. Also, we note that many 

predicted compounds either contain benzimidazole scaffold or are derived from it 

for example as shown in Figure 4, six compounds out of twelve are a derivative 

product of the benzimidazole scaffold. This shows the validity of the above method 

since the benzimidazole class of compounds are well recognized for anthelmintic 

activity.35 Further, we searched the ChEMBL database for the binding affinity, 

assay type and target information of the predicted compounds. We note that many 
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predicted compounds bind to the targets of interest in model organisms but 

experimental validation in the case of nematodes needs to be further carried out. 

Out of the total 45 predicted compounds, 6 compounds look particularly 

interesting. Compound 3 with antiviral activity, compound 10 with inhibitory activity 

against Ancylostoma ceylanicum (a nematode), compound 12, compound 37 with 

antimicrobial activity against Staphylococcus aureus, compound 26 with activity to 

inhibit SARS-CoV 3CL protease enzyme and compound 40 with activity against 

Rhinovirus. In addition, there are compounds that bind to nicotinic acetylcholine 

receptor and tubulin β-1 chain in rats or humans. Since these two receptors are 

successful targets in nematodes, the predicted compounds that bind to these 

targets can be used as leads to design novel compounds with high binding affinity 

to nematode nicotinic acetylcholine receptor and tubulin β-1 chain receptor.  

 

Conclusion: 

In conclusion, we have compiled an extensive dataset of anthlemintic compounds 

as reported in literature for the development and validation of support vector 

machine model. We have rigorously tested the SVM approach for recognizing the 

potential compounds with anthelmintic activity. Our results show that the use of the 

SVM method is well suited for the prediction of anthelmintic (or antiparastic) 

compounds. We were able to indentify a number of interesting compounds with 

potential activity against parasitic nematodes however; experimental validation of 

the predicted compounds is needed.  
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Table 1: Composition of the datasets used in this study. 

Dataset Training set Testing set Total 

Active 126 22 148 

Inactive 114 33 147 

Total 240 55 295 

Prediction set  

(from ChEMBL) 
− − 10,000 

 

169



 20

Table 2: Performance measure of SVM classifier in training and test dataset. 

SN: sensitivity, SP: specificity, BA: balanced accuracy, MCC: Matthews correlation 

coefficient 

Dataset SN (%) SP (%) BA (%) F-measure 
(%) 

MCC 

Training set  87.56 85.38 86.43 86.52 0.75 

Test set  83.82 79.76 81.79 79.17 0.63 
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Table 3: The number of unique scaffolds found in active and inactive sets 

along with the percentage relative to the dataset size. 

 

Datasets 
Size of the 

dataset 
Non-redundant 

scaffolds 
Percentage (relative to 

dataset size) 

Actives 148 48 32.43% 

Inactives 147 80 54.42% 
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Additional file  

 
1. Table S1: Dataset used for training, testing and validation of the model. 

(*.pdf) 
 
2. Table S2: Predicted compounds with AlogP, molecular weight and 

SMILES information.(*.pdf) 
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Phenithionate

Actives

Amocarzine Amoscanate Flurantel

Inactives

Balsalazide TamsulosinBezafibrate

Phenithionate

Actives

Amocarzine Amoscanate Flurantel

Inactives

Balsalazide TamsulosinBezafibrate  
 

 

Figure 1: Examples of active and inactive compounds used in this analysis. 

The active compounds are collected from various literature sources and 

PubChem database while inactive compounds are adapted from DrugBank. 
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Molecule Carbon skeletonMolecule Carbon skeleton  

 

Figure 2: Definition of the scaffold used in this study.  

The scaffold is obtained by iteratively removing side chains and converting all the 

bonds to single bonds 
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18.4% 9.0% 9.0% 7.0% 5.0%

5.0% 4.1% 3.4% 3.4% 3.0%

Actives

18.0% 6.0% 5.1% 5.1% 5.1%

3.2% 2.6% 2.0% 2.0% 2.0%

Inactives

18.4% 9.0% 9.0% 7.0% 5.0%

5.0% 4.1% 3.4% 3.4% 3.0%

Actives

18.0% 6.0% 5.1% 5.1% 5.1%

3.2% 2.6% 2.0% 2.0% 2.0%

Inactives

 

 

Figure 3: Top ten scaffolds present in active and inactive dataset.  

Inactive dataset is more diverse than active dataset. Five out of top ten scaffolds 

are shared in both the datasets. 
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Figure 4: Examples of the actives predicted in the prediction set derived 

from ChEMBL database. All the molecules shown in the figure pass “rule of 

five” (ro5) test and are medicinal chemist friendly (MCF). Further a few of them 

also pass lead-likeness “rule of three” (Ro3) test.  
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Additional File 1
In silico  approach to screen compounds active against parasitic nematodes of 
major socio-economic importance by Varun Khanna and Shoba Ranganathan

Table S1: Dataset used for training, testing and validation of the model. 
ACTIVE COMPOUNDS INACTIVE COMPOUNDS

STRUCTURES PUBCHEM  
ID

STRUCTURES DRUGBANK 
ID

6442491 DB00227

6443028 DB04845

6436638 DB01092

6440579 DB01256

1
177



ACTIVE COMPOUNDS INACTIVE COMPOUNDS

STRUCTURES PUBCHEM  
ID

STRUCTURES DRUGBANK 
ID

9571036 DB01395

6450300 DB00137

6441241 DB01070

6443029 DB00894

8663 DB00959

2
178



ACTIVE COMPOUNDS INACTIVE COMPOUNDS

STRUCTURES PUBCHEM  
ID

STRUCTURES DRUGBANK 
ID

11316 DB00324

931 DB00327

7047 DB00497

2723 DB00525

89594 DB00712

3
179



ACTIVE COMPOUNDS INACTIVE COMPOUNDS

STRUCTURES PUBCHEM  
ID

STRUCTURES DRUGBANK 
ID

15365 DB00571

3014216 DB00891

3001858 DB00829

8449 DB00676

10545 DB01438

4
180



ACTIVE COMPOUNDS INACTIVE COMPOUNDS

STRUCTURES PUBCHEM  
ID

STRUCTURES DRUGBANK 
ID

2758 DB01595

5487655 DB00289

5464102 DB08799

33488 DB00745

14992 DB00792

5
181



ACTIVE COMPOUNDS INACTIVE COMPOUNDS

STRUCTURES PUBCHEM  
ID

STRUCTURES DRUGBANK 
ID

3033985 DB00633

68547 DB01023

71449 DB01056

3032791 DB00524

3032792 DB01407

6
182



ACTIVE COMPOUNDS INACTIVE COMPOUNDS

STRUCTURES PUBCHEM  
ID

STRUCTURES DRUGBANK 
ID

219070 DB00235

4612 DB01011

5430 DB00370

12855 DB00986

33309 DB01611

7
183



ACTIVE COMPOUNDS INACTIVE COMPOUNDS

STRUCTURES PUBCHEM  
ID

STRUCTURES DRUGBANK 
ID

77123 DB08800

312914 DB00953

5798 DB00746

43231 DB00548

5853 DB01007

8
184



ACTIVE COMPOUNDS INACTIVE COMPOUNDS

STRUCTURES PUBCHEM  
ID

STRUCTURES DRUGBANK 
ID

6433263 DB00856

92987 DB00239

160529 DB00233

122841 DB00181

120290 DB00668

9
185



ACTIVE COMPOUNDS INACTIVE COMPOUNDS

STRUCTURES PUBCHEM  
ID

STRUCTURES DRUGBANK 
ID

128292 DB01283

5281033 DB01105

3037 DB00657

203726 DB00396

27944 DB01420

10
186



ACTIVE COMPOUNDS INACTIVE COMPOUNDS

STRUCTURES PUBCHEM  
ID

STRUCTURES DRUGBANK 
ID

5121 DB01431

170340 DB01418

166572 DB00276

3084926 DB00867

72026 DB00692

11
187



ACTIVE COMPOUNDS INACTIVE COMPOUNDS

STRUCTURES PUBCHEM  
ID

STRUCTURES DRUGBANK 
ID

4891 DB00310

24191630 DB01193

10205 DB01054

8573 DB00876

637566 DB00807

12
188



ACTIVE COMPOUNDS INACTIVE COMPOUNDS

STRUCTURES PUBCHEM  
ID

STRUCTURES DRUGBANK 
ID

192786 DB00401

5351142 DB01115

21793 DB00689

3634 DB06802

192783 DB00381

13
189



ACTIVE COMPOUNDS INACTIVE COMPOUNDS

STRUCTURES PUBCHEM  
ID

STRUCTURES DRUGBANK 
ID

75648 DB00932

35802 DB00470

64927 DB01001

23581813 DB00494

15329120 DB00776

14
190



ACTIVE COMPOUNDS INACTIVE COMPOUNDS

STRUCTURES PUBCHEM  
ID

STRUCTURES DRUGBANK 
ID

66388 DB08797

3039 DB00936

31343 DB00120

13986 DB00774

15432 DB00869

15
191



ACTIVE COMPOUNDS INACTIVE COMPOUNDS

STRUCTURES PUBCHEM  
ID

STRUCTURES DRUGBANK 
ID

667497 DB00720

11979707 DB01622

6446785 DB04890

6433449 DB08806

24196442 DB00996

16
192



ACTIVE COMPOUNDS INACTIVE COMPOUNDS

STRUCTURES PUBCHEM  
ID

STRUCTURES DRUGBANK 
ID

47318 DB01031

89962 DB01209

16779 DB00142

31475 DB00119

2406 DB01414

17
193



ACTIVE COMPOUNDS INACTIVE COMPOUNDS

STRUCTURES PUBCHEM  
ID

STRUCTURES DRUGBANK 
ID

42574 DB00303

65696 DB01024

3034337 DB01157

15532 DB01241

21805 DB01136

18
194



ACTIVE COMPOUNDS INACTIVE COMPOUNDS

STRUCTURES PUBCHEM  
ID

STRUCTURES DRUGBANK 
ID

9370 DB01127

6233 DB06148

3034015 DB00754

214321 DB01146

41574 DB00543

19
195



ACTIVE COMPOUNDS INACTIVE COMPOUNDS

STRUCTURES PUBCHEM  
ID

STRUCTURES DRUGBANK 
ID

9570638 DB00800

50248 DB00714

3035447 DB00731

72157 DB00611

2082 DB00984

20
196



ACTIVE COMPOUNDS INACTIVE COMPOUNDS

STRUCTURES PUBCHEM  
ID

STRUCTURES DRUGBANK 
ID

4622 DB01392

26596 DB00937

35803 DB00265

83969 DB00294

53174 DB01618

21
197



ACTIVE COMPOUNDS INACTIVE COMPOUNDS

STRUCTURES PUBCHEM  
ID

STRUCTURES DRUGBANK 
ID

22752 DB01044

4122 DB06730

25429 DB00622

28780 DB00721

3334 DB00892

22
198



ACTIVE COMPOUNDS INACTIVE COMPOUNDS

STRUCTURES PUBCHEM  
ID

STRUCTURES DRUGBANK 
ID

4030 DB01040

40854 DB00662

16218619 DB01162

15789 DB01605

3068143 DB00546

23
199



ACTIVE COMPOUNDS INACTIVE COMPOUNDS

STRUCTURES PUBCHEM  
ID

STRUCTURES DRUGBANK 
ID

24901740 DB01427

114763 DB00339

6093 DB00969

41684 DB00639

5284340 DB01235

24
200



ACTIVE COMPOUNDS INACTIVE COMPOUNDS

STRUCTURES PUBCHEM  
ID

STRUCTURES DRUGBANK 
ID

7969 DB00968

161362 DB00831

3610 DB01207

19666 DB00582

708857 DB00384

25
201



ACTIVE COMPOUNDS INACTIVE COMPOUNDS

STRUCTURES PUBCHEM  
ID

STRUCTURES DRUGBANK 
ID

6433951 DB00604

5281087 DB01299

66991 DB01581

6199 DB00576

170351 DB00469

26
202



ACTIVE COMPOUNDS INACTIVE COMPOUNDS

STRUCTURES PUBCHEM  
ID

STRUCTURES DRUGBANK 
ID

498092 DB01113

9570290 DB00457

5273465 DB00974

3086564 DB00374

39521 DB00985

27
203



ACTIVE COMPOUNDS INACTIVE COMPOUNDS

STRUCTURES PUBCHEM  
ID

STRUCTURES DRUGBANK 
ID

11057 DB00813

6438383 DB00920

10364 DB01037

2566 DB00234

6989 DB00425

28
204



ACTIVE COMPOUNDS INACTIVE COMPOUNDS

STRUCTURES PUBCHEM  
ID

STRUCTURES DRUGBANK 
ID

9454 DB01168

9453 DB00882

2871 DB00874

7572 DB00981

37384 DB05246

29
205



ACTIVE COMPOUNDS INACTIVE COMPOUNDS

STRUCTURES PUBCHEM  
ID

STRUCTURES DRUGBANK 
ID

3000469 DB00738

20054835 DB01586
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6.2. Conclusion 

Computational screening can significantly reduce the effort involved in discovering novel 

lead molecules. The objective of any virtual screening task is to identify the potentially 

active compounds for experimentally validations. In this manuscript we employed support 

vector machines to discover new lead molecules that are active against parasitic 

nematodes.  

 

Our active and inactive datasets contain 148 and 147 compounds, respectively. We found 

that despite the almost equal number of compounds in both the datasets, the number of 

unique scaffolds found in the inactive set is twice the number found in the active set. This 

result is consistent with the fact that compounds in the inactive set were collated from 

pharmacologically diverse backgrounds, resulting in larger diversity. Further, we noted 

that five of top ten scaffolds are shared between the two datasets.  

 

During the course of this study we were able to identify 45 compounds from the prediction 

set with potential anthelmintic activity. Many of the predicted compounds contain the 

piperazine-like substructure, suggesting its importance in anthelmintic activity. From a 

thorough literature survey, we were able to identify five major targets in helminths and 

related organisms viz. -aminobutyric acid receptor, glutamate-gated chloride channels, 

glutathione S-transferase, ß-tubulin and nicotinic acetylcholine receptor. These compounds 

are starting points for further investigation by high-throughput docking to these target 

receptors, followed by experimental validation, to confirm the activity of the predicted 

molecules.   
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Chapter 7: Conclusions and future directions 

 

7.1 Summary 

This thesis is divided into seven chapters. Chapter 1 starts with a brief introduction of 

chemoinformatics and its role in drug discovery followed by an extensive literature survey 

on public, small molecule databases. Furthermore, we have reviewed methods available in 

chemoinformatics to design and optimize virtual combinatorial lead libraries. In addition, 

we have systematically reviewed studies over the past few years that were attempted to 

evaluate the suitability of chemical compounds as potential lead candidates, with specific 

pharmacokinetic properties. Chapter 2 lists the publications included in this thesis and the 

respective chapters they are included in, as a table for cross reference purposes.  

 

In Chapter 3, we describe CMKb database to store, preserve and disseminate the traditional 

Australian Aboriginal medicinal plant knowledge. The bioactive compounds in these 

traditional medicinal plants have been curated and visualized using the chemoinformatics 

module that I have developed, as a part of our effort to help preserve customary medicinal 

knowledge and to integrate chemoinformatics with the customary medicinal knowledge. 

 

Results from the analysis of physicochemical properties and functional groups of current 

drugs, human metabolites and toxics are described in Chapter 4. The effect of clustering on 

physicochemical property analysis was further analysed. It was established that although 

the physicochemical property space occupied by all the groups was distinct, however, 

currently used drugs are akin to toxic compounds than metabolites in physicochemical 

properties distribution. This result was in accordance with high attrition rates in drug 

discovery projects. We also noted that an empirical rule like Ro5 does not explicitly take 

toxicity information into account. 

 

In Chapter 5, we employed a multi-criteria approach to compare various biologically 

relevant compounds freely available in public datasets. The compounds compared were 

obtained from drugs, human metabolites, toxics, natural products and screening lead 

libraries. We confirmed our earlier results of physicochemical analysis in this study and 

supplemented it by studying scaffolds frequencies and fragment co-occurrences (using 
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association analysis) in these datasets. For the first time to the best of our knowledge, 

association analysis was employed in chemoinformatics, to examine the co-occurrence of 

the fragments. We found that metabolites are scarcely distributed in the chemical space while 

drugs and natural products are quite diverse. Further, we identified few scaffolds that are 

present in metabolites or natural products with a close counterpart in drugs but are missing in 

screening libraries. Hence, we concluded that scaffold space of metabolites and natural 

products could provide interesting leads. We also noted that the ChEMBL database contains a 

large number of drug-like scaffolds, along with significant overlap to metabolites, making it a 

good source for novel leads. 

 

In Chapter 6, we discuss a virtual screening application using a machine learning algorithm 

called the support vector machine. Compounds active against parasitic nematodes were 

screened from the ChEMBL dataset, after training the algorithm with actives and inactive 

compounds collected from literature.  

 

Chapter 7 highlights the innovations, significance and contributions of this thesis and 

draws conclusions from the scaffold analysis, fragment co-occurrences analysis. This 

chapter also discusses future directions. The work presented in this thesis has been 

published as a set of book chapters and journal articles. 

 

7.2 Conclusions 

This thesis reports a series of novel work in the field of chemoinformatics. From the 

reviews undertaken and the studies carried out, the following overall conclusions can be 

arrived at: 

 

1. Empirical rules like Ro5 can be improved by including a toxicity parameter because 

toxicity is the main cause of attrition of compounds during a drug discovery program. 

Current drugs are more similar to toxics than human metabolites in physicochemical 

properties this might explain the withdrawal of many drugs at the later stages of drug 

discovery pipeline and even sometimes after the launch of a drug in the market. We 

identified certain functional groups that are mostly founds in toxics, this could serve as 

an efficient filter during lead screening (Chapter 4). 

 

2. The low diversity of human metabolites limits their usage in lead library design. 

However, we identified some scaffolds and fragments in metabolites that are missing in 
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currently used lead compound datasets. The indentified scaffolds and fragments could 

provide useful leads during drug discovery. Similarly we found potentially useful 

scaffolds and fragments in natural product dataset. Since metabolites and NPs are 

already optimized by millions of years of evolution to bind to at least one protein in the 

biosphere therefore, it is highly probable that libraries designed based on the scaffolds 

and fragments occurring in metabolite and NP space will result in molecules with 

better ADMET properties. 

 

3. An innovative, systematic and stepwise application of association analysis (Chapter 5) 

for the investigation of the co-occurring molecular fragments in biologically relevant 

compounds has demonstrated its utility. This provides new insights to the inter-

dependency of fragments, suggesting that some fragments tend to co-occur together 

more often in a particular compound dataset while some other fragments tend to avoid 

each other. The information regarding the fragment inter-dependencies could you very 

useful while designing combinatorial lead libraries by avoiding the combinations found 

in toxic and synthetically unfeasible compounds.  

 

4. Further, in Chapter 5, we concluded that current drugs and metabolites share 7.0% of 

the total non-redundant scaffolds, i.e. over 42% of the metabolite scaffolds are present 

in drugs, whereas only 23% of the metabolite scaffolds are shared between leads and 

metabolites. This shows that although drugs and metabolites share many scaffolds, they 

largely differ in topological fragment space. 

 

7.3 Innovations 

This thesis highlights original findings from the application of chemoinformatic tools to 

the study of the chemical property space occupied by bioactive molecules, and its 

significance in drug discovery and development. Several novel aspects are presented in this 

thesis. This is, to the best of my knowledge, the first study of its kind where the application 

of association rule mining, to find frequently occurring molecular substructural patterns in 

bioactive compounds, has been applied. This is a robust method for HTS screening of 

biologically interesting chemical fragments and the information on co-occurring fragments 

could also be extremely useful while designing lead libraries. Besides this, many other 

innovations, such as the CMKb chemoinformatics module developed as a part of this work, 

can serve as a platform to visualise and annotate chemical data and would be a useful 

resource for drug discovery. Further, the inclusion of human metabolites during the 
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analysis, has given insights into the metabolite space. Also, for the first time to the best of 

our knowledge, we have compared the distribution of physicochemical properties in 

clustered and unclustered datasets, recommending the use of clustered datasets. 

 

7.4 Significance and contributions 

This work reverberates with inherent importance. Among many other significances and 

contributions of this thesis, a few critical ones are listed below: 

1. This research project proposes a prototype (multi-disciplinary CMKb database) for 

the conservation of customary medicinal plant knowledge and associated chemical 

information. (Chapter 3) 

 

2. It offers compelling insights into physicochemical properties of current drugs, 

human metabolites and toxics. (Chapter 4) 

 

3. It lists new functional groups that could serve as filters to remove toxic compounds 

in order to improve hit rates in virtual screening (Chapter 4). 

 

4. It outlines the rationale behind the usage of metabolites and natural products 

scaffolds or fragments in lead designing tasks. (Chapter 5). 

 

5. It outlines the argument for the through screening of metabolites and natural 

products scaffolds and fragments space for designing novel lead libraries with 

better ADMET properties (Chapter 5). 

 

6. It describes an application of a robust, statistical, pattern finding technique called 

association analysis to help understand the co-occurrences and inter-dependencies 

of molecular fragments in biologically relevant molecules (Chapter 5). 

 

7. Ligand-based VS has been successfully employed in drug discovery programs, 

however, it still remains an unproven approach for discovering antiparasitic drugs. 

This study helps to prove the validity of ligand-based VS in discovering novel leads 

and predicts compounds active against parasitic nematodes (Chapter 6).  
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8. It assists in library design, VS of active compounds and hence cuts down the time 

and effort involved in classical drug design. 

 

7.5 Future directions 

The studies presented in this thesis could lead to advancements in many directions for 

better understanding of chemical space occupied by the compounds of biological 

importance.  

 

The methodology described in Chapter 5 to analyse the co-occurrence of fragments could 

be automated for high-throughput identification of strong, moderate or weak correlations 

among the fragments. The above approach combined with scaffold identification and 

optimization methodology can be developed into a fully automated ligand-based virtual 

screening tool. This fully automated VS tool can then be implemented as a web-server that 

provides service to the scientific community, especially to chemical biologists and 

computational chemists. The chemoinformatics module described in Chapter 3 could be 

used a prototype to develop a new database module or can be extended to store fragments 

relevant to drug-design along with their frequencies and co-occurrences information which 

can then be used to find bioisosteric replacements in future work. Further, the search 

component of the chemoinformatics module described in Chapter 3 could be upgraded 

with the ability to search substructures and similar molecules. 

 

The analysis done in Chapter 6 has revealed a series of interesting compounds that could 

potentially be anthelmintic in nature. Experimental validation of the predicted compounds 

is next step in the overall analysis. Although the current methodology focuses on the use of 

existing machine learning approaches for screening novel compounds and data analysis, 

this work can be extended to structure-based approaches such as high-throughput docking 

methodology for screening novel compounds active against parasitic nematodes where the 

experimental 3D structures of the biological target is known. 
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