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Abstract 

Current e-learning systems are based on legacy database systems. Databases focus on 

logically organising data, but not on conceptual knowledge. Therefore, current e-learning 

systems have limitations in retrieving domain knowledge from a legacy database and 

benefiting from the full expressive capabilities which an ontology-based approach would be 

able to provide. In order to alleviate this problem, we propose to augment current e-learning 

systems with Semantic Web Technologies. Furthermore, different educational institutions 

have similarities, yet an analysis we conducted on subject descriptors and course handbooks 

from a set of institutions elicits the terminological differences they use. Such differences 

hinder deploying an e-learning system in multiple institutions. 

We propose a twofold intuitive solution. Firstly, we propose an ontology-based plug and play 

architecture for developing an e-learning system’s framework, instances of which can be 

deployed at different institutions by plugging in institution-specific learning ontologies. 

Secondly, we propose institution-specific learning ontologies for representing the knowledge 

and terminology specific to each institution.  

Developing institution-specific ontologies duplicates the effort of an ontology engineer. We 

analyse a corpus of learning ontologies developed for the learning domain. The results of our 

analysis show that the language constructors used in the corpus of the learning ontologies 

belong to a sublanguage of the ontology language OWL 2, that we name as OWL 2 Learn 

profile. We demonstrate how we use the OWL 2 Learn profile as a guide to developing an 

institution-specific ontology and populating it by mapping the data available in a learning 

database into instances and properties in an ontology.  

We develop an ontology benchmark query suite for evaluating learning ontologies for their 

query-answering and inference capabilities. We use the benchmark query suite to evaluate the 

sample learning ontologies that validate the expressivity of OWL 2 Learn profile as well. The 

adaptability of the e-learning system’s framework is evaluated using a proof of concept 

prototype. We demonstrate how we can use two instances of the prototype with institution-

specific ontologies for query-answering that generates similar answers, yet with domain 

specific terminology. 

This thesis shows how we can assist the development of ontology-based e-learning systems 

using Semantic Web technologies. We anticipate that this research would give some 

directions in developing context specific ontology-based e-learning systems. 
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Chapter 1: Introduction 

 

 

E-learning, simply electronic learning, has been a popular research area in over last two 

decades. As the name itself implies, it involves the use of electronic media to support the 

learning and teaching tasks. E-learning has been defined as: 

‘…all forms of electronic supported learning and teaching, which are procedural in 

character and aim to effect the construction of knowledge with reference to individual 

experience, practice and knowledge of the learner. Information and communication 

systems, whether networked or not, serve as specific media (specific in the sense 

elaborated previously) to implement the learning process’ (Tavangarian, Leypold, 

Nölting, Röser, & Voigt, 2004).  

Among the other e-learning technologies, relational database management systems (RDBMS) 

have been used over many years to facilitate storage and retrieval of data related to the 

learning and teaching tasks. Distributed database systems have been suggested for institutions 

which operate in multiple locations to provide fast access and collection of data (Magdalena, 

2011). In most case, the motivation behind the use of databases has been simple. Database 

systems store larger amounts of data than the primary memory size of a personal computer 

can accommodate. Database systems offer controlled access, security, recovery, integration 

and sharing of data (Sir, Bradac, & Fiedler, 2015).  

Internet and World Wide Web (WWW) are two main driving forces of e-learning. The 

WWW has achieved a massive growth from its invention by Tim Berners-Lee in 1989 and it 

has changed the way people do business, communicate, and study. The WWW is an 

interconnected set of web pages (different documents and resources) that are identified by 

Unified Resource Locators (URLs), interconnected by hyperlinks and accessed via the 

Internet (Berners-Lee & Fischetti, 2001). The Semantic Web (SW) is a further step forward 

of the WWW. The Semantic Web is considered as a web of actionable information (Shadbolt, 

Berners-Lee, & Hall, 2006). The information can be derived from data and included in the 

web pages. The semantic theory gets the meaning of the logical connections between the 

terms that would allow the interoperability between systems (Shadbolt et al., 2006). The 

Semantic Web shows the connections between the data and information, instead of web 
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pages. This integration of heterogeneous data in a system or different systems is achieved 

through common conceptualisations known as ‘ontologies’ (Shadbolt et al., 2006).  

Ontologies that represent the domain knowledge have been used as a main part of the 

Semantic Web. Ontologies are required to augment legacy database systems. Ontologies help 

to prevent and resolve communication issues among heterogeneous systems, enhance fusion 

of information and sharing knowledge. Also, ontologies help to integrate information, 

increase the interoperability of heterogeneous information sources by providing a high level, 

abstract view of information (Sir et al., 2015). The Ontology languages, Web Ontology 

Language (OWL) and OWL 2 are based on the Description Logics (DLs). DLs are formal 

knowledge representation languages that have been elaborated in Baader, Calvanese, 

McGuinness, Nardi, and Patel-Schneider (2003). DLs enhance the accuracy of the domain 

knowledge and support reasoning on them.  

E-learning has been benefited by the Semantic Web technologies in different ways. We 

notice a gradual growth in the e-learning applications which are based on the Semantic Web 

technologies. These applications have attempted to model the domain knowledge of learning 

and provide access to the users to assist their learning and teaching. Some applications 

integrate metadata into Semantic Web based e-learning applications. The use of multi layered 

Learning Object Metadata (LOM) as an approach for searching for learning objects has been 

proposed, in (Hsu, 2012). On the other hand, some applications focus on using user profiles 

and personalisation. For example, learning patterns of the learners are analysed based on user 

profiles, ontologies and reasoning, in Nafea, Maglaras, Siewe, Smith, and Janicke (2016). 

Some e-learning applications have been integrated with other technologies such as Cloud 

databases. For example, an ontology-based adaptive personalised e-learning system that is 

based on Semantic Web and Cloud technologies has been proposed in (Rani, Nayak, & Vyas, 

2015).  

Many e-learning systems that are based on Semantic Web technologies have focused on 

achieving an adaptivity of e-learning systems at the user level. For example, Rani et al. 

(2015) and Gascueña, Fernández-Caballero, and González (2006) have focused on ontology-

based e-learning systems to adapt the learning contents at the user level based on user profiles 

and learning styles. However, they do not address the adaptivity of e-learning systems to 

different learning contexts or institutions. A communication ontology has been proposed in 

(Aroyo & Dicheva, 2004) to achieve interoperability of e-learning systems and institution 
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level adaptability of e-learning systems by overcoming the problem of not having a common 

reference architecture.  

1.1 Motivation 

Current e-learning systems use database systems primarily as storage of learning resources 

and granting secure access to those resources. However, current e-learning systems are poor 

in conceptualising and managing the domain knowledge. However, the SW technologies 

have been suggested to provide the high level conceptual view of the data and information in 

the web application. Hence, we expect SW technologies to be a perfect candidate for 

augmenting e-learning systems that are based on legacy database systems.  

As a step forward in augmenting current e-learning systems, we conducted an initial analysis 

of the unit guides of over ten institutions in the state of New South Wales, Australia. This 

analysis unveiled that there are differences in the terminologies used in those institutions. For 

example, Table 1.1 lists a part of the terminology used at MQ and CSU.  

Table 1.1 : Different terminology used at MQ and CSU 

Some Terms used at MQ Some Terms used at CSU 

Unit Subject 

Unit description Subject outline 

Course Major / Specialisation 

Convener Subject coordinator 

Topic list Schedule 

Assessment task Assessment item 

Learning resource Learning material 

Department School 

We also noticed that currently each institution’s e-learning systems have been developed 

considering their specific requirements. Hence, the terminology used in an institution has 

been applied in all parts of an e-learning system. This leads to duplicated effort in developing 

e-learning systems. Getting consensus on a common terminology for all institutions is a 

tedious task. Each institution likes to keep their uniformity to compete with other institutions. 

This hinders deploying an instance of the same e-learning system in different institutions. 

There are attempts by some scholars to align the terminologies used in each institution by 

considering synonyms and antonyms. They specially focus on sharing the knowledge in 

different institutions. However, that does not solve the problem of duplicated effort the 

institutions are expending in developing individual e-learning systems. An e-learning systems 
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architecture that is commonly applicable to many institutions would help to alleviate this 

problem. An ideal solution would be to allow institutions to use instances of the same e-

learning system while using their own terminology and institution-specific knowledge.  

An institution’s specific knowledge is distributed in many parts of an e-learning system. 

Domain knowledge is identified by terminology specific to an institution. This makes e-

learning systems further specific to an institution and duplicates the effort required to develop 

them. Therefore, we need a way represent the domain knowledge of an e-learning system as a 

separate component of it. Also, this would help us to separate an institution’s specific domain 

knowledge using a specific terminology of an e-learning system. That would help to augment 

e-learning systems and overcome the duplicated effort in developing them. 

Furthermore, if we could separate the institution-specific application knowledge from the 

domain knowledge of learning that would help to deploy the domain knowledge at 

institutions with application knowledge relevant to an institution’s specific terminology.  

1.2 Research Problem  

In our research, we address the research problem of how to use SW technologies to augment 

current e-learning systems while keeping the terminological differences between the 

institutions. As a way to solve this problem, we attempt to address the research in two ways:  

1. How to use SW technologies to design an e-learning system, instances of which could 

be deployed in different institutions. 

2. How to separate domain knowledge of the learning domain from an e-learning system 

and reuse it in institution-specific e-learning systems. 

1.3 Ontology and Ontology Languages 

Ontology has been defined in different ways over time. Most popular definition “An ontology 

is an explicit specification of a conceptualization”, is given in (Gruber, 1993). Again, it is 

stated that “ontologies provide a shared and common understanding of a domain that can be 

communicated between people and across application systems”, in (Horrocks et al., 2000). 

An ontology is formally specified using an ontology language. A set of essential requirements 

of an ontology language have been listed in (Fensel, Van Harmelen, Horrocks, McGuinness, 

& Patel-Schneider, 2001). They include: having a compact syntax, a well-defined formal 

semantics, the potential for building knowledge bases, a proper link with existing web 
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standards to ensure interoperability; and, being highly intuitive to humans, being able to 

represent human knowledge including reasoning properties. 

Different ontology languages have been proposed over the last two decades.  The results of a 

survey on some of the early ontology languages are in (Pulido et al., 2006). These include 

KIF (Genesereth & Fikes, 1992), F-Logic (Kifer, Lausen, & Wu, 1995), CycL, Dublin core 

(Baker, 2000).  The ontology languages: XML, SHOE, DAML+OIL, RDF, RDFS, OWL and 

its sublanguages have also been introduced. However, the current standard ontology language 

recommended by the World Wide Web Consortium (W3C) is OWL 2 (Motik et al., 2012).  In 

subsections below, we introduce recent ontology languages that are more relevant to our 

work: RDF/RDFS, OWL and OWL 2. 

1.3.1 Recent Ontology Languages 

RDF/RDFS – The Resource Description Framework (RDF) was accepted by the W3C in 

2004 as a framework for describing resources on the Web (Cyganiak et al., 2014). It has been 

a great foundation for the current ontology languages. However, RDF does not include 

sufficient constructors to specify a comprehensive ontology.  RDF Schema (RDFS), a schema 

language for RDF, provides a framework for describing application-specific classes and 

properties (Fensel et al., 2001). RDFS is an extension of RDF and it includes additional 

language constructors to specify relations between concepts. 

OWL – superseded RDF/RDFS in 2004 as a Web ontology language and became a W3C 

recommendation for the Semantic Web. As OWL is based on a version of description logic, it 

allows the use of a DL-based reasoner to derive information that is not explicitly specified in 

an OWL ontology (Horrocks & Patel-Schneider, 2011). OWL included many new language 

constructors to specify domain knowledge. OWL also includes features of RDF, DLs and 

frames (Horrocks, Patel-Schneider, & Van Harmelen, 2003). 

OWL 2 – has been used as the W3C recommended ontology language for the Semantic Web 

(Motik et al., 2012).  OWL 2 is a new and more expressive version of OWL which mainly 

improves the relational and datatype expressivity of the language. OWL 2 includes additional 

language constructors than OWL and includes three (3) standard sublanguages or profiles. 

1.3.2 OWL 2 Standard Profiles 

Over the past two decades the research on DL has focused on increasing the expressivity of 

an ontology language. It has led to developing highly intractable DL languages like OWL 
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DL. As a way of dealing with this problem two sublanguages of OWL DL: OWL EL and 

OWL Lite have been introduced (Baader & Lutz, 2010). Later, these OWL sublanguages 

have been proposed as OWL 2 profiles (Motik et al., 2009). 

The OWL 2 language includes the three standard profiles: OWL 2 EL, OWL 2 QL and OWL 

2 RL. They have been proposed to specify different application domains with restricted 

expressivity. Each OWL profile includes a subset of OWL 2 constructors and suitable for a 

particular type of applications and reasoning tasks.  

The OWL 2 EL profile – has been designed for ontologies with a large number of classes 

and/or properties for which the basic reasoning tasks require polynomial time in terms of the 

size of the ontology (Motik et al., 2009).  

The OWL 2 QL profile – has been recommended for specific applications that work on large 

volumes of data where the query-answering tasks require logarithmic space in terms of the 

size of the data (Motik et al., 2009).  

The OWL 2 RL profile – has been designed for domains that require scalable reasoning but 

do not require too much expressive power compared to full OWL 2. OWL 2 RL 

implementations can use rule-based reasoning engines and query-answering over OWL 2 RL 

ontologies require polynomial time in terms of the size of the ontology (Motik et al., 2009). 

1.4 E-Learning Systems and Databases 

Databases work as a central and a shared repository of the data related to entities of a domain. 

In e-learning systems databases have been used to store data related to courses, learners, and 

learning resources. They are an indispensable component of information systems, including 

e-learning systems. The contemporary e-learning systems are based on relational databases 

that are created and managed using a Relational Database Management System (RDBMS). 

Databases have been used in systems including e-learning for nearly four decades. Here, we 

see some approaches for e-learning systems that are based on databases. 

1.4.1 Databases for E-Learning Systems 

Early e-learning systems have been proposed to change the class-room-based and instructor-

based learning to learner-based and Internet-based e-learning systems. A variety of Internet-

based technologies that enable the design and implementation of e-learning systems that aim 

at on-demand, low cost learning have been proposed in Zhang (2003). Among the many 

technologies, the database technologies are used for storing and manipulating e-learning 
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materials and to provide scalability that is required to support the learners (Zhang, 2003). 

Zhang (2003) has suggested using distributed computing technologies to achieve 

personalisation of a plethora of learning materials stored in databases. 

Issues such as the optimum size in generating reusable e-learning objects (ELOs) are 

identified and an approach to create and reuse optimum sized ELOs that are stored in a 

database is proposed in (Muzio, Heins, & Mundell, 2003). These authors have suggested 

using text, images and audio templates to create, store and manage reusable ELOs. They 

suggest storing the ELOs in databases so that others can search for them. A developer is 

allowed to transfer them to a creator’s library and transfer them back as a new ELOs after any 

updates or modifications. The copyrights of the ELOs are held by the original creator. 

However, these authors do not talk about any search criteria or use of queries to search the 

ELOs. Muzio et al. (2003) propose user interfaces to present the ELOs to the learners. 

However, personalisation or how to apply a learner-centred approach, are not discussed. 

The above approaches have paid little attention to addressing the issues related to 

personalisation that demands conceptualising the learning contents. Some scholars have 

suggested storing user profiles in databases and some have suggested using software agents.   

The architecture proposed for an e-learning system in (Chen, Lee, & Chen, 2005) is assisted 

by three main databases: a user account database, a courses database, and a user profile 

database, and several agents (Figure 1.1). In that work, an interface agent uses the user 

account database to identify learner status and then transfer learner’s queries and returns the 

suggested course materials to learner. A course recommendation agent uses the courses’ 

database and user profile database to select course materials that are appropriate for the 

learners from the course database.   

In comparison to what is proposed in Zhang (2003), in addition to a course database, this 

approach has used a user account and a user profile database. Hence, the work in (Chen et al., 

2005) could be considered as an extension to work in (Zhang, 2003). On the other hand, both 

of these works have included databases for managing data on learning materials and the 

assessment data. 
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Figure 1.1: System Architecture – numbers 1 to 15 indicates the procedure of system 

operations (Chen et al., 2005) 

A campus-wide Learning Content Management Systems (LCMS), adopted from the IBM 

Lotus Corporation’s product LearningSpace has been proposed in (Cohen & Nycz, 2006), is 

a multi-database application that relies upon five databases. They have attempted to provide a 

broader context of using technology in e-learning to meet society’s needs for learning 

especially for adults. Each database has been suggested to store various data. They include a 

schedule database, a media centre database, a virtual classroom, a profiles database and an 

assessment manager database. As their names imply they store different data related to 

different disciplines of a campus as required by that application. LCMS is not just a 

repository of learning objects, it includes systems and tools for authoring resources, and 

storing and retrieving the learning objects. This approach provides only an overview of the 

system and does not provide details of user profiles and criteria for retrieving the learning 

objects. 

A Web-based diagnostic and dynamic assessment development and an assessment-centred e-

learning system, named Graduated Prompting Assessment Module – Web-based Assessment 

and Test Analyses (GPAM-WATA), has been proposed in Wang (2014). This system 

provides personalised learning materials and assessments that is able to be adapted by the 

user. All learning contents of this system are stored in the e-learning material database. 

GPAM-WATA_EL e-learning system uses an instructional item and a prompt database for 
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dynamic assessment. The diagnostic item bank includes items developed by teachers based 

on their understanding of the misconceptions students have about learning concepts and are 

used to diagnose students’ weaknesses in the learning process. For this diagnosis first, prior 

knowledge assessments and pre-tests have been given to the students. Then, remedial 

teaching and post-tests have been used.  

The e-learning material database that is used in this system allows teachers to construct e-

learning materials with multimedia content. In this approach, the instructional items in the 

personalised dynamic assessment are automatically retrieved from the instructional items 

database based on the learners’ pre-test results of a two-tiered diagnostic assessment. This 

personalised dynamic assessment helps learners focus on interacting with the instructional 

items and instructional prompts that enhance their learning rather than on non-personalised 

dynamic assessments. 

1.5 Enrichment of the E-Learning Systems with Semantic Web Technologies 

The approaches introduced in the previous section show that systems for e-learning have 

traditionally relied on database technologies to manage learning objects. They have relied on 

agent-based technologies, and distributed computing and metadata to provide adaptive 

features to the learners. They are good at storing and managing learning objects and data, but 

not good at capturing domain knowledge. In database-driven information systems, domain 

knowledge is distributed in different parts of the system’s application logic. It is only possible 

to store domain knowledge in ‘stored procedures’, ‘triggers’ or in an application program 

(Selfa, Carrillo, & Boone, 2006). In addition, database technologies have problems answering 

questions about intentional knowledge due to the fact that databases are intended for storing 

data rather than for representing the semantics of a domain. A repository of e-learning 

materials is considered as a knowledge base in (Zhang, 2003). Still, a repository of data or a 

repository of learning resources literally would not be considered to be a knowledge base. A 

knowledge base needs to store both terminological and assertional knowledge of a domain 

such as e-learning. 

Even though conceptual schemas are used to design databases, operational databases do not 

provide a conceptual view to the users. Databases are more technical and based on Relational 

Algebra. Again, databases are based on the Closed World Assumption (CWA) and they work 

with complete data (Cortés-Calabuig, Denecker, Arieli, Van Nuffelen, & Bruynooghe, 2005). 

Query-answering is applied on databases to get results and happens by evaluating fixed 
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logical database structures. They do not provide direct reasoning capabilities based on a DL 

reasoning tool. 

Four main differences between ontologies and database and other schema definitions have 

been identified in (Fensel, 2000). 1) The ontology languages currently used to define 

ontologies have richer syntax and semantics than the approach followed to define databases. 

2) An ontology includes information which is described using a semistructured natural 

language, but a database includes information in a tabular format. 3) Terminology used in an 

ontology has to be commonly agreed upon and intuitive, as an ontology needs to be shared 

and/or exchanged. But, a database includes a terminology selected by the database designer 

that may not be intuitive to the others. 4) Also, an ontology represents domain knowledge, 

but not the structure of a data container (Fensel, 2000). 

In contrast to databases, ontologies that are salient participants in the Semantic Web 

technologies have features which benefit and enrich the e-learning systems. Ontologies create 

an additional layer on top of the database layer in a learning system. Hence, a learning 

ontology is able to provide a simplified view of the learning contents by supressing the 

technical details and domain complexities. 

Contemporary ontologies are designed using the ontology languages that are based on DL. 

Therefore, it is possible to do reasoning on e-learning ontologies using a DL-based reasoning 

tool. Reasoning helps to find the unknown facts based on the known facts rather than just 

retrieving the learning objects in comparison to the Structure Query Language (SQL) used in 

database systems. As the ontologies use the Open World Assumption (OWA) it is possible to 

work with complete or incomplete facts. If the facts are complete we are able to get complete 

results and if a learning ontology has incomplete facts we get incomplete facts or the system 

would say ‘not known’. When ontologies are used for reasoning they work as conceptual 

schema and the query-answering happens by evaluating an ontological structure that is 

navigated in multiple directions. 

Many scholars have identified the Semantic Web technologies, primarily the ontology, to 

enrich the e-learning systems due to the benefits which ontologies offer. Detailed discussions 

on recent advances in e-learning and web-based technologies are provided in (Chrysafiadi & 

Virvou, 2015). In the next section we review the literature on the ontology-based e-learning 

systems in chronological order to identify the prominent features of the e-learning systems 

proposed in those approaches. We searched for what features have been thoroughly utilised 



11 

 

and discussed, and also what features have been given little attention. Finally, we attempt to 

identify areas of ontology-based e-learning systems that need further research. 

1.6 Ontologies for the Learning Domain 

The conceptualisation of the contents of e-learning system ontologies with their concepts and 

relationships makes it easy to understand them. There are several efforts in this line of 

research and we pay our attention to some of them in this section. They have attempted to 

conceptualise some aspects of the learning domain including the learning materials, users, 

instructors, and the devices used. Below we elaborate on the approaches that we found in the 

literature. 

1.6.1 Modelling the Learning Domain Using Ontology 

Different issues that contemporary higher educational institutes face due to a changed role 

have been highlighted in Dall’Alba and Barnacle (2007). They point out that universities 

focus on providing specialised knowledge rather than students’ learning and several other 

problems. They suggest that conceptualising higher education programs as ‘ontology’ is a 

solution to the issues they have identified. Approaches to education are integral to learning or 

to taking actions. The authors believe that this dimension of learning needs to be revitalised 

through an ontological approach to higher education programs. They present a 

theoretical/conceptual account of the role of ontology in higher education that reasserts the 

ontological implications of learning. They stress that an ontological approach would help to 

provide specialist rather than general knowledge. However, no specific ontologies for 

institutions or use of ontologies in a system have been proposed in their work. 

In line with the ideas in Dall’Alba and Barnacle (2007), a topic map ontology for e-learning 

has been proposed in (Kolås, 2006) that aims at actively involving students and teachers as 

producers of learning resources and sharing the student-made resources. In that work, topics 

in the learning domain and their associations to their occurrence have been identified from 

the learning resources. Those topics have been grouped under key areas: learning objectives, 

pedagogical methods and learning objects. Each key topic belongs to several topic types and 

has an association and occurrences (for example, Multiple Choice Questions (MCQs), short 

answers and blogs) (Kolås, 2006). Associations include, is assessed through, is taught 

through and is produced through.  The topics are organised in a table that can be used as a 

source of candidates’ terms for a learning domain ontology. The topic map proposed in this 
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approach shows the relationships between different learning resources. It is expected that the 

topic map will enhance teaching and learning.  

This ontology in (Kolås, 2006) has been proposed for specifying a learning domain with 

learning objectives, learning methods and learning objects. It also identifies many resources 

related to each category, and associations of them, to provide a detailed specification of a 

learning domain. In Kolås (2006), a learning ontology has been presented in a tabular format 

to conceptualise the domain knowledge. However, the domain knowledge captured in this 

table could be depicted graphically using a diagram or in some other pictorial way that could 

enable visualisation of the domain knowledge.  

A domain ontology to describe learning material that builds an adaptive course has been 

proposed in Gascueña et al. (2006). This domain ontology specifies a course that is capable 

of providing adaptive e-learning environments and reusable educational resources. This 

ontology consists of descriptions of resources, devices that are required to use the resources, 

and learning styles of the learners. Each resource in this ontology has been described using 

two characteristics, the most appropriate learning style and the most satisfactory hardware 

and software features of the used device. In Gascueña et al. (2006), learning styles are 

determined based on the Felder-Silverman Learning Style Model (FSLSM) (Felder & 

Silverman, 1998). Appropriate resources are related to the learning styles, and to the user’s 

hardware and the software environment.  

The approach proposed in (Kougias, Seremeti, & Kalogeras, 2011) works towards an 

ontology-based approach for enhancing educational activities to reduce the conceptual gap 

between the learners and instructors in Next Generation Education Environments (NGEEs). 

This aim is realised by semantically relating the cognitive profiles of learners and instructors 

by using ontologies. A set of ontologies is proposed to manage cognitive profiles of learners 

and instructors. 

In the initial attempts to build cognitive profiles for learners and instructors, each individual 

described their profiles using different terms and in different ways (Kougias et al., 2011). 

Hence, a problem of lexical heterogeneity has appeared and occurs when the same term has 

different meanings, or the same meaning can be described using different terms (Kougias et 

al., 2011). Besides, structural heterogeneity occurs when the same concept is described using 

different relations and properties or when it has a different position in a hierarchy. The 

solution of those problems is to apply ontology merging and alignment approaches.  
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The users of the learning system are the learners and instructors. Hence, each learner’s 

information such as age, gender, skills, learning preferences, special abilities, and cognitive 

background is considered to be the learner’s profile. These profiles are represented by a 

Learner Profile Ontology (LPO) (Kougias et al., 2011). The instructor’s information such as 

‘what to teach’—courses, content, learning goals, and ‘how to teach’—lectures, teaching 

methods and conditions, depending on particularities, belong to instructor profiles. Instructor 

profiles are represented by Instructor Profile Ontology (IPO) (Kougias et al., 2011). When a 

class is considered the learners who attend a class have heterogeneous profile contents, as 

learners get different interpretations of their domain. Hence, class information is taken into 

class profile that is represented by a Class Profile Ontology (CPO) (Kougias et al., 2011).  

The ontology-based cognitive profile management approach proposed in (Kougias et al., 

2011) attempts to utilise a set of ontologies to alleviate the semantic gap between the 

cognitive profiles of learners and instructors. Further, this approach applies ontology 

alignment in creating semantic correspondence between the ontologies, and a set of ontology 

tools are manipulated to develop, merge, reason, and align ontologies. This approach has 

provided a broader view of learning with three main views: learner, instructor and a class. 

In addition to focusing on modelling, the resources as in (Kolås, 2006) and the approach in 

(Gascueña et al., 2006) identifies the devices required to use learning resources and the 

learning styles to be included in the ontologies. The device descriptions include the 

subclasses; software and hardware. This approach has turned attention towards an ontology 

for learners and their profiles with their learning styles. The learning styles are based on the 

FSLSM (Felder & Silverman, 1998). They have provided a general layout of a domain 

ontology for learning and a hierarchy of learning resources with four layers of concepts. In 

this hierarchy, they have included assessment items as well. In comparison to the other 

approaches, this approach has considered several new areas for conceptualisation of a 

learning domain. 

However, these approaches do not discuss the use of the ontologies in an e-learning system or 

within ontology-based systems architecture. We discuss such approaches separately in 

Section 2.4. 

1.6.2 Description Logics (DLs) and Ontologies 

The ontology languages OWL, OWL 2 and the OWL 2 profiles are based on the DLs (Baader 

et al., 2003). DLs is the name given to a set of knowledge representation (KR) formalisms 
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(Baader & Nutt, 2003). In DLs, first the terminology or the concepts in a domain are 

specified. Then roles and individuals of that domain are specified. They are the basic building 

blocks of a knowledge base (KB). The expressive power of a DL language depends on the 

constructors used in it. The basic DL language ALC includes the following DL constructors 

(Table 1.2). Other DL languages are derived by adding or removing the constructors from 

ALC. 

Table 1.2: Constructors of ALC (Baader & Nutt, 2003) 

# DL Constructor Name 

1 C, D  A| Atomic concepts 

2 T| Universal concept 

3 ⊥| Bottom concept 

4 ¬A| Atomic negation 

5 C⊓D| Intersection 

6 R.C| Value restriction 

7 R.T Limited existential quantification 

A KR system consists of a terminology box (TBox), an assertions box (ABox), a DL 

language and a DL reasoner (Baader & Nutt, 2003). A KB consists of a TBox and an ABox: a 

TBox holds the vocabulary of an application and an ABox holds the assertions about the 

named individuals. Domain rules are applied to them and the knowledge can be retrieved 

using application programs. The knowledge that is not explicitly expressed in a KB is 

inferred automatically by using an inference procedure (Baader & Nutt, 2003). DLs and 

OWL use different terms in their language and a comparison is given below (Table 1.3). 

Axioms are statements that are true about a domain. A terminological axiom shows how the 

concepts and roles are related to each other. 

Table 1.3: Terms used in OWL and DL (Baader & Nutt, 2003) 

OWL DL 

Class Concept 

Object Property Role 

Ontology Knowledge Base 

Axiom Axiom 

Vocabulary Vocabulary 

1.7 Thesis Focus and Key Contributions 

The main focus of this thesis is to propose an architecture for an e-learning system, instances 

of which could be deployed at different institutions. We provide a description of different SW 
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components of this architecture and technologies that could be used in the proposed 

architecture. One main focus of the proposed architecture is to represent the domain 

knowledge as an ontology. This thesis also identifies the common language constructors of 

learning ontologies that makes a sublanguage for developing learning ontologies.  

This thesis provides the answers to the research questions and proves or disproves whether 

the following experiments provide feasible solutions:  

1. Use of instances of a common e-learning systems architecture in multiple institutions. 

2. Identify a sublanguage to represent domain knowledge of the learning domain based 

on an analysis of a corpus of learning ontologies developed for different institutions.  

3. Use of the proposed sublanguage to represent the domain knowledge of different 

institutions.  

4. Use of existing methods to map the domain knowledge in databases into a knowledge 

representation format so that they could be used in a knowledge base system.  

5. Use of proposed architecture in at least two institutions using two instances of the 

proposed system, and,  

6. Use of the domain knowledge in at least two institutions using a benchmark query 

suite. 

The major contributions of this research are:  

1. Proposing the design of an ontology-based plug and play architecture for an adaptive 

e-learning system’s framework, instances of which could be deployed at different 

institutions. 

2. Designing an OWL 2 sublanguage for the learning domain based on an analysis of a 

corpus of learning ontologies. 

3. Proposing an ontology benchmark query suite to evaluate the query-answering and 

inference capabilities of learning ontologies. 

The auxiliary contributions include:  

1. Identification of the terminological differences between the institutions based on an 

analysis of unit guides and course handbooks.  

2. Identification of different types of architectures proposed for e-learning systems, 

learning ontologies and their features based on a literature survey.  

3. Writing mapping rules to map a relational database of an e-learning system to a 

learning ontology.  
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4. Identifying relevant metadata and user profile attributes to retrieve user specific 

learning contents.  

5. Developing a proof of concept e-learning system with a query interface that hides the 

technical details from the user for querying a learning ontology. 

1.8 Thesis Outline 

The rest of this thesis is organised as follows: 

Chapter 2 provides a review of literature related to e-learning and learning ontologies. We 

provide a critique on related literature in the last two decades and a summarised comparison. 

The purpose of this exercise is to gain an overview of the current work on learning ontologies 

and ontology-based e-learning systems architectures to determine directions for our research. 

Chapter 3 explains the plug and play architecture for ontology-based e-learning. We 

propose this as a part of the solution to the research problem in line with the motivation 

explained in Chapter 1 and as an outcome of the literature survey.  

Chapter 4 provides an analysis of the OWL 2 constructors used in a corpus of the learning 

ontologies and OWL 2 RL profile. Based on this analysis, a sublanguage of OWL 2 is 

proposed for the learning domain ontologies. This is the second part of the solution that 

restricts the use of OWL 2 constructors in developing a learning ontology that is pluggable to 

an instance of the proposed architecture.    

Chapter 5 describes developing a learning ontology that uses the OWL 2 Learn constructors 

and an ontology editing tool. We demonstrate the creation of different elements of a learning 

ontology that will eventually be plugged to an instance of the plug and play architecture. 

Chapter 6 explains mapping the schema of a learning database to the TBox of a learning 

ontology and populating a learning ontology with the instances based on the data in a 

relational database. This database to ontology mapping is done using a current mapping tool 

which is available as an open source. 

Chapter 7 introduces ontology evaluation techniques and explores an approach to evaluate 

OWL 2 Learn ontologies. Based on an analysis of the current benchmarks for evaluating 

Knowledge Bases Systems (KBS) a benchmark query suite is proposed to evaluate the OWL 

2 Learn ontologies. We show the use of the query suite to evaluate the query-answering and 

inference capabilities of two sample ontologies which we developed for two institutions. This 
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chapter also discusses the evaluation of the adaptability of the e-learning system that is based 

on plug and play architecture for two institutions.  

Chapter 8 provides the conclusion of this thesis. This chapter summarises our findings and 

reviews how far we have proved or disproved the research questions. It also discusses 

limitations of this research and suggests further work that could complement or extend this 

research. 
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Chapter 2: Related Work on Ontology-based E-Learning Systems  

 

 

In our research, we have reviewed a collection of contributions on Ontology-based E-

Learning Systems that were returned as search results from the contemporary library 

databases such as Google Scholar, IEEE Xplore, ScienceDirect and SpringerLink. In our 

study, we intended to use our search results to identify and address the problems, study the 

approaches, and learn from the distinct characteristics of those approaches as related to 

ontology-based e-learning.  

E-Learning has been a popular research area over the last two decades. E-learning became a 

way of facilitating distance learning or to complement face-to-face learning and blended 

learning. Most of the early e-learning systems used databases as repositories of the 

educational programs, their units of study, the learning materials and the details of the 

learners. However, the databases are at the backend of a system and use technical language 

which makes it difficult to understand, especially when the learning domain becomes 

complex. Hence, it requires the contents of a database to be conceptualised for a learner to get 

a clear picture of a course to gain knowledge. Some attempts have been made to simplify and 

get a better understanding of a learning domain in general, by specifying it as an ontology. 

Later e-learning systems have been introduced with ontology as an element of many e-

learning systems that led to development of ontology-based e-learning systems.  

Due to the benefits of ontologies in providing a conceptual view of the contents, ontology-

based e-learning systems has also been a popular research area in the last two decades. The 

literature survey conducted in (Al-Yahya, George, & Alfaries, 2015) shows a substantial 

growth in research on approaches to ontology-based e-learning. Recently published papers 

report on different scholarly work on ontology-based e-learning systems and other Semantic 

Web technologies. The incorporation of e-learning systems in the changing Semantic Web 

environment, and achieving adaptive personalisation based on the learner’s progressive 

behaviour, have been observed as two challenges in e-learning (Rani et al., 2015).  

In this chapter, we review the literature on e-learning systems that are based on ontologies 

and the Semantic Web technologies. We specifically review the literature, the scholarly 

works, from the year 2000 to the year 2017 to gain insight into how the research on this area 
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has changed and what significant contributions have been made to this research area. We also 

see how research has led to evolution of the ontology-based e-learning systems that are 

backed up by the Semantic Web technologies.  

Here we critically analyse literature which has been published over the last 17 years to 

identify the prominent perspectives of ontology-based e-learning systems. The intention of 

our literature survey is to study the literature on ontology-based e-learning systems; in 

particular, to identify their specific features, what work has been done and what further 

research needs to be done. Based on our study and analysis we identify a research area for us 

to make a substantial contribution to the research on the ontology-based e-learning systems. 

The rest of this chapter is organised as follows. In Section 2.2, we provide an introduction to 

the ontologies proposed for the learning domain. Section 2.3 introduces e-learning systems 

that are based on databases. Then, in Section 2.4 we present, in chronological order, 

ontology-based e-learning systems’ approaches and their significant features that are found in 

the literature. Section 2.5 provides a summary of the ontology-based e-learning systems that 

lead to identify some research problems for further research. 

2.1 Ontology-based E-Learning Systems  

In Section 2.2, we examined the ontologies proposed for the learning domain in several 

scholarly works. Even though those proposals conceptualise the learning domain, they do not 

discuss the application of ontologies in e-learning systems. Ontologies have been used as a 

critical component of many of the recent e-learning systems. In the rest of this section, we 

review the works and the approaches reported in the literature for the design, development 

and the use of ontologies in e-learning systems. In particular, we attempt to analyse the 

efforts in this area in order to gain insights into the critical components and features of 

ontology-based e-learning systems. We determine the relevance of the literature to ontology-

based e-learning and evaluate it based on these criteria: 

 Use of the ontology and types of ontology used 

 What ontology language(s) are used 

 Ontology design and population  

 Use of ontology in systems architecture  

 Personalisation methods and use of ontology 
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 Reasoning and querying technique(s)  

 Technologies and tools used for ontology design and reasoning. 

At the end of this section we summarise our findings and identify the knowledge gaps in this 

research domain. Then we discuss potential for further research which may help shape and 

enhance ontology-based e-learning systems.  

2.1.1 E-Learning Based on the Semantic Web 

The Semantic Web-based e-learning system proposed in (Stojanovic, Staab, & Studer, 2001) 

includes a course ontology as the backbone for specifying and accessing the learning 

materials. The course ontology consists of content, context and structure ontology to describe 

the content, context and structure of the learning materials. The authors have seen that these 

three ontologies have the benefit of providing greater access to the learning materials. A 

context ontology is used for providing a shared understanding about meaning of the context 

vocabulary (e.g. introduction). The context ontology is based on the pedagogical model and it 

includes concepts such as introduction, explanation, and examples that are used to describe 

the context of the learning materials. The purpose of the content ontology is the description of 

domain terms like protocol, service, topology, etc. The content ontology also includes the 

relations like hasTopic. The structure ontology given in the work of Stojanovic et al. (2001) 

describes the structure of learning materials. The critical part of the structure ontology is the 

relationship between learning materials and corresponding rules. The learning materials in the 

structure ontology are organised in a tree structure and include relationships to describe a 

sequence of the documents (Stojanovic et al., 2001). 

The educators provide annotations on learning materials based on context, contents and 

structure and store those annotations in a document storage. They could use different terms in 

annotations which makes it difficult to provide a shared understanding. The facts about the 

context, contents and the structure have been identified as the main criteria that a student may 

use for searching learning materials.  

All the ontologies and metadata have been identified as main components of a system’s 

architecture (Figure 2.1) in (Stojanovic et al., 2001). Metadata on learning documents work 

as a bridge between the ontology and the learning documents. The system provides user 

access to the documents via a personalised interface. The user requests that include context, 

content and structure information are passed into queries. Then, the queries pass that 
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information to the middleware (an inference server) that utilises the ontology to identify the 

relevant learning documents and to retrieve them. 

 

Figure 2.1: Architecture of an e-learning portal (Stojanovic et al., 2001) 

This approach includes features which draw our attention and are worth highlighting. It 

elaborates on three aspects of learning materials (context, contents and structure) that are 

specified as ontologies. The authors also define some derivation rules as well in the ontology 

to infer new knowledge. The proposed ontologies are used in a system with associated IEEE 

LOM to retrieve the learning materials. Users use the context, contents and structure details 

in a query interface and the system maps them with the associated learning materials through 

the ontologies in query-answering. It talks about using rules on the ontology. However, this 

approach does not provide details of query language or the use of any reasoners or the 

expressivity of their ontologies that are in RDF. 

2.1.2 Reasoning and Ontologies for Personalised E-Learning in the Semantic Web 

Providing distributed information with a clear and well-defined meaning that is 

understandable for different parties has been identified as challenging (Henze, Dolog, & 

Nejdl, 2004). So it is important to provide optimised access to the information. As a solution 
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to that, a framework for personalised e-learning in the Semantic Web has been proposed. The 

Semantic Web resource description formats are utilised to generate hypertext structures from 

distributed metadata by reasoning mechanisms. A demonstrator is used to generate a 

conceptual context of learning resources for each learner by using adaptation rules. 

The work presented in (Henze et al., 2004) uses three main ontologies to support the above 

process; a domain ontology, a user ontology and an observation ontology. A learning 

documents ontology model, that is a logic-based approach applied to investigate educational 

hypermedia, and proposes ontologies and metadata for three types of resources (domain, user, 

observation). These ontologies are aimed at achieving adaptive functionality of educational 

hypermedia systems. The domain ontologies model the documents and the relationships 

between them within the domain, user performance and observations about learner 

interactions (Henze et al., 2004). This approach proposes three ontology models on 

documents: an ontology of documents, an ontology of document types, and a concept 

ontology. The user ontology describes the learner characteristics and the observation ontology 

specifies the different possible interactions of the learner with the hypertext resources. 

Finally, the generated hypermedia structures are represented in a presentation ontology. 

Ontologies are given in RDF files. 

In comparison to the other works, the work presented in (Henze et al., 2004) provides several 

additional ontologies to elaborate on the domain. It also utilises a user ontology, a user 

observation ontology and a presentation ontology to provide personalised learning contents.  

Another important aspect of their work is the use of reasoning rules that are encoded in the 

TRIPLE rule language and the same language is used for querying RDF. Reasoning in their 

work is based on First Order Logic (FOL).  

2.1.3 Sharing Learner Profile through an Ontology and Web Services  

A web services-based solution has been proposed for easy exchange of learners’ information 

among different e-learning systems (Musa, Muñoz, & de Oliveira, 2004). The term Web 

Services is described as “a standardized way of integrating Web-based applications using the 

XML, SOAP, WSDL and UDDI open standards over an Internet protocol backbone”. The 

goal of this is to let different e-learning systems work harmoniously with each other to 

provide richer learner information than information found in the standard e-learning systems. 

The architecture shows how the collaboration between e-learning systems enriches the 

learner model. The learner model repository is the central element of this architecture. This 
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stores data gathered from different e-learning systems and could have a complex distributed 

structure. The access to the central learner model repository is through the Web Service. The 

communication and exchange of data between the learner model repository and the systems is 

done through the Web Service. The data is exchanged between applications using a learner 

model that has been defined as an ontology. Once access is granted details of operations 

available in the Web Service are provided in Web Services Description Language (WSDL) 

format. Learner information available in the learner model repository is exchanged in XML 

format and through SOAP protocol (Musa et al., 2004). It represents the learner model 

ontology in OilEd and it is implemented in DAML+OIL. Validation of the ontology is done 

using the reasoner Racer.  

The notable features of Musa and colleagues’ (2004) work are the use of different web 

technologies to share learner ontologies in different e-learning systems to build a 

collaboration among them. IEEE LOM are used to describe the learning objects and to 

achieve personalisation. This approach also has used many Semantic Web technologies 

including the Racer DL reasoner. 

2.1.4 Communication Ontology and Integration of Learning Ontologies  

The authors (Aroyo & Dicheva, 2004) attempt to give a solution for the next step in the 

evolution of e-learning. They suggest moving from a scattered intelligence to a coherent and 

collaborative intelligence. An approach towards a common reference architecture for 

adaptive concept-based, web-based educational systems (WBES) has been proposed in 

(Aroyo & Dicheva, 2004). This architecture is component-based and it allows sharing 

knowledge and components of the system. In comparison to the architecture proposed in 

(Navigli & Paula, 2004), this architecture (Aroyo & Dicheva, 2004) concentrates more on the 

communication between learning systems using an ontology to specify the terms used by 

those learning systems.  

The authors consider user modelling, course sequencing, ontology visualisation and keyword 

search as the main components of the architecture. They also consider the domain ontologies, 

learning resources, course models, and user models as shared knowledge of the system. The 

authors also suggest that this architecture addresses four main research questions:  

For the level of granularity of information exchange—what information should be included in 

a one communication transaction; for request semantics—what type of questions the 

requesting system can ask; for request syntax—what the format of questions is; and, for 
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domain or user model awareness—whether the requesting system should pass on any 

information it already knows. According to this architecture each educational information 

system (EIS) utilises a domain ontology and for the understanding between EISs, each EIS is 

expected to know the terms (concepts, relationships and roles) in the learning repositories. 

That is, each EIS must know how to map its domain knowledge into common learning 

concepts. This mapping process is a key feature of this approach. The author also proposes to 

use a common user model that is possible through a concept-based representation of the 

subject domain.  

The architecture proposed in this paper includes four main components: WBES that use their 

private subject domain ontologies; information brokerage bureau to register applications; 

services that support communication between WBES (e.g. for ontology mapping); and, 

communication bridges between WBES that include transport mechanisms and interaction 

protocols. Besides those components, a communication ontology is proposed to define the 

semantics of the messages, message contents and content layers. To interpret the requests and 

responses standard domain ontologies, user modelling ontologies and upper ontologies are 

proposed. 

Even though (Aroyo & Dicheva, 2004) talk about a domain ontology, they don’t elaborate on 

how it is constructed. However, their ontology-based architecture for WBES provides 

directions to build interoperable learning systems. They aim at sharing a communication 

ontology which defines the terms used by individual learning repositories and the 

relationships between them. Use of multiple ontologies in e-learning systems’ architecture 

and architectural features and functionalities of the system components are discussed.  

2.1.5 OntoEdu: A Case Study of Ontology-based Education Grid System for E-

Learning  

It is questioned whether we are moving from a scattered intelligence to a collaborative 

intelligence in the WBESs. A flexible educational platform that is based on several new 

technologies including ubiquitous computing, grid computing, ontology engineering and 

Semantic Web has been proposed by (Guangzuo, Fei, Hu, & Shufang, 2004) for e-learning. It 

aims at overcoming the two challenges: interoperability among numerous educational 

systems and providing structured and unified authoring support. The architecture is based on 

the grid-based system design and ontology. It consists of five main components: user 

adaptation, automatic composition, education ontology, service module and content module.  
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A grid computing system is a geographically distributed environment with autonomous 

domains that share resources amongst themselves (Azzedin & Maheswaran, 2002). Grid 

computing is a service-oriented approach (Guangzuo et al., 2004) that can help educational 

institutions to aggregate distributed educational resources and build a unified system to 

address workflow requirements. 

Each component of the ontology-based grid computing architecture proposed, OntoEdu 

(Guangzuo et al., 2004) has specific objectives.  

1. User adaptation module accepts user (context/preference) requests, translates 

physical inputs from input devices into logical inputs and translates logical outputs 

into physical outputs.  

2. Automatic composition that consists of system description and system composer 

creates tasks for each user request. System description creates function descriptions in 

OWL-S after reasoning on the education ontology. System composer translates the 

function descriptions into an implementation format.  

3. Education ontology describes the educational content, educational activities, 

operations and relationships among them. When education ontology is considered 

separately, it consists of two main parts; A. Activity ontology (AO) and B. Material 

ontology (MO).  

4. Service model tries to achieve a higher level dynamic model satisfying the 

requirements: open architecture and interface, high interoperability for information 

exchange, flexibility, accessibility, durability and reusability, and compatibility with 

other systems.  

5. Content model is same as the service model.  

The main features of this system are: 1. the integration of multiple technologies; 2. 

Aggregation of the distributed educational resources using an educational ontology; and, 3. 

User adaptation with ontology support. A lightweight mapping process is used to map the 

concepts in different systems instead of using an expensive reasoning process. However, it 

gets the reasoning support of the authoring tools. 

2.1.6 Ontology Alignment for IT Lesson Planning  

An ontology-based system has been introduced in (Kasai, Yamagushi, Nagano, & Mizoguchi, 

2005) for teachers of IT education, with useful web resources. This system attempts to align 

multiple ontologies with the purpose of reusing the results of other research. This aims at 
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teacher education as a solution to the lack of IT teachers as Kasai et al. (2005) have 

mentioned. The proposed architecture includes two main groups of metadata. One group of 

metadata is based on the ontologies (the goal of IT education and the ontology of the 

fundamental academic ability) proposed by the aforementioned authors and the other group 

of metadata is based on the Goal List of IT Education (kayoo.org, 2001). The goal list is not 

high quality as it is not based on ontology theory. However, it has been used by Japanese IT 

teachers (Kasai et al., 2005). The Goal List has already been used by teachers, like an 

ontology, to annotate IT educational resources. Hence the Goal List is considered as an 

ontology (Kasai et al., 2005). The system is capable of doing semantic integration between 

the ontologies and the Goal List to reconstruct tagged lesson plans, integrate lesson plans, and 

effectively retrieve IT educational resources which are useful for teachers. 

The Semantic Web application was built, based on architecture to align ontologies with the 

Goal List, and is structured into four layers: 1. web layer; 2. RDF model layer; 3. RDF-

Schema layer; and, 4. ontology layer. The ontology layer, at the bottom defines all the 

concepts related to the two ontologies and the Goal List. The concepts related to IT education 

have been organised into an ‘is-a’ hierarchy (see Figure 3 p. 13 in Kasai et al., [2005]). The 

RDF-Schema layer includes the vocabularies of the classes and properties that are used in the 

RDF model layer. The RDF model layer defines the metadata (to align the ontologies and the 

Goal List) to create relationships between the two ontologies and the Goal List. These 

metadata items are RDF vocabularies. These relationships are defined using the vocabularies 

included in the RDF-Schema layer. The web layer retrieves the digital IT educational 

resources (digital recipes) from the Web (provided by Okayama Prefecture Information 

Education Center [OPIEC]) that are based on the Goal List. The web layer then annotates the 

digital recipes based on the two ontologies and the Goal List (ontology alignment).  

The approach proposed in Kasai et al. (2005) attempts to align two ontologies with IT 

education resources and the Goal List of OPIEC to annotate IT education resources using 

RDF metadata to increase the reusability of IT education resources (digital recipes) that are 

used by the Japanese IT teachers.  This approach proposes a layered architecture for ontology 

alignment application and defines the IT education concepts (IT education goals) in an ‘is-a’ 

hierarchy.  
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2.1.7 Learning Ontology from Relational Databases  

The approach presented in Li, DU, and Wang (2005) automatically builds a learning ontology 

from a relational database. It exploits a group of learning rules in the ontology acquisition 

process (Li et al., 2005). Based on these rules the learning domain ontology is built in Web 

Ontology Language (OWL). This approach also proposes an ontology learning framework, 

where the ontology is a part of the system’s architecture.  

In acquiring the learning ontology from the relational database, the database is expected to be 

in third normal form (3NF). This approach proposes five groups of rules to be applied to the 

database to identify the concepts and relations that will become parts of the ontology. They 

are: rules for learning classes; rules for learning properties; rules for learning hierarchies; 

rules for learning cardinality; and, rules for learning instances. 

According to the rules for learning classes, potential concepts are identified. Based on the 

rules, related data available in multiple relational tables may be used to make one concept.  

The rules for learning properties are used to identify the roles (relations) between ontological 

concepts such as is-part-of or has-part. According to these rules, when two relational tables 

are related by a property/role (e.g. ‘part-of’), those two relational tables become concepts in 

the ontology and they become the range and domain of the role as well. The rules for learning 

hierarchies are used to create concept hierarchies and role hierarchies, based on inheritance 

relations (supertype to subtype relations) between the relational tables. The rules for learning 

cardinality lead to identifying minCardinality and maxCardinality in the OWL ontology. For 

example, if an attribute in a relational table is defined as NOT NULL, then the OWL 

minCardinality is defined as 1 and if an attribute is defined as UNIQUE, then the OWL 

maxCardinality is defined as 1. According to the rules for learning instances, tuples or rows 

in a relational table or in relational tables related by ‘foreign keys’ become instances of a 

concept in the ontology.  

These rules are stored in the rules library within the proposed ontology learning framework. 

The rules library is used by the ontology generator to build the learning ontology. The 

ontology generator gets the source information (information about relational database tables, 

the relations between them, their attributes, etc.) through the database analyser. The ontology 

is then fed into the parser application.  This framework also includes an ontology reasoner 

and an ontology editor that have access to the learning ontology. 



29 

 

This approach is a step forward in generating ontologies compared to the approach proposed 

in (Navigli & Paula, 2004) that builds ontologies from the details available in document 

warehouses and web sites. 

2.1.8 A Learning Design Ontology based on the IMS Specification  

Metadata is easy for humans to understand, but it would be difficult for a machine (a 

computer) to automatically process it. It is claimed that the XML-Schema language has 

limitations in representing the IMS Learning Design (IMS LD) metadata specification in 

(Amorim, Lama, Sánchez, Riera, & Vila, 2006).  They have suggested ontology as a way of 

formally and explicitly structuring and giving meaning to the metadata. A learning design 

ontology that has been designed in OWL is proposed to solve those limitations. The concept 

taxonomy and the ontology axioms are described and an example is used to illustrate how the 

ontology could be used to overcome these limitations. The solution, ontology is also 

presented in an educational environment. The IMS LD ontology for the upper concepts has 

Unit of Learning as the main concept and the Organisation of the Unit of Learning and the 

Resources used in the Unit of Learning are shown with the relations between them. 

The proposed ontology aims to solve two issues. Firstly, the semantics of the concepts are 

precisely defined. Therefore, the instances of the concepts are created and managed in 

runtime with no misinterpretations or errors. The new concepts, attributes/relations, and 

formal axioms of the domain have been identified and formally represented in the ontology 

(Amorim et al., 2006). Secondly, the semantics of the IMS LD specification are explicitly 

described. Therefore, it avoids the need of codifying the semantics in the process of 

developing the software program for the users to design and execute specific learning units. 

Hence, a general reasoner that follows the same ontology language used to write the ontology 

can be used to check the consistency of the ontology.  

This architecture of the system is based on an intelligent agent technology which utilise the 

LD ontology to manage the information about the learning resources. The architecture of the 

system includes four different tiers: the resource tier—for control of hardware/software; the 

services tier—to allow educational activities; the mediator tier—a common channel to route 

the messages between services and clients; and the client tier—graphic interfaces for the 

adaptation/personalisation of the contents and services to the user’s preferences. 

This approach proposes to use a learning design ontology to overcome the weaknesses in 

metadata and XML in specifying a learning domain. In comparison to the other approaches it 
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uses agent technologies to process the ontology and to support learning. The architecture 

proposed in this approach includes four layers. As in other approaches, this one also uses 

OWL as the ontology and Protégé as the ontology editor. One drawback of the LD ontology 

is that it could be affected by the limitations of the expressiveness and reasoning capabilities 

of the ontology languages (Amorim et al., 2006). 

2.1.9 An Ontology and a Software Framework for Competency Modeling and 

Management 

The management of competencies that is the central goal of any education or knowledge 

management processes. A competency ontology for learning and knowledge management has 

been proposed in (Paquette, 2007). It is required to embed acquiring new competencies, in 

any software framework, as an instructional engineering tool (Paquette, 2007). In developing 

the top-level competency ontology, the author has referred to different fields: mathematical 

logic, science methodology, educational technology, and artificial engineering (Paquette, 

2007). Paquette has analysed different definitions of competency in developing the 

competency ontology. “Competencies are statements that link together skills and attitudes to 

knowledge required from a group of persons and, more generally, from resources” (Paquette, 

2007). An example competency is given below (Table 2.1). 

Table 2.1: An example competency statement (Paquette, 2007) 

Source Competency 

Statement 

General Skill Knowledge Entity 

Ministry of Education 

Quebec (MEQ) – Student 

Competencies 

Analysis and 

synthesis capability 

Analyse 

Synthesise  

All subject matter 

in the curricula 

The top-level competency ontology includes the high-level concepts associated with 

competency and specifies those associations. Competencies annotate resources (human or 

media) (Paquette, 2007) and competency can be a prerequisite competency (prerequisite) or a 

target competency (objective). Each competency is made from a competency statement. 

Competency is based on generic skills that are measured by performance indicators. A 

generic skill is applied to a knowledge entity. A knowledge entity is also a part of 

competency and belongs to a domain ontology. A generic skill also belongs to a generic skills 

ontology.   
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The generic skills ontology is a subontology that extends the competency ontology. It is 

based on the generic skills taxonomy that is applicable to different domains and includes 

knowledge processing activities. In addition to the generic skills ontology, a performance 

indicators ontology has been developed and is an extension, or a subontology, to the 

competency ontology. Another notable feature of this approach is that the figures have been 

drawn using MOT1 editor according to the MOT + OWL graphic syntax that covers OWL- 

Description Logic (OWL-DL). According to that syntax, rectangles show classes, hexagons 

represent properties and ‘S’ refers to subclass. 

This approach has provided a comprehensive discussion on the competency and skills of the 

learners that are specified in the ontologies. Even though ontologies have been proposed for 

the learning domain to give a refined direction for higher education and learning, many 

systems are based on database technologies. Here in the next section we give an overview of 

some e-learning systems which are based on database technologies. 

2.1.10 Metadata Application in Development, Exchange and Delivery of Digital 

Reusable Learning Content  

A need for learning contents with higher adaptivity and flexibility has been identified based 

on a survey for a Bulgarian University in Yordanova (2007). A metadata and ontology-based 

approach to satisfy the needs of adaptive and flexible learning contents has been proposed in 

Yordanova (2007). The proposed model is applicable on existing Learning Content 

Management Systems (LCMS). Metadata are used in learning systems to describe Reusable 

Learning Objects (RLOs) and to store in digital repositories for sharing and reusing. Metadata 

defines the title, language, description, keyword, format, learning resource type, interactivity 

level, and difficulty of RLOs. These metadata are searched and compared with learner 

preferences to deliver the RLOs in an adaptive and flexible way.  

A model for integrating metadata with RLOs in the delivery of adaptive and flexible learning 

contents is also presented (Yordanova, 2007). These metadata items defined on RLOs 

facilitate search of RLOs by the learners. RLOs are stored in a database (RLO DB) and 

organised in a hierarchy with the relations that is specified in an ontology. The RLOs are 

accessed through the ontology and reused with different learning contents. According to this 

model learners/students and teachers/instructors can search for RLOs using different search 

                                                 

1 http://www.cogigraph.com/Produits/OWLDLOntologyEditors/tabid/1100/language/en-US/Default.aspx 
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criteria (e.g. language, keyword, title and format). The metadata manipulated in this approach 

are IEEE LOM (IEEE 2002). LOM are organised into eight main groups (general, life cycle, 

technical, educational, rights, relation, annotation and classification). The implementation of 

metadata has been done using a Protégé tool that allows different metadata formats such as 

RDF(S), OWL and XML Schema. 

This approach depends more on metadata than on ontology. It uses different types of 

metadata to allow users to search for RLOs that adapts to learning content based on an 

ontology to support flexible learning. 

2.1.11 An Ontology-based Planning System for E-Course Generation  

Instead of heavily depending on metadata, a learning system named PASER that is based on 

Artificial Intelligence (AI), Planning and Semantic Web technologies for automatically 

synthesising curricula has been presented in (Kontopoulos, Vrakas, Kokkoras, Bassiliades, & 

Vlahavas, 2008). Classical planning techniques are used to dynamically construct learning 

paths even from disjointed learning objects. That is done by being based on the learner’s 

profile, preferences, needs and abilities (Kontopoulos et al., 2008). Three metadata 

repositories to feed its modules with certain educational metadata are deployed in this 

approach: 1. the LOM repository stores metadata about the available learning objects; 2. a 

repository of LIP compliant metadata describes the learners who have access to the system; 

and, 3. the Reusable Definition of Competency or Educational Objective (RDCEO) metadata 

repository provides competency definitions which are referenced by the other two metadata 

repositories (Kontopoulos et al., 2008). The systems architecture presented in their work 

mainly focus on the core modules: the planning subsystem responsible for synthesizing the 

curricula, the repositories for ontology and metadata; the knowledge base module that is 

responsible for queries and reasons on learning metadata.  

The system’s (PASER) architecture includes five processing modules: a planner, an ontology 

and metadata server, the RDEVICE module and two data converters. 

This approach uses the IEEE LOM standard and the ontology has been developed using RDF 

schema. The ontology consists of 310 AI-related competencies that are organised using 

isPartOf relation. The ontology includes the subcompetencies such as Machine Learning, 

Planning, and Knowledge Representation of the concept Competency and goes up to five 

levels of the hierarchy. Each competency is given a preferred and alternative label. 
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2.1.12 An Ontology-based Semantic Learning Layer Cake  

This approach by Dutta, Maddali, and Prasad (2009) proposes a conceptual framework of 

semantic e-learning to overcome the problem of lack of shared understanding between terms 

of various metadata vocabularies (Stojanovic et al., 2001). These vocabularies? use 

ontologies as a conceptual backbone in an e-learning scenario. This architecture involves 

three main aspects of an education information system: content, context and structure 

introduced in (Stojanovic et al., 2001). However, (Dutta et al., 2009) are innovative in their 

approach to propose an architecture which logically organise its components into layers: 

learning objects layer, metadata + ontology (context and contents) layer, ontology (structure) 

layer, rules (learning design) layer. 

The conceptual learning space Dutta and colleagues (2009) have proposed is called a 

semantic learning layer cake. While this framework discusses an architecture for a learning 

system, it covers the personalised aspects of learning systems by increasing their flexibility 

with the use of metadata. Again, they provide an extensive discussion of the learning 

ontology, parts of which belong to different layers of the framework specified in the 

Semantic OWL. The bottom layer of this framework includes the content objects that are 

made up of the content fragments (e.g. texts, images, sounds, and data sets). The related 

content objects are grouped to make learning objects. The semantic learning layer lies on top 

of the content objects. The semantic layer includes the semantic content of the learning 

objects formally represented as the content ontology or the domain ontology. The context is 

used to provide facts or circumstances of the learning objects. Context is represented in the 

following aspects: matching the educational level (of both the document and the learner); 

intended use of the learning object; and, the learning objectives. The structure which lies on 

top of the content and context ontologies defines the relations between the learning materials 

such as, hasPart, isPartOf, hasPrerequisite and isPrerequisiteOf. In addition to the content 

ontology, this framework includes a document ontology and a student ontology. The 

document ontology specifies the significant concepts; context, learning objectives, and 

learning resource type. Different learning objects are organised under the concept entity. The 

student ontology captures all student related concepts and their relations to the concept 

student (Dutta et al., 2009). 

While the semantic learning layer cake is the main conspicuous feature of this approach, 

other features such as attempting to personalise contents using an ontology, and building the 

learning ontology to address context, contents and structure are also notable features of this 
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approach. Besides, this approach organises the three main aspects of context, content and 

structure of learning systems, while their approach (Stojanovic et al., 2001) stresses the 

importance of those aspects. Stojanovic and colleagues have tried to identify some issues of 

e-learning systems and their causes. Accordingly, they have proposed a personalised learning 

environment. Metadata standards IEEE LOM and Dublin Core have been used to describe the 

learning materials. The ontologies that provide a semantic backbone to metadata are in OWL-

DL and have been developed using Protégé, and the logic rules have been developed using 

N3Logic, subset of the FOL. Rules have been written for two types of learner characteristics, 

learning style and cognitive learning style of learning. 

2.1.13 Advanced Ontology Management System for Personalised E-Learning  

Insufficient expertise in the area of knowledge engineering in e-learning has been stressed as 

a main problem in modelling educational domains in (Gaeta, Orciuoli, & Ritrovato, 2009). 

These authors highlight the lack of methodologies and techniques for effective management 

of ontologies, especially in the areas of ontology research: ontology versioning; ontology 

harmonization; and, collaborative ontology construction. As a solution to this problem, an 

integrated approach for managing the life-cycle of ontologies has been suggested by Gaeta 

and colleagues (2009). In their approach, they expect to overcome the use of any specific lack 

of expertise in knowledge engineering (Gaeta et al., 2009). Their focus is on ontologies that 

specify personalised e-learning experiences that support blended learning activities. This 

approach uses ontologies to model the educational domain. They also provide details of how 

to construct e-learning ontologies to optimise definition and implementation of personalised 

e-learning experiences. Highly efficient and effective e-learning activity is expected by such 

personalisation and their approach has been implemented in an e-learning platform named 

Intelligent Web Teacher (IWT). 

The authors expect to exploit the ontologies to personalise e-learning experiences with the 

help of the information retrieved from learner profiles and the contents of the learning object 

repositories (Gaeta et al., 2009). The learning objects are annotated with semantic 

information using standard metadata schema. For simplicity, the authors consider that the e-

learning experiences are represented by sequences of learning objects.  This approach is also 

considered to be suitable for e-learning experiences with complex flows of learning activities.  

IWT is supported by an Advanced Ontology Management System (AOMS) that improves the 

capabilities of these learning ontologies. The AOMS is used first to construct and validate the 
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ontology it is annotated with; metadata, indexed and archived. The teachers search the 

AOMS repository to find the required ontology and import it in IWT. The ontologies built 

here are in the OWL format. 

2.1.14 UICO: An Ontology-Based User Interaction Context Model for Automatic Task 

Detection on the Computer Desktop  

A User Interaction Context Ontology (UICO) has been proposed in (Rath, Devaurs, & 

Lindstaedt, 2009). It is aimed at enhancing the performance of task detection on the user's 

computer desktop. Metadata is captured from the user's desktop. In this approach, a User 

Interaction Context Model is automatically populated by utilizing rule-based, information 

extraction and machine learning approaches. The relations between the model's entities are 

automatically derived and the user's tasks are automatically detected. UICO has been 

developed using Protégé based on OWL-DL and the top-level perspective of the ontology 

covers the action dimension, resource dimension, information need dimension, application 

dimension and user dimension. 

The UICOs specify the user's interaction context that is originated from context sensors that 

automatically observe the user tasks on the computer desktop and contextual information is 

automatically derived. A bottom-up approach has been followed to build the UICO based on 

a conceptual model. Relations are incrementally added with the addition of the new sensor 

data or algorithms. The context information held in UICO has been sensed and relates the 

information that is automatically derived from it. It holds the concepts and the relations 

between concepts of the conceptual model, and the resource data and metadata that the 

context sensors capture. 

2.1.15 Ontology Design for Creating an Adaptive Learning Path in an E-Learning 

Environment  

Learners need to build adaptive learning paths that allow them to understand curriculum, 

syllabuses, and subjects of courses in depth (Chung & Kim, 2012). Those ontologies have 

been developed as a part of an ontology-based e-learning system. These multiple ontologies 

(Curriculum ontology, Syllabus ontology, and Subject ontology) on different layers have 

been created, integrated and interfaced in (Chung & Kim, 2012) to allow learners to build 

adaptive learning paths.  

The curriculum ontology organises various semantic relationships between individual courses 

in Computer Science or Engineering fields. The concepts in the curriculum ontology includes 
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ProgramOfStudy, Course, KeyConcept, AttainmentGoal, AttainmentLevel, etc. The semantic 

relationships include hasSubtype, prerequisiteOf, basicOf, advancedOf, combinedOf. The 

curriculum ontology also establishes direct connections with the syllabuses’ ontologies. 

The syllabus ontology specifies the internal and external structures of courses that are 

mentioned in the curriculum ontology. It defines a unified vocabulary of syllabuses that helps 

to compromise the different vocabularies used by different instructors. A syllabus class, 

which is the core concept of syllabus ontology, has nine data type properties and 12 object 

type properties to describe the semantic knowledge that has been extracted from the 

syllabuses. 

The subject ontology includes a hierarchical structure of concepts related to a subject. It is 

composed of teacher-based ontologies, several learner-based ontologies and learning 

materials. The teacher-based ontologies consist of the learning concepts and knowledge 

structure that the teachers use in class. Learner-based ontologies consist of the concepts and 

knowledge structures created by the students. A subject ontology has been proposed to make 

student learning effective and enhanced. 

An architecture that consists of those ontologies, among the other components, has been 

proposed to support different functionalities (Chung & Kim, 2012). They include:  

 Understand the user requests and invoke the appropriate handlers. 

 Translate the keywords in the user queries into SPARQL Protocol and RDF 

Query Language (SPARQL) or Topic Map Query Language (TMQL) queries. 

 Collect, parse, and classify the resources (such as syllabus webpages, course 

description webpages) to create instances of the ontologies. 

 Identify and manage the learning outcomes of individual courses and 

academic areas. 

 Use the user requirements to create adaptive learning paths automatically. 

This approach attempts to enhance student learning by ontologies. Still, it does not discuss 

the use of metadata or other techniques for personalisation, ontology language, ontology 

design tools used, reasoning and query-answering. 
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2.1.16 User Profiles and Learning Objects for Reasoning and Interoperability in 

Recommender Systems  

A recommendation system is expected to allow reasoning and improved personalised results 

for users. To achieve this objective, a recommender system infrastructure for educational 

material which are described with metadata has been proposed in (Primo, Vicari, & Bernardi, 

2012). This approach utilises the Agent-Based Learning Objects (OBAA) metadata standard, 

a Brazilian proposal for agent-based learning objects. Besides, it uses the Friend of a Friend 

(FOAF) ontology that describes people to find user profiles. OWL is used to describe domain 

features while a web service is used to connect to the contents repository. Recommendation is 

based on a Collaborative Recommendation Algorithm.  

There are two stages of this approach (Primo et al., 2012): 1. The Recommendation System 

(RS) algorithm can be Content Based (CB), Collaborative Filtering (CF) or Hybrid. 2. Post-

processing of the recommendations. Recommendations are required for any user, with two 

sets of metadata. 1. User profile metadata. 2. Learning object metadata. The final set of 

recommendations is made by applying reasoning on user profile metadata and learning object 

metadata (Primo et al., 2012). This approach uses educational contents such as books, 

articles, presentations, videos, or physical objects. Metadata that describe the educational 

contents make them functional. Interoperability between hardware platforms is obtained by 

the OBAA standard that is technology independent and flexibly used in this approach (Primo 

et al., 2012). The user model stores information such as usage history of the users (including 

evaluations on educational content), access logs, and interests. In addition to them, this 

approach stores and semantically describes information acquired from the users. Post-

processing (regarded as reasoning) is done through production rules, case-based reasoning 

and statistical methods. The reasoning process is the last function before the 

recommendations are made (Primo et al., 2012).  

This system selects the educational materials for a given user profile based on a 

recommendation algorithm. For example, if the user uses a mobile device the educational 

materials selected will be compatible to be displayed in the mobile device’s screen. The 

system uses a number of application profiles (APs) to support the reasoning process. The APs 

are of two types; Metadata Profiles (MPs) and Technical Profiles (TPs) (Primo et al., 2012). 

MPs help the reasoning process to identify the educational content that matches the device 

(digital television, Internet, mobile devices) used by people with audiovisual disabilities. The 

TPs help the reasoner to generate relevant results considering technical aspects of the devices. 
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For example, file formats, colour and size formats suitable for a TV. These metadata are 

described in an OWL ontology (Primo et al., 2012). 

2.1.17 A Personalised Adaptive E-Learning Approach Based on Semantic Web 

Technology  

An adaptive e-learning system that has the ability to support personalisation based on 

learners’ abilities, learning styles, preferences and levels of knowledge has been introduced in 

(Yarandi, Jahankhani, & Tawil, 2013). This e-learning system is based on the design of 

semantic content, learner and domain models to tailor the teaching process for individual 

learners’ needs. The learners’ characteristics are captured during their registration. In this 

approach, the ontological user profile is updated based on achieved learners’ abilities. The 

system is able to recognise changes in the learners’ levels of knowledge as they progress. The 

system is also able to track learners’ activities and tests during the learning process and 

update the learner based on them. The system later uses the updated learner model to generate 

different learning paths for the learner. Learners’ responses to test items are analysed by the 

system to calculate learners’ abilities. Four ontology models are included as part of the 

system: domain model, user model, content model and test model (Yarandi et al., 2013). 

The system uses three ontologies: user model – that describe learners’ profiles; domain model 

- a logical taxonomy for the knowledge domain; and, a content model – that defines the 

structure of the learning content. The proposed adaptive e-learning system takes into account 

learners’ abilities, learning styles, preferences and levels of knowledge and the ability to 

support personalisation. The users’ learning styles, that is based on the FSLSM (Felder & 

Silverman, 1998), are recorded as a part of the user model. The achieved learners’ abilities 

are reviewed to update the ontological user profiles. The learning contents are recommended 

based on the learners’ abilities. The ontologies are in the OWL format and some reasoning 

has been applied in this approach.  

The architecture of the ontology-based personalised e-learning system consists of a user 

interface, adaptive engine, user model mediator and content mediator. The user interface 

passes the learners’ characteristics to the user ontology and presents the learning contents 

tailored to the learner. The adaptive engine generates learning contents based on the user 

model. It also evaluates the users’ performance, abilities and knowledge to update the users’ 

profile. The user model mediator is responsible for accessing and updating the user model. 
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The content mediator searches for the instructional objects (IOs) and populates the lesson 

with IOs and automatically annotates them. 

2.1.18 An Ontology based Approach for Modeling E-Learning in Healthcare Human 

Resource Management  

The ontology-based approach for modeling e-learning proposed in (Bajenaru & Smeureanu, 

2015) has focused on learning path personalisation related to human resource management in 

healthcare. In this approach, students are able to receive the learning materials according to 

their level of knowledge, preferences and interests (Bajenaru & Smeureanu, 2015) based on a 

contents ontology and a user profile ontology. In their work, a student model, a domain 

model, and an ontology-based personalised learning path are proposed, targeting the 

healthcare HR system members.  

The personalised model includes three main domains: 1) learning modelling process; 2) 

student modelling; and, 3) digital content modelling. 

This adaptive system uses a student modelling process to create and maintain a student model 

based on the data collected from various sources. The students’ preferences, cognitive style 

and level of experience are used to provide them with personalised training content. 

The domain knowledge in this system is represented at three levels of abstraction. The lowest 

and the first level is the learning objects (LO). Learning objects are indexed to allow the 

system to identify LOs and how a specific subject can be used in learning. This information is 

obtained from the second level of abstraction that is represented by metadata. The third level 

is the domain ontology that is built with the concepts and relationships between them. The 

concepts are learning objects that refer to student progress on the concepts and skills 

specified. Each item describes the concepts and skills specific to a course that the students 

have to acquire when they complete the course. 

A highlight of our work is the use of an ontology that maps students' knowledge in course 

concepts to provide better access to their progress as well as to customise content and 

navigation structure of the learning content for individual students.  

2.1.19 Ontology-based Smart Learning Environment for Teaching Word Problems in 

Mathematics  

MONTO – a machine-readable ontology for teaching word problems in mathematics, is 

demonstrated in (Lalingkar, Ramanathan, & Ramani, 2015) and has been proposed to 
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improve mathematical thinking and problem-solving skills. It includes various ontologies and 

the key functionalities of this system are derived from the ontologies. MONTO uses four 

main ontologies: system/pedagogy ontology, strategy/task ontology, user model/student 

ontology, and domain ontology (Lalingkar et al., 2015).  

System/pedagogy ontology is used for solving teaching problems together with domain and 

task ontologies. The domain ontology means all the conceptual connections between the 

resources needed by students. The strategy/task ontology in MONTO includes a model of the 

strategies and tasks that students need in solving a problem. Various interactions between the 

student and the system are stored in the student model ontology in MONTO. The student 

model ontology captures information about the student and that is used for displaying the 

student’s learning profile (Lalingkar et al., 2015). These ontologies have been developed 

using Protégé and are in OWL format. Hence, the reasoning could be done by using the 

reasoners available in Protégé as plugins.  

MONTO has made several contributions. The proposed ontology has a perfect fit with a 

framework that has been developed for mathematical thinking, i.e., resources, heuristics and 

control, by Schoenfeld (1985). This ontology can capture the Semantic Knowledge of a word 

problem and show it to students for reinforcement. Such knowledge extracts show multiple 

knowledge representations to students, and that helps to reduce their cognitive load. The 

MONTO ontology uses problem models to represent strategies, and analytical questions, to 

capture missing concepts and misconceptions, and student models. This ontology helps to 

identify students’ mistakes and provides constructive feedback. As MONTO has many 

general features other mathematical domains could deploy it. 

2.1.20 An Ontology-based Adaptive Personalised E-Learning system, Assisted by 

Software Agents on Cloud Storage  

E-learning has moved from a knowledge transfer model to interactive advanced decision-

making abilities (Rani et al., 2015). An ontology driven system that implements the FSLSM 

has been proposed in their work. The system validates its integration with the Semantic Web 

environment using some learning content. Software agents play the role of monitoring the 

learning style of the learners and modifying the learning contents accordingly. Cloud storage 

is used to store and maintain the ontology, databases and other required server resources. 

Comparisons are made between the information presented in the system and adaptive 

learning styles of the learner, and how the agent reacts according to the learner’s behaviour 
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(Rani et al., 2015). The proposed ontology presents the domain with more expressive 

relationships that are reusable in systems with a similar purpose. These ontologies have been 

written in OWL, and OWL DL is used as the query language. 

A multi-agent architecture has been proposed for their e-learning system in (Rani et al., 

2015). DL Query also has been used in their work for efficient extraction of the required 

information from the application’s ontology. They also use the HermiT reasoner to determine 

the consistencies in user.owl and course.owl ontologies. Ontologies have been deployed on 

DigitalOcean’s remote Cloud host due to its expanded and secure environment (Rani et al., 

2015). These authors have conducted a survey to explore the features of the e-learning 

system. They have paid attention to adaptiveness and personalisation of the e-learning 

application with ontology. They have also explored the use of Semantic Web Cloud services, 

an incremental model and a multi-agent system in recognising adaptability of the learner’s 

behaviour. Even though this approach synergises many contemporary technologies it does not 

discuss the population of the ontology. 

2.1.21 Ontology-based Model for Learning Object Metadata  

It is pointed out that most digital repositories implementations are based on distributed 

computing systems’ architectures that deal with major technological and modelling issues 

(Kalogeraki, Troussas, Apostolou, Virvou, & Panayiotopoulos, 2016). However, such 

implementations hinder the data accessibility and reusability of heterogeneous databases and 

interoperability between them. The authors propose that learning Object metadata helps to 

overcome operational deficiencies if they were used with a content-structure and a systematic 

approach. They also expect to use semantics in learning materials and inference rules to solve 

interoperability issues and to support information retrieval.  

An ontology-web model for learning Object Metadata has been proposed in (Kalogeraki et 

al., 2016). Their work detecting semantic relations in educational material, aims to assess, at 

an abstract level, its tutoring content in order to improve the learning procedure. The 

knowledge base of examination material has been extended by adding semantic syllabus 

content. This helps to provide instructors with a tutoring tool to make inferences on several 

aspects of the educational process. They include student learning, draw conclusions on their 

learning, and make suggest for further amendments. Question-answering material is 

integrated into syllabus content that allows extraction of inference results. There is a high 

possibility that the students are more likely to comprehend and estimate how representative 
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the assignment material vis-a-vis the syllabus content. It is aimed at enhancing Learning 

Object Metadata with semantic annotation to help improve tutoring skills of Learning 

Management Systems and support decision making (Kalogeraki et al., 2016). The EduSor 

ontology-based Model has been implemented in RDF/xml syntax and that facilitates the data 

interpretation process between heterogeneous repositories, provides unambiguous concepts 

and increases system interoperability. 

2.1.22 Curriculum, Syllabus and Subject Ontologies  

SKOS (a Semantic Web-based vocabulary for knowledge organization systems) has been 

proposed in (Miranda, Orciuoli, & Sampson, 2016) for modelling subject ontologies and as a 

standard way of representing domain knowledge. The focus of this attempt is to identify 

alternative strategies for storing and accessing ontologies related to learning scenarios. These 

strategies focus on supporting the knowledge sharing, knowledge reusing, planning, 

assessment, customisation and adaptation processes.  

The main purpose of the subject ontologies with respect to other ontologies is that they bridge 

the different aspects of the educational systems. Subject ontologies are possibly used to 

semantically organise many elements of an e-learning system. They include: the learning 

objects that are described by using metadata; the learning activities; learning goals 

(competences, attitudes, skill or knowledge); assessment objectives; learning events and 

opportunities; and, people's social profiles (Miranda et al., 2016). 

Experiments have been done on two subject ontologies, one big and one small, by executing 

SPARQL queries. These experiments aim to identify a better strategy that efficiently treats 

subject ontologies to support Semantic Web-based Educational Systems (SWBESs) and 

improve the user experiences in learning (Miranda et al., 2016). It is emphasized that the 

subject ontologies represent a scalable framework able to organise and retrieve learning 

material within a SWBES that allows the integration of different tools. 

2.1.23 Towards Situation-driven Mobile Tutoring System for Learning Languages and 

Communication Skills: Application to Users with Specific Needs  

Based on a literature survey, Khemaja and Taamallah (2016) have identified that in one-on-

one learning systems, the content and the learning approach may be easily adapted. Still, the 

learning/supporting services requiring new development or reconfiguration of the system are 

not readily available. This has resulted due to the lack of standards promoting unified ways to 

develop services and hence to reuse them. A new systems’ architecture for an adaptable and 



43 

 

reconfigurable mobile Intelligent Tutoring Systems (ITS) architecture has been proposed in 

(Khemaja & Taamallah, 2016) to overcome the above problem. Their approach allows the 

users to acquire relevant communication skills in different situations based on their specific 

needs.  

It uses a services ontology to semantically describe bundles and services capabilities:  

1) The Context ontology for reasoning on context.  

2) The Goals ontology for expressing users’ objectives independently from provided services. 

Goals instances are derived mainly from the context ontology.  

3) The Domain ontologies, for knowledge representation and data exchange between the 

systems components (Khemaja & Taamallah, 2016).  

The mobile application architecture of ITS includes two categories of Android components - 

Android activities and Android services. ITS also allows several services: automatic data 

collection about the system’s behaviour, self-monitoring, reasoning that efficiently helps to 

draw conclusions and adapt the proposed solution. 

In the work presented in (Khemaja & Taamallah, 2016) ontology development has been done 

using Protégé and reasoning among and querying the ontologies has been done using 

AndroJena plug-in. This approach focuses on a mobile application instead of a web 

application. 

2.1.24 Personalised Students' Profiles Based on Ontology and Rule-based Reasoning   

It is reiterated that gathering information on learning styles by using questionnaires leads to 

some problems. With their usage, learners are reluctant to answer questions, or they guess the 

answer which takes some time. Hence, an attempt to build adaptive student profiles by 

analysing learning patterns, based on rule-based techniques, has been proposed in (Nafea et 

al., 2016). This approach analyses learning patterns through a learning management system, 

according to the Myers-Briggs Type Indicator (MBTI) theory, besides the FSLSM.   

The learning domain ontology used in the work presented in Nafea et al., (2016) describes 

learning in a general manner as a domain classification. It identifies the subdomains of 

learning and elaborates on the learning styles of the learners. Different data about individual 

learners, including personal, progress and performance data, are captured in a learner profile 

that is represented as a reference ontology. The reference ontology includes static contents 
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and dynamic contents. The ontology tool Protégé has been used to develop ontologies in 

OWL. 

The ontologies are used in that work to give perspectives of the learner’s learning style based 

on the way the student uses the system. Personalisation is achieved by comparing the users’ 

profile with the courses offered in the institution Nafea et al., (2016). The users are 

subsequently provided with suggestions for courses based on data collected from learners’ 

behaviours. This helps to avoid the generation of inappropriate recommendations to the 

learners. A salient feature of this approach is building adaptive student profiles by analysing 

learning patterns based on rule-based techniques. An adaptive engine module is a main part 

of the architecture and plays the adaptation role in this architecture. 

2.1.25 A Proposed Paradigm for Smart Learning Environment Based on Semantic Web   

A framework for a smart e-learning ecosystem that uses ontology and Semantic Web Rule 

Language (SWRL) has been proposed in and implemented by (Ouf, Ellatif, Salama, & 

Helmy, 2017). In this approach, instead of considering personalisation in isolation, an e-

learning ecosystem is proposed that integrates the learner, educator and the content designers. 

A learner model with four separate ontologies—learner model ontology, learning object 

ontology, learning activities ontology and teaching methods ontology—has been proposed for 

the personalisation. The proposed model integrates the learner model with the learning 

process components such as learning activities and teaching methods. There are four layers in 

the proposed architecture of the e-learning ecosystem: interface layer, semantic reasoning 

mechanism layer, semantic layer and Semantic metadata layer. SWRL has been used to add a 

logic layer on the e-learning ontologies to represent the rules in the OWL ontologies in a 

consistent way.  

This approach has several specific features. It attempts to build an e-learning ecosystem that 

involves the main stakeholders: learners, educators and instructional designers. In addition to 

personalisation, ontologies are integrated with the learning process and SWRL is used to 

represent the rules found in the knowledge base (Ouf et al., 2017). It proposes to use SWRL 

as a part of the e-learning contents personalisation process. 

2.2 Discussion and Future Research 

In this section, we first provide a summary of the literature survey that we conducted and 

highlight the important features and characteristics of those approaches. A snapshot of each 

approach is given in Appendix: Table A.1 to show the state-of-the-art ontology-based e-
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learning systems. We also discuss the directions that these approaches have led to and the 

possible further research directions. 

2.2.1 Summary and Discussion 

Ontology-based e-learning has been a popular research area that has drawn the attention of 

many scholars. Limitations of XML-Schema language in representing the IMS Learning 

Design (IMS LD) specification has been identified as a problem in (Amorim et al., 2006).  

They have considered designing a learning design ontology as a way to solve those 

limitations. 

Different research problems and issues in e-learning and ontology-based e-learning systems 

have been highlighted in different scholarly work. (Dutta et al., 2009) propose a conceptual 

framework of semantic e-learning to overcome the problem of lack of shared understanding 

between terms of various metadata vocabularies (Stojanovic et al., 2001). 

Metadata elements are mainly useful in indexing the documents but they lack formal 

semantics (Dutta et al., 2009). Therefore, the lack of shared understanding between terms of 

various metadata vocabularies is expected to be avoided by using ontologies as a conceptual 

layer. 

It is claimed that there is a lack of methodologies and techniques for effective ontology 

management; in particular, addressing the issues related to ontology versioning, ontology 

harmonization and collaborative ontology construction (Gaeta et al., 2009). 

Two challenges in e-learning have been observed in (Rani et al., 2015) during their 

exploration of recent efforts. Firstly, incorporating the e-learning systems effectively in the 

Semantic Web environment. Secondly, achieving adaptive personalisation with the learners’ 

changes in their behaviours. 

A reasoner is used to check the consistence of an ontology. However, it could be affected by 

the limitations of the expressiveness and reasoning capabilities of the ontology languages 

(Amorim et al., 2006). OWL is used to represent instructional theories and their models that 

include rules in (Sicilia, Lytras, Sánchez-Alonso, García-Barriocanal, & Zapata-Ros, 2011). 

Then, the SWRL rule language is used for checking the compatibility of learning designs 

with instructional theories. Many approaches have been proposed to address different 

research problems and issues that have been presented here. Each approach includes 
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numerous common and distinct characteristics and features. In general, these research studies 

have taken clearly identifiable directions. 

Personalisation of e-learning systems  – dispels the notion of ‘one-size fits all’. 

Personalisation of the e-learning systems and their contents has initially happened with the 

use of learning object metadata. The different metadata used in these approaches have been 

borrowed from the popular metadata standards, IEEE LOM, IMS and Dublin Core. 

Eventually, many approaches have given considerable attention to identifying learners’ 

requirements for user profiles and adaptating e-learning systems based on these profiles. 

Whilst conducting this literature review, we discovered that this topic is probably the most 

popular one in e-learning research. Use of user profiles and the use of metadata have been 

used as an important way to personalise e-learning systems. We also noticed a recent trend of 

adaptation of the learning contents by analysis of the learning styles or learning patterns.  

Ontologies for the learning domain  – Ontologies have been proposed to overcome the 

weaknesses in the use of metadata for personalisation. Ontology has helped to add a 

conceptual layer that helps to describe the domain concepts (learning materials) using both 

human and machine-readable semantics. Ontology has been used as a key component in 

ontology-based e-learning systems. Over the past decades, different types of ontologies have 

been deployed in the e-learning systems. The type of the ontology has varied fundamentally 

based on the contents of the ontology. These types include user ontologies, contents 

ontologies, course ontologies, context ontologies, and task ontologies. Most researches have 

focused on creation of curriculum or syllabus ontology, organising learning objects based on 

ontologies, and retrieving the learning contents based on ontology. Besides the creation of 

ontologies, the aim of some research has been integration and interfacing multiple ontologies 

that are in different layers of an e-learning system (Chung & Kim, 2012). Among the most 

salient references, adaptation modules receive attention. Some of the components that are 

used in the architectures of these approaches have already been developed and are available 

commercially or are open sourced, such as reasoners.  

Architectures for ontology-based e-learning systems  – Different ontology-based e-

learning systems have been proposed with different architectures that include peculiar 

elements and elements that are common to many ontology-based e-learning systems. A 

typical architecture of an e-learning system includes user interfaces for the learners, different 

services or tasks that a user could perform, and storages. The type of the user interfaces, the 

services they provide and the storages of the architectures varies in many ways. These 
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architectures include modules or components to provide several typical services: learning 

contents management, personalisation of the learning contents, reasoning and query-

answering being among them. The repositories include learning object or material 

repositories, metadata repositories and ontology repositories. They also have followed 

different standards of metadata, ontology languages, and query languages. 

Reasoning and e-learning – When it comes to usage of the ontologies, reasoning on 

them helps to filter the required instances from an ontology, based on the learners’ 

requirements. Reasoning on e-learning systems is achieved by an automated reasoner and 

using diverse reasoning techniques. The capabilities of a reasoner depend on the expressivity 

and the DL language it is based on. Different reasoning tools have been used. For example, 

Racer Pro, Hermit, Pellet. Protégé has been a popular tool among the ontology research 

community. It is mainly used for ontology design, development and editing. It also provides 

additional services with the help of plugins. For example, reasoners and query interfaces are 

used as plugins in Protégé.  

Ontology languages  – Another critical feature of ontology approaches is the use of 

metadata and ontology languages. Metadata are really useful to elaborate the learning 

resources and ontology languages are useful in implementing the whole ontology. Different 

metadata standards that are widely used include IEEE LOM, CanCore LOM, Dublin Core 

and ADL SCORM (Roy, Sarkar, & Ghose, 2010). The standard ontology languages include 

RDF, RDF Schema, ADML+OIL, and OWL.  

Modelling techniques  – Ontology models are developed to represent and visualise an 

ontology of a domain. Ontology models help to visualise the concepts and relations within a 

learning domain. Ontologies are mainly modelled using topic maps and UML class diagrams.  

Information source for ontology learning and ontology population  – To build an 

ontology, the concepts and relations of the interested domain need to be identified. Gathering 

details of concepts and relations can be done from different information sources. Once the 

ontology is built, it has to be filled with instances. If these are done manually from electronic 

documents, it becomes a time-consuming process. Hence, some ontology development 

approaches attempt to automate the process of creating an ontology. ‘The process of defining 

and instantiating a knowledge base is referred to as knowledge markup or ontology 

population, whereas (semi-)automatic support in ontology development is usually referred to 

as ontology learning’ (Buitelaar et al., 2003). During ontology learning, while some 
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approaches use text document collections as a source of information, others use the Web 

(web pages) and existing databases as sources of information. The table A.1 in Appendix 

summarises all the approaches we presented in the previous section. 

2.2.2 Further Research 

We hold a view that there is a considerable duplicated effort in the design and development 

of ontology-based e-learning systems for each institution. A lot of time and effort is spent by 

each institution to design and develop an ontology-based e-learning system. As the literature 

highlights, this demands expert knowledge which most institutions lack. Again, we see that 

effort in design and development of ontologies for the learning institutions is duplicated. 

Hence, if we acquire more insight into learning ontologies, we could simplify the design and 

development of ontologies for the learning domain.  

Again, many system-specific e-learning systems have been proposed that focus on 

personalisation of learning contents. Yet, an architecture for ontology-based e-learning 

systems that could be adapted at different institutions would benefit educational knowledge 

acquisition. Such an architecture could also use the data in legacy databases and be able to 

adapt the learning contents effectively. In line with that, we identify the following research 

problems: 

1. What system architecture is required to adapt an ontology-based e-learning system at 

different institutions? 

2. What are the representation and reasoning capabilities in a formal ontology required 

for the e-learning domain? 

3. How does an ontology-based e-learning system work with a legacy databases? 

4. How can the effectiveness of e-learning ontologies be evaluated? 
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Chapter 3: A Plug and play Framework and Architecture for 

Ontology-based Adaptive E-Learning Systems 

 

 

In our literature survey that is elaborated in Chapter 2, we observed numerous approaches in 

designing and developing ontology-based e-learning systems. However, we observe some 

duplicated efforts in those approaches. The reason behind that is different educational 

institutions have institution-specific requirements and due to their differences and the 

competition among them, each of them prefer to keep their e-learning systems unique. Again, 

in another study that we conducted on unit guides, we also observed terminological 

differences in the unit descriptors of computing departments of different Universities in New 

South Wales (NSW), Australia.  

All the scholarly works unanimously agree on the fact that the learning contents need to be 

conceptualised and personalised for learners. For this reason they have proposed approaches 

for adaptating e-learning systems. There have been many attempts made, and different 

techniques used, to personalise e-learning systems. Suggested personalisation techniques use 

numerous underpinning technologies and metadata standards, distributed computing 

methodologies, case-based reasoning techniques, models on learner learning patterns and 

styles, etc. Each of these techniques has its own benefits and most approaches found in the 

literature use one or more of those techniques.  

An adaptive engine with an assessment unit is used as the dominant component in the 

systems architecture proposed in (Yarandi et al., 2013). In that approach the adaptive engine 

interacts with a content mediator and a user profile mediator during the adaptation process 

and the learners view the adaptive contents on a user interface. The content mediator refers to 

the LO repository (domain ontology and the content ontology), whereas the user profile 

mediator refers to the user profile repository (domain ontology and user ontology). Again, in 

(Nafea et al., 2016) an adaptive engine is used as the dominant component for adaptation of 

one learning system for users. The adaptive engine uses the results of a questionnaire and the 

results of users’ behavior that is obtained from a reference ontology, for personalisation. To 

enable this, e-learning systems include many components in their architecture which perform 

different tasks.  
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The ontology-based architecture proposed in (Chung & Kim, 2012) includes three layers: 

semantic services, components and repositories layer (Figure 3.1). The services layer includes 

the user functions: syllabus and subject search, and editing the learning paths that can be 

performed by a learner in a user interface. The components layer includes the ontologies and 

the software components to perform the system tasks. The systems’ architecture proposed in 

(Rani et al., 2015) organises the components on three levels: human level, Internet level and 

system level. The human level includes the user and a workstation, while the Internet level 

includes a web portal. The system level includes three main services, three agents and Cloud 

storage with a user database and the domain ontologies. The web portal interacts with the 

services and the agents in the system level. The services in the system level also interact with 

the user database and the domain ontology (Rani et al., 2015).    

 

Figure 3.1: Ontology-based system architecture proposed in (Chung & Kim, 2012) 

In this chapter, we propose a plug and play architecture that we visualise as a synergy of 

several techniques: metadata standards, learning styles and, especially, domain ontologies for 

the personalisation of learning contents. We also utilise many different components to 

perform different tasks within a system predominantly searching for learning resources. We 

also use storages of materials that are required for learning. We organise all these 

components of the system in three layers. We propose to make the top two layers of an e-

learning system common to any institution and the bottom layer specific to an institution. 

However, if the system is to be deployed at an institution, all the layers should adapt to that 
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institution. We propose to achieve that by a plugin the ontologies (in the repositories layer) to 

the middle layer of the system. 

The system architecture proposed in (Chung & Kim, 2012) has been aimed at supporting self-

leading learning of students by building adaptive learning paths using the curriculum, 

syllabuses, and subjects’ ontologies. However, it does not use the reasoning capabilities 

offered by DL reasoners. Chung & Kim (2012) focus on the adaptability of the system only at 

the user level, not at an institutional level. Also, they do not talk about using profiles for the 

users’ adaptation of the system. In contrast, the plug and play architecture we propose has 

the benefits offered by the DL reasoners and the adaptability of the system. The adaptability 

the system for the user is achieved with the help of user profiles; and the adaptability by the 

institution is achieved based on institution-specific learning ontologies pluggable to specific 

system instances.   

The expected outcomes of our plug and play architecture are: 

 An adaptive e-learning system’s framework that is deployable at many institutions 

will be developed. 

 For the use of the adaptive system at institutions, institution-specific and pluggable 

ontologies that specify the learning domain of each institution will be deployed. 

 Query-answering and reasoning will be allowed on the existing data in the learning 

databases and study materials, by using mapping and transformation of learning 

databases to learning ontologies. 

Our approach is aimed at an ontology-based e-learning system’s framework that is adaptable 

at different institutions. It also becomes a solution to the duplicated effort in designing and 

developing ontology-based e-learning systems and associated critical components. In this 

chapter, we provide a comprehensive description of the proposed architecture and its layers. 

In the next section we give an overview of the systems architecture and our approach to 

realise that. The approach we follow for the development of an ontology-based adaptive e-

learning system has two main tasks: development of a learning ontology, and mapping a 

legacy database to learning ontology. Once they are done, a user is able to interact with the 

system. Literally, we can see the plug and play architecture in operational use only when the 

adaptable e-learning system is built based on to it. We describe the ontology development 

tasks and the systems’ architecture in a sequence. In Section 3.1, we provide an overview of 

the ontology development and mapping system; and the plug and play architecture for an 
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adaptive e-learning system’s framework. Section 3.2 introduces the ontology development 

task and Section 3.3 introduces a legacy database to an ontology mapping task. Section 3.4 

introduces the end users’ interaction and the plug and play architecture. Section 3.5 provides 

a discussion. 

3.1 An Overview of the Plug and Play Architecture  

In this section, we provide an overview of the ontology development and mapping system 

and the plug and play architecture of the proposed adaptive e-learning systems’ framework 

that can be deployed at any institution with a domain-specific learning ontology (Figure 3.2).  

 

Figure 3.2: High level view of the plug and play architecture 

At a higher level, the proposed architecture consists of three main layers: user interfaces 

layer, the components layer and the repositories layer. Also, there are interfaces between 

layers that pass information and controls between those three layers (Figure 3.2).  

The main component that makes this systems architecture plug and play is the institution-

specific learning ontologies that are a part of the repositories layer. The learning ontologies 

are developed for a specific institution to capture the domain knowledge of that institution. 

The learning ontologies are plugged in to an instance of this system built according to the 
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proposed architecture.  The learning ontologies then adapts the system to that institution and 

personalises the system to the learners of that institution. 

3.1.1 Ontology Development and Database to Ontology Mapping System 

The development and mapping of the learning ontologies are done as two main tasks: 1) 

ontology development and 2) database to ontology mapping. Once these tasks are completed 

end users can interact with the adaptive learning system. Each system that is required to 

perform these tasks requires different interfaces, components and the repositories. 

Learning Ontology Development  

In order for the learners to use the adaptive e-learning system the required repositories of the 

system, the learning ontology and the learning materials should be available. This task 

includes primarily activities that are required to be carried out to develop the learning 

ontology before it is populated with the instances. The ontology engineer uses the ontology 

development interfaces to design the ontology. During that process the ontology engineer 

adds the concepts, subconcepts, roles, role constraints and data properties to the ontology and 

edits them. Different systems’ components assist performance of the ontology development 

tasks, gradually building the ontology in the background and checking whether the ontology 

is consistent. Then, the resulting ontology is stored in the repository layer. 

Legacy Database to Learning Ontology Mapping  

The ontology engineer uses the database to ontology mapping interfaces to map the database 

schema of the legacy databases to the Terminological Box (TBox) of the learning ontology, 

and the data in databases to the Assertional Box (ABox) instances of the ontology (Baader & 

Nutt, 2003). To start this process the ontology engineer views the ontology and the database 

schema of a particular institution that are retrieved from the repositories layer. With the 

understanding of the database schema and the ontology, the ontology engineer writes the 

mapping rules. Mapping rules are used to specify what contents of the database should be 

mapped to what part of the ontology (Hazber, Li, Gu, & Xu, 2016). These tasks are supported 

by the ontology mapping components in the components layer. The mapping definitions are 

stored in the repositories layer that is used for mapping the database(s) to the ontologies, and 

the resulting ontologies with the instances are stored back in the repositories layer.  
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3.1.2 The End User Interaction and Plug and Play Architecture 

Once the ontology is built and populated with the instances it should be available for 

learners’ use. For that, an instance of the ontology-based adaptive learning system is adapted 

with the institution-specific learning ontologies that are plugged in to the system. That makes 

the learning ontologies ready for the learners to use for querying. For example, consider that 

an instance of the e-learning system is deployed at Macquarie University (MQ) with the 

ontologies (metadata, learner profiles and learning objects) specific to Macquarie University. 

When a learner logs on to the system his/her profile is loaded from the learner profile 

ontology. The learning concepts that are required to initiate searching for resources are 

loaded to the system from the learning ontology with the help of the metadata ontology. 

The main task in end-users’ interaction is to query the learning ontology or to search for the 

learning resources. A high-level view of the plug-and-play architecture for the end users’ 

interaction is given in Figure 3.2. The learner uses the query interface in the query interface 

layer to search for the learning materials. The components in the components layer perform 

the required tasks to retrieve the details of the learning object from the ontology and then the 

actual learning objects.  

For example, consider that a learner at Macquarie University wants to find ‘what learning 

materials should be studied to answer the ISYS114 assignment 1?’ To start this process, the 

learner composes the query on the query interface and submits it to the system. Then, the 

components in the components layer see what learning concepts, relations and attributes are 

involved in the query and include them in a query. The components in the components layer 

also see what preferences the learner has in his or her profile, what relevant metadata of 

learning objects should be checked and include them as well as in the query. Now, the 

relevant components process the query by requesting the relevant learning objects that satisfy 

the search criteria and that the metadata matches the learner preferences. The components in 

the components layer produces the query results and displays them on the query interface in 

the user interfaces layer. 

In the next subsections we elaborate on the learning ontology development and database to 

ontology mapping tasks that are required to be completed before user interaction using the 

ontology-based adaptive e-learning system. We introduce the systems architecture for 

ontology development, database to ontology mapping and the plug and play architecture of 

the adaptive e-learning system with which the user interacts. 
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3.2 Learning Ontology Development 

The ontology engineer who performs the ontology development and who has the required 

expert knowledge is the key user in this task. Primarily the ontology engineer directly 

interacts with the ontology development interface. However, components in the three layers 

of the system are involved in the ontology development process (Figure 3.3) and perform 

different tasks. In developing the learning ontology, the ontology engineer passes instructions 

to the ontology editor in the user interface layer, and views the ontology that is being 

developed. The components in the three layers interact with each other by passing controls 

and information. 

 

Figure 3.3: A simple systems architecture for the ontology development 

3.2.1 User Interface Layer 

This layer includes ontology development interfaces that are required to develop an ontology. 

These interfaces allow the ontology engineer to create the elements of the ontology and 

graphically present those elements on the interface. They also allow the ontology engineer to 

edit and delete elements of the ontology. The main tasks of these interfaces include creating 

and editing the learning concepts and concept hierarchies, relations or roles between the 

learning concepts, properties of learning concepts and instances of the concepts and roles. 



56 

 

3.2.2 Components Layer 

The components in this layer receive the information and controls from the ontology 

development interfaces. Based on them, the components in this layer perform the due tasks. 

They include creating and editing the ontology components which reside in the components 

layer. Also, the components in this layer work as an intermediate layer and handle the 

communications between the interface and the repositories layers. 

Ontology Builder  – This component involves performing the tasks related to adding and 

editing the concepts, relations, attributes and constraints of the ontology. It also allows for 

inserting instances of the concepts into the ontology. Even though the ontology is represented 

graphically on the interface the ontology manager represents the ontology in an ontology 

language. Over time the ontology languages have evolved and we follow the contemporary 

ontology language recommended by W3C, OWL 2 (Motik et al., 2012). Once the ontology is 

validated by the DL reasoner, the ontology manager stores that in the repository.  

The ontology builder is also responsible for storing the ontology and its elements in the 

learning ontology (learning objects ontology, metadata ontology and user profile ontology) in 

the repository layer. It also retrieves the learning ontology and its elements that would be 

required by the ontology editing interface.  

DL Reasoner – The reasoning tasks on the ontologies are performed by a DL reasoner 

(Horrocks, Sattler, & Tobies, 1999). There are many DL reasoners available, such as 

RacerPro, HermiT, Pellet, and Quest Reasoner (Rodrıguez-Muro & Calvanese, 2012). 

According to this architecture the main reasoning task performed at this stage is checking the 

consistency of the ontology based on the DL language used by the reasoner. Protégé provides 

many reasoners as options that are made available as plugins.  

3.2.3 Repositories Layer 

The learning ontologies that are generated in the ontology development process are stored in 

the storages that belong to the repository layer. The learning ontology that we consider in our 

work is specific to an institution and specifies the domain knowledge specific to an 

institution. Therefore, when the system is deployed at a different institution a new learning 

ontology specific to that institution should be created and plugged to the learning system. A 

knowledge base (= an ontology) developed for the learning domain can include knowledge 

about the courses, students, learning strategy, learning objects, and metadata. A knowledge 

base consists of a TBox that specifies the domain concepts with their roles and an ABox that 
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specifies the instances. A learning ontology we consider here consists of three main 

ontologies: the learning object ontology, the learning objects metadata ontology, and the 

users’ profile ontology. Each of these ontologies capture the knowledge specific to the 

learning domain and that includes the domain specific concepts, relations, attributes and 

constraints.   

Learning Objects Ontology – Learning objects ontology holds concepts and relations that 

correspond to the learning objects and an institution’s attributes. The learning objects are 

different learning resources (lecture slides, lecture notes, demonstrations, etc.) and 

assessment items. In our work, we identify the relationships between the concepts and 

constraints on them from the educational policies and procedures that are mentioned in the 

unit guides and the course hand book. They make the TBox of the knowledge base. The 

instances of the learning concepts and the roles among the instances make the ABox of the 

knowledge base. We get the instances from the legacy databases available at an institution. 

User Profiles Ontology – This holds several general and specific characteristics of the 

learners. The user profile includes users’ credentials (id, name, password, etc.) and several 

user preference attributes: preferred resource type, preferred resource format, preferred level, 

preferred difficulty level, etc. The learning system uses them for the purpose of adaptation of 

the system according to the learner. The user profile ontology includes the concept Student 

and the concept preference attribute. The different types of user preference attributes: 

preferred resource type, preferred resource format, preferred level, preferred difficulty level, 

etc. are gathered from the learner when he/she logs on to the system. 

Metadata Ontology – The LOM ontology holds metadata about the learning objects and 

constraints on them. The LOM also plays a role in the process of adaptation of the system for 

the users. The different metadata we use in our work is a subset of the IEEE LOM (Roy et al., 

2010). They include language, format, difficulty level, intended end users, and type of 

learning objects. 

In this work, we use the ontology editing tool Protégé which provides an advanced user 

interface for developing an ontology. Protégé also provides several example ontologies such 

as the pizza ontology that is elaborated in (Rector et al., 2004). 

3.3 Legacy Database to Learning Ontology Mapping System 

Research has been completed on the database to ontology mapping and transformation 

processes (Mogotlane & Fonou-Dombeu, 2016). As a result of that a number of mapping and 
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transformation tools have been proposed. Recent mapping and transformation tools include 

Relational Databases to Ontologies Transformation Engine (RDOTE) (Vavliakis, Grollios, & 

Mitkas, 2010), KARMA (Knoblock et al., 2012), D2RQ, Virtuoso, DBOWLizer (Villanueva-

Rosales, 2011) and the Protégé plugin Ontop (Bagosi et al., 2014). These mapping tools use 

mapping rules to facilitate the mapping process. RDOTE generates an instantiated OWL 

ontology using a relational database and an ontology schema as the inputs (Vavliakis, 

Grollios, & Mitkas, 2010). Protégé Ontop allows us to write the mapping rules or build them 

using a mapping assistant (Calvanese et al., 2017). Karma provides graphical assistance to 

build the mapping rules (Knoblock et al., 2012). It shows how table names with primary keys 

match against concept names, foreign keys to object properties, and attributes to the data 

properties. A number of mapping rules that are used in these tools are based on the mapping 

rules that have been proposed by W3C. 

In this proposed architecture, we use an existing mapping interface. We found that Karma 

serves our purpose and we use the mapping interface Karma to map a learning database to a 

learning ontology. It allows mapping and transforming of tables, their keys and data in them 

to ontology concepts, object properties and data properties using a graphical user interface. 

Also, the Protégé plugin Ontop (Calvanese et al., 2015) provides OBDA without populating 

the ontology with instances. 

In this section, we elaborate on the architecture of a typical database to ontology mapping 

system. This architecture is also described based on the three layers: interface layer, 

components layer and the repositories layer as shown in Figure 3.4.  

3.3.1 Interfaces Layer 

The interfaces layer of the architecture in the database to ontology system is utilised by the 

ontology engineer. The mapping interface includes three sections; ontology viewing 

interface, database viewing interface, and mapping interface.  

Mapping Interface – This is used for three main purposes. Firstly, a mapping interface is 

used to load and to view the schema of the learning database, the tables and the attributes. 

This helps the ontology engineer to examine the ontology and understand the elements in it. 

Secondly, this interface is used to load and view the learning ontology and its elements that 

are to be populated from the data in the learning database. This helps the ontology engineer to 

examine the database schema and understand the elements in the database. 
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Finally, the mapping interface helps the ontology engineer to create mapping rules. This is 

the main interface used to create the mapping rules. After viewing the elements in the 

ontology and the database schema, the ontology engineer maps each matching element in the 

ontology with the elements in the database schema. Firstly, an ontology concept is mapped to 

the database table and secondly, each data property is mapped to an attribute. Thirdly, each 

object property is mapped to a relationship. The resulting mapping rules become visible to 

the ontology engineer. In addition to that the mapping interface helps to populate the 

ontology and view the resulting instances by opening the ontology file. 

 

Figure 3.4: Systems architecture for the database to ontology mapping system 

3.3.2 Components Layer 

The Components in this layer are used to perform the tasks related to mapping the database 

and the learning ontology and populate the ontology by the data in the learning database into 

the instances, roles and constraints of the learning ontology. Figure 3.4 introduces the map 

and the transform handler as two subcomponents that perform two separate tasks. 

Database to Ontology Mapping Handler  – The Database to Ontology Mapping 

Handler first gets the instructions from the mapping interface to load and display the learning 

ontology. According to them it loads the ontology displays that are on the screen. The 

Database to Ontology Mapping Handler also gets the instructions from the mapping interface 
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to load and display the learning databases. According to them it loads the database schema 

and displays them on the screen. Importantly, it does database to ontology mapping that is 

based on different mapping rules. Mappings done by the ontology engineer are verified by 

the system based on these mapping rules. For example, a database table should be mapped to 

an ontology concept. The Mapping Handler gets the details of a database table and an 

ontology concept at the time of mapping from the mapping interface. The resulting mapping 

definitions are stored in an ontology definitions file.  

Once the database to ontology mapping is completed, the ontology is populated with the 

instances from the data and keys in Relational Database (RDB) tables. Karma allows 

transforming relational data into ontology instances. In contrast to that, Protégé Ontop uses 

Ontology-Based Data Access (OBDA) (Calvanese et al., 2015) to allow querying the data in 

the database tables without storing them in an ontology ABox. The mapping and ontology 

population are elaborated in Chapter 5. 

DL Reasoner  – During the database to ontology mapping process, different reasoning tasks 

on the ontologies are performed by a DL reasoner to ensure the consistency of the resulting 

ontology. The reasoner checks whether the mapping rules defined by the ontology engineer 

are consistent with the ontology before it is populated with data. If there are any 

inconsistencies, the reasoner would notify those discrepancies that are noted to the user 

interface through the map and transform handler.  

Relational Query Processor  – The Relational Query Processor gets the name value pairs 

to form the queries from the Map and Transform Handler. The SQL queries are generated 

and then passed to the RDBMS and it returns the query results back to the Map and 

Transform Handler. The returning query results are of two types. Firstly, the database schema 

is returned to be used in the mapping process. Secondly, the data is returned to be used in the 

ontology population. The relational query processor obtains all these query results from the 

learning databases through RDBMS. 

Relational DBMS  – The relational query processor passes all the SQL queries to the 

RDBMS. The RDBMS retrieves the database schema for queries related to mapping and data 

for queries required in the ontology population process.  
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3.3.3 Repositories Layer 

Four main components are involved in the mapping and transformation process. They are the 

legacy learning databases, learning ontologies and the mapping definitions. The critical 

features of each of them are briefly introduced here. 

Legacy Learning Databases  – Many different databases are used at an educational 

institution to store different details related to an institution. Among them student databases 

and learning databases, course and unit databases, timetables and schedules databases are 

prominent. Student databases hold personal information of students, their enrolments to study 

programs and information related to their learning progress. Learning databases hold learning 

resources of units of study and data about the learning resources. These databases include 

information that is specific to an institution. Hence, a learning system that is deployed at an 

institution holds data specific to that institution. In addition to them, user profiles and 

learning object metadata can also be found in the databases. All these learning databases are 

related to the other existing systems of an institution and those databases are populated and 

updated by those systems. In this work, we suggest obtaining access to them from the 

ontology-based adaptive e-learning system. 

Learning Ontologies  – Here we utilise the three learning ontologies (learning object 

ontology, metadata ontology and user profile ontology) that are generated in the ontology 

development task and populated in the database to ontology mapping and transformation task 

that is explained in Section 3.2 and Section 3.3.  

Learning Objects Repository  – The learning objects such as lecture slides, lecture notes, 

videos, sample exams, tutorials, etc. are stored in the learning objects repository. The learning 

materials are related to the course units of degree programs. They are generated by the 

academic staff of an institution before the delivery of lessons. The learning database holds the 

titles of them as a reference to them. The learning ontology is also a reference, the URLs of 

the resources that enable retrieving the specific learning resource from the repository. 

Mapping Definitions  – The mapping definitions that are created by the ontology engineer 

in the mapping interface are stored here. Once the mapping definitions are written they are 

saved as a separate file. The files with the mapping definitions are eventually used by the 

map and transform handler. Protégé Ontop allows creating, updating and viewing the 

mapping definitions on an interface and they are eventually saved as an OBDA file 

(Calvanese et al., 2017). 
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3.4 The Learning Ontology at Work 

Once the ontology development and databases to ontology mapping and transformation are 

completed, the learning ontology becomes ready to use. For the usage of the learning 

ontology we suggest the plug and play architecture that is introduced in this section. Before 

the learners use the system, the system should be adapted to an institution with the learning 

ontology specific to that institution.  

3.4.1 Adaptation of the System to an Institution 

The plug and play architecture and the end user interaction it offers are common to any 

instance of the adaptive e-learning system deployed at an institution. The domain knowledge 

of the learning system varies according to the learning ontology plugged to an interface of the 

learning system. Hence, the plug and play ontology plays the sole role of adaptation of the 

learning system to a particular institution and its users. The adaptation of the system happens 

at a higher level according to the ontologies that are plugged in to the system. For example, if 

we plug in the ontologies of the <University 1> the system presents the learning resources 

and makes the system available for the <University 1> learners. Whereas, if we plug in the 

ontologies of the <University 2> the system presents the learning resources and makes the 

system available for the <University 2> learners. However, the advantage of our plug and 

play architecture compared to the other architectures is that we don’t have to change or 

customise the interface layer and the components layer. 

Once the adaptive e-learning system is adapted to an institution the learner is able to use it for 

querying the ontology to search for the learning resources. An overview of the plug and play 

architecture of the ontology-based adaptive e-learning system is given in Figure 3.5. As 

introduced in Section 3.1 it consists of three layers: interface layer, components layer and 

repositories layer. The query interface is the main component in the interface layer. The 

components layer includes the software components that perform the different tasks related to 

querying the learning resources backed by the learning ontology. In the following subsections 

we briefly discuss the components in each layer. 

3.4.2 Interface Layer of the Plug and Play Architecture  

This layer of the plug and play architecture consists of an interface for updating the user 

profiles and for querying the ontology. The learner is allowed to enter or update the user 

profile attributes on the user profile interfaces. Also, when the user logs on to the system, the 

user interfaces receive the user credentials and pass them on to the input/output handler. 
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The user query interfaces are used to first present the concepts and roles in the ontology to 

the learner and to compose a query. Then the learner is able to select the relevant learning 

concepts, roles and constraints of concepts in the ontology that are displayed to the learner. 

The interface allows the user to compose a query, avoiding the need for the learner to encode 

them in a formal notation.  

 

Figure 3.5: Ontology-based plug and play e-learning systems architecture 

A learner composes a query by including multiple query atoms. A query atom consists of the 

triple: <subject> <role> <object>. The user selects a concept as a subject, then a role and 

another concept as the object. This is repeated if the learner wants to include several query 

atoms in a query. For example, a student at Macquarie University could compose a query to 

search for the lecture slides of the unit ISYS114 by including the query atoms (1) and (2).   

 ISYS114 isA Unit (1) 

 ISYS114 hasLectureSlides <LectureSlides>  (2) 
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When a query is composed, the query atoms are then passed to the input output handler. The 

answer to a query is also displayed on the query interface. The answer could include a 

number of instances of a concept, possibly with several data properties. Below are two 

identifiers (3) of the instances of ISYS114 Lecture Slides that would be displayed on the 

query interface as the answer to the above query. 

 ISYS114LectureSlidesWk1, ISYS114LectureSlidesWk2 (3) 

Then, the user is able to retrieve the actual learning resources by clicking on the identifiers. 

An ideal query interface would allow the user to enter a query as free text. Hence, we have 

provided a textbox in the query interface as an option for future enhancements.  

3.4.3 Components Layer of the Plug and Play Architecture 

This layer includes components that support answering learner’s queries. In following 

subsections we introduce each of them briefly.  

Input/Output Handler  – The input/output handler receives the users’ queries as a 

collection of name-value pairs related to query atoms. For example, attribute name and value 

of it or concept name and value of it or instance name and value of it, or role name and value 

of it. The input/output handler then validates these values and passes them to the user profiles 

manager or the query processor as name-value pairs. The input/output handler also receives 

the query results, the instances and their attributes, from the Query Processor and displays 

them eventually on the query interface.  

User Profile Manager  – The users’ profile manager is responsible for creating and 

updating the users’ profiles. It receives the validated name-values pairs from the input/output 

handler that are related to the users’ profiles. Then it composes the relevant queries according 

to the syntax rules of a query language such as new RacerPro Query Language (nRQL) or 

SPARQL, and passes the queries to the DL reasoner. It also receives the query results that are 

passed back to the input/output handler. 

The user profile manager also receives the validated user credentials as name-value pairs 

from the input/output handler. Then, the user profile manager uses those credentials to 

identify the user and composes queries to retrieve and identify the user preferences. The user 

preferences are passed to the DL Reasoner to retrieve the initial learning concepts and accepts 

the facts about the learning resources returned by the DL reasoner. Then the query interface is 

populated with the possible concepts which the learner would query. 
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Query Processor  – The query processor gets the input values related to the learner’s 

queries as name-value pairs from the input/output handler. Then, it composes a complete 

query including the input values triples and passes the query on to the DL Reasoner. The 

query processor also accepts the query results from the DL Reasoner and passes them to the 

input/output handler. 

DL Reasoner – The DL reasoner receives the learner’s queries from the user profile 

manager and the query processor as a set of query atoms in the triple format, <subject role 

object> and logical constructors such as and, not, or, etc. The DL reasoner then performs the 

reasoning tasks and retrieves the relevant concepts and/or instances that are returned to the 

user profile manager or the query processor.  

The queries that are composed are in a query language understandable to the DL reasoner. 

The query language to be used also depends on the DL reasoner. The most commonly used 

query language in the Semantic Web is SPARQL. The query language new RacerPro Query 

Language (nRQL) is used in the DL reasoner RacerPro.  

3.4.4 Repositories Layer 

The repositories layer includes the learning ontologies that resulted from the database to 

ontology mapping task. These ontologies include references to the learning object 

repositories as well.  

Learning Ontology – The three ontologies; learning object ontology, metadata ontology 

and the user profiles ontology which constitute the learning ontology, are the key components 

in the repositories layer. They hold the domain knowledge as facts that are required for 

query-answering. 

Learning Objects Ontology  – The learning objects ontology has references to the actual 

learning objects in the learning objects repository. Based on the query results the identifiers 

or URLs of the learning resources are displayed on the user query interface. The learner is 

able to retrieve the actual learning resources using these identifies/URLs. 

User Profile Ontology  – The user profile ontology is generated in the ontology 

development task and it holds the general details of the learners and preferences of the 

learners. They are retrieved and updated by the user profile manager and used by the query 

processor during query-answering.  
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Metadata Ontology – This is also developed in the ontology development task to specify 

the metadata items of the learning objects. The metadata are used in query-answering to 

provide personalised contents to the learner. In the following section we elaborate on the 

personalisation process. 

3.5 Personalisation with User Profiles and Learning Object Metadata  

In this systems architecture, we use the user profiles and LOM for the purpose of 

personalising the system contents to the learner. We use a set of user preference attributes and 

LOM attributes. The preference attributes of the learner are gathered from the learner when 

the learner first logs on to the system and the learner is allowed to update them on the 

learner’s request. The LOM attributes are created at the time of ontology development and 

populated at the time of database to ontology mapping and transformation. 

Different metadata standards are used in e-learning systems and they include: IEEE LOM 

(IEEE, 2002), IMS consortium (IMS, 2001), Sharable Content Object Reference Model 

(SCORM) Metadata and Dublin Core (DCMI, 1990) Metadata standards. These different 

metadata standards include similar metadata attributes; although, some differences exist 

among them. In our work, we achieve some basic personalisation by using a subset of IEEE 

LOM. We also use a set of user preference attributes that matches with the selected metadata 

attributes. 

3.5.1 User Profile Attributes  

In a typical e-learning system the learning objects that are retrieved for a given query include 

both the learning objects required by the learner and these are not required by the learner. For 

example, a learner searches for learning resources of ISYS114. The query results for this 

could include presentations, lecture notes, demonstrations, etc. that could be in different 

formats such as pdf, power point, text, audio and video. However, the learner could have 

expected only the presentations in the power point format. To satisfy this learner requirement 

we utilise learner preferences. We store the preferences of the learner as user preferences in 

user profiles. Then, we use those user preferences in query-answering.  

The learning objects to be retrieved for a given user depend on the preferences of the learner. 

In our context, additional information about the users (user profiles) are collected. User 

profiles consist of user preference attributes given in Table 3.1.  
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To answer the learner’s queries we need to identify the learning resources that match the 

learner’s preferences. For that reason, we have to keep details of the learning objects that 

match the learner’s preferences. The LOM attributes that we use in this work describe the 

learning objects of a specific institution.  

Table 3.1: Learner preference attributes 

User Preference Attribute Description 

preferred language the language of the content 

preferred topics of interest topics of the study area 

preferred education type lecture, presentation, assignment, etc. 

preferred format text, image, video, graphics, etc. 

preferred education level level 1, level 2, level 3 

preferred difficulty level very easy, easy, difficult, very 

difficult 

The metadata that we use are listed in Table 3.2. We derived this short-listed subset of IEEE 

LOM based on the domain, context and how this knowledge could be combined with the 

information about the user profiles. For example, suppose that a user is interested only in 

presentations in a unit. The content types of the learning objects are represented by the LOM 

item content type. Hence, the search involves checking whether the learning objects have the 

content type presentation. During the ontology development task, these different user profile 

attributes and the LOM are represented as OWL data properties within the learning ontology. 

Table 3.2: LOM attributes used in the plug and play architecture 

Metadata Item Description 

language The language the learning object is written in. Eg: English 

subject area The subject area for which the learning object was developed. 

format The format of the learning object. Eg: Text, image, audio, 

video, graphics 

education type The type of the learning object. Eg: lecture, presentation, 

assignment, etc. 

difficulty Level How difficult the learning object is. Eg: very easy, easy, 

difficult 

intended user level level 1, level 2, level 3 

3.5.2 Personalisation and Querying the E-Learning System  

As mentioned previously, personalisation of the e-learning system to the learner is done 

based on the user profiles and the LOM attributes. The steps in this personalisation process 

are depicted in the Figure 3.6. The personalisation of the e-learning system happens firstly by 
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personalisation of the initial interface settings. When a learner logs on to the e-learning 

system the user preference attributes are also loaded from the user profile ontology. 

Secondly, the system loads the concepts and learning objects that are relevant to the learner 

and displays them on the query interface.  

During query-answering, the learner is able to select a learning concept and then the 

properties of the selected learning concepts. The learner is also allowed to select instances of 

the concepts that are displayed on the screen. For example, if the learner selects the concept 

Learning Resource to be queried, the roles of it are displayed to the learner. If the learner 

selects the role learningResourceOf, then the learner is able to see and select a Unit 

associated to the learning resources. Thirdly, if the learner selects the unit ISYS114 and 

submits the query the system retrieves the LOM from the learning ontology. Fourthly, the 

system matches the user preferences with the LOM attributes returned from the ontology. If a 

match between the LOM attributes and the learner preferences is found, finally the system 

retrieves the learning objects that match the query and the user preferences. 

 

Figure 3.6: Personalisation of the e-learning system based on ontologies 
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3.6 Discussion 

We observe a number of benefits of the proposed ontology-based systems architecture 

although, changes are required in implementing this architecture. Below we discuss those 

benefits and the changes so that we might define solutions to overcome those challenges. 

We also see how practical and advantageous this solution is in comparison to the challenges 

that we have to overcome. 

3.6.1 Benefits Offered by the Plug and Play Architecture 

The primary advantage of the proposed architecture is that it avoids the duplicated effort in 

adapting an ontology-based e-learning system at different institutions. It allows replicating 

the system and implements an instance of the system at an institution that does not require an 

effort to build or to customise the learning system. It is capable of automatically adapting the 

system to an institution based on an institution-specific learning ontology. 

Further, it has the advantage of personalisation of the learning contents to the user by using 

learner preferences and metadata. It also provides higher query-answering capabilities to 

search for the learning resources that is supported by the learning ontology and reasoning.  

We propose to utilise the legacy e-learning databases in this architecture that avoids the need 

for populating the learning ontology from scratch. Due to its layered nature, this architecture 

could further be extended with additional components on a layer to provided additional 

service and enhanced features. For example, this architecture allows adding components to 

the three layers to manage the metadata or to enhance the personalisation with the study 

patterns of the learners. 

We utilise the legacy data in the legacy databases by transferring them into instances in the 

learning ontology. Again, this needs time, money and expert knowledge.  

Even though the ontologies used in this architecture uses formal structures, the query 

interfaces suppress the complexity of the formal ontology structures by presenting them as 

simple interface components on the query interface.  

Due to the use of an automated database to ontology mapping tool, it becomes possible to 

update the learning ontology on a regular basis or on demand, or possibly this could be 

automated. This helps us to provide up-to-date information to the learners. 
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3.6.2 Challenges in Implementing the Plug and Play Architecture  

An instance of the system is deployed at an institution. At the time of this system deployment 

an institution-specific ontology is required to be plugged in to the system and to support 

personalisation of learners’ queries. The design and development of an institution-specific 

ontology demands expert knowledge and skills which are scarce. Again, three ontologies 

(learning object, metadata and user profile ontologies) should be designed by studying the 

learning domain of an institution that is a time-consuming process. We attempt to alleviate 

this problem by proposing an ontology sublanguage for the learning domain that is elaborated 

in Chapter 4. 

This architecture has the advantage of using the data in legacy databases and learning objects 

that have already been developed for an institution. On the other hand, to utilise these data 

they should be mapped and transformed to the ontologies. Again, that needs time and expert 

knowledge. However, not only mapping rules should be defined; they should have to be 

modified in case of changes to the learning databases. To overcome this problem, we attempt 

to use an existing tool to transform the data in the learning databases to instances of the 

learning ontology. We elaborate this process in Chapter 5. 

Also, when the data stored in the databases changes the ontology instances in the ABox need 

to be updated. This could be done automatically on a regular basis or that task can be avoided 

by using a tool that uses ontology-based data access (ODBA) (Calvanese et al., 2017). An 

ODBA tool allows access to the data in a database through an ontology without transferring 

them to the ABox of an ontology and building a fixed ABox.  

For the learners to understand the domain, and to query it, we conceptualise the domain on 

the user interfaces. The user interface shows the concepts, relationships between the concepts 

and the constraints on those relationships. However, the ideal way of doing this is to first 

show the conceptual view of the domain knowledge to the users and then to allow them to 

write queries in text. For this we need a text to semantic query converter. We do not address 

this research problem at this time. 

3.7 Conclusion 

In this chapter, we provide an overview of the proposed ontology-based plug and play 

architecture for an adaptive e-learning system that uses a pluggable leaning ontology as the 

salient component. This architecture is a result of our attempt to answer the question: what 

systems architecture is required to adapt an ontology-based e-learning system at different 
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institutions? Instances of the system built based on the plug and play architecture are 

possible to be deployed at different institutions with a leaning ontology that is specific to an 

institution. An instance of the system adapts to an institution with the institution-specific 

learning ontology and personalises the learning contents to the learners in that institution.  

We elaborate on our approach to the plug and play architecture and institution-specific 

learning ontologies in two main tasks: ontology development and legacy database to learning 

ontology mapping task and the end user interaction. We also point out the benefits and 

several challenges that have to be overcome in implementing the plug and play architecture. 

Overall, we suggest that this architecture offers many more benefits than the challenges that 

we have to overcome. In the next few chapters we elaborate on the solutions we propose to 

overcome those challenges and to gain further benefits from the proposed architecture. 
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Chapter 4: OWL 2 Learn Profile: An Ontology Sublanguage for 

the Learning Domain 

 

 

Many experimental ontologies have been developed for the learning domain for use at 

different institutions. These ontologies include different OWL/OWL 2 (Web Ontology 

Language) constructors. However, it is not clear, what are the representation and reasoning 

capabilities in a formal ontology required for the e-learning domain? Also, which OWL 2 

constructors are the most appropriate ones for designing ontologies for the learning domain? 

It is possible that the constructors used in these learning domain ontologies match one of the 

three standard OWL 2 profiles (sublanguages). To investigate whether this is the case, we 

have analysed a corpus of 14 ontologies designed for the learning domain. We have also 

compared the constructors used in these ontologies with those of the OWL 2 RL profile, one 

of the OWL 2 standard profiles. The results of our analysis suggest that the OWL 2 

constructors used in these ontologies do not exactly match the standard OWL 2 RL profile, 

but form a separate subset of OWL 2 which we call OWL 2 Learn. 

An ontology is a conceptual specification of a domain that represents concepts, relations and 

constraints of that domain. A well-designed learning ontology helps to clearly represent a 

learning domain and eventually could be used to search for learning resources. Moreover, the 

use of a learning ontology in an e-learning system could assist students who ask questions 

and search for learning resources by using the domain knowledge specified in the ontology. 

Different learning ontologies have already been designed for various purposes for some 

higher educational institutions. 

Early attempts on learning ontologies focused more on conceptual modelling of learning 

ontologies. For example, a topic map ontology for e-learning has been proposed by Kolås 

(Kolås, 2006) to share learning resources. UML (Unified Modelling Language) diagrams 

have been used by Knight et al. (2006) who propose an ontology-based approach for adaptive 

and flexible learning. Some of the learning ontologies that have been proposed later have 

focused more on ontology design, using design tools and the Web Ontology Language 

(OWL) (Hitzler, Krötzsch, Parsia, Patel-Schneider, & Rudolph, 2012). OWL and OWL 2 

have been used to specify various aspects of learning ontologies. For example, a learning 
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ontology has been used to measure the semantic relevance between a learning resource and 

the learning context of a learner (Yessad, Faron-Zuckerc, Dieng-Kuntzb, & Laskri, 2011). In 

their work, concept maps have been used initially to model an ontology and then OWL to 

build the ontology for measuring the semantic relatedness for relevance ranking of learning 

resources. OWL/OWL 2 based ontologies have also been used to recommend the contents in 

a tutoring system (Vesin, Ivanović, Klašnja-Milićević, & Budimac, 2013). The ontologies 

(ontologies for learning resources, tasks, learner model and teaching strategy) used in their 

work have been developed using the ontology design tool Protégé. An OWL-based ontology 

for teaching mathematical word problems has been proposed in (Lalingkar et al., 2015). 

These studies show the increasing popularity of OWL/OWL 2 for implementing learning 

ontologies.  

In a recent study, the Higher Education Reference Ontology (HERO) developed in OWL 

(HERO_ONTOLOGY_V 25.06.2013.owl) has been proposed to overcome the problems in 

building application-specific ontologies in the higher educational domain (Zemmouchi-

Ghomari & Ghomari, 2013). This study has found that the development and interoperability 

of application-specific ontologies are difficult. Therefore, we believe that the identification of 

a set of common features (OWL/OWL 2 constructors) in existing ontologies of the learning 

domain might help ontology designers in their work. However, we could not find any studies 

in the literature that attempt to identify a common set of OWL 2 constructors for the learning 

domain.  

The W3C has recommended OWL 2 as a standard ontology language for the Semantic Web, 

which is based on a particular version of DL (Hitzler et al. 2012). The W3C has also 

recommended three standard profiles: OWL 2 EL, OWL 2 QL, and OWL 2 RL that are 

targeted at different application areas (Motik et al., 2012). Each standard OWL 2 profile 

includes a subset of OWL 2 constructors and has different computational properties (Motik et 

al., 2009). 

To the best of our knowledge, so far no one has investigated how well learning ontologies are 

aligned with any of these three standard OWL 2 profiles. This chapter aims at answering this 

question and identifying a common subset of OWL 2 constructors (a sublanguage or a 

profile) for the learning domain. In our study, we have first collected and analysed a corpus 

of 14 learning ontologies that have been developed in OWL/OWL 2, including one in 

RDF/RDFS. When we consider the ontologies in our corpus, we can find a lot of object 

and/or data properties that require an expressive version of DL. Hence, one could presume 
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that the OWL 2 RL profile is a good starting point for modelling the learning domain. 

However, if it is the case that the learning ontologies in our corpus have different features, 

then it would make sense to propose a new OWL 2 profile for the learning domain.  

We expect that modelling a learning domain requires different institution-specific ontologies 

whose expressive power depends on specific applications. For example, one of the ontologies 

in our corpus, the university ontology (university.owl2), is based on a highly expressive DL 

language. This ontology includes nominals (individual names) and cardinality restrictions 

(counting quantifiers) which increase the expressivity of the underlying DL language. On the 

other hand, another ontology in our corpus, the university benchmark ontology (uni-

bench.owl3), does not include nominals or cardinality restrictions. That means that the 

university benchmark ontology is based on a less expressive DL language than the language 

of the university ontology. This is not surprising, since these two learning ontologies have 

been designed to satisfy different institutional requirements resulting in different ontology 

structures and features.  

In our study, we have first collected a corpus of 14 ontologies designed for the learning 

domain, including several developed in OWL 2. We then identify and analyse the usage of 

OWL/OWL 2 constructors in our corpus and compare these identified constructors with those 

of the OWL 2 RL profile. We observe that not all the constructors in the OWL 2 RL profile 

are used in our corpus. Finally, we introduce the resulting new profile called OWL 2 Learn 

and investigate its expressivity.  

The rest of this chapter is structured as follows. In Section 4.1, we introduce ontology 

languages and the three standard OWL 2 profiles. In Section 4.2, we discuss the corpus of 14 

learning ontologies and provide an analysis of the corpus. In Section 4.3, we discuss the 

findings of the analysis of the ontology corpus. In Section 4.4, we present a comparison of 

the constructors found in the corpus and the constructors of the OWL 2 RL profile. In Section 

4.5, we introduce the new OWL 2 Learn profile and discuss its expressive power. In Section 

4.6, we summarise our contribution and discuss future work directions. 

                                                 
2 http://rpc295.cs.man.ac.uk:8080/repository/browser 
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4.1 Ontology Languages and Ontology Language Profiles 

RDF does not include sufficient constructors to specify a comprehensive ontology.  RDFS, a 

schema language for RDF, provides a framework for describing application-specific classes 

and properties (Horrocks & Sattler, 2001). However, OWL superseded RDF/RDFS in 2004 

as a Web ontology language and is now a W3C recommendation for the Semantic Web. As 

OWL is based on a version of description logic, it allows the use of a DL-based reasoner to 

derive information that is not explicitly specified in an OWL ontology (Horrocks and Patel-

Schneider 2011). Since 2009, OWL 2 has been used as the W3C recommended ontology 

language for the Semantic Web (Motik et al., 2009).  OWL 2 is a new and more expressive 

version of OWL, which mainly improves the relational and datatype expressivity of the 

language. 

4.1.1 OWL, OWL 2 and Their Expressivity 

The expressivity of the underlying DL language is a distinct feature of an ontology language 

and is determined by the type of constructors that are allowed in the language and how these 

constructors can be combined. Over the last two decades, the main focus of DL research was 

to increase the expressive power of DL languages and to understand their formal properties 

(Baader & Lutz, 2010). Highly expressive ontology languages include many types of 

different constructors. However, high expressivity comes at a price and query-answering over 

expressive ontologies can be computationally expensive. 

The ontology languages RDF/RDFS, OWL and OWL 2 show a gradual increase in 

expressive power.  OWL includes a range of constructors and axioms that provide a higher 

expressivity than RDF/RDFS. OWL 2 includes a number of extensions to OWL such as new 

constructors for expressing additional restrictions and characteristics of properties and 

property chains and keys (Motik et al., 2012). Self-restriction ObjectHasSelf() is one of them.  

OWL includes only three constructors for non-qualified cardinality restrictions as shown in 

(4) below whereas OWL 2 includes constructors for both non-qualified and qualified 

cardinality restrictions as shown in both (4) and (5) below.  

 (ObjectMaxCardinality(n R), ObjectMinCardinality(n R), 

ObjectExactCardinality(n R))  
(4) 

 (ObjectMaxCardinality(n R D), ObjectMinCardinality(n R D), 

ObjectExactCardinality(n R D)) 
(5) 
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OWL 2 also includes different constructors for object properties and data properties. For 

example, OWL includes a single constructor rdfs:domain() to specify both the object 

property domain and the data property domain whereas OWL 2 includes two separate 

constructors ObjectPropertyDomain() and DataPropertyDomain() to specify the two 

domains. 

OWL includes the constructor DisjointClasses(C1 C2) to specify disjoint classes. In addition 

to the above, OWL 2 introduces two constructors DisjointObjectProperties() and 

DisjointDataProperties() to specify disjoint object properties and disjoint data properties 

respectively. OWL 2 also introduces the constructor ObjectPropertyChain() to help specify 

property chains and the constructor HasKey() to define unique keys (Motik et al., 2012).  

OWL 2 includes extended datatypes; for example, owl:real and owl:rational. OWL 2 also 

provides additional features on data types that include datatype restrictions, range of 

datatypes, datatype definitions, new datatypes, and data range combinations. Data ranges can 

be combined by means of intersection, union and complement. Another new feature of OWL 

2 is punning, that is, using the same name for a class and an individual or for properties and 

individuals or classes and object properties.  

Even though OWL includes property assertions, it does not distinguish between object and 

data property assertions. For example, OWL uses the constructor samePropertyAs(PN a1 

a2/v) for both object and data property assertions. On the other hand, OWL 2 includes two 

separate constructors ObjectPropertyAssertion(PN a1 a2) and DataPropertyAssertion(R a v) 

for object property assertion and data property assertion, respectively. 

It has been shown that OWL has the expressivity of the DL language SHOIN(D) (Horrocks et 

al. 2003). OWL 2 is more expressive than OWL as it supports complex property inclusion 

axioms. It also includes new constructors to gain syntactic freedom; for example, it allows 

ontology designers to use DisjointUnion and DisjointClasses to express disjointedness in a 

more compact way (Golbreich, Wallace, & Patel-Schneider, 2009). Overall, OWL 2 has the 

expressivity of the DL language SROIQ(D) which is strictly more expressive than the DL 

language SHOIN(D) (Horrocks, Kutz, & Sattler, 2006). 

4.1.2 OWL 2 Standard Profiles and Learning Ontologies 

In recent years, research on DL based ontology languages has paid an increasing attention to 

identifying sublanguages to specify different types of application domains that require 

restricted expressivity. OWL profiles include subsets of OWL 2 constructors and are 
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designed for particular applications and reasoning tasks. As we can see, each OWL 2 

standard profile has been recommended for specific types of applications. We could not find 

any works in the literature that discuss the applicability of OWL 2 standard profiles to the 

learning domain. Therefore, as a starting point, it is worth analysing the OWL 2 constructors 

used in the proposed learning ontologies and investigate the required expressivity of the DL 

language which can be used to model this domain.   

4.2 Characteristics of the Corpus of Learning Domain Ontologies 

The corpus of the learning ontologies that we collected for our analysis consists of 14 

ontologies (Table 4.1). Twelve of these ontologies are publicly available and have been 

developed by researchers for use at different institutions. In addition to these 12 ontologies, 

the corpus includes two ontologies that we have developed for Charles Sturt University 

(CSU) and Macquarie University (MQ). This section describes the characteristics of this 

corpus. 

Table 4.1: The corpus of learning ontologies 

# Ontology File Name Institution 

1 university.owl Manchester University 

2 univ-bench.owl Lehigh University 

3 AIISO schema-20080925.owl Talis Information Ltd 

4 swrc_v0.3.owl University of Karlsruhe 

5 TMDU.owl Tokyo Institute of Technology 

6 HU.owl Tokyo Institute of Technology 

7 TITech.owl Tokyo Institute of Technology 

8 ecs.owl University of Southampton 

9 AcademicInstitute.rdfs University of Aberdeen 

10 lom.owl University of Alcala, Pontifical University of Salamanca 

11 HERO_ONTOLOGY_V 

25.06.2013.owl 

M’hammed Bouguerra Boumerdès University 

12 instOntology.owl Indian Statistical Institute 

13 CSU_Ontology.owl Charles Sturt University 

14 MQ_Ontology.owl Macquarie University 

4.2.1 RDF/RDFS and OWL/OWL 2 Ontologies 

We identified a number of learning ontologies in OWL/OWL 2 format and in RDF/RDFS 

format in the open domain. Only one RDF/RDFS ontology (AcademicInstitute.rdfs) was 

included in the corpus. This might be because RDF/RDFS is not very expressive and has 
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been outdated by OWL/OWL 2 in recent years. We came across many other learning 

ontologies discussed in research papers; however, they were not included in the corpus, 

because we do not have access to the full ontologies.  

4.2.2 Syntax of OWL 2 Ontologies  

The ontologies in our corpus use three different syntaxes: OWL/XML syntax, OWL 

functional-style syntax and Turtle syntax. Although the choice of the syntax provides some 

flexibility for the ontology designer, it makes searching for OWL/OWL 2 constructors in the 

corpus difficult.  

For our analysis, we searched for OWL/OWL 2 constructors in all these three different 

syntaxes. The most commonly used syntax in our corpus is based on OWL/XML. This makes 

the ontologies machine-readable but also very verbose. For example, the university.owl 

ontology uses the constructor rdf:subClassOf(C1, C2) to state that an artificial intelligence 

student (AIStudent) is a computer science student (CS_Student) as in (Figure 4.1).  

<owl:Class rdf:about=”http://www.mindswap.org/ontologies/debugging/university.owl#AIStudent”> 

<rdfs:subClassOf 

rdf:resource=”http://www.mindswap.org/ontologies/debugging/university.owl#CS_Student”/> 

</owl:Class> 

Figure 4.1: A class defined in OWL/XML syntax 

The same statement can be expressed more concisely in the DL notation (6) or in the OWL 2 

functional-style syntax (7): 

 AIStudent ⊑ CS_Student  (6) 

 SubClassOf(:AI_Student :CS_Student) (7) 

Similarly, the uni-bench.owl ontology uses the constructor ObjectProperty(C1, C2) to state 

that a person has got a degree from a University as in (Figure 4.2). This statement can also be 

written in functional-style syntax as shown in (8) below:  

 degreeFrom(:Person :University)  (8) 
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Figure 4.2: An object property defined in OWL/XML syntax 

In the following discussion, we present our examples in the DL notation or in the OWL 2 

functional-style syntax. 

4.2.3 Use of RDF Constructors in OWL /OWL 2 Ontologies 

All ontologies of the corpus include OWL/OWL 2 constructors. In addition, some ontologies 

include RDF/RDFS constructors as well. RDF/RDFS constructors are used to specify domain 

information that refers to RDF resources (Carroll, Herman, & Patel-Schneider, 2012). For 

example, some named classes are defined with the help of the OWL 2 constructor owl:Class. 

Some named classes that are RDF resources are defined with the help of the RDF/RDFS 

constructor rdfs:Class. In addition to rdfs:Class, a number of additional RDF/RDFS 

constructors have been used in some ontologies; for example, rdf:DataType, rdfs:subClassOf, 

rdfs:subPropertyOf, etc. The reason for this is that Semantic Web languages are layered 

(W3C, 2013) and those at a higher level borrow constructors from those at a lower level to 

avoid redundancy (Carroll et al., 2012). 

4.3 Analysis of the Corpus and Findings 

This section provides a detailed discussion of our analysis of the corpus. In order to identify 

the OWL/OWL 2 constructors in the corpus, we used a pattern matching program. In the 

following, we discuss the usage patterns of OWL/OWL 2 constructors in the corpus and the 

DL expressivity of the corpus.  

4.3.1 The Usage Patterns of OWL/ OWL 2 Constructors in the Corpus 

Different OWL/OWL 2 constructors have been used within the corpus to express different 

aspects of the learning domain. We first identified whether each OWL/OWL 2 constructor 

was used in the corpus or not. If a constructor was used, then we recorded its location and its 

frequency. 

In this analysis, we used two main metrics to measure the usage of the constructors: a score 

and a frequency. Score (n) is the number of ontologies within the corpus where a given OWL 

2 constructor is used. Frequency (f) is the percentage of the use of a given OWL 2 constructor 

<owl:ObjectProperty rdf:ID="degreeFrom"> 

<rdfs:label>has a degree from</rdfs:label> 

<rdfs:domain rdf:resource="#Person"/> 

<rdfs:range rdf:resource="#University"/> 

</owl:ObjectProperty> 
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within the corpus. Frequency is calculated as (the total number (sum) of occurrences of a 

given constructor within the corpus)/(the total number of occurrences of all the constructors 

in the corpus)*100. Both metrics are required, because a particular constructor may have 

been used a lot in a large ontology whereas the same constructor may have not been used 

much in a small ontology (Power & Third, 2010). For example, the constructor 

disjointClasses(C1 Cn) has a frequency of 8.85% (sum=544) whereas the constructor 

dataProperty(P1 Pn) has a frequency of 16.79% (sum=1032) (Table 4.2). However, the score 

for both constructors is 9, since they occur in the same number of ontologies. We have 

observed that most of the constructors that have higher scores also have higher frequencies.  

Table 4.2: Commonly used and infrequently used OWL/ OWL 2 constructors in the corpus 

Each OWL/OWL 2 constructor used in an ontology corresponds to a specific DL constructor. 

The corpus also includes multiple OWL/OWL 2 constructors that correspond to the same DL 

Commonly used OWL 2 constructors 

# OWL 2 Constructor/s DL Syntax DL Example n f sum 

1 Class(C) A, C, D CS_Student 14 12.27 754 

2 
SubClassOf(C1 C2) C ⊑ D 

CS_Student ⊑  

Student 
14 12.41 763 

3 ObjectProperty(P) P advisorOf 12 10.85 667 

4 DisjointClasses(C1 C2)  

DisjointClasses(C1 Cn) 
C1⊔…⊔Cn AI_Student ⊔ HCI_Student 9 8.85 544 

5 rdfs:DataType(), DataProperty(D),  

DataTypeProperty() 
D 

hasTenure Boolean,  

NonNegativeInteger 
9 16.79 1032 

6 SubObjectPropertyOf(P1 P2),  

SubPropertyOf(P1 P2) 

H - Role 

hierarchy  

doctoralDegreeFrom 

⊑ degreeFrom 
8   5.60 344 

Infrequently used OWL 2 constructors 

# OWL 2 Constructor/s DL Syntax DL Example n f sum 

7 SomeValuesFrom(P C),  

ObjectSomeValuesFrom(P C) 
∃P.C ∃hasAdvisor.PhDStudent 7 1.59 98 

8 AllValuesFrom(P C), 

ObjectAllValuesFrom(P C) 
∀P.C ∀takesCourse.CS_Course 6 1.40 86 

9 owl:Thing ┬ Class: Thing 7 1.09 56 

10 ObjectIntersectionOf(C1…Cn), 

IntersectionOf(C1…Cn) 
C1⊓…⊓Cn 

CS_Department ⊓ 

hasResearchArea.AI 
6 1.27 78 

11 MaxCardinality(n R D), 

MinCardinality(n R D), 

ExactCardinality(n R D) 

(≥nR) 

(≤nR) 

≥3 takesCourse.CS_Course ≤ 

1 takesCourse.CS_Course 
6 1.16 71 

12 
EquivalentClass(C1…Cn), 

EquivalentClasses(C1…Cn) 
C1 ≡ C2 

AI_Academic ≡ 

CS_Department ⊓ 

hasResearchArea.AI 

6 0.86 53 

13 ObjectUnionOf(C1…Cn),  

UnionOf(C1…Cn) 
C1⊔…⊔Cn 

owl_SemanticLink ⊔ 

oc_SemanticLink 
6 0.57 35 

14 InverseObjectProperties(P1 P2),  

InverseOf(PN) 
P- advisorOf - ≡  hasAdvisor 8 0.46 28 

15 ObjectHasValue(P a), 

DataHasValue(R v),  hasValue(), 

ObjectOneOf(a1...an), oneOf 

∃R.{x}, 

{x1,…, xn} 

∃hasResearchArea.{AI}, 

{A26, A27} 
4 0.23 14 

16 
TransitiveObjectProperty 

P transitive 

role 

SubOrganisation of is a 

transitive role 
4 0.18 10 
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constructor with a specific DL expressivity. We list OWL/OWL 2 constructors found in the 

corpus with the corresponding DL syntax (Table 4.2). In our work, some counts (n) were 

taken on individual constructors and some on OWL 2 constructor groups, each of which 

corresponds to a specific DL constructor. For example, the three OWL 2 constructors for 

qualified cardinality restriction that are given in Section 4.4 correspond to a single DL 

constructor of qualified cardinality restriction (Q).  Again, both RDF/RDFS constructor 

rdfs:Class and OWL/OWL 2 constructor owl:Class refer to the same DL constructor of 

Atomic Concept (A).   

Based on the score and frequency of OWL 2 constructors or constructor groups, we found 

that there are three identifiable categories of constructors: 1) commonly used constructors, 2) 

infrequently used constructors, and 3) unused constructors. In the following subsections, we 

discuss each of these categories of constructors in more detail. 

Commonly used OWL/OWL 2 Constructors  

Our analysis shows that some OWL/OWL 2 constructors have been commonly used in a 

majority of ontologies. The OWL 2 constructors or constructor groups that have a score of 

greater than or equal (≥) to 8 and a frequency of greater than (>) 5% were included in this 

category (Table 4.2). The constructors Class() and SubClassOf(C, D) have the highest score 

of 14 and frequencies of 12.27% and 12.41%, respectively. The constructor 

SubPropertyOf(P1 P2) has the smallest score of 8 within this category and a frequency of 

5.6%.  

Infrequently used OWL/ OWL 2 Constructors  

In our analysis, we have also identified a set of infrequently used OWL/OWL 2 constructors. 

These OWL/OWL 2 constructors or constructor groups have a score of less than (<) 8 and a 

frequency of less than (<) 5% (Table 4.2). They also have a low sum that is below 100. These 

measures show that infrequently used OWL/OWL 2 constructors are not required much 

within the corpus. Furthermore, all these OWL/OWL 2 constructors have a frequency below 

2% and some of them have frequencies even below 1% (Table 4.2). 

Unused OWL/OWL 2 Constructors  

OWL 2 provides many constructors to specify concepts, object properties, and data type 

properties. However, we have found that some OWL/OWL 2 constructors are not used within 

the corpus; for example, object and data complement constructors: ObjectComplementOf() 
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and DataComplementOf(). None of the ontologies in the corpus specified individual values 

and reflexivity. Furthermore, the ontologies in the corpus did not use some of the data and 

object properties. More details of the unused OWL/OWL 2 constructors are provided in 

Section 5.2. 

4.3.2 The Expressivity of Learning Domain Ontologies of the Corpus 

We can measure the diversity of an ontology based on the number of different OWL/OWL 2 

constructors used in a single ontology. A higher diversity means that a wide variety of 

OWL/OWL 2 constructors is used in that ontology. However, it is possible that some 

OWL/OWL 2 constructors or constructor groups are slight variations that refer to the same 

DL constructor. In such a situation, the DL expressivity of the ontology would not change. 

For example, all the OWL 2 constructors on qualified cardinality restrictions refer to the 

same DL expressivity (Q). Based on the different types of OWL/OWL 2 constructors used in 

each ontology of the corpus, we identified the DL expressivity of these ontologies (Table 

4.3).  

Table 4.3: An analysis of the expressivity of the corpus 

# Ontology File Name Diversity FL- R+ H I N/Q O D Expressivity 

1 TMDU.owl 11 √      √ FL-(D) 

2 TITech.owl 12 √      √ FL-(D) 

3 HU.owl 11 √      √ FL-(D) 

4 AcademicInstitute.rdfs 9 √  √    √ FL-H(D) 

5 swrc_v0.3.owl 31 √   √   √ FL-I(D) 

6 AIISO schema-

20080925.owl 

21 √  √ √   √ FL-HI(D) 

7 univ-bench.owl 21 √ √ √ √   √ FL-R+HI(D) 

8 MQ_Ontology.owl 27 √ √ √ √ Q  √ FL-R+HIQ(D) 

9 CSU_Ontology.owl 23 √ √ √ √ Q  √ FL-R+HIQ(D) 

10 HERO_ONTOLOGY_V 

25.06.2013.owl 

13 √   √ Q √ √ FL-OIQ(D) 

11 ecs.owl 21 √  √  N √ √ FL-HON(D) 

12 instOntology.owl 22 √   √ N √ √ FL-OIN(D) 

13 lom.owl 32 √   √ N √ √ FL-OIN(D) 

14 university.owl 32 √ √  √ N √ √ FL-R+OIN(D) 

The diversity of the ontologies in the corpus varies from nine to 32, whereas their 

expressivity varies from FL-(D) to FL-R+ION(D). Still, we further analysed the usage of 
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OWL/OWL 2 constructors used in the corpus to reveal a broader view of the OWL/OWL 2 

constructors contained within it. 

All the learning ontologies of the corpus include OWL/OWL 2 constructors that refer to the 

Frame Language (FL-). FL- includes intersection of concepts, value restrictions and simple 

existential quantification (Baader et al. 2003). FL- is a sublanguage of the Attributive 

Language (AL) that is obtained by disallowing atomic negation from AL (Baader et al. 2003). 

AL includes the features of atomic concept, universal concept, bottom concept, intersection, 

value restriction, limited existential quantification and atomic negation (Baader and Nutt 

2003). If full negation/complement (C) is included, then we derive the DL language ALC.  

We have found that transitive roles (R+) were included in four ontologies of the corpus (Table 

4.3), which means that their expressivity corresponds to the DL language S (ALCR+), 

provided that complement is included. Also, six of the learning ontologies of the corpus 

include role hierarchy (H). Inverse properties (I) are used in nine ontologies. Number 

restriction (N) or qualified number restriction (Q) is included in four ontologies. Constructors 

that refer to nominals (O) were found in five ontologies. Finally, all the ontologies of the 

corpus include data types (D). These language features result in higher expressivity. In short, 

our analysis shows that the corpus includes ontologies with a range of expressivities. Also, it 

is worth studying the expressivity of the corpus in comparison to the OWL 2 standard 

profiles.  

4.4 A Comparison of Constructors in the Corpus and OWL 2 RL Profile 

The OWL 2 RL profile includes a subset of OWL 2 constructors recommended by the W3C. 

In this section, we compare the constructors of the OWL 2 RL profile with those of the 

corpus. We check which OWL 2 RL constructors are used in the corpus and which are not. 

4.4.1 OWL 2 RL Constructors Used in the Corpus 

The corpus includes OWL 2 RL constructors that belong to different categories. However, in 

some situations, the corpus includes ‘old’ OWL constructors as well. These old OWL 

constructors are the predecessors of the OWL 2 RL constructors and each of these old OWL 

constructors and its corresponding OWL 2 constructor refer to the same DL constructor. 

Hence, in cases where an old OWL constructor was found, it was interpreted as an OWL 2 

constructor. 

Predefined Class Expressions 
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All predefined class expressions of OWL 2 RL, except the empty class owl:Nothing, were 

found in the corpus. The universal class (or top concept in DLs) owl:Thing is used as the 

superclass of all the other classes. The universal class owl:Thing includes all the individuals 

of an ontology. For example, in the instOntology.owl ontology, the class expression in (9) 

specifies that the class Research_Interest is a subclass of the universal class owl:Thing.  

 SubClassOf(:Research_Interest owl:Thing) (9) 

Therefore, according to (6), instances (individuals) of the class Research_Interest become 

individuals of the universal class owl:Thing as well. The concepts in a domain are defined as 

named classes. In the above example, Research_Interest is a named class that is specific to 

the instOntology.owl learning ontology.  

Boolean Connectives and Enumeration  

The Boolean connectives intersection IntersectionOf() and enumeration OneOf() were found 

in both the OWL 2 RL profile and in the corpus. The connective IntersectionOf() has been 

used in the university.owl ontology. For example, the statement in (10) specifies that every 

artificial intelligence (AI) department is fully defined as a computer science (CS) department 

that has the research area AI.  

 EquivalentClasses(:AI_Dept ObjectIntersectionOf 

(ObjectHasValue(:hasResearchArea :AI) :CS_Department)) 
(10) 

Enumeration OneOf() has only been used in the ecs.owl ontology of the corpus with a single 

value for each enumeration: OneOf ("A27" ^^xsd:string), OneOf ("A41" ^^xsd:string) and 

OneOf ("A47" ^^xsd:string).  

Object and Data Property Restrictions  

Both the OWL 2 RL profile and the corpus include data property restrictions. The OWL data 

property constructors domain() and range() used in the university.owl ontology correspond to 

the OWL 2 RL data property constructors DataPropertyDomain() and DataPropertyRange(), 

and they can be directly substituted by them in an OWL 2 ontology. For example, the domain 

and range restrictions of the data property hasTenure can be specified as shown in (11). The 

data property constructors domain() and range() have also been used in the uni_bench.owl 

ontology to specify the domain and the range of the data property emailAddress. 

 Declaration(DataProperty(:hasTenure)) DataPropertyDomain(:hasTenure (11) 
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:TeachingFaculty) DataPropertyRange(:hasTenure xsd:boolean) 

All object property restrictions of the OWL 2 RL profile, except self-restriction 

ObjectHasSelf(), were found in the corpus. Universal quantification ObjectAllValuesFrom() 

was found in seven ontologies of the corpus and existential quantification 

ObjectSomeValuesFrom() in six ontologies of the corpus (Table 4.2). 

Individual value restriction ObjectHasValue() has been used in a few ontologies of the 

corpus. This restriction appears in the university.owl ontology twice. It is used to specify that 

AI is a research area of the computer science department as shown in (12) below.  

 ObjectPropertyAssertion(:hasResearchArea :CS_Department :AI); 

ObjectHasValue(:hasResearchArea :AI) 

(12) 

Again, it has been used to specify that a teaching faculty has no tenure as shown in (13) 

below. 

 ObjectPropertyAssertion(:hasTenure :TeachingFaculty :False) ; 

ObjectHasValue(:hasTenure :False) 

(13) 

The HERO Ontology also includes individual value restriction to specify three different 

situations. Firstly, it has been used to specify that a dean, who is a technical staff member, 

has a doctoral degree (14). 

 SubClassOf(:Dean :TechnicalStaff);  

SubClassOf(:Dean ObjectHasValue(:HasDegree :doctorate))) 

(14) 

Secondly, in the statement (15) below, it has been used to specify that a degree that is a 

deliverable is obtained by a doctorate.  

 SubClassOf(:Degree :Deliverable); 

SubClassOf(:Degree ObjectHasValue(:ObtainedBy :doctorate)) 

(15) 

Finally, in the statement (16) below, it has also been used to specify that a registrar who is a 

department staff member works with a chair.  

 SubClassOf(:Registrar :DepartmentStaff); 

SubClassOf(:Registrar ObjectHasValue(:WorksWith :Chair)) 

(16) 
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The individual value restriction ObjectHasValue() was also found in the instOntology.owl 

ontology. The statement (17) below specifies that a teacher who is a person has a PhD 

qualification.  

 SubClassOf(:Teacher :Person); 

SubClassOf(:Teacher ObjectHasValue(:hasQualification :PhD)) 

(17) 

Object and Data Property Expressions  

OWL 2 properties are used to state property expressions (Motik et al., 2009). A named object 

property expression can be used to connect the individuals of a domain. For example, the 

statement (18) below from the university.owl ontology specifies that an AI student has a 

professor in HCI or AI as an advisor.  

 Declaration(ObjectProperty(:hasAdvisor)); 

SubClassOf(:AIStudent ObjectSomeValuesFrom(:hasAdvisor 

:ProfessorInHCIorAI)) 

(18) 

The named object property expression hasAdvisor is used in (19) to specify that John has 

Peter as his advisor. 

  ObjectPropertyAssertion(:hasAdvisor :John :Peter)  (19) 

Similarly, a named data property expression can be used to connect an individual with a 

literal. For example, the statement (20) below from the university.owl ontology features a 

named data property expression hasTenure which is used to specify that Peter has tenure. 

 DataPropertyAssertion(hasTenure :Peter :True)  (20) 

Class Expressions  

A number of class expression constructors that are included in the OWL 2 RL profile were 

found in the corpus as well. As shown in (21) below, the class expression constructor 

SubClassOf() is used in the university.owl ontology to specify that computer science students 

are a subclass of students. 

 SubClassOf(:CS_Student :Student) (21) 
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The equivalent class expression constructor EquivalentClasses() as shown in (22) has been 

used in the university.owl ontology to specify that the class AI_Dept is equivalent to the class 

CS_Department which has AI as a research area. 

 EquivalentClasses(:AI_Dept ObjectIntersectionOf 

(ObjectHasValue(:hasResearchArea :AI) :CS_Department)) 
(22) 

In the university.owl ontology, it has also been stated that the class AssistantProfessor and the 

class Professor are disjoint as shown in (23).  

 DisjointClasses(:AssistantProfessor :Professor) (23) 

Object Properties 

In order to specify object properties, OWL 2 RL includes the subobject property constructor 

SubObjectPropertyOf(), the object property domain constructor ObjectPropertyDomain() and 

the object property range constructor ObjectPropertyRange(). Similarly, the corpus includes 

the uses of the following OWL property constructors: subPropertyOf (), PropertyDomain() 

and PropertyRange() to specify object and data properties. For example, in the uni_bench.owl 

ontology, it is stated that the object property doctoralDegreeFrom is a subobject property of 

degreeFrom, as shown in (24).  

 SubObjectPropertyOf(:doctoralDegreeFrom :degreeFrom) (24) 

Additional object property constructors were found in the corpus (Table 4.2). The OWL 

functional property constructor FunctionalProperty() that is similar to the OWL 2 RL 

functional object property constructor FunctionalObjectProperty() was found in both the 

ecs.owl ontology and the HERO_ONTOLOGY_V 25.06.2013.owl ontology. The statement in 

(25) specifies that each individual teacher is hired by at most one faculty.  

 FunctionalObjectProperty(:IsHiredBy)); 

ObjectPropertyDomain(:IsHiredBy :Teacher);  

ObjectPropertyRange(:IsHiredBy :Faculty) 

(25) 

The OWL inverse functional property constructor InverseFunctionalProperty() that is similar 

to the OWL 2 RL inverse object functional property constructor 

InverseFunctionalObjectProperty() was also found in the HERO_ONTOLOGY_V 

25.06.2013.owl ontology. For example, (26) states that the inverse of the property Teaches is 

functional in this ontology. 
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 InverseFunctionalObjectProperty(:Teaches) (26) 

The OWL transitive property constructor was found in the uni-bench.owl. The transitive 

property constructor TransitiveProperty() is similar to the OWL 2 RL transitive object 

property constructor TransitiveObjectProperty(). Using the TransitiveObjectProperty() 

constructor, the property subOrganizationOf is defined to be transitive (27).  

 TransitiveObjectProperty(:subOrganizationOf())  (27) 

Similarly, the university.owl ontology also includes the TransitiveObjectProperty() 

constructor  as shown in (28). It is used to specify that a university A is affiliated with 

another university C whenever A is affiliated with a university B and B is affiliated with C. 

 TransitiveObjectProperty(:affiliatedWith()) (28) 

Assertions 

Assertions provide facts about individuals (Smith, McGuinness, Volz, & Welty, 2004). Both 

the OWL 2 RL profile and the corpus include the uses of some constructors to make 

assertions about individuals or instances of OWL classes. The class assertion constructor 

ClassAssertion(C a) has been used in the corpus to specify the individuals of each class. For 

example, in the MQ_Ontology.owl ontology, the class assertion shown in (29) below states 

that ISYS114 is a unit.   

 ClassAssertion(:Unit :ISYS114) (29) 

The OWL 2 constructor ObjectPropertyAssertion(PN a1 a2) is used to create object property 

assertions. For example, in the Macquarie.owl ontology, the object property assertion shown 

in (30) states that the unit ISYS114 has particular lecture slides for Week 1.  

 ObjectPropertyAssertion(:hasLectureSlides :ISYS114 

:ISYS114LectureSlidesWk1) 
(30) 

Again, the data properties are asserted using the constructor DataPropertyAssertion(R a v). 

For example, the following assertion (31) states that the unit ISYS114 is worth 3 credit 

points. 

 DataPropertyAssertion(:creditPoints :ISYS114  "3"^^xsd:integer) (31) 
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4.4.2 OWL 2 RL Constructors Not Used in the Corpus 

Some of the constructors of OWL 2 RL were not found in the corpus. In the following, we 

discuss them in more detail and their potential use in learning ontologies. 

Class Expressions 

The constructor for pairwise disjoint classes DisjointClasses() is included in the OWL 2 RL 

profile, but it was not found in the corpus.  Also, even though many predefined class 

expressions of OWL 2 RL were found in the corpus, the empty class constructor (or the 

bottom concept in DLs) owl:Nothing was not found. The empty class constructor 

owl:Nothing is used to define terminal classes in a class hierarchy. 

Boolean Connectives and Enumeration  

The OWL 2 RL profile includes Boolean connectives for union: ObjectUnionOf() and 

DataUnionOf() and for complement: ObjectComplementOf() and DataComplementOf(). 

However, the corpus does not include these connectives or variants thereof: UnionOf() and 

ComplementOf(). In spite of that, the W3C has proposed three situations where union can be 

used (Motik et al., 2012).  

1. Union of data ranges can be used to create a new data range by combining two or 

more data types. For example, xsd:string and xsd:integer can be joined as shown in 

(32) below to create a new data range with both xsd:string and xsd:integer.  

 DataUnionOf(xsd:string xsd:integer) (32) 

2. A union of class expressions can be used to form a new class that contains all the 

individuals that are instances of at least one of those class expressions (Motik et al., 

2012). For example, the class expression in (33) could be used to create a new class 

that consists of all the individuals that are instances of either an assignment or a quiz.  

 ObjectUnionOf(:Assignment  :Quiz) (33) 

 

3. A disjoint union of class expressions states that a class is the pairwise disjoint union 

of one or many class expressions (Motik et al., 2012). For example, the assertion 

shown below in (34) states that each assessment is either an assignment or an exam. 

Also, each assignment is an assessment, each exam is an assessment, and nothing can 

be both an assignment and an exam.   
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 DisjointUnion(:Assessment :Assignment :Exam ) (34) 

The W3C shows that complement can be used in two different ways: to specify the 

complement of class expressions using the constructor ObjectComplementOf() and to specify 

the complement of data ranges using the constructor DataComplementOf() (Motik et al., 

2012). A complement of class expressions consists of all individuals that are not instances of 

that class expression. For example, the complement class expression in (35) specifies all 

those things that are not instances of the class Assignment.  

 ObjectComplementOf(:Assignment) (35) 

A complement of a data range can be specified using the constructor DataComplementOf() 

and consists of all the tuples of literals that are not contained in the given data range (Motik et 

al., 2012). For example, the statement in (36) describes literals that are not positive integers. 

 DataComplementOf(xsd:positiveInteger) (36) 

Object and Data Property Restrictions  

The self-restriction ObjectHasSelf() is included in OWL 2 RL, but it was not found in the 

corpus. A self-restriction includes an object property expression (OPE). In addition, self-

restriction includes all those individuals that are connected via an OPE to themselves (Motik 

et al., 2012). For example, the statements in (37) below specify that Mary loves herself.  

 ObjectHasSelf(:loves) ; ObjectPropertyAssertion( :loves :Mary :Mary ) (37) 

Even though OWL 2 RL includes all the OWL 2 RL data property restrictions, the corpus did 

not include any of them. OWL 2 RL includes data property restrictions that are similar to the 

object property restrictions except that there is no data property constructor for specifying 

reflexivity. 

Object Properties 

The OWL 2 RL profile allows for property chain inclusion; however, we did not find any 

examples in the corpus. For instance, in the statement shown in (38), the property chain 

inclusion constructor ObjectPropertyChain(OPE1 … OPEn)  can be used to specify that the 

extension of one object property expression is included in the extension of another property 

expression (Motik et al., 2012).  
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 SubPropertyOf(ObjectPropertyChain(:locatedIn :partOf ) :locatedIn)  (38) 

The equivalent object property constructor EquivalentObjectProperties(OPE1 ... OPEn) can 

be used to specify that all of the OPEs from 1 to n are semantically equivalent to each other 

(Motik et al., 2012). Therefore, in specifying domain information in an ontology, one OPE 

can be replaced with another OPE. For example, in the learning domain, this constructor 

could be used to state that the properties hasTeacher and hasLecturer are equivalent 

properties as shown in (39). 

 EquivalentObjectProperties(:hasTeacher otherOnto:hasLecturer) (39) 

Pairwise disjoint properties are also included in the OWL RL profile; however, they were not 

found in the corpus. The disjoint object property constructor DisjointObjectProperties(OPE1 

... OPEn) can be used to specify that all of the OPEs from 1 to n are pairwise disjoint (Motik 

et al., 2012). For example, in the learning domain, we could specify that the object properties 

hasFinalExam and hasAssignment are disjoint as shown in (40).  

 DisjointObjectProperties(:hasFinalExam :hasAssignment) (40) 

Reflexivity is an important property in general; however, the reflexivity object property 

constructor ReflexiveObjectProperty(OPE) of OWL 2 is not included in OWL 2 RL and was 

not found in the corpus. This constructor says that the OPE is reflexive. Hence, each 

individual that is connected by OPE refers to itself (Motik et al., 2012). Similarly, the 

irreflexivity object property constructor IrreflexiveObjectProperty(OPE) says that the OPE is 

irreflexive, that is, no individual is connected by the OPE to itself (Motik et al., 2012). For 

example, in the learning domain, we could specify that the object property prerequisiteOf() is 

irreflexive as shown in (41). 

 IrreflexiveObjectProperty(:prerequisiteOf) (41) 

The object property symmetry constructor SymmetricObjectProperty(OPE) states that the 

OPE is symmetric. That is, if x is connected to y by an OPE, then y is also connected to x by 

the same OPE. For example, in the learning domain, suppose that two particular subjects 

should be studied by a student in the same semester, then the OPE corequisiteOf could be 

used as shown in (42). 

 SymmetricObjectProperty(:corequisiteOf)) (42) 
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The object property asymmetry constructor AsymmetricObjectProperty(OPE) states that the 

OPE is asymmetric. That is, if x is connected by an OPE to y, then y cannot be connected to x 

by the same OPE. For example, in the learning domain if one unit is the prerequisite of 

another unit, then, the second unit cannot be the prerequisite of the first unit as shown in (43). 

 AsymmetricObjectProperty(:prerequisiteOf) (43) 

Assertions 

Assertions used to compare individuals (equality or inequality) such as SameIndividual(a1 ... 

an), DifferentIndividual(a1 a2) and DifferentIndividuals(a1 ... an) were not found in the corpus. 

The corpus did not include negative property assertions of the form 

NegativeObjectPropertyAssertion(P a1 a2) and NegativeDataPropertyAssertion(R a v) either. 

The reason for this could be that the corpus includes ontologies that are specific to each 

institution. However, the above assertions would be more useful to compare elements of 

different ontologies. For example, the statement in (44) implies that John Miller and the 

lecturer of ISYS332Lecturer are the same individual in the two different ontologies Onto-A 

and Onto-B. 

 SameIndividual(Onto−A:JohnMiller Onto−B:ISYS332Lecturer) (44) 

4.4.3 OWL 2 RL vs the Learning Domain 

Based on the above comparison between the constructors of the OWL 2 RL profile and the 

constructors used in the corpus, we observe that the corpus has fewer constructors than the 

OWL 2 RL profile. In particular, the OWL 2 RL profile includes all the different OWL 2 

constructors that are associated with nominals (O). In addition to many object property 

restrictions, data property restrictions and assertions can be used in an ontology based on the 

OWL 2 RL profile. However, the corpus did not include those OWL 2 RL constructors that 

relate to nominals as well as object property restrictions, data property restrictions and 

assertions. Also, the corpus did not include object properties such as reflexivity, irreflexivity 

and role disjointedness that contribute to the DL expressivity of R. Hence, we conclude that 

learning domain ontologies could be specified with a smaller set of OWL 2 constructors than 

those available in the OWL 2 RL profile. Such a subset of OWL 2 constructors may form an 

OWL 2 profile that is specific to the learning domain. 
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4.5 OWL 2 Learn Profile 

The new OWL 2 profile that we derived from the results of our analysis is called the OWL 2 

Learn profile. The OWL 2 Learn profile includes the commonly used constructors of the 

corpus and some others that are infrequently used. We also include some OWL 2 constructors 

that are not used in the corpus. The inclusion or exclusion of a constructor depends on four 

factors: 1) the count (n) and the frequency (f) of the constructor; 2) the relative importance of 

the constructors; 3) the possibility of representing a constructor in an alternative way; and, 4) 

the impact of the constructor on the computational complexity of the profile. 

4.5.1 The Constructors Included in the OWL 2 Learn Profile 

The constructors that are commonly used in the corpus have higher scores of count (n) and 

frequencies (f). This shows that the commonly used constructors are required in many 

situations of the learning domain. Many infrequently used constructors are also included in 

the profile. The rationale for this is that some infrequently used constructors have a higher 

relative importance than some other infrequently used constructors. The constructor 

AllValuesFrom() is required to specify various basic situations of the domain. For example, 

in the university.owl ontology, the constructor AllValuesFrom() is used to specify that all the 

courses taken by students in the computer science department are computer science courses 

(see Table 4.2).  

The inclusion of InverseObjectProperty() constructor provides the flexibility of navigating 

through an ontology in either direction of the OPE. For example, the OPE hasResource() has 

the inverse property isResourceOf(). Therefore, we can find the learning resources of a given 

unit using the OPE hasResource() as well as the unit for which the learning resources are 

provided. The use of the inverse property makes query-answering on a learning ontology 

easier. 

Qualified cardinality restrictions are also infrequently used. They are more specific than non-

qualified cardinality restrictions. Qualified cardinality restrictions clearly qualify what objects 

or data the restrictions are imposed on. Hence, specific results can be generated in query-

answering. For example, the qualified cardinality constructor MaxCardinality() of OWL has 

been used in the university.owl ontology. For example, the statement (45) specifies that a 

teaching faculty can take a maximum of 3 computer science courses. The OWL constructor 

MaxCardinality() corresponds to the OWL 2 RL constructor ObjectMaxCardinality(). 
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 MaxCardinality (3 :takesCourse :CS_Course) (45) 

The transitive object property constructor TransitiveObjectProperty() is infrequently used but 

it is included in the OWL 2 Learn profile. Transitivity cannot be naturally expressed using 

other constructors. For example, the OPE subOrganizationOf() as shown in (46) of the uni-

bench.owl ontology defines a transitive relationship between organisations. We can specify 

that every department is a suborganisation of a faculty and every faculty is a suborganisation 

of a university in the following way. 

 TransitiveObjectProperty(:subOrganizationOf); 

ObjectPropertyDomain(:subOrganizationOf :Organization);  

ObjectPropertyRange(:subOrganizationOf :Organization);  

subOrganizationOf(:Department :Faculty);  

subOrganizationOf(:Faculty :University) 

(46) 

Another relevant example would be the prerequisite relationships between units of study 

where enrolment at certain units may require the completion of some other units. The 

transitive object property prerequisiteOf() is used in the statements (47) below to specify that 

the unit COMP115 is a prerequisite of the unit COMP125 and the unit COMP125 is a 

prerequisite of the unit COMP225. 

 TransitiveObjectProperty(:prerequisiteOf); 

prerequisiteOf(:COMP115 :COMP125);  

prerequisiteOf(:COMP125 :COMP225) 

(47) 

4.5.2 Inclusion of Unused Constructors 

As we discussed above, some OWL 2 constructors have not been used to express the domain 

knowledge in the corpus. However, some of them would seem to be required to specify 

specific domain knowledge. It could also be possible that some unused OWL 2 constructors 

may become useful to specify particular information of a future learning domain ontology. 

Therefore, we consider a few unused OWL/OWL2 constructors as candidates for inclusion in 

the OWL 2 Learn profile. 

The OWL 2 constructor ObjectComplementOf() was not found in the corpus. However, the 

derived constructor SubClassOf() is found in the corpus and can be defined by means of 
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disjunction and negation. That means, the OWL 2 constructor ObjectComplementOf() is 

indirectly an element of the OWL 2 Learn profile. Also, we include some additional 

datatypes in the OWL 2 Learn profile which were not found in the corpus (xsd:decimal, 

xsd:integer, xsd:long, xsd:int, xsd:float, xsd:double, xsd:string, xsd:Boolean, xsd:dateTime). 

Inclusion of these datatypes does not increase the expressivity of the profile, but they offer 

more syntactic freedom and flexibility for the ontology engineers. 

4.5.3 The Excluded Constructors  

A number of OWL 2 constructors are excluded from the OWL 2 Learn profile. Many of them 

are not used in the corpus and some are infrequently used. Reflexive and irreflexive object 

properties, symmetric and asymmetric object properties are some of those excluded 

constructors. We think that those excluded constructors would rarely be required to specify 

an ontology in the learning domain.  

Another main group of OWL 2 constructors that are excluded from the OWL 2 Learn profile 

are nominals. The OWL 2 constructors that refer to nominals are: ObjectOneOf(), 

DataOneOf(), ObjectHasValue() and DataHasValue(). They have been used only in three 

ontologies of the corpus. Even though the inclusion of nominals gives the ontology designers 

more syntactic freedom, it increases the computational complexity. While OWL 2 RL 

includes nominals, nominals have been excluded from several Semantic Web languages and 

are not used in some ontologies. For example, nominals have been excluded from the DL 

ontology proposed by Kepler et al. (2006). The DL reasoner RacerPro approximates 

nominals by atomic concepts (Haarslev et al., 2012).  

With respect to the learning domain, we propose that domain information provided with the 

value constraint hasValue() can instead be specified using a primitive class. For example, in 

the university.owl ontology, the nominal AI could be replaced by a primitive class 

ResearchArea. Similarly, the uni-bench.owl and lom.owl ontologies also use nominals to 

specify domain information that can also be expressed using primitive classes.  

4.5.4 The Expressivity of the OWL 2 Learn Profile 

The expressivity of a DL language is determined by the DL constructors included in that 

language. Hence, to identify the expressivity of the OWL 2 Learn profile, we list each OWL 

2 constructor or constructor group together with the corresponding DL constructor (Table 

4.4).  
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Accordingly, the OWL 2 Learn profile consists of all the afore-mentioned included OWL 2 

constructors and is more expressive than the DL language ALC. The profile includes 

transitive properties (R+) which lift the expressivity to the DL language S (ALCR+), plus 

several other DL constructors that further increase the expressivity of the profile to 

SHIQU(D). Since the symbol C for complement can be used in place of the symbols UE for 

union and existential quantification (Baader et al. 2003), the DL expressivity of OWL 2 

Learn becomes SHIQ(D). 

We note that the OWL 2 Learn profile (SHIQ(D)) has a different expressivity, to OWL 2 RL 

(a fragment of SROIQ(D)). Still, it can be used to specify all the learning ontologies of the 

corpus. The three ontologies: university.owl, uni-bench.owl and lom.owl that include 

nominals can also be specified in OWL 2 Learn with minor changes by converting the 

nominals to instances of primitive concepts.  

Table 4.4: The Constructors of the OWL 2 Learn profile 

# OWL 2 Constructor/s DL Constructor/s DL Language 

1 Thing, Nothing Top - ⏉, Bottom - ⏊ 
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2 Class Atomic Concept - A 

3 ObjectIntersectionOf  Conjunction - ⊓ 

4 ObjectAllValuesFrom  Universal Restriction- ∀ 

5 ObjectSomeValuesFrom  
Limited/Full Existential 

Restriction  - ∃ 

6 ObjectProperty  Atomic Role – R  

7 ClassAssertion, ObjectPropertyAssertion Assertions C(a), R(b, c) 

8 ObjectComplementOf Negation - ¬   

9 TransitiveObjectProperty    Transitive Role - Tr (R) R+ 

10 
SubObjectPropertyOf 

SubDataPropertyOf    
Role Hierarchy - H H 

11 InverseObjectProperties Inverse Role - I I 

12 
{Object/Data}Max/Min/Exact 

Cardinality 

Qualified Cardinality 

Restrictions - Q 
Q 

13 DisjointClasses Disjunction - ⊔ U 

14 
DataProperty, DataPropertyAssertion, 

xsd:{integer, string, …} 

Data {Types, Values}  

(D) 
D 

Expressivity of the OWL 2 Learn Profile SHIQ(D) 

OWL 2 corresponds to a more expressive DL language SROIQ(D) (Horrocks et al., 2006). 

The OWL 2 RL profile supports all axioms of OWL 2 except the two constructors: disjoint 
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unions of classes (DisjointUnion) and reflexive object property axioms 

(ReflexiveObjectProperty). The OWL 2 RL has additional syntactical constrains on axioms to 

support implementing the rule-based reasoning systems. These restrictions are made to avoid 

inferring the existence of individuals that are not explicitly present in the knowledge base and 

to avoid nondeterministic reasoning (Motik et al., 2012). OWL DL has a very high DL 

expressivity of SHOIN(D) which has a complexity that is undecidable (Hitzler & Parsia, 

2009). All the standard OWL 2 profiles (EL, QL and RL) are strict subsets of OWL DL 

(Motik et al., 2012).  

OWL 2 RL is considered as a tractable fragment of Horn Logic of the DL language SROIQ 

without existential quantification (Krötzsch, Rudolph, & Hitzler, 2013). The Horn Logic has 

the limitation of its inability to represent disjunctive information. However, it has the 

advantage of refutation (Hustadt, 2005). Horn-SHIQ that has a lower complexity, P-complete 

and that does not include disjunction, has been introduced in (Hustadt, 2005). On the other 

hand, Horn-SHIQ is not a subset OWL DL as it includes qualified cardinality restriction that 

is outside OWL DL. The DL Horn-SHIN that is obtained by excluding quantified cardinality 

restriction (Q) becomes a subset of OWL DL. 

In terms of DL complexity Horn-SHIN becomes an ideal subset of OWL DL. The DL, SHIQ 

has higher complexity than Horn-SHIQ and it is data complete for NP and it can jump to a 

much higher complexity of EXPTIME-complete for KBs with large ABoxes.  

According to the constructors used in the corpus of learning ontologies OWL 2 Learn profile 

has the expressivity of SHIQ(D). When we compare the expressivity of OWL 2 Learn profile 

with Horn-SHIN, we identify the below differences and similarities listed in Table 4.5. 

If a lower complexity is to be achieved with Horn-SHIN we need to exclude negation, 

disjunction, existential quantification and qualified cardinality restriction. Exclusion of 

negation does not create a problem as none of the learning ontologies in the corpus include 

negation. However, the exclusion of disjunction, existential quantification and qualified 

cardinality restriction is not possible as we are unable to restrict the ontology engineers at 

different institutions to exclude those constructors. Hence, we stick to the OWL 2 Learn 

profile with the expressivity of SHIQ(D). 
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Table 4.5: A comparison of Horn-SHIN and OWL 2 Learn profile 

Horn-SHIN OWL 2 Learn Profile (SHIQ(D)) 

Differences 

A subset of OWL DL Not a subset of OWL DL 

Excludes negation Includes negation  

Excludes disjunction Includes disjunction 

Excludes existential quantification Includes existential quantification 

Includes non-qualified cardinality restriction Includes qualified cardinality restriction 

Excludes data types Includes data types 

Has the complexity of P-complete NP-complete / EXPTIME-complete 

(for large ABoxes) 

Similarities 

Excludes Nominals Excludes Nominals 

Subset of OWL 2 Subset of OWL 2 

4.5.5 The Usage of the OWL 2 Learn Profile 

To demonstrate the usage of OWL 2 Learn profile, an excerpt of the MQ ontology is given in 

Appendix: Table A.2. The MQ ontology is compliant with the OWL 2 Learn profile. The 

excerpt includes different statements from the MQ ontology that use different OWL 2 Learn 

constructors from Table 4.4.  Firstly, the example includes the declaration of a class Person 

and a class AssessmentTask using the OWL 2 Learn constructor Class() as shown in (48).  

 Declaration(Class(:Person)) (48) 

Moreover, it includes the subclasses of the class Person and AssessmentTask. Secondly, it 

includes the declaration of some object properties such as hasPrerequsite as shown in (49) 

followed by other types of properties.   

 Declaration(ObjectProperty(:hasPrerequisite))  (49) 

Thirdly, the data property assignmentMark is declared as a subproperty of the property 

assessmentMark. Finally, a class assertion and an object property assertion is given. 

4.6 Discussion and Conclusion 

Our analysis shows that a corpus of 14 learning ontologies includes a subset of OWL 2 

constructors. This subset is different from the OWL 2 constructors in the OWL 2 RL profile. 

Predominantly, the OWL 2 RL profile includes all the nominal constructors whereas the 

corpus includes only a few occurrences of nominals. Those occurrences of nominals could 
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also be represented using primitive classes. Since the OWL 2 constructors of the corpus form 

a subset of the OWL 2 RL profile, we consider this subset as a new profile and call it OWL 2 

Learn profile. The OWL 2 Learn profile includes the great majority of the OWL 2 

constructors that are used in the corpus and is sufficient to build all the ontologies in it with 

small modifications.  

Our analysis includes a comparison of the OWL/OWL 2 constructors in the corpus with those 

of the OWL 2 RL profile. This comparison gives the ontology designers an insight into the 

use of OWL 2 constructors in existing learning domain ontologies. The new OWL 2 Learn 

profile has the expressivity of SHIQ(D) that is different from the expressivity of the OWL 2 

RL profile that is based on Description Logic Programs (DLP). Hence, the potential ontology 

designers may select a DL-based reasoner that supports OWL 2 RL, for reasoning and 

querying an OWL 2 Learn ontology. RacerPro has been optimised for reasoning in SHIQ(D) 

(Bock, Haase, Ji, & Volz, 2008) and would be an ideal candidate for a reasoning engine for 

the OWL 2 Learn profile as they have the same expressivity. However, any reasoner that has 

a higher DL expressivity than SHIQ(D) would suite OWL 2 Learn profile. Eleven reasoners 

that support OWL 2 DL have been listed in (Parsia, Matentzoglu, Gonçalves, Glimm, & 

Steigmiller, 2017) that could possibly be used as an OWL 2 Learn reasoner. In the next 

chapter we elaborate on how to develop an ontology for the learning domain and how an 

ontology-based e-learning system works with legacy databases? 
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Chapter 5: An Approach for Developing a Learning Ontology  

 

 

In Chapter 3 we gave an overview of developing a learning ontology mapping and a plug and 

play architecture for an adaptive e-learning system’s framework. In this chapter, we elaborate 

on developing a learning ontology. Firstly, we analyse the approaches and current tools for 

ontology development. Secondly, we introduce our approach to ontology development. 

Different approaches, methods, languages and tools used to develop an ontology have 

evolved over the last two decades. In the early work on ontology development topic maps 

have been used and one such work is found in (Pepper, 2007).  They propose a topic map for 

the Dublin Core metadata standard. Some of the learning ontologies have been modelled in 

UML class diagrams as explained in (Cranefield, Hausteiny, & Purvis, 2001). In parallel to 

these pictorial representations of the ontologies, formal methods such as FOL, DLs and Horn 

Logic have been utilised to model the domain ontology.  

We also notice a recent trend in the use of graphical software tools to model the learning 

ontologies. Some of the early ontology development tools including Protégé 2000, OilEd, 

OntoLingua, Apollo, OntoEdit, RDFedt, WebODE, and WebOnto (Youn and McLeod, 2006) 

had limited functionality. Over time, ontology development tools have been updated by the 

addition of different functionalities. That has made them versatile and enriched with different 

capabilities to perform different related tasks. Recent graphical ontology development tools 

such as Protégé has gained popularity and maturity due to the fact that it offers a range of 

functionality with a lot of plugins. It supports ontology development query-answering, 

reasoning, and ontology mapping. Here, we elaborate on approaches to ontology 

development and the use of a graphical tool for developing a learning ontology. 

The rest of this chapter is organised as follows. In Section 5.1, we analyse the current 

approaches to ontology development. Then, in Section 5.2, we analyse the current tools for 

ontology development. We introduce our approach to developing a learning ontology in 

Section 5.3 using a sample ontology for the learning domain.  
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5.1  Approaches to Ontology Development 

Approaches for ontology development have been proposed in the literature. Here we study 

them with the intention of identifying their notable features and adopting a methodology and 

a tool for developing ontologies for the learning domain.  

Early attempts in ontology development have been analysed in (Jones, Bench-Capon, & 

Visser, 1998). This analysis includes an early ontology development approach to develop the 

Toronto Virtual Enterprise (TOVE) ontology (Fox & Grüninger, 1997; Grüninger & Fox, 

1995). The methodology followed in (Uschold, 1996) includes four steps: identify purpose, 

identify scope, formalization and formal evaluation. The methodology that is proposed in 

KBSI IDEF5 (KBSI, 1994) includes five specific steps that includes ontology refinement and 

validation as an additional step: organising and scoping, data collection, data analysis, initial 

ontology development and ontology refinement and validation. The seven steps proposed in 

their methodology in (Fernández-López, Gómez-Pérez, & Juristo, 1997) includes evaluation 

and documentation as the last step. They are: specification, knowledge acquisition, 

conceptualization, integration, implementation, evaluation and documentation. The 

methodology to develop an ontology followed in Noy and McGuinness (2001) includes seven 

steps and has considered reuse as a step. Still, they have not considered refinement and 

validation. The steps they propose are: determine the domain and scope of the ontology, 

consider reusing existing ontologies, enumerate important terms in the ontology, define the 

classes and the class hierarchy, define the properties of classes - slots, define the facets of the 

slots, and create instances. In this methodology, Protégé has been used as the central tool for 

developing an ontology.  

The Product Family Ontology Development Methodology (PFODM) has been introduced in 

Nanda, Simpson, Kumara, and Shooter (2006). It includes four main steps: 1. Component 

lexicon analysis and pruning, 2. Formal contexts composition, 3. Concept hierarchy 

formulation using Formal Concept Analysis (FCA), 4. Product family ontology formation and 

enrichment using OWL. The methodology proposed in Li, Raskin, and Ramani, (2008) 

includes six steps: 1. preprocessing, 2. knowledge source, 3. knowledge source acquisition 

and maintenance, 4. concept tagging, 5. concept indexing, and 6. query processing. 

We consider the recent ontology development methods have focused on collaborative 

ontology engineering and a survey on them is reported in (Simperl & Luczak-Rösch, 2014). 

Collaborative ontology engineering has focused on ontology development processes, methods 
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and tools for an ontology engineering community which has members in diverse geographical 

locations, with different skills, knowledge and interests. An early work on collaborative 

ontology engineering is described in (Holsapple & Joshi, 2002). This methodology includes 

four phases and the initial ontology is developed by integrating the existing ontologies. Then, 

it is revised based on feedback received from the community.  

The requirements for supporting collaborative ontology development and the collaborative 

features of Protégé have been discussed in Tudorache, Noy, Tu, and Musen (2008). They 

have pointed out several collaborative features of Protégé. They have identified several 

positive collaborative features of Protégé and identified Protégé as a collaborative tool for 

ontology development. The users have found that no special training is required to use the 

collaborative features of Protégé. It is possible to link Protégé to an issue-tracker system to 

enable users to track the progress of the task assignments that have been made as part of a 

discussion. Protégé can easily be extended with new annotation types and users do not have 

to add annotations to changes, but annotate only ontology components where the rationale for 

changes is recorded. Discussions and questions on a class become easily visible and reaching 

a consensus is well facilitated (Tudorache, Nyulas, Noy, & Musen, 2013).  

When we consider an approach to ontology development, an ontology development tool is an 

indispensable part of it. So, in the next section we provide an analysis of the current tools for 

ontology development. 

5.2 Ontology Development Tools 

We found several surveys were conducted on ontology development tools over last two 

decades. An evaluation of the four ontology development tools: Protégé-2000, Chimaera, 

DAG-Edit and OilEd - has been done in (Lambrix, Habbouche, & Perez, 2003) in relation to 

bioinformatics. This evaluation has been carried out based on the literature and the tests done 

using the Gene Ontology (GO). The GO has been proposed as a dynamic and controlled 

vocabulary of genes and the biological functions that are shared by all the microbes that 

belong to the category eukaryotes (Ashburner et al., 2000). Lambrix et al. (2003) have 

concluded that none of the four systems is preferred. Each system has different strengths and 

weaknesses; and each is situation specific. It has been noted that, in comparison to the other 

systems, Protégé-2000 has strengths in: user interface, the extendability of the system using 

plug-ins, vast functionality with the plug-ins, and the ability to import and export the 

ontologies (Lambrix et al., 2003).  
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They also have noted that Chimaera has the strengths in its functionality that include merging 

and diagnosis, use of different formats to import and export ontologies, help functions, 

shortcuts offered for expert users and the ability for multiple users to work on the same 

ontology. However, its user interface has been identified as a main weakness. The authors 

also have identified some advantages of OilEd; use of a description logic-based model and 

the use of the FaCT reasoner for performing the reasoning tasks (ex: classification and 

checking the consistency of ontologies). DAG-Edit has specifically been built for GO 

ontologies and has the advantage of being easy to use and to learn the user interface (Lambrix 

et al., 2003). 

Followed by the above work, another survey on 14 ontology development tools in the area of 

ontology-based knowledge management has been done and is explained in Youn and 

McLeod (2006). They have claimed that the current tools have problems with interoperation 

and collaboration and have suggested the development of a next generation of tools, not only 

to overcome those problems, but also to support more capabilities. Their evaluation included 

the 16 ontology development tools: Protégé 2000, OilEd, Apollo, RDFedt, OntoLingua, 

OntoEdit (free version), WebODE, KAON, ICOM, DOE, WebOnto, Medius VOM, 

LinKFactory and K-Infinity. These tools have been evaluated on their support in import and 

export formats, interface, consistency checking, multi-user support, web support and support 

on ontology merge (Youn & McLeod, 2006). The authors point out that these ontology tools 

have the disadvantages of not being interoperable and not covering all the ontology life cycle 

activities. They also highlight a lack of interoperability between these tools. Hence, it 

becomes difficult or impossible to integrate ontologies developed using different tools into a 

single library or to merge two ontologies which have been built using different tools or 

languages (Youn & McLeod, 2006). 

The survey done in (Corcho, Fernández-López, & Gómez-Pérez, 2003) provides a review on 

methodologies, tools and languages that are available for building ontologies. Based on their 

review they propose to create a workbench for ontology development by integrating the 

currently available technologies. The aim of such an integrated workbench is to facilitate the 

different activities related to ontology development: development, exchange, evaluation, 

evolution and management, export ontologies to different ontology languages and to provide 

methodological support. 

An online survey has been used to evaluate the ontology development tools in (Khondoker & 

Mueller, 2010). This survey has aimed at finding the tools that are mostly used by the users 
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and the drawbacks of using those tools. This survey showed that Protégé has the highest 

popularity as an ontology development tool. According to this survey 24 out of 32 

participants were using Protégé. Also, a majority of the participants of this survey could learn 

Protégé in less than one month. Six out of 32 participants were using the three tools (two 

were using each tool): SWOOP, Internet Business Logic, and Top Braid Composer. The two 

tools: Onto track and IHMC Cmap Ontology Editor were used by a single participant each.  

In the literature we observed a recent trend in using the ontology tools for collaborative 

ontology development. Such collaborative ontology development is expected to support 

developing quality ontologies in distributed settings (Rospocher, Tudorache, & Musen, 

2014). Different collaborative features of WebProtégé has been discussed in (Tudorache et 

al., 2013). A quantitative analysis of the two Web-based modeling tools, WebProtégé and 

MoKi has been presented in (Rospocher et al., 2014). They have investigated the 

collaborative processes in ontology development in these two tools. They also provide an 

analysis of the user activity logs from both tools as a proof of collaborative ontology 

development in online settings. In another scholarly work described in (Paschke & 

Schäfermeier, 2013), a new design artifact called OntoMaven, based on the Maven-based 

development methodology, has been proposed. It also adapts the Maven-based concepts for 

developing Maven-based ontology and managing ontology artifacts in distributed 

repositories. 

The above analysis of literature shows that Protégé is the most popular tool used by the 

ontology research community. It offers user friendly interfaces and multiple features and 

capabilities using plugins. Plugins have been developed to enhance the capabilities of Protégé 

in ways including reasoning, query-answering, and modelling. Due to the above reasons, we 

selected Protégé to develop the learning ontologies in our work. In the following section we 

elaborate on our approach to developing a Learning Ontology. 

5.3 An Approach to Developing a Learning Ontology 

The approach we follow includes a process, some ontology development methods and tools 

that makes a methodology. Here, we use Protégé as the primary tool. Protégé includes many 

other tools such as reasoners, query interfaces and graphical modelling tools which are 

available as plugins.  

Developing learning ontologies and most of the other ontologies is a tedious task. Following 

a structured approach or a methodology would help to alleviate these problems. Each of the 
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approaches that we discussed above include a set of steps to develop an ontology. The 

process we follow is based on them and our approach consists of these steps: 

1. Analysis of the learning domain 

2. Modelling the learning domain 

3. Developing a learning ontology 

4. Formalising the learning ontology 

5. Evaluating the learning ontology 

We also follow and apply different methods associated with each step including: ontology 

modelling methods; ontology development methods; methods for formalising the ontology; 

and, ontology evaluation methods.  

We used domain ontology models (Lee & Mizoguchi, 1998) and a description logic (DL) 

(Baader et al., 2003) based ontology languages as the main techniques to present the domain 

knowledge. Domain ontology models are graphical representations which are semi-

structured, easy to understand and helpful during the elicitation of concepts and relations. 

DLs are used to formalise the ontology. In the next sections we use the Computing 

Department of Macquarie University as the sample domain of study. 

5.3.1 Analysis of the Learning Domain  

The learning domain analysis is typically done based on the information gathered during the 

analysis of institution-specific materials. In our work, we analyse the course handbook and 

the unit guides of learning institutions.  

Based on the domain analysis we identify the domain concepts, properties and constraints on 

the properties. In this work, we limit our study to the computing department of an institution. 

The concepts are primarily related to the programs of study, their units and the people 

working in computing departments. We also identified the concepts related to the lessons and 

the different learning resources related to the lessons that assists the learning process. We 

searched for the concepts which are associated to assessments of each unit. Besides that, we 

also used the sources to identify the institution-specific business rules that helped to identify 

the constraints on the properties. Some of the concepts that we found in the domain are in 

Table 5.1.  
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Table 5.1: Some domain concepts in MQ 

 # Concept # Concept 

1 Course (undergraduate, postgraduate, 

higher degree research) 

8 Lesson Delivery (lecture, tutorial, laboratory / 

practical) 

2 Unit (core, elective, people, capstone, etc.) 9 Topic list 

3 Unit description 10 Assessment tasks 

4 Unit guide   - assignment 

5 Unit aims    - tutorial submission 

6 Learning outcomes 11 Teaching staff 

7 Teaching and learning strategy 12 Learning resources (lecture slides, iLecture, 

notes, etc.) 

The concepts that we identified have their own attributes that describe the concepts. Some of 

the attributes that we found in MQ are in Table 5.2.  

Table 5.2: Attributes of some concepts in source documents of MQ 

Concept Attributes Concept Attributes 

Department Department name, faculty, 

location, head of 

department 

Teaching staff staff number, first name, last 

name, address, telephone number, 

department code 

Degree Program Program code, program 

name, program level, 

duration,  

Student Student number, first name, last 

name, address, telephone number, 

program code 

Semester Semester code, year,  Learning 

resource 

Resource id, resource title, type, 

unit code, author 

Unit Unit code, unit name, 

credit points,  

Assessment 

item 

Assessment number, type, unit 

code, due date, return date, weight 

Unit Offering Unit code, semester, 

availability 

Lesson 

delivery 

Unit code, lesson number, week 

number,  

We also identified the user profile attributes, their references on the learning resources (see 

Table 3.1). The preferences are named as preference attributes. The user preference attributes 

are associated to the metadata items of the learning resources. Hence, LOM items that are 

required to specify the learning resources are also identified (see Table 3.2).  

5.3.2 Modelling the Learning Domain   

We model the learning domain of Macquarie University based on our findings. We identify 

that some concepts in the learning domain includes inclusion relations between a parent 

concept and its child concepts. The inclusion relations are common in the learning domain 
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and some of the inclusion relations that we found in MQ are in Table 5.3. Some child 

concepts can have their own child classes that makes a deep concept hierarchy. For example, 

the concept People makes a deep concept hierarchy. 

Table 5.3: Some inclusion relations in MQ 

# Parent Concept Child Concepts 

1 Course  undergraduate, postgraduate, higher degree research 

2 Unit core, elective, people, capstone, People, etc. 

3 Assessment Assignment, final exam, etc. 

4 Learning resource Lecture slides, iLecture, note, reading material 

5 People Staff (teaching staff and admin staff), Students 

(undergraduate and postgraduate) 

Concepts in a domain have relations between them as well. They show the roles the concepts 

can play on another concept. A sample list of relationships that we found in MQ are in Table 

5.4. 

Table 5.4: Some relations between domain concepts in MQ 

 # Subject Role Object 

 1 Student registerIn DegreeProgram 

 2 Unit isPartOf DegreeProgram 

 3 Unit hasResource LearningResource 

 4 Unit hasAssessment Assessment 

 5 Unit hasTeachingStaff TeachingStaff 

 6 LearningResource hasAuthor  TeachingStaff 

 7 Student attends LessonDelivery  

 8 Unit includes  LessonDelivery  

 9 Semester hasOffering  UnitOffering 

10 UnitOffering isOfferingOf Unit 

5.3.3 Developing a Learning Ontology 

In this step, we elaborate on the development of the learning domain ontology for Macquarie 

University using the ontology editor Protégé4. Some classes include subclasses that makes a 

class hierarchy. In subsections below we elaborate on each step we followed to develop a 

sample learning ontology specific to MQ. Developing an institution-specific ontology has to 

be done in several steps. These include developing the concepts and concept hierarchies of 

                                                 
4 http://protege.stanford.edu/ 
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the domain, developing the object properties, data properties, property hierarchies and 

property constrains (Noy & McGuinness, 2001). 

Developing the concepts and concept hierarchies 

In Protégé learning concepts are represented as classes. These concepts and concept 

hierarchies in an e-learning system can be developed by adding the primitive classes and their 

subclasses.  

In MQ, ontology different types of learning resources can be organised as a hierarchy of 

classes. For example, Figure 5.1 shows that the classes ILecture, LectureSlides and Notes are 

subclasses of the class LearningResource that makes a hierarchy of classes due to the 

inclusion (kind-of or type-of) relations between them.  

 

Figure 5.1: The inclusion relations between learning resources in unit guides 

Again, in MQ ontology another example for inclusion relations exists between the classes 

AssessmentTask and Assignment; the class Assignment is a subclass of the AssessmentTask as 

shown in Figure 5.2. 

It is essential for the concepts in a domain to interact with each other to perform a task or to 

provide a service to the domain users. In Protégé these interactions between the concepts are 

shown as object properties. An object property includes a domain and a range. 

 

Figure 5.2: A class hierarchy of assessment tasks 

Developing the object properties (Roles) 

Protégé allows adding the object properties (roles) between the classes with a domain and a 

range. The class (subject) that initiates the role becomes the domain of the object property 
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and the other class (object) that the role is performed on becomes the range. For example, in 

the Figure 5.3 the object property hasAssessmentMethod has the class Unit as the domain and 

the class AssessmentTask as the range of it.   

  

Figure 5.3: An object property in the MQ learning ontology 

At the time of creating object properties we can create inverse properties of them as well. For 

example, when we create the object property hasAssessmentMethod we also create the 

inverse object property isAssessmentMethodOf as in Figure 5.4. The inverse properties allow 

navigation through the ontology in the opposite direction. For example, we can navigate from 

the Assessment to the Unit as Assessment isAssessmentMethodOf Unit. 

 

 

Figure 5.4: Inverse property: isAssessmentMethodOf 

Developing the data properties  

We create data properties that describe a class with a domain and a range. Domain of a data 

property is a class and range belonging to a data type. For example, in Figure 5.5 the data 

property assessmentType that describes an AssessmentTask is specified with its domain 

AssessmentTask and its range, xsd:string. Xsd:string and other data types that are used in 

OWL 2 have been borrowed from the XML Schema datatypes (Hitzler et al., 2012) and 

identified by the prefix xsd:. 

 

 

Figure 5.5: A data property in the MQ learning ontology 
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Creating the property hierarchies  

Some properties in a learning ontology include subproperties of them. Subproperties can be 

created in Protégé by adding a new property under an existing property. For example, the 

object property hasAssignment is a subproperty of the object property hasAssessmentItem. 

Unit is the domain of hasAssignment and Assignment is the range of it. These are created in 

Protégé as in Figure 5.6.  

 

 

Figure 5.6: An object property in the MQ learning ontology 

Adding Quantification 

When the properties are added to an ontology we can quantify the domain or range of the 

property with the quantifiers: some or all. OWL 2 includes the constructors 

ObjectSomeValuesFrom(), ObjectAllValuesFrom(), DataSomeValuesFrom() and 

DataAllValuesFrom() for specifying the quantification in an ontology. Quantification can be 

done in Protégé using class expression editor for a selected class. For example, to specify that 

a unit has some unit aims first, we select the class Unit. Then, we can see the class expression 

editor under the pane sub class of where we can specify that hasUnitAim(Unit some UnitAim) 

as in the Figure 5.7. 

 

 

Figure 5.7: Specifying quantification on unit aim 

Adding the property constrains 

An institution includes different constraints or rules enforced to ensure the smooth operation 

of it. In terms of ontology these constraints are added on properties. Object properties can 
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include different constraints on them including the cardinality constraints (min, max, exactly) 

that specify the number of instances of a class that can participate in that ObjectProperty. The 

OWL 2 includes the cardinality constraints maximumCardinality(), minimumCardinality(), 

exactCardinality(). For example, we specify the exact cardinality constraint on the object 

property isAssesmentMethodOf as in Figure 5.8. It specifies that an AssessmentTask can be an 

assessment method of exactly one Unit as shown in Figure 5.8. 

 

Figure 5.8: A cardinality constraint on an object property in the MQ learning ontology 

Other object property characteristics include functional properties, inverse functional 

properties, transitive properties, symmetric properties, asymmetric properties, reflexive 

properties and irreflexive properties that can be specified in Protégé using property 

characteristics as in Figure 5.9. 

 

Figure 5.9: Specifying property characteristics in Protégé  

However, according to OWL 2 Learn profile (see Chapter 4), we use only inverse property 

and transitive property in learning ontologies. Other property characteristics are not allowed 

in OWL 2 Learn profile. 

5.3.4 Formalising the Ontology 

Protégé provides a GUI for us to develop an ontology in a simple and easy to understand 

way. Even though an ontology developed on the GUI of Protégé is human readable it is not 
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machine readable. Protégé allows us to save an ontology in a specified ontology language. 

Ontology languages are based on formal knowledge representation methods such as DL that 

provides different constructs to specify the elements of an ontology. Formalising an ontology 

makes it both human readable and machine readable. We store the learning ontologies as 

OWL files. 

Formalising the ontology in a DL-based ontology language has several advantages. A 

reasoner can perform reasoning tasks such as checking the consistency on a formal ontology 

easily. Moreover, formal ontologies provide the basis for automated query-answering 

(Donini, Lenzerini, Nardi, & Schaerf, 1996; Horrocks et al., 1999). Concepts and instances 

that occur in an ontology can be searched for easily and the ontology can be extended by 

adding more contents. Also, when an ontology is in a formal language, and when it is updated 

with the new contents, a DL reasoner can recheck it for its consistency automatically.  

The sample ontology we use here is an OWL 2 Learn ontology. OWL 2 Learn profile offers 

certain formal constructs which can be used to establish the relationships between the 

concepts. Each OWL 2 Learn statement is either a part of the TBox of the ontology or part of 

the ABox of the ontology.  

In the next section we elaborate on developing the TBox and ABox of a learning ontology 

gradually in Protégé. Protégé allows us the save an OWL ontology in different ontology 

formats (functional, turtle, xml, etc.). We show forming the MQ ontology using the OWL 2 

functional-style syntax (Motik et al., 2012). The OWL 2 functional-style syntax provides an 

intuitive human-readable as well as machine-processable format to express the OWL 2 Learn 

constructs.  

Building the TBox 

Here we show how the TBox of an ontology is created in the backend of Protégé as a result 

of the tasks performed on its user interface in developing the MQ ontology.  

Classes and Class Hierarchies—When we create classes and class hierarchies in Protégé and 

save as an OWL file, they are saved as OWL 2 statements. For example, if we would 

consider the following statement (50) found in MQ ontology, it declares that 

LearningResource is a class. The subsequent statement in (51) defines an equivalent class to 

the class Unit.  

 Declaration(Class(ont:LearningResource)) (50) 
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 EquivalentClasses(ont:Unit   ObjectSomeValuesFrom(ont:partOf 

ont:DegreeProgram))  
(51) 

Concept hierarchies are built using the OWL 2 Learn constructor SubClassOf(). For example, 

the following statement in (52) specifies that the class Ilecture is a subclass of the concept 

LearningResource:  

 SubClassOf(ont:Ilecture ont:LearningResource) (52) 

Object Properties—Once the concepts are defined, the object properties or roles of the TBox 

concepts are defined as in (53) using the OWL 2 constructor ObjectProperty(). In this 

example, the object property hasPrerequisite is defined as an inverse property of 

isPrerequisiteOf and as a transitive property. The object property hasPrerequisite has the 

class Unit as the domain and the class Prerequisite as the range. 

 Declaration(ObjectProperty(ont:hasPrerequisite)); 

InverseObjectProperties(ont:hasPrerequisite  ont:isPrerequisiteOf);  

TransitiveObjectProperty(ont:hasPrerequisite);  

ObjectPropertyDomain(ont:hasPrerequisite ont:Unit);  

ObjectPropertyRange(ont:hasPrerequisite ont:Unit) 

(53) 

Data Properties—In the next step we show how the data properties of concepts are 

formalised by declaring them as OWL statements. For example, credit points of a Unit are 

declared as a data property of the type xsd:integer as in (54). Here the domain of the data 

property creditPoints is Unit and the range is xsd:integer.  

 Declaration(DataProperty(ont:creditPoints)); 

DataPropertyDomain(ont:creditPoints ont:Unit);  

DataPropertyRange(ont:creditPoints xsd:integer) 

(54) 

Quantification—Once the object properties and data properties are declared, quantifications 

are added to make restrictions on them. Quantification specifies whether some or all object 

properties participate in the relation. For example, we can specify that a unit has some unit 

aims as in (55).  
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 Declaration(ObjectProperty(ont:hasUnitAim)); 

ObjectPropertyDomain(ont:hasUnitAim ont:Unit);  

ObjectPropertyRange(ObjectSomeValuesFrom(ont:hasUnitAim 

ont:UnitAim)) 

(55) 

Cardinality Constraints—Formalizing the cardinality constraints can be done in OWL 2 with 

the constructors: maximumCardinality(), minimumCardinality(), exactCardinality(). In 

example (56) below we specify that AssessmentItem can be an AssessmentItemOf exactly one 

Unit. 

 (AssessmentItem exactCardinality(isAssessmentItemOf 1)) (56) 

Building the ABox 

Once the ABox is constructed, the instances of the concepts and the relations between the 

instances are added to the ontology on the interface. Then, Protégé defines them in OWL and 

saves in the repository.  

Adding Class Instances—Instances are created by giving the instance name and the 

associated concept name. For example, ISYS114 is an instance of the class CoreUnit as given 

in (57) and ISYS114IlectureWk1 is an instance of the class Ilecture as specified in (58): 

 ClassAssertion(ont:CoreUnit ont:ISYS114)  (57) 

 ClassAssertion(ont:Ilecture ont:ISYS114IlectureWk1) (58) 

Adding Relations—Relations between instances are created by using their names as the 

domain and range of the object property that relates the instances together. For example, the 

unit ISYS114 is related to ISYS114IlectureWk1 via the role name hasIlecture as in (59). In 

that ISYS114 becomes the domain of the object property hasIlecture and ISYS114IlectureWk1 

becomes the domain of it. 

 ObjectPropertyAssertion(ont:hasIlecture ont:ISYS114 

ont:ISYS114IlectureWk1) 
(59) 
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Formalising the User Profiles and Metadata Items  

The user preference attributes and learning object metadata items are organised separately 

and then linked with the learning ontology. In the subsections below we elaborate on how 

they are formally represented in OWL 2 by Protégé when they are saved in the repository.  

Formalising the User Profiles  

We include the user profiles as data properties in the learning ontology. In Protégé when the 

data property preferredDifficultyLevel is added as a user preference, a formal statement is 

inserted to the TBox of the learning ontology as in (60). This property is a subdata property 

of the data property preferredAttribute. The data property preferredDifficultyLevel includes 

domain and range restrictions. In the example in (60), all the instances of the domain of this 

property belong to the class Person and all the values of the range belong to the data type 

xsd:string: 

 Declaration(DataProperty(ont:preferredDifficultyLevel)); 

SubDataPropertyOf(ont:preferredDifficultyLevel   ont:preferredAttribute);  

DataPropertyDomain(ont:preferredDifficultyLevel ont:Person);  

DataPropertyRange(ont:difficultyLevel  xsd:string)  

(60) 

The relations between the students and the preference attributes are described in the ABox. 

For example, the relation between the student S42010013 and the preference attribute 

preferredDifficultyLevel, is declared in (61):  

 DataPropertyAssertion(ont:preferredDifficultyLevel ont:S42010013 

"easy"^^xsd:string) 
(61) 

Formalising Metadata Items 

The metadata items of the learning objects are also specified as data properties of the learning 

ontology for the MQ University. The following OWL 2 Learn statement in (62) is used in the 

TBox to define the difficultyLevel as a LOM attribute of a LearningResource:  

 SubDataPropertyOf(ont:difficultyLevel ont:lomAttribute); 

DataPropertyDomain(ont:difficultyLevel   ont:LearningResource);  

DataPropertyRange(ont:difficultyLevel xsd:string) 

(62) 
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The data property difficultyLevel allows for the instances that belong to the concept 

LearningResource in the domain, and for data values that belong to the data type xsd:string in 

the range. The data property difficultyLevel is then used in the ABox in the following way 

(63):  

 DataPropertyAssertion(ont:difficultyLevel ont: ISYS114LectureSlidesWk1 

"easy"^^xsd:string)  
(63) 

This relation connects the instance ISYS114LectureSlidesWk1 with the value easy that 

belongs to the data type xsd:string. 

However, building an ABox with all the instances of an institution is a tedious task. It 

demands lot of time and can lead to errors. Current e-learning systems utilize relational 

databases that store data related to entities, relationships and the attributes of the learning 

domain. If we can use these data in existing learning databases we can circumvent the burden 

of populating an ABox of a learning ontology with instances. Hence, in this architecture, we 

propose to automate the population of the ABox with instances by mapping a legacy learning 

database of an institution to a learning ontology.  This is discussed in Chapter 6.  

5.3.5 Evaluating the Learning Ontology 

Even though evaluation of an ontology is listed as the last step, an ontology can be evaluated 

at different stages of developing an ontology. After determining the scope for the learning 

ontology, we used a list of sample questions that the e-learning system should be able to 

answer to evaluate the initial domain ontology model. These questions help to check whether 

the ontology includes the relevant domain knowledge, the basic concepts, the concept 

hierarchy and the roles among them that are required to answer those questions. Table 5.5 

shows those questions and the ontology elements that are required to answer those questions. 

The ontology that was developed in the previous step is evaluated as the last step. The 

evaluation of an ontology could be done directly to check whether it has a complete and 

correct TBox and an ABox. When an ontology is evaluated directly, the classes, relations and 

constraints on them need to be checked. Also, the consistent use of the instances needs to be 

checked. An ontology can also be evaluated indirectly using some queries. Queries can be 

used to check the capabilities of the ontology to answer the queries. In evaluating ontologies 

using queries, the two criteria: recall and precision have been used in (Li et al., 2008). 
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Table 5.5: Questions to evaluate the initial learning ontology 

Precision = (number of retrieved relevant documents / number of retrieved documents) 

Recall = (number of retrieved relevant documents / number of relevant documents) 

In our work, we evaluate the learning ontologies using a set of queries on them. We elaborate 

on the evaluation of learning ontologies in Chapter 7 and Chapter 8. 

5.4 Discussion and Conclusion 

In this chapter, firstly we explored the different approaches and tools used for ontology 

development with the intention of identifying an approach to develop a learning ontology. 

Current approaches to ontology development includes benefits and problems specific to each 

approach. Current approaches include different processes followed, different methods and 

tools used. Some early approaches such as (Grüninger & Fox, 1995) did not consider 

evaluation of the ontology and some approaches like those explained in (Rector et al., 2004) 

have focused only on the development of an ontology. They did not discuss what is done 

before or after development of an ontology. However, some approaches such as (Uschold, 

1996) and (Fernández-López et al., 1997) have included ontology evaluation as an important 

step. As pointed out in (Simperl & Luczak-Rösch, 2014) we noticed that the current trend in 

ontology development is towards collaborative ontology development. Also, different tools 

# Query An example of axioms required to answer the query 

1 Show me the learning resources of 

ISYS114 that are on ‘understanding of 

the requirements gathering process’. 

learningResourceOf (ISYS114ILectureWk1 ISYS114) 

hasLearningOutcome (ISYS114ILectureWk1 understanding 

of the requirements gathering process) 

2 What prerequisites does COMP249 have? prerequisiteOf (COMP125 COMP249) 

 

3 Is COMP249 a core unit of the Software 

Technology major? 

hasCoreUnit (SW COMP249) 

CoreUnit(COMP249) 

4 Is COMP115 a prerequisite of 

COMP125? 

prerequisiteOf(COMP115 COMP125) 

5 Show me the different types of learning 

resources that COMP249 has? 

learningResourceOf(COMP249ILectureWk1 COMP249) 

ILecture(COMP249ILectureWk1) 

SubClassOf(ILecture LearningResource) 

6 What types of assessment tasks are there 

in ISYS114? 

hasAssignment (ISYS114 Assignment) 

SubClassOf(Assignment Assessment) 

7 What types of teaching staff are involved 

in ISYS114? 

hasTeachingStaff (ISYS114 DebbieRichards ) 

TeachingStaff (DebbieRichards) 
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have been proposed over time for ontology development and Protégé has gained popularity in 

the ontology community due to its extended features with plugins and user friendliness 

(Khondoker & Mueller, 2010).  

Based on our analysis of the current approaches we follow a blended approach with five steps 

that include ontology evaluation and develop learning ontologies in a similar way as 

explained in (Rector et al., 2004). We propose to use a set of queries to evaluate an ontology 

from an early stage. In our work, we use the ontology development tool Protégé in different 

steps. We demonstrated that the approach we followed helped us to develop learning 

ontologies that can be plugged to an adaptive e-learning system that we suggest. In the next 

chapter we elaborate on population of a learning ontology with the instances from the data in 

a legacy database. 
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Chapter 6: Mapping and Populating a Learning Ontology from a 

Legacy Database 

 

 

As we mentioned in the previous chapters manual population of an ontology is a tedious task. 

Besides that, the databases used in an institution include data that provides facts about the 

domain. Hence, in this chapter, we elaborate on our study on legacy database to learning 

ontology mapping with the intention of finding an appropriate approach to learning 

database(s) to a learning ontology. To do that, firstly we analyse the current approaches to 

database to ontology mapping. Secondly, we elaborate the approach we followed to map and 

populate a legacy database to a learning ontology. 

The interest in database to ontology mapping and transformation has also grown in the last 

decade. Research studies such as Protégé Ontop (Calvanese et al., 2015) and KARMA 

(Knoblock et al., 2012) have focussed on database to ontology mapping whereas others, such 

as DB2OWL (Ghawi & Cullot, 2007) and RDOTE (Vavliakis, Grollios, & Mitkas, 2013) 

have focussed on database to ontology transformation. There is a subtle difference between 

the database to ontology mapping and database to ontology transformation. Database to 

ontology (or ontology to database) mapping assumes that both a relational database and an 

ontology exist and defines links between them, whereas the database to ontology 

transformation assumes that only a relational database exists and database to ontology 

transformation rules are applied to generate an ontology (Astrova & Kalja, 2008). Numerous 

approaches to database to ontology mapping approaches have been proposed over time and 

they have been implemented using different tools. We study such different approaches with 

the intention of adapting one approach in our work. Then, we elaborate on mapping a legacy 

database(s) of an institution to a learning ontology. 

The learning ontology that resulted in the mapping process is to be plugged in to an adaptive 

e-learning system developed according to the plug and play architecture that is discussed in 

Chapter 3. 

The rest of this chapter is organised as follows. In Section 6.1, we analyse the current 

approaches to database to ontology mapping including few database to ontology 

transformation methods. Section 6.2 introduces different tools used for database to ontology 
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mapping. Section 6.3 provides an overview of the mapping rules followed in most of the 

mapping tools. Then, Section 6.4 introduces the approach we followed to populate a learning 

ontology from legacy databases and the conclusion is given in Section 6.5.  

6.1 Approaches to Mapping a Database to an Ontology 

The process of making the data in a RDB available in an e-learning system for querying goes 

through two main stages. They are: firstly, mapping the database schema of the learning 

database to the learning ontology; and secondly, populating the learning ontology with the 

instances from the data in the learning databases. These two stages are supported by different 

technologies and tools. In the next section we provide an overview of the recent approaches 

to database to ontology mapping and accessing data in the relational databases. 

6.1.1 Approaches to Database to Ontology Mapping 

There are different manual and semi-automatic approaches (Handschuh & Staab, 2002; 

Golbeck, Grove, Parsia, Kalyanpur, & Hendler, 2002) to generate metadata from existing 

information such as digital libraries. This metadata is used to specify the domain that makes a 

simple ontology. This early approach is on database to ontology transformation rather than 

mapping. These approaches consider web pages and information sources as static. However, 

some web pages are dynamic as they are automatically updated from the associated 

databases. Hence, databases can be annotated rather than annotating the individual web pages 

(Handschuh, Staab, & Volz, 2003). Most of the early approaches have focused on annotation 

of the web pages or the databases. That has led to specify the mapping between the databases 

and the web pages. 

The work done in (Handschuh, Staab, & Volz, 2003) attempts to define mapping rules 

between database and ontology for semantic querying. That work is called as ‘deep 

annotation’ as annotation is not done at the presentation layer (in HTML), but metadata is 

created in the data description layer. They also propose a framework for creating metadata 

that is created from a database with the participation of the database owner. This approach 

assumes that many web sites will participate in the Semantic Web and will be involved in 

sharing their information by providing the structure of the information in the web pages. This 

leads for users to use 1. information proper, 2. information structure, and 3. information 

context. Then the user may use these details to map the information structure of that site to an 

information structure of his or her own (an ontology) (Handschuh, Staab, & Volz, 2003). 
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The Deep Annotation Process given in (Handschuh, Staab, & Volz, 2003) consists of four 

main steps. Firstly, the database owner produces markups for the web pages on the server 

side based on the information structure of the database. Secondly, an annotator produces 

client-side annotations based on client ontology and server-side markups. Thirdly, the 

annotator publishes the client ontology and the mapping rules and finally the user queries the 

database using the second party ontology and mapping rules. 

R2O has been proposed as an extensible and declarative mapping language to describe 

mappings between relational database schemas and ontologies that are implemented in 

RDF(S) or OWL (Barrasa, Corcho, Shen, & Gomez-Perez, 2004). This approach maps the 

components in the SQL schema of the database with the ontology components in the OWL or 

RDFS format. The mapping definitions generated by R2O are verified automatically by itself. 

R2O also allows using the mapping definitions even to verify the components of the database 

according to the components of the ontology. 

The approach proposed in (Xu, Zhang, & Dong, 2006) automatically constructs the mappings 

between a relational database and an ontology. This process is based on a set of predefined 

heuristic rules that considers the conceptual correspondences between the database schema 

and the ontology. This automatic mapping process has been implemented in a prototype tool 

called D2OMapper. In addition to the database to ontology mapping, D2OMapper has some 

secondary functions that help the user to create and maintain the mappings manually (Xu et 

al., 2006). In the Semantic Web, even though the web pages are annotated with ontologies, 

current technologies annotate only the static web pages. Hence, their approach suggests 

annotating the corresponding relational database of the dynamic web pages. They have 

proposed extending a conventional dynamic Web-based system to automatically generate 

semantic annotations for the dynamic contents, by integrating three main components: 

1. A Web ontology to capture the knowledge of the relational database underlying 

the Web site; 

2. A set of generic mappings between the database schema and the ontology. These 

mappings map the implicit semantics of the database schema to the explicit and 

formal ontology; and, 

3. A universal algorithmic procedure—in responding to page requests the procedure 

is invoked by the dynamic page scripts that are executed by the Web server. This 

procedure uses schema-to-ontology mappings to produce ontological instances 

that semantically describe the database query results contained in the pages. 
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The tool DB2OWL proposed in Ghawi and Cullot (2007) automatically generates mappings 

between the ontologies and the information sources in addition to generating ontologies from 

database schemas. So, first it does database to ontology transformation. In this approach, 

conceptual elements in the database are detected before converting the database components 

to the matching ontology components. The mapping process followed in this approach 

involves 6 steps. In those steps the database tables are converted to classes and subclasses in 

the ontology, one to many or many to many relationships between tables are converted to 

object properties and columns are converted to datatype properties. This approach is 

implemented as a prototype named DB2OWL that creates OWL ontology from a relational 

database (Ghawi & Cullot, 2007; Cullot, Ghawi, & Yétongnon, 2007). 

With the recent growth of medical knowledge discovery systems and decision support 

systems, medical researchers have to write complex queries on databases (Munir, Odeh, & 

McClatchey, 2009). Hence, as a supporting tool for query formulation, ontology is proposed. 

Still, a query generator has to map schema of the relational database to an ontology. The 

approach proposed in Munir et al. (2009), includes a method to map a relational database 

schema to an ontology that can be used in the process of formulating relational database 

queries. This aims at assisting end users who have no prior knowledge of complex data 

structures in the query formulation process. Besides that, this approach allows users to 

change terms, and provide access to the database with no transitional data. Generation of 

database queries is supported by exploiting the semantic relations and assertion capability of 

OWL-DL ontology. 

An ontology-assisted query formulation framework has already been proposed in Munir, 

Odeh, and McClatchey (2008). Furthermore, several heuristic-based algorithms are proposed 

in the above work to translate relational queries based on ontology. They have focused on 

domain metadata representation for ontology query formulation, and storing and retrieving 

mapping between relational schema and ontology during query formulation. 

A simple SQL-based RDB to RDF/OWL mapping approach is demonstrated in Bumans 

(2010). This approach defines the relationship between the database tables and ontology 

classes, again between the fields of database tables and object/data type properties of OWL 

ontologies. RDF triples are generated as class instances from the relational data in a database 

by using the automatically generated SQLs statements. This approach in Bumans (2010) 

allows someone to use the database engine to process the mapping information and generate 
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SQL statements. When the SQL statements are executed RDF triples that are instances of 

OWL classes and OWL object/ data type properties are created. 

Several difficulties in the mapping process that need to be overcome are discussed in 

(Bumans, 2010).  

1. In a database schema, a table can have a field that refers to another table (a foreign 

key), but that field may not refer to an exact object property.  

2. A data type property may correspond to a combination of fields that refer to 

multiple tables.  

3. The subclass relations in ontologies can be many-to-many relations. However, in 

databases many-to-many relations are removed during the database design by the 

normalisation process. This removes the actual semantic relations between 

concepts and this hinders the direct mapping. 

The approach described in (Hazber et al., 2016) includes two phases: developing an ontology 

from a RDB schema and automatically populating the ontology with instances from the data 

in a relational database. As it does not use an ontology at the beginning, it becomes a 

database to ontology transformation approach rather than a mapping approach. The resulting 

ontology is in RDF(S) or OWL and the ontology instances are RDF triples. This is a fully 

automated approach and it has many advanced features to the current similar approach to data 

transformation. It includes many advanced features and covers many mapping rules in 

relational database to ontology transformation (Hazber et al., 2016).  

6.2 Database to Ontology Mapping Tools  

The approaches to database to ontology mapping have led to the development of different 

database to ontology mapping tools. They include: R2O, D2RQ, Virtuso RDF views and 

DartGrid. In R2O, mapping information is provided in an XML file whereas D2RQ does that 

using SQL. In both D2RQ and Virtuoso RDF view retrieves data from a RDB using 

SPARQL queries. A number of database to ontology mapping tools have been compared in 

(Sicilia, Nemirovski, & Nolle, 2017). Mappings generated by most of the recent mapping 

tools is based on the mapping rules of RDB to RDF Mapping Language (R2RML). R2RML 

is the W3C recommendation for RDB to ontology mapping and an introduction to it has been 

provided in (Das, Sundara, & Cyganiak, 2012).  

A tool named RBA (R2RML By Assertion) that can automatically generate R2RML 

mappings has been demonstrated in (Neto, Vidal, Casanova, & Monteiro, 2013). RBA tool is 
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based on a set of semantic mappings for modelling the relationship between the database 

schema and a target ontology in RDF. In that work, a set of assertions that are simple to 

understand are used to specify the semantic mappings.  

A database to ontology mapping tool named BootOx as presented in Jiménez-Ruiz et al. 

(2015) has been implemented in a system named OPTIQUE (Kharlamov et al., 2016). This 

tool also uses the R2RML as the mapping language and generates OWL 2 and OWL 2 profile 

ontologies. In addition to that, it also considers mapping many xsd data types and handles the 

xsd data types that are not in OWL 2.  

Ontology-Based Data Access (OBDA) proposed in (Calvanese et al., 2015) allows creating 

database to ontology mappings and allows direct access to the relational data. An OBDA 

system consists of an ontology, a relational database and mappings between them. However, 

when a set of data sources is used, then it is called Ontology-Based Data Integration (OBDI) 

(Calvanese et al., 2017).  OBDA systems use relational database schema as the source and a 

RDF(S) or OWL file as a destination. The database to ontology mappings are done according 

to the rules in R2RML (Das et al., 2012). The conceptual layer, the ontology, is connected to 

the database through the underlying R2RML mappings. The ontology is also able to provide 

an integrated view of the data and grant access to data sources. It creates declarative 

mappings between the data source and the ontology to connect the ontology to the data 

sources (Lembo, Mora, Rosati, Savo, & Thorstensen, 2015). In query-answering, instead of 

retrieving the triples from the ontology, the SPARQL queries are translated into SQL queries 

to retrieve the data from the database.  Ontop has been introduced as an open source OBDA 

framework (Calvanese et al., 2015). Ontop includes four layers in its architecture: inputs, 

Ontop core, high level APIs and the applications (Figure 6.1).  

Taking a step forward, a formal analysis of mapping in OBDA has been done especially 

paying attention to the problems of identifying the mapping inconsistency and redundancy in 

(Lembo et al., 2015). In their work, different ontology languages including OWL 2, OWL 2 

profiles and mapping languages that have different expressiveness over relational databases, 

have been examined. They also have provided algorithms and established complexity bounds 

to solve the above problems (Lembo et al., 2015). 
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Figure 6.1: Architecture of the Ontop system (Calvanese et al., 2015) 

A drawback of adopting OBDA is the greater amount of effort that is required to create 

manual mappings. A system named AutoMap4OBDA, that automatically generates R2RML 

mappings from the intensive use of relational source contents and an ontology, has been 

proposed in (Sicilia & Nemirovski, 2016). In that work, ontology-learning techniques are 

utilised to generate the class hierarchies. The mappings are generated based on the string 

similarity metrics, the target ontology labels and graph structures. AutoMap4OBDA system 

has a comparatively higher performance than most of the advanced state-of-the-art mapping 

generators (Sicilia & Nemirovski, 2016). Map-On is a tool proposed in Sicilia, Nemirovski, 

and Nolle (2017) provide a web-based editor that allows visual ontology mapping. The Map-

On editor provides an interactive graph layout with a point-and-click interface that simplifies 

the mapping creation process. The editor is capable of generating a R2RML, IRI patterns and 

SQL queries document based on user inputs. 

A benchmark suite named RODI for automatic mapping of relational databases to ontology 

has been proposed in (Pinkel et al., 2015). They have discussed the different challenges in the 

mapping process, the data sets for both database and ontology, the queries used in the 

benchmark and the results they have obtained. They have used a conference database for the 

evaluation, several criteria for the evaluation. The four mapping tools: BootOx, IncMap, 

MIRROR and Ontop have been evaluated using the RODI benchmark. The evaluation results 

have shown differences between their capabilities and they could handle only simpler 

mapping challenges. They have failed to handle more advanced challenges and need further 

improvements to deal with real-world problems. 
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OBDA systems discussed above allow access to the data in a database through an ontology 

without populating the ABox of an ontology. The semi-automatic approach proposed in 

(Knoblock et al., 2012) allows mapping the structured data into an ontology and allows 

populating an ontology with RDF triples and saving them. The proposed approach has been 

implemented in a system named Karma that provides an interface to avoid ambiguities in 

mapping. The resulting ontology instances in Karma can be queried using an ontology query 

language like SPARQL or nRQL. The modelling process followed in Karma consists of four 

main steps (Figure 6.2): 1. Assign Semantic Types—in this step each column of a source is 

mapped to a node in the ontology; 2. Construct Graph—this step involves building a graph 

that clearly specifies the space of mappings between the source and the ontology; 3. Refine 

Source Model—in this step the graph is updated and refines the model based on user input; 

and, 4. Generate Formal Specification—in the final step a formal specification of the source 

model is generated from the Steiner tree that is computed in the previous step. 

 

Figure 6.2: Modelling a structured source in KARMA (Knoblock et al., 2012) 

6.3 Database to Ontology Mapping Rules 

Database to ontology mapping is based on specific mapping rules. A number of attempts 

have been made to identify different mapping rules. A classification of the database to 

ontology mapping approaches has been provided in (Spanos, Stavrou, & Mitrou, 2012). 

Several rules for mapping databases to ontology have been illustrated in (Astrova, 2009). The 

mapping rules that are illustrated in their work are related to mapping the database tables, 

columns, data types, constraints and rows. Mapping rules followed in the above work can be 

summarised as follows. 

1. A database table is mapped to an ontology concept if it does not have a composite 

primary key.  
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2. However, if a database table has a composite primary key and each part of the key is 

a foreign key, it indicates that the table represents a many-to-many relationship 

between two other tables. In such a case, that table is converted into an object 

property with an inverse property (Astrova, 2009). 

3. When a column of a database table is mapped, each column is mapped to a data type 

property. Also, it is assigned with the maximum cardinality of one. 

4. Each data type in an SQL Schema is mapped to an associated XML xsd: data type. 

5. The column constraint, UNIQUE is mapped in an inverse functional property. 

6. The column constraint, NOT NULL is mapped to a minimum cardinality of one.  

7. The PRIMAY KEY constraint that is given as a column constraint or a table constraint 

is mapped to an inverse functioned property. The minimum cardinality of that 

property is set to one. 

8. If a foreign key is not a part of the primary key, then it makes a one-to-many 

relationship and it is mapped to an object property. 

9. When a foreign key is a part of the primary key it is mapped to an object property 

with the cardinality one. 

10. When a foreign key is a primary key, it is mapped as an inheritance relation. 

11. When the column constraint REFERENCES specifies a column in the same database 

table it shows a unary relation. Then, it is mapped to a symmetric property with the 

same class as the domain and the range of the property. 

12. If the column constraint REFERENCES is accompanied by the trigger ON DELETE 

CASCADE then the foreign key is mapped to a transitive property. 

13. The column constraint CHECK is mapped to a value restriction. 

14. However, a column constraint CHECK with enumeration is mapped to an enumerated 

data type. 

15. Each raw in a database table is mapped to an instance of a concept in an ontology. 

Nine different database to ontology mapping rules, that are a subset of the above rules, have 

been introduced in (Mogotlane & Fonou-Dombeu, 2016). These mapping rules also include 

rules on mapping ontology concepts, object properties, data properties, inverse properties, 
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and cardinality. The mapping rules have been standardised by the W3C and they are 

elaborated in (Arenas, Bertails, Prud, & Sequeda, 2012). These mapping rules have been 

applied in different applications and in the automatic mapping tools.  

When we consider the application of these mapping rules to our work, some of the rules are 

not applicable, as OWL 2 Learn profile excludes some of the OWL 2 constructors. For 

example, in our work, we do not apply the afore-mentioned rule 13 and rule 14 that refer to 

value restriction and enumerated data type, but we applied the rest of the rules. However, in 

our work, these mappings are handled by the mapping tool that we utilise and we do not have 

to apply them manually.  

6.4 Protégé Ontop Vs Karma 

As there are several mature tools for database to ontology mapping, in our work, we adopt an 

existing tool. Based on the literature and our experience we find that Protégé plugin Ontop 

and Karma as two options for our work. However, we see that each of them has their own 

pros and cons and the applicability of each of them becomes situation specific.  

The tool Ontop provides an ontology engineer to write the mappings between the elements of 

the ontology and the database and save them as an obda file. It also provides the opportunity 

to update the mapping file. As the reasoner should be started before any OBDA happens, the 

reasoner is able to check the consistency of the mappings to the ontology and raise any issues 

for the ontology engineer to fix. An obda file created stores only the mappings and it is used 

to access a database to satisfy the SPARQL queries posed on the associated ontology. Ontop 

does not populate the associated ontology nor store the associated instances in the ontology. 

Hence, it avoids the need of maintaining an ontology ABox and updating it. 

On the other hand, Karma provides a GUI for mapping a database schema to an ontology and 

updating the mappings. Hence, it avoids the need of writing the mappings manually and 

creates a mapping file in the background. Once, mappings are completed, it transforms the 

data in the legacy database into the associated ontology instances to populate the ontology. 

However, if the legacy database experiences regular updates they are not synchronised with 

the ontology in Karma. This would create the problem of the learning ontology not providing 

the up-to-date results.   

Due to the ability of saving the populated ontology in Karma for the purpose of 

demonstration, in our work, we use Karma to map and populate the learning ontologies. 
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According to the plug and play architecture that we proposed in Chapter 3, the populated 

learning ontology is plugged into the e-learning system that is used later in query-answering. 

6.5 Mapping a Legacy Learning Database to a Learning Ontology 

Similar to the systems used in the other domains most of the data in the e-learning systems 

are available in legacy databases. These data include the details of the students, courses, 

units, learning resources, and assessments. In addition to that, e-learning systems store the 

learning resources in a repository. The plug and play architecture for an adaptive e-learning 

system’s framework that we discussed in Chapter 3 includes three layers: the user interface 

layer, the components layer and the repository layer. Data and the ontology of the e-learning 

system belong to the repository layer of the architecture. Before we use the data in a legacy 

database in an ontology-based e-learning system, we need to map the learning database and 

its contents to a learning ontology. A simplified view of what is required to be done in 

database to ontology mapping is depicted in Figure 6.3.  

Before any mappings are done we should have developed the TBox of an ontology and 

selected a learning database(s). We also have to deeply analyse the elements in both the 

database schema and the ontology TBox to get a crisp understanding of the elements in both 

the database schema and the learning ontology. Once we have a clear idea of the elements of 

both the database and the ontology we start mapping each element in the ontology with the 

corresponding elements in the schema of the legacy database. Once the mapping process is 

completed, the mapping definitions are stored in the system and used to populate the learning 

ontology with the data from the legacy database.  

 

Figure 6.3: A simple representation of mapping a database to a learning ontology 
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6.5.1 A Sample Relational Database Schema for MQ 

We start mapping a sample legacy database into a learning ontology with the database 

schema and ontology. In this section, we introduce a sample database schema for MQ 

University (Figure 6.4).  

This figure of the sample database schema includes the relational tables, the relationships 

between them, attributes of the tables and the data. For examples, there exists a relationship 

between the table tbStudent and the table tbCourse. This relationship has been created by 

introducing the key attribute, courseCode, the primary key of the tbCourse into the table 

tbStudent as a foreign key. Each table includes several key and non-key attributes. For 

example, the table tbStudent includes studentid as the key attribute and student type, 

firstName, lastName, adddress, etc. as the non-key attributes. Each table in this database 

includes a collection of data and the screen shot below shows a sample set of data in the 

tbLearningResource (Figure 6.5).  

 

Figure 6.4: A sample database table with data 
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Figure 6.5: A sample MQ database schema 
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The tables in a database schema are related to each other by a foreign key. For example, in 

the sample MQ database schema, a relationship between the table tbStudent, has been created 

with the table tbCourse, by introducing the primary key of the tbCourse, courseCode into the 

table tbStudent as a foreign key as in Figure 6.6. 

 

Figure 6.6: A relationship in the MQ database schema 

6.5.2 MQ Ontology TBox 

The second thing that we need for the database to ontology mapping is a learning ontology. 

Figure 6.7 below provides an overview of the MQ ontology created in Protégé. This includes 

sections of concepts/classes, object properties and the datatype properties in the MQ 

Ontology. 

Concepts/Classes Object Properties Datatype Properties 

 
  

Figure 6.7: MQ Ontology and its elements 
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Some classes include subclasses that make class hierarchies as well. As discussed in Chapter 

4, object properties show the relationships between the classes and the data properties show 

the characteristics of the domain classes. Some of the object/data properties also include 

subproperties. 

6.5.3 Mapping the MQ Database to MQ Ontology 

We create the database to ontology mapping using the mapping tool, KARMA (Gupta et al., 

2012). In KARMA first we open the database file and the ontology file as shown in Figure 

6.8. Then, we have to select a table in the database that needs to be mapped. That makes the 

columns in that table visible on the interface. Then, each column of the selected database 

table can be mapped to a relevant data property of the matching concept in the ontology. 

Also, the foreign keys that represent the relationships between tables are mapped to the object 

properties of a class. A mapping done in KARMA includes a source or a table from the 

relational database and a target or a class in the ontology. For example, the Figure 6.9 shows 

a mapping done between the ontology concept Learning Resource and the database table 

tbLearningResource.  

 

Figure 6.8: Opening the database file and ontology in KARMA 

Once mapping each table in the database schema into the concepts in the ontology is 

completed, the ontology can be populated with the data in the database. This is done using the 

export option in KARMA. When the results are exported, the data in the database are saved 

to an RDF file with the ontology instances in the RDF triple format. The resulting learning 

ontology is plugged in to the ontology-based e-learning system and used for query-

answering.  



136 

 

 

Figure 6.9: The KARMA mapping interface 

6.6 Discussion and Conclusion 

In this chapter, we aimed at analyzing the current approaches to database to ontology 

mapping with the intention of identifying an approach to map legacy databases to learning 

ontologies. Our analysis helped us to identify different mapping approaches ranging from 

manual approaches to semi-automated to the fully-automated approaches. All these mapping 

approaches untilise mapping rules to specify which component of a database should be 

mapped to which component of an ontology. We found that several tools that are based on 

semi-automated approaches have gained popularity. Due to the fact that there are matured 

current tools for mapping, we decided to use one of the existing tools for our purpose of 

mapping a legacy database to a learning ontology. We short-listed the current mapping tools 

that could be usable for our purpose to Ontop and KARMA. Ontop is one such tool that is 

used as a Protégé plugin and it is based on OBDA. This tool allows access to relational data 

through an ontology. As we intended, eventually we could get the populated learning 

ontology using KARMA. KARMA is a semi-automated tool that leads to obtain an ontology 

populated with the instances from the data in a legacy database. Hence, to serve our purpose 

of obtaining a learning ontology with the instances, we selected KARMA.  KARMA provides 

a graphical user interface for mapping which makes the mappings clear to the users, yet it 

generates the formal mapping definitions in the background. These mapping definitions are 

utilized in the ontology population process.  

In the next step, we search for a way to evaluate a learning ontology and check its capabilities 

for answering the queries in different situations of e-learning. 
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Chapter 7: Evaluating OWL 2 Learn Ontologies and the 

Framework for Ontology-based E-Learning Systems 

 

 

In Chapter 4, we have proposed the OWL 2 Learn profile, an OWL 2 sublanguage for the 

specification of learning ontologies. We have discussed the development and population of 

learning ontologies in Chapters 5 and 6. In this chapter, we identify a query suite to be used 

in evaluation of the query-answering and inference capabilities of a learning ontology. We 

expect that this query suite would help us to verify the behavior of a learning ontology within 

the OWL 2 learn profile. 

We also elaborate on the evaluation of query-answering and inference capabilities of learning 

ontologies; a main component of the framework. It is also assessed whether a learning 

ontology includes all or some of the constructors given in the OWL 2 Learn profile 

introduced in Chapter 4. Therefore, given a learning ontology, we need to see whether all, or 

at least some, of the benchmark queries of the proposed query suite can be answered.  

In this chapter, in addition to evaluating learning ontologies, we also evaluate the e-learning 

system that is an implementation of the plug and play architecture (see Chapter 3). Here, we 

see whether it is possible for the instances of the adaptive system’s prototype to be used for 

query-answering on multiple institution-specific ontologies. For this evaluation, we use the 

two sample ontologies, MQ and CSU ontologies that we used for evaluating learning 

ontology.  

The importance of the evaluation of learning ontologies is that we can assess not only their 

capabilities but also their weaknesses and their problems that could be later alleviated (Brank, 

Grobelnik, & Mladenić, 2005). To achieve this goal, different methods have been proposed to 

evaluate ontologies over time. These ontology evaluation methods have been categorized in a 

number of ways by authors such as Brank et al. (2005) and Duque-Ramos et al. (2013). The 

method proposed in Duque-Ramos et al. (2013) is based on the evaluations applied in 

software engineering. Their approach evaluates an ontology using qualitative attributes 

(Duque-Ramos et al., 2013). Most of these evaluations are performed by directly inspecting 

the elements in the ontologies or their syntax of definitions or their qualitative attributes.  
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Query suites have been used to benchmark the response time and scalability of knowledge 

base systems (KBS). In spite of that, to the best of our knowledge such query suites have not 

been used to specifically evaluate the query-answering and inference capabilities of learning 

ontologies. There exist a number of ontology benchmarks that have been proposed to 

evaluate KBSs or ontology repositories. For example, Lehigh University Benchmark 

(LUBM) (Guo, Pan, & Heflin, 2005) and University Ontology Benchmark (UOBM) (Ma et 

al., 2006) are two of the popular benchmarks. These ontology benchmarks use query suites to 

evaluate the completeness of ontologies and response time of KBSs in query-answering using 

different data sets. The query suites of the current ontology benchmarks would possibly be 

used to evaluate the capabilities of OWL 2 Learn ontologies. Hence, in our work, we propose 

a query suite for evaluating query-answering and inference capabilities of learning 

ontologies. Here we analyse a few relevant query suites of popular ontology benchmarks. By 

using a query suite we expect to understand: what types of queries can be answered by an 

OWL 2 Learn ontology, and what specific inferences are possible on an ontology. Specific 

inferences depend on the ontology language constructors used in the ontology and the 

reasoning capabilities of the DL reasoner used for evaluation. However, here we consider the 

ontology language constructors of the OWL 2 Learn profile and a reasoner with the DL 

expressivity of OWL 2 Learn, that is SHIQ(D). The ability of an ontology to generate the 

expected query results in an evaluation is an indication of its query-answering and inference 

capabilities.  

We have also found that there are different ontology evaluation frameworks and 

methodologies that integrate different ontology evaluation metrics and methods. We have 

studied the current ontology evaluation frameworks and methodologies to see where our 

evaluation method fits.  We have borrowed some of the features from those methodologies 

and frameworks. 

In general, ontology evaluation is related to two main concepts: 1) Verification – checking 

the structure of an ontology; and, 2) Validation – checking qualitative and quantitative 

characteristics of an ontology (Bilgin, Dikmen, & Birgonul, 2014). Most of the current 

ontology evaluation techniques use verification which is based on directly inspecting the 

contents of an ontology.  

The ontologies follow the OWA; whereas the databases follow the CWA. When instances are 

not found in an ontology for a specific query, the answer ‘unknown’ is provided, whereas a 

database provides the answer ‘no’. However, in both cases, no instances would be provided 
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as the answer to a query. In our evaluation, we do not investigate how OWA and CWA affect 

the query results.   

The approach we follow is an indirect way of inspecting an ontology. Firstly, we check the 

query-answering capabilities of an ontology. Secondly, we check the inference capabilities of 

that ontology based on the results obtained by executing the queries. Thirdly, we analyse the 

structural aspects of learning ontologies that are involved in query-answering and inferences. 

Hence, our approach could be considered as an ontology verification method. 

If a learning ontology is able to answer a specific query, this means that the given ontology 

has the query-answering and inference capabilities demanded by that query. It also should 

include the structural elements, OWL 2 constructors, instances and the facts required to 

answer that query. Learning ontologies are mainly developed by considering the requirements 

of each institution and therefore they are institution specific. Hence, different learning 

ontologies may have different query-answering and inference capabilities. If an ontology is 

not able to answer a particular benchmark query, there are two main implications. One 

implication is that the given ontology does not include the required instances of the concepts 

that are being queried. The other implication is that the ontology does not include the OWL 2 

Learn constructors that are required to perform the relevant inferences. However, the first 

problem would not occur if an ontology was fully populated.  

The benefits of this evaluation approach include identifying the problems, weaknesses and 

incomplete aspects of an ontology. If required, this approach provides us the choice of 

improving the ontology to make it capable of answering more queries. However, satisfying 

additional queries would not be a requirement for a specific institution unless new 

requirements are identified. 

In this chapter, we demonstrate the evaluation of two sample ontologies we have developed 

for the Macquarie University and Charles Sturt University. For each learning ontology we 

formulated queries that are analogous to the new query suite. We have populated the learning 

ontologies with comparable sample test data sets that would be sufficient to test the execution 

of the query suite. In addition to that, in this evaluation, we use instances of a proof of 

concept prototype that we developed according to the adaptive e-learning system’s 

framework. 

The rest of this chapter is organised as follows. Section 7.1 provides an analysis of the 

approaches, frameworks, metrics used in evaluating an ontology. Section 7.2 provides an 
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overview of using the ontology benchmarks for ontology evaluation. An overview of the 

query suites used on LUBM and UOBM benchmarks and their inference capabilities are 

provided in Section 7.3. Section 7.4 introduces the queries of the UOBM query suite and their 

inference capabilities. A discussion on the possibility of using the UOBM queries to evaluate 

OWL 2 Learn ontologies is provided in Section 7.5. Section 7.6 introduces an enhanced 

query suite for evaluating the capabilities of OWL 2 learn ontologies and the methodology 

we follow to evaluate learning ontologies. Section 7.7 provides an overview of the evaluation 

process we followed and the query results are analysed in Section 7.8. Section 7.9 elaborates 

on evaluation of the adaptive e-learning system’s framework. A discussion on the evaluation 

of the system’s framework and learning ontologies using benchmark queries is provided in 

Section 7.10.  

7.1 Approaches, Frameworks and Metrics for Ontology Evaluation 

Ontology evaluation has already been discussed by many scholars. Here, we provide an 

overview on the approaches, framework and metrics found in the scholarly work. 

7.1.1 Approaches to Ontology Evaluation 

Ontology evaluation has been discussed in the literature by different scholars. A 

comprehensive survey on ontology evaluation has been carried out in (Brank et al., 2005). 

They have pointed out the importance of evaluating the ontologies to select the best ontology 

for the application requirements. These ontologies could have been developed by ontology 

engineers; or automatically or semi-automatically generated by ontology learning processes.  

Four broad categories of ontology evaluation have been identified in (Brank et al., 2005).  

1. Comparing the syntax definitions of an ontology with a “Golden Standard” - the 

syntax specification of a formal language or another ontology,  

2. Evaluating the results of an ontology in an application,  

3. Comparison of a source of data (about a domain) and an ontology, and,  

4. Human evaluation—whether the ontology satisfies a set of pre-defined criteria, 

standards and/or requirements.  

In addition to that, Brank et al. (2005) have proposed a categorization of ontology evaluation 

approaches based on the level of ontology evaluation. An ontology could be evaluated at 

different levels or as a whole. Below levels have been identified based on the level of 

ontology evaluation:  
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1. Lexical, vocabulary, or data layer—checking what concepts, instances and facts are 

included in an ontology;  

2. Hierarchy or taxonomy—checking inclusion or is-a hierarchy;  

3. Other semantic relations—what other relations are included except is-a;  

4. Context or application level—checking whether an ontology is a part of another 

ontology and in what application it is used;  

5. Syntactic level—checking whether the ontology satisfies the syntactic requirements of 

a particular formal language (this is applicable when an ontology is written in an 

ontology language such as OWL 2), and,  

6. Structure, architecture, design—checking whether an ontology has been built 

according to some pre-defined ontology design principles or criteria. Whether an 

ontology has been built fully manually by the experts or whether it is generated 

automatically as an aspect of the level of evaluation. 

Three categories of approaches to ontology evaluation have been identified in (Duque-Ramos 

et al., 2013). Considering the aim of evaluation: 

1. Ranking—this is used to select the best ontology for a specific task;  

2. Correctness—that is the formal correctness of the contents in an ontology; and,  

3. Quality evaluation—there are different ways to evaluate the quality of an ontology 

using quality attributes.   

The OQuaRE framework for evaluating ontologies proposed in (Duque-Ramos et al., 2013) is 

based on the SQuaRE standard that has been proposed for software product quality. In their 

work, the quality of an ontology is measured based on how far an ontology confirms to 

functional and non-functional requirements. The framework includes three clusters of quality 

characteristics. A survey has been conducted by using a questionnaire to identify the 

usefulness and relevance of the quality metrics. A set of experts have completed the survey in 

two rounds: one before reading the results of their tool and one after reading the results. 

However, this framework focuses only on the quality criteria that is only one category of the 

four categories discussed in (Brank et al., 2005). Also, it is arguable how far the software 

engineering-based evaluation criteria are applicable to ontology evaluation. 

A survey on ontology evaluation has been conducted in (Hlomani & Stacey, 2014) with the 

intention of finding a better way for ontology evaluation. By ontology evaluation they have 

considered verification – developing the ontology right; and validation – developing the right 
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ontology or checking the quality and the correctness of an ontology.  The ontology 

categorization in that work is based on the findings in (Brank et al., 2005). Furthermore, they 

have attempted to identify some limitations in the current methods. They have identified 

subjectivity as a common and major limitation in ontology evaluation research. They have 

discussed subjectivity in three main aspects: 1. in selection of evaluation criteria; 2. 

thresholds for the criteria; and, 3. on the results of ontology evaluation (Hlomani & Stacey, 

2014). 

7.1.2 Frameworks for Ontology Evaluation 

An early attempt has been made to integrate different ontology evaluation methods into a 

single framework in (Gangemi, Catenacci, Ciaramita, & Lehmann, 2005). They have 

identified three main types of measures: structural measures, functional measures and 

usability profiling measures. Structural measures check the graph structure of an ontology. 

Ex: breadth, depth and consistency of nodes and edges. Functional measures are related to 

how the ontology and its components would be used. Ex: agreement of experts, user 

satisfaction, task, topic and modularity. Usability-profiling measures are related to the level 

of annotation of an ontology. Ex: recognition level, efficiency level and interfacing level. 

Later, the ontological errors and design anomalies of ontologies have been integrated into a 

single framework in (Fahad & Qadir, 2008). They have aimed; 1. to help building 

semantically correct and error free ontologies, and, 2. to enable mapping and merging of 

ontologies automatically and effectively. However, this framework also limits their work to 

the errors and anomalies. They are more related to the structural measures that are mentioned 

in (Gangemi et al., 2005). Again, an ontology evaluation framework has been proposed in 

(Pak & Zhou, 2009). It has proposed guidelines for choosing an evaluation method 

considering the objectives of the ontology. It also has proposed a set of dimensions for 

classifying ontology evaluation methods and measurement criteria for ontology evaluation for 

each dimension. The dimensions that have been mentioned in (Pak & Zhou, 2009) are: scope, 

layer, lifecycle, quality principles and methods for ontology evaluation. 

The framework that has been proposed in (Knoell, Atzmueller, Rieder, & Scherer, 2017) is 

scalable especially for data-driven ontology evaluation. The authors of that paper also have 

applied the framework in the context of ontologies with large datasets. The framework that 

has been proposed in their work includes: a corpus as an input, a big data framework that is 

used in processing results in an attributed graph. The framework includes valuation methods 

that gets ontology and the attributed graphs as inputs and uses a big data framework and 
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metrics to get the evaluation results. This framework is also more related to measuring 

structural aspects given in (Gangemi et al., 2005). 

Even though ontology evaluation is an integral part of ontology development, it is often done 

separately as quality assurance to identify errors and inconsistencies of the ontologies 

(Amith, He, Lossio-Ventura, & Tao, 2018). They have suggested to show that ontology 

evaluation and quality assurance need to be integrated to the ontology development life cycle. 

7.1.3 Metrics used in Ontology Evaluation 

A new methodology to evaluate ontologies has been proposed in (Bandeira, Bittencourt, 

Espinheira, & Isotani, 2016) is based on three main principles: 1. empirical evaluation that 

depends on Goal, Question Metrics (GQM) approach; 2. the goals are based on five roles of 

KR; and, 3. the evaluation of an ontology is based on the type of the ontology (top level, 

domain or application ontology). Three steps are followed in their methodology: 1. the type 

of the ontology is defined by the evaluator; 2. the evaluator repeats the GQM approach; and, 

3. the quality of the ontology is calculated. Their methodology also includes a statistical 

model to automatically assess the quality of an ontology. 

An ontology pitfall scanner named OOPS has been introduced in (Poveda-Villalón, Gómez-

Pérez, & Suárez-Figueroa, 2014). They have used different types of pitfalls in ontology 

development to evaluate a corpus of ontologies. OOPS is an online tool that is independent 

from the ontology development tools. The authors of OOPS have used a catalog of 40 pitfalls 

and OOPS uses a pitfall catalog creation and maintenance process in the ontology evaluation 

process. However, they do not focus on evaluating the query-answering and inference 

capabilities of the ontologies. 

A set of ontology evaluation metrics that is based on the semiotic theory has been identified 

in (Leukel & Sugumaran, 2009). Their metrics includes five categories of semiotic metrics: 

syntactic quality, semantic quality, pragmatic quality and social quality. In their approach, 

firstly they pre-check whether the metrics can be applied on a particular ontology, secondly, 

the metrics is applied on a selected ontology and it is evaluated, and, finally they analyse the 

evaluation results. 

The frameworks that we discussed above evaluate an ontology mostly based on the structural 

aspects. The approach we follow for evaluating the query-answering and inference 

capabilities of learning ontologies is more related to the functional metrics (task) that are 

mentioned in (Gangemi et al., 2005). Again, checking the inference capabilities, and the 
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OWL 2 Learn constructors involved in them, is related to structural metrics of the above 

framework. However, we do not evaluate the usability aspects of the learning ontologies. 

In our work, we think of an evaluation method that is related to the first two categories 

proposed in (Brank et al., 2005). That is, a method to check the ontology language 

constructors and to check the inference and query results of a learning ontology. In the 

literature, we find that a number of query suites have been proposed for benchmarking the 

KBSs. These benchmarks queries could possibly be used to evaluate learning ontologies in 

two main ways. Firstly, to check what language constructors are used in an ontology and 

secondly, to check what query results could be generated in relation to answering the 

benchmark queries. In the sections below, the evaluation methodology we follow is 

introduced. 

7.1.4 A Methodology for Evaluating Learning Ontologies  

In this section, we describe the methodology that we followed to conduct the ontology 

evaluation. In our approach, we use an evaluation methodology that includes clear evaluation 

goals, evaluation criteria and an evaluation process. An ontology evaluation methodology 

involves several essential elements. Here, we consider various aspects of evaluating learning 

ontologies. They include these elements:  

1. Evaluation goals 

2. Learning ontologies to be evaluated  

3. Evaluation methods  

4. Evaluation criteria  

5. Conducting evaluation of learning ontologies 

6. Analysing results of ontology evaluation. 

Each element of this methodology is briefly introduced in the following subsections. 

Evaluation Goals 

In order to conduct an ontology evaluation, we need to have a set of clear goals; or we need 

to clearly know ‘why do we conduct this evaluation?’ In this evaluation, we have these two 

main goals: 

1. Interrogate what benchmark queries can be answered by a given ontology. 

2. Identify what inferences are possible on a learning ontology in answering the 

benchmark queries. 
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Select Evaluation Methods 

In this work, we have identified the OWL 2 Learn benchmark queries as the evaluation 

method and it is elaborated in Section 7.6. We expect to use it to evaluate the structural and 

functional aspects of an ontology.  

In evaluating a specific learning ontology, we need to write benchmark queries that are 

specific to that ontology yet analogous to OWL 2 Learn queries. First we write benchmark 

queries to evaluate the MQ ontology. When we want to evaluate another ontology, we have 

to write analogous queries for that particular learning ontology. Hence, here we also rewrite 

the analogous queries for the CSU ontology. 

Sample Ontologies for Evaluation 

In this chapter, we evaluate two sample learning ontologies that we have developed for the 

computing departments of two different institutions: Macquarie and Charles Sturt 

Universities. These two ontologies have already been analysed and their details have already 

been provided in Chapter 4. They include a number of concepts, object properties and data 

properties. We have populated the sample ontologies with some sample data/instances for the 

evaluation. 

Evaluation Criteria 

We need evaluation criteria to check whether we achieved the evaluation goals or ‘how did 

we achieve the goals?’ The evaluation criteria needs to be defined before we start the 

evaluation. We use these criteria to evaluate the query-answering and inference capabilities 

of a given learning ontology: 

 Which benchmark queries can be answered by a specific ontology? 

 What inferences of the OWL 2 Learn profile are possible and what inferences are not 

possible on a given learning ontology and by the proposed query suite? 

Conducting the Evaluation of Learning Ontologies 

The evaluation environment that we use for this ontology evaluation consists of several tools. 

They are predominantly the ontology editing tool, Protégé; the DL reasoner HermiT; and, the 

SPARQL query language. First, we load the populated ontology in Protégé and then we also 

start the Hermit reasoner that is required for inferencing as a part of query-answering. Then 

we execute each query in the query suite one by one (or as a batch). During the execution of a 
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query, if any errors are raised by the SPARQL query parser we have to correct our SPARQL 

query. If no errors are raised, Protégé will display the query results.  

The steps that we follow to complete the evaluation of the learning ontologies make up the 

evaluation process. They are elaborated in Section 7.7.  

Analysing the results of ontology evaluation 

Here we elaborate on how we execute the benchmark queries on a sample ontology according 

to the evaluation process. The evaluation process generates a set of query results. We analyse 

the query results to understand the inferences involved in them and the capabilities of the 

ontologies. 

Based on this analysis, we are able to determine the query-answering and inference 

capabilities of a given learning ontology. If a particular learning ontology is capable of 

answering all the benchmark queries, we can conclude that it has the full expressivity of the 

OWL 2 Learn profile. If some queries cannot be answered on a specific learning ontology 

then we can conclude that it does not have the full expressivity of the OWL 2 Learn profile. 

In the next section we elaborate on current ontology benchmarks. 

7.2 Current Ontology Benchmarks and Their Features 

Here, we provide an overview of ontology benchmarks that we found in the literature. 

Among them, some of the benchmarks—LUBM, UOBM, Berlin SPARQL Benchmark 

(BSBM) and DBPedia SPARQL Benchmark (DBPSB)—have been discussed broadly in the 

literature (Morsey, Lehmann, Auer, & Ngomo, 2011). These benchmarks consist of 

numerous elements – query suites, KBS, test data/instances, etc.  

The LUBM benchmark has been proposed as a method for benchmarking KBS that support 

inference on RDF/RDFS or OWL files (Guo et al., 2005). LUBM has been used to evaluate 

KBS with different reasoning and storage capabilities and to choose a suitable KBS for a 

large OWL based system. LUBM is based on three main goals: 1. supporting extensional 

queries; 2. arbitrary scaling of instances/data; and, 3. benchmarking an ontology of moderate 

size and complexity. LUBM includes 14 queries and they include different query constructs 

of SPARQL query language. Answering the LUBM queries involve different number of 

classes and properties of the learning ontologies. However, answering the queries of LUBM 

query suite involves only a few OWL constructors. 
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Subsequently, UOBM has been proposed as an extension to LUBM to evaluate three 

ontology repositories: DLDB-OWL, OWLIM and Minerva (Ma et al., 2006). In addition to 

the improvement of instance generation, the UOBM provides a complete coverage of OWL 

Lite and OWL DL constructors. Compared to LUBM, the UOBM benchmark covers all the 

OWL Lite constructors and OWL DL constructors (Ma et al., 2006). However, UOBM is 

based on OWL and not OWL 2. For this reason, UOBM does not cover the new features of 

OWL 2 (Golbreich et al., 2009) and the OWL 2 Learn profile that we introduced. 

In addition to the two benchmarks, LUBM and UOBM, other ontology benchmarks have 

been proposed over time. However, they focus more on using different constructs of the 

SPARQL language to evaluate different RDF storages with different scalabilities. They also 

have focused on different domains other than on the learning domain and paid less attention 

to reasoning on ontologies with different inference capabilities.  A summary of the prominent 

features of the current SPARQL benchmarks is given in Table 7.1. In that #Qs is the number 

of queries. 

The OWL 2 constructors and inferences that are involved in answering benchmark queries 

are the important features of a query suite that is required for our purpose. We could not find 

these details and details of the queries that were used in some of the benchmarks. The queries 

in all these ontology benchmarks have been written in the SPARQL query language. In the 

next section we provide an overview of the SPARQL query language. 

7.2.1 SPARQL Query Language 

Two categories of query languages (QLs) for the Semantic Web have been identified in (Sirin 

& Parsia, 2007):  

1. RDF-based QLs - RDQL3, SeRQL4 and W3C recommendation SPARQL.  

2. Description Logic (DL)-based QLs – DIG ask queries and nRQL.  

As SPARQL continued to gain popularity as a QL for the Semantic Web, the QLs for the 

Semantic Web have evolved in two directions. Firstly, making improvements or extensions to 

SPARQL to make it suitable for querying OWL 2 ontologies, and, secondly, developing 

totally new QLs which would be capable of querying OWL 2 ontologies.  

SPARQL 1.1 has been introduced with some new features to overcome the weaknesses in 

SPARQL 1.0 (Arenas, Gottlob, & Pieris, 2014). SPARQL-DL is a powerful and expressive 

query language for OWL-DL that can combine TBox, RBox and ABox queries (Sirin & 
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Parsia, 2007). SPARQL-DL is a subset of SPARQL and the OWL-DL reasoners can be used 

to reason on it. SPARQL-DL has been aligned with SPARQL to improve the interoperability 

of applications on the Semantic Web. 

Table 7.1: A comparison of the ontology benchmarks 

# BM Aim/Purpose Application 

Domain 

ABox  #Qs What is evaluated 

1 LUBM (Guo et 

al., 2005) 

Supporting extensional 

queries, arbitrary scaling, of 

data and ontology of 

moderate size & complexity.  

Learning RDF 

and 

OWL 

14 KBS using a 

University 

ontology 

2 UOBM (Ma et 

al., 2006) 

Provide a benchmark for an 

improved evaluation of 

existing ontology systems  

Learning RDF 

and 

OWL 

15 KBS using two 

University 

ontologies 

3 BSBM (Bizer & 

Schultz, 2009) 

Evaluate the performance of 

native RDF stores 

e-commerce Native 

RDF 

25 Data from multiple 

data sources 

4 SP2Bench 

(Schmidt, 

Hornung, Lausen, 

& Pinkel, 2009) 

testing the performance of 

SPARQL engines 

Digital 

Bibliography 

RDF 17 Large amount of 

data in DBPL data 

set  

5 DBPSB (Morsey 

et al., 2011) 

Propose a SPARQL 

benchmark procedure for 

benchmark creation. 

DBpedia RDF 25 Triple stores 

6 SRBench (Zhang, 

Duc, Corcho, & 

Calbimonte, 

2012) 

Propose a benchmark for 

comparing streaming 

RDF/SPARQL engines 

streaming 

RDF/SPARQL 

engines 

RDF 17 streaming 

RDF/SPARQL 

engines 

7 ParlBench 

(Tarasova & 

Marx, 2013) 

Propose a benchmark for 

evaluating parliamentary 

proceedings with different 

scaling 

Parliamentary 

proceedings 

RDF 19 Parliamentary 

proceedings 

8 Object-UOBM 

(Ledvinka & 

Křemen, 2015) 

Propose an ontological 

benchmark for domain 

specific object-oriented 

access 

Learning/ 

education 

OWL 8 Ontological 

storages  

9 DBOD (Wang, 

Staab, & 

Tiropanis, 2016) 

Map OLAP operations to 

SPARQL and construct 

analytic benchmarks 

DBPedia RDF 12 SPARQL engines 

Sematic entailment relations are considered as another way to use SPARQL queries on OWL 

ontologies. To query the OWL 2 ontologies using SPARQL, basic graph pattern matching 

has to be defined using semantic entailment relations instead of explicitly given graph 

structures (Glimm et al., 2013). A way for a range of standard Semantic Web entailment 

relations has been proposed in (Glimm et al., 2013). Such extensions of the SPARQL 

semantics are called SPARQL entailment regimes. An entailment regime defines: which 

entailment relation is used, which queries and graphs are well-formed for the regime, how the 

entailment is used, and what kinds of errors can arise (Glimm et al., 2013). An entailment 

regime specifies two main things: 1. a subset of RDF graphs that are well-formed for the 
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regime, and 2. an entailment relation between subsets of well-formed graphs and well-formed 

graphs (Glimm et al., 2013).  

A SPARQL query includes variables for instances to be retrieved and a set of triples on the 

type concepts, instances constraints on them that are being queried. In addition to them, 

SPARQL uses the keyword FILTER to provide additional constraints. SPARQL also includes 

built in functions to perform general functions such as finding the sum, average, and 

maximum.  

In this chapter, we analyse the query suites of the two benchmarks: LUBM and UOBM that 

have been written in SPARQL. We write the benchmark queries in SPARQL that are 

analogous to the UOBM query suite. These queries are written according to the SPARQL 1.1 

Query Specification that is elaborated in (Harris, Seaborne, & Prud’hommeaux, 2013).   

7.3 Query Suites and Inference Capabilities of LUBM and UOBM 

We studied the query suites of the two ontology benchmarks LUBM and UOBM to see 

whether we could adopt them to evaluate the capabilities of the learning ontologies. Query-

answering in LUBM and UOBM involve some inferences in the ontologies being evaluated. 

The inferences involved in answering the benchmark queries are associated to specific OWL 

2 Learn constructors used in the learning ontologies. In our work, we see what OWL 2 Learn 

constructors are related to the LUBM and UOBM benchmark queries, in order to select a 

benchmark query suite to evaluate the OWL 2 Learn ontologies. 

7.3.1 The LUBM Query Suite and its Capabilities 

The 14 queries that are used in the popular ontology benchmark LUBM (Guo et al., 2005) 

could be possible candidates for evaluating the OWL 2 Learn ontologies. The benchmark 

queries in LUBM have been proposed considering five main factors: input size, selectivity, 

complexity, assumed hierarchy information and assumed logical inference (Guo et al., 2005). 

The main goals of this benchmark are to support queries on instances of classes, arbitrary 

scaling of data and ontology of moderate size and complexity. However, the LUBM 

benchmark queries do not involve, or are not based on, complex DL reasoning. LUMB does 

not rely on reasoning with disjunction or cardinality restrictions.  

Answering the LUBM queries involve only a limited number of OWL Lite constructors to 

support inference on the ontologies. Those constructors are shown in Table 7.2 in bold. Even 

though the inference factors of LUBM are useful, they are not sufficient to evaluate the OWL 



150 

 

2 Learn ontologies. Hence, the LUBM does not become the right candidate to evaluate the 

OWL 2 Learn ontologies. In the next section, we examine the possibility of using the UOBM 

query suite that is an extension to LUBM. 

Table 7.2: OWL Lite constructors supported by LUBM (source: Ma et al., 2006) 

OWL Lite Constructors 

Property Characteristics: 

_ ObjectProperty 

_ DatatypeProperty 

_ inverseOf 

_ TransitiveProperty 

_ SymmetricProperty 

_ FunctionalProperty 

_ InverseFunctionalProperty 

 

Class Intersection: 

_ IntersectionOf  

RDF Schema Features: 

_ rdfs:subClassOf 

_ rdfs:subPropertyOf 

_ rdfs:domain 

_ rdfs:range 

 

Restricted Cardinality: 

_ minCardinality (only 0 or 1) 

_ maxCardinality (only 0 or 1) 

_ cardinality (only 0 or 1) 

Property Restrictions: 

_ allValuesFrom 

_ someValuesFrom 

 

(In)Equality: 

_ equivalentClass 

_ equivalentProperty 

_ sameAs 

_ differentFrom 

_ AllDifferent 

_ distinctMembers 

Note: OWL Lite constructors used only in LUBM are given in bold characters. 

7.3.1 The UOBM Query Suite and its Capabilities 

Answering the 15 queries used in the UOBM benchmark (Appendix: Table A.3) involve 

different inferences on a learning ontology. The UOBM queries cover all the OWL 

constructors involved in the LUBM queries. In addition to that, the UOBM queries cover the 

OWL constructors of the OWL Lite and OWL DL (Ma et al., 2006) that are shown in Table 

7.3.  

OWL Lite has the DL expressivity of SHIF(D) and OWL DL has the DL expressivity of 

SHOIN(D) (Wang, Parsia, & Hendler, 2006). OWL 2 Learn profile has the DL expressivity 

of SHIQ(D). Answering UOBM queries involve OWL DL that has a higher expressivity than 

OWL 2 Learn and the OWL DL has constructors that are counterparts of the OWL 2 Learn 

constructors. Hence, UOBM becomes a potential candidate for evaluating the OWL 2 Learn 

ontologies. A detailed analysis of the OWL constructors and inferences involved in each 

UOBM query is given in the next section. 
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7.4 The UOBM Queries, Inferences and the OWL 2 Constructors 

Answering each UOBM query suite involves several inferences on a learning ontology. We 

analysed each UOBM query to identify what OWL 2 constructors are involved in those 

inferences and required to answer each of them.  

7.4.1 Inferences in UOBM Queries  

The inferences associated with each UOBM query are listed in the Appendix of (Ma et al., 

2006).  When a SPARQL query is executed on an ontology, each query atom is evaluated by 

a query parser and the inferences are done by a DL reasoner to generate the query results. 

These inferences are associated to specific OWL 2 constructors. Hence, the analysis of the 

inferences associated with each query helps us to identify the OWL 2 constructors required in 

answering each query. Specific inferences and the OWL 2 constructors involved in each 

UOBM query is given in the Appendix: Table A.4. 

Table 7.3: OWL constructs supported by UOBM (source: Ma et al., 2006) 

OWL Lite OWL DL 

RDF Schema Features: 

_ rdfs:subClassOf 

_ rdfs:subPropertyOf 

_ rdfs:domain 

_ rdfs:range 

 

Property Characteristics: 

_ ObjectProperty 

_ DatatypeProperty 

_ inverseOf 

_ TransitiveProperty 

_ SymmetricProperty 

_ FunctionalProperty 

_ InverseFunctionalProperty 

 

Class Intersection: 

_ IntersectionOf 

Property Restrictions: 

_ allValuesFrom 

_ someValuesFrom 

 

Restricted Cardinality: 

_ minCardinality (only 0 or 1) 

_ maxCardinality (only 0 or 1) 

_ cardinality (only 0 or 1) 

 

(In)Equality: 

_ equivalentClass 

_ equivalentProperty 

_ sameAs 

_ differentFrom 

_ AllDifferent 

_ distinctMembers 

Class Axioms: 

_ oneOf, dataRange 

_ disjointWith 

_ equivalentClass (applied to class 

expressions) 

_ rdfs:subClassOf (applied to class 

expressions) 

Boolean Combinations of Class 

Expressions: 

_ unionOf 

_ complementOf 

_ intersectionOf 

Arbitrary Cardinality: 

_ minCardinality 

_ maxCardinality 

_ cardinality 

Filler Information: 

_ hasValue 

7.4.2 Inferences and the OWL 2 Constructors Associated to UOBM Query Suite 

We tabularise the OWL 2 constructors involved in answering each UOBM query in Table 

7.4. One UOBM benchmark query has several associated OWL 2 constructors that are shown 
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by a tick. The 15 queries of the UOBM benchmark exploits various constructors of the OWL 

2 constructors. Several OWL 2 constructors: Class(), ClassAssertion() and 

ObjectPropertyAssertion() are required in answering all the UOBM queries. Also, answering 

most of the queries involve the OWL 2 constructor ObjectProperty(). In addition to them, 

each query includes several other OWL 2 constructors as listed in Table 7.4. 

The OWL 2 constructor SubPropertyOf() is used in queries 2, 3, 4, 8, 9, 12 and 13.  

ObjectIntersectionOf() is involved only in the query 12. The constructor UnionOf() is 

required to answer queries 4 and 14. The universal quantification, ObjectAllValuesFrom() is 

involved in answering queries 9, 12 and 14. The existential quantification, 

ObjectSomeValuesOf() is required to answer queries 3, 4 and 8. Domain() and Range() of a 

property are required to answer queries 3, 4, 10 and 12. The FunctionalProperty() is involved 

in answering only the query 11. Answering queries 5 and 7 involves the 

TransitiveObjectProperty(). SubObjectPropertyOf() is involved in answering the query the 

query 8. Answering the query 6 requires inference on the OWL 2 constructor 

InverseObjectProperties(). Cardinality restrictions, Object{Max/Min/Exact}Cardinality() are 

involved in answering queries 3, 12, 13 and 15. The constructor DisjointClasses() is involved 

only in answering queries 4 and 14. 

Table 7.4: An analysis of the OWL 2 constructors involved in the UOBM queries 

OWL 2 Constructor Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8a Q8b Q9 Q10 Q11 Q12 Q13 Q14 Q15 

Class()                 

SubClassOf()                 

ObjectIntersectionOf()                  

UnionOf()                 

ObjectAllValuesFrom()                  

ObjectSomeValues 

From()  

                

ObjectProperty                  

Domain(), Range()                 

ClassAssertion(), Object 
PropertyAssertion() 

                

FunctionalProperty()                 

TransitiveObject 

Property()    

                

SubObjectPropertyOf() 

SubDataPropertyOf()    

                

InverseObject 
Properties()  

                

Object{Max/Min/Exact} 

Cardinality() 

                

DisjointClasses()                 

ObjectComplementOf()                 

SameAs(), 

AllDifferent() 

                

OneOf(), HasValue()                 

SymmetricObject 

Property(),  

                
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In addition to this, answering only query 14 involves ObjectComplementOf() and answering 

queries 7 and 11 involves equality or inequality, SameAs() and DifferentFrom(). Answering 

query 8 on OWL DL ontology used in the test involves nominal, OneOf() (Ma et al., 2006). 

Inference on SymmetricObjectProperty() is required in answering only query 10. Here, query 

8 has been run on two different ontologies that have different DL expressivities. The first 

instance of query 8 (Table 7.4: 8a) has been run on an OWL Lite ontology and the second 

instance of query 8 (Table 7.4: 8b) has been run on an OWL DL ontology (Ma et al., 2006). 

Hence, the second instance of query 8 (Table 7.4: 8b) involves more inferences than the first 

inference of query 8 (Table 7.4: 8a). This indicates that the type of inferences involved in 

answering a query depends on the ontology being queried. 

7.5 UOBM Benchmark Queries and Evaluating the OWL 2 Learn Ontologies 

The two ontology benchmarks: the LUBM and the UOBM have focused on achieving 

scalability of query-answering on KBS. It has been pointed out that, due to the use of 

incomplete OWL 2 reasoners, at least one query in such a query suite cannot be executed 

(Grau, Motik, Stoilos, & Horrocks, 2012). This has adverse effects on critical applications 

such as health care. Several limitations of the empirical completeness testing have been 

highlighted in (Grau et al., 2012). They include:  

1. Use of tests that are not generic – LUBM and UOBM use instance generators to 

generate the test data. The test data used in the tests have repetitive and fixed 

structures.  

2. Use of non-exhaustive test data – test data is used to test the KBSs w.r.t. only a 

limited number of data sets. 

3. Non-verifiability of the query answers – as the complete reasoners fail to work on 

large data sets, the results generated by them it may not be possible to use them to 

verify the results generated by the incomplete reasoners. 

These factors could affect the evaluation of OWL 2 learn ontologies differently. 

1. Instead of using an instance generator to generate the test data we use the instances of 

concepts and roles that have been mapped from a relational database. In Chapter 6 we 

already discussed database to ontology mapping to get the instances from data in the 

legacy databases. The relational database has been populated with those data over 

time.  
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2. The ontologies that we evaluate have been built independent of the benchmark 

queries. Database to ontology mapping to populate the ontology with instances is 

expected to be completed. To the best of our knowledge the data sets are sufficient to 

evaluate the capabilities of the learning ontologies. 

3. Learning domain includes a comparatively small data set compared to larger domains 

such as the medical domain with over 1,000,000 instances. However, we don’t take 

scalability as a criterion in this evaluation. 

4. Instead of using the same data set for evaluating the capabilities of the ontologies we 

use different data sets that are specific to each institution. In our work, we evaluate 

different institutional ontologies with different instances. 

7.5.1 The UOBM Queries and the OWL 2 Learn Profile 

Here, we compare the OWL constructors that are involved in the inferences of the UOBM 

queries with the OWL 2 constructors that are used in the OWL 2 Learn profile. Most of the 

OWL constructors involved in answering the UOBM queries are part of the OWL 2 Learn 

profile. However, a few queries of the UOBM uses OWL constructors have been excluded 

from the OWL 2 Learn profile. They are equality, inequality, symmetric object property and 

nominal and are given in the last three lines of the Table 7.4. We have listed those OWL 2 

constructors in Table 7.5.  

Table 7.5: OWL DL constructors that are not in OWL 2 Learn profile 

OWL DL Constructors required to answer UOBM and excluded from OWL 2 Learn 

(In)Equality: equivalentProperty(), sameAs(), differentFrom(), AllDifferent(), distinctMembers() 

Property Characteristics: SymmetricProperty() 

Class Axioms: oneOf, dataRange() 

Filler Information: hasValue() 

The six queries of the UOBM query suite (Appendix: Table A.3): queries 7, 8, 10, 11, 14 and 

15 involve these OWL 2 constructors that are excluded from the OWL 2 Learn profile. In the 

analysis we conducted in Section 7.4, we see that only ten queries (including query-8) of the 

UOBM are included in the OWL 2 Learn profile. Five queries, 7, 10, 11, 14 and 15 that 

demand the OWL 2 constructors that are excluded from the OWL 2 Learn profile are 

excluded from the query suite that we derive from the UOBM.  

We also see that some of the OWL 2 Learn constructors are not utilised in inferences in 

answering the queries in the UOBM query suite. They are qualified cardinality restrictions, 
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disjoint properties and cardinality restrictions on data properties (Table 7.6). This shows that 

UOBM query suite involves a majority of the inference features of the OWL 2 Learn profile. 

However, it does not cover all the OWL 2 constructors of the OWL 2 Learn profile. Hence 

the UOBM query suite is not directly applicable to evaluate the OWL 2 Learn ontologies. 

This indicates that we need a customised or an enhanced version of the UOBM to evaluate 

the OWL 2 Learn ontologies. 

7.6 A Query Suite for Evaluating the Capabilities of OWL 2 Learn Ontologies 

Based on the analyses that we have completed in the above sections, we attempt to devise a 

query suite that would help us to evaluate the capabilities of the query-answering and 

inference learning ontologies. As we cannot apply all the 15 queries of the UOBM to the 

OWL 2 Learn profile we adopt only ten queries from the UOBM and exclude five queries of 

the UOBM (queries 7, 10, 11, 14 and 15).  

Table 7.6: OWL 2 Learn Constructors that are not used in the UOBM query suite 

OWL 2 Learn Constructors not used in OWL DL 

 Qualified Cardinality on Object 

Properties: 

_ ObjectMaxCardinality(n R D)  

_ ObjectMinCardinality(n R D)  

_ ObjectExactCardinality(n R D) 

Qualified Cardinality on Data 

Properties: 

_ DataMaxCardinality(n R D) 

_ DataMinCardinality(n R D) 

_ DataExactCardinality(n R D) 

Disjoint Properties: 

 

_ DisjointObjectProperties(p1, p2) 

_ DisjointDataProperties(p1, p2) 

Even though answering query 8 on an OWL DL ontology involves Nominal (O) answering 

query 8 on an OWL Lite ontology does not involve Nominal. Hence, the UOBM query 8 is 

not excluded from the derived query suite. In addition to that, we introduce three new queries 

which use the three constructors of the OWL 2 Learn profile which are not used in the 

UOBM.  

7.6.1 Writing Queries Analogous to UOBM Queries 

The queries in the UOBM benchmark have been run on two University ontologies with data 

for 1, 5 and 10 universities. The learning ontologies we need to evaluate are different to the 

ontologies used in (Ma et al., 2006). That makes it difficult for us to use the UOBM 

benchmark queries as it is on another learning ontology. We need to write queries analogous 

to the queries in the UOBM query suite each time we evaluate a new learning ontology. Here 

we discuss writing the analogous queries to the MQ ontology, one of the sample ontologies to 

be evaluated. The query suite and the ontology used in the UOBM are comparable to the MQ 

ontology and other OWL 2 Learn ontologies in the following ways. 
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Use of Synonyms 

The two ontologies used in the UOBM benchmark and the OWL 2 Learn ontologies that we 

need to evaluate include some common concepts and some common object/data properties. 

For example, both of them include the terms such as student, lecturer, and course. Still, we 

notice that some synonymous terms also have been used in the UOBM ontologies and OWL 

2 Learn ontologies for the concept and object properties. For example, the university 

ontology used in UOBM uses the terms, employee, and alumni whereas in the MQ ontology 

we use the terms staff and graduate. 

Hence, we have to rewrite the selected UOBM queries to make them executable on the 

learning ontologies that we evaluate. In writing the queries analogous to the UOBM we kept 

the original format of the UOBM queries. We also attempt to keep the concept and property 

names the same. If this is not possible we use synonyms. For example, the UOBM query 1 

uses the concept UndergraduateStudent and the object property takesCourse. In the 

analogous query for the MQ ontology we use the same concept UndergraduateStudent and 

the synonym of the takesCourse, studies. In case we don’t find matching concepts or 

properties to the UOBM ontology in a learning ontology, we select concepts and properties 

with a similar ontology structure for querying. For example, query 5 involves the transitive 

property, subOrganisationOf on classes: University, Faculty and Research Group. However, 

in our work, we consider only a single university and cannot use the concept, University. 

Hence, we use the transitive property, prerequisiteOf on the classes Unit and Prerequisite 

(Appendix: Table A.3). 

Use of Domain Specific Classes and Properties 

The UOBM benchmark queries include concepts and properties that are specific to the 

ontologies that are used in the UOBM benchmark. For example, the UOBM queries 8 and 13 

include the concepts, SportsLover and PeopleWithHobby. It is less likely that a real-world 

university would need such information in a learning system. Hence, we replace those 

concepts used in queries 8 and 13 by realistic and relevant concepts, Lecturer and 

TeachingStaff in the MQ ontology to get the analogous queries 8 and 13 that are given in the 

Appendix: Table A.3.  
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7.6.2 New Benchmark Queries for Evaluating OWL 2 Learn Ontologies 

Here we introduce three new benchmark queries that we propose to evaluate the OWL 2 

Learn ontologies. These new queries include the OWL 2 constructors given in Table 7.6 that 

are not covered by the UOBM queries.  

New Query 1 with Data Properties and Learning Object Metadata  

The first query we introduce involves metadata on learning resources and user profile 

attributes that are defined as data properties in the MQ ontology. For example, the new query 

1 in (Table 7.7) retrieves the learning resources that are of the type presentation and in the 

format pdf. This query involves a defined class LearningResource and two subdata 

properties, contentType and format of the data property lomAttribute. These two data 

properties have xsd:string values as the range of each (Table 7.7). 

New Query 2 with Cardinality Restrictions on Data Property 

The second query we introduce involves cardinality restriction on the data property. This 

query in (Table 7.7) is intended to retrieve the units with less than three assessment items. 

This query is satisfied by the MQ ontology by using the class Unit that includes a cardinality 

restriction on the data type property noOfAssignments. That is: noOfAssignments min 3 

xsd:integer. 

Table 7.7: New benchmark queries for OWL 2 Learn ontologies 

# Query in Natural 

Language 

SPARQL Query Related constraints 

1 Find learning 

resources that are 

only presentations 

and in the pdf format. 

SELECT DISTINCT ?x 

WHERE {?x rdf:type :LearningResource.  

?x :contentType ?y. ?x :format ?z 

FILTER ((?y='presentation'^^xsd:string ) && 

(?z='pdf'^^xsd:string))}  

Range(contentType, 

xsd:string) 

Range(format, xsd:string) 

2 Find units with less 

than three 

assignments. 

SELECT ?x COUNT(?y) WHERE {?x 

rdf:type :Unit. ?x :hasAssignment ?y.} 

GROUP BY ?x HAVING (COUNT(?y) <3) 

noOfAssignments min 3 

xsd:integer 

3 Find all assessment 

tasks with their due 

date and the return 

date. 

SELECT DISTINCT ?x ?y ?z WHERE {?x 

rdf:type :AssessmentTask.  

?x :dueDate ?y. ?x :returnDate ?z.} 

DisjointDataProperties 

(:dueDate :returnDate ) 

OWL 2 Learn profile includes the OWL 2 constructors disjoint object and data properties and 

they have been used in the sample OWL 2 Learn ontologies. The new query 3 is written to 

retrieve all the assessment tasks with their dueDate and the returnDate from the MQ 

ontology. Answering the new query 3 involves dueDate and returnDate that have been 
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defined as disjoint data properties in the ontology as in (64). So, the dueDate of an 

assignment, must be different from its returnDate. 

 DisjointDataProperties( :dueDate :returnDate )  (64) 

New Query 3 with Disjoint Data Properties 

With these three new queries we form a new query suite of 13 benchmark queries to evaluate 

the OWL 2 Learn ontologies. In the next section we provide a discussion on the inferences 

involved in the queries of the new query suite that we have derived. 

7.6.3 The Inferences Involved in the Three New Queries 

The query-answering process involves several inferences performed by the DL reasoner on 

the MQ ontology. The ten OWL 2 Learn queries that we have derived from, and analogous 

to, the UOBM queries involve analogous inferences to the UOBM queries as well. Those 

analogous inferences depend on the query, the learning ontology we are able to logically 

derive from them based on the query results. The analogous inferences for the ten analogous 

queries are given in Table A.5.  

When we consider the first new query and the query results, it involves the inferences below 

with conjunction and data type properties as in (65): 

 <x rdf:type :LearningResource>, <x contentType  y>, <x format z> 

<y =’presentation’^^xsd:string>, <z= ‘pdf’^^xsd:string>  
(65) 

Here the reasoner checks whether the instance ‘x’ is of the type LearningResource has a 

xsd:string value as the datatype and as the format of it.  

The second new query involves the inferences that are listed in (66): 

 <x rdf:type Unit>, <x noOfAssessments y> <y <3^^ xsd:integer >  (66) 

Here the reasoner checks whether there at most three assessment items for a given unit. Here 

the noOfAssessmentItems has been defined as a data type property. 

The new query 3 involves inferences on disjoint data properties. Therefore, it checks whether 

the dueDate is different from the returnDate. They are given in (67): 

 <x rdf:type AssessmentTask>, <x dueDate y>, <x returnDate z>, 

DisjointDataProperties(dueDate returnDate ) 

(67) 
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The complete query suite we derive includes 13 queries. In the next subsections we provide a 

discussion on writing the queries that are analogous to the UOBM queries and the three new 

queries we introduce. 

7.6.4 The Inferences Involved in the Queries with Cardinality Restrictions 

Answering the UOBM queries 3, 12, 13 and 15 involve unqualified cardinality restrictions: 

ObjectMinCardinality(n R), ObjectMaxCardinality(n R), ObjectExactCardinality(n R). 

However, OWL 2 Learn profile includes qualified cardinality restriction. So, when we write 

queries that are analogous to queries 3, 12, 13 and 15 of UOBM we use the qualified object 

cardinality restrictions:  ObjectMinCardinality(n R D), ObjectMaxCardinality(n R D), 

ObjectExactCardinality(n R D). For example, in answering the new query 2, qualified 

minimum cardinality restriction is used on the MQ ontology inference. The defined class Unit 

includes the qualified cardinality restriction: ObjectMinCardinality(noOfAssignments 3 Unit).  

7.6.5 OWL 2 Learn Benchmark Query Suite and the OWL 2 Constructors 

We name the new query suite that we derive to evaluate the learning ontologies as the OWL 

2 Learn benchmark query suite. The complete query suite includes the ten analogous queries 

and these three new queries that equals 13 queries. The complete set of queries included in 

the OWL 2 Learn benchmark are listed in Table 7.8.  

Answering the OWL 2 Learn query suite involves inference in association to different OWL 

2 Learn constructors in the sample ontologies. We list the OWL 2 Learn constructors that are 

required in answering all the new queries in Table 7.9. The first ten queries in Table 7.9 are 

analogous to the UOBM queries. Hence, the OWL 2 constructors involved in the analogous 

queries are same as the constructors involved in the counterpart queries in the UOBM query 

suite. The three new queries are listed in the last three columns of Table 7.9. The constructors 

that are required to satisfy queries 11 to 13 are shown in the last three rows of Table 7.9. 

7.7 Conducting an Ontology Evaluation 

In these subsections we briefly introduce the elements of the evaluation environment we use. 

Protégé - Here we use Protégé as the ontology evaluation environment. Protégé is used to 

load each of the learning ontology that we have already developed and populated. The 

HermiT reasoner and SPARQL query interface are available as plugins of Protégé. The 

SPARQL query interface is capable of editing, executing and displaying the query results. 
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Table 7.8: OWL 2 Learn benchmark query suite 

Q# Query in natural language Query in SPARQL 

1 Find all the undergraduate students 

who study ISYS114. 

SELECT DISTINCT ?x 

WHERE {?x rdf:type :UndergraduateStudent. 

?x :studies :ISYS114 } 

2 Find all the staff members. SELECT DISTINCT ?x  

WHERE {?x rdf:type :Staff.} 

3 Find all the students of the 

Computing department. 

SELECT DISTINCT ?student WHERE {?x rdf:type :Student. 

?x :isStudentOf :Computing } 

4 Find all the learning resources 

authored by teaching staff of the 

Computing department. 

SELECT DISTINCT ?x WHERE {?x rdf:type 

:LearningResource.  

?x :hasAuthor ?y. ?y rdf:type :TeachingStaff.  

?y :isStaffOf  :Computing} 

5 Find all the prerequisites of 

COMP365. 

SELECT ?x WHERE { ?x rdf:type :Prerequisite.  

?x :isPrerequisiteOf+ ?y. FILTER (?y=:COMP365)} 

6 Find all the graduated students of 

the Computing department. 

SELECT DISTINCT ?x WHERE { 

?x rdf:type:Person. :Computing :hasGraduate ?x.} 

7 Find all the lecturers of the 

Computing department. 

SELECT DISTINCT ?x 

WHERE {?x rdf:type :Lecturer. :Computing :hasStaff* ?x} 

8 Find all the undergraduate units of 

the Faculty of Science and 

Engineering. 

SELECT ?x WHERE { ?x rdf:type :UnitUG.  

?x :isTaughtBy ?y. 

?y :isStaffOf ?z. ?z subOrganisationOf :FSE} 

9 Find all the students who study the 

units taught by Debbie Richards.  

SELECT  DISTINCT ?x WHERE{?x rdf:type :Student. 

?x :studies ?y. ?y :hasLecturer :DebbieRichards} 

10 Find all teaching staff who teach 

some units in the Computing 

department. 

SELECT DISTINCT ?x WHERE {?x rdf:type :TeachingStaff.  

?x :isStaffOf :Computing} 

11 Find the learning resources that are 

only presentations and in the pdf 

format. 

SELECT DISTINCT ?x WHERE {?x rdf:type 

:LearningResource. ?x :contentType ?y. ?x :format ?z 

FILTER ((?y='presentation'^^xsd:string ) && 

(?z='pdf'^^xsd:string))} 

12 Find the units with less than three 

assignments. 

SELECT ?x COUNT(?y) WHERE 

{?x rdf:type :Unit. ?x :hasAssignment ?y.} 

GROUP BY ?x HAVING (COUNT(?y) <3) 

13 Find all the assessment tasks with 

their due date and the return date. 

SELECT DISTINCT ?x WHERE {?x rdf:type 

:AssessmentTask. ?x :dueDate ?y. ?x :returnDate ?z.} 

Notes: + - SPARQL syntax for transitive properties, * - SPARQL syntax for subproperties 
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Table 7.9: The OWL 2 Learn Constructors Involved in the OWL 2 Learn BM Queries 

OWL 2 Constructor Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 

Class()              

SubClassOf()              

ObjectIntersectionOf()               

UnionOf()              

ObjectAllValuesFrom               

ObjectSomeValuesFrom               

ObjectProperty               

Domain(), Range()              

ClassAssertion, ObjectPropertyAssertion              

TransitiveObjectProperty                 

SubObjectPropertyOf SubDataPropertyOf                 

InverseObjectProperties              

Object{Max/Min/Exact}Cardinality              

DisjointClasses              

DataProperty, DataPropertyAssertion, 

xsd:{integer, string, …} 

             

Data{Max/Min/Exact}Cardinality              

DisjointDataProperties              

DL Reasoner – In evaluating a learning ontology, we recommend the use of any DL reasoner 

that has a DL expressivity equal to, or higher than, an OWL 2 Learn profile. In this work, we 

used the DL reasoner HermiT that has been introduced as an OWL 2 reasoner. OWL 2 has 

the DL expressivity of SROIQ(D) that is a higher DL expressivity that the OWL 2 Learn 

profile.  

SPARQL Query Language – SPARQL is the W3C recommended query language for the 

Semantic Web. The query suites of all the ontology benchmarks we analysed in this chapter 

have been written in SPARQL.  

 

Another option for an evaluation environment in which to conduct this evaluation is to use 

the e-learning system prototype that we have developed. The current version of our prototype 

uses a GUI for composing the queries. It uses the reasoner RacerPro and the query language 

nRQL. They are core components of the RacerPro systems architecture (Haarslev et al., 

2012). It is possible to translate SPARQL queries to nRQL queries and vice versa. SPARQL 

has been proposed as the standard query language for RacerPro (Haarslev et al., 2012). In this 

section, we evaluate the learning ontologies using Protégé with SPARQL plugin to execute 

the queries on learning ontologies.  

The evaluation of each learning ontology is conducted by execution of the 13 benchmark 

queries (in Table 7.8), firstly on the MQ ontology. Secondly, the 13 analogous queries that 
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are given in Table 7.10 have been formulated for, and executed on, the CSU ontology. We 

observe each query’s results. 

Table 7.10: Analogous queries for the CSU ontology 

# Query in natural language Query in SPARQL 

1 Find all the undergraduate students who study 

ITC106. 

SELECT DISTINCT ?x 

WHERE {?x rdf:type :UndergraduateStudent. 

?x :studies :ITC106 } 

2 Find all the staff members. SELECT DISTINCT ?x  

WHERE {?x rdf:type :Staff.} 

3 Find all the students of the School of 

Computing and Mathematics. 

SELECT DISTINCT ?student WHERE {?x rdf:type :Student. 

?x :isStudentOf :ComputingAndMaths } 

4 Find all the learning materials authored by 

academic staff of the School of Computing and 

Mathematics. 

SELECT DISTINCT ?x WHERE {?x rdf:type 

:LearningMaterial.  

?x :hasAuthor ?y. ?y rdf:type :AcademicStaff.  

?y :isStaffOf  : ComputingAndMaths} 

5 Find all the prerequisites of ITC309. SELECT ?x WHERE { ?x rdf:type :Prerequisite.  

?x :isPrerequisiteOf+ ?y. 

FILTER (?y=:ITC309)} 

6 Find all the graduated students of the School of 

Computing and Mathematics. 

SELECT DISTINCT ?x WHERE { 

?x rdf:type:Person. :ComputingAndMaths :hasGraduate ?x.} 

7 Find all the lecturers of the School of 

Computing and Mathematics. 

SELECT DISTINCT ?x 

WHERE {?x rdf:type :Lecturer. 

:ComputingAndMaths :hasStaff* ?x} 

8 Find all the undergraduate subjects of the 

Faculty of Business, Justice and Behavioral 

Studies (BJBS). 

SELECT ?x WHERE { ?x rdf:type :SubjectUG.  

?x :isTaughtBy ?y. 

?y :isStaffOf ?z. ?z subOrganisationOf :BJBS} 

9 Find all the students who study the subjects 

taught by Sudath Heiyanthuduwage.  

SELECT  DISTINCT ?x WHERE{?x rdf:type :Student. 

?x :studies ?y. ?y :hasLecturer : SudathHeiyanthuduwage} 

10 Find all the academic staff who teach some 

subjects in School of Computing and 

Mathematics. 

SELECT DISTINCT ?x WHERE {?x rdf:type 

:AcademicStaff.  

?x :isStaffOf :ComputingAndMaths} 

11 Find the learning materials that are only 

presentations and in the pdf format. 

SELECT DISTINCT ?x WHERE {?x rdf:type 

:LearningMaterial. ?x :contentType ?y. ?x :format ?z 

FILTER ((?y='presentation'^^xsd:string ) && 

(?z='pdf'^^xsd:string))} 

12 Find the subjects with less than three 

assignments. 

SELECT ?x COUNT(?y) WHERE 

{?x rdf:type :Subject. ?x :hasAssignment ?y.} 

GROUP BY ?x HAVING (COUNT(?y) <3) 

13 Find all the assessment items with their due date 

and the return date. 

SELECT DISTINCT ?x WHERE {?x rdf:type 

:AssessmentItem. ?x :dueDate ?y. ?x :returnDate ?z.} 
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When a query is executed its results are displayed on the query interface in Protégé. Figure 

7.1 shows the execution of the benchmark query 4 on MQ and CSU ontologies. We could 

execute all 13 queries on each sample ontology. Even though they generate similar results, 

they could vary slightly due to the differences in terminology and the structure of each 

ontology. An analysis of them is provided in the next section. 

Query 4 for MQ ontology and results Query 4 for CSU ontology and results 

  

  

Figure 7.1: Executing benchmark queries in Protégé 

7.8 Analysing the Results of the Ontology Evaluation 

Even though both ontologies are capable of generating the query’s results, ‘how they generate 

the query results?’ or ‘what inferences are involved in satisfying them?’ could be different. 

Hence, we analysed the inferences involved in satisfying the benchmark queries on each 

ontology and made a comparison. 

7.8.1 Differences in the Learning Ontologies 

We observe the differences between the two learning ontologies we analysed: 

Size of the ontologies  

These sample ontologies vary by the size of their TBox; the number of concepts, object 

properties, data properties and the other TBox constraints. The size of an ontology 

specifically affects the scalability and efficiency of query-answering (Ma et al., 2006). 

However, as we do not evaluate the learning ontologies by their scalability and efficiency we 

do not analyse their size. 

Terminological differences in Concept Names  

Another aspect that makes the learning ontologies different from each other is the 

terminology used in their TBox. Different names are given to their classes, object properties, 
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data properties and constraints. For example, when we consider the terms used for a concept, 

MQ ontology uses the terms program, major and unit whereas CSU ontology uses the terms 

course, specialisation and subject. Also, MQ ontology uses the terms recourses and 

assessment tasks that are synonymous with the learning materials and assessment items in the 

CSU ontology.  

We also notice that synonymous object and data type properties are used in the two sample 

ontologies. For example, MQ ontology uses the object property hasUnit whereas CSU 

ontology uses the object property hasSubject. Again, the MQ ontology uses the data property 

unitTitle whereas the CSU ontology uses the data property subjectName. Of course, the 

names given to ABox instances are also different to each learning ontology that depends on 

the data. 

Terminological difference needs to be considered especially in ontology merging and 

alignment. However, in our work, we do not attempt to merge or align the ontologies. We 

respect the fact that each institution would like to keep the terminology and other features 

unique. Hence, to facilitate this requirement we propose to use the adaptive e-learning 

system’s framework with institution-specific learning ontologies. 

7.8.2 Similarities in the Learning Ontologies 

Even though the learning ontologies differ from each other in some aspects like their size and 

terminology, they are similar in some other aspects. We analyse the two sample ontologies to 

see whether they are similar in their ontological structures and inference capabilities.  

Similarities in Ontological Structures 

Each learning ontology is built considering the requirements of each institution. Still, most of 

the institutions have common requirements that make their ontological structures similar. 

However, it is possible for each institution to have minor differences due to their business 

rules. Business rules of a domain are specified as constraints in an ontology.  

When we consider the MQ and the CSU ontology we identify many similarities in their 

ontological structures. The similarities between these learning ontologies exist between the 

structural elements: classes, class hierarchies, object properties, object property hierarchies, 

data properties, data property hierarchies and property characteristics. Also, the constraints: 

quantification; universal and existential; and cardinality restrictions used in the learning 

ontologies, could be similar.  
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The TBoxes of the sample ontologies have similar class hierarchies and property hierarchies. 

For example, MQ’s ontology includes a hierarchy of learning resources that is similar to 

CSU’s ontology hierarchy of learning materials. They also are similar by the type of the 

relations: inverse properties and transitive properties that are used to define the ontology. We 

have given an example for each structural element of each ontology in Table 7.11. 

Table 7.11: Structural similarities in MQ and CSU ontologies 

  OWL 2 Learn 

Constructor 

An example from MQ Ontology An example from CSU Ontology 

Classes  Class(UndergraduateStudent) Class(UndergraduateStudent) 

class inclusion SubClassOf(UndergraduateStudent, 

Student) 

SubClassOf(UndergraduateStudent, 

Student) 

object properties  ObjectProperty(unitOf()) ObjectProperty(subjectOf()) 

object property 

hierarchies 

SubObjectPropertyOf(AssignmentOf(), 

AssessmentTaskOf()) 

SubObjectPropertyOf(AssignmentOf(), 

AssessmentItemOf()) 

data properties DataProperty(format)  DataProperty(format)  

data property 

hierarchies 

SubDataProperty(format, 

LOMAttribute) 

SubDataProperty(format, 

LOMAttribute) 

inverse properties  InverseProperties(hasGraduate(), 

isGraduateOf()) 

InverseProperties(hasGraduate(), 

isGraduateOf()) 

transitive properties TransitiveProperties(isPrerequisiteOf()) TransitiveProperties(isPrerequisiteOf()) 

Universal constraints ObjectAllValuesFrom(studies() 

UndergraduateUnit) 

ObjectAllValuesFrom(studies() 

UndergraduateUnit) 

existential constraints  ObjectSomeValuesFrom( 

isTeachingStaffOf(),  Department) 

ObjectSomeValuesFrom(isAcademicOf(),  

School) 

cardinality constraints studies(Student, Unit 

(ObjectMinCardinality(1))) 

studies(Student, Subject 

(ObjectMinCardinality(1))) 

 

Similarities in Inferences Involved in Query-Answering 

The similar structures of the ontologies make the inferences performed on them by a reasoner 

also similar. They eventually lead the queries to generate similar answers as well. Most of the 

analogous queries on MQ ontology involve generating answers that include resources, 

people, units and the assessments. Similarly, the analogous queries on the CSU ontology 

involve generating answers that include materials, people, subjects and assessment items. 
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If we would consider inferences performed on the class, Student and its subclass 

UndergraduateStudent in MQ and CSU ontologies, they involve similar inferences. For 

example, if we would consider the query in (68): 

 Find all the students of computing department of MQ ontology.  (68) 

It involves the inferences in (69): x is an undergraduate student, so, x is a student. 

 UndergraduateStudent(x)  Student(x)  x   (69) 

We notice similarities in the inferences that involve other structural elements as well. Table 

7.12 shows the similarities between the inferences that would be performed on the MQ 

ontology and the CSU ontology. The inferences involved answering each benchmark query 

on the two sample ontologies. MQ ontology and CSU ontology are given in the Appendix: 

Table A.5.  

Based on the evaluation we conducted we obtained some insight into query-answering and 

inference capabilities of the two sample learning ontologies. We observed that both of them 

have similar structural and inference capabilities that are within the OWL 2 Learn profile. 

Both of the learning ontologies include the OWL 2 Learn constructors that are required to 

answer the 13 benchmark queries. Therefore, both of them can be considered to have 

complete query-answering and inference capabilities of the OWL 2 Learn profile.  

7.9 Evaluation of the Adaptive E-Learning System’s Framework 

In Chapter 3 we suggested an ontology-based plug and play architecture for developing 

adaptive e-learning systems that would alleviate the duplicated effort in developing them. We 

also suggested that this framework is adaptable to each e-learning system and would allow 

institutions to keep their identity by using their own terminology, course and unit structures.  

Here we discuss the evaluation of adaptability of the e-learning system’s framework, to prove 

or disprove whether we have achieved the expected research goals. For this purpose, we have 

developed a proof of concept prototype of the adaptive e-learning system’s framework. We 

also have developed two sample ontologies that are presented in Chapters 5 and 6. Here we 

evaluate two instances of the proof of concept prototype using the two sample ontologies that 

we developed for MQ and CSU. In this evaluation, we examine: 1) the possibility of using 

instances of the proof of concept prototype by just plugging institution-specific ontologies 

with no changes to the proof of concept prototype; and, 2) question whether this prototype 

allows each institution to generate answers to the queries with its own terminology. 
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Table 7.12: Similarities in inferences on MQ and CSU ontologies 

OWL 2 Learn 

Constructor 

Inference involved in MQ Ontology Inference involved in CSU Ontology 

Classes and instances UndergraduateStudent(x)  x UndergraduateStudent(x) x 

class inclusion UndergraduateStudent(x)   

Student(x)  x 

UndergraduateStudent(x)   

Student(x)  x 

object properties  unitOf(x, y)  x subjectOf(x, y)  x 

object property 

hierarchies 

assignmentOf(x, y)  

assessmentTaskOf(x, y)  x 

assignmentOf(x, y)  

assessmentItemOf(x, y)  x 

data properties format(x, ‘pdf’^^xsd:String)  x format(x, ‘pdf’^^xsd:String)  x 

data property 

hierarchies 

format(x, ‘pdf’^^xsd:String)  

LOMAttribute(x, ‘pdf’^^xsd:String) x 

format(x, ‘pdf’^^xsd:String)  

LOMAttribute(x, ’pdf’^^xsd:String)x 

inverse properties  hasGraduate(x, y)   

isGraduateOf(y, x)  y 

hasGraduate(x, y)   

isGraduateOf(y, x)  y 

transitive properties isPrerequisiteOf(x, y)  

isPrerequisiteOf(y, z)  x 

isPrerequisiteOf(x, y)  

isPrerequisiteOf(y, z)  x 

Universal constraints UndergraduateStudent  

studies.UndergraduateUnit, studies (x, y) 

 <x rdf:type UndergraduateStudent> 

UndergraduateStudent  

studies.UndergraduateSubject, studies (x, 

y)  <x rdf:type UndergraduateStudent> 

existential constraints  Lecturer⊑isLecturerOf.Unit,  

isLecturerOf(x, y)   Lecturer(x) x 

Lecturer⊑isLecturerOf.Subject,  

isLecturerOf(x, y)   Lecturer(x) x 

cardinality 

constraints 

Lecturer ⊒ isLecturerOf. ≥1 Unit, 

isLecturerOf(x, y)  Lecturer(x) x 

Lecturer ⊒ isLecturerOf. ≥1 Subject, 

isLecturerOf(x, y)  Lecturer(x) x 

 

To demonstrate the adaptability of the e-learning system’s prototype we plug each ontology 

to each instance of the prototype. Then, we execute different types of queries to see whether 

we can execute all the queries on both instances of the prototype. We observe whether both 

instances generate similar answers with different terms, yet specific to each institution, to 

those queries. 

7.9.1 Proof of Concept Prototype for Adaptive E-Learning System’s Framework 

The proof of concept prototype is used to provide an idea of the ontology-based adaptive e-

learning system’s framework and query-answering on an institution-specific ontology. The 

proof of concept prototype is also an implementation of the ontology-based plug and play 

architecture that has been given in Chapter 3, Figure 3.4. Hence, the proof of concept 

prototype of the adaptive e-learning system’s framework (Figure 7.2) includes the three 

layers: an interface layer, a components layer and a repository layer.  
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Figure 7.2: Adaptive e-learning system’s framework 

A set of technologies was used to build the proof of concept prototype. The interface layer is 

built using the server-side scripts written in Python programming language with embedded 

HTML. The query’s inputs and outputs are handled by JavaScript. The components layer that 

performs main system functions is written in Python and the server-side scripts that perform 

these functions are executed on a Python web server. RacerPro is used as the DL reasoner. 

The populated OWL ontologies represent the repository layer. JASON notation is used to 

pass the information between the layers. The queries composed in the interface layer are 

converted into nRQL queries that are executed on the learning ontology by the DL reasoner. 

7.9.2 Instances of Proof of Concept  

As already mentioned, in this evaluation, we use two instances of the proof of concept 

prototype; one for MQ and the other for CSU. Each instance is plugged with an institution-

specific learning ontology. When an instance of the prototype is executed, primarily its query 

interface becomes visible to the user. Then the user can use the query interface to formulate a 

query that is eventually executed on the learning ontology. In the following subsections we 
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elaborate on formulating and executing three types of queries on each learning ontology: 1) 

simple queries, 2) conjunctive queries, and, 3) negative queries. 

This query interface includes several interface components that allow the learner to select the 

concepts, roles and constraints that are required to form a query. The query interface is 

populated with the initial instances of the concepts and roles at the time the system is loaded. 

When a learner logs into the system it gets refreshed with the instances specific to the learner. 

The query’s interface allows the user to enter a query as a set of query atoms that consist of a 

subject, role and an object. The query’s interface allows a learner to navigate through the 

ontology and to select the relevant ontology elements to compose a new query.  

In this query interface, to compose the first query atom, the learner can select a concept of 

what he/she wants to query as the first input. This results in displaying the roles that are 

associated with that concept in the drop down list next to it. When the learner selects a 

specific role, the associated objects are visible in the drop down list next to that role. This 

process is continued to add more query atoms and to complete the query. 

The query interface includes the relevant interface components to deal with complex queries 

with conjunction, disjunction and negation as well. In the background, the queries are 

composed according to the selected constructors on the query interface. In the next section 

we introduce the use of the query interface to compose a query.  

7.9.3 Query Formulation in the Query Interface 

The user starts to use the interface of the proof of concept prototype to find the required 

learning objects that correspond to his profile. Let us assume that the user intends to pose the 

question in (70) to the learning system:  

 Which learning resources of ISYS114 on ‘understanding of the requirements 

gathering process’ are taught by the MQLecturer2? 
(70) 

The user navigates the ontology on the interface level and the query handler generates a 

series of nRQL queries in the background (Haarslev et al., 2012). The DL reasoner answers 

these queries, and the interface is updated after each user interaction using standard AJAX 

technology.  

In our case, the interface is populated with a refined list of domain concepts by executing the 

query in (71) that returns the taxonomy of the TBox (Haarslev et al., 2012). The user selects a 

domain concept, in our case learning resource, from the concept list.  
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 (taxonomy) (71) 

This selection triggers new nRQL queries and the DL reasoner returns a number of associated 

concept roles as the answer.  In our case, the user selects the role resource of, that is, the 

inverse role of hasResource, and the query handler generates the following two queries (72) 

and (73) in a sequence (role-range is a role query in nRQL [Haarslev et al., 2012]):  

 (role−range <role name>)  (72) 

 (retrieve (?x) (and (?x <concept name>))) (73) 

Those queries are eventually passed to the DL reasoner. The DL reasoner returns the concept 

Unit as answer to the first query. The second query returns the instances of the concept Unit 

as answer. These answers are eventually displayed in a drop-down menu (Figure 7.3). From 

this drop-down menu the user selects the unit, ISYS114 as the object of the role resource of. 

The nRQL query atoms generated in this case are given in (74): 

 (?x LearningResource) (?x ISYS114 resourceOf) (74) 

The interface allows the user to extend a question by adding additional query atoms. In our 

case, the user selects the roles taught by and expects learning outcome that displays a list of 

lecturers and learning outcomes of ISYS114 as a result. The user selects the desired lecturer 

MQ Lecturer 2 and the learning outcome understanding of the requirements gathering 

process. This generates query atoms in nRQL as in (75) and (76): 

 (?x MQLecturer2 taughtBy) (75) 

  (?x understandingOfTheRequirementsGatheringProcess 

expectsLearningOutcome)  
(76) 

Once the user has completed the entire query, he/she submits the query to the system. The 

query handler completes the query by inserting additional predicates that are related to the 

LOM attributes of learning resources based on user preferences. In this process, the query 

handler matches the LOM attributes with the user preferences. For example, let us assume 

that the current user prefers the learning resources with a difficulty level easy, content type 

lecture, format wmv and the content level level100. This generates the nRQL query as in (77):  
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 (retrieve (?x) (and (?x LearningResource) 

(?x ISYS114  resourceOf) (?x MQLecturer2 taughtBy)  

(?x  understandingOfTheRequirementsGatheringProcess 

expectsLearningOutcome)  

(?x easy hasDifficulty) (?x lecture hasContentType)  

(?x wmv hasFormat) (?x level100 hasLevel)))   

(77) 

After submission of this query, the learning resources that satisfy all the above criteria are 

retrieved and returned. The final state of the GUI is shown in Figure 7.3. The preferences 

attributes are not shown in the GUI since they are obtained from the user profile. To obtain 

the learning resources, the user would need to click on any item in the result set, in this case, 

ISYS114 lecture slides 1. 

 

 

 

 

 

 

Figure 7.3: Composing query atoms in the query interface 

The proposed proof of concept query interface is used to formulate different types of queries. 

In the following section we demonstrate how different types of queries are formulated and 

executed on the two sample ontologies to generate similar answers yet with different terms. 

7.9.4 Simple Queries  

A simple query involves a single relation between two objects or a relation between an object 

and its instances. The simple queries that we can build at MQ and CSU depend on the terms, 

instances and/or relations that are involved. For example, suppose that a student at MQ asks: 

‘What iLectures are available?’ For that, the student selects the term ilecture on the interface 

and receives a list of available iLecture instances (Figure 7.4). Having obtained the instances, 

let us assume the student wants now to know ‘Who teaches a particular ISYS114 instance of 

iLectures?’ For this purpose, he/she selects the relevant instance (ISYS114ilecture10) and the 
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relation (taughtBy) on the interface and receives the name of the lecturer (MQLecturer1) as a 

result: 

 

Figure 7.4: A simple DL query on the MQ ontology 

In order to answer these simple queries, the e-learning system uses the support of the DL 

Query Processor. The DL Query Processor translates each user query into a formal query as 

in (78) and (79) that are passed to the DL reasoner: 

 (retrieve (?x) (and (?x ilecture)) (78) 

  (retrieve (?x) (and (ISYS114ilecture10 ?x taughtBy)))   (79) 

When we consider a student at CSU asking a similar query about videos (Figure 7.5), he/she 

would first retrieve the available instances using the term video on the interface, and then 

select an instance (ITC114Wk10Audio2) and a suitable role (deliveredBy) to find the name of 

the lecturer (CSULecturer1). 

 

Figure 7.5: A simple DL query on the CSU ontology 

The DL queries created by the DL Query Processor for this input are as in (80) and (81): 

 (retrieve (?x) (and (?x video))) (80) 

 (retrieve (?x) (and (ITC114Wk10Video1 ?x deliveredBy)))  (81) 

7.9.5 Conjunctive Queries 

In our system, the user can compose conjunctive queries not only on the learning resources, 

but also on the LOM that are the characteristics of the learning resources and are related to 

user preferences. Suppose that a student at MQ wants learning resources used by a particular 

lecturer which are related to a particular learning outcome. Also suppose that the student 

wants to specify further LOM attributes that these learning resources need to satisfy. For 
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example: ‘Which learning resources of ISYS114 that is taught by MQ Lecturer 2 fall under a 

particular learning outcome and are available in pdf format, have the content type 

presentation and are easy to understand?’ The final state of the GUI is shown in Figure 7.6. 

To obtain the lecture slides, the user would need to click on any item in the result set. 

 

Figure 7.6: A conjunctive query with LOM attributes on the MQ ontology 

The following (82) is the final query that is generated by the DL Query Processor and 

executed by the DL reasoner to generate the required results: 

 (retrieve (?x) (and (?x ISYS114 resourceOf) (?x MQLecturer2 taughtBy)   

(?x understandingOfTheRequirementsGatheringProcess 

expectsLearningOutcome) (?x easy hasDifficulty) (?x presentation 

hasContentType) (?x pdf hasFormat)))   

(82) 

An analogous query can be asked by a student at CSU: 

‘Which learning materials of ITC114 are delivered by CSU Lecturer 2 that cover a particular 

learning objective and are available in pdf format, have the content type presentation and are 

easy to understand?’ Again, the final state of the GUI is shown in Figure 7.7. 

These two conjunctive queries use the same LOM; but they use different concepts and 

relations. Hence, the formal query for CSU (83) looks different to the MQ one: 

 (retrieve (?x) (and (?x ITC114 materialOf) (?x CSULecturer2 deliveredBy) 

(?x toDescribeIssuesOfDatabaseAdministration coversObjective) (?x easy 

hasDifficulty) (?x presentation hasContentType) (?x pdf hasFormat))) 

(83) 
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Figure 7.7: A conjunctive query with LOM attributes on the CSU ontology 

7.9.6 Inclusion Queries 

Recall that the term learning resources includes reading material which in turn includes 

lecture note, lecture slides and textbook. While forming a simple query at MQ, if a student 

selects the term lecture slides, then the system lists only lecture slides, whereas if he selects 

the term learning resources, then the system lists all types of learning resources including 

lecture slides by following inclusion relations. The two DL queries generated by the system 

are given in (84) and (85): 

 (retrieve (?x) (and (?x lectureSlides)) (84) 

 (retrieve (?x) (and (?x learningResources))  (85) 

If a student at CSU forms a simple query by selecting the term lecture slides, then the system 

lists only lecture slides, whereas if he selects the term learning material, then the system lists 

all types of learning materials including lecture slides. Again, the two DL queries generated 

by the system are given in (86) and (87): 

 (retrieve (?x) (and (?x lectureSlides))  (86) 

 (retrieve (?x) (and (?x learningMaterial))  (87) 

Besides that, we have defined meronymic relations partOf and hasPart as transitive relations 

in the ontology. For example, in the CSU ontology schedule is a partOf the subjectOutline 

(88), and topic is a partOf the schedule (89). 

 (schedule partOf subjectOutline )  (88) 
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 (topic partOf schedule)  (89) 

This makes it possible to retrieve topics listed in a subject outline by taking the transitive 

closure of the partOf relation. 

7.9.7 Negative Queries 

Finally, we consider queries that include negation. For example, a student at MQ wants ‘all 

learning resources of ISYS114 that are taught by MQ Lecturer 2 and have a particular 

learning outcome, but do not include lecture slides’. In order to compose this query, a student 

has to select the term learning resource and select the check box for negation (not) to exclude 

lecture slides that are a subclass of learning resource (Figure 7.8). 

 

Figure 7.8: A negative query results on the MQ ontology 

Following DL query in (90) is executed on the MQ ontology: 

 (retrieve (?x) (and (?x learningResource) (neg (?x lectureSlides)) 

(?x ISYS114 resourceOf) (?x MQLecturer2 taughtBy)  

(?x understandingOfTheRequirementsGatheringProcess 

expectsLearningOutcome)))   

(90) 

The query’s result(s), ISYS114 ilecture1, is displayed to the user.  

Similarly, a student at CSU who is looking for: ‘all the learning materials of ITC114 that are 

taught by CSU Lecturer 2 and covers a particular objective but that does not include lecture 

slides’ composes and submits the following query (Figure 7.9): 
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Figure 7.9: A negative query results on the CSU ontology 

This generates the following DL query in (91) that is executed on the CSU ontology: 

 (retrieve (?x) (and (?x learningMaterial) (neg (?x lectureSlides)) 

(?x ITC114 materialOf) (?x CSULecturer2 deliveredBy) 

(?x toDescribeIssuesOfDatabaseAdministration coversObjective))) 

(91) 

The query result(s), ITC114 wk9 video1 and ITC114 wk9 audio2 are displayed to the user.  

7.10 Discussion and Conclusion 

The ontology evaluation approaches that have been proposed in the literature focus on 

directly inspecting an ontology and checking what concepts and properties have been used in 

an ontology and what have not been used. In some approaches, an ontology is verified against 

a ‘Golden Standard’ that is an ontology language or another ontology. In some approaches 

the ontologies are ranked based on the characteristics they satisfy. However, we have 

observed that these approaches do not focus on evaluating inference capabilities of the 

ontologies based on the ontology language constructors used in an ontology.  

Our analysis of the current ontology benchmarks shows that the current benchmarks provide 

sound benefits and but also present numerous problems. That makes them not directly 

applicable to evaluating the query-answering capabilities of learning ontologies. That is why 

we need an enhanced query suite that is specific to the OWL 2 Learn profile.  

In this chapter, we have discussed the possibility of using a query suite to evaluate the query-

answering and inference capabilities of learning ontologies that belong to the OWL 2 Learn 

profile. As we evaluate query results, our approach could belong to category 1 of the 

categorisation of the evaluation methods given in (Brank et al., 2005). Again, as we evaluate 
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the inferences and constructors involved in each query, our approach could also belong to 

category 2 of the above categorisation as well.  In our approach, we indirectly evaluate the 

elements of an ontology by means of a query suite that tests the query-answering and 

inference capabilities of an ontology.  

The current query suites proposed in the popular ontology benchmarks include heterogeneous 

queries written in the SPARQL query language. Even though the query suite of the UOBM 

benchmark is a close match to the OWL 2 Learn profile, it is not directly applicable for 

several main reasons. Firstly, the UOBM query suite includes queries that involve OWL2 

constructors that are not a part of the OWL 2 Learn profile. Secondly, some of the OWL 2 

Learn constructors have not been used in the UOBM query suite. Thirdly, existing query 

suites including UOBM focus more on benchmarking the scalability of a KBS, but not the 

specific inference capabilities of learning ontologies. Finally, the UOBM benchmark queries 

have been written for two specific ontologies. 

For these reasons we cannot directly apply the query suite of UOBM and identify a query 

suite to evaluate leaning ontologies by customising the UOBM query suite. To achieve this 

goal, we have designed ten analogous queries, excluded five UOBM benchmark queries and 

also introduced three new queries. The five queries we excluded contain OWL 2 constructors 

that are not a part of the OWL 2 Learn profile. The three new queries that are introduced 

evaluate the inferences associated with several OWL 2 constructors: data property assertion, 

quantification and disjoint data properties. Those constructors are not involved in answering 

the original UOBM benchmark queries. However, those constructors are a part of the OWL 2 

Learn profile. The new query suite we propose is comprehensive enough to evaluate learning 

ontologies.  

As we discussed in Section 7.1, the current ontology evaluation techniques found in the 

literature do not evaluate the inference capabilities of ontologies. Hence, in this thesis we 

have proposed a technique to evaluate inference capabilities of learning ontologies. The 

technique is based on the UOBM benchmark query suite that involves inference capabilities 

of learning ontologies. We adopt the UOBM benchmark query suite and enhance with three 

additional queries as a new ontology evaluation technique specially for evaluating inference 

capabilities of an e-learning ontology. 

We see that the query suite that we derived is capable of evaluating different inference 

features of the sample learning ontologies and determining what different OWL 2 Learn 

constructors are involved in them.  



178 

 

This helps us to determine whether a learning ontology has full inference capabilities of 

OWL 2 Learn profile or not. This query suite could probably be revised if someone needs to 

evaluate an OWL 2 ontology with a higher DL expressivity than the OWL 2 Learn profile. In 

such a revision to the query suite, the new query suite will have to be extended by including 

the anonymous queries to the excluded UOBM queries 7, 10, 11, 14 and 15. However, it is 

only a minority of the learning ontologies with such a very high DL expressivity.  

In our evaluation, we used two learning ontologies that we developed. However, this 

evaluation could be extended to other learning ontologies by writing analogous queries for 

them. When we analysed the OWL 2 constructors, and the associated inferences on the 

sample learning ontologies, we observe similar structures and inferences between them. This 

suggest that we could develop a standard domain ontology for the learning domain and use it 

as a base ontology or a meta-ontology to develop learning ontologies for other institutions. 

That has the advantage of replicating the same domain ontology with institution-specific 

terminology for each institution-specific ontology (application ontology). Each institution or 

application specific learning ontology is pluggable to an instance of the adaptive e-learning 

system that is based on the plug and play architecture. This helps us to overcome the 

duplicated effort in developing a learning ontology for each institution. 

On the other hand, in our evaluation of learning ontologies, we used Protégé as the main tool 

in the evaluation environment to execute the queries. However, an ideal user interface (for the 

users) should allow them to enter their queries in a natural language as they would in the 

Google search engine. Therefore, a text-based query interface could be added to an e-learning 

systems prototype to allow the user to enter the queries on the learning objects. If such a 

query interface is used, an additional module (a keywords extractor) would have to be 

introduced to the e-learning systems architecture. That new module would be responsible for 

identifying the key words from the text entered by the user. Another requirement is to 

identify the elements of the ontology—concepts, object properties, data properties, 

constraints—that match the key words in the text. Then, it would compose triples from the 

keywords that would make sense to the ontology and pass the keywords to the Input/Output 

Handler of the plug and play architecture.  

The evaluation that we conducted on the adaptivity of the ontology-based e-learning system’s 

framework proves that instances of the proof of concept prototype are possible to be easily 

adapted at different institutions for query-answering. The evaluation also shows that this 

architecture allows each institution to keep its own terminology.  
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This evaluation proves that we have achieved the goals of our research:  

1) We are able to reduce the effort in developing e-learning systems by using the 

ontology-based plug and play architecture.  

2) We can alleviate the duplicated effort to identify the ontology language 

constructors required to develop a learning ontology using the OWL 2 Learn 

profile.  

3) We can alleviate the duplicated effort in developing learning ontologies by 

using a base learning ontology.  

4) We can evaluate the query-answering and inference capabilities of learning 

ontologies using the benchmark query suite for evaluating OWL 2 Learn 

ontologies.  

5) The proof of concept prototype shows that the e-learning system’s framework 

is adaptable at different learning institutions with an institution-specific 

ontology. 
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Chapter 8: Conclusions 

 

 

The purpose of this thesis is to answer the research question of ‘how we enhance the 

development of e-learning systems by using Semantic Web technologies’. In answering this 

research question, we formulated two subquestions. 1. How to use SW technologies to 

overcome duplicated effort in developing e-learning systems. 2. How to use SW technologies 

to segregate, represent and reuse the domain knowledge of a learning domain in e-learning 

systems. This thesis also answers the four research problems listed in Subsection 2.2.2 of the 

literature review chapter. 

8.1 Main Contributions 

As a solution to the research question(s), we developed an architecture named ontology-based 

plug and play architecture for an adaptive e-learning system’s framework. Instances of this 

framework can possibly be deployed at different institutions. This architecture includes three 

layers of components: a user interface layer; a components layer; and, a repositories layer. 

The majority of the elements in all the layers of this architecture could be deployed at 

different institutions with minor changes. According to this architecture, institution-specific 

domain knowledge is captured in a learning ontology. When this institution-specific ontology 

is plugged into an instance of the e-learning system it allows learners to query the domain 

knowledge on learning resources specific to that institution.  

However, deploying an instance of the adaptive e-learning system demands developing a 

learning ontology specific to an institution that duplicates the effort in ontology development. 

The OWL 2 Learn profile is a sublanguage of OWL 2, that we propose in this work assists 

alleviating the above problem to some extent. The OWL 2 Learn profile includes OWL 2 

constructors common to the majority of the e-learning ontologies of the corpus we analysed. 

Hence, the OWL 2 Learn profile can be used as a guide for developing e-learning ontologies.  

In addition, this thesis elaborates on how an ontology-based e-learning system works with 

legacy databases. After the development of a learning ontology it is populated with the data 

from legacy databases using a legacy database to ontology mapping tool that is currently 

available in the public domain. The e-learning system indirectly accesses the data in the 
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legacy database through the learning ontology and the learning ontology is updated by using 

the mapping tool. 

Another contribution in this thesis is a benchmark query suite that is derived from a query 

suite of the UOBM benchmark; a current ontology benchmark. This query suite helps us to 

evaluate the query-answering and inference capabilities of the e-learning ontologies within 

the OWL 2 Learn profile. This query suite includes SPARQL queries that invoke inferences 

on a learning ontology associated with different constructors of the OWL 2 Learn profile.  

8.2 Limitations and Suggestions for Improvement 

We observe that the OWL 2 Learn profile has the DL expressivity of SHIQ(D) that is 

sufficient to represent the majority of the learning ontologies. OWL 2 Learn profile excludes 

some of the OWL 2 constructors such as nominal (O) and specific object property attributes 

such as equality or inequality of the OWL 2 language. These restrictions could affect the 

query-answering and inference capabilities of a minority of learning ontologies we have 

analysed that would demand a higher DL expressivity. However, as a way out of that 

limitation, we suggest representing those excluded OWL 2 constructors using other OWL 2 

constructors as explained in Chapter 4. 

The plug and play architecture we propose includes three layers of components to perform 

tasks related to retrieving domain knowledge. However, this architecture could be extended 

to include other tasks such as student administration, course and learning management of an 

institution, by adding other components. That would help to build an integrated and 

institution-specific comprehensive system with a comprehensive institutional ontology that 

represents the knowledge of an institution to support its multiple tasks. 

The benchmark query suite we suggest includes only 13 queries. These queries evaluate 

inferences involved in all the OWL 2 Learn constructors. The inferences involved in these 

queries are only a subset of possible inferences on a learning ontology. However, patterns of 

inferences could generate the same results or different results. Even the different learning 

ontologies could use different combinations of OWL 2 Learn constructors in different ways 

to specify a domain. Therefore, it is possible to extend this query suite or study about the 

patterns of inferences in query-answering on learning ontologies.  

In evaluating each institution-specific ontology, the query suite has to be rewritten to obtain a 

query suite that is analogous to the MQ query suite. That makes the query suite matching an 
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institution-specific ontology and executable on a specific ontology. This process of rewriting 

the queries could be automated to generate matching queries for each learning ontology. 

In this work, benchmark query suites enable an evaluation of institutional level adaptation of 

the proposed architecture. This evaluation could be extended to the user level of the systems 

architecture by an empirical survey or an experiment involving users. That could also help to 

evaluate the e-learning system on learners transiting between two institutions where the 

proposed architecture is deployed to substantiate further outcomes. 

8.3 Recommendations for Further Work 

In this thesis, an attempt has been made to enhance the development of an e-learning system 

using SW technologies. However, we cannot say that it overcomes all the possible problems. 

It is possible to have more problems and solving them could further improve an e-learning 

system. Below, we discuss some recommendations and further work related to our work.  

We suggest developing a base ontology or a meta-ontology for the learning domain based on 

the OWL 2 Learn ontologies. Then, the base ontology could be used as a model or an 

instance in developing other institution-specific ontologies. This would help the ontology 

engineers to minimise the effort needed to develop a learning ontology for each institution. 

The proposed learning ontologies in this work are hand-coded by specialised engineers who 

evaluate the similarity between terms such as Unit and Subject. Text mining techniques could 

be used to discover such similarities by looking at contents’ relationships. So, semantic 

analytics using text-mining techniques could be used to alleviate the manual involvement of 

ontology engineers and streamline the evaluation of learning ontologies. 

The current version of the adaptive learning system’s prototype uses a graphical user 

interface (GUI) as the query interface. In that query interface, users compose a query as a set 

of triples on the concept being queried. That requires a learner to have some understanding of 

using the GUI to compose a query. However, it would be easy to enter a textual query in 

natural language instead of composing a query on a GUI.  

A text-based query interface could be developed for writing and submitting a query. This 

requires a natural language processor to convert a natural language query into a SPARQL 

query before it is executed on a specific learning ontology. Using natural language, the same 

idea can be expressed in multiple ways. For this reason, converting a textual query into a 
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query in a specific query language is a challenging task. Therefore, a subset of natural 

language could be used to write text-based queries.  

8.4 Remarks 

In this thesis, we have shown the feasibility of using instances of an e-learning system built 

according to the plug and play architecture in multiple institutions. This reuse of the e-

learning system is achieved by building the domain knowledge as a learning ontology that is 

pluggable to an e-learning system. We also showed how we can alleviate the effort in 

developing a learning ontology that is based on the OWL 2 Learn profile.  

We also suggest that the proposed approach to the solution of the research problem discussed 

in this thesis could be applied not only in the learning domain, but also in other application 

domains. 
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Appendix 

Table A.1: A summary of the key findings from the literature – the state of art 

# Paper Focus, 

Author(s) and 

year 

Learning 

Ontology 

Design & 

Population 

System 

Architecture 

Personalisation 

Method 

Ontology 

Languages, 

Reasoning & 

Querying 

Technologies 

and Tools 

1 Context, content 

and structure 

metadata to 

describe learning 

resources for e-

learning 

(Stojanovic et al., 

2001) 

course ontology 

consists of 

content, context 

and structure 

ontology 

Architecture of 

an e-learning 

Portal 

IEE LOM to 

retrieve the 

learning 

materials 

use the context, 

contents and 

structure details 

in a query 

interface; RDF 

repository, use 

rules 

RDF, XML, 

ontology 

2 A learning 

documents 

ontology model 

(Henze et al., 

2004) 

ontologies for 

three types of 

resources 

(domain, user, 

and observation) 

a framework for 

adaptive/ 

personalised e-

learning in the 

Semantic Web 

Using LOM, 

IMS metadata 

three types of 

resources 

(domain, user, 

and observation) 

RDF, reasoning 

rules for 

querying 

metadata and 

resources, FOL  

TRIPLE for 

defining 

rules, 

reasoning and 

querying 

3 A Web ontology 

for exchanging 

learner profiles  

(Musa et al., 2004) 

Learner model 

ontology 

Architecture for 

learner profile 

exchange using 

Web Services 

IEEE LOM are 

used to describe 

the objects in the 

repositories 

DAML+OIL OilEd, 

RacerPro 

4 Communication 

ontology and 

integration of 

learning 

ontologies (Aroyo 

& Dicheva, 2004) 

a learner profile 

ontology and 

domain 

ontologies 

a common 

reference 

architecture for 

adaptive 

concept-based 

web-based 

educational 

systems 

IEEE LOM  RDF, Dialog-

based language 

to query RDF 

data, get 

reasoning 

support from 

authoring tools. 

Authoring 

support tools 

5 Ontology-based 

education grid 

system for e-

learning 

(Guangzuo et al., 

2004) 

Education 

ontology  

Ontology-based 

grid computing 

architecture. 

IMS, LOM, 

SCORM 

OWL-S OWL, 

Cocoon,  

Racer, 

WSDL, 

OWL-S, 

OWL-API 

6 Ontology 

alignment for IT 

lesson planning 

(Kasai et al., 2005) 

Ontology of the 

fundamental 

academic ability 

and Ontology of 

the goal of IT 

education 

An architecture 

for ontology 

alignment and 

education 

resource 

annotation 

IEEE LOM  RDF and RDF-

Schema 

‘Hozo’ editor 

for creating 

ontology  

7 Generating a 

learning ontology 

from a relational 

database (Li, DU, 

& Wang, 2005) 

A learning 

ontology 

N/A N/A RDF, RDFS, 

OWL  

Relational 

databases, 

database to 

ontology 

mapping rules 

8 A learning design 

ontology based on 

the IMS 

specification 

(Amorim et al., 

2006) 

IMS LD 

ontology 

based on 

intelligent agent 

technology, and 

follows a multi-

layer topology 

IMS LD OWL Protégé  

9 An ontology and a Competency the Semantic Metadata is used OWL ADISA - a 
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# Paper Focus, 

Author(s) and 

year 

Learning 

Ontology 

Design & 

Population 

System 

Architecture 

Personalisation 

Method 

Ontology 

Languages, 

Reasoning & 

Querying 

Technologies 

and Tools 

software 

framework for 

competency 

modelling and 

management 

(Paquette, 2007) 

ontology, 

general skills 

ontology, 

performance 

indicator 

ontology 

Web and the 

ontology-driven 

architecture of 

TELOS 

but not 

specified. 

web-based 

workbench 

10 Meta-data 

application in 

development, 

exchange and 

delivery of digital 

reusable learning 

content 

(Yordanova, 2007) 

Metadata 

ontology 

A model for 

meta-data 

integration in 

RLOs sharing 

IEEE LOM, 

Learner profiles 

(learner 

preferences, 

learning style of 

the learner, 

competencies, 

prior experience 

and skills) 

Not clear 

(OWL?) 

Protégé  

11 An ontology-based 

planning system 

for e-course 

generation 

(Kontopoulos et 

al., 2008) 

Competency 

ontology 

PARSER 

systems 

architecture 

based on 

metadata and 

ontology 

LOM repository, 

learner profiles, 

preferences, 

needs and 

abilities 

RDFS XML, RDF, 

LOM,  

12 Ontology 

supported 

personalised e-

learning 

repositories (Dutta 

et al., 2009) 

Document 

ontology, 

student ontology 

A conceptual 

learning space 

and call a 

semantic 

learning layer 

cake 

IEEE LOM and 

Dublin Core 

OWL-DL, logic 

rules using 

N3Logic 

Protégé 

13 Advanced 

ontology 

management 

system for 

personalised e-

learning (Gaeta at 

al., 2009) 

An integrated 

framework with 

a set of tools for 

representing and 

managing 

learning 

ontologies 

Web Teacher 

(IWT) platform 

Not clear OWL,  Protégé, 

AOMS is 

realised using 

GENESIS 

14 An Ontology-

Based User 

Interaction 

Context Model 

(UICO) for 

automatic task 

detection on the 

computer desktop 

(Rath, Devaurs, & 

Lindstaedt, 2009) 

User Interaction 

Context 

Ontology 

(UICO) 

User’s 

conceptual 

model is given 

as a Semantic 

Pyramid. 

Metadata is 

used. Not clear 

which standard. 

OWL-DL protégé 

15 Ontology design 

for creating 

adaptive learning 

path in e-pearning 

environment 

(Chung & Kim, 

2012) 

Curriculum 

ontology, 

Syllabus 

ontology, and 

Subject ontology 

The System 

Architecture 

ontology-based 

learning support 

system 

Not discussed SPARQL or 

TMQL 

Not discussed 

16 User profiles and 

learning objects as 

ontology 

individuals to 

allow reasoning 

and 

interoperability in 

Learning 

Objects 

Ontology and 

User profiles’ 

Ontology 

Lassique, an 

educational 

Recommendatio

n System 

Agent Based 

Learning 

Objects (OBAA) 

metadata 

standard derived 

from the IEEE 

LOM 

OWL, domain 

rules, Reasoning 

techniques or 

reasoners used 

are not clear 

Protégé 
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# Paper Focus, 

Author(s) and 

year 

Learning 

Ontology 

Design & 

Population 

System 

Architecture 

Personalisation 

Method 

Ontology 

Languages, 

Reasoning & 

Querying 

Technologies 

and Tools 

recommender 

systems (Primo et 

al., 2012) 

17 A personalised 

adaptive e-

learning approach 

based on Semantic 

Web technology 

(Yarandi et al., 

2013) 

Four ontology 

models: domain 

model, user 

model, content 

model and test 

model 

Ontology-based 

personalised e-

learning systems 

architecture 

account learner 

abilities, 

learning styles, 

preferences and 

levels of 

knowledge, 

FSLSM 

OWL, 

Reasoning 

techniques or 

reasoners used 

are not clear 

OWL 

18 An ontology based 

approach for 

modeling e-

learning in 

healthcare human 

resource 

management 

(Bajenaru & 

Smeureanu, 2015) 

Student profile 

ontology, 

domain 

ontology, e-

learning system 

ontology 

learning systems 

ontology 

Abstraction of 

knowledge over 

Los is 

represented by 

metadata. IMS 

standard. 

Personalisation 

based on 

ontology. 

Not discussed Protégé, 

WebODE and 

OntoEdit 

19 A Machine-

readable Ontology 

for Teaching word 

problems in 

Mathematics 

(MONTO) 

(Lalingkar et al., 

2015) 

Four ontologies: 

system/pedagog

y ontology, 

strategy/task 

ontology, user 

model/student 

ontology, and 

domain ontology 

Not discussed Errors and hints 

are modelled to 

provide 

personalised 

training 

OWL Protégé  

20 An ontology-based 

adaptive 

personalised e-

learning system, 

assisted by 

software agents on 

Cloud storage 

(Rani et al., 2015) 

two ontologies 

the course.owl 

and user.owl 

An ontology-

based adaptive 

personalised e-

learning system 

architecture 

Learning styles 

are monitored by 

agents and 

adapts the 

contents 

OWL and OWL 

DL, reasoning  

Protégé, 

Cloud-based 

storages 

(ontology and 

database), 

agents, 

Hermit 

Reasoner 

21 Ontology-based 

model for LOM 

(Kalogeraki et al., 

2016) 

EduSor ontology Education 

Assessor Model 

(EduSor) 

Architecture 

LOM; adaptive 

learning paths 

OWL, SPARQL LOM, RDF, 

OWL 

22 A SKOS-based 

framework for 

subject ontologies 

to improve 

learning 

experiences 

(Miranda et al. 

2016) 

Subject 

ontologies 

Semantic Web-

based 

Educational 

Systems 

(SWBESs) 

architecture 

IEEE LOM or 

Dublin Core 

OWL,  SPARQL 

(four queries), 

reasoning is 

done 

A visual 

editor tool for 

Semantic 

Web-based 

vocabulary. 

23 Towards situation 

driven mobile 

tutoring system for 

learning languages 

and 

communication 

skills (Khemaja & 

Taamallah, 2016) 

Context 

ontology, goals 

ontology and 

domain 

ontologies 

An adaptable 

and re-

configurable 

mobile 

Intelligent 

Tutoring System 

(ITS) 

architecture 

Not discussed AndroJena plug-

in for reasoning 

among and 

querying 

ontologies 

Protégé 

24 Personalised 

students' profile 

Learning domain 

ontology and 

Student profile 

architecture 

Analyses 

learning patterns 

OWL, rule-

based reasoning 

Protégé  
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# Paper Focus, 

Author(s) and 

year 

Learning 

Ontology 

Design & 

Population 

System 

Architecture 

Personalisation 

Method 

Ontology 

Languages, 

Reasoning & 

Querying 

Technologies 

and Tools 

based on ontology 

and rule-based 

reasoning (Nafea 

et al., 2016) 

reference 

ontology (user 

profiles) 

based on Myers-

Briggs Type 

Indicator and 

FSLSM 

25 A proposed 

paradigm for smart 

learning 

environment based 

on Semantic Web 

(Ouf et al., 2017) 

Learner model 

ontology, 

learning object 

ontology, 

learning 

activities 

ontology and 

teaching 

methods 

ontology 

An architecture 

with four layers: 
Interface layer, 

Semantic 

reasoning 

mechanism 

layer, Semantic 

layer and 

Semantic meta 

data layer 

Using a learner 

model.  

Semantic Web 

Rule Language 

(SWRL) for 

personalisation.  

Protégé, 

SWRL 
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Table A.2: An Excerpt of MQ Ontology: An Example of OWL 2 Learn profile 

An Excerpt of the MQ Ontology The OWL 2 Learn 

Constructor 

Table 

4.4 Ref. 

Declaration(Class(:Person)) 

EquivalentClasses(:Person ObjectSomeValuesFrom(:isAssociatedTo 

:Organisation)) 

SubClassOf(:Person owl:Thing) 

 

SubClassOf(:Staff :Person) 

SubClassOf(:Student :Person) 

SubClassOf(:TeachingStaff :Staff) 

 

Declaration(Class(:Topic)) 

SubClassOf(:Topic owl:Thing) 

SubClassOf(:Topic  ObjectAllValuesFrom(:hasScheduled 

:TopicList)) 

 

Declaration(Class:TopicList)) 

SubClassOf(:TopicList owl:Thing) 

SubClassOf(:TopicList 

ObjectSomeValuesFrom(:hasScheduledTopic :Topic)) 

 

SubClassOf(:Unit owl:Thing) 

Declaration(Class(:AssessmentTask)) 

EquivalentClasses(:AssessmentTask 

ObjectIntersectionOf(owl:Thing 

ObjectSomeValuesFrom(:isWrittenBy :TeachingStaff) 

ObjectExactCardinality(1 :isAssessmentMethodOf :Unit))) 

 

DisjointClasses( :Assignment :FinalExam) 

 

SubClassOf(:AssessmentTask owl:Thing) 

subClassOf(:FinalExam :AssessmentTask) 

subClassOf(:Assignment :AssessmentTask) 

Class 

ObjectSomeValuesFrom 

 

Owl:Thing 

SubClassOf 

 

 

 

 

 

 

ObjectAllValuesFrom 

 

 

 

 

ObjectSomeValuesFrom 

 

 

 

 

EquivalentClasses 

ObjectIntersectionOf 

ObjectSomeValuesFrom 

QualifiedExactCardinality 

DisjointClasses 

#2 

#5 

 

#1 

 

 

 

 

 

 

 

#4 

 

 

 

 

#5 

 

 

 

 

 

#3 

#5 

#12 

#13 

Declaration(ObjectProperty(:hasPrerequisite)) 

TransitiveObjectProperty(:hasPrerequisite) 

InverseObjectProperties(:isPrerequisiteOf :hasPrerequisite) 

ObjectPropertyDomain(:hasPrerequisite :Unit) 

ObjectPropertyRange(:hasPrerequisite  :Unit) 

ObjectProperty 

TransitiveObjectProperty 

InverseObjectProperties 

ObjectPropertyRange 

ObjectPropertyDomain 

#6 

#9 

#11 
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An Excerpt of the MQ Ontology The OWL 2 Learn 

Constructor 

Table 

4.4 Ref. 

Declaration(ObjectProperty (:commitsTo)) 

InverseObjectProperties(:commitsTo :isCommitedBy) 

ObjectPropertyDomain( :commitsTo :Student) 

ObjectPropertyRange(:commitsTo :Enrolment) 

ObjectPropertyRange(:commitsTo ObjectMaxCardinality(5  

:commitsTo :Enrolment)) 

Declaration(ObjectProperty:assignmentOf)) 

SubObjectPropertyOf(:assignmentOf :isAssessmentMethodOf) 

InverseObjectProperties(:has Assignment:assignmentOf) 

 

 

 

 

MaxQualifiedCardinality 

 

 

SubObjectPropertyOf 

 

 

 

 

#12 

 

 

#10 

Declaration(DataProperty(:assignmentMark)) 

SubDataPropertyOf(:assignmentMark  :assessmentMark) 

DataPropertyDomain(:assignmentMark  :AssignmentSubmission) 

DataPropertyRange( :assignmentMark^^ xsd:integer) 

DataProperty 

SubDataPropertyOf 

 

#14 

#10 

 

ClassAssertion(:Unit :ISYS114) 

ObjectPropertyAssertion(:isTutorOf :JohnParker :ISYS114) 

ClassAssertion 

ObjectPropertyAssertion 

#7 

#7 
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Table A.3: Analog of UOBM Queries for the MQ ontology 

# UOMB Query, source: (Ma et al., 2006) Analog of UOMB Query for the MQ 

Ontology 

1 SELECT DISTINCT ?x 

WHERE { ?x rdf:type benchmark:UndergraduateStudent . ?x 

benchmark:takesCourse 

http://www.Department0.University0.edu/Course0} 

SELECT DISTINCT ?x 

WHERE {?x rdf:type 

:UndergraduateStudent. 

?x :studies :ISYS114 } 

2 SELECT DISTINCT ?x 

WHERE { ?x rdf:type benchmark:Employee } 

SELECT DISTINCT ?x  

WHERE {?x rdf:type :Staff.} 

3 SELECT DISTINCT ?x 

WHERE {?x rdf:type benchmark:Student . ?x benchmark:isMemberOf 

http://www.Department0.University0.edu } 

SELECT DISTINCT ?student WHERE  

{?x rdf:type :Student. 

?x :isStudentOf :Computing } 

4 SELECT DISTINCT ?x 

WHERE { ?x rdf:type benchmark:Publication . ?x 

benchmark:publicationAuthor ?y . 

?y rdf:type benchmark:Faculty . ?y benchmark:isMemberOf 

http://www.Department0.University0.edu } 

SELECT DISTINCT ?x WHERE  

{?x rdf:type :LearningResource.  

?x :hasAuthor ?y. ?y rdf:type 

:TeachingStaff.  

?y :isStaffOf  :Computing} 

5 SELECT DISTINCT ?x 

WHERE { ?x rdf:type benchmark:ResearchGroup . ?x 

benchmark:subOrganizationOf 

http://www.University0.edu } 

SELECT ?x WHERE { ?x rdf:type 

:Unit.  

?x :isPrerequisiteOf+ ?y. 

FILTER (?y=:COMP365)} 

6 SELECT DISTINCT ?x 

WHERE { ?x rdf:type benchmark:Person . http://www.University0.edu 

benchmark:hasAlumnus ?x } 

SELECT DISTINCT ?person WHERE  

{?x rdf:type:Person.  

:Computing :hasGraduate ?x.} 

7 SELECT DISTINCT ?x WHERE {?x rdf:type benchmark:Person . ?x 

benchmark:hasSameHomeTownWith 

http://www.Department0.University0.edu/FullProfessor0} 

N/A 

 

8 SELECT DISTINCT ?x 

WHERE {?x rdf:type benchmark:SportsLover . http://www. 

Department0.University0.edu benchmark: hasMember ?x} 

SELECT DISTINCT ?x 

WHERE {?x rdf:type :Lecturer. 

:Computing :hasStaff ?x} 

9 SELECT DISTINCT ?x 

WHERE {?x rdf:type benchmark:GraduateCourse . ?x 

benchmark:isTaughtBy ?y . 

?y benchmark:isMemberOf ?z .?z benchmark:subOrganizationOf 

http://www.University0.edu } 

SELECT ?x WHERE { ?x rdf:type 

:LectureSlides.  

?x :isLectureSlidesOf ?y. 

?y :isPrerequisiteOf+ ?z. 

FILTER (?z=:COMP365)} 

10 SELECT DISTINCT ?x 

WHERE { ?x benchmark:isFriendOf 

http://www.Department0.University0.edu/FullProfessor0} 

N/A 

11 SELECT DISTINCT ?x 

WHERE { ?x rdf:type benchmark:Person . ?x benchmark:like ?y . ?z 

rdf:type benchmark:Chair . 

?z benchmark:isHeadOf http://www.Department0.University0.edu . ?z 

benchmark:like ?y} 

N/A 
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# UOMB Query, source: (Ma et al., 2006) Analog of UOMB Query for the MQ 

Ontology 

12 SELECT DISTINCT ?x 

WHERE {?x rdf:type benchmark:Student . ?x benchmark:takesCourse ?y 

.?y benchmark:isTaughtBy 

http://www.Department0.University0.edu/FullProfessor0 } 

SELECT  DISTINCT ?x WHERE  

{?x rdf:type :Student. ?x :studies ?y.  

?y :hasLecturer :DebbieRichards} 

13 SELECT DISTINCT ?x 

WHERE { ?x rdf:type benchmark:PeopleWithHobby . ?x 

benchmark:isMemberOf http://www.Department0.University0.edu} 

SELECT DISTINCT ?x WHERE {?x 

rdf:type :TeachingStaff.  

?x :isStaffOf :Computing} 

14 SELECT DISTINCT ?x 

WHERE { ?x rdf:type benchmark:Woman . ?x rdf:type 

benchmark:Student . ?x benchmark:isMemberOf ?y . 

?y benchmark:subOrganizationOf http://www.University0.edu } 

N/A 

15 SELECT DISTINCT ?x WHERE {?x rdf:type 

benchmark:PeopleWithManyHobbies . ?x benchmark:isMemberOf 

http://www.Department0.University0.edu } 

N/A 
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Table A.4: Inferences and OWL 2 constructors associated to each UOBM query 

Q# Inferences of UOBM Queries, source: (Ma et al., 2006) OWL 2 Constructors 

1 It only needs simple conjunction 

<a rdf:type UndergraduateStudent>, <a takesCourse 

http://www.Department0.University0.edu/Course0>  <a> 

ObjectProperty() 

2 Domain(worksFor, Employee), <a worksFor b>    

<a rdf:type Employee>, Domain(worksFor,Employee),  

researchAssistant   ⊑ worksFor.ResearchGroup  

researchAssistant  ⊑ Employee 

SubClassOf(), ObjectSomeValuesFrom(),  

ObjectProperty(),   

Domain(), Range() 

3 Range(takeCourse,Student) ,  

GraduateStudent ≥1  takeCourse     

GraduateStudent  ⊑ Student 

SubClassOf(), ObjectSomeValuesFrom(),  

ObjectProperty(), Domain(), Range(),  

ObjectMinCardinality() 

4 SubClass: Faculty = FullProfessor  ⊔ AssociateProfessor  ⊔…⊔ 

ClericStaff, Publication=Article  ⊔…  ⊔Journal 

SubClassOf(), UnionOf(),  

ObjectProperty(),  ObjectMinCardinality(), 

DisjointClasses() 

5 Transitive(subOrganizationOf),  

<a subOrganizationOf b>,  

<b subOrganizationOf http://www.University0.edu> 

  <a subOrganizationOf http://www.University0.edu> 

ObjectProperty(), TransitiveObjectProperty() 

6 Inverse(hasAlumni, hasDegreeFrom),  

<a hasDegreeFrom b>   <b hasAlumnus a> 

ObjectProperty(), InverseObjectProperties() 

7 Transitive(hasSameHomeTownWith), 

Symmetric(hasSameHomeTownWith),  

<a hasSameHomeTownWIth b>, 

<c hasSameHomeTownWIth b>    

< a hasSameHomeTownWith c> 

Class(), TransitiveObjectProperty(), 

TransitiveObjectProperty(),SymmetricProperty(), 

SameAs() 

8 <x like y>, <y rdf:type Sports>, SportLover  like.Sports   <x 

rdf:type SportLover> 

subProperty(isCrazyAbout, like), SportFan  

⊑isCrazyAbout.Sports   SportFan  ⊑ portLover 

On OWL DL ontology: 

SwimmingLover⊑like.{Swimming} SwimmingLover ⊑ 

SportsLover … 

SubClassOf(), ObjectSomeValuesFrom(),  

ObjectMinCardinality(), ObjectProperty(), 

DisjointClasses(), SubObjectPropertyOf() 

oneOf() 

9 GraduateStudent  takesCourse.GraduateCourse,  

<a rdf:type GraduateStudent>,  

<a takesCourse b>    <b rdf:type GraduateCourse> 

SubClassOf(), ObjectProperty(), 

ObjectAllValuesFrom() 

10 Symmetric(isFriendOf), <a isFriendOf b>    

<b isFriendOf a> 

Domain(), Range(), SymmetricProperty() 

11 FunctionalProperty(isHeadOf),  

<a isHeadof b>, <c isHeadOf b)    <a sameAs c>  

// there are some same individuals of chair0 

Class(), ObjectProperty(), FunctionalProperty(), 

SameAs() 

12 GraduateStudent  takesCourse.GraduateCourse ⊓  

≥ 1.takesCourse,  

SubClassOf(), ObjectIntersectionOf(), 

ObjectAllValuesFrom() 
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Q# Inferences of UOBM Queries, source: (Ma et al., 2006) OWL 2 Constructors 

Domain(takesCourse, Student)    

Student ⊒ GraduateStudent 

ObjectProperty(), Domain(), Range(),  

ObjectMinCardinality(),  

13 Lite Cardinality: PeopleWithHobby( ≥1 like) ⊒  SportLover, <a 

like b>    <a rdf:type PeopleWithHobby> 

SubClassOf(), ObjectProperty(), 

ObjectMinCardinality() 

14 <a,isStudentof b>,  

<b rdf:type WomanCollege>,  

WomanCollege  ⊑  hasStudent.( ¬Man),  

disjoint(Man, Woman),  

Man ⊔Woman  Person   <a rdf:type Woman> 

UnionOf(), ObjectAllValuesFrom(), 

ObjectProperty(), DisjointClasses(), 

ObjectComplementOf()  

15 PeopleWithManyHobbies  ⊑≥3like,  

<a like b1> … <a like bn>,  

all different(b1,b2…bn)   

<a rdf:type PeopleWithManyHobbies> // n  ≥3 

ObjectMinCardinality(), ObjectProperty(), 

AllDifferent() 

Note: Class(), ClassAssertion() and ObjectPropertyAssertion() are involved in all queries 
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Table A.5: Inference involved in MQ and CSU ontologies 
Q# Purpose of the Query Inferences on MQ Ontology  Inferences on CSU Ontology 

1 Find all the undergraduate 

students who study 

ISYS114. (ITC106 for 

CSU) 

UndergraduateStudent(?x) 

studies(?x, ISYS114)x 

UndergraduateStudent(?x) 

studies(?x, ITC106) x 

2 Find all the staff members. Domain(isAssociatedTo, Staff),  

<a isAssociatedTo b>   

<a rdf:type Staff > 

Domain(isAssociatedTo, Staff),  Lecturer 

⊑isTeachingStaffOf. Department  

Lecturer⊑ Staff 

Domain(isAssociatedTo, Staff),  

<a isAssociatedTo b>  

<a rdf:type Staff> 

Domain(isAssociatedTo, Staff),  

Lecturer ⊑isAcademicOf. School  

Lecturer⊑ Staff 

3 Find out all the students of 

the Computing department. 

Range(studies, Student) , 

UndergraduateStudent ≥1  studies   

UndergraduateStudent  ⊑ Student 

Range(studies, Student) , 

UndergraduateStudent ≥1  studies   

UndergraduateStudent  ⊑ Student 

4 Find all the learning 

resources authored by 

teaching staff of the 

Computing department. 

TeachingStaff = Lecturer ⊔ Moderator 

⊔…⊔ Tutor,  

LearningResource=LectureSlides ⊔ …⊔ 

ILecture 

AcademicStaff = Lecturer ⊔ Convener 

⊔…⊔ Tutor,  

LearningMaterial=LectureSlides ⊔ …⊔ 

ILecture 

5 Find all the prerequisites of 

COMP365. (ITC309 for 

CSU) 

Transitive(isPrerequisiteOf),  

<a isPrerequisiteOf b>,  

<b isPrerequisiteOf :COMP365> 

<a isPrerequisiteOf :COMP365> 

Transitive(isPrerequisiteOf),  

<a isPrerequisiteOf b>,  

<b isPrerequisiteOf :ITC309> 

<a isPrerequisiteOf :ITC309> 

6 Find all the graduated 

students of the Computing 

department. 

Inverse(hasGraduate, isGraduateOf),  

<a hasGraduate b>   

<b isGraduateOf a> 

Inverse(hasGraduate, isGraduateOf),  

<a hasGraduate b>   

<b isGraduateOf a> 

7 Find all the lecturers of the 

Computing department. 

<x isLecturerOf y>, <y rdf:type Unit>, 

Lecturer⊑isLecturerOf.Unit   

<x rdf:type Lecturer> 

subProperty(isLecturerOf, 

isTeachingStaffOf), 

Lecturer⊑isLecturerOf.Unit  

Lecturer ⊑ TeachingStaff. 

<x isLecturerOf y>,  

<y rdf:type Subject>, 

Lecturer⊑isLecturerOf.Subject   

<x rdf:type Lecturer> 

subProperty(isLecturerOf, 

isAcademicOf), 

Lecturer⊑isLecturerOf.Subject  

Lecturer ⊑ AcademicStaff. 

8 Find all the undergraduate 

units of the Faculty of 

Science and Engineering. 

UndergraduateStudent  

studies.UndergraduateUnit,        

<a rdf:type UndergraduateStudent>,  

<a studies b>    

<b rdf:type UndergraduateUnit> 

UndergraduateStudent  

studies.UndergraduateUnit,        

<a rdf:type UndergraduateStudent>,  

<a studies b>    

<b rdf:type UndergraduateUnit> 

9 Find all the students who 

study the units taught by 

Debbie Richards.  

UndergraduateStudent studies. ≥1Unit,  

Domain(studies, Student)  

Student ⊒ UndergraduateStudent 

UndergraduateStudentstudies.≥1Unit,  

Domain(studies, Student)  

Student ⊒ UndergraduateStudent 

10 Find all the teaching staff 

who teach some units in the 

Lecturer ⊒ isLecturerOf. ≥1 Unit,  Lecturer ⊒ isLecturerOf. ≥1 Unit,   
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Computing department. <a isLecturerOf b>     

<a rdf:type Lecturer>    

<a isLecturerOf b>     

<a rdf:type Lecturer>   

11 Find the learning resources 

that are only presentations 

and in the pdf format. 

<a ContentType b> 

<a format  c>  a 

<a ContentType b> 

<a format  c>  a 

12 Find the subjects with less 

than three assignments. 

<x rdf:type Unit>,  

<x noOfAssignments 3> 

COUNT(<x hasAssignment y>)<3  x 

<a rdf:type Subject> 

<x noOfAssignments 3> 

COUNT(<x hasAssignment y>)<3  x 

13 Find all the assessment 

tasks with their due date 

and the return date. 

<b DisjointDataProperties c> 

<a dueDate b>, <a returnDate c> b, c 

<b DisjointDataProperties c> 

<a dueDate b>, <a returnDate c>b, c 

 
 

 

 


