
A Novel Framework for Author Obfuscation

using Generalised Differential Privacy

By

Natasha Fernandes

A thesis submitted to Macquarie University

for the degree of Master of Research

Department of Computing

9 October, 2017



ii

© Natasha Fernandes, 2017.

Typeset in LATEX 2ε.



iii

Except where acknowledged in the customary manner, the

material presented in this thesis is, to the best of my knowl-

edge, original and has not been submitted in whole or part

for a degree in any university.

Natasha Fernandes



ACKNOWLEDGEMENTS

I am deeply grateful to my supervisor, Prof. Annabelle McIver, and my assistant supervisor, A/Prof.

Mark Dras, for their constant encouragement, words of wisdom and outstanding good humour through-

out this project. This thesis reflects their dedication and support, for which I am humbly thank-

ful.

I’d also like to express my thanks to Tim Chard for his programming prowess and assistance with the

experimental work in this thesis.

Finally, to my friends and family who supported me throughout the year. In particular, to my husband

Anthony, who helps me to believe in myself, and to my beautiful boys, Ben, Jack and Tom, who

remind me to approach every day with joy and wonder. Thank you for your love and your patience

especially during the writing of this thesis.



ABSTRACT

The problem of obfuscating the authorship of a text document has received little attention in the liter-

ature to date. Current approaches are ad-hoc and rely on assumptions about an adversary’s auxiliary

knowledge which makes it difficult to reason about the privacy properties of these methods. Another

approach to privacy, known as differential privacy, is advocated in the literature for its strong privacy

guarantees. However, differential privacy has been dismissed as an option for text document privacy

due to its design around the release of aggregate statistics, and its dependence on notions of ‘adja-

cency’, neither of which apply to text document privacy. In addition, differential privacy does not

permit the release of individual data points as required for text document publishing. However, a new

approach to privacy known as generalised differential privacy extends differential privacy to arbitrary

datasets with no notion of adjacency, and permits the private release of individual data points. In

this thesis, we show to apply generalised differential privacy to author obfuscation, drawing inspi-

ration from the example of geo-location privacy, and utilising existing tools and methods from the

stylometry and natural language processing literature.
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1 INTRODUCTION

Satoshi Nakamoto, the pseudonymous creator of bitcoin, eluded identification for many years, using

encryption and obfuscation techniques to mask his whereabouts and identity. Recently, his identity

was allegedly established by the NSA using techniques from stylometry, the study of stylistic charac-

teristics of writing [49]. The NSA used known texts by the bitcoin creator, and analysed the frequency

of word use for common words across different sections of these texts. These word frequencies were

used as a fingerprint to compare the bitcoin creator’s writing against trillions of emails collected from

different individuals until a match was found. Nakamoto’s anonymity was by choice, however his re-

quest for privacy was not able to withstand the efforts of an organisation with access to large quantities

of data. Importantly, whilst the problem of text de-anonymisation has received significant attention

in the stylometry community, the reverse problem of text anonymisation has not, and there have been

limited attempts at privacy in this domain. This raises the question: could a robust privacy approach

to text anonymisation have protected Nakamoto’s anonymity?

The problem of obscuring, or obfuscating, the authorship of a piece of writing is important for individ-

uals who wish to protect their identity, such as whistleblowers or those wishing to release information

without fear of reprisal. Freedom of speech and anonymity have long been recognised as rights by

countries such as the US, and debates have extended into the right for anonymity in the online space.

However, the right to anonymity is meaningless if writing style analysis can reveal an author’s iden-

tity. The problem of text anonymisation, also known as author obfuscation, has only recently gained

some attention in the research community. Whilst intuition says that authors could simply mask their

own writing style by choice, research has found that authors can still be identified by their stylis-

tic traits when attempting to write anonymously [44]. In addition, the tools used to identify authors

of anonymised texts are becoming more accurate, as a result of significant research focused on the

problems of author identification and author attribution. Meanwhile, little headway has been made

into the problem of anonymising text documents. This means that authors who wish to write anony-

mously have few tools available to assist them in protecting their identity against adversaries armed

with state-of-the-art author identification tools.

Author obfuscation is part of the text document privacy domain, which includes tasks such as redac-

tion and sanitisation of sensitive documents. These tasks have applications in areas such as declas-

sification for government agencies, or the release of healthcare documents in order to comply with

federal privacy acts. Text document privacy in general encompasses tasks involving the removal or

obfuscation of portions of text to protect sensitive information, whilst releasing the remainder of the
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text untouched. Approaches to text document privacy in the literature revolve around the use of so-

called ad-hoc privacy techniques. Privacy is usually evaluated a posteriori, on a particular dataset

and against a particular adversary. These types of ad-hoc methods include approaches such as k-

anonymity, which have been popular for some time due to their simplicity and their intuitive nature.

However, a string of de-anonymisation attacks against public datasets, most famously against Netflix

and AOL, has decreased confidence in the ability of ad-hoc methods to provide privacy protection

against adversaries armed with auxiliary information [27]. This has caused a momentum shift in

the research community away from ad-hoc privacy methods and towards privacy definitions which

provide a priori guarantees.

A key development in recent years is a definition of privacy known as differential privacy. Differen-

tial privacy, introduced by Dwork, McSherry, Nissim & Smith [23], is rapidly becoming a consensus

definition for privacy in the literature. Its strong mathematical foundations and provable privacy

guarantees make it a compelling privacy proposition. Further, differential privacy does not rely on as-

sumptions about the background knowledge of an attacker, and is therefore robust to linkage attacks

which utilise auxiliary information. This sets differential privacy apart from previous definitions of

privacy, and creates a new benchmark against which competing privacy definitions are examined.

Differential privacy reframes privacy in terms of the participation of an individual, permitting infor-

mation to be learned by an adversary provided the knowledge gained is independent of the presence

or absence of the individual in the dataset. Whilst this definition has a natural interpretation for statis-

tical databases, it is not obviously transferable to domains involving semi-structured or unstructured

datasets, such as text document datasets. Moreover, differential privacy does not permit direct access

to data, as required for private text document publishing. For these reasons, the consensus in the

text privacy literature is that differential privacy cannot be applied to problems in the text document

privacy domain.

However, a recent extension of differential privacy known as generalised differential privacy [12] has

opened the way for applications of differential privacy to domains outside of structured databases.

Generalised differential privacy permits the application of differential privacy to domains in which

there is no natural notion of ‘participation of an individual’, instead drawing on the notion of distance

between data points. Its definition can therefore be applied to arbitrary domains defined with a metric

distance. Generalised differential privacy has been applied to the problem of geo-location privacy,

which involves the release of geo-location co-ordinates in a differentially private manner [6]. This

example provides a new way of looking at differentially private data release through the release of

individual data points in an arbitrary domain. This raises the question of whether the same insight can

be applied to author obfuscation. That is, can generalised differential privacy be applied to the release

of a text document in such a way as to protect its authorship?
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Contributions of this Thesis

In this thesis, we propose a novel approach to author obfuscation using the framework of generalised

differential privacy. This represents the first application of differential privacy to a problem in the

text document domain. We draw on existing notions of authorship from the stylometry and natural

language processing literature which incorporate the use of distance measures between authors. Then

we use the application of geo-location privacy as a blueprint for applying generalised differential

privacy to the author obfuscation problem. Finally we consider the literature on mechanism design,

and investigate the use of existing language technologies as noise-adding mechanisms to achieve

author obfuscation.

The main contributions of this thesis are:

1. The development of a novel theoretical model for author obfuscation based on generalised

differential privacy.

2. The experimental evaluation of existing technologies from the natural language domain to de-

termine the feasibility of applying these to privacy mechanisms.

3. An identification of the gaps in the privacy literature which pose problems with respect to

understanding or applying differential privacy to new domains.

4. An identification of deficiencies in natural language processing technologies which require fur-

ther exploration in order to improve privacy mechanisms for text documents.

Organisation of this Thesis

This thesis is organised as follows: Chapter 2 provides background on the author obfuscation problem

as well as prior work in this area. Chapter 3 explores privacy in general with a focus on differential

privacy and text document privacy. Chapter 4 introduces generalised differential privacy and develops

the theoretical framework for understanding author obfuscation. Chapter 5 contains experimental

work used to investigate the feasibility of implementing author obfuscation using existing language

tools. Chapter 6 concludes with a discussion of the key results obtained in this thesis as well as areas

for future work.



2 AUTHOR OBFUSCATION

The purpose of this chapter is to clarify the author obfuscation task and highlight existing work on

author obfuscation in the literature. We will first define the privacy goals for this thesis using the PAN

2016 author obfuscation task as a motivation. We then review prior work which highlights the gap

in the literature for privacy in this field. Finally, techniques from stylometry and natural language

processing will be introduced in order to provide some background on the approach taken later in this

thesis.

2.1 Overview

The author obfuscation problem tackled in this thesis is motivated by the PAN 2016 author obfusca-

tion task. 1 PAN shared tasks are open to the research community and designed to encourage research

in areas involving text document forensics, such as author identification and plagiarism detection. 2

These tasks are typically attempted by researchers in natural language processing (NLP) or in the sty-

lometry domain. The PAN 2016 author obfuscation task was introduced due to a lack of research in

the area, and its introduction has opened up the problem to the NLP and stylometry research commu-

nities. Within these domains, more emphasis has traditionally been put on the reverse task of author

identification (and its various incarnations). The PAN 2016 author obfuscation task received only 3

entries which is representative of the lack of research in the field at present. This points to a clear gap

in the literature for this research area.

2.1.1 PAN 2016 Task

As most of the research in this field stems from the introduction of the PAN 2016 task, it is helpful to

understand the author obfuscation task and goals as defined by PAN. The author obfuscation task is

defined as: Given a document, paraphrase it so that its writing style does not match that of its original

author, anymore. 3

This is a privacy task that requires modifying a document so as to protect the identity of its author.

As with any privacy task, there is a utility requirement which is presented as part of the evaluation

criteria. The PAN task is evaluated using 3 metrics:

• Safeness - that is, whether the original author can be identified from the obfuscated text. A suite

of automated author verification tools is used to evaluate safeness.

1The PAN 2017 author obfuscation task is identical, but for the purposes of this thesis, the PAN 2016 will be referred
to as it contains the original statement of the problem.

2http://pan.webis.de/tasks.html
3http://pan.webis.de/clef17/pan17-web/author-obfuscation.html
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• Soundness - that is, whether the obfuscated text semantically entails the original text. This is

assessed by manual peer review.

• Sensibleness - that is, whether the obfuscated text is grammatically correct. This is also assessed

by manual peer review.

This task motivates the definition for author obfuscation presented later in this chapter.

2.1.2 Prior Work

There has been relatively little written about the author obfuscation task, although there has been

significantly more interest in the reverse task of author identification. Much work in this area has come

out of stylometry, a field dedicated to the statistical analysis of the features of writing style which can

be used to characterise authors. Early work in stylometry was done by Mosteller & Wallace [48] who

famously determined the authorship of the Federalist Papers using stylometric techniques available

to them in the 1960’s. Mosteller & Wallace noticed that particular authors could be distinguished by

their use of so-called function words, which are non-content words such as prepositions, pronouns and

particles. Modern stylometry has expanded the set of distinguishing features from function words to

a range of lexical, syntactic, semantic and document level features [60]. State-of-the-art stylometric

methods can identify authors with accuracy better than 90%, and have been used on authorship sets

containing tens of thousands of authors [44].

One of the earliest works on author obfuscation is the work by Kacmarcik & Gamon [31]. Their

approach looked at the stylometric features used by author identification methods, in particular the

frequency patterns of particular words. They changed the frequencies of these words to an ‘average’

level, as determined by a known set ofK documents selected to obfuscate against. This approach pro-

vided safety against an attacker armed with a specific author identification method and attempting to

identify a document from amongst the K possible documents. However, the approach did not attempt

to output a new document, instead calculating the probability of successful authorship identification

using hypothetically calculated term frequencies.

This approach has been extended to the creation of obfuscated documents via a tool known as Anony-

mouth [44]. Anonymouth is a semi-automated author obfuscation tool built on top of the author iden-

tification tool JStylo, also by the same authors. 4 JStylo uses a technique called the Writeprints method

to identify authorship features at high granularity with respect to a particular document set [2]. The

Anonymouth tool uses these author-identifying features to suggest edits to the writer until Anony-

mouth is satisfied that the document has been successfully anonymised. This tool represents the

state-of-the-art for author obfuscation at present.

4JStylo can be downloaded from https://psal.cs.drexel.edu/index.php/JStylo-Anonymouth
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The author obfuscation task was introduced into the PAN 2016 competition in order to encourage

research in this area. As mentioned above, the task only received 3 entries, compared with 10 entries

received for author identification and 22 entries for author profiling. The 3 entries in author obfusca-

tion used very different approaches, which is to be expected in a new domain with little pre-existing

literature. One approach employed machine translation to perform obfuscation [34]. This method in-

volved using an automated translation tool to translate a document from English to German to French

and back to English. This technique was not successful at maintaining the semantics of the original

document, nor at rendering text that was readable. A second approach, based on stylometry, utilised

word frequencies to identify authorship for both the training document set and the document to obfus-

cate [43]. Word frequencies are popularly used in stylometry as they have been shown to characterise

authors, in part due to their consistency of use across genres. Words in the document were system-

atically changed using synonym substitution until the word frequencies matched the training data,

thus obscuring the (author-identifying) word frequencies in the original document. However, these

substitutions were deliberately limited to at most one word per sentence in order to preserve the sensi-

bleness of the resulting text. This limited the impact of the obfuscation technique. The final approach

looked at a range of stylometric features such as average sentence length and punctuation to word ra-

tio, calculating ‘average’ metrics for these features over the training set [46]. The document was then

randomly modified using strategies such as synonym substitution, sentence splitting and paraphrasing

to change its metrics to more closely match the metrics for the training set. This was performed for

all documents in the training set; in other words, the method reduced all document metrics to the (ap-

proximately) same average value. This approach aimed to reduce the accuracy with which existing

methods could identify authorship, and was the most successful entry at PAN 2016 [53].

It is clear from studying the literature that the approaches used for author obfuscation to date use

ad-hoc methods for privacy, and aim at preserving the sensibleness, or grammatical correctness, of

the text. As this is a developing field, there has not yet been an emphasis on the privacy properties for

these obfuscation techniques, nor an interest in examining the privacy guarantees that these techniques

provide. This motivates the goal of this thesis.

2.1.3 Privacy Goal for this Thesis

The focus for this thesis is on author obfuscation as a privacy task rather than a language task, which

represents a key shift in emphasis compared with the work in the literature to date. The PAN 2016

task will be used as the motivating task for this thesis, however some modifications will be made in

order to reduce the complexity of the language component of this problem. As a first simplifying step,

we will only require that the output document preserves the topicality of the original document. This

sort of simplification is reasonably standard in the NLP literature and has been used to demonstrate
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the feasibility of new approaches in the domain [16]. This means that the sensibleness criteria can be

removed, as well as the semantic entailment requirement for the obfuscated text. This simplification

does not destroy the privacy aspect of the task, as the connection between topicality and authorship

identification has been established in the stylometry literature, and is assumed to be a first step towards

author privacy whilst preserving the full document semantics. 5

As a second step, the privacy goal will be reframed as an anonymisation goal, to take into account

factors (other than writing style) which can contribute to the identification of an author. In addition,

the utility aspect of the task (the preservation of topicality) will be explicitly included. This motivates

the consideration of privacy and utility together. Thus the author obfuscation task for this thesis will

be framed as:

Definition 1. (Author Obfuscation) Given a document, obfuscate it in such a way as to prevent iden-

tification of its author whilst preserving the topicality of the original text.

Obfuscated texts will be evaluated using the following metrics:

• Safeness - that is, whether the original author can be identified from the obfuscated text. This

will be evaluated using a single state-of-the-art author verification tool rather than a suite of

automated verifiers.

• Soundness - that is, whether the obfuscated text preserves the topicality of the original text.

This will be evaluated using a machine learning classifier trained on a set of documents labelled

by topic.

From a privacy perspective, it is helpful to also consider the role of the adversary. The adversary

in this task aligns with the safeness evaluation metric; that is, an author verifier trained to identify

authors using a particular training set of documents.

2.2 Stylometry and NLP

In this section we introduce stylometric and NLP methods used for author identification. We focus on

a particular method based on character n-grams which will be used later in this thesis to develop our

understanding of author obfuscation.

5Although some authors consider writing style and topicality to be orthogonal, topic-specific words have been shown
to be identifying for documents within a genre.
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2.2.1 Overview

Stylometry is the study of stylistic traits in documents which are characteristic of particular authors.

Stylometric analysis involves the manual selection of ‘features’ of a text which are then used by clas-

sifiers to determine the most likely author of a document. Stylometric features can act as a fingerprint

for an author in many domains. Tweets, emails, and even programming code can be imprinted with

enough stylistic traits to identify their authors. Stylometric analysis was famously used to identify the

authorship of the disputed Federalist Papers, a set of anonymous papers written between 1787 and

1788 designed to convince readers in New York to ratify the constitution [48]. It has more recently

been used to identify J. K. Rowling as the most likely author of The Cuckoo’s Calling [30], and was

reportedly used to identify up to 80% of anonymous forum users through their posts in an under-

ground forum [51]. Its application to tweets has been used to identify a number of possible speech

writers used by the Prime Minister of Pakistan [32], as well as President Trump’s use of a second

‘tweeter’ for presidential announcements [54].

Although the task of author identification traditionally falls under the study of stylometry, the NLP

community has more recently become interested in this problem. NLP techniques for authorship

analysis typically make use of machine learning methods to classify documents by author (using

supervised methods) or to cluster documents with similar features (using unsupervised methods).

Machine learning methods require vector representations of their inputs, thus documents are usually

first transformed into feature vectors. These features can be the same ones used in stylometric anal-

ysis, or they can be learned by the particular machine learning method. Although machine learning

methods can be high-performing, it is usually difficult to interpret their learned features. For exam-

ple, a character-based neural network was used in the PAN 2015 task on authorship attribution 6 and

represented the best performing method for that task [8]. However, neural networks learn complex

features which are notoriously difficult to interpret. Thus, for this thesis we will choose a stylometric

feature set for author attribution which is considered state-of-the-art.

There are three types of stylometric features employed in the literature: stylistic, word-based and

character-based features. Stylistic features are typically lexical, syntactic or document-level charac-

teristics. For example, average word length, average sentence length and frequency of use of particular

words are all features which can be unique for authors. Word-based methods treat each word in the

document as a feature, and represent a document as a bag of words, which ignores word ordering

but preserves frequency counts of individual words. Finally, character-based features treat individ-

ual sequences of characters as features for document representation. These sequences are referred to

as character n-grams. For example, the character 3-gram representation of the phrase "There it is"

6The terms authorship identification, authorship verification and authorship attribution have slightly different meanings
but will be used interchangeably in this thesis.
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would be ‘The’, ‘her’, ‘ere’, ‘re_’, ‘e_it’, ‘it_’, ‘t_i’, ‘_is’ 7. The choice for the value n is determined

by the document set and the language in use; larger values for n (4 or greater) are typically better

at capturing contextual information whilst smaller values can capture more typical stylistic features

such as prepositions and other non-content words [60]. Character n-grams are considered the current

state-of-the-art in authorship identification and this is the representation chosen for this thesis.

2.2.2 A Character n-gram-Based Approach

As mentioned earlier, character n-grams have been shown to be effective features for authorship at-

tribution and represent the state-of-the-art in this area. The intuition behind using an n-gram rather

than a whole word is that n-grams capture extra features such as misspellings, punctuation and com-

mon word stems, all of which can be characteristics for an author. For example, the words ‘task’ and

‘tasked’ share the same first 4-gram ‘task’, however a word-based approach classifies these words as

separate, unrelated features. Character n-grams also capture both stylistic and content based features

of documents [36], which make them useful for our obfuscation task.

A particular character n-gram-based method of interest is the one developed by Koppel et al. [36],

which we refer to as the Koppel Method in this thesis. The authors utilise character 4-grams to

classify authorship on a document set consisting of blog posts from thousands of authors, and achieve

in excess of 90% precision with 42% coverage for a 1000-author dataset. This is considered one of

the best-performing approaches for large author sets, as many existing authorship verification tools

are evaluated on only a handful of authors [36]. Current state-of-the-art author verification tools use

the Koppel Method as a core for their algorithms [35], including the winning entries in the PAN 2013

and 2014 authorship verification tasks [59, 61]. We will use this method as the author verifier for the

safeness evaluation in the author obfuscation task.

2.3 Summary

The author obfuscation task is a relatively new problem in the text document privacy space. The few

approaches to this problem use ad-hoc methods to achieve privacy, and it is unclear what privacy

guarantees these methods offer. There have been no attempts to analyse privacy for these approaches,

aside from evaluating their performance against author identification methods. In this thesis we will

provide a privacy-oriented approach to author obfuscation. The stylometric approach of Koppel et

al. [36] will be used to evaluate the safeness aspect of the author obfuscation task proposed for this

thesis. We will also see that character n-gram features provide a useful vector representation for

documents which will be used when defining author obfuscation in terms of generalised differential

privacy.

7Note that we use ‘_’ to represent spaces.



3 AN EXPLORATION OF PRIVACY

The purpose of this chapter is to provide an overview of privacy with a focus on differential privacy

and the text document space. We begin with a background to privacy, culminating in the introduction

of differential privacy which represents the dominant definition of privacy in the literature. We see

that differential privacy offers a number of key features which make it a compelling choice for privacy.

We then explore privacy in the text document domain, including a further exploration of applications

to machine learning and information flow approaches. We find that text document privacy is still a

developing field and there is no consensus definition for privacy in this domain. In particular, there

are no applications of differential privacy in this area.

3.1 A Brief History of Privacy

Data privacy is a well-established research area, with its origins in statistical data disclosure. Early

work on privacy stemmed from concerns over the release of statistics from census datasets, and

whether these could be traced back to individuals. Dalenius is usually credited with the first defi-

nition of privacy, which is often paraphrased as access to a statistical database should not enable

one to learn anything about an individual that could not be learned without access [22]. This def-

inition, however, is not achievable, as hypothesised by Dalenius himself [17] and demonstrated by

Dwork et al [23]. They reasoned that information about an individual can be inferred by access to

a statistical database using auxiliary information about the individual even if the individual is not in

the database. For example, an adversary who knows only that Terry Gross is 2 inches shorter than

the average Lithuanian woman, can determine Terry’s exact height using a statistical database that re-

turns the height of the average Lithuanian woman. This research concluded that not only is Dalenius’

definition unachievable, but it does not accurately capture what is meant by privacy. This led to a new

definition of privacy known as differential privacy.

Until these insights, privacy definitions continued to use intuitive notions of privacy which relied on

assumptions about the auxiliary information available to an attacker. Research turned to anonymisa-

tion of datasets, which requires removing or modifying all information which can be used to identify

an individual. Anonymisation is frequently confused with the weaker notion of de-identification,

which simply involves removing explicit personal identifiers such as names, addresses and dates of

birth. De-identification is popularly seen as a safe method of anonymisation; however, it has long

been known that de-identification does not guarantee anonymity [62]. De-identification methods are

vulnerable to linkage attacks because of the existence of so-called ‘quasi-identifiers’1 which can be

1A quasi-identifier is a tuple of attributes which taken together are uniquely identifying for individuals in a dataset.



3.2 Differential Privacy 11

used together to uniquely identify individuals [18]. For example, a study by Sweeney [63] found

that 87% of individuals in the United States could be uniquely identified from their date of birth, zip

code and gender. In 2002, Sweeney identified the medical data of the Massachusetts governor in de-

identified hospital records by linking his quasi-identifiers with information freely available in a voter

database [64]. This research led to a framework for anonymisation known as k-anonymity.

K-anonymity is a popular and intuitive anonymisation model that protects privacy in a dataset by

ensuring that for every row containing a particular quasi-identifier there are at least k − 1 other rows

containing that same quasi-identifier. However, k-anonymity has some shortcomings which can cause

the confidential attributes for an individual to be revealed. For example, a k-anonymous medical

dataset may reveal that all individuals with a particular quasi-identifier have cancer, thereby disclosing

the sensitive information of every individual in the group [42]. Alternative anonymity models have

been proposed which aim to correct the flaws in k-anonymity; these include l-diversity [42] and t-

closeness [40]. However, all of these models share the same flaw as Dalenius’ first privacy definition:

they rely on assumptions about an adversary’s background knowledge. These assumptions became

the focus of attention after a number of high-profile privacy breaches.

In 2006, Netflix released anonymised movie ratings data for 500,000 of its users as part of a compe-

tition designed to encourage the development of machine learning algorithms for the Netflix recom-

mendation system. However, a team of researchers de-anonymised the Netflix data by correlating it

with data from another online movie database, resulting in a lawsuit against Netflix [50]. In the same

year, AOL released anonymised search engine logs for use by researchers, only to have an individual

re-identified by writers at the New York Times based on her search queries [9]. More recently, it was

shown that only 4 data points are required to identify 90% of individuals from a dataset of anonymised

credit card transactions [19]. These examples highlight the difficulties of providing a privacy guaran-

tee for data which has been anonymised using an ‘intuitive’ notion of privacy. There is a trend in the

literature to move away from such ad-hoc models of privacy and towards theoretical models which

can provide a priori privacy guarantees. Differential privacy is one such model.

3.2 Differential Privacy

As mentioned earlier, research by Dwork et al [23] provided an important insight about privacy,

namely that information about an individual can be learned even when that individual is not present

in the dataset. This led them to move away from definitions of privacy which focus on what can be

learned from a dataset, and towards a definition which aims to protect individuals within a dataset.

Differential privacy, then, is concerned with the harm caused to an individual by participation in a

dataset. Differential privacy promises that the presence or absence of an individual in a dataset will not
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significantly change the result of a statistical query over that dataset. In other words, similar datasets

should produce results which are indistinguishable. This prevents an adversary from being able to

infer whether or not an individual’s data was in the dataset. Note that it does not prevent sensitive

information from being learned about the individual, as this could happen regardless of whether the

individual was in the dataset or not, as the Terry Gross example demonstrates. Nor does it limit the

amount that is learnable from the dataset, as this is precisely what makes datasets useful. The privacy

guarantee ensures that nothing more is learned about an individual by their presence in the dataset,

than would have been learned in their absence.

Differential privacy has a number of key features which have contributed to its popularity. Firstly,

its mathematical formalisation permits proofs of its privacy guarantees, and has been used to prove

properties such as composability and post-processing invariance [24]. Secondly, its definition is in-

dependent of auxiliary information, making differential privacy robust to the sorts of linkage attacks

for which k-anonymity is vulnerable. Finally, differential privacy defines privacy in terms of risk of

disclosure, which importantly recognises that privacy is not simply ‘true’ or ‘false’, and this allows

the amount of privacy for a dataset to be parametrised. These features make differential privacy a

compelling choice for privacy practitioners who wish to provide a priori privacy guarantees.

The definition of differential privacy depends on the notion of the participation of an individual in

a dataset. This notion is formalised as follows: given a universe of values V and a dataset Vn con-

sisting of n individuals, differential privacy promises that the output of a randomised algorithm K

on a dataset x ∈ Vn will be (almost) indistinguishable from the output of K on an adjacent dataset

x′ ∈ Vn. Adjacency is defined as ‘differing in the value of a single individual’, which has a natu-

ral interpretation for structured datasets of individuals; here, if x and x′ are adjacent datasets, then

dh(x, x
′) = 1 where dh is the Hamming distance defined on Vn. The notion of protecting participa-

tion of an individual provides privacy for the individual’s values in the dataset; an adversary cannot

determine, after observing an output, whether it originated from a dataset x containing the individ-

ual’s values, or the adjacent dataset x′ not containing the individual. Thus the individual’s presence

or absence make no difference to the conclusions drawn by such an adversary.

Differential privacy can be formalised in the following way [24]:

Definition 2. (Differential Privacy) A randomized algorithm K satisfies ε-differential privacy if for

all S ⊆ Range(K) and for all x, x′ ∈ Vn such that dh(x, x′) = 1:

Pr[K(x) ∈ S] ≤ eεPr[K(x′) ∈ S],

where the probability space is over coin flips of the mechanism K.
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Differential privacy is parametrised by a variable ε, commonly referred to as the privacy budget.

Intuitively, smaller values for ε correspond to stronger privacy.

The requirement for the datasets x, x′ to be adjacent is important, as a mechanism whose outputs are

required to be indistinguishable for any pairs of datasets x, x′ is useless; nothing at all can be learned

from the output of such a mechanism. In addition, the interpretation of adjacency is important for

applying differential privacy to a privacy task. This corresponds to the notion of an ‘individual’ in

the datasets, and represents the granularity of the privacy guarantee. For example, a social network

dataset may be modelled as a graph structure with nodes representing individuals and edges represent-

ing relationships. Applying differential privacy at the granularity of nodes protects the presence or

absence of the individual within the social network. Alternatively, differential privacy at the granular-

ity of edges protects the relationships within the social network. The level of privacy to apply depends

on the privacy and utility requirements for the system. Weaker (edge) privacy may be preferred to

ensure better utility of queries over the data.

3.2.1 Privacy-Utility Trade-Off

It has been well documented in the literature that the implementation of differential privacy comes

with a trade-off in utility [4, 22, 28]. Utility refers to the ‘usefulness’ of the data; that is, how much

can still be accurately learned from the data after the application of privacy. For example, applying

no privacy at all results in perfect utility, as no information is lost; on the other hand, returning a ran-

dom result from the dataset (independent of the query), results in perfect privacy but no utility, as no

useful information can be learned from this output. Some criticisms of differential privacy stem from

the resulting loss of utility from the dataset, which is often of secondary concern and considered less

important than protecting privacy [22]. In one extreme case, it was reported that the use of differential

privacy to protect patient privacy in a medical experiment would have resulted in a number of deaths

from over-medicating, due to the noise introduced by the differentially private mechanism [26]. Much

recent work has focussed on measuring this privacy-utility trade-off, and in the development of mech-

anisms which produce results with better utility for the same measure of privacy [1, 52]. We consider

the measurement of utility important for practical applications of differential privacy, and will use

both utility and privacy metrics for evaluating results in this thesis.

3.2.2 Limitations of Differential Privacy

Differential privacy has a number of known limitations which are of particular relevance for its appli-

cation to text document privacy.

Firstly, the definition of differential privacy does not naturally lend itself to use in domains involving

semi-structured or unstructured datasets, in which there is no natural notion of ‘adjacency’, nor an
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interpretation for ‘individuals’ in the dataset. It is unclear how to translate differential privacy into a

meaningful privacy definition for these domains.

Secondly, differential privacy’s guarantee degrades with every access made to a dataset, as each access

leaks more information about the dataset and therefore erodes the privacy budget. Differential privacy

is consequently more commonly used in ‘interactive’ mode, in which direct access to the dataset is

restricted via the use of queries whose (noisy) results are released. The number and types of queries

is necessarily restricted in order to avoid consumption of the privacy budget. This has generally

restricted the use of differential privacy to data mining scenarios rather than data publishing scenarios,

as required for most text document privacy applications. Some authors claim that the use of privacy

in these scenarios causes a degradation in utility rendering its use impractical [56].

Finally, the use of differential privacy for data publishing scenarios is typically enabled via the cre-

ation of synthetic datasets [7, 10, 29]. However, differential privacy does not permit publishing an

individual data point; in particular, it would require that any change in the value for the data point

should not affect the output, thus destroying any utility [6].

3.2.3 Mechanisms for Differential Privacy

Much work on differential privacy in the literature focuses on the implementation of mechanisms

which satisfy the privacy definition. Of particular interest in this thesis are mechanisms based on the

Laplace mechanism [24]. This is a popular mechanism for differential privacy, and is implemented

through the addition of noise drawn from a Laplace distribution. The amount of noise to add is

determined by both ε and the sensitivity of the query over the data. The sensitivity measures how

much the result from the query can vary with the presence or absence of an individual. For example,

a counting query has sensitivity of 1, since the presence or absence of a single person can change the

result of a count by at most 1. However, a maximum value query (such as ‘return the maximum age’)

has a much higher sensitivity, as the presence of an individual could radically change the result of

such a query. Intuitively, the more noise that is applied, the less useful is the output from the dataset.

We will see an adaptation of Laplacian mechanisms (Section 4.1.3) which replaces the notion of

sensitivity with the notion of metric distance.

Also of note is the exponential mechanism, introduced by McSherry and Talwar [45], which is useful

for applying differential privacy to domains in which the output is discrete rather than continuous, or

where the application of noise can completely destroy the utility of the data. This mechanism uses a

score function defined over the inputs and outputs of the system, and probabilistically chooses higher

scoring outputs with exponentially higher likelihood than less useful scores.
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3.3 Text Document Privacy

We now consider approaches to privacy in the text document domain. Text document privacy in

the literature usually refers to the tasks of sanitisation and redaction of text documents, which are

two commonly employed approaches used to hide sensitive textual information. Redaction refers to

the removal or ‘blacking out’ of portions of text which contain sensitive information; this technique

is commonly used for declassifying sensitive government documents. Sanitisation refers to the re-

placement of sensitive terms with more general terms which obscure the sensitive information. For

example, the term ‘HIV’ may be replaced with the more general ‘disease’ in a healthcare dataset to

protect knowledge of an individual’s HIV status.

Few models have been proposed to implement automated redaction or sanitisation of text documents.

Cumby & Ghani [16] develop a document sanitisation system inspired by the model of k-anonymity

for structured datasets, which they term k-confusability. Under k-confusability, sensitive terms are

generalised so that a classifier attempting to guess the sensitive term finds at least k − 1 other

terms which are equally likely. Anandan et al. [5] develop a text privacy definition (also inspired

by k-anonymity) known as t-plausibility, which requires that the output document from a t-plausible

mechanism using an ontology could have been produced from at least t possible input documents.

Sanchez & Batet [57] propose a text privacy definition known as C-sanitisation which requires that a

C-sanitised document cannot disclose any more semantics of the sensitive text than is otherwise dis-

closed by using (non-sensitive) generalisations of the text. These approaches rely on the identification

of sensitive portions of text and do not require that the remainder of the document be sanitised. Like

k-anonymity, they could be vulnerable to linkage attacks by adversaries with knowledge about the

untreated text. In addition, they do not quantify the privacy guarantee for their mechanisms, which

makes it more difficult to reason about their privacy properties.

In summary, approaches to privacy in redaction and sanitisation are currently ad-hoc, as this is still

a developing research area. Much focus is on the use of language tools and maintaining sufficient

semantics in the resulting text documents. As yet there have been no approaches specifically focused

on privacy models providing strong privacy guarantees, and in particular there have been no attempts

to apply differential privacy in this domain.

3.4 Other Approaches to Privacy

In this section we explore other approaches to privacy which were considered in the context of text

document privacy, namely machine learning approaches and privacy approaches using information

flow.
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3.4.1 Machine Learning

Machine learning is a popular technique for creating predictive models based on very large datasets.

Most machine learning approaches use supervised methods, which involves the creation of a ‘training’

dataset used by the machine learner to build a model of the data. The machine learned model is then

applied to a ‘test’ dataset to evaluate its predictive accuracy on unseen data. The success of these

learners typically hinges on the size of the training set used; neural networks, for example, require

datasets in the order of millions of data points in order to build a sufficiently accurate model. However,

the popularity of machine learning lies in the diversity of application of these models to real world

problems. Machine learning tasks have been applied to various problems including face recognition

and document translation. Recent work by Google has seen machine learners used to detect cancer

tumours from pathology images with better accuracy than a trained pathologist [41]. These sorts of

applications are driving the growth of machine learning techniques in industry.

The use of machine learning on datasets which contain highly sensitive data raises questions about

privacy and in particular whether machine learning mechanisms leak information on datasets that

they have been trained on. The complexity of many machine learning algorithms makes it difficult

to analyse the internal workings of machine learners. However, adversarial attacks against machine

learners have been used to reconstruct data from training sets, demonstrating that even complex learn-

ers such as neural networks leak sufficient information to perform a reconstruction attack [25]. This

has created a need for the development of privacy mechanisms for machine learning algorithms.

Differential privacy has a natural application to machine learning, as both tasks emphasise the release

of learned statistics over the data without depending too much on the values of individuals. This

has resulted in a large amount of work dedicated to building differentially private machine learning

algorithms. (See [1, 11, 13, 14] for examples). In the machine learning literature, emphasis has

been placed on the application of noise to the internals of the algorithm in order to satisfy differential

privacy, as well as measurements of utility through experiments designed to measure the accuracy of

the algorithm on some dataset.

However, differential privacy in the machine learning literature is interested in the protection of the

training dataset against adversarial attacks [1, 52]. Our interest for this thesis is on privacy guarantees

for released data, such as obfuscated documents. As such, the applications of differential privacy in

machine learning were not relevant for our task.

3.4.2 Information Leakage

Another avenue for exploration was the use of information leakage measures to provide privacy met-

rics in terms of information gained by an adversary. Whilst differential privacy cautions against such
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approaches, information leakage is well-established in the literature and can be used in conjunction

with differential privacy to determine how much information is leaked when a differentially private

release occurs [3]. Information leakage measures are not domain specific, so these models can be

applied to problems in the text document privacy domain.

Of particular interest were information theoretic approaches with connections to differential privacy

and applications to text document privacy. We only found one method of interest, which was the

work of Calmon & Fawaz [20] who model the privacy problem using rate-distortion theory. The

authors provide an information-theoretic framework which measures the information learned by an

adversary when a user privately releases information. Their framework can be applied to unstructured

data domains, and they provide an example of the release of social networking data to a recommender

system. We thus considered this an approach of interest for text document privacy tasks. The authors

provided a link between differential privacy and their definition of information privacy. In particular,

they claim that information leakage is unbounded under differential privacy. This appears to contradict

the result by Alvim et al. [3], which proves that ε-differential privacy implies a bound on Shannon

entropy leakage and also min-entropy leakage.

However, we show that Calmon & Fawaz’s proof has some subtle flaws which cast doubt on their re-

sult. They claim that ε-differential privacy does not provide any guarantee on the information leakage.

This claim is proven via the construction of a particular dataset in which information leakage is lower

bounded for a given ε-differential privacy guarantee. We refer to Thereom 4 in [20], which says that

for every ε and δ there exists a privacy mapping which is ε-differentially private but leaks at least δ

bits on average. We make the following observations:

1. They construct a dataset which is constrained in such a way that a counting query can only return

values in multiples of k. This means that the sensitivity of the counting function is k, and thus the

parameters of the Laplace noise used in the proof need to be adjusted to use the sensitivity k. We note

that this only changes the result slightly.

2. The authors show that leakage can be made arbitrarily large when the size of the dataset, n, is

increased, for fixed ε. However, this is exactly what we would expect; the differential privacy promise

is that confidential information of every individual in the database is not compromised, and hence the

number of bits in the ‘secret’ is of the order of the size of the database, that is, n. Thus, this does not

demonstrate that the leakage is unbounded in general; this would require fixing n and varying ε, as

done in [3].

3. The authors show that the information leakage from the system is bounded below, as given by the

following inequality:

I(S;U) ≥ (1− e−
kε
2 ) log(1 +

n

k
)− 1
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It is worthwhile checking whether this bound is in fact significant. Substituting k = 1, n = 10000

and ε = 1.0 yields 4.2 bits of information leaked from a database of 10000 individuals (hence secret

at least 10000 bits). Substituting an even larger value of n = 100000 yields 5.5 bits of informa-

tion leaked. This level of information leakage is tolerable, and only increases logarithmically as n

increases. Thus we do not consider that this lower bound demonstrates arbitrarily large leakage, as

claimed.

The use of information flow techniques was not explored further, however this approach remains of

interest for future investigation.

3.5 Summary

Our exploration of privacy found that there are a variety of approaches used in the text document

space, however there are no clear consensus definitions for privacy in this domain. Methods in text

document privacy are currently ad-hoc and typically incorporate notions from k-anonymity. Ap-

plications of privacy in machine learning and information flow were investigated, however no clear

approaches were found that could be used in the text document privacy space.

Differential privacy is clearly the preferred choice for privacy over ad-hoc methods. Differential pri-

vacy has provable a priori privacy guarantees and is robust to future attacks by adversaries armed with

auxiliary information, which has contributed to its popularity in the literature. However, its use has

been limited to structured datasets due to limitations around differentially private data publishing and

the difficulty of re-interpreting its privacy promise for unstructured datasets. Importantly, differential

privacy does not permit the private release of datasets consisting of individual data points. These

limitations have been used to argue that differential privacy cannot be applied to problems in the text

document domain [16, 56]. As such, there are currently no applications of differential privacy in the

text document domain.

However, in the next chapter we introduce the notion of generalised differential privacy, which permits

the application of differential privacy over arbitrary domains, and gives the intuition needed to enable

a definition of privacy for author obfuscation with differential privacy’s guarantees.



4 THEORETICAL FRAMEWORK

The purpose of this chapter is to set out a novel theoretical framework for author obfuscation based

on generalised differential privacy. We first introduce generalised differential privacy and then the

example of geo-location privacy, known as geo-indistinguishability, which involves the private release

of individual data points. Next, we show how the author obfuscation task can be framed in the same

way as the geo-location privacy problem. However, we outline a number of differences which make

the application to author obfuscation non-trivial. Finally we create a new privacy definition based on a

word-based document representation which we propose can be used to provide author privacy.

4.1 Generalised Differential Privacy

Generalised differential privacy, introduced by Chatzikokolakis et al. [12], is a recent extension of

differential privacy designed for use over arbitrary domains in which there is no natural notion of

‘adjacency’. Recall from Definition 2 that standard differential privacy is defined in terms of adjacent

datasets having Hamming distance 1. Generalised differential privacy extends the definition of dif-

ferential privacy to arbitrary metrics. The metric distance dX (x, x′) between two datasets x, x′, also

known as the distinguishability between the datasets, is used to parametrise the amount of privacy.

This metric replaces the Hamming metric for adjacency in differential privacy, and thus provides a

way of identifying ‘close’ (if not adjacent) elements of a dataset.

Generalised differential privacy can be understood using the notion of indistinguishability between

secrets. If the secrets x and x′ are close together with respect to the metric dX , we say that they are

indistinguishable. Thus any output from a privacy mechanism should occur with similar likelihood

regardless of whether the input was x or x′. Conversely, if x and x′ are distant with respect to dX , and

therefore highly distinguishable, the output distributions should be very different. Thus it would be

easier to guess whether an output came from x or x′, which corresponds to a lower level of privacy

for x and x′. This is the same intuition that we get from standard differential privacy, which uses the

notion of ‘adjacency’ in place of indistinguishability to determine the privacy guarantee.

Generalised differential privacy is formalised as follows [12]:

Preliminaries

In the definition to follow, X and Z are sets, FZ is a σ-algebra over Z and P(Z) is the set of

probability measures over Z . K : X → P(Z) is a probabilistic function known as a mechanism. dP
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is a metric on P(Z) defined as:

dP(µ1, µ2) = supZ∈FZ

∣∣∣∣lnµ1(Z)

µ2(Z)

∣∣∣∣ ∀µ1, µ2 ∈ P(Z)

The convention is that if µ1(Z) and µ2(Z) are both zero then
∣∣∣lnµ1(Z)µ2(Z)

∣∣∣ = 0, and if only one of

µ1(Z), µ2(Z) is zero then
∣∣∣lnµ1(Z)µ2(Z)

∣∣∣ =∞.

Definition 3. (Generalised Differential Privacy) A mechanism K : X → P(Z) satisfies dX -privacy,

iff ∀x, x′ ∈ X :

dP(K(x), K(x′)) ≤ dX (x, x
′)

or, equivalently,

K(x)(Z) ≤ edX (x,x′)K(x′)(Z) ∀Z ∈ FZ

Note that the ε parameter from differential privacy is omitted from this definition. Chatzikokolakis et

al. [12] incorporate ε into the metric dX , noting that a scaled metric is also a metric. The authors also

note that this definition can be reduced to standard differential privacy by substituting X = Vn and

dX = εdh (where dh is the Hamming distance over Vn).

4.1.1 Comparison with Differential Privacy

Recall that differential privacy protects the participation of an individual; if x and x′ are adjacent

datasets, then differential privacy guarantees that the output distributions from these datasets will be

similar, regardless of whether the input was x or x′. Similarly, if x and x′ are further apart (that

is, differing in more than one individual), then differential privacy says that the privacy guarantee

degrades according to the Hamming distance between x and x′. 1

However, we note some key differences between differential privacy and generalised differential pri-

vacy which impacts our understanding of generalised differential privacy.

Firstly, the notion of datasets consisting of rows of individuals has been replaced by the notion of

arbitrary domains containing no specific notion of ‘individuals’ within that dataset. This means that

the intuition behind ‘participation of an individual’, which characterises differential privacy, is lost

in generalised differential privacy. However, the authors capture some alternative intuition by con-

sidering privacy from the perspective of the adversary and, importantly, this intuition also applies to

standard differential privacy. This intuition will be visited in Section 4.1.2.

1This is just an application of group privacy for differential privacy, which says that if the Hamming distance is k, then
the mechanism satisfies kε-differential privacy. See Theorem 2.2 in [24].
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Secondly, generalised differential privacy applies to the private release of secrets from the domain, in

contrast with differential privacy which is used to release aggregate statistics over a dataset. Thus the

database against which privacy is guaranteed in standard differential privacy corresponds with indi-

vidual secrets in generalised differential privacy. Importantly, this means that the privacy parameter ε

(which, although omitted from the above definition, will be used later to parametrise privacy) needs

to be set for each released data point.

Finally, as already mentioned, the notion of adjacency between datasets has been replaced by a dis-

tance metric. This permits a stronger privacy guarantee for datasets which are closer together. This is

because the values of the secrets determine the distance between the datasets (rather than the presence

or absence of individuals) and hence the privacy guarantee is determined by the relative sizes of the

secrets. This can be applied to structured datasets to provide stronger privacy than standard differen-

tial privacy by using an alternative metric to the Hamming distance to determine the distance between

the datasets.

4.1.2 Characterisations of the Adversary

A key contribution of Chatzikokolakis et al. [12] is their drawing out of the characterisations of the

adversary implied by differential privacy, and their equivalents for generalised differential privacy.

These characterisations are useful in reasoning about the capabilities of an adversary, and also in

providing some intuition about generalised differential privacy.

The first characterisation makes use of an arbitrary hiding function, φ : X → X , which replaces an

point x with the point φ(x) before applying the mechanism K.

Characterisation 1. (Generalised Participation of Individual) Regardless of side knowledge, the ad-

versary’s conclusions (captured by the posterior distribution) are similar (up to a factor φ) whether

or not a hiding function φ was applied to the secret.

As noted earlier (see Section 4.1.1), the notion of ‘participation of an individual’ is lost in generalised

differential privacy. However this characterisation recaptures its meaning in terms of the distance

between an individual x and its hidden version φ(x). This re-interprets the guarantee of differential

privacy which says that any knowledge gained about an individual is independent of their presence

or absence in the database. The choice of hiding function determines the granularity of the privacy

guarantee, in a similar way that differential privacy’s notion of ‘adjacency’ determines the granularity

of its privacy guarantee.

Characterisation 2. (Generalised Informed Adversary) An informed adversary who knows that the
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secret belongs to a neighbourhood N gains little information about the exact secret, regardless of

prior knowledge within N .

This is an extension of differential privacy’s promise that nothing more is learned about individual i

by an informed adversary who knows every value except i’s in the dataset.

These characterisations both importantly capture information about the adversary’s gain of knowledge

after observing an output from the mechanism K. They also provide some key insights regarding the

difference between standard differential privacy and generalised differential privacy. However, we

will see another notion introduced in geo-indistinguishability which we believe encapsulates these in-

sights, namely the notion of ‘l-privacy within radius r’. This is the notion that we will use throughout

this thesis to understand how differential privacy applies to author obfuscation.

4.1.3 Mechanisms for Generalised Differential Privacy

In order to take advantage of the extensive literature on mechanisms for differential privacy, it would

be useful if these could also be applied in the generalised differential privacy setting. The authors

show that the Laplace mechanism, considered as an extension of the Exponential mechanism, always

satisfies dX -privacy. We notice that this occurs specifically when dX is a metric, thus justifying the

metric requirement for generalised differential privacy.

The Laplace mechanism for generalised differential privacy is defined as follows: 2

Definition 4. (Laplace Mechanism) Let Y , Z be two sets, and let dY be a metric on Y ∪ Z . Let

λ : Z → [0,∞) be a scaling function such that D(y)(z) = λ(z)e−dY (y,z) is a pdf for all y ∈ Y . Then

the mechanism L : Y → P(Z), described by the pdf D, is called a Laplace mechanism from (Y , dY)
to Z .

We can see that this satisfies dY-privacy when dY is a metric, since

D(y)(z)

D(y′)(z)
=
λ(z)e−εdY (y,z)

λ(z)e−εdY (y′,z)

= eε(dY (y′,z)−dY (y,z))

≤ eεdY (y,y′)

when dY satisfies the triangle inequality.

In order to gain further understanding about generalised differential privacy, it is helpful to look at

an example application. Geo-indistinguishability, introduced next, provides some useful insights into

2This is Definition 6 in [12]
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how generalised differential privacy can be applied to a particular domain.

4.2 Geo-Indistinguishability

Geo-indistinguishability, developed by Andrés et al. [6], is an application of generalised differential

privacy targeting the private release of geo-location points to a data provider. Their motivating exam-

ple is a user who wishes to receive restaurant recommendations in his local area without an adversary

learning his precise location. In this case, the user would expect to send approximate location infor-

mation in order to receive relevant recommendations, whilst protecting the accuracy with which an

adversary can infer his exact location.

Geo-indistinguishability uses the notion of ‘l-privacy within radius r’ to understand the privacy guar-

antee provided by generalised differential privacy. More specifically, within a radius r, generalised

differential privacy guarantees εr-privacy, since for all x, x′ ∈ X such that dX (x, x′) ≤ r,

dP(K(x), K(x′)) ≤ εdX (x, x
′) ≤ εr

Geo-indistinguishability can be informally defined as follows [6]:

Definition 5. A mechanism satisfies ε-geo-indistinguishability iff for any radius r > 0, the user enjoys

εr-privacy within r.

This shows that the level of privacy provided for the user increases as the radius (for privacy) in-

creases. For convenience, we can choose l = εr, thus parametrising the privacy guarantee by l and

r. Thus, a user can select a particular l for a meaningful radius r and have a privacy guarantee that

extends for all distances r. This is a useful insight which permits a practical application of privacy for

the user. This notion is referred to as ‘l-privacy within radius r’.

In order to formalise geo-indistinguishability using generalised differential privacy, we require a met-

ric over the domain of secrets. For geo-location privacy, the domain of interest is the user’s location,

specified in geo-location co-ordinates, and a natural metric for this domain is the Euclidean distance

metric. Thus, settingX as the domain of possible locations for the user, and dX (x, x′) as the Euclidean

distance between x and x′, the authors propose the following definition for geo-indistinguishability:

Definition 6. (Geo-Indistinguishability) A mechanism K satisfies ε-geo-indistinguishability iff for all

x, x′:

dP(K(x), K(x′)) ≤ εdX (x, x
′)
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where dX is the Euclidean distance defined on X .

This is similar to the definition of generalised differential privacy, except the ε parameter is made

explicit, and the domain X and metric dX have been defined. The inclusion of the ε parameter allows

the use of a standard Euclidean metric in the definition; ε can then be considered as the ‘scaling’ factor

for the metric.

This definition says that for any output point z, the probability that it came from any point x is similar

to the probability that it was produced from another ‘close’ point x′. In other words, for any co-

ordinate output from the mechanism, the user’s real location is protected because any location we

guess has other ‘close’ locations which could have produced z with similar probability.

4.2.1 Mechanisms for Geo-Indistinguishability

The Laplace mechanism is a natural mechanism for application to geo-indistinguishability. This

mechanism adds noise drawn from a Laplace distribution and is commonly used to apply differential

privacy. We saw in Section 4.1.3 that Laplace mechanisms can be used to implement generalised

differential privacy using a suitable scaling function. For geo-indistinguishability, the authors use the

polar laplacian; that is, the application of Laplace noise to the planar co-ordinates (x, y) transformed

into polar co-ordinates (r, θ). The authors note that the use of the polar laplacian has been covered

in previous work on differential privacy, and this is a standard method for applying Laplace noise in

2 dimensions. They also note that the use of the polar laplacian ensures that the privacy definition is

satisfied using the Euclidean distance metric.

4.2.2 Summary

We make the following observations from generalised differential privacy and the example of geo-

indistinguishability:

• Geo-indistinguishability demonstrates how to release data privately using generalised differen-

tial privacy.

• Generalised differential privacy permits the private release of datasets which consist of a single

data point, such as a geo-location co-ordinate. This insight can be extended to author obfusca-

tion, which requires the release of a single obfuscated document.

• The notion of ‘l-privacy within radius r’ provides a valuable interpretation of the privacy guar-

antee provided by generalised differential privacy. This insight will be important for under-

standing authorship privacy.

• The notion of adjacency in differential privacy is replaced by the use of a distance metric for
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generalised differential privacy. The Euclidean distance between data points is a natural metric

to use in geo-location privacy. For the author obfuscation task, we will look for a corresponding

natural metric over the space of authors.

4.3 Author-Indistinguishability

As mentioned earlier in this thesis, the geo-indistinguishability example provides a useful blueprint

for understanding how to apply generalised differential privacy. We will see how this can be applied

to the author obfuscation problem.

4.3.1 Overview

We first develop some conceptual understanding around how obfuscation will be performed on the

input document. Recall the working definition of author obfuscation from Chapter 2:

Definition 1. (Author Obfuscation) Given a document, obfuscate it in such a way as to prevent iden-

tification of its author whilst preserving the topicality of the original text.

We envisage a mechanism which adds noise to the document in some way to produce an output

document whose authorship is obfuscated. The addition of noise is a standard method for achieving

differential privacy in the literature.

We now consider the utility aspect of the problem; that is, the preservation of topicality. An important

observation is that for the author obfuscation problem, the privacy and utility goals, namely authorship

protection and topicality preservation, are not directly opposed. This makes the author obfuscation

problem distinct from the geo-indistinguishability problem and other problems that we find addressed

by differential privacy in the literature. If the privacy and utility goals were orthogonal, then there

would be no need for differential privacy; we could simply use randomisation to apply privacy. For

author obfuscation, as we noted earlier (see Section 2.1.3), topic-specific words can be identifying for

authorship, hence randomisation would destroy (or significantly impact) utility.

In order to align these goals, we can focus on the utility requirement. Recall from our author obfus-

cation definition (see Section 2.1.3) that the evaluation for utility is performed by a machine learning

classifier trained to classify documents by topic. We know that such classifiers typically reduce a

document down to a bag of words representation, which is a multiset of words. This suggests that

the output document from our obfuscation mechanism could be simplified to a bag of words, rather

than a semantically sensible document. We also know from Section 2.2.1 that many words which are
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Dumbledore
chanted as the
scented smoke
from blood red
candles dotted

across the room.

Original Document

Dumbledore,
chanted, as, the,
scented, smoke,
from, blood, red,
candles, dotted,

across, the, room

Bag of Words

Dumbledore,
chanted, scented,

smoke, blood,
red, candles,
dotted, room

Content Words

Figure 4.1: Sample transformation of a document to a bag of words with non-content words removed. This
transformation discards words unnecessary for topic classification.

useful for identifying authors are non-content words, such as prepositions and pronouns. This sug-

gests that we can further simplify our output document by removing non-content words which do not

contribute to topicality, but which can be used to identify authorship. These steps will be performed

as pre-processing steps prior to applying an obfuscation mechanism, as shown in Figure 4.1.

These pre-processing steps not only simplify the language component of the problem, but also align

the privacy and utility goals. That is, all of the words in the pre-processed document can be considered

identifying for both topicality and authorship. Note that we expect the pre-removal of some non-

content words to impact on the ability of an adversary (armed with an author identification tool) to

guess document authorship. However, note also that we do not consider this a privacy step, as no

randomisation has taken place. In the experiments in the next chapter we go into further detail on

how the documents will be transformed prior to obfuscation.

4.3.2 Comparison with Geo-Indistinguishability

We now make the connection between geo-location privacy and author obfuscation. Recall that geo-

indistinguishability defines privacy for geo-location co-ordinates; that is, points in a 2-dimensional

space. Privacy is protected for the release of a data point x corresponding to the user’s location. This

data point is obfuscated such that the output seen by an adversary could have come from any ‘close’

point with (almost) equal likelihood.

For author obfuscation then, we can consider a notion of author-indistinguishability that would entail

protecting the release of a document x which is obfuscated such that the output document seen by

an adversary could have come from any ‘close’ author with (almost) equal likelihood. We envisage

adding noise to the document, in some way, so as to protect the author’s identity. This has conceptual

similarities with geo-indistinguishability, however we note some key differences.

Firstly, notice that for geo-indistinguishability, the domain of location co-ordinates is common to

both the obfuscation mechanism (which takes points as inputs and returns points as outputs) and the
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distance metric (since privacy is with respect to the distance between points). However for author-

indistinguishability we anticipate a mechanism that operates on the domain of documents (that is,

taking documents as inputs and returning obfuscated documents as outputs) but a distance metric that

operates on the domain of authors (since privacy is with respect to the distance between authors). This

mismatch between documents and authors needs to be resolved in order to make sense of a definition

of author-indistinguishability based on geo-indistinguishability.

Secondly, a key concept in geo-indistinguishability is the notion of ‘l-privacy within radius r’. This

concept is aided by the representation of geo-location co-ordinates as points in 2-dimensional space.

We would like a corresponding geometric understanding of authors as points in n-dimensional space.

Finally, generalised differential privacy stipulates the use of a metric, which we require over the space

of authors. This is particularly relevant for the application Laplace mechanisms.

4.3.3 Stylometry Revisited

We will now revisit some concepts from stylometry discussed in Chapter 2 (see Section 2.2.1) and

introduce some key ideas in order to address the above requirements.

Authors as Documents

A key notion used in the stylometry literature for author identification is that authors are identified by

the documents they write. In other words, an author can be considered to be a collection of documents.

This notion is used in author identification methods in order to identify documents by particular

authors; in this way, unknown documents can simply be compared with other documents by known

authors to determine if there is a match for authorship. There are a number of ways in which this

notion is realised in the literature. Some author verifiers represent authors as a single document, either

by concatenating documents by the same author together, or by computing the document centroid of

the documents by that author. Other methods utilise sets of documents as identifiers for an author [35].

The Koppel Method 3 selected for this task represents each author as a single document and uses the

character n-gram for that author as a ‘fingerprint’ for determining whether an unknown document is

by the same author. 4 The character n-gram representation provides a way to represent documents in

such a way as to permit authorship identification. In this way, it provides the link between authors

and documents which resolves the document-author mismatch identified above.

3Recall from Section 2.2.2 that the Koppel Method is the method by Koppel et al. [36].
4Although the Koppel Method uses character 4-grams, we will continue to use the more general term n-gram to

describe this representation, leaving the 4-gram specifics to our experimental implementation.
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Vector Representations

Recall from Section 2.2.1 that it is standard practice in both stylometry and in machine learning to

represent documents by feature vectors. For the Koppel Method, these feature vectors are character

n-grams, and are used to represent authors (as documents). Typically the n-gram vectors for a doc-

ument set will contain tens of thousands of n-grams (dimensions); Koppel et al. [36] reduce these

to the 100,000 most frequently occurring n-grams across the document set. The n-gram vectors can

either be integer-valued (representing the frequency counts of particular n-grams) or real-valued (rep-

resenting the tf-idf counts for n-grams). 5 These n-gram vectors are treated as vectors in the ‘space’ of

authors when computing similarity measures for documents. For example, the Koppel Method mea-

sures similarity using the cosine similarity between the document-author vectors, where the cosine

similarity is simply the normalised dot product of the vectors. Thus we can treat authors as points in

high-dimensional space using their n-gram vector representations.

Metrics over Authors

Author verification methods rely on distance measures in order to determine the ‘nearest neighbour’ to

a document. As mentioned above, the Koppel Method uses cosine similarity to assess the closeness of

a document to an author. An extension of this method by Koppel & Winter [35] shows that the minmax

similarity is a more effective measure for similarity. Whilst the minmax similarity is not a metric, its

complement, known variously as the Ruzicka metric [33], or the generalised Jaccard distance [37],

is a metric. 6 Moreover, this metric has been used successfully with Koppel & Winter’s character

4-gram method for authorship identification [33]. This metric is formally defined as follows:

Definition 7. (Ruzicka Metric) LetX be the set of all documents and let x, y be documents inX . Let n

be the number of features in the chosen document representation forX , and let ~x =< x1, x2, ..., xn >,

~y =< y1, y2, ..., yn > be vector representations of the documents x, y respectively. Then the Ruzicka

metric on X is defined as:

Ruzicka(~x, ~y) = 1−
(∑n

i=1min(xi, yi)∑n
i=1max(xi, yi)

)

Note that the Ruzicka metric can be used with either frequency counts or tf-idf values in the vector

representation.

5Tf-idf, or term-frequency inverse-document-frequency, is a common measure used in NLP for weighting the relative
importance of features.

6The metric properties of the Ruzicka metric can be derived from the proofs presented in [37].
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4.3.4 Summary

Using the Koppel Method, which involves representation of documents using character n-gram vec-

tors, we can resolve the issues raised in Section 4.3.2. The notion that authors are the documents they

write allows us to resolve the mismatch of domains for author-indistinguishability. Thus the inputs

and outputs of the obfuscation mechanism can be treated as ‘authors’ by using a character n-gram rep-

resentation for documents. Also, this representation can be treated as a high-dimensional vector space

using either integer-valued or real-valued vectors. And finally, the Ruzicka metric can be used to mea-

sure the distance between authors in the n-gram vector space. Thus the notion of ‘l-privacy within

radius r’ can be meaningfully interpreted in terms of the ‘author space’ of n-gram vectors.

4.3.5 Author-Indistinguishability Defined

We now have a better understanding of the connection between geo-location and author obfuscation.

Authors have a vector representation via character n-grams, and a corresponding metric in the Ruzicka

metric which can be used to measure distance between authors in the character n-gram space. We are

now ready to define author-indistinguishability.

Let X be the set of possible documents, let Z be the set of possible output documents, and let XA
be the set of character n-gram representations of documents in X . Let P(Z) be the set of probability

measures over Z . Let K : XA → P(Z) be a probabilistic function known as a mechanism. Let

A : X → XA be a mapping from the (canonical) representation X to the character n-gram (vector)

representation XA. Let dA be the Ruzicka metric defined on XA.

Definition 8. (Author-Indistinguishability) A mechanismK : XA → P(Z) satisfies ε-author-indistinguishability

iff for all xA, x′A ∈ XA :

dP(K(xA), K(x′A)) ≤ εdA(xA, x
′
A)

This definition says that authors which are ‘close’ in the character n-gram space should have similar

outputs from the mechanism K. Alternatively, given an output z, it should not be possible to deter-

mine whether it came from author x or author x′, where x and x′ are ‘close’ in author space. Note

that although this definition treats the inputs and outputs of K as authors, they can equally be thought

of as documents.

The notion of ‘l-privacy within radius r’ can now be understood for author-indistinguishability. Given

a document to obfuscate, we can represent the document as an author using a character n-gram vector.

We can then choose other authors (that is, documents by other authors) against which we want the

document to be indistinguishable. By converting those documents into their character n-gram vectors,
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we choose r to encompass these documents with respect to the Ruzicka metric. Then any choice for

ε gives εr-privacy within this radius r, or alternative l-privacy within radius r for l = εr.

We might ask whether documents should be obfuscated with respect to any author, and not just close

ones. However, recall that there is also a utility measure to consider, namely preservation of topicality.

Obfuscation with respect to any author would disregard topicality and thus destroy the utility of the

output document.

4.3.6 Mechanisms for Author-Indistinguishability

As for geo-indistinguishability, we consider mechanisms for adding noise to the document. The natu-

ral mechanism to consider is the Laplace mechanism, as is also used in the geo-indistinguishability ex-

ample. However, unlike geo-indistinguishability, this problem involves higher dimensional space; as

mentioned earlier, the Koppel Method typically employs 100,000-dimensional n-gram vectors.

For simplicity, we consider a noise mechanism which involves adding noise to each dimension of the

character n-gram vector. This is a technique which has been applied to vectors in the literature using

the Laplace mechanism [24]. Let’s first define this problem more specifically.

Preliminaries

Let W be a set of words (known as a vocabulary) and d ∈ WN be a document to obfuscate (repre-

sented as a sequence of words). Let di denote the ith word in the document d. Let x ∈ Zk be the

n-gram vector for d and let µ ∈ Zk represent some amount of noise to add to x in order to satisfy

differential privacy. That is, K(x) = x + µ. Let M : W → Zk be a mapping from each word to its

n-gram vector and let Sim :W → P(W) be a mapping from each word to a subset of ‘similar’ words

(also containing the original word).

Definition 9. (WordSum Problem) Given the mappings M and Sim, an input document d and a noise

vector µ, output a new document d′ such that

d′i ∈ Sim(di) ∀i ∈ N and
N∑
i=1

M(d′i) =
N∑
i=1

M(di) + µ

In other words, the problem is to map an input document to a (noisy) output document by modifying

the n-grams in the author vector. The amount of noise to be added should be calculated using the

n-gram vector and the words chosen so that their n-gram representations sum to the required (noisy)

n-gram vector. However, it turns out that this problem is NP-hard.

Theorem 1. The WordSum problem is NP-hard.
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Proof. Consider the Subset Sum problem (which is NP-complete): given n ∈ Z and a set S =

{z1, z2, ..., zN} where zi ∈ Z, find S ′ ⊆ S such that
∑

zi∈S′ zi = n. We show how to reduce this

problem to the WordSum problem.

Assume that the WordSum problem can be performed in polynomial time wrt N and let k = 1.

Consider the Subset Sum problem defined above. Given S = {z1, z2, ..., zN}, choose any (unique)

words d = {w1, w2, ..., wN} s.t. wi ∈ W and define M : W → Z by M(wi) = zi for 1 ≤ i ≤ N .

Choose any ⊥∈ W s.t. ⊥/∈ d and define M(⊥) = 0. Now, define Sim :W → P(W) by Sim(wi) =

{wi,⊥} and choose µ = n−
∑N

i=1M(wi).

The above mappings can be performed in linear time (wrt N ).

UsingM , Sim, d and µ as inputs to the WordSum problem, the output will be a document d′ satisfying

d′i = wi or ⊥ for all 1 ≤ i ≤ N and
∑N

i=1M(d′i) = n. We then have that S ′ = {M(d′i) | d′i 6=⊥},
where S ′ is the solution to the Subset Sum problem This can be performed in linear time (wrt N ).

Therefore, if the WordSum problem can be solved in polynomial time, so can the Subset Sum prob-

lem. Hence the WordSum problem is NP-Hard.

Given the dimensions of the word and n-grams spaces (approximately 3 million words in our synonym

set and 100,000 dimensional n-gram vectors) this problem seems intractable. In addition, we have no

other mechanisms for applying Laplace noise to draw on for this problem. Instead, let’s re-examine

the author-indistinguishability definition to see if it can be reframed.

4.3.7 Author Indistinguishability Re-Examined

We have seen that adding noise to the character n-gram vectors is computationally hard, because

the noisy documents cannot be recovered. Let’s re-consider author obfuscation in the light of doc-

ument representations. Recall that authors are considered to be the documents that they write, and

the difference between these two concepts lies in their representations. We ask the question: can

obfuscation in document space result in obfuscation in author space? That is, can we define author

indistinguishability in terms of document indistinguishability?

We first need to understand what document indistinguishability means. Intuitively, document-indistinguishability

says that the outputs from a privacy mechanism K on input documents x and x′ depends on their dis-

tance dX (x, x′). We should choose a distance metric that preserves semantic similarity in document

space in order to preserve the topicality of the output document. Document-indistinguishability, then,

promises that semantically similar documents produce similar distributions.
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10,000-dimensional one-hot vectors
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300-dimensional word embeddings

Figure 4.2: One-hot vector representation of ‘cat’ and ‘cats’ versus word embedding representations. Word
embeddings encode semantic relationships, hence similar words have higher cosine similarity. One-hot vectors
are all orthogonal and do not encode relationships between words.

The application of generalised differential privacy to this problem requires firstly an appropriate rep-

resentation which permits documents to be represented as points in space, and secondly a metric

defined over that representation which measures semantic similarity between documents.

Word Embeddings

The NLP community has long been interested in document representations, which are useful in many

applications involving document searching and processing. Document representations are typically

word-based, as opposed to the character n-gram based representations that are used in author iden-

tification. An important new direction in NLP is the move towards compact vector representations

of words known as word embeddings. Word embeddings replace traditional vector representations of

words, which use sparse ‘one-hot’ vector representations to encode words. In contrast, word embed-

dings encode words as lower dimensional vectors which are learned using neural networks trained

over very large datasets. One reason for the rise in popularity of these word representations is the

interesting semantic properties that they entail. This is because word embeddings are learned using

the notion that semantically similar words are found in similar contexts, and as a result, semantically

similar words have similar representations. This feature is absent from one-hot representations, in

which no relationships between words are captured. For example, the words ‘cat’ and ‘cats’ have

arbitrary representations in one-hot encodings, but their word embedding vectors are similar due to

the similarity in their contextual use. This example is shown in Figure 4.2.

One word embedding implementation commonly used in the literature is Word2Vec [47]. A key con-

tribution of Word2Vec is that it aims to preserve semantic relationships between word embeddings so

that vector operations can be meaningfully used on word vectors. For example, in Word2Vec, vec-

tor(‘king’) - vector(‘man’) + vector(‘woman’) is closest to vector(‘queen’). Similarly, vector(‘Paris’)

- vector(‘France’) + vector(‘Italy’) is closest to vector(‘Rome’). Word2Vec can be used to find the

most similar words to a given target word. Table 4.1 shows an example of semantically similar words
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encoded in Word2Vec. Note that these semantically similar words are found using the cosine simi-

larity score (related to angular distance) between the target vector and each word in Word2Vec. An

additional advantage of Word2Vec is that it comes with pre-trained vectors which can be used ‘off

the shelf’. This is particularly helpful as learning word embeddings using neural networks requires

enormous quantities of data.

Target car run understand because town
vehicle runs comprehend but village

Closest cars running explain so hamlet
words SUV drive know Because towns

minivan scamper realize anyway city

Table 4.1: Sample words and their closest word embeddings, showing that semantic relationships are captured
by similar word embedding vectors.

Documents using Word2Vec representations are typically encoded as a bag of word embeddings, and

are represented as vectors with each co-ordinate holding the word count for a particular word in the

vocabulary. In this way, documents can be considered as points in an n-dimensional space. The use

of word embeddings permits particular metrics over the document space, which provide measures of

semantic distance by exploiting the semantic nature of the word embedding vectors.

Document Metrics

A number of document similarity measures are commonly used in NLP tasks involving semantic sim-

ilarity, and there is no clear consensus on any particular measure in the literature. However, our deci-

sion to use word embeddings strongly suggests the use of a metric which incorporates word embed-

ding features. The Word Mover’s Distance (WMD), proposed by Kusner et al. [38], is a metric based

on the Earth Mover’s Distance, and is designed for use with word embeddings. The WMD between

two documents d and d′ is defined as the minimum distance required to move all the words (repre-

sented as word embeddings) from d to d′. An example is shown in Figure 4.3. The distance between

word embeddings is defined here as the Euclidean distance, although this metric is not commonly

used to represent similarity in Word2Vec. However, WMD has shown state-of-the-art performance

compared with other document similarity measures, and is a natural choice for use with Word2Vec.

Its main drawback is computation time; WMD is based on the Earth Mover’s Distance [55], and is

framed as an optimisation problem using linear constraints. The solution is slow to compute with

average time complexity O(p3 log p), however the authors propose optimisations which can reduce

the size of the problem.

4.4 Document-Indistinguishability

We are now ready to define document-indistinguishability.
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Figure 4.3: Example of Word Mover’s Distance taken from [38]. The documents (ignoring stopwords) are
transformed into word embeddings and compared in Word2Vec space. The distance between the two documents
is the minimum Euclidean distance that words in document 1 need to travel in order to match the words in
document 2.

Let XD be the space of documents represented using word embeddings and dw be the Word Mover’s

Distance defined on XD. Then we define document-indistinguishability as follows:

Definition 10. (Document-Indistinguishability) A mechanism K : XD → P(Z) satisfies ε-document-

indistinguishability iff for all xD, x′D ∈ XD :

dP(K(xD), K(x′D)) ≤ εdw(xD, x
′
D)

This definition says that documents which are close together with respect to the Word Mover’s Dis-

tance produce output distributions that are close together. Alternatively, any output z is (almost) just

as likely to have come from a particular document x as it is to have come from another semantically

similar document x′.

However, we need to relate this definition to the the original problem: author obfuscation. We can

suggest how this might be done using the notion of ‘l-privacy within radius r’. Given a document x,

we would like to choose a set of documents which are to be ‘indistinguishable’ with respect to the

mechanism K. We want to choose documents that are by more than one author so that we can also

achieve author-indistinguishability. We can then choose r using the distance measure in the document

representation, knowing that documents within radius r, and hence authors within radius r are indis-

tinguishable. We present this below as a hypothesis.

Hypothesis 1. ε1-Document-indistinguishability⇒ ε2-author-indistinguishability for some ε1 < ε2.

The intuition, then, is that some (possibly large) amount of noise could be added to documents using
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a word embedding representation, and this would provide some weaker privacy guarantee for author-

indistinguishability. We will examine this hypothesis experimentally in the next chapter.

4.4.1 Mechanisms for Document-Indistinguishability

As for geo-indistinguishability, we will consider using a Laplace mechanism for this problem, recall-

ing that any Laplace mechanism satisfies generalised differential privacy (Section 4.1.3).

Firstly we considered how document-indistinguishability could be applied by adding noise to indi-

vidual words in the document. The geo-indistinguishability example used the polar laplacian in 2

dimensions, however we require Laplacian noise for higher dimensions, considering the document

as a vector of words. We could not find guidelines in the literature on how to add Laplace noise for

higher dimensions, and the conversion to polar co-ordinates appears to be non-trivial.

As a second option, we considered adding Laplace noise to each dimension of the vector, as demon-

strated by Dwork [24]. However, we note that the addition of noise separately to each component of

a vector is only valid using the Manhattan distance metric on the space of elements. In our definition

we use the Word Mover’s Distance, and it is not clear how we would be able to add noise using this

metric. In fact there is no pre-existing work on Laplace noise for non-Euclidean metrics, which would

prevent our use of alternative similarity measures commonly used in text document processing.

Although we were unable to construct a Laplacian mechanism which satisfies our definition of document-

indistinguishability, we will still explore the use of Laplace noise experimentally in the next chapter.

This will be used to determine the feasibility of using Word2Vec as a mechanism in the future.

4.4.2 Summary

Generalised differential privacy and the application of geo-indistinguishability demonstrate a new

way of approaching differentially private data publishing through the private release of individual data

points. This insight motivated our exploration of author obfuscation as a similar problem requiring the

private release of individual documents. We considered the definition of author-indistinguishability

in the light of geo-indistinguishability, however we found that implementing a noise-based mech-

anism using character n-gram vectors is NP-hard. We then turned to the question of document-

indistinguishability, and asked whether this could be applied to the author obfuscation problem. We

did not prove this connection, but we will explore this experimentally in the next chapter. Finally, we

considered appropriate mechanisms using Laplace noise, however we found that the Laplace mech-

anisms described in the literature require the use of a Euclidean metric. This represents a gap in the

literature that impacts our use of Laplace mechanisms in the text document domain, which makes

heavy use of non-Euclidean measures for similarity.
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This chapter covers the experimental setup and methodology used to evaluate aspects of the theoretical

framework proposed in the previous chapter. The purpose of these experiments is to explore the

feasibility of applying generalised differential privacy to the author obfuscation problem. In particular,

we are interested in evaluating whether Word2Vec can be used to generate noisy documents in such a

way as to preserve some semantics of the original text, through preservation of its topicality. We also

investigate the hypothesis from the last chapter, in which we propose that the application of privacy

to documents implies privacy at the level of authorship.

5.1 Overview

In the previous chapter we hypothesised that applying obfuscation to a document (so as to provide

document-indistinguishability) also results in obfuscation at the level of authorship, perhaps for a

reduced degree of privacy. We also saw that reducing a document to a bag of content words aligns the

privacy and utility goals by discarding those parts of the document which are irrelevant to utility but

which could compromise privacy. In this chapter, we aim to explore the feasibility of implementing

author privacy using tools from natural language processing. We would like to answer the following

questions:

1. Is there a relationship between the document space metric (Word Mover’s Distance) and the au-

thor space metric (Ruzicka Metric)? This would allow us to understand privacy in author space

in terms of obfuscation performed in document space (using document-indistinguishability).

2. Can Word2Vec be used to generate obfuscated documents using the semantic similarity prop-

erties of its word embedding vectors? This would allow us to make use of existing NLP tech-

nology and head towards a fully automated obfuscation mechanism.

In these experiments we implement a simple obfuscation mechanism which adds noise to individual

words in the document and fetches the generated ‘noisy’ words from Word2Vec. We then evaluate the

obfuscation mechanism using the metrics outlined earlier in this thesis (Section 2.1.3), namely:

• Safeness - that is, whether the original author can be identified from the obfuscated text. This

will be evaluated using a single state-of-the-art author verification tool rather than a suite of

automated verifiers.

• Soundness - that is, whether the obfuscated text preserves the topicality of the original text. This

will be evaluated using a machine learning classifier trained on documents labelled by topic.
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5.2 Datasets

We require datasets which are labelled with topics as well as authors in order to be able to measure

topicality and authorship. We used two datasets for these experiments. One dataset is commonly used

in the NLP literature, the other one we constructed as we were unable to find a second appropriate

dataset labelled with both topics and authors. The datasets we used are described below:

1. The Reuters RCV1 dataset is a standard dataset used in language processing tasks, and con-

sists of over 800,000 Reuters news articles separated into various topics [39]. Although not

originally constructed for author attribution work, it has been used previously in this domain

by making use of the <byline> tags inside articles which designate article authors [58]. The

dataset was chosen because it contains documents of reasonable length, which is required for

successful author identification. In addition, this dataset is similar to the dataset on which the

Word2Vec vectors used in this experiment were trained on, and thus we would expect high

quality outputs when using Word2Vec with this data.

2. Fan fiction from https://www.fanfiction.net was collected and used to construct a dataset con-

sisting of stories collected over the 5 most popular book-based topics. Fan fiction has been used

previously in PAN author attribution tasks, and is suitable for this task because of the content

length of the texts and the diversity of authorship styles present in these texts, as stylistic writing

qualities are important in this domain. The dataset is also similar to the blogger.com dataset

used in author attribution evaluation by Koppel & Winter [35], however that dataset does not

contain topic labels as required for evaluation of our mechanism.

For each dataset, we required separate training and test sets, as is standard practice in machine learn-

ing. Training sets are used to train the classifier and produce a model, which is then run on unseen

(test) data in order to compute a result. Although it is standard practice to also use a development set

for parameter setting, we did not require this as we chose not to vary the parameters of the classifiers

used in these experiments. Note that the separation of training and test sets was required for the topic

classifier, which is machine learning based, but not the authorship attribution approach, which uses

the ‘training’ data as a known set against which to test unknown documents. However, the terms

‘training’ and ‘test’ will be used throughout this chapter for consistency.

For the Reuters dataset, a subset of the RCV1 dataset was chosen. The training dataset consisted

of 2000 documents evenly spread across 5 topics, with 20 authors per topic and 20 documents per

author. The test dataset was an even spread of 500 documents using the same 5 topics and 20 authors

as for the training dataset.

https://www.fanfiction.net
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For the Fan fiction dataset, the training and test sets were constructed following the setup used by

Koppel et al. [36] In particular, for each author we chose 2000 words of writing for the training

dataset, and a different 500 words for the test dataset. Only authors with at least 2500 words of

writing were selected for this dataset. This resulted in a training dataset of 102 documents from 100

authors spread across 5 topics and a test set of 102 documents from the same 100 authors spread

across 5 topics. 1

A summary of these datasets is shown in Table 5.1.

Dataset Topic # Training # Test # Authors
Reuters C11 (Strategy/plans) 400 100 20

C12 (Legal/judicial) 400 100 20
C13 (Regulation/policy) 400 100 20
C21 (Production/services) 400 100 20
C24 (Capacity/facilities) 400 100 20

Total 2000 500 100
Fan fiction Harry Potter 22 22 22

Hunger Games 22 22 21
Lord of the Rings 15 15 15
Percy Jackson and the Olympians 14 14 13
Twilight 29 29 29

Total 102 102 100

Table 5.1: Summary of training and test dataset splits by topic and authors.

Note that although these datasets are small for topic classification tasks, they represent large datasets

with respect to the author attribution literature. In comparison, the PAN 2016 only contained doc-

uments across 14 different authors, and Koppel et al. [36] note that the much work in the author

attribution literature uses datasets consisting of only a handful of authors. Given that the primary

purpose of this task is author obfuscation, the small dataset size is acceptable with respect to other

experimental work in the literature.

The documents were formatted according to the requirements of the PAN 2012 author attribution task.

This was to allow author attribution software from PAN to be tested on the data, in particular the code

base for the author attribution method by Koppel et al. [36] Note that the PAN datasets could not be

used for these experiments as they lack topic labels for the data.

Note that publishing restrictions on the Reuters RCV1 dataset require that no complete data snippets

from RCV1 can be included in this thesis, although results from analysis can be included. Docu-

ment snippets in this section are drawn from the Fan fiction dataset, however individual words and

obfuscations of words from the Reuters dataset have been included where appropriate.

1The extra 2 documents are due to our need to collect multiple stories by one author in order to reach 2500 words.



5.3 Methodology 39

5.3 Methodology

After data collection, we performed some post-processing to remove words unnecessary for topic

classification, as discussed in the previous chapter (Section 4.3.1). We first removed non-content

words from the documents using a ‘stopword’ list. Stopwords are words with minimal lexical value,

such as prepositions and pronouns, and are commonly removed for NLP tasks such as topic classifi-

cation. The stopword list used for this step is shown in Appendix A, and is the standard list supplied

with the Python Scikit-Learn toolkit used in these experiments. 2 The resulting dataset is referred to

as the Content-Words dataset.

We then created a second modified dataset by removing the least useful words for topic classification

from the Content-Words documents. We identified these words using feature selection, which is

commonly used in NLP tasks to improve the performance of classifiers [65]. A feature selector

identifies the features which are most discriminative for the classification task. Discarding less useful

features often has minimal impact on accuracy but significantly improves performance by reducing

the dimensionality of the feature set. We chose to use the chi-squared feature selector since it has been

identified as high-performing and has the advantage of being independent of any particular machine

learning classifier [65]. Chi-squared feature selection makes use of the chi-squared (χ2) statistic

to score the dependence of each word on each class; the highest scoring words are those with the

most discriminative power, and thus are most useful for classification. Whilst chi-squared is an older

feature selection method, it is still considered state-of-the-art and is one of the preferred methods for

text classification tasks in the literature [15]. The chi-squared feature selector was used to identify

the best (most discriminating) ‘n’ words in the document set, which was then modified so that each

document contained only those words in common with the ‘n’ best words. The resulting datasets are

referred to as BOW-n datasets.

The datasets created from the Reuters and Fan fiction datasets are summarised below:

1. Raw - Documents containing raw text, stripped of html and special characters. These were used

for baseline evaluation.

2. Content-Words - Documents stripped of non-content words. This was performed using a stan-

dard stopword list, which is shown in Appendix A.

3. BOW-n - Documents converted into bags of topic words using the n best features for topic clas-

sification. We used values of n = 1000, 500, 200 and 50 for evaluation. For example, documents

in the BOW-1000 dataset contain only words which are in the 1000 most discriminative feature

words for topics in the dataset. Note that as n decreases, then we expect the average length of

2Scikit-Learn is a standard Python toolkit for machine learning. http://scikit-learn.org/

http://scikit-learn.org/
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documents to decrease, corresponding to a smaller set of matching words for each document.

This post-processing was performed on both the training and test datasets. Some sample document

snippets from each of these datasets are shown in Table 5.2.

Raw Content-Words BOW
It was nearing two in the morning,
and ... the inside of Weasley’s Wizard
Wheezes was just as lively as ever.

nearing morning inside
weasley wizard wheezes
just lively

morning weasley wiz-
ard

The words, "Bring forth the ring,
Frodo," caused the Hobbit startle and
swallow thickly.

words bring forth ring
frodo caused hobbit star-
tle swallow thickly

ring frodo

Table 5.2: Sample documents from the Raw, Content-Words and Bag of Topic Words (BOW) datasets. Col-
umn 1 shows a raw text document snippet with all html tags stripped. Column 2 shows the same document
snippet with non-content words removed. Column 3 shows the document snippet with only topic-specific words
remaining.

Redaction of Proper Nouns

We noted that the most discriminating words across the Fan fiction dataset corresponded to proper

nouns such as names of characters. These words did not dominate the Reuters dataset as noticeably.

We assume this is because the character names used in Fan fiction are exclusive to particular books,

whereas proper nouns such as country names or names of businesses can occur across topics in the

Reuters dataset. For this reason, we performed a proper noun redaction across all of the Fan fiction

datasets prior to generating bag of words documents. We did this to isolate the effect on topicality of

the obfuscation, which would otherwise be dominated by unobfuscatable proper nouns. In particular,

any arbitrarily chosen alternative name (such as John for Harry) will not preserve the topicality of the

document, as required for soundness.

5.3.1 Obfuscation Mechanism

Next, we defined an obfuscation mechanism. Recall from Section 4.4 that document-indistinguishability

applies obfuscation at the word level using a word embedding representation and the Word Mover’s

Distance metric. We chose to use 300-dimensional pre-trained Word2Vec word embeddings, 3 which

are widely used in machine learning tasks. These word embeddings were trained on a 3 billion word

corpus of news articles and contain a total of 3 million words. The training of word embeddings

requires enormous resources, so the use of pre-trained embeddings is commonplace. 4

We considered two possible mechanisms for obfuscation of words in each document. Note that we

do not claim privacy guarantees for either of these mechanisms, but we investigated them as they

3Available from https://code.google.com/archive/p/word2vec/

4Training embeddings from data in the same domain as a task can sometimes result in better classification performance,
but we do not explore that here.

https://code.google.com/archive/p/word2vec/
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are simple adaptations of Laplace mechanisms, and thus represent the sorts of mechanisms that we

envisage being used in future work with privacy guarantees.

The first mechanism applies noise to individual words by calculating a noisy angle θ, computing its

cosine and querying Word2Vec for the closest word at this cosine distance from the original word.

We selected the noisy angle from a Laplace distribution centred at 0 and truncated to π
2
. This means

that values of θ closer to 0 are more likely than larger values for θ; this in turn implies that words

with higher cosine similarity, and hence higher semantic similarity, are more likely to be chosen. We

consider this criteria for selecting noisy words the better of the two mechanisms, as it more closely

aligns with the similarity measure used in Word2Vec, and thus noisy words selected are more likely

to be semantically related. This mechanism is illustrated in Algorithm 1.

Algorithm 1 Obfuscation Mechanism 1

Require: radius r, epsilon ε, word embeddings word2vec, documents d
for doc in d do

words = list words in doc
for w in words do

noisy_theta = Lap(r/ε) truncated to [−π2 ,
π
2 ]

sim = cosine(noisy_theta)
noisy_word = lookup closest word in word2vec at distance sim from w
add noisy_word to noisy_doc

end for
add noisy_doc to obfuscated dataset

end for
return obfuscated dataset

The second mechanism we considered treats each word as a 300-dimensional vector and applies

Laplace noise to each component of the vector. We then query Word2Vec for the closest vector to this

noisy vector, and retrieve the word corresponding to that vector. We considered this mechanism be-

cause it more closely represents a Laplace mechanism applied to vectors in Euclidean space. However,

Word2Vec similarity is not measured using Euclidean distance, hence this noise-adding mechanism

is not ideal for our scenario (and, in particular, we note that the results for Laplace mechanisms do

not apply here). This mechanism is illustrated in Algorithm 2.

Note: Although mechanism 1 represented a better choice for the generation of noisy words, we

found this mechanism too computationally expensive to implement using the Word2Vec API chosen

as it required searching the space of words for the closest word with the generated cosine similarity.

Mechanism 2 was thus the only mechanism implemented for all of the experimental work below. We

simply refer to this as the obfuscation mechanism for the remainder of this chapter.

Note also that we used the gensim API 5 for our Word2Vec implementation.

5https://radimrehurek.com/gensim/models/word2vec.html

https://radimrehurek.com/gensim/models/word2vec.html
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Algorithm 2 Obfuscation Mechanism 2

Require: radius r, epsilon ε, word embeddings word2vec, documents d
for doc in d do

words = list words in doc
for w in words do

vec = vector for word w in word2vec
noisy_vec = add noise from Lap(r/ε) to each dimension in vec
noisy_word = lookup closest word to noisy_vec in word2vec
add noisy_word to noisy_doc

end for
add noisy_doc to obfuscated dataset

end for
return obfuscated dataset

The obfuscation mechanism was run over the test data for the Reuters and the Fan fiction datasets

and stored for evaluation. We found that Word2Vec was slow in computing the closest words given

a vector of interest, so we were unable to run the mechanism ‘on the fly’ to generate obfuscated

data. We would have preferred to be able to run the mechanism multiple times for each dataset

in order to present an average result for each dataset, however this was not possible due to time

constraints. As a consequence, the results are reported for only a single run of obfuscation over each

dataset. Due to the inherent randomness in the obfuscation mechanism, we expect some results may

be inconsistent.

Parameters

The obfuscation mechanism is parametrised by the radius r and ε parameters; these were combined

into a scale parameter using scale = r
ε

which was passed to the mechanism and used to parametrise

the Laplace distribution. Scales of 0.1, 0.2 and 0.5 were chosen after experimentation revealed that at

scale 0.1 most of the words remain unchanged, whilst for scale 0.5 large changes were noticed in the

text. The scale parameter will be passed to the obfuscation mechanism used in these experiments, and

results are reported with respect to this parameter. Note that higher scales correspond to more noise

and hence more obfuscation.

5.3.2 Evaluation

We next selected methods for evaluating the output from the obfuscation mechanism for safeness and

soundness.

The author identification method chosen for evaluation of safeness was an implementation of the

approach by Koppel et al. [36] which we described earlier (Section 2.2.2) and refer to as the Koppel

Method. This implementation is available on the PAN website 6 and is one of the verifiers used in the

6https://github.com/pan-webis-de/koppel11

https://github.com/pan-webis-de/koppel11
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suite of verification software for evaluating the PAN author obfuscation task.

The Koppel Method creates a feature set consisting of the N most frequent character 4-grams used

in the dataset. Then, k random subsets of n features from the feature set are selected and used to test

authorship. The intuition behind using random subsets of features is that a document should match

its author regardless of the feature set chosen, and therefore author identification must be robust to

variations in the underlying feature set. Thus, the most likely author can be selected as the most

commonly attributed author across the k feature sets. If no author matches at least t times (for some

threshold value t), the document is assigned ‘unknown author’.

The original algorithm uses the cosine similarity to compute the distance between an unknown text

and a known text. 7 We modified this algorithm to use the Ruzicka metric, which is the complement of

the minmax similarity; the minmax similarity was shown to perform better at this task [35], however

this does not have the metric properties we require in a distance measure. 8

The modified algorithm for our Koppel Method implementation is shown in Algorithm 3.

Algorithm 3 Koppel Method using the Ruzicka Metric

Require: list of known documents dl for range of candidates C, unknown document u
for 1 to k do

randomly choose n features from the full feature set
find the closest document d to u using the Ruzicka metric
record c, the author of d

end for
for each candidate c in C do

score(c) = proportion of times c was the closest author
end for
return author with max score

The Koppel Method codebase has a number of parameters to set. We used k = 100 and n = N/2,

as suggested in [35]. We ignore the threshold t, assuming the closed-world scenario (that is, where

we always guess an author). We also restricted the maximum number of features N to 20,000 for

efficiency, noting that reduced feature sizes decrease the accuracy of the algorithm [35].

The machine learning classifier used for evaluating soundness, or topicality, was a multinomial Naive

Bayes classifier. This is a standard classifier used in machine learning, and is typically used as a

baseline for evaluation against other classifiers. The utility of the obfuscation mechanism was mea-

sured by comparing the classification accuracy of the Naive Bayes classifier on the obfuscated dataset

against its performance on the unobfuscated dataset. We are interested in measuring the change in

performance after obfuscation, rather than the absolute accuracy of the classifier, as an indicator of

the utility of the obfuscation mechanism.

7Recall that the cosine similarity between two vectors is their normalised dot product.
8The metric properties of the Ruzicka metric can be derived from the proofs presented in [37].
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For both of these metrics we will use accuracy to measure success; this is a standard measure used in

machine learning and NLP.

5.4 Results

We first present results for the safeness and soundness criteria, using the authorship attribution and

topic classification methods described above. Then we present a third experiment which compares

the Ruzicka and WMD metrics for a subset of data points.

5.4.1 Topic Classification

We first measured how well the obfuscation mechanism preserves the topicality of the original docu-

ment; recall that this is the soundness metric described in Section 5.1.

For the Reuters and redacted Fan fiction datasets, we established baseline topic classification accu-

racies (on the Raw datasets) of 81.4% and 82.4% respectively. We then ran the classifier over the

Content-Words and BOW-n datasets using unobfuscated test data to establish a baseline, followed

by obfuscation using scales 0.1, 0.2 and 0.5. The results for these runs are displayed in Table 5.3.

Note that we expect a random classification accuracy of 20% given that there are 5 topics to classify

against with approximately even coverage in the training and test sets.

Dataset Accuracy Obfuscation Accuracy
Reuters Baseline Scale=0.1 Scale=0.2 Scale=0.5
Raw 81.4 - - -
Content-Words 81.4 81.6 81.0 71.9
BOW-1000 80.4 80.8 80.8 75.2
BOW-500 79.2 79.4 79.4 70.7
BOW-200 76.0 76.0 76.0 66.7
BOW-50 66.3 67.9 68.1 61.7
Fan fiction Baseline Scale=0.1 Scale=0.2 Scale=0.5
Raw 82.4 - - -
Content-Words 83.3 79.4 79.4 54.9
BOW-1000 83.3 77.5 76.5 57.8
BOW-500 81.4 80.4 81.4 63.7
BOW-200 79.4 71.6 71.6 53.9
BOW-50 60.8 49.0 49.0 46.1

Table 5.3: Results for topic classification over the various unobfuscated and obfuscated test sets. Classification
accuracy is significantly lower for scale=0.5, which corresponds to more obfuscation. However, accuracy is
still well above the ‘random’ baseline of 20%.

We notice that the classification accuracy decreases as the lengths of the documents decrease. In fact,

many documents in the BOW-50 test set are empty, meaning that they contained no words from the

50 word vocabulary chosen by the feature selector. This clearly impacts classification accuracy, and

is reflected in the lower baseline accuracies for the BOW-50 datasets.
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Also of note is that the obfuscation for scales 0.1 and 0.2 appeared to have a small effect on accuracy,

as compared with significantly reduced accuracy at scale = 0.5. In particular, there was no change to

the accuracy in the Reuters dataset, and some increase in accuracy. At scale=0.5, the results are still

much better than random, showing that some topicality is clearly preserved.

5.4.2 Author Identification

We next measured how well the obfuscation mechanism protected the authorship of the output docu-

ments; this corresponds to the safeness criteria described earlier.

We first established baselines on the Raw datasets for Reuters and redacted Fan fiction of 71.1% and

70.6% respectively. As for topic classification above, we then ran the authorship identifier on non-

obfuscated and obfuscated test sets, using scales of 0.1, 0.2 and 0.5. The results for these runs are

shown in Table 5.4. Note that random accuracy would be 1% for the Fan fiction dataset and 5% for

the Reuters dataset.

Dataset Accuracy Obfuscation Accuracy
Reuters Baseline Scale=0.1 Scale=0.2 Scale=0.5
Raw 71.1 - - -
Content-Words 68.5 67.9 67.9 41.7
BOW-1000 65.9 62.1 63.5 41.9
BOW-500 64.1 61.7 62.1 40.9
BOW-200 47.9 46.9 48.5 27.1
BOW-50 23.9 20.0 19.0 6.2
Fan fiction Baseline Scale=0.1 Scale=0.2 Scale=0.5
Raw 70.6 - - -
Content-Words 67.7 67.7 67.6 4.9
BOW-1000 48.0 35.3 40.2 2.0
BOW-500 46.1 34.3 34.3 5.9
BOW-200 36.3 19.6 18.6 8.8
BOW-50 13.7 4.9 4.9 1.0

Table 5.4: Results for authorship attribution over the various unobfuscated and obfuscated test sets. Uniformly
randomly assigning authorship would have an accuracy of 1% over 100 possible authors for the Fan fiction
dataset, and 5% over 20 authors for the Reuters dataset.

These results show that the obfuscation mechanism is providing some authorship protection at scales

0.1 and 0.2, and fairly substantial protection at scale 0.5 for the Fan fiction dataset, although this

needs to take into account that random guess is only 1%. For the Reuters dataset the protection is

much lower, although it is not clear why this should be the case. For the Fan fiction results, the big

drop in accuracy from the original dataset suggests that increasing the amount of noise further might

provide closer to ‘random’ protection.
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5.4.3 Analysis

The results from the topic classification and authorship attribution tests show that for scale 0.5 we

see significantly higher authorship protection with some reduction in utility, particularly for the Fan

fiction dataset. This suggests that the mechanism does offer some privacy against an adversary using

this type of authorship identifier. Interestingly the results for the Reuters dataset suggested that the

obfuscation had less impact (both on topicality and authorship protection) than for the Fan fiction

dataset. This might be related to the removal of the proper nouns from the Fan fiction dataset prior to

obfuscation, which could be investigated in future experiments.

It is interesting to compare the obfuscated and unobfuscated texts to see how they were modified by

the mechanism, as the results seem to indicate minimal changes for scales 0.1 and 0.2. We found that

the sample texts remained virtually unmodified under obfuscation with scales 0.1 and 0.2. Analysis of

the noisy vectors generated indicates that the problem might be due to the sparsity of the Word2Vec

space, so that noisy vectors generated using small additions of noise are still closest to the original

vector. For the results with scale set to 0.5, we found that the noisy words bore little resemblance to

the original words. Some examples are shown in Table 5.5. Given this disparity, it is surprising that

the topic classification accuracy was so high for scale 0.5.

We suspect the noisiness of the output document is due to the use of cosine similarity by Word2Vec

for distance comparison, which differs from our obfuscation mechanism (based on Laplace noise

with Euclidean distance assumptions). It is possible that our alternative mechanism presented in

Algorithm 1 might have more success at generating close words, as this adds noise to the angular

distance using a Laplace distribution, meaning that words closer in semantic meaning may be more

likely to be generated. We leave further study of this mechanism to future work.

Original began answered prince servants king
Obfuscated wildly diverging Caisse populaire Widianto Hendro Cahyono

Original dwarf beard tears puppy pretty heavily murmured
Obfuscated evangelical Christians wield refit Hi Derryn linerboard mill toasted sandwich

Original prank bed magical realised stared weapon
Obfuscated Sengoku twins laser refractive fulcrum snowfall sports house

Table 5.5: Some snippets of original (bag of words) text with their slightly baffling obfuscations. These
obfuscations were produced using scale=0.5 on the Fan fiction dataset with 1000 features.

It would be worth investigating whether the use of Euclidean distance metrics in Word2Vec could

be used to fetch semantically similar words. Whilst cosine similarity is overwhelmingly favoured in

the literature as a measure of semantic distance, there have been some uses of Euclidean distance

for word and document semantics; of particular note is the use of Euclidean distance in the Word
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Mover’s Distance metric to measure how far a word has to move from one document to another. We

considered using a Euclidean distance metric to measure similarity in Word2Vec, but the computa-

tional complexity of calculating the pairwise Euclidean distances for the Word2Vec vectors made it

intractable.

One of the aims of these experiments was to evaluate the feasibility of using Word2Vec to generate

noisy documents whilst maintaining some semantic similarity with the original document. During

experimentation we noticed that Word2Vec contains a lot of ‘noisy’ words, such as misspellings or

unusual phrases, which occur with high cosine similarity to valid words. This affected the sensibility

of documents generated using Word2Vec, and we expect this would have a bigger impact on the results

if the evaluation metric included sensibleness, as per the original PAN author obfuscation task.

5.4.4 Comparison of Distance Metrics

We now investigate the relationship between the Word Mover’s Distance and the Ruzicka metric.

Recall that the Ruzicka metric is the metric of choice for the character n-gram space which best

represents authors. We propose that if a simple relationship between these two metrics can be deter-

mined, then it should be possible to guarantee some degree of author-privacy given a mechanism that

satisfies document-indistinguishability.

To test this hypothesis, we randomly selected sets of documents and performed pairwise distance cal-

culations on them, using both the Word Mover’s Distance and the Ruzicka metric. We used the Word

Mover’s Distance function provided by the gensim Word2Vec API. 9 The Ruzicka metric we used

was the metric implemented in the Koppel Method codebase which we used for author attribution.

We chose documents from the Reuters dataset, using the topics C11 and C12, and a selection of 10

documents from the Raw and Content-Words datasets. The results are shown in Figure 5.1.

The results suggest a linear relationship between the distance metrics. The relationship is more ap-

parent for documents from the original dataset, although the documents from the Content-Words

dataset still show linearity with higher variance. These results suggest that there could be a way to

relate the document-indistinguishability and author-indistinguishability definitions from the previous

chapter. Such a relationship could allow the development of a mechanism that satisfies document-

indistinguishability with privacy guarantees for author-indistinguishability. This relationship is worth

further investigation, which we leave to future work.

9https://radimrehurek.com/gensim/models/word2vec.html

https://radimrehurek.com/gensim/models/word2vec.html
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(a) Raw Reuters RCV1 dataset (b) Reuters RCV1 Content-Words dataset

Figure 5.1: Comparison of the Ruzicka and Word Mover’s Distance metrics on selected Reuters documents
from topics C11 and C12 showing what looks like a linear relationship.

5.5 Summary

We began this chapter with the aim of finding a relationship between the Ruzicka metric and the Word

Mover’s Distance. Our experiments showed that there appears to be a linear relationship between

these metrics which warrants further investigation. This might enable us to infer some relationship

between document-indistinguishability and author-indistinguishability in the future.

We also aimed to evaluate the use of Word2Vec to generate noisy words for document obfuscation.

We experimented with two obfuscation mechanisms but found that only one could be used with

the Word2Vec API chosen due to computational inefficiencies in searching. The mechanism we

chose still had poor computational performance, but we were able to generate results across all of the

datasets. Although the mechanism produced good results in terms of topic classification accuracy,

manual inspection of the generated documents revealed many obfuscations were overly ‘noisy’ and

appeared to be semantically unrelated to the original document. We suspected that this was a result

of the mechanism design which was based on Euclidean distance assumptions. We also noted the

large number of misspellings and unusual phrases in Word2Vec which may have contributed to the

generation of ‘noisy’ documents. These experiments point to improvements which can be made to

Word2Vec in order to achieve more semantically sensible documents.

Finally, we note that the mechanism which we implemented produced good results for scale 0.5, with

reasonable topic classification accuracy and good author privacy as measured by the accuracy of the

author identifier. It is worth investigating the use of Euclidean metrics for use with Word2Vec, as this

may open the way to the use of existing Laplacian mechanisms for author obfuscation similar to the

mechanisms suggested in these experiments.



6 CONCLUDING REMARKS

The motivating vision for this thesis was to develop a privacy framework for obfuscating documents

so as to protect the anonymity of their authors whilst preserving the semantics of the original docu-

ment. The novelty of our approach was in the use of the generalised differential privacy framework

for this problem. This represents the first attempt to apply differential privacy in the text document

privacy space. We simplified the problem by considering preservation of the topicality of the original

document, thereby reducing the complexity of the language component of this task. We then consid-

ered both a theoretical framework and an experimental evaluation to investigate the problem, with the

goals of identifying gaps in both the privacy literature and the NLP literature.

Our exploration of generalised differential privacy and geo-location privacy led us explore different

metrics for use in text document privacy. We identified gaps in the literature on Laplacian mecha-

nisms which prevented the realisation of a differentially private mechanism. In particular, the use of

non-Euclidean metrics, used to measure document and word similarities in the NLP literature, is un-

explored in terms of Laplacian mechanisms, which to date have only considered the use of Euclidean

metrics.

Our experimentation with Word2Vec identified computational limitations with its implementation. In

addition, we found that Word2Vec contained many ‘noisy’ words which reduced the sensibleness of

the output documents. We identified these as areas for future work.

Finally, we experimentally explored the relationship between the Ruzicka metric, used to measure

author distances, and the Word Mover’s Distance, used to measure document distances. We found

a correlation between these metrics which appears to be linear, warranting further investigation. We

envisage that this relationship could be used to experimentally verify the hypothesis that document-

indistinguishability implies author-indistinguishability, paving the way for mechanisms based on

document-indistinguishability which can provide privacy guarantees for author obfuscation.

6.1 Discussion and Future Work

The development of this thesis presented many challenges, most particularly in finding a suitable

approach to privacy in the text document domain. Whilst the intuition behind privacy for statistical

databases has been well-established, thanks to the development of differential privacy, this intuition

does not apply in the text document privacy domain. This may explain the plethora of approaches

to privacy in this domain, and the lack of a clear direction for privacy. A number of approaches

were considered before generalised differential privacy was chosen. Generalised differential privacy
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presented the only privacy definition applicable to text documents which also had clear privacy guar-

antees. We considered this mandatory, given the demonstrated risks of relying on ad-hoc notions of

privacy. However, the concepts underlying generalised differential privacy were challenging, and gen-

eralised differential privacy has had few applications in the literature from which to draw inspiration.

The geometric intuition behind geo-indistinguishability provided some guidance for the application to

author obfuscation, but the differences between these domains were not fully resolved and leave some

questions still to be answered. This has opened up a number of avenues for future research.

The use of non-Euclidean metrics for our privacy definitions was a stumbling block when applying

Laplacian mechanisms to our domain. The development of noise-adding mechanisms which support

the use of non-Euclidean metrics is important for applications in the text document privacy domain,

which is dominated by the use of non-Euclidean distance measures such as cosine similarity. In

addition, the use of high-dimensional vectors is common in the text document domain, but the addition

of noise to such vectors appears to be missing from the privacy literature, especially in conjunction

with the use of non-Euclidean metrics. We consider the development of methods for adding Laplacian

noise with these constraints to be important in opening up differential privacy to the text document

domain.

Conversely, the stylometry and natural language domains have considered Euclidean distance as a

similarity measure for text documents. It would be useful to investigate the use of Euclidean metrics

with Word2Vec, and especially whether word embeddings could be learned in a way that is more

responsive to the use of Euclidean metrics for similarity.

The development of a mechanism with a proven privacy guarantee is a future goal. We would like

to consider mechanisms which will work with the Word Mover’s Distance, which seems to be a

natural metric for document similarity under Word2Vec. The exponential mechanism is an interesting

candidate which we think would suit further investigation for the author obfuscation problem.

Finally, and more broadly, the use of differential privacy within the text document domain has been all

but dismissed, but this research opens up the possibility that differential privacy could be applied to

other problems in the text document privacy domain. It would be interesting to see if other problems

in this domain such as text sanitisation can be reformulated to fit into the framework of generalised

differential privacy.



A APPENDIX

Stopword list

The following standard stopword list is used by the Python Scikit-Learn library and was used in

creating the Content-Words dataset (Section 5.3).

a, about, above, across, after, afterwards, again, against, all, almost, alone, along, already, also, al-

though, always, am, among, amongst, amoungst, amount, an, and, another, any, anyhow, anyone,

anything, anyway, anywhere, are, around, as, at, back, be, became, because, become, becomes, be-

coming, been, before, beforehand, behind, being, below, beside, besides, between, beyond, bill, both,

bottom, but, by, call, can, cannot, cant, co, con, could, couldnt, cry, de, describe, detail, do, done,

down, due, during, each, eg, eight, either, eleven, else, elsewhere, empty, enough, etc, even, ever, ev-

ery, everyone, everything, everywhere, except, few, fifteen, fifty, fill, find, fire, first, five, for, former,

formerly, forty, found, four, from, front, full, further, get, give, go, had, has, hasnt, have, he, hence,

her, here, hereafter, hereby, herein, hereupon, hers, herself, him, himself, his, how, however, hundred,

i, ie, if, in, inc, indeed, interest, into, is, it, its, itself, keep, last, latter, latterly, least, less, ltd, made,

many, may, me, meanwhile, might, mill, mine, more, moreover, most, mostly, move, much, must,

my, myself, name, namely, neither, never, nevertheless, next, nine, no, nobody, none, noone, nor, not,

nothing, now, nowhere, of, off, often, on, once, one, only, onto, or, other, others, otherwise, our, ours,

ourselves, out, over, own, part, per, perhaps, please, put, rather, re, same, see, seem, seemed, seem-

ing, seems, serious, several, she, should, show, side, since, sincere, six, sixty, so, some, somehow,

someone, something, sometime, sometimes, somewhere, still, such, system, take, ten, than, that, the,

their, them, themselves, then, thence, there, thereafter, thereby, therefore, therein, thereupon, these,

they, thick, thin, third, this, those, though, three, through, throughout, thru, thus, to, together, too, top,

toward, towards, twelve, twenty, two, un, under, until, up, upon, us, very, via, was, we, well, were,

what, whatever, when, whence, whenever, where, whereafter, whereas, whereby, wherein, where-

upon, wherever, whether, which, while, whither, who, whoever, whole, whom, whose, why, will,

with, within, without, would, yet, you, your, yours, yourself, yourselves
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