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Abstract

Digital medical image segmentation is the process of partitioning an image into several discrete

and homogeneous regions. Segmentation is needed to find the boundary of the prostate either

automatically or semi-automatically. One of the most accurate and non-invasive prostate imaging

methods is Magnetic Resonance Imaging (MRI) which is usually employed for the prostate image

segmentation and/or possible prostate anomalies detection.

In this research, to improve the Fully Convolutional Neural Network (FCNN) performance

for prostate MRI segmentation, we analyse various structures of shortcut connections as well as

the size of a deep network. We suggest six different deep 2D network structures for automatic

MRI prostate segmentation based on FCNN. Our evaluations on the PROMISE12 dataset with

ten-fold cross-validation indicate improved and competitive results. We analyse the results in detail,

considering MRI slices, MRI volumes, test folds, and also the impact on prostate segmentation

of using an EndoRectal Coil to capture the prostate MRI. Our best 2D network outperforms the

state-of-the-art 3D FCNN-based methods for prostate MRI segmentation, without any further

post-processing module nor pretraining on publicly available data.
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1
Introduction

Hospitals produce 50 petabytes of data annually [1]. According to International Business Machines

(IBM) researchers estimation, medical images are at least 90 per cent of all medical data [2]

making them the most prominent data in the healthcare enterprise. Dealing with the huge amount

of medical images becomes overwhelming for radiologists, especially in some hospitals where they

are faced with thousands of images daily. Therefore, automatic methods are needed to extract

information from medical images. One of the most widely used methods for medical image analysis

is image segmentation to find a specific organ or abnormality in the image. The purpose of this

thesis research is developing an efficient method for automatic prostate MRI segmentation using

deep neural networks.

1.1 Motivation

The prostate is a part of the male reproductive system that has an inverted pyramidal shape and

usually weights between seven and sixteen grams. It measures about 3 cm in height and about

2.5 cm in diameter–approximately the size of an apricot [3]. The prostate can suffer from many

diseases but most importantly prostate cancer. Prostate cancer is one of the more common causes

1
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of death in developed countries [4]. According to Siegel et al. [5] there will be 164,690 new

instances of prostate cancer and 29,430 deaths because of prostate cancer in the United States in

2018. Furthermore, the first cause of cancer and the second cause of cancer death in the United

States of America is prostate cancer.

In Australia, according to the Prostate Cancer Foundation of Australia more than 3,000 men

die because of prostate cancer annually–more than the number of women death due to the breast

cancer [6]. The Australia Institute of Health and Welfare estimates that 17,729 new prostate

cancer cases will be diagnosed in 2018, which would be 23.8% of all new male cancer cases in

Australia. Also, they estimate that 3,500 men will die from prostate cancer, representing 12.7%

of all cancer deaths in Australia [7, 8]. In 2017, prostate cancer was the third cause of cancer

in Australia after Breast and Colorectal cancers and also the third cause of death after Lung and

Colorectal cancer. [7, 8].

Early detection of prostate cancer can increase the chance of survival. The prevalence of

prostate cancer elevates the importance of early–stage diagnostic and therapeutic methods. For

example, in the United States, early-stage diagnosis of prostate cancer and improvements in

therapeutic methods have decreased the rate of prostate cancer death by 40 to 50 per cent since

the early 1990s [9].

One purpose of a diagnostic test is to detect the presence or absence of disease in an individual

who may or may not have symptoms of disease. There are various methods that can be used

to diagnose prostate cancer or other abnormalities in the prostate. MRI is a medical imaging

technique that is the primarily tool for diagnosis and treatment planning for prostate ailments

[10, 11]. The MRI device employs electric field gradients, strong magnetic fields, and radio waves

to provide good contrast soft–tissue images. MRI images enable radiologists to obtain better lesion

detection and staging for prostate cancer and MRI images allow for precise segmentation and

accurate classification, and is a relatively harmless imaging method. [12]. Image segmentation is

the first stage of analysis to find the prostate as well as possible prostate abnormalities the prostate

MRI.
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1.2 Problem Description

The process of segmenting an image into several discrete and homogeneous regions is image

segmentation. It aims to alter the representation of an image to find a region or regions of interest

in an image. Medical image segmentation is one of the most significant and active areas of

research in medical image processing. The purpose of medical image segmentation is using a

precise method to find the boundary of a specific organ or tissue, and it is a fundamental step for

clinical studies including: diagnosis of disease, monitoring of organs or particular tissues, and,

more importantly, treatment planning. Medical image segmentation is a difficult task because in

most cases a specific organ has different shapes and sizes in different people [13]. Also, in some

studies, the intensity value of the Region of Interest (ROI) is the same as the adjacent organs that

can make segmentation even more challenging [14].

Medical image segmentation is usually done in one of three ways: manually, semi–automatically,

or automatically. An expert radiologist can perform a manual segmentation of the ROI, but it is

often time–consuming and tedious [15]. A further problem is that in some cases a radiologist may

segment a specific image differently at various times or two radiologists may segment the same

image dissimilarly [16]. However, when developing a semi–automatic or automatic segmentation

method we almost always need ground truth images that should be created manually by expert

radiologists. Even in the semi–automatic segmentation methods, an expert user is required to

initialise or correct the segmentation. For example, the user can set a seed point or specify a region

to start segmentation. In fully automatic segmentation, there is no human interaction during the

segmentation of the image. In this type of segmentation, human knowledge is often employed

to design an accurate method based on image processing and/or machine learning methods for

image segmentation.

1.3 Objective of This Study

As discussed above, the most accurate and safe method for recognition of any types of abnormalities

in the prostate gland is employing MRI image. Finding the boundary of the prostate in the MRI

image is fundamental to recognise possible disease in the prostate. Because of the considerable

diversity in size, appearance, shape, and texture of the prostate and the lack of a clear prostate
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boundary, especially in malignant prostate tissues, prostate segmentation is a challenging problem

even for expert radiologists. Regarding the increasing incidence of prostate cancer in the world

and the importance of prostate cancer detection in the early stage for patients survival, finding an

effective method for prostate segmentation and eventually, prostate cancer detection is necessary.

One of the methods for analysing of medical images is Deep Learning [17] that is a part

of machine learning methods [18]. A deep neural network is constructed from multiple layers

of neurons for feature extraction and classification. Improvement in machine learning methods

especially deep learning convinced researchers to use deep learning in computer vision applications

and specifically in medical image analysis such as image segmentation [19, 20].

Fully Convolutional Neural Network (FCNN) is a type of Convolutional Neural Network (CNN)

that has been introduced for image segmentation [21]. The purpose of the FCNN is to create an

output image analogous to the ground truth of the input image. U–net [22] and DenseNet [23]

are two of FCNN–based networks for medical and natural image segmentation respectively. In our

research, we try to develop new segmentation methods based on U–net and DenseNet structures.

In this thesis, we suggest six different structures with a particular focus on using various

pattern of shortcut connections [24] as well as varying the size of the networks for automatic 2D

MRI prostate image segmentation. We evaluate the performance of the following six network

structures: Straight, Bypass, Output from All, Input to All, Dense, and Non–bypass models. After

extensive experiments, and analysing the results in detail, our best model (Non–bypass) is found

to outperforms the state–of–the–art 3D FCNN–based prostate segmentation methods. We show

that, using shortcut connections can also decrease the accuracy of the network; therefore, it is

critical to use shortcut connections in the proper place in the network. Therefore, starting and

ending points of the shortcut connections also critical. In addition, we find that the quality of the

training images has a significant effect on the final results.

1.4 Organisation of the Thesis

The remainder of the thesis is organised as follows. In chapter 2, different MRI prostate image

segmentation methods are categorised into five main groups and discussed. In chapter 3, we

first analyse the key issues in developing new networks for segmentation. We then introduce the

six FCNN–based networks for MRI prostate image segmentation. In chapter 4, we explain the
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dataset and data normalisation methods that will be employed for segmentation, and investigate

the hyper–parameter settings for network training. In chapter 5, the outcomes of the six suggested

models for MRI prostate segmentation are discussed, and the best models are identified. Finally,

in chapter 6, we summarise the key outcomes and discuss propose future work.
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2
Background and Literature Review

Established semi–automated and automated prostate image segmentation models can mainly be

categorised into four various groups: Atlas–based, Shape–based, Image–based, and Superpixel–

based segmentation. Recently, Deep learning–based approaches have achieved state–of–the–art

results in image processing and specifically in image segmentation [25–28]. In this chapter, some

significant papers that analyse 2D MRI images or 3D MRI volumes for prostate image segmentation

will be presented. At the end of each section, we provide tables and a discussion section to analyse

the performance of the segmentation models. The Dice Similarity Coefficient (DSC) [29–32]

was chosen for performance comparison because it is a common metric for evaluation of image

segmentation results. Some papers combine the mentioned methods; we discuss these papers in

one section based on the main method that they used.

2.1 Atlas–Based Segmentation

One of the methods that can segment unseen images by using manually labelled training images

is Atlas–based segmentation [33]. In this approach a registration method is used to align the

atlas image or images to a new image. There are two different atlas–based methods, namely

7
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Parametric and Non–parametric methods. Parametric atlas methods typically incorporate the

manually segmented training images into a single atlas image [34], whereas Non–parametric

models apply all of the training images individually to create multiple atlas images [35].

The Demons registration algorithm can be used to create a so–called probabilistic atlas [36].

The Demons registration method computes the pixel value transformation between a reference

image and several moving images. To do this, the registration employs two stages; that, intensity–

based affine transformation, and then non–rigid demons registration. For example, Ghose et al.

[37], and Gao et al. [38] utilise a probabilistic atlas and the random forest algorithm for prostate

image segmentation. They use several distinct random forest classifiers to identify the prostate

boundary. Finally, leveraging the probabilistic representation of each pixel, the multi–image graph

cuts algorithm is used to obtain the final segmentation. Also, Ghose et al. [39] suggested a

hybrid method including a probabilistic atlas model and Statistical Shape and Appearance Model

(SSAM) for 3D prostate image segmentation. Li et al. [40] proposed another method based on the

probabilistic atlas and an enhanced random walk algorithm for prostate segmentation. Another

segmentation method based on probabilistic atlas introduced by Martin et al. [41]. In the first

stage, images are registered to the probabilistic atlas; in the second step, the information from

the first step is merged to obtain a deformable surface defining the prostate boundary. Finally, a

supervised atlas–based segmentation method has been proposed using the combination of adaptive

Active Appearance Model (AAM) for coarse segmentation followed by a Support Vector Machine

(SVM) for fine segmentation of prostate images [42].

Ref DSC% Year Dataset Size Segmentation Data
[37] 91 2012 15 volumes Automatic 3D
[39] 89 2012 15 volumes Automatic 3D
[38] 88.98 2014 107 images Automatic 2D
[43] 88 2015 67 images Automatic 3D
[42] 87.5 2014 40 volumes Automatic 2D
[41] 84 2010 36 volumes Automatic 3D
[40] 80.7 2013 30 volumes Automatic 3D

TABLE 2.1: This table provide the references, performance, publication
year, the size of the dataset, Type of Segmentation, and Type of Data of the
Atlas–based methods.

In the above models,

different algorithms are

used for finding the loca-

tion of the prostate auto-

matically. However, some

researchers manually iden-

tify the appropriate prostate

region and apply their algo-

rithms only on the ROI. Korsager et al. [43] manually extracts the prostate as a rectangular ROI

and uses the ROI and its corresponding label to create an atlas. This work uses, both shape
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information which is extracted from atlas registration, and intensity information that is derived

from histograms of the image. Finally, the graph cut is used for globally minimising the energy

function that is extracted from the Maximum A Posteriori (MAP) segmentation.

The summary of the discussed Atlas–based methods can be seen in Table 2.1. In this table, the

reference number, performance (mean DSC), publication year and the size of the datasets are listed.

Comparison of these papers is difficult because they employed different datasets for evaluation.

However, based on the obtained results, using atlas with statistical shape and appearance method

[37] is the best result, with 0.91 average mean DSC. Also, some papers use the combination of

Atlas methods and deep learning for prostate image segmentation that will be explained in the

deep learning section.

2.2 Shape–Based Segmentation

In this method, a template shape based on control points along the boundary of the ROI is needed.

Active Shape Model (ASM) [44] and Active Appearance Model (AAM) [45] are two common shape–

based techniques. These methods use derived landmarks, which can be specified either manually

or automatically, for segmentation. A combination of MAP and AAM are used for segmentation in

several papers [46–48]. These papers use MAP for estimation of a new log–likelihood function and

different types of descriptors to find the prostate boundary. For example, Firjani et al. [47] apply

a visual appearance descriptor, a 3D spatially rotation–variant descriptor (the output of descriptor

will change with rotation of the image), and a homogeneity descriptor to find the boundary of the

prostate.

Ref DSC% Year Dataset Size Segmentation Data
[47] 92 2011 270 volumes Automatic 3D
[49] 88 2011 108 volumes Semi-Automatic 3D
[48] 85.5 2011 180 volumes Automatic 3D
[50] 81.79 2013 40 volumes Automatic 3D
[46] 80 2011 28 images Automatic 3D

TABLE 2.2: This table provide the references, performance, publication
year, the size of the dataset, Type of Segmentation, and Type of Data of the
Shape–based methods.

Lastly, a 3D shape de-

scriptor is applied for sep-

arating the prostate from

the background. Also, they

propose a later version of

their work, replacing the

rotation–variant descriptor

with a rotation–invariant

descriptor [48].
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The Active Appearance Model is another shape–based model that is employed in various papers

for prostate and/or its components (peripheral and central zones) segmentation [49, 50].

As is shown in Table 2.2, Firjani et al. [47] obtain 0.92 average mean DSC as the best result.

Recently, researchers employ the combination of these methods with an atlas–based method

as discussed in the previous section, or with deep learning that will be discussed below for

segmentation.

2.3 Image–Based Segmentation
Some methods begin their segmentation with an initial template then refine it based on the image

data while minimising error. The Active Contour Model (ACM) or Snake and its derivatives are

image–based [51]. Snake is an energy–minimising framework that can find edges, lines, and

boundaries and can be utilised in shape recognition, object tracking, segmentation, and edge

detection. Skalski et al. [52] suggested a novel application of ACMs with gradient vector flow

for segmentation. They use typical prostate shape as prior knowledge to improve the accuracy of

their model. Liew et al. [53] proposed another segmentation method based on 3D MRI images.

They present a novel rotational volume slicing method along with a contour shrinking technique.

References DSC% Year Dataset Size Segmentation Data
[54] 91.45 2016 72 images Automatic 2D
[55] 83 2017 22 volumes Semi-automatic 2D
[56] 78.4 2017 PROMISE12 Automatic 2D
[52] - 2013 8 images Automatic 3D
[53] - 2015 10 volumes Automatic 3D
[57] - 2013 33 volumes semi-automatic 2D

TABLE 2.3: This table provided the references, performance, publication year,
the size of the dataset, Type of Segmentation, and Type of Data of Image–Based
methods.

Some researchers

apply the combina-

tion of contour–based

algorithm and classi-

fiers for prostate de-

lineation. For in-

stance, Yang et al.

[54] introduced a

novel method based

on a modification of a level set formulation. Firstly, they segment a medium slice of the prostate

image manually to provide prior information, then by using similarity estimation they detect the

prostate. Lastly, the contour of the prostate is acquired by the enhanced level set model. In this

approach, for every new image, the location of the prostate is specified with a registration schema.

In the iterative model, the algorithm starts from a specified pixel or region, then iteratively
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refines the boundary with or without radiologists or the guidance of the other experts. Wu et

al. [57] suggested a two–stage algorithm for 3D MRI prostate segmentation. First, an initial

surface mesh of the prostate is acquired interactively then the graph cut algorithm is used to

find the prostate. Another method uses a learning approach for localisation of the prostate by

learning global context [56]. In this paper, fine segmentation is performed by min–cut on the

sparse spherical graph of the prostate. In other work, Wang et al. [55] designed a two–stage model

for prostate image partitioning. The first stage is the calculation of the multi–view label–relevance

probability map. The next phase of their method includes collaborative clustering that is including

the calculation of a membership function, entropy function, weight calculation, and cluster centre

calculation to learn to segment the pixels of the image into background and foreground groups. In

the image–based methods, the mean DSC is not available for some of the methods. The summary

of the results can be seen in Table 2.3.

2.4 Superpixel–Based Segmentation

Xiaofeng Ren and Jitendra Malik introduced the concept of superpixel in 2003 [58]. In this method,

instead of using individual pixels for image segmentation, groups of pixels with similar colours

or grey levels are considered. One of the precise methods for superpixel segmentation is Simple

Linear Iterative Clustering method (SLIC) [59]. In this method, the k–means clustering algorithm

[60] is used for clustering pixels. Superpixel methods have been used for prostate segmentation,

but the prostate is only a small part of the image and using grey level based features cannot

correctly find the prostate. Therefore, the superpixel method should be used with some other

techniques to detect the superpixels that represent the prostate.

References DSC% Year Dataset Size Segmentation Data
[61] (Level set) 89.3 2016 PROMISE12 Semi-automatic 3D
[62] 81 2014 PROMISE12 Automatic 2D
[63] 80 2013 PROMISE12 Automatic 2D

TABLE 2.4: This table provided the references, performance, publication year, the size
of the dataset, Type of Segmentation, and Type of Data of Superpixel-Based method.

For example,

in Mahapatra

et al. [63]

and Mahapatra

et al. [62] they

apply the SLIC

1PROMISE12 is a published prostate MRI segmentation dataset with 50 volumes and their corresponding labels.
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method, and then create an adjacency graph of the superpixels. To merge the adjacent superpixels,

they employ a graph cut minimisation method, and finally, a 3D level set method is used to find

the boundary of the prostate. Also, Tian et al. [61] uses a random 3D active contour model along

with superpixel method for segmentation.

All three methods are applied to the PROMISE12 dataset for prostate segmentation. Mahapatra

et al. [63] obtain 0.91 DSC, outperforming the others [61, 62] who achieve 0.81 and 0.87 per

cent mean DSC respectively. The detailed information can be seen in Table 2.4

2.5 Deep Learning–Based Segmentation

Improvement in machine learning methods especially deep learning has convinced researchers to

use deep learning in computer vision applications [19, 20]. A deep neural network is constructed

from multiple layers of neurons such that each layer learns to transform its input data into a new

more abstract. In particular, a Convolutional Neural Network (CNN) [64] is a kind of deep network

that has been successfully applied for visual image processing. The leading operator of CNN is

convolution, consisting of learnable filters or kernels that are convolved across the input image,

computing the dot products between the filters and the receptive fields to produce feature maps

[65]. In this section, we review papers that apply the combination of the CNN and other methods

for MRI segmentation.

A successful hybrid method for prostate image segmentation uses an atlas as well as deep

learning. Cheng et al. [66] proposed a hybrid method combining an atlas–based active appearance

method along with a deep learning method to improve 3D MRI prostate image segmentation.

They apply AAM for estimating the prostate boundary then use deep CNN to refine the boundary.

In the first phase, they separate the atlas into various groups based on a similarity measure. Each

image slice is assigned to the most similar atlas group and they then employ AAM training in each

subgroup to find a boundary around the prostate. In the second phase, they extract 2D 64× 64

image patches around the AAM predicted boundary. They use pre–trained AlexNet [67] to classify

the patches into prostate and non–prostate to refine the boundary.

Cheng et al. [68] presented another work using both patch–based and holistic (image to

image) deep learning methods for prostate image segmentation. In this paper, they employ a

Holistically Nested Network (HNN) architecture for image–based segmentation. For training
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their network they first crop 25% of images from top, bottom, left, and right to find the prostate

area. Then the Coherence Enhanced Diffusion (CED) filter is used to enhance the quality of the

prostate boundaries. In the end, both the original MRI images and the CED–MRI images with their

corresponding labels are used for training the HNN for the prostate image segmentation.

Recently Jia et al. [69] proposed a course–to–fine segmentation method using an atlas method

and deep learning. In this paper, a registration–based segmentation is used to find the approximate

boundary of the prostate; then they extract image patches around the prostate region to find the

prostate boundary by applying deep network VGG–19 [70] and LeNet–5 [71]. In the paper, they

fine–tune pre–trained VGG–19 for finding the prostate boundary. Also, to show the efficiency of

utilising pre–trained networks they train LeNet–5 from scratch using the extracted image patches.

In the end, they conclude that using the pre–trained network is more precise than their separately

trained network for prostate image segmentation. In related work, He et al. [72] proposed a

three–level coarse–to–fine segmentation method. In the first level, the 3D volume of interest is

extracted by employing 3D Haar features then an Adaptive Feature Learning Probability Boosting

Tree (AFL–PBT) voxel classifier is used to classify pixels into three groups: near, interior, and

exterior. Finally, CNN is used to refine the prostate boundary.

Proposal–based segmentation is another well known model for natural image segmentation

that has been applied for prostate image segmentation [73]. In this approach, an image is divided

into several patches or proposals then the proposals that contain prostate are separated. For

example, Yan et al. [73], first generate a set of prostate proposals by using the Geodesic Object

Proposal (GOP) algorithm [74] for 3D segmentation of the prostates then a graph is used to select

highly effective proposals. Finally, CNN is employed to detect highly effective features to refine the

boundaries. Two other types of networks that apply for prostate image segmentation are Stacked

Sparse Auto Encoder (SSAE) [75] and Independent Subspace Analysis (ISA) networks [76]. The

SSAE uses a sparse patch matching method, and the ISA employs sparse label propagation method

for feature extraction for prostate image segmentation.

Almost all of the papers discussed above use a combination of various image processing and

machine learning methods for feature extraction, coarse segmentation and fine segmentation.

However, recently some researchers employ only CNN for both feature detection and segmentation.

Fully Convolutional Neural Network (FCNN) is a version of CNN that is designed for image
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segmentation [21]. FCNN is constructed from two parts including down–sampling (encoding,

convolution) and up–sampling (decoding, deconvolution). In some networks, there is a specific

block named Bottleneck (Bridge) to connect these two parts. In the down–sampling section, the

network tries to extract features as it goes from the higher resolution to lower resolution while

the up–sampling part attempts to reconstruct the coarse–to–fine segmentation with transposed

convolution [77]. FCNN utilises an end–to–end method for learning. For 2D images, it uses

image–to–image, and for 3D volumes, it applies volume–to–volume supervised learning.
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FIGURE 2.1: The architecture of the U–Net and V–Net networks.

One of the first articles

that uses FCNN with 2D

convolution for 2D medical

semantic image segmenta-

tion is U–Net [22]. As seen

from Figure 2.1a, U–Net

is constructed from three

parts. The down–sampling

part contains four blocks

such that between each

pair of blocks, there is a

max–pooling layer to se-

lect the maximum value of

the cluster and to halve the

size of the feature maps

[78]. In the up–sampling section, between each pair of blocks there is a convolution layer

with 2× 2 kernel size to double the size of the output feature maps. Additionally, the Bottleneck

block connects the two parts. All the blocks are constructed from two convolution layers follow

by non–linearity and finally, a 1× 1 convolution layer is used in the last layer. Also, to improve

the results in this structure, long connections are used for cropping and copying a part of the

extracted feature maps from the down–sampling part and concatenating them with the obtained

feature maps from the up–sampling section. Recently, A new version of U–Net for prostate MRI

image segmentation was introduced [79]. In this paper, they try to improve the accuracy of the
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network by amplifying the length of the U–Net by adding a 1× 1 convolution layer in each block.

Additionally, this paper uses dropout to overcome overfitting.

In 2016, the first version of 3D FCNN for segmentation of 3D volumes of prostate images was

presented as V–Net [80] (see Figure 2.1b). In this network, there are four blocks in each part

similar to U–Net, but the number of layers in each block is different. In each block, there is a

residual shortcut connection for summing the input feature maps and the output feature maps

of the block, element by element. It means that by applying element–wise sum the number of

feature maps will be constant and the result of summing two groups of feature maps will be sent

to the next stage. Also, four long connections are used to concatenate the feature maps from the

first part to the second part, as in U–Net. In this network, instead of max–pooling, they employ

convolution with the kernel size of 2× 2.
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Another paper for 3D

MRI prostate segmentation

is ConvNet [81] (see Fig-

ure 2.2a). The aim of this

paper is to analyse the ef-

fect of using short and long

residual connections. In

this network, each resid-

ual block is constructed

from two convolution lay-

ers with kernel size of 3×3

and they use element–wise

sum to combine the input

of the block with the out-

put of the second convolution layer as the short residual connection before applying the non–

linearity. Moreover, they utilise long connections to sum the extracted feature maps from the first

part of the network to the second part. In this paper, they train the network as variants with only

short or long and with both residual connections. They show that using the combination of short

and long residual connections is more effective for prostate image segmentation.
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Mun et al. [82] proposed a new network for 3D MRI prostate segmentation call the Baseline

Convolutional Neural Network (BCNN) (see Figure 2.2b). In this paper, different structures are

employed in the encoding and decoding parts. All the blocks contain three layers of convolution,

but in the encoding blocks, there is a shortcut connection to sum the output of the first layer with

the output of the second layer. A corresponding connection does not exist in the decoding part.

In the encoding section, downsample implies a convolution layer with stride two and upsample

in the decoding block indicates the deconvolution operator. Also, to reuse the extracted feature

maps of the first part in the second part, they utilise long connections and element–wise sum. The

primary purpose of the paper is the comparison of six different types of objective functions: the

Jaccard Index, Hamming Distance, Euclidean Distance, Cosine Similarity, Dice Coefficient, and

Cross Entropy. Using the same architecture, the results show that Cosine Similarity is the best and

the Dice Coefficient is the second best among the six objective functions to train the network for

prostate image segmentation.

Ref DSC Year Dataset Size Segmentation Data
[66] 92.5 2016 120 volumes Automatic 3D
[69] 91 2018 PROMISE12 Automatic 2D

PROSTATEX172 [83]
[68] 89.77 2017 250 volumes Automatic 2D
[73] 89 2016 PROMISE12 Automatic 2D
[79] 88.5 2017 1324 images Automatic 2D
[75] 87.4 2016 66 images Automatic 3D
[80] 86.9 2016 PROMISE12 Automatic 3D
[81] 86.9 2017 PROMISE12 Automatic 3D
[76] 86.7 2013 30 images Automatic 2D
[82] 85.37 2017 PROMISE12 Automatic 3D
[72] 84 2017 PROMISE12 Automatic 3D

TABLE 2.5: This table provides the details of the Deep learning-based
segmentation.

In summary, some pa-

pers used the combination

of the CNN with other

methods such as atlas reg-

istration. However, recent

work has employed only

FCNN for coarse to fine

prostate image segmenta-

tion and achieved positive

results. With regards to the

dataset that they used, and

the publication years, we

can understand that the obtained results outperformed most of the previous methods that used

2PROSTATEX17 is a published prostate MRI classification dataset with 204 volumes with Gleason scores representing

prostate cancer diagnosis but without segmentation ground truth [83]. All studies included T2-weighted (T2W),

proton density-weighted (PD-W), dynamic contrast enhanced (DCE), and diffusion-weighted (DW) imaging. The

images were acquired on two different types of Siemens 3T MR scanners, the MAGNETOM Trio and Skyra.
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the combination of some other algorithms for the prostate image segmentation (see Figure 2.5).

Cheng et al. [66] achieved the best result with 92.5 mean DSC in this section.

2.6 Discussion
There are many papers with various methods for semi–automatic and automatic MRI prostate

segmentation. We have only discussed some of them in this section. For comparison of the papers,

a critical factor is the dataset that they used for segmentation. Except for the PROMISE12 and

PROSTATEX17 datasets, all the other datasets are unpublished.

To evaluate an MRI prostate dataset, we should consider three important points: total number

of volumes or images, number of slices that contain the prostate, and number of EndoRectal Coil

(ERC) and non–EndoRectal Coil (non–ERC) images. In all of the unpublished datasets, the number

of volumes or images are provided. However, there is not any information about the number of

slices with and without prostate. Using a dataset with more diverse prostate image scans or using

images with a clearer prostate region can increase the accuracy of the proposed model. Another

important factor is using ERC. This device is placed into the rectum to obtain high–quality images

during 1.5T MRI imaging, however it create spikes and bright regions in the MRI that can decrease

the accuracy of the prostate image segmentation. In the unpublished datasets, there is not any

information about the number of the ERC or non–ERC images, yet this is a significant factor in the

accuracy of the prostate image segmentation.

In the absence of information, we suppose that the number of the prostate and non–prostate

images and also the number of ERC and non–ERC images in all of the datasets are reasonably

consistent. In our review, six papers obtained mean DSC greater than 90% of which four applied

their methods on unpublished datasets with 15, 270, 18, and 120 volumes [37, 47, 54, 66]. Among

those, Cheng et al. [66] obtained the best results by using atlas–based registration and deep

CNN methods with 92.5 mean DSC. Also, Jia et al. [69] obtained mean DSC of 91% by using

PROMISE12 datasets with atlas–based registration and deep CNN; however, they applied extra

post–processing for boundary refinement. Mahapatra et al. [63] achieved equivalent results by

using the superpixel method.
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3
Proposed Models

In this chapter, the aim is to design a precise model for 2D MRI prostate segmentation by using

Fully Convolutional Neural Network (FCNN). To do this, we analyse the different parameters of the

CNN, including convolution, Batch Normalisation (BN), dropout, its size, and more importantly

the role of using the shortcut connections in the prostate image segmentation. Afterwards, six

network structures are proposed for automatic 2D MRI prostate image segmentation. To the best of

our knowledge, there is no similar extensive work to analyse FCNN for MRI prostate segmentation

in the literature.

3.1 Introduction

There are critical issues to design a deep neural network such as the size of the network and the

components (convolution, max–pooling, etc.) that are typically employed to develop a new model.

First, we present these challenges, and then we will explain our proposed models to address these

problems for MRI prostate segmentation.

One of the straightforward methods to enhance the precision of the FCNN may be to increase

the depth of the network. In FCNN, the depth depends on the number of blocks in the network

19
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and the number of layers in each block [84].

When expanding the size of the network, two important issues have to be considered. The

first one is the feasibility of the implementation of the network because it can expand the memory

usage and the computational time. The second vital issue is overfitting [85]. Increasing the depth

of the network can enlarge the number of parameters1, and the model will be more prone to

overfitting. Overfitted (also called overparameterized) networks have more parameters than can

be fitted by the data. To address this problem, the network needs to be trained with more data.

Unfortunately, one of the main problems in medical image processing is a shortage of labelled

data.

Besides the size of the network, the architecture of the network is important to obtain an

accurate segmentation. CNNs are constructed from different components including convolution,

Batch Normalisation (BN), and dropout. Another component of the network may be the shortcut

and/or long connections that can have a considerable effect on the results. The design of the

network including the place of its components and their parameters will significantly affect the

network’s performance.

Some papers have analysed different parameters consisting of the depth of the network, and the

effect of using 1×1 convolution on the network for image classification [84] and image recognition

[70], also the role of short and long residual connections has been investigated for bio-medical

image segmentation [81, 86], but until now, no article has been published to investigate the

role of the size of the network and other parameters such as different structures of the shortcut

connections for image segmentation.

3.2 Proposed Network Architecture

To address the issues listed in the previous section, we propose models based on U–Net [22] to

define an accurate FCNN–based model for prostate image segmentation. U–Net is a relatively

straightforward network that has been introduced for 2D medical image segmentation. Our

models are based on U–Net because they are constructed from three parts like U–Net, consisting

of down–sampling, bottleneck, and up–sampling. Similar to U-Net, we consider the MRI images

1Number of parameters for each convolution layer is (N ×M × X + 1)× Y . Where N ×M is the size of the filter; X

is the number of input feature maps; Y is the number of output feature maps. The count 1 represents the bias term.
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as 2D slices and use 2D convolutions. However, the architecture of our proposed models and their

components are different from U–Net.

We suggest a relatively deep FCNN network structure. The diagram of this architecture is shown

in Figure 3.1. As is shown, this network is constructed from three parts including down–sampling,

bottleneck, and up–sampling. Six blocks can be seen in the down–sampling part and six blocks in

the up–sampling section. In the bottleneck, there is another block to connect the two parts. Each

block has several components that will be discussed in Section 3.3.
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FIGURE 3.1: Proposed network architecture for
prostate segmentation.

As shown in Figure 3.1, in the down–sampling

part, the input image is directed into the first block

and the output feature maps (convolution output

[65]) of the first block are fed to the next block as

the input. This process is repeated several times.

After each block in the down–sampling part, a

max–pooling operator [78] halves the size of the

feature maps. In the bottleneck, there is a block

that connects the down–sampling section to the

up–sampling part. In the up–sampling section,

each block is preceded by a deconvolution layer

(also called transposed convolution) [77] to dou-

ble the dimension of the feature maps. In our pro-

posed models, we use stride along with padding

for transposed convolution. It means, perform

zero padding on the input feature maps and then

apply convolution to increase the resolution (di-

mension) of the feature maps.

In Figure 3.1, the resolution of the feature

maps (the first two numbers) along with the output rate (the number of feature maps output by

each layer (the third number)) is specified. As is shown, in the down–sampling part the resolution

decreases after each max–pooling operator to extract information and in the up–sampling section,

the resolution will be increased to the original size of the image. The last layer is a 1×1 convolution
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layer with one output channel that produces the output segmentation image. The dimension of

the input image and the output segmentation image is the same (256× 256).

One of the problems of using deep networks is degradation (increasing the depth of the network

can decrease the accuracy). Because of using multiple convolution layers and max–pooling in the

down–sampling process a part of the spatial information is lost [24, 81]. Therefore, feature maps

in the up–sampling part will have more information deficiency. To improve the quality of feature

maps in the up–sampling section the extracted data from the down–sampling part can be reused

by using long connections or highway connections [87]. Srivastava et al. [87], introduced the

highway network to create the deep network by using highway connections. Highway or long

connections let feature maps flow across several layers. In our proposed architecture we use a

long connection between each block in the down–sampling part and its corresponding block in

the up–sampling section to bring high spatial resolution information across to be combined with

deconvolved lower resolution information in the up–sampling part of the network. Our proposed

architecture uses six long connections (shown with dash lines see Figure 3.1) to copy extracted

feature maps to the up–sampling section. The first Long connection is the longest, connecting the

output feature maps of the first block to the last block, and the sixth one is the shortest.

As seen in Figure 3.1, we propose a deep FCNN with several layers that could cause problems

by increasing the number of parameters and run time of the network. To limit these problems,

we specify the number which we call the output rate. This is the third number on each block in

Figure 3.1. The output rate is the number of output feature maps of each convolution layer in

the block. As shown in Figure 3.1, we set the output rate of the first block as eight; it means

that every layer in the first block has eight output feature maps regardless of the number of input

feature maps, and then the output rate doubles in the following blocks in the down–sampling part.

The reason for starting the output rate with a small number is the size of the network– using a

higher output rate can increase the number of parameters. With regards to the limited available

training data, increasing the number of parameters without considering the network components

and the number of training images can increase the possibility of overfitting.

In the down–sampling part, the deeper blocks have a higher output rate to represent more

complex features. We employ max–pooling to halve the spatial dimensions of the feature maps

after each block [22]. Max–pooling does not change the number of feature maps.
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The Bottleneck is the most profound block in our network with the highest output rate (512)

and capacity for the most complex features. It connects the down–sampling part to the up–sampling

part and has the smallest feature map size (4× 4). Structurally, the bottleneck is otherwise the

same as the other blocks.

In the up–sampling part after applying each deconvolution operator, the size of the feature

maps doubles. While each block halves the number of feature maps based on the output rate.

3.3 Proposed Blocks Architectures

Another issue that can be very significant in the final segmentation results is the architecture of

the blocks. We propose six different structures for the blocks. As shown in Figure 3.2, all six block

models are constructed from three layers and each layer includes a convolution layer with the

kernel size of 3× 3 follow by a Rectified Linear Unit (ReLU) activation function [88]. To improve

the generalisation of the network, batch normalisation [89] and dropout [90] are also employed.

However, as will be explained in chapter 4, we apply dropout in different locations with various

values along with changing the number of layers to study the effects on the segmentation.

As shown in Figure 3.2, we apply various structures of the shortcut connections [24] to

investigate their effects on the prostate image segmentation. To understand how different layers

are connected, we provide Table 3.1 to show the connectivity patterns of our proposed models.

Each sub–table has four columns representing the sources of a possible connection–the Input of

the block (I) and the outputs of the three layers. Each of the four rows represents a possible

connection destination–one of three layers within the block and the final output of the block (O).

The ∗ shows where there is a direct or intermediary (also called chain) connection between two

corresponding layers.

For instance, in Table 3.1a, the input image is directed to the first layer, the output of the

first layer into the second layer, the output of the second layer into the third layer, and finally,

the output of the third layer is assigned to the output of the block. The output of the block is

pointed to the next step which is most often Max–pooling or Deconvolution. As shown in Figure

5.4a and Table 3.1a, there are not any shortcut connections in Model 1. We named it straight

because the feature maps flow through the layers in the block one after another without using any
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(f) Model 6 (Non-bypass)

FIGURE 3.2: Six proposed structures for the blocks. Con, Concatenation.

skip connections. The Straight model is the baseline architecture that we use to understand the

effect of using shortcut connections in the other five models. In those models, we employ different

patterns of shortcut connections among the layers. To create shortcut connections we employ

the concatenation operator to collect feature maps and send them to the specific location in the
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From I 1 2 3

To
1 ∗
2 ∗
3 ∗
O ∗

(a) Model 1 (Straight-Baseline)

From I 1 2 3

To
1 ∗
2 ∗
3 ∗
O ∗ ∗

(b) Model 2 (Bypass)

From I 1 2 3

To
1 ∗
2 ∗
3 ∗
O ∗ ∗ ∗ ∗

(c) Model 3 (Output from All)

From I 1 2 3

To
1 ∗
2 ∗ ∗
3 ∗ ∗
O ∗ ∗

(d) Model 4 (Input to All)

From I 1 2 3

To
1 ∗
2 ∗ ∗
3 ∗ ∗ ∗
O ∗ ∗ ∗ ∗

(e) Model 5 (Dense)

From I 1 2 3

To
1 ∗
2 ∗ ∗
3 ∗ ∗ ∗
O ∗ ∗ ∗

(f) Model 6 (Non-bypass)

TABLE 3.1: The connections pattern in the all six propose structures. I, Input of the block; O, Output of
the block.

network. For example, in Table 3.1b, besides the baseline connections in the Straight model there

is a shortcut connection between the input of the block and the output of the block to transfer the

input feature maps of the current block to the next block. This is called the Bypass model because

it allows the block to be bypassed.

In the following, we first explain the common operators that we utilise in each layer of the

blocks including dropout, batch normalisation, activation function, and the kernel size. We then

describe each model separately based on the shortcut connections structure.

3.3.1 Common Components

Since we have a deep network and our training images are limited, we should employ some

approaches to control overfitting including dropout [90] and batch normalisation [89] to create

sparsity in our proposed models that can accelerate the training and improve the accuracy of the

network.

Dropout can be an efficient method to exclude the complication of co–adaptations on the

training data and also functions as a regulariser. Dropout randomly deletes a portion of the

features by omitting hidden layers units with a specified probability [90]. We analyse the role

of the dropout in our proposed architectures by using it in the different locations with various
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probabilities. As is shown in Figure 3.2, in all of the proposed structures, we use dropout at the

end of each convolution layer as a baseline configuration. In chapter 4, we will apply dropout only

at the end of each block (one dropout per block), and finally, just in the bottleneck (one dropout

after each layer in the bottleneck block).

Another feature in our proposed models is Batch Normalisation (BN) [89] for data normalisation

during the training of the network. Data normalisation is one of the most critical parts of training

a network. It is common to normalise input data before training the network, but after applying

the convolution operator and non–linearity, the distribution of the data will be changed. The

purpose of BN is normalising the output of network layers during training, and it is known that this

normalisation can accelerate the training of the network [89]. According to Ioffe et al. [89], to

calculate BN, each mini–batch should be normalised to zero mean and unit variance. BN starts with

zero mean and unit variance normalisation, but during the training, can learn other parameters

that might be better for normalisation. The BN algorithm is presented in Appendix A, an Algorithm

A.1.

One of the reasons for using BN is reducing the covariance shift [89] i.e. the changing

distribution of the test data versus the training data [91]. If a network is trained with X as the

input images and Y as the corresponding labels with a particular distribution, the network could

learn the distribution of the training samples. If the network tested with new images from a

different distribution, the results can be very poor. For example, training the network with black

cats images and testing the network with white or coloured cat images would likely have poor

performance. similarly, our network may not generalise well enough to recognise new unseen

samples from a different distribution [92]. Moreover, internal covariance shift can happen during

the backpropagation [89]. If the parameters of the first layer of the network change, it could be

the change the distribution of the second layer, and consequently, it changes the layer outputs as

well [89]. Deep networks, such as our proposed models are more prone to the problem.

It is also known that BN can work as a regulariser similar to dropout [89]. Therefore, if BN

is used in the network, dropout value selection should be made more carefully otherwise more

information will be lost [93]. However, dropout cannot be replaced with BN because the effect

of the BN on overfitting is less than dropout; therefore, a proper solution is using both of them

simultaneously as we are doing in our proposed models.
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As the activation function, our proposed models employ Rectified Linear Unit (ReLU) [88]

for all layers within the blocks. ReLU was first used for training of deep networks in 2011 [94].

Activation function defines the output of each unit with regards to its input, and the ReLU defines

the positive part of its argument ( f (x) = max(0, x)). ReLu can decrease the probability of the

vanishing gradient [95] during the back propagation [94].

In the last layer of our proposed network, we apply the Sigmoid function [96] as the non–

linearity. The sigmoid commonly employed for two–class classification. The equation of this

function can be seen in the Equation 3.1.

f (x i) =
1

1+ exp−x i
(3.1)

The convolution layers of our networks employ small 3× 3 convolutional filters in the convolu-

tion layers. Using a stack of very small 3× 3 receptive fields is more efficient than using bigger

receptive fields like 5× 5 or 7× 7 [70]. Utilising the small kernel the network will apply more

non–linear layers, and it can decrease the number of model parameters [70].

In summary, in the proposed networks we use 3× 3 kernel for convolution layers, apply ReLU

as the activation function in the hidden layers after each convolution layer, and utilise BN after

activation function for all six models. Dropout is also used to control overfitting. In the next

section, we discuss the key issue of shortcut connections.

3.3.2 Shortcut Connections

To improve the spatial information of the feature maps, in addition to using long connections, the

input feature maps of each block and the feature maps that are created within the block can be

reused applying shortcut connections [24]. He et al. [24], connected each pair of layers by using

element–wise sum as the shortcut connections. The output of the element–wise sum of the two

feature maps will be a feature map with the same dimension as the input feature maps. A shortcut

connection allows the error signal to be backpropagated to another layer in the block directly that

can be helpful to address the vanishing gradient phenomenon in the network. Besides, it can make

the training process of the network easier and faster, and also it can pass the extracted details

among the layers inside of the block and/or from the beginning of the block to the end of it [97].

In our work, we use concatenation to create the shortcut connection as well as long connections
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in all of our proposed networks. Concatenation stacks the feature maps on top of each other. Let

Ui j be the output feature maps of the specified layer and Vi j is the skipped feature maps that come

from a particular section of the network by using shortcut connections, the concatenation of the

mentioned features can be shown as Equation 3.2.

x i, j =
�

Ui j

Vi j

�

(3.2)

To study the effect of using concatenating shortcut connections for prostate MRI segmentation,

we propose six different structures of connections. At first, as is shown in Figure 5.4a, we suggest

a simple model called Straight as the baseline without using any shortcut connections. In this

model, there are three layers per each block such that the output of each layer is fed the next layer

as the input. This simple block can show the learning capability of a network without any shortcut

connections. Further, by comparison of the Straight model results with the other models, it will be

possible to understand whether a network with shortcut connections can outperform networks

without shortcut connections.

In the Bypass model (see Figure 5.4b), we employ a concatenation operator at the end of the

block to collect the input feature maps of the block at the end of the block (bypass connection).

This connection directing the provides input of the current block to the next block.

In the Output from All model, as seen in Figure 5.4c, we add a concatenation operator at the

end of the block to collect four sets of feature maps including the outputs of the all layers in the

block (gathering connections) and the input of the block (bypass connection) and feed them to the

next block. Using this model, we can explore whether using feature maps with different levels of

information increases the learning ability of the network.

In the Input to All model shown in Figure 5.4d, the blocks input feature maps are provided to

each of the layers (scatter connections). We use three concatenations per block, such that each of

them concatenates the output feature maps of the previous layer and the input of the block and

sends them to the next layer. The final output is also concatenated with the input. In other words,

this model uses both bypass and scatter connections. By comparing the results of the Bypass model

with the Input to All model, we can understand whether reusing the input feature maps, within

the block can improve the results. Also, by comparing the results of the Input to All model and the

Output from All model, it will be possible to understand whether it is better to reuse the block’s
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input via scatter concatenations or to gather the outputs of the layers.

Our Dense model (see Figure 5.4e) follows the the Dense model structure [23]. The Dense

model was introduced by Huang et al. [23] for natural image classification and obtained promising

results. In the Dense model, after each layer, there is a concatenation operator that can concatenate

the output of all previous layers and the original input of the block. The fully convolutional Dense

model was applied for colour image segmentation by Jegou et al. [98] and obtained positive

results for natural image segmentation.

In our work, we use the fully dense block for MRI prostate segmentation, with block structure

is shown in Figure 5.4e. In the original dense network, there are direct connections between

layers, but we use chain connections to deliver the same effect while decreasing the number of

shortcut connections. For example, to transfer the input feature maps of the block to the third

layer, the feature maps are first moved to the second block by the first shortcut connection and the

first concatenation operator. Then, the second shortcut connection transfers both the outputs of

the first layer and the input feature maps of the block to the second concatenation.

The Dense model uses four types of connections: bypass, scatter, gathering and internal.

Internal connections are those which start and end within the block. A dense block as defined

by Huang et al. [23], is fully connected within the block, but when it is made into a Densenet a

shortcut is added around the block. Thus, our proposed Dense model with a bypass connection is

exactly equivalent.

Lastly, the Non–bypass model (see Figure 5.4f) is equivalent to the dense model except that,

there is no connection between the input and the output of the block. This means that the input

feature maps of the block will not send to the next block. Each layer receives the output of all

previous layers and the input of the block using the chain connections. The output feature maps

of all layers are concatenated to each other at the end of the block and then sent to the next block.

This model uses gathering, scatter, and internal connections. Comparison of the results of the

Dense and Non–bypass models will show the effect of the bypass connection.

3.4 Number of Features in the Proposed Models

To understand the effect of the concatenation and output rate on the number of feature maps we

provide Table 3.2. The table shows the number of features maps as input, the output of each
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layer, the output of each concatenation, and also the output of each block for the first two blocks

of all six proposed network structures.

As is shown in Table 3.2, in all of the structures the input image enters the network and then,

based on the structure of the network, different numbers of features are created. In the Straight

model the number of output feature maps of each layer, and also the output of the block is the

same as the output rate of that block because there are not any shortcut connections to increase

the number of feature maps.

In the Bypass model, the number of output feature maps for each block is the sum of the

number of input feature maps of the block and the number of output feature maps of the last layer

of the block. However, the quantity of output feature maps of each layer in each block is equal

to the output rate. For instance, in the Bypass model, the number of input feature maps of the

second block is nine, and the output of the last layer is 16; as a result, 25 feature maps will be

sent to the next block.

In the Output from All model, all the previous feature maps both those created within the block

and those that entered the block, are collected and sent to the next block, therefore, 25 feature

maps are collected at the end of the first block and 73 at the end of the second block.

In the Input to All model, after each layer, there is a concatenation operator to collect the

features of the previous layer and the input of the block. The output feature maps of the layers

are the same as the output rate, but with increasing the depth of the network, feature reuse is

increased. For example, in the second block, nine feature maps entered the network and were

reused three times in the block.

In the Dense model, the number of feature maps passing within the block is more than other

models, and it shows that with using the same amount of layers this structure will create the

highest number of feature maps among our proposed structures. The difference in the Non–bypass

model is that there is no connection between the input and output of the block. For this reason, the

number of feature maps decreases to 48 at the end of the second block, whereas the Dense model

has 73 feature maps at the end of that. With the increasing depth of the network, the differences

between the Dense and Non–bypass models will be considerable.

As shown in Table 3.2, the Straight model has the lowest number of feature maps, but with

the added shortcut connections, the number of feature maps increases in the other five proposed
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Block Layer Name Straight Bypass Output Input Dense Non-bypass
number from All to All

Input of the block 1 1 1 1 1 1
Output of Layer 1 8 8 8 8 8 8
Output of Con 1 - - - 9 9 9

Block 1 Output of Layer 2 8 8 8 8 8 8
Output of Con 2 - - - 9 17 17
Output of Layer 3 8 8 8 8 8 8
Output of the Block 8 9 25 9 25 24
Input of the block 8 9 25 9 25 24
Output of Layer 1 16 16 16 16 16 16
Output of Con 1 - - - 25 41 40

Block 2 Output of Layer 2 16 16 16 16 16 16
Output of Con 2 - - - 25 57 56
Output of Layer 3 16 16 16 16 16 16
Output of the Block 16 25 73 25 73 48

TABLE 3.2: The quantity of feature maps for the first two blocks of the Straight, Bypass, Output from All,
Input to All, Dense, and Non-bypass models.

models. The Input to All, Dense, and Non–bypass models generate more feature maps within

the blocks compared to the three other models because of employing concatenation operators

between the layers. Furthermore, in the Bypass and Input to All models, the quantity of feature

maps that transfer between the blocks is the same, but the number of feature maps within the

block is different because unlike the Bypass model that employs one concatenation, the Input to All

model using three concatenations within the blocks. Additionally, the Output from All and Dense

models have the same number of output feature maps at the end of the blocks, but internally they

produce and employ different numbers of feature maps. By comparing, the results of the Bypass

versus Input to All, and also the Output from All against Dense model we can understand whether

creating and employing more feature maps within the blocks can improve the results.

Finally, the Straight, Bypass and Output from All models have the same structure within the

block and produce the same number of features inside the blocks, but the type and number of

feature maps that they transfer between the blocks are different. In this case, by comparing the

discussed methods, we can understand how the type and number of feature maps that move

between the blocks affect the final segmentation results.
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3.5 Conclusion

We have proposed six FCNN–based networks for prostate MRI segmentation with a particular focus

on using different patterns of shortcut connections consisting of: the Straight structure without

any shortcut connections (baseline model), Bypass, Output from All, Input to All, Dense, and

Non-bypass networks. We have compared the suggested structures and considered the type and

number of feature maps that they create and use during the convolution process in the first two

blocks.



4
Data Analysis and Parameters Setting

In this section, firstly, we describe dataset that we use for training and evaluation of our suggested

methods. The second section describes the methods that we utilise for normalising the images. In

the third part, we will consider the metric that will be used to evaluate the image segmentation

quality. The fourth section is about the loss function that we employ to train the proposed networks.

Finally, we will discuss the hyper-parameter settings to find the appropriate parameters for our

proposed networks.

4.1 Dataset

The PROMISE12 challenge dataset [26]will be used for MRI prostate segmentation. It includes 100

T2-weighted MRI images that were collected from four different hospitals, each centre providing

25 MRI volumes, with two centres employing the EndoRectal Coil (ERC). The dataset includes

50 MRI volumes and their corresponding labels for training, and also 30 MRI volumes without

ground truth images for testing. Besides, 20 unpublished MRI volumes for the live challenge.

More information about the dataset is available in Appendix A, Table A.1.

For the evaluation of our proposed networks, we apply ten-fold cross-validation. For each

33
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Category type 1stF 2ndF 3rdF 4thF 5thF 6thF 7thF 8thF 9thF 10thF

Train
Total 957 1010 1115 1180 1167 1147 1132 1132 1137 1039
Prostate 564 575 624 641 630 638 646 639 648 619
ERC 418 477 679 809 809 809 761 641 569 500

Test
Total 218 202 165 97 100 110 120 125 120 120
Prostate 101 113 90 64 73 75 65 67 72 58
ERC 189 202 130 0 0 0 0 48 120 120

Validation
Total 202 165 97 100 110 120 125 120 120 218
Prostate 113 90 64 73 75 65 67 72 58 101
ERC 202 130 0 0 0 0 48 120 120 189

TABLE 4.1: This table provide the number of image slices for training, testing, and validation in the
ten-fold cross-validation approach. Total, the total number of slices; Prostate, the number of slices contain
prostate; ERC, the number of slices captured using EndoRectal Coil.

cross-validation fold, the training data will be separated into three categories including train,

validation and test sets. We use five MRI volumes for the test, five MRI volumes for the validation

and the remaining 40 volumes for the training of the suggested models in each fold. The 50

volumes have 1377 image slices. Since we are using 2D slices, Table 4.1 provides the total number

of slices along with the number of slices contain prostate, and also the number of slices that were

captured using the ERC. The number of slices that include prostate indicates the number of original

shapes of the prostate that the network will have seen during the training; as the shapes of the

prostate more vary the generalisation of the algorithm will be more increased.

Because of the limited available data, we need data augmentation to increase the number

of images. Realistic data augmentation can expand the amount of data and consequently the

learning capability of the network. Since we use Python Keras library [99] for implementation,

the Keras data generator [100] will be used for the image augmentation. We use a collection of

rotation with 10-degree range for random rotation, horizontal flip, vertical flip, zooming with the

range of 10 to 12 per cent, horizontal and vertical translation, and elastic transformation [101]

for augmenting the number of data to 150000 slices 1.

4.2 Data Normalisation

One of the most critical parts of the training a CNN that can improve the learning ability of the

CNN significantly is data normalisation. For the PROMISE12 dataset using a precise normalisation

method can be essential to improve the quality of the final segmentation because it is collected

from four different imaging centres with various imaging technologies and more importantly half

1In preliminary experiments, to find the appropriate augmented images, we compare 100000 ,150000, and 200000.

The results showed best performance for the total of 150000 images.
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Image Original image NSep NAll NPix

ERC

Non- ERC

TABLE 4.2: Comparison of original ERC and non-ERC images with their corresponding normalised images.
NSep, Normalise sets Separately; NAll, Normalise All; NPix, Normalise Pixels.

of those MRI images are captured using ERC.

In this research, zero mean and unit variance method (Z-score) [102] is using for data normal-

isation. Equation 4.1 shows the zero mean and unit variance formula, where x ′ is the normalised

pixel value, x̄ is the average, and σ is the variance of all the pixels in the specified image slices.

x ′ =
x − x̄
σ

(4.1)

We utilise the zero mean and unit variance method in three ways. In the first approach, we

separate the data into three groups including the training, validation and testing sets. Then

we compute the mean and the variance of each group and normalise sets separately using its

parameters (NSep). In the second approach, we calculate the mean and variance of all pixels in

the whole set of 1377 image slices and normalise all the images using the same parameters (NAll).

In the third approach, we calculate a mean and variance for each pixel position across all 1377

images and normalise the pixels at each position according to its parameters (NPix).

Table 4.2 shows two sample images, one captured using ERC and the other without ERC,

together with their corresponding normalised images. As is shown, the third model seems more

precise for image normalisation because its alleviate the effect of the ERC and reduces the bright

regions. To find the optimum parameters, we will use the NPix method for normalising the image

slices. After finding the appropriate values for all parameters, the first and the second normalisation

methods will be applied to some selected models in chapter 5.
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4.3 Evaluation Metric

For the evaluation of our proposed models, we utilise the Dice Coefficient [29–32]. The Dice

Similarity Coefficient (DSC) or Sorensen Dice Coefficient is a statistical model that is usually used

for comparison of a segmentation result with the ground truth image. Consider X as the predicted

segmented image (set of pixels), | X | as the cardinality of X , Y as the ground truth segmentation

image, and | Y | as the cardinality of Y ; the DSC can be calculated as shown in Equation 4.2 for

binary data segmentation evaluation. The output of the DSC is a number between 0 and 1. High

values indicate that the obtained result and the ground truth image are alike while zero shows

that they are entirely different.

DSC =
2 | X ∩ Y |
| X | + | Y |

(4.2)

4.4 Loss Function

All the machine learning methods rely on minimising or maximising a function, which is called

the loss function or objective function). The loss function measures the prediction performance of

our model, showing the dissimilarity between the predicted label and original label. The lower

loss function value indicates, the better prediction.

In preliminary experiments, we tried different types of loss functions, and we found that in

most cases using DSC loss obtained better results. Also, in the previous FCNN-based prostate

image segmentation methods, DSC is used as the loss function [79–82], and they showed that it

has a positive effect on the final results. Further, since we use DSC for evaluation of the proposed

models, using the corresponding loss function can improve performance of the proposed models.

In our proposed networks, we employ DSC as the loss function for the training of all proposed

networks (see Equation 4.2). As discussed above, DSC computes the similarity between the

predicted segmentation and the ground truth image and higher value indicate the better result.

Since the robustness of our proposed networks increases along with the decreasing of the loss

value, the negative value of DSC employs as the loss function.



4.5 HYPER–PARAMETER SETTING 37

4.5 Hyper–parameter Setting

In this section, different parameters will be investigated. With regards that we have six different

models and each model should be considered using ten-fold cross-validation, different settings

will be applied only on the first three folds of the Straight and Bypass models for fine-tuning the

proposed network structures. All the results in this chapter and the next chapter are based on

using the cross-validation test sets for evaluation of the proposed models.

4.5.1 Optimiser

To find the appropriate optimiser two popular optimisers including Stochastic Gradient Descent

(SGD) [103] and Adaptive Moment Estimation (ADAM) optimiser [104] will be examined for the

training of our proposed networks. The SGD is a repetitive method for optimising the differentiable

loss function. The SGD try to update the parameters in the inverse direction of the gradient of the

loss function. Besides, ADAM optimiser is another version of SGD that can adapt the learning rate

during the training using mean value and the second momentum of the gradient.

Another critical parameter that can be effective in the convergence of the algorithm and finding

the (local) minimum is the learning rate which specifies the step size that the algorithm takes to

reach a minimum. In other words, the objective function creates a surface and step size shows

how the algorithm should follow the slope of the surface to reach a valley. We apply SGD and

ADAM with various learning rates on the first three folds of the Straight and Bypass models to

understand which of them is more appropriate for training of our proposed models. Firstly, we are

using ADAM with the learning rate of 0.01(ADAM1), 0.001 (ADAM2), and 0.0001 (ADAM3), as

well as the SGD with the same learning rates including, 0.01 (SGD1), 0.001 (SGD2), and 0.0001

(SGD3), also, we set momentum as 0.9 and the weight decay as 1e − 6. Furthermore, we are

applying mini batch SGD, which means after entering N images into the network, the weights

of our proposed networks will be updated using backpropagation. To determine the appropriate

batch size, we test four different sizes including; 8, 16, 32, and 64 on some folds of the selected

models. We found that using 32 as the batch size yields better performance; therefore in all of the

tests, we set batch size as 32. A part of the results provided in Appendix A, Table A.2.

The proposed network architecture constructed from six blocks in the down-sampling part as

well as six blocks in the up-sampling section and one block in the bottleneck along with three
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Model Fold ADAM1 ADAM2 ADAM3 SGD1 SGD2 SGD3
Fold1 0.70 0.82 0.54 0.78 0.69 0.54

Straight Fold2 0.64 0.74 0.68 0.68 0.60 0.35
Fold3 0.89 0.88 0.90 0.89 0.89 0.86
Fold1 0.40 0.82 0.72 0.59 0.72 0.25

Bypass Fold2 0.67 0.79 0.55 0.58 0.71 0.61
Fold3 0.81 0.89 0.87 0.88 0.88 0.81

TABLE 4.3: Mean DSC of the Straight and Bypass models using the ADAM and SGD optimisers with
different learning rates. ADAM1, learning rate is 0.01; ADAM2, learning rate is 0.001; ADAM3, learning
rate is 0.0001; SGD1, learning rate is 0.01; SGD2, learning rate is 0.001; SGD3, learning rate is 0.0001.

layers in each block. To train the networks, we employ dropout at the end of each block with the

probability of 0.2, and training will be continued to 25 epochs. As can be seen from Table 4.3, in

both the Straight and Bypass models employing ADAM optimiser with the learning rate of 0.001

obtain better results in the first three folds on average.

The last issue for the training of the network is the number of epochs, that is one forward pass

as well as one backward pass of all the training images in the network. To understand whether 25

epochs is enough for the training of our proposed models we continued training of the Bypass

model with ADAM optimiser and learning rate of 0.001 and also, SGD1 and SGD2 to 45 epochs.

FIGURE 4.1: The training and validation error of ADAM
optimiser in the Bypass model.

As is shown in Figure 4.1, during the

training, training error decreased with in-

creasing the number of epochs, but no sig-

nificant change can be seen in the valida-

tion error. In conclusion, since using ADAM

optimiser with the learning rate of 0.001

and batch size of 32 obtained better results

and with regards that the loss value did not

decrease after 25 epochs considerably, we

use ADAM with learning rate 0.001 and batch size 32 for implementation of our proposed networks.

Besides, the diagram of SGD1 and SGD2 illustrate in Appendix A, Figure A.1.

4.5.2 Dropout

Dropout is another important hyper–parameter of the CNN to combat overfitting and increasing

the generalisation of the network. The probability of dropout and its location(s) in the network
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can affect the network training capability considerably. To analyse the location and probability of

dropout, we propose three different dropout configurations. In the first configuration, we locate

the dropout after each layer as shown in Figure 3.2, with the probability of 0.2 (Dropout1). In the

second configuration, we only employ one dropout after the last layer of each block, again with

the probability of 0.2 (Dropout2). The third configuration only uses dropout after each layer in

the bottleneck block, with the probability of 0.5 (Dropout3). In the preliminary experiments, to

find the appropriate probability for each of the dropout configurations we examined 0.2, 0.5, and

0.8. Concerning the obtained results, the discussed dropout probabilities selected for each of the

three configurations.

Model Fold Dropout1 Dropout2 Dropout3
Fold1 0.42 0.82 0.73

Straight Fold2 0.40 0.74 0.55
Fold3 0.61 0.88 0.89
Fold1 0.45 0.82 0.71

Bypass Fold2 0.46 0.79 0.70
Fold3 0.70 0.89 0.88

TABLE 4.4: Performance of using different locations and values for dropout based on mean DSC. Dropout1,
drop out at the end of each layer with the probability of 0.2; Dropout2, Dropout at the end of each block
with the probability of 0.2; Dropout3, dropout in the bottleneck with the probability of 0.5.

According to the obtained results of the first three folds of the Straight and Bypass models, on

average the second method obtained better results in both models with 0.81, and 0.83 mean DSC

respectively. It seems that using dropout after each layer can delete many units along with their

connections and it can be the cause of losing more information. On the other hand, using dropout

only in the bottleneck is not enough to increase the generalisation of the network. For the main

experiments, we use dropout at the end of each block with the probability of 0.2. In Table 4.4

provides the detailed results of using various models of dropout.

4.5.3 Size of the Network

The last important parameter that is effective on the accuracy of the network is the length of the

network. To find the appropriate size for our proposed network structures, firstly we use two

layers per block in all the blocks. In the second configuration, three layers per block, then four
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layers per block and eventually five layers per block will be used in all blocks of the proposed

network structures. The first three folds of all the proposed network structures will be evaluated

to find the appropriate number of layers for each of them.

As seen from Table 4.5, in the Straight model, using three layers per block obtains the best result

on average with 0.81 per cent mean DSC for the first three folds. Similarly, in the Bypass model,

three layers achieves the best outcome with 0.83 per cent mean DSC. Besides, The Dense model

with employing three layers per block achieve 0.77 per cent mean DSC as the best performance.

For the Output from All model, five layers per block outperform the other sizes with 0.82 per

cent mean DSC. Similarly, the Input to All model obtains 0.74 per cent mean DSC on average with

five layers per block as the best result in the first three folds. Finally, in the Non-bypass model

utilising five layers per block with 0.82 per cent mean DSC achieves the best result. To assure

whether the number of layers for Output from All and Non-bypass models is enough, we further

increased the number of layers per block to six, seven, and also nine.

The average mean DSC of first three folds of the Output from All model using six layers, seven

layers and the nine layers per block are 0.74, 0.85, and 0.84. Besides, the Non-bypass model

achieves 0.80, 0.85, and 0.83 per cent mean DSC on average using six, seven, and nine layers per

block. In both network architectures, using seven layers per block outperform other sizes. The

detailed results of using the different number of layers shown in Appendix A, Table A.3.

So far, to find the appropriate number of blocks, we set the number of layers based on the

above results and repeat the experiments with using five blocks in each part of the network as

well as seven blocks. However, the experimental results demonstrate that using six blocks is more

precise. The detailed results present in Appendix A, Table A.4.

In summary, employing three layers for the Straight, Bypass, and Dense models, five layers

for the Input to All model, and seven layers per block for the Output from All and Non-bypass

models show better results in the first three folds in comparison with other numbers of layers.

Most of the prior works have used two or three convolution layers per block [79, 81, 82] so far we

have only examined the effect of the number of layers on the first three data folds. For a more

complete comparison, all the proposed networks will be examined with two layers per block. Also,

the Output from All, Input to All, and Non-bypass models will be evaluated using three layers per
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Model Fold Two layers Three layers Four layers Five layers
Fold1 0.72 0.82 0.72 0.73

Straight Fold2 0.68 0.74 0.46 0.46
Fold3 0.89 0.88 0.90 0.87
Fold1 0.80 0.82 0.81 0.81

Bypass Fold2 0.53 0.79 0.72 0.72
Fold3 0.90 0.89 0.89 0.90
Fold1 0.82 0.81 0.83 0.85

Output from All Fold2 0.73 0.76 0.63 0.73
Fold3 0.89 0.89 0.89 0.89
Fold1 0.61 0.70 0.59 0.58

Input to All Fold2 0.62 0.46 0.39 0.74
Fold3 0.88 0.88 0.88 0.89
Fold1 0.69 0.79 0.73 0.58

Dense Fold2 0.65 0.65 0.64 0.65
Fold3 0.89 0.88 0.88 0.86
Fold1 0.84 0.84 0.85 0.87

Non-bypass Fold2 0.68 0.71 0.65 0.70
Fold3 0.89 0.90 0.89 0.90

TABLE 4.5: Comparison of the obtain results of using the different number of layers in the first three folds
of all proposed models.

block in all ten folds in chapter 5.
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5
Experimental Results

Based on the preliminary experiments results, in our main experiments, there are 150000 training

images after augmentation. Use the ADAM optimiser with a learning rate of 0.001, a batch size of

32, and training will continue for 25 epochs (3.25 million image presentations). Moreover, one

dropout at the end of each block with the probability of 0.2 is used. Finally, in all experiments, we

employ the NPix normalisation model.

To compare the six proposed networks, we run each model in all ten folds, utilising two layers

and three layers per block and more layers if its effectiveness has been shown in the previous

chapter. The evaluation is based on mean DSC, median DSC and the standard deviation of the

DSC over the test data in each fold of cross–validation. Comparison of mean and median DSC can

show the skew in the distribution of the results. The higher mean DSC, as well as median DSC,

indicates the better segmentation while the lower standard deviation shows the robustness of

our models. Afterwards, the effect of using different data normalisation methods and the various

number of layers per block will be considered. Finally, we will analyse all the models quantitatively

and qualitatively, and also we will examine the best models based on the obtained results per slice

and per volume as well as considering their robustness to the EndoRectal Coil (ERC) effect.

43
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M Criteria 1stF 2ndF 3rdF 4thF 5thF 6thF 7thF 8thF 9thF 10thF AVG
Mean DSC 0.72 0.68 0.89 0.85 0.70 0.90 0.86 0.86 0.88 0.87 0.821

S2 Median DSC 0.77 0.65 0.90 0.85 0.77 0.89 0.90 0.89 0.88 0.87 0.837
STD-dev 0.11 0.05 0.03 0.02 0.18 0.01 0.08 0.08 0.02 0.04 0.062
Mean DSC 0.82 0.74 0.88 0.85 0.87 0.91 0.88 0.84 0.86 0.88 0.853

S3 Median DSC 0.82 0.72 0.91 0.87 0.86 0.90 0.90 0.85 0.88 0.88 0.859
STD-dev 0.04 0.06 0.06 0.05 0.02 0.01 0.03 0.08 0.03 0.03 0.041

TABLE 5.1: Performance of the Straight model using two layers (S2) three layers (S3) per block in all ten
folds. M, Model; F, Fold.

M Criteria 1stF 2ndF 3rdF 4thF 5thF 6thF 7thF 8thF 9thF 10thF AVG
Mean DSC 0.80 0.53 0.90 0.81 0.83 0.91 0.89 0.87 0.86 0.86 0.826

B2 Median DSC 0.86 0.58 0.91 0.84 0.85 0.91 0.91 0.89 0.86 0.85 0.846
STD-dev 0.11 0.16 0.02 0.09 0.07 0.01 0.04 0.06 0.03 0.03 0.062
Mean DSC 0.82 0.79 0.89 0.84 0.84 0.90 0.89 0.87 0.88 0.86 0.858

B3 Median DSC 0.83 0.77 0.91 0.85 0.85 0.90 0.88 0.91 0.88 0.85 0.863
STD-dev 0.03 0.02 0.02 0.02 0.07 0.01 0.02 0.07 0.01 0.03 0.033

TABLE 5.2: Performance of the Bypass model using two layers (B2) three layers (B3) per block in all ten
folds. M, Model; F, Fold.

5.1 Straight Model (Baseline)

The Straight model, as the baseline model, shows the learning capability of a network without

using shortcut connections. The results obtained for the Straight model utilising two layers (S2)

and three layers (S3) per block are shown in Table 5.1. As can be seen, applying three layers

per block improves the overall mean DSC results compared to two layers per block. The Straight

model using three layers per block achieves 0.853 mean DSC. This is a good result for a model

that has no shortcut connections and shows the baseline capability of FCNN in MRI prostate image

segmentation.

5.2 Bypass Model

In the Bypass model, there is a shortcut connection that can transfer the input feature maps of the

block to the output of the block. In this model, we use two layers per block (B2) and three layers

per block (B3) obtaining results shown in Table 5.2. On average the Bypass model employing

three layers per block achieves 0.858 mean DSC while using two layers achieve 0.826.

The comparison of the Straight and Bypass models using three layers per block shows that

apart from the second fold, the mean DSC of the other folds are similar. The average mean DSC

shows that using a bypass connection alone does not have a significant effect on the results.
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M Criteria 1stF 2ndF 3rdF 4thF 5thF 6thF 7thF 8thF 9thF 10thF AVG
Mean DSC 0.82 0.73 0.89 0.85 0.82 0.90 0.86 0.88 0.86 0.85 0.846

O2 Median DSC 0.84 0.72 0.89 0.85 0.84 0.90 0.88 0.90 0.87 0.86 0.855
STD-dev 0.06 0.06 0.03 0.03 0.08 0.01 0.07 0.05 0.03 0.03 0.45
Mean DSC 0.81 0.76 0.89 0.84 0.84 0.89 0.88 0.87 0.86 0.69 0.833

O3 Median DSC 0.87 0.77 0.90 0.85 0.85 0.89 0.89 0.90 0.87 0.86 0.865
STD-dev 0.09 0.06 0.03 0.05 0.04 0.01 0.03 0.05 0.03 0.25 0.064
Mean DSC 0.86 0.80 0.90 0.85 0.83 0.91 0.89 0.89 0.84 0.88 0.865

O7 Median DSC 0.88 0.80 0.91 0.84 0.86 0.91 0.90 0.91 0.87 0.88 0.88
STD-dev 0.04 0.02 0.04 0.06 0.01 0.03 0.07 0.02 0.02 0.02 0.03

TABLE 5.3: Performance of the Output from All model by employing two layers (O2), three layers (O3),
and also seven layers (O7) per block in all ten folds. M, Model; F, Fold.

5.3 Output from All Model

The Output from All model has one concatenation at the end of each block to concatenate the

input feature maps of the block (bypass connection) with the output feature maps of all layers in

the block (gathering connections). In this case, the block is capable of sending all created feature

maps within the block to the next block, and the network can learn based on various feature maps

with multiple levels of spatial information. The results of the Output from All model using two

layers (O2), three layers (O3), and seven layers (O7) per block shown in Table 5.3.

As seen in Table 5.3, utilising three layers per block has the worst result and using seven layers

per block is the best size for the Output from All model. The results show that applying seven layers

outperforms using two layers and three layers per block and accomplish 0.865 average mean DSC.

Comparing the Output from All with the Bypass and Straight models shows that the combination

of bypass and gathering connections outperforms the baseline and bypass connections.

5.4 Input to All Model

In the Input to All model, a concatenation operator after each layer collects the input feature maps

of the block and also the output of the preceding layer to send them to the next layer. This process

occurs after each layer in the block.

In the previous chapter, based on the first three fold results, using five layers appears more

useful for this model. However, using all ten folds to study the Input to All model with two layers

(I2), three layers (I3), and also five layers per block (I5) yields the results shown in Table 5.4.

Using two layers obtains the best average result with 0.819 mean DSC in comparison with

two other sizes with 0.774 mean DSC. The results indicate that increasing the reuse of the input
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M Criteria 1stF 2ndF 3rdF 4thF 5thF 6thF 7thF 8thF 9thF 10thF AVG
Mean DSC 0.61 0.62 0.88 0.86 0.82 0.89 0.88 0.89 0.87 0.87 0.819

I2 Median DSC 0.78 0.63 0.89 0.87 0.84 0.89 0.90 0.90 0.88 0.88 0.846
STD-dev 0.27 0.07 0.03 0.01 0.07 0.02 0.03 0.05 0.02 0.04 0.061
Mean DSC 0.70 0.46 0.88 0.84 0.66 0.90 0.84 0.83 0.79 0.84 0.774

I3 Median DSC 0.82 0.52 0.88 0.86 0.80 0.89 0.82 0.85 0.79 0.83 0.806
STD-dev 0.23 0.25 0.02 0.04 0.24 0.02 0.04 0.07 0.06 0.03 0.1
Mean DSC 0.58 0.74 0.89 0.81 0.78 0.83 0.82 0.82 0.62 0.85 0.774

I5 Median DSC 0.62 0.65 0.90 0.84 0.84 0.83 0.83 0.80 0.73 0.88 0.792
STD-dev 0.28 0.26 0.03 0.05 0.14 0.04 0.04 0.05 0.31 0.04 0.124

TABLE 5.4: Performance of the Input to All model using two layers (I2), three layers (I3), and five layers
(I5) per block in all ten folds. M, Model, F, Fold.

feature maps within the block (scatter connections) not only has not improved the accuracy of

segmentation but it has actually decreased the efficiency of segmentation considerably. Comparing

the baseline Straight model with the Input to All model shows that a network without shortcut

connections can sometimes outperform a network with the wrong or poor shortcut connections.

5.5 Dense Model

In the Dense model, after each layer, the concatenation collects all the output feature maps of the

preceding layers in the block along with the input feature maps of the block and feeds them to the

next layer. The obtained results of applying the Dense model for the MRI prostate segmentation

using two layers (D2) and three layers (D3) are presented in Table 5.5. As is shown in the table,

except for the first fold, the results of the other folds are similar. Overall, employing three layers

per block with the average mean DSC of 0.834 outperforms the Dense model using two layers.

Given that this model is applying all possible shortcut connections in each block (bypass, gathering,

scatter, and internal connections), it should be capable of outperforming all the other proposed

models. However, the results only exceed the results of the Input to All model (which uses only

bypass and scatter connections).

5.6 Non-bypass Model

The results obtained by the Non–bypass model are shown in Table 5.6 for all ten–fold using two

layers (NB2), three layers (NB3), and also seven layers (NB7) per block. There is no significant

difference between employing two layers or three layers in this model, however by increasing the

number of layers to seven per block, the mean DSC improves to 0.873. In this model, we omit the

connection between the input and the output of the block that consequently decreases the number
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M Criteria 1stF 2ndF 3rdF 4thF 5thF 6thF 7thF 8thF 9thF 10thF AVG
Mean DSC 0.69 0.65 0.89 0.81 0.81 0.91 0.88 0.88 0.84 0.86 0.822

D2 Median DSC 0.81 0.59 0.90 0.86 0.87 0.91 0.89 0.91 0.85 0.87 0.846
STD-dev 0.30 0.12 0.03 0.09 0.12 0.01 0.03 0.05 0.02 0.03 0.08
Mean DSC 0.79 0.65 0.88 0.83 0.82 0.89 0.87 0.89 0.86 0.86 0.834

D3 Median DSC 0.87 0.65 0.87 0.87 0.83 0.89 0.88 0.91 0.87 0.88 0.852
STD-dev 0.11 0.09 0.03 0.07 0.07 0.02 0.03 0.03 0.02 0.04 0.051

TABLE 5.5: Performance of the Dense model by employing two layers (D2), and three layers (D3) per
block in all ten folds. M, Model; F, Fold.

M Criteria 1stF 2ndF 3rdF 4thF 5thF 6thF 7thF 8thF 9thF 10thF AVG
Mean DSC 0.84 0.68 0.89 0.85 0.82 0.90 0.88 0.88 0.85 0.87 0.846

NB2 Median DSC 0.86 0.67 0.90 0.87 0.86 0.91 0.88 0.91 0.84 0.87 0.857
STD-dev 0.04 0.14 0.03 0.04 0.10 0.01 0.03 0.06 0.03 0.03 0.051
Mean DSC 0.84 0.71 0.90 0.86 0.77 0.90 0.89 0.88 0.87 0.86 0.848

NB3 Median DSC 0.87 0.69 0.91 0.87 0.83 0.90 0.90 0.89 0.86 0.87 0.859
STD-dev 0.04 0.06 0.03 0.03 0.19 0.02 0.03 0.05 0.02 0.03 0.05
Mean DSC 0.87 0.78 0.90 0.86 0.85 0.92 0.90 0.89 0.88 0.88 0.873

NP7 Median DSC 0.88 0.78 0.91 0.87 0.85 0.91 0.89 0.90 0.88 0.88 0.88
STD-dev 0.03 0.07 0.03 0.04 0.07 0.01 0.02 0.05 0.02 0.02 0.03

TABLE 5.6: Performance of the Non–bypass model by applying two layers (NB2), three layers (NB3), and
seven layers (NB7) per block in all ten folds. M, Model; F, Fold.

of parameters and also, increases the accuracy of the network.

5.7 Comparison of Normalisation Methods

As is discussed in chapter 4, we employ the zero mean and unit variance normalisation method in

three ways. The results of applying the NSep and the NAll normalisation methods on the Output

from All model can be seen in Table 5.7. The NSep normalisation method obtains 0.809 mean

DSC while the NAll normalisation method achieves 0.838 mean DSC. The results show that the

NPix method, which uses the average image and variance image for normalisation, is more precise

for segmentation and obtains 0.865 mean DSC. Similar experiments show that the NSep and NAll

normalisation methods also decrease the accuracy of segmentation in the Non–bypass model. See

Table A.5 in Appendix A.

5.8 Analysing Unequal Layers per Block

As another variation, we considered the Output from All and Non–bypass networks where the

number of layers per block increases closer to the bottleneck. We employ the following patterns of
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M Criteria 1stF 2ndF 3rdF 4thF 5thF 6thF 7thF 8thF 9thF 10thF AVG
Mean DSC 0.72 0.64 0.88 0.75 0.73 0.88 0.88 0.88 0.86 0.87 0.809

NSep Median DSC 0.82 0.65 0.88 0.83 0.84 0.88 0.88 0.90 0.87 0.88 0.843
STD-dev 0.15 0.12 0.03 0.13 0.2 0.02 0.03 0.04 0.03 0.04 0.158
Mean DSC 0.78 0.67 0.90 0.85 0.79 0.91 0.87 0.87 0.87 0.87 0.838

NAll Median DSC 0.86 0.71 0.89 0.85 0.87 0.90 0.87 0.90 0.87 0.88 0.86
STD-dev 0.13 0.14 0.02 0.04 0.15 0.01 0.04 0.07 0.03 0.02 0.06
Mean DSC 0.86 0.80 0.90 0.85 0.83 0.91 0.89 0.89 0.84 0.88 0.865

NPix Median DSC 0.88 0.80 0.91 0.84 0.86 0.91 0.90 0.91 0.87 0.88 0.88
STD-dev 0.04 0.02 0.04 0.06 0.01 0.03 0.07 0.02 0.02 0.02 0.03

TABLE 5.7: Performance of the three normalisation methods on the Output from All model. NSep,
Normalise sets Separately; NAll, Normalise All; NPix, Normalise Pixels M, Model; F, Fold.

block sizes 1, 3-3-5-7-9-11-13, 4-4-6-6-8-8-12, 5-5-7-9-9-11-13, 4-4-6-8-10-12-14, 4-4-5-7-10-12-

15. The results show that in most cases, employing an equal number of layers outperforms an

unequal number of layers per block. However, in some cases, the results of the two approaches

are quite similar. For example, using the 4-4-5-7-10-12-15 pattern for the Output from All and

Non–bypass models, obtain 0.84 mean DSC. The results are presented in Appendix A, Table A.6.

5.9 Quantitative Comparison

Method Mean DSC Median DSC STD-dev

Mun et al. [82] 0.853 - -
Yu et al. [81] 0.869 - -
Straight 0.853 0.859 0.41

Bypass 0.858 0.863 0.033

Output from All 0.865 0.88 0.03

Input to All 0.819 0.846 0.061

Dense 0.834 0.852 0.051

Non–bypass 0.873 0.88 0.03

TABLE 5.8: Quantitative comparison of proposed models
with another model.

The Input to All model is the worst, and

the Output from All and Non–bypass

models are the best models among all

six proposed networks for prostate MRI

segmentation (see Table 5.8). The Non–

bypass model outperforms all other mod-

els with 0.873 mean DSC.

The results of the Straight model

show that it is possible a network without

using shortcut connections outperforms

networks using different patterns of shortcut connections. For the Bypass model, the results show

that using the bypass connection does not have a significant effect on the final segmentation. In

the Output from All model, the average mean DSC increases to 0.865 using bypass and gathering

connections. For the Input to All model, where the input feature maps of the block are reused

1Each pattern shows the number of layers of the down–sampling and the bottleneck. For example, the first full

pattern is 3-3-5-7-9-11-13-11-9-7-5-3-3.
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several times within the block, the results show reduced segmentation performance. In fact, this is

the worst performance among all six proposed models. In the Dense model, each layer employs

all possible features including the input feature maps of the block as well as the output of all

previous layers in the block. However, this model could not even compete with the Straight model.

Finally, the Non–bypass model by omitting input to output connection and decreasing the number

of feature maps in comparison with the Dense model improved the results to 0.873 which is

the best result. Since omitting the bypass connection in the Non-bypass model, improved the

results considerably against the Dense model, a Non–bypass Input to All model and Non–bypass

Output from All model are two models that may improve the segmentation results and could be

investigated in the future.

As discussed in chapter 3, the number of feature maps that move between blocks in the Bypass

and Input to All models, and also, in the Output from All and Dense models, are the same. However,

the results indicate that the Bypass and Output from All models which employ fewer feature maps

within the blocks achieve better results. It shows that, in addition to the number of feature maps

that transfer between blocks, the number of feature maps that are created and move inside the

blocks also affect the final results. Furthermore, comparison of the Straight, Bypass and Output

from All models that have similar internal structures indicate that the Output from All model that

transfer more diverse features to the next block is more precise in comparison to the Straight and

Bypass models. The results demonstrate that finding a precise structure is a trade–off between

internal and external block structures.

Method p<0.05

Straight 0.0137

Bypass 0.0137

Output from All 0.0645

Input to All 0.0020

Dense 0.0039

TABLE 5.9: Statistically sig-
nificant comparison results us-
ing the Wilcoxon signed rank
test.

We use, the Wilcoxon signed rank test [105] to show the statis-

tically significant differences among the proposed approaches. We

compare the Non–bypass model with all other models (see Table 5.9),

and the statistical comparison of the mean DSC over all ten folds

shows that the improvement of the Non–bypass model is statistically

significant (p < 0.05) in comparison with all other proposed networks

except the Output from All model. The Output from All model is our

the second–best proposed network.
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Method LPB=3 LPB=opt

Straight 12,604, 377 12, 604,377

Bypass 17,194,250 17, 194,250

Output from All 33,414, 442 81, 612,330

Input to All 28,011, 242 18, 663,370

Dense 66,597,514 66, 597,514

Non–bypass 40,123, 513 214, 709,881

TABLE 5.10: The number of parameters of pro-
posed networks. LPB, Layer Per Block; opt, Opti-
mum number of layer.

Another important feature that can affect the

training of the network is the number of param-

eters, which we show in Table 5.10. As can be

seen, the Straight model has the least, and the

Dense model has the most parameters using three

layers per block. However, based on the optimum

number of layers per block, increasing the number

of layers to seven in the Output from All and Non–

bypass models increases the number of parameters

considerably.

(a) The Output from All model.

(b) The Non-bypass model.
FIGURE 5.1: Comparison of the Out-

put from All and Non-bypass models
based on all MRI slices.

Whereas the Input to All model employs two layers, other

models use three or more layers per block as the optimum.

Although the output from All and Non–bypass models using

seven layers have the most parameters, they achieve the best

results. It shows that besides the number of parameters, the

type of feature maps is also important.

Histogram of the results of the Output from All and Non–

bypass models across all ten folds (1377 slices) are shown

in Figure 5.1. As seen, some segmented images have low

mean DSC between 0 to 0.1 in both networks. These images

primarily contain small prostate regions that cannot be appropriately segmented by our proposed

2D networks.

(a) The Output from All model.

(b) The Non-bypass model.

FIGURE 5.2: Comparison of the Out-
put from All and Non-bypass models
based on the size of the prostate.

The number of images with mean DSC between 0.8 and

1 in the Non–bypass model is more than the Output from All

model. Figures A.2 and Figure A.3 show the results of all ten

folds separately in Appendix A.

Also, to show the performance of the best and second-best

proposed models for the segmentation of the prostate with

the different sizes we provide figure 5.2. Firstly, we analyse

the size of the prostate on all 1377 image slices based on
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(a) ERC+Artefacts (b) ERC+Low res+Artefacts (c) Fuzzy image (d) Big prostate

FIGURE 5.3: Four sample images to show the quality of images.

the number of pixels of the prostate. Among 1377 image slices only 788 image slices contain

prostate. The smallest prostate has 418 pixels, the largest has 4625 pixels, and in average the

prostate contains 2315 pixels in the dataset. We divide the images into five groups, the first group

contain images without prostate (599 images), the second group contains images with 418 to

1366 prostate pixels (109 images), the third group contains images with 1367 to 2315 prostate

pixels (242 images), the fourth group contains the images with 2316 to 3470 prostate pixels (352

images), and finally the fifth group contains the images that have 3471 to 4625 prostate pixels (75

images). As can be seen from figure 5.2, images with small prostate have lower DSC than other

images. The Non-bypass proposed model obtain better results than the Output from All model for

segmentation of the image slices with small prostate.

5.10 Analysis of Data Folds

Performance results show that the first, second, and the fifth folds are the most difficult folds for

segmentation, such that in some cases their results change the ranking of the proposed models.

However, for other folds, the segmentation results using different methods are much similar. These

folds mainly contain the high–resolution test images.

The test set of the first fold contains five MRI volumes of which four were captured using the

ERC and have bright regions around the ERC similar to Figures 5.4a and 5.4b. Also, some of the

images have low contrast and wrap–around artefacts (see Figures 5.4a and 5.4b) that makes the

prostate segmentation even more challenging. In the second fold, all the images in the test set

were captured using the ERC and also, the images have poor contrast resolution (everything is

dark or bright), low spatial resolution (fuzzy images–see Figure 5.4c), and contain wrap–around

artefacts in most of the images that make this fold the most challenging fold for segmentation.

Furthermore, in the entire dataset, there is only one MRI volume that contains a very large prostate



52 EXPERIMENTAL RESULTS

(see Figure 5.4d)–that volume appears in the fifth fold test set. Since the network for this fold

has never seen such a large prostate during training, most of the models could not segment this

prostate precisely despite the clear and high–resolution image data. In contrast, the sixth fold

yields the best segmentation performance because the test images are non–ERC and have good

spatial and contrast resolutions. The test sets of the ninth and tenth folds are all captured using the

rectal coil, but the images have high resolution and a large field of view that allows the network

to use landmarks to find the prostate easily.

The results show that for segmentation of MRI slices with good spatial and contrast resolutions

there is no significant difference among well–structured models. The problematic folds highlight

the actual differences among the proposed models.

5.11 Comparison with Prior Work

In prior work, only ten FCNN–based prostate segmentation methods have been published in

conference proceedings or journals. Zhu et al. [79] utilised their unpublished dataset achieving

0.885 DSC. However, they excluded non–prostate slices which improves the DSC of their 2D

network by reducing spurious detections. Also, Ji et al. [106] and Clark et al. [107], excluded

non–prostate slices from the PROMISE12 dataset and obtained 0.91 and 0.86 mean DSC using

ten–fold and four–fold cross–validation respectively. Milletari et al. [80], Chen et al. [108], and

Liu et al. [109] evaluated their networks on the test set of the PROMISE12 dataset for which

ground truth is not publicly available and obtained 0.869, 0.895, and 0.86 mean DSC respectively.

In addition, Drozdzal et al. [110], used two FCNN for segmentation. Firstly, they segmented the

input image using FCNN and then used another residual based FCNN for boundary refinement.

They applied their proposed framework for different organ MRI segmentation including prostate

MRI segmentation and obtained 0.874 mean DSC on the test set of the PROMISE12 dataset. Finally,

Sun et al. [111], proposed an interactive framework for medical image segmentation and a part

of this framework is FCNN. They obtained 89.81 mean DSC on the test set of PROMISE12 dataset.

Neither of these results are comparable with our results because they use different test conditions.

Yu et al. [81] evaluated their proposed model on both the PROMISE12 training set using cross-

validation, achieving 0.869 DSC. They also report 0.894 DSC on the test set on the PROMISE12

dataset, which is not comparable with our models. Finally, Mun et al. [82] tested their 3D-FCNN
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(BCNN) network using ten–fold cross–validation on the training set of the PROMISE12 dataset

and achieved 0.853 mean DSC. We compare our models with the cross-validation results in these

two papers (see Table 5.8). Given that 3D methods segment the prostate as a 3D volume (they use

information from adjacent slices), finding the prostate will be more straightforward and precise

than the 2D models, especially in the lower and upper slices of the prostate volumes where the

prostate is a small part of the image. However, as is shown in Table 5.8, the Non-bypass 2D network

outperforms both 3D methods for prostate image segmentation and achieves new state–of–the–art

FCNN–based prostate segmentation results.

5.12 Qualitative Comparison

As a subjective evaluation of the Non–bypass model as the best model, six images selected from

the test set of the different folds and the segmentation results are presented in Figure 5.4 here the

red border shows the ground truth and the green border indicates the predicted border. As can be

seen, five out of six images were captured using ERC (the sixth image is non–ERC). The first and

second images (see Subfig 5.4a and Subfig 5.4b), were captured using ERC and the bright region

can be seen around the rectal coil. However, the NPix normalisation method compensates the

bright region and our proposed model segments the prostate properly. Also, the Non–bypass model

segmented the prostate precisely in the third image (see Subfig 5.4c), despite the wrap–around

artefacts in the image. The fourth and fifth images (see Subfig 5.4d and Subfig 5.4e), contain only

small regions of the prostate, but our proposed method still segments the prostate accurately and

specifically in the fourth image the rectal coil effect is similar in to size the prostate. The last image

(see Subfig 5.4f) is the non–ERC image that is also segmented correctly by the Non–bypass model.

Overall, the results show the capability of our best model in the segmentation of the prostate MRI.

A subset of the results of all proposed models in five different folds are presented in Appendix A,

Table A.7, Table A.8, Table A.9, Table A.10, and Table A.11.

5.13 Analysing the EndoRectal Coil Effect

The PROMISE12 dataset includes 50 MRI volumes for training with 24 of them captured using the

ERC. These volumes include 809 image slices while the 26 non–ERC volumes include only 568

slices. To show the effect of ERC on the final segmentation results, we evaluate the results of the
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(a) (b) (c)

(d) (e) (f)

FIGURE 5.4: The six sample segmented images using Non-bypass model. The red border is the ground
truth and the green border in the predicted border.

Output from All and Non–bypass models based on the obtained DSC per volume.

The obtained results of the Output from All model per volume is shown in Figure 5.5a where

the red bars indicate the DSC of the ERC volumes and the blue bars show the DSC of the non–ERC

volumes. In the Output from All model, the average mean DSC of ERC volumes is 0.8576 and the

average DSC of non-ERC volumes is 0.8727. The average DSC in the non–ERC volumes is higher

than ERC volumes but, in this model, the best individual result is achieved by segmentation of an

ERC volume, and segmentation of a non–ERC volume produces the worst individual outcome.

In Figure 5.5b the results of the Non–bypass model per volume are presented. In this model,

the average DSC of ERC volumes is 0.8698 and the average DSC of non–ERC volumes is 0.8749.

The Non–bypass model was more precise in the segmentation of both ERC and Non–ERC volumes,

and more importantly we can see the smaller differences between average mean DSC of the ERC

and Non–ERC volumes.

To demonstrate there are no statistically significant differences between the segmentation of

the ERC and non–ERC volumes using the Output from All and Non–bypass models, we evaluate
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the results using Wilcoxon–Mann–Whitney test [112], which calculate the differences between

two independent sets. The comparison of the obtained results of the Output from All model, for

segmentation of the ERC and non–ERC volumes using Wilcoxon–Mann–Whitney test is p=0.26,

and for the Non–bypass model p=0.90. These results demonstrate that there are no significant

differences between the segmentation of the ERC and Non–ERC volumes either model.

These test results show that using ERC is not the only reason for a low mean DSC. The most

important reasons are the low contrast and spatial resolutions and artefacts that can decrease the

accuracy of the segmentation, particularly for the first and the second folds. Also, low diversity of

the training images in the fifth fold. In both models, the lowest mean DSC is for the 24th volume

that is a non–ERC and contains the only example of the large prostate. Using zoom augmentation

could address this problem somewhat, however increasing the zoom factor is not an appropriate

solution because the features in the field of view around the prostate (muscle, fat, etc.) will be

lost.

(a) The Output from All model results per volume.

(b) The Non-bypass model results per volume.

FIGURE 5.5: Comparison of the Output from All
and Non–bypass models based on obtain results
per volume. Red bars, ERC–volumes; Blue bars,
non–ERC volumes.

In summary, we have investigated the per-

formance of all six propose networks in detail

concerning, slices, volumes, and cross–validation

folds. The results demonstrate that the Non–

bypass model is the most precise model among

all our recommended models. The results show

that using a bypass connection alone is ineffective

and when used along with the scatter connections

obtains the worst results. Also, we found that the

resolution of the images is a critical factor for the

segmentation since the ERC volumes with good

resolution are segmented precisely.
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6
Conclusion and Future Work

In this thesis, we propose six FCNN-based network structures for MRI prostate segmentation. Our

proposed Non-bypass model outperforms the comparable 3D FCNN-based segmentation methods

when evaluated by cross–validation on the PROMISE12 training dataset, and achieves a new

state-of-the-art for FCNN prostate segmentation on the PROMISE12 training dataset.

In our research, we have analysed different parameters of FCNN with a particular focus on using

the shortcut connection. The results of our novel structures show the benefits and advantages

of reusing the extracted feature maps within and between the blocks, and also the impact of

the network structure on the prostate MRI segmentation. Shortcut connections can help their

network. However, our results show that using shortcut connections can also decrease the accuracy

of the network; therefore, it is critical to use shortcut connections in the proper place in the

network. Our experiments show that the bypass connection, which transfers the input feature

maps to the output of the block is not beneficial for the prostate segmentation and when it is

used together with scattering connections it even significantly reduces performance. In contrast,

gathering connections, which collect the output feature maps of the layers can significantly improve

performance in this application. Also, the results show that, among the models that transfer the

57
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equal number of feature maps between the layers, the models with the simpler architecture within

the block produce better results.

The Straight (Baseline) model which uses no shortcut connections, achieves competitive results.

The Bypass model demonstrated that transferring the input feature maps of the current block to

the next block has no significant benefit for the final segmentation results compared the baseline.

The results of the Input to All model and the Dense model (two other example of using bypass

connection along with other connections) show that shortcut connections sometimes decrease the

accuracy of the prostate segmentation in comparison with Baseline network. The Output from All

model and the Non-bypass model are the most precise models among all six proposed models.

The results demonstrated that a well-structured model could segment both ERC and Non-ERC

images precisely and the effect of using different patterns of shortcut connections is more evident

in the difficult folds.

It is necessary to emphasise that, for training our proposed 2D networks we use the entire

images without cropping, and the results are obtained without any post-processing for boundary

refinement. Moreover, based on our experiments in this project, batch normalisation and data

augmentation play essential roles in the training of the network. In the case of the only large

prostate, our models could not segment the images accurately because they have not seen a similar

image during training. A more sophisticated augmentation method could possibly address this

problem. Also, some of the MRI images suffer from low resolution and artefacts that can be

addressed with improved normalisation methods and preprocessing.

In the future work, based on the obtained results, we plan to test Non-bypass Output from

All and Non-bypass Input to all models to analyse the effect of the bypass connection on the

discussed models. Also, we plan to apply our models to MRI datasets of other organs. Although

this thesis is focused specifically on segmentation of the prostate in MR images, the methods that

we have developed could equally be applied to other segmentation tasks, including other medical

applications. Further, we plan to convert our proposed 2D models into 3D models, which can better

segment small prostate regions. Since the available training data for prostate segmentation is

limited; another opportunity would be to use transfer learning [113] for MRI prostate segmentation.

This would include fine-tuning a pre-trained network and employing it for prostate segmentation.

Furthermore, adding an attention mechanism [114] in our proposed models may improve the
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results. Attention mechanisms direct the network to focus on the important region in the image.

Finally, we intend to extend our work to prostate cancer detection...
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A
Appendix: Detailed Results

Algorithm 1 Batch Normalisation transform on mini-batch.
Input: Values of x over a mini-batch B.

Output: yi = BNγ,β(X i)

1: function BATCH NORMALISATION( B = x1....m)

2: µB ←
1
m

∑m
i=1 x i //mini-batch mean

3: σ2
B ←

1
m

∑m
i=1(x i −µB)2 //mini-batch variance

4: x̂ i ←
x i−µBp
σ2

B+ε
//normalise

5: yi ← γ x̂ i + β ≡ BNγ,β(x i) //scale and shift

6: end function

61
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Center Field strength ERC Resolution Imaging device
HUH 1.5 Y 0.625/3.6 Siemens
BIDMC 3 Y 0.25/2.2− 3 GE
UCL 1.5/3 N 0.325− 0.625/3− 3.6 Siemens
RUNMC 3 N 0.5− 0.75/3.6− 0.4 Siemens

TABLE A.1: This table provide the Centers name, Filed strength, Resolution, and Imaging devices that
used for collecting promise dataset. HUH, Haukeland University Hospital; BIDMC, Beth Israel Deaconess
Medical Center; UCL, University College London; RUNMC, Radboud University Nijmegen Medical Center;
ERC, EndoRectal Coil.

Model Fold Batch1 Batch2 Batch3 Batch4
Fold1 0.59 0.72 0.82 0.51

Straight Fold2 0.52 0.64 0.74 0.45
Fold3 0.68 0.78 0.88 0.68
Fold1 0.65 0.73 0.82 0.53

Bypass Fold2 0.53 0.63 0.79 0.50
Fold3 0.70 0.79 0.89 0.73

TABLE A.2: Comparison of using different values for the batch size based on mean DSC. Batch1, ADAM
optimiser, learning rate 0.001, batch size 8; Batch2, ADAM optimiser, learning rate 0.001, batch size 16;
Batch3, ADAM optimiser, learning rate 0.001, batch size 32; Batch4, ADAM optimiser, learning rate 0.001,
batch size 64.

Model Fold 2 layers 3 layers 4 layers 5 layers 6 layers 7 layers 9 layers
Fold1 0.72 0.82 0.72 0.73 - - -

Straight Fold2 0.68 0.74 0.46 0.46 - - -
Fold3 0.89 0.88 0.90 0.87 - - -
Fold1 0.80 0.82 0.81 0.81 - - -

Bypass Fold2 0.53 0.79 0.72 0.72 - - -
Fold3 0.90 0.89 0.89 0.90 - - -
Fold1 0.82 0.81 0.83 0.85 0.67 0.86 0.84

Output Fold2 0.73 0.76 0.63 0.73 0.68 0.80 0.81
from All Fold3 0.89 0.89 0.89 0.89 0.88 0.90 0.89

Fold1 0.61 0.70 0.59 0.58 - - -
Input Fold2 0.62 0.46 0.39 0.74 - - -
to All Fold3 0.88 0.88 0.88 0.89 - - -

Fold1 0.69 0.79 0.73 0.58 - - -
Dense Fold2 0.65 0.65 0.64 0.65 - - -

Fold3 0.89 0.88 0.88 0.86 - - -
Fold1 0.84 0.84 0.85 0.87 0.87 0.87 0.86

Non-bypass Fold2 0.68 0.71 0.65 0.70 0.65 0.78 0.75
Fold3 0.89 0.90 0.89 0.90 0.89 0.90 0.89

TABLE A.3: Performance of using the different number of layers (two to nine) per block in the first three
folds of all proposed models.
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(a) SGD-Learning rate 0.01

(b) SGD-Learning rate 0.001

FIGURE A.1: Comparison of loss error using different optimisation methods for the Bypass model.
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Model Fold Five blocks Six blocks Seven blocks
Fold1 0.81 0.82 0.79

Straight Fold2 0.53 0.74 0.65
Fold3 0.89 0.88 0.88
Fold1 0.83 0.82 0.83

Bypass Fold2 0.56 0.79 0.59
Fold3 0.89 0.89 0.89
Fold1 0.86 0.86 0.85

Output from All Fold2 0.70 0.80 0.73
Fold3 0.89 0.90 0.89
Fold1 0.70 0.58 0.23

Input to All Fold2 0.62 0.74 0.48
Fold3 0.89 0.89 0.74
Fold1 0.70 0.79 0.68

Dense Fold2 0.60 0.65 0.57
Fold3 0.89 0.88 0.84
Fold1 0.87 0.87 0.85

Non-bypass Fold2 0.73 0.78 0.70
Fold3 0.89 0.90 0.88

TABLE A.4: Performance of using different number of blocks in the down-sampling and the up-samling
parts in the all proposed models .

M Criteria 1stF 2ndF 3rdF 4thF 5thF 6thF 7thF 8thF 9thF 10thF AVG
Mean DSC 0.79 0.72 0.88 0.83 0.76 0.88 0.88 0.88 0.87 0.87 0.836

NSep Median DSC 0.84 0.69 0.88 0.88 0.84 0.87 0.87 0.90 0.87 0.88 0.852
STD-dev 0.12 0.06 0.03 0.08 0.2 0.03 0.02 0.06 0.02 0.02 0.064
Mean DSC 0.86 0.77 0.89 0.85 0.84 0.91 0.86 0.88 0.88 0.86 0.86

NAll Median DSC 0.87 0.78 0.90 0.85 0.86 0.90 0.89 0.89 0.88 0.87 0.869
STD-dev 0.04 0.07 0.03 0.04 0.07 0.01 0.07 0.04 0.03 0.03 0.043
Mean DSC 0.87 0.78 0.90 0.86 0.85 0.92 0.90 0.89 0.88 0.88 0.873

NPix Median DSC 0.88 0.78 0.91 0.87 0.85 0.91 0.89 0.90 0.88 0.88 0.88
STD-dev 0.03 0.07 0.03 0.04 0.07 0.01 0.02 0.05 0.02 0.02 0.03

TABLE A.5: Performance of the three normalisation methods on the Non-bypass model. NSep, Normalise
sets Separately; NAll, Normalise All; NPix, Normalise Pixels M, Model; F, Fold.

M Criteria 1stF 2ndF 3rdF 4thF 5thF 6thF 7thF 8thF 9thF 10thF AVG
Mean DSC 0.84 0.61 0.90 0.85 0.83 0.91 0.87 0.87 0.87 0.87 0.84

Output Median DSC 0.83 0.62 0.91 0.86 0.86 0.91 0.91 0.89 0.87 0.88 0.85
from All STD-dev 0.03 0.1 0.03 0.06 0.07 0.01 0.08 0.05 0.03 0.04 0.05

Mean DSC 0.83 0.81 0.89 0.71 0.83 0.89 0.87 0.87 0.87 0.83 0.84
Non- Median DSC 0.86 0.82 0.90 0.87 0.86 0.90 0.86 0.88 0.88 0.86 0.87

bypass STD-dev 0.1 0.04 0.02 0.2 0.07 0.01 0.03 0.04 0.02 0.04 0.05

TABLE A.6: Performance of the Output from All and Non-bypass models with using various number of
layers (4-4-5-7-10-12-15). M, Model; F, Fold
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(a) 1st fold (b) 2nd fold

(c) 3rd fold (d) 4th fold

(e) 5th fold (f) 6th fold

(g) 7th fold (h) 8th fold

(i) 9th fold (j) 10th fold

FIGURE A.2: Obtained results of the Output from All model on the all ten folds (test images).
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(a) 1st fold (b) 2nd fold

(c) 3rd fold (d) 4th fold

(e) 5th fold (f) 6th fold

(g) 7th fold (h) 8th fold

(i) 9th fold (j) 10th fold

FIGURE A.3: Obtained results of the Non-bypass model on the all ten folds (test image).
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TABLE A.7: Segmentation of four different images from the test set of the first fold using six proposed
networks. The red border is the ground truth, and green is predicted border. Straight, the Straight model
with three layers per block; Bypass, the Bypass model with three layers per block; Output from All, the
Output from All model with seven layers per block; Input to All, the Input to All model with two layers per
block; Dense, the Dense model with three layers per block; Non-bypass, the Non-bypass model with seven
layers per block.
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TABLE A.8: Segmentation of four different images from the test set of the second fold using six proposed
networks. The red border is the ground truth, and green is predicted border. Straight, the Straight model
with three layers per block; Bypass, the Bypass model with three layers per block; Output from All, the
Output from All model with seven layers per block; Input to All, the Input to All model with two layers per
block; Dense, the Dense model with three layers per block; Non-bypass, the Non-bypass model with seven
layers per block.



69

Model a b c d

St
ra

ig
ht

(B
as

el
in

e)
B

yp
as

s
O

ut
pu

t
fr

om
A

ll
In

pu
t

to
A

ll
D

en
se

N
on

-b
yp

as
s

TABLE A.9: Segmentation of four different images from the test set of the fifth fold using six proposed
networks. The red border is the ground truth, and green is predicted border. Straight, the Straight model
with three layers per block; Bypass, the Bypass model with three layers per block; Output from All, the
Output from All model with seven layers per block; Input to All, the Input to All model with two layers per
block; Dense, the Dense model with three layers per block; Non-bypass, the Non-bypass model with seven
layers per block.
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TABLE A.10: Segmentation of four different images from the test set of the sixth fold using six proposed
networks. The red border is the ground truth, and green is predicted border. Straight, the Straight model
with three layers per block; Bypass, the Bypass model with three layers per block; Output from All, the
Output from All model with seven layers per block; Input to All, the Input to All model with two layers per
block; Dense, the Dense model with three layers per block; Non-bypass, the Non-bypass model with seven
layers per block.
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TABLE A.11: Segmentation of four different images from the test set of the tenth fold using six proposed
networks. The red border is the ground truth, and green is predicted border. Straight, the Straight model
with three layers per block; Bypass, the Bypass model with three layers per block; Output from All, the
Output from All model with seven layers per block; Input to All, the Input to All model with two layers per
block; Dense, the Dense model with three layers per block; Non-bypass, the Non-bypass model with seven
layers per block.
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MRI Magnetic Resonance Image

CNN Convolutional Neural Network

FCNN Fully Convolutional Neural Network

ROI Region Of Interest

2D 2 Dimensional

3D 3 Dimensional

IBM International Business Machines corporation

DSC Dice Similarity Coefficient

SSAM Statistical Shape and Appearance Model

AAM Active Appearance Model

SVM Support Vector Machine

VOI Volume Of Interest

MAP Maximum A Posteriori

ASM Active Shape Model

ACM Active Contour Model
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SLIC Simple Linear Iterative Clustering method

HNN Holistically Nested Network

CED Coherence Enhanced Diffusion

AFL-PBT Adaptive Feature Learning Probability Boosting Tree

GOP Geodesic Object Proposal

SSAE Stacked Sparse Auto Encoder

ISA Independent Subspace Analysis

BCNN Baseline Convolutional Neural Network

ERC EndoRectal Coil

non-ERC non- EndoRectal Coil

BN Batch Normalization

ReLU Rectified Linear Unit

B Mini-batch

m Size of the batch

γ Scale parameter

β Shift parameter

σ Variance

SGD Stochastic Gradient Descent

ADAM Adaptive Moment Estimation

ADAM1 ADAM with learning rate 0.01

ADAM2 ADAM with learning rate 0.001
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ADAM3 ADAM with learning rate 0.0001

SGD Stochastic Gradient Descent

SGD SGD with learning rate 0.01

SGD SGD with learning rate 0.001

SGD SGD with learning rate 0.0001

Droupout1 Dropout after each layer with probability of 0.2

Droupout2 Dropout end of the block with probability of 0.2

Droupout3 Dropout in the bottleneck with probability of 0.5

S2 Straight model with two layers

S3 Straight model with three layers

B2 Bypass model with two layers

B3 Bypass model with three layers

I2 Input to all with two layers

I3 Input to all with three layers

I5 Input to all with five layers

O2 Output from all with using two layers

O3 Output from all with using three layers

O7 Output from all with using seven layers

F2 Dense with using two layers

F3 Dense with using three layers

NP2 Non-bypass with using two layers
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NP3 Non-bypass with using three layers

NP7 Non-bypass with using seven layers

NSep Normalise Separately

NAll Normalise All

NPix Normalise Pixels

HUH Haukeland University Hospital

BIDMC Beth Israel Deaconess Medical Center

UCL University College London

RUNMC Radboud University Nijmegen Medical Center
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