
User Interface Derivation based on a

Role-enriched Business Process Model

By

Lei Han

A thesis submitted in fulfillment of the requirements

for the degree of Doctor of Philosophy

Department of Computing

Faculty of Science and Engineering

Macquarie University

Supervisor: Prof. Jian Yang

February 2017

© Lei Han, 2017

Declaration

Except where acknowledged in the customary manner, the material pre-

sented in this thesis is, to the best of my knowledge, original and has not

been submitted in whole or part for a degree in any university.

Lei Han

Acknowledgements

First and foremost, I would like to express my appreciation and thanks to

my supervisor, Professor Jian Yang, for supervising my research work over

my four-year Ph.D. journey. Her passion towards work and critical thinking

always inspire me and help me keep progressing on my research. Other than

that, her philosophies on life also influence me and make me get better every

day. I also want to give my sincere gratitude to Dr. Weiliang Zhao for his

precious support and guidance. His solid background knowledge and active

thinking enable me to make achievements in my research efficiently.

I am also truly grateful to my dear colleagues Robertus Nugroho, Yan Mei,

Pengbo Xiu and Zizhu Zhang from the Department of Computing at Mac-

quarie University. Discussion with them offers me great inspiration on my

research. Working with them over the last four years is truly a wonderful

and memorable experience in my life. Here I would also like to give my

special thanks to Pengbo Xiu and Zizhu Zhang for reviewing my thesis and

correcting typo errors.

Many thanks are given to the administration team of Department of Com-

puting at Macquarie University. Kind support and wonderful environment

they provide are important for me to complete my thesis.

I also owe huge thanks to my friends who have accompanied me during my

research journey. Jian Zhao in China, Yaguang Sun in Germany, Xiao Ma

in China, Wenhai Pan in China, Xi Zhang in Australia, Xinxin Shang and

Kai Zhang in Australia. It is a great joy to have them in my life.

I am much obliged to my beloved parents, Jinping Han and Junying Wang.

Your love and care from China are great encouragement and support to not

only my research, but also my life. I feel so happy to be with them.

Last but not least, I would like to deliver my deep appreciation to my

beloved wife Yixiao Liu. I cannot complete this thesis without her patience,

understanding, encouragement, sacrifice and support. Her perpetual love is

always a lighthouse in my life.

Abstract

In recent decades, the boom of information and communication technology

has brought countless business process changes in a wide range of organi-

zations and enterprises. A business process (BP) describes a collection of

linked tasks to produce a particular product or service. Each task is a logic

unit of work performed by human users or applications. Human users par-

ticipate in a business process through user interfaces (UIs). In a business

process, the UI accepts input and provides output for the process users.

The implementation of a business process often involves a lot of hard coding

work. In particular, the development of the UI of process often constitutes

70% to 80% of the manually written code for the BP implementation. The

hard coding for UI development can cause many problems. The realization

and maintenance of the UI of a process are often not only costly and effort-

consuming but also error-prone due to the nature of hard coding. Moreover,

the hard coding leads to a tight coupling between the BPs and their UIs.

Any changes of existing UIs/BPs cannot be easily adapted without recoding.

To overcome the problems mentioned above, it is highly desirable to develop

a UI derivation method based on a business process model. The business

process model should support the UI logic with the following features: (1)

each participating user role includes a UI logic; (2) each UI logic consists

of a set of containers and the execution constraints of these containers; (3)

each container includes a set of data items specified with access types (read,

write).

In this thesis, we propose a UI derivation method based on a role-enriched

business process model to derive complex UI logics. The proposed UI deriva-

tion method has the following features:

� A role-enriched business process model is proposed with the capabil-

ities to specify (1) the control flow relations between tasks; (2) the

relationships between the participating user roles and individual tasks;

(3) the data operation flow inside each task. In the process model, we

identify a set of control flow patterns and data operation patterns to

build up the rules for UI derivation.

� The business process is abstracted and aggregated for each user role

based on the role-enrich BP model. A set of elementary operations are

developed according to the control flow patterns to reserve or abstract

tasks for each user role. With the abstracted and aggregated business

process (AABP), a customized UI logic is derived for each participating

user role.

� Data relationships are extracted from the AABP for each user role. A

set of elementary operations are developed according to the data oper-

ations inside individual tasks and the identified control flow patterns

in the AABP. The extracted data relationships are the foundation to

analyze and derive the UI logic.

� A set of mandatory and recommended rules are specified. The UI

logics are derived from the extracted data relationships based on these

specified rules.

� A UI Derivation Tool (UIDrvTool) is developed as the implementation

of our proposed UI derivation approach.

In summary, this research sheds new light on the state-of-art of the UI

development for business processes.

List of Publications

[1] Lei Han, Weiliang Zhao, and Jian Yang. An approach towards user inter-

face derivation from business process model. In International Workshop on

Process-Aware Systems, pages 19–28. Springer, 2015.

[2] Lei Han, Weiliang Zhao, and Jian Yang. User interface derivation based on

role-enriched business process model. In International Conference on Service-

Oriented Computing (ICSOC), pages 450–464. Springer, 2016.

[3] Lei Han, Weiliang Zhao, and Jian Yang. An approach towards task abstraction

and aggregation in business processes. In Web Services (ICWS), 2017 IEEE

International Conference on. IEEE, 2017.

[4] Lei Han, Weiliang Zhao, and Jian Yang. An approach towards user interface

derivation based on role-enriched business process model. IEEE Transactions

on Knowledge and Data Engineering Journal, 2017 (in preparation).

ix

x

Contents

List of Figures xv

List of Tables xix

1 Introduction 1

1.1 Background . 1

1.1.1 Business Process . 1

1.1.2 User Interface . 3

1.2 Motivation and Key Issues . 5

1.3 Research Contributions . 12

1.3.1 Role-enriched Business Process Model 13

1.3.2 Task Abstraction and Aggregation 13

1.3.3 Data Relationship Extraction . 14

1.3.4 User Interface Derivation . 14

1.3.5 UI Derivation Tool Development 14

1.4 Thesis Outline . 15

2 Literature Review 17

2.1 Business Process Modelling . 17

2.1.1 Conceptual Languages . 18

2.1.1.1 Business Process Model and Notation 18

2.1.1.2 Unified Modelling Language - Activity Diagrams 21

2.1.2 Formal Languages . 22

2.1.2.1 Finite State Machine 22

xi

CONTENTS

2.1.2.2 Petri Nets . 24

2.1.2.3 Linear Temporal Logic 25

2.1.3 Execution Languages . 26

2.1.3.1 Extensible Markup Language 26

2.1.3.2 Web Service Business Process Execution Language . . . 27

2.2 Workflow Patterns . 28

2.2.1 Basic Control Flow Patterns . 29

2.2.2 Advanced Branching and Synchronization Patterns 30

2.2.3 Iteration Patterns . 31

2.2.4 Multiple Instance Patterns . 33

2.2.5 State-based Patterns . 34

2.2.6 Cancellation Patterns . 35

2.3 Business Process View Generation . 36

2.4 User Interfaces . 41

2.4.1 User Interfaces of Business Processes 41

2.4.2 User Interfaces of Web Applications 45

2.5 Summary and Discussion . 46

3 Role-enriched Business Process Model 51

3.1 Introduction . 51

3.2 Formal Syntax . 52

3.3 Well-formed Role-enriched Business Process Model 54

3.4 Extension of BPMN . 60

3.5 Identified Control Flow Patterns . 63

3.6 Identified Data Operation Patterns . 67

3.7 Scenario Example . 71

3.8 Summary and Discussion . 75

xii

CONTENTS

4 Task Abstraction and Aggregation 77

4.1 Introduction . 77

4.2 Abstracted and Aggregated BP Model 78

4.3 Task Abstraction and Aggregation . 79

4.3.1 Elementary Operations . 79

4.3.2 Algorithm for Task Abstraction and Aggregation 91

4.3.2.1 Handling Complex BP Fragments 93

4.3.2.2 Handling Basic BP Fragments 95

4.3.2.3 Abstracting and Aggregating Tasks in Role-enriched BP 97

4.3.2.4 Go-through Example of Task Abstraction and Aggre-

gation . 100

4.4 Analysis of Abstracted and Aggregated Business Processes 102

4.4.1 Order Between Tasks . 102

4.4.2 Dependency Between Tasks . 104

4.4.3 Property Analysis of Elementary Operations 105

4.5 Scenario Example . 108

4.6 Summary and Discussion . 110

5 Data Relationship Extraction 111

5.1 Introduction . 111

5.2 Data Relationships . 112

5.2.1 Tree Graph . 112

5.2.2 Data Relationships Recorded using JSON Schema 119

5.2.3 Well-formness of Tree Graph . 122

5.3 Data Relationship Extraction . 123

5.3.1 Elementary Operations . 123

5.3.1.1 Elementary Operations on Task, Abstracted Node and

Data Item of AABP . 123

5.3.1.2 Elementary Operations on Control Flow Pattern of AABP124

xiii

CONTENTS

5.3.1.3 Elementary Operations on Data Operation Patterns in-

side Individual Tasks of AABP 136

5.3.2 Algorithm for Data Relationship Extraction 138

5.4 Scenario Example . 141

5.5 Summary and Discussion . 144

6 User Interface Derivation 145

6.1 Introduction . 145

6.2 User Interface Flow . 146

6.2.1 Formal Specification . 146

6.2.2 Operation Flow Relations between UI Containers 148

6.3 Rules of UI Derivation . 149

6.3.1 Constraints . 149

6.3.2 Recommendations . 161

6.4 Algorithm for UI Derivation . 168

6.5 Scenario Example . 170

6.6 Summary and Discussion . 170

7 Implementation 173

7.1 System Architecture . 174

7.2 Go-through Example . 179

7.3 Summary and Discussion . 187

8 Conclusion and Future Work 191

8.1 Contributions . 191

8.2 Future Work . 194

References 197

xiv

List of Figures

1.1 Domains of Business Process Modelling 2

1.2 Problems in the BP UI Development . 6

1.3 Solution to the BP UI Development . 7

1.4 Deriving UI Logics from a Business Process 8

1.5 Overall Framework of UI Derivation Approach 11

2.1 Basic BPMN Elements . 19

2.2 Finite State Machine Diagram for Turnstile 23

2.3 Basic Control Flow Patterns . 29

2.4 Advanced Branching and Synchronization Patterns 30

2.5 Iteration Patterns . 32

2.6 Multiple Instance Patterns . 32

2.7 State-based Patterns . 34

2.8 Cancellation Patterns . 35

2.9 Examples of a BP and Related Process Views 37

2.10 User Interfaces of Business Processes . 42

2.11 Model-driven Approach for UI Derivation from a BP 44

3.1 BPMN Constructs - Events . 60

3.2 BPMN Constructs - Gateways . 61

3.3 BPMN Constructs - Sequence Flows . 62

3.4 BPMN Constructs - Task and Data Item 63

3.5 Control Flow Pattern - Strict-order Sequential 63

xv

LIST OF FIGURES

3.6 Control Flow Pattern - Free-order Sequential 64

3.7 Control Flow Pattern - Parallel-A . 64

3.8 Control Flow Pattern - Parallel-B . 65

3.9 Control Flow Pattern - Parallel-C . 65

3.10 Control Flow Pattern - Conditional . 66

3.11 Control Flow Pattern - Loop . 66

3.12 Data Operation Pattern - Strict-order Sequential 67

3.13 Data Operation Pattern - Free-order Sequential 68

3.14 Data Operation Pattern - Conditional 68

3.15 Data Operation Pattern - Loop . 69

3.16 Transformation of Three Data Operation Patterns: Parallel-A, Parallel-

B, Parallel-C . 70

3.17 Recruitment Process Specified with Original BPMN 2.0 72

3.18 Recruitment Process Specified with Role-enriched Business Process Model 73

3.19 Identified Control Flow Patterns and Data Operation Patterns from Re-

cruitment Process . 74

4.1 Elementary Operations Single-Abs-Agg-1,2,3 on Single Tasks 80

4.2 Elementary Operation Sequential-Abs-Agg-1 on Strict-order Sequential . 80

4.3 Elementary Operation Sequential-Abs-Agg-2 on Free-order Sequential . 81

4.4 Elementary Operation Parallel-A-Abs-Agg-1 on Parallel-A 81

4.5 Elementary Operation Parallel-A-Abs-Agg-2 on Parallel-A 82

4.6 Elementary Operation Parallel-A-Abs-Agg-3 on Parallel-A 83

4.7 Elementary Operation Parallel-A-Abs-Agg-4 on Parallel-A 84

4.8 Elementary Operation Parallel-B-Abs-Agg-1 on Parallel-B 85

4.9 Elementary Operation Parallel-B-Abs-Agg-2 on Parallel-B 86

4.10 Elementary Operation Parallel-B-Abs-Agg-3 on Parallel-B 86

4.11 Elementary Operation Parallel-C-Abs-Agg-1 on Parallel-C 87

4.12 Elementary Operation Parallel-C-Abs-Agg-2 on Parallel-C 88

4.13 Elementary Operation Parallel-C-Abs-Agg-3 on Parallel-C 88

xvi

LIST OF FIGURES

4.14 Elementary Operation Conditional-Abs-Agg-1 on Conditional 89

4.15 Elementary Operation Loop-Abs-Agg-1 on Loop 90

4.16 Elementary Operation Loop-Abs-Agg-2 on Loop 90

4.17 Examples of Basic BP Fragments and Complex BP Fragments 92

4.18 Transforming Task-Abs Block Using Tree Graph 98

4.19 Task Abstraction and Aggregation of a BP with a Complex Structure . 101

4.20 AABPs for User Roles Participating in Recruitment Process 109

5.1 Nodes in a Tree Graph . 112

5.2 Data Relationship Patterns . 114

5.3 Elementary Operations Single-Data-Deriv-1/2/3 on Task/Abstracted Node/-

Data Item . 123

5.4 Elementary Operations Sequential-Data-Deriv-1 on Strict-order Sequential124

5.5 Elementary Operations Sequential-Data-Deriv-2 on Free-order Sequential 125

5.6 Transformations of Individual Branches from Parallel-A, B, C Control

Flow Patterns In AABP . 126

5.7 Elementary Operations Parallel-A-Data-Deriv-1 on Parallel-A 128

5.8 Elementary Operations Parallel-A-Data-Deriv-2 on Parallel-A 129

5.9 Elementary Operations Parallel-A-Data-Deriv-3 on Parallel-A 129

5.10 Elementary Operations Parallel-A-Data-Deriv-4 on Parallel-A 130

5.11 Elementary Operations Parallel-B-Data-Deriv-1 on Parallel-B 131

5.12 Elementary Operations Parallel-B-Data-Deriv-2 on Parallel-B 131

5.13 Elementary Operations Parallel-B-Data-Deriv-3 on Parallel-B 132

5.14 Elementary Operations Parallel-C-Data-Deriv-1 on Parallel-C 133

5.15 Elementary Operations Conditional-Data-Deriv-1 on Conditional 134

5.16 Elementary Operations Loop-Data-Deriv-1 on Loop 135

5.17 Elementary Operations Loop-Data-Deriv-2 on Loop 136

5.18 Elementary Operations on Data Operation Patterns inside Individual

Tasks of AABP . 137

5.19 Extracted Data Relationships for Personnel Officer 142

xvii

LIST OF FIGURES

5.20 Extracted Data Relationships for Referee and Applicant 143

6.1 Operation Flow Relations between UI Containers 147

6.2 Constraint Sequential-Constraint-1 on Strict-order Sequential 150

6.3 Constraint Sequential-Constraint-2 on Free-order Sequential 151

6.4 Constraint Parallel-A-Constraint-1 on Parallel-A 152

6.5 Constraint Parallel-A-Constraint-2 on Parallel-A 153

6.6 Constraint Parallel-A-Constraint-3 on Parallel-A 154

6.7 Constraint Conditional-Constraint-1 on Conditional 155

6.8 Constraint Conditional-Constraint-2 on Conditional 156

6.9 Constraint Loop-Constraint-1 on Strict-Order Loop 158

6.10 Constraint Loop-Constraint-2 on Strict-Order Loop 159

6.11 Constraint Loop-Constraint-3 on Free-Order Loop 159

6.12 Constraint Loop-Constraint-4 on Free-Order Loop 161

6.13 Recommendation Sequential-Recommendation-1 on Strict-Order Sequen-

tial . 162

6.14 Recommendation Sequential-Recommendation-2 on Free-Order Sequential163

6.15 Recommendation Parallel-A-Recommendation-1 on Parallel-A 164

6.16 Recommendation Parallel-A-Recommendation-2 on Parallel-A 165

6.17 Recommendation Loop-Recommendation-1 on Strict-order Loop 166

6.18 Recommendation Loop-Recommendation-2 on Free-order Loop 167

6.19 Derived UIs for Personnel Officer, Referee and Applicant 171

7.1 System Architecture . 175

7.2 Recruitment Business Process Specified with Role-enriched BP Model . 180

7.3 Role-enriched Business Process in JSON format - Part One 181

7.4 Role-enriched Business Process in JSON format - Part Two 182

7.5 AABP for Personnel Officer . 185

7.6 Data Relationships Extracted from the AABP for Personnel Officer . . . 186

7.7 Derived Graphical User Interfaces . 188

xviii

List of Tables

4.1 Overview of Properties for Elementary Operations 106

7.1 List of Elementary Operations for Task Abstraction and Aggregation . . 176

7.2 List of Elementary Operations for Data Relationship Extraction on Con-

trol Flow Patterns of AABPs . 178

7.3 List of Elementary Operations for Data Relationship Extraction on Data

Operation Patterns inside Individual Tasks of AABPs 178

7.4 List of Two Groups of UI Derivation Rule Functions 180

xix

LIST OF TABLES

xx

Chapter 1

Introduction

This chapter describes the background, the motivation and the contributions of the

research work. It also provides an outline of the thesis. Section 1.1 provides an overview

of the research background, in which business process and user interface are introduced.

Section 1.2 discusses the motivation of our work and related key issues. Section 1.3

summarizes the contributions of the research work. Section 1.4 presents an outline of

the thesis.

1.1 Background

1.1.1 Business Process

Over the last decades, the information and communication technology has gained re-

markable development, focusing organizations to adjust their business strategies when

accelerating their growth and delivering their business values to customers. Business

strategies are specified and operationalised through business processes (BPs). A busi-

ness process is a collection of ordered tasks followed by an organization to produce

a particular product or service. With the advancement of information systems, the

organizations around the world have set the business process automation and improve-

ment as their major goals in order to reduce costs, increase productivity, and improve

product quality. Product managers are casting about for employing cutting-edge tech-

nology, especially information technology (IT), in their business processes. IT staff

1

1. INTRODUCTION

Business Process Modelling

Process Modelling

Function Modelling

Organization Modelling IT Landscape Modelling

Information Modelling

Figure 1.1: Domains of Business Process Modelling

have been keen to exploit data collected from their business processes supported by IT,

and employ these critical data in a way that helps to meet the organizational business

goals [1, 2, 3, 4, 5].

In a business process, different tasks coordinate with each other to realize a partic-

ular business goal. Theses tasks can be categorized as system tasks that are automati-

cally performed by applications (e.g. calculating the account payable for a customer),

user-interaction tasks that require both the support of information systems and human

knowledge (e.g. inputting customer information into a customer management system),

and manual tasks that is totally not supported by information system (e.g. sending

a parcel to a business partner) [6, 7]. In order to represent a BP, a business process

model can offer an essential tool to describe a BP in an intelligible manner (e.g. graph-

ical notation). With a business process model, process participants are able to better

understand the process, share the understanding with other related people, identify

potential issues and improve the process. BP models can support system developers

and engineers in implementing processes in software environment.

Generally speaking, business process modelling comprises five modelling domains

(see Figure 1.1): process modelling, function modelling, information modelling, orga-

nization modelling and IT landscape modelling. The process modelling is the key one

2

1.1 Background

in these five domains. It not only specifies the details of a BP, but also integrates the

modelling results of the other four domains. The functional modelling explores the

units of work that are enacted in the context of business processes. The information

modelling specifies the data operated in BPs. The data are critical in a process, as

decision-making in BPs depends on the particular data values. Besides, data depen-

dencies between tasks must be considered in process design to avoid situations where

a function requires certain data that is not available at that time. The organization

modelling focuses on the representation of the organizational structure of an enterprise.

The IT landscape modelling refers to building the landscape of operational information

technology for BP implementation, including the information systems, their relation-

ships, and their programming interfaces [8].

As a major business process modelling paradigm, the activity-centric process mod-

elling regards process tasks and their control flow relations as first class citizens. The

control flow relations are explicitly specified in an activity-centric BP model. A number

of control flow patterns have been identified and summarized as languages to build up

a process model. Each pattern is a category that describes a recurring scenario of a BP

control flow. The data operated by a BP are modeled as data objects along with sets

of object states. A particular data object at a specific state is represented as a pre-

/post-condition for enabling a task, or as a main decision indicator at a specific control

flow divergence point. The usage of a particular data object in different object states

in combination with multiple tasks allows to derive a life-cycle of the object, which

represents the manipulations performed on the data object [9, 10]. The representative

languages and standards of the paradigm include Business Process Model and Notation

[11], Event-driven Process Chains [12], Business Process Execution Language [13], and

Yet Another Workflow Language [14].

1.1.2 User Interface

With the extensive application of information technology, there is an increasing con-

cern on the development of the user interface (UI) in the computer-based information

3

1. INTRODUCTION

systems. In an information system, the UI is the component through which a user in-

teracts with the system. Here the term “user” may refer to either a human being or an

application. In the application-system interaction, a UI accepts input for performing

particular functionalities and provides results. Examples of this type of interactions

are making calls to web services, and storing/retriving data into/from databases. In

the human-machine interaction, a UI determines how commands are given to the sys-

tem and how information is displayed on the screen. The goal of this human-machine

interactions is to realize effective operations and controls on the system from human

beings. On the other hand, the system gives the feedback information to human beings.

There exist three main alternatives of human-machine UIs as (1) command language:

the user must know the machine and program-specific instructions or codes; (2) menus:

the user chooses the commands from lists displayed on the screen. (3) graphical user

interface (GUI): user gives commands by selecting and clicking on icons displayed on

the screen [15, 16].

The user interface design has always been a hot spot in the development of infor-

mation systems. The earliest UI design standards can be dated back to the 1980s when

the usability of software products is defined. One major guiding principle in the UI

design is the separation of concerns proposed by Edsger Dijkstra [17], which is one of

the key principles in dealing with the complexity of computer systems. With this prin-

ciple, functionalities are identified and packaged in a subsystem with explicitly specified

responsibilities and interfaces. The principle brings in benefits as follows:

� it enables the enormous and complex systems to be engineered;

� it allows the implemented functionalities to be reused by different applications;

� it offers a response mechanism to changes in systems and individual subsystems

can be modified without changing other parts of the overall system.

With the guidance of the separation of concerns, UIs will be developed in a separate

component package due to that UI developers do not want the user interfaces to be

tightly coupled with other parts of the information system. This philosophy greatly

4

1.2 Motivation and Key Issues

facilitates the development of graphical user interface (GUI), which is a visual way to

realize human interaction with a system using items such as windows, icons, and menus

etc. Comparing to the conventional command-line user interface, the GUI greatly eases

the interaction between humans and systems due to that users do not need to learn the

complicated command languages when using GUI. Normally, four basic dimensions are

considered when structuring the graphical user interface: (1) the input/output dimen-

sion (the look), (2) the dialogue dimension (the feel), (3) the technical or functional

dimension (the access to tools and services), and (4) the organizational dimension (the

communication and co-operation support) [18].

1.2 Motivation and Key Issues

A business process is a collection of tasks and their control flow relations to realize

a particular business goal. Each task is a unit of work performed by human users or

applications. The human users participate in a process through user interfaces. In

a business process, the UI requires input from the process participants to drive the

process execution, whilst provides feedback information to the process participants to

support their decision-making.

UIs support the interactions between/among the BP, database systems/applica-

tion/web services, and the process participants (see Figure 1.2). The development of

the BP UIs normally requires a lot of hard coding efforts. During the UI development,

the UI engineers need to firstly analyze the process to obtain the UI design logic, which

includes identifying the tasks of the process that requires UIs for human interactions,

identifying the data items required within each task-specific UI, and identifying the

flows between the task-specific UIs. Then, the UI engineers can develop the graphical

user interfaces according to the obtained UI design logic [19].

The realization and maintenance of the BP UIs are not only costly and time-

consuming, but also error-prone, due to the nature of mannual coding. These drawbacks

impede the quick adaptations of business process realization. Moreover, due to the tight

5

1. INTRODUCTION

Business Process

User Interfaces are analysed and

developed by UI engineers

End Users

Participating in the Business Process

U
se

r-P
ro

ce
ss

In
te

ra
ctio

n

Graphical User Interfaces of Business Process

Figure 1.2: Problems in the BP UI Development

coupling between the BPs and their UIs, the changes required by the existing UIs/BPs

cannot be easily adapted to the BPs/existing UIs without recoding.

To overcome the above mentioned drawbacks, a UI derivation approach based on

the business process model is highly desirable (see the red parts in Figure 1.3). As the

foundation of this approach, the business process model must contain all the process

details required to derive the process UIs. To the best of our knowledge, the existing

BP models cannot specify enough process details to support the UI derivation, and

therefore must be enriched with additional elements. Based on the enriched BP model,

a UI derivation approach can be developed. The input of this approach is a business

process specified using the enriched BP model, and the output is the UI logic of the

input business process. The UI logic supports UI developers to develop graphical user

interfaces of the BP without analyzing the process.

Here we use a scenario example to demonstrate what the UI logic of a BP is.

6

1.2 Motivation and Key Issues

Business Process

Graphical User Interfaces of Business Process

End Users

Participating in the Business Process

Business Process Model

Enrichment

UI Derivation Approach

Specify

User Interface Logic

Support to Develop GUIs

U
se

r-P
ro

ce
ss In

te
ra

c
tio

n

Figure 1.3: Solution to the BP UI Development

7

1. INTRODUCTION

ANDAND

Personnel Officer

Describe Job

job
description

x

Review Reference x

evaluation

reference
letter

Comment Interview x

interview
report

xMake Decision

interview report

approve ? Yes No

Notify Approval x

approval
letter

Notify Rejection x

rejection
reasons

Organize Interview x

date & time

venue

Referee

Reference Letter

reference letter

x

Applicant

xSubmit Application

job description

personal info

xConform Interview

date & time venue

confirm ? Yes No

(a) Recruitment Process

(b) UI logic for Personnel Officer

(c) UI logic for Referee

(d) UI logic for Applicant

Announce

A Job

Submit

Application

Writing

Reference

Letter

Arrange

Interview

Confirm

Intervierw

Review Reference

Letter

Interview Make Decision

Personnel
Officer

Applicant
Referee

Personnel
Officer

Applicant

Personnel
Officer

Personnel
Officer

Personnel
Officer

personal info

reference
evaluation report

reference letter

ANDAND

XOR

reference evaluation report

Figure 1.4: Deriving UI Logics from a Business Process

8

1.2 Motivation and Key Issues

(a) Figure 1.4 shows a recruitment process at the human resource department of a

company. There exist three user roles involved in the business process as personnel

officer, applicant, and referee. In the recruitment process, there are tasks as:

(1) the personnel officer announces a job vacancy; (2) an applicant lodges his

application; (3) a referee writes a reference letter to support the application; (4)

the personnel officer arranges an interview for the applicant; (5) the applicant

confirms the interview; (6) the personnel officer reviews the reference letter; (7) the

personnel officer conducts the interview; (8) the personnel officer makes the

decision according to the evaluation of the reference letter and the interview report.

Task 4, 5 are in parallel with task 6. Task 4 and task 5 are executed sequentially. Task

1, task 2, task 3, task 4, 5, 6, task 7, task 8 are executed sequentially.

Users provide inputs to and receive information from a BP through UIs. The

operation flow of input/output data for a specific user role in a BP is referred to as the

UI logic of this user role. Input/output data will be grouped and put in different UI

containers. For instance, (d) Figure 1.4 shows the UI logic for the user role applicant.

There are two UI containers (Submit Application and Confirm Interview) and they

will turn up in a sequential order. With Submit Application, an applicant can

read the job information and provide the details of his application. With Confirm

Interview), the applicant can check the interview date, time, location and confirm

his attendance.

We believe the UI logic of a BP should have the following features as:

1. each participating user role should have a UI logic;

2. each UI logic consists of a set of containers and the execution constraints of these

containers;

3. each container includes a set of data items specified with access types (read,

write).

To specify the UI logic with the above features, we define a UI flow for each partic-

ipating user role. A UI flow consists of a set of UI containers (containers) as well as

9

1. INTRODUCTION

the operation flows between them. Each container comprises a set of data items. Each

data item needs to be specified with an access type. The access type indicates if a data

item is to be read or edited.

In order to derive the UI flow for each involved user role, we propose a UI derivation

approach based on role-enriched business process model as illustrated in Figure 1.5. As

the starting point of UI derivation, a role-enriched business process model ((a)

Figure 1.5) is built to contain all details required to derive the UI flow. This process

model specifies: (1) how user roles are involved in tasks; (2) how complex control flow

patterns affect data relationships; (3) how data are operated in individual tasks. Then,

a series of control flow patterns and data operation patterns are identified as the basis

to build up elementary operations and rules for UI derivation. A control flow pattern

describes a scenario of a control flow relation between tasks in a BP; a data flow pattern

describes a scenario of a control flow relation between data items within a task of a BP.

As the first step (Step 1 in Figure 1.5), the tasks in the role-enriched business

process are abstracted and aggregated for each involved user role. In this process, the

tasks related to a particular user role are kept, and the tasks not associated with this

user role are hidden as abstracted nodes. As the result of this step, a unique Abstracted

and Aggregated BP (AABP) is generated for each user role participating in the role-

enriched BP (see (b), (c), (d) in Figure 1.5). And therefore an AABP is dedicated to

derive UI logics related to an involved user role.

Other than the goal of UI derivation, the technique of task abstraction and aggre-

gation also has the following significance: (1) firstly, the details of BP tasks must be

hidden and abstracted from certain users due to information security requirements such

as privacy, confidentiality, and conflict of interest; (2) secondly, task abstraction and

aggregation are a foundation for deriving customized descriptions of a BP for partici-

pating users according to the users’ requirements and intentions [20]. The customized

BP descriptions may play an important role in the modelling of BP collaboration, BP

visualization, and authority control; (3) thirdly, AABPs highlight the requirements as-

sociated with a specific user role and preserve some information of other user roles for

10

1.2 Motivation and Key Issues

t1

t3

t4

t5

t7

Role3

Role2

Role1 Role2Role1

t2 t6

t8

Role2

t1

Abs

Abs

t2 Abs

t3

Abs

Role2

t6

t8

t4

t5

t7

Abs Abs

Role-enriched Business Process

Branch2

Branch1

CDE1 CDE2

INFO1

Branch2

Branch1

CDE3

CDE6 CDE8

Free-SeqStrict-Seq
Abs

Abs

CDE4

Strict-Seq

Step 2: Data Relationship Extraction

CDE1

INFO1

INFO2

CDE3

INFO2 CDE8

CDE2 CDE6

CDE8

CDE6

CDE7

CDE5CDE4

User Interface Flows

Step 3: User Interface Derivation

Role1 Role3

CDE6 CDE8

Free-Seq

Role3

Role3

CDE5 CDE7

Free-Seq

Step 1: Task Abstraction and Aggregation

(a)

(b) (c) (d)

Role2Role1 Role3(e) (f) (g)

(h)

Role2Role1 Role3(i) (j) (k)

Figure 1.5: Overall Framework of UI Derivation Approach

11

1. INTRODUCTION

the effective control flow in a BP. AABPs can be used to enable the development and

updating of software components such as UIs related to different user roles.

As the second step (Step 2 in Figure 1.5), data relationships (see (e), (f), (g)

in Figure 1.5) are extracted from the AABP of a specific user role according to data

operations and control flow patterns in the AABP. The data relationships describe the

temporal relationships between the data entities operated by the tasks related to one

user role, and the dependencies between the data entities and the abstracted nodes in

an AABP. According to the extracted data related to one user role, the UI derivation

rules can be analyzed and built up.

As the third step (Step 3 in Figure 1.5), the UI logic is derived from the obtained

data relationships at the second step. The UI derivation algorithm is developed based

on a set of UI derivation rules. These UI derivation rules are classified as constraints

and recommendations. The derived UI logic will support the generation and updating

of the graphical user interfaces.

1.3 Research Contributions

In this work, we develop an approach for user interface derivation based on the proposed

role-enriched BP model to automatically derive the UI logic of a business process for

each participating user role. This approach can help application developers to derive

UIs for BPs. Business analysts can use this approach to trace the changes happening

in either business processes or related user interfaces so as to adapt changes. The UI

logics derived by this approach are able to support UI designers to develop graphical

UIs of business processes. In this approach, a role-enriched BP model is built up as the

foundation, and there are three derivation steps as task abstraction and aggregation,

data relationship extraction, and UI derivation. The contributions of the proposed

approach are summarized as follows.

12

1.3 Research Contributions

1.3.1 Role-enriched Business Process Model

We propose a role-enriched business process model as the foundation of the UI deriva-

tion approach. In this BP model, four aspects are specified as (1) the tasks in BP and

control flow relations between these tasks; (2) the relationships between participating

user roles and individual tasks; (3) the data operation flow in each task that represents

a set of data items and the operation flow relations between these data items; (4) the

access type (read or write) of each data item. The BPMN modelling language is ex-

tended to specify the role-enriched BP model. A set of formalized rules are specified to

regulate a well-formed role-enriched business process. In the BP model, we identify a

set of control flow patterns and data operation patterns to build the elementary oper-

ations and rules for UI derivation. With the role-enriched BP model, process modelers

are able to specify a BP that has complex control flow patterns and capture the details

of data operations inside individual tasks of a BP.

1.3.2 Task Abstraction and Aggregation

We propose a method for task abstraction and aggregation of a BP based on the role-

enriched BP model. As a result of the method, an AABP is produced that provides

customized descriptions of a BP for different user roles and this description is used to

derive UIs of a BP related to the participating user roles. In this method, tasks of a BP

are abstracted and aggregated for each user role according to the identified control flow

patterns. A set of elementary operations for task abstraction and aggregation in BPs

are specified. The algorithm for deriving the AABP is developed with the elementary

operations as cornerstones. The structural consistency between the BP and the AABP

has been analyzed. The derived AABPs with the proposed method can be used to derive

business process views for process participants, and support analyzing, developing, and

updating software components such as user interfaces related to different user roles.

13

1. INTRODUCTION

1.3.3 Data Relationship Extraction

We propose a method for extracting the data relationships from the AABP for each

user role. We use a tree graph to represent the data relationships extracted from an

AABP. The extracted data relationships are the foundation to analyze and derive the

UI logic. In this method, a set of elementary operations are developed according to the

data operations inside individual tasks and the identified control flow patterns in the

AABP. The algorithm for data relationship extraction is developed with the elementary

operations as cornerstones.

1.3.4 User Interface Derivation

We propose a method for deriving the UI logic from the the extracted data relationships.

The derived UI logic is the final output of the proposed UI derivation approach in this

thesis. A set of UI derivation rules are specified. These UI derivation rules can be clas-

sified into two categories as Constraints and Recommendations. The Constraints

include rules that must be followed by the UI designers. The Recommendations in-

clude rules that are recommended to be followed by the UI designers. The UI logic is

derived by using the UI derivation algorithm with these rules as cornerstones.

1.3.5 UI Derivation Tool Development

We develop a UI Derivation Tool that implements our proposed UI derivation approach.

As the input of this tool, the role-enriched BP is specified using JavaScript Object No-

tation. The algorithms for all the UI derivation steps, including task abstraction and

aggregation, data relationship extraction, and UI derivation, are implemented as sepa-

rate functional modules. The elementary operations and rules used by each derivation

step is implemented as individual functions. We also develop a GUI Generator is de-

veloped to visualize the derived UI logics. A set of sequenced Windows Forms are

generated for each user role as the output of the tool. This tool is capable of deal-

ing with the business processes with complex control flow relationships and with tasks

containing complex data operation flows.

14

1.4 Thesis Outline

1.4 Thesis Outline

This section presents the overall structure of the thesis.

In Chapter 2, we introduce the basic concepts related to business process and user

interface, and overview the state-of-the-art of the research and standardization in the

related areas. More specifically, business process modelling, workflow patterns, busi-

ness process view generation, and UIs of business processes and web applications are

discussed.

In Chapter 3, we propose the role-enriched business process model. The formal

syntax and well-formness of this process model are introduced. The BPMN is extended

to specify the process model. A set of control flow patterns and data operation patterns

are identified. A scenario example is introduced to illustrate how to specify a process

using the role-enriched BP model.

In Chapter 4, we present the method of task abstraction and aggregation for differ-

ent user roles involved in a BP. A set of elementary operations are developed according

to the identified control flow patterns in the role-enriched BP. The algorithm for task

abstraction and aggregation is developed with the elementary operations as corner-

stones. The BP structural properties are discussed, and the structural consistency

between the AABP and the original BP is analyzed.

In Chapter 5, we provide the method of data relationship extraction from the AABP

for each user role. A set of elementary operations are developed according to the

data operations inside individual tasks and the identified control flow patterns in the

AABP. The algorithm for data relationship extraction is developed with the elementary

operations as cornerstones.

In Chapter 6, we present the method of UI logic derivation from the extracted data

relationships. A set of UI derivation rules are specified. The UI derivation algorithm

is developed with these rules as cornerstones.

In Chapter 7, we describe a tool developed as prototype that implements our pro-

posed UI derivation approach introduced in Chapter 3, 4, 5 and 6.

15

1. INTRODUCTION

In Chapter 8, we conclude this thesis by re-emphasising the contributions and dis-

cussing the directions for future research.

16

Chapter 2

Literature Review

In this chapter, we introduce the background related to the remainder chapters of this

thesis and review related works. This is to give readers a better understanding of the

work in this thesis. Section 2.1 presents the languages for business process modelling.

Section 2.2 summarizes the commonly-used workflow patterns. Section 2.3 discusses

the concept of business process view and its derivation from business processes. Section

2.4 introduces the principles of web application UIs design and discusses the studies on

the UI derivation from business process models. Section 2.5 provides a summary and

discussion on this chapter.

2.1 Business Process Modelling

M. Dumas et al [21] argued that a business process model was characterized by three

properties: mapping, abstraction, and fit for purpose. (1) A BP model implies a

mapping of a collection of real-world BPs which have similar characteristics. (2) A BP

model only documents required aspects of the collection of BPs; irrelevant details of the

processes are abstracted from the BP model. (3) A BP model exists for a particular

purpose that determines what aspects of the BPs are documented when creating a

process model.

These purposes of modelling BPs fall into two classes: business-oriented modelling

and IT-oriented modelling. (1) The business-oriented process models contain high-level

17

2. LITERATURE REVIEW

information regarding the process description, and are built up by process analysts.

This type of process models is mainly used for understanding the process and com-

municating the understanding with other BP stakeholders. Through analyzing the BP

models, problems hidden in BPs are also able to be identified and resolved. (2) The

IT-oriented process models are created by software developers and engineers and used

for the development of BP applications. Thus, implementation details must be speci-

fied in the process models to be utilized as blueprints for application development, or

deployed to a BP management system [6, 21].

According to the different BP modelling purposes, the BP modelling languages are

classified as three categories: conceptual languages, formal languages, and execution

languages [22, 23, 24].

2.1.1 Conceptual Languages

Conceptual BP modelling languages enable process modelers to express control flow

between/among tasks, operated data, and participated user roles in a graphical way.

Graphical standards are high-level specifications of business process, and therefore are

easy to understand without prior technical training. However, this type of standards

does not allow for formal analysis and are not able to be executed due to the lack of well-

defined semantics. In the following, two popular conceptual languages are introduced

as Business Process Model and Notation, and Unified Modelling Language - Activity

Diagrams.

2.1.1.1 Business Process Model and Notation

Business process model and notation (BPMN) is currently a widely accepted standard

to graphically represent business processes. It was firstly released by Business Process

Management Initiative (BPMI) in 2004. Since 2005 the Object Management Group

(OMG) has been in charge of maintaining BPMN, when the OMG and the BPMI

merged [25]. In 2011, the version 2.0 of BPMN was released, in which the execution

semantics for the diagramming and notational constructs of BPMN [26] were introduced

.

18

2.1 Business Process Modelling

P
o

o
l La

n
e

La
n

e
Start Event

End Event

Intermediate Event

Task Sub-Process

Transaction Call Activity

Exclusive

Gateway

Event-based

Gateway

Parallel

Gateway

Inclusive

Gateway

Complex

Gateway

Exclusive

Event-based

Gateway

Parallel

Event-based

Gateway

Events Activities

Gateways

Sequence Flow

Message Flow

Association

Connections

Pool and Lanes

Data Object

Group

Annotation

Data

Group

Text

Figure 2.1: Basic BPMN Elements

BPMN not only supports business users with graphical notations, but is also ca-

pable of specifying complex semantics for technical users. The versatility of BPMN

bridges the gap between business analysts and software engineers by providing a rich

set of understandable and readily symbols [27, 28]. Initially, business analysts model

the business processes using the provided BPMN annotations according the analyzed

business requirements. Then these BPMN processes are implemented by software en-

gineers for actual execution, which allows end users to participate in the processes and

to monitor the process executions.

BPMN 2.0 contains over 100 symbols, which can be grouped into four categories:

flow objects, connecting objects, swim lanes, and artifacts. In the following, we only

introduce the basic elements for each category (see Figure 2.1) [11, 29].

Flow objects comprise events, activities, and gateways.

An event is denoted as a circle, which includes three common types as start event,

intermediate event, and end event. A start event represents a trigger of a process. An

intermediate event represents something that happens in the process. An end event

19

2. LITERATURE REVIEW

represents the termination of a process.

An activity, denoted as a rounded-corner rectangle, represents the work to be done,

and comprises task, sub-process, transaction, and call activity. A task represents an

atomic unit of work to be completed. A sub-process represents a compound activity

included in a process, and is able to be expanded and collapsed. A transaction is a

type of sub-process, inside which all the activities are treated as a whole. That means

all the activities inside a transaction must be completed; if at least one of the inside

activities fails to be done, the transaction will roll back to its initial status. A call

activity denotes a point in a process, where a predefined process/ task is reused.

A gateway is denoted as a diamond, which represents the divergence and conver-

gence of the control flow in a process. There are seven common types of gateways

as exclusive gateway, event-based gateway, parallel gateway, inclusive gateway, com-

plex gateway, exclusive event-based gateway, and parallel event-based gateway. An

exclusive gateway provides alternative flows in a process. An event-based gateway is

similar to an exclusive gateway, but the choice of the alternative flows is determined by

the event. A parallel gateway provides simultaneous flows in a process. An inclusive

gateway provides alternative flows each of which is evaluated. A complex gateway is

to specify the behavior of complex synchronization. An exclusive event-based gate-

way/parallel event-based gateway instantiates process when each/all of the subsequent

events occur(s).

Connecting objects, used to join the flow object, include sequence flow, message

flow, and association. Swim lanes comprise pool and lane, which are used to represent

different levels of the user roles participating in a process. Artifacts enable process

modelers to add more information in a BPMN process so that the process becomes more

readable. There exist three types of artifacts as data object, group, and annotation.

Extensions of BPMN have been proposed for various purposes. A.Meyer et al

[30, 31] extended two BPMN constructs - data objects and lanes to allow the specifi-

cation of complex data dependencies (e.g. m:n relationships) in BPMN. N.Lohmann

et al [32] proposed the extended BPMN aiming to express artifact-centric BPs, which

models processes from the perspective of data objects (a.k.a. artifacts) by specifying

20

2.1 Business Process Modelling

the artifacts operated in a process and the life cycles of these artifacts [33, 34]. Due to

the informal nature of BPMN, some works on BPMN formalization have been done.

A hot debate is the semantic formalization of Inclusive Gateways. H.Volzer [35] used

graphs to analyze the formal semantics of the BPMN 2.0 Inclusive Converging Gate-

ways (a.k.a. Or-joins). D.Christiansen et al [36] proposed the semantic formalization

of BPMN 2.0 Inclusive Gateways under the scenario of a minimal subset of BPMN

constructs including start/stop events, and inclusive/exclusive gateways. R.Dijkman

et al [37] proposed a mapping tool from BPMN to a formal language Petri net [38] in

order to support static analysis of semantics in BPMN processes. P.Wong et al [39, 40]

utilized Z notation [41] to express the states of a process. Then a formal language

called Communicating Sequential Processes (CSP) [42] was utilized to formally specify

the behaviors of the hierarchically refined BPMN processes.

2.1.1.2 Unified Modelling Language - Activity Diagrams

The Unified Modelling Language (UML) [43] is a widely-used graphical standard for

object-oriented software analysis and design. UML contains 13 distinctive modelling

notations ranging from the use case diagrams, which are high-level notations used to

specify the interactions between the users and the system functions, to the object dia-

grams, which are low-level notations used to describe individual instances and the rela-

tionships between these instances. Among the modelling notations, Activity Diagrams

(ADs) aim to specify both organizational and computational processes. UML-AD are

flowchart-like notations to graphically model business processes; but unlike flowchart,

UML ADs support parallel control flows. The fundamental shapes of UML-AD are

listed as follows:

� A rounded-corner rectangle denotes an action which is a logic unit of work to be

done.

� A diamond denotes a decision which diverges the process control flow according

to the provided decision.

21

2. LITERATURE REVIEW

� A bar denotes the divergence/convergence of parallel actions.

� A black circle denotes the start of a process;

� An encircled black circle denotes the end of a process.

All the above constructs are connected using arrows to represent the control flow

of a process [44, 45, 46].

UML-ADs provide full support for common control flow patterns like sequential,

parallel, and conditional; also activity decomposition is able to be well specified in

UML-ADs. Nevertheless, the data and resources associated to BPs cannot be well

expressed in UML ADs; in addition, UML-ADs are difficult to get started due to

their complication, and require business analysts to have prior technical backgrounds.

Comparing to UML-AD, BPMN is more simple and intuitive for non-IT users to pick

up, which is also the reason why UML AD is falling from favor as a BP modelling

language [47, 48, 49].

2.1.2 Formal Languages

Formal BP modelling standards provide process modelers with rigorous and clear se-

mantics to specify BPs in a theoretical way. The explicit representations of processes

allow for qualitative and quantitative analysis of BP properties including soundness,

well-formness and so on [24]. In the following, three major formal languages are intro-

duced as finite state machine, Petri net, and linear temporal logic.

2.1.2.1 Finite State Machine

Finite-state machine (FSM) is a formalized model that is widely used in the modelling

of systems in computer science. According the definition by J. Hopcroft [50], a FSM is

defined as follows:

Definition 1: Finite State Machine. A FSM is denoted as a tuple M = (Q, Σ,

∆, σ, q0), where:

� Q is a finite set of symbols representing states;

22

2.1 Business Process Modelling

Locked UnlockedPush

Coin

Push

Coin

Figure 2.2: Finite State Machine Diagram for Turnstile

� Σ is a finite set of symbols representing the possible inputs;

� ∆ is a finite set of symbols representing the possible outputs;

� σ is a transition function that maps Q× Σ to Q×∆;

� q0 ∈ Q denotes initial state.

In a FSM, there exist a finite number of possible states. The machine must be in

only state at a given time, and this state is called the current state of the FSM. The

state of the machine can change from one to another when triggered by an event or

meeting a condition, and the shift of state is called transition. A FSM is capable of

analyzing problems due to the mathematical nature, and providing the solutions in a

formal way [22, 51].

Figure 2.2 illustrates a classic example of a coin-operated turnstile modelled in FSM.

A turnstile, having three arms, is usually set at the gate of a subway station for access

control. The turnstile has two states: the arms are locked and unlocked, and the initial

state is locked. There exist two inputs that influence the turnstile’s state: inserting a

coin in the slot and pushing the arm. In the locked state, pushing the arm does not

affect the turnstile and the state will not change. When inserting a coin, the state will

change from locked to unlocked. In the unlocked state, inserting additional coins will

not change the existing state. When the arm is pushed by a customer, the state will

change from unlocked back to locked [52].

23

2. LITERATURE REVIEW

2.1.2.2 Petri Nets

Petri nets are an established formal language for BP modelling due to their solid math-

ematical foundation along with intuitive graphical description, and the widespread

support by software tools. The mathematical nature of Petri nets make them offer

explicit semantics, and allow for the formal specification of process behaviors as well

as BP analysis. The graphical expression of Petri nets enables this language to be self-

describing and a effective process modelling tool, which facilitates the communication

among the users involved in the BP design [53].

A Petri net is a directed network composed of four constructs: places, transitions,

directed arcs, and tokens. Places are shown as circles; transitions are represented as

rectangles or bars. A directed arc connects a place/transition and a transition/place

to indicate the flow relation. It is not possible to link two places or two transitions.

Tokens, denoted as black dots, are held in places. The distribution of tokens amongst

places indicates the state of a Petri net [54]. A widely-accepted formal definition of

Petri nets is proposed by T.Murata [55], and shown as follows:

Definition 2: Petri net. A Petri net is denoted as N = (P, T, F,M0), where:

� P = {pi : i = 1, 2, ..., |P |} is a finite set of places;

� T = {tj : j = 1, 2, ..., |T |} is finite set of transitions;

� F ⊆ {P × T} ∪ {T × P} is a set of flow relations between places and transitions;

� M0: P → {0, 1, 2, ...} is the initial marking.

M = {M(p1),M(p2), ...,M(p|P |)} expresses a marking, which specifies a state of

Petri net. Starting from the initial marking M0, a Petri net is able to reach a series of

states through the firing of transitions. For a particular transition t, we use •t = {p ∈

P : (p, t) ∈ F} to represent the set of input places of t, and t• = {p ∈ P : (t, p) ∈ F}

to denote the set of output places of t. A transition t is enabled under M denoted as

M [t >, if ∀p ∈ •t, Mp ≥ 1. An enabled transition may fire written as M [t > M ′, which

will change the current Petri net marking M to a new marking M ′. The firing of a

24

2.1 Business Process Modelling

transition t consumes one token from each of the input places of t, and produces one

token in each of the output places of t.

Based on the above classic formalism of Petri net, a lot of studies have been con-

ducted on the extension of Petri net with additional properties to allow for modelling

and analyzing specific scenarios. One of the famous extensions is colored Petri net

(CPN) [56, 57], in which each token is assigned with data values, and therefore is

called a colored token. Due to the extension with data values, the tokens in CPN

become distinguishable between each other, which makes CPN compact and especially

advantageous in modelling interactive systems such as collaborative BPs [58]. Another

important Petri net extension is hierarchical Petri net (HPN), in which the views of

Petri net at different abstraction and refinement levels are able to be specified and

analyzed.

Apart from the above two well-known extensions, there also exist other studies on

extending Petri nets for various specific uses. W.M.P.Aalst et al conducted a series of

studies and investigations on the application of Petri nets in the context of workflow

management [59, 60]. A BP redesign framework was proposed in [38, 61], in which

the High-level Petri nets are utilized to model and analyze business processes. [62]

proposed a Business Procedure net (BP-net) to model a business procedure, which

allows for validating and verifying the soundness property. As an extension to the

BP-net, a Workflow net (WF-net) was developed in [63, 64, 65] as a sound model to

specify workflows.

2.1.2.3 Linear Temporal Logic

Linear Temporal Logic (LTL) is a modal logic with time-related modalities to reason

about dynamic scenarios. LTL lets modelers develop formulas as an infinite sequence

of states in which each point in time has a unique successor. Examples of LTL formulae

are a condition will be true until another fact becomes true, a condition will eventually

be true, etc. [66, 67, 68]. The formal syntax of LTL formulas are defined as follows:

� if p ∈ propositional variables then p is an LTL formula;

25

2. LITERATURE REVIEW

� if ψ and φ are LTL formulas then ¬ψ, φ ∨ ψ, X ψ, and φUψ are LTL formulas

(X denotes ”next”, U denotes ”until”).

LTL was first proposed for the formal verification of computer programs by Amir

Pnueli in 1977 [69] and is also widely used for modelling business processes, typically

for modelling declarative BPs. Unlike procedural BPs where execution sequences and

alternatives must be explicitly represented, declarative BPs are specified as a set of

execution constraints between/among tasks, that is anything is possible unless explicitly

forbidden [24, 70]. In order to model the declarative BPs, LTL offers various temporal

operators such as eventually (⋄), always (�), and until (⊔) to build up LTL formulas,

which are used to specify execution constraints of declarative BPs. One of the LTL

applications is the Declarative Service Flow Language (DecSerFlow) proposed in [71].

Three sets of formula templates are developed as (1) Existence Formulas which specifies

the possible number of task executions, (2) Relation Formulas which represents the

dependencies between two tasks, (3) Negation Formulas which are the negated version

of relation formulas. The DecSerFlow enables service designers not only to specify,

enact, and monitor service flows, but also to enforce/check the conformance of service

flows.

2.1.3 Execution Languages

Unlike conceptual and formal languages allowing for understanding and analyzing pro-

cesses, the execution languages, providing technical syntax and semantics, aim to enable

the deployment of the modelled BPs and the execution of the BP instances. In the

following, two execution languages are introduced as extensible markup language and

web service business process execution language.

2.1.3.1 Extensible Markup Language

The eXtensible Markup Language (XML) is a widely used markup language in com-

puter science, developed by the World Wide Web Consortium (W3C) in 1996. A set

of regulations are defined in XML for encoding documents that are understandable for

26

2.1 Business Process Modelling

both humans and machines. XML was originally designed to meet the challenges of

large-scale electronic publishing, and today is playing an increasingly significant role

in the exchange of various types of data on the Web. The aims of XML are to ensure

that the specified data must be simple, general, and usable across the Internet [72].

XML is a generalization of Hyper Text Markup language (HTML). The design

goal of HTML is to display the data, while XML is designed to structure, store, and

transport data. Another major difference is that HTML provides a predefined set of

tags that represent the structuring and rendering facilities of modern Web browsers,

while XML does not contain any pre-defined document tags. Instead, XML allows

applications to define their own sets of tags according to the syntactical rules of XML

[73].

2.1.3.2 Web Service Business Process Execution Language

The Web Service Business Process Execution Language (WS-BPEL or simply BEPL),

emerging as a de-facto standard for BP modelling in web service environment, is

widely adopted on multiple prominent platforms such as Oracle BPEL, SAP Netweaver,

Microsoft BizTalk, and IBM WebSphere. The first version of this language called

BPEL4WS 1.1 was released in 2003. It was the combination of two languages as Web

Services Flow Language and Xlang. In 2007, the second version named WS-BPEL was

released as an OASIS standard. BPEL is an XML based programming language and

capable of specifying how a BP is built up based on the invocation of existing web

services and the interaction with process participants. To support web service based

BPs, BPEL not only concentrates on the message exchange and interaction between

BPs and web services, but also support complex exception handling, BP installation,

and long running transactions for BP enactment [23, 74, 75, 76].

As introduced by T. Andrews et al who created BPEL [13], a business process can

be modelled in two ways:

� an executable business process, which specifies actual behaviors and details of the

interactions between the participants and the process;

27

2. LITERATURE REVIEW

� an abstract business process, which focuses on specifying the the mutually visible

messages exchanged between the participants involved in the process. Concrete

operational details and behaviors of the participants are not revealed in the pro-

cess. Therefore, the abstract business process is not able to be execution.

This definition indicates that the implementation details of a BP are able to be

specified only through executable business processes, and that is also the initial deign

goal of BPEL.

Due to the execution feature and widespread use of BPEL, there exist a number

of studies on the translation between BPEL and other graphical/formal languages to

bridge the gap between BP implementation and understanding analysis (e.g. [77, 78,

79, 80, 81]). So far, these translation studies merely concentrate on the translations

of process control flows, other BP aspects such as resource scheduling and process

semantics are not covered [82, 83].

2.2 Workflow Patterns

A pattern “is an abstraction from a concrete form which keeps recurring in specific

non-arbitrary context”. This description, proposed by D.Riehle et al [84], is one of

the famous definitions on the concept of pattern in software development. The design

patterns are both independent from the implementation technology and independent

from the essential domain requirements that are to be solved [85].

Workflow patterns provide the solutions for business requirements in an impera-

tive workflow expression, and are the guidance for BP modelling. On the one hand,

workflow patterns are independent from specific workflow languages. For this reason,

the expressive powers of different BP modelling languages and notations are able to

examined and compared through the workflow patterns. On the other hand, work-

flow patterns are independent from implementation solutions, and potential mappings

need to be developed between workflow patterns and implementation solutions [86, 87].

Following the way of describing the patterns for object-oriented software design [88],

workflow patterns are normally specified through four aspects: conditions that state

28

2.2 Workflow Patterns

t1 t2 t1

t2

t3

(a) Sequence (b) Parallel Split

t1

t2

(c) Synchronization

(d) Exclusive Choice (e) Simple Merge

t3

t1

t2

t3

t1

t2

t3

AND AND

XOR XOR

Figure 2.3: Basic Control Flow Patterns

where the pattern is applicable; examples that demonstrate the applicable business

situations; problems (especially semantic problems) about how to express the patterns

in existing workflow languages; and implementation solutions of the patterns.

A series of research on workflow patterns have been done by the team named Work-

flow Patterns Initiative [86, 89, 90, 91, 92], which is led by Professor Wil van der Aalst

and Professor Arthur ter Hofstede. Their research provides a relatively comprehen-

sive examination of various perspectives of workflow patterns, including control flow,

data, resource, and exception handling. In our UI derivation approach proposed in

the thesis, the control flow relations in a business process, and the data operation

flow in each individual task of the business process refer to the most fundamental and

commonly-used patterns in their work. In the following, the basic and frequently-used

workflow patterns are classified as six categories as Basic Control Flow Patterns, Ad-

vanced Branching and Synchronization Patterns, Iteration Patterns, Multiple Instance

Patterns, State-based Patterns, and Cancellation Patterns.

2.2.1 Basic Control Flow Patterns

This group comprises five patterns (see Figure 2.3): Sequence, Parallel Split, Synchro-

nization, Exclusive Choice, and Simple Merge. These patterns are the most fundamental

aspects of the process control, and closely match the elementary control flow concepts

initially proposed by the Workflow Management Coalition (WfMC) [93].

29

2. LITERATURE REVIEW

t1

t2

t3

(b) Structured Synchronizing Merge

Multi-
Choice

Sync.
Merge t4t1

t2

t3

(a) Multi-choice

Multi-
Choice

t1

t2

t3

(c) Multi-merge

Multi-
Choice

Multi-
Merge t4 t1

t2

t3

(d) Structured Discriminator

Multi-
Choice

Discri-
minator t4

Figure 2.4: Advanced Branching and Synchronization Patterns

Sequence ((a) in Figure 2.3) captures that a task (t2) is enabled after the preceding

task (t1) is completed.

Parallel Split ((b) in Figure 2.3) captures that after a task (t1) is completed, all the

subsequent parallel branches (t2 and t3) execute concurrently.

Synchronization ((c) in Figure 2.3) captures that only after the executions of all

the branches (t1 and t2) are completed, the task (t3) following these branches executes.

Exclusive Choice ((d) in Figure 2.3) captures that after a task (t1) is completed,

one and only one subsequent branch (t2 or t3) is chosen to execute according to a

mechanism that can select one of the succeeding branches.

Simple Merge ((e) in Figure 2.3) captures that after the executions of any one of

the branches (t1 and t2) is completed, the task (t3) following these branches executes.

2.2.2 Advanced Branching and Synchronization Patterns

This group comprises four patterns (see Figure 2.4): Multi-choice, Structured Synchro-

nizing Merge, Multi-merge, and Structured Discriminator.

Multi-choice ((a) in Figure 2.4) captures that one incoming branch (t1) is diverged

into two or more outgoing branches (t2 and t3) by the multi-choice gateway. And when

the incoming branch is enabled, the control thread is passed through one or multiple

outgoing branches according to a mechanism that choose the outgoing branches to be

enabled.

30

2.2 Workflow Patterns

Structured Synchronizing Merge ((b) in Figure 2.4) captures that two or more in-

coming branches (t2 and t3) are converged into one single outgoing branch (t4) by

the structured synchronizing merge gateway. And the control thread is only able to

be passed through the structured synchronizing merge gateway when all the enabled

incoming branches (t2, or t3, or both t2 and t3) are completed. The structured synchro-

nizing merge gateway usually exists after one single multi-choice gateway in a business

process, and merges all the paths emanating from the multi-choice gateway. There

exist no paths splits or joins in any of these paths.

Multi-merge ((c) in Figure 2.4) captures that two or more incoming branches (t2

and t3) are converged into one single outgoing branch (t4) by the multi-merge gateway.

Each enabled incoming branch cause that its control thread is passed to the outgoing

branch. There is no synchronization of the control threads in the multi-merge gateway.

Structured Discriminator ((d) in Figure 2.4) also known as 1-out-of-M Join, cap-

tures that two or more incoming branches (t2 and t3) are converged into one single

outgoing branch (t4) by the structured discriminator gateway. When a particular in-

coming branch (say t2) is enabled and completed firstly, the control thread is passed to

the outgoing branch. The enabling and completion of other incoming branches (t3) will

not result in the control thread being passed to the outgoing branch (t4). The struc-

tured discriminator gateway is reset only when all the incoming branches are enabled.

2.2.3 Iteration Patterns

This group comprises three patterns (see Figure 2.5): Structured Loop with Post-

evaluation, Structured Loop with Pre-evaluation, and Unstructured loop.

Structured Loop with Post-evaluation ((a) in Figure 2.5) captures a loop structure

in a business process which has a single entry and exit point. The task or subprocess

inside the loop (t2 and t3) is executed repeatedly until the “jumping-out condition” at

the repeat gateway is met.

Structured Loop with Pre-evaluation ((b) in Figure 2.5) captures a loop structure in

a business process which has a single entry and exit point. The “jumping-in condition”

at the while gateway is evaluated before the execution of the loop. If the evaluation

31

2. LITERATURE REVIEW

(a) Structured Loop with Post-evaluation

(c) Unstructured Loop

t1 t2 t4XOR XOR t5XOR t3 XOR

(b) Structured Loop with Pre-evaluation

t1 While XOR t4

t2t3

t1 t2 t3XOR Repeat t4

Figure 2.5: Iteration Patterns

(a) Multiple Instances without

Synchronization

t1 t3
Multiple instances are

executed independently

t2

(b) Multiple Instances with a Priori

Design-Time Knowledge

t1 t3
Number of instances is

required at design-time

t2

(c) Multiple Instances with a Priori

Run-Time Knowledge

t1 t3
Number of instances is

required at run-time

t2

(d) Multiple Instances without a Priori

Run-Time Knowledge

t1 t3

Instances are created at

run-time without priori

knowledge

t2

Figure 2.6: Multiple Instance Patterns

is false, the loop (t2 and t3) is skipped (and t4 is executed); if the evaluation is true,

the task or subprocess inside the loop is executed repeatedly until the “jumping-in

condition” at the while gateway is met.

Unstructured Loop ((c) in Figure 2.5) captures a loop structure in a business process

which has more than one entry and exit point. Each of the entry and exit points is

connected with distinct branches.

32

2.2 Workflow Patterns

2.2.4 Multiple Instance Patterns

This group comprises four patterns (see Figure 2.6): Multiple Instances without Syn-

chronization, Multiple Instances with a Priori Design-Time Knowledge, Multiple In-

stances with a Priori Run-Time Knowledge, and Multiple Instances without a Priori

Run-Time Knowledge.

Multiple Instances without Synchronization ((a) in Figure 2.6) captures that under

a given process instance, a multi-instance task (t2) is able to create multiple instances.

The executions of these task instances are in parallel and independent of each other, and

must be under the context of that given process instance. There exists no requirements

to enforce the synchronization on the completion of the task instances.

Multiple Instances with a Priori Design-Time Knowledge ((b) in Figure 2.6) cap-

tures that under a given process instance, a multi-instance task (t2) is able to create

multiple instances, and the number of instances is set at design-time. The executions of

these task instances are in parallel and independent of each other. The synchronization

is required to be enforced on the completion of the task instances before any subsequent

tasks are enabled.

Multiple Instances with a Priori Run-Time Knowledge ((c) in Figure 2.6) captures

that under a given process instance, a multi-instance task (t2) is able to create multiple

instances, and the number of instances is set at rum-time but before the task instances

are created. The executions of these task instances are in parallel and independent of

each other. The synchronization is required to be enforced on the completion of the

task instances before any subsequent tasks are enabled.

Multiple Instances without a Priori Run-Time Knowledge ((d) in Figure 2.6) cap-

tures that under a given process instance, a multi-instance task (t2) is able to create

multiple instances. The number of instances is decided by a number of runtime factors,

such as resource availability, state data and inter-process communications, and is not

known until the final instance has completed. The executions of these task instances

are in parallel and independent of each other. At any time, while instances are running,

it is available to initiate additional instances. The synchronization is required to be

33

2. LITERATURE REVIEW

t1

t2

t3

(a) Deferred Choice

Deferred
Choice

t1

t2

t4

(b) Interleaved Parallel Routing

Start
Interleaving

Start
Interleaving t5

t3

Figure 2.7: State-based Patterns

enforced on the completion of all the task instances before any subsequent tasks are

enabled.

2.2.5 State-based Patterns

This group comprises two patterns (see Figure 2.7): Deferred Choice and Interleaved

Parallel Routing.

Deferred Choice ((a) in Figure 2.7) captures that one incoming branch (t1) is di-

verged into multiple outgoing branches (t2 and t3) by the deferred choice gateway. One

of the outgoing branches is chosen to be executed based on interaction with the operat-

ing environment. Before the decision is made, each of the out-going branches represents

possible future courses of execution. The decision is made by initiating the first task in

one of the out-going branches i.e. there is no explicit choice but rather a race between

the different out-going branches. After the decision is made, the alternative out-going

branches other than the chosen one are cancelled.

Interleaved Parallel Routing ((b) in Figure 2.7) captures that in a parallel structure

of a BP, a set of tasks (t2, t3, t4) has a partial execution ordering which defines additional

requirements. Each task in the set must be executed once and they can be completed

in any order that in accordance with the partial ordering. Nevertheless, no two tasks

can be executed at the same time (i.e. no two tasks can be enabled under the same

process instance at the same time).

34

2.2 Workflow Patterns

t1 t2

(a) Cancel Task

t3 t1 t2

(b) Cancel Process Instacne

t3

t1

t2

t4

(c) Cancel Region

AND

t3

t5

Cancel Cancel

Cancel

(d) Cancel Multiple Instance Task

t1 t3

t2

Multi-instance

Task

Cancel

Figure 2.8: Cancellation Patterns

2.2.6 Cancellation Patterns

This group comprises four patterns (see Figure 2.8): Cancel Task, Cancel Process In-

stance, Cancel Region, and Cancel Multiple Instance Task.

Cancel Task ((a) in Figure 2.8) captures that an enabled task (t2) is removed before

the execution is started. If the execution of the task has already started, the currently

running task instance is halted and removed.

Cancel Process Instance ((b) in Figure 2.8) captures that an entire process instance

(t1, t2, t3) is removed. If the process instance contains currently executing tasks and

the tasks that may execute at future time, the process instance is halted and recorded

as having completed unsuccessfully.

Cancel Region ((c) in Figure 2.8) captures that under a given process instance, a

set of tasks (t2, t3, t5) are disabled. If any task in the task set is currently executing

or enabled, it is withdrawn. Note that the tasks in the task set are not required to be

a connected subset in the overall business process.

Cancel Multiple Instance Task ((d) in Figure 2.8) captures that under a given pro-

cess instance, multiple task instances are created by a multi-instance task (t2). The

number of to-be-created task instances is require at design-time. These task instances

35

2. LITERATURE REVIEW

are independent of each other and execute in parallel. At any time, the multi-instance

task can be withdrawn, and any task instances that have not completed are cancelled.

Task instances that have already completed are not influenced.

2.3 Business Process View Generation

A business process is a collection of linked tasks that provides services. Each task

is a unit of work performed by human users or applications. It is often necessary

to generate process views for each user role participating in the BP according to the

their relationships with the process, observation intentions, and so on. A process view

captures a partial representation from the actual business process, and separates the

process representation from the executable BP [94, 95].

The significance of the process view generation is summarized as follows: (1) Firstly,

the details of BP tasks must be hidden and abstracted from certain users due to infor-

mation security requirements such as privacy, confidentiality, and conflict of interest.

(2) Secondly, the process view generation lays a solid foundation for deriving customized

descriptions of an BP for participating users, according to the users’ requirements and

intentions [20]. The customized BP descriptions may play an important role in the

modelling of BP collaboration, BP visualization, and authority control. (3) Thirdly,

process views highlight the requirements associated with a specific user role and pre-

serve some information of other user roles for the effective control flow in a BP. Process

views can be used to enable the development and update of software components such

as user interfaces (UIs) related to different user roles.

As a scenario example, Figure 2.9 shows account receivable (AR) process and its

related process views for the involved user roles [96]. Both the process and related

views are represented in BPMN.

(a) in Figure 2.9 represents all the details of the AR process, which involves three

user roles: Clerk-A, Clerk-B and AR Officer. Due to the consideration of fraud

connection, the policy of duty separation applies to the process that does not allow one

person to both validate customers (t2) and calculate invoice (t4). Therefore, Clerk-A

36

2.3 Business Process View Generation

t1 t2

t3

t5

t4

t6

Create
Sales Order

Validate
Customers

Check
Customer

Credit

Calculate
Invoice

Check
Goods

Dispatch

Send
Invoice

t2

Validate
Customers

t3

Check
Customers

Credit

t3

Check
Customers

Credit

t6

Send
Invoice

t2

Validate
Customers

t3

Check
Customers

Credit

t6

Send
Invoice

t1

t3

t5

t4

t6

Create
Sales Order

Check
Customers

Credit

Calculate
Invoice

Check
Goods

Dispatch

Send
Invoice

t3

t5

t4

t6

Check
Customers

Credit

Calculate
Invoice

Check
Goods

Dispatch

Send
Invoice

t1

t2

Create
Sales Order

Validate
Customers

(a) Account Receivable (AR) Process

(b) Process View for Clerk-A (c) Process View for Clerk-B

(d) Process View for Clerk-C

(e) Process View for AR Officer

(f) Combined Process View through merging (d) and (e)

Figure 2.9: Examples of a BP and Related Process Views

37

2. LITERATURE REVIEW

is responsible for validating customers (t2) and checking customer credit (t3). And

Clerk-B also has the authority to perform t3, and while he/she is in change of sending

invoice (t6). The AR Officer is exclusively authorized to initiate the instance of the

AR process, create sales order (t1), calculate invoice (t4), and check goods dispatch

(t5). As the AR Officer plays a management role, he/she is authorized to supervise

and perform all the tasks except t2 to ensure duty separation.

To realize the diverse representations of the AR process as above, two requirements

must be met as: (1) each user role participating the process must have a process

view; (2) each of the generated process view must be consistent with the AR process

in terms of process structure and execution order. In doing so, the user roles are

able to participating in the process execution while the privacy and confidentiality can

be ensured for each user role. According to these requirements, (b), (c) and (e) in

Figure 2.9 show the generated process views for Clerk-A, Clerk-B and AR Officer,

respectively. (b) keeps the tasks (t2 and t3) participated by Clerk-A, which have

sequential execution order. (c) keeps the tasks (t3 and t6) participated by Clerk-B,

which have sequential execution order. (e) removes the only task t2, which is not

authorized to the AR Officer.

If a new clerk (say Clerk-C) is recruited in the AR example as a backup of Clerk-A

and Clerk-B, a dynamic view generation must be realized to support the analysis of po-

tential violation against the polices of privacy and confidentiality. In this case, Clerk-C

needs to obtain the perspectives of Clerk-A and Clerk-B as shown in (c) by merging

(b) and (c). However if Clerk-C and the AR Officer have married recently, their

combined view must be analyzed according to the polices of privacy and confidential-

ity. The process view (f) is obtained by merging (d) and (e) to describe the shared

information of Clerk-C and the AR Officer. All the shared information of (d) and

(e) are kept in (f). In (f), the dashed arrow represents a synchronization mechanism

between the tasks t1 and t3, which is t3 can only start after the completion of t1. t1

and t2 are relocated to two different parallel branches due to that the execution order

between t1 and t2 is not modelled in either (d) or (e).

38

2.3 Business Process View Generation

This example demonstrates what the process view is for a user role involved in

a process, and how the process view evolves to adapt to the change of a user role’s

perspective.

Process view techniques have been recognized as a significant tool for better gran-

ularity control of the business process representation. There exist a number of works

focusing process view derivation.

A.Polyvyanyy et al [97, 98] proposed a methodology for task abstraction of BPs in

order to generalize process models. In this work, based on the identification of insignif-

icant tasks and their execution flow relationships, four abstraction rules are proposed

aiming to cover four general situations of control flow patterns: sequential, block, loop,

and dead end. Each of the abstraction rules is forced to meet two requirements as: (1)

the constraints on task execution orders in a business process must be kept; (2) the ab-

solute effort to be paid for a process execution should be preserved. Based on the four

rules, an abstraction strategy is introduced which organize the rules to realize stepwise

process abstraction. In the abstraction approach, the ordering of task execution in the

BP is managed to be preserved in the abstracted process.

C.Gnther et al [99] proposed a task abstraction approach that used a set of metrics

to evaluate the significance of task nodes and edge of BPs. The judgement of task

significance is realized through evaluating three nonfunctional properties as unary sig-

nificance, binary significance and binary correlation. This approach offers a feasible

solution to identify what process information should be abstracted.

R.Eshuis et al [100, 101] proposed a two-step approach to build up process views,

in which both process privacy and preferences of customers are ensured. Firstly, the

tasks related to the user privacy are abstracted based on five rules. Then from the

perspective of customization, relevant tasks are selected to be abstracted according to

personalized requirements and tastes. In order to ensure consistency of the sequence of

tasks, the abstraction rules enforce a group of tasks to be abstracted together, which

may cause the loss of useful information. This approach focuses on two types of control

flow structure as sequential and parallel.

39

2. LITERATURE REVIEW

J.Kolb et al [20, 102, 103, 104] proposed a semi-automatic view construction ap-

proach, which allows individual users to choose elementary operations and a set of

parameters in the realization of hiding and aggregation of tasks in a BP. The elemen-

tary operations are divided into two groups: reduction operations to hide tasks from

users, and aggregation operations to aggregate tasks as abstracted nodes. The param-

eter set includes order-preserving, strict order-preserving, state consistent, strict state

consistent, dependency preserving, dependency erasing and dependency generating.

These parameters are used to measure the degrees of execution state consistency and

information loss during the view construction. As a semi-automatic approach, users

are involved in the view construction to customize their choices of meeting different

parameters. The view derivation approach is capable of effectively deal with complex

and long-running business processes. Similarly, R.Bobrik et al [105] proposed a pa-

rameterized view derivation approach that is able to be used on both model level and

instance level. Two groups of rules are developed based on graph reduction and graph

aggregation. The parameter set are the same as the one developed by J.Kolb et al.

X.Zhao et al [96] proposed a view derivation approach based on user role hierar-

chy. The dependencies between involved roles are specified in their BP model. Their

view derivation rules can cover a set of basic symmetric process structures as split/join

structure, AND-split/join structure, XOR-split/join structure and so on. Two algo-

rithms are proposed to enable two operations as view filtering and view merging. View

filtering contains removing specified tasks, adjusting links/synchronization links, and

checking split/join structures; view merging comprises matching XOR-split/join struc-

tures, combining views and removing redundant links, adding AND-split/join gateways,

and checking AND-split/join structures. This work provides a deep analysis on how

the evolution of the perspectives of user roles affects process views.

S.Yongchareon et al [106] developed a view construction for the non-well-structured

BPMN processes where the control flow patterns of BP cannot be identified. Instead,

events and exceptions in a process structure are analysed for view derivation. Four

rules to ensure process view consistency are proposed as order preservation, branch

preservation, event-attached task preservation, and message flow preservation. Another

40

2.4 User Interfaces

work [107] by S.Yongchareon et al introduced a view construction approach for artifact-

centric BPs. The state evolutions of data objects are explicitly represented and a set

of construction rules are built up. Their view construction approach comprises two

steps: (1) state composition to nesting specified state in a composite state, and (2)

state hiding to conceal a specified set of tasks.

D.Liu and M.Shen [108] proposed an order-preserving approach for BP view deriva-

tion, in which the structural consistency between the business process and the derived

view is ensured. In their approach, a process view is derived by aggregating multiple

tasks as virtual activities (VAs) and virtual dependencies between these VAs. Three

derivation rules (Membership Rule, Atomicity Rule, and Order Preservation Rule) are

proposed in the view derivation approach. As an extension of this approach, a role-

relevant view derivation mechanism was proposed in [109]. In this mechanism, the

relationships between activities and participating user roles are considered when eval-

uating the degrees of relevance between user roles and activities.

2.4 User Interfaces

2.4.1 User Interfaces of Business Processes

In a business process, user interfaces are used to provide output data and require

input data to/from the process users. The “user” here comprises (1) human beings

participating in the business process, and (2) applications/web services invoked by the

business process.

Figure 2.10 illustrates the architecture of workflow management system (WfMS) to

explain the relationships between a business process and its related UIs. The WfMS

architecture organizes different modules that are involved in the modelling and execu-

tion of workflows. The Workflow Modelling module allows BP modelers to design a

business process from the perspective of implementation. For each task in a BP model,

the details of execution environment are required to be specified. The Workflow Model

Repository module is used to store the workflow models of an organization. The Work-

flow Engine module is the core component of the architecture, and is responsible for

41

2. LITERATURE REVIEW

Workflow Modelling
Workflow Model

Repository
Workflow Engine

User Interface1

Invoked Applications/

Web Services

User Interface2

Process Participants

Figure 2.10: User Interfaces of Business Processes

workflow execution. Workflow instances are created by the engine according to the

defined workflow models. When the engine executes a process that requires the inter-

actions with human being participants, graphical user interfaces (UserInterface1 in

Figure 2.10) must exist for the communication between the BP and the participants.

Through the UserInterface1, the process engine is able to provide process participants

with output data and ask for input data from the process participants. When the en-

gine executes a process that needs to call application/web services, UserInterface2

must exist as a bridge to transfer the data required by both the engine and the appli-

cation/web services [6].

A number of works have been done to derive the UIs of business processes.

J. Kolb et al [19, 104] proposed a five-step method to generate the UI logic of a

BPMN process. Firstly, the role-specific views are derived, which contains the tasks and

their control flow relations related to one particular user role. Secondly, a User Interface

Dialog (UID) is generated for each process view. The UID is a top-level container that

holds all UI elements used to deal with the tasks within a process view. Thirdly, a set

of complex transformation patterns are utilized to transform the fragment of a process

42

2.4 User Interfaces

view into UI elements. Each complex transformation pattern produces a tab container

element (TCE) that originates from a Single-Entry-Single-Exit (SESE) block in the

process view. Fourthly, individual tasks in a process view are transformed into form

group elements (FGEs). The control flow relations between tasks in the process view

are represented in corresponding TCEs. Lastly, the data operated by the tasks in the

process view are transformed into field elements (FEs) located inside FGEs. In their

BP model, a series of elementary and complex patterns are identified to support the

derivation of the UI logic from the role-specific views. Four basic control flow patterns

(sequential, parallel, exclusive, and loop) have been specified and the execution flows

between data items inside a task of BP have not been covered. Two types of changes

(local changes and global changes) happening in either the process or related UIs are

able to be adapted through this approach.

V.Kunzle et al in [110, 111] proposed an object-aware approach for BP modelling, in

which the evolutions of data objects and constraints between data objects are specified.

Using the BP modelling approach, the related UIs are able to be derived based on a

authorization table. This table specifies that different users may own different access

authorities on object attributes in a given micro process state. The authorization table

can help to determine which user role is able to read/write which object attributes at

a particular state of a micro process instance. According to the table, a UI form is

generated from the object attributes accessed by a specific user role at a particular

state of a micro process instance.

K.Sousa et al [112] developed a model-driven approach to derive UIs from a business

process as Figure 2.11 according to the UsiXML models [113, 114, 115, 116]. In this

approach, the UI derivation can be described as three phases:

� Conception Phase models business process which is the staring point of UI deriva-

tion.

� Management Phase builds up task model and domain model, based on which

the abstract UI are analysed and modeled. Then the concrete UI is developed

according to the abstract UI.

43

2. LITERATURE REVIEW

Business Process Data Model
Business Process Domain

User Interface Domain
Task Model Domain Model

Screen Group

Screen

Screen Fragment

Screen Element

Task Module

Title of Page

Task Module Task Module

Name of Fragment

Label of Field

Label of Field

Concrete UI

Style Guide

Final UI

Render Java Swing HTML

Figure 2.11: Model-driven Approach for UI Derivation from a BP

� Application Phase to generate the final UI of the BP.

In this approach, the consistency between the BP and the UI are preserved. The

traceability is also realized to support the change management.

Artifact-centric approach is another paradigm to model BPs. It focuses on the

evolutions of artifacts and associated constraints [33, 117]. A BP is specified with

artifacts and data dependencies are explicitly described accordingly. S. Yongchareon

et al [118] developed a framework for UI derivation based on artifact techniques. In

this work, a UI flow model is proposed as the UI derivation result, which is built up

based on behavioral analysis on the artifacts. An IBM team [119, 120] developed the

Siena and its successor Barcelona for supporting UI derivation from artifact-centric

process models. These works are able to generate the UI flow types originated from

the basic BP control flow patterns such as sequential, parallel, conditional and loop.

44

2.4 User Interfaces

N.Sukaviriya et al [121, 122] proposed an approach to transform a process model into

a human interaction perspective. This approach is very limited in providing details of

UI layouts and UI flows based on the specified data elements, user roles, tasks.

2.4.2 User Interfaces of Web Applications

The rapid development of the Internet has caused people’s huge dependency on it.

The Internet has turned from a virtual entity into a living world for the people. As a

result of this phenomenon, radical changes are taking place in the web applications and

influencing the way businesses are operated. To adapt to the changes, high-quality web

applications are required to be developed along with the simple, responsive and easy-to-

use UIs. In order to design such high-quality user interfaces, the fundamental principles

must be followed by the UI designers. According to the usage-centered design proposed

by Larry Constantine and Lucy Lockwood [123, 124, 125, 126, 127], the principles of

UI design can be summarized as follows:

� The structure principle: Design should organize the user interface purposefully,

in meaningful and useful ways based on clear, consistent models that are apparent

and recognizable to users, putting related things together and separating unrelated

things, differentiating dissimilar things and making similar things resemble one

another. The structure principle is concerned with overall user interface archi-

tecture.

� The simplicity principle: The design should make simple, common tasks easy,

communicating clearly and simply in the user’s own language, and providing good

shortcuts that are meaningfully related to longer procedures.

� The visibility principle: The design should make all needed options and materials

for a given task visible without distracting the user with extraneous or redundant

information. Good designs do not overwhelm users with alternatives or confuse

with unneeded information.

45

2. LITERATURE REVIEW

� The feedback principle: The design should keep users informed of actions or in-

terpretations, changes of state or condition, and errors or exceptions that are

relevant and of interest to the user through clear, concise, and unambiguous lan-

guage familiar to users.

� The tolerance principle: The design should be flexible and tolerant, reducing the

cost of mistakes and misuse by allowing undoing and redoing, while also pre-

venting errors wherever possible by tolerating varied inputs and sequences and by

interpreting all reasonable actions.

� The reuse principle: The design should reuse internal and external components

and behaviors, maintaining consistency with purpose rather than merely arbitrary

consistency, thus reducing the need for users to rethink and remember.

2.5 Summary and Discussion

This chapter has discussed the related works on the UI derivation from business process

models in details. Through reviewing the literature, we can see the state-of-the-art of

four areas as business process modelling, workflow patterns, business process views and

BP UI derivation.

The aims of BP modelling languages are related to three aspects: process descrip-

tion, formalization and execution. In each aspect, there exist widely-used and ripe

languages, which have been reviewed and compared to support the development of BP

model in our thesis.

The workflow patterns are a powerful tool to analyze and model business processes.

The team of Workflow Patterns Initiative has already analyzed the existing process-

aware information systems, and summarized over one hundred patterns covering the

control flows, data and resources of BPs. The patterns provide a solid foundation

for business process modelling. In our UI derivation approach proposed in the thesis,

two aspects refer to the fundamental and commonly-used patterns from the Workflow

46

2.5 Summary and Discussion

Patterns Initiative as (1) the control flow relations in a business process, and (2) the

data operation flow in each individual task of the business process.

A process view describes a partial representation of the actual business process.

The significance of the process view generation is threefold: (1) Firstly, the details of

BP tasks must be hidden and abstracted from certain users due to information security

requirements such as privacy, confidentiality, and conflict of interest. (2) Secondly, the

process view generation lays a solid foundation for deriving customized descriptions of

an BP for participating users, according to the users’ requirements and intentions. The

customized BP descriptions may play an important role in the modelling of BP collab-

oration, BP visualization, and authority control. (3) Thirdly, process views highlight

the requirements associated with a specific user role and preserve some information

of other user roles for the effective control flow in a BP. Process views can be used

to enable the development and update of software components such as user interfaces

(UIs) related to different user roles.

We have reviewed the existing studies on the approaches of the UI derivation from

BP models, summarized the drawbacks of these approaches as follows:

� A.Deutsch et al [128, 129] study the data-driven web applications that interact

with human users and other applications through web sites. As the interaction

progresses, a web application can require data from human users and retrieve data

from underlying database. In a web page, the contents, their structures and task

actions are determined by the current state and input of this page. The sequence

of events, including states, inputs and actions caused by the interactions are

specified with Linear Temporal Logics for the verification purpose. Although this

work does not consider the UI derivation from the context of business processes,

their technique enables to guide the specification of BP models from the user-

application perspective.

� There are a number of semi-automatic UI derivation approaches, in which the data

relationships are extracted from the business processes to help further analyze and

derive the UI logics. N.Sukaviriya et al [121, 122, 130] propose an UI derivation

47

2. LITERATURE REVIEW

approach to transform a process model into a human interaction perspective.

This perspective specifies the relationships between the required UI logic and

business data/rules. This approach is very limited in providing details related to

UI layouts and UI flows. J.Fons et al [131, 132] propose a UI derivation approach

based on the navigational model of Object-Oriented Web Solutions (OOWS).

When a business process is built, the workflow constraints specified in the BP are

mapped onto (1) navigational constraints between/among the pages of activities,

and (2) data input of forms and queries on the workflow data for checking the

BP status. This mapping can help to ensure the consistency between the UI logic

and the BP logic.

� Q.Limbourg et al [113] develop a User Interface eXtensible Markup Language

(UsiXML) to support the UI development and change management for enter-

prise information systems. This language enables UIs to be described at different

abstraction levels while the mapping between these levels can be maintained.

As their successive work, J.Vanderdonckt [114, 115, 116] proposes UI engineer-

ing method, in which the UIs are specified with UsiXML language, and then

the model-to-model transformations (abstraction, reification and translation) be-

tween UIs are realized in a unified manner. K.Sousa et al [112] develop a model-

driven approach to derive UIs based on a the UsiXML business process model

[113]. This proposed approach has four steps as process modelling, task deriva-

tion, task refinement, and UI model derivation. In this approach, the consistency

between the BP and the UI are preserved. The traceability is also realized to

support the change management. However, these UI derivation methods have no

capability to differentiate between constraints and recommendations.

� J.Kolb et al [19, 104] propose a five-step method to generate the UI logic of a

BPMN process. The role-specific views are derived for each involved user role,

which contains tasks and their control flow relations. A set of elementary and

complex transformation patterns are identified to support the derivation of the

UI logic from the role-specific views. There generated UI is represented as a User

48

2.5 Summary and Discussion

Interface Dialog, which holds structured elements, e.g. tab container element,

form group element and field element. In their BP model, only four basic control

flow patterns (sequential, parallel, exclusive, and loop) have been specified and

the execution flows between data items inside a task of BP have not been covered.

� V.Kunzle et al in [110, 111] propose an object-aware approach for BP modelling,

in which the evolutions of data objects and constraints between data objects

are specified. Through this modelling approach, the related UIs are able to be

derived based on an authorization table. This table specifies that different users

may own different access authorities on object attributes in a given micro process

state. According to the table, a UI form is generated from the object attributes

accessed by a specific user role at a particular state of a micro process instance.

Their derived UI logic can only cover limited UI flow types (sequential, parallel,

and conditional) due to that their BP model only includes the sequential, parallel

and conditional data execution flow types.

� Artifact-centric approach is a declarative BP modelling paradigm, which treats

BP data as first-class citizens. It focuses on the evolutions of key business entities

and associated constraints [33, 117, 133, 134]. An artifact-centric BP is specified

with the key business entities and their life-cycles. S.Yongchareon et al [118]

develop a framework for UI derivation based on the artifact-centric BP model.

Firstly, a UI flow model is derived by (1) extracting the dependencies between

different artifact life cycles and (2) the data stored in each artifact. Then a role-

specific UI flow model is derived from the UI flow model. Other than this work, an

IBM team [119, 120] develops the Siena and its successor Barcelona for supporting

UI derivation from artifact-centric process models. These works cannot generate

the UI flow types originated from complex BP control flow patterns such as the

Advanced Branching and Synchronization Patterns introduced in Section 2.2.2.

To sum up, the existing UI derivation approaches based on BP models are still in

infancy stages. In all the above mentioned approaches, the roles of process participants

49

2. LITERATURE REVIEW

are not specified. The process models in these works only handle major basic control

flow patterns, including sequential, parallel, conditional and loop. The complicated

control flow patterns are not considered in their works. Besides, their UI derivation

rules are not able to differentiate between mandatory and recommended ones. In order

to solve these drawbacks, we aim to develop an approach for UI derivation to effectively

support to derive UIs for each user role involved in a business process. The main

contributions of the approach are listed as follows:

In this thesis, we propose a UI derivation method based on role-enriched business

process model to derive the above complex UI logics. The proposed UI derivation

method has the following features:

� A role-enriched business process model is proposed with the capabilities to specify

(1) the control flow relations between tasks; (2) the relationships between the

participating user roles and individual tasks; (3) the data operation flow inside

each task. In the process model, we identify a set of control flow patterns and

data operation patterns to build up the rules for UI derivation. These control

flow and data operation patterns specify both basic and complicated situations.

� The business process is abstracted and aggregated for each user role based on the

role-enrich BP model. A set of elementary operations are developed according to

the control flow patterns to reserve or abstract tasks for each user role. With the

AABP, a customized UI logic is derived for each participating user role.

� Data relationships are extracted from the AABP for each user role. A set of

elementary operations are developed according to the data operations inside indi-

vidual tasks and the identified control flow patterns in the AABP. The extracted

data relationships are the foundation to analyze and derive the UI logic.

� A set of mandatory and recommended rules are specified. The UI logics are

derived from the extracted data relationships based on these specified rules.

50

Chapter 3

Role-enriched Business Process

Model

In this chapter, we discuss the role-enriched business process model, which is utilized as

the foundation to build up our UI derivation approach as shown in Figure 1.5. Section

3.1 provides an introduction of this chapter. Section 3.2 introduces the formal syntax of

the role-enriched BP model. Section 3.3 discusses the well-formness of the role-enriched

BP model. Section 3.4 presents the extensions of BPMN. Section 3.5 summarizes

the identified control flow patterns of a role-enriched BP. Section 3.6 summarizes the

identified data operation patterns inside individual tasks of a role-enriched BP. Section

3.7 introduces a scenario example. Section 3.8 provides a summary and discussion on

this chapter.

3.1 Introduction

The role-enrich business process model follows the activity-centric BP modelling paradigm

[135], which focuses on tasks and their control flow relations. This modelling paradigm

employs tasks and flow-controlling structures (gateways) as first class modeling con-

structs and considers the data objects in specific data states as pre-/post-conditions

for task enabling or as main decision indicator at exclusive gateways. The usage of

one data object in different data states in combination with multiple tasks allows to

derive a life cycle for the object, which describes the manipulations performed on a

51

3. ROLE-ENRICHED BUSINESS PROCESS MODEL

data object [9, 136]. The major representative standard in industry is the Business

Process Model and Notation [27].

These features make the activity-centric paradigm powerful for expressing control

flow relations between tasks, while it is disadvantageous for describing the data operated

by a process, especially when specifying the data operation flow within a single task.

Beyond existing features, our proposed role-enriched BP model has the capabilities to

specify: (1) how user roles are involved in tasks; (2) how data are operated in individual

tasks; (3) how complex control flow patterns affect data relationships. With these

extensions, our process model allows for deriving the desired UI logic. In this chapter,

we firstly choose a formal way to describe our role-enriched business process model

so that all the process elements and their relationships can be explicitly expressed.

Then we analyze the standards of a well-formed role-enriched BP model. After that,

we conduct a series of necessary extensions on BPMN to specify the role-enriched BP.

Besides, a set of control flow patterns and data operation patterns are identified and

summarized as the basis of building up the elementary operations for task abstraction

and aggregation. Lastly, we introduce a scenario example to illustrate how to specify

a process using the proposed role-enriched BP model.

3.2 Formal Syntax

For the purpose of deriving the UI of a business process for each participating user

role, we propose a role-enriched business process model (Re-BP model) to specify a BP

with a set of tasks and control flow relations between these tasks. The participating

user roles are labeled in each individual task. The data operation flow in each task

specifies a set of data items and the operation flow relations between these data items.

Each data item has an access type as read or write. The formal syntax is introduced

as follows to specify the role-enriched business process model.

Definition 1: User Role. A user role is denoted as r, which represents a group of

users or an organizational unit participating in a business process. Each user role is

responsible for one or multiple tasks of the business process.

52

3.2 Formal Syntax

Definition 2: Data Operation Flow. A data operation flow is denoted as a tuple

df = (Nd, typed, typeA, SF
fix
d , SF free

d), where:

� Nd = {esd, eed}∪Gd ∪A where esd and eed are the start event and end event respec-

tively. Gd = Gin
d ∪Gout

d , Gin
d is a finite set of entry gateways and Gout

d is a finite

set of exit gateways. The entry and exit gateways are used to control that the

execution thread enters and leaves a structural block of the data operation flow.

A is a finite set of data items operated by user roles.

� typed: Gd →{Sequential, Conditional, Loop} is a mapping function to give each

gateway a type. These gateways are the elements that control how the data flow

diverges or converges.

� typeA : A→{read, write} is a mapping function to specify the access type of each

data item a ∈ A. There are two kinds of access types as read and write. The read

represents the data item provides particular information to a user role, and the

write denotes the data item requires input information from a user role.

� SF fix
d and SF free

d represent fixed-order sequence flow and free-order sequence flow

respectively. The fixed-order sequence flow means that the sequence of involved

data items must be in a fixed order; the free-order sequence flow means that the

order in the sequence of involved data entities is free. We use ⟨a, b⟩ to represent

the fixed-order sequence flow from data item a to data item b; we use [a, b] to

represent the free-order sequence flow relation from data item a to data item b.

Based on the formal definitions of user role and data operation flow model, the

role-enriched business process model is formally defined as follows.

Definition 3: Role-enriched Business Process Model. A role-enriched BP

model is denoted as a tuple rm = (Nt, typet, SF
fix
t , SF free

t , refine,R, ρ), where:

� Nt = {est , eet}∪Gt ∪T where est and e
s
t are start event and end event respectively.

Gt = Gin
t ∪ Gout

t , Gin
t is a finite set of entry gateways and Gout

t is a finite set of

exit gateways. The entry and exit gateways are used to control that the execution

53

3. ROLE-ENRICHED BUSINESS PROCESS MODEL

thread enters and leaves a structural block of the control flow in a business process.

T is a finite set of tasks, each of which indicates a logic unit of work.

� typet: Gt →{Sequential, Parallel-A, Parallel-B, Parallel-C, Conditional, Loop} is

a mapping function to give each gateway a type. These gateways are elements

that control how the task flow diverges or converges.

� SF fix
t and SF free

t represent fixed-order sequence flow and free-order sequence flow

respectively. The fixed-order sequence flow means that the sequence of involved

tasks must be in a fixed order; the free-order sequence flow means that the order

in the sequence of involved tasks is free. We use ⟨a, b⟩ to represent the fixed-

order sequence flow from task a to task b; we use [a, b] to represent the free-order

sequence flow relation from task a to task b.

� refine : T → DF is a refinement function on tasks. DF = {df1, df2, ..., dfn}

stands for a finite set of data operation flows. The refinement function links tasks

and their corresponding data operation flows.

� R is a finite set of user roles defined as above.

� ρ = T ×R specifies relationships between user roles and tasks. This relationship

captures that by which user roles a particular task is performed. Note that each

task can be participated by one or many user roles.

3.3 Well-formed Role-enriched Business Process Model

In this section, we introduce a set of rules which specify the characteristics of a well-

formed Re-BP model. These rules allow for correctly deriving UIs of a BP for each

involved user role. In a well-formed role-enriched business process, the control flow

patterns and data flow patterns are able to be correctly identified, which are the basis

to build up the rules of UI derivation.

The “well-formness” means that the role-enriched business process must be struc-

tured correctly. It contains two aspects: on the one hand, the data operation flows

54

3.3 Well-formed Role-enriched Business Process Model

between data items within each individual task must be well-formed. A data operation

flow within a task must have one start event and one end event, and this is to explicitly

indicate the starting and ending of the data operation flow; all the data flow objects,

including events, data items and gateways, must follow their own connecting rules when

connecting with each other to ensure the proper execution in the data operation flow;

the data operation flows between data items must be modelled according to the data

operation patterns, which will be introduced in the latter Section 3.6, and this is to

make sure the UI derivation rules are built up properly. On the other hand, the control

flow relations between tasks within the Re-BP model must be well-formed. A Re-BP

model must have one start event and one end event, and this is to explicitly indicate

the starting and ending of the business process; all the flow objects, including events,

tasks and gateways, must follow their own connecting rules when connecting with each

other to ensure the proper execution in the business process; the control flow relations

between tasks must be modelled according to the control flow patterns, which will be

introduced in the latter Section 3.5, and this is to make sure the UI derivation rules

are built up properly. In the following, the regulations of a well-formed Re-BP model

are formally specified.

Definition 4: Well-formness of Role-enriched Business Process Model.

Given a role-enriched business process model rm =

(Nt, typet, SF
fix
t , SF free

t , refine,R, ρ), with related set of data operation flows DF =

{dfi = (Ni,d, typei,d, typei,A, SF
fix
i,d , SF free

i,d)|i = 0, 1, 2, ..., n, n ≥ 0}, rm is said to be

well-formed iff the following statements hold:

1. A data operation flow must contain one and only one start event and one and

only one end event.

∀dfi, where i = 0, 1, 2, ..., n, n ≥ 0, ∃!esi,d ∈ Es
i,d,∃!eei,d ∈ Ee

i,d: e
s
i,d ∈ Ni,d ∧ eei,d ∈

Ni,d.

55

3. ROLE-ENRICHED BUSINESS PROCESS MODEL

2. In a data operation flow, a start event must connect to an entry gateway with one

and only one outgoing fixed-order sequence flow, and with no incoming fixed-order

or free-order sequence flows.

∀esi,d ∈ Es
i,d, where i = 0, 1, 2, ..., n, n ≥ 0, Es

i,d $ dfi, ∃!gi,d = (gini,d, g
out
i,d) ∈ Gi,d:

⟨esi,d, gini,d⟩ ∈ SF fix
i,d ;

∀esi,d ∈ Es
i,d, where i = 0, 1, 2, ..., n, n ≥ 0, Es

i,d $ dfi, @ni,d ∈ Ni,d \ {esi,d}:

⟨ni,d, esi,d⟩ ∈ SF fix
i,d ∧ [ni,d, e

s
i,d] ∈ SF free

i,d .

3. In a data operation flow, an end event must connect to an exit gateway with one

and only one incoming fixed-order sequence flow, and with no outgoing fixed-order

or free-order sequence flows.

∀eei,d ∈ Ee
i,d, where i = 0, 1, 2, ..., n, n ≥ 0, Ee

i,d $ dfi, ∃!gi,d = (gini,d, g
out
i,d) ∈ Gi,d:

⟨gouti,d , e
e
i,d⟩ ∈ SF fix

i,d ;

∀eed ∈ Ee
d, whereE

e
d $ df , @nd ∈ Nd\{eed}: ⟨eed, nd⟩ ∈ SF fix

d ∧ [eed, nd] ∈ SF free
d .

4. In a data operation flow, an data item must have one and only one incoming

sequence flow and one and only one outgoing sequence flow.

∀ai ∈ Ai, where i = 0, 1, 2, ..., n, n ≥ 0, Ai $ dfi, ∃!dxi,d, d
y
i,d ∈ Gin

i,d∪Gout
i,d ∪Ai\{ai},

where dxi,d ̸= dyi,d: ⟨d
x
i,d, ai⟩ ∈ SF fix

i,d ∧ [dxi,d, a] ∈ SF free
i,d ∧ ⟨ai, dyi,d⟩ ∈ SF fix

i,d ∧

[ai, d
y
i,d] ∈ SF free

i,d .

5. In a data operation flow, a sequential entry gateway or a sequential exit gate-

way must have one and only one incoming sequence flow, and one and only one

outgoing sequence flow.

∀gi,d = (gini,d, g
out
i,d) ∈ {Gi,d|typeGi,d(Gi,d) = Sequential}, where i = 0, 1, 2, ..., n, n ≥

0, {Gi,d|typeGt (Gi,d) = Sequential} ∈ dfi,d, ∃!nwi,d, nxi,d ∈ Ni,d \ {gini,d, gouti,d }:

⟨nwi,d, gini,d⟩ ∈ SF fix
i,d ∧ [nwi,d, g

in
i,d] ∈ SF free

i,d ∧ ⟨gini,d, nxi,d⟩ ∈ SF fix
i,d ∧ [gini,d, n

x
i,d] ∈

SF free
i,d ;

56

3.3 Well-formed Role-enriched Business Process Model

∀gi,d = (gini,d, g
out
i,d) ∈ {Gi,d|typeGd (Gi,d) = Sequential}, where i = 0, 1, 2, ..., n, n ≥

0, {Gi,d|typeGd (Gi,d) = Sequential} ∈ dfi,d, ∃!nyi,d, n
z
i,d ∈ Ni,d \ {gini,d, gouti,d }:

⟨nyi,d, g
out
i,d ⟩ ∈ SF fix

i,d ∧ [nyi,d, g
out
i,d] ∈ SF free

i,d ∧⟨gouti,d , n
z
i,d⟩ ∈ SF fix

i,d ∧ [gouti,d , n
z
i,d] ∈

SF free
i,d .

6. In a data operation flow, an entry gateway of Parallel-A, Parallel-B, Parallel-C,

or Conditional must have one and only one incoming sequence flow and more than

one outgoing fixed-order sequence flows. An exit gateway of Parallel-A, Parallel-

B, Parallel-C, or Conditional must have one and only one outgoing sequence flow

and more than one incoming fixed-order sequence flows.

∀gi,d = (gini,d, g
out
i,d) ∈ {Gi,d|typeGi,d(Gi,d) ̸= Sequential,Loop}, where i = 0, 1, 2, ...,

n, n ≥ 0, {Gi,d|typeGi,d(Gi,d) ̸= Sequential,Loop} ∈ dfi,d, ∃!nxj,d ∈ Ni,d\{gini,d},

∃!nii,d ∈ Ni,d \{nxi,d, gini,d}, where j ∈ {1, 2, ...,m} ∧ m ≥ 2: ⟨nxi,d, gini,d⟩ ∈

SF fix
i,d ∧ [nxi,d, g

in
i,d] ∈ SF free

i,d ∧ ⟨gini,d, n
j
i,d⟩ ∈ SF fix

i,d ;

∀gi,d = (gini,d, g
out
i,d) ∈ {Gi,d|typeGi,d(Gi,d) ̸= Sequential,Loop}, where i = 0, 1, 2, ...,

n, n ≥ 0, {Gd|typeGi,d(Gi,d) ̸= Sequential,Loop} ∈ dfi,d, ∃!nyi,d ∈ N \{gouti,d },

nki,d ∈ Ni,d\{nyi,d, g
out
i,d }, where k ∈ {1, 2, ..., p} ∧ p ≥ 2: ⟨gouti,d , n

y
i,d⟩ ∈ SF fix

i,d ∧

[gouti,d , n
y
i,d] ∈ SF free

i,d ∧ ⟨nki,d, gouti,d ⟩ ∈ SF fix
i,d .

7. In a data operation flow, for each gateway type, the entry gateway and exit

gateway must not be connected directly.

∀gi,d = (gini,d, g
out
i,d) ∈ {Gi,d|typeGi,d(Gi,d) ̸= Loop}, where i = 0, 1, 2, ..., n, n ≥

0, {Gi,d|typeGi,d(Gi,d) ̸= Loop} ∈ dfi,d: ⟨gini,d, gouti,d ⟩ ̸∈ SF fix
i,d ∧ [gini,d, g

out
i,d] ̸∈

SF fix
i,d .

8. A role-enriched business process must contain one and only one start event, and

one and only one end event.

∀rm, ∃!est ∈ Es
t , ∃!eet ∈ Ee

t : e
s
t ∈ Nt ∧ eet ∈ Nt.

57

3. ROLE-ENRICHED BUSINESS PROCESS MODEL

9. In a role-enriched business process, a start event must connect to an entry gate-

way. This entry gateway has one and only one outgoing fixed-order sequence flow,

and no incoming fixed-order or free-order sequence flows.

∀est ∈ Es
t , where E

s
t $ rm, ∃!gt = (gint , g

out
t) ∈ Gt: ⟨est , gint ⟩ ∈ SF fix

t ;

∀est ∈ Es
t , where E

s
t $ rm, @nt ∈ Nt\{est}: ⟨nt, est ⟩ ∈ SF fix

t ∧ [nt, e
s
t] ∈ SF free

t .

10. In a role-enriched business process, an end event must connect to an exit gateway

with one and only one incoming fixed-order sequence flow, and no outgoing fixed-

order or free-order sequence flows.

∀eet ∈ Ee
t , where E

e
t $ rm, ∃!gt = (gint , g

out
t) ∈ Gt: ⟨goutt , eet ⟩ ∈ SF fix

t ;

∀eet ∈ Ee
t , where E

e
t $ rm, @nt ∈ Nt\{eet}: ⟨eet , nt⟩ ∈ SF fix

t ∧ [eet , nt] ∈ SF free
t .

11. In a role-enriched business process, a task must have one and only one incoming

sequence flow, and only one outgoing sequence flow.

∀t ∈ T,whereT $ rm, ∃!gxt , g
y
t ∈ Gin

t ∪ Gout
t ∪ T \{t}, where gxt ̸= gyt : ⟨gxt , t⟩ ∈

SF fix
t ∧ [gxt , t] ∈ SF free

t ∧ ⟨t, gyt ⟩ ∈ SF fix
t ∧ [t, gyt] ∈ SF free

t .

12. In a role-enriched business process, any sequential entry gateway or sequential

exit gateway must have one and only one incoming sequence flow, and one and

only one outgoing sequence flow.

∀gt = (gint , g
out
t) ∈ {Gt|typeGt (Gt) = Sequential}, where {Gt|typeGt (Gt) =

Sequential} ∈ rm, ∃!nwt , nxt ∈ Nt\{gint , goutt }: ⟨nwt , gint ⟩ ∈ SF fix
t ∧ [nwt , g

in
t] ∈

SF free
t ∧ ⟨gint , nxt ⟩ ∈ SF fix

t ∧ [gint , n
x
t] ∈ SF free

t ;

∀gt = (gint , g
out
t) ∈ {Gt|typeGt (Gt) = Sequential}, where {Gt|typeGt (Gt) =

Sequential} ∈ rm, ∃!nyt , nzt ∈ Nt\{gint , goutt }: ⟨nyt , goutt ⟩ ∈ SF fix
t ∧ [nyt , g

out
t] ∈

SF free
t ∧ ⟨goutt , nzt ⟩ ∈ SF fix

t ∧ [goutt , nzt] ∈ SF free
t .

13. In a role-enriched business process, any entry gateway of Parallel-A, Parallel-

B, Parallel-C, or Conditional must have one and only one incoming sequence

flow and more than one outgoing fixed-order sequence flow; any exit gateway of

58

3.3 Well-formed Role-enriched Business Process Model

Parallel-A, Parallel-B, Parallel-C, or Conditional must have one and only one

outgoing sequence flow and more than one incoming fixed-order sequence flow.

∀gt = (gint , g
out
t) ∈ {Gt|typeGt (Gt) ̸= Sequential,Loop}, where {Gt|typeGt (Gt) ̸=

Sequential,Loop} ∈ rm, ∃!nxt ∈ Nt \ {gint }, ∃!nit ∈ Nt \ {nxt , gint }, where

i ∈ {1, 2, ...,m} ∧m ≥ 2: ⟨nxt , gint ⟩ ∈ SF fix
t ∧ [nxt , g

in
t] ∈ SF free

t ∧ ⟨gint , nit⟩ ∈

SF fix
t ;

∀gt = (gint , g
out
t) ∈ {Gt|typeGt (Gt) ̸= Sequential,Loop}, where {Gt|typeGt (Gt) ̸=

Sequential,Loop} ∈ rm, ∃!nyt ∈ N \{goutt }, njt ∈ Nt \{nyt , goutt }, where j ∈

{1, 2, ..., k} ∧ k ≥ 2: ⟨goutt , nyt ⟩ ∈ SF fix
t ∧ [goutt , nyt] ∈ SF free

t ∧ ⟨njt , goutt ⟩ ∈

SF fix
t .

14. In a role-enriched business process, any Loop entry gateway must have one and

only one incoming sequence flow to indicate entering of the Loop block, any Loop

exit gateway must have one and only one outgoing sequence flow to indicate

exit of the Loop block; there exists one and only one fixed-order sequence flow

directly pointing from the Loop exit gateway to the Loop entry gateway to indicate

iteration of the Loop block.

∀gt = (gint , g
out
t) ∈ {Gt|typeGt (Gt) = Loop}, where {Gt|typeGt (Gt) = Loop} ∈

rm, ∃!nxt ∈ Nt\{gint , goutt }: ⟨nxt , gint ⟩ ∈ SF fix
t ∧ [nxt , g

in
t] ∈ SF free

t ;

∀gt = (gint , g
out
t) ∈ {Gt|typeGt (Gt) = Loop}, where {Gt|typeGt (Gt) = Loop} ∈

rm, ∃!nyt ∈ Nt\{gint , goutt }: ⟨goutt , nyt ⟩ ∈ SF fix
t ∧ [goutt , nyt] ∈ SF free

t ;

∀g = (gint , g
out
t) ∈ {Gt|typeGt (Gt) = Loop}, where {Gt|typeGt (Gt) = Loop} ∈ rm:

⟨gint , goutt ⟩ ∈ SF fix
t .

15. In a role-enriched business process, for each gateway type except Loop, the entry

gateway and exit gateway must not be connected directly.

∀gt = (gint , g
out
t) ∈ {Gt|typeGt (Gt) ̸= Loop}, where {Gt|typeGt (Gt) ̸= Loop} ∈

rm: ⟨gint , goutt ⟩ ̸∈ SF fix
t ∧ [gint , g

out
t] ̸∈ SF free

t .

59

3. ROLE-ENRICHED BUSINESS PROCESS MODEL

Start Event End Event

Events

Figure 3.1: BPMN Constructs - Events

3.4 Extension of BPMN

In order to specify the role-enriched business process model in the proposed derivation

framework, we choose the BPMN that is a widely-used standard modelling language

for business processes, especially at the level of domain analysis and high-level system

design. The current version is BPMN 2.0 [27], which has already provided a rich set of

constructs to specify tasks, control flows, and gateways. However, in order to specify

the role-enriched business process model, the current BPMN does not have enough

expressive power in terms of three aspects: (1) the relations between tasks and user

roles, (2) the operated data inside each task, and (3) the complicated control flow

relations between tasks and data operation flows between data items. To bridge these

gaps, we provide the extended BPMN as follows.

Figure 3.1 illustrates the start event and end event in BPMN. A start event is

drawn as a circle with an open center, to indicate the staring point of either a role-

enriched business process or a data operation flow within a task of the role-enriched

business process. When the trigger for a start event occurs, a new business process/data

operation flow is instantiated and a token is generated for each outgoing sequence flow

from the starting event. An end event is drawn as a bold circle with an open center, to

indicate the ending point of either a role-enriched business process or a data operation

flow within a task of the role-enriched business process. When the trigger for an end

event occurs, the instance of the business process/data operation flow is completed and

the token from each incoming sequence flow is gone.

Figure 3.2 illustrates the gateways in BPMN. Gateways are the mechanisms to

60

3.4 Extension of BPMN

Gateways

Sequential Entry Gateway Sequential Exit Gateway

Parallel-A Entry Gateway

Parallel-B Entry Gateway

Conditional Entry Gateway

Loop Entry Gateway

Parallel-A Exit Gateway

Parallel-B Exit Gateway

Conditional Exit Gateway

Loop Exit Gateway

Parallel-C Entry Gateway Parallel-C Exit Gateway

Figure 3.2: BPMN Constructs - Gateways

61

3. ROLE-ENRICHED BUSINESS PROCESS MODEL

Sequence Flows

Fixed-order Sequence Flow

Free-order Sequence Flow

Figure 3.3: BPMN Constructs - Sequence Flows

control how the execution threads pass through sequence flows as they converge and

diverge within a process or a data operation flow. We utilize six classes of symbols to

annotate gateway types including Sequential, Parallel-A, Parallel-B, Parallel-C,

Conditional and Loop. We also explicitly distinguish the entrance and exit of each

gateway type: a gateway with a bar on its left side indicates an entrance gateway, which

only allows the execution thread to enter a control flow block or a data operation block;

a gateway with a bar on its right side represents an exit gateway, which only allows the

execution thread to leave a control flow block or a data operation block.

A Sequential gateway is annotated using an empty circle; a Parallel-A gateway

is annotated using a diamond with a bold ”plus” symbol inside; a Parallel-B gateway

is annotated using a diamond with a circle inside; a Parallel-C gateway is annotated

using a diamond with a circle and a dot inside; a Conditional gateway is annotated

using a diamond with a bold ”X” symbol inside; a Loop is annotated using a diamond

with a small-sized diamond inside. Note that none of the above gateways equals to the

OR gateway in the original BPMN.

Figure 3.3 illustrates the sequence flows in BPMN. A sequence flow is used to show

the order of flow elements in a business process or a data operation flow. Each sequence

flow has only one source and only one target. There are two classes of sequence flows

as Fixed-order Sequence Flow and Free-order Sequence Flow. A Fixed-order

Sequence Flow is denoted as a solid single line with a solid arrowhead, and represents

the connected two flow objects have a fixed order from sources to target; a Free-order

Sequence Flow is denoted as a dashed line, and represents the connected two flow

objects must have an order but the order is free.

62

3.5 Identified Control Flow Patterns

Role

Data Item

Access Type

Task Data Item

Task

Figure 3.4: BPMN Constructs - Task and Data Item

t1 t2

Role Role

Figure 3.5: Control Flow Pattern - Strict-order Sequential

Figure 3.4 illustrates the tasks and data items in BPMN. A task, representing a

logic unit of work, is denoted as a round-corner rectangle. The relation between the

user roles and a task is captured by annotating the involved user roles in the upper

part of the task, and the task name is annotated in the lower part of the task. A data

item, representing a single piece of data operated in a task, is denoted as a rectangle.

The access type on this data item is captured in the upper part of the data item, and

the data item name is represented in the lower part of the data item.

3.5 Identified Control Flow Patterns

In this section, a set of control flow patterns are identified and summarized as seven

classes: Strict-order Sequential, Free-order Sequential, Parallel-A, Parallel-B,

Parallel-C, Conditional, and Loop. Each pattern describes an elementary scenario

of the control flow in a role-enriched business process. The control flow patterns are

the foundation to build up elementary operations of task abstraction and aggregation,

which will be introduced in Chapter 4. In addition, the control flow patterns are also a

language that is capable of helping process modelers to model the role-enriched business

processes. In the following, each pattern is introduced in detail.

Figure 3.5 illustrates the pattern Strict-order Sequential, which specifies that the

63

3. ROLE-ENRICHED BUSINESS PROCESS MODEL

t1 t2

Role Role

Figure 3.6: Control Flow Pattern - Free-order Sequential

t1

Role

t2

Role

Figure 3.7: Control Flow Pattern - Parallel-A

tasks in this pattern must be executed in a strict sequential order. We use sequential

entry gateway and sequential exit gateway to indicate the entering and exiting of this

pattern block. And the fixed-order sequence flows are used to connect gateways and

tasks. In this scenario, there exist two tasks t1 and t2 in the pattern. t1 must be

performed firstly, then followed by t2. And the execution order cannot be changed.

Figure 3.6 illustrates the pattern Free-order Sequential, which specifies that the

tasks in this pattern must be executed one after another but the order is free. We

use sequential entry gateway and sequential exit gateway to indicate the entering and

exiting of this pattern block, and the free-order sequence flows are used to connect

gateways and tasks. In this scenario, there exist two tasks t1 and t2 in the pattern. t1

and t2 must be executed one by one, and “firstly t1 then t2” and “firstly t2 then t1”

are both available.

Figure 3.7 illustrates the pattern Parallel-A, which specifies that all branches

in this pattern must be executed concurrently and the pattern completes when all

branches have completed. We use Parallel-A entry gateway and Parallel-A exit gateway

to indicate the entering and exiting of this pattern block. And the fixed-order sequence

flows are used to connect gateways and tasks. In this scenario, there exist two tasks

t1 and t2 locating on two individual branches of this pattern. These two tasks are

64

3.5 Identified Control Flow Patterns

t1

Role

t2

Role

Figure 3.8: Control Flow Pattern - Parallel-B

t1

Role

tn

Role

t2

Role
m out of n

Figure 3.9: Control Flow Pattern - Parallel-C

performed in parallel. Only when t1 and t2 have both been completed, the pattern

Parallel-A is completed.

Figure 3.8 illustrates the pattern Parallel-B, which specifies that all branches in

this pattern must be executed concurrently and the pattern completes when any branch

has completed. We use Parallel-B entry gateway and Parallel-B exit gateway to indicate

the entering and exiting of this control flow block. And the fixed-order sequence flows

are used to connect gateways and tasks. In this scenario, there exist two tasks t1 and t2

locating on two individual branches of this pattern. These two tasks are performed in

parallel. The pattern is completed when any one of the two tasks has been completed.

65

3. ROLE-ENRICHED BUSINESS PROCESS MODEL

t1

Role

t2

Role

condition

Figure 3.10: Control Flow Pattern - Conditional

condition

t1

Role

t2

Role

Figure 3.11: Control Flow Pattern - Loop

Figure 3.9 illustrates the pattern Parallel-C. It specifies that there exist n branches

in this pattern, and all theses branches must be executed concurrently. The pattern

completes when any m (m ≤ n) branches from these n branches have been completed.

We use Parallel-C entry gateway and Parallel-C exit gateway to indicate the entering

and exiting of this control flow block. And the fixed-order sequence flows are used to

connect gateways and tasks. In this scenario, there exist n tasks from t1 to tn locating

on n branches. All the n tasks are performed in parallel. The pattern is completed

when any m two tasks from these n tasks have been completed.

Figure 3.10 illustrates the pattern Conditional, which specifies that the executed

branch in this pattern is decided according to the runtime condition. We use Condi-

tional entry gateway and Conditional exit gateway to indicate the entering and exiting

of this pattern block. The condition is notated at the Conditional entry gateway, and

the fixed-order sequence flows are used to connect gateways and tasks. In this scenario,

there exist two tasks t1 and t2 locating on two individual branches of this pattern.

According to the condition, one of these two branches is selected for execution during

runtime.

66

3.6 Identified Data Operation Patterns

Access Type

a1

Access Type

a2

Figure 3.12: Data Operation Pattern - Strict-order Sequential

Figure 3.11 illustrates the pattern Loop, which specifies that all the tasks in the

loop must be executed iteratively until the “jumping-out” condition is met. We use

Loop entry gateway and Loop exit gateway to indicate the entering and exiting of this

pattern block. The “jumping-out” condition is notated at the Loop Exit Gateway,

and the fixed-order sequence flows are used to connect gateways and tasks. In this

scenario, there exist two tasks t1 and t2 inside the loop. These two tasks are executed

repeatedly following the order as “firstly t1 then t2”. The execution of the pattern

Loop is completed only when the condition has been met.

3.6 Identified Data Operation Patterns

In this section, a set of data operation patterns are identified and summarized as

four classes: Strict-order Sequential, Free-order Sequential, Conditional, and

Loop. Each pattern describes an elementary scenario of the data operations inside

individual tasks of a role-enriched business process, which is different from a control

flow pattern that specifies an elementary scenario of the task executions in a process.

The data operation patterns are the foundation to build up elementary operations of

task abstraction and aggregation, which will be introduced in Chapter 4. In addition,

the data operation patterns are also a language that is capable of helping process

modelers to model the data operations insides individual tasks of the role-enriched

business processes. Note that in our process model, we do not consider the situation

that multiple role, who perform a single task, have different authorities of the data in

the task. We also do not consider the modelling of process data from different process

instances.

In the following, each pattern is introduced in detail.

67

3. ROLE-ENRICHED BUSINESS PROCESS MODEL

Access Type

a1

Access Type

a2

Figure 3.13: Data Operation Pattern - Free-order Sequential

condition

Access Type

a1

Access Type

a2

Figure 3.14: Data Operation Pattern - Conditional

Figure 3.12 illustrates the pattern Strict-order Sequential, which specifies that

the data items in this pattern must be executed in a strict sequential order. We use

sequential entry gateway and sequential exit gateway are used to indicate the entering

and exiting of this pattern block. And the fixed-order sequence flows are used to connect

gateways and data items. In this scenario, there exist two data ietms a1 and a2 in the

pattern. a1 must be performed firstly, then followed by a2. And the execution order

cannot be changed.

Figure 3.13 illustrates the pattern Free-order Sequential, which specifies that

the data items in this pattern must be executed one after another but the order is free.

We use sequential entry gateway and sequential exit gateway to indicate the entering

and exiting of this pattern block, and the free-order sequence flows are used to connect

gateways and data items. In this scenario, there exist two data items a1 and a2 in the

pattern. a1 and a2 must be executed one by one, and “firstly a1 then a2” and “firstly

a2 then a1” are both available.

Figure 3.14 illustrates the pattern Conditional, which specifies that the executed

68

3.6 Identified Data Operation Patterns

conditionAccess Type

a1

Access Type

a2

Figure 3.15: Data Operation Pattern - Loop

branch in this pattern is decided according to the runtime condition. We use Condi-

tional entry gateway and Conditional exit gateway to indicate the entering and exiting

of this pattern block. The condition is notated at the Conditional entry gateway, and

the fixed-order sequence flows are used to connect gateways and data items. In this

scenario, there exist two data items a1 and a2 locating on two individual branches

of this pattern. According to the condition, one of these two branches is selected for

execution during runtime.

Figure 3.15 illustrates the pattern Loop, which specifies that all the data items in

the loop must be executed iteratively until the “jumping-out” condition is met. We use

Loop entry gateway and Loop exit gateway to indicate the entering and exiting of this

pattern block. The “jumping-out” condition is notated at the Loop Exit Gateway, and

the fixed-order sequence flows are used to connect gateways and data items. In this

scenario, there exist two data items a1 and a2 inside the loop. These two data items

are executed repeatedly following the order as “firstly a1 then a2”. The execution of

the pattern Loop is completed only when the condition has been met.

When considering the data operation pattern Parallel-A, each branch of this pat-

tern must be completed by the same user role, and this user role must execute these

branches one by one in a free order. (a) of Figure 3.16 illustrates this scenario. The

Parallel-A block contains two branches, each of which has one data item as a1 and

a2. Both a1 and a2 are executed by one user role (say r) due to this Parallel-A block

locates inside one task. According to the execution rules of Parallel-A, r is able to

execute a1 and a2 in a free order and one by one. This situation equals to that a1

69

3. ROLE-ENRICHED BUSINESS PROCESS MODEL

Access
Type

a1

a2

condition1

a1

a2

a1

a3

a2 m out of n

m = 2

n = 3

condition2

a1

a2 a3

a1 a3

a2

Access
Type

Access
Type

Access
Type

Access
Type

Access
Type

Access
Type

Access
Type

Access
Type

Access
Type

Access
Type

Access
Type

Access
Type

e.g.

a1 a2

Access
Type

Access
Type

a1

a2

Access
Type

Access
Type

(a) Transformation of Parallel-A

(b) Transformation of Parallel-B

(c) Transformation of Parallel-C

Figure 3.16: Transformation of Three Data Operation Patterns: Parallel-A, Parallel-B,

Parallel-C

70

3.7 Scenario Example

and a2 have the relation of Free-order Sequential. Therefore Parallel-A equals to

Free-order Sequential.

When considering the data operation pattern Parallel-B, one and only one branch

of this pattern must be completed by one user role. (b) of Figure 3.16 illustrates this

scenario. The Parallel-B block contains two branches, each of which has one data

item as a1 and a2. Both a1 and a2 are executed by one user role (say r) due to this

Parallel-B block locates inside one task. According to the execution rules of Parallel-

B, r chooses one data item from a1 and a2 to execute during runtime. This situation

equals to that a1 and a2 have the relation of Conditional. Therefore Parallel-B

equals to Conditional.

Parallel-C is similar to Parallel-B. In the pattern Parallel-C, m of n branches

must be completed by one user role, and this user role must execute these m branches

one by one in a free order. (c) of Figure 3.16 illustrates this scenario of Parallel-C

containing three branches (n = 3) in total, each of which has one data item as a1, a2

and a3. And two of these branches (m = 2) are required to be completed. According

to the execution rules of Parallel-C, the user role must execute any two and only two

data items from a1, a2 and a3. There are three alternatives to realize this goal: (1) a1

and a2 are selected for execution; (2) a1 and a3 are selected for execution; (3) a2 and

a3 are selected for execution. And these three alternatives become three branches of a

Conditional pattern. Therefore, Parallel-C equals to Conditional.

To sum up, Parallel-A, Parallel-B or Parallel-C will never turn up in the data

operation patterns.

3.7 Scenario Example

In this section, we use the scenario example introduced in Figure 1.4 of Section 1.2 to

demonstrate how a business process is specified using our proposed role-enriched BP

model.

Figure 3.17 shows the recruitment process represented with BPMN 2.0. Figure

3.18 illustrates the recruitment process specified with role-enriched business process

71

3. ROLE-ENRICHED BUSINESS PROCESS MODEL

R
e

c
ru

it
m

e
n

t
S

ce
n

a
ri

o

P
e

rs
o

n
n

e
l

O
ff

ic
e

r
R

e
fe

re
e

A
p

p
li

c
a

n
t

Announce

A Job

Submit

Application

Writing

Reference Letter

Arrange

Interview

Confirm

Interview

Review Reference

Letter

Interview
Make

Decision

Figure 3.17: Recruitment Process Specified with Original BPMN 2.0

model. In this role-enriched business process, two aspects are explicitly expressed: the

relationships between each task and its involved user role(s), the control flow relations

between the tasks, and the data operations between the data items inside each task.

� In task 1, the personnel officer provides the data item job description with

input.

� In task 2, the applicant reads information from job description, then offers input

to personal info according to the information.

� In task 3, the referee writes an reference letter in the data item reference letter.

� In task 4, the personnel officer offers interview-related details in two data

items data&time and venue. The operation order is free.

� In task 5, the applicant reads information of interview from data&time and

venue, then confirm the his/her attendance in conformation.

� In task 6, the personnel officer firstly reads reference letter, then provides

his/her opinions in reference evaluation report.

72

3.7 Scenario Example

job
description

Submit Application

Applicant

personal
info

Confirm Interview

Applicant

venue conformation
date

&
time

job
description

Announce A Job

Personnel Officer

reference
letter

Writing Reference
Letter

Referee

date
&

time

Arrange Interview

venue

Personnel Officer

Review Reference Letter

Personnel Officer

reference letter
reference evaluation

report

interview report

Interview

Personnel Officer

Write
Write

Write
Write

Read Write

Write

Make Decision

Personnel Officer

interview
report

approval
letter

rejection
reason

Read Read

Write

Write

reference
evaluation

report

personal
info

Read

approve ?
Write

WriteRead
Read

Read Write

Figure 3.18: Recruitment Process Specified with Role-enriched Business Process Model

73

3. ROLE-ENRICHED BUSINESS PROCESS MODEL

Identified Control Flow Patterns

Identified Data Operation Patterns

Announce A Job Submit Application Writing Reference Letter

Arrange Interview Confirm Interview

Review Reference Letter

Interview Make DecisionComplex Structure

job
description

reference
letter

reference
letter

reference evaluation
report

interview report

Write Write

Read Write

Write

Write

conformation
Complex

Structure

job
description

personal
info

Read Write

approve ?
WriteComplex

Structure

Complex

Structure

venue
date

&
time

date
&

time
venue

Write
Write Read

Read

interview
report

Read Read

reference
evaluation

report

personal
info

Read

approval letter

rejection reason

Write

Write

(a) Strict-order Sequential

(b) Parallel-A

(f) Conditional

(d) Strict-order Sequential

(e) Free-order Sequential

Figure 3.19: Identified Control Flow Patterns and Data Operation Patterns from Re-

cruitment Process

74

3.8 Summary and Discussion

� In task 7, the personnel officer provides interview results in interview report.

� In task 8, the personnel officer firstly evaluate three documents from refer-

ence evaluation report, interview report and personal info, then provides the final

decision in approve?. If the application is approved, approval letter is provided

with input. If the application is rejected, rejection reason is provided with input.

Figure 3.19 summarizes the control flow patterns and date operation patterns identi-

fied from the role-enriched BP representing the recruitment scenario. Two control flow

patterns are identified as (a) Strict-order Sequential containing 1 block, and (b)

Parallel-A containing 1 block; and three data operation patterns are identified as (c)

Strict-order Sequential containing 7 blocks, (d) Free-order Sequential containing

3 blocks, and (e) Conditional containing 1 block.

3.8 Summary and Discussion

Currently, there exist two major business process modelling paradigms as artifact-

centric paradigm and activity-centric paradigm. The artifact-centric paradigm [34, 70,

117, 137] treats data objects and their object life cycles as the first class modeling

constructs, and the synchronization of multiple data objects is realized according to

their data state changes, i.e., data state changes in different object life cycles require

to be performed together. The synchronization information is stored together with

the object life cycles rather than in a control unit. As a result, the ordering of tasks

is not modeled explicitly. Another weakness of this paradigm is there does not exist

widely-used process languages to specify this kind of process model currently. The

activity-centric paradigm focuses on tasks and their execution ordering, and the control

flow relations between tasks can be explicitly specified, e.g. the control flow patterns

identified in [86, 89, 92]. And there exist many process modelling languages (e.g.

BPMN, Petri net et al) supporting the specification of the activity-centric models. But

the data operated by tasks are difficult to be specified explicitly.

75

3. ROLE-ENRICHED BUSINESS PROCESS MODEL

After the above analysis, we have chosen activity-centric paradigm as the basis to

develop our role-enriched BP model based on two reasons: this paradigm is widely

supported by existing modelling languages and it is powerful in specifying process

control flows. We have enriched the BP model with the relationships between tasks

and involved user roles. In addition, the data operation flows within individual tasks

have also been extended. A formal way has been used to define our role-enriched BP

model. The well-formness of the process model is discussed. In order to specify the

role-enriched BP model, we have extended the core set of constructs in the BPMN

language, including task, gateways, sequence flows, and data items. We have identified

seven control flow patterns and four data operation patterns as the foundation to build

up the elementary operations for task abstraction and aggregation in next chapter.

Lastly, we have introduced an example that demonstrates how a recruitment process

is specified with our proposed role-enriched BP model.

76

Chapter 4

Task Abstraction and

Aggregation

In this chapter, we discuss the task abstraction and aggregation, which is the first

step of our UI derivation approach as shown in Figure 1.5. Section 4.1 provides an

introduction of this chapter. Section 4.2 introduces the formal syntax of the abstracted

and aggregated business process model. Section 4.3 discusses the approach of task

abstraction and aggregation. In this section, two aspects are included as the elementary

operations and algorithms. Section 4.4 conducts the structural consistency analysis in

the elementary operations. Section 4.5 introduces a scenario example. Section 4.6

provides a summary and discussion on this chapter.

4.1 Introduction

A business process is a collection of linked tasks that provides services. Each task

is a unit of work performed by human users or applications. It is often necessary to

abstract and aggregate some details of tasks in a BP for user roles participating in

the BP. The reasons of the task abstraction and aggregation fall into three categories:

(1) Firstly, the details of BP tasks must be hidden and abstracted from certain users

due to information security requirements such as privacy, confidentiality, and conflict

of interest. (2) Secondly, task abstraction and aggregation are a foundation for de-

riving customized descriptions of a BP for participating users, according to the users’

77

4. TASK ABSTRACTION AND AGGREGATION

requirements and intentions. The customized BP descriptions may play an important

role in the modelling of BP collaboration, BP visualization, and authority control. (3)

Thirdly, AABPs highlight the requirements associated with a specific user role and pre-

serve some information of other user roles for the effective control flow in a BP. AABPs

can be used to enable the development and updating of software components such as

UIs related to different user roles [138, 139, 140]. As the the first step of our work of

the UI derivation, the task abstraction and aggregation reserve the tasks related to a

specific user role, and abstract the tasks not related to this user role.

4.2 Abstracted and Aggregated BP Model

This section provides the syntax of the AABP that is the output process after the task

abstraction and aggregation. An AABP for a specific user role comprises (1) a set of

tasks that are executed all by this user role, (2) a set of abstracted nodes which are

generated from the tasks irrelevant to this user role, and (3) the control flow relations

between the tasks and the abstracted nodes.

Definition 5: Abstracted and Aggregated BP Model. Given a user role

r ∈ R, an abstracted and aggregated BP model for the user role r is denoted as rmr =

(N r, typer, SF r
fix, SF

r
free, refine

r), where:

� N r = {ers, ere} ∪Gr ∪ T r ∪ABSr where ers, e
r
e indicate start event, and end event

respectively. Gr = Gr
in∪Gr

out is a finite set of gateways. Gin
d is a finite set of entry

gateways and Gout
d is a finite set of exit gateways. The entry and exit gateways are

used to control that the execution thread enters and leaves a structural block of

the data operation flow. T r is a finite set of tasks which are participated by user

role r. ABSr is a finite set of abstracted nodes, each of which is abstracted from

one or multiple tasks of the role-enriched BP, and these tasks are not participated

by r.

� typer: Gr →{Sequential, Parallel-A, Parallel-B, Parallel-C, Conditional, Loop} is

a mapping function to give each gateway a type.

78

4.3 Task Abstraction and Aggregation

� SF r
fix and SF r

free represent fixed-order sequence flow and free-order sequence flow

respectively. The fixed-order sequence flow means that the sequence of involved

tasks must be in a fixed order; the free-order sequence flow means that the order

in the sequence of involved tasks is free.

� refiner : T r → DF r is a refinement function on tasks. DF r = {df r1 , df r2 , ..., df rn}

stands for a finite set of data operation flows operated by user role r.

4.3 Task Abstraction and Aggregation

This section introduces the abstraction and aggregation of tasks in the role-enriched

BP. An AABP is derived for each user role involved in the role-enriched BP. To derive

the AABP, a series of elementary operations are specified. The algorithm for task

abstraction and aggregation is developed by utilizing these elementary operations.

4.3.1 Elementary Operations

In this section, 18 elementary operations for task abstraction and aggregation are spec-

ified. Each elementary operation abstracts and aggregates tasks and their control flow

relations from a particular control flow pattern. Here we assume that the abstraction

and aggregation are for user role r1. The tasks related to r1 are kept; the tasks not

participated by r1 are abstracted and aggregated and become abstracted nodes. In

the following, the control flow patterns associated with elementary operations except

Single-Abs-Agg-1, Single-Abs-Agg-2, Single-Abs-Agg-3 are called Basic BP

Fragments.

Single-Abs-Agg-1 in Figure 4.1 shows how an elementary operation realize the

task abstraction and aggregation from a single task (TaskA) not involving r1. In this

situation, this task (TaskA) is abstracted as a single abstracted node (ABSA).

Single-Abs-Agg-2 in Figure 4.1 shows how an elementary operation realize the

task abstraction and aggregation from a single task (TaskA). And the task (TaskA)

can be carried out by either r1 or r2, which is denoted by r1 Y r2. In this situation, the

task (TaskA) is abstracted as two nodes: (1) a task (TaskA) that is performed only

79

4. TASK ABSTRACTION AND AGGREGATION

Single-Abs-Agg-1

r2

A

A

r1

A

A

Single-Abs-Agg-2

r1 r2

2222

Single-Abs-Agg-3

r1 ^ r2

A

1111 22221111 2222

r1

A

A

1111 2222

Figure 4.1: Elementary Operations Single-Abs-Agg-1,2,3 on Single Tasks

r1

A

r1

D

r2

B

r3

C

r3

E

Sequential-Abs-Agg-1

22 3333 333322 3333 333

r1

A

r1

D
BC E

Figure 4.2: Elementary Operation Sequential-Abs-Agg-1 on Strict-order Sequential

by r1 and (2) an abstracted node (ABSA). These two nodes have the Conditional

control flow relation.

Single-Abs-Agg-3 in Figure 4.1 shows how an elementary operation realize the

task abstraction and aggregation from a single task (TaskA). And the task (TaskA)

must be participated by both r1 and r2, which is denoted by r1 ∧ r2. In this situation,

the task (TaskA) is abstracted as a new task (TaskA) that is only participated by r1.

Sequential-Abs-Agg-1 in Figure 4.1 shows how an elementary operation realize

the task abstraction and aggregation from a Strict-order Sequential control flow

pattern. In this pattern, if the tasks (TaskB and TaskC) not involving r1 are adjacent,

these tasks (TaskB and TaskC) are abstracted as a single abstracted node (ABSBC);

if the tasks (TaskE) not involving r1 are not adjacent, each of these tasks (TaskE) is

abstracted as an individual abstracted node (ABSE).

Sequential-Abs-Agg-2 in Figure 4.3 shows how an elementary operation real-

ize the task abstraction and aggregation from a Free-order Sequential control flow

80

4.3 Task Abstraction and Aggregation

Sequential-Abs-Agg-2

r1

A

r1

D

r2

B

r3

C

r3

E

222 3333 333333222 333333 333333

r1

A

r1

D
BCE

Figure 4.3: Elementary Operation Sequential-Abs-Agg-2 on Free-order Sequential

r2

A

r3

D

r3

B

r1

C

r1

E

r1

C

r1

E

ABD

Parallel-A-Abs-Agg-1

Alternative-1 Alternative-2

rrrr3333

rrrrrrrr2222 rrrr3333

AB

D

r1

C

r1

E

Figure 4.4: Elementary Operation Parallel-A-Abs-Agg-1 on Parallel-A

pattern. In this pattern, all the tasks (TaskB, TaskC , TaskE) not involving r1 are

abstracted as one single abstracted node (ABSBCE).

Parallel-A-Abs-Agg-1 in Figure 4.4 shows how an elementary operation realize

the task abstraction and aggregation from a Parallel-A control flow pattern. Each

branch of the Parallel-A control flow pattern contains both tasks participated by r1

(TaskC on the upper branch, TaskE on the lower branch) and adjacent tasks not

involving r1 (TaskA and TaskB on the upper branch, TaskD on the lower branch); the

Parallel-A entry gateway is adjacent to these adjacent tasks not involving r1. Two

alternatives are provided to deal with this situation in Parallel-A: (1) Alternative 1

81

4. TASK ABSTRACTION AND AGGREGATION

r1

A

r1

D

r3

B

r2

C

r2

E

r1

A

r1

D

Parallel-A-Abs-Agg-2

Alternative-1 Alternative-2

2222

3333 rrr2222rr

r1

A

r1

D

BCE

BC

E

Figure 4.5: Elementary Operation Parallel-A-Abs-Agg-2 on Parallel-A

abstracts the adjacent tasks not involving r1 from all branches (TaskA and TaskB on

the upper branch, TaskD on the lower branch) as a single abstracted node (ABSABD).

This abstracted node is shifted out of the Parallel-A pattern and adjacent to the

Parallel-A entry gateway. Differently, (2) Alternative 2 abstracts the adjacent tasks

not involving r1 on each branch as single abstracted nodes (TaskA and TaskB on the

upper branch as ABSAB, TaskD on the lower branch as ABSD). And each of these

abstracted nodes remains on the original branch (ABSAB on the the upper branch,

ABSD on the lower branch). Both Alternative 1 and Alternative 2 can realize the same

goal of task abstraction and aggregation. Alternative 1 realize this goal by providing

an option of structure changing. But the derived UI logic will not be affected.

Parallel-A-Abs-Agg-2 in Figure 4.5 shows how an elementary operation realize

the task abstraction and aggregation from a Parallel-A control flow pattern. Each

branch of the Parallel-A control flow pattern contains both tasks participated by r1

(TaskA on the upper branch, TaskD on the lower branch) and adjacent tasks not

involving r1 (TaskB and TaskC on the upper branch, TaskE on the lower branch);

the Parallel-A exit gateway is adjacent to these adjacent tasks not involving r1. Two

alternatives are provided to deal with this situation in Parallel-A: (1) Alternative 1

82

4.3 Task Abstraction and Aggregation

Parallel-A-Abs-Agg-3

r2

A

r1

D

r1

E

r3

B

r2

C

33 2233 22

2222

r1r1

D

ABC

E

Figure 4.6: Elementary Operation Parallel-A-Abs-Agg-3 on Parallel-A

abstracts the adjacent tasks not involving r1 from all branches (TaskB and TaskC on

the upper branch, TaskE on the lower branch) as a single abstracted node (ABSBCE).

This abstracted node is shifted out of the Parallel-A pattern and adjacent to the

Parallel-A exit gateway. Differently, (2) Alternative 2 abstracts the adjacent tasks

not involving r1 on each branch as single abstracted nodes (TaskB and TaskC on the

upper branch as ABSBC , TaskE on the lower branch as ABSE). And each of these

abstracted nodes remains on the original branch (ABSBC on the the upper branch,

ABSE on the lower branch). Both Alternative 1 and Alternative 2 can realize the same

goal of task abstraction and aggregation. Alternative 1 realize this goal by providing

an option of structure changing. But the derived UI logic will not be affected.

Parallel-A-Abs-Agg-3 in Figure 4.6 shows how an elementary operation realize

the task abstraction and aggregation from a Parallel-A control flow pattern containing

three or more branches. In the Parallel-A control flow pattern, there exist at least two

branches, each of which only contains tasks not participated by r1 (TaskA on the upper

branch, TaskB and TaskC on the middle branch). All these branches (the upper branch

containing TaskA, the middle branch containing TaskB and TaskC) are abstracted as

one single abstracted node (ABSABC). And this abstracted node (ABSABC) forms an

83

4. TASK ABSTRACTION AND AGGREGATION

r1

A

r3

D

r2

B

r1

C

r1

E

BD

r1

A

r1

C

r1

E

Parallel-A-Abs-Agg-4

rrr333

222222

Figure 4.7: Elementary Operation Parallel-A-Abs-Agg-4 on Parallel-A

independent branch of the Parallel-A control flow pattern.

Parallel-A-Abs-Agg-4 in Figure 4.7 shows how an elementary operation realize

the task abstraction and aggregation from a Parallel-A control flow pattern, each

branch of which has a Free-order Sequential control flow pattern. On each branch

of the Parallel-A control flow pattern, there exists at least one task not participated by

r1 (TaskB on the upper branch, TaskD on the lower branch). All these tasks (TaskB

and TaskD) are abstracted as one single abstracted node (ABSABC). This abstracted

node (ABSABC) is shifted out of the Parallel-A pattern and has the Free-order

Sequential control flow relation with the Parallel-A pattern.

Parallel-B-Abs-Agg-1 in Figure 4.8 shows how an elementary operation realizes

the task abstraction and aggregation from a Parallel-B control flow pattern. Each

branch of the Parallel-B control flow pattern contains both tasks participated by r1

(TaskB on the upper branch, TaskE on the lower branch) and adjacent tasks not

involving r1 (TaskA and on the upper branch, TaskC and TaskD on the lower branch).

The adjacent tasks not involving r1 on each branch are abstracted as a single abstracted

node (TaskC and TaskD on the upper branch as ABSCD); the non-adjacent tasks not

involving r1 on each branch are abstracted separately as abstracted nodes (TaskA on

84

4.3 Task Abstraction and Aggregation

Parallel-B-Abs-Agg-1

r2

A

r3

D

r1

B

r1

E

A

CD

r1

B

r1

E

r2

C

rr22 33

22222

Figure 4.8: Elementary Operation Parallel-B-Abs-Agg-1 on Parallel-B

the upper branch as ABSA). Each of these abstracted nodes remains on the original

branch (ABSA on the the upper branch, ABSCD on the lower branch).

Parallel-B-Abs-Agg-2 in Figure 4.9 shows how an elementary operation realizes

the task abstraction and aggregation from a Parallel-B control flow pattern containing

three or more branches. In the Parallel-B control flow pattern, there exist at least two

branches, each of which only contains tasks not participated by r1 (TaskC on the middle

branch, TaskD and TaskE on the lower branch). All these branches (the middle branch

containing TaskC , the lower branch containing TaskD and TaskE) are abstracted as

one single abstracted node (ABSCDE). And this abstracted node (ABSCDE) forms an

independent branch of the Parallel-B control flow pattern.

Parallel-B-Abs-Agg-3 in Figure 4.10 shows how an elementary operation realizes

the task abstraction and aggregation from a Parallel-B control flow pattern, each

branch of which has a Free-order Sequential control flow pattern. On each branch

of the Parallel-A control flow pattern, the tasks not participated by r1 are abstracted

as single abstracted nodes (TaskA as ABSA, TaskC and TaskD as ABSCD). And each

of these abstracted nodes (ABSA, ABSCD) remains on the original branch.

Parallel-C-Abs-Agg-1 in Figure 4.11 shows how an elementary operation realizes

85

4. TASK ABSTRACTION AND AGGREGATION

Parallel-B-Abs-Agg-2

r2

C

r3

D

r2

E

r1

A

r1

B

3333 22222222

22222222

r1r1

A

CDE

B

Figure 4.9: Elementary Operation Parallel-B-Abs-Agg-2 on Parallel-B

Parallel-B-Abs-Agg-3

r3

C

r2

A

r2

D

r1

E

r1

B

33 22333 222

222

CD

A

r1

E

r1

B

Figure 4.10: Elementary Operation Parallel-B-Abs-Agg-3 on Parallel-B

86

4.3 Task Abstraction and Aggregation

Parallel-C-Abs-Agg-1

r2

A

r3

D

r3

B

r1

E

r2

C

222222 333333

rrrrrr222

A

CD

r1

B

r1

E

Figure 4.11: Elementary Operation Parallel-C-Abs-Agg-1 on Parallel-C

the task abstraction and aggregation from a Parallel-C control flow pattern. Each

branch of the Parallel-C control flow pattern contains both tasks participated by r1

(TaskB on the upper branch, TaskE on the lower branch) and adjacent tasks not

involving r1 (TaskA and on the upper branch, TaskC and TaskD on the lower branch).

The adjacent tasks not involving r1 on each branch are abstracted as a single abstracted

node (TaskC and TaskD on the upper branch as ABSCD); the non-adjacent tasks not

involving r1 on each branch are abstracted separately as abstracted nodes (TaskA on

the upper branch as ABSA). Each of these abstracted nodes remains on the original

branch (ABSA on the the upper branch, ABSCD on the lower branch).

Parallel-C-Abs-Agg-2 in Figure 4.12 shows how an elementary operation realizes

the task abstraction and aggregation from a Parallel-C control flow pattern containing

three or more branches. In the Parallel-C control flow pattern, there exist at least two

branches, each of which only contains tasks not participated by r1 (TaskB and TaskC

on the middle branch, TaskD and TaskE on the lower branch). All these branches (the

middle branch containing TaskB and TaskC , the lower branch containing TaskD and

TaskE) are abstracted as one single abstracted node (ABSBCDE). And this abstracted

node (ABSBCDE) forms an independent branch of the Parallel-C control flow pattern.

87

4. TASK ABSTRACTION AND AGGREGATION

Parallel-C-Abs-Agg-2

r3

C

r3

D

r2

E

r1

A

r1

A

BCDE

r2

B

rrr333 rrrr222rrr333 rrrr222

rrr222 333rrr222 333

Figure 4.12: Elementary Operation Parallel-C-Abs-Agg-2 on Parallel-C

Parallel-C-Abs-Agg-3

r2

A

r2

D

r3

B

r1

C

r1

E

D

AB

r1

E

r1

C

22

rr22 rrrr33

Figure 4.13: Elementary Operation Parallel-C-Abs-Agg-3 on Parallel-C

88

4.3 Task Abstraction and Aggregation

Conditional-Abs-Agg-1

condition

a

b

c

a b

r3

C

r1

D

r1

E

r2

A

r3

B

r1r1

D

ABC

E

condition

c

3333

2222 rrrr3333

Figure 4.14: Elementary Operation Conditional-Abs-Agg-1 on Conditional

Parallel-C-Abs-Agg-3 in Figure 4.13 shows how an elementary operation realizes

the task abstraction and aggregation from a Parallel-C control flow pattern, each

branch of which has a Free-order Sequential control flow pattern. On each branch

of the Parallel-A control flow pattern, the tasks not participated by r1 are abstracted

as single abstracted nodes (TaskA and TaskB as ABSAB, TaskD as ABSD). And each

of these abstracted nodes (ABSAB, ABSD) remains on the original branch.

Conditional-Abs-Agg-1 in Figure 4.14 shows how an elementary operation re-

alizes the task abstraction and aggregation from a Conditional control flow pattern

containing three or more branches. In the Condtional control flow pattern, there exist

at least two branches, each of which only contains tasks not participated by r1 (TaskA

and TaskB on the upper branch, TaskC on the middle branch). All these branches

(the upper branch containing TaskA and TaskB, the middle branch containing TaskC)

are abstracted as one single abstracted node (ABSABC). And this abstracted node

(ABSABC) forms an independent branch of the Conditional control flow pattern.

The condition (a ∪ b) on the branch of the abstracted node (ABSABC) is the union of

the conditions from the two abstracted branches (a from the upper branch, b from the

89

4. TASK ABSTRACTION AND AGGREGATION

Loop-Abs-Agg-1

r1

A

r1

D

r2

B

r3

C

r2

E

222222222 333 2222
condition

r1

A

r1

D
BC E

condition

Figure 4.15: Elementary Operation Loop-Abs-Agg-1 on Loop

Loop-Abs-Agg-2

r1

A

r1

D

r2

B

r3

C

r2

E

222 2222222 333 22222

r1

A

r1

D
BCE

condition

condition

Figure 4.16: Elementary Operation Loop-Abs-Agg-2 on Loop

middle branch).

Loop-Abs-Agg-1 in Figure 4.15 shows how an elementary operation realizes the

task abstraction and aggregation from a Strict-order Loop control flow pattern. In

this pattern, if the tasks (TaskB and TaskC) not involving r1 are adjacent, these tasks

(TaskB and TaskC) are abstracted as a single abstracted node (ABSBC); if the tasks

(TaskE) not involving r1 are not adjacent, each of these tasks (TaskE) is abstracted

as an individual abstracted node (ABSE).

Loop-Abs-Agg-2 in Figure 4.16 shows how an elementary operation realizes the

task abstraction and aggregation from a Free-order Sequential control flow pattern.

90

4.3 Task Abstraction and Aggregation

In this pattern, all the tasks (TaskB, TaskC , TaskE) not involving r1 are abstracted

as one single abstracted node (ABSBCE).

4.3.2 Algorithm for Task Abstraction and Aggregation

This subsection introduces the algorithms for task abstraction and aggregation, which

calls the elementary operations introduced in Subsection 4.3.1. In the algorithms, the

tasks related to a particular user role will be reserved in the output abstracted and

aggregated BP, while the tasks irrelevant to this user role will be abstracted and aggre-

gated into abstracted nodes in the output abstracted and aggregated BP. In order to

realize this goal, we proceed recursively to detect and handle the elements on each gran-

ularity level of the role-enriched BP. In this procedure, the recursive function BPAbsAgg

in Algorithm 3 is the working horse of this algorithm. The control flow patterns at

non-finest granularity level of the role-enriched BP belong to Complex BP Frag-

ments and they are abstracted/aggregated by the function AbsComplexFrag. The

control flow patterns at the finest granularity level of the role-enriched BP belong to

Basic BP Fragments and they are abstracted/aggregated by applying the function

AbsBasicFrag.

A Basic BP Fragment in a role-enriched BP must satisfy one of the following

conditions:

� if the control flow pattern of the fragment is Strict-order Sequential or Free-

order Sequential, then all the elements of this fragment must only be individual

tasks. (For example in Figure 4.17, (a) and (b) are Basic BP Fragments, while

(g) is a Complex BP Fragment.)

� if the control flow pattern of the fragment isParallel-A,Parallel-B, orParallel-

C, then the control flow pattern of each branch of this fragment must only be

Strict-order Sequential or Free-order Sequential. (For example in Figure

4.17, (c) are Basic BP Fragments, while (h) is a Complex BP Fragment.)

� if the control flow pattern of the fragment is conditional, then

91

4. TASK ABSTRACTION AND AGGREGATION

r1
A

r1
D

r2
B

r3
C

r1
A

r1
D

r2
B

r3
C

r3

r1 r1

condition

a

b

c

r3 r1
A B

C

D E

r1

r1 r2

conditionr1 r3
A B

C

D E

r2
A

r1
D

r3
B

r2
C

r1
H

r1
A

A

conditionr1
A

r2
B

r3
C

conditionr1
A

r2
B

r3
C

r1
A

r1
E

r1
B

r1
C

r1
D

r3
B

r1
D

r2
C

a

b

conditionr1
A

r3
E

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Basic BP Fragment Complex BP Fragment

Figure 4.17: Examples of Basic BP Fragments and Complex BP Fragments

92

4.3 Task Abstraction and Aggregation

– the control flow pattern of each branch of this fragment must only be Strict-

order Sequential or Free-order Sequential (For example in Figure 4.17,

(d) is a Basic BP Fragment), and

– each branch of this fragment must not consist of a single task or an abstracted

node of this task. ((i) in Figure 4.17 is an example of this situation. We

notate (i) as Task-Abs Block.)

� if the control flow pattern of the fragment is Strict-loop or Free-loop, then

all the elements of this fragment must only be individual tasks. (For example

in Figure 4.17, (e) and (f) are Basic BP Fragments, and (j) is a Complex BP

Fragment.)

In the following, we will firstly introduce the two functions AbsComplexFrag and

AbsBasicFrag, then followed by Algorithm 3 for task abstraction and aggregation.

Lastly, an example business process with a complex structure is gone through to show

the major steps of the algorithm for task abstraction and aggregation.

4.3.2.1 Handling Complex BP Fragments

We use function AbsComplexFrag to deal with the tasks in the Complex BP Fragments

of a role-enriched BP. The input is a Complex BP Fragment and the output is the

transformed Complex BP Fragment.

In order to abstract and aggregate the tasks in a complex BP fragment, the first

step is to identify the control flow pattern CFPattern and the related elements in

TaskSet on the coarsest granularity level of the input fragment CFrag (line 2). We

use different methods to the deal with different elements in TaskSet according to the

types of the elements.

We assume that the abstraction and aggregation is for user role r1. In TaskSet,

there are four categories of elements: (1) a task TaskLocal that is executed by r1, (2)

a task TaskForeign that is not executed by r1, (3) a task TaskMulti−Or that can be

executed by r1 or other user roles, (4) a task TaskMulti−And that must be executed by

both r1 and other user roles, and (5) a block of tasks with one entry gateway and one

93

4. TASK ABSTRACTION AND AGGREGATION

Algorithm 1: Function for Handling Complex BP Fragment

1 Function AbsComplexFrag(ComplexFrag CFrag)

2 identify CFPattern and TaskSet at the coarsest granularity level of CFrag;

3 if TaskSet does not contain MultiRoleTask then

4 if CFPattern matches elementaryOperation then

5 CFrag′ =transform (CFrag, elementaryOperation);

6 else if CFPattern does not matches elementaryOperation then

7 CFrag′ =transform (CFrag, Single−Abs−Agg − 1);

8 examine and combine adjacent abstracted nodes in CFrag′;

9 else

10 CFrag′ =transform (CFrag, Single−Abs−Agg − 1/− 2/− 3);

11 examine and combine adjacent abstracted nodes in CFrag′;

12 return CFrag′;

exit gateway, inside this block there exist complex control flow relations between/among

these tasks.

Line 3 represents TaskSet does not contain TaskMulti−Or or TaskMulti−And. In this

case, if CFPattern matches one of the elementary operations, the input role-enriched

BP fragment is transformed by this matched elementary operation (line 4 and line

5); if CFPattern cannot match any of the elementary operations, each TaskForeign

is abstracted by Single-Abs-Agg-1 (line 6 and line 7). After that, the transformed

fragment is examined to see if it has adjacent abstracted nodes or not. If there ex-

ist adjacent abstracted nodes, they are aggregated as single abstracted nodes (line

8). The other situation is CFEleSet that contains TaskMulti−Or or TaskMulti−And

(line 9), TaskForeign are abstracted by Single-Abs-Agg-1, and TaskMulti−Or and/or

TaskMulti−And are abstracted by Single-Abs-Agg-2 and/or Single-Abs-Agg-3 (line

10). Then we examine the transformed fragment for adjacent abstracted nodes. If there

exist adjacent abstracted nodes, they are aggregated as single abstracted nodes (line

11). Lastly, the transformed result is returned (line 12).

94

4.3 Task Abstraction and Aggregation

4.3.2.2 Handling Basic BP Fragments

We use function AbsBasicFrag to deal with the Basic BP Fragments of role-enriched

BP. The input is a Basic BP Fragment, and the output is the transformed Basic BP

Fragment.

In order to abstract and aggregate the tasks in a Basic BP Fragment BFrag, the

first step is to identify the control flow pattern cfPattern and the related elements in

cfEleSet of BFrag (line 2). We use different methods to the deal with the BFrag

according to different cfPattern.

If cfPattern is Strict-order Sequential, Free-order Sequential, Strict-loop,

or Free-loop (line 3), we check whether BFrag contains MultiRoleTask. If no

MultiRoleTask is included, BFrag is transformed by using corresponding elementary

operations (line 4 and line 5); if there exist MultiRoleTasks in BFrag, each task in

cfEleSet of BFrag is transformed by using Single-Abs-Agg-1 or Single-Abs-Agg-

2, and BFrag′ is the result. Then BFrag′ is transformed using TransformByTree as

BFrag′′. After that, we check the adjacent abstracted nodes in BFrag′′ and aggregate

them as single abstracted nodes (from line 6 to line 9).

If cfPattern is Parallel-A, Parallel-B, Parallel-C, or Conditional (line 10),

we check again whether BFrag contains MultiRoleTask.

� When no MultiRoleTask is included (line 11), we check if BFrag can be trans-

formed directly by using elementary operations. If suitable elementaryOperation

can apply, BFrag is transformed accordingly as BFrag′′ (line 12 and line 13); if

no suitable elementary operation can apply, we only abstract single tasks on each

branch of BFrag using Single-Abs-Agg-1 or Single-Abs-Agg-2 and BFrag′′

is the result. Then we check the adjacent abstracted nodes on each branch of

BFrag′′ and aggregate them as single abstracted nodes (from line 14 to line 18),

the result is named as BFrag′′.

� When MultiRoleTask(s) is/are included, single tasks on each branch of BFrag is

transformed by using Single-Abs-Agg-1 or Single-Abs-Agg-2 and BFrag′ is

95

4. TASK ABSTRACTION AND AGGREGATION

Algorithm 2: Function for Handling Basic BP Fragment

1 Function AbsBasicFrag(BasicFrag BFrag)

2 identify cfPattern and cfEleSet of BFrag;

3 if cfPattern = StrictSeq,FreeSeq,StrictLoop, or FreeLoop then

4 if cfEleSet does not contain MultiRoleTask then

5 BFrag′′ = transform (BFrag, Sequential−Abs−Agg − 1/− 2

or Loop−Abs−Agg − 1/− 2);

6 else if cfEleSet contains MultiRoleTask then

7 BFrag′ = transform (BFrag, Single−Abs−Agg − 1/− 2);

8 BFrag′′ = TransformWithTree (BFrag′);

9 examine and combine adjacent abstracted nodes in BFrag′′;

10 else if cfPattern = ParallelA, ParallelB, ParallelC, or Conditional then

11 if cfEleSet does not contain MultiRoleTask then

12 if cfPattern matches elementaryOperation then

13 BFrag′′ = transform (BFrag, elementaryOperation);

14 else

15 foreach branch ∈ BFrag do

16 branch′ = transform (branch,

Single−Abs−Agg − 1/− 2);

17 BFrag′′ is the result;

18 examine and combine adjacent abstracted nodes in BFrag′′;

19 else if cfEleSet contains MultiRoleTask then

20 foreach branch ∈ BFrag do

21 branch′ = transform (branch, Single−Abs−Agg − 1/− 2);

22 BFrag′ is the result;

23 BFrag′′ = TransformWithTree (BFrag′);

24 examine and combine adjacent abstracted nodes in BFrag′′;

25 return the transformed fragment BFrag′′;

96

4.3 Task Abstraction and Aggregation

the result. Then BFrag′ is transformed by using TransformByTree and BFrag′′

is returned. After that, we check the adjacent abstracted nodes in BFrag′′ and

aggregate them into single abstracted nodes (from line 19 to line 24).

Finally, the fragment BFrag′′ is returned as the result (line 25).

In the above algorithm, the function TransformByTree is used to transform a Se-

quential fragment containing the Task-Abs Blocks in (i) of Figure 4.17 to a Condi-

tional fragment using tree graph. The input of this function is a control flow pattern

Strict-order Sequential or Free-order Sequential, where the element set contains:

(1) at least one Task-Abs Block, (2) zero to many tasks performed by r1, and (3) zero

to many abstracted nodes. The output of this function is a Conditional fragment.

We use an example as shown in Figure 4.18 to demonstrate the transformation.

The first step is to generate a tree diagram for the input block. In this step, single

tasks and abstracted nodes are added onto the tree graph (TaskB and ABSDE); each

Task-Abs Block is separated as individual branches on the tree graph (TaskA-ABSDE

block and TaskC-ABSC block). The second step is to transform the tree graph to a

Conditional fragment. In this step, each path in the tree graph is transformed as

a branch of the Conditional fragment. For example in (b) of Figure 4.18, the path

TaskA-TaskB-ABSC-ABSDE is transformed as one branch containing TaskA, TaskB,

ABSC , ABSDE in Conditional fragment.

4.3.2.3 Abstracting and Aggregating Tasks in Role-enriched BP

In this section, we introduce Algorithm 3 for task abstraction and aggregation. The

input is a role-enriched BP, and the output is an abstracted and aggregated BP. This

algorithm is realized by using a recursive function BPAbsAgg, which iteratively calls

itself. In the recursive way, each granularity level of the role-enriched BP is reached,

ranging from coarsest granularity level (the role-enriched BP itself) to the finest gran-

ularity level (the Basic BP Fragments). In doing so, tasks on each granularity level are

dealt with by using functions AbsComplexFrag and AbsBasicFrag.

97

4. TASK ABSTRACTION AND AGGREGATION

r1

A

A

r1

C

C

r1

B DE

r1

A

A

r1

B

r1
B

r1

C

C

r1

C

C

r1

A

A

r1

B

r1

B

r1

C

C

r1

C

C

r1

A
r1

B

A
r1

B

condition

(c) Output

(a) Input

(b) Tree Diagram

DE

DE

DE

DE

DE

DE

DE

DE

Figure 4.18: Transforming Task-Abs Block Using Tree Graph

98

4.3 Task Abstraction and Aggregation

Algorithm 3: Task Abstraction and Aggregation

Input : RoleEnrichedBP

Output: AABP

1 AABP = ∅;
2 BPAbsAgg(RoleEnrichedBP);

3 return AABP ;

4 Function BPAbsAgg(RoleEnrichedBP RoleEnBP)

5 RoleEnBP ′ = AbsComplexFrag(RoleEnBP);

6 if AABP == ∅ then

7 add RoleEnBP ′ to AABP ;

8 else

9 update RoleEnBP in AABP with RoleEnBP ′;

10 identify cfElementSet of RoleEnBP ′;

11 foreach element ∈ cfElementSet do

12 if element is BasicBPFragment then

13 element′ = AbsBasicFrag(element);

14 update element in AABP with element′;

15 else

16 BPAbsAgg(element);

99

4. TASK ABSTRACTION AND AGGREGATION

When a role-enriched BP RoleEnrichedBP is input into this recursive function,

function AbsComplexFrag is used to deal with the elements on the coarsest granularity

level of RoleEnrichedBP (line 4). In case the input RoleEnrichedBP has only one

granularity level, where the elements on this level equal to those on the finest level,

the function AbsComplexFrag deals with this RoleEnrichedBP in the same way as

the function AbsBasicFrag does. After handled by AbsComplexFrag, the handled

RoleEnrichedBP ′ is copied onto the initialized AABP (line 6 and line 7). Then the

element set cfElementSet on the coarsest level of RoleEnrichedBP ′ is identified (line

10) to deal with the tasks on a finer level L1. Till this step, two possible results exist:

(1) if L1 is the finest level, the function AbsComplexFrag is used to deal with the tasks

on this level L1, and the dealt result replaces the counter parts in AABP ; (2) if L1 is not

the finest level, the RoleEnrichedBP ′ is re-input into the recursive function BPAbsAgg

to handle the finer but non-finest level (line 15 and line 16). From the second iteration,

the result of the function AbsComplexFrag in this iteration continuously replace the

result in AABP of last iteration. The recursive function BPAbsAgg finalizes after all

the tasks on the finest level are handled. Then the final abstracted and aggregated BP

AABP is derived and returned (line 3).

4.3.2.4 Go-through Example of Task Abstraction and Aggregation

Figure 4.19 shows the major steps of the algorithm when going through an example

business process with a complex structure. (a) Figure 4.19 shows the a role-enriched

BP as the input of the algorithm. At Step 1 ((b) Figure 4.19), the control flow pattern

Free-order Sequential at the coarsest granularity level of the process is identified,

and TaskA, TaskR, TaskS are abstracted/aggregated by applying elementary opera-

tions. At Step 2 ((c) Figure 4.19), the control flow pattern Conditional at the middle

granularity level of the process is identified. TaskC , TaskG and TaskI , TaskQ are ab-

stracted/aggregated separately. At Step 3 ((d) Figure 4.19), the elementary operations

Loop-Abs-Agg-1, Parallel-B-Abs-Agg-1, Alternative-2 of Parallel-A-Abs-Agg-2 are ap-

plied on Basic BP Fragments as Loop with TaskD,E,F , Parallel-B with TaskJ,K,L,

100

4.3 Task Abstraction and Aggregation

Sequential-Abs-Agg-2 (A, R)Single-Abs-Agg-3 (S)Applied Elementary Operations:

(b)

(a) Role-enriched Business Process

r2

A

r1

B C

r1

D

r2

E

r3

F

r4

R S

r3

G

r1

H

r2

I

r2

J

r4

K
r1

Lr1

M

r3

N

r1

O

r2

P

r1 ^ r3

r4

Q

r1 r2

Single-Abs-Agg-2 (C) Sequential-Abs-Agg-2 (G, I) Single-Abs-Agg-1 (Q)

(C)

Applied Elementary Operations: Loop-Abs-Agg-1 (E, F)

Parallel-A-Abs-Agg-2 Alt-2 (N, P)

Parallel-B-Abs-Agg-1 (J, K)

Single-Abs-Agg-1 (NP, Q)

(d)

Applied Elementary Operations:

Applied Elementary Operations

r2

A

r1

B C

r1

D

r2

E

r3

F

r4

R S

r3

G

r1

H

r2

I

r2

J

r4

K
r1

Lr1

M

r3

N

r1

O

r2

P

r1 ^ r3

r4

Q

r1 r2

r1

B C

r1

D

r2

E

r3

F

S

r3

G

r1

H

r2

I

r2

J

r4

K
r1

Lr1

M

r3

N

r1

O

r2

P

r1

r4

Q

r1 r2

AR

r1

B

r1

D

r2

E

r3

F

S
GI

r1

H

r2

J

r4

K

r1

Lr1

M

r3

N

r1

O

r2

P

r1

Q

AR

r1

C

C

r1

B

r1

D
EF

S
GI

r1

H

JK

r1

Lr1

M

r1

O

r1

NPQ

AR

r1

C

C

(e) Abstracted and Aggregated Business Process

Figure 4.19: Task Abstraction and Aggregation of a BP with a Complex Structure

101

4. TASK ABSTRACTION AND AGGREGATION

Parallel-A with TaskM,N,O,P respectively. Alternative-2 of Parallel-A-Abs-Agg-2 gen-

erates an abstracted node AbsNP , that is further aggregated with AbsQ as AbsNPQ by

using Single-Abs-Agg-1. (e) Figure 4.19 shows the AABP as the task abstraction and

aggregation result.

4.4 Analysis of Abstracted and Aggregated Business Pro-

cesses

This section discusses a series of BP structural properties regarding the order and

dependency between tasks of a BP. We use them to examine whether the AABP is

consistent with the Role-enriched BP. The “consistency” means that the ordering of

tasks from a role-enriched BP must be kept in the AABP, and no additional ordering

between tasks are introduced in the AABP. In the context of change management of a

BP, different change solutions for the BP could be judged based on the examination of

these properties.

4.4.1 Order Between Tasks

Based on the definitions of role-enriched BP model and AABP model, we introduce

two functions:

(1) A role mapping function is defined as RoleMap: T → RT , where RT =
∪n

i=1Rti ,

i = 1, 2, ..., n. It is used to obtain the set of roles Rt participating in task t.

(2) According to the elementary operations in Subsection 4.3.1, an abstraction

mapping function AbsMap is defined as:

AbsMap(t) =

{tr} if RoleMap(t) = {r}
{absr} if RoleMap(t) + {r}
{tr, absr} if RoleMap(t) % {r}

With the abstraction mapping function, the corresponding node in the AABP for

each task of the Role-enriched BP can be found out.

Here we use three notations to represent the path between two tasks in a role-

enriched BP bp: t1 ≫ t2 denotes that there exists one path of Strict-order Sequential

102

4.4 Analysis of Abstracted and Aggregated Business Processes

in bp from t1 to t2; t1 ↔ t2 denotes that there exists one path of Free-order Sequential

in bp from t1 to t2; and t1|t2 denotes that there exists no path between t1 and t2 in bp.

Usually, two tasks, locating on different branches of a Parallel or Conditional pattern,

have no path between each other. These notations are also used to express the path

between two nodes in an AABP for user role r, where each node can be a task tr, or

an abstracted node absr. Based on the above functions and notations, the definitions

of Order-Keeping, and Strict-Order-Keeping are built up.

Definition 3: Order-Keeping. Given a role-enriched BP bp with the task set

T , and the AABP aabpr for user role r ∈ R, aabpr is defined as Order-Keeping, iff

∀t1, t2 ∈ T , where t1 ̸= t2 and

1. t1 ≫ t2, then ¬(nr2 ≫ nr1), where n
r
1 = AbsMap(t1) and n

r
2 = AbsMap(t2); or

2. t1 ↔ t2, then ¬(nr1|nr2), where nr1 = AbsMap(t1) and n
r
2 = AbsMap(t2).

The property of Order-Keeping describes that (1) if there exist two tasks t1, t2

which are Strict-order Sequential in a role-enriched BP, and t1 is precedent of t2,

then in AABP, the abstracted node nr2 (from t2) cannot be precedent of the abstracted

node nr1 (from t1); (2) if there exist two tasks t1, t2 which are Free-order Sequential

in a role-enriched BP, then the corresponding nodes nr1, n
r
2 in AABP must be Free-

order Sequential or Strict-order Sequential. This is a loose constraint of orders

between two nodes. Next, we specify a more strict constraint of orders between two

nodes.

Definition 4: Strict-Order-Keeping. Given a role-enriched BP bp with the task

set T , and the AABP aabpr for user role r ∈ R, aabpr is defined as Strict-Order-Keeping,

iff ∀t1, t2 ∈ T , where t1 ̸= t2 and

1. t1 ≫ t2, then nr1 ≫ nr2, where n
r
1 = AbsMap(t1) and n

r
2 = AbsMap(t2); or

2. t1 ↔ t2, then nr1 ↔ nr2, where n
r
1 = AbsMap(t1) and n

r
2 = AbsMap(t2); or

3. t1|t2, then nr1|nr2, where nr1 = AbsMap(t1) and n
r
2 = AbsMap(t2).

103

4. TASK ABSTRACTION AND AGGREGATION

The property of Strict-Order-Keeping describes that for any two tasks t1, t2 in a

role-enriched BP, the order between the corresponding nodes nr1, n
r
2 must be kept in

AABP. Definition 3 and Definition 4 provide the order constraints between two nodes at

different degrees. The consistency between a role-enriched BP and the AABP requires

that at least one of these two properties is satisfied.

4.4.2 Dependency Between Tasks

According to the definitions of role-enriched BP model and AABP model, the notions

of dependency and dependency set are discussed in this subsection.

In a role-enriched BP, a dependency, consisting of two adjacent tasks, reflects the

control flow relation between the two adjacent tasks. In an AABP, a dependency,

consisting of two nodes, reflects the control flow relation between the two adjacent

nodes, each of which can be a task, an abstracted node abstracted from one task in

the role-enriched BP, or an abstracted node aggregated from multiple tasks in the

role-enriched BP.

The dependency between two tasks A and B is annotated as ⌊A,B⌉; and the the

dependency between a task A and an abstracted node BC is annotated as ⌊A,BC⌉.

Note that there may exist gateways between the two adjacent tasks/nodes (see the

abstracted node ABD and task C in the AABP fragment of the Parallel-A-Abs-

Agg-A Alt-1 in Subsection 4.3.1). We represent the dependency between these two

nodes ABD and C as ⌊ABD,C⌉ even there exists a Parallel-A Entry Gateway between

two nodes ABD and C.

The dependency set of role-enriched BP is Υbp = {⌊t1, t2⌉ ∈ T×T |(t1, t2 are adjacent)∧

(t1 ≫ t2 ∨ t1 ↔ t2)}. The dependency set of an AABP is Υaabpr = {⌊nr1, nr2⌉ ∈

N r
α ×N r

α|(N r
α = T r ∪ABSr ∪AGGRr)∧ (nr1, n

r
2 are adjacent)∧ (nr1 ≫ nr2 ∨nr1 ↔ nr2)}.

For the Parallel-B-Abs-Agg-1 (see Subsection 4.3.1), we can get Υbp = {⌊A,B⌉,

⌊C,D⌉, ⌊D,E⌉}, and Υaabpr = {⌊A,B⌉, ⌊CD,E⌉}.

The comparison between Υbp and Υaabpr shows how the dependency sets are influ-

enced by task abstraction and aggregation. The dependency ⌊C,D⌉ in Υbp disappears

104

4.4 Analysis of Abstracted and Aggregated Business Processes

in Υaabpr ; the dependency ⌊D,E⌉ in Υbp turns into ⌊CD,E⌉ in Υaabpr ; and the depen-

dency ⌊A,B⌉ of Υbp is reserved in Υaabpr . After examining the elementary operations

in Subsection 4.3.1, we classify four properties associated with the dependency between

tasks as follows.

Definition 5: Dependency-Keeping. Given a role-enriched BP bp with its

dependency set Υbp, and the AABP aabpr for user role r ∈ R with its dependency set

Υaabpr , aabp
r is Dependency-Keeping iff Υbp = Υaabpr .

Definition 6: Dependency-Removing. Given a role-enriched BP bp with its

dependency set Υbp, and the AABP aabpr for user role r ∈ R with its dependency set

Υaabpr , aabp
r is Dependency-Removing iff Υbp ' Υaabpr .

Definition 7: Dependency-Increasing. Given a role-enriched BP bp with its

dependency set Υbp, and the AABP aabpr for user role r ∈ R with its dependency set

Υaabpr , aabp
r is Dependency-Increasing iff Υbp & Υaabpr .

Definition 8: Dependency-Updating. Given a role-enriched BP bp with its

dependency set Υbp, and the AABP aabpr for user role r ∈ R with its dependency set

Υaabpr , aabp
r is Dependency-Updating iff in Υaabpr , there exists at least one depen-

dency in which one node is an abstracted node, and this abstracted node is aggregated

from multiple tasks in bp.

4.4.3 Property Analysis of Elementary Operations

Table 4.1 provides a summary for property analysis on elementary operation in Sub-

section 4.3.1. Parallel-A-Abs-Agg-1 Alt-1, Parallel-A-Abs-Agg-2 Alt-1, and

Parallel-A-Abs-Agg-4 are Order-Keeping, and the rest elementary operations are

Strict-Order-Keeping. Single-Abs-Agg-1 and Single-Abs-Agg-3 is Dependency-

Keeping; Single-Abs-Agg-2 is Dependency-Increasing; Parallel-A-Abs-Agg-3, Parallel-

B-Abs-Agg-2, Parallel-C-Abs-Agg-2, and

Conditional-Abs-Agg-1 are Dependency-Removing; the rest of the elementary op-

erations are Dependency-Updating.

105

4. TASK ABSTRACTION AND AGGREGATION

Table 4.1: Overview of Properties for Elementary Operations

Properties
S
tr
ic
t-
O
rd
er
-K

ee
p
in
g

O
rd
er
-K

ee
p
in
g

D
ep

en
d
en

cy
-K

ee
p
in
g

D
ep

en
d
en

cy
-R

em
ov

in
g

D
ep

en
d
en

cy
-I
n
cr
ea
si
n
g

D
ep

en
d
en

cy
-U

p
d
a
ti
n
g

Single-Abs-Agg-1 + + + - - -

Single-Abs-Agg-2 + + - - + -

Single-Abs-Agg-3 + + + - - -

Sequential-Abs-Agg-1 + + - - - +

Sequential-Abs-Agg-2 + + - - - +

Parallel-A-Abs-Agg-1 Alt-1 - + - - - +

Parallel-A-Abs-Agg-1 Alt-2 + + - - - +

Parallel-A-Abs-Agg-2 Alt-1 - + - - - +

Parallel-A-Abs-Agg-2 Alt-2 + + - - - +

Parallel-A-Abs-Agg-3 + + - + - -

Parallel-A-Abs-Agg-4 - + - - - +

Parallel-B-Abs-Agg-1 + + - - - +

Parallel-B-Abs-Agg-2 + + - + - -

Parallel-B-Abs-Agg-3 + + - - - +

Parallel-C-Abs-Agg-1 + + - - - +

Parallel-C-Abs-Agg-2 + + - + - -

Parallel-C-Abs-Agg-3 + + - - - +

Conditional-Abs-Agg-1 + + - + - -

Loop-Abs-Agg-1 + + - - - +

Loop-Abs-Agg-2 + + - - - +

106

4.4 Analysis of Abstracted and Aggregated Business Processes

The following theorem is about the accompanying relation between the Order-

Keeping property and the Dependency-Updating property of an AABP. Theorem 1:

Iff an AABP has Order-Keeping property but has no Strict-Order-Keeping property,

Then the AABP has Dependency-Updating property.

Proof Let bp be a role-enriched BP with the task set T , and aabpr be the AABP for user

role r ∈ R, and aabpr has the Order-Keeping property. There are three elementary

operations with Order-Keeping property and without Strict-Order-Keeping property

(see Table 4.1). These operations are Parallel-A-Abs-Agg-1 Alt-1, Parallel-A-

Abs-Agg-2 Alt-1, and Parallel-A-Abs-Agg-4. On each branch of the Parallel-A

pattern, there are some tasks in which r does not participate. All the tasks not involving

r are aggregated as one abstracted node, and this node is shifted out of the Parallel-

A pattern. According to Definition 8: Dependency-Updating, an AABP as the

output of anyone of these three operations has the Dependency-Updating property.

Thus the claim holds. � Theorem 2 Let aabpr be an AABP for user role r ∈ R,

� iff aabpr is Dependency-Keeping, then aabpr is Strict-Order-Keeping;

� iff aabpr is Dependency-Increasing, then aabpr is Strict-Order-Keeping;

� iff aabpr is Dependency-Removing, then aabpr is Strict-Order-Keeping.

Proof Let bp be a role-enriched BP with the task set T , and aabpr be an AABP for

user role r ∈ R,

(1) aabpr is Dependency-Keeping. Then the dependency set Υbp = Υaabpr . For any

two tasks t1 and t2 in bp, there always exists at least one path from t1 to t2 in bp, and

this path is Strict-order Sequential and/or Free-order Sequential. As Υbp = Υaabpr , the

path from tr1 to tr2 in aabpr is reserved. Therefore, the first claim holds; (2) aabpr is

Dependency-Increasing. In all the elementary operations in Subsection 4.3.1, the only

reason causing Dependency-Increasing is in bp, there exists at least one task which can

be performed by either r or other user role. If there are three tasks t3, t4, t5, t4 is

performed by user role r or r′, t3 is before t4 and t5 is after t4. Corresponding to t4 in

bp, the aabpr has a Conditional pattern containing t4 and t′4 (see Single-Abs-Agg-2 in

107

4. TASK ABSTRACTION AND AGGREGATION

Subsection 4.3.1). t′4 is an abstracted node when the task is performed by a user role r′.

Comparing to Υbp, the newly increased dependency in Υaabpr are ⌊t3, t′4⌉ and ⌊t′4, t5⌉.

And a path from t3 via t′4 to t5 is generated in aabpr. This increased dependency does

not affect the orders among t3, t4, t5 in aabpr. Therefore, the second claim holds; (3)

aabpr is Dependency-Removing. In all the elementary operations in Subsection 4.3.1,

the only reason causing Dependency-Removing is that multiple branches of a pattern

Parallel-A, Parallel-B, Parallel-C, or Conditional are abstracted as one single

abstracted node. This abstraction causes associated dependencies in Υbp disappear in

Υaabpr . For any two tasks t6 and t7 in bp, there exists at least one path from t6 to t7.

(a) If both t6 and t7 are abstracted, the path(s) from t′6 to t′7 will not appear in aabpr;

(b) if both t6 and t7 are not abstracted, the path(s) from t′6 to t′7 will be appear in

aabpr; (c) if t6 is not abstracted and t7 is abstracted, t6 and t7 must be in different

branches of the pattern and there is no path from t6 to t7 in bp. In aabpr, t′7 and other

tasks except t′6 are aggregated as a single abstracted node, and this abstracted node

forms a single branch. Thus there is no path from t′6 to t′7 in aabpr. Therefore, the

third claim holds. �

4.5 Scenario Example

In this section, we use the scenario example introduced in Figure 1.4 of Section 1.2

to demonstrate the derived AABPs for three user roles personnel officer, referee,

and applicant participating in the recruitment process.

(a) Figure 4.20 shows the AABP for the user role personnel officer. The tasks

for the personnel officer are all kept, and the tasks for the applicant/referee are

abstracted. In the abstraction and aggregation, the tasks Submit Application and

Writing Reference Letter are abstracted as ABS1; the task Confirm Interview is

abstracted as ABS2).

(b) Figure 4.20 shows the AABP for the user role for referee. The tasks for the

referee are all kept, and the tasks for the personnel officerapplicant are ab-

stracted. In the abstraction and aggregation, the tasks Announce A Job and Submit

108

4.5 Scenario Example

job
description

Announce A Job

Personnel Officer

date & time

Arrange Interview

venue

Personnel Officer

Review Reference Letter

Personnel Officer

reference letter reference evaluation report

interview report

Interview

Personnel Officer

Write

Write Write

Read Write

Write

Make Decision

Personnel Officer

interview
report

approval
letter

rejection
reason

Read Read

Write

Write

reference
evaluation

report

personal
info

Read

approve ?
Write

ABS1

ABS2

job description

Submit Application

Applicant

personal info

Confirm Interview

Applicant

venue conformationdate &
time

WriteRead
Read

Read Write

reference letter

Writing Reference Letter
Write

Referee

ABS3 ABS4

ABS5 ABS6

ABS7

ABS9

ABS8

(a) AABP for Personnel Officer

(b) AABP for Referee

(c) AABP for Applicant

Figure 4.20: AABPs for User Roles Participating in Recruitment Process

109

4. TASK ABSTRACTION AND AGGREGATION

Application are abstracted asABS3; the tasks Arrange Interview, Confirm Interview,

Review Reference Letter, Interview, Make Decision are abstracted as ABS4.

(c) Figure 4.20 shows the AABP for the user role for applicant. The tasks for the

applicant are all kept, and the tasks for the personnel officer

textttreferee are abstracted. In the abstraction and aggregation, the task Announce

A Job is abstracted as ABS5; the task Writing Reference Letter is abstracted as

ABS6; the task Arrange Interview is abstracted asABS7; the task Review Reference

Letter is abstracted as ABS8; the tasks Interview and Make Decision are abstracted

as ABS9.

4.6 Summary and Discussion

This section proposes an approach of task abstraction and aggregation in BPs based

on a role-enriched BP model. This is the first step of our proposed UI derivation

approach. The approach of task abstraction and aggregation can be used to support

analysing, developing, and updating software components such as user interfaces related

to different user roles. According to these patterns identified from the role-enriched

business process, a series of elementary operations are coined as cornerstones of the

algorithm for task abstraction and aggregation. The structural consistency between the

role-enriched BP and the AABP is illustrated by providing details of the analysis on

both the orders and dependencies between/among tasks. As a future research direction,

the change management of BPs and AABPs can be studied in a unified framework.

Note that there exist tasks which do not need to have user interfaces. In all the

proposed elementary operations, the tasks without UIs are treated the same as the tasks

performed by other roles. Therefore, the tasks without UIs are abstracted/aggregated.

110

Chapter 5

Data Relationship Extraction

In this chapter, we discuss the data relationship extraction, which is the second step of

our UI derivation approach as shown in Figure 1.5. Section 5.1 provides an introduction

of this chapter. Section 5.2 introduces the data relationships. Two subsections are

included as tree graph that specifies the data relationships, and JSON Schema that

records the data relationships. Section 5.3 discusses the approach of data relationship

extraction. In this section, two aspects are included as the elementary operations and

algorithms. Section 5.4 introduces a scenario example. Section 5.5 provides a summary

and discussion on this chapter.

5.1 Introduction

After the AABP is generated for a user role, the data relationships, including operated

data and data operation flow, are extracted from the AABP for this specific user role.

With the extracted data relationships, the UI ligic for this user role can be derived.

We use tree graph to represent the data relationships. And the JSON Strings are used

to record all the details represented in the tree graph.

111

5. DATA RELATIONSHIP EXTRACTION

CDEAINFOAattrA
(c) CDE Node(b) Information Node(a) Attribute Node (d) Virtual Node

Figure 5.1: Nodes in a Tree Graph

5.2 Data Relationships

5.2.1 Tree Graph

A tree graph is a graph consisting of a collection of interrelated tree graph fragments.

Each tree graph fragment comprises a set of nodes and the data relationships between

these nodes. The reason why the tree graph is used to represent the data relationship

is because the tree graph can explicitly specify a hierarchy structure, which is the

characteristics of process data. In the following, we introduce the tree graph in detail.

� ProcessStructRef is to represent the root of a tree graph. In a tree graph, there

exist one and only one ProcessStructRef.In JSON Strings, it is represented as

1 {"structRefType": "ProcessStructRef"}

� Normal StructRef is to indicate the reference of a tree graph fragment. In JSON

Strings, it is represented as

1 {"structRefType": "NormalStructRef"}

In a tree graph, there are four types of nodes (see Figure 5.1) as follows.

(1) Attribute Node is represented by ”Attr”. It refers to a data item operated in-

side a single task of an AABP. In the example of (a) Figure 5.1, the subscript represents

that the data entity represented by this attribute node is derived from attribute in

TaskA of an AABP. In JSON Strings, it is represented as

1 {"node":{
2 "nodeName": "attr_A",

3 "nodeType": "attr",

4 "preAbsOfNode": "null",

5 "postAbsOfNode": "null"

112

5.2 Data Relationships

6 }
7 }

(2) Information Node is represented by ”INFO”. It contains a piece of information

for a specific user role. In the example of (b) Figure 5.1, the subscript A indicates the

data entity represented by this information node is derived from TaskA of an AABP.

In JSON Strings, it is represented as

1 {"node":{
2 "nodeName": "INFO_A",

3 "nodeType": "info",

4 "preAbsOfNode": "null",

5 "postAbsOfNode": "null"

6 }
7 }

(3) CDE Node is represented by ”CDE”. It refers to a fragment of the tree graph. In

the example of (c) Figure 5.1, the subscript A indicates the tree graph fragment named

A. In JSON Strings, it is represented as

1 {"node":{
2 "nodeName": "CDE_A",

3 "nodeType": "cde",

4 "preAbsOfNode": "null",

5 "postAbsOfNode": "null"

6 }
7 }

(4) Virtual Node is represented by a dashed circle (see (d) Figure 5.1). It starts

a conditional data relationship pattern. In JSON Strings, the virtual node is not

represented, as we can directly represent the Conditional block using the type Con-

ditional and the related branches.

There are six data relationship patterns: Strict-order Sequential, Free-order

Sequential, Parallel-A,Conditional, Strict-Order Loop, and Free-Order Loop.

Figure 5.2 shows examples of these patterns with CDE Nodes.

113

5. DATA RELATIONSHIP EXTRACTION

CDEA CDEB CDED

(a) Strict-order Sequential

CDEA CDEB CDEC

Free-Seq

(b) Free-order Sequential

CDEA

INFOB

(d) Conditional

Strict-Seq

Branch 2
CDEA CDEB CDEC

Parallel-A

(c) Parallel-A

Branch 3Branch 2Branch 1

AbsD

AbsC

Branch 1

CDEA CDEB CDED

(e) Strict-order Loop

CDEA CDEB CDEC

Free-Loop

(f) Free-order Loop

Strict-Loop

Figure 5.2: Data Relationship Patterns

� Strict-order Sequential ((a) Figure 5.2) is represented with a dot-dash rect-

angle, a pattern name Strict-Seq on the upper left of the rectangle, and node

relationships. The node relationships are represented using an edge with two dots

on each end to connect two nodes. A diamond on one end of the line is used to

point to the following node. In JSON Strings, it is represented as

1 {"temporalRelation": "Strict_Seq",

2 "graphNodes": {
3 {"nodeName": "CDE_A", "nodeType": "cde", "

preAbsOfNode": "null", "postAbsOfNode": "

null"},
4 {"nodeName": "CDE_B", "nodeType": "cde", "

preAbsOfNode": "null", "postAbsOfNode": "

Abs_C"},
5 {"nodeName": "CDE_D", "nodeType": "cde", "

preAbsOfNode": "Abs_C", "postAbsOfNode": "

null"}
6 }
7 }

� Free-order Sequential ((b) Figure 5.2) is represented with a dot-dash rectangle,

114

5.2 Data Relationships

a pattern name Free-Seq on the upper left of the rectangle, and node relation-

ships. The node relationships are represented using a dashed edge with two dots

on each end, and the nodes are above the dashed edge. There is a diamond on

one end of the dashed edge. In JSON Strings, it is represented as

1 {"temporalRelation": "Free_Seq",

2 "graphNodes": {
3 {"nodeName": "CDE_A", "nodeType": "cde", "

preAbsOfNode": "null", "postAbsOfNode": "

null"},
4 {"nodeName": "CDE_B", "nodeType": "cde", "

preAbsOfNode": "null", "postAbsOfNode": "

null"},
5 {"nodeName": "CDE_C", "nodeType": "cde", "

preAbsOfNode": "null", "postAbsOfNode": "

null"}
6 }
7 }

� Parallel-A ((c) Figure 5.2) is represented with a dot-dash rectangle, a pattern

name Parallel-A on the upper left of the rectangle, and node relationships. The

node relationships are represented using a dashed edge with two dots on each

end, and the data entities are above the dashed edge. There is a diamond on

one end of the dashed edge. Each data entity is represented with a dot-dash

rectangle, a node inside the rectangle, and branch name above the rectangle. In

JSON Strings, it is represented as

1 {"temporalRelation": "Parallel_A",

2 "graphNodes": {
3 {"branchName": "Branch_1",

4 "branchType": "singleNode",

5 "preAbsOfBranch": "Abs_D",

6 "postAbsOfBranch": "Abs_D",

7 "branchNodes": {
8 "nodeNameInBranch": "CDE_A",

115

5. DATA RELATIONSHIP EXTRACTION

9 "nodeTypeInBranch": "cde",

10 "preAbsInBranch": "null",

11 "postAbsInBranch": "null"

12 },
13 {"branchName": "Branch_2",

14 "branchType": "singleNode",

15 "preAbsOfBranch": "Abs_D",

16 "postAbsOfBranch": "Abs_D",

17 "branchNodes": {
18 "nodeNameInBranch": "CDE_B",

19 "nodeTypeInBranch": "cde",

20 "preAbsInBranch": "null",

21 "postAbsInBranch": "null"

22 },
23 {"branchName": "Branch_3",

24 "branchType": "singleNode",

25 "preAbsOfBranch": "Abs_D",

26 "postAbsOfBranch": "Abs_D",

27 "branchNodes": {
28 "nodeNameInBranch": "CDE_C",

29 "nodeTypeInBranch": "cde",

30 "preAbsInBranch": "null",

31 "postAbsInBranch": "null"

32 }
33 }
34 }
35 }
36 }

� Conditional ((d) Figure 5.2) is represented with a Virtual Node and a set of

branches, each of which holds a data entity. Each data entity is represented with

a dot-dash rectangle, a node inside the rectangle, and branch name above the

rectangle. In JSON Strings, it is represented as

1 {"temporalRelation": "Conditional",

2 "graphNodes": {

116

5.2 Data Relationships

3 {"branchName": "Branch_1",

4 "branchType": "labelOnly",

5 "preAbsOfBranch": "null",

6 "postAbsOfBranch": "null",

7 "branchNodes": {
8 {"nodeNameInBranch": "CDE_A",

9 "nodeTypeInBranch": "cde",

10 "preAbsInBranch": "null",

11 "postAbsInBranch": "null"

12 }
13 },
14 {"branchName": "Branch_2",

15 "branchType": "Strict_Seq",

16 "preAbsOfBranch": "null",

17 "postAbsOfBranch": "null",

18 "branchNodes": {
19 {"nodeNameInBranch": "INFO_B",

20 "nodeTypeInBranch": "info",

21 "preAbsInBranch": "null",

22 "postAbsInBranch": "null"

23 }
24 }
25 }
26 }

� Strict-order Loop ((e) Figure 5.2) is represented with a dot-dash rectangle, a

pattern name Strict-Loop on the upper left of the rectangle, and node relation-

ships. The node relationships are represented by using an edge with two dots on

each end to connect two nodes. A diamond on one end of the line is used to point

to the following node. In JSON Strings, it is represented as

1 {"temporalRelation": "Strict_Loop",

2 "graphNodes": {
3 {"nodeName": "CDE_A", "nodeType": "cde", "

preAbsOfNode": "null", "postAbsOfNode": "

null"},

117

5. DATA RELATIONSHIP EXTRACTION

4 {"nodeName": "CDE_B", "nodeType": "cde", "

preAbsOfNode": "null", "postAbsOfNode": "

null"},
5 {"nodeName": "CDE_C", "nodeType": "cde", "

preAbsOfNode": "null", "postAbsOfNode": "

null"}
6 }
7 }

� Free-order Loop ((f) Figure 5.2) is represented with a dot-dash rectangle, a

pattern name Free-Loop on the upper left of the rectangle, and node relation-

ships. The node relationships are represented by using a dashed edge with two

dots on each end, and the nodes are above the dashed edge.There is a diamond

on one end of the dashed edge. In JSON Strings, it is represented as

1 {"temporalRelation": "Free_Loop",

2 "graphNodes": {
3 {"nodeName": "CDE_A", "nodeType": "cde", "

preAbsOfNode": "null", "postAbsOfNode": "

null"},
4 {"nodeName": "CDE_B", "nodeType": "cde", "

preAbsOfNode": "null", "postAbsOfNode": "

null"},
5 {"nodeName": "CDE_C", "nodeType": "cde", "

preAbsOfNode": "null", "postAbsOfNode": "

null"}
6 }
7 }

An Abs Label is used to represent control flow relations between tasks and ab-

stracted nodes in the AABP. In a tree graph, an Abs Label only turns up above a solid

edge (see AbsC in (a) Figure 5.2), or under a dashed edge (see AbsD in (c) Figure 5.2).

118

5.2 Data Relationships

5.2.2 Data Relationships Recorded using JSON Schema

In this section, we introduce the JSON Schema that represents all the details rep-

resented in the tree graph. This JSON Schema is written according to the draft v4

specification.

1 {"$schema": "http://json -schema.org/draft -04/schema #",

2 "title": "Tree Graph",

3 "type": "array",

4 "items": {
5 "title": "Tree graph fragment",

6 "description": "A ree graph fragment in tree graph",

7 "type": "object",

8 "properties": {
9 "id": {

10 "description": "The unique identifier for the

tree graph fragment",

11 "type": "integer"

12 },
13 "treeName": {
14 "description": "Name of the tree graph

fragment",

15 "type": "string"

16 },
17 "structRefType": {
18 "description": "The StructRef Type of the tree

graph fragment",

19 "type": "string",

20 "enum": ["Process StructRef", "Normal

StructRef"]

21 },
22 "temporalRelation": {
23 "description": "The type of temporal

raletaionships between the nodes within the

tree graph fragment",

24 "type": "string",

25 "enum": ["Strict_Seq", "Free_Seq", "Parallel_A

119

5. DATA RELATIONSHIP EXTRACTION

", "Conditional", "Strict_Loop", "Free_Loop

"]

26 },
27 "graphNodes": {
28 "description": "All the node in the the tree

graph fragment",

29 "type": "array",

30 "items": {
31 "oneOf": [

32 {"$ref": "#/ definitions/node"}, {"$ref
": "#/ definitions/branch"}

33]

34 },
35 "minItems": 1,

36 "uniqueItems": true

37 }
38 },
39 "required": ["nodeName", "nodeType", "structRef", "

temporalRelation", "graphNodes"]

40 },
41 "definitions": {
42 "node": {
43 "type": "object",

44 "properties": {
45 "nodeName": {"type": "string"},
46 "nodeType": {"type": {"enum": ["cde", "attr",

"info"]}},
47 "preAbsOfNode": {"type": "string"},
48 "postAbsOfNode": {"type": "string"}
49 },
50 "required": ["nodeName", "nodeType", "preAbsOfNode

", "postAbsOfNode"]

51 }
52 },
53 "definitions": {
54 "branch": {

120

5.2 Data Relationships

55 "type": "object",

56 "properties": {
57 "branchName": {"type": "string"},
58 "branchType": {"type": {"enum": ["Strict_Seq"

, "Free_Seq", "singleNode", "labelOnly"]}},
59 "preAbsOfBranch": {"type": "string"},
60 "postAbsOfBranch": {"type": "string"},
61 "branchNodes": {
62 "oneOf": [

63 {"$ref": "#/ definitions/

nodesInsideBranch"}, {"$ref": "#/

definitions/singleAbsInsideBranch"}
64]

65 }
66 },
67 "required": ["branchName", "branchType", "

preAbsOfBranch", "postAbsOfBranch", "

branchNodes"]

68 }
69 },
70 "definitions": {
71 "nodesInsideBranch":{
72 "type": "array",

73 "items": {
74 "type": "object",

75 "properties": {
76 "nodeNameInBranch": {"type": "string"},
77 "nodeTypeInBranch": {"type": {"enum": ["

cde", "attr", "info"]}},
78 "preAbsInBranch": {"type": "string"},
79 "postAbsInBranch": {"type": "string"}
80 },
81 "required": ["nodeNameInBranch", "

nodeTypeInBranch", "preAbsInBranch", "

postAbsInBranch"]

82 },

121

5. DATA RELATIONSHIP EXTRACTION

83 "minItems": 1,

84 "uniqueItems": true

85 }
86 },
87 "definitions": {
88 "singleAbsInsideBranch":{
89 "type": "object",

90 "properties": {
91 "absLabelName": {"type": "string"}
92 },
93 "required": ["absLabelName"]

94 }
95 }
96 }

5.2.3 Well-formness of Tree Graph

In this subsection, we introduce the regulations of a well-formed tree graph. These

regulations can be transformed into algorithms to check whether the data relationships

represented by JSON Strings are well formed or not.

� In a tree graph, there exists one and only one tree graph fragment, which has

Process StructRef.

� In a tree graph fragment with Process StructRef, no Attribute nodes can be

contained.

� In a tree graph fragment, the Attribute nodes must not co-exist with the INFO

nodes.

� In a tree graph fragment that does not contain CDE nodes, there must exist

Attribute nodes; there might exist INFO nodes and Virtual nodes.

122

5.3 Data Relationship Extraction

A

CDEA

Single-Data-Deriv-1

B

Single-Data-Deriv-2

AbsB

a

attra

Single-Data-Deriv-3

Figure 5.3: Elementary Operations Single-Data-Deriv-1/2/3 on Task/Abstracted Node/-

Data Item

5.3 Data Relationship Extraction

This section introduces the data relationship extraction from an AABP for a particular

user role. The data relationships are extracted for each user role involved in the role-

enriched BP. To extract the data relationships, a series of elementary operations are

specified. The algorithm for data relationship extraction is developed by utilizing these

elementary operations.

5.3.1 Elementary Operations

In this section, 21 elementary operations for data relationship extraction are specified.

Among these operations, 3 elementary operations extract the data relationships from a

task, an abstracted node and an attribute; 13 elementary operations extract the data

relationships from the control flow patterns of an AABP; and 5 elementary operations

extract the data relationships from the data operation patterns inside individual tasks

of an AABP.

5.3.1.1 Elementary Operations on Task, Abstracted Node and Data Item

of AABP

Fig.5.3 captures three types of elementary operations based on a task and abs/agg node,

respectively. And they are denoted as Single-Data-Deriv-1, Single-Data-Deriv-2,

and Single-Data-Deriv-3, respectively.

Single-Data-Deriv-1 ((a) Figure 5.3) shows how an elementary operation gener-

ates data relationships from a task in an AABP. In this situation, the task (TaskA) is

represented as a CDE node (CDEA).

123

5. DATA RELATIONSHIP EXTRACTION

A B C EF G H

CDEB CDEC CDEG

AbsD
AbsEF

Sequential-Data-Deriv-1

D

Strict-Seq

Figure 5.4: Elementary Operations Sequential-Data-Deriv-1 on Strict-order Sequential

Single-Data-Deriv-2 ((b) Figure 5.3) shows how an elementary operation gen-

erates data relationships from an abstracted node in an AABP. In this situation, the

abstracted node (ABSB) is represented as an Abs Label (AbsB).

Single-Data-Deriv-3 ((c) Figure 5.3) shows how an elementary operation gener-

ates data relationships from a data item inside a task of an AABP. In this situation,

the data item (Attributea) is represented as an Attribute Node (Attributea).

5.3.1.2 Elementary Operations on Control Flow Pattern of AABP

Sequential-Data-Deriv-1 (Figure 5.4) shows how an elementary operation generates

data relationships from a Strict-order Sequential control flow pattern in an AABP.

In this situation, this control flow pattern is inherited by the Strict-order Sequential

data relationship pattern. The tasks (TaskB, TaskC , TaskG) in the control flow pat-

tern are represented as CDE nodes (CDEB, CDEC , CDEG), and the order between

these CDE nodes inherits the order between the tasks. The abstracted nodes (ABSD,

ABSEF) between tasks are represented as Abs Labels (AbsD, AbsEF), and the Abs

Labels are placed on the edge between the CDE nodes originated from the correspond-

ing tasks. The abstracted nodes (ABSA, ABSH) at both ends of a branch are removed

away.

Sequential-Data-Deriv-2 (Figure 5.5) shows how an elementary operation gen-

erates data relationships from a Free-order Sequential control flow pattern in an

AABP. In this situation, this control flow pattern is inherited by the Free-order Se-

124

5.3 Data Relationship Extraction

A B C D

AbsC

Sequential-Data-Deriv-2

CDEBCDEA CDED

Free-Seq

Figure 5.5: Elementary Operations Sequential-Data-Deriv-2 on Free-order Sequential

quential data relationship pattern. The tasks (TaskA, TaskB, TaskD) in the control

flow pattern are represented as CDE nodes (CDEA, CDEB, CDED). The abstracted

nodes (ABSC) between tasks are represented as Abs Labels (AbsC) under the dashed

line in the data relationship pattern.

In the following, we introduce the transformations of single branches in Parallel-A,

Parallel-B and Parallel-C control flow patterns of AABPs (see Figure 5.6).

� The Transformation 1 ((a) Figure 5.6) shows how the data relationships are

extracted from a branch of Strict-order Sequential control flow pattern. And

this pattern only contains tasks. In this situation, the branch (Branchk) is

inherited by a data entity named (Branchk) that has Strict-order Sequential

data relationship pattern. The tasks (Taskk1, Taskk2, Taskk3) in the control

flow pattern are represented as CDE nodes (CDEk1, CDEk2, CDEk3), and the

order between these CDE nodes inherits the order between the tasks.

� The Transformation 2 ((b) Figure 5.6) shows how the data relationships are

extracted from a branch of Strict-order Sequential control flow pattern. And

this pattern contains tasks and abstracted nodes. In this situation, the branch

(Branchk) is inherited by a data entity named (Branchk) that has Strict-order

Sequential data relationship pattern. The tasks (Taskk1, Taskk3) in the control

flow pattern are represented as CDE nodes (CDEk1, CDEk3), and the order

between these CDE nodes inherits the order between the tasks. The abstracted

125

5. DATA RELATIONSHIP EXTRACTION

(Tasks in Strict-order)

k1 k2 k3 k4k1 k2 k3

CDEk1 CDEk2 CDEk3 CDEk1 CDEk3
Absk2

Branch k Branch k

k2k1

CDEk1 CDEk2

Branch k

k3k1 k2

Absk2

CDEk1 CDEk3

Branch k

k1

INFOk1

Branch k

Absk1

Strict-Seq Strict-Seq

Free-Seq

Free-Seq

(a) Branch Transformation 1

(Tasks + Nodes in Strict-order)

(b) Branch Transformation 2

(Tasks in Free-order)

(c) Branch Transformation 3

(Tasks + Nodes in Free-order)

(d) Branch Transformation 4

(Single node branch)

(e) Branch Transformation 5

(1) (2)

Figure 5.6: Transformations of Individual Branches from Parallel-A, B, C Control Flow

Patterns In AABP

126

5.3 Data Relationship Extraction

nodes (ABSk2) between tasks are represented as Abs Labels (Absk2), and the

Abs Labels are placed on the edge between the CDE nodes originated from the

corresponding tasks. The abstracted nodes (ABSk4) at both ends of a branch are

removed away.

� The Transformation 3 ((c) Figure 5.6) shows how the data relationships are

extracted from a branch of Free-order Sequential control flow pattern. And

this pattern only contains tasks. In this situation, the branch (Branchk) is

inherited by a data entity named (Branchk) that has Free-order Sequential

data relationship pattern. The tasks (Taskk1, Taskk2) in the control flow pattern

are represented as CDE nodes (CDEk1, CDEk2).

� The Transformation 4 ((d) Figure 5.6) shows how the data relationships are

extracted from a branch of Free-order Sequential control flow pattern. And

this pattern contains tasks and abstracted nodes. In this situation, the branch

(Branchk) is inherited by a data entity named (Branchk) that has Free-order

Sequential data relationship pattern. The tasks (Taskk1, Taskk3) in the con-

trol flow pattern pattern are represented as CDE nodes (CDEk1, CDEk3). The

abstracted nodes (ABSk2) between tasks are represented as Abs Labels (Absk2)

under the dashed line in the data relationship pattern.

� The Transformation 5 ((e) Figure 5.6) shows how the data relationships are

extracted from a branch (Branchk) that only has one abstracted node (ABSk1).

(1) if this branch is from a Parallel-A pattern, this branch is represented as

an Abs Labels (Absk1); (2) if this branch is from a Parallel-B or Parallel-B

pattern, this branch is inherited by a data entity named (Branchk), and the

abstracted node (ABSk1) on the branch is represented as an Information node

(INFOk1) in the data entity to show the execution status of of this branch.

Parallel-A-Data-Deriv-1 (Figure 5.7) shows how an elementary operation gen-

erates data relationships from a Parallel-A control flow pattern in an AABP. Each

branch of the pattern contains one or multiple tasks. In this situation, all branches of

127

5. DATA RELATIONSHIP EXTRACTION

B C

D

E

CDEB CDEC CDEECDED

Branch 1 Branch 2 Branch 3

Parallel-A-Data-Deriv-1

Parallel-A

Strict-Seq

Figure 5.7: Elementary Operations Parallel-A-Data-Deriv-1 on Parallel-A

the Parallel-A control flow pattern are inherited by the corresponding data operation

pattern. Each branch is transformed by Transformation 1.

Parallel-A-Data-Deriv-2 (Figure 5.8) shows how an elementary operation gen-

erates data relationships from a Parallel-A control flow pattern in an AABP. Each

branch of the pattern contains one or multiple tasks/abstracted nodes. In this situ-

ation, all branches of the Parallel-A control flow pattern are inherited by the cor-

responding data operation pattern. A branch containing only an abstracted node is

transformed by (1) Transformation 5; a branch containing only tasks is transformed

by Transformation 1; a branch containing tasks and abstracted nodes is transformed

by Transformation 2.

Parallel-A-Data-Deriv-3 (Figure 5.9) shows how an elementary operation gen-

erates data relationships from a Parallel-A control flow pattern in an AABP. Each

branch of the pattern contains one or multiple tasks, which have Free-order Sequen-

tial control flow pattern. In this situation, all branches of the Parallel-A control flow

pattern are inherited by the corresponding data operation pattern. Each branch is

transformed by Transformation 3.

Parallel-A-Data-Deriv-4 (Figure 5.10) shows how an elementary operation gen-

128

5.3 Data Relationship Extraction

B

D E FC

G H

CDEC CDEE CDEHCDEG

Branch 1 Branch 2

AbsB

AbsE

Parallel-A-Data-Deriv-2

Parallel-A

Strict-Seq Strict-Seq

Figure 5.8: Elementary Operations Parallel-A-Data-Deriv-2 on Parallel-A

B

D E

C

Parallel-A-Data-Deriv-3

Parallel-A

CDEB CDEC

Branch1

CDED CDEE

Branch2

Free-SeqFree-Seq

Figure 5.9: Elementary Operations Parallel-A-Data-Deriv-3 on Parallel-A

129

5. DATA RELATIONSHIP EXTRACTION

B

D E

C

F

CDED CDEF

Branch2

AbsE

Parallel-A-Data-Deriv-4

Parallel-A

CDEB CDEC

Branch1

Free-Seq Free-Seq

Figure 5.10: Elementary Operations Parallel-A-Data-Deriv-4 on Parallel-A

erates data relationships from a Parallel-A control flow pattern in an AABP. Each

branch of the pattern contains one or multiple tasks and zero or multiple abstracted

nodes which have Free-order Sequential control flow pattern. In this situation, all

branches of the Parallel-A control flow pattern are inherited by the corresponding data

operation pattern. A branch containing only tasks is transformed by Transformation

3; a branch containing tasks and abstracted nodes is transformed by Transformation

4.

Parallel-B-Data-Deriv-1 (Figure 5.11) shows how an elementary operation gen-

erates data relationships from a Parallel-B control flow pattern in an AABP. Each

branch of the pattern contains one or multiple tasks. In this situation, all branches of

the Parallel-B control flow pattern are inherited by the Conditional data operation

pattern. Each branch is transformed by Transformation 1.

Parallel-B-Data-Deriv-2 (Figure 5.12) shows how an elementary operation gen-

erates data relationships from a Parallel-B control flow pattern in an AABP. Each

branch of the pattern contains one or multiple tasks/abstracted nodes. In this situ-

ation, all branches of the Parallel-B control flow pattern are inherited by the Con-

ditional data operation pattern. A branch containing only an abstracted node is

130

5.3 Data Relationship Extraction

B C

D

E F

CDED

CDEE CDEF

Branch 2

Branch 3

CDEB CDEC

Branch 1

Parallel-B-Data-Deriv-1

Strict-Seq

Strict-Seq

Figure 5.11: Elementary Operations Parallel-B-Data-Deriv-1 on Parallel-B

B

C

G

D E F

H

CDEC CDEE

CDEG CDEH

Branch 2

Branch 3

INFOB

Branch 1

AbsF

Parallel-B-Data-Deriv-2

Strict-Seq

Strict-Seq

Figure 5.12: Elementary Operations Parallel-B-Data-Deriv-2 on Parallel-B

131

5. DATA RELATIONSHIP EXTRACTION

BB C D

E F

G H

Branch 2

Branch 3

Branch 1

CDEB CDED

AbsC

CDEF
AbsE

CDEG CDEH

Parallel-B-Data-Deriv-3

Free-Seq

Free-Seq

Free-Seq

Figure 5.13: Elementary Operations Parallel-B-Data-Deriv-3 on Parallel-B

transformed by (1) Transformation 5; a branch containing only tasks is transformed

by Transformation 1; a branch containing tasks and abstracted nodes is transformed

by Transformation 2.

Parallel-B-Data-Deriv-3 (Figure 5.13) shows how an elementary operation gen-

erates data relationships from a Parallel-B control flow pattern in an AABP. Each

branch of the pattern contains one or multiple tasks and zero or multiple abstracted

nodes, which have Free-order Sequential control flow pattern. In this situation, all

branches of the Parallel-A control flow pattern are inherited by the corresponding data

operation pattern. A branch containing only tasks is transformed by Transformation

3; a branch containing tasks and abstracted nodes is transformed by Transformation

4.

Parallel-C-Data-Deriv-1 (Figure 5.14) shows how an elementary operation gen-

erates data relationships from a Parallel-C control flow pattern in an AABP. The

Parallel-C pattern has n paths in total, and any m paths out of the n paths must

132

5.3 Data Relationship Extraction

Path 1

Path 2

Path n
1 m n

Branch 1

SG11

Branch 2

Branch

Path k

Branch i

SG12 SG1j SG1m

SG21 SG22 SG2j SG2m

SGi1 SGi2 SGij SGim

SG 1 SG 2 SG j SG m

1 k n

Parallel-C-Data-Deriv-1

Free-Seq

Free-Seq

Free-Seq

Free-Seq

Figure 5.14: Elementary Operations Parallel-C-Data-Deriv-1 on Parallel-C

133

5. DATA RELATIONSHIP EXTRACTION

condition

D E

A

CDEB CDEC

CDED CDEF

F G

B C

AbsE

Branch 2

Branch 3

Conditional-Data-Deriv-1

Strict-Seq

Strict-Seq

Branch 1

INFOA

Figure 5.15: Elementary Operations Conditional-Data-Deriv-1 on Conditional

be completed. There are five types for a path Pathk: (1) a Strict-order Sequential

path only containing tasks, (2) a Strict-order Sequential path containing tasks and

abstracted nodes, (3) a Free-order Sequential path only containing tasks, (4) a Free-

order Sequential path containing tasks and abstracted nodes, (5) a path containing

a single abstracted node.

The transformation of Parallel-C control flow pattern comprises three steps. The

first step is to transform each path Pathk into a segment SGk using the corresponding

branch transformation in Figure 5.6. The second step is to build up the Free-order Se-

quential pattern inside each Branch block {Branchi|1 ≤ i ≤ Cm
n } using the segments

{SGk|1 ≤ k ≤ n}. Each Blocki containsm segments notated as SGi1, SGi2,..., SGij ,...,

SGim, which represents a possible way to select m segments from {SGk|1 ≤ k ≤ n}.

The third step is that each Branch block Branchi follows the virtual node.

Conditional-Data-Deriv-1 in Figure 5.15 shows how an elementary operation

generates data relationships from a Conditional control flow pattern in an AABP.

Each branch of the Conditional control flow pattern is inherited by the corresponding

data relationship pattern. For a branch, there are rules: (1) If it is composed of

134

5.3 Data Relationship Extraction

condition

B C D E F

CDEC CDED
AbsE

CDEF

Loop-Data-Deriv-1

Strict-Loop

Figure 5.16: Elementary Operations Loop-Data-Deriv-1 on Loop

only one abstracted node (AbsNodeA), an Information Node (INFOA) is used to

represent the execution status of this branch. (2) If a branch is composed of only

tasks, CDE Nodes (CDEB and CDEC) are used to represent these tasks (TaskB and

TaskC). (3) If a branch is composed of both tasks and abstracted nodes, a CDE Node

is used to represent a task; an Abs Label(AbsE) is used to represent an abstracted

node (AbsNodeE) between tasks; and an abstracted node (AbsNodeG) at one end of a

branch is removed away.

Loop-Data-Deriv-1 (Figure 5.16) shows how an elementary operation generates

data relationships from a Loop control flow pattern in an AABP. In this situation, this

control flow pattern is inherited by the Strict-order Loop data relationship pattern.

The tasks (TaskC , TaskD, TaskF) in the control flow pattern pattern are represented

as CDE nodes (CDEC , CDED, CDEF), and the order between these CDE nodes

inherits the order between the tasks. The abstracted nodes (ABSE) between tasks are

represented as Abs Labels (AbsE), and the Abs Labels are placed on the edge between

the CDE nodes originated from the corresponding tasks. The abstracted nodes (ABSB)

at both ends of a branch are removed away.

Loop-Data-Deriv-2 (Figure 5.17) shows how an elementary operation generates

data relationships from a Loop control flow pattern in an AABP. All the tasks and

abstracted nodes inside this loop have Free-order Sequential pattern. In this situa-

tion, this control flow pattern is inherited by the Free-order Loop data relationship

135

5. DATA RELATIONSHIP EXTRACTION

condition

B C D E

CDEB CDEC CDEE
AbsD

Loop-Data-Deriv-2

Free-Loop

Figure 5.17: Elementary Operations Loop-Data-Deriv-2 on Loop

pattern. The tasks (TaskB, TaskC , TaskE) in the control flow pattern pattern are

represented as CDE nodes (CDEB, CDEC , CDEE). The abstracted nodes (ABSD)

between tasks are represented as Abs Labels (AbsD) under the dashed line in the data

relationship pattern.

5.3.1.3 Elementary Operations on Data Operation Patterns inside Indi-

vidual Tasks of AABP

Sequential-Attr-Data-Deriv-1 in Figure 5.18 shows how an elementary operation

generates data relationships from a Strict-order Sequential data operation pattern

inside a task of an AABP. In this situation, this data operation pattern is inherited by

the Strict-order Sequential data relationship pattern. The data items (DIa, DIb,

DIc) in the data operation pattern are represented as attribute nodes (attra, attrb,

attrc), and the order between these attribute nodes inherits the order between the data

items.

Sequential-Attr-Data-Deriv-2 in Figure 5.18 shows how an elementary opera-

tion generates data relationships from a Free-order Sequential data operation pat-

tern pattern inside a task of an AABP. In this situation, this data operation pattern

is inherited by the Free-order Sequential data relationship pattern. The data items

(DIa, DIb, DIc) in the data operation pattern are represented as attribute nodes (attra,

attrb, attrc).

136

5.3 Data Relationship Extraction

a b c a b c

attra attrb attrc
attra attrb attrc

Sequential-Attr-Data-Deriv-1 Sequential-Attr-Data-Deriv-2

b c

d

Branch 1

Branch 2

attrb attrc

attrd

Conditional-Attr-Data-Deriv-1

condition

b c
condition

b c

attrb attrc attrb attrc

Loop-Attr-Data-Deriv-1 Loop-Attr-Data-Deriv-2

Free-SeqStrict-Seq

Strict-Seq

Strict-Loop Free-Loop

Figure 5.18: Elementary Operations on Data Operation Patterns inside Individual Tasks

of AABP

137

5. DATA RELATIONSHIP EXTRACTION

Conditional-Attr-Data-Deriv-1 in Figure 5.18 shows how an elementary opera-

tion generates data relationships from a Conditional data operation pattern inside a

task of an AABP. Each branch of the Conditional data operation pattern is inherited

by the corresponding data relationship pattern. The data items on each branch (DIb

and DIc on the upper branch, DId on the lower branch) is represented as attribute

nodes (DIb and DIc as attrb and attrc, DId as attrd).

Loop-Attr-Data-Deriv-1 Figure 5.18 shows how an elementary operation gen-

erates data relationships from a Loop data operation pattern in an AABP. In this

situation, this data operation pattern is inherited by the Strict-order Loop data

relationship pattern. The data items (DIb, DIc) in the data operation pattern are rep-

resented as attribute nodes (attrb, attrc), and the order between these attribute nodes

inherits the order between the data items.

Loop-Attr-Data-Deriv-2 Figure 5.18 shows how an elementary operation gener-

ates data relationships from a Loop data operation pattern in an AABP. All the data

items inside this loop have Free-order Sequential pattern. In this situation, this

data operation pattern is inherited by the Free-order Loop data relationship pat-

tern. The data items (DIb, DIc) in the data operation pattern pattern are represented

as attribute nodes (attrb, attrc).

5.3.2 Algorithm for Data Relationship Extraction

In order to extract the data relationships from an AABP, the control flow patterns of

the AABP and the data operation patterns inside each individual task are identified and

elementary operations are applied accordingly. A tree graph representing the extracted

data relationships is built up by using Algorithm 4. This algorithm comprises two

functions DeriveDataRelationships that deals with the control flow relations between

tasks and abstracted nodes in a AABP, and HandleDataOperationFlowInTask that

deals with the data operation flow inside tasks of the AABP.

The function DeriveDataRelationships is utilized to extract the data relationships

from the an AABP. The input is an AABP for user role r, and the output is a tree

fragment set that specifies the data relationships extracted from the input AABP.

138

5.3 Data Relationship Extraction

Algorithm 4: Data Relationship Extraction

Input : an AABP for user role r

Output: a TreeGraph

1 Function DeriveDataRelationships(AbsAggBusinessProcess aabp)

2 TreeGraph = ∅;
3 identify cfPattern and cfElementSet at coarsest granularity level of aabp;

4 foreach cfElement in cfElementSet do

5 if cfElement is Task then

6 get data operation flow df cfElement from cfElement;

7 result = HandleDataOperationFlowInTask(df cfElement);

8 add result to TreeGraph;

9 else if cfElement is ComplexStructure then

10 cfElement = DeriveDataRelationships(cfElement);

11 transform cfElementSet to treeFragment using elementary operation

according to cfPattern;

12 if cfPattern is on the coarsest granularity level then

13 assign ProcessStructRef to treeFragment;

14 else

15 assign NormalStructRef to treeFragment;

16 add treeFragment to TreeGraph;

17 return TreeGraph;

18 Function HandleDataOperationFlowInTask(DataOperationFlow df)

19 TreeFragmentSet = ∅;
20 identify dfPattern and dfElementSet at coarsest granularity level of df ;

21 foreach dfElement in dfElementSet do

22 if dfElement is not DataItem then

23 dfElement = HandleDataOperationFlowInTask(dfElement);

24 transform dfElementSet to treeFragment′ using elementary operation

according to dfPattern;

25 assign NormalStructRef to treeFragment′;

26 add treeFragment′ to TreeFragmentSet;

27 return TreeFragmentSet;

139

5. DATA RELATIONSHIP EXTRACTION

The data relationship extraction of the input AABP is realized in a recursive way.

When an abstracted and aggregated business process AABP is input (line 1), the con-

trol flow pattern cfPattern on the coarsest granularity level of AABP and the related

elements cfElementSet constituting the cfPattern are both identified (line 3). A

tree graph TreeGraph is initialized (line 19). If an identified element cfElement in

cfElementSet is task (line 5), we find the data operation flow df cfElement from this

task cfElement (line 6). The function TransformDataFlowInTask is used to extract

the tree graph fragment set from the df cfElement (line 7), and this set is added to the

initialized TreeGraph (line 8). When cfElementSet does not contain any complex con-

trol flow structure, we transform the control flow on the coarsest granularity level of the

AABP into a tree graph fragment. The first step is to find suitable elementary opera-

tion from Subsection 5.3.1 according to the identified cfPattern. This found elementary

operation extracts the data relationships treeFragment from cfElementSet (line 11).

The second step is to assign a structure reference to the the extracted treeFragment:

if the cfPattern is on the coarsest granularity level of AABP , the ProcessStructRef

is assigned to the treeFragment (line 12 and line 13); otherwise, a NormalStructRef

is assigned to the treeFragment (line 14 and line 15). The third step is to add the

treeFragment to the TreeGraph (line 16). Till now, the data relationship extrac-

tion of the coarsest granularity level of AABP is completed. If an identified element

cfElement in cfElementSet is a complex control flow structure (line 9), we input this

cfElement into the function DeriveDataRelationships for recursive processing. The

recursively processed result cfElement from the function TransformDataFlowInTask

replaces the input cfElement (line 24). After all the complex structure are handled,

the extracted TreeGraph is returned as the output of DeriveDataRelationships (line

17).

The function TransformDataFlowInTask is adopted to extract the data relation-

ships from the data operation flow inside a task of the AABP. The input is a data

operation flow that specifies the execution flows of data items operated inside a tasks

of the AABP, and the output is a tree fragment set that specifies the extracted data

relationships.

140

5.4 Scenario Example

The data relationship extraction inside a task of the AABP is realized in a re-

cursive way. When a data operation flow df is input (line 18), the data operation

pattern dfPattern on the coarsest granularity level of df and the related elements

dfElementSet constituting the dfPattern are both identified (line 20). A set of tree

graph fragments TreeFragmentSet are also initialized (line 19). If each of identi-

fied element in dfElementSet is data item (line 21), we transform the data oper-

ation flow on the coarsest granularity level into a tree graph fragment. The first

step is to find suitable elementary operation from Subsection 5.3.1 according to the

identified dfPattern. This found elementary operation extracts the data relation-

ships treeFragment′ from dfElementSet (line 24). The second step is to assign

NormalStructRef to the extracted treeFragment′. The third step is to add the

treeFragment′ to the initialized TreeFragmentSet (line 26). Till now, the data rela-

tionship extraction of the coarsest granularity level of df is completed. If an identified

element dfElement in dfElementSet is a complex data operation flow structure (line

21 and line 22), we input this dfElement into the function TransformDataFlowInTask

for recursive processing. The recursively processed result dfElement from the function

TransformDataFlowInTask replaces the input dfElement (line 23). After all the com-

plex structure are handled, the extracted TreeFragmentSet is returned as the output

of TransformDataFlowInTask (line 27).

5.4 Scenario Example

In this section, we use the scenario example introduced in Figure 1.4 of Section 1.2 to

demonstrate the extracted data relationships for three user roles personnel officer,

referee, and applicant participating in the recruitment process.

(a) Figure 5.19 shows the data relationships for the user role personnel officer.

According to elementary operation Sequential-Data-Deriv-1 in Subsection 5.3.1,

ABS1 in (a) Figure 4.20 is inherited by label Abs1 in (a) Figure 5.19; and according

to elementary operation Parallel-A-Data-Deriv-3 in Subsection 5.3.1, ABS2 in (a)

Figure 4.20 does not appear in (a) Figure 5.19.

141

5. DATA RELATIONSHIP EXTRACTION

C
D

E
1

jo
b

 d
e

sc
ri

p
ti

o
n

A
b

s 1

W
ri
t
e

in
te

rv
ie

w
 r

e
p

o
rt

S
tr

ic
t-

S
e

q

P
ro

c
e
s
s
S

tr
u
c
tR

e
f

(a
)

D
a

ta
 R

e
la

ti
o

n
sh

ip
s

fo
r

P
e

rs
o

n
n

e
l

O
ff

ic
e

r

R
e
a
d

in
te

rv
ie

w
 r

e
p

o
rt

W
ri
t
e

C
D

E
2

C
D

E
3

C
D

E
4

P
a

ra
ll

e
l-

A

B
ra

n
ch

 1

N
o
rm

a
lS

tr
u
c
tR

e
f 1

B
ra

n
ch

 2
C

D
E

5
C

D
E

6

N
o
rm

a
lS

tr
u
c
tR

e
f 2

S
tr

ic
t-

S
e

q

N
o
rm

a
lS

tr
u
c
tR

e
f 3

F
re

e
-S

e
q

d
a

te
 &

 t
im

e
v

e
n

u
e

W
ri
t
e

W
ri
t
e

N
o
rm

a
lS

tr
u
c
tR

e
f 4

S
tr

ic
t-

S
e

q

re
fe

re
n

ce

e
v

a
lu

a
ti

o
n

re

p
o

rt
re

fe
re

n
ce

le

tt
e

r

W
ri
t
e

N
o
rm

a
lS

tr
u
c
tR

e
f 5

F
re

e
-S

e
q

R
e
a
d

R
e
a
d

re
fe

re
n

ce

e
v

a
lu

a
ti

o
n

re

p
o

rt

in
te

rv
ie

w

re
p

o
rt

B
ra

n
ch

 2

B
ra

n
ch

 1

a
p

p
ro

v
a

l
le

tt
e

r

re
je

ct
io

n

re
a

so
n

N
o
rm

a
lS

tr
u
c
tR

e
f 6

W
ri
t
e

W
ri
t
e

R
e
a
d

p
e

rs
o

n
a

l
in

fo

a
p

p
ro

v
e

 ?

W
ri
t
e

Figure 5.19: Extracted Data Relationships for Personnel Officer

142

5.4 Scenario Example

CDE1

Abs6

Strict-Seq

ProcessStructRef

(c) Data Relationships for Applicant

Read

CDE2

CDE3

Parallel-A

Branch 1

NormalStructRef1 NormalStructRef2

Strict-Seq

job
description

Write

personal
info

NormalStructRef4

Free-Seq

ReadRead

date & time venue

Abs8

NormalStructRef3

Strict-Seq

Write

conformationCDE4

CDE1

Strict-Seq

ProcessStructRef

(b) Data Relationships for Referee

NormalStructRef1

Strict-Seq

reference letter

Write

Figure 5.20: Extracted Data Relationships for Referee and Applicant

143

5. DATA RELATIONSHIP EXTRACTION

(b) Figure 5.20 shows the data relationships for the user role for referee. According

to elementary operation Sequential-Data-Deriv-1 in Subsection 5.3.1, ABS3 and

ABS4 in (b) Figure 4.20 do not appear in (b) Figure 5.20.

(c) Figure 5.20 shows the data relationships for the user role for applicant. Ac-

cording to elementary operation Sequential-Data-Deriv-1 in Subsection 5.3.1, ABS5

and ABS9 in (c) Figure 4.20 do not appear in (c) Figure 5.20, and ABS6 in (c) Figure

4.20 is inherited by label Abs6 in (c) Figure 5.19; according to elementary operation

Parallel-A-Data-Deriv-3 in Subsection 5.3.1, ABS7 in (c) Figure 4.20 does not ap-

pear in (c) Figure 5.19; according to elementary operation Parallel-A-Data-Deriv-1

in Subsection 5.3.1, ABS8 in (c) Figure 4.20 is inherited by label Abs8 in (c) Figure

5.19.

5.5 Summary and Discussion

In this chapter, the method for data relationship extraction is proposed, which is the

second step of our UI derivation approach. The data relationships are extracted from

the abstracted and aggregated business process for each user role. The data relation-

ships for a particular user role are represented as a tree graph, and we use JSON

Strings to record all the details in the tree graph. A set of elementary operations are

developed according to the data operations inside individual tasks and the identified

control flow patterns in the AABP. The algorithm for data relationship extraction is

built up with the elementary operations as cornerstones. We also use the recruitment

process as a scenario example to demonstrate the extracted data relationships for three

participating user roles. The extracted data relationships are the foundation to analyze

and derive the UI logic.

144

Chapter 6

User Interface Derivation

In this chapter, we discuss the user interface derivation, which is the third step of our UI

derivation approach as shown in Figure 1.5. Section 6.1 provides an introduction of this

chapter. Section 6.2 introduces the user interface flow. Two subsections are included

as formal specification of the user interface flow, and operation flow relations between

UI containers. Section 6.3 discusses the rules of UI derivation including constraints and

recommendations. Section 6.4 provides the algorithm for UI derivation. Section 6.5

introduces a scenario example. Section 6.6 provides a summary and discussion on this

chapter.

6.1 Introduction

After the data relationships are extracted from an AABP for a user role, the UI logic

for the user role is able to be analyzed and derived. The UI logic for a user role is

represented as a user interface flow. A UI flow comprises a set of UI containers that

holds the maximum amount of data items to be operated by a user role, and the

operation flow relations between the UI containers. In order to derive such UI flow,

a set of UI derivation rules are introduced as constraints and recommendations. The

algorithm for UI derivation is developed by utilizing these rules.

145

6. USER INTERFACE DERIVATION

6.2 User Interface Flow

The UI flow has two granularity levels: the operation flow between UI containers, and

data items included inside each UI container. Each data item needs to be specified

with the access type including read and write. A UI container holds the maximum

amount of data items to be operated by a user role. Basically, a UI container holds

a set of data items that can be directly implemented as a single web page containing

the data items at its upper limit. In this situation, the entire set of data items of the

container will be shown to end users. Alternatively, the UI designers can divide this

container into sub-containers, and implement these sub-containers as separate pages.

The UI containers can have operation flow relations as: Strict-order Sequential,

Free-order Sequential, Conditional, Strict-order Loop, or Free-order Loop.

6.2.1 Formal Specification

Specification 1: UI Container. A UI container is denoted as con = (DI,

AccessType), where:

� DI = {di1, di2, ..., din} is a finite set of data items.

� AccessType : DI → {read,write} assigns each data item an access type.

Specification 2: UI Flow. A UI flow for user role r is denoted as UIF r= (CON r,

UIRelationrF low), where:

� CON r is a finite set of UI containers.

� UIRelationrF low ⊆ (CON r ×CON r) is a finite set of operation flow relations be-

tween UI containers. An operation flow relation is Strict-order Sequential,

Free-order Sequential, Conditional, Strict-order Loop, or Free-order

Loop.

146

6.2 User Interface Flow

ConA

Strict-Seq Free-Seq

ConB ConC
ConA ConB ConC

ConA

ConB

ConC

Strict-Loop

(a) Strict-order Sequential (b) Free-order Sequential

(d) Strict-order Loop (e) Free-order Loop

(c) Conditional

Free-Loop

ConA ConB ConC
ConA ConB ConC

Figure 6.1: Operation Flow Relations between UI Containers

147

6. USER INTERFACE DERIVATION

6.2.2 Operation Flow Relations between UI Containers

Figure 6.1 describes the graphical representations of five types of operation flow rela-

tions between UI containers.

� Strict-order Sequential ((a) Figure 6.1) is represented with a dot-dash rect-

angle, a pattern name Strict-Seq on the upper left of the rectangle, and the

relationships between UI containers. The container relationships are represented

by using an edge with two dots on each end to connect two containers. A diamond

on one end of the line is used to point to the following container.

� Free-order Sequential ((b) Figure 6.1) is represented with a dot-dash rectangle,

a pattern name Free-Seq on the upper left of the rectangle, and the relationships

between UI containers. The container relationships are represented by using a

dashed edge with two dots on each end, and the containers are above the dashed

edge. There is a diamond on one end of the dashed edge.

� Conditional ((c) Figure 6.1) is represented with a Virtual Node and a set of

branches. Each branch is a UI container.

� Strict-order Loop ((d) Figure 6.1) is represented by using with a dot-dash

rectangle, a pattern name Strict-Loop on the upper left of the rectangle, and the

relationships between UI containers. The container relationships are represented

by using an edge with two dots on each end to connect two containers. A diamond

on one end of the line is used to point to the following container.

� Free-order Loop ((e) Figure 6.1) is represented with a dot-dash rectangle, a

pattern name Free-Loop on the upper left of the rectangle, and the relationships

between UI containers. The container relationships are represented by using a

dashed edge with two dots on each end, and the containers are above the dashed

edge. There is a diamond on one end of the dashed edge.

148

6.3 Rules of UI Derivation

6.3 Rules of UI Derivation

This section coins a set of rules for deriving the UI flow from the tree graph. Three

principles are enacted in these rules: (1) the Parallel-A data relationship pattern is

transformed into Free-order Sequential operation flow relations between UI con-

tainers in the UI flow; (2) the branch entities in Parallel-A, Parallel-B, Parallel-C,

Conditional data relationship patterns are inherited by UI containers in the UI flow;

(3) the abstracted nodes in the tree graph are parsed as the rules of constraints.

These UI derivation rules can be classified into two categories as Constraints and

Recommendations. The Constraints include rules that must be followed by the UI

designers. The Recommendations include rules that are recommended to be followed

by the UI designers. This means if the recommended rules are not implemented, the

derived UI logic will not be affected and will still reflect the process logic. If the

recommended rules are applied, the data relationships in the UI logic, which do not

determine the process logic, will sufficiently reflect the data relationships in the process.

Each of these rules has been formalized. In the following, we will introduce these rules

in detail. Note that the “Node” label in each figure of the UI derivation rule can

represent either an Attribute Node, an Information Node, or a CDE Node in the tree

graph.

6.3.1 Constraints

Sequential-Constraint-1:

∀m: “TreeGraph[m]”.“dataRelationshipPattern” == “Strict− Seq”,

iff ∀i, j: “TreeGraph[m]”.“graphNodes[i]”.“postAbsOfNode” ==

“TreeGraph[m]”.“graphNodes[j]”.“preAbsOfNode”,

then (“TreeGraph[m]”.“graphNodes[i]” ∈ coni) ∧

(“TreeGraph[m]”.“graphNodes[j]” ∈ conj) ∧ ((coni, conj) == “Strict− Seq”).

Sequential-Constraint-1 (Figure 6.2) shows how a rule of constraint derives UI

flow from the Strict-order Sequential data relationship pattern. In this situation,

if there exists an Abs Label between two adjacent nodes (AbsB between NodeA and

149

6. USER INTERFACE DERIVATION

NodeA NodeC NodeE

AbsDAbsB

ConA

Strict-Seq

Strict-Seq

Sequential-Constraint-1

Data from

Node A

ConC

Data from

Node C

ConE

Data from

Node E

Figure 6.2: Constraint Sequential-Constraint-1 on Strict-order Sequential

NodeC , AbsD between NodeC and NodeE), these two nodes must be separated into

different containers (Data in NodeA, NodeC , NodeE are put into ConA, ConC , ConE

respectively). And these containers inherit the data relationship pattern between the

nodes. In a business process, NodeA, NodeC , and NodeE correspond to three individ-

ual tasks (say t1, t3, and t5) participated by one user role (say r1. AbsB and AbsD

correspond to the tasks (say t2 and t4) not participated by r1. Due to duplication,

here we just take t1, t2, and t3 for analysis. When r1 completes t1, t2 must be done

by other user roles; only if t2 is completed, can r1 carry out t3. This means that r1

cannot operate the data in t1 and t3 in parallel within a single container. Therefore

the operated data in t1 and t3 must be put in different containers. And the data from

the nodes NodeA and NodeC must be separated into different containers ConA, ConC .

This also works with NodeC and NodeE .

Sequential-Constraint-2:

∀m: “TreeGraph[m]”.“dataRelationshipPattern” == “Free− Seq”,

iff ∃i: (“TreeGraph[m]”.“graphNodes[i]”.“preAbsOfNode” ̸= “null”),

then ∀k where (k ≥ 0) ∧ (“TreeGraph[m]”.“graphNodes[k+1]” ∈ “TreeGraph[m]”):

(“TreeGraph[m]”.“graphNodes[k]” ∈ conk) ∧

(“TreeGraph[m]”.“graphNodes[k+1]” ∈ conk+1) ∧ ((conk, conk+1) == “Free−Seq”).

150

6.3 Rules of UI Derivation

AbsC

NodeBNodeA NodeD

Free-Seq

Free-Seq

Sequential-Constraint-2

ConA

Data from

Node A

ConB

Data from

Node B

ConD

Data from

Node D

Figure 6.3: Constraint Sequential-Constraint-2 on Free-order Sequential

Sequential-Constraint-2 (Figure 6.3) shows how a rule of constraint derives UI

flow from the Free-order Sequential data relationship pattern. In this situation, if

there exists an Abs Label (AbsC) in the Free-order Sequential data relationship

pattern, all the nodes in this pattern must be separated into different containers (Data

in NodeA, NodeB, NodeD are put into ConA, ConB, ConD respectively). And these

containers inherit the data relationship pattern between the nodes. In a business pro-

cess, NodeA, NodeB, and NodeD correspond to three individual tasks (say t1, t2, and

t4) participated by one user role (say r1). AbsC corresponds to the task (say t3) not

related to r1. During BP execution, the three tasks t1, t2, and t4 must be executed

sequentially, but the execution orders between the three tasks are decided during run-

time. Only if the operated data t1, t2, and t4 are put into different containers (ConA,

ConB, ConD) which have Free-order Sequential relation, can the execution orders

between t1, t2, and t4 be decided during runtime. Therefore, this rule holds.

Parallel-A-Constraint-1:

∀m: “TreeGraph[m]”.“dataRelationshipPattern” == “Parallel −A”,

iff ∃i: “TreeGraphS[m]”.“graphNodes[i]”.“preAbsOfBranch” ̸= “null”,

then ∀k where (k ≥ 0) ∧ (“TreeGraph[m]”.“graphNodes[k+1]” ∈ “TreeGraph[m]”):

(“TreeGraph[m]”.“graphNodes[k]” ∈ conk) ∧

151

6. USER INTERFACE DERIVATION

AbsA

Parallel-A

Free-Seq

Parallel-A-Constraint-1

Con1

Data from

Branch 1

Con2

Data from

Branch 2

Con3

Data from

Branch 3

Branch 3Branch 2Branch 1

Figure 6.4: Constraint Parallel-A-Constraint-1 on Parallel-A

(“TreeGraph[m]”.“graphNodes[k+1]” ∈ conk+1) ∧ ((conk, conk+1) == “Free−Seq”).

Parallel-A-Constraint-1 (Figure 6.4) shows how a rule of constraint derives UI

flow from the Parallel-A data relationship pattern. In this situation, if there exists an

Abs Label (AbsA) in the the Parallel-A data relationship pattern, the data entities

from all the branches of the Parallel-A data relationship pattern must be separated

into different containers (Data in Branch1, Branch2, Branch3 are put into Con1,

Con2, Con3 respectively). And these containers have Free-order Sequential opera-

tion flow relations. In a business process, the Branch data entities (Branch1, Branch2,

and Branch3) of the tree graph correspond to the branches (BranchA, BranchB, and

BranchC) of the Parallel-A control flow pattern, and each of the branches of the pat-

tern contains at least one task participated by one user role (say r1). The abstracted

node AbsA represents a branch (say BranchD), whose tasks are not participated by

r1, and this implies the business rules in BranchA, BranchB, BranchC , BranchD of

Parallel-A control flow pattern are strongly independent from each other. Therefore

the operated data in each branch must be put into different containers, so that we can

avoid non-related data to appear in the same container. On the other hand, BranchA,

BranchB and BranchC are executed by r1. r1 is only able to execute BranchA,

BranchB, and BranchC one by one, which equals to that BranchA, BranchB and

152

6.3 Rules of UI Derivation

At least one branch from Branch 1, Branch 2, Branch 3 contains Abs label(s).

Parallel-A

Free-Seq

Parallel-A-Constraint-2

Con1

Data from

Branch 1

Con2

Data from

Branch 2

Con3

Data from

Branch 3

Branch 3Branch 2Branch 1

Figure 6.5: Constraint Parallel-A-Constraint-2 on Parallel-A

BranchC have Free-order Sequential relation for r1. Therefore, the containers

ConA, ConB, ConC holding the data from BranchA, BranchB and BranchC must

have Free-order Sequential relation.

Parallel-A-Constraint-2:

∀m: “TreeGraph[m]”.“dataRelationshipPattern” == “Parallel −A”,

iff ∃i, j: (“TreeGraph[m]”.“graphNodes[i]”.“preAbsOfBranch” == “null”) ∧

[(“TreeGraph[m]”.“graphNodes[i]”.“branchNodes[j]”.“preAbsInBranch” ̸= “null”) ∨

(“TreeGraph[m]”.“graphNodes[i]”.“branchNodes[j]”.“postAbsInBranch” ̸= “null”)],

then ∀k where (k ≥ 0) ∧ (“TreeGraph[m]”.“graphNodes[k+1]” ∈ “TreeGraph[m]):

(“TreeGraph[m]”.“graphNodes[k]” ∈ conk) ∧

(“TreeGraph[m]”.“graphNodes[k+1]” ∈ conk+1) ∧ ((conk, conk+1) == “Free−Seq”).

Parallel-A-Constraint-2 (Figure 6.5) shows how a rule of constraint derives UI

flow from the Parallel-A data relationship pattern, where at least one branch data

entity (Branch1, Branch2, Branch3) contains Abs Label. In this situation, the data

entities from all the branches of the Parallel-A data relationship pattern must be sepa-

rated into different containers (Data in Branch1, Branch2, Branch3 are put into Con1,

Con2, Con3 respectively). And these containers have Free-order Sequential opera-

tion flow relations. In a business process, the Branch data entities (Branch1, Branch2,

153

6. USER INTERFACE DERIVATION

NodeA NodeC

Parallel-A

Free-Seq

Abs label(s) included

Data from Parallel-A block

Parallel-A-Constraint-3

BlockAfter

BlockBefore

ConA

Data from

Node A

ConC

Data from

Node C

Figure 6.6: Constraint Parallel-A-Constraint-3 on Parallel-A

and Branch3) of the tree graph corresponds to the branches (BranchA, BranchB, and

BranchC) of the Parallel-A control flow pattern. There exists at least one branch

(say Branch1) containing at least one task not participated by one user role (say r1).

This implies the business rules in BranchA, BranchB, BranchC of Parallel-A control

flow pattern are strongly independent from each other. Therefore the operated data

in each branch must be put into different containers, so that we can avoid non-related

data to appear in the same container. On the other hand, both BranchA, BranchB

and BranchC are executed by r1. r1 is only able to execute BranchA, BranchB and

BranchC one by one, which equals to that BranchA, BranchB and BranchC are have

Free-order Sequential relation for r1. Therefore, the containers holding the data

from Branch1, Branch2 and Branch3 are have Free-order Sequential relation.

Parallel-A-Constraint-3:

∀m: “TreeGraph[m]”.“dataRelationshipPattern” == “arbitary”,

iff ∀i ∧ ∃n, p(“TreeGraph[m]”.“graphNodes[i]”.“nodeType” == “cde”) ∧

(“TreeGraph[n]”.“dataRelationshipPattern” == “Parallel −A”,

where “TreeGraph[n]”.“id” == “TreeGraph[m]”.“graphNodes[i]”) ∧

(“TreeGraph[n]”.“graphNodes[p]”.preAbsOfBranch ̸= “null”),

then ∀j ̸= i: (“TreeGraph[m]”.“graphNodes[i]” ∈ coni) ∧

(“TreeGraph[m]”.“graphNodes[j]” ∈ conj) ∧

((coni, conj) == “dataRelationshipPattern”).

154

6.3 Rules of UI Derivation

Conditional-Constraint-1

Con1

Data from

Branch 1

Con2

Data from

Branch 2

Con3

Data from

Branch 3

Branch 3

Branch 2

Branch 1

Figure 6.7: Constraint Conditional-Constraint-1 on Conditional

Parallel-A-Constraint-3 (Figure 6.6) shows how a rule of constraint derives UI

flow from the Parallel-A data relationship pattern and its adjacent nodes. In this sit-

uation, if there exists an Abs Label in the the Parallel-A data relationship pattern,

the precedent (NodeA) and subsequent (NodeC) nodes of the data relationship pat-

tern must be separated into different containers (Data in NodeA, NodeC are put into

ConA, ConC respectively). According to Parallel-A-Constraint-1 and Parallel-A-

Constraint-2, the data in Parallel-A data operation pattern are put in separate

containers. This means that the data from ConA, BlockBefore, ConC will never be put

into the same container. Therefore the data from the outside nodes NodeA, NodeC

must be also be put in separate containers.

Conditional-Constraint-1:

∀m, iff “TreeGraph[m]”.“dataRelationshipPattern” == “Conditional”,

then ∀k: “TreeGraph[m]”.“graphNodes[k]” ∈ conk ∧

155

6. USER INTERFACE DERIVATION

Conditional-Constraint-2

Con1

Data from

Branch 1

Con2

Data from

Branch 2

Con3

Data from

Branch 3

Branch 3

Branch 2

Branch 1

NodeB

NodeA

NodeB

NodeB

ConA

Data from

Node A

ConB

Data from

Node B

ConB

Data from

Node B

ConB

Data from

Node B

Figure 6.8: Constraint Conditional-Constraint-2 on Conditional

((conk, conk+1) == “Conditional”).

Conditional-Constraint-1 (Figure 6.7) shows how a rule of constraint derives

UI flow from the Conditional data relationship pattern. In this situation, the data

entities from all the branches of the Conditinal data relationship pattern must be

separated into different containers (Data in Branch1, Branch2, Branch3 are put into

Con1, Con2, Con3 respectively). And these containers have the Conditional data

relationship pattern. The data from Branch1, Branch2 and Branch3 are related to

all the possible results after making choices. During runtime, after a choice is made by

a user role, the data from one and only one branch will be available for this user role.

Therefore, this rule holds.

Conditional-Constraint-2:

∀m: “TreeGraph[m]”.“dataRelationshipPattern” == “arbitrary”,

iff ∀i ∧ ∃ n: (“TreeGraph[m]”.“graphNodes[i]”.“nodeType” == “cde”) ∧

156

6.3 Rules of UI Derivation

(“TreeGraph[n]”.“dataRelationshipPattern” == “Conditional”,

where “TreeGraph[n]”.“id” == “TreeGraph[m]”.“graphNodes[i]”),

then ∀j ̸= i: (“TreeGraph[m]”.“graphNodes[i]” ∈ coni) ∧

(“TreeGraph[m]”.“graphNodes[j]” ∈ conj) ∧

((coni, conj) == “dataRelationshipPattern”).

Conditional-Constraint-2 (Figure 6.8) shows how a rule of constraint derives UI

flow from the Conditional data relationship pattern and its adjacent nodes. In this

situation, the precedent (NodeA) and subsequent (NodeC) nodes of the data relation-

ship pattern must be separated into different containers (Data in NodeA are put into

ConA, data in three NodeBs are put into three ConBs respectively). The data from

NodeA are related to the the data about how to making choice from the different op-

tions in the Conditional branches; the data from Branch1, Branch2 and Branch3 are

related to all the possible results after making choices; and The data from NodeBs are

related to the the data about the operation after the choice is made from the different

options in the Conditional branches. During runtime, when a user role is operating

the data from NodeA, the data from each branch should not be available for this user

until a choice is made. Meanwhile, when a user role is operating the data from one

of his choices (Branch1, Branch2, or Branch3), this user role cannot touch the data

until the operation in the choice is completed. Therefore, this rule holds.

Loop-Constraint-1:

∀m: “TreeGraph[m]”.“dataRelationshipPattern” == “Strict− Loop”,

iff ∀i, j: “TreeGraph[m]”.“graphNodes[i]”.“postAbsOfNode” ==

“TreeGraph[m]”.“graphNodes[j]”.“preAbsOfNode”,

then (“TreeGraph[m]”.“graphNodes[i]” ∈ coni) ∧

(“TreeGraphSet[m]”.“graphNodes[j]” ∈ conj) ∧ ((coni, conj) == “Strict− Loop”).

Loop-Constraint-1 (Figure 6.9) shows how a rule of constraint derives UI flow

from the Strict-order Loop data relationship pattern. In this situation, if there exists

an Abs Label between two adjacent nodes (AbsB between NodeA and NodeC , AbsD

between NodeC and NodeE), these two nodes must be separated into different contain-

ers (Data in NodeA, NodeC , NodeE are put into ConA, ConC , ConE respectively).

157

6. USER INTERFACE DERIVATION

NodeA NodeC NodeE

AbsDAbsB

ConA

Strict-Loop

Strict-Loop

Loop-Constraint-1

Data from

Node A

ConC

Data from

Node C

ConE

Data from

Node E

Figure 6.9: Constraint Loop-Constraint-1 on Strict-Order Loop

And these containers inherit the data relationship pattern between the nodes. In a

business process, NodeA, NodeC , and NodeE correspond to three individual tasks (say

t1, t3, and t5) participated by one user role (say r1). AbsB and AbsD correspond to the

tasks (say t2 and t4) not participated by one r1. Due to duplication, here we just take

t1, t2, and t3 for analysis. When r1 completes t1, t2 has to be done by other user roles;

only if t2 is completed, can r1 carry out t3. This means that r1 cannot operate the

data in t1 and t3 in parallel within a single container. Therefore the operated data t1

and t3 must be put in different containers. And the data from the corresponding nodes

NodeA and NodeC must be separated into different containers ConA, ConC . This also

works with NodeC and NodeE .

Loop-Constraint-2:

∀m: “TreeGraph[m]”.“dataRelationshipPattern” == “arbitrary”,

iff ∀i ∧ ∃ n: (“TreeGraph[m]”.“graphNodes[i]”.“nodeType” == “cde”) ∧

(“TreeGraph[n]”.“dataRelationshipPattern” == “Strict− Loop”,

where “TreeGraph[n]”.“id” == “TreeGraph[m]”.“graphNodes[i]”),

then ∀j ̸= i: (“TreeGraph[m]”.“graphNodes[i]” ∈ coni) ∧

(“TreeGraph[m]”.“graphNodes[j]” ∈ conj) ∧

((coni, conj) == “dataRelationshipPattern”).

158

6.3 Rules of UI Derivation

NodeA NodeC

Data from Strict-Loop block

BlockAfter

BlockBefore

ConA

Data from

Node A

ConC

Data from

Node C

Strict-Loop

Strict-Loop

Loop-Constraint-2

Figure 6.10: Constraint Loop-Constraint-2 on Strict-Order Loop

Free-Loop

AbsD

NodeBNodeA NodeC

Loop-Constraint-3

ConA

Data from

Node A

ConB

Data from

Node B

ConC

Data from

Node C

Free-Loop

Figure 6.11: Constraint Loop-Constraint-3 on Free-Order Loop

Loop-Constraint-2 (Figure 6.10) shows how a rule of constraint derives UI flow

from the Strict-order Loop data relationship pattern and its adjacent nodes. In

this situation, the precedent (NodeA) and subsequent (NodeC) nodes of the data rela-

tionship pattern must be separated into different containers (Data in NodeA, NodeC

are put into ConA, ConC respectively). In a business process, the data inside the

Strict-Loop control flow pattern are executed iteratively, and the times of iteration

are decided during runtime. However, the data from the nodes (NodeA and NodeC)

outside the Strict-Loop control flow pattern are executed only once. Therefore, the

data from BlockAfter, ConA, and ConC will never be put in the same UI container.

159

6. USER INTERFACE DERIVATION

Loop-Constraint-3:

∀m: “TreeGraph[m]”.“dataRelationshipPattern” == “Free− Loop”,

iff ∀i(“TreeGraph[m]”.“graphNodes[i]”.“preAbsOfNode” ̸= “null”),

then ∀k where (k ≥ 0) ∧

(“TreeGraph[m]”.“graphNodes[k + 1]” ∈ “TreeGraph[m]):

(“TreeGraph[m]”.“graphNodes[k]” ∈ conk) ∧

(“TreeGraph[m]”.“graphNodes[k + 1]” ∈ conk+1) ∧

((conk, conk+1) == “Free− Loop”).

Loop-Constraint-3 (Figure 6.11) shows how a rule of constraint derives UI flow

from the Free-order Loop data relationship pattern. In this situation, if there exists

an Abs Label (AbsD) in the Free-order Loop data relationship pattern, all the nodes

in this pattern must be separated into different containers (Data in NodeA, NodeB,

NodeC are put into ConA, ConB, ConC respectively). And these containers inherit the

data relationship pattern between the nodes. In a business process, NodeA, NodeB,

and NodeC correspond to three individual tasks (say t1, t2, and t3) participated by

user role (say r1). AbsD corresponds to the tasks (say t4) not participated by r1.

During each iteration of the loop execution, the three tasks t1, t2, and t3 must be

executed sequentially, but the execution orders between the three tasks are decided

during runtime. Only if the operated data t1, t2, and t3 are put into different containers

(ConA, ConB, ConC) that have Free-order Loop relation, can the execution orders

between t1, t2, and t3 be decided during runtime. Therefore, this rule holds.

Loop-Constraint-4:

∀m: “TreeGraph[m]”.“dataRelationshipPattern” == “arbitrary”,

iff ∀i ∧ ∃n: (“TreeGraph[m]”.“graphNodes[i]”.“nodeType” == “cde”) ∧

(“TreeGraph[n]”.“dataRelationshipPattern” == “Free− Loop”,

where “TreeGraph[n]”.“id” == “TreeGraph[m]”.“graphNodes[i]”),

then ∀j ̸= i: (“TreeGraph[m]”.“graphNodes[i]” ∈ coni) ∧

(“TreeGraph[m]”.“graphNodes[j]” ∈ conj) ∧

((coni, conj) == “dataRelationshipPattern”).

160

6.3 Rules of UI Derivation

NodeA NodeC

Data from Free-Loop block

BlockAfter

BlockBefore

ConA

Data from

Node A

ConC

Data from

Node C

Loop-Constraint-4

Free-Loop

Free-Loop

Figure 6.12: Constraint Loop-Constraint-4 on Free-Order Loop

Loop-Constraint-4 (Figure 6.12) shows how a rule of constraint derives UI flow

from the Free-order Loop data relationship pattern and its adjacent nodes. In this

situation, the precedent (NodeA) and subsequent (NodeC) nodes of the data rela-

tionship pattern must be separated into different containers (Data in NodeA, NodeC

are put into ConA, ConC respectively). In a business process, the data inside the

Free-Loop control flow pattern are executed iteratively, and the times of iteration are

decided during runtime. However, the data from the nodes (NodeA and NodeC) out-

side the Free-Loop control flow pattern are executed only once. Therefore, the data

from BlockAfter, ConA, and ConC will never be put in the same UI container.

6.3.2 Recommendations

Sequential-Recommendation-1:

∀m: “TreeGraph[m]”.“dataRelationshipPattern” == “Strict− Seq”,

iff ∀i: (“TreeGraph[m]”.“graphNodes[i]”.“preAbsOfNode” == “null”) ∧

(“TreeGraph[m]”.“graphNodes[i]”.“postAbsOfNode” == “null”),

then ∀j where (j ≥ 0) ∧

(“TreeGraph[m]”.“graphNodes[j + 1]” ∈ “TreeGraph[m]”):

(“TreeGraph[m]”.“graphNodes[j]” ∈ conj) ∧

(“TreeGraph[m]”.“graphNodes[j + 1]” ∈ conj+1) ∧

((conj , conj+1) == “Strict− Seq”).

161

6. USER INTERFACE DERIVATION

Sequential-Recommendation-1

NodeA NodeB NodeC

ConA

Strict-Seq

Strict-Seq

Data from

Node A

ConB

Data from

Node B

ConC

Data from

Node C

Figure 6.13: Recommendation Sequential-Recommendation-1 on Strict-Order Sequential

Sequential-Recommendation-1 (Figure 6.13) shows how a rule of recommen-

dation derives UI flow from the Strict-order Sequential data relationship pattern,

which does not contain any Abs Label. In this situation, these nodes are recommended

to be separated into different containers (Data in NodeA, NodeC , NodeE are put into

ConA, ConC , ConE respectively). And these containers inherit the data relationship

pattern between the nodes. The recommendation reason is that in a business process,

NodeA, NodeC , and NodeC correspond to three individual tasks participated by one

user role (say r1), the three tasks indicate three different business rules. Different busi-

ness rules are recommended to be put in different containers for r1. In doing so, each

separate container can provide r1 with the data that are strongly related to each other.

Sequential-Recommendation-2:

∀m, iff (“TreeGraph[m]”.“dataRelationshipPattern” == “Free− Seq”) ∧

(∃i: “TreeGraph[m]”.“graphNodes[i]”.“preAbsOfNode” == “null”),

then ∀j where (j ≥ 0) ∧

(“TreeGraph[m]”.“graphNodes[j + 1]” ∈ “TreeGraph[m]):

(“TreeGraph[m]”.“graphNodes[j]” ∈ conj) ∧

(“TreeGraph[m]”.“graphNodes[j+1]” ∈ conj+1) ∧ ((conj , conj+1) == “Free−Seq”).

Sequential-Recommendation-2 (Figure 6.14) shows how a rule of recommen-

162

6.3 Rules of UI Derivation

NodeBNodeA NodeC

Free-Seq

Free-Seq

ConA

Data from

Node A

ConB

Data from

Node B

ConC

Data from

Node C

Sequential-Recommendation-2

Figure 6.14: Recommendation Sequential-Recommendation-2 on Free-Order Sequential

dation derives UI flow from the Free-order Sequential data relationship pattern,

which does not contain any Abs Label. In this situation, all the nodes in this pattern

are recommended to be separated into different containers (Data in NodeA, NodeB,

NodeD are put into ConA, ConB, ConD respectively). And these containers inherit

the data relationship pattern between the nodes. The recommendation reason is that

in a business process, NodeA, NodeC , and NodeC correspond to three individual tasks

participated by one user role (say r1), the three tasks indicate three different business

rules. Different business rules are recommended to be put in different containers for

r1. In doing so, each separate container can provide r1 with the data that are strongly

related to each other.

Parallel-A-Recommendation-1:

∀m: “TreeGraph[m]”.“dataRelationshipPattern” == “Parallel −A”,

iff ∀i, j: (“TreeGraph[m]”.“graphNodes[i]”.“preAbsOfBranch” == “null”) ∧

(“TreeGraph[m]”.“graphNodes[i]”.

“branchNodes[j]”.“preAbsInBranch” == “null”) ∧

(“TreeGraph[m]”.“graphNodes[i]”.

“branchNodes[j]”.“postAbsInBranch” == “null”),

then ∀k where (k ≥ 0) ∧

(“TreeGraph[m]”.“graphNodes[k + 1]” ∈ “TreeGraphSet[m]):

163

6. USER INTERFACE DERIVATION

Parallel-A-Recommendation-1

Parallel-A

Free-Seq

Con1

Data from

Branch 1

Con2

Data from

Branch 2

Con3

Data from

Branch 3

Branch 3Branch 2Branch 1

No Abs

label(s)

included

No Abs

label(s)

included

No Abs

label(s)

included

Figure 6.15: Recommendation Parallel-A-Recommendation-1 on Parallel-A

(“TreeGraphSet[m]”.“graphNodes[k]” ∈ conk) ∧

(“TreeGraph[m]”.“graphNodes[k + 1]” ∈ conk+1) ∧

((conk, conk+1) == “Free− Seq”).

Parallel-A-Recommendation-1 (Figure 6.15) shows how a rule of recommenda-

tion derives UI flow from the Parallel-A data relationship pattern, which does not

contain any Abs Label. In this situation, the data entities from all the branches of

the Parallel-A data relationship pattern are recommended to be separated into differ-

ent containers (Data in Branch1, Branch2, Branch3 are put into Con1, Con2, Con3

respectively). And these containers have Free-order Sequential operation flow rela-

tions. The recommendation reason is that in a business process, Branch1, Branch2,

Branch3 of the tree graph correspond to three individual branches of the Parallel-A

control flow pattern, and the entire Parallel-A control flow pattern is participated by

one user role (say r1). However, the three branches of the Parallel-A control flow pat-

tern indicate three different business rules. Different business rules are recommended

to be in different containers for r1. In doing so, each separate container can provide r1

with the data that are strongly related to each other.

Parallel-A-Recommendation-2:

∀m: “TreeGraph[m]”.“dataRelationshipPattern” == “arbitary”,

164

6.3 Rules of UI Derivation

No Abs label(s) included

NodeA NodeC

Parallel-A

Free-Seq

Data from Parallel-A block

BlockAfter

BlockBefore

ConA

Data from

Node A

ConC

Data from

Node C

Parallel-A-Recommendation-2

Figure 6.16: Recommendation Parallel-A-Recommendation-2 on Parallel-A

iff ∀i ∧ ∃ n, p: (“TreeGraph[m]”.“graphNodes[i]”.“nodeType” == “cde”) ∧

(“TreeGraph[n]”.“dataRelationshipPattern” == “Parallel −A”, where

“TreeGraph[n]”.“id” == “TreeGraph[m]”.“graphNodes[i]”) ∧

(“TreeGraph[n]”.“graphNodes[p]”.“preAbsOfBranch” == “null”),

then ∀j ̸= i: (“TreeGraph[m]”.“graphNodes[i]” ∈ coni) ∧

(“TreeGraph[m]”.”graphNodes[j]” ∈ conj) ∧

((coni, conj) == “dataRelationshipPattern”).

Parallel-A-Recommendation-2 (Figure 6.16) shows how a rule of recommenda-

tion derives UI flow from the Parallel-A data relationship pattern and its adjacent

nodes. The Parallel-A data relationship pattern does not contain any Abs Label.

In this situation, the precedent (NodeA) and subsequent (NodeC) nodes of the data

relationship pattern are recommended to be separated into different containers (Data

in NodeA, NodeC are put into ConA, ConC respectively). The recommendation rea-

son is that in a business process, BlockBefore, NodeA, and NodeC of the tree graph

correspond to the Parallel-A control flow pattern, the task tA before the Parallel-A

block and the task tC after Parallel-A block. The Parallel-A control flow pattern,

tA, tC are all participated by one user role (say r1). However, the Parallel-A control

flow pattern, tA, tC indicate three different business rules. Different business rules are

recommended to be in different containers for r1. In doing so, each separate container

can provide r1 with the data that are strongly related to each other.

165

6. USER INTERFACE DERIVATION

Loop-Recommendation-1

NodeA NodeB NodeC

ConA

Data from

Node A

ConB

Data from

Node B

ConC

Data from

Node C

Strict-Loop

Strict-Loop

Figure 6.17: Recommendation Loop-Recommendation-1 on Strict-order Loop

Loop-Recommendation-1:

∀m: “TreeGraph[m]”.“dataRelationshipPattern” == “Strict− Loop”,

iff ∀i“TreeGraph[m]”.“graphNodes[i]”.“preAbsOfNode” == “null” ∧

“TreeGraph[m]”.“graphNodes[i]”.“postAbsOfNode” == “null”,

then ∀k where (k ≥ 0) ∧

(“TreeGraph[m]”.“graphNodes[k + 1]” ∈ “TreeGraphSet[m]):

(“TreeGraph[m]”.“graphNodes[k]” ∈ conk) ∧

(“TreeGraph[m]”.“graphNodes[k + 1]” ∈ conk+1) ∧

((conk, conk+1) == “Strict− Loop”).

Loop-Recommendation-1 (Figure 6.17) shows how a rule of recommendation

derives UI flow from the Strict-order Loop data relationship pattern, which does not

contain any Abs Label. In this situation, all the nodes in this pattern are recommended

to be separated into different containers (Data in NodeA, NodeB, NodeC are put into

ConA, ConB, ConC respectively). And these containers inherit the data relationship

pattern between the nodes. The recommendation reason is that in a business process,

NodeA, NodeC , and NodeC correspond to three individual tasks participated by one

user role (say r1). The three tasks indicate three different business rules. Different

business rules are recommended to be in different containers for r1. In doing so, each

166

6.3 Rules of UI Derivation

NodeBNodeA NodeC

ConA

Data from

Node A

ConB

Data from

Node B

ConC

Data from

Node C

Loop-Recommendation-2

Free-Loop

Free-Loop

Figure 6.18: Recommendation Loop-Recommendation-2 on Free-order Loop

separate container can provide r1 with the data that are strongly related to each other.

Loop-Recommendation-2:

∀m: “TreeGraph[m]”.“dataRelationshipPattern” == “Free− Loop”,

iff ∃i: (“TreeGraph[m]”.“graphNodes[i]”.“preAbsOfNode” == “null”),

then ∀k where (k ≥ 0) ∧

(“TreeGraphSet[m]”.“graphNodes[k + 1]” ∈ “TreeGraphSet[m]):

(“TreeGraphSet[m]”.“graphNodes[k]” ∈ conk) ∧

(“TreeGraphSet[m]”.“graphNodes[k + 1]” ∈ conk+1) ∧

((conk, conk+1) == ”Free− Loop”).

Loop-Recommendation-2 (Figure 6.18) shows how a rule of recommendation

derives UI flow from the Free-order Loop data relationship pattern, which does not

contain any Abs Label. In this situation, all the nodes in this pattern are recommended

to be separated into different containers (Data in NodeA, NodeB, NodeC are put into

ConA, ConB, ConC respectively). And these containers inherit the data relationship

pattern between the nodes. The recommendation reason is that in a business process,

NodeA, NodeC , and NodeC correspond to three individual tasks participated by one

user role (say r1). The three tasks indicate three different business rules. Different

business rules are recommended to be in different containers for r1. In doing so, each

separate container can provide r1 with the data that are strongly related to each other.

167

6. USER INTERFACE DERIVATION

6.4 Algorithm for UI Derivation

In this section, we introduce the algorithm for UI derivation, which operate the rules

introduced in Section 6.3. All these rules are categorized as two groups (Group 1 and

Group 2).

Rules in Group 1 are about the separation of data inside a data operation pattern.

This group includes Sequential-Constraint-1, Sequential-Constraint-2, Parallel-

A-Constraint-1, Parallel-A-Constraint-2, Conditional-Constraint-1, Loop-C-

onstraint-1, Loop-Constraint-3, Sequential-Recommendation-1, Sequential-

Recommendation-2, Parallel-A-Recommendation-1, Loop-Recommendation-

1, Loop-Recommendation-2.

Rules in Group 2 are about the separation of inside and outside data of a data

operation pattern. This group includes Parallel-A-Constraint-3, Conditional-

Constraint-2, Loop-Constraint-2, Loop-Constraint-4, Parallel-A-Recommen-

dation-2.

The Algorithm 5 is built up to derive the UI from a tree graph. The input is

a tree graph set that specifies the data relationships for a particular user role; and

the output is a the user interface flow which specifies the derived BP UI for the user

role. The function UIDerivation is the working horse of this algorithm. When a tree

graph TreeGraph is input into the algorithm, the first step is to retrieve the the tree

fragment headTreeFragment, which has ProcessStructRef from TreeGraph (line 1).

According to the data relationship pattern of headTreeFragment, suitable rule from

Group 1 is found to derive the UI flow fragment UIF lowFrag from headTreeFragment

(line 2). This UIF lowFrag is copied to the initialized UI Flow UIF low (line 3).

Then headTreeFragment is input into the function UIDerivation (line 4). In this

function, the structRef of the input tree fragment is found for judgement (line 8). If

structRef is not ProcessStructRef (line 9), the input tree fragment must not be the

headTreeFragment. Under this condition, UIF lowFrag is derived from the input

tree fragment according to suitable rule in Group 1 (line 10). Then the the container

holding structRef in UIF low is replaced with UIF lowFrag (line 11). Next, the nodes

168

6.4 Algorithm for UI Derivation

Algorithm 5: UI Derivation

Input : TreeGraph

Output: UIF low

1 retrieve headTreeFragment with ProcessStructRef from TreeGraph;

2 generate UIF lowFrag from headTreeFragment by applying rules in Group 1 ;

3 set UIF low = UIF lowFrag;

4 UIDerivation(headTreeFragment);

5 process UIF low by applying rules in Group 2 ;

6 return UIF low;

7 Function UIDerivation(TreeFragment treeFrag)

8 get structRef from treeFrag;

9 if structRef is not ProcessStructRef then

10 generate UIF lowFrag from treeFrag by applying rules in Group 1 ;

11 update the container holding structRef with UIF lowFrag;

12 foreach node of treeFrag do

13 if node is CDENode then

14 get the value structRef ′ from node;

15 retrieve treeFrag′ with structRef ′ from TreeGraph;

16 UIDerivation(treeFrag′);

169

6. USER INTERFACE DERIVATION

inside the input tree fragment is examined. If there exist any CDE node CDENode

(line 13), the tree graph fragment treeFrag′ pointed by this CDENode is found (line

14 and 15). This treeFrag′ is re-input into UIDerivation for recursive processing (line

16). After all the tree fragments in the TreeGraph are handled, the rules in Group 2

are used in UIF low for secondary separation (line 5). Then the final result UIF low is

returned as the output of the algorithm (line 6).

6.5 Scenario Example

In this section, we use the scenario example introduced in Figure 1.4 of Section 1.2 to

demonstrate the derived UI flows for three user roles personnel officer, referee,

and applicant participating in the recruitment process.

(a) Figure 6.19 shows the data relationships for the user role personnel officer.

Sequential-Constraint-1 and Sequential-Recommendation-1 are used to gener-

ate the two containers Describe Job and Comment Interview. Parallel-A-Recomm-

endation-1 is used to generate the two containers Organize Interview and Review

Reference. Sequential-Recommendation-1 and Conditional-Constraint-2 to

generate the container Make Decision. Conditional-Constraint-1 is used to gener-

ate the two containers Notify Approval and Notify Rejection.

(b) Figure 6.19 shows the data relationships for the user role referee. Sequential-

Recommendation-1 is used to generate the container Review Reference.

(c) Figure 6.19 shows the data relationships for the user role applicant. Sequential-

Constraint-1 is used to generate the two containers Submit Application and Confirm

Interview.

6.6 Summary and Discussion

In this chapter, the method for user interface derivation is proposed, which is the third

step of our UI derivation approach. The UI logic is extracted from the data relationships

for each user role. The UI logic for a particular user role is represented as a UI flow. A

set of UI derivation rules including 11 constraints and 6 recommendations are developed

170

6.6 Summary and Discussion

D
e

sc
ri

b
e

 J
o

b

jo
b

d

e
sc

ri
p

ti
o

n

x

O
rg

a
n

iz
e

 I
n

te
rv

ie
w

x

d
a

te
 &

 t
im

e

v
e

n
u

e

R
e

v
ie

w
 R

e
fe

re
n

ce
x

re
fe

re
n

ce

e
v
a

lu
a

ti
o

n

re
p

o
rt

re
fe

re
n

ce

le
tt

e
r

F
re

e
-S

e
q

C
o

m
m

e
n

t
In

te
rv

ie
w

x

in
te

rv
ie

w

re
p

o
rt

x
M

a
k

e
 D

e
ci

si
o

n

re
fe

re
n

ce

e
v
a

lu
a

ti
o

n

re
p

o
rt

in
te

rv
ie

w

re
p

o
rt

a
p

p
ro

v
e

 ?
Y
e
s

N
o

N
o

ti
fy

 A
p

p
ro

v
a

l
x

a
p

p
ro

v
a

l
le

tt
e

r

N
o

ti
fy

 R
e

je
ct

io
n

x

re
je

ct
io

n

re
a

so
n

(a
)

U
se

r
In

te
rf

a
ce

 F
lo

w

fo
r

P
e

rs
o

n
n

e
l

O
ff

ic
e

r

p
e

rs
o

n
a

l
in

fo

R
e

v
ie

w
 R

e
fe

re
n

ce
x

re
fe

re
n

ce
 l

e
tt

e
r

(b
)

U
se

r
In

te
rf

a
ce

 F
lo

w

fo
r

R
e

fe
re

e

S
u

b
m

it
 A

p
p

li
ca

ti
o

n
x

jo
b

 d
e

sc
ri

p
ti

o
n

p
e

rs
o

n
a

l
in

fo

C
o

n
fi

rm
 I

n
te

rv
ie

w
x

d
a

te
 &

 t
im

e

v
e

n
u

e

c
o

n
fi

rm
a

ti
o

n

(c
)

U
se

r
In

te
rf

a
ce

 F
lo

w
fo

r
A

p
p

li
ca

n
t

Figure 6.19: Derived UIs for Personnel Officer, Referee and Applicant

171

6. USER INTERFACE DERIVATION

according to the data relationship patterns in the tree graph. The algorithm for UI

derivation is built up with the UI derivation rules as cornerstones. We also use the

recruitment process as a scenario example to demonstrate the derived UI flows for

three participating user roles. The derived UI flows can help UI developers to analyze

and develop graphical UIs of BPs.

172

Chapter 7

Implementation

This chapter describes a UI Derivation Tool (UIDrvTool). The UIDrvTool implements

our proposed UI derivation approach based on the role-enriched BP model. The current

developed UIDrvTool is a Proof-of-Concept prototype, which demonstrates the func-

tionality of each UI derivation step presented in the previous chapters. The UIDrvTool

is realized with the following features:

� The UIDrvTool is developed based on our proposed role-enriched business process

model, where both the user roles participating in a BP and the data operations

inside each task of a BP are considered. The UIDrvTool applies to a process

specified using our role-enriched BP model, and generates the UIs related to the

process.

� Three UI derivation steps as Task Abstraction and Aggregation, Data Relationship

Extraction, and User Interface Derivation are implemented as three independent

modules. In every module, each of the elementary operations/UI derivation rules

introduced in the previous chapters is realized and implemented as a individual

function.

� A GUI Generator is developed in the UIDrvTool to visualize the derived UI logics.

For each user role participating in a BP, a set of Windows Forms is generated,

which provides information to and requires inputs from the user role.

173

7. IMPLEMENTATION

The remainder of this chapter is organized as follows. Section 7.1 explains the

system architecture of the UIDrvTool. Section 7.2 introduces a recruitment process

as a scenario example, which goes through the UIDrvTool to testify its availability.

Section 7.3 provides a summary and discussion.

7.1 System Architecture

Figure 7.1 represents the system architecture that realizes the UI derivation approach

from the role-enriched business process model. The input (1O in Figure 7.1) is a business

process specified with JavaScript Object Notation (JSON), which is a lightweight data-

interchange format. The output (12O in Figure 7.1) is the derived BP UIs for each user

role for each user role participating in the input business process.

Module A (2O in Figure 7.1) is designed to realize the first UI derivation step

- task abstraction and aggregation. The input of this module is a business process

specified with JSON (1O in Figure 7.1). For each user role participating in the input

BP, the tasks not involving the user role are abstracted and aggregated as abstracted

nodes, and the tasks involving the user role are reserved. The AABPs are produced

for the participating user roles (4O in Figure 7.1). The functions of this module are

introduced as follows.

Task Abs Agg Controller: The input of Task Abs Agg Controller function is a

BP specified with JSON. This function implements a recursive algorithm to iden-

tify the control flow pattern on each granularity level of the input BP by calling the

Role BP CFPattern Identifier function. The tasks in the identified pattern on each

level are abstracted and aggregated by calling the suitable elementary operation from

3O in Figure 7.1. The AABPs for the participating user roles are generated as the

output of Task Abs Agg Controller function.

Role BP CFPattern Identifier: The Role BP CFPattern Identifier function is to

identify the control flow pattern on the coarsest granularity level of an input BP. The

type of the identified pattern and the elements constituting the pattern are returned

as the output of the function.

174

7.1 System Architecture

Module A: Task Abstraction and Aggregation

Task_Abs_Agg Controller Role_BP_CFPattern Identifier

Single-Abs-Agg-1 Single-Abs-Agg-2 Loop-Abs-Agg-2

Elementary Operations for Task Abstraction and Aggregation

Module B: Data Relationship Extraction

Data Relationship Extraction Controller AABP_CFPattern Identifier

Sequential-Data-Extract-1 Sequential-Data-Extract-2 Loop-Data-Extract-2

Elementary Operations for Data Relationship

Extraction on Control Flow Patterns of AABPs

InTask_DOPattern IdentifierData Operation Flow Extractor

Sequential-InTask-Data-Extract-1 Sequential-InTask-Data-Extract-2 Loop-InTask-Data-Extract-2

Elementary Operations for Data Relationship Extraction on

Data Operation Patterns inside Individual Tasks of AABPs

Module C: User Interface Derivation

UI Derivation Controller

UI Derivation Rule Function:

Sequential-Constraint-1

UI Derivation Rule Function:

Sequential-Constraint-2

UI Derivation Rule Function:

Loop-Recommendation-2

Group 1

UI Derivation Rule Function:

Parallel-A-Constraint-3

UI Derivation Rule Function:

Conditional-Constraint-3

UI Derivation Rule Function:

Parallel-A-Recommendation-2

GUI Generator

Group 2

Input

Output

Role-enriched Business Process Specified with JSON

Abstracted and Aggregated Business Process for Each Participating User Role

Extracted Data Relationships

Graphical UIs for the Input Business Process

1

2

3

4

5

6

7

8

9

10

11

12

Figure 7.1: System Architecture

175

7. IMPLEMENTATION

Elementary Operations for Task Abstraction and Aggregation: Each elemen-

tary operation is a function that abstracts and aggregates tasks and their control flow

relations from a particular control flow pattern. Table 7.1 lists the names of all the

elementary operations in 3O in Figure 7.1. Each elementary operation implements the

corresponding rule of task abstraction and aggregation demonstrated in Chapter 4.

Table 7.1: List of Elementary Operations for Task Abstraction and Aggregation

Single-Abs-Agg-1 Parallel-A-Abs-Agg-4

Single-Abs-Agg-2 Parallel-B-Abs-Agg-1

Single-Abs-Agg-3 Parallel-B-Abs-Agg-2

Sequential-Abs-Agg-1 Parallel-B-Abs-Agg-3

Sequential-Abs-Agg-2 Parallel-C-Abs-Agg-1

Parallel-A-Abs-Agg-1 Alt-1 Parallel-C-Abs-Agg-2

Parallel-A-Abs-Agg-1 Alt-2 Parallel-C-Abs-Agg-3

Parallel-A-Abs-Agg-2 Alt-1 Conditional-Abs-Agg-1

Parallel-A-Abs-Agg-2 Alt-2 Loop-Abs-Agg-1

Parallel-A-Abs-Agg-3 Loop-Abs-Agg-2

Module B (5O in Figure 7.1) is designed to realize the second UI derivation step

- data relationship extraction. The input of this module is the AABPs for the partici-

pating user roles (4O in Figure 7.1). The data relationships in each user role’s AABP

are analyzed and extracted as the output of the Module B (8O in Figure 7.1). The

functions of this module are introduced as follows.

Data Relationship Extraction Controller: The input of Data Relationship

Extraction Controller Controller function is the AABPs for the participating user roles.

176

7.1 System Architecture

A recursive algorithm is realized to identify the control flow pattern on each granularity

level of an AABP by calling the AABP CFPattern Identifier function. The control flow

relations between/among the tasks in the identified pattern are analyzed and the data

relationships are extracted by calling the suitable elementary operation from 6O in Fig-

ure 7.1. Inside each task, the data relationships are extracted from the data operation

flows by calling the Data Operation Flow Extractor function.

AABP CFPattern Identifier: The AABP CFPattern Identifier function is to iden-

tified the control flow pattern on the coarsest granularity level of an input BP. The type

of the identified pattern and the elements constituting the pattern are returned as the

output of the function.

Elementary Operations for Data Relationship Extraction on Control Flow

Patterns of AABPs: Each elementary operation is a function that extracts the data

relationships from tasks and their control flow relations in a particular control flow

pattern. Table 7.2 lists the names of all the elementary operations in 6O in Figure

7.1. Each elementary operation implements the corresponding rule of data relationship

extraction demonstrated in Chapter 5.

Data Operation Flow Extractor: the Data Operation Flow Extractor function is

to extract the data relationships from the data operations inside an individual task of an

AABP. A recursive algorithm is realized to identify the data operation pattern on each

granularity level of data operations inside an individual task of an AABP by calling

the InTask DOPattern Identifier function. The data operation flows between/among

the data items in the identified pattern are analyzed and the data relationships are

extracted by calling the suitable elementary operation from 7O in Figure 7.1.

InTask DOPattern Identifier: The InTask DOPattern Identifier function is to

identified the data operation pattern on the coarsest granularity level of the data op-

erations inside an individual task of an AABP. The type of the identified pattern and

the elements constituting the pattern are returned as the output of the function.

177

7. IMPLEMENTATION

Table 7.2: List of Elementary Operations for Data Relationship Extraction on Control

Flow Patterns of AABPs

Sequential-Data-Deriv-1 Parallel-B-Data-Deriv-3

Sequential-Data-Deriv-2 Parallel-C-Data-Deriv-1

Parallel-A-Data-Deriv-1 Parallel-C-Data-Deriv-2

Parallel-A-Data-Deriv-2 Parallel-C-Data-Deriv-3

Parallel-A-Data-Deriv-3 Conditional-Data-Deriv-1

Parallel-A-Data-Deriv-4 Loop-Data-Deriv-1

Parallel-B-Data-Deriv-1 Loop-Data-Deriv-2

Parallel-B-Data-Deriv-2

Elementary Operations for Data Relationship Extraction on Data Opera-

tion Patterns inside Individual Tasks of AABPs: Each elementary operation is

a function that extracts the data relationships from a particular data operation pattern

inside an individual task of an AABP. Table 7.3 lists the names of all the elementary op-

erations in 7O in Figure 7.1. Each elementary operation implements the corresponding

rule of data relationship extraction demonstrated in Chapter 5.

Table 7.3: List of Elementary Operations for Data Relationship Extraction on Data

Operation Patterns inside Individual Tasks of AABPs

Sequential-InTask-Data-Deriv-1 Loop-InTask-Data-Deriv-1

Sequential-InTask-Data-Deriv-2 Loop-InTask-Data-Deriv-2

Conditional-InTask-Data-Deriv-1

Module C (9O in Figure 7.1) is designed to realize the third UI derivation step -

178

7.2 Go-through Example

user interface derivation. The input of this module are the data relationships for the

participating user roles (8O in Figure 7.1). A series of Windows Forms representing the

derived UIs (12O in Figure 7.1) are generated for each participating user role through

analyzing the data relationships. The functions of this module are introduced as follows.

UI Derivation Controller: The UI Derivation Controller Controller function re-

cursively identify the data relationship pattern of each fragment of the input tree graph.

Two groups of UI derivation rules (10O and 11O in Figure 7.1) are applied to derive the

UI flows, and the Windows Forms are generated by calling the GUI Generator function.

GUI Generator: the GUI Generator function is used to generate Windows Forms

according to the derived UI flows.

UI Derivation Rule Function: Each UI derivation rule function derives the UI

flows from a particular data relationship pattern. Table 7.4 lists the names of all the

UI derivation rule functions from 10O and 11O in Figure 7.1. Each function implements

the corresponding UI derivation rule demonstrated in Chapter 6.

7.2 Go-through Example

As an example, a role-enrich BP is input into the UIDrvTool, and the graphical UIs of

this role-enrich BP are generated as output.

As the execution environment of the UIDrvTool, the CPU of the computer used for

the implementation is Intel Core i5-4200U (1.60GHz), and the random-access memory

size of the computer is 4.00 GB. The operating system installed on the computer is

Windows 10 Home (64 bits). The utilized programming language is Visual Basic 2015,

and the integrated development environment (IDE) is Microsoft Visual Studio Com-

munity 2015. Two class libraries .NET Framework 4.6.1 (by Microsoft) and Json.NET

9.0.1 (by Newtonsoft) are used to support the implementation.

As the input of the UIDrvTool, Figure 7.2 illustrates a recruitment process at the

human resource department of a company. This process is represented with the role-

179

7. IMPLEMENTATION

Table 7.4: List of Two Groups of UI Derivation Rule Functions

Group 1 Group 2

Sequential-Constraint-1 Parallel-A-Constraint-3

Sequential-Constraint-2 Conditional-Constraint-2

Parallel-A-Constraint-1 Loop-Constraint-3

Parallel-A-Constraint-2 Loop-Constraint-4

Conditional-Constraint-1 Parallel-A-Recommendation-2

Loop-Constraint-1

Loop-Constraint-2

Sequential-Recommendation-1

Sequential-Recommendation-2

Parallel-A-Recommendation-1

Loop-Recommendation-1

Loop-Recommendation-2

job
description

Announce A Job

Personnel Officer

job
description

Submit Application

Applicant

reference
letter

Write Reference
Letter

Referee

date
&

time

Arrange Interview

venue

Personnel Officer

Confirm Interview
Applicant

Review Reference Letter

Personnel Officer

reference
letter

reference
evaluation

report

interview
report

Interview

Personnel Officer

Make Decision

Personnel Officer

interview
report

approval letter

rejection reason

date
&

time

Write Read
Write

Write
Write

Read

Read
Write

Write
Read Read

Write

Write

reference
evaluation

report

venue
Read

conformation
Write

personal
INFO

Write

personal
INFO

Read

A B C

D-b1-1 D-b1-2

D-b2-1

E F

A_1 B_1 B_2 C_1

D-b1-1_1 D-b1-1_2 D-b1-2_1_1 D-b1-2_2D-b1-2_1_2

E_1 F_1_1 F_1_2

D-b2-1_1 D-b2-1_2

F_1_3

approve ?
Write

F_3-b1-1

F_3-b2-1
F_2

Figure 7.2: Recruitment Business Process Specified with Role-enriched BP Model

180

7.2 Go-through Example

Figure 7.3: Role-enriched Business Process in JSON format - Part One

181

7. IMPLEMENTATION

Figure 7.4: Role-enriched Business Process in JSON format - Part Two

182

7.2 Go-through Example

enriched BP model. Three user roles as personnel officer, applicant, and referee

are involved.

In the recruitment process, there are tasks as: (A) the personnel officer an-

nounces a job vacancy; (B) an applicant lodges his application; (C) a referee writes

a reference letter to support the application; (D-b1-1) the personnel officer arranges

an interview for the applicant; (D-b1-2) the applicant confirms the interview; (D-b2-

1) the personnel officer reviews the reference letter; (E) the personnel officer

conducts the interview; (F) the personnel officer makes the decision according to

the evaluation of the reference letter and the interview report. Task A, B, C, D-b1-1

and D-b1-2 and D-b2-1, E, F have the Strict-order Sequential relations. Task D-b1-

1 and D-b1-2 have the Strict-order Sequential relations. Task D-b1-1, D-b1-2 have

the Parallel-A relations with task D-b2-1.

In task A, the personnel officer needs to provide the recruitment information for

the job in the data item A 1. In task B, there exist two data items B 1 and B 2, which

have the Strict-order Sequential relations. To perform the task B, the applicant

firstly reads the recruitment information from the data item B 1, then provides the

personal information in the data item B 2. In task C, the referee is required to write

a reference letter into the data item C 1. In task D-b1-1, there exist two data items

D-b1-1 1 and D-b1-1 2, which have the Free-order Sequential relations. To perform

the task D-b1-1, the personnel officer must decide the date, time, and venue of the

interview in the data items D-b1-1 1 and D-b1-1 2. In task D-b1-2, there exist three

data items D-b1-2 1 1, D-b1-2 1 2, and D-b1-2 2. D-b1-2 1 1 and D-b1-2 1 2 have

the Free-order Sequential relations. D-b1-2 1 1 and D-b1-2 1 2 have Strict-order

Sequential relations with D-b1-2 2. To perform task D-b1-2, the applicant needs to

read the interview information about date, time and venue from the data items D-b1-

2 1 1, D-b1-2 1 2, then input the confirmation into the data item D-b1-2 2. In task

D-b2-1, there exist two data items D-b2-1 1 and D-b2-1 2, which have the Strict-order

Sequential relations. To perform the task D-b2-1, the personnel officer needs to

read the reference letter from the data item D-b2-1 1, then provide the evaluation on

the reference letter in the data item D-b2-1 2. In task E, the personnel officer needs

183

7. IMPLEMENTATION

to complete the interview report in the data item E 1. In task F, there exist six data

items F 1 1, F 1 2, F 1 3, F 2, F 3-b1-1, and F 3-b2-1. F 1 1, F 1 2, F 1 3 have Free-

order Sequential relations. F 3-b1-1, and F 3-b2-1 have Conditional relations. The

group of F 1 1, F 1 2, F 1 3, and F 2, and the the group of F 3-b1-1, and F 3-b2-

1 have Strict-order Sequential relations. To perform the task F, the personnel

officer needs to firstly read the information of the evaluation of the reference letter,

the interview report, and the applicant’s personal information from the data items

F 1 1, F 1 2, F 1 3, then makes the decision about whether to approve this applicant

in the data item F 2, lastly provides the approval letter/rejection reason in the data

item F 3-b1-1/F 3-b2-1 according to the decision.

Figure 7.3 and Figure 7.4 show the role-enriched business process in JSON format.

In these JSON files, both a control flow pattern and a data operation pattern of the BP

are modelled with JSON objects, and the elements of a control flow/data operation pat-

tern are held in a JSON array. A task is represented as a JSON object that containing

four properties: ”taskID”, ”taskName”, ”userRole”, and ”insideData”. An attribute,

representing a data item inside a task, is specified as a JSON object that containing

four properties: ”attributeID”, ”attributeName”, ”accessType”, and ”content”.

When the recruitment process is input into the UIDrvTool, Module A will firstly

deal with this process. Task Abs Agg Controller identifies all the user roles personnel

officer, applicant, and referee participating in the process. And then the UI

derivation will be performed for each user role. Here we only explain the derivation

process for the personnel officer in detail. After the user role personnel officer

is identified, AABP CFPattern Identifier is called to identify the control flow pattern

on the coarsest granular level of the process, and the identified pattern is Strict-order

Sequential. Then according to the pattern type, the function Sequential-Abs-Agg-1

in Table 7.1 is called to perform task abstraction and aggregation on the pattern Strict-

order Sequential. And the tasks B and C (not involving the personnel officer) are

abstracted as an abstracted node (see Abs1 in Figure 7.5) by Sequential-Abs-Agg-1.

In the pattern Strict-order Sequential, there exists a complex structure comprising

184

7.2 Go-through Example

job
description

Announce A Job

Personnel Officer

date
&

time

Arrange Interview

venue

Personnel Officer

Review Reference Letter
Personnel Officer

reference
letter

reference
evaluation

report

interview
report

Interview

Personnel Officer

Make Decision

Personnel Officer

interview
report

approval letter

rejection reason

Write

Write
Write

Read
Write

Write
Read Read

Write

Write

reference
evaluation

report

personal
INFO

Read

A

D-b1-1

D-b2-1

E F

A_1

D-b1-1_1 D-b1-1_2

E_1 F_1_1 F_1_2

D-b2-1_1 D-b2-1_2

F_1_3

approve ?
Write

F_3-b1-1

F_3-b2-1
F_2

Abs1

Abs2

Figure 7.5: AABP for Personnel Officer

the tasks D-b1-1, D-b1-2, D-b2-1. Then the control flow pattern of this complex struc-

ture is identified through calling AABP CFPattern Identifier, and the pattern type is

Parallel-A. Then accordingly, the function Parallel-A-Abs-Agg-2 Alt-2 is called to

abstract the task D-b1-2 (not involving the personnel officer) as an abstract node

(see Abs2 in Figure 7.5). The resulted process is the AABP for personnel officer as

shown in Figure 7.5.

When the AABP is input into Module B, the Data Relationship Extraction

Controller calls the function AABP CFPattern Identifier to identify the control flow

pattern on the coarsest granular level of the AABP, and the identified pattern is Strict-

order Sequential. In order to deal with this pattern, the function Sequential-Data-

Extract-1 is called to extract the relationships (see (A) in Figure 7.6) among tasks

A, E, F, abstracted node Abs1, and a complex structure composed of D-b1-1, Abs1,

D-b2-1. For each of the tasks A, E, F, the function Data Operation Flow Extractor

extracts the inside data operation flow, and the data operation pattern on the coarsest

granular level of data operation flow is identified by the function InTask DOPattern

Identifier. The identified data operation patterns for the tasks A, E, F are all Strict-

order Sequential. Then accordingly, the function Sequential-InTask-Data-Deriv-1

extracts data relationships as A-1 in Figure 7.6 from task A, A-2 in Figure 7.6 from task

E, C in Figure 7.6 from task F. Next, the data operation patterns of two data opera-

tion flow structures (F 1 1, F 1 2, F 1 3 and F 3-b1-1, F 3-b2-1) in task F are identified

185

7. IMPLEMENTATION

CDE1
job description Abs

Write

interview report

Strict-Seq

(A) ProcessStructRef

Read

interview report
Write

CDE2

CDE3 CDE4

Parallel-A
Branch 1

(B) NormalStructRef1

Branch 2 CDE5

(C) NormalStructRef2
Strict-Seq

(D) NormalStructRef3

Free-Seq

date & time venue

Write Write

(E) NormalStructRef4
Strict-Seq

reference
evaluation report

reference
letter

Write

(F) NormalStructRef5

Free-Seq

ReadRead

reference
evaluation report

interview
report Branch 2

Branch 1

approve letter

rejection reason

(G) NormalStructRef6

approve letter
Write

rejection reason
Write

CDE6approve ?

Write

personal
INFO

Read

(A-1) (A-2)

(C-1)

(D-1) (D-2) (E-1) (E-2) (F-1) (F-2) (F-3)

(G-2)

(G-1)

Figure 7.6: Data Relationships Extracted from the AABP for Personnel Officer

by InTask DOPattern Identifier as Strict-order Sequential and Conditionally

respectively. Sequential-InTask-Data-Deriv-2 extracts F in Figure 7.6 from the

structure of F 1 1, F 1 2, F 1 3, and Conditional-InTask-Data-Deriv-1 extracts G

in Figure 7.6 from the structure of F 3-b1-1, F 3-b2-1. Then the control flow pattern

of the structure (D-b1-1, Abs2, D-b2-1) of the AABP is identified by AABP CFPattern

Identifier as Parallel-A, whose data relationships is extracted as B in Figure 7.6

by Parallel-A-Data-Deriv-3. Next, Data Operation Flow Extractor extracts the

data operation flows inside the two tasks D-b1-1 and D-b2-1 and the data operation pat-

terns of the two extracted flows are identified as Free-order Sequential and Strict-

order Sequential respectively. Then Sequential-InTask-Data-Deriv-2 extracts D

in Figure 7.6 from the data operation flows inside task D-b1-1, and Sequential-InTask-

Data-Deriv-1 extracts E in Figure 7.6 from the data operation flows inside task D-b2-

1. As the final output of Module B, Figure 7.6 shows the data relationships extracted

from the AABP for personnel officer.

When the data relationships are input into Module C, the UI Derivation Con-

troller retrieves the ProcessStructRef in Figure 7.6 to start the UI derivation. The

ProcessStructRef is the root of the tree graph representing the data relationships.

Due to that the data relationship pattern of A is Strict-order Sequential, the func-

tions Sequential-Constraint-1 and Sequential-Constraint-2 are called to sepa-

rate the four nodes in A into four different UI containers which have Strict-order

186

7.3 Summary and Discussion

Sequential relations. And the GUI Generator generates two UI forms (a) and (d) in

Figure 7.7 for the container holding A-1 and A-2 in Figure 7.6 respectively. To deal

with the container holding CED1, Parallel-A-Recommendation-1 is called to sepa-

rate D and E of Figure 7.6 in two UI containers, which have Parallel-A relations. And

the GUI Generator generates two UI forms (b) and (c) in Figure 7.7 for the container

holding D and E in Figure 7.6 respectively. To deal with the container holding CED2,

Sequential-Recommendation-1 is called to separate CED5 and C-1, CED6 in two UI

containers which have Strict-order Sequential relations. And the GUI Generator

generates a UI form (e) in Figure 7.7 for the container holding CED5 and C-1 in Fig-

ure 7.6. Then to deal with CED6, Conditional-Constraint-1 is called to separate

G-1 and G-2 of Figure 7.6 in two containers, which have Conditional relations. And

the GUI Generator generates two UI forms (f) and (g) in Figure 7.7 for the container

holding G-1 and G-2 in Figure 7.6 respectively.

Figure 7.7 illustrates a series of Windows Forms generated by the UIDrvTool. These

forms represent the UI flow derived for the user role Personnel Officer. There exist

seven forms with involved operation flow relations as Strict-order Sequential, Free-

order Sequential, andConditional. In Figure 7.7, Form (b) and Form (c) have Free-

order Sequential relation; Form (a), Form (b) and Form (c), Form (d), Form (e) have

Strict-order Sequential relation; Form (e), Form (f), Form (g) have Conditional

relation where Form (f) and Form (g) are two branches following Form (e).

7.3 Summary and Discussion

This chapter discusses a UI Derivation Tool named as UIDrvTool, which is developed

as a Proof-of-Concept for the proposed approach of UI derivation based on the role-

enriched BP model. In the UIDrvTool, the elementary operations for Task Abstraction

and Aggregation, Data Extraction, and the UI derivation rules are all implemented to

support each UI derivation step. The GUI Generator is developed in the UIDrvTool to

generate Windows Forms, which are able to graphically illusttrate the derived UI logic

for each participating user role. A recruitment process specified with the role-enriched

187

7. IMPLEMENTATION

(a)

(b) (c)

(d)

(e)

(f) (g)

Figure 7.7: Derived Graphical User Interfaces

188

7.3 Summary and Discussion

BP model goes through the UIDrvTool to demonstrate how the UI derivation is per-

formed. With this UIDrvTool, the UI logic of a business process can be automatically

derived. The UI engineers are able to directly design the GUI of the process based on

derived UI logic, without analysing the process logic. This work greatly eases the UI

design.

189

7. IMPLEMENTATION

190

Chapter 8

Conclusion and Future Work

In this final chapter, we conclude the thesis by summarizing the main contributions in

Section 8.1 and providing a discussion on open problems and an outlook on possible

future research in Section 8.2.

8.1 Contributions

In this thesis, we proposed a user interface derivation approach to automatically derive

the UI logic of a BP for each involved user role. This derivation approach has been built

up based on a role-enriched business process model and is composed of three derivation

steps. With this approach, the hard coding efforts on the UI development for BPs can

be reduced. This approach helps BP changes to be easily adapted to the UIs without

recoding. The main contributions of this approach are summarized as follows.

� We have proposed a role-enriched business process model to derive the UI logic of

a BP for each involved user role. This BP model has the capabilities to specify (1)

how user roles are involved in tasks; (2) how data are operated in individual tasks;

(3) how complex control flow patterns affect data relationships. The formalism

of role-enriched business process model has been introduced. The well-formness

of the process model has been analyzed. The process model has been specified

by extending the BPMN. A set of control flow patterns and data operation pat-

terns have been identified and summarized as the cornerstones of building up the

191

8. CONCLUSION AND FUTURE WORK

elementary operations for task abstraction and aggregation. This role-enriched

BP model lays the foundation for building up the UI derivation approach. The

role-enriched BP model is a extension to the activity-centric paradigm in terms of

expressing the data operated within a single task and how user roles are involved

in tasks.

� We have proposed a method for task abstraction and aggregation as the first step

of the UI derivation approach. The formalism of abstracted and aggregated busi-

ness process model has been introduced. A set of elementary operations for task

abstraction and aggregation have been developed based on the identified control

flow patterns in the role-enriched BP. The algorithm for task abstraction and ag-

gregation has been built up with the elementary operations as cornerstones. The

structural consistency between the role-enriched BP and the AABP has been

discussed through the analysis on the orders and dependencies between/among

tasks. Two theorems about the structural consistency have been identified and

proved. This method can allow each user role involved in a BP to have a cus-

tomized UI logic. Besides, the method for task abstraction and aggregation also

has the following significance: (1) firstly, the details of BP tasks can be hidden

and abstracted from certain users to meet the information security requirements

such as privacy, confidentiality, and conflict of interest; (2) secondly, task abstrac-

tion and aggregation can lay a foundation for deriving customized descriptions of

a BP for participating users according to the users’ requirements and intentions.

The customized BP descriptions can play an important role in the modelling of

BP collaboration, BP visualization, and authority control; (3) thirdly, abstracted

and aggregated BPs are able to highlight the requirements associated with a spe-

cific user role and preserve some information of other user roles for the effective

control flow in a BP. AABPs can be used to enable the development and updating

of software components such as UIs related to different user roles.

� We have proposed a method for data relationship extraction as the second step of

the UI derivation approach. We have used tree graph to represent the extracted

192

8.1 Contributions

data relationships, and the JSON Strings to record all the details represented

in the tree graph. Five data relationship patterns have been identified. A well-

formed tree graph has been analyzed. A set of elementary operations for data

relationship have been developed based on the identified control flow patterns

and data operation patterns in the AABP. The algorithm for data relationship

extraction has been built up with the elementary operations as cornerstones.

With the data relationship extraction method, the data relationships, including

the data operated in the process and data operation flow, can be extracted from

the AABP. The extracted data relationships allow for analyzing the UI logic from

the abstracted and aggregated BP for each participating user role. The well-

formness regulations can be implemented to automatically check well-formness of

a tree graph.

� We have proposed a method for UI derivation as the last step of the UI derivation

approach. The derived UI logic for a particular user role has been represented as

a user interface flow, which has two granularity levels: the operation flow between

UI containers, and data items included inside each UI container. Each data item

has been specified with the access type including read and write. Five types of

operation flow relation between UI containers have been summarized. A set of

UI derivation rules have been coined including constraints and recommendations.

The algorithm for UI derivation has been built up with the rules as cornerstones.

With the extracted data relationships, the UI logic is able to be derived for each

participating user role. The derived UI logic allows UI developers to develop

graphical user interfaces of the BP for each involved user role.

� Our proposed user interface derivation approach has been implemented as a tool

named UIDrvTool for Proof-of-Concept. The role-enriched BP model has been

specified using JSON. Each UI derivation step has been implemented as a inde-

pendent module. In each module, the elementary operations for task abstraction

and aggregation, the elementary operations for data relationship extraction, and

the UI derivation rules have been implemented as individual functions. A GUI

193

8. CONCLUSION AND FUTURE WORK

Generator has been developed in the UIDrvTool to visualize the derived UI log-

ics. For each user role participating in a BP, a set of Windows Forms have been

generated by the GUI Generator, which can provide information to and require

inputs from the user role.

Comparing to existing works, our proposed approach has successfully derived the

UI logics for each participating user role. Complicated control flow patterns have been

covered in our approach, such as Parallel-B and Parallel-C.

8.2 Future Work

In this thesis, we have provided a comprehensive discussion on the UI derivation ap-

proach based on role-enriched business process model. We believe that this research

area will draw attentions from both the academic and industrial communities. There

are a number of open issues for further investigation.

In our work, we only focused on deriving the UIs for business processes. The

responding to changes from either the BP or the related UI is a critical challenge and

therefore requires to be further explored. Changes may range from momentary (ad-hoc)

modifications of the BP for a single user to a complete restructuring for the process to

improve efficiency. In order to have the capability of adapting the changes, two major

issues must be addressed: (1) the identification of potential changes in BPs and their

related UIs, (2) the analysis on which parts will be and will not be affected by these

potential changes [141, 142, 143, 144, 145, 146]. In our proposed role-enriched BP, we

identified seven control flow patterns and four data operation patterns. These patterns

are the most commonly-used. Complex workflow patterns such as inclusive branching

and merging, synchronization of multiple process instances must be considered in the

control flow patterns and data operation patterns of our work. Solutions to the complex

patterns need to be provided in the future [86, 90, 91, 92]. Our UI derivation approach

is built up on a role-enriched business process model, which follows the traditional

activity-centric process modelling paradigm. Other than this paradigm, the declarative

process modelling paradigm is another widely used modelling approach, which treats the

194

8.2 Future Work

data objects in BPs as the first-class citizens. The artifact-centric modelling approach

is a representative declarative modelling paradigm, which focuses on specifying the life

cycles of business artifacts and their inter-relations. As a future exploration, the support

to the artifact-centric BP model needs to be enriched in our UI derivation approach

[33, 133, 134]. In our proposed UI derivation approach, we have not paid attention on

the development of the formal BP modelling language. We used the BPMN (an informal

language) to specify our role-enriched business process model. In the future work, a

formal process modelling language may be required to formally specify the semantics

of our proposed BP model. In doing so, the process properties such as correctness and

reliability can be verified. Apart from the process verification, the verification of our

proposed business rules needs to be conducted through specifying the rules in a unified

language.

195

8. CONCLUSION AND FUTURE WORK

196

References

[1] James OBrien. Introduction to information systems: Essentials for the internet

worked e-business enterprise. McGrawhill Public Company, 2001. 2

[2] Tim Allen. Improve your business processes for ERP efficiency. Strategic Finance,

92(11):54, 2011. 2

[3] Vijay Gurbaxani and Seungjin Whang. The impact of information systems on orga-

nizations and markets. Communications of the ACM, 34(1):59–73, 1991. 2

[4] Nariman Abdi, Behrouz Zarei, Jamshid Vaisy, and Badieahe Parvin. Innovation models

and business process redesign. International Business and Management, 3(2):147–152, 2011.

2

[5] Christoph Hienerth, Peter Keinz, and Christopher Lettl. Exploring the nature

and implementation process of user-centric business models. Long Range Planning,

44(5):344–374, 2011. 2

[6] Mathias Weske. Business process management: concepts, languages, architectures. Springer

Science & Business Media, 2012. 2, 18, 42

[7] A Faye Borthick, Gary P Schneider, and Anthony O Vance. Preparing graphical

representations of business processes and making inferences from them. Issues in

Accounting Education, 25(3):569–582, 2010. 2

[8] Mathias Weske. Business process management architectures. In Business Process Man-

agement, pages 333–371. Springer, 2012. 3

[9] Ksenia Ryndina, Jochen M Küster, and Harald Gall. Consistency of business process

models and object life cycles. In International Conference on Model Driven Engineering

Languages and Systems, pages 80–90. Springer, 2006. 3, 52

[10] Rong Liu, Frederick Y Wu, and Santhosh Kumaran. Transforming activity-centric

business process models into information-centric models for soa solutions. Cross-

Disciplinary Models and Applications of Database Management: Advancing Approaches: Ad-

vancing Approaches, page 336, 2011. 3

197

REFERENCES

[11] Object Management Group. Business Process Model and Notation.

https://en.wikipedia.org/wiki/Business_Process_Model_and_Notation, 2016. [Online;

accessed 02-November-2016]. 3, 19

[12] Jan Mendling. Event-driven process chains (epc). In Metrics for Process Models, pages

17–57. Springer, 2008. 3

[13] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes

Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte, et al.

Business process execution language for web services, 2003. 3, 27

[14] Wil MP Van Der Aalst and Arthur HM Ter Hofstede. YAWL: yet another workflow

language. Information Systems, 30(4):245–275, 2005. 3

[15] Sidney L Smith and Jane N Mosier. The user interface to computer-based informa-

tion systems: A survey of current software design practice. Behaviour & Information

Technology, 3(3):195–203, 1984. 4

[16] Wikipedia. User interface. https://en.wikipedia.org/wiki/User_interface, 2016. [Online;

accessed 04-December-2016]. 4

[17] Edsger Wybe Dijkstra, Edsger Wybe Dijkstra, Edsger Wybe Dijkstra, Etats-Unis

Informaticien, and Edsger Wybe Dijkstra. A discipline of programming, 1. prentice-hall

Englewood Cliffs, 1976. 4

[18] Hubert Zimmermann. OSI reference model-the ISO model of architecture for open

systems interconnection. IEEE Transactions on Communications, 28(4):425–432, 1980. 5

[19] Jens Kolb, Paul Hübner, and Manfred Reichert. Model-driven user interface gener-

ation and adaptation in process-aware information systems. 2012. 5, 42, 48

[20] Manfred Reichert, Jens Kolb, Ralph Bobrik, and Thomas Bauer. Enabling person-

alized visualization of large business processes through parameterizable views. 2012.

10, 36, 40

[21] Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A Reijers. Fundamentals

of business process management. Springer, 2013. 17, 18

[22] Ruth Sara Aguilar-Saven. Business process modelling: Review and framework. In-

ternational Journal of Production Economics, 90(2):129–149, 2004. 18, 23

[23] Ryan KL Ko, Stephen SG Lee, and Eng Wah Lee. Business process management

(BPM) standards: a survey. Business Process Management Journal, 15(5):744–791, 2009.

18, 27

[24] Wil MP van der Aalst. Business process management: a comprehensive survey.

ISRN Software Engineering, 2013, 2013. 18, 22, 26

[25] Stephen A White. Introduction to BPMN. IBM Cooperation, 2(0):0, 2004. 18

198

REFERENCES

[26] Wikipedia. Business Process Model and Notation.

https://en.wikipedia.org/wiki/Business_Process_Model_and_Notation, 2016. [Online;

accessed 02-November-2016]. 18

[27] Business Process Model. Notation (BPMN) Version 2.0. OMG Specification, Object

Management Group, 2011. 19, 52, 60

[28] Michele Chinosi and Alberto Trombetta. BPMN: An introduction to the standard.

Computer Standards & Interfaces, 34(1):124–134, 2012. 19

[29] BPM Offensive Berlin. BPMN 2.0 Business Process Model and Notation, Poster,

2011. 19

[30] Andreas Meyer, Luise Pufahl, Dirk Fahland, and Mathias Weske. Modeling and enact-

ing complex data dependencies in business processes. Springer, 2013. 20

[31] Andreas Meyer, Luise Pufahl, Dirk Fahland, and Mathias Weske. Enacting Complex

Data Dependencies from Activity-Centric Business Process Models. In BPM (Demos),

2013. 20

[32] Niels Lohmann and Martin Nyolt. Artifact-centric modeling using BPMN. In Service-

Oriented Computing-ICSOC 2011 Workshops, pages 54–65. Springer, 2012. 20

[33] Anil Nigam and Nathan S Caswell. Business artifacts: An approach to operational

specification. IBM Systems Journal, 42(3):428–445, 2003. 21, 44, 49, 195

[34] Kamal Bhattacharya, Cagdas Gerede, Richard Hull, Rong Liu, and Jianwen Su.

Towards formal analysis of artifact-centric business process models. In Business Process

Management, pages 288–304. Springer, 2007. 21, 75

[35] Hagen Völzer. A new semantics for the inclusive converging gateway in safe pro-

cesses. In International Conference on Business Process Management, pages 294–309. Springer,

2010. 21

[36] David Raymond Christiansen, Marco Carbone, and Thomas Hildebrandt. Formal se-

mantics and implementation of BPMN 2.0 inclusive gateways. In International Work-

shop on Web Services and Formal Methods, pages 146–160. Springer, 2010. 21

[37] Remco M Dijkman, Marlon Dumas, and Chun Ouyang. Semantics and analysis of

business process models in BPMN. Information and Software Technology, 50(12):1281–

1294, 2008. 21

[38] WMP Van der Aalst and KM Van Hee. Business process redesign: a Petri-net-based

approach. Computers in Industry, 29(1):15–26, 1996. 21, 25

[39] Peter YH Wong and Jeremy Gibbons. A process semantics for BPMN. In International

Conference on Formal Engineering Methods, pages 355–374. Springer, 2008. 21

[40] Peter YH Wong and Jeremy Gibbons. Formalisations and applications of BPMN.

Science of Computer Programming, 76(8):633–650, 2011. 21

199

REFERENCES

[41] Jim Woodcock and Jim Davies. Using Z: specification, refinement, and proof, 39. Prentice

Hall Englewood Cliffs, 1996. 21

[42] Bill Roscoe. The theory and practice of concurrency. 1998. 21

[43] OMG Uml. 2.0 Superstructure Specification. OMG, Needham, 2004. 21

[44] Martin Fowler. UML distilled: a brief guide to the standard object modeling language. Addison-

Wesley Professional, 2004. 22

[45] Wikipedia. Unified Modelling Laguguage - Activity Diagram.

https://en.wikipedia.org/wiki/Activity_diagram, 2016. [Online; accessed 03-November-

2016]. 22

[46] Tutorialspoint. Learn UML - Activity Diagrams.

https://www.tutorialspoint.com/uml/uml_activity_diagram.htm, 2016. [Online; accessed

03-November-2016]. 22

[47] Marlon Dumas and Arthur HM Ter Hofstede. UML activity diagrams as a workflow

specification language. In International Conference on the Unified Modeling Language, pages

76–90. Springer, 2001. 22

[48] Petia Wohed, Wil MP van der Aalst, Marlon Dumas, Arthur HM ter Hofstede, and

Nick Russell. Pattern-based analysis of UML activity diagrams. Beta, Research School

for Operations Management and Logistics, Eindhoven, 2004. 22

[49] Nick Russell, Wil MP van der Aalst, Arthur HM Ter Hofstede, and Petia Wohed.

On the suitability of UML 2.0 activity diagrams for business process modelling.

In Proceedings of the 3rd Asia-Pacific Conference on Conceptual Modelling-Volume 53, pages

95–104. Australian Computer Society, Inc., 2006. 22

[50] John E Hopcroft. Introduction to Automata Theory, Languages and Computation: For VTU,

3/e. Pearson Education India, 1979. 22

[51] Alain Girault, Bilung Lee, and Edward A Lee. Hierarchical finite state machines with

multiple concurrency models. IEEE Transactions on Computer-aided Design of Integrated

Circuits and Systems, 18(6):742–760, 1999. 23

[52] Wikipedia. Finite-state machine. https://en.wikipedia.org/wiki/Finite-state_machine,

2016. [Online; accessed 03-November-2016]. 23

[53] Khodakaram Salimifard and Mike Wright. Petri net-based modelling of workflow

systems: An overview. European Journal of Operational Research, 134(3):664–676, 2001. 24

[54] Wil Van Der Aalst and Kees Max Van Hee. Workflow management: models, methods, and

systems. MIT Press, 2004. 24

[55] Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of the

IEEE, 77(4):541–580, 1989. 24

200

REFERENCES

[56] Kurt Jensen. Coloured Petri nets: basic concepts, analysis methods and practical use, 1.

Springer Science & Business Media, 2013. 25

[57] Kurt Jensen. A brief introduction to coloured petri nets. In International Workshop

on Tools and Algorithms for the Construction and Analysis of Systems, pages 203–208. Springer,

1997. 25

[58] Mohammed Elkoutbi and Rudolf K Keller. Modeling interactive systems with hier-

archical colored petri nets. In Advanced Simulation Technologies Conference, pages 432–37.

Citeseer, 1998. 25

[59] Wil MP Van der Aalst. The application of Petri nets to workflow management.

Journal of Circuits, Systems, and Computers, 8(01):21–66, 1998. 25

[60] Wil MP Van Der Aalst. Three good reasons for using a Petri-net-based workflow

management system. In Information and Process Integration in Enterprises, pages 161–182.

Springer, 1998. 25

[61] Wil MP van der Aalst and Kees M van Hee. Framework for business process redesign.

In WETICE, pages 36–45, 1995. 25

[62] WMP Van der Aalst. A class of Petri net for modeling and analyzing business

processes. Computing Science Reports, 95:26, 1995. 25

[63] Wil MP van der Aalst. Structural characterizations of sound workflow nets. Com-

puting Science Reports, 96(23):18–22, 1996. 25

[64] Wil MP Van der Aalst. Verification of workflow nets. In International Conference on

Application and Theory of Petri Nets, pages 407–426. Springer, 1997. 25

[65] Wil MP Van Der Aalst. Workflow verification: Finding control-flow errors using

petri-net-based techniques. In Business Process Management, pages 161–183. Springer, 2000.

25

[66] Dimitra Giannakopoulou and Klaus Havelund. Automata-based verification of tem-

poral properties on running programs. In Automated Software Engineering, 2001.(ASE

2001). Proceedings. 16th Annual International Conference on, pages 412–416. IEEE, 2001. 25

[67] Klaus Havelund and Grigore Roşu. Synthesizing monitors for safety properties. In

International Conference on Tools and Algorithms for the Construction and Analysis of Systems,

pages 342–356. Springer, 2002. 25

[68] Wikipedia. Linear Temporal Logic. https://en.wikipedia.org/wiki/Linear_temporal_logic,

2016. [Online; accessed 03-November-2016]. 25

[69] Christel Baier, Joost-Pieter Katoen, and Kim Guldstrand Larsen. Principles of model

checking. MIT Press, 2008. 26

201

REFERENCES

[70] Wil MP van Der Aalst, Maja Pesic, and Helen Schonenberg. Declarative workflows:

Balancing between flexibility and support. Computer Science-Research and Development,

23(2):99–113, 2009. 26, 75

[71] Wil MP Van Der Aalst and Maja Pesic. DecSerFlow: Towards a truly declarative service

flow language. Springer, 2006. 26

[72] Wikipedia. Extensible Markup Language. https://en.wikipedia.org/wiki/XML, 2016.

[Online; accessed 04-November-2016]. 27

[73] Anders Møller and Michael I Schwartzbach. An introduction to XML and Web technolo-

gies. Pearson Education, 2006. 27

[74] Diane Jordan, John Evdemon, Alexandre Alves, Assaf Arkin, Sid Askary, Charlton

Barreto, Ben Bloch, Francisco Curbera, Mark Ford, Yaron Goland, et al. Web

services business process execution language version 2.0. OASIS standard, 11(120):5,

2007. 27

[75] Niels Lohmann, Eric Verbeek, and Remco Dijkman. Petri net transformations for

business processes–a survey. In Transactions on Petri Nets and Other Models of Concurrency

II, pages 46–63. Springer, 2009. 27

[76] Wikipedia. Business Process Execution Language.

https://en.wikipedia.org/wiki/Business_Process_Execution_Language, 2016. [Online;

accessed 04-November-2016]. 27

[77] Jan C Recker and Jan Mendling. On the translation between BPMN and BPEL:

Conceptual mismatch between process modeling languages. In The 18th International

Conference on Advanced Information Systems Engineering. Proceedings of Workshops and Doc-

toral Consortium, pages 521–532. Namur University Press, 2006. 28

[78] Michael Rosemann and Peter Green. Developing a meta model for the Bunge–

Wand–Weber ontological constructs. Information Systems, 27(2):75–91, 2002. 28

[79] Chun Ouyang, Marlon Dumas, Wil MP Van Der Aalst, Arthur HM Ter Hofstede,

and Jan Mendling. From business process models to process-oriented software sys-

tems. ACM Transactions on Software Engineering and Methodology (TOSEM), 19(1):2, 2009.

28

[80] Chun Ouyang, Marlon Dumas, Arthur HM Ter Hofstede, et al. From business

process models to process-oriented software systems: The BPMN to BPEL way.

2006. 28

[81] Wil MP Van Der Aalst and Kristian Bisgaard Lassen. Translating unstructured

workflow processes to readable BPEL: Theory and implementation. Information and

Software Technology, 50(3):131–159, 2008. 28

[82] Mika Koskela and Jyrki Haajanen. Business Process Modeling and Execution. Tools

and Technologies Report for SOAMeS Project, 2007. 28

202

REFERENCES

[83] Jan Mendling, Gustaf Neumann, and Markus Nüttgens. A comparison of XML in-

terchange formats for business process modelling. Workflow Handbook, pages 185–198,

2005. 28

[84] Dirk Riehle and Heinz Züllighoven. Understanding and using patterns in software

development. TAPOS, 2(1):3–13, 1996. 28

[85] Martin Fowler. Analysis patterns: reusable object models. Addison-Wesley Professional, 1997.

28

[86] Wil MP van Der Aalst, Arthur HM Ter Hofstede, Bartek Kiepuszewski, and Alis-

tair P Barros. Workflow patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

28, 29, 75, 194

[87] Stephen A White. Process modeling notations and workflow patterns. Workflow

Handbook, 2004:265–294, 2004. 28

[88] Erich Gamma. Design patterns: elements of reusable object-oriented software. Pearson Educa-

tion India, 1995. 28

[89] The Workflow Patterns Initiative. Workflow Patterns. http://workflowpatterns.com,

2010. [Online; accessed 15-October-2016]. 29, 75

[90] Wil MP van der Aalst, Alistair P Barros, Arthur HM ter Hofstede, and Bartek

Kiepuszewski. Advanced workflow patterns. In International Conference on Cooperative

Information Systems, pages 18–29. Springer, 2000. 29, 194

[91] Wil MP van der Aalst and Arthur HM ter Hofstede. Workflow patterns: On the

expressive power of (petri-net-based) workflow languages. In Proceedings of the Fourth

Workshop on the Practical Use of Coloured Petri Nets and CPN Tools (CPN 2002), 560, pages

1–20. Citeseer, 2002. 29, 194

[92] Nick Russell, Arthur HM Ter Hofstede, and Nataliya Mulyar. Workflow controlflow

patterns: A revised view. 2006. 29, 75, 194

[93] Workflow Manage Coalition. Terminology & glossary. WFMC Document WFMCTC-

1011, Workflow Management Coalition, Avenue Marcel Thiry, 204:1200, 1996. 29

[94] Jae Choi, Derek L Nazareth, and Hemant K Jain. The impact of SOA implementa-

tion on IT-business alignment: A system dynamics approach. ACM Transactions on

Management Information Systems (TMIS), 4(1):3, 2013. 36

[95] Axel Martens. Consistency between executable and abstract processes. In 2005 IEEE

International Conference on E-Technology, E-Commerce and E-Service, pages 60–67. IEEE, 2005.

36

[96] Xiaohui Zhao, Chengfei Liu, Sira Yongchareon, Marek Kowalkiewicz, and Wasim

Sadiq. Role-based process view derivation and composition. ACM Transactions on

Management Information Systems (TMIS), 6(2):7, 2015. 36, 40

203

REFERENCES

[97] Artem Polyvyanyy, Sergey Smirnov, and Mathias Weske. Business process model

abstraction. In Handbook on Business Process Management 1, pages 147–165. Springer, 2015.

39

[98] Sergey Smirnov, Hajo A Reijers, and Mathias Weske. A semantic approach for busi-

ness process model abstraction. In Advanced Information Systems Engineering, pages 497–

511. Springer, 2011. 39

[99] Christian W Günther and Wil MP Van Der Aalst. Fuzzy mining–adaptive process

simplification based on multi-perspective metrics. In International Conference on Busi-

ness Process Management, pages 328–343. Springer, 2007. 39

[100] Rik Eshuis and Paul Grefen. Constructing customized process views. Data & Knowl-

edge Engineering, 64(2):419–438, 2008. 39

[101] H Eshuis and PWPJ Grefen. Constructing customized process views. 2007. 39

[102] Jens Kolb and Manfred Reichert. A flexible approach for abstracting and personal-

izing large business process models. ACM SIGAPP Applied Computing Review, 13(1):6–18,

2013. 40

[103] Jens Kolb, Klaus Kammerer, and Manfred Reichert. Updatable process views for

user-centered adaption of large process models. In Service-Oriented Computing, pages

484–498. Springer, 2012. 40

[104] Jens Kolb, Paul Hübner, and Manfred Reichert. Automatically generating and up-

dating user interface components in process-aware information systems. In On the

Move to Meaningful Internet Systems: OTM 2012, pages 444–454. Springer, 2012. 40, 42, 48

[105] Ralph Bobrik, Manfred Reichert, and Thomas Bauer. View-based process visual-

ization. In International Conference on Business Process Management, pages 88–95. Springer,

2007. 40

[106] Sira Yongchareon, Chengfei Liu, Xiaohui Zhao, and Marek Kowalkiewicz. BPMN

process views construction. In Database Systems for Advanced Applications, pages 550–564.

Springer, 2010. 40

[107] Sira Yongchareon and Chengfei Liu. A process view framework for artifact-centric

business processes. In On the Move to Meaningful Internet Systems: OTM 2010, pages 26–43.

Springer, 2010. 41

[108] Duen-Ren Liu and Minxin Shen. Workflow modeling for virtual processes: an order-

preserving process-view approach. Information Systems, 28(6):505–532, 2003. 41

[109] Minxin Shen and Duen-Ren Liu. Discovering role-relevant process-views for dissemi-

nating process knowledge. Expert Systems with Applications, 26(3):301–310, 2004. 41

[110] Vera Künzle and Manfred Reichert. PHILharmonicFlows: towards a framework

for object-aware process management. Journal of Software Maintenance and Evolution:

Research and Practice, 23(4):205–244, 2011. 43, 49

204

REFERENCES

[111] Vera Künzle and Manfred Reichert. A modeling paradigm for integrating processes

and data at the micro level. In Enterprise, Business-Process and Information Systems Mod-

eling, pages 201–215. Springer, 2011. 43, 49

[112] Kênia Sousa, Hildeberto Mendonça, Jean Vanderdonckt, Els Rogier, and Joannes

Vandermeulen. User interface derivation from business processes: a model-driven

approach for organizational engineering. In Proceedings of the 2008 ACM Symposium on

Applied Computing, pages 553–560. ACM, 2008. 43, 48

[113] Quentin Limbourg, Jean Vanderdonckt, Benjamin Michotte, Laurent Bouillon, and

V́ıctor López-Jaquero. USIXML: a language supporting multi-path development

of user interfaces. In International Workshop on Design, Specification, and Verification of

Interactive Systems, pages 200–220. Springer, 2004. 43, 48

[114] Quentin Limbourg and Jean Vanderdonckt. Addressing the mapping problem in user

interface design with UsiXML. In Proceedings of the 3rd Annual Conference on Task Models

and Diagrams, pages 155–163. ACM, 2004. 43, 48

[115] Jean Vanderdonckt. A MDA-compliant environment for developing user interfaces

of information systems. In International Conference on Advanced Information Systems En-

gineering, pages 16–31. Springer, 2005. 43, 48

[116] Jean Vanderdonckt et al. Model-driven engineering of user interfaces: Promises,

successes, and failures. In 5th Annual Romanian Conf. on Human-Computer Interaction

ROCHI2008, 2008. 43, 48

[117] David Cohn and Richard Hull. Business artifacts: A data-centric approach to mod-

eling business operations and processes. Bulletin of the IEEE Computer Society Technical

Committee on Data Engineering, 32(3):3–9, 2009. 44, 49, 75

[118] Sira Yongchareon, Chengfei Liu, Xiaohui Zhao, and Jiajie Xu. An artifact-centric

approach to generating web-based business process driven user interfaces. In Web

Information Systems Engineering–WISE 2010, pages 419–427. Springer, 2010. 44, 49

[119] David Cohn, Pankaj Dhoolia, Fenno Heath Iii, Florian Pinel, and John Vergo. Siena:

From powerpoint to web app in 5 minutes. In Service-Oriented Computing–ICSOC 2008,

pages 722–723. Springer, 2008. 44, 49

[120] Fenno Terry Heath III, David Boaz, Manmohan Gupta, Roman Vacuĺın, Yutian Sun,

Richard Hull, and Lior Limonad. Barcelona: A design and runtime environment for

declarative artifact-centric BPM. In Service-Oriented Computing, pages 705–709. Springer,

2013. 44, 49

[121] Noi Sukaviriya, Senthil Mani, and Vibha Sinha. Reflection of a year long model-

driven business and ui modeling development project. In Human-Computer Interaction–

INTERACT 2009, pages 749–762. Springer, 2009. 45, 47

205

REFERENCES

[122] Noi Sukaviriya, Vibha Sinha, Thejaswini Ramachandra, Senthil Mani, and Markus

Stolze. User-centered design and business process modeling: cross road in rapid pro-

totyping tools. In Human-Computer Interaction–INTERACT 2007, pages 165–178. Springer,

2007. 45, 47

[123] Wikipedia. Principles of User Interface Design.

https://en.wikipedia.org/wiki/Principles_of_user_interface_design, 2016. [Online;

accessed 13-November-2016]. 45

[124] Larry L Constantine and Lucy AD Lockwood. Software for use: a practical guide to the

models and methods of usage-centered design. Pearson Education, 1999. 45

[125] Larry L Constantine and Lucy AD Lockwood. Structure and style in use cases for

user interface design. Object Modeling and User Interface Design, pages 245–280, 2001. 45

[126] Larry L Constantine and Lucy AD Lockwood. Usage-centered engineering for web

applications. IEEE Software, 19(2):42, 2002. 45

[127] Larry L Constantine and Lucy AD Lockwood. Usage-centered software engineering:

an agile approach to integrating users, user interfaces, and usability into software

engineering practice. In Proceedings of the 25th International Conference on Software Engi-

neering, pages 746–747. IEEE Computer Society, 2003. 45

[128] Alin Deutsch, Richard Hull, Fabio Patrizi, and Victor Vianu. Automatic verification

of data-centric business processes. In Proceedings of the 12th International Conference on

Database Theory, pages 252–267. ACM, 2009. 47

[129] Alin Deutsch, Liying Sui, and Victor Vianu. Specification and verification of data-

driven web applications. Journal of Computer and System Sciences, 73(3):442–474, 2007.

47

[130] Noi Sukaviriya, Vibha Sinha, Thejaswini Ramachandra, and Senthil Mani. Model-

driven approach for managing human interface design life cycle. In Model Driven

Engineering Languages and Systems, pages 226–240. Springer, 2007. 47

[131] Joan Fons, Vicente Pelechano, Manoli Albert, and Oscar Pastor. Development of

web applications from web enhanced conceptual schemas. In International Conference

on Conceptual Modeling, pages 232–245. Springer, 2003. 48

[132] Oscar Pastor, Joan Fons, Vicente Pelechano, and Silvia Abrahão. Conceptual mod-

elling of web applications: the OOWS approach. In Web Engineering, pages 277–302.

Springer, 2006. 48

[133] Richard Hull, Elio Damaggio, Fabiana Fournier, Manmohan Gupta, Fenno Terry

Heath III, Stacy Hobson, Mark Linehan, Sridhar Maradugu, Anil Nigam, Piyawadee

Sukaviriya, et al. Introducing the guard-stage-milestone approach for specifying

business entity lifecycles. In International Workshop on Web Services and Formal Methods,

pages 1–24. Springer, 2010. 49, 195

206

REFERENCES

[134] Richard Hull, Elio Damaggio, Riccardo De Masellis, Fabiana Fournier, Manmohan

Gupta, Fenno Terry Heath III, Stacy Hobson, Mark Linehan, Sridhar Maradugu,

Anil Nigam, et al. Business artifacts with guard-stage-milestone lifecycles: man-

aging artifact interactions with conditions and events. In Proceedings of the 5th ACM

International Conference on Distributed Event-based System, pages 51–62. ACM, 2011. 49, 195

[135] Andreas Meyer and Mathias Weske. Activity-centric and artifact-centric process

model roundtrip. In International Conference on Business Process Management, pages 167–

181. Springer, 2013. 51

[136] Rik Eshuis and Pieter Van Gorp. Synthesizing object life cycles from business process

models. In International Conference on Conceptual Modeling, pages 307–320. Springer, 2012.

52

[137] Cagdas E Gerede and Jianwen Su. Specification and verification of artifact behaviors in

business process models. Springer, 2007. 75

[138] Thongchai Srivardhana and Suzanne D Pawlowski. ERP systems as an enabler of sus-

tained business process innovation: A knowledge-based view. The Journal of Strategic

Information Systems, 16(1):51–69, 2007. 78

[139] Gautam Ray, Jay B Barney, and Waleed A Muhanna. Capabilities, business processes,

and competitive advantage: choosing the dependent variable in empirical tests of

the resource-based view. Strategic Management Journal, 25(1):23–37, 2004. 78

[140] SB Rinderle, Ralph Bobrik, Manfred Reichert, and Thomas Bauer. Business process

visualization-use cases, challenges, solutions. 2006. 78

[141] Wil MP van der Aalst and Stefan Jablonski. Dealing with workflow change: identi-

fication of issues and solutions. Computer Systems Science and Engineering, 15(5):267–276,

2000. 194

[142] T Koulopoulos. The Workflow Imperative, 1995. 194

[143] Shazia W Sadiq. Handling dynamic schema change in process models. In Database

Conference, 2000. ADC 2000. Proceedings. 11th Australasian, pages 120–126. IEEE, 2000. 194

[144] Shazia W Sadiq, Olivera Marjanovic, and Maria E Orlowska. Managing change and

time in dynamic workflow processes. International Journal of Cooperative Information

Systems, 9(01n02):93–116, 2000. 194

[145] Fabio Casati, Stefano Ceri, Barbara Pernici, and Giuseppe Pozzi. Workflow evolu-

tion. Data & Knowledge Engineering, 24(3):211–238, 1998. 194

[146] Matthias Weidlich, Mathias Weske, and Jan Mendling. Change propagation in pro-

cess models using behavioural profiles. In Services Computing, 2009. SCC’09. IEEE Inter-

national Conference on, pages 33–40. IEEE, 2009. 194

207

