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c© Rémy Tuyéras, 2015.

Typeset in LATEX 2ε.



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

§1.1. Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

§1.2. Conventions and usual theory . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Chapter 2. Vertebrae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

§2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

§2.2. Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

§2.3. Theory of vertebrae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

§2.4. Examples of everyday vertebrae . . . . . . . . . . . . . . . . . . . . . . . . . 76

Chapter 3. Spines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

§3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

§3.2. Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

§3.3. Theory of spines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

§3.4. Examples of everyday spines . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Chapter 4. Vertebral and Spinal Categories . . . . . . . . . . . . . . . . . . . . . . . 155

§4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

§4.2. Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

§4.3. Algebraic structures on vertebrae and spines . . . . . . . . . . . . . . . . . . 163

§4.4. Theory of spinal categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

§4.5. Everyday examples of vertebral and spinal categories . . . . . . . . . . . . . 202

Chapter 5. Construct of Homotopy Theories . . . . . . . . . . . . . . . . . . . . . . . 205

§5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

§5.2. Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

§5.3. System of models for a croquis . . . . . . . . . . . . . . . . . . . . . . . . . . 214

§5.4. From narratives to combinatorial categories . . . . . . . . . . . . . . . . . . . 231

§5.5. From spinal categories to homotopy theories . . . . . . . . . . . . . . . . . . 262

iii



iv Contents

Chapter 6. Towards the Homotopy Hypothesis . . . . . . . . . . . . . . . . . . . . . 271

§6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

§6.2. Vertebral structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

§6.3. Spines and their functorial framings . . . . . . . . . . . . . . . . . . . . . . . 288

§6.4. Spinal structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

Chapter A. List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341



Abstract

A sketch, in the sense of Charles Ehresmann, provides the data needed to specify a type of
mathematical structure. The category of structures for a given sketch has good properties
assured by the existence of reflection functors from presheaf categories. For example, a
Grothendieck site is an example of a sketch and the reflection functor assigns the sheaf
associated to a presheaf.

The present thesis proposes a generalisation of sketch for higher categories. The motiva-
tion for this comes from homotopy theory rather than universal algebra. For the requisite
homotopy structure on a category, we introduce vertebral categories and spinal categories,
rather than starting with a Quillen model category where the weak equivalences are part of
the data. For us, the weak equivalences are defined from the vertebrae in much the same
way as they are constructed from discs and spheres in topology. The categories of structures
for our generalised sketches are categories of fibrant objects in the usual cases. Categories
of stacks and spectra are examples. Moreover, our construct of the reflection functor is an
extension of the small object argument of Quillen.

Finally, using our algorithm for constructing weak equivalences, we show that Grothen-
dieck’s ∞-groupoids form a spinal category. By combining all the results developed in the
present thesis, future work will aim at proving that the category of ∞-groupoids admits a
Quillen model structure and satisfies the Homotopy Hypothesis (conjectured by Grothendieck
in 1983 and still unproved).
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Chapter 1

Introduction

1.1. Presentation

1.1.1. Goals of the thesis. Although there are many ways of telling a story, it is always
useful to have a storyline in mind. I will therefore introduce the present work by giving
several questions, which the reader may use as a breadcrumb trail to make sense of the
different chapters and better appreciate the reading of this text. In this respect, the present
thesis addresses the following three main questions related to homotopy theory and (higher)
category theory.

1. Is there a systematic way of producing weak equivalences for general homotopy the-
ories? The intended description should be intuitive.

2. Is there a systematic way of describing the colimits of a category of models for a
sketch? The intended description should allow practical computation.

3. Is the Homotopy Hypothesis (Grothendieck, [24]) true?

The following sections further motivate and discuss the previously stated questions.

1.1.1.1. Motivations of the first problem. One of the first model categories given by D. Quillen
in his monograph Homotopical algebra (1967, [38]) was that of simplicial sets. As required by
the definition of model categories, Quillen gave three classes of morphisms called fibrations,
trivial fibrations and weak equivalences. On the one hand, fibrations and trivial fibrations
were explicitly described in the category of simplicial sets via the notion of right lifting
property with respect to small sets of morphisms. On the other hand, weak equivalences
were not described in the category of simplicial sets, but induced from the canonical weak
equivalences of topological spaces via the underlying geometric realisation.

Such a presentation of the model category of simplicial sets shows that weak equivalences
are quite difficult to describe – or in fact, not quite understood – and need external knowledge
to be handled. The question that arises is the following: is it possible to have a sound
understanding of what weak equivalences look like in the category of simplicial sets without
using any other language than that of simplicial sets?

The answer is given in an article of Dugger and Isaksen [13] wherein a diagrammatic
language is used. This language seems to have been known by various homotopy theorists
(see ibid, [39, Lemma 7.5.1] or [33, Proposition 8]) but has never been exploited to give rise
to a new point of view of abstract homotopy theory – an outlook that would be more intuitive
and allow combinatorial constructions.

1



2 1. Introduction

This is exactly one of the goals of the present thesis, namely to propose a language
allowing one to handle most everyday definitions of weak equivalence in an intuitive and
combinatorial way. The intuitive aspect will lie in the fact that its formulation is similar
to that of the notion of bijection while the combinatorial aspect will lie in the fact that the
weak equivalences will be described as morphisms that may be ‘cofibrantly generated’. It is
worth noting that this language will be expressed in a greater generality than in loc. cit. and
the philosophy in which it will be utilised will fundamentally differ from these papers as no
model structure will be assumed to exist from the beginning. On the contrary, our homotopy
theory will systematically arise from the particular shape of our diagrams of ‘cofibrations’.
It is when the diagrams have nice properties that this homotopy theory will become a model
category or a category of fibrant objects.

One may wonder if such a description may be used to understand the very general notion
of weak equivalence attached to model categories. This is answered in the affirmative later
in the introduction by using the result of [39] previously cited. To some extent, this refor-
mulation of weak equivalences of (cofibrantly generated) model categories may be seen as a
general statement of the Whitehead Theorem for CW-complexes.

However, note that this general Whitehead Theorem will only hold for weak equivalences
between fibrant objects. The advantage of the language proposed herein is that it allows one
to describe weak equivalences that are not necessarily defined between fibrant objects.

1.1.1.2. Motivations of the second problem. One of the most important and difficult concepts
of modern algebra is the notion of colimit. The use of these objects most often requires a
sound combinatorial description of them that diverges from the way that they are formally
defined. In the case of a category of models for a sketch S, say Mod(S), colimits are computed
as the images in colimits of the presheaf category over S via the reflection functor.

colimit in Psh(S)

colF Psh(S)

reflection

L // Mod(S)

colimit in Mod(S)

L(colF )

This means that if one has a combinatorial description of the reflection functor, then one
has a combinatorial description of the colimits of Mod(S). The remaining question is the
following: how can one describe a reflection functor in the most explicit way?

The work of Freyd and Kelly [19] showed that one way of defining a reflection is to express
the objects of Mod(S) as solutions of a right lifting property. More specifically, the object
of Mod(S) are presheaves satisfying the property that some of the canonical functions that
they induce are bijections.

cocone in S

{di : xi → x}i � F //

a model

F (x)

limiF (di) is a bijection

∼= // limiF (xi)

This condition is a particular example of ‘descent condition’ above certain cocones of the small
category S. The right lifting property then follows from a reformulation of this particular
descent condition via the Yoneda embedding.

Interestingly, this is not the only place where descent conditions are used to define con-
structions that looks like colimits. A notable example is the one of stacks. Stacks are a
generalisation of manifolds, which may be seen as ‘pseudo-gluings’ of open sets coming from
the Euclidian topology. Once sent to the language of stacks, the pseudo-gluings are formu-
lated in terms of a descent condition, which intrinsically defines the concept of stack. The
descent condition this time requires certain canonical morphisms to be equivalences of small
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categories.

open covering of U

{di : Ui → U}i � F //

a stack

F (U)

limiF (di) is an equivalence

' // limiF (Ui)

Our previous discussion here suggests the following question: May the descent condition
of stacks be expressed in terms of a right lifting property so that it gives rise to a reflection
functor? This would ideally provide a way of combinatorially understanding a pseudo-colimit
of stacks, which, to some extent, could be used for understanding the construction of moduli
spaces – one of the other examples encompassed by stacks. The answer to such a question
will be discussed in the Chapter 5, where I will show how to derive from a descent condition
a combinatorial construction that turns out to be a reflection functor in practice.

Such a construction is made possible thanks to the definition of weak equivalence given
herein. More specifically, in some simple cases, this definition may be expressed in terms of
a right lifting property in the arrow category where the descent conditions live.

F (U)

weak equivalence

∼ // limiF (Ui) ⇔ F (U)

solution of a right lifting property

∼ // limiF (Ui)

Since an abstract way of presenting a descent condition is to require the underlying arrow
of the condition to be a weak equivalence (for a given homotopical context), any descent
condition may be seen as the solution of a right lifting property, exactly as in the case of the
paper of Freyd and Kelly.

The fact that these weak equivalences are ‘cofibrantly generated’ (in the sense of the
Whitehead Theorem) will then enable us to use a broad generalisation of Quillen’s small
object argument to eventually construct what could be seen as the reflection functor. In
addition to giving an inductive and objectwise presentation of the reflection, this point of
view does not make use of the notions of generator, cowell-poweredness, subobject or proper
factorisation system as required in the paper [19] of Freyd and Kelly.

Finally, the ability to express descent-like condition in terms of right lifting properties will
enable us to express sheaves, spectra, models for a sketch or even flabby sheaves as fibrant
objects in a certain homotopical theory. The introduced methods obviously paves the way
for possible charaterisation of stacks or, more generally, (∞, n)-stacks up to generalisation
of the involved structures. All this will be achieved by generalising the notion of sketch and
their models in order to see all the previously listed objects as functors satisfying a general
descent condition.

1.1.1.3. Motivations of the third problem. In 1984, A. Grothendieck published a manuscrit
called Esquisse d’un programme [25] wherein is sketched a research plan gathering the main
questions on which he spent most of his thinking time since 1955. The program aimed at
further developing Galois Theory along Homotopy Theory. These two subjects had earlier
been related in the work of C. Chevalley (1946, [7]), where covering spaces were classified
by universal ones up to quotient by groups of permutations on the fibres. This was the
Galois Theory of covering spaces. Later, in 1963, the idea of universal covering space lead J.
Stasheff [40] to his classification theorem in which he explicitly constructed a space B such
that the set of homotopy classes of continuous maps from a CW-complex X to B is naturally
isomorphic to the set of fibre homotopy equivalence classes of Hurewicz fibrations over X
with fixed fibre space F .

[X,B] ∼= LF (X)

Interestingly, when F was a discrete group G, the space B corresponded to a K(G, 1) space
defined by Eilenberg and MacLane in 1945 and 1950 (see [16, 17]). For every positive
integer, the Eilenberg-MacLane spaces K(G,n) are defined as CW-complexes such that their
n-th homotopy groups are isomorphic to the group G. Such spaces are known to verfiy the
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property that the set of homotopy classes of continuous maps from a CW-complex X to
K(G, 1) is naturally isomorphic to the n-th cohomology group of X with coeffients in G.

[X,K(n,G)] ∼= Hn(X,G)

In the case where n is equal to 1, the two previous isomorphisms are reminiscent of the
definition of non-abelian sheaf cohomology of degree 1 introduced by Grothendieck in 1955
(see [23]), whose cohomology group is defined in terms of isomorphism classes of G-torsors
for a sheaf group G.

H1(X,G) ∼= TorG(X)

It is then in the early 1960’s that Grothendieck asked J. Giraud for a generalisation of sheaf
cohomology to the non-abelian case in degree 2. Giraud achieved the generalisation by
defining, in its manuscripts of 1966 and 1971 (see [21, 22]), the notions of stack and gerbe.
These objects were not sheaves anymore, but pseudo-functors from a small category to the
category of small groupoids. The reason as to why one leaves the world of groups to go
to the world of groupoids when going to higher cohomology groups is one of the questions
addressed by Grothendieck in Esquisse d’un programme, where he wonders what the natural
notion of coefficients for higher cohomogoly groups should be. This is one of the reasons that
motivated his definition of∞-groupoid in his manuscript À la Poursuite des Champs [24]. If
we leave the world of sheaf cohomology to go back to the world of singular cohomology, this
suggests the idea that one could retrieve Stasheff’s classification theorem in higher dimension
for any ∞-groupoid G.

[X,Bn] ∼= Hn(X,G) ∼= πHom(Cn(X), G)

From the point of view of Quillen’s theory of model categories, the preceding isomorphism
may ideally be seen as a Quillen equivalence between the homotopy category of topological
spaces and the homotopy category of ∞-groupoids. Grothendieck expected that such an
equivalence existed. This is sometimes called the Homotopy Hypothesis. A detailed proof of
the existence of such an equivalence has yet to be completed.

The present thesis gives a beginning of answer by providing the category of Grothendieck’s
∞-groupoids with a homotopical structure called spinal category. A spinal category turns
out to define a model structure in the case where a certain proposition is true. Precisely,
this proposition relies on a factorisation stemming from Quillen’s small object argument and
thereby requires to combinatorially handle a colimit of ∞-groupoids. This therefore brings
us back to the previous question, which asked for an efficient way of computing colimits in a
category of models for a sketch, which the category of Grothendieck’s ∞-groupoids exactly
is. Future work will aim at finishing the proof of the Homotopy Hypothesis by combining all
the results developed in the present thesis. A sketch of this proof is given at the very end of
the thesis.

1.1.2. Results, methods and philosophy.

1.1.2.1. Concept of weak equivalence in higher category theory. A general notion of weak
equivalence for higher category theories, which has been around for a while, is described in a
paper of J. Baez and M. Shulman [6]. The idea is that a weak equivalence is a morphism that
is a ‘surjection’ in every ‘dimension’. The goal of the present section is to broadly describe
such a definition and use this description to slowly drift towards the version considered in
this thesis.

In this respect, we need to define what we will loosely call a basic higher categorical
theory. Thus, suppose to be given a category C whose objects X consist of sets Xn for every
non-negative integer n. The elements of a set Xn will be called an n-cells. In addition,
suppose that every n-cell in Xn is equipped with a structure of arrow f : x →n y between
two (n− 1)-cells x and y in Xn−1 for every n > 1. If one denotes by sn and tn the functions
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that map an n-cell f : x →n y to its source x and target y, respectively, then the object X
comes along with an ω-graph as follows.

X0 X1
t0

oo

s0oo
X2

t1
oo

s1oo
X3

t2
oo

s2oo
. . .

t3
oo

s3oo

To define the notion of weak equivalence, we need to introduce the notion of ‘invertible
n-cell’ for every positive integer n. These cells have to be as weakly invertible as possible,
which makes their definition quite subtle. For instance, in the paper of Metayer, Lafont and
Worytkiewicz [33], in which they define a canonical model structure for strict ω-categories,
the definition of these invertible cells is stated by co-induction. This is the type of definition
that I am going to use for this first part. To do so, we will need (horizontal) compositions as
well as identities at any dimension of an object in C. Thus, suppose that any object X of C
is equipped, for every integer n > 1, with

. a reflexive n-cell idx : x→ x for every (n− 1)-cell x in X;

. a composition operation ( ◦n ) mapping any pair of n-cells f : y →n z and g : x→n y
in X to another one f ◦n g : x→n z in X;

An n-cell f : x→n y in X is said to be weakly invertible if it is equipped with

1) an n-cell f ′ : y →n x in X, called its inverse;

2) an (n+ 1)-cell σf : f ′ ◦n f →n+1 idx that is weakly invertible;

3) an (n+ 1)-cell τf : f ◦n f ′ →n+1 idy that is weakly invertible;

Such a notion of cell comes along with a binary relation at every dimension of X as
follows; for every non-negative integer n, two n-cells x and y are said to be ω-equivalent,
which will be denoted by x ∼ y, if there exists a weakly invertible (n + 1)-cell from x to y.
An easy co-inductive argument shows that such a binary relation is symmetric. With a little
more structure on the objects of the category C, this relation is most often reflexive – thanks
to the identity cells – and transitive – thanks to the composition operations.

Along with this relation, we shall need another relation, which will stand for the notion
of parallelism in higher category theory. For every non-negative integer n, two (n + 1)-cells
f and g are said to be parallel, which will be denoted by f || g, if they have the same source
and target, respectively.

f : x→n+1 y & g : x→n+1 y ⇒ f || g
For convenience, any pair of 0-cells f and g will be regarded as parallel, which will also be
written as f || g.

We now have all the material to define a weak equivalence in the sense of [6, 33]. For
consistency, a morphism f : X → Y in C will be supposed to be compatible with the
dimensional structure of the objects of C. Specifically, we will assume that f is equipped,
for every non-negative integers n, with a function f : Xn → Yn preserving the sources and
targets of the n-cells of X to those of Y , respectively.

Definition 1.1 (Surjections). A morphism f : X → Y is said to be a 0-surjection if for
every 0-cell z in Y , there exists a 0-cell w in X for which an ω-equivalence f(w) ∼ z holds.

Definition 1.2 (Higher surjections). A morphism f : X → Y is said to be an (n + 1)-
surjection, for some n ≥ 0, if for every pair of parallel n-cells x || y in X and (n + 1)-cell
z : f(x) →n+1 f(y) in Y , there exists an (n + 1)-cell w : x →n+1 y in X for which an
ω-equivalence f(w) ∼ z holds.

Definition 1.3 (Weak equivalences). A morphism f : X → Y is said to be a weak equivalence
if it is an n-surjection for every non-negative integer n.
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Remark 1.4 (Injectivity). In both papers [6, 33], it is noticed that the notion of weak
equivalence implies that of injection with respect to the relation ∼. This happens in our case
if the morphisms of C preserve the composition operations and identity cells. In this case, the
idea is that if f : X → Y denotes a weak equivalence, then for every parallel pair of n-cells
x || y in X such that there is an invertible (n+ 1)-cell

z : f(x)→n+1 f(y)

in Y , the first implication of Definition 1.2 implies that the morphism f : X → Y

- lifts the cell z : f(x)→n+1 f(y) to a cell w : x→n+1 y in X;

- lifts the inverse z′ : f(y)→n+1 f(x) to a cell w′ : y →n+1 z in X;

- lifts the cell σz : f(a′ ◦ z′)→n+1 idf(x) and its associated inverse to X;

- lifts the cell τz : f(z′ ◦ a′)→n+1 idf(y) and its associated inverse to X;

- etc.

eventually lifting the ω-equivalence f(x) ∼ f(y) in Y to another one x ∼ y in X.

It is not difficult to understand that the actual intuition behind the definition of weak
equivalence is to recover that of bijection (up to homotopy). Let us see some examples to
perceive this intuition.

Example 1.5. The category of sets, which will be denoted by Set throughout this text, is
an example of higher category theory in which a set X is associated with the subsequent
graph.

X X
idX

oo

idXoo
X

idX

oo

idXoo
X

idX

oo

idXoo
. . .

idX

oo

idXoo

This graph is equipped with natural identities x : x→n x for every x ∈ X and n ≥ 0 as well
as obvious compositions between identities – which are the only possible composable arrows
for the previous structure.

x : x→n x & x : x→n x ⇒ x ◦n x := x

Since an arrow x →n x emulates the identity relation x = x, it is not hard to see that
an ω-equivalence in X is also given by an equality relation and a 0-surjection is exactly a
surjection of sets. On the other hand, a 1-surjection is a function f : X → Y such that
for every 1-cell z : f(x) = f(y) in Y , there exists an 1-cell w : x = y in X for which an
ω-equivalence f(w) = z holds. One may quickly notice that this statement is exactly the
definition of an injection. However, for any positive integer n ≥ 1, a (n+ 1)-surjection must
be a function f : X → Y such that for every pair of parallel n-cells x || x in X and (n+1)-cell
f(x) : f(x) = f(x) in Y , there exists an (n+1)-cell x : x = x in X for which an ω-equivalence
f(x) = f(x) holds. But any function satisfy this property. In the end, a weak equivalence in
Set is both a surjection and an injection, namely a bijection.

Example 1.6. The category of small 1-categories, which will be denoted by Cat(1) through-
out this text, is another example of higher category theory in which a category X : Mor(X)⇒
Obj(X) is associated the subsequent graph.

Obj(X) Mor(X)
t

oo

soo
Mor(X)

id
oo

idoo
Mor(X)

id
oo

idoo
. . .

id
oo

idoo

This graph is equipped with the identities of the category X at level 1 and trivial identities
such as those defined in the case of Set at any higher level. It is also equipped with the
composition of X at level 1 while higher levels have trivial compositions such as those defined
in the case of Set. By definition, an ω-equivalence x ∼ y between 0-cells is an isomorphism
between objects x ∼= y in X while an ω-equivalence f ∼ g at a higher level is given by
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an identity relation f = g. It follows that a 0-surjection is exactly an essentially surjective
functor of small categories; a 1-surjection is a full functor of small categories and a 2-surjection
is given by a faithful functor of small categories. As in the case of Set, the trivial definition
of cells at higher levels makes any functor into a n-surjection for n > 2. In the end, a weak
equivalence in Cat(1) is an essentially surjective and fully faithful functor. This definition
corresponds to the notion of weak equivalence used by A. Joyal and M. Tierney in [31].

Example 1.7. The category of small 2-categories, which will be denoted by Cat(2) through-
out this text, is an example of higher category theory in which a 2-category X : Cell2(X)⇒
Cell1(X)⇒ Obj(X) is associated with the following graph.

Obj(X) Cell1(X)
t0
oo

s0oo
Cell2(X)

t1
oo

s1oo
Cell2(X)

id
oo

idoo
. . .

id
oo

idoo

This graph is equipped with the identities of the 2-category X at level 1 and 2 and trivial
identities such as those defined in the case of Set at any higher level. It is also equipped with
the compositions of X at level 1 and 2 while higher levels have trivial compositions such as
those defined in the case of Set. By definition, an ω-equivalence x ∼ y between 0-cells is
an ‘adjoint equivalence’ between objects x a y in X, an ω-equivalence f ∼ g between 1-cells
is a 2-isomorphism f ∼= g between arrows in X while an ω-equivalence f ∼ g at a higher
level is given by an identity relation f = g. The resulting notion of weak equivalence then
corresponds to that used by S. Lack in his model structure on 2-categories (see [32]).

So far, I tried to present the prototypical category C with as little algebraic structure as
possible, for its axiomatic definition could get extremely complicated in cases such as that of
Grothendieck’s ∞-groupoids. The present thesis is additionally interested in understanding
the notion of weak equivalence not only in the case of higher category theories but also in
a very general context. To this purpose, we therefore need to introduce a more tractable
language, which will be that of commutative diagrams and representing objects. Below is
given a reformulation of the foregoing example in terms of this diagrammatic language.

Example 1.8. Let f : X → Y be a function in Set. Supposing that f is a 0-surjection is
equivalent to requiring that for every commutative diagram of the form given below on the
left – where • denotes a set of one element and ∅ is the empty set – there exists an arrow
x : • → X making the following rightmost diagram commute.

∅

!

��

! // X

f
��

•
y
// Y

“y ∈ Y ” ⇒ “∃x ∈ X : y = f(x)” ∅

!

��

!

''
! // • x // X

f
��

•
y

77•
f(x)

// Y

Similarly, if one denotes a set of two elements by • • (double coproduct of •), then supposing
that f is a 1-surjection is equivalent to requiring that for every commutative diagram of the
form given below on the left, there exists an arrow w : • → X making the following right
diagram commute.

• •

!

��

x
∐
y
// X

f
��

•
z
// Y

“f(x) = f(y)” ⇒ “x = y” • •

!

��

x
∐
y

''
! // • w // X

f
��

•
z

77• z // Y

As one can quickly notice, the notion of weak equivalence is nothing but a factorisation in
the arrow category of Set. More specifically, this factorisation is of the form displayed below
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on the left (see the leftmost two diagrams) where the arrow a⇒ b is of the form given below
on the right.

a

��

∀ +3 f

b

⇒ a

��

+3 f

b

∃

<D ∅

!

��

! // •

•
(surjectivity)

•

• •
!
��

! // •

•
(injectivity)

•

Interestingly, the arrows forming the previous rightmost two diagrams may be organised in a
unique commutative diagram of the form given below on the right, which is nothing but the
following leftmost commutative diagram whose underlying pushout has been added.

∅

!

��

! // •

•
(surjectivity)

•

• •
!
��

! // •

•
(injectivity)

•

⇒ ∅

!

��

! //

x

•1

��
•2 //

(bijectivity)

•2 •1
! // •

In other words, the notion of injectivity in Set may be defined at the same level as the
notion of surjectivity, that is to say at the level of the previous leftmost commutative square
provided that it is equipped with a pushout. This last point will turn out to be important
later on.

Example 1.9. Let f : X → Y be a functor in Cat(1). In the same fashion as in the category
Set, the notions of 0-, 1- and 2-surjection may be expressed in terms of factorisations in the
arrow category of Cat(1). More specifically, the morphism f defines a weak equivalence if
every morphism a ⇒ f in the arrow category of Cat(1) factorises through an arrow a ⇒ b
given by the following commutative squares (involving the obvious mappings), where • ∼= •
denotes the free living isomorphism1, • → • denotes the free living arrow and •⇒ • denotes
the pushout of two copies of the free living arrow along the two object category • •.

(1.1) ∅

!

��

! // •1

��

•2
(essentially surjective)

// •2 ∼= •1

•2 •1

��

// •2 → •1

•2 → •1
(full)

•2 → •1

•2 ⇒ •1

��

// •2 → •1

•2 → •1
(faithful)

•2 → •1

Recall that the proof of the injectivity property noticed in Remark 1.4 consisted in using
lifting properties with respect to the leftmost arrows of the previous squares.

∅ → {•} {• •} ↪→ {• → •} {•⇒ •} → {• → •}

But there is a better way of viewing the injectivity property, which has already been noticed
in the case of Set. Specifically, the injectivity property is in fact given by lifting properties
with respect to the following functors, where a lift with respect to the leftmost one gives the
notion of essential injectivity while a lift with respect to the rightmost one gives the notion
of faithfulness.

{•2 •1} ↪→ {•2 ∼= •1} {•2 ⇒ •1} → {•2 → •1}
These functors may be brought out in the commutative diagrams of (1.1) by forming the
respective underlying pushouts of the squares. In the end, the definition of weak equivalence
in Cat(1) only requires the following commutative diagrams, where the left one characterises

1i.e. the category made of two objects and an isomorphism.
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the bijectivity of weak equivalences at dimension 1 (essential bijectivity) while the right one
characterises the bijectivity of weak equivalences at dimension 2 (fully faithfulness).

(1.2) ∅

!

��

! //

x

•1

��
•2 // •2 •1

! // •2 ∼= •1

•2 •1

��

//

x

•2 → •1

��

•2 → •1 // •2 ⇒ •1 // •2 → •1

Note that the pushout square of the preceding left diagram may be related to the pushout
square of the right one via the • •. This potential pasting informs us that the preceding right
diagram lives at a higher dimension than the left one. In fact, we will later see throughout
this thesis that the right way of thinking of the right diagram is to regard it as a sort of
dimensional tower as follows.

∅

!

��

! //

x

•1

��
•2 // •2 •1

!

��

! //

x

• → •

��

• → • // •⇒ • ! // • → •

This ‘spinal structure’ somehow provides the right diagram of (1.2) with a CW-complex struc-
ture by starting from nothing and gradually adding information ‘dimension by dimension’.
The CW-complex structure of the left diagram of (1.2) is already given by the diagram itself.

Example 1.10. The example of Cat(2) follows the same idea as those exposed in Example
1.8 and Example 1.9, which is to say that one may organise the diagrammatic structures
characterising weak equivalences in terms of commutative diagrams as follows.

·

��

//

x

·

��
· // · // ·

∅

��

//

x

·

��
· // · . . .

· //

��

x

·

��
· // · // ·

The idea of the previous diagrams is that the leftmost diagram determines weak equivalences
at a given dimension. This dimension is then characterised by the length of the associated
‘spinal column’ constructed on the right whose bottom part corresponds to the leftmost
diagram.

I will finish this series of examples by briefly discussing the case of the category of strict
ω-categories, which I will refer to as Cat(ω). In the proof of the model structure for strict
ω-groupoids [33], Metayer, Lafont and Worytkiewicz had to reformulate their definition of
weak equivalence in terms of a factorisation in the arrow category of Cat(ω), in much the
same way as that shown in the previous examples. Their need for a diagrammatic language
is due to the use of theorems coming from the theory of locally presentable categories – and
hence sketch theory. For every non-negative integer n, their factorisations are defined with
respect to the subsequent commutative square, which they call generic n-squares, where On

is the free living n-cell strict ω-category, ∂On is empty when n is zero and otherwise equal
to the strict ω-category consisting of the source and target of the n-cell in On and Pn is the
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representative object of an ω-equivalence between n-cells2.

∂On in //

in
��

On

jn
��

On

j′n

// Pn

The ‘spine’ resulting from the previous commutative square, for every n ≥ 0, is of the following
form, where the diagram consisting of the lowest pushout square and the arrow kn that juts
out of it characterises the bijectivity of the weak equivalences at dimension n.

∅

��

//

x

O0

��

O0 // ∂O1

. . .
∂On in //

in
��

x

On

jn
��

On

j′n

// ∂On+1 kn // Pn

It is only when these all spines are considered together that the weak equivalences make sense
at any dimension.

What the foregoing discussion showed us is that one may characterise weak equivalences
locally (i.e. at any dimension) by using diagrams of the following form.

(1.3) S

xγ

��

γ
//

x

D

δ2
��

D
δ1

// S′
β
// D′

In addition, such diagrams give rise to other diagrammatic structures that look like spinal
columns. These spinal columns may be used to provide diagrams of the form (1.3) with
a notion of dimension. The key idea is that these spinal columns are the central structures
around which the underlying model structure organises itself, exactly as a body would organise
itself around an actual spinal column. In the same analogy, diagram (1.3) would play the
role of a vertebra for these spines as elementary structures allowing their formation. If a
vertebra happens to be at the tip of a spine, then it plays a role in the determination of weak
equivalences. Such a vertebra will later be referred to as the head of the spine.

In addition to formalising the language of higher category theories, these diagrams belong
to the world of colimit sketches, which is exactly the language in which Grothendieck thought
his definition of ∞-groupoid. It also notably reminds us the way how Algebraic Topology
works, namely by the use of presentative objects such as spheres and disks as atomic structures
to describe others up to homotopy (CW-complexes, fibrant objects and so on).

1.1.2.2. Vertebrae and spines. Let C be a category. The previous section showed how a
diagram of the form (1.4), which will be called a vertebra in C, could generate a notion of

2which may explicitly be constructed by a co-inductive small object argument.
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weak equivalence consistent with the conventional intuition of bijection up to homotopy.

(1.4) S

xγ

��

γ
//

x

D

δ1
��

D
δ2

// S′
β
// D′

More specifically, a weak equivalence for the previous vertebra is a morphism f : X → Y in
C satisfying the next conditions.

1) (Surjectivity) For every commutative square of the form given below on the left,
there exist two arrows x′ : D → X and y′ : D′ → Y making the following right
diagram commute.

S
γ

��

x // X

f
��

D
y
// Y

⇒ S
γ

��

x

$$γ
// D

β◦δ1
��

x′ // X

f
��

D
y

77

β◦δ2
// D′

y′
// Y

2) (Injectivity) For every commutative square of the form given below on the left, there
exists an arrow h : D′ → X making the following right diagram commute.

S′

β
��

x // X

f
��

D′
y
// Y

⇒ S′

β
��

x // X

D′
h

>>

Later on, a morphism that only satisfies item 1) with respect to diagram (1.4) will be called a
surtraction (from latin sur (over or above); traction (a pulling or drawing)) while a morphism
that only satisfies item 2) with respect to diagram (1.4) will be called an intraction (from
latin in (inside); traction).

Figure 1. Topological representation of intractions and surtractions

A morphism that is both a surtraction and an intraction for some vertebra v is a weak
equivalence for v. In fact, one of the key ideas that this text aims at setting forth is that,
despite the minimalistic structure of diagram (1.4), such a diagram is sufficient to make
sense of a homotopy theory wherein natural notions of fibration and trivial fibration live.
More specifically, my strategy is to start from scratch by considering a simple vertebra such
as the one considered in (1.4) and associate it with a zoo of items comprising intractions,
surtractions, fibrations, trivial fibrations and so on. I will then prove that one can retrieve
the usual properties of standard homotopy theories (model categories, categories of fibrant
objects, etc.) from the definition of these items.
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It will happen that a vertebra on its own is not sufficient and requires some ‘reflexive’,
‘reversible’ or ‘transitive’ structure to get all the axioms of a desired homotopy theory. It
will also happen that some vertebra is not sufficient on its own and needs to ally itself with
other vertebrae, which will imply an interaction between the zoos of the involved vertebrae.

Figure 2. Some of the possible chemical interactions

It is when one combines a set of vertebrae together that the homotopy theories of all
vertebrae merge to eventually give a more complex one. The goal of these thesis is therefore
to give a treatment of the possible ‘chemical reactions’ between vertebrae in order to achieve
a coherent and sound homotopy theory. The world of vertebrae would thus be a sort of
chemistry where a mathematician would be free to invent their own homotopy theory provided
that their set of vertebrae satisfies the necessary axioms. This said, it seems now appropriate
to mention that the goal of Chapter 2, 3 and 4 is to provide an algorithm, or more specifically,
a method to construct a homotopy theory rather than detect it (which is the goal of model
categories).

Below is given an idea of what the chemical interactions between vertebrae look like in
the case of topological spaces.

Let us start with a brief presentation of the natural set of vertebrae of the category of
topological spaces and the definitions of weak equivalence resulting from it. The concerned
vertebrae are given for every non-negative dimension n by diagram (1.5) where the object
Sn−1 denotes the topological sphere of dimension n−1; the object Dn denotes the topological
disc of dimension n and the arrow γk : Sn−1 → Dn denotes the canonical inclusion.

(1.5) Sn−1 γn
//

γn
��

x

Dn

δn1
��

Dn
δn2

// Sn
γn+1

// Dn+1

For a fixed n > 0, a continuous function f : X → Y between two topological spaces defines
a surtraction (resp. intraction) if and only if the following morphism of homotopy groups is
a surjection (resp. injection) for every point x ∈ X.

πn(f, x) : πn(X,x)→ πn(Y, f(x))

The fact that the previous morphism is a surjection or injection when f is an intraction or
surtraction is just a consequence of what it means to be injective or surjective at the level
of homotopy groups (see Figure 1). The converse is more subtle as it requires us to show
that the notion of injectivity and surjectivity (up to homotopy) based on a point is the same
as the notion of injectivity and surjectivity (up to homotopy) based on a path. The case
n = 1 is easy to show. The case of surjectivity is displayed below where (1) one considers
a topological 1-path between two points in Y . (2) Glueing this path with its reversed path
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gives a unique path based on one of the points3. (3) Applying the surjectivity then provides
a lift as shown in the third diagram. Finally, (4) recovering the initial path then leads to the
desired lift4 to prove that f : X → Y is indeed a surtraction at dimension 1.

Figure 3. Homotopy surjections are surtractions

Note that the reasoning of Figure 3 uses the operation that glues two connected paths
into a third one. At the level of vertebrae, such an operation requires that the ‘gluing of two
copies of vertebra (1.5) gives vertebra (1.5) back’. More precisely, the requisite axioms on
vertebra (1.5) consist of

- a gluing of the topological discs via their connecting source and target under the
form of the following pushout;

D0

x

γ1◦δ0
1 //

γ1◦δ0
2
��

D1

ε1
��

D1
ε2

// E

⇔ •1

x

� //
_

��

•1 − •_

��

• − •1 � // • − •1 − •

- a map η : D1 → E composing the preceding gluing of paths into a unique topological
path (with adequate compatibility between sources and targets);

S0

γ1

  

D0
δ0
1oo

ε2◦γ1◦δ0
1

��

D1

η

  

D0

δ0
2

OO

ε1◦γ1◦δ0
2

// E

⇔ •0 •2
�

%%

•2�oo
_

��

•0 − •2
�

η

''•0
_

OO

� // •0 − • − •2

This type of operation will later be called a framing and will be generalised to an operation
of vertebrae taking two different vertebrae satisfying some condition of composability and
giving a third vertebra. The composability condition between the two vertebrae will ask for
the two input vertebrae to have an arrow in common as pictured on the left of Figure 4.

Essentially, this type of operation is used to prove that surtractions are stable under
composition. For illustration, the case of vertebra (1.5) when n = 0 is briefly explained
below.

3The reversed path has been shifted so that it may be seen.
4The same part of the lift has been shifted so that it may be seen more clearly.
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Figure 4. Chemical reaction for framings of vertebrae

Composability of surtractions. Consider two surtractions f : Y → Z and g : X → Y for
vertebra (1.5) when n = 0. We shall denote by h : x ∼ y any 1-path from a point x to a point
y. To show that the composite f ◦ g is a surtraction for vertebra (1.5) when n = 1, one needs
to start with a point z ∈ Z and show that there exists a point x ∈ X such that a 1-path
h : z ∼ f ◦ g(x) holds in Z. Since z is in the codomain of f : Y → Z – which is a surtraction
– there exists a point y ∈ Y and a 1-path h : z ∼ f(y) in Z. Now, since y is in the codomain
of g : X → Y – which is a surtraction – there exists a point x ∈ X and a 1-path h′ : y ∼ f(x)
in Y . Applying the function f to the path h′ and considering the resulting path in Z next
to the path h gives a pair of connected paths, which we may compose into a unique path via
the structure of framing.

z
h

f(y)
f(h′)

f ◦ g(x) 7−→ z
h′′

f ◦ g(x)

In the end, the resulting composition h′′ : z ∼ f ◦ g(x) proves that f ◦ g is a surtraction. �

Thus, one may see that a property at the level of the vertebrae will have consequences at
the level of the zoo. Other compositions of importance such as interdimensional compositions
will be studied later. For instance, the conjugation of a 2-path (encoded via a spine) along
two 1-paths (encoded via two vertebrae) will be used to prove the cancellation of surtraction,
that is to say a statement of the form if g is a surtraction and f ◦ g is a surtraction, then so
is f .

Figure 5. Conjugation of a 2-path along two 1-paths

1.1.2.3. Model categories and vertebrae. One may wonder if the concept of weak equivalence
associated with the notion of model category falls into the theory of vertebrae. The answer
is affirmative in any tractable model category (see [39]) for every weak equivalence between
fibrant objects. A model category is tractable when it is cofibrantly generated and the gen-
erating cofibrations have cofibrant domains. The usual assumption that the model category
must be cofibrantly generated with respect to a generating set is somewhat psychological and
the statement may be generalised to any generating class. Below is given the explicit form
of the involved vertebrae.

Recall that a closed model category is a category C equipped with three subclasses of the
class of its morphisms, whose elements are respectively called weak equivalences, fibrations
and cofibrations, that satisfy a set of four or five axioms depending on the concision of the
author. The axiom of model categories that will turn out to be important for the present
section is the one that states that one may factorise any morphism f : X → Y in C into a
composite p ◦ i where p is a weak equivalence and i is a cofibration. The fibrant objects are
those objects X in C such that any morphism of the form A → X factorises through the
acyclic cofibrations of domain A, that is to say the cofibrations of domain A that are weak
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equivalences.

(1.6) A
x //

∀ acyclic cof. g
��

X

B

⇒ A
x //

g

��

X

B
∃

>>

A model category will here be said to be cofibrantly generated if there exists a set S of
cofibrations in C such that a morphism f : X → Y is an acyclic fibration (i.e. both a
fibration and weak equivalence) if and only if it has the right lifting property with respect to
every arrow in S.

A
x //

γ

��

X

f
��

B
y
// Y

⇒ A
x //

γ

��

X

f
��

B
y
//

∃
>>

Y

Finally, a closed model category will be said to be tractable if it is cofibrantly generated
and the domains of the arrows in the generating set S are cofibrant5. The vertebrae that
characterise the weak equivalences in terms of intractions and surtractions are given by the
relative cylinder objects relative to the cofibrations in S. The definition of these goes as
follows: first, consider a cofibration γ : U → V in S and form the following left pushout
square. As shown in the right-hand diagram, there is a canonical arrow u : V ∪U V → V over
this pushout generated by the identities on V .

U

x

γ
//

γ

��

V

δγ1
��

V
δγ2

// V ∪U V

⇒ U

x

γ
//

γ

��

V

δγ1
��

idV

��

V

idV

55

δγ2 // V ∪U V
u // V

A vertebra is then given by a factorisation of the canonical arrow u : V ∪U V → V into a
weak equivalence u′ and a cofibration β as follows.

(1.7) U

x

γ
//

γ

��

V

δγ1
��

V
δγ2

// V ∪U V
u

55
β
// I(γ)

u′ // V

Such a commutative diagram is usually called a γ-relative cylinder object. Now, there is a
classical fact of the theory of model categories, whose statement looks much like that of [39,
Lemma 7.5.1] but whose proof is exactly the same, that provides the following implication.

Proposition 1.11. Let C be a tractable model category and f : X → Y be a morphism
between fibrant objects satisfying the property that for every generating cofibration γ : A→ B
and commutative diagram of the form given on the left of (1.8), there exists a γ-relative
cylinder object of the form (1.7) and two arrows r : V → X and h : I(γ) → Y making the

5The cofibrant objects are those objects A in C such that any morphism of the form A→ X factorises through any

acyclic fibration of codomain X
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right diagram of (1.8) commute.

(1.8) U

γ

��

x // X

f
��

V
y
// Y

⇒ U

γ

��

x

%%γ
// V

β◦δγ1
��

r // X

f
��

V

y

66

β◦δγ2 // I(γ)
h // Y

In this case, the morphism g is a weak equivalence in C.

In other words, any morphism that is a surtraction – and a fortiori a weak equivalence –
for every vertebra of the form (1.7), where γ runs over the set S, is a weak equivalence in C.

Remark 1.12. Interestingly, Proposition 1.11 requires a condition more subtle than consid-
ering morphisms that are surtractions for every vertebra of the form (1.7). To see this, we
shall symbolically denote by γ  v the vertebra given in (1.7), where the symbol v refers to
the vertebra itself (and stands for the first letter of the word ‘vertebra’) while the symbol γ
refers to its seed. For any morphism f : X → Y in C, Proposition 1.11 then states that if for
every cofibration γ in S, there exists at least a vertebra of the form γ  v for which f is a
surtraction, then the morphism f is a weak equivalence. Here, we see that the notation in
terms of an arrow γ  v has some logical importance. We may somehow regard this arrow as
suggestive of a logical implication of the form ∀ γ ∈ S, ∃γ  v such that something happens.
As will be seen later, this type of writing is in fact the right logical language in which the
theory of vertebrae must be expressed.

The converse of Proposition 1.11 is also the result of classical facts of the theory of model
categories, which I outline below for the sake of fulfilling the curiosity of the reader.

Converse of Proposition 1.11. Suppose that C is equipped with an initial object ∅. First,
recall that there is a equivalence relation ∼ defined on every hom-set C(A,X), called the
homotopy relation, that states that two arrows f, g : A→ X satisfy the relation f ∼ g if there
exists a cylinder object, of the form given below on the left, whose arrow β : A+ A→ I(A)
factorises the coproduct of f and g as shown on the right.

(1.9) ∅

x

γ
//

γ

��

A

δγ1
��

A
δγ2

// A+A
β
// I(A)

I(A)

∃

!!

A+A

β
::

f+g
// A

Quotienting out the hom-sets C(A,X) by ∼ for a fixed object A then provides a functor
π(A, ) := C(A, )/ ∼. It then follows from usual fact (see [15]) that if a morphism f : X → Y
is a weak equivalence between fibrant objects, then the following function is a bijection for
every cofibrant object A.

π(A, f) : π(A,X)→ π(A, Y )

The previous implication holds in any closed model category. The characterisation of weak
equivalences in terms of surtractions and intractions will then follow from the preceding
bijection when realised in the under categories U\C for every object U in C. Recall that U\C
denotes the category whose objects are arrows of the form U → X in C and whose morphisms
are given by commutative triangles (under U) in C. It is well-known that there is a closed
model structure on the under categories U\C for every object in U whose

- weak equivalences between fibrant objects are the morphisms in C that are weak
equivalences between fibrant objects in C;
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- cofibrant objects are the cofibrations of domain U in C.
This said, the preceding discussion implies that if f : X → Y is a weak equivalence between
fibrant objects in C, then it induces a weak equivalence in U\C for every commutative triangle
as given below on the left. The function displayed on the right is then a bijection for every
cofibration γ : U → V .

X
f

// Y

U

x

``

f◦x

?? π(γ, f) : π(γ, x)→ π(γ, f ◦ x)

Also, observe that a cylinder object as given on the left of (1.9) in U\C where A is replaced
with γ : U → V corresponds to a γ-relative cylinder object of the form (1.7) in C. It
follows that the surjectivity of the previous right bijection may exactly be translated into the
implication of (1.8). The fact that these weak equivalences are also intractions follows from
the observation that the implication of (1.8) also says that for every commutative diagram
of the form given below on the left, there exists an arrow r : V → X making the succeeding
right-hand diagram commute.

U

γ

��

x // X

f
��

V
y
// Y

⇒ U

γ

��

x // X

V

r

>>

This therefore implies the property of being an intraction as γ covers all cofibrations, and
hence the cofibrations β involved in diagram (1.7). �

Remark 1.13. The foregoing discussion in fact shows that the weak equivalences between
fibrant objects are entirely characterised by surtractions for the vertebrae given by (1.7).

1.1.2.4. Towards more general vertebrae. Remark 1.13 of the previous section should not
make the reader think that the notion of intraction is unnecessary. The identification of
surtractions and weak equivalences only holds because model structures come along with an
already powerful notion of homotopy. Besides, the statement only holds for weak equivalences
between fibrant objects. On the contrary, one of our future goals throughout this thesis will
be to understand how to construct a model category from vertebrae that are a priori not
relative cylinder objects. For that, a key element will be the consideration of the notion
of intraction, which will enable us to handle the notion of surtraction in a consistent way.
Because some categories are more difficult to handle than others, the notion of intraction will
force us to extend the notion of vertebra to that of ‘node of vertebrae’.

(1.10) S

xγ

��

γ
//

x

D

δ1
��

D
δ2

// S′
β
// D′

Quite often, proving that a morphism f : X → Y in some category C is an intraction for
vertebra (1.10) will require us to start with a commutative square as given below on the
left and construct, via the use of algebraic operations, a morphism β′ : S′ → D′′ making the
following right diagram commute.

(1.11) S′

β
��

x // X

f
��

D′
y
// Y

⇒ S′

β′

��

x // X

D′′
h

>>
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In nice categories, the morphism β′ turns out to be equal to β (up to possible factorisation).
However, in categories with very little algebraic structure such as the category of simplical
sets, the morphism β′ is strictly different from β (usually involving more simplices than β in
its codomain). To get around such a difficulty, we shall need to force the intractions to see
the arrow β′ as the arrow β by considering diagrams of the subsequent form, which will be
called a node of vertebrae.

(1.12) S

xγ

��

γ
//

x

D

δ1
��

D′′

...

D
δ2

// S′
β′

>>

β
// D′

Thus, we now consider a class of vertebrae with the same pushout square but whose ‘stems’
are different. Somehow, putting different stems together on the same vertebra is a way of
forcing the requisite algebraic operations to be satisfied despite the ambient category possibly
not having these operations. The intractions for (1.12) are then the morphisms f : X → Y
satisfying the lifting property displayed in (1.11). The notion of node of vertebrae will also
turn out to be theoretically useful in Chapter 3 for the proof of the cancellation of intractions.

It is also important to mention that the concept of node of vertebrae will make sense along
more general vertebrae where the associated span made of two copies of γ is turned into a
pair of arrows γ and γ′ as shown below (on the right is given an example of a non-symmetric
vertebra in the category of simplicial sets, which will be discussed in Chapter 2).

(1.13)

S
xγ

��

γ′
//

x
D1

δ1
��

D′′

...

D2
δ2

// S′
β′

>>

β
// D′


∂∆n

xγn

��

γkn //

x

Λkn

��

∆n
// ∂∆n+1 γn+1

// ∆n+1


This differentiation will force us to introduce some terminology. The arrows γ and γ′ will be
called seed and coseed (following the idea of ‘generating’ cofibration) while the arrows β and
β′ will be called stems. This will give rise to the study of the notion of dual node of vertebrae
where the seed and coseed are mutually replaced with each other by flipping the square of
the left vertebra of (1.13) along its diagonal from the object S to the object S′.

There are particular cases where the seed and coseed are different, which include those
of sheaves, stacks and other structures satisfying a descent condition. Recall that a descent
condition generally requires some morphisms to be weak equivalences. As noticed throughout
various passages of this introduction, a weak equivalence for a vertebra of the form (1.10) is a
morphism f : X → Y that satisfies the kind of right lifting property used to describe fibrant
objects in section 1.1.2.3, namely implication (1.6). Specifically, this right lifting property
(see subsequent right diagram) is defined with respect to the arrow γ ⇒ β ◦ δ1 encoded by
the following left commutative square in the arrow category of C.

S
γ
//

γ

��

D

β◦δ1
��

D
β◦δ1
// D′

S
γ

  
γ

��

x // X
f

  

D

β◦δ2

��

y
// Y

D

β◦δ1   

>>

D′

∃

>>



1.1. Presentation 19

It will later be seen that, in the language of vertebrae, the fibrant objects for vertebra (1.10)
will correspond to those objects that satisfy implication (1.6) where the acyclic cofibration is
replaced with the arrow β ◦ δ1 : D1 → D′ – this arrow will later be referred to as the trivial
stem of vertebra (1.10). The arising question therefore asks whether there is a vertebra in the
ambient arrow category whose trivial stem is given by the previous left commutative square.
This would allow us to see weak equivalences as fibrant objects for this vertebra. Obviously,
it should preferably be constructed by only using the data available from the initial vertebra
in C. Chapter 5 will answer such a question in the affirmative by using the other morphisms
provided by vertebra (1.10). Explained in somewhat broad terms, the idea will be to consider
the subsequent left 3-dimensional vertebra.

(1.14) ·
γ

//

γ

��

·

δ1

��

·

γ

��

·
γ

��

γ

@@

· δ1 // ·
β

// ·

· ·
δ1

@@

·
β◦δ1

@@

(∅
∅
)

x

��

//

x

(∅
•
)
��(•

•
)

//
(•
• •
)

//
(•
•∼=•
)

Notice that the seed and coseed of this vertebra are different. On the above right is given a
translation of this 3-dimensional vertebra in the case of the left vertebra of (1.2) in Cat(1)
where a symbol

(
a
b

)
represents the obvious arrow a→ b.

To see what this vertebra does in the case of sheaves in categories, consider a small
category D, two functors F : D → Cat(1) and G : D → Cat(1) and a natural transformation
θ : F ⇒ G. For every cone in D of the form given below on the left, the induced commutative
square given below on the right is a weak equivalence for the right vertebra of (1.14) if the
statement beneath the two following diagrams holds.

U
ti

��

tj

��

Ui
di,j

// Uj

F (U)
limiF (ti)

//

θU
��

limiF (Ui)

limiθUi
��

G(U)
limiG(ti)

// limiG(Ui)

For every object x in G(U), there exists an object y in limiF (Ui)
such that x is isomorphic to y when sent to limiG(Ui).

Such a property is usually referred to as local essential surjectivity (see [37]). In other words,
the difference between the seed and the coseed encodes the information needed to express the
idea of locality. But this same difference will prevent us from obtaining some of the important
axioms needed to generate a sound homotopy theory. A first remedy to this problem will
be to expand the definition of these vertebrae from an arrow category to the category of
sequences of arrows.

X0
// X1

// X2
// . . .

A chain of arrows as above will somehow encode different levels of locality. The descent
condition of a sheaf will then be sent to a chain of arrows as above by replacing the arrow
X0 → X1 with the canonical arrow F (U)→ limiF (Ui) while the other arrows will be replaced
with identities. These identities will somehow force the local specification of already-local
objects to simply be local (local + local = local).

In general, the consideration of nodes of vertebrae with different seeds and coseeds does
not suffice to handle all the algebraic operations. For instance, in the world of stacks, a
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composition as pictured in Figure 5 will involve two vertebrae on each side of a spine that
are going to reduce the level of locality on the seed and coseeds of the output spines. The
following pictures try6 to illustrate this phenomenon for a conjugation of a spine of dimension
1 along two vertebrae of the same dimension. •

• ∼= •
• ∼= •

⊗
 •• ∼= •
• ∼= •


︸ ︷︷ ︸

initial spine

⊗

 •
• ∼= •

 7→
 •
• ∼= •


 •• ∼= •
• ∼= •


︸ ︷︷ ︸

dual

⊗

 •
• ∼= •

⊗
 •
• ∼= •


︸ ︷︷ ︸

dual

7→

 •• •
• ∼= •


︸ ︷︷ ︸
returning spine

Composing a second time (as shown in the previous second line) along the two dual vertebrae
will not bring us back to the initial vertebra. It will bring us back to a vertebra that will
look like the initial vertebra but with a shift in the local parameters, so that there exists a
canonical morphism of diagrams between the two vertebrae, as pictured below.

· //

��

·

��

←initial vertebra·

returning vertebra→

//

��

@@

·

��

@@

· // · // ·

· //

@@

· //

@@

·

@@

Such a structure will be called an alliance of vertebrae and will be denoted as an arrow
v  v∗ where v denotes the ‘initial vertebra’ while v∗ denotes the ‘returning vertebra’. This
type of structure will turn out to be the right structure to handle the concept of vertebra.
For instance, we will see that the notation γ  v needed in Remark 1.12 will naturally arise
from the notation v  v∗. The notion of zoo will also be adapted to the notion of alliance of
nodes of vertebrae, so that the axioms for intractions and surtractions will use commutative
squares instead of arrows.

1.1.2.5. Homotopy Hypothesis. It is with the goal of understanding the ultimate language
of cohomology theories and, more specifically, the natural context in which the proper base
change theorems and Lefschetz hyperplane theorems live that Grothendieck introduced his
definition of ∞-groupoid (see [10, page 5, 1st par.] and [24, page 39 of scan., 2nd par.]).
The point was to parameterise the ∞-groupoids by the open sets of a topological space –
thus replacing sheaves with ∞-stacks – to generalise the Galois-Poincaré theory developed
in [26] to higher order homotopy and eventually retrieve the results of [27] at this level. In
particular, one of the ideas behind∞-groupoids was to recover the viewpoint of complexes of
sheaves, injective resolutions and derived categories without ‘resolving’ the coefficients (see
[10, page 5, last three par.] and [24, page 39 of scan., 2nd par.]). The reading of [24] also
gives the feeling that the point of Grothendieck was to make his definition

i) algebraic, by defining an ∞-groupoid as the model for a certain sketch;

ii) algorithmic, by exposing an explicit and inductive construction of the operations
and coherences encoded by the sketch (see [24, p. 20 of scan., l. 2-4]);

6The case that is presented there could be recovered by the notion of nodes of vertebrae. Alliances become really

needed when considering framings of spines of dimension 2 along vertebrae of dimension 1.
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iii) intuitive, by reproducing the inherent dynamic of higher topological paths via a set
of abstract discs forming the objects of the sketch (see [24, p. 19 of scan., l. 21-28]).

Specifically, the formation of operations and coherences is handled via the notion of paral-
lelism. By analogy with topological paths, two parallel paths are algebraically related when
they form the border of another path. The main task is thus to define the class of parallel
paths that may be the borders of higher paths. The definition of this class first requires the
notion of globular sum, which encompasses all the possible gluings of discs of the sketch. The
definition of the sketch then states that any parallel pair of arrows (f, g) from an n-disc Dn
to a globular sum B is the border of an (n+ 1)-disc living in B (see next diagram).

(1.15) Dn+1
∃

""

Dn
f

//

g
//

sn

OO

tn

OO

B

Interestingly, if one authorises the formation of all pushouts in the sketch, the notion of
parallelism between f and g may be expressed in terms of a commutative diagram as given
below on the left-hand side, where Sn−1 is a pushout of discs that may be identified with an
(n−1)-sphere. Because the sketch has now all the pushouts, one may also form the succeeding
middle one. Factorisation (1.15) is then equivalent to saying that the dashed arrow df, ge of
the succeeding middle diagram may be factorised as shown on the right.

Sn−1
γn
//

γn

��

Dn
g

��

Dn
f
// B

⇒ Sn−1

x

γn
//

γn

��

Dn
δn1
��

g

��

Dn δn2
//

f

66Sn
df,ge

// B

⇒ Dn+1

∃

!!

Sn

γn+1
<<

df,ge
// B

In other words, the operations and coherences of∞-groupoids come from the filling of a given
commutative square of parellel arrows by a vertebra as follows.

Sn−1

x

γn
//

γn

��

Dn
δn1
��

g

$$
Dn δn2

//

f

44Sn
γn+1

// Dn+1
// B

On the other hand, all the algebraic operations defined in this thesis to recover the properties
of model categories may be expressed in terms of the existence of a certain vertebra filling
a certain given commutative square of parallel arrows going to a certain globular sum. This
last point will therefore allow us, in Chapter 6, to provide ∞-groupoids with a homotopy
theory called spinal category. A full model structure may result from such a structure when
some condition on a pushout holds (see Chapter 5). The computation of this pushout in the
category of ∞-groupoids may be achieved via the reflection functor that will be constructed
in Chapter 5. Future work will aim at using the results of the present thesis to provide
∞-groupoids with a closed model structure and prove that the Homotopy Hypothesis holds.

1.1.3. Chapter 2. This chapter develops the theory of alliances of nodes of vertebrae.
The propositions given there may be restricted to the world of vertebrae by taking ‘identity
alliances of vertebrae’. However, important theories such as that of stacks do require the
notion of alliance. As explained at the end of section 1.1.2.4, alliances are in this case needed
when considering framings of spines of dimension 2 along vertebrae of dimension 1. This
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chapter is fairly formal and the astute reader can recover the proofs of the propositions
without too much difficulty.

1.1.4. Chapter 3. This chapter finishes the proof of the two-out-of-three property for the
notion of weak equivalence introduced in Chapter 2. The level of this chapter requires some
effort on the part of the readers to digest the different notions required by the proof. The
chapter therefore includes a long introduction discussing the case of topological spaces. I
warn the reader that the difficulty of this chapter is not due to the 3-dimensional structure
of alliances, but the iterative nature of the notion of coherence in higher category theory. On
the other hand, the notion of alliance makes many concepts easier to handle by allowing the
relaxation of constraints that would have been inevitable in the case of vertebrae.

1.1.5. Chapter 4. This chapter organises the different objects defined in Chapters 2 & 3
into mathematical structures whose properties are very close to those of model categories and
categories of fibrant objects. This chapter presents no actual difficulty other than the need for
a long – but inevitable – glossary of elementary structures. The different notions are rather
uninteresting from a general and theoritical point of view and their abstract formulations
always come along with examples illustrating their essence from the point of view of vertebrae.

1.1.6. Chapter 5. This chapter extends the construct initiated by Chapter 4 in order to
include theories such as those of sheaves and spectra. The chapter only shows the way towards
the construction of homotopy theories without entering the details, which are left to the reader
because of the various interests by which they might be motivated. Instead, it focuses on the
technical constructions, such as those of fibrant replacements, (weak) factorisation systems
or reflection functors. These constructions are independent of the previous chapters.

1.1.7. Chapter 6. This chapter uses the formalism attached to the theory of vertebrae to
equip Grothendieck’s∞-groupoids with a spinal category. The difficulty of this chapters only
lies in the information carried along the proof as well as the fact that the reader is required
to master the notions of Chapter 3. Other than that, no new idea is introduced and the
constructions only aims at a direct application of the concepts developed in Chapters 2 & 3.

1.2. Conventions and usual theory

The goal of this section is to recall the notions that will be considered known by the reader
throughout this thesis. Most of them may be found in [34].

1.2.1. Set theory and category theory.

1.2.1.1. Foundation. In the literature, one can come across three main theories axiomatising
the notion of set. The first one is called Zermelo-Fraenkel set theory with axiom of choice
(abbr. ZFC) and focuses on sets only. The second one is called von Neumann-Bernays-Gödel
set theory (abbr. NBG) and focuses on sets and classes. The third one is called Kelley-Morse
set theory (abbr. KM) and also focuses on sets and classes. The second one is a conservative
extension7 of the first one while the third one is stronger than the first and second one. The
transition from ZFC to NBG solves the Russell’s Paradox when considering the ‘set of sets’
in ZFC. The passage from NBG to KM solves the problem of defining a product of classes
over a class for example. More generally, it solves the problem of defining large limits and
colimits. However, KM is not a conservative extension of ZFC, which would be a desirable
property. Thoughout the present thesis, in order to avoid the Russell’s Paradox and be able
to define large constructions, we will consider a conservative extension of ZFC, called NBGω,
by considering the axioms of NBG up to a transfinite induction. The domain of discourse

7A theory T ′ is said to be a conservative extension of a theory T if the language of T ′ extends that of T , every

theorem of T holds in T ′ and any theorem of T ′ holds in T if written in the language of T .
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of NBGω consists of k-classes for any non-negative integer k. The term 0-class will later be
replaced with the term set. The set theory NBGω is then defined as follows:

for all non-negative integer k, k-classes and (k + 1)-classes satisfy NBG
by taking the role of sets and classes, respectively.

Later on, the term 1-class will be shortened to class while any type of class will be referred
to as higher class. The restriction of NBGω to sets is exactly ZFC while its restriction to sets
and classes shows more structure than NBG at the level of classes. The difference between
KM amd NBGω is that the former could be seen as including what could stand for ω-classes
in its theory; that is to say a type of classes including all the others and thus creating an
impredicative axiomatisation. By not doing so, NBGω defines a conservative extension of
ZFC.

1.2.1.2. Metamathematics and mathematics. In the spirit of [34], the prefix meta- will be
utilised to refer to the size of the considered objects, mostly because they are not sets. In
this sense, a metafunction will refer to any ‘function’ between any type of class while a
function will refer to any function between sets. This terminology is motivated by the use of
mixed structures such as the notion of category, which, herein, refers to the usual notion of
locally small category whose collection of objects is a class. When higher classes are involved,
the category will be called a metacategory.

1.2.1.3. Convention on the notation of compositions. In the sequel, we will meet various
structures equipped with a notion of ‘hom-set’ – or ‘hom-class’ – on which a notion of com-
position will take a pair of arrows f : a → b and g : b → c to carry out an arrow h : a → c.
Such an operation will be denoted as an arrow of the form C(a, b) × C(b, c) → C(a, c) while
the image of a pair (g, f) throught this operation will be denoted by a functional notation
f ◦ g.

1.2.1.4. Category of sets. The category whose objects are sets and whose morphisms are
functions will be denoted by Set.

1.2.1.5. Categories of presheaves. For any small category D, the category8 whose objects are
presheaves Dop → Set and whose morphisms are natural transformations in Set between the
presheaves in question will be denoted by Psh(D).

1.2.1.6. Categories of simplicial sets. Let ∆ denote the simplex category whose objects are
finite ordinals and whose morphisms are order-preserving maps. Then, the category Psh(∆)
will be called the category of simplical sets and denoted by sSet.

1.2.1.7. Categories of functors. Let C be a category. For any fixed small category D, the cate-
gory whose objects are functors D → C and whose morphisms are the natural transformations
in C between the functors in question will be denoted by CD.

1.2.1.8. Metacategory of functors. Let C be a metacategory. For any fixed category D, the
metacategory whose objects are functors D → C and whose morphisms are the natural
transformations in C between the functors in question will be denoted by [D, C].
1.2.1.9. Category of topological spaces. The category whose objects are topological spaces
and whose morphisms are continuous functions will be denoted by Top.

1.2.1.10. Category of nonnegatively graded chain complexes. Let R be a ring. The category
whose objects are nonnegatively graded chain complexes of left R-modules and whose mor-
phisms are (nonnegatively graded) sequences of homomorphisms of left R-modules preserving
the boundary maps will be denoted by ChR.

1.2.1.11. Category of small n-categories. Let n denote a natural number. The category whose
objects are small (strict) n-categories and whose morphisms are (strict) n-functors will be

8The term category is justified by the axiom of limitation of size in NBG.
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denoted by Cat(n). An explicit definition of the category of small n-categories may be found
in [36].

1.2.1.12. Ordinals. Recall that in ZFC, an ordinal is the isomorphism class of well-ordered9

sets. It follows from this definition that the proper class of ordinals is also well-ordered. As
a result, ordinals as well as the class of all ordinals may be seen as ordered categories. In the
sequel, the category whose objects are ordinals and whose morphisms α → β correspond to
the order relations α < β will be denoted by O. Then, for every ordinal number n in O, the
full subcategory of O whose objects are those ordinals less than n will be denoted by O(n).
Note that for any ordinal n, the category O(n) is small.

1.2.1.13. Representation of ordinals. Recall that ordinals are associated with a class of rep-
resentatives (introduced by von Neumann in 1920) whose elements are constructed by only
using the empty set and the usual structures given by ZFC. For instance, the finite ordinal 2
is coded by a sequence containing two empty sets.

2 = (∅, ∅) = {∅, {∅}} = {0, 1}

This provides the class of ordinals with a nice arithmetic where the strict order relation is
given by the binary relation ∈ (being a member of ). If the union operator of ZFC is denoted
by ∪, this representation characterises the ordinals of O as follows.

Lemma 1.14. Let n be the representative of an ordinal in O. The ordinal n

1) is either 0, i.e. the empty set;

2) or a limit ordinal, i.e. n satisfies the equation n = ∪n;

3) or a successor ordinal, i.e. there exists an ordinal m such that n = m ∪ {m}.

In the sequel, a successor ordinal of the form m ∪ {m} will be denoted by m + 1. The
ordinal m will also be said to be the predecessor of m+ 1. Because the ordinal 0 satisfies the
equation 0 = ∪0, it will later be regarded as a limit ordinal.

1.2.1.14. Omega. The least infinite ordinal will be denoted by ω. Recall that its set of
elements is in bijection with the set of non-negative integers N. By definition, the ordinal ω
is a limit ordinal.

1.2.1.15. Categorical arithmetic. The notation O( ) for ordinal categories will mainly serve
to make our structure clearly determined; e.g. the notation O(κ + 1) will be used to avoid
any ambiguity caused by a notation of the form κ+ 1. However, some obvious categories will
regularly be used and denoted using special notations. We will thus denote by

- 1 a terminal category.

- 2 a category consisting of two objects {0, 1} and an arrow c : 0→ 1;

- 3 a category consisting of three objects {0, 1, 2} and two arrows a : 0 → 1 and
b : 1→ 2 together with their composition b ◦ a : 0→ 2;

- ∅ an initial category (i.e. empty category);

- 2 + 2 a category consisting of four objects and two arrows a : 0→ 1 and b : 2→ 3;

- sq the product of 2 with itself, that is to say a square category of four objects and
four arrows.

9Recall that a set A is said to be well-ordered if it is equipped with a well-order, where a well-order on A is a total

order on A satisfying the property that every non-empty subset of A has a least element for the order.
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Remark 1.15. There is a commutative diagram of functors of the form

∅

��

// 2 + 2

��

2 // 3

⇔ ( )
_

��

� // (• → • • → •)
_

��

(• → •) � // (• → • → •)

where the bottom functor sends the arrow c : 0 → 1 to the composite b ◦ a : 0 → 2 and the
vertical right functor is the obvious functor sending 1 7→ 1, 2 7→ 1 and 3 7→ 2 with respect to
the notations given above.

1.2.1.16. Commutative squares. A commutative square in some category C is a diagram of
the form (sq,α). More explicitly, it is encoded by a 4-tuple of four morphisms γ : A → B,
γ′ : A→ B, u : A→ A′ and v : B → B′ such that the relation v ◦ γ = u ◦ γ′ holds. This data
will usually be denoted as a diagram of the form given below on the left.

A
γ′
//

γ

��

A′

u
��

B
v // B′,

⇒ A
γ
//

γ′

��

B

v
��

A′
u // B′,

For short, such a diagram will be denoted as either γ′ : γ ⇒ u or v : γ ⇒ u, exactly as if
it were seen from above or below. The underlying order on its arrows allows one to define
a notion of dual for the preceding left commutative square, namely the right commutative
square.

1.2.1.17. Arrow categories. Let C be a category. The functor category C2 will later be referred
to as the arrow category of C. The objects of C2 are arrows in C while the morphisms are
commutative squares. A morphism will generally be denoted as an arrows x : a⇒ b when it
is encoded by a commutative squares of the following form (as if it were seen from above).

·
a

��

x // ·
b
��

·
x′
// ·

For convenience, the functor categories C2, C3 and CO(ω) will later be denoted by the ordinal
notations as follows: C2, C3 and Cω.

1.2.1.18. Domain and codomain functors. Let C be a category. In the sequel, the term domain
functor of C will be used to name the obvious functor C2 → C mapping an arrow f : X → Y
of C to the object X, which will be denoted by domC or dom if the category C is obvious.
Similarly, the term codomain functor of C will be sued to name the obvious functor C2 → C
mapping an arrow f : X → Y of C to the object Y , which will be denoted by codC or cod if
the category C is obvious.

Remark 1.16. The domain functor of C2, which will sometimes be denoted by top : Csq →
C2, truncates a commutative square at the level of its top arrow.

1.2.1.19. Natural transformation as functors. This section points out a common fact about
natural transformation that will repeatedly be used in this text. Let C be a category, D be a
small category and consider two functors A and B of type D → C. In the sequel, any natural
transformation η : A ⇒ B will equivalently be regarded as a functor η : D → C2. In this
case, the functor A is identified with the composite domC ◦ η while the functor B is identified
with the composite codC ◦ η.
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1.2.1.20. Functor of functor categories. For any functor M : C → B, any small category D
induces an obvious post-composition functor CD → BD. This functor will be denoted by the
same letter M .

1.2.1.21. Subfunctors. LetD be a small category and F : D → Set be a functor. A subfunctor
of F is a functor G : D → Set such that

1) for every object d in D, the inclusion G(d) ⊆ F (d) holds;

2) for every morphism t : d → d′ in D, the function G(t) : F (d) → F (d′) is the
restriction of F (t) along the respective inclusion of the domains and codomains.

1.2.1.22. Fibres. For every functor F : K → D and object d in D, the fibre of F above d will
refer to the subcategory of K made of the objects x satisfying the equation H(x) = d and the
arrows whose images via the functor F are identities on d. Such a category will be denoted
by F−1(d) or Fd when specified so.

1.2.1.23. Limits. Let D be a small category and C be a category. Denote by ∆D the functor
C → CD that maps every object X of C to its associated constant functor D → C mapping
any object and arrow in D to the object X and identity on X, respectively. For every functor
F : D → C, a limit of F in C is an object X in C equipped with a natural transformation α :
∆D(X)⇒ F such that, for every other object Y in C equipped with a natural transformation
β : ∆D(Y ) ⇒ F , there exists a unique morphism f : Y → X in C for which the equation
β = α ◦∆D(f) holds.

1.2.1.24. Colimits. Let D be a small category, C be a category and denote by ∆D the functor
C → CD defined in section 1.2.1.23. Similarly, for every functor F : D → C, a colimit of F
in C is an object X in C equipped with a natural transformation α : F ⇒ ∆D(X) such that,
for every other object Y in C equipped with a natural transformation β : F ⇒ ∆D(Y ), there
exists a unique morphism f : X → Y in C for which the equation β = ∆D(f) ◦ α holds.

1.2.1.25. Yoneda lemma. Recall that for every small category D, the Yoneda Lemma (see
[34]) states that there are two natural isomorphisms in d and F of the following form.

[Dop,Set](D( , d), F ) ∼= F (d) [D,Set](D(d, ), F ) ∼= F (d)

It is well-known that such isomorphisms imply that the functors D( , d) : D → Psh(D) and
D(d, ) : Dop → SetD are fully faithful. These functors are usually referred to as the Yoneda
embeddings.

1.2.1.26. Diagrams. Let C be a category. A diagram in C consists of a small category I and a
functor α : I → C. Such a structure will usually be denoted as a pair (I,α). If I is a terminal
category, the diagram (I,α) will instead be denoted as (1, a) where a is the object picked out
by α in C.
1.2.1.27. Colimit sketches. A colimit sketch is a small category S equipped with a subset Q of
its diagrams that admits colimits in S such that for every object x in S, there exists a unique
diagram of the form (1, x) in Q. The diagrams and colimits in question will be said to be
chosen. A model for a colimit sketch S in a category C is a functor S→ C that preserves the
chosen colimits in C. The models of a colimit sketch S in C define the objects of a category,
denoted by ModC(S), whose morphisms are natural transformations in C over S. For any
colimit sketch S, the category of models for S in Set will be denoted by Mod(S).

1.2.1.28. Limit sketches. A limit sketch is a small category S equipped with a subset Q of
its diagrams that admits limits in S such that for every object x in S, there exists a unique
diagram of the form (1, x) in Q. The diagrams and limits in question will be said to be
chosen. A model for a limit sketch S in a category C is a functor S → C that preserves the
chosen limits in C. The models of a limit sketch S in C define the objects of a category,
denoted by ModC(S), whose morphisms are natural transformations in C over S. For any
limit sketch S, the category of models for S in Set will be denoted by Mod(S).
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Later on, the obvious limit sketch obtained from inverting the arrows of a colimit sketch
S will be denoted by Sop. The reader interested to know more about the theory of sketches
may refer to [1].

Proposition 1.17. Let A be a colimit sketch. The hom-bifunctor – or Yoneda embedding –
given by A( , ) : A→Mod(Aop) is a model of A in Mod(Aop).

Proof. Let x( ) : I → A be a chosen diagram of A whose colimit will be denoted as limi xi.
The statement follows from the following series of natural isomorphisms.

Mod(Aop)(coli A( , xi), X( )) ∼= limi Mod(Aop)(A( , xi), X( ))

∼= limiX(xi)

∼= X(limi xi)

∼= X(coli xi)

∼= Mod(Aop)(A( , coli xi), X( ))

By the Yoneda Lemma, it follows from the previous natural isomorphisms that an isomor-
phism coliA( , xi) ∼= A( , colixi) holds if colixi denotes a chosen colimit of A. �

1.2.1.29. Inclusion of sketches. Any functor from a colimit (resp. limit) sketch A to a colimit
(resp. limit) sketch A′ that is faithful, injective on object and is a model of A in A′ (i.e.
preserves the chosen colimits (resp. limits) of A to those of A′) will be called an inclusion of
sketches. A colimit (resp. limit) sketch A will be said to be a subsketch of a colimit (resp.
limit) sketch A′ if it is equipped with an inclusion of sketches A→ A′.

1.2.1.30. Free completion and cocompletion. Let A be a colimit (resp. limit) sketch. A free
cocompletion (resp. completion) of A consists of a colimit (resp. limit) sketch AO together
with an inclusion of sketches j : A → AO such that for every cocomplete (resp. complete)
category C and model F : A → C in ModC(A), there exists a unique model F O : AO → C in
ModC(A) up to natural isomorphism making the following diagram commute.

AO

FO

  

A

j

OO

F // C
The functor F O will later be referred to as the free extension of F .

Remark 1.18. Any free completion of the underlying category of A provides a free cocom-
pletion (resp. completion) at the level of the sketch. This means that AO is equivalent to
Psh(A) up to chosen colimits (resp. limits).

Example 1.19. Let A be a colimit sketch. For any free cocompletion j : A → AO , the free
extension of the model A( , ) : A → Mod(Aop) given by Proposition 1.17 produces a model
A[ ] : AO →Mod(Aop).

1.2.1.31. Overcategories. Let C be a category and X be an object in C. The category over X
is the category whose objects are the arrows of C going to X and whose morphisms are given
by commutative triangle as follows.

A

a
  

f
// B

b~~

X

Such a category will be called an overcategory and denoted by C/X.
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1.2.1.32. Covering families. Let D be a small category and d be an object in D. A covering
family on d is a collection S := {ui : di → d}i∈A of arrows in D. In this case, it makes sense
to define, for every morphism f : c → d in D, the pullback of S along f as the collection of
arrows f∗S := {vi : ci → c}i∈A where the arrow vi is the pullback of ui along f . Note that
every morphism g : d → c gives rise to a family g ◦ S := {g ◦ ui}i∈A. This last operation is
used to define a more complex operation on S as follows. For every i ∈ A, take a covering
family Ti on di. We will denote by S ◦ {Ti}i∈A the covering family on d obtained by the
disjoint union of families ui ◦ Ti for every i ∈ A.

1.2.1.33. Grothendieck pretopologies. Let D be a small category. A Grothendieck pretopology
on D consists, for every object d in D, of a collection Jd of covering families S on d such that

1) (Stability) for every arrow f : c→ d in D, the pullback f∗S exists in Jc;

2) (Locality) for every i ∈ A and Ti in Jdi , the covering family S ◦ {Ti}i∈A is in Jd;

3) (Identity) for every object d in D, the singleton {idd : d→ d} is in Jd.

Such a collection will usually be denoted by J . A category D equipped with a Grothendieck
pretopology J on D will be called a site.

Remark 1.20. Every covering family S = {ui : di → d}i∈A on an object d in Jd may be seen
as a functor A → D/d if A is seen as a discrete category. It follows from the stability and
locality axioms that this functor extends to a product-preserving functor A′ → D/d where
A′ is the product completion of A. This functor will be called the stabilisation of S.

1.2.1.34. Adjunctions. Recall that an adjunction between two categories C and D consists of
a pair of functors F : C → D and U : D → C and two natural transformations η : idC ⇒ U ◦F
(the unit) and ε : F ◦ U ⇒ idD (the counit) such that the composites

(1.16) F
Fη +3 FUF

εF +3 F and U
ηU +3 UFU

Uε +3 U

are the identity transformations on F and U , respectively. In the previous situation, the
functor F is said to be the left adjoint of U while the functor U is said to be the right adjoint
of F . This will be written as a pair (F a U : D → C, η, ε) or as a diagram

D
U

//⊥ C
Foo

and for short denoted as F a U . It follows from the definition of an adjunction that the
subsequent functions are inverses of each other for every object X ∈ Obj(C) and Y ∈ Obj(D).[

C(X,U(Y )) → D(F (X), Y )
a 7→ εY ◦ Fa

] [
D(F (X), Y ) → C(X,U(Y ))

b 7→ Ub ◦ ηX

]
It is not hard to check, using naturality and functoriality, that the previous functions are
natural in X and Y . Conversely, it is well-known that any binatural bijection of the form
D(F (X), Y ) ∼= C(X,U(Y )) induces an adjunction F a U .

Example 1.21 (Kan extensions). A particular case of the notion of adjunction is the notion
of left (resp. right) Kan extension. Recall that the left Kan extension of a functor F : D → C
along a functor i : D → E consists of a functor LaniF : E → C and a natural transformation
η : F ⇒ LaniF ◦ i such that for any other functor G : E → C and natural transformation
θ : F ⇒ G ◦ i, there exists a unique natural transformation τ : LaniF ⇒ G making the
following diagram commute.

F
θ +3

η  (

G ◦ i

LaniF ◦ i
τi

5=
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Dually, there is a notion of right Kan extension, which will be omitted as it is not required
in the sequel.

Let now D be a small category, C be a category and 1 denote a terminal category. For
every object d of D, denote by d the functor 1→ D picking out the object d in D. It is well-
known (see [34]) that when the extension LandX : D → C exists for every functor X : 1→ C
picking out an object in X, then the mapping Land( ) extends to a functor C → CD that is
left adjoint to the restriction functor ∇d : F 7→ F ◦ d = F (d).

CD
∇d

//⊥ C
Landoo

Similarly, limits and colimits over a small category D may be defined as right and left Kan
extension along the canonical functor ! : D → 1, respectively.

CD
∆D

//⊥ C
colDoo C

limD

//⊥ CD
∆Doo

Here, the functor ∆D is regarded as the pre-composition functor C → CD mapping an object
X : 1→ C to the following constant functor.

D
! // 1

X // C

An interesting relationship between the preceding three adjunctions is that for every object
d in D, the equation ∇d ◦∆D = idC holds. Later on, this equation will turn out to be useful.

1.2.1.35. Limits and colimits as adjoints. Let D be a small category and C be a category.
The category C will be said to admit limits over D if the functor ∆D : C → CD has a right
adjoint, which will be denoted by limD : CD → C. The latter functor is called the limit
functor over D. Similarly, the category C will be said to admit colimits over D if the functor
∆D : C → CD has a left adjoint, which will be denoted by colD : CD → C. This other functor
is called the colimit functor over D.

1.2.1.36. Limits and Yoneda embedding. This section only focuses on limits since a dual
version of the subsequent arguments leads to similar facts for colimits. Let D be a small
category and C be a category that admits limits over D. It is quite straightforward to see
that the following isomorphism holds.

limDC(X,F ( )) ∼= Set(1, limDC(X,F ( ))) (1 is a generator of Set)

∼= SetD(∆D(1), C(X,F ( ))) (adjointness)

∼= CD(∆D(X), F ( )) (reformulation)

∼= C(X, limDF ( )) (adjointness)

In particular, this shows that limits commute with the hom-sets of C. Similarly, it follows
from the definition of ∆D : C → CD and ∆D : Set→ SetD that the following equation holds.

∆D(C(X,Y ))( ) ∼= C(X,∆D(Y )( ))

In fact, not only the hom-sets commute with limD and ∆D, but they also commute with the
unit η : idD ⇒ limD∆D and counit ε : ∆DlimD ⇒ idD of the adjunction ∆D a limD in Set.

C(X,Y )
= //

ηC(X,Y )

��

C(X,Y )

C(X,ηY )
��

limD∆DC(X,Y ) ∼=
// C(X, limD∆D(Y ))
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1.2.1.37. Wedges and ends. This section only recalls the notion of end as the dual notion of
coend may be recovered in much the way. Let C be a category and T be a small category.
Consider a functor F : T×Top → C. A wedge over F is given by an object e in C and, for every
object t in T , an arrow Kt : e→ F (t, t) such that the subsequent left diagram commutes for
every arrow f : t→ t′ in T.

e
Kt //

Kt′
��

F (t, t)

F (t,f)
��

F (t′, t′)
F (f,t′)

// F (t, t′)

e g //

Kt′ ((

Kt
**

e∗ K∗t //

K∗
t′
��

F (t, t)

F (t,f)
��

F (t′, t′)
F (f,t′)

// F (t, t′)

A morphism of wedges from (e,K) to (e∗,K∗) is given by an arrow g : e → e′ making the
above-displayed right diagram commute. An end for the functor F : T×Top → C is a terminal
object, say (e,K), in the category of wedges over F . The object e is usually denoted by an
integral as follows.

(1.17)

∫
t∈T

F (t, t)

Example 1.22. For any functors A : T → C and B : T → C, it is well-known that the set
CT(A,B) is given by (or isomorphic to) the end

∫
t∈T C(A(t), B(t)) in Set.

Even if there only appear the terms F (t, t) in the expression (1.17), the end of F depends
on the object F (t, t′) for every arrow f : t→ t′ in T. In fact, this may be made more explicit
in terms of limits. Denote by F3(T) the category whose objects are arrows f : t → t′ and
whose morphisms from f : t → t′ to g : s → s′ are given by commutative diagrams of the
following form.

(1.18) t

f
��

s
aoo

g
��

t′
b
// s′

The functor F : T × Top → C then induces a functor F̃ : F3(T) → C mapping an object
f : t → t′ of F3(T) to the object F (t, t′) and a commutative square of the form (1.18) to
the morphism F (a, b) : F (t, t′) → F (s, s′). The next proposition is a very well-known result
about ends.

Proposition 1.23. If C admits limits over F3(T), then the end
∫
t∈T F (t, t) is isomorphic to

the limit limF3(T)F̃ .

Proof. This is discussed in [34]. The idea is that the universal wedge provides a universal
cone

∆F3(T)(

∫
t∈T

F (t, t))⇒ F̃

whose component at f : t→ t′ is given by the following arrow.∫
t∈T F (t, t)

Kt // F (t, t)
F (t,f)

// F (t, t′)

It is then not hard to show that the previous arrows are compatible with the morphisms of
the form F (a, b) : F (t, t′)→ F (s, s′). �
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Remark 1.24. Somehow, Proposition 1.23 shows that a better notation for
∫
t∈T F (t, t) could

be the following one. ∫
f :s→t∈T

F (s, t)

Proposition 1.23 might also help the reader to see that, for every pair of functors F : T×Top →
C and G : T× Top → C, an isomorphism will hold between

∫
t∈T F (t, t) and

∫
t∈TG(t, t) if there

is a natural isomorphism F (s, t) ∼= G(s, t) in the variables s and t.

1.2.1.38. Complete and cocomplete categories. A category C will be said to be complete if it
admits limits over all small categories D. This therefore requires the limit functor limD :
CD → C to exist for every small category D. Similarly, a category C will be said to be
cocomplete if it admits colimits over all small categories D.

Example 1.25. For any ordinal κ in O, the subcategory O(κ) is cocomplete. The colimit
of a functor F : D → O(κ) for some small category D is the union (or supremum) of the set
of the ordinals in the image of F .

limD F = ∪d∈Obj(d)F (d)

Example 1.26. The category Set is complete and cocomplete. The limit limDF of a functor
F : D → Set for some small category D is given by the set

(1.19) {(xd)d∈Obj(D) | xd ∈ F (d) and for any t : d→ d′ in D : F (t)(xd) = xd′}
while the colimit colDF of a functor F : D → Set for some small category D is given by the
quotient set

{(d, x) | d ∈ Obj(D); x ∈ F (d)}/ ∼
where ∼ denotes the binary relation whose relations (d, x) ∼ (d′, x′) are defined when there
exists an object e and two arrow t : d → e and t′ : d′ → e in D such that the equation
F (t)(x) = F (t′)(x′) holds. Note that in the case where D is a preordered category O(κ) for
some ordinal κ, the binary relation ∼ is an equivalence relation.

The next proposition recalls a very well-known fact.

Proposition 1.27. If a category C is complete (resp. cocomplete), then so is CD for any
small category D where the limits (resp. colimits) are defined objectwise in C.

Proof. Straightforward. �

Remark 1.28. It follows from classical results (see [34]) that if a category is complete, then
it admits right Kan extensions along any functor. Similarly, if a category is cocomplete, then
it admits left Kan extensions along any functor.

1.2.1.39. Cardinality. Let A be an object in Set. The cardinality of A is the least ordinal κ
such that there is a bijection between A and κ. In ZFC, the axiom of choice ensures that the
cardinality of a set A always exists, which will be denoted by |A|. A notion of cardinality for
small categories follows from that for sets. Consider a small category D. The cardinality of
D is the cardinality of the set

Ar(D) :=
∐

a,b∈Obj(D)

D(a, b)

where Obj(D) is the set of objects of D. The cardinality of D will be denoted by |D|. Below
is given a well-known result on the commutativity of limits and colimits.

Proposition 1.29. For every small category D and limit ordinal κ ≥ |D|, the following

canonical natural transformation valued in Set over SetO(κ)×D is an isomorphism.

colO(κ) limD( )⇒ limD colO(κ)( )
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Proof. A proof may be found in [2, Corollaire 9.8]. For the sake of self-containedness, the
proof is recalled below. We essentially keep the same notations as in Example 1.26. Let
F ( ) : O(κ) × D → Set be a functor. An equivalence class for the equivalence relation ∼
will be denoted using brackets, i.e. [(k, x)]. The notation

(xd)
F
d∈Obj(D)

will be used to mean that the collection (xd)d∈Obj(D) is compatible with the action of the
functor F in the appropriate way (see equation (1.19)). By definition, the following equations
hold.

colO(κ)limDF = {[k, (xd)Fd∈Obj(D)] | (xd)
F
d∈Obj(D) ∈ limDFk( )}

limDcolO(κ)F = {([kd, xd])Fd∈Obj(D) | [kd, xd] ∈ colO(κ)F (d)}

The natural transformation colO(κ) limD ⇒ limD colO(κ)( ) is given by the following mapping.

[k, (xd)
F
d∈Obj(D)] 7→ ([k, xd])

F
d∈Obj(D)

Let us prove its surjectiveness. Consider an element in limDcolO(κ)F of the following form.

([kd, xd])
F
d∈Obj(D)

By definition of the compatibility with the action of F , for any arrow t : d→ d′ in D, there
exist arrows sd : kd → et and sd′ : kd′ → et in O(κ) such that the next equation holds.

(1.20) Fsd(d) ◦ Fkd(t)(xd) = Fsd′ (d
′)(xd′)

Since κ is a limit ordinal greater than or equal to |D|, we may define the following supremum
in O(κ).

∪t∈Ar(D)et

et0

gt0
55

et1

gt1

99

et2

gt2

OO

. . . et

gt
ii

︸ ︷︷ ︸
cardinality given by |D|

Denote the supremum ∪t∈Ar(D)et by e. Note that for any pair of arrows t : d → d′ and
t′ : d′′ → d in D, the arrows gt ◦ sd : kd → e and gt′ ◦ sd : kd → e are equal in O(κ). The
family made of the elements Fgt◦sd(d)(xd) for every object d in D is then compatible with the
action of F , since, for any arrow t : d→ d′ in D, the following equation holds from equation
(1.20).

Fe(t) ◦ Fgt◦sd(d)(xd) = Fgt◦sd(d) ◦ Fkd(t)(xd) = Fgt(d) ◦ Fsd′ (d
′)(xd′)

In addition, it is not hard to check that the mapping rule of the natural transformation
colO(κ) limD( )⇒ limD colO(κ)( ) includes the rule

[e, (Fgt◦sd(d)(xd))
F
d∈Obj(D)] 7→ ([kd, xd])

F
d∈Obj(D)

since (kd, xd) ∼ (e, Fgt◦sd(d)(xd)). Let us now prove its injectiveness. Note that any equality
([k, xd])

F
d∈Obj(D) = ([k′, x′d])

F
d∈Obj(D) implies the existence of cospans

ed

k

sd
??

k′

s′d
``
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such that the identity Fsd(d)(xd) = Fs′d(d)(x′d) holds for every object d in D. Now, define the

following supremum, which will be denoted by e′.

∪d∈Obj(D)ed

ed0

g0
55

ed1

g1

99

ed2

g2

OO

. . . ed

gd
ii

︸ ︷︷ ︸
cardinality below |D|

For every object d in D, the arrows gd ◦ sd : k → e′ are equal in O(κ). The same is true for
gd ◦ s′d : k′ → e′. It follows that the equation

limdFgd◦sd(d)((xd)
F
d ) = limdFgd◦s′d(d)((x′d)

F
d )

holds, which implies the identity [k, (xd)
F
d∈Obj(D)] = [k′, (x′d)

F
d∈Obj(D)]. �

In general, when a category C is cocomplete, the functor ∆D : C → CD commutes with
every colimit for any small category D (see Proposition 1.27). It follows from Proposition
1.29 that the unit of the adjunction ∆D ` limD commutes with colimits in Set as shown in
the next proposition.

Proposition 1.30. For every small category D and limit ordinal κ ≥ |D|, denote by the

letter η the units of the two adjunctions ∆D ` limD in Set and SetO(κ). The following
diagram of canonical arrows in Set commutes for any functor F : O(κ)→ Set.

colO(κ)F ( )
colO(κ)ηF ( )

// colO(κ)limD∆DF ( )

∼=
��

colO(κ)F ( )
ηcolO(κ)F ( )

// limD∆D(colO(κ)F ( ))

Proof. We keep the convention set in the proof of Proposition 1.29. We only need to check
that the diagram of the statement commutes. For any set X, the unit ηX : X → limD∆D(X)
maps an element of x ∈ X to the constant collection (x)d∈Obj(D). Similarly, for any functor
X : O(κ)→ Set, the unit ηX( ) : X( )→ limD∆D(X( )) maps an element of x ∈ X(k) to the
constant collection (x)d∈Obj(D) in limD∆D(X(k)). The diagram of the statement is therefore
encoded by the following mapping rules.

[(k, x)] � colO(κ)ηF ( )
// ([k, (x)d∈Obj(D)])

_
∼=
��

[(k, x)] �
ηcolO(κ)F ( )

// ([(k, x)])d∈Obj(D)

In particular, this shows that the diagram commutes. �

1.2.2. Abstract homotopy theory.

1.2.2.1. Lifting properties. Let C be a category and f : X → Y and g : A → B be two
morphisms in C. A diagram as given below on the left will be said to admit a lift if there
exists an arrow h : B → X making the following right diagram commute.

(1.21) A
u //

g

��

X

f
��

B
v // Y

⇒ A
u //

g

��

X

f
��

B

h
>>

v // Y
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If every diagram as given on the left of (1.21) admits a lift then

- f will be said to have the right lifting porperty (abbrev. rlp) with respect to g;

- g will be said to have the left lifting porperty (abbrev. llp) with respect to f ;

The class of morphisms in C that have the rlp with respect to a certain class A of morphisms
in C will be denoted by rlp(A). Similarly, the class of morphisms in C that have the llp with
respect to a certain class A of morphisms in C will be denoted by llp(A). The following
properties are classical results.

Proposition 1.31. Let f : A → B be an arrow that has the rlp with respect to an arrow
g : A→ B and suppose to be given a pullback as follows.

P
p′
//

p

��

x
X

f
��

Z
f ′
// Y

The arrow p : P → Z has the rlp with respect to g : A→ B.

Proposition 1.32. Let γ : A → B be an arrow that has the llp with respect to an arrow
f : X → Y . Suppose to be given a pushout as follows.

A
γ′
//

γ

��

x

A′

p′

��

B
p
// B′

The arrow p′ : A′ → B′ has the left lifting property with respect to f : X → Y .

Proposition 1.33. If a morphism has the rlp with respect to two arrows δ : A → B and
β : B → C, then it has the rlp with respect to β ◦ δ : A→ C.

Proposition 1.34. If a morphism has the llp with respect to two arrows f : A → B and
g : B → C, then it has the llp with respect to g ◦ f : A→ C.

Remark 1.35. Every isomorphism has the right and left lifting property with respect to any
other arrows.

1.2.2.2. Retracts. Let C be a category and f : X → A and g : Y → B be two morphisms in C.
The morphism f is said to be a retract of g if there exist morphisms i : X → Y , j : A→ B,
r : Y → X and s : B → A satisfying the identities r ◦ i = idX and s ◦ j = idX′ and such that
the following diagram commutes.

X
i //

f
��

Y
r //

g

��

X

f
��

A
j
// B

s // A.

commutes in C. It follows from the definitions that if the morphism g : Y → B

- has the rlp with respect to certain morphism, then so does f ;

- has the llp with respect to certain morphism, then so does f ;
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1.2.3. Abstract homotopy theory.

1.2.3.1. Category-classes. Let C be a category. We shall call C-class a class of morphisms in
C that contains all identity morphisms of C and is closed under composition. Thus, a C-class
may be seen as a subcategory of C whose objects are those of C. A C-class will be said to be
coherent if it also contains every isomorphism of C.
1.2.3.2. Homotopy categories. Let C be a category and W be a C-class of morphisms, called
the weak equivalences. The goal of this section is to present a way of formally inverting the
arrows of C that belongs to the classW. Categorically, this is done in terms of a metacategory
C[W−1] and a functor C → C[W−1], called the localisation functor, sending arrows in W to
isomorphism in C[W−1]. The metacategory C[W−1] is generally not locally small and cannot
thus be called a category. More specifically, the objects of C[W−1] are those of C and its
arrows from an object A to an object B are equivalence classes of finite zigzags of arrows in
C of the form

A A1 A2 . . . B,

where the non-oriented arrows between objects may be either left or right and all left-oriented
arrows are in W, such that two zigzags are equivalent if and only if they are equal after

i) composing some arrows in the same direction;

ii) or replacing two adjacent copies of the same arrow in W of opposite directions with
an identity.

The previous relation only becomes an equivalence relation after completion under transitivity
and symmetry. With such a definition of C[W−1], we see that it could be useful to be able
to permute the alternating arrows belonging to either W or C in order to get a minimal
representation of the form

(1.22) A X
∈W
oo // B.

In fact, it turns out that, in practice, a reasonable form to consider is the following:

A X
∈W
oo // Y B.

∈W
oo

These representations are one of reasons (among others) for most of the axioms of homo-
topy theories that will later follow. They will usually be expressed in terms of ‘square’ and
‘factorisation’ properties. On the other hand, the axioms called two-out-of-three or two-out-
of-six property rather allow one to prove saturation results, namely every arrow of C that
is an isomorphism in the image of the localisation functor C → C[W−1] is actually in W.
All these ideas are more deeply discussed in [14] via the notion of homotopical category and
three-arrow calculus (see section 1.2.3.6 below). In the sequel and everywhere in the liter-
ature, the metacategory C[W−1] is called the homotopy category of (C,W) and denoted by
Ho(C). It turns out to be equivalent to an actual category in the case of model categories
(see section 1.2.3.3 below). This is possible due to the ‘lifting’ and ‘factorisation’ properties
allowing one to construct approximated inverses of the arrows of W in the zigzags of Ho(C)
up to isomorphisms in Ho(C).
1.2.3.3. Closed model categories. A closed model 10 category (originally defined in [38]) con-
sists of a cocomplete and finitely complete category C endowed with three C-classes of mor-
phisms, whose elements will be called weak equivalences, fibrations and cofibrations, and,
agreeing that a morphism being both a fibration (resp. cofibration) and a weak equivalence
is called acyclic fibration (resp. acyclic cofibration), for which the following axioms are true:

M1 Let f and g be morphisms in C such that f ◦ g exists. If two of the three morphisms
f , g and f ◦ g are weak equivalences, then so is the third;

10The term model refers to the idea of providing a model for the homotopy theory of topological spaces.
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M2 Let f and g be morphisms in C. If f is a retract of g and g is either a weak
equivalence, or a fibration or a cofibration, then so is f , respectively;

M3 Every cofibration has the llp with respect to acyclic fibrations and every fibration
has the rlp with respect to acyclic cofibrations;

M4 Every morphism in C may be factorised in two ways as a composite f ◦ g where, in
one case, g is a cofibration and f is a acyclic fibration and, in the other case, g is an
acyclic cofibration and f is a fibration.

In the literature, the first axiom M1 is called the two-out-of-three property. We will later
see that it may be refined into a two-out-of-six property.

Example 1.36 (Topological spaces). The category Top is a closed model category (see
[38]) whose weak equivalences, fibrations and cofibrations are weak homotopy equivalences,
Serre fibrations and morphisms that have the left lifting property with respect to the trivial
fibrations, respectively.

Example 1.37 (1-Categories). The category Cat(1) is a closed model category whose struc-
ture was first published in [31]. The weak equivalences are the equivalences between small
categories. This structure is usually called the canonical (or folk) model structure in the
literature.

Example 1.38 (2-Categories). The category Cat(2) also has a canonical model structure,
published in [32]. The weak equivalences are biequivalences between small categories.

Example 1.39 (n-Categories). More generally, it is proven in [33] that the category Cat(n)
may be provided with a canonical model structure for every n ≥ 1, generalising the result of
[32].

Example 1.40 (Chain complexes). For a fixed ring R, the category ChR is a closed model
category for which the class of weak equivalences exactly contains the morphisms whose
image via the k-th homology group functor are isomorphisms, for every k ≥ 0. The class of
fibrations, for its part, consists of the componentwise epimorphisms.

Example 1.41 (Presheaves). A result of [8] shows that the category Psh(D) has a model
structure when D is a test category. In particular, it may be shown that the simplex category
∆ is a test category, providing sSet with a natural model structure, which was originally
published in [38].

1.2.3.4. Category of fibrant objects. A category of fibrant objects (originally defined in [12]) is
a category C with finite products endowed with two coherent C-classes of morphisms, whose
elements are called weak equivalences and fibrations, and, agreeing that a morphism being
both a fibration and a weak equivalence is called acyclic fibration, for which the following
axioms are true:

F1 Let f and g be morphisms in C such that f ◦ g exists. If two of the three morphisms
f , g and f ◦ g are weak equivalences, then so is the third;

F2 Fibrations and acyclic fibrations are preserved under pullbacks, meaning that if f is
a fibration (resp. an acyclic fibration), then for every pullback of the form

A′
δ2 //

δ1
��

x

A

f
��

B′
f ′
// B,

the morphism δ1 is a fibration (resp. an acyclic fibration);
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F3 Every morphism to the terminal object is a fibration;

F4 Every morphism in C may be factorised as a composite f ◦ g where g is a weak
equivalence and f is a fibration.

First of all, axiom F1 may obviously be identified with axiom M1 in the definition of
closed model categories. Axiom F4 is stated in a stronger way in [12], but as shown in
ibid, our version and that of ibid are equivalent. Interestingly, axiom F2 is always true in
a closed model structure thanks to axiom M3 and Proposition 1.31. Notice that axiom M4
and Proposition 1.32 imply that the cofibrations of any closed model structure are preserved
under pushouts, namely if g is a cofibration, then for every pushout of the form

A′
g′
//

g

��
x

A

δ1
��

B′
δ2

// B,

the morphism δ1 is a cofibration. An important point in the definition of categories of fibrant
objects is that there is no notion of cofibrations in C. This does not however mean that there
does not exist any suitable notion of cofibrations associated with categories of fibrant object
in practice.

Example 1.42 (Sheaves). The need of considering categories of fibrant objects rather than
model categories was motivated by the question of finding the right setting for the homotopy
theory of sheaves of spectra and, in particular, recovering the Leray spectral sequence (see
[12]).

1.2.3.5. Calculus of fractions. A right calculus of fractions (originally defined in [20]) con-
sists of a category C equipped with a C-class of morphisms, whose elements are called weak
equivalences satisfying the following conditions hold:

C1 For every weak equivalence v : X → Y and arrow f : Z → Y in C, there exists a
weak equivalence v′ : P → Z and an arrow f ′ : P → X in C such that the subsequent
diagram commutes;

(1.23) P

v′

��

f ′
// X

v
��

Z
f
// Y

C2 For every weak equivalence v : Y → Z and pair of morphisms f, g : X → Y such
that v◦f = v◦g, there exists a weak equivalence v′ : A→ X such that f ◦v′ = g◦v′.

Notice that axiom C1 is an abstraction of axiom F2 for categories of fibrant objects.
Axiom C2 is usually used to handle compositions in the homotopy category and allows one
to give some representative for the equivalence classes of zigzags in Ho(C). The representative
zigzags then have the form shown in diagram (1.22).

Example 1.43 (Categories of fibrant objects). When quotiented with respect to a certain
equivalence relation, a category of fibrant objects C – or rather its quotient πC – admits a
structure of calculus of fractions, which is used to describe its homotopy category is terms of
a localisation πC[W−1] (see [12] for more details).

1.2.3.6. Homotopical categories and three-arrows calculus. A homotopical category is a cat-
egory C equipped with a C-class of morphisms, whose elements are called weak equivalences
satisfying the two-out-of-six property:
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H0 Let f , g and h be morphisms in C such that f ◦ g ◦ h exists. If both composite f ◦ g
and g ◦ h are weak equivalences, then so are f , g, h and f ◦ g ◦ h;

A three-arrow calculus (originally defined in [14]) consists of a homotopical category C
equipped with two subclasses of its class of equivalences, whose elements will be called acyclic
fibrations and acyclic cofibrations, for which the following axioms hold:

H1 For every acyclic fibration v : X → Y and arrow f : Z → Y in C, there exists a
acyclic fibration v′ : P → Z and an arrow f ′ : P → X in C such that diagram (1.23)
commutes;

H2 For every acyclic cofibration v′ : P → Z and arrow f ′ : P → X in C, there exists
a acyclic cofibration v : X → Y and an arrow f : Z → Y in C such that diagram
(1.23) commutes;

H3 Every weak equivalence may be functorially factorised as a composite f ◦ g where g
is a acyclic cofibration and f is a acyclic fibration.

Notice that axioms H1 and H2 are similar to axiom C1 and axiom F2. In axiom H3, functorial
means that the factorisation may be seen as a functor C2 → C3 of the form f ◦ g 7→ (f, g).
Finally, axiom H0 may be shown to imply the two-out-of-three property required for model
categories (see axiom M1).

Example 1.44 (Model categories). Every model category equipped with a functorial factori-
sation is a three-arrow calculus when endowed with its weak equivalences, acyclic fibrations
and acyclic cofibrations (see [14] for more details).

Example 1.45 (Categories of fibrant objects). Every category of fibrant objects equipped
with a functorial factorisation is a three-arrow calculus when endowed with its weak equiva-
lences, acyclic fibrations and all its morphisms as acyclic cofibrations.

1.2.3.7. Quillen functors. This section recalls the usual theorems on functors and adjunctions
between models categories. To start with, consider the following adjunction where C and D
are model categories.

(1.24) C ⊥
F //

D
G

oo

Theorem 1.46 (see [38, 15]). If one of the following equivalent conditions is true:

1) F preserves cofibrations and acyclic cofibrations;

2) G preserves fibrations and acyclic fibrations;

3) F preserves cofibrations and G preserves fibrations;

4) F preserves acyclic cofibrations and G preserves acyclic fibrations;

then it is possible to derive from (1.24) an adjunction of the form

(1.25) Ho(C) ⊥
LF //

Ho(D).
RG

oo

where the functors LF and RG are derived from F and G, respectively. The adjunction
(1.24) is then called a Quillen adjunction.

One of the achievements of [38] was to show that an adjunction of the from (1.25) may give
rise to an equivalence of categories under certain conditions on the counit of the adjunction.
In the next proposition, the symbol ε denotes the counit of adjunction (1.24).
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Proposition 1.47 (see [38, 15]). If the canonical mapping f 7→ εY ◦ F (f) defined over
C(X,G(Y )) for every object X in C and Y in D (see section 1.2.1.34), preserves and reflects
weak equivalences, then the adjunction (1.25) is an equivalence of categories.





Chapter 2

Vertebrae

2.1. Introduction

This second chapter aims at defining the basic concepts of the theory of vertebrae. Most
of the properties provided in this chapter are those intrinsic to the world of vertebrae while
Chapter 3 will focus on properties relative to the world of spines. At the end of the chapter
is given a brief account of how to use and combine all the proven results to build a homotopy
theory. This last point will be fully discussed in Chapters 4 & 5.

This chapter starts with a preparatory section (see section 2.2) meant to define all the
factorisation properties that will be used to define the zoo associated with an alliance of nodes
of vertebrae. Alliances define a 3-dimensional generalisation of the 2-dimensional notion of
node of vertebrae. For their part, nodes of vertebrae generalise the notion of vertebra to a
class of vertebrae with a common base.

• //

��

��

•

��

��
• //

��

•

��

• //

��

•

��

// •

��
• //

alliance between the front and back vertebrae

• // •

• //

vertebra

��

•

��
• // • // •

• //

��

•

��

•
...

• //

node of vertebrae

• //

??

•

The main properties discussed in section 2.2.1 are the following.

. Relative right lifting propery : makes sense of the notion of fibration and trivial fibration
for an alliances of nodes of vertebrae;

. Simplicity : allows the definition of the notion of injectivity associated with a weak
equivalence for an alliances of nodes of vertebrae;

. Divisibility : allows the definition of the notion of surjectivity associated with a weak
equivalence for an alliances of nodes of vertebrae;

The next section (section 2.3) concerns the theory of vertebrae itself. The section organ-
ises itself so that the definition of alliance of nodes of vertebrae is gradually given through

41
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intermediate structures, which will play substantial roles throughout the entire thesis. These
structures, which will also be associated with a notion of zoo, are the following.

Alliance of nodes Extended node Communication
of vertebrae of vertebrae

its zoo is made of weak this structure has less this structure has
equivalences; intractions; information than an even less informa-
surtractions; fibrations; alliance and will only tion than an

trivial fibrations and allow the definition of extended node of
pseudofibrations. surtractions and vertebrae and will

pseudofibrations. allow the definition
of pseudofibrations

The foregoing structures will interact in a fundamental way. The idea is that there is an
right action of alliances of nodes of vertebrae on extended nodes of vertebrae while there is
a left action of communication on extended nodes of vertebrae.

[Communications]× [Extended nodes]→ [Extended nodes]

[Extended nodes]× [Alliances]→ [Extended nodes]

These actions come from the fact that extended nodes of vertebrae may be seen from two
points of view. On the one hand, they may be seen as ‘truncated’ alliances of nodes of
vertebrae (see next picture), which allows us to compose them with alliances. On the other
hand, they give a generalisation of the notion of node of vertebrae. From this latest point of
view, the notion of extended node of vertebrae may be regarded as the stabilisation of node
of vertebrae under the left action of communications.

• //

��

��

•

��

��
• //

��

•

��

• //

��

•

��

// •

��
• //

alliance of vertebrae

• // •

⇒

extended vertebra

• //

�� ��

•

��
•

��

• //

��

• // •

•

These actions will give rise to various notions of module in Chapter 4, which will be used to
build up various homotopical structures somewhat close to model categories and categories
of fibrant objects.

Section 2.3 then continues by giving properties attached to the zoos of the different
structures. For instance, some properties require a unique alliance of nodes of vertebrae.
Other properties start with items from the zoos of an alliances a and an extended node of
vertebrae n and deduce some properties regarding the zoo of the left action of the alliance on
the extended node of vertebrae a} n. These actions will therefore enable us to achieve many
properties on the zoos.

The previous structures may sometimes turn out to be not enough to obtain properties
that are characteristic of homotopy theories. We will then need to introduce the notion of
reflexive vertebra to obtain properties ensuring that ‘being strict implies being weak’. For
instance, this type of structure will be used to show that deformation retracts as well as
isomorphisms are weak equivalences.
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Then will arrive a point where the notion of reflexivity is no longer sufficient to show
properties such as the stability of weak equivalences under composition. The structure that
will be required is called framing and may be seen as a ‘horizontal composition of vertebrae’.
Somehow, the notion of vertebra may be seen as a notion of cell, arrow or homotopy path in
the ambient category.

source + target //

��

target arrow

��

source arrow // parallel arrows // cell

source

source arrow
��

cell
⇒ target arrow
��

target

A framing of vertebrae should then be regarded as a composition of the involved arrows or
paths. Such an operation will take two vertebrae satisfying some condition of composability
as input and will give a third vertebra, which will be said to frame the two previous ones.

source

γ

��

cell
⇒ γ′

��

target

& source

γ′

��

cell
⇒ γ′′

��

target

⇒ source

γ

��

cell
⇒ γ′′

��

target

For illustration, the process of framing two vertebrae will look like as follows. We will first
consider two vertebrae whose commutative squares from the source + target to the cell, later
called diskad, will be pasted as shown below on the right.

· //

��

(a)

·

�� ��
·

diskad of (a) as input 1

// 99· // ·

& · //

��

(b)

·

�� ��
·

diskad of (b) as input 2

// 99· // · ⇒

·

��

//

��

(b)

·

��

(a)

·

��

// ·

· // ·
The preceding rightmost diagram then offers a span which may be used to form a pushout
as shown in the following leftmost diagram. This pushout square produces the commutative
square (c) given by the outer square. The diskad of the third vertebra then appears after
factorising (c) via a morphism η, which will be called cooperadic transition, making the
following rightmost diagram commute. The commutative square (d) defines the diskad of the
output vertebra, which appears after forming a pushout in (d).

·

��

//

��

(b)

·

��

(a)

·

��

//

x

·

��
· // · // ·

⇒

·

��

//

(c)

·

��
·

��
· // · // ·

⇒

·

��

//

(d)

·

����
·

η

��

·

��
· //

@@

· // ·

The name framing comes from the fact that the square (c) literally frames both squares (a)
and (b). Later on, a framing will be defined for any ‘communicating’ pair of extended nodes
of vertebrae, that is to say a pair of extended nodes of vertebrae whose components are
composable up to action of a communication.

One of the subtleties associated with the framing operation is that it is only defined for
the notion of extended node of vertebrae (and its degenerated cases). Framings of alliances
do not exist because their structure is to rich. This is the main reason for which we have to
juggle the notions of alliances, nodes of vertebrae and extended nodes of vertebrae. Other
type of framing operations will be considered in Chapter 3 where two extended vertebrae and
a spine will be taken as input to produce a second spine that frames the whole structure.
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Section 2.3 will discuss the case of reversible vertebrae, which are vertebrae having the
property that their zoos correspond to those of their duals.

S

x

γ′
//

γ

��

D1

δ1
��

D2

a vertebra

δ2

// S′
β
// D′

⇒ S

x

γ
//

γ′

��

D2

δ2
��

D1

the dual vertebra

δ1

// S′
β
// D′

We will finish the section by discussing the construction of a mini-homotopy theory based
on a fairly tractable alliance of nodes of vertebrae. The case of general alliances will be fully
discussed in Chapter 4 as they require modular structures.

Section 2.4 will finally provide a non-exhaustive list of examples of vertebrae together
with a description of their zoos. Some of them have already been discussed in Chapter 1.
Other examples will be discussed in more details in Chapter 6.

2.2. Preparation

2.2.1. Factorisation properties.

2.2.1.1. Relative lifting properties. Let C be a category and f : X → Y be a morphism in C.
For any commutative square of the form

(2.1) A′
θ //

γ′

��

A

γ

��

B′
θ′
// B

the morphism f : X → Y will be said to have the right lifting property (abbrev. rlp) with
respect to diagram (2.1) if for every commutative square of the form given on the left of
diagram (2.2), there exists a morphism h : B′ → X making the right diagram of (2.2)
commute. In this case, the arrow h will be called a lift for the left-hand commutative
diagram.

(2.2) A
x //

γ

��

X

f
��

B
y
// Y

⇒ A′
θ //

γ′

��

A
x // X

f
��

B′
θ′
//

h

77

B
y
// Y

For convenience, because diagram (2.1) also encodes a morphism θ : γ′ ⇒ γ in C2, the
morphism f will often be said to have the rlp with respect to the arrow θ : γ′ ⇒ γ. Note
that if this morphism is an identity of the form idγ : γ ⇒ γ in C2, then the previous rlp
corresponds to the rlp with respect to the arrow γ as defined in section 1.2.2.1. To better
acquaint the reader with this type of lifting property, below is given an easy example in which
it appears.

Example 2.1. It is well-known that the image of a functor does not necessarily have a
category structure. It turns out that the preceding right lifting property characterises the
functors whose images are categories. Let F : C → D be a functor and denote by F (C) the
subgraph of D whose objects are the objects of D that are images of objects of C via F and
whose morphisms are morphisms of D that are images of morphisms of C via F . Recall that
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we defined the following commutative diagram in Remark 1.15.

(2.3) ∅

��

// 2 + 2

��

2 // 3

⇔ ( )
_

��

� // (•0 → • • → •1)
_

��

(•0 → •1) � // (•0 → • → •1)

Claim: For any functor F : C → D, the subgraph F (C) of D forms a category for the
composition of D if and only if F has the right lifting property with respect to diagram (2.3).
Suppose that F has the rlp with respect to diagram (2.3) and let us show that F (C) is a
category for the composition of D. Consider two composable arrows F (f) : F (y) → F (z)
and F (g) : F (w) → F (x) in F (C) where the arrows f : y → z and g : w → x belong to C.
Because F (f) and F (g) are composable, the equation F (z) = F (w) must hold.

(•0 → • • → •1)
_

��

� // y → z w → x
_

F
��

(•0 → • → •1) � // F (y)→ F (x)

The right lifting property with respect to diagram (2.3) then says that there must exist h :
w′ → z′ such that the equation F (f)◦F (g) = F (h) holds, which means that the composition of
F (f) and F (g) in D belongs to F (C) and proves that F (C) is a subcategory of D. Conversely,
if F (C) is a category, then for every composable arrows F (f) : F (y) → F (z) and F (g) :
F (w)→ F (x) in F (C), where f : y → z and g : w → x are arrows in C, there exists an arrow
h : w′ → z′ in C for which the equation F (f) ◦ F (g) = F (h) holds. This directly implies the
rlp with respect to diagram (2.3).

Remark 2.2. When the ambient category C admits all pushouts, the rlp with respect to
a commutative square may be reduced to (i.e. is equivalent to) the rlp with respect to a
commutative square whose top face is an identity, which is to say a commutative triangle or,
in other words, an object of C3 (see rightmost square of the following right diagram).

A′
θ //

γ′

��

A

γ

��

B′
θ′
// B

⇔ A′

x

θ //

γ′

��

A

��

A

γ

��

B′ //

θ′

88P // B

This point may help the reader understand why the assumptions of Proprosition 2.5 (see
below) are natural. However, it turns out, in practice, that the square form is the best suited
in terms of representatives. For instance, even if Example 2.1 is relatively simple, it already
appears easier to present it in terms of the objects 2 and 3 and 2 + 2, than in terms of a
coproduct 2 + (2 + 2) and an arrow 2 + (2 + 2)→ 3. The square form also naturally arises
from the squarelike shape of a vertebra, which is not necessarily the case of the triangle form.
Finally, the square form is by far the best shape that gets along with the other properties
that will be introduced in section 2.2.1.2 and section 2.2.1.3.

Proposition 2.3. Let f : X → Y be an arrow that has the rlp with respect to diagram (2.1)
and suppose to be given a pullback as follows.

P
p′
//

p

��

x

X

f
��

Z
f ′
// Y
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The arrow p : P → Z has the rlp with respect to diagram (2.1) .

Proof. The proof resembles standard proofs for usual lifting properties. According to impli-
cation (2.2), the proof needs to start with a diagram of the form given below on the left. The
implication then describes the pasting of this commutative square with the pullback square
of the statement and diagram (2.1).

A
x //

γ

��

P

p

��

B
y
// Z

⇒ A′
θ //

γ′

��

A

γ

��

x // P

p

��

p′
// X

f
��

B′
θ′
// B

y
// Z

f ′
// Y

Because the morphism f : X → Y has the rlp with respect to diagram (2.1), the outer
commutative rectangle of the previous pasting produces a lift h : B′ → X. The cone formed
by h : B′ → X and the composite y ◦ θ′ : B′ → Z then induces a canonical arrow h : B′ → P
above the pullback P as shown by the following implication.

A′
θ //

γ′

��

A
x // P

p′
// X

f
��

B′
θ′
//

h

44

B
y
// Z

f ′
// Y

⇒ A′
θ //

γ′

��

A
x // P

p

��

B′
θ′
//

h′
77

B
y
// Z

The previous right diagram finally produces a lift for the initial commutative square. �

Remark 2.4. If a morphism in C has the rlp with respect to the right commutative square
of diagram (2.4), then it has the rlp with respect to the left commutative square of diagram
(2.4).

(2.4) A′
θ //

γ′

��

A

γ

��

B′
θ′
// B

⇐ A′

γ′

��

A′

γ◦θ
��

B′
θ′
// B

In this case, the rlp with respect to a triangle is stronger than the rlp with respect to a square.
In the next proposition, a commutative square as displayed on the left of (2.4) will be called
the proper square of the commutative square given on the right. Conversely, a commutative
square as displayed on the right of (2.4) will be called the biased square of the commutative
square given on the left.

Proposition 2.5. If a morphism f : X → Y in C has the rlp with respect to the following
two leftmost commutative squares, then it has the rlp with respect to the vertical pasting of
the underlying proper squares as given on the right.

A′
θ //

δ′

��

A

δ
��

B′
θ∗
// B

B′

β′

��

B′

β◦θ∗
��

C ′
θ†

// C

⇒ A′
θ //

β′◦δ′
��

A

β◦δ
��

C ′
θ†

// C

Proof. To prove the proposition, let us start with the leftmost commutative diagram bellow,
which, after some rearrangement, leads to the commutative diagram in the middle. By
assumption on f : X → Y , this commutative diagram produces a lift h : B′ → X as shown
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in the succeeding rightmost diagram.

(2.5) A

β◦δ
��

x // X

f
��

C
y
// Y

⇒ A

δ
��

x // X

f
��

B
y◦β
// Y

⇒ A′
θ //

δ′

��

A
x // X

f
��

B′
θ∗
//

h

77

B
y◦β
// Y

In particular, the bottom right corner of the latest commutative diagram gives the following
leftmost commutative diagram. By using the assumptions on f : X → Y , we may produce a
lift h′ : C ′ → X as shown on the right.

(2.6) B′

β◦θ∗
��

h // X

f
��

C
y
// Y

⇒ B′

β′

��

B′
h // X

f
��

C ′
θ†

//

h′
66

C
y
// Y

Finally, vertically pasting the top left corner of the rightmost commutative diagram of (2.5)
with the right commutative diagram of (2.6) along the arrow h provides a lift h′ : C ′ → X
for the initial commutative diagram of (2.5). �

Proposition 2.6. If a morphism g : X → Y has the rlp with respect to the leftmost com-
mutative square below and a morphism f : Y → Z has the rlp with respect to the middle
commutative square, then the composite f ◦ g : X → Y has the rlp with respect to the hori-
zontal pasting of both squares as shown on the right.

A†
θ∗ //

γ†

��

A∗

γ∗

��

B†
θ′∗

// B∗

A∗
θ //

γ∗
��

A

γ

��

B∗
θ′
// B

⇒ A†
θ∗ //

γ†

��

A∗

γ∗

��

θ // A

γ

��

B†
θ′∗

// B∗
θ′
// B

Proof. To prove the statement, start with the leftmost commutative diagram below, which,
after some arrangement, gives the commutative diagram in the middle. By assumption
on f : X → Y , this commutative diagram produces a lift h : B∗ → Z as shown in the
corresponding rightmost diagram.

(2.7) A

γ

��

x // X

f◦g
��

B
y
// Y

⇒ A

γ

��

g◦x
// Z

f
��

B
y
// Y

⇒ A∗
θ //

γ∗
��

A
g◦x
// Z

f
��

B∗

h

77

θ′
// B

y
// Y

In particular, the top left corner of the latest commutative diagram gives the following left-
most commutative diagram. By using the assumptions on g : X → Z, we may produce a lift
h′ : B† → X as shown in the middle.

A∗

γ∗
��

x◦θ // X

g

��

B∗
h
// Z

⇒ A†
θ∗ //

γ†

��

A∗
x◦θ // X

g

��

B†

h′

77

θ′∗

// B∗
h
// Z

⇒ A†
θ◦θ∗ //

γ†

��

A∗
x // X

f◦g
��

B†

h′

77

θ′◦θ′∗
// B∗ y

// Y

As shown by the earlier implication, vertically pasting the previous middle commutative
diagram with the bottom right corner of the rightmost commutative diagram of (2.7) after
pre-composing it with the arrow θ′ provides the desired lift h′ : B† → X for the initial
commutative diagram of (2.7). �
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The previous two propositions are generalisations of Proposition 1.33 and Proposition
1.34 that were given in Chapter 1.

2.2.1.2. Scales and simplicity. Let C be a category. A scale in C consists of an arrow κ :
A′ → A in C as well as two classes Ω and Ω′ of morphisms in C whose domains are equal to
A and A′, respectively.

A′

β′

��

β′∗

~~

κ // A
β

��

β∗
��

B′∗
...

B′ B
...

B∗︸ ︷︷ ︸
∈Ω′

︸ ︷︷ ︸
∈Ω

A morphism f : X → Y in C will be said to be simple with respect to a scale (Ω,κ,Ω′) if for
every arrow β : A→ B in Ω and commutative square of the form given on the left of diagram
(2.8), there exist an arrow β′ : A′ → B′ in Ω′ and a morphism h : B′ → X in C such that the
succeeding right diagram commutes.

(2.8) A
x //

β
��

X

f
��

B
y
// Y

⇒ A′

β′

��

κ // A
x // X

B′
h

77

The morphism h : B′ → X (thought of as coming equipped with β′) will often be called a lift
(or semi-lift if ambiguous).

Proposition 2.7. If a morphism f : Z → Y is simple with respect to a scale (S,κ, S∗) and
a morphism g : X → Z is simple with respect to a scale (S∗,κ∗, S†), then f ◦ g : X → Y is
simple with respect to (S,κ ◦ κ∗, S†).

Proof. To prove the statement, start with the leftmost commutative diagram below, which,
after some arrangement, gives the commutative diagram in the middle. By assumption on
f : X → Y , this commutative diagram produces a lift h : B∗ → Z as shown in the following
rightmost diagram, where β∗ belongs to Ω∗.

A
x //

β
��

X

f◦g
��

B
y
// Y

⇒ A
g◦x
//

β
��

Z

f
��

B
y
// Y

⇒ A∗

β∗
��

κ // A
g◦x
// Z

B∗

h

77

In particular, the top left corner of the latest commutative diagram gives the following left-
most commutative diagram. By using the assumption on g : X → Z, we may produce a lift
h′ : B† → X as shown on the right.

A∗
x◦κ //

β∗
��

X

g

��

B∗
h
// Z

⇒ A†

β†
��

κ∗ // A
x◦κ // Z

B†

h′

77

This last diagram proves the statement. �

A scale (Ω,κ,Ω′) in C will be said to be oriented along a metafunction ϕ : Ω→ Ω′ if, for
every arrow β : A→ B in Ω, it is equipped with a commutative square of the following form
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in C.

A′

ϕ(β)
��

κ // A

β
��

B′
uβ
// B

The previous commutative square will be called the orientation of (Ω,κ,Ω′) at β.

Proposition 2.8. Let (Ω,κ,Ω′) be a scale in C that is oriented along a metafunction ϕ :
Ω → Ω′. Every morphism that has the rlp with respect to the orientation of (Ω,κ,Ω′) at
every β ∈ Ω is simple with respect to (Ω,κ,Ω′).

Proof. If a morphism f : X → Y has the rlp with respect to the orientation of (Ω,κ,Ω′) at
every β ∈ Ω, then the next series of implication holds.

A
x //

β
��

X

f
��

B
y
// Y

⇒ A′

ϕ(β)
��

κ // A
x // X

f
��

B′
h

77

uβ
// B

y
// Y

⇒ A′

ϕ(β)
��

κ // A
x // X

B′
h

77

This therefore proves that f : X → Y is simple with respect to (Ω,κ,Ω′). �

In the sequel, being simple with respect to a scale of the form (Ω, idA,Ω) will be shortened
as being simple with respect to the class Ω and being simple with respect to a singleton set
{β : A→ B} will be shortened as being simple with respect to the morphism β : A→ B. In
this last case, a morphism f : X → Y in C is simple with respect to β : A → B if for every
commutative square of the form given below on the left, there exist a morphism h : B → X
in C such that the succeeding right diagram commutes.

A
x //

β
��

X

f
��

B
y
// Y

⇒ A
x //

β
��

X

B
h

>>

This means that the morphism x : A→ X may be factorised through β : A→ B.

2.2.1.3. Besoms and division. The following notion is a mix between the notion of simplicity
and that of factorisation in an arrow category. Let C be a category. A besom in C consists
of two commutative squares in C as follows together with a class Ω of morphisms in C whose
domains are all equal to the object B′′.

(2.9) A′
θ //

γ
��

A

γ

��

B′
θ′
// B

A′
γ′
//

γ
��

A′′

δ1
��

B′
δ2

// B′′

A morphism f : X → Y in C will be said to be divisible by a besom as above if for every
commutative diagram of the form given below on the left, there exist an arrow β : B′′ → D
in Ω and two morphisms x′ : A′ → X and y′ : B′ → Y in C such that the second diagram
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commutes in C.

A
x //

γ

��

X

f
��

B
y
// Y

⇒ A′
γ′
//

γ
��

x◦θ
((

A′′

β◦δ1
��

x′
// X

f
��

B′
β◦δ2

//

y◦θ′

66D
y′
// Y

Proposition 2.9. In the case of the previous definition, the morphism f : X → Y is simple
with respect to the singleton scale ({γ}, θ, {γ′}).

Proof. The semi-lift is given by the arrow x′ : A′′ → X. �

It is possible to use a more compact language for besoms. First notice that the left
commutative square of (2.9) defines a morphism of the form θ : γ ⇒ γ in C2. The post-
composition of the right square diagram of (2.9) with an arrow β : B′′ → D in Ω also provides
a morphism d(β) : γ ⇒ β ◦ δ1 in C2. In the end, this leads to the following picture where θ
may be seen as the pole of a besom1 whose twigs are given by the arrows d(β) : γ ⇒ β ◦ δ1

for every β ∈ Ω.

(β, . . . , β∗ ∈ Ω) β∗ ◦ δ1

...

β ◦ δ1 γ

d(β∗)
ck

d(β)
ks θ +3 γ

The previous picture motivates the notation (Ω,d, θ) for such a structure. In this language,
a morphism f : X → Y in C is divisible by a besom (Ω,d, θ) as above if for every morphism
x : γ ⇒ f in C2, there exist an arrow β ∈ Ω and a morphism x′ : β ◦ δ1 ⇒ f in C2 such that
the following diagram commutes.

γ

d(β)
��

θ +3 γ

x

��
β ◦ δ1

x′
+3 f

This kind of reformulation simplifies the proof of the following propositions.

Proposition 2.10. Let (Ω,d, θ) be a besom in C with θ : γ ⇒ γ. If a morphism f : X → Y
is divisible by (Ω,d, θ), then it is divisible by (Ω,d, θ∗ ◦ θ) for any commutative square θ∗ :
γ ⇒ γ∗.

Proof. To prove the proposition, start with the left diagram below. Rearranging this diagram
and applying the assumption of the proposition then leads to the existence of some β ∈ Ω
making the middle diagram commute.

γ
θ +3 γ

θ∗ +3 γ∗

x

��
f

⇒ γ

d(β)
��

θ +3 γ

x◦θ
��

β ◦ δ1
x′

+3 f

⇒ γ

d(β)
��

θ +3 γ
θ∗ +3 γ∗

x

��
β ◦ δ1

x′
+3 f

Finally, putting the diagram back in its original form (leftmost diagram) provides the desired
factorisation. �

1‘Besom’ is another word for ‘broom’, in particular, a broom made of actual twigs.
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A couple of besoms consists of two besoms (Ω,d, θ) and (Ω∗,d∗, θ∗) equipped with a
metafunction φ : Ω→ Ω∗ and, for every β in Ω, a commutative diagram as follows in C2.

γ∗

d∗(φ(β))
��

θ∗ +3 γ

d(β)

��

θ +3 γ

φ(β) ◦ δ∗1 uβ
+3 β ◦ δ1

Note that such a structure also provides a third besom (Ω∗,d∗, θ ◦ θ∗).

Proposition 2.11. Suppose to be given a couple of besoms as above. If a morphism f : X →
Y is divisible by (Ω,d, θ), then it is divisible by (Ω∗,d∗, θ ◦ θ∗).

Proof. To prove the statement, start with the left diagram below. Because f : X → Y
is divisible by the besom (Ω,d, θ), there exists β ∈ Ω for which this diagram admits a
factorisation as shown in next right commutative diagram.

γ∗
θ∗ +3 γ

θ +3 γ

x

��
f

⇒ γ∗
θ∗ +3 γ

d(β)
��

θ +3 γ

x

��
β ◦ δ1

x′
+3 f

Using the structure of couple between the two besoms (Ω,d, θ) and (Ω∗,d∗, θ∗), the previous
factorisation may be extended to the following left factorisation. A pasting of the squares
provides the commutative diagram on the right.

γ∗

d∗(β)
��

θ∗ +3 γ

d(β)

��

θ +3 γ

x

��
φ(β) ◦ δ∗1 κ

+3 β ◦ δ1
x′

+3 f

⇒ γ∗

d∗(β)
��

θ∗ +3 γ
θ +3 γ

x

��
φ(β) ◦ δ∗1 x′◦κ

+3 f

Finally, since φ(β) belongs to the class Ω∗, the last diagram shows that f is divisible by the
besom (Ω∗,d∗, θ ◦ θ∗). �

2.2.1.4. Stability under retracts. Let C be a category and f : X → A and g : Y → B be two
morphisms in C. Recall the morphism f is said to be a retract of g if there exist morphisms
i : X → Y , j : A → B, r : Y → X and s : B → A satisfying the identities r ◦ i = idX and
s ◦ j = idX′ and such that the following diagram commutes in C.

X
i //

f
��

Y
r //

g

��

X

f
��

A
j
// B

s // A.

It directly follows from the definitions that if the morphism g : Y → B

- has the rlp with respect to a certain commutative square, then so does f ;

- is simple with respect to a certain scale (Ω,κ,Ω′), then so is f ;

- is divisible by a certain besom (Ω, γ′, θ), then so is f .
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2.3. Theory of vertebrae

2.3.1. Vertebrae. The goal of this section is to define the vocabulary necessary to the dis-
cussions of the present and next chapters. The idea is to gradually introduce all the requisite
structure that we will require via intermediate structures, all of which playing significant
roles in the development of the theory. The next table gives the conventional notations of
the arrows that will form the structures in question.

(Object) Extended Alliance of

Prevertebra γ , γ′, δ1, δ2 κ, % κ, %, %′, κ′
Vertebra β u

Node of vertebrae Ω {uβ | β ∈ Ω}

Because each of these arrows play an important role in the definition of the ‘zoos’ of these
structures, it turned out to be necessary to give them names. To prepare the reader to
the variety of different names, below is given a table summarising most of them, where the
abbreviation tr. stands for transition.

γ γ′ δ1 δ2 β

seed, preseed coseed antiseed anticoseed stem

β ◦ δ1 κ % %′ κ′
trivial stem spherical tr. discal tr. codiscal tr. cospherical tr.

Thoughout the paper, we will usually keep the previous notations conventional. If two struc-
tures are involved, we will distinguish one from the other by introducing different indexing
notations for both structures (e.g. γ∗, γ and γ† for the seeds).

2.3.1.1. Prevertebrae. A prevertebra in a category C is a structure consisting of four objects
S, D1, D2 and S′ and a commutative square of four morphisms producing a pushout in C as
shown in diagram (2.10).

(2.10) S

x

γ′
//

γ

��

D1

δ1
��

D2
δ2

// S′

The morphisms γ, γ′, δ1 and δ2 will be called seed, coseed, antiseed and anticoseed of diagram
(2.10). In the sequel, a prevertebra as above will be denoted by the symbols ‖γ, γ′ : S′‖ or
simply ‖γ, γ′‖ when the pushout is obvious. The dual of a prevertebra ‖γ, γ′‖ will be the
dual commutative square encoding the prevertebra ‖γ′, γ‖. We shall denote by prv the dual
of any prevertebra p.

Remark 2.12. A prevertebra defines a model of a colimit sketch Prev in C. The colimit
sketch Prev consists of a four arrows making a pushout, which is part of in the chosen colimits.

2.3.1.2. Domain and codomain. Let C be a category and p be a prevertebra in C as displayed
in diagram (2.10). Such a prevertebra will be written p : S( S′, where the objects S and S′
will be called domain and codomain of p, respectively. In the case where S′ is thought of as
the universal cocone (δ1, δ2), it will be quite natural to write ‖γ, γ′‖ : S ( (δ1, δ2), thereby
exposing every morphism contained in a vertrebra.

2.3.1.3. Alliances of prevertebrae. Let C be a category. An alliance of prevertebrae in C
consists of two prevertebrae p and p equipped with a morphism of models p ⇒ p in the
category ModC(Prev). Such an alliance will be said to go from p to p and, for this reason,
will be regarded as an arrow p : p p in the opposite category ModC(Prev)op. The vertebra
p will be said to be allied to p.
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Remark 2.13 (Notation). Let us explain the reversed notation p : p  p. A prevertebra
may be seen as a colimit sketch by itself in ModC(Prev) and so do alliances of prevertebrae
in ModC(Prev)2. As is often the case for colimit sketches, the language of alliances is better
behaved when seen in the opposite ambient category. For instance, such need arises when
‘homing’ the sketch in question via the Yoneda embedding on the contravariant variable. The
homing operation will extensively be used in Chapter 3 and Chapter 4.

To resume, an alliance of prevertebrae p from a prevertebra ‖γ, γ′‖ : S ( (δ1, δ2) to a
prevertebra ‖γ, γ′‖ : S ( (δ1, δ2) consists of three morphisms κ : S → S, % : D2 → D2 and
%′ : D1 → D1 in C making the following diagram commutes.

(2.11) S

κ
  

γ′
//

γ

��

D1

δ1

��

%′

  

S

x
γ′

//

γ

��

D1

δ1

��

D2
δ2

//

%
��

S′

κ′

��

D2
δ2

// S′

Although the fourth morphism κ′ : S′ → S′ is induced by universality over the pushout S′,
it will come in handy to identify the alliance p with the 4-tuple (κ, %, %′,κ′). The arrows κ,
%, %′ and κ′ will be called spherical, discal, codiscal and cospherical transitions, respectively.
Because the commutative squares encoding the left and right face of diagram (2.11) will play
substantial roles in the sequel, they will be denoted by seed(p) : γ ⇒ γ and asee(p) : δ1 ⇒ δ1

in C2, respectively. The next proposition is a generalisation of Proposition 1.32.

Proposition 2.14. If a morphism f : X → Y in C has the rlp with respect to the commutative
square seed(p), then it has the rlp with respect to the commutative square asee(p).

Proof. To prove the statement, start with the following leftmost commutative square. By
pre-composing this diagram with the prevertebra ‖γ, γ′‖, we obtain the middle and, in fact,
right commutative diagrams.

D1

δ1
��

x // X

f
��

S
y
// Y

⇒ S
γ

��

γ′
// D1

δ1
��

x // X

f
��

D2
δ2

// S
y
// Y

⇒ S
γ

��

x◦γ′
// X

f
��

D2
y◦δ2

// Y

The right lifting property with respect to the commutative square seed(p) : γ ⇒ γ then
implies that there exists a lift h : D2 → X making the leftmost diagram, below, commute.
By using the pushout of the allied prevertebra ‖γ, γ′‖, we may show that there exists a

canonical arrow h′ : S′ → X making the following right diagram commute.

(2.12) S

γ
��

x◦%′◦γ′
// X

f

��

D2

h

88

y◦δ2◦%
// Y

⇒ S

xγ
��

γ′
// D1

δ1
��

x◦%′
// X

f

��

D2
δ2 // h

FF

y◦δ2◦%

99S′

h′

88

Y
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This latest diagram provides the equation f ◦h′ ◦ δ2 = y ◦ δ2 ◦ %, whose last term is also equal
to y ◦ κ′ ◦ δ2 (see diagram (2.11)). Similarly, it provides the equation f ◦ h′ ◦ δ1 = f ◦ x ◦ %′,
whose right-hand term is equal to y ◦ δ1 ◦ %′, and, in fact, y ◦ κ′ ◦ δ1 (see diagram (2.11)). In

other words, the following left equations hold, which, by universality of S′, imply the equation
f ◦h′ = y ◦κ′. This last equation together with the rightmost top corner of the right diagram
of (2.12) provides the following right commutative diagram.

f ◦ h′ ◦ δ2 = y ◦ κ′ ◦ δ2

f ◦ h′ ◦ δ1 = y ◦ κ′ ◦ δ1

⇓
f ◦ h′ = y ◦ κ′

 ⇒

D1

δ1
��

x◦%′
// X

f

��

S′

h′
88

y◦κ′
// Y

This diagram provides a lift for the very first commutative square considered at the beginning
of the proof. �

Remark 2.15. Proposition 2.14 holds even when the front face of diagram 2.11 is not a
pushout square.

Similarly, it is not hard to prove the following result.

Proposition 2.16. If a morphism f : X → Y in C is simple with respect to ({γ},κ, {γ}),
then it is simple with respect to ({δ1}, %′, {δ1}).

Proof. Mimic the proof of Proposition 2.14 by focusing on the top parts of the various
commutative diagrams. However, the discussion after (2.12) is not needed. �

Later on, the dual of an alliance of prevertebrae (κ, %, %′,κ′) : p p will be the alliance
of prevertebrae prv  prv encoded by the 4-tuple (κ, %′, %,κ′).
2.3.1.4. Extended prevertebrae. Let C be a category. An extended prevertebra2 in C consists
of an arrow γ : S → D2, a prevertebra ‖γ, γ′‖ : S ( (δ1, δ2) and two morphisms κ : S → S
and % : D2 → D2 making the following left diagram commute. On the right is given the global
structure in brackets.

(2.13)

S κ //

γ
��

S

γ

��

D2 %
// D2


S

γ

��

Sκoo

x

γ′
//

γ
��

D1

δ1
��

D2 D2%
oo

δ2

// S′


The arrows γ, κ and % will be called preseed, spherical transition and discal transition. As
in the case of an alliance of prevertebrae, the structure defined by (κ, %) will be denoted as
an arrow p : γ ex ‖γ, γ′‖ where p will often be replaced with the pair (κ, %). This notation is
motivated by the following implication.

Proposition 2.17. Every alliance of prevertebrae (κ, %, %′,κ) : ‖γ, γ′‖ ‖γ, γ′‖ involves an
extended prevertebra (κ, %) : γ ex ‖γ, γ′‖.

Proof. Removing the front and right faces of diagram (2.11) provides the rightmost commu-
tative diagram of (2.13) in brackets. �

In the spirit of the analogy made by Proposition 2.17, for any extended prevertebra
p : γ ex ‖γ, γ′‖ as defined above, the left commutative square of diagram (2.13) will be denoted
as an arrow seed(p) : γ ⇒ γ in C2.

2Here, ‘extended’ refers to the picture of a prevertebra whose seed has been extended to a square.
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2.3.1.5. Vertebrae. Let C be a category. A vertebra in C consists of a prevertebra ‖γ, γ′ :
S′‖ : S( (δ1, δ2) and a further morphism β : S′ → D′ in C, called the stem of the vertebra
(see the left diagram of (2.14)). The right commutative square of (2.14) resulting from the
composition of β with the prevertebra ‖γ, γ′‖ will be called the diskad of the vertebra while
the term codiskad will be used to denominate its dual commutative square.

(2.14) S

x

γ′
//

γ

��

D1

δ1
��

D2
δ2

// S′
β
// D′

⇔ S
γ′
//

γ

��

D1

β◦δ1
��

D2
β◦δ2

// D′

The composite morphisms β ◦ δ1 and β ◦ δ2 will be called the trivial stem and the trivial
costem, respectively. In the sequel, a vertebra as given above will be denoted by the symbols
‖γ, γ′‖ · β.

The dual of a vertebra ‖γ, γ′‖ · β will be the vertebra ‖γ′, γ‖ · β, whose diskad is the
codiskad of ‖γ, γ′‖ ·β. The prevertebra of a vertebra will sometimes be called the base of the
vertebra. If the prevertebra ‖γ, γ′‖ is denoted by p, then the vertebra defined by ‖γ, γ′‖ · β
will be shortened as p · β. The dual of the latter is then given by prv · β. For any vertebra
v := ‖γ, γ′‖ · β as defined above, the diskad of the vertebra v will be denoted as an arrow
disk(v) : γ ⇒ β ◦ δ1 in C2. Finally, the domain and codomain of a vertebra are the respective
domain and codomain of its base.

Remark 2.18. As in the case of prevertebrae, a vertebra is the model of a colimit sketch
Vert in C. The sketch Vert consists of the colimit sketch Prev augmented by an additional
arrow whose domain is the chosen pushout of Prev.

2.3.1.6. Alliances of vertebrae. Let C a category. An alliance of vertebrae in C consists of two
vertebrae p ·β and p ·β equipped with an arrow from the former to the latter in the opposite
category of ModC(Vert). In other words, an alliance from p ·β to p ·β consists of an alliance
of prevertebrae (κ, %, %′,κ′) : p p and a commutative square as follows.

S′ κ′ //

β
��

S′

β
��

D′ u // D′

When seen as a morphism in the opposite category of ModC(Vert), it will make sense to
denote the previous alliance (κ, %, %′,κ′, u) as an arrow a : p · β  p · β where a will often
be replaced with the 5-tuple (κ, %, %′,κ′, u). The previous commutative square will later be
denoted as an arrow stem(a) : β ⇒ β in C2 while the arrows seed(p) and asee(p) associated
with the alliance of prevertebrae p := (κ, %, %′,κ′) will be replaced with the notations seed(a)
and asee(a). We will also need the biased square (see Remark 2.4) of stem(a), which will be
denoted as an arrow bste(a) : β ⇒ β ◦ κ′ in C2. If the commutative square asee(a) is of the
form δ1 ⇒ δ1 in C2, the vertical pasting of asee(a) with stem(a) : β ⇒ β (see below) will be
denoted as triv(a) : β ◦ δ1 ⇒ β ◦ δ1.

D1
%′
//

δ1
��

D1

δ1
��

S′
κ′
// S′

S′ κ′ //

β
��

S′

β
��

D′
u
// D′

⇒ D1
%′
//

β◦δ1
��

D1

β◦δ1
��

D′
u
// D′

The dual of an alliance (κ, %, %′,κ′, u) : p ·β  p ·β is the alliance of vertebrae prv ·β  prv ·β
encoded by the 4-tuple (κ, %′, %,κ′, u).
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2.3.1.7. Extended vertebrae. Let C be a category. An extended vertebra in C consists of a
vertebra p · β in C endowed with an extended prevertebra p : γ ex p. The whole data consists
of a diagram as follows.

S

γ

��

Sκoo

x

γ′
//

γ
��

D1

δ1
��

D2 D2%
oo

δ2

// S′
β
// D′

Such a structure will be denoted as an arrow v : γ ex p · β. For convenience, the associated
arrows seed(p) and disk(p · β) in C2 will be denoted as seed(v) and disk(v), respectivey.
The extended vertebra v will sometimes be denoted by p · β.

Remark 2.19 (Notation). As in the case of extended prevertebrae, an alliance of vertebrae
of the form (κ, %, %′,κ′, u) : p ·β  p ·β always involves an extended vertebra (κ, %) : γ ex p ·β,
but the converse is generally false. In fact, extended vertebrae should more be thought of as
a generalised version of a vertebra than the truncation of some alliance of vertebrae. This
point of view is enhanced by the notation p · β, or, in the present case, (κ, %) · β, thereby
copying the notation of vertebrae.

2.3.1.8. Nodes of vertebrae. A node of vertebrae in a category C is equivalently

1) a class of vertebrae in C whose bases are equal;

2) a prevertebra p endowed with a class Ω of morphisms in C such that the domain of
every element in Ω is the codomain of the prevertebra p.

S

x

γ′
//

γ

��

D1

δ1
��

D′∗
...

D2
δ2

// S′
β∗

>>

β // D′

︸ ︷︷ ︸
Ω

The prevertebra p will be called the base of the node of vertebrae while the elements of Ω will
be called the stems of the node. Later on, a node of vertebrae such as that given above will
be denoted by the symbols p ·Ω. The dual of p ·Ω will be the node of vertebrae prv ·Ω. Finally,
the domain and codomain of a node of vertebrae are the respective domain and codomain of
its base.

2.3.1.9. Alliances of nodes of vertebrae. Let C a category. An alliance of nodes of vertebrae
in C consists of two nodes of vertebrae p · Ω and p · Ω equipped with

1) an alliance of prevertebrae (κ, %, %′,κ′) : p p;

2) a metafunction φ : Ω → Ω and an alliance of vertebrae (κ, %, %′,κ′, uβ) : p · β  
p · φ(β) for every stem β ∈ Ω.

Later on, the collection of arrows uβ indexed by β ∈ Ω will symbolically be represented
by its associate letter, namely u. The set of data (κ, %, %′,κ′, φ, u) will then be called the
structure of alliance and denoted as an arrow p · Ω  p · Ω. When the structure of alliance
(κ, %, %′,κ′, φ, u) is given a name, say a, the alliance of vertebrae (κ, %, %′,κ′, uβ), for some
β ∈ Ω, will be denoted by aβ and referred to as to the component of a at β. Because the
commutative square seed(aβ) does not depend on the stem β ∈ Ω, it will later be denoted as
seed(a). The dual of an alliance of nodes of vertebrae such as above is the alliance defined
by (κ, %′, %,κ′, φ, u) : prv · Ω prv · Ω, which will later be denoted as arv.
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Remark 2.20. The triple (Ω,κ,Ω) defines a scale in C, which is oriented along the meta-
function φ : Ω→ Ω. This scale will later be referred to as the underlying scale of the alliance
of nodes of vertebrae a.

Remark 2.21. The triple (Ω,disk(p · ), seed(a)) defines a besom in C (see diagram below).
This besom will later be referred to as the underlying besom of the alliance of nodes of
vertebrae a.

β∗ ◦ δ1

...

β ◦ δ1 γ

disk(p·β∗)
bj

disk(p·β)

ks seed(a) +3 γ

(β, β∗ ∈ Ω)

2.3.1.10. Extended nodes of vertebrae. Let C be a category. An extended node of vertebrae in
C consists of a class of extended vertebrae in C whose extended prevertebrae are equal (see
next diagram). This is also equivalent to considering an extended prevertebra (κ, %) : γ ex p
endowed with a node of vertebrae p · Ω in C.

S

γ

��

Sκoo

x

γ′
//

γ
��

D1

δ1
��

D′∗
...

D2 D2%
oo

δ2

// S′
β∗

??

β // D′

Such a structure will be denoted as an arrow n : γ ex p ·Ω where the notation n will often be
replaced with the pair (κ, %). For convenience, the extended vertebrae γ ex p·β encoded by this
same pair (κ, %), for some β ∈ Ω, will be denoted by nβ and referred to as the component of n at
β. Also, because the commutative square seed(nβ) does not depend on the stem β, for every

β ∈ Ω, it will later be denoted as seed(n). As in the case of extended vertebrae, an extended
node of vertebrae n whose extended prevertebrae is denoted by p : γ ex p will sometimes be
denoted as p · Ω. Notice that every alliance of nodes of vertebrae (κ, %, %′,κ′, φ, u) : ν  ν
gives rise to an extended node of vertebrae (κ, %) : γ  ν where γ denotes the seed of ν. This
extended node of vertebrae will be referred to as the underlying extended node of vertebrae
of the structure of alliance (κ, %, %′,κ′, φ, u) and denoted by ext(a) : γ  ν.

Remark 2.22. The triple (Ω,disk(p · ), seed(n)) defines a besom in C (see next diagram).
This besom will later be referred to as the underlying besom of the extended nodes of vertebrae
n.

β∗ ◦ δ1

...

β ◦ δ1 γ

disk(p·β∗)
bj

disk(p·β)

ks seed(n) +3 γ

(β, β∗ ∈ Ω)

2.3.1.11. Communications. In the sequel, it will be necessary to make extended nodes of
vertebrae ‘communicate’ between their preseeds, seeds and coseeds. This section introduce
the language that will enable us to handle such ‘communications’. Let C be a category and
denote by Com(C) the opposite category (C2)op. The arrows of the category Com(C) will
be called communications and denoted with the symbol . Any arrow γ∗ ⇒ γ in C2 encoded
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by a diagram as given below will define a communication (κ, %) : γ  γ∗ in Com(C).

S∗
κ //

γ∗
��

S
γ

��

D∗ %
// D

The category Com(C) will be called the category of communications of C and its composition
operation will be denoted by the symbol �. Note that every extended node of vertebrae
n := (κ, %) : γ ex ν gives rise to a communication (κ, %) : γ  γ where γ denotes the seed of
ν. This communication will be referred to as the underlying communication of n and denoted
as an arrow com(n) : γ  γ. In the spirit of this analogy, the commutative square in C2

encoding a communication (κ, %) : γ  γ will be denoted as seed(t) : γ ⇒ γ. It directly
follows from such a definition that for any pair of composable communications t : γ  γ∗
and t∗ : γ∗  γ[, the following relation holds.

(2.15) seed(t) ◦ seed(t∗) = seed(t∗ � t)

Finally, for the sake of convenience, the communication com(ext(a)) associated with an
alliance of node of vertebrae a will later be denoted as com(a).

2.3.1.12. Convention on notations. Throughout the present and next chapters, the indexing
notations of a node of vertebrae will be coherent with the indexing notations of its objects,
e.g. the base p∗ of a node of vertebrae ν∗ shall be encoded as ‖γ∗, γ′∗ : S′∗‖ : S∗( (δ∗1 , δ

∗
2). This

convention will be extended to any additional structure with which the node of vertebrae is
equipped. Similarly, the indexing notations for the structure of an alliance will be coherent
with the indexing notations of the nodes of vertebrae for which it is defined. The letters a,
p, v and n will (usually) be reserved for alliances, extended prevertebrae, extended vertebrae
and extended nodes of vertebrae, respectively. For their part, communications will usually
be denoted by letters t and be coherent with the indexing notations of theirs components.

2.3.2. Actions and compositions.

2.3.2.1. Composition of alliances of nodes of vertebrae. Let C be a category. It is not difficult
to see that the structures of alliance in C induce a metacategory whose objects are the nodes
of vertebrae in C and whose morphisms are alliances of nodes of vertebrae. The composition
of two alliances of nodes of vertebrae, say of the form (κ0, %0, %

′
0,κ′0, φ0, u

0) : p0 ·Ω0  p1 ·Ω1

and (κ1, %1, %
′
1,κ′1, φ1, u

1) : p1 · Ω1  p2 · Ω2, is defined by the structure of alliance

(2.16) (κ0 ◦ κ1, %0 ◦ %1, %
′
0 ◦ %′1,κ′0 ◦ κ′1, φ0 ◦ φ1, u

0 ◦ u1) : p0 · Ω0  p2 · Ω2

where (u0 ◦ u1)β := u0
β ◦ u1

φ0(β) for every stem β ∈ Ω0. This metacategory will be denoted by

Ally(C) and its composition will be written with the symbol }. Seeing alliances of vertebrae
as particular alliances of nodes of vertebrae in Ally(C), the operations stem( ), seed( ),
asee( ) and triv( ) appears to be functorial from Ally(C) to Com(C) in the sense that for
any pair of composable alliances of vertebrae a : v  v∗ and a∗ : v∗  v[, the relation

oper(a) ◦ oper(a∗) = oper(a∗ } a)

hold when replacing oper( ) with any of the operators previously listed. The only exception
to the foregoing identity is for the biased operator bste( ). It follows from formula (2.16)
that these relations generalise to alliances of nodes of vertebrae as follows: for any pair of
alliances of nodes of vertebrae a : p · Ω  p∗ · Ω∗ and a∗ : p∗ · Ω∗  p[ · Ω[, the following
relation holds for every stem β ∈ Ω, where φ : Ω → Ω∗ denotes the metafunction associated
with a.

(2.17) oper(aβ) ◦ oper(a∗φ(β)) = oper(a∗φ(β) } aβ) = oper((a∗ } a)β)
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Note that in the case of seed( ), the previous relation does not depend on β. In the same
fashion, the operation com( ) is functorial from Com(C) to Ally(C), in the sense that the
following equation is satisfied for any pair of composable alliances of nodes of vertebrae
a : ν  ν∗ and a∗ : ν∗  ν[.

(2.18) com(a∗)� com(a) = com(a∗ } a)

Remark 2.23. Any pair of composable alliances of nodes of vertebrae a : p ·Ω p∗ ·Ω∗ and
a∗ : p∗ · Ω∗  p[ · Ω[ induces a couple structure (see section 2.2.1.3) between the underlying
besoms of a and a∗. The couple is then given by the metafunction φ∗ : Ω∗ → Ω[ associated
with a∗ and the following commutative diagram for every stem β∗ in Ω∗.

γ[

disk(p[·φ∗(β∗))
��

seed(a∗) +3 γ∗

disk(p∗·β∗)
��

seed(a) +3 γ

φ∗(β∗) ◦ δ[1 triv(a∗β∗ )
+3 β∗ ◦ δ∗1

2.3.2.2. Action of alliances on extended nodes of vertebrae. Let C be a category. This section
defines a right action of Ally(C) on the extended nodes of vertebrae of C. Consider an
extended node of vertebrae n : γ ex ν∗ in C, encoded by a pair (κ, %), and an alliance of nodes
of vertebrae a∗ : ν∗  ν[ in C, encoded by a 5-tuple (κ∗, %∗, %′∗,κ′∗, φ∗, u∗). We will later
denote by a∗ } n the extended node of vertebrae γ ex ν[ encoded by the pair (κ ◦ κ∗, % ◦ %∗)
or, more diagrammatically, by the following diagram.

S

γ

��

Sκoo

��

S[
κ∗oo

x

γ′
[ //

γ[
��

D[1

δ[1
��

D′†
...

D2 D2%
oo D[2%∗

oo

δ[2

// S′[

β†

@@

β[ // D′[

︸ ︷︷ ︸
n

︸ ︷︷ ︸
a∗

This operation defines a right action in the sense that it is associative and neutral with respect
to the identity alliance. It is straightforward to check that this action is compatible with the
operation ext( ) in the sense that for any pair of composable alliances of nodes of vertebrae
a : ν  ν∗ and a∗ : ν∗  ν[, the following identity holds.

(2.19) a∗ } ext(a) = ext(a∗ } a)

Similarly, the action } is compatible with the operation seed( ) in the sense that for any
extended node of vertebrae n : γ  ν∗ and alliance of nodes of vertebrae a∗ : ν∗  ν[, the
following equation holds.

(2.20) seed(n) ◦ seed(a∗) = seed(a∗ } n)

Remark 2.24. Any extended node of vertebrae n : p ·Ω p∗ ·Ω∗ and alliance a∗ : p∗ ·Ω∗  
p[ · Ω[ in Ally(C) induce a couple structure between the underlying besoms of n and a∗.
The couple is given by the metafunction φ∗ : Ω∗ → Ω[ associated with a∗ and the following
commutative diagram for every stem β∗ in Ω∗.

γ[

disk(p[·φ∗(β∗))
��

seed(a∗) +3 γ∗

disk(p∗·β∗)
��

seed(n) +3 γ

φ∗(β∗) ◦ δ[1 triv(a∗β∗ )
+3 β∗ ◦ δ∗1
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2.3.2.3. Action of communications on extended nodes of vertebrae. Let C be a category. This
section defines a left action of Com(C) on the extended nodes of vertebrae of C. Consider an
extended node of vertebrae n : γ ex ν∗ in C, encoded by a pair (κ, %), and a communication
t[ : γ[  γ in Com(C), encoded by a pair (κ[, %[). We will later denote by n�t[ the extended
node of vertebrae γ[

ex ν∗ encoded by the pair (κ ◦ κ[, % ◦ %[) or, more diagrammatically, by
the following diagram.

S[

γ[
��

S
κ[oo

��

S∗
κoo

x

γ′∗ //

γ∗

��

D∗1
δ∗1
��

D′†
...

D[2 D2%[
oo D∗2%

oo

δ∗2

// S′∗

β†

??

β∗ // D′∗︸ ︷︷ ︸
t[

︸ ︷︷ ︸
n

This operation defines a left action in the sense that it is associative and neutral with respect
to the identity communication. This action is compatible with the operations seed( ) and
com( ) in the sense that for any extended nodes of vertebrae n∗ : γ∗  ν∗ and communication
t : γ  γ∗, the following identities hold.

(2.21) seed(t) ◦ seed(n∗) = seed(n∗ � t) com(n∗ � t) = com(n∗)� t
Similarly, for any pair of composable alliances of nodes of vertebrae a : ν  ν∗ and a∗ : ν∗  
ν[, it is not hard to check that the following equation is satisfied.

(2.22) ext(a∗)� com(a) = ext(a∗ } a)

2.3.3. Zoo for an elementary homotopy theory.

2.3.3.1. Zoo of an alliance of nodes of vertebrae. Let C be a category and consider an alliance
of nodes of vertebrae a : p · Ω p · Ω. A morphism f : X → Y in C will respectively be said
to be a i) fibration; ii) trivial fibration; iii) pseudofibration; iv) intraction; v) surtraction for
the alliance a if it

i) has the rlp with respect to triv(aβ) for every stem β ∈ Ω;

ii) has the rlp with respect to seed(a) and bste(aβ) for every stem β ∈ Ω;

iii) has the rlp with respect to seed(a);

iv) is simple with respect to the scale (Ω,κ,Ω);

v) is divisible by the besom (Ω,disk(p · ), seed(a));

In addition, the morphism f : X → Y will be called a weak equivalence if it is both an
intraction and a surtraction. This set of terminology will be referred to as the zoo of the
alliance a : p · Ω p · Ω.

Remark 2.25. When the alliance a is an identity on a node of vertebrae ‖γ, γ′‖·Ω in Ally(C),
the right lifting properties given in i), ii) and iii) are usual right lifting properties. In this
case, the biased square bste(aβ) is equal to its proper square stem(aβ). The right lifting
properties are then defined with respect to the arrows of the vertebra ‖γ, γ′‖ · Ω having the
same names i.e. trivial stems (β ◦ δ1), seed (γ) and stems (β). Finally, in the case where
the alliance a is an identity on a vertebra v := ‖γ, γ′‖ · β, property iv) says that f : X → Y
is simple with respect to the arrow β. For its part, property v) amounts to saying that any
arrow γ ⇒ f in C2 factorises through the diskad disk(v) : γ ⇒ β ◦ δ1.

Notice that the notions of pseudofibration and surtraction do not require the entire struc-
ture of an alliance and may be defined with respect to its underlying extended node of verte-
brae (see Proposition 2.26). Later on, it will actually be useful to have such notions defined
with respect to general extended nodes of vertebrae, which motivates the next section.
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2.3.3.2. Zoo of an extended node of vertebrae. Let C be a category and consider an extended
node of vertebrae n : γ ex p ·Ω. A morphism f : X → Y in C will respectively be said to be a
i) pseudofibration; ii) surtraction for n if it

i) has the rlp with respect to seed(n) ;

ii) is divisible by the underlying besom (Ω,disk(p · ), seed(n)).

This set of terminology will be referred to as the zoo of the extended nodes of vertebrae
n : γ ex p · Ω.

Proposition 2.26. A morphism is a pseudofibration (resp. surtraction) for an alliance of
nodes of vertebrae if and only if it is a pseudofibration (resp. surtraction) for its underlying
extended nodes of vertebrae.

Proof. Straightforward. �

In fact, one can again reduce the structure for which a pseudofibration is defined, which
only requires the structure of the underlying communication of n (see Proposition 2.27).

2.3.3.3. Zoo of a communication. Let C be a category and consider a communication t : γ  
γ. A morphism f : X → Y in C will be said to be a pseudofibration for t if it has the rlp with
respect to the commutative square seed(t) : γ ⇒ γ.

Proposition 2.27. A morphism is a pseudofibration for an extended node of vertebrae if
and only if it is a pseudofibration for its underlying communication.

Proof. Straightforward. �

2.3.4. Properties associated with zoos.

2.3.4.1. Direct properties. Let C be a category. The next propositions for which no alliance of
nodes of vertebrae, extended nodes of vertebrae or communication is specified involve a unique
such structure as defined in section 2.3.3. In this case, Proposition 2.26 and Proposition 2.27
ensure that not mentioning the type of structure along which the zoo is defined does not
matter.

Proposition 2.28. Every isomorphism in C is a pseudofibration, fibration and trivial fibra-
tion.

Proof. All isomorphisms have the rlp with respect to any commutative square in the ambient
category C. �

Proposition 2.29. Pseudofibrations, fibrations and trivial fibrations are preserved under
pullbacks.

Proof. Follows from Proposition 2.3. �

Proposition 2.30. The classes of pseudofibrations, fibrations, trivial fibrations, surtractions
and intractions are stable under retracts.

Proof. See the properties listed in section 2.2.1.4. �

The next three propositions show that the class of trivial fibrations is at the intersection
of three different other classes of the zoo.

Proposition 2.31. Every trivial fibration is an pseudofibration.

Proof. By definition. �

Proposition 2.32. Every trivial fibration is a fibration.
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Proof. By Proposition 2.14, a trivial fibration f for an alliance of nodes of vertebrae a must
have the rlp with respect to asee(a). Proposition 2.5 then implies that since f has the rlp
with respect to asee(a) and the biased square bste(a), it also has the rlp with respect to
their vertical composition triv(a). �

Proposition 2.33. Every trivial fibration is an intraction.

Proof. Remark 2.4 implies that a trivial fibration f for an alliance of nodes of vertebrae a
has the rlp with respect to the proper square stem(a). Proposition 2.8 then implies that f
is simple with respect to the underlying oriented scale of a defined in Remark 2.20. �

Proposition 2.34. Let f and g be two morphisms such that f ◦ g exists. If f ◦ g is an
intraction, then so is g.

Proof. Straightforward (see definition of simplicity with respect to a scale). �

Proposition 2.35. Every isomorphism in C is an intraction.

Proof. Follows from Proposition 2.28 and Proposition 2.33. �

Proposition 2.36. If two morphisms f : Y → Z and g : X → Y are trivial fibrations for an
identity alliance idν , then so is the composite f ◦ g.

Proof. Follows from Remark 2.25 and Proposition 1.34. �

2.3.4.2. Properties relative to actions and compositions. Let C be a category. The notations
for the alliances of nodes of vertebrae, extended nodes of vertebrae and communications that
are given in this section follow the conventions of section 2.3.1.12. The other morphisms of
C will be denoted by the letters f and g.

Proposition 2.37. If f : Y → Z is a pseudofibration for t : γ  γ∗ and g : X → Y is
a pseudofibration for t∗ : γ∗  γ[, then f ◦ g is a pseudofibration for the composite arrow
t∗ � t : γ  γ[.

Proof. Follows from Proposition 2.6 and formula (2.15). �

Proposition 2.38. If f : Y → Z is a pseudofibration for t : γ  γ∗ and g : X → Y is a
pseudofibration for n∗ : γ∗

ex ν[, then f ◦g is a pseudofibration for the composite n∗�t : γ ex ν[.

Proof. By Proposition 2.27, the morphism g : X → Y is also a pseudofibration for com(n∗) :
γ∗  γ[. It follows from Proposition 2.37 that f ◦g is a pseudofibration for com(n∗)� t. The
right equation of (2.21) then shows that f ◦ g is a pseudofibration for com(n∗� t), which, by
Proposition 2.27, implies the statement. �

Proposition 2.39. If f : Y → Z is a pseudofibration for a : ν  ν∗ and g : X → Y
is a pseudofibration for a∗ : ν∗  ν[, then f ◦ g is a pseudofibration for the composite
a∗ � a : ν  ν[.

Proof. By Proposition 2.26 and Proposition 2.27, the morphism f is a pseudofibration for
the underlying extended vertebrae ext(a) while the morphism g is a pseudofibration for the
underlying communication com(a). It follows from Proposition 2.38 that the composite f ◦g
is a pseudofibration for ext(a) � com(a[), which, by formula (2.22), implies that f ◦ g is a
pseudofibration for ext(a} a[). The statement then follows from Proposition 2.26. �

Proposition 2.40. If f : Y → Z is a fibration for a : ν  ν∗ and g : X → Y is a fibration
for a∗ : ν∗  ν[, then f ◦ g is a fibration for the composite a∗ } a.
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Proof. Let p · Ω and p∗ · Ω∗ denote the nodes of vertebrae ν and ν∗, respectively. Consider
a stem β : S′ → D′ in Ω. Since f is a fibration for a, it has the rlp with respect to triv(aβ) :
φ(β) ◦ δ∗1 ⇒ β ◦ δ1. By assumption, the stem φ(β) belongs to Ω∗ and since g is a fibration for
a∗ : p · Ω∗  ν[, it has the rlp with respect to the commutative square

triv(a∗φ(β)) : φ∗(φ(β)) ◦ δ[1 ⇒ φ(β) ◦ δ∗1
where a∗φ(β) denotes the component of a∗ at φ(β). By Proposition 2.6, it follows that f ◦ g
has the rlp with respect to triv(aβ) ◦ triv(a∗φ(β)). By formula (2.17), this means that f ◦ g
has the rlp with respect to triv((a∗ } a)β) and is hence a fibration for a∗ } a : ν  ν[ . �

Proposition 2.41. Let f and g be two morphisms such that f ◦g exists. If f is an intraction
for a : ν  ν∗ and g is an intraction for a∗ : ν∗  ν[, then f ◦ g is an intraction for the
composite a∗ } a.

Proof. Follows from Proposition 2.7. �

Proposition 2.42. If a morphism is a fibration (resp. intraction) for an alliance a, then so
is it for any composite of the form a∗ } a} a[.

Proof. Suppose that a morphism f : X → Y is a fibration for a. Proposition 2.28 shows
that the identities idX and idY are also fibrations for a∗ and a[, respectively. Applying
Propoposition 2.40 twice shows that f = idY ◦ f ◦ idX is a fibration for a∗ } a } a[. A
similar reasoning that uses Proposition 2.41 and Proposition 2.35 shows that the statement
also holds for intractions. �

Proposition 2.43. If a morphism is a pseudofibration for a communication t, then so is it
for any composite of the form n∗ } t� t[.

Proof. Suppose that a morphism f : X → Y is a fibration for a. Proposition 2.28 shows
that the identities idX and idY are also pseudofibrations for t[ and n∗, respectively. Applying
Proposition 2.38 and Propoposition 2.37 then shows that f = idY ◦ f ◦ idX is a fibration for
n∗ } t} t[. �

Proposition 2.44. If a morphism is a pseudofibration for a extended n, then so is it for any
composite of the form a∗ � n� t[.

Proof. If a morphism f is a pseudofibration for n, then so is it for the underlying extended
node of vertebrae com(n) by Proposition 2.27. It follows from Proposition 2.43 that f is a
pseudofibration for ext(a∗)� com(n)� com(t[). By formula (2.18) and formula (2.22), this
means that f is a pseudofibration for ext(a∗ } n } t[), which is equal to the extended node
of vertebrae a∗ } n} t[ itself. �

Proposition 2.45. If a morphism is a pseudofibration for an alliance a, then so is it for
any composite of the form a∗ } a} a[.

Proof. If a morphism f is a pseudofibration for a, then so is it for the underlying communica-
tion ext(a) by Proposition 2.26. It follows from Proposition 2.43 that f is a pseudofibration
for a∗ � ext(a) � com(a[), which, by formula (2.22) and formula (2.19), implies that f is a
pseudofibration for ext(a∗ } a} a[). The statement then follows from Proposition 2.26. �

Proposition 2.46. If a morphism is a surtraction for an extended node of vertebrae n, then
so is it for any composite of the form a∗ } n� t[.

Proof. Denote t : γ[  γ, n : γ ex ν∗ and a : ν∗  ν† and suppose to be given a surtraction
f for n. By definition, the morphism f is divisible by the besom (Ω∗,disk(p∗ · ), seed(n))
associated with n while the statement requires to prove that f is divisible by the besom
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(Ω†,disk(p† · ), seed(a∗ } n } t[)). Since seed(n) : γ∗ ⇒ γ and seed(t[) : γ ⇒ γ[ are
composable arrows in C2, it follows from Proposition 2.10 that the morphism f must be
divisible by the following besom.

(Ω∗,disk(p∗ · ), seed(t[) ◦ seed(n))

By the leftmost formula of (2.21), the previous besom is also the underlying besom of the
extended node of vertebrae n∗�t. Now, as noticed in Remark 2.24, the fact that a∗ and n∗�t
are composable implies that their underlying besoms form a couple of besoms. Proposition
2.11 then implies that f must be divisible by the following besom.

(Ω†,disk(p† · ), seed(n� t[) ◦ seed(a∗))

It follows from formula (2.20) that this is the besom of the composite a∗}n�t[, which proves
the statement. �

Proposition 2.47. If a morphism is a surtraction for an alliance a, then so is it for any
composite of the form a∗ } a} a[.

Proof. If a morphism f is a surtraction for a, then so is it for the underlying extended
nodes of vertebrae ext(a) by Proposition 2.26. It follows from Proposition 2.46 that f is
a pseudofibration for a∗ } ext(a) � com(a[), which, by formula (2.22) and formula (2.19),
means that f is a pseudofibration for ext(a∗ } a } a[). The statement then follows from
Proposition 2.26. �

Proposition 2.48. If a morphism is a surtraction for n : γ ex ν∗ and a fibration for a∗ :
ν∗  ν[, then it is a pseudofibration for the composite a∗ } n : γ ex ν[.

Proof. The notations of the nodes of vertebrae ν, ν∗ and ν[ follow the usual conventions.
The goal is to show that any morphism f : X → Y that is a surtraction for n and a fibration
for a∗ has the rlp with respect to seed(a∗}n) : γ[ ⇒ γ. In this respect, consider the leftmost
commutative square, below. Because f is a surtraction for n : γ ex p∗ · Ω∗, there exists a
stem β∗ ∈ Ω∗ and two arrows x′ : D∗1 → X and y′ : D′∗ → Y making the following rightmost
diagram commute (the middle diagram is its translation in C2).

(2.23) S x //

γ

��

X

f
��

D2
y
// Y

⇒ γ∗

disk(p∗·β∗)
��

seed(n) +3 γ

x
��

β∗ ◦ δ∗1
x′

+3 f

⇒ S∗
γ′∗

//

γ∗

��

x◦κ
((D∗1

β∗◦δ∗1
��

x′ // X

f

��

D∗2
β∗◦δ∗2 //

y◦%

66D′∗ y′ // Y

The rightmost commutative diagram of (2.23) provides the following left commutative square.
Now, since f is a fibration for a∗ : p∗ · Ω∗  ν[, there exists a lift h : D′∗ → X making the
corresponding right diagram commute.

(2.24) D∗1
β∗◦δ∗1

��

x′ // X

f

��

D′∗
y′

// Y

⇒ D[1

φ∗(β∗)◦δ[1
��

x′◦%′∗ // X

f

��

D′[ y′◦u∗β∗
//

h

99

Y

Because n : γ ex ν∗ and a∗ : ν∗  ν[ are composable, Remark 2.24 shows that the underlying
besoms of n and a∗ form a couple. In particular, Remark 2.24 produces the following left
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commutative diagram. Pasting this diagram with the middle commutative diagram of (2.23)
then provides the corresponding right commutative diagram.

γ[

disk(p[·φ∗(β∗))
��

seed(a∗) +3 γ∗

disk(p∗·β∗)
��

seed(n) +3 γ

φ∗(β∗) ◦ δ∗1 triv(a∗β∗ )
+3 β∗ ◦ δ1

⇒ γ[

disk(p[·φ∗(β∗))
��

seed(a∗) +3 γ∗

disk(p∗·β∗)
��

seed(n) +3 γ

x
��

φ∗(β∗) ◦ δ∗1 triv(a∗β∗ )
+3 β∗ ◦ δ1

x′
+3 f

The outer commutative square of the latest diagram may be rewritten in the form of the
leftmost diagram, below. Merging this diagram with the lifting obtained in the rightmost
commutative diagram of (2.24) then provides the commutative diagram on the right, below.

S[
γ′
[

//

γ[
��

x◦κ◦κ∗
**D[1

φ∗(β∗)◦δ[1
��

x′◦%′∗ // X

f

��

D[2
φ∗(β∗)◦δ[2 //

y◦%◦%′∗

44D′[ y′◦u∗β∗ // Y

⇒ S[
γ[
��

x◦κ◦κ∗ // X

f

��

D[2

h◦φ∗(β∗)◦δ[2

66

y◦%◦%′∗
// Y

This shows that the leftmost commutative diagram of (2.23) admits a lift along the commu-
tative square seed(a∗ } n) : γ[ ⇒ γ. �

Proposition 2.49. Let f and g be two morphisms such that f ◦ g exists. If f ◦ g is a
surtraction for n : γ ex ν∗ and f is an intraction for a∗ : ν∗  ν[, then g is a surtraction for
the composite a∗ } n : γ ex ν[.

Proof. We are going to prove that g is divisible by the underlying besom of a∗ } n : γ ex ν[.
To do so, denote g : X → Y , f : Y → Z and consider the leftmost commutative diagram,
below. Post-composing this diagram with f : Y → Z leads to the middle commutative square.
Because f ◦ g is divisible by the underlying besom of n : γ ex ν∗, there exists β∗ ∈ Ω∗ and
two morphisms x′ : D∗1 → X and y′ : D′∗ → Y making the corresponding rightmost diagram
commute.

(2.25) S x //

γ

��

X

g

��

D2 y
// Y

⇒ S x //

γ

��

X

f◦g
��

D2
f◦y

// Z

⇒ S∗
γ′∗

//

γ∗

��

x◦κ
((D∗1

β∗◦δ∗1
��

x′ // X

f◦g
��

D∗2
β∗◦δ∗2 //

f◦y◦%

77D′∗
y′
// Z

For now, note that the preceding rightmost diagram gives a factorisation of the composite
x ◦ κ in terms of the morphisms x′ with γ′∗. Pre-composing the leftmost diagram of (2.25)
with the commutative square seed(n) : γ ⇒ γ∗ and using the previous expression of x ◦ κ
provides the middle commutative diagram, below. Then, using the span made by γ∗ and
γ′∗ and forming the pushout associated with the base ‖γ∗, γ′∗‖ of ν∗ provides a canonical
morphisms h : S′∗ → Y making the rightmost diagram commute.

(2.26) S x //

γ

��

X

g

��

D2 y
// Y

⇒ S∗

x′◦γ′∗
&&κ //

γ∗

��

S x //

γ

��

X

g

��

D∗2 %
// D2 y

// Y

⇒ S∗ γ′∗ //

γ∗

��

x◦κ
((D∗1

δ∗1
��

x′ // X

g

��

D∗2
δ∗2 //

y◦%

66S′∗
h // Y
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Post-composing the earlier rightmost diagram with f : Y → Z, we see that the composite
f ◦ h : S′∗ → Z defines a solution for the leftmost commutative diagram of (2.27). Similarly,
the rightmost diagram of (2.25) exposes the composite y′ ◦ β∗ : S′∗ → Z as a solution for the
same problem. If follows from the universality of the pushout S′∗ that the two arrows are
equal, which provides the succeeding middle commutative diagram. Now, because f is an
intraction for a∗ : p∗ · Ω∗  p[ · Ω[, there exists a stem β[ ∈ Ω[ and a morphism h′ : D′[ → Y
factorising the composite h ◦ κ′∗ as shown in the following rightmost diagram.

(2.27) S∗ γ′∗ //

γ∗

��

D∗1
δ∗1
��

f◦g◦x′

��

D∗2
δ∗2 //

f◦y◦%

88S′∗ // Y

⇒ S′∗
β∗
��

h // Y

f

��

D′∗
y′
// Z

⇒ S′[
β[
��

κ′∗ // S′∗
h // Y

D′[

h′

77

Expressing the rightmost diagram of (2.26) in C2 gives the following leftmost commutative
diagram where the prevertebra p∗ of ν∗ is seen as an arrow γ∗ ⇒ δ∗1 in C2. Pasting this diagram
with the commutative cuboid encoding the underlying alliance of prevertebrae p∗  p[ of a∗
gives the middle commutative diagram. The outer commutative square of this diagram in C
is then given below on the right.

γ∗
seed(n)+3

p∗
��

γ

x

��
δ∗1 h

+3 g

⇒ γ[
seed(a∗)+3

p[
��

γ∗
seed(n)+3

p∗
��

γ

x

��
δ[1asee(a∗)

+3 δ∗1 h
+3 g

⇒ S[ γ′
[
//

γ[
��

x◦κ◦κ∗
))D[1

δ[1
��

x′◦%′ // X

g

��

D[2
δ[2 //

y◦%◦%∗

55S′[ h◦κ′∗ // Y

Finally, merging the latest rightmost commutative diagram with the rightmost commutative
diagram of (2.27) provides the following left commutative diagram.

S[ γ′
[
//

γ[
��

x◦κ◦κ∗
))D[1

β[◦δ[1
��

x′◦%′ // X

g

��

D[2
β[◦δ[2 //

y◦%◦%∗

55D′[
h′ // Y

⇔ γ[
seed(a∗}n) +3

disk(p[·β[)
��

γ

x

��
β[ ◦ δ[2 x′◦%′

+3 g

The preceding right diagram is a reformulation of the leftmost one in C2, thereby showing
that g is divisible by the besom of a∗ } n : γ ex ν[. �

2.3.4.3. Towards more properties. Unfortunately, the type of statement provided by Propo-
sition 2.28 does not hold for surtractions in general. In order to include isomorphisms in the
class of surtractions, we need a bit more structure on the underlying nodes of vertebrae. This
leads us to the next section, which introduces the notion of reflexive vertebra (see section
2.3.5). Similarly, the type of statement provided by Proposition 2.41 does not hold for sur-
tractions in general. Such a property may only be achieved in the case of surtractions when
restricting to extended nodes of vertebrae as the structure of alliance of nodes of vertebra is
too rich for such a property. The idea will be to define a new type of composition on extended
node of vertebrae, called a framing of extended nodes of vertebrae (see section 2.3.6). This
composition will have some similarity with the usual composition of cospans (i.e. using a
pushout ; see [34]).
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2.3.5. Reflexive vertebrae.

2.3.5.1. Reflexive prevertebrae. Let C be a category. A prevertebra ‖γ, γ′‖ in C will be said
to be reflexive if it is endowed with a morphism λ : D1 → D2 such that the following left
diagram commutes.

S
γ′
//

γ

��

D1

λ~~

D2

⇒ S
γ′
//

xγ

��

D1

δ1
��

λ

��

D2
δ2 // S′ // D2

The universal solution S′ → D2 induced by this diagram over the pushout S′ (see previous
right diagram) will be called boundary contraction of ‖γ, γ′‖. The morphism λ will be referred
to as the reflexive transition of the prevertebra.

2.3.5.2. Reflexive vertebrae. Consider a reflexive prevertebra p as in section 2.3.5.1. A ver-
tebra p · β will be said to be reflexive above p if it is equipped with a morphism α : D′ → D2

such that the boundary contraction of p is equal to the composite

S′
β
// D′ α // D2.

The morphism α will be called the homotopy contraction of p · β.

2.3.5.3. Reflexive nodes of vertebrae. Let p be a reflexive prevertebra as defined in section
2.3.5.1. A node of vertebrae p ·Ω will be said to be reflexive above p if one of its vertebrae is
reflexive above p.

2.3.5.4. Reflexive extended nodes of vertebrae. Let C be a category. An extended node of
vertebrae will be said to be reflexive in C if its associated node of vertebrae is reflexive in
C. The next propositions consider a reflexive extended node of vertebrae n : γ ex ν in the
category C. The notations for n shall follow the conventions of section 2.3.1.12.

Proposition 2.50. Every pseudofibration for n is a surtraction for n.

Proof. Let f : X → Y be a pseudofibration for n : γ ex ν. We are going to show that f
is divisible by the underlying besom of n. Start with the following leftmost commutative
square. Because f is a pseudofibration, it has the rlp with respect to seed(n) : γ ⇒ γ, which
means that there exists a lift h : D2 → X making the succeeding middle diagram commute.
Using the reflexive structure associated with the base of the node of vertebrae ν turns this
diagram into the rightmost one.

(2.28) S x //

γ

��

X

f
��

D2 y
// Y

⇒ S

γ
��

x◦κ // X

f

��

D2 y◦%
//

h

??

Y

⇒ S γ′ //

γ
��

x◦κ
**D1 λ // D2

y◦%
��

h // X

f

��

D2 y◦%
// Y

By assumption on n, there exists a reflexive vertebra p · β in the node of vertebrae ν. The
reflexive structure associated with this vertebra allows us to factorise the rightmost commu-
tative diagram (2.28) into the following left commutative diagram (by making the homotopy
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contraction appear in the left-top corner).

S γ′ //

γ

��

x◦κ
**D1

δ1
��

λ // D2 h // X

f

��

S′
α◦β
// D2

y◦%
��

D2

δ2

??

y◦%
// Y

⇒ γ
seed(n) +3

disk(p◦β)
��

γ

x

��
β ◦ δ1

x′
+3 f

This diagram implies the preceding right commutative square in C2, where the arrow x′ :
β ◦ δ1 ⇒ f is encoded by the arrows h and y ◦ % ◦ α. This last diagram shows that f is
divisible by the underlying besom of n : γ ex ν. �

We easily deduce that

Proposition 2.51. Every trivial fibration for n is a fibration and a weak equivalence for n.

Proof. It follows from Proposition 2.32 and Proposition 2.33 that a trivial fibration for n is
a fibration and an intraction. It follows from Proposition 2.31 and Proposition 2.50 that a
trivial fibration is a surtraction, which proves the statement. �

2.3.5.5. Coreflexive alliances. Let C be a category. An alliance of nodes of vertebrae will be
said to be coreflexive in C if its domain is reflexive. The next few results involve a coreflexive
alliance a : ν  ν in Ally(C), which implies that the domain ν contains at least a reflexive
vertebra.

Lemma 2.52. Let i : X → Y be a morphism in C. If there exists an intraction r : Y → X
for n such that the equality r ◦ i = idX holds, then i is a weak equivalence for n.

Proof. The fact that the morphism i is an intraction is a consequence of Proposition 2.34
and Proposition 2.35. Let us now prove that i is a surtraction for a : ν  ν. Start with a
commutative diagram as given below on the left. Post-composing this commutative square
with the arrow r : Y → X and using the relation r ◦ i = idX implies the equation u =
r ◦ i ◦ u = r ◦ v ◦ γ. This equation leads to the commutativity of the following right diagram.

(2.29) S u //

γ

��

X

i
��

D2
v // Y

⇒ S
u

))

γ

��

γ′ // D1 r◦v◦λ // X

i
��

D2
v // Y

Denote by h : S′ → Y the universal solution induced after formation of the pushout S′ in the
right diagram of (2.29) over the span of the prevertebra ‖γ, γ′‖ (see left diagram of (2.30)).
Because the equation r ◦ i = idX holds, post-composing the right diagram of (2.29) with r
implies that r ◦ h : S′ → X defines a solution for the following right commutative diagram
over the pushout S′.

(2.30) S

x

u

))

γ

��

γ′ // D1

δ1
��

r◦v◦λ // X

i
��

D2 δ2 //

v

55S′ h // Y

⇒ S

xγ

��

γ′ // D1

δ1
��

r◦v◦λ

��

D2 δ2 //

r◦v

55S′ // X
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If p · β denotes the reflexive vertebra of ν, the reflexive structure of p · β implies that the
composite r ◦ v ◦α ◦β : S′ → X is also a solution of the right commutative diagram of (2.30).
By the universal property of a pushout, this implies that the following leftmost diagram
must commute. Because r is an intraction for a : ν  ν, it is simple for the underlying

scale (Ω,κ,Ω) of a. This means that there exist a stem β : S′ → D′ in Ω and a morphism

h′ : D′ → Y such that the following right triangle commutes.

(2.31) S′

β
��

h // Y

r
��

D′
r◦v◦α

// X

⇒ S′

β
��

κ′ // S′ h // Y

D′
h′

77

Now, expressing the left diagram of (2.30) in C2 gives the next left commutative diagram
where the prevertebra p of ν is seen as an arrow γ ⇒ δ1 in C2. Pasting this diagram with the
commutative cuboid encoding the underlying alliance of prevertebrae p  p of a gives the
middle commutative diagram. The outer commutative square of this diagram in C is then
given below on the right, where r′ : D1 → X stands for the composite r ◦ v ◦ λ ◦ %′.

γ
idγ +3

p

��

γ

x
��

δ1
r◦v◦λ

+3 i

⇒ γ
seed(a)+3

p
��

γ
idγ

p

��

γ

x

��
δ1

asee(a)
+3 δ1

r◦v◦λ
+3 i

⇒ S γ′ //

γ
��

x◦κ
((D1

δ1
��

r′ // X

i

��

D2
δ2 //

y◦%

66S′ h◦κ′ // Y

Finally, merging the latest right commutative diagram with the right commutative diagram
of (2.31) provides the following left commutative diagram.

S γ′ //

γ
��

x◦κ
((D1

β◦δ1

��

r′ // X

g

��

D2
β◦δ2

//

y◦%

66D′ h′ // Y

⇔ γ
seed(a) +3

disk(p·β)
��

γ

x

��
β ◦ δ1

r′
+3 g

The corresponding right diagram is a reformulation of the left one in C2, thereby showing
that i is divisible by the besom of a : ν  ν. �

The previous lemma implies – and is even equivalent to – the next proposition.

Proposition 2.53. Every isomorphism in C is a surtraction for n.

Proof. Let f : X → Y be an isomorphism in C. By definition, its inverse f ′ : Y → X
implies the relation f ′ ◦ f = idX in C. By Proposition 2.52, the statement is proven if the
isomorphism f ′ is an intraction. But this is precisely the statement of Proposition 2.35. �

2.3.6. Communications and framings.

2.3.6.1. Communication of extended prevertebrae. The notion of communication of extended
prevertebrae will mostly be used together with the notions of pseudofibration and surtraction.
Let C be a category. Two extended prevertebrae p : γ ex p∗ and p[ : γ[

ex p† will be said to
communicate if the coseed of p (given by the coseed of p∗) is equal to the preseed of p[ (see
section 2.3.1.4). In other words, the prevertebra p∗ is of the form ‖γ∗, γ[‖. More generally,
two extended prevertebrae p : γ ex p∗ and p[ : γ[

ex p† will be said to communicate via a
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communication t : γ′∗  γ[ in Com(C) if the arrow γ′∗ denotes the coseed of p∗. In this case,
the two extended prevertebrae p and p[ � t : γ′∗

ex p[ communicate.

2.3.6.2. Framing of extended prevertebrae. First, the reader might want to go back to section
2.1 to remind themselves about the intuition behind the concept of framing (of vertebrae).
Let now C be a category and consider two extended prevertebrae (κ, %) : γ ex ‖γ∗, γ′∗‖ and
(κ∗, %∗) : γ′∗

ex ‖γ[, γ′[‖ that communicate in C. This type of data implies that the following
diagram commutes.

S[
κ∗ //

γ∗◦κ∗
��

S∗
κ //

γ∗
��

S

γ

��

D∗2 D∗2 %
// D2

An extended prevertebra p• will be said to frame the previous pair of extended prevertebrae
if it is of the form (κ ◦κ∗, %) : γ ex ‖γ∗ ◦κ∗, γ′[‖ up to a choice of pushout object in C. In this
case, the arrow seed(p•) is given by the outer commutative square of the foregoing diagram.

Remark 2.54. The framing of two extended prevertebrae that both lift to alliances of
prevertebrae (see the dotted arrows of the lefmost diagram, below) do not necessarily provides
an extended prevertebra that lifts to an alliance of prevertebrae in C (see right diagram,
below). This fact mainly explains our interest in studying extended vertebrae along with
alliances of vertebrae.

S[ // S∗ // ·

D[1

??

D∗1

__

%∗
// D∗2

??

D∗2

__

%
// D2

OO

S[

x

__

γ′
[

??

γ[

κ∗
// S∗

x

__

γ′∗

??

γ∗

κ
// S
γ
OO

⇒

S•
? // ·

D[1

??

D∗2

__

%
// D2

?

OO

S[

x

__

γ′
[

??

γ∗◦κ∗

κ
// S
γ
OO

Remark 2.55. If the two extended prevertebrae γ ex ‖γ∗, γ′∗‖ and γ′∗
ex ‖γ[, γ′[‖ are reflexive,

then so is p•. The reflexive transition associated with the prevertebra ‖γ∗ ◦κ∗, γ′[‖ is given by
the following composite arrow, where λ∗ and λ[ stand for the respective reflexive transitions
of the prevertebrae ‖γ∗, γ′∗‖ and ‖γ[, γ′[‖.

D[1
λ[ // D[2

%∗
// D∗1

λ∗ // D∗2

2.3.6.3. Framing of extended vertebrae. Let C be a category and (κ, %) : γ ex p∗ and (κ∗, %∗) :
γ′∗

ex p[ be two communicating extended prevertebrae admitting a framing extended prever-
tebra p• : γ ex p• in C. An extended vertebra n• of the form p• · β• will be said to frame two
extended vertebrae of the form (κ, %) : γ ex p∗ · β∗ and (κ∗, %∗) : γ′∗

ex p[ · β[ if it is equipped
with a pushout of the form given below on the left as well as a morphism η : D′• → E, called
cooperadic transition, making the following right-hand diagram commute.

(2.32) D[2

x

β∗◦δ∗1◦%∗ //

β[◦δ[2
��

D′∗
ε1

��

D′[ ε2
// E

S′•
η◦β•

&&

D[1
δ•1oo

ε2◦β[◦δ[1
��

D∗2

δ•2

OO

ε1◦β∗◦δ∗2
// E

The next proposition extends Remark 2.55 to the notion of extended vertebrae.

Proposition 2.56. If both extended vertebrae (κ, %) · β and (κ∗, %∗) · β∗ are reflexive, then
so is the framing p• · β•.
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Proof. Let λ∗ and λ[ denote the respective reflexive transitions of p∗ and p[. We are going to
show that the boundary contraction induced by the reflexive transition λ∗ ◦%∗ ◦λ[ : D[1 → D∗2
defined in Remark 2.55 factorises through β• : S′• → D′•. It follows from the equations
λ∗ = α∗ ◦ β∗ ◦ δ∗1 and idD[2

= α[ ◦ β[ ◦ δ[2 (coming from the reflexivity of p∗ and p[) that

the following left diagram commutes. The outer commutative square of this diagram then
implies the existence of a canonical arrow over the pushout square of (2.32) as shown below
on the right.

D[2
λ∗◦%∗

&&

β∗◦δ∗1◦%∗ //

β[◦δ[2
��

D′

α∗

��

D′[ λ∗◦%∗◦α[
// D∗2

⇒ D[2

x
β∗◦δ∗1◦%∗ //

β∗◦δ∗2
��

D′∗
ε1

��

α∗

��

D′[ ε2 //

λ∗◦%∗◦α[

44E α′ // D∗2

Now, composing the right-hand diagram of (2.32) with the arrow α′ : E→ D∗2 and using the
relations provided by the preceding right commutative diagram together with the equations
λ[ = α[ ◦ β[ ◦ δ[1 and idD∗2 = α∗ ◦ β∗ ◦ δ∗2 leads to the following left commutative diagram.

S′•
η◦β•

&&

D[1
δ•1oo

ε2◦β[◦δ[1
��

λ∗◦%∗◦λ[

��

D∗2
idD∗2

44

δ•2

OO

ε1◦β∗◦δ∗2 // E α′ // D∗2

⇒ S•
γ′• //

γ•

��

x

D[1
δ•1
��

λ∗◦%∗◦λ[

��

D∗2
idD∗2

66δ•1 // S′• // D∗2

By universality, the composite arrow α′ ◦ η ◦ β• : S′• → D∗2 must be a solution of the problem
given on the above right and hence equal to the boundary contraction of the prevertebra
p• := ‖γ•, γ′• : S′•‖. This exposes a factorisation of the boundary contraction by the stem β•
and thus provides p• · β• with a reflexive structure where the homotopy contraction is given
by the composite arrow α′ ◦ η : D′• → D∗2. �

Remark 2.57. Other notions of framing will arise in Chapter 3. These will be defined with
respect to extended vertebrae whose spherical transitions are identities. In Chapter 4 will be
explained how to transform any extended vertebra into these.

2.3.6.4. Framing for extended nodes of vertebrae. Let C be a category and p : γ ex p∗ and
p∗ : γ′∗

ex p[ be two extended prevertebrae framed by a third one p• : γ ex p• in C. An
extended node of vertebrae n• of the form p• · Ω• will be said to frame two extended nodes
of vertebrae of the form n := p · Ω∗ and n∗ := p∗ · Ω[ if every pair of extended vertebrae
v : γ ex p∗ · β∗ and v∗ : γ′∗

ex p[ · β[, taken in n and n∗, is framed by one in n•. Endowed with
such a structure, the next proposition follows.

Proposition 2.58. Let f and g be two morphisms such that f ◦g exists. If f is a surtraction
for n and g is a surtraction for n∗, then f ◦ g is a surtraction for n•.

Proof. Our goal is to prove that the composite f ◦ g is divisible by the underlying besom of
n•. By definition, the base p• must be of the form γ ex ‖γ∗ ◦ κ∗, γ′[‖. Denote g : X → Y and
f : Y → Z and consider a commutative square as given below on the left. Rearranging this
diagram a little gives the one in the middle. Now, because f is a surtraction for the extended
node of vertebrae n : γ ex p∗ · Ω∗, there exists β∗ ∈ Ω∗ and two morphisms x′ : D∗1 → X and
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z′ : D′∗ → Z making the following rightmost diagram commute.

(2.33) S x //

γ

��

X

f◦g
��

D2 z
// Z

⇒ S
g◦x
//

γ

��

X

f
��

D2 z
// Z

⇒ S∗

g◦x◦κ
((

γ∗

��

γ′∗ // D∗1 x′ //

β∗◦δ∗1
��

Y

f

��

D∗2
z◦%

77

β∗◦δ∗2 // D′∗ z′ // Z

Note that the top part of the last commutative diagram provides the next left commutative
square. Because g is a surtraction for the extended node of vertebrae n : γ′∗

ex p[ · Ω[, there
exists β[ ∈ Ω[ and two morphisms x′′ : D[1 → X and y : D′[ → Y making the right-hand
diagram in (2.34) commute.

(2.34) S∗
x◦κ //

γ′∗
��

X

g

��

D∗2 x′
// Y

⇒ S[

x◦κ◦κ∗
((

γ[
��

γ′
[
// D[1 x′′ //

β[◦δ[1
��

Y

g

��

D[2
x′◦%∗

66

β[◦δ[2 // D′[ y // Y

As illustrated below, pre-composing the rightmost diagram of (2.33) with κ∗ and using the
diagrammatic relation involved in the arrow seed(n∗) : γ[ ⇒ γ∗ (precisely, in the top part of
the resulting diagram) gives rise to the right-hand commutative diagram, below.

S[
κ∗ // S∗

g◦x◦κ
((

γ∗

��

γ′∗ // D∗1 x′ //

β∗◦δ∗1
��

Y

f

��

D∗2
z◦%

77

β∗◦δ∗2 // D′∗ z′ // Z

& S[
κ∗ //

γ[
��

S∗

γ′∗
��

D[2 %∗
// D∗2

⇒ S[

g◦x◦κ◦κ∗
))

γ∗◦κ∗
��

γ′
[
// D∗1 x′◦%∗ //

β∗◦δ∗1◦%∗
��

X

f

��

D∗2
z◦%

55

β∗◦δ∗2 // D′∗ z′ // Z

Now, inserting the diagramatic relation of the right commutative diagram of (2.34) into
the top part of the previous rightmost commutative diagram provides the left commutative
diagram of (2.35). By assumption, there exists an extended vertebra p• · β• in p• · Ω• that
frames the pair of extended vertebrae n : γ ex p∗ ·β∗ and n∗ : γ′∗

ex p[ ·β[, say via a cooperadic
transition η : D′ → E. In particular, one may form the associated pushout E in the bottom
right rectangle of the following left diagram (see pushout square of (2.32)). The universal
property of E, provides a canonical morphism h : E→ Z making the following right diagram
commute.

(2.35) S[ γ′
[
//

x◦κ◦κ∗
**

γ∗◦κ∗

��

γ[
��

D[1
β[◦δ[1
��

x′′ // X

g

��

D[2
x′◦%∗

66

β∗◦δ∗1◦%∗
��

β[◦δ[2 // D′[ y // Y

f

��

D∗2
z◦%

44

β∗◦δ∗2 // D′∗ z′ // Z

⇒ S[ //

��

��

D[1

��

// X

��

D[2

xβ∗◦δ∗1◦%∗
��

β[◦δ[2 // D′[
ε1

��

y // Y

f

��

D∗2 // D′∗
y′

77
ε1 // E h // Z

After inserting the previous right diagram into the left one and using the relations involved in
the right diagram of (2.32), one deduces that the next diagram commutes. The left trapezoid
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of the next diagram is obtained from the prevertebra associated with the extended vertebra
n•, which must be of the form ‖γ∗ ◦ κ∗, γ′[‖.

S

x◦κ◦κ∗
**

γ′
[
//

γ∗◦κ∗

��

D[1
δ•1
��

x′′ // X

g

��

S′• η◦β• // D′•
h

��

Y

f

��

D∗2
z◦%

44

δ•2

>>

β◦δ2 // D′ z′ // Z

This last diagram exactly states that the composite f ◦g is divisible by the underlying besom
of the extended node of vertebrae n• : γ ex ‖γ∗ ◦ κ∗, γ′[‖ · Ω•. �

We also deduce from the previous section the following proposition.

Proposition 2.59. If both extended nodes of vertebrae n and n∗ are reflexive, then so is the
framing n•.

Proof. Follows from Proposition 2.56. �

2.3.7. Reflections and reversions.

2.3.7.1. Reflection of nodes of vertebrae. Let C be a category and ν and ν∗ be two nodes of
vertebrae in C. The node of vertebrae ν will be said to be reflected by the node of vertebrae
ν∗ if it is equipped with an alliance of nodes of vertebrae ν  νrv

∗ .

2.3.7.2. Reversible alliances of nodes of vertebrae. Let C be a category and a : ν  ν∗ be an
alliance of nodes of vertebrae in C. The alliance a will be said to be reversible if it is equipped
with two reflections r : ν  νrv and r∗ : ν∗  νrv

∗ such that arv = r∗ } a } rrv. In this case,
the dual arv is also reversible as the previous equation implies the relation a = rrv∗ } arv } r.

Proposition 2.60. Suppose that a is a reversible alliance of nodes of vertebrae. If a mor-
phism is a fibration (resp. trivial fibration; pseudofibration; intraction; surtraction) for a,
then so is it for the dual arv.

Proof. Follows from Proposition 2.42, Proposition 2.47 and Proposition 2.45. �

The next property shows that right properness – i.e. the property that the pullback of
a weak equivalence along a fibration is still a weak equivalence – naturally lies in a dual
context.

Proposition 2.61. If f : X → Y is a surtraction for n : γ  ν∗ and g : Z → Y is a
fibration for a dual alliance arv

∗ : νrv
∗  νrv

[ , then every pullback of f along g is a surtraction
for a∗ � n : γ  ν[.

Proof. To show the statement, start with a pullback of f : X → Y along g : Z → Y as the
one given below on the left. We are going to show that f∗ : P → Z is divisible by the besom
of a∗ � n : γ  ν[. To do so, start with the middle commutative square, below. Pasting
the leftmost commutative diagram with the middle one along f∗ and using the fact that f is
divisible by the besom of n : γ  ν∗ allows us to show that there exists a vertebra ‖γ∗, γ′∗‖·β∗
in ν∗ and two arrows x′ : D∗1 → X and y′ : D′∗ → Y making the following rightmost diagram
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commute.

(2.36) P

f∗

��

g∗
// X

f
��

Z
g
// Y

x
& S x //

γ

��

P

f∗

��

D2 y
// Z

⇒ S∗
γ∗

��

γ′∗

//

g∗◦x◦κ
((D∗1

β∗◦δ∗1
��

x′ // X

f

��

D∗2
g◦y◦%

66

β∗◦δ∗2 // D′∗ y′ // Y

In particular, the lower part of the earlier diagram provides the following left commutative
diagram. Now, because g : Z → Y is a fibration for arv

∗ : νrv
∗  νrv

[ , it has the rlp with respect

to the commutative square triv(arv
∗ ) : φ∗(β) ◦ δ[2 ⇒ β∗ ◦ δ∗2 . In other words, there exists a lift

h : D′[ → Z making the following right diagram commute.

(2.37) D∗2
β∗◦δ∗2

��

v◦%
// Z

g

��

D′∗
y′
// Y

⇒ D[2

φ∗(β∗)◦δ[2
��

%∗
// D∗2

v◦%
// Z

g

��

D′[

h

77

u∗β∗

// D′∗
y′
// Y

Now, because n : γ ex ν∗ and a∗ : ν∗  ν[ are composable, Remark 2.24 shows that the
underlying besoms of n and a∗ form a couple structure and provides the following commutative
diagram on the left. On the other hand, a reformulation of the rightmost commutative
diagram of (2.36) in the arrow category C2 provides the commutative diagram given below
on the right.

γ[

disk(p[·φ∗(β∗))
��

seed(a∗) +3 γ∗

disk(p∗·β∗)
��

seed(n) +3 γ

φ∗(β∗) ◦ δ∗1 triv(a∗β∗ )
+3 β∗ ◦ δ1

γ∗

disk(p∗·β∗)
��

seed(n) +3 γ

g∗◦x
��

β∗ ◦ δ1
x′

+3 f

Pasting the previous two commutative diagrams in the obvious way leads to the left following
commutative diagram in C2. The outer commutative square of this diagram may be rewritten
in the form of the following rightmost diagram in C.

γ[

disk(p[·φ∗(β∗))
��

seed(a∗) +3 γ∗

disk(p∗·β∗)
��

seed(n) +3 γ

g∗◦x
��

φ∗(β∗) ◦ δ∗1 triv(a∗β∗ )
+3 β∗ ◦ δ1

x′
+3 f

⇒ S[
γ′
[

//

γ[
��

g∗◦x◦κ◦κ∗
**D[1

φ∗(β∗)◦δ[1
��

x′◦%′∗ // X

f

��

D[2
φ∗(β∗)◦δ[2 //

y◦%◦%′∗

44D′[ y′◦u∗β∗ // Y

Merging the bottom part of the earlier right diagram with the lifting obtained in the right
commutative diagram of (2.37) provides the commutative diagram given below on the left.
Pulling back f : X → Y along g : Z → Y in this diagram provides the existence of a canonical
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morphism h′ : D[1 → P making the following right diagram commute.

S[
γ[
��

γ′
[

//

g∗◦x◦κ◦κ∗
**D[1

φ∗(β∗)◦δ[1
��

x′ // X

f

��

D[2 φ∗(β∗)◦δ[2 //

y◦%◦%∗
&&

D′[
h
��

y′ // Y

Z

g

88

⇒ S[
γ[
��

γ′
[

//

x◦κ◦κ∗
))D[1

φ∗(β∗)◦δ[1
��

h′
// P

f∗

��

D[2
y◦%◦%∗

55φ∗(β∗)◦δ[2 // D′[ h // Z

This last diagram finishes the proof of the statement. �

The previous statement does not have any version in terms of intractions. Right proper-
ness mainly relies on the transfer of surtractions. The transfer of intractions along pullbacks
is instead subtly done under the transfer of surtractions. This is possible when surtractions
happens to emcompass all the intractions. Such a phenomenon may already be noticed in
the statement of Proposition 2.9. Proving the stability of intractions under pullbacks in
such a way would also require one to prove that if a morphism is simple with respect to the
scale ({γ},κ ◦ κ∗, {γ′[}), then it is simple with respect to any scale (Ω,κ′,Ω). A result such
as Proposition 2.16 would therefore allow one to conclude. This will be studied further in
Chapter 4.

2.3.8. From vertebrae to homotopy theories.

2.3.8.1. Towards homotopy theories. This section resumes and combines the results of sec-
tions 2.3.1, 2.3.5, 2.3.6 and 2.3.7 with the goal of retrieving the usual properties generally
satisfied by homotopy theories. To do so, we will suppose given a certain node of vertebrae
ν := p · Ω in some category C and try to retrieve classical statements of the theory of model
categories for the zoo of an identity alliance idν : ν  ν in Ally(C). Thus, all the terms
given in this section such as ‘weak equivalence’, ‘fibrations’ and ‘cofibrations’ should be read
as being ‘for idν ’ when the associated alliance is not specified. In addition, we will assume
that

1) the node of vertebrae ν is reflexive;

2) the underlying extended node of vertebrae of idν frames two copies of itself, which
forces its coseed to be equal to its seed.

First of all, it is worth noting that the classes of fibrations, trivial fibrations, pseudofibrations
and weak equivalences are coherent C-classes (see Proposition 2.28 and Proposition 2.35 for
the isomorphisms and Proposition 2.39, Proposition 2.40 and Proposition 2.41 for stability
under composition). In fact, the auto-framing structure associated with idν is almost sufficient
to prove the entire two-out-of-six property and hence the two-out-of-three property.

Theorem 2.62. Let f , g and h be morphisms such that the composite f ◦ g ◦ h exists. If
f ◦ g and g ◦ h are weak equivalences for idν , then g is an intraction and both h and f ◦ g ◦ h
are weak equivalences for idν .

Proof. First, notice that the relation idν = idν } idν holds. Now, if the composite arrows
f ◦g and g◦h are intractions, then so are g, h and f ◦g◦h by Proposition 2.34 and Proposition
2.41. If g ◦ h is also a surtraction, then h is a surtraction by Proposition 2.49. Finally, if, in
addition f ◦ g is a surtraction, then f ◦ g ◦ h is a surtraction by Proposition 2.58. �



76 2. Vertebrae

The proof of the two-out-of-six property will be finished in Chapter 3 by using a much
more general notion of framing. On the other hand, the fact that p · Ω is reflexive almost
proves axiom M3 of section 1.2.3.3.

Theorem 2.63. A trivial fibration is both a fibration and a weak equivalence. Conversely, a
fibration that is a weak equivalence is a pseudofibration.

Proof. Follows from Proposition 2.48, Proposition 2.51 and the fact that relation idν =
idν } idν holds. �

The previous result exactly corresponds to the first part of axiom M3 of section 1.2.3.3
when every pseudofibration is a trivial fibration, which almost always happens in practice.
In the case of the identity alliance idν : ν  ν, this is equivalent to saying that if a morphism
has the rlp with respect to the seed of p, then it has the rlp with respect to every stem β ∈ Ω.
In general, this phenomenon will be a consequence of Proposition 2.14 when combined with
a generalised notion of ‘saturation’. This last statement will be made clearer in the Chapter
4. Finally, some examples may not follow the previous idea and rely on the following lemma.

Lemma 2.64. Suppose that there exists an arrow ι : S′ → D1 through which all the stems of
Ω factorise (i.e. β = h ◦ ι). If the pushout of any stem β along ι is the composite β ◦ δ1, then
a fibration that is a weak equivalence is a trivial fibration.

Proof. By Proposition 2.48, it only suffices to prove the right lifting property with respect to
every stem β ∈ Ω. Let f : X → Y be both a fibration and an intraction for idν and consider
the commutative square given below on the left. Because f is an intraction for idν , the arrow
u : S′ → D′ factorises through a stem β′ ∈ Ω. But, since the stem β′ factorises through the
arrow ι : S′ → D1, so does the arrow u : S′ → D′. This therefore provides the following right
commutative diagram.

(2.38) S′ u //

β
��

X

f
��

D′
v
// Y

⇒ S′
u

((
ι //

β
��

D1 u′ // X

f
��

D′
v

// Y

By assumption, the pushout of β along ι is the composite β ◦ δ1 (see the left-hand diagram
below). As f : X → Y is a fibration for idν , it has the rlp with respect to the trivial stem
β ◦ δ1, which leads to the existence of a lift h : D′ → X making the following right diagram
commute.

S′
u

((
ι //

β
��

x

D1

β◦δ1
��

u′ // X

f
��

D′

v

66
// D′ // Y

⇒ S′
u

((
ι //

β
��

x

D1

β◦δ1
��

u′ // X

f
��

D′

v

66
// D′ //

>>

Y

This last diagram provides a lift for the left-hand diagram (2.38) and shows that f is a trivial
fibration for idν . �

The use of the previous lemma will, most of the time, involve weak equivalences that look
like isomorphisms (see the examples of section 2.4).

2.4. Examples of everyday vertebrae

2.4.1. Set and higher category theory.
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2.4.1.1. Sets. The category Set has an obvious but fundamental vertebra given by diagram
2.39. In the sequel, many other examples will copy the shape of this vertebra by replacing
the object 1 with a ‘generator’ object.

(2.39) ∅

x

! //

!
��

1

δ1
��

1
δ2

// 1 + 1
β
// 1,

Intractions and surtractions for (2.39) are exactly injections and surjections in Set, respec-
tively. A weak equivalence is thus a bijection in Set. Trivial fibrations turn out to correspond
to weak equivalences while any function defines a fibration.

Remark 2.65 (Properties). Vertebra (2.39) is reflexive via the trivial reflexive transition
id1 : 1 → 1 and frames two copies of itself via the trivial cooperadic transition id1 : 1 → 1.
In addition, it is not hard to see that it satisfies Lemma 2.64 by taking ι to be β since the
arrow β is an epimorphism of sets.

2.4.1.2. Small categories. The category of small categories Cat(1) is equipped with two nat-
ural vertebrae that extend that of Set. Recall that ∅, 1 and 2 denote the initial category,
the terminal category and the category generated by two objects and one arrow, respectively.
The symbol iso will denote the free living isomorphism3. The first vertebra is as follows
where the arrow β0 : 1 + 1→ iso stands for the inclusion of the source and target into iso.

(2.40) ∅

x

! //

!
��

1

δ0
1
��

1
δ0
2

// 1 + 1
β0
// iso

An intraction for the preceding vertebra is an essentially injective functor while a surtraction
is an essentially sujective functor. A weak equivalence is therefore an essential bijection on
objects.

Remark 2.66 (Properties). Vertebra (2.40) is reflexive via the trivial reflexive transition id1 :
1→ 1. The homotopy contraction is given by the functor iso→ 1 mapping the isomorphism
to the identity. Vertebra (2.40) frames two copies of itself via the cooperadic transition
iso→ iso⊕1 iso mapping the isomorphism to the composite of the two isomorphisms of each
component of the pushout iso→ iso⊕1 iso

•0 ∼= •2 � // •0 ∼= •1 ∼= •2

The other vertebra is given by the next commutative diagram wherein 2⊕ 2 denotes the
category of 2 parallel arrows and the arrow β0 : 2⊕ 2→ 2 is the functor contracting the two
parallel arrows of 2⊕ 2 into the unique arrow in 2.

(2.41) 1 + 1

x

γ1
//

γ1

��

2

δ1
1
��

2
δ1
2

// 2⊕ 2
β1

// 2,

An intraction for the preceding vertebra is a faithful functor while a surtraction is a full
functor. A weak equivalence is therefore a fully faithful functor.

3i.e. the category made of two objects and an isomorphism.
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Remark 2.67 (Properties). Vertebra (2.41) is reflexive via the trivial reflexive transition
id2 : 2→ 2. It also frames two copies of itself via the trivial cooperadic transition id2 : 2→ 2.
Besides, vertebra (2.41) satisfies Lemma 2.64 by taking ι to be β1 since the arrow β1 is an
epimorphism of small categories.

2.4.1.3. Higher categories. The case of 2-categories as well as that of strict ω-categories are
the natural extensions of that of Set and Cat(1) and have already been discussed in the
introduction. Chapter 6 gives a detailed treatment of the case of weak ω-groupoids.

2.4.2. Algebraic topology.

2.4.2.1. Topological spaces (1). The category of topological spaces Top contains the archetype
of the concept of vertebra. The involved vertebrae are those defined by using topological
spheres and discs as follows

(2.42) Vn := Sn−1 γn
//

γn

��

x
Dn

δn1
��

Dn
δn2

// Sn
γn+1

// Dn+1

where, for every integer n ∈ N, the object Sn−1 denotes the topological sphere of dimension
n−1; the object Dn denotes the topological disc of dimension n and the arrow γn : Sn−1 → Dn
denotes the canonical inclusion. Recall that topological spheres and discs are different from
the Euclidean spheres and discs. The latter are given by semi-algebraic equations while
the former are successive quotients of cubical constructions as shown below for the disc of
dimension 3.

• •

• •

• •

• •

⇒ • •

• •

⇒ •

•

More specifically, the successive quotients are given by functions prnk+1 : [0, 1]n → [0, 1]n

defined as follows for every 0 ≤ k ≤ n− 2.

[0, 1]n → [0, 1]n

(x0, . . . , xk, b, xk+2, . . . , xn−1) 7→ (1/2, . . . , 1/2, b, xk+2, . . . , xn−1) if b = 0, 1
(xi)0≤i≤n−1 7→ (xi)0≤i≤n−1 otherwise

If one denotes the composite dn = prnn−1 ◦ · · · ◦ prn1 , then the topological spheres and discs
are given by the following quotients for every non-negative integer n (where ∂[0, 1]n stands
for the topological boundary of [0, 1]n).

Dn = [0, 1]n/dn Sn−1 = (∂[0, 1]n)/dn where S−1 = ∅

The pushout of the vertebra is then given by the rightmost commutative diagram below,
whose commutativity follows from the equations dn+1(1, x) = dn+1(1, y) = dn+1(0, x) =
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dn+1(0, y) satisfied by any pair x and y in [0, 1]n for which the equation dn(x) = dn(y) holds.

Sn−1 //

��

x

Dn

��

Dn // Sn

:= (∂[0, 1]n)/dn
⊂

//

⊂
��

[0, 1]n/dn

{0}×( )
��

[0, 1]n/dn {1}×( )
// (∂[0, 1]n+1)/dn+1

The previous definitions provide topological spheres and discs with nice properties inherited
from cubical shapes. In particular, since the pasting of two cubes gives another one up
to reparametrisation, the pasting of two discs will give a disc up to reparametrisation and
adequate combination of quotients.

•1,0
∼

•1,1

•0,0 •0,1

7→ •1,0
∼

·
∼

•1,2

•0,0 · •0,2
It follows from this that vertebra Vn is reflexive and frames two copies of itself. The reflexive
transition is induced by the obvious contraction of cubes [0, 1]n+1 → 1 × [0, 1]n while the
cooperadic transition is induced by the composition of cubes as shown above for dimension
2. More details regarding the properties of Vn are given in Chapter 6.

A weak equivalence (resp. intraction; surtraction) for Vn is a morphism f : X → Y
for which the following left morphism is a bijection of sets (resp. injection; surjection) if
n = 0 and for which the corresponding right morphism is a bijection of sets (resp. injection;
surjection) if n > 0 for every point x ∈ X.

π0(f) : π0(X)→ π0(Y ) πn(f, x) : πn(X,x)→ πn(Y, f(x))

Similarly, a morphism that is a fibration for every vertebra Vn, where n runs over N, corre-
sponds to a Serre fibration.

2.4.2.2. Topological spaces (2). The category Top has many other types of vertebrae. For
instance, tensoring the 0-dimensional version of vertebra (2.42) with any topological space U
gives the next vertebra.

(2.43) ∅

x

! //

!
��

U

δ1
��

U
δ2

// U + U
β
// U × [0; 1].

A fibration for the preceding vertebra is a Hurewicz fibration.

Remark 2.68 (Properties). Vertebra (2.43) is reflexive via the reflexive transition induced
by the canonical map [0, 1]→ 1 and frames two copies of itself via the cooperadic transition
induced by the composition of intervals [0, 1]→ [0, 2].

2.4.2.3. Pointed topological spaces. The category of pointed topological spaces inherits the
vertebrae of section 2.4.2.1 up to a quotient of their first sphere as follows for every n ≥ 1.

Vn/∂Vn := Sn−1/Sn−1 γn
//

γn

��

x

Dn/Sn−1

δn1
��

Dn/Sn−1

δn2

// Sn/Sn−1
γn+1

// Dn+1/Sn−1

The underlying points of the spheres and discs is then given by the image of the point
Sn−1/Sn−1 ∼= 1 through the different maps. A weak equivalence (resp. intraction; surtraction)
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for the vertebra Vn/∂Vn is a morphism f : (X,x)→ (Y, y) for which the following morphism
is a bijection (resp. injection; surjection).

πn(f, x) : πn(X,x)→ πn(Y, y)

Remark 2.69 (Properties). The vertebra Vn is reflexive via the quotient of the reflexive
transition defined in section 2.4.2.1 while it frames two copies of itself via the quotient of the
cooperadic transition defined in section 2.4.2.1.

2.4.2.4. Simplicial sets. The example of the category of simplical sets is an example where
object have little algebraic structure, thereby making the definition of vertebrae quite large
and complex. Their construction is achieved by forcing the algebraic relation by means of
the notion of node of vertebrae. First, the category sSet has an ‘intuitive’ set of vertebrae,
which we are going to use to generate all the others. Recall that sSet is the presheaf category
Psh(∆) where ∆ is the category of finite ordinals and order-preserving maps between them.
For every n ∈ ω, denote by ∆n the object ∆( , n) : ∆op → Set in sSet. Similarly, denote by
∂∆n the subfunctor of ∆n removing all split epimorphisms of ∆ in the hom-sets ∆(k, n).

k
split epi.

��
n

??

n

k
u

""

n

@@

fk

// n+ 1

This defines a functor as if a composite f ◦ g is a split epimorphism, then so is f . Finally,
write as fk : n → n + 1 the injective order-presering map that does not contain k ∈ n + 1
in its image. For every relation k ∈ n + 1, denote by Λkn the subfunctor of ∂∆n+1 removing
all arrows k → n+ 1 in ∆(k, n+ 1) that satisfy the previous right factorisation of fk in ∆n.
In the end, it takes a few line of calculations to see that these objects define the following
vertebra in sSet (made of inclusions of subfunctors).

(2.44) ∂∆n

γn

��

γkn //

x

Λkn

δk1
��

∆n
δk2

// ∂∆n+1
γn+1

// ∆n+1.

Even if this vertebra is reflexive, it does not permit any kind of framing, even up to com-
munication γkn

ex γn, which does not exist. We are therefore required to define more general
vertebrae, which will include those defined above. First, recall that it is possible to factorise
any morphism f : X → Y in sSet into two arrows f = p ◦ i where p has the rlp with respect
to the set of arrows

Γ := {γn : ∂∆n → ∆n}n∈ω
while the arrow i is in the class llp(rlp(Γ)). This type of factorisation will be referred to as
Γ-factorisation. First, consider the following leftmost canonical arrow from the initial object
to the terminal object in sSet. Then, Γ-factorise this arrow as indicated above into a0 ◦ g0

and similarly, Γ-factorise g0 into l0 ◦ g′0 as shown below in the middle. The pair of arrows
g0 and g′0 may be equipped with a structure of prevertebra as displayed on the right. This
prevertebra is reflexive when considered with the reflexive transition l0 : D0

1 → D0
2.

∅ ! // 1 ⇒

D0
1

l0 // D0
2

a0

��

∅
g0

>>

g′0

OO

!
// 1

⇒

∅

x

g′0 //

g0

��

D0
1

δ1
0

��

l0

��

D0
2 δ2

0
// S0

b0 // D0
2
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Now, we may generate a node of vertebra of base ‖g0, g
′
0‖ by considering the arrows β stem-

ming from all the possible Γ-factorisations of the arrow b0 as shown in the left diagram,
below. This obviously gives the following right node of vertebrae in sSet whose vertebrae
are all reflexive.

D
αβ

��

S0

β

??

b0

// D0
2

⇒

∅

x

g′0 //

g0

��

D0
1

δ1
0

��

D′

...

D0
2

δ2
0

// S0
β
//

β′
??

D

Now, may now repeat the previous operation by replacing the canonical arrow 0 → 1 with
b0 : S0 → D0

2 and so on, so that we obtain a reflexive node of vertebrae of the form given
below on the right for every n ∈ ω.

Sn
bn
// Dn2 ⇒

Dn+1
1

ln+1
// Dn+1

2

an+1

��

Sn

gn+1

;;

g′n+1

OO

bn
// Dn2

⇒

Sn

x

g′n+1
//

gn+1

��

Dn+1
1

δ1
n+1

��

D′

...

Dn+1
2

δ2
n+1

// Sn+1
β
//

β′
==

D

In the end, we obtain a whole class of nodes of vertebrae E for all possible choices of Γ-
factorisations in sSet. In addition, this class contains vertebra (2.44) for every n ∈ ω. The
point of the previous construction is that framings exist between any communicating pairs
of nodes of vertebrae in E . To see this, consider two communicating pairs ‖g, g′‖ · Ω and
‖g∗, g′∗‖ · Ω∗ where g′ = g∗ in E . For every stem β ∈ Ω and β∗ ∈ Ω, it is always possible to
associate this pair with the left-hand pushout, below. Then, pre-composing this commutative
square with g′ : S → D1 and using some diagrammatic rearrangement leads to the following
right commutative diagram where S′• denotes the pushout of g and g′∗

D[2

x

β∗◦δ∗1 //

β[◦δ[2
��

D′∗
ε1

��

D′[ ε2
// E

⇒ S′•
e

&&

D[1
δ•1oo

ε2◦β[◦δ[1
��

D∗2

δ•2

OO

ε1◦β∗◦δ∗2
// E

Using a Γ-factorisation on the canonical arrow e : S′• → E, say of the form η ◦ β•, then shows
that the pair of vertebrae ‖g, g′‖ · β and ‖g∗, g′∗‖ · β∗ is framed by the vertebra ‖g, g′∗‖ · β•. In
the end, this shows that the pair of nodes of vertebrae ‖g, g′‖ · Ω and ‖g∗, g′∗‖ · Ω∗ is framed
by the canonical node of vertebrae of the form ‖g, g′∗‖ · Ω• in E .

This node is indeed in E as the reflexive structures of ‖g, g′‖ ·Ω and ‖g∗, g′∗‖ ·Ω∗ induce a
reflexive structure for ‖g, g′∗‖ ·Ω• by Remark 2.55. This therefore provides the factorisation,
below – where b : S → D denotes the arrow bn associated with the construction of g in the
previous algorithm – which forces ‖g, g′∗‖·Ω• to be in E since the composite λ◦λ∗ is in rlp(Γ)
by Proposition 1.34.

D∗1
λ◦λ∗ // D2

a

��

S
g

>>

g′∗

OO

b
// D

Remark 2.70. In fact, the definition of the nodes of vertebrae E permit any ‘algebraic’
operation that resembles a framing. The idea of defining stems, seeds and coseeds using
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Γ-factorisations is the key idea of many other constructions such as the homotopy theory of
weak ω-categories and that of weak ω-groupoids discussed in Chapter 5.

To conclude, a morphism f : X → Y that is a trivial fibration for every node of vertebrae
in E is a morphism that has the rlp with respect to the arrows of Γ and the seeds in E . Because
the seeds are also in llp(rlp(Γ)), a trivial fibration f : X → Y is equivalently a morphism
that has the rlp with respect to the arrow γn : ∂∆n → ∆n for every n ∈ ω. This exactly
correspond to the usual definition of acyclic fibration for sSet. Similarly, by Proposition 1.32
and Propsoition 1.33, the trivial stems β ◦ δ1

n : D1
n → D′ in E must be in llp(rlp(Γ)). In

fact, they are also weak equivalences in the usual sense. This follows from the two-out-out
three property satisfied by the usual weak equivalences and the fact that the canonical arrows
D1
n → 1 and D′ → 1 are acyclic fibrations in the usual sense4. All this indicates that the

usual homotopy theory for sSet is at least a Bousfield localization (see [28]) of the homotopy
theory resulting from the nodes of vertebrae in E .

2.4.3. Universal algebra.

2.4.3.1. Rings. As in the case of Set, the category of rings Rng has an initial object Z and
a generator object Z[X], that may be used to define the following vertebra, where δ1 and δ2

are the obvious inclusions and β maps x and y to z.

(2.45) Z

!
��

! //

x
Z[y]

δ1
��

Z[x]
δ2

// Z[x]⊕Z Z[y]
β
// Z[z]

An intraction for (2.45) is a monomorphism of rings while a surtraction is an epimorphism
of rings. A weak equivalence thus turns out to be an isomorphism of rings. Also, note that
a trivial fibration is exactly a weak equivalence while any morphism is a fibration.

Remark 2.71 (Properties). Vertebra (2.45) is reflexive via the trivial reflexive transition
idZ[x] : Z[x] → Z[x] and frames two copies of itself via the trivial cooperadic transition
idZ[x] : Z[x]→ Z[x]. In addition, it is not hard to see that it satisfies Lemma 2.64 by taking
ι to be β since the arrow β is an epimorphism of rings.

2.4.3.2. Modules (1). Let R be a ring and denote by ModR the category of left R-modules.
As in the case of Set, the category ModR has an initial object 0 and a generator object R
that may be used to define the following vertebra, where δ1 maps an element b to the pair
(0, b), δ2 maps an element a to the pair (a, 0) and β maps a pair (a, b) to the sum a+ b.

(2.46) 0

!
��

! //

x

R

δ1
��

R
δ2

// R⊕R
β
// R

An intraction for (2.46) is a monomorphism of modules while a surtraction is an epimorphism
of modules. A weak equivalence thus turns out to be a bijection of modules. A trivial fibration
is exactly a weak equivalence while any morphism is a fibration.

Remark 2.72 (Properties). Vertebra (2.46) is reflexive via the trivial reflexive transition
idD1 : D1 → D1 and frames two copies of itself via the trivial cooperadic transition idD1 :
D1 → D1. In addition, it is easy to check that it satisfies Lemma 2.64 by taking ι to be β
since the arrow β is an epimorphism of R-modules.

4See the algorithm generating the vertebrae, wherein the objects D1
n and D′ may be related to the terminal object

by finite compositions of arrows in rlp(Γ)
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2.4.3.3. Modules (2). Let R be a ring. There is another type of vertebrae for ModR for which
the notion of fibration is more interesting. Denote by I ↪→ J an inclusion of ideals of R. The
ideals I and J may be seen as left R-modules in a trivial way so that the inclusion I ↪→ J
defines a morphism of left R-modules. The inclusion I ↪→ J induces a coproduct morphism
I ⊕ I → J mapping a pair (a, b) to the sum a+ b. This arrow may be used to define the next
vertebra where δI1 maps an element b to the pair (0, b) and δI2 maps an element a to the pair
(a, 0).

(2.47) 0

!
��

! //

x

I

δI1
��

I
δI2

// I ⊕ I
βI,J
// J

If the ideal I is principal (i.e. of the form I = (x)), then an intraction for (2.47) is a
monomorphism of modules while a surtraction is an epimorphism of modules. In this case,
a weak equivalence is a bijection of modules. Also, a trivial fibration is exactly a weak
equivalence when I is principal. In the case of a general ideal I, a fibration is a morphism
that has the rlp with respect to the inclusion I ↪→ J . It follows from Baer’s criterion and
Zorn’s Lemma5 that a morphism is a fibration for every vertebra (2.47), where I ↪→ J runs
over all the inclusions of ideals of R, if and only if it is an epimorphism whose kernel is
injective in ModR.

Remark 2.73 (Properties). Vertebra (2.47) is reflexive when J = I. The reflexive transition
is then given by the identity on I. Regarding the framing structure, Vertebra (2.47) relative to
an inclusion I ↪→ J communicates with any other vertebra relative to some inclusion I ↪→ J ′.
The vertebra relative to the inclusion I ↪→ J +J ′ (where J +J ′ denotes the sum of J and J ′)
then frames the previous communication via the cooperadic transition J + J ′ ∼= J ⊕I J ′ in
the case where J ∩ J ′ = I (where J ⊕I J ′ denotes the pushout of J and J ′ over I in ModR).
Finally, vertebra (2.47) satisfies Lemma 2.64 when the equality I = J holds.

The fact that not every vertebra of the form (2.47) is reflexive suggests that vertebra
(2.47) would be better behaved when considering a node of vertebrae instead of a vertebra.
In addition, the fact that an equality of type J ∩ J ′ = I restricts the framings suggests that
vertebra (2.47) should be defined for more general inclusions. Specifically, denote by S(I)
the class of modules made of pushouts of the following form for every collection of inclusions
of ideals {I ↪→ Jk}k∈A. ⊕

I
k∈A

Jk

Every object B ∈ S(I) is equipped with an inclusion I ↪→ B, which induces coproduct
morphisms of the form I ⊕ I → B. These arrows may be used to define the following node
of vertebrae.

0

!
��

! //

x

I

δI1
��

B

...

I
δI2

// I ⊕ I
β′
//

β
<<

B′

By Remark 2.73, the previous node of vertebrae is reflexive. It also frames two copies of
itself via trivial cooperadic transitions of the form B ⊕I B′ → B ⊕I B′. A morphism that
is a weak equivalence for every node of vertebrae of the preceding form is a bijection of

5Use Zorn’s Lemma to split the morphism and show it is a split epimorphism. The splitting and Baer’s criterion

then allow an easy characterisation of the kernel as an injective module.



84 2. Vertebrae

modules. A morphism that is a fibration for every node of vertebrae of the previous form is
an epimorphism whose kernel is injective in ModR.

2.4.3.4. Chain complexes. Let R be a ring. This section aims at describing the vertebrae
that recovers the projective model structure on the category of non-negatively graded chain
complexes over R, which will be denoted by ChR.

Recall that the objects of ChR are sequences of left R-modules of the form given below on
the left, where the equation dk ◦ dk+1 = 0 holds for every k ∈ N, while morphisms are given
by sequences (fk : Mk → M ′k)k≥0 of morphisms of left R-modules making the succeeding
right square commute for every k ∈ N.

M0 M1
d0

oo . . .
d1

oo Mk
dk−1

oo . . .
dk

oo Mk

fk
��

Mk+1

fk+1

��

dkoo

M ′k M ′k+1dk

oo

In the sequel, we will denote by R(δ) the module equal to R⊕2 when δ = 1 and 0 when δ = 0.
We will also denote by µδ : R(δ) → R the addition of R when δ = 1 and the canonical map
0 → R when δ = 0. Now, for every integer n ≥ 0, define the following chain complexes in
ChR for the obvious morphisms of R-modules.

Dn : 0 0
d0

oo . . .
d1

oo 0oo R
dn−1

oo 0
dn
oo 0

dn+1

oo . . .oo

Dn(δ) : 0 0
d0

oo . . .
d1

oo 0oo R
dn−1

oo R(δ)
µδ
oo 0

dn+1

oo . . .oo

Sn : 0 0
d0

oo . . .
d1

oo 0oo R⊕2

dn−1

oo 0
dn
oo 0

dn+1

oo . . .oo

It is not hard to see that that there exist obvious vertebrae of the form given on the left of
(2.48) for every n ∈ N. The maps in degree n and n+ 1 are given below on the right.

(2.48)

0

!
��

! //

x

Dn

��

Dn
// Sn

βn(δ)
// Dn(δ)

0 //

��

��

0

��

}}

0 //

��

R

��

0 //

��

0

~~

// R(δ)

µδ
}}

R // R⊕2 µ1
// R

The subtlety lying in the preceding vertebra is the existence of a non-trival term in degree
n+ 1 when δ = 1. The fact that this term is a power of R is required by a framing structure,
but does not have any influence on the definition of weak equivalences. Note that the front
face of the preceding right diagram always corresponds to vertebra (2.46) defined in the case
of left R-modules. This implies that a weak equivalence for the version of vertebra (2.48)
when δ = 0 is a bijection of left R-modules in degree n. On the other hand, when δ = 1,
an intraction for vertebra (2.48) is a morphism f : M → N for which the following property
holds.

If f(x) = dnz in Nn, then ∃ z′ in Mn+1 such that x = dnz
′

Similarly, one may show that, when δ = 1, a surtraction for vertebra (2.48) is a morphism
f : M → N for which the following property holds.

For every y ∈ Nn, then ∃x ∈ Nn and ∃ z ∈ Nn+1 such that f(x) + y = dnz
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It is thus not hard to satisfy that a weak equivalence for vertebra (2.48) is the morphism
f : M → N for which the induced morphism of homology groups Hn(f) : Hn(M) → Hn(N)
is an isomorphism.

Remark 2.74 (Properties). The version of vertebra (2.48) when δ = 0 is reflexive via
a trivial reflexive transition. Vertebra (2.48) frames two copies of itself via the following
lefthand cooperadic transition when δ = 1 and via the right one when δ = 0.

R⊕R⊕R⊕R
µ1◦(µ1⊕µ1)

// R

R⊕R

R⊕0⊕0⊕R

OO

µ1
// R

0
µ0

// R

0

0

OO

µ0
// R

The version of Vertebra (2.48) for δ = 1 together with its version for δ = 0 is framed by the
version of Vertebra (2.48) for δ = 1. The cooperadic transition is then given by the following
diagram.

R⊕R
µ1

// R

R⊕R
µ1

// R

Vertebra (2.48) also satisfies Lemma 2.64 when considering the following left factorisation
of the stem βn(δ) : Sn → Dn(δ) since the succeeding right cube is a pushout.

0

��

��

R

0

GG

~~

// R(δ)

µδ
}}

R⊕2

µ1

FF

µ1

// R

0

{{

��

0

��

}}

R⊕2 µ1
//

µ1

��

R

R(δ)

µδ
{{

R(δ)

µδ
}}

R R

Finally, the cases where δ = 0 or 1 makes us realise that the right structure for vertebra (2.48)
is that of a node of vertebrae. More specifically, the following vertebra is always reflexive and
always frames two copy of itself.

0

!
��

! //

x

Dn

��

Dn(0)

Dn
// Sn

βn(1)
//

βn(0)

<<

Dn(1)

2.4.4. Differential and algebraic geometry.

2.4.4.1. Synthetic differential geometry. In synthetic differential geometry, the Cahiers topos
is a sheaf topos Sh(C∞Rngop) defined over the category of C∞-rings, in which the category
of smooth manifolds is embedded by mapping a smooth manifold to its set of smooth functions
from M to the set of real numbers. By using the internal logic, it is possible to define the
following objects for every integer n ≥ 0.

Dn = {d | dn+1 = 0} Dn(2) = {(d1, d2) | dk1dn+1−k
2 = 0 for any 0 ≤ k ≤ n+ 1}

These objects stands for infinitesimals. They are used to redefine many concepts of differential
geometry in a very categorical way. There are obvious maps γn : D0 → Dn (with mapping
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0 7→ 0), βn : Dn(2)→ Dn (with mapping (d1, d2) 7→ d1 + d2) and δni : Dn → Dn(2) (sending
d to (0, d) if i = 1 and (d, 0) if i = 0) that make the following diagram commute for every
integer n ≥ 1

(2.49) D0

γn

��

γn
// Dn

δ1
��

Dn
δ2

// Dn(2)
βn
// Dn.

Interestingly enough, there exist – in the Cahiers topos – objects called microlinear spaces
for which the previous diagram appears as a vertebra (i.e. the commutative square behaves
like a pushout square). For these spaces, the object D0 also appears as an initial object. The
tangent space of a microlinear space M at a point x : D0 →M is defined as the ‘set’ of maps
v : D1 →M making the following diagram commute.

D0

γ1

��

x

  

D1 v
// M

This set is usually denoted as Tx(M). Now, a morphism of microlinear spaces f : M → N
is a surtraction (resp. intraction) for diagram (2.49) when n = 1 if and only if the induced
map Tx(f) : Tx(M)→ Tf◦x(N) is a surjection (resp. injection) for every point x : D0 →M .

Remark 2.75 (Properties). Vertebra (2.49) is reflexive via the trivial reflexive transition
idD1 : D1 → D1 and frames two copies of itself via the trivial cooperadic transition idD1 :
D1 → D1. In addition, it is not hard to see that it satisfies Lemma 2.64 by taking ι to be βn
since the arrow βn is seen as an epimorphism from the point of view of microlinear spaces.

Remark 2.76. In differential geometry, a morphism of smooth manifolds f : M → N for
which the map Tx(f) : Tx(M) → Tf(x)(N) is a bijection for every point x : 1 → M corre-
sponds to an étale map between smooth manifolds. Specifically, such a morphism satisfies
the property that there exists an open neighborhood U of x such that f maps U diffeomor-
phically onto its image (i.e. it is a local diffeomorphism). This implication corresponds to a
generalisation of the usual Inverse Function Theorem.

2.4.4.2. Algebraic geometry. In Algebraic Geometry, there is a functor from the category of
affine varieties over a field k to the category of schemes Sch as follows.

Aff(k) → Sch
V 7→ Spec(k[V ])

We are going to use this functor to describe vertebrae in the category Sch. It is well-known
that the affine simplices define affine schemes in Sch. For every integer n ≥ 0, the affine
n-simplex is defined as follows.

∆n = V ((

n∑
i=0

xi)− 1) ⊆ An+1,

Affine varieties are equipped with a structure of closed sets, which allows us the define the
following unions in Aff(k).

Λkn = ∪j 6=kV ((

n+1∑
i=0,6=j

xi)− 1) ⊆ An+2,
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∂∆n+1 = ∪jV ((
n+1∑
i=0, 6=j

xi)− 1) ⊆ An+2,

There are also obvious inclusions γn : ∂∆n → ∆n and γ′n : ∂∆n → Λkn making the following
vertebra commute.

(2.50) ∂∆n

γn

��

γ′n //

x

Λkn

��

∆n
// ∂∆n+1

γn+1
// ∆n+1.

It follows from usual results on pushouts of schemes (for instance, see [18]) that the preceding
pushout is sent to a pushout of schemes. In other words, diagram (2.50) is sent to a vertebra
in Sch. Of course, as in section 2.4.2.4, it is possible to extend these vertebrae to more
general simplicial constructions in order to obtain more structure. The point of the previous
vertebrae is that they are strongly related to the Voedvosky’s A1-homotopy theory. Future
work will aim at discussing this point (see next remark).

Remark 2.77. Other type of vertebrae could be defined. In particular, considering ‘cubes’
instead of ‘triangles’ could be another option. The advantage of cubes is that they are closer
to the notions of topological disc and sphere. Such vertebrae could therefore lead to a better
analogy between topological spaces and schemes. In particular, a version of the Homotopy
Hypothesis relative to these kinds of vertebrae could lead to ∞-groupoidal constructions of
Eilenberg-MacLane spaces in Sch as well as a notion of ‘non-abelian motivic cohomology’ –
if it made any sense. The construct of Eilenberg-MacLane spaces for schemes is the central
part of various results that wait for improvement in motivic cohomology (see [41])





Chapter 3

Spines

3.1. Introduction

The aim of the present chapter is to define and explain the theoretical formalism necessary to
finish the proof of the two-out-of-six property initiated in Chapter 2. The required properties
take the form of cancellation properties. Their proof requires one to distinguish between the
case of intractions, which are defined with respect to alliances of nodes of vertebrae, and the
case of surtractions, which are defined with respect to extended nodes of vertebrae. More
specifically, the theorems towards which the present chapter is heading are of the following
form.

Theorem (Cancellation of intractions). Let f : Y → Z and g : X → Y be two morphisms in
some category C. There exists a notion of sequence of alliances of nodes of vertebrae a0, . . . , a`
equipped with a sequence of pairs of extended vertebrae (v0

�, v
0
•), . . . , (v

`−1
� , v`−1

• ) such that if
g is a surtraction for vk� and vk• for every 0 ≤ k ≤ `− 1 and f ◦ g is an intraction of a`, then
f is an intraction for a0.

Theorem (Cancellation of surtractions). Let f : Y → Z and g : X → Y be two morphisms in
some category C. There exists a notion of sequence of extended nodes of vertebrae n0, . . . , n`
equipped with a sequence of pairs of extended vertebrae (v0

�, v
0
•), . . . , (v

`−1
� , v`−1

• ) such that if
g is a surtraction for vk� and vk• for every 0 ≤ k ≤ `− 1 and f ◦ g is a surtraction of n`, then
f is a surtraction for n0.

The precise statements may be found in Theorem 3.111 and Theorem 3.106. These are
expressed in the language of ‘spines’, which means that the involved structures come along
with a notion of ‘dimension’ (see Chapter 1). The rigorous forms of the previous two theorems
also assume some conditions on the components a0 and n0, which may be seen as ‘projectivity’
conditions in the homological sense.

Because the preceding results are deeper than those discussed in Chapter 2, it was felt
appropriate to give a good intuition of what the following text intends to pursue. We therefore
devote an introductory section to discussing the case of topological spaces. This will give me
the opportunity to provide some pictural explanation of what is about to follow.

In the case of topological spaces, the vertebrae used to achieve the proof of Theorem 3.111
and Theorem 3.106 at some non-negative dimension n are given by diagram (3.1) for every
integer 0 ≤ k ≤ n − 1, where the object Sk−1 denotes the topological sphere of dimension

89
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k−1; the object Dk denotes the topological disc of dimension k and the arrow γk : Sk−1 → Dk
denotes the canonical inclusion.

(3.1) Vk := Sk−1 γk
//

γk
��

x

Dk

δk1
��

Dk
δk2

// Sk
γk+1

// Dk+1

Note that the sequence of vertebrae V0, V1, . . . Vn has the particular property that it may be
arranged into a sequence of arrows (with respect to the notations of Chapter 2) as follows.

(3.2) S−1
V0 ◦S0

V1 ◦S1
V2 ◦S2

V3 ◦ . . .
Vn ◦Sn

Throughout this chapter, the previous sequence will be called a spine of degree n. Such a
structure is defined in section 3.3.1. In this introductory part, this spine will be denoted by
Sn. Exactly as in the case of vertebrae, spines may be associated with a zoo, which is defined
in section 3.3.6. A surtraction for the spine Sn is a surtraction for its head, that is to say
for its vertebra Vn. Similarly, an intraction for the spine Sn is an intraction for the vertebra
Vn. With this termonology, a faithful translation of Theorem 3.111 and Theorem 3.106 in
the case topological spaces would be the following.

Theorem 3.1 (Cancellation of intractions). Let f : Y → Z and g : X → Y be two morphisms
in Top. If g is a surtraction for the vertebra Vk, for every 0 ≤ k ≤ n, and f ◦ g is a intraction
for Sn, then f is a intraction for Sn.

Theorem 3.2 (Cancellation of surtractions). Let f : Y → Z and g : X → Y be two
morphisms in Top. If g is a surtraction for the vertebra Vk, for every 0 ≤ k ≤ n, and f ◦ g
is a surtraction for Sn, then f is a surtraction for Sn.

Note that the so-called sequences of alliances of nodes of vertebrae and extended nodes
of vertebrae mentioned in the theorems given at the beginning of the section are not used
in the preceding versions. This is because the spine Sn is implicitely equipped with all the
properties necessary for the requirement of these sequences.

To help us in the proof of Theorem 3.1 and Theorem 3.2, we will need to introduce some
set theoretical terminology. In this respect, if X denotes an object in Top, then two paths
x : Dn → X and y : Dn → X picked out in X will be said to be parallel above Vn if they make
the following left diagram commute.

(3.3) Sn−1 γn
//

γn
��

Dn

y

��

Dn
x
// X

⇒ Sn−1 γn
//

γn
��

x

Dn

��

y

##

Dn //

x

66Sn
γn+1

// Dn+1 // X

Such a relation will be denoted by x ||n y. Note that not all paths are parallel above Vn. Two
parallel paths x : Dn → X and y : Dn → X in X above Vn will then be said to be equivalent
above Vn, which will be denoted by x ∼n y, if the universal map x+ y : Sn → X induced by
the left diagram of (3.3) over the pushout of diagram (3.1), factorises through the inclusion
γn+1 as shown in the right diagram of (3.3).

Remark 3.3. The set of vertebrae consisting of all the Vk’s for k running over N is obviously
a canonical choice of vertebrae. There are however other vertebrae of interest. In particular,
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the following vertebra defined for every k ≥ 0.

V (γk) := Sk−1

γk
��

x

Sk−1

γk
��

Dk Dk Dk

In this case, two paths x : Dk → X and y : Sk−1 → X picked out in X will be said to be
parallel above V (γk) if they make the following diagram commute.

Sk−1

γk
��

Sk−1

y

��

Dk
x

// X

Because of the particular form of V (γk), to be parallel above V (γk) also means to be equivalent
above it. This is why the fact that two paths such as x and y are parallel above V (γk) will
be denoted as the relation x ∼γk y.

We may now use the preceding language to retranslate the notion of intraction and
surtraction at a more set theoretical level. Thus, a morphism f : X → Y is an intraction for
Sn (or equivalently for Vn) if and if only the following statement holds.

For every pair x ||n y in X, if f(x) ∼n f(y) in Y , then x ∼n y holds in X.

Such a reformulation is proven in full generality in Proposition 3.20. Similarly, a morphism
f : X → Y is a surtraction for Sn (or equivalently for Vn) if and if only it satisfies the
following property.

For every pair x ∼γn f(z) in Y , there exists
a pair y ∼γn z in X such that x ∼n f(y) holds in Y .

Such a reformulation is proven in full generality in Proposition 3.22. The foregoing reformu-
lations are to make the proof of Theorem 3.1 and Theorem 3.1 less cumbersome. Below is
the proof of the statement of Theorem 3.1, when n is zero.

Proof of Theorem 3.2, case n = 0. According to the preceding reformulation of the def-
inition of surtractions, the goal is to prove that for every pair of paths x : D0 → Z and
z : S−1 → Y for which the relation x ∼γ0 f(z) holds, there exists a path y : D0 → Y such
that the relations y ∼γ0 z and x ∼0 f(y) hold. In this respect, suppose to be given x : D0 → Z
and z : S−1 → Y such that x ∼γ0 f(z) holds. Because S−1 is initial, the following diagram
admits a dashed lift making the whole triangle commute.

X

g

��

S−1

z′
==

z
// Y

Remark 3.4. Such a lifting property is what will be defined as the projectivity of the spine
S0, which I referred to at the very beginning of the section. In full generality, the existence
of such a lift will be ensured by the fact that the spine S0 is projective with respect to the
surtraction g : X → Y . The definition of the notion of projectivity may be found in section
3.2.1 and section 3.3.1.

The preceding lift now provides an equality z = g(z′), which turns the equivalence x ∼γ0

f(z) into the equivalence x ∼γ0 f ◦ g(z′). Because the composite f ◦ g is a surtraction for
the spine S0, the set theoretical reformulation of surtractions implies that there must exist a
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path y′ : D0 → Y such that both relations y′ ∼γ0 z
′ and x ∼0 f ◦g(y′) hold. Finally, choosing

y = g(y′) proves the case for n = 0 since

- the relation x ∼0 f ◦ g(y′) implies the relation x ∼0 f(y);

- the relation y′ ∼γ0 z
′ implies the relation g(y′) ∼γ0 g(z′), which is exactly the relation

y ∼γ0 z.

The general proof of the case n = 0 will be found in the same section in which the notion of
projectivity is defined (see Proposition 3.24). �

Because the proof of Theorem 3.1 in the case where n is zero uses the same methods
as those used in the proof of Theorem 3.2 when n greater than zero, we will continue this
introductory part with the proof Theorem 3.2 for higher cases.

Proof of Theorem 3.2, case n > 0. This part of the proof is going to require the fact that
g is a surtraction for the vertebra Vk for every 0 ≤ k ≤ n− 1. The goal is this time to prove
that for every pair of paths x : Dn → Z and z : Sn−1 → Y for which the relation x ∼γn f(z)
holds, there exists y : Dn → Y such that the relation x ∼n f(y) holds. Note that if we again
had a lifting as below, then the text following Remark 3.4 could be used word for word (after
replacing 0 with n) to prove the case n > 0.

X

g

��

Sn−1

?

<<

z
// Y

Unfortunately, the sphere Sn−1 has no reason to be projective with respect the surtraction
g : X → Y when n is greater then zero. The idea of the proof is to show that there exists
another element fr(z) : Sn−1 → Y , related to z via algebraic operations, for which the
following lift exists.

(3.4) X

g

��

Sn−1

z′
<<

fr(z)
// Y

In the same way as z is mapped to fr(z), the path x will be associated with a path fr(x) :
Dn → Z. The construction of fr(z) and fr(x) will also associate the lefthand relation, below,
with a relation of the same form as given on the right.

x ∼γn f(z) ⇒ fr(x) ∼γn f(fr(z))

Then, the same argument as those given after Remark 3.4 shall prove that there exists
y : Dn → Y such that the relations x ∼γn y and fr(x) ∼n f(y) hold. Finally, by a process
that could be identified as a sort of transport of structure, this relation will be transferred to
the case of z and x so that the element y will provide a new element fr−1(y) : Dn → Y for
which the relation x ∼n f(fr−1(z)) is true.

The best way of giving an intuition of how to define the ‘operation’ fr( ) is probably to
discuss the case where n = 1. In this case, the first step consists in constructing a path
fr(z) : S0 → Y out of z : S0 → Y . To start with, notice that the domain of z : S0 → Y is the
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pushout of the following prevertebra.

S−1 γ0
//

γ0

��

x

D0
a

��

δ0
1
��

D0 δ0
2
//

b

77S0 z // Y

The precomposition of z : S0 → Y with δ0
1 and δ0

2 gives rise to two parallel paths a : D0 → X
and b : D0 → X, which are nothing but the images of borders of the sphere S0 in Y via
the morphism z : S0 → Y . Because the sphere S−1 is projective (or initial), the following
diagrams admit a dashed filler making the top parts commute.

S−1

γ0

�� !!

a′ // X

g

��

D0
a
// Y

S−1

γ0

�� !!

b′ // X

g

��

D0

b
// Y

By definition, the preceding two commutative diagrams imply the following two relations.

a ∼γ0 g(a′) b ∼γ0 g(b′)

Note that these relations correspond to the conditional requirements appearing in the set
theoretical reformation of the definition of a surtraction for the vertebra V0. Because g is a
surtraction of V0, we deduce that

1) there exists ya : D0 → X such that ya ∼γ0 a
′ and a ∼0 g(ya) hold;

2) there exists yb : D0 → X such that yb ∼γ0 b
′ and b ∼0 g(yb) hold.

In the end, we obtain the following three paths where the relation x : a ∼S0 b means that x
is a sphere with borders a and b.

(3.5) a ∼0 g(ya) x : a ∼S0 b b ∼0 g(yb)

‘Composing’ these three paths then gives a new sphere fr(z) : g(ya) ∼S0 g(yb) framing the
whole structure as shown by the next pictural represention.

•a

•b

⇒ •a g(•ya)

•b g(•yb)

⇒ g(•ya)

g(•yb)

This time, notice that the borders of the sphere fr(z) are under g. The universal property of
the pushout S0 then says that the paths ya and yb induce a canonical map 〈ya, yb〉 : S0 → X
making the following rightmost triangle commutes.

S−1 γ0
//

γ0

��

x

D0
ya

��

δ0
1
��

D0 δ0
2
//

yb

::S0
〈ya,yb〉

// X

& S−1 γ0
//

γ0

��

x

D0
g(ya)

��

δ0
1
��

D0 δ0
2
//

g(yb)

::S0
fr(z)

// Y

⇒ X

g

��

S0

〈ya,yb〉
>>

fr(z)
// Y

This last diagram finally produces the wanted lift z′ : S0 → Y of diagram (3.4).

In the cases where n > 1, the operation fr( ) is similarly made of compositions along
paths provided by the surtractivity of g. These operations will later be called framings when
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defined at the level of vertebrae. Below is given a picture of the construction of fr( ) when
n = 2. A first step consists in getting the borders of dimension 1 of z in the image of g by
composing the whole sphere z : S1 → X with paths stemming from the surtractivity of g
while a second step consists in getting the borders of dimension 2 of the resulting sphere in
the image of g.

•
(z)

•

⇒ • g(•)

• g(•)

⇒ g(•)

g(•)

⇒ g(•)

g(•)∼g(•) ∼

g(•)

This process may be generalised at any dimension to obtain a lift z′ : Sn−1 → Y for diagram
(3.4). Similarly, when n = 0, the proof of Theorem 3.1 will use a process resembling the
following.

•

•

⇒ • g(•)

• g(•)

⇒ g(•)

g(•)
For its part, the case n = 1 of Theorem 3.1 will be of the following form.

•
∼

•

⇒ •

∼

g(•)

• g(•)

⇒ g(•)

∼

g(•)

⇒ g(•)

∼ g(•)∼g(•) ∼

g(•)

The proposition that will later provide us with the above sequence of framings is Proposition
3.56.

Notice that the case n = 1 as well as the higher cases depend on the notion of dimension.
This dimension will be encoded by the spinal structure Sn associated with the vertebra Vn. In
particular, the higher cases will require the framing operations to be functorial, in the sense
that these operations will have to be compatible with all the borders of lower dimension that
they frame. Broadly speaking, this condition will be equivalent to requiring the borders of a
framing to be equal to the framings of the borders.

Two notions of framing will arise at the level of spines from the different needs for the
proof of Theorem 3.111 and Theorem 3.106:

1) the notion of simple framing will manage the functoriality necessary to prove the
cancellation of intractions;

2) the notion of extensive framings will manage the functoriality necessary to prove the
cancellation of surtraction.

The preceding discussion showed how to associate the sphere z : Sn−1 → Y with another
sphere fr(z) : Sn−1 → Y such that the following lifting exists.

X

g

��

Sn−1

z′
<<

fr(z)
// Y

More specifically, the construction of fr(z) may be seen as an iteration of elementary framings
along paths hi and h′i stemming from the surtractivity property of the morphism g : X → Y
as follows.

(3.6) hn · (hn−1 · (· · · · (h1 · z · h′1) · . . . ) · h′n−1) · h′n
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The number of framings only depends on the number of times we need to repeat the algorithm
so that the resulting sphere fr(z) has its source and target in the image of g. Recall that
we were also provided with a relation of the form x ∼γn f(z). The two paths f(z) and x
were supposed to be parallel above V (γn) in Z, which means that the equation f(z) = x ◦ γn
holds. This may be represented by the next picture.

f(a)

x

f(b)

Because the notion of framing will not depend on the object X in which they are operated,
we may also use the paths (hi)i and (h′i)i – or in fact their images via f : Y → Z – to frame
the paths f(z) and x in Y along the paths (f(hi))i and (f(h′i))i to generate two new elements
fr(f(z)) and fr(x).

f(z)

(f(hi))i (f(h′i))i

��

f(hn) · (f(hn−1) · (· · · · (f(h1) · f(z) · f(h′1) · . . . ) · f(h′n−1)) · f(h′n)

x

(f(hi))i (f(h′i))i

��

f(hn) · (f(hn−1) · (· · · · (f(h1) · x · f(h′1) · . . . ) · f(h′n−1)) · f(h′n)

For formal reasons, any morphism will be compatible with the structure of framing, which
will provide the equality f(fr(z)) = fr(f(z)). Because the above framings will be ‘extensive’,
they will preserve any relation of the form ∼γn , which means that the following relation will
hold.

fr(x) ∼γn f(fr(z))

This last relation will finally allow us to find the so-called element y : Dn → Y as explained
a few paragraphs above.

y ∼γn z fr(x) ∼n f(y)

At this stage, it only remains to fetch the paths y to the paths z and x in order to obtain
relations of the form fr−1(y) ∼γn z and x ∼n f(fr−1(y)).

Any astute reader would probably guess the process to use to go backwards. The point
is that the paths (hi)i and (h′i)i are all weakly invertible. More specifically, there exists weak
inverses (ei)i and (e′i)i to the respective paths (hi)i and (h′i)i so that successive framings of
the form (ei · · e′i) will allow us to reverse all the process previously discussed. Such an
operation will be called conjugation and discussed in section 3.3.5 at the level of vertebrae
and in section 3.3.8 at the level of spines. The difficult point will be that the reversing process
will be as weak as possible so that giving framings of the form (ei · · e′i) will surely not be
the last step of the proof of Theorem 3.2.

The property of being weakly invertible will rely on two subnotions called correspondence
and mating, which will both be defined in section 3.3.4. Correspondences are structures
allowing the handling of a very particular type of parallelism. This type of parallelism arises
from framing a path hi · p · h′i along the paths ei and e′i, where the symbol p denotes some
path of dimension n ≥ i, so that the resulting path

ei · (hi · p · h′i) · e′i
is parallel to p at dimension i. Figure 1 gives a graphical representation of this phenomenon
where
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Figure 1. Correspondence stemming from a conjugation of paths

- the path p is represented by the middle cell at step (1);

- the path hi · p · h′i is represented by the dashed cell at step (2);

- the path ei · (hi · p · h′i) · e′i is represented by the dashed cell at step (3)

- and the correspondence is exposed at step (4).

Note that the forms of both parallel paths p and ei · (hi ·p ·h′i) ·e′i are canonically close to each
other. This structural proximity will be expressed in terms of correspondence at the level of
vertebrae and memory at the level of spines. Here, the terminology diverges as a memory
will only remember the useful correspondences while other correspondences will have to be
ignored in the process of going back. Somehow, the notions of correspondence and memory
define a general formalism to talk about parallel pairs of cells between which one would like
to see some coherence. The next step then consists in providing the previous pair of parallel
cells with a notion of coherency, that is to say linking the two paths via homotopies.

ei · (hi · p · h′i) · e′i and p

These homotopies will allow us to fetch all the homotopical information known by ei · (hi · p ·
h′i) · e′i towards p. The existence of these homotopies is substantial to the process that will
enable us to gradually go back to x from fr(x). The process of associating a correspondence
with a homotopy is named differently depending on whether it is used in the middle of a
process or at the end. It will be named mating in the middle of a process. In this case, if
the path p is not of dimension i, but is at least equipped with a notion of source and target
of dimension i (see Figure 1 where p is of dimension 2 and i is equal to 1). Therefore, the
correspondence1

(3.7) ei · (hi · p · h′i) · e′i � p

may be broken into two other correspondences relative to the source and target of p at
dimension i, say a and b, as follows.

ei · (hi · a · h′i) · e′i � a

ei · (hi · b · h′i) · e′i � b

The existence of two respective homotopies, say ma and mb, between these two correspon-
dences then suggests a framing of ei · hi · v · h′i· along these two paths. The important point
is that this framing results from coherency and should thus be thought of as endowed with
nice properties. The pair of paths ma and mb is called pair of mates of correspondence (3.7).

1A correspondence will be denoted by the symbol � when seen as a relation.
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Such a terminology stems from the fact that these paths help to recover the lost relation-
ship between the two conjugates of correspondence (3.7) as is explained below. The framing
induced by the triple (

ma ; ei · (hi · p · h′i) · e′i· ; mb

)
then provides a new paths p′ which, this time, does not correspond with p at dimension
i, but corresponds with p at dimension i + 1. We will thus get closer to the paths p by
repeating the above process, which is exactly what we want to fetch the so-called element
y : Dn → Y to the pair x and z. When arriving at the last step of such a process, the notion
of correspondence is replaced with the notion of recollection, with which is associated a single
mate. The particularity of this notion is discussed in section 3.3.7. After such an operation,
all the homotopical information is fetched to the paths p. Thus, the successive framings
induced by the mates allow us to return to the path p from the information remembered by
the path ei · (hi · p · h′i) · e′i. Such a construction will be called chaining (of memories) and
used to define what could be seen as a very general notion of coherence. This very important
concept will be discussed in section 3.3.7. �

The underneath comparative table sums up the different sections devoted to define a
formalism at the level of vertebrae and generalise it at the level of spines.

Vertebrae ⇒ Spines

section 3.2.1 : Hom-language ⇒ section 3.3.1 and section 3.3.6 : Hom-language

section 3.3.2 : Framings ⇒ section 3.3.3 : Simple & extensive framings

section 3.3.4 : Correspondences ⇒ section 3.3.7 : Simple & extensive memories

section 3.3.5 : Conjugations ⇒ section 3.3.8 : (Extended) conjugations

3.2. Preparation

3.2.1. Theory of vertebrae and hom-language.

3.2.1.1. Hom-language. The goal of this section is to recall the underlying language of the
hom-sets associated with a category. Some of the proposed notations are unusual but will
turn out to be useful later on. Let C be a category. For every pair of objects A and B in
C, the set of morphisms from A to B will be denoted by C(A,B) and called a hom-set. For
every object Z and pair of arrows f : X → Y and g : A→ B in C, the functions defined by[

C(B,Z)→ C(A,Z)
u 7→ u ◦ g

]
and

[
C(Z,X)→ C(Z, Y )

u 7→ f ◦ u

]
will be denoted by g · and f( ). Thus, a composition f ◦ x ◦ g may be written as either
f(g · x) or g · f(x). Since the composition of C is associative, a composition f ◦ f ′ ◦ x may be
written as either f ◦f ′(x) or f(f ′(x)). On the other hand, a composition of the form x◦g ◦g′
may be written as g′ · (g ·x). This latest formula will be shortened to the expression (g′g) ·x.
Those functions obviously imply a commutative diagram

C(B,X)
g·
//

f( )

��

C(A,X)

f( )

��

C(B, Y )
g·
// C(A, Y )

in Set and thus give rise to a bifunctor C( , ) : Cop × C → Set called hom-bifunctor of C.
Recall that, by definition of limits and colimits in C, this bifunctor preserves and reflects
limits in both variables (see [34]).
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3.2.1.2. Hom-language for prevertebrae. Let C be a category and X be an object in C. Con-
sider a prevertebra p := ‖γ, γ′‖ whose general form is recalled below.

(3.8) S

xγ

��

γ′
// D1

δ1
��

D2
δ2

// S′ // X

A pair of two elements x ∈ C(D2, X) and y ∈ C(D1, X) will be said to be parallel in X above
p if the equality γ · x = γ′ · y holds. By universality of the pushout S′, the previous equation
induces a unique arrow h : S′ → X for which the equalities δ2 · h = x and δ1 · h = y hold. By
uniqueness, the arrow h shall be denoted by the symbol 〈x, y〉, turning the previous relations
into δ2 · 〈x, y〉 = x and δ1 · 〈x, y〉 = y.

Remark 3.5. For every morphism f : X → Y in C, the universality of S′ implies that the
arrow f(〈x, y〉) equals the arrow 〈f(x), f(y)〉 in C(S′, X) .

Remark 3.6. It is not hard to see that idS′ = 〈δ2, δ1〉 so that Remark 3.5 implies the
equalities h = h(idS′) = 〈h(δ2), h(δ1)〉 = 〈δ2 · h, δ1 · h〉 for every arrow h : S′ → X in C.

3.2.1.3. Hom-language for vertebrae. Let C be a category and X be some object in C. Con-
sider a vertebra v := p · β in C whose general form is recalled below.

S
γ′
//

γ

��

x

D1

δ1
��

D2
δ2

// S′
β
// D′ // X

For every element h ∈ C(D′, X), we will write the formal relation h : x ∼v y if and only if
(δ2β) · h = x and (δ1β) · h = y. The previous relation will be said to hold in X. The element
h will be said to be a v-path from x to y in X to refer to the existence of such a relation.
The elements x and y will be called the source and target of the v-path h. For any element
x ∈ C(D2, X) and y ∈ C(D1, X), the notation x ∼v y will be used to mean that there exists
some v-path h : x ∼v y in X. In this case, the element x will be said to be v-homotopic to y.

Remark 3.7. Any v-path h : x ∼v y in X gives rise to a vrv-path h : y ∼vrv x in X.

Remark 3.8. For every morphism f : X → Y in C, a relation h : x ∼v y in X implies a
relation f(h) : f(x) ∼v f(y) in Y .

Any prevertebra p : S ( S′ induces an obvious vertebra p · idS′ in C. The homotopy
relation ∼v defined for any vertebra v will be denoted by ∼p in the case where the vertebra
v is of the form p · idS′ .

Remark 3.9. Any relation of the form x ∼p y in X is equivalent to saying that x and y are
parallel in X above p.

Proposition 3.10. Let x and y be two parallel elements in X above p. The relation h : x ∼p y
holds in X if and only if the equality h = 〈x, y〉 is satisfied in C.

Proof. Follows from the above definitions and universality of S′. �

Now, consider a morphism γ : S→ D∗ in C. Such an arrow defines two canonical prever-
tebrae ‖γ, idS‖ and ‖idS, γ‖. We will associate the first and second one with the homotopy
relations ∼γ and ∼γ , respectively.
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Remark 3.11. Any pair of relations of the form x ∼γ z and z′ ∼γ y is entirely determined
by the elements x and y, respectively. These relations are equivalent to giving the respective
factorisations z = γ · x and z′ = γ · y.

Remark 3.12. Any relation of the form x ∼γ z is equivalent to the relation z ∼γ x.

Proposition 3.13. Let p = ‖γ, γ′‖ : S( S′ be a prevertebra in C. The relation x ∼p y holds
in X if and only if there exists a unique z ∈ C(S, X) such that both relations x ∼γ z and

z ∼γ′ y hold in X.

Proof. Straightforward since z = γ · x = γ′ · y. �

Proposition 3.14. Let v := p ·β : S( (δ1, δ2) be a vertebra in C. The relation x ∼β z holds
in X if and only if the relation x : δ2 · z ∼v δ1 · z holds in X.

Proof. The pair of relations δ1 ·z = (δ1β) ·x and δ2 ·z = (δ2β) ·x is equivalent to the relation
z = 〈(δ2β) · x, (δ1β) · x〉 = β · x (see Remark 3.6). �

3.2.1.4. Hom-language for alliances of vertebrae. Let C be a category and X be some object
in C. Consider an alliance of vertebrae (κ, %, %′,κ′, u) : v  v in C whose general form is
recalled below.

S

κ
  

γ′
//

γ

��

D1

δ1

��

%′

  

S

x

γ′
//

γ

��

D1

δ1

��

D2
δ2 //

%
��

S′

κ′

��

β

// D′

u

��

D2
δ2

// S′
β

// D′ // X

The following proposition shows how an alliance of vertebrae as above transfers the hom-
language of ν to that of ν.

Proposition 3.15. Let X be an object in C and consider an alliance of vertebrae as above.
If the relation h : x ∼v y holds in X, then the relation u · h : % · x ∼v %′ · y holds in X. The
converse is true when κ, %, %′ and κ′ are identities.

Proof. Straightforward by looking at the above diagram. �

Remark 3.16. Every alliance of prevertebrae (κ.%, %′,κ′) : p p in C induces an alliance of
vertebrae (κ.%, %′,κ′,κ′) : p · idS′  p · idS′ . Proposition 3.15 then implies that any relation

〈x, y〉 : x ∼p y in X gives a relation κ′ · 〈x, y〉 : % ·x ∼p %′ ·y. By Proposition 3.10, the equality
κ′ · 〈x, y〉 = 〈% · x, %′ · y〉 follows .

Remark 3.17. Any vertebra p ·β in C defines an alliance of vertebrae (idp, β) : p ·β  p · idS′

where idp denotes the identity morphism on the model p in ModC(Prev)op.

Proposition 3.18. Let v = p · β be a vertebra in C. For every pair x ∈ C(D2, X) and
y ∈ C(D1, X), any relation of the form x ∼v y implies a relation x ∼p y in X.

Proof. Follows from Remark 3.17 and Proposition 3.15. �
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Proposition 3.19. Let v = p · β be a vertebra in C and x and y be two parallel elements in
X above p. The relation h : x ∼v y holds in X if and only if the arrow 〈x, y〉 : S′ → X is
equal to the composite h ◦ β : S′ → X.

Proof. Follows from Remark 3.17, Proposition 3.15 and Proposition 3.10. This may also be
shown by using Remark 3.11 and Proposition 3.14. �

3.2.1.5. Hom-language for nodes of vertebrae. Let C be a category and X be some object in
C. For every node of vertebrae ν := p ·Ω in C, we will write the relation h : x ∼ν y, which will
be said to hold in X, everytime there exists a vertebra v ∈ ν such that the relation h : x ∼v y
holds in X. The element h will then be called a ν-path and said to be from x to y. The class
of ν-paths in X from x to y will be denoted by C(ν,X)(x, y). As in the case of vertebrae, we
will use a relation of the form x ∼ν y to mean that there exists a ν-path h ∈ C(ν,X)(x, y). In
this case, the element x will then be said to be ν-homotopic to y. The following propositions
use the conventional notations introduced in Chapter 2.

Proposition 3.20. A morphism f : X → Y in C is an intraction for an alliance of nodes of
vertebrae a : ν  ν if and only if it satisfies the following property:

For every pair x ∼p y in X, if f(x) ∼ν f(y) in Y , then % · x ∼ν %′ · y in X.

Proof. Suppose that f : X → Y is an intraction for a and consider x ∼p y in X such that
f(x) ∼ν f(y) in Y . First, Remark 3.9 implies that x and y are parallel above p and so are
f(x) and f(y) by Remark 3.8. By Proposition 3.19 and Remark 3.5, this means that the
arrow f(〈x, y〉) : S′ → Y may be factorised by some β : S′ → D′ ∈ Ω. Thus, there exists an
arrow h : D′ → Y making the following diagram commute.

S′

β
��

〈x,y〉
// X

f
��

D′
h
// Y

Because f is an intraction for a : ν  ν, there exists a stem β : S′ → D′ ∈ Ω factorising the

arrow 〈x, y〉◦κ′ : S′ → X. By Proposition 3.19 and Remark 3.16, this exactly means that the
relation %·x ∼ν %′ ·y holds in X. Conversely, suppose that the property of the statement holds
and consider some stem β : S′ → D′ ∈ Ω for which the lefthand diagram, below, commutes.
By universality of S′, notice that this commutative square may be rewritten into the following
right one as the equality z = 〈δ2 · z, δ1 · z〉 holds (see Remark 3.6).

S′

β
��

z // X

f
��

D′
h
// Y

⇒ S′

β
��

〈δ2·z,δ1·z〉
// X

f
��

D′
h

// Y

By Remark 3.5 and Proposition 3.19, this last diagram exactly means that the relation
f(δ2 · z) ∼ν f(δ1 · z) holds in Y . Now, using the property of the statement, we deduce that
the relation (%δ2) · z ∼ν (%′δ1) · z holds in X. By Proposition 3.19 and Remark 3.16, this

last relation implies a factorisation of the composite z ◦ κ′ : S′ → X by a stem β ∈ Ω. This
finally proves that f is simple with respect to the scale (Ω,κ′,Ω) and completes the proof of
the statement. �

Remark 3.21. It follows from Proposition 3.15 and Remark 3.8 that any alliance of nodes
of vertebrae a : ν  ν and morphism f : X → Y in C induce a commutative square of
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metafunctions as follows for every pair x ∈ C(D2, X) and y ∈ C(D1, X).

(3.9) C(ν,X)(x, y)
C(a,X)

//

f

��

C(ν,X)(%′ · x, %′ · y)

f
��

C(ν, Y )(f(x), f(y))
C(a,X)

// C(ν, Y )(%′ · f(x), %′ · f(y))

Proposition 3.20 then says that the morphism f is an intraction for a if and only if for every
parallel pair x ∈ C(D2, X) and y ∈ C(D1, X) above p, if the bottom left class of diagram (3.9)
is non-empty, then so is the right top class.

Proposition 3.22. A morphism f : X → Y is a surtraction for an extended node of vertebrae
n : γ ex ν if and only if it satisfies the following property:

For every pair x ∼γ f(z) in Y , there exists

a pair κ · z ∼γ′ y in X such that % · x ∼ν f(y) holds in Y .

Proof. Suppose f : X → Y is a surtraction for ν. We are going to prove that the property
holds. By definition of the relation x ∼γ f(z) in Y , the following leftmost diagram must
commute. Because f is an surtraction for n : γ ex ν, it is divisible by the underlying besom

of n. This means that there exist a stem β ∈ Ω and two arrows y : D1 → X and h : D′ → Y
factorising the left diagram into the right one. In particular, this second diagram is equivalent
to stating that the relations κ · z ∼γ′ y and % · x ∼ν f(y) hold in X and Y , respectively.

S
γ

��

z // X

f
��

D2
x // Y

⇒ S
z◦κ

((

γ
��

γ′ // D1

β◦δ1
��

y // X

f

��

D2

x◦%

66

β◦δ2
// D′ h // Y

Now, let us prove that when the property holds, the morphism f : X → Y is a surtraction
for n. Consider the preceding lefthand commutative square. This diagram exactly says that
the relation x ∼γ f(z) holds in Y . By assumption, it follows that there exists a relation

κ · z ∼γ′ y in X such that % · x ∼ν f(y) holds in Y . But this exactly means that there exists

some β : S → D′ ∈ Ω and a path h : D′ → Y making the preceding right diagram commute.
This proves that f is divisible by the underlying besom of n : γ ex ν. �

3.2.1.6. Projective structures. Let C be a category. An object I in C will be said to be
projective with respect to a morphism g : X → Y if for every arrow u : I → Y in C, there
exists a lift (not necessarily unique) as follows.

(3.10) X

g

��

I
u
//

??

Y

Note that any initial object in C is projective with respect to every morphism of C. Later on,
a prevertebra (resp. vertebra; node of vertebrae) will be said to be projective with respect to
a morphism g : X → Y in C if its domain is projective with respect to g in C. For simplicity,
the previous structure will also be said to be g-projective. The next proposition shows that
projectivity may be induced by surtractions.
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Proposition 3.23. Suppose that C admits an initial object 0. An object I is projective with
respect to an arrow g : X → Y if and only if g is a surtraction for the following extended
(node of) vertebra(s).

0

preseed
��

0

x

//

seed
��

I

I I I
stem

I

Proof. Suppose that g : X → Y is a surtraction for the extended node of vertebrae given in
the statement, say n. Start with a corner of arrows as the one given below on the left, which
may also be seen as a commutative diagram from the initial object 0. Since g is divisible
by the besom of n, there exists an arrow h : I → X making the middle diagram commute.
This diagram is then equivalent to the one given below on the right, which shows that I is
projective with respect to g.

0 //

��

X

g

��

I
y
// Y

⇒ 0
''

��

// I
h
// X

g

��

I

y

77I y // Y

⇔ 0 //

��

X

g

��

I
y
//

h
??

Y

Now, suppose that I is projective with respect to g and let us prove the converse. Start
with a commutative square as given on the above left, which aternatively may be seen as the
(non-dashed) bottom right corner of the square. By projectivity, there exists a lift h : I → X
making the above rightmost diagram commute, which is equivalent to giving the middle
commutative diagram. This finally shows that g is divisible by the besom of n. �

In the sequel, an extended node of vertebrae n : γ ex ν will be said to be g-projective if
the domain of its preseed γ is projective.

Proposition 3.24. Let g : X → Y and f : Y → Z be two morphisms in C and n : γ ex ν be a
g-projective extended node of vertebrae. If f ◦ g is a surtraction for n, then f is a surtraction
for n.

Proof. We are going to use the characterisation of Proposition 3.22. Consider a pair x ∼γ
f(z) in Z and let us show that there exists a pair κ ·z ∼γ′ y for which the relation %·x ∼ν f(y)
holds in Y . By definition, the element z is an arrow S → Y in C where S is the domain of
the preseed γ. By projectivity, there must exist an arrow (lift) z′ : S → X such that the
equation z = g ◦ z′ = g(z′) holds. In other words, our very first relation may now be
rewritten as x ∼γ f ◦ g(z) in Z. Because f ◦ g is a surtraction for n, it follows from this

relation and Proposition 3.22 that there exists a pair κ · z′ ∼γ′ y in X such that the relation
% ·x ∼ν f ◦g(y′) holds in Y . Remark 3.8 allows us to turn the former relation into the relation

κ · g(z′) ∼γ′ g(y′) in Y , which also gives the relation κ · z ∼γ′ g(y′) by the equality z = g(z′).
This last relation together with the previously obtained relation % · x ∼ν f(g(y′)) allows us
to conclude by taking y := g(y′) and using the equivalence of Proposition 3.22. �

3.2.1.7. Over-parallelism and under-parallelism. Let C be a category and g : X → Y be a
morphism in C. Consider a vertebra v = ‖γ, γ′‖ ·β and a v-path of the form h : x ∼v y in the
object Y . By Remark 3.9 and Proposition 3.18, the elements x and y are known to be parallel
above ‖γ, γ′‖. The elements x and y will be said to be parallel over g : X → Y if the dashed
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arrow displayed in the following diagram (denoted by z) factorises through g : X → Y .

S
γ′
//

γ

��

z

  

D1

y

��

D2 x
// Y

Remark 3.25. In hom-language, this exactly means that the unique element z for which
both relations x ∼γ z and z ∼γ′ y hold (see Proposition 3.13) may be written as z = g(z′)
where z′ ∈ C(S, X).

On the other hand, the elements x and y will be said to be parallel under g : X → Y if
there exist two arrows x′ : D2 → X and y′ : D1 → X making the following diagram commute.

S
γ′
//

γ

��

D1

y′

��

y

��

D2
x′ //

x

66X
g
// Y

Remark 3.26. In hom-language, this exactly means that there exists a parallel pair x′ ∈
C(D2, X) and y′ ∈ C(D1, X) above ‖γ, γ′‖ such that x = g(x′) and y = g(y′). By Remark 3.5,
this is equivalent to saying that the relation 〈x, y〉 = g(〈x′, y′〉) is well-defined and holds in C.

Note that being over- and under-parallel above a vertebra p · β does not depend on the
stem β. It was however felt useful to define such a notion for a general vertebra as the notion
of over- and under-parallelism will mostly be used when dealing with general paths. The
following two propositions are straightforward.

Proposition 3.27. If x and y are parallel under g, then they are parallel over g.

Proposition 3.28. If v is g-projective, then x and y are parallel over g.

3.3. Theory of spines

The theory of spines is a natural generalisation of the theory of vertebrae. We shall retrieve
the same pattern of presention as in section 3.2.1 and Chapter 2.

3.3.1. Spines.

3.3.1.1. Prespines. Let C be a category and n be a non-negative integer. A prespine of degree
n in C consists of a collection of n+ 1 prevertebrae (pk : Sk ( S′k)0≤k≤n such that for every
0 ≤ k ≤ n− 1, the equality S′k = Sk+1 holds in C. We may thus think of a prespine as a finite
sequence of prevertebrae as follows.

(3.11) S0
p0
◦(δ0

1 , δ
0
2)

p1
◦(δ1

1 , δ
1
2)

p2
◦ . . .

pn
◦(δn1 , δ

n
2 )

Later on, the prevertebrae p0 and pn will be called the tail and the head of the prespine,
respectively. The role played by these last prevertebrae will turn out to be quite specific. For
convenience, a prespine of the form P = (pk)0≤k≤n will later be defined by a declaration of
the form P = (pk) and said to be of degree n ≥ 0, implying that the indexing by k starts
at 0 and stops at n. Besides, any other indexing notation on P will be transferred to the
prevertebrae pk and its attached structure; e.g. P∗ = (p∗k : S∗k ( S∗′k ).

Example 3.29. Prevertebrae in C are prespines in C of degrees 0 whose tails are equal to
the heads. Later on, we will sometimes see a prevertebra as such.



104 3. Spines

Remark 3.30. A prespine as defined above implies two collections of n vertebrae of the form
pk · γk+1 and pk · γ′k+1 in the case where pk+1 = ‖γk, γ′k‖ for every 0 ≤ k ≤ n− 1. Note that
the only structure of vertebra that may be put on the head is the trivial one pn · idS′n .

3.3.1.2. Derived prespines. Let C be a category and n be a positive integer. Consider a
prespine P = (pk) of degree n in C. For every 0 ≤ d ≤ n, the prespine P induces a prespine
∂dP := (pk) of degree n− d as shown below.

S0
p0
◦(δ0

1 , δ
0
2)

p1
◦(δ1

1 , δ
1
2)

p2
◦ . . .

pn−d
◦(δn−d1 , δn−d2 )

This prespine will later be called the d-th derived prespine of P .

3.3.1.3. Elementary and central cords. Let C be a category and P = (pk) be a prespine of
degree n ≥ 0 in C. We shall consider the following usual notations.

(3.12) pk = ‖γk, γ′k : S′k‖ : Sk ( (δk1 , δ
k
2 )

We will call k-th elementary cord of P , for every 0 ≤ k ≤ n, the morphism defined by the
composite cdk(P ) = δk2 ◦ γk = δk1 ◦ γ′k, thus producing an arrow Sk → S′k in C. Then, the
(k−1)-th central cord will denominate the composite of all the cords of P from the k-th cord
to the n-th cord for every non-negative integer k as follows.

Γk−1(P ) :=

{
idS′n if k > n;
Γk(P ) ◦ cdk(P ) if 0 ≤ k ≤ n.

The composite Γk(P ) is hence an arrow S′k → S′n in C for every 0 ≤ k ≤ n. It is not difficult
to see that the relation Γk(P ) = Γr(P ) ◦ Γk(∂

n−rP ) holds for every −1 ≤ k ≤ r ≤ n.

3.3.1.4. Hom-language for prespines. Let C be a category and X be some object in C. Con-
sider a prespine P = (pk) of degree n ≥ 0 with the notations of diagram (3.12). A pair of
two elements x ∈ C(Dn2 , X) and y ∈ C(Dn1 , X) will be said to be parallel in X above P if
they are parallel above the head of P . In other words, the relation x ∼pn y holds in X. The
rest of the section introduces a way of presenting such a parallel pair, which will turn out to
be much needed in the sequel. First, notice that, by Proposition 3.13, there exists a unique
z ∈ C(Sn, X) such that the two relations x ∼γn z and z ∼γ′n y hold in X. If the integer n
is zero, then not much is actually to be said, so suppose that the inequality n > 0 holds.
Since the equality Sn = S′n−1 holds in this case, Remark 3.6 enables one to see the element z
as a pushout 〈xn−1, yn−1〉, for which Proposition 3.10 implies a relation z : xn−1 ∼pn−1 yn−1

and allows one to repeat the previous process. One thus inductively defines two collections
of elements xn, . . . , x0 and yn, . . . , y0 as follows:{

xn := x and yn := y;

zk : xk ∼pk yk where xk+1 ∼γk+1
zk and zk ∼γ

′
k+1 yk+1.

In particular, every element zk : S′k → X may be identifed with the pushout 〈xk, yk〉 for every
0 ≤ k ≤ n. It is not hard to see that both elements x ∈ C(Dn2 , X) and y ∈ C(Dn1 , X) entirely
determine the previous two sequences via the relations

(δk2Γk(∂P )γn) · x = xk and (δk1Γk(∂P )γ′n) · y = yk

where 0 ≤ k ≤ n − 1. It will thus make sense to identify the elements x and y with
the vectors [xn, . . . , x0] and [yn, . . . , y0], respectively. For simplicity, we will also adopt the
notations x := [xk]n and y := [yk]n. In addition, for every morphism f : X → Y in C and
element x = [xk]n ∈ C(Dn2 , X), the element f(x) = [f(xk)]n ∈ C(Dn2 , Y ) will be denoted by
f [xk]n.

Proposition 3.31. For every k ≥ 0, the element xk is parallel to yk above pk.

Proof. Since x and y are parallel above p, the following series of equalities must hold:
γk · xk = (Γk−1(∂P )γn) · x = (Γk−1(∂P )γ′n) · y = γ′k · y. �
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3.3.1.5. Spines. Let C be a category and n be a non-negative integer. A spine of degree n in
C consists of a prespine P = (pk : Sk ( S′k) of degree n and a further morphism β : S′n → D′n
as follows.

(3.13) S0
p0
◦(δ0

1 , δ
0
2)

p1
◦(δ1

1 , δ
1
2)

p2
◦ . . .

pn
◦S′n

β
// D′

The arrow β will be called the stem of the spine. Note that this further morphism turns the
head pn of P into a vertebra pn ·β. Later on, the above spine will be denoted by the symbols
P · β. The prespine P will sometimes be referred to as the base of P · β.

Example 3.32. Every prespine P of degree n ≥ 0 of the form (3.11) induces a spine of
degree n when equipped with the identity morphism S′n → S′n.

Example 3.33. Every prespine P = (‖γk, γ′k‖)0≤k≤n of degree n ≥ 1 gives rise to two
canonical spines of degree n− 1 whose prespines are the derived prespine ∂P and the further
morphisms are either the seed or the coseed of the head of P .

Dn1

S0
p0
◦(δ0

1 , δ
0
2)

p1
◦(δ1

1 , δ
1
2)

p2
◦

Γ1(∂P )

##

. . .
pn−1

◦S′n−1

γn
!!

γ′n
==

Dn2
More generally, one may keep doing this to produce all sorts of spines of degree n− d, where
1 ≤ d ≤ n, whose prespines are the derived prespine ∂dP and whose stems may be chosen
among the composite morphisms γk ◦ Γn−d(∂

n−k+1P ) and γ′k ◦ Γn−d(∂
n−k+1P ) for every

k ≥ n− d+ 1.

3.3.1.6. Hom-language for spines. Let C be a category and X be some object in C. Consider
a spine s = P · β of degree n ≥ 0 in C as follows.

S0
p0
◦(δ0

1 , δ
0
2)

p1
◦(δ1

1 , δ
1
2)

Γ1(P )

%%p2
◦ . . .

pn
◦S′n β

// D′

For every element h ∈ C(D′, X), we will write h : x ∼s y if and only if the relation h : x ∼pn·β y
holds. In other words, the equations (δn2β) · h = x and (δn1β) · h = y must be satisfied in C.
The element h will then be said to be an s-path from x to y in X where the elements x and y
will be called source and target as in the case of vertebrae. By Proposition 3.18, the relation
h : x ∼s y implies the relation x ∼pn y, which shows – by definition – that both elements
x and y are parallel above the prespine P . If the notations of section 3.3.1.4 are used, the
relation h : x ∼s y may be rewritten as h : [xk]n ∼s [yk]n, which is equivalent to requiring
the following identities to hold in C for every 0 ≤ k ≤ n.

(3.14) (δk2Γk(P )β) · h = xk and (δk1Γk(P )β) · h = yk

Note that every morphism f : X → Y in C sends a relation h : [xk]n ∼s [yk]n in X to a relation
f(h) : f [xk]n ∼s f [yk]n in Y . For every pair of elements x ∈ C(Dn2 , X) and y ∈ C(Dn1 , X), we
will write x ∼s y whenever there exists an s-path h : x ∼s y in X. The relation defined at
the beginning of the section will be denoted by ∼P in the case of the spine P · idS′n .

Proposition 3.34. Let x ∈ C(Dn2 , X) and y ∈ C(Dn1 , X). Any relation h : x ∼s y in X
implies a relation x ∼P y in X. It follows that x and y are parallel in X above P and the
equality 〈x, y〉 = β · h holds where 〈x, y〉 is defined above the head of P .
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Proof. Follows from Proposition 3.18, Remark 3.9 and Proposition 3.19. �

Although a different proof is given, the following statement may be seen as an application
of Proposition 3.15 to the obvious alliance of vertebrae pn · β  pk · (Γk(P )β) generated by
the arrows defining the prespine P .

Proposition 3.35. Consider an s-path h : [xk]n ∼s [yk]n. For every k ≥ 0, the element xk
is homotopic to yk above the vertebra vk := pk · (Γk(P )β) via the path h ∈ C(D′, X), that is
to say h : xk ∼vk yk.

Proof. Follows from the equations of (3.14). �

Remark 3.36. Proposition 3.35 may be regarded as a forgetful result in the sense that, for
some chosen 0 ≤ k ≤ n, a relation of the form h : a ∼vk b (as considered at the end of the
proposition) induces a relation of the form h : x′ ∼s y′ where x′ and y′ can a priori only be
described by equations of the following form.

x′ = [?, . . . , ?, ak, ak−1, . . . , a0] y′ = [?, . . . , ?, bk, bk−1, . . . , b0]

In other words, only the last k+1 components of x′ and y′ can be known from the information
made available by the source and target a = [ai]k and b = [bi]k.

3.3.1.7. Nodes of spines. Let C be a category and n be a non-negative integer. A node of
spines of degree n in C is equivalently

1) a class of spines of dregee n whose prespines are equal;

2) a prespine P = (pk) of degree n endowed with a class of morphisms Ω such that the
domain of every element in Ω is equal to the codomain of the prevertebra pn.

Note that the class Ω turns the head of P into a node of vertebrae pn ·Ω. Later on, the above
node of spines will be denoted by P ·Ω. The prespine P will sometimes be referred to as the
base of P · Ω.

Example 3.37. Every spine defines an obvious node of spines containing itself only.

In the case where n is positive and pn is of the form ‖γn, γ′n‖, the node of spines P · Ω
generates two spines ∂P ·γn and ∂P ·γ′n of degrees n− 1, which will later be called the spinal
seed and spinal coseed of the node of spines P · Ω.

3.3.1.8. Hom-language for nodes of spines. Let C be a category and X be an object in C. For
every node of spines σ of degree n ≥ 0, we will write the relation h : x ∼σ y, which will be
said to hold in X, if there exists a spine s in σ such that the relation h : x ∼s y holds in X.
In that case, the element h will be called a σ-path and said to be from x to y. The class of
σ-paths in X from x to y will be denoted by C(σ,X)(x, y). We will use the notation x ∼σ y
to mean that there exists some σ-paths h ∈ C(σ,X)(x, y). In this case, the element x will be
said to be σ-homotopic to the element y.

Proposition 3.38. Suppose that n > 0 and denote the spinal seed and coseed of σ by s and
s′, respectively. Any path h : x ∼σ y in X for which the relation y : r ∼s′ t holds in X implies
the equalities xn−1 = r and yn−1 = t. There then follows a relation x : r ∼s t in X.

Proof. Consider the notation P := (pk) and suppose that the head of P is of the form
‖γn, γ′n‖. By Proposition 3.34, a relation h : x ∼σ y in Y implies a relation x ∼pn y in Y .
Since the inequality n > 0 holds, section 3.3.1.4 provides the relations x ∼γn 〈xn−1, yn−1〉
and 〈xn−1, yn−1〉 ∼γ

′
n y in Y . Using Remark 3.12 and Proposition 3.14 on the latter relation

leads to the relation y : xn−1 ∼pn−1·γ′n yn−1. On the other hand, the path y : r ∼∂P ·γ′n t forces
both equalities r = xn−1 and t = yn−1. Finally, using Proposition 3.14 on the former relation
x ∼γn 〈xn−1, yn−1〉 provides a path x : r ∼pn−1·γn t in Y , which proves the statement. �
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Let f : X → Y be a morphism in C, σ be a node of spines of positive degree n and s and
s′ denote the spinal seed and coseed of σ. The class of pairs (h, y) consisting of a s′-path
y : r ∼s′ t in X and a σ-path h : % · x ∼σ f(y) in Y will be denoted by C(σ, f)(r, t). It follows
from Proposition 3.38 that there exists a metafunction of the form

Rσ : C(σ, f)(r, t) // C(s, Y )(f(r), f(t))

mapping a pair (h, y) as above to the s-path x : f(r) ∼s f(t).

3.3.1.9. Projective structures. Let C be a category. A prespine (resp. spine; node of spines)
will be said to be projective with respect to a morphism g : X → Y in C if its tail is
projective with respect to the g in C. For simplicity, the previous structure will also be said
to be g-projective.

3.3.1.10. Over-parallelism and under-parallelism. Let C be a category and g : X → Y be
a morphism in C. Consider a spine s = P · β of degree n ≥ 0 and a s-path of the form
h : [xk]n ∼s [yk]n in the object Y .

S0
p0
◦(δ0

1 , δ
0
2)

p1
◦(δ1

1 , δ
1
2)

p2
◦ . . .

pn
◦S′n

β
// D′

By Proposition 3.31, the elements xk and yk are known to be parallel above pk = ‖γk, γ′k‖
for every k ≥ 0. The elements x and y will be said to be k-parallel over g : X → Y if the
elements xk and yk are parallel over g : X → Y .

Remark 3.39. By Remark 3.25, this exactly means that there exists some z′k ∈ C(Sk, X)
such that 〈xk−1, yk−1〉 = g(z′k) when k > 0.

On the other hand, the elements x and y will be said to be k-parallel under g : X → Y
if the elements xk and yk are parallel under g : X → Y .

Remark 3.40. By Remark 3.26, this exactly means that there exists a parellel pair x′k ∈
C(D2, X) and y′k ∈ C(D1, X) above pk such that the relation 〈xk, yk〉 = g(〈x′k, y′k〉) is well-
defined and holds in C.

Proposition 3.41. Suppose that k > 0. The elements x and y are (k − 1)-parallel under
g : X → Y if and only if they are k-parallel over g : X → Y .

Proof. Follows from Remark 3.39, Remark 3.40 and Remark 3.6. �

Proposition 3.42. If s is g-projective, then x and y are 0-parallel over g.

Proof. Follows from Proposition 3.28 �

3.3.2. Framing of vertebrae and nodes of vertebrae.

3.3.2.1. Categories for vertebral structures. Let C be a category. A morphism of vertebrae
(resp. nodes of vertebrae) in C is defined as an alliance of vertebrae (resp. nodes of vertebrae)
in C whose spherical, discal, codiscal and hence cospherical transitions are identities in C. The
respective induced categories will be denoted by Vert(C) and Nov(C) and their arrows will
be written with the symbol y. The notation associated with the structure of the above
morphisms will follow that of their associated alliances, but for which the trivial data will be
removed.

Remark 3.43. Any morphism u : p · β y p · β∗ in Vert(C) is equivalent to giving a factori-
sation of the form β = u ◦ β∗. Any morphism (ϕ, u) : p · Ω y p · Ω∗ in Nov(C) is equivalent
to giving a factorisation of every stem β ∈ Ω of the form u ◦ ϕ(β).

Remark 3.44. By Remark 3.17, any vertebra p ·β in C gives rise to a morphism of vertebrae
β : p · β y p · id in Vert(C).
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Proposition 3.45. Let X be an object in C and u : v y v be an arrow in Vert(C). The
relation h : x ∼v y holds in X if and only if so does the relation u · h : x ∼v y.

Proof. Follows from Proposition 3.15. �

3.3.2.2. Semi-extended structures. In the sequel, the term sep (resp. sev ; senov) will stand
for semi-extended prevertebra (resp. vertebra; node of vertebrae). This term will refer to
any extended prevertebra (resp. vertebra; node of vertebrae) whose spherical transition is an
identity. Here, the prefix semi- refers to the fact that some part of the structure is trivial.
This abbreviation is meant to avoid a too cumbersome phrasing that the whole name would
imply. The usual notation (κ, %) will be replaced with (S, %) when the spherical transition κ
is the identity on S. The object S will be called the domain of the sev (S, %). Contrary to the
usual indexing on extended structures, the indexing notation of a semi-extended structure
will usually follow the indexing notation of its associated prevertebra, vertebra or node of
vertebrae; e.g. (S, %∗) : γ ex p∗; (S, %∗) · Ω∗ : γ ex p∗ · Ω∗.
3.3.2.3. Framing of prevertebrae. Let C be category, p = ‖γ, γ′‖ : S ( S′ be a prevertebra
and (S, %�) : γ ex ‖γ�, γ′�‖ and (S, %•) : γ′ ex ‖γ•, γ′•‖ be two seps in C. Note that the arrows γ′�
and γ′• must have same domain S in C. A prevertebra will be said to frame the prevertebra
p along the seps (S, %�) and (S, %•) if it is of the form ‖γ′�, γ′•‖.
3.3.2.4. Framing of vertebrae. Let C be category and p = ‖γ, γ′‖ : S( S′ be a prevertebra
equipped with a framing p∗ = ‖γ′�, γ′•‖ along two seps (S, %�) : γ ex ‖γ�, γ′�‖ and (S, %•) :
γ′ ex ‖γ•, γ′•‖ in C. A vertebra of the form p∗ · β∗ will be said to frame a vertebra of the form
p · β along two sevs (S, %�) · β� and (S, %•) · β• if it is equipped with a double pushout2

(3.15) S′

β

��

D�2
δ2◦%�
oo

β�◦δ�2 // D′�

ι�

��

D•2

δ1◦%•

OO

β•◦δ•2
��

D′

ι

  

D′• ι•
// G

and a morphism π : D′∗ → G, called cylinder transition, making the diagram

(3.16) S′∗
β∗

��

D�1
δ∗2oo

β�◦δ�1 // D′�

ι�

��

D•1

δ∗1

OO

β•◦δ•1
��

D′∗
π

  

D′• ι•
// G

commute. Notice the analogy with framings of extended nodes of vertebrae defined in section
2.3.6.3 (page 70), which also required a pushout and a further morphism making a certain
diagram commute. The above structure will later be denoted by (p · β, v�, v•) . p∗ · β∗ when
the sevs induced by (S, %�) · β� and (S, %•) · β• are denoted by v� and v•, respectively.

2The universal cocone is given by the arrows ι�, ι and ι• while the diagram of the colimit is given by the rest of

the diagram. Topologically, such a pushout construction should be though of as a sort double mapping cylinder, which
turns out to be an actual topological cylinder for the vertebrae of Example 2.4.2.1. This explains the term ’cylinder

transition’ used afterwards.
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3.3.2.5. Hom-language for framings of vertebrae. The goal of this section is to translate the
notion of framing of vertebrae introduced in section 3.3.2.4 into the hom-language. We
shall refer to the diagrams of this section. Let C be a category, X be an object in C and
f := (v, v�, v•) . v∗ be a framing of vertebrae in C where v� : γ ex v� and v• : γ ex v•. Suppose
given the following set of paths

g� : %� · x ∼v� a h : x ∼v y and g• : %• · y ∼v• b

in X, where %� and %• denote the respective discal transitions of v� and v•. Note that the
previous data are equivalent to giving a commutative diagram as follows.

S′

β

��

D�2
δ2◦%�
oo

β�◦δ�2 // D′�

g�

��

D•2

δ1◦%•

OO

β•◦δ•2
��

D′

h

  

D′• g•
// X

By universality of the pushout of diagram (3.15), it follows that there exists a canonical
morphism g� ? h ? g• : G→ X making the following diagrams commute.

(3.17) D′�

ι�
  

g�
// X

G

g�?h?g•

OO D′

ι
  

h // X

G

g�?h?g•

OO D′•

ι•
  

g•
// X

G

g�?h?g•

OO

Now, if we denote by dg�hg•ef the composite morphism (g� ? h ? g•) ◦ π : D′∗ → X, then
diagram (3.16) exactly provides a relation of the form dg�hg•ef : a ∼v∗ b. Later on, if the
framing structure is obvious or makes notations too cumbersome, the notation dg�hg•ef will
be shortened to dg�hg•e.

Remark 3.46. For every morphism f : X → Y in C, the path f(dg�hg•ef) may be identified
with the path df(g�)f(h)f(g•)ef, which is of the form f(a) ∼v∗ f(b).

3.3.2.6. Framings of nodes of vertebrae. Let C be category and p be a prevertebra framed by
another prevertebra p∗ along two sevs p� : γ ex p� and p• : γ′ ex p• in C. A node of vertebrae
of the form p∗ ·Ω∗ will be said to frame a node of vertebrae of the form p ·Ω along two sevs
v� and v• if it is equipped with

1) a metafunction ψ : Ω→ Ω∗, called its framing gear ;

2) a framing of vertebrae (p · β, v�, v•) . p∗ · ψ(β) for every stem β ∈ Ω.

The above structure will later be denoted as (p · Ω, v�, v•) . p∗ · Ω∗. The framing gear here
suggests the following functional notation: if the previous framing of nodes of vertebrae
is given a name, say f, the notation f(β) will denote the associated framing of vertebrae
(p · β, v�, v•) . p∗ · ψ(β) for the stem β ∈ Ω.

3.3.2.7. Hom-language for framings of nodes of vertebrae. Let C be a category, X be an
object in C and f := (ν, v�, v•) . ν∗ be a framing of nodes of vertebrae in C where v� : γ ex v�
and v• : γ′ ex v•. The definition of a framing of nodes of vertebrae ensures that any set of
paths of the form

g� : %� · x ∼v� a h : x ∼ν y g• : %• · y ∼v• b
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in an object X of C gives rise to a (ν∗)-path3 of the form dg�hg•ef(β) : a ∼ν∗ b in X for some
β ∈ Ω. For convenience, a path of the form dg�hg•ef(β) will later be denoted by dg�hg•ef.
Note that every pair of paths e� : %� ·x ∼v� a and e• : %• · y ∼v• b gives rise to a metafunction

C(ν,X)(x, y)→ C(ν∗, X)(a, b)

mapping a ν-path h : x ∼v y to the (ν∗)-path de�he•ef. Such a metafunction will later be
denoted by T e•e� and called the tubular operator of the framing f. Formally, the structure of a
tubular operator such as the previous one will always comprise the associated pair of paths
e� and e• in its data. The next proposition views the two sevs v� and v• as senovs, thus
allowing the use of the notion of surtraction.

Proposition 3.47. Let g : X → Y be a surtraction for v� and v• and x and y be a parallel pair
over g defined above the base of ν in Y . There exists a tubular operator T e•e� : C(ν, Y )(x, y)→
C(ν∗, Y )(a, b) such that a and b are parallel under g.

Proof. Let h : x ∼v y be a v-path in Y such that v ∈ ν and denote v = p ·β where p is of the
form ‖γ, γ′‖. Since x and y are parallel over the morphism g : X → Y above p : S( S′ in Y ,
Remark 3.25 and Remark 3.12 imply that there exists z′ ∈ C(S, X) such that the relations
x ∼γ g(z′) and y ∼γ′ g(z′) hold in Y . Since g is a surtraction for the senovs v� and v•,

Proposition 3.22 implies that there exist two paths z′ ∼γ′� x′ and z′ ∼γ′• y′ in X such that
%� · x ∼v� g(x′) and %• · y ∼v• g(y′) hold in Y . First, the last two relations involves the
existence of a tubular operator

T e•e� : C(ν, Y )(x, y)→ C(ν∗, Y )(g(x′), g(y′))

where e� : %� · x ∼v� g(x′) and e• : %• · y ∼v• g(y′). Second, the relations given by z′ ∼γ′� x′
and z′ ∼γ′• y′ imply, by Proposition 3.13 and Remark 3.12, a relation x′ ∼p∗ y′, where
p∗ = ‖γ′�, γ′•‖ is the prevertebra of ν∗. This means, by Remark 3.9, that x′ and y′ are parallel
above p∗ and proves that the elements a := g(x′) and b := g(y′) are parallel under g by using
Remark 3.26. �

3.3.2.8. Morphisms of framings of vertebrae. Let C be a category and consider two framings
of vertebrae (v, v�, v•) . v∗ and (v[, v�, v•) . v† in C. Their respective cylinder transitions
will be denoted by π : D′∗ → G and π[ : D′† → G[. This section requires some additional
conditions before introducing a notion of morphism between the two previous framings of
vertebrae. First, because both framings have the same pair of semi-extended vertebrae, the
vertebrae v and v[ must have same base up to canonical isomorphism. Their base will in
fact be considered the same, implying that they must have same pushout, say S′. Similarly,
the bases of the vertebrae v∗ and v† will be considered equal. Now, by definition, the two
previous framings are equipped with two pushouts as follows.

S′

β

��

D�2
δ2◦%�
oo

β�◦δ�2 // D′�

ι�

��

D•2

δ1◦%•

OO

β•◦δ•2
��

D′

ι

  

D′• ι•
// G

S′

β[

��

D�2
δ2◦%�
oo

β�◦δ�2 // D′�

ι�
[

��

D•2

δ1◦%•

OO

β•◦δ•2
��

D′[
ι[

��

D′• ι•
[

// G[

3Here, the brackets are to ease the reading of the prefixed node of vertebrae.
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Interestingly, any morphism of vertebrae u : p · β y p · β[ in C generates, by universality, a
canonical arrow κ(u) : G[ → G making the following diagrams commute (see Remark 3.43).

(3.18) D′�
ι� //

ι�
[   

G

G[

κ(u)

OO D′ ι◦u //

ι[   

G

G[

κ(u)

OO D′•
ι• //

ι•
[   

G,

G[

κ(u)

OO

A morphism of framings from (v, v�, v•) . v∗ to (v[, v�, v•) . v† consists of two morphisms
u : v y v[ and u∗ : v∗ y v† in Vert(C) such that the universal arrow κ(u) : G[ → G makes
the following diagram commute.

(3.19) D′∗
π // G

D′†

u∗

OO

π[
// G[

κ(u)

OO

The previous notion of morphism, which will be denoted as a pair (u, u∗) and use the symbol
y for its arrows, defines a category Fov(C) whose objects are the framings of vertebrae in C.

Remark 3.48. Let (v, v�, v•).v∗ be a framing in C whose cylinder transition is denoted by π.
Then, any pair of isomorphisms u : v y v[ and u∗ : v∗ y v† (i.e. u and u∗ are invertible in C)
gives rise to a framing (v[, v�, v•) . s†, whose cylinder transition is π ◦ u, and an isomorphism
(u, u∗) : (v, v�, v•) . v∗ y (v[, v�, v•) . v†.

3.3.2.9. Hom-language for morphisms of framings. Let C be a category, X be an object in C
and (u, u∗) : f y f[ be a morphism in Fov(C) whose source and target will be encoded by
framings of the form (v, v�, v•) . v∗ and (v[, v�, v•) . v†, respectively. Suppose given the set of
paths

(3.20) g� : %� · x ∼v� a h : x ∼v y and g• : %• · y ∼v• b

in X and its associated framing path dg�hg•ef : a ∼v∗ b. According to Proposition 3.45, the
morphism of vertebrae u : v[ y v turns the v-path h : x ∼v y into a v[-path u · h : x ∼s[ y.
Thus, we obtain another set of paths

(3.21) g� : %� · x ∼v� a u · h : x ∼v[ y and g• : %• · y ∼v• b

that admits a framing path of the form dg�(u ·h)g•ef[ : a ∼v† b. The definition of a morphism
of framings of vertebrae then implies the following equality.

dg�(u · h)g•ef[ = u∗ · dg�hg•ef

Remark 3.49. Precisely, the above equation follows from the equality

g� ? (u · h) ? g• = κ(u) · (g� ? h ? g•),

which is induced by universality, on comparing the two canonical morphisms g� ? (u · h) ? g• :
D′[ → X and g� ? h ? g• : D′ → X via κ(u) (see section 3.3.2.5).

3.3.3. Framing for nodes of spines and extended nodes of spines.

3.3.3.1. From spines to vertebrae. Let C be a cateogry and s = P ·β be a spine of degree n ≥ 0
in C with P = (pk). For every 0 ≤ k ≤ n, the structure of s gives rise to the following leftmost
diagram in Vert(C). When n > 0, it also induces the corresponding righthand commutative
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diagram for every 0 ≤ k ≤ n.

pk · (Γk(P )β)
β
// pk · Γk(P )

pk · (Γk(∂P )γ′n)
γ′n // pk · Γk(∂P )

pk · (Γk(P )β)
β◦δ2

//

β◦δ1

OO

pk · (Γk(∂P )γn)

γn

OO

The diagram on the left may be described as a functor V k
s : I→ Vert(C) where I is the small

category consisting of a unique arrow and two objects4. The diagram on the right may be
seen as a functor Eks : J→ Vert(C) where J is a small category consisting of a commutative
square of four arrows and four objects. Note that J is isomorphic to the product category
I×I, thus providing four inclusions I ↪→ J. In the sequel, we will denote by iI,J the inclusion

I ↪→ J restricting the functor Eks to V k
P ·γn (see above diagrams). Throughout this paper, the

category I will be encoded as a category of the form {0→ 1}.
3.3.3.2. From nodes of spines to nodes of vertebrae. Let C be a cateogry and σ be a spine.
In the sequel, for every 0 ≤ k ≤ n, we will denote by V k

σ (0) and V k
σ (1) the nodes of vertebrae

encoded by the collections {V k
s (0)}s∈σ and {V k

s (1)}s∈σ, respectively.

3.3.3.3. Compatibility of prespines. Let C be a category and P = (pk) and P∗ = (p∗k) be two
prespines in C of degrees n ≥ 0 and m ≥ 0, respectively. For every non-negative integer q,
the two prespines P and P∗ will be said to be q-compatible if the equality pk = p∗k holds for
every 0 ≤ k ≤ q− 1 provided that the prevertebrae pk and p∗k are well-defined. In particular,
when the two inequalities q ≤ n + 1 and q ≤ m + 1 hold, this is equivalent to requiring the
equation ∂n−q+1P = ∂m−q+1P∗.

3.3.3.4. Framing of prespines. Let C be a category and P = (pk) and P∗ = (p∗k) be two
prespines in C of non-negative degrees. Consider a non-negative integer q less than or equal
to the degrees of P and P∗ and suppose that the prevertebra pq is of the form ‖γq, γ′q‖. The

prespine P will be said to frame the prespine P∗ at rank q along a pair of seps p� : γq
ex p�

and p• : γ′q
ex p• if

1) the prespine P is q-compatible with P∗;

2) the prevertebra pq frames the prevertebra p∗q along p� and p•.

The above structure will be denoted as (P, p�, p•) .q P∗ and called a q-framing of prespines.

3.3.3.5. Framing of functors. Let C be a category, L be a connected small category and
A : L → Vert(C) and A∗ : L → Vert(C) be two functors. The functor A will be said to
frame the functor A∗ along two sevs of the form v� and v• if it is equipped with a functor
L→ Fov(C) with the following mapping rules on objects and arrows.

d 7→ (A(d), v�, v•) . A∗(d) (t : d→ d′) 7→ (A(t), A∗(t))

Such a structure will be denoted by (A, v�, v•) . A∗ and said to be defined over L.

Remark 3.50. The use of the same pair of sevs for the framings of vertebrae is ensured by
the fact that L is connected, thereby implying that the base of all vertebrae in the image of
A are equal by definition of a morphism in Fov(C).

Definition 3.51 (Simple framing). Let q ≥ 0 and (P, p�, p•).qP∗ be a q-framing of prespines.
A spine s = P ·β will be said to simply frame a spine s∗ = P∗·β∗ at rank q along two sevs of the
form v� = p� ·β� and v• = p• ·β• if it is equipped with a framing of functors (V q

s , v�, v•) . V
q
s∗

over I. Such a structure will later be denoted by (s, v�, v•).
V
q s∗ and called a simple q-framing

of spines in C.

4The symbol I is deliberately chosen in place of 2 to enhance the fact I specifically refers to the domain of V ks .
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Definition 3.52 (Extensive framing). Let q ≥ 0 and (P, p�, p•) .q P∗ be a q-framing of
prespines. A spine s = P · β will be said to extensively frame a spine s∗ = P∗ · β∗ at rank
q along two sevs of the form v� = p� · β� and v• = p• · β• if it is equipped with a framing
of functors (Eqs , v�, v•) . E

q
s∗ over J. Such a structure will be denoted by (s, v�, v•) .

E
q s∗ and

called an extensive q-framing of spines in C. Note that restricting the previous framing along
iI,J provides a simple q-framing of spines (P · γn, v�, v•) .Vq P∗ · γ∗n (see section 3.3.3.1).

3.3.3.6. Hom-language for simple framings. Let C be a category, X be an object in C and
(s, v�, v•).

V
q s∗ be a simple q-framing of spines as defined in Definition 3.51 where v� : γq

ex v�
and v• : γ′q

ex v•. Suppose given the set of paths

g� : %� · xq ∼v� a h : [xk]n ∼s [yk]n and g• : %• · yq ∼v• b
in X, where %� and %• denote the discal transitions of the sevs v� and v•. By Proposition 3.35
and definition of a q-framing, the previous set of paths gives rise to a V q

s∗(0)-path dg�hg•efq
from a to b if we denote fq := (V q

s (0), v�, v•) .q V
q
s∗(0). By Remark 3.36, this element may

also be seen as an (s∗)-path dg�hg•efq whose source and target are of the respective form
[. . . , [ai]q] and [. . . , [bi]q], where the first m − q components of both source and target are
unknown if s∗ is of degree m. However, the definition of a q-framing of spines allows one to
obtain more information about the source and target of the (s∗)-path dg�hg•e. By definition
of a morphism of framings of spines in section 3.3.2.9, the following equality of V q

σ∗(1)-paths
must hold if we denote f′q := (V q

s (1), v�, v•) .q V
q
s∗(1).

(3.22) dg�(β · h)g•ef′q = β∗ · dg�hg•efq
Because the left and right hand sides of the foregoing equation are morphisms in C(S∗′n , X),
this equation is also an equality of (P∗ · id)-paths, which, from this point of view, involves
other sources and targets. Note that because the relation 〈x, y〉 : [xk]n ∼s [yk]n holds, the
framing dg�〈x, y〉g•ef′q is well-defined along the paths g� and g•. Equation (3.22) allows one
to prove the following result.

Proposition 3.53. The source and target of the (s∗)-path dg�hg•efq are equal to the source
and target of the (P∗ · id)-path dg�〈x, y〉g•ef′q , respectively.

Proof. First, by Proposition 3.45 and Remark 3.44, the source and target of the (s∗)-path
dg�hg•efq must be the same as those of the (P∗ · id)-path β∗ · dg�hg•efq . Equation (3.22)
also implies that these are exactly the source and target of the (P∗ · id)-path dg�(β · h)g•ef′q .
This finally proves the statement since Proposition 3.34 implies the equality of (P · id)-paths
β · h = 〈x, y〉. �

3.3.3.7. Framing of nodes of spines. Let C be a category, q a non-negative integer and P be
a prespine equipped with a q-framing P∗ along a pair of seps p� and p•. A node of spines
σ := P · Ω will be said to simply (resp. extensively) frame a node of spines σ∗ := P∗ · Ω∗
along two sevs v� and v• if it is equipped with a

1) a metafunction ψ : Ω→ Ω∗, called its framing gear ;

2) a simple (resp. extensive) q-framing of spines (P · β, v�, v•) .Vq P∗ · ψ(β) (resp.

(P · β, v�, v•) .Eq P∗ · ψ(β)) for every stem β ∈ Ω.

Such a structure will be denoted by (σ, v�, v•) .
V
q σ∗ (resp. (σ, v�, v•) .

E
q σ∗) and called a

simple (resp. extensive) q-framing of nodes of spines in C.
3.3.3.8. Hom-language for simple framings of nodes of spines. Let C be a category, X be an
object in C and (σ, v�, v•) .

V
q σ∗ be a simple q-framing of nodes of spines where v� : γq

ex v�
and v• : γ′q

ex v•. Suppose given the paths

g� : %� · xq ∼v� a h : [xk]n ∼σ [yk]n and g• : %• · yq ∼v• b
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in X, where %� and %• denote the discal transitions of the sevs v� and v•. We deduce from
section 3.3.3.6 and section 3.3.3.7 that the previous set of paths gives rise to a V q

σ∗(0)-path
dg�hg•efq from a to b if we denote fq := (V q

σ (0), v�, v•) .q V
q
σ∗(0). Proposition 3.22 also shows

that the source and target of dg�hg•efq , when seen as a (σ∗)-path, are equal to the respective
source and target of the (P∗ · id)-path dg�〈x, y〉g•e. In other words, the source and target
of dg�hg•efq do not depend on the encoding vertebra of dg�hg•efq as a (σ∗)-path. Thus, if
we denote by x′ and y′ the source and target of dg�〈x, y〉g•e, the preceding discussion shows
that for every pair of paths g� : %� · xq ∼v� a and g• : %• · yq ∼v• b, there exists a diagram of
metafunctions

(3.23) C(V q
σ (0), X)(xq, yq)

T g•g�
// C(V q

σ∗(0), X)(a, b)

C(σ,X)(x, y) //

⊆

OO

C(σ∗, X)(x′, y′)

⊆

OO

whose bottom arrow maps any σ-path h : x ∼σ y to the (σ∗)-paths dg�hg•efq : x′ ∼σ∗ y′ where

x′q = a and y′q = b. The dashed arrow of diagram (3.23) will also be denoted by T g•g� . The
structure defined by the previous metafunctions together with the associated pair of paths
g� and g• will be called a simple q-tubular operator.

Proposition 3.54. Let g : X → Y be a surtraction for v� and v• and x and y be a q-parallel
pair over g above the base of σ. There exists a simple q-tubular operator T e•e� : C(σ, Y )(x, y)→
C(σ∗, Y )(x′, y′) such that x′ and y′ are q-parallel under g.

Proof. Follows from Proposition 3.47 and the equations x′q = a and y′q = b. �

Let f : X → Y be a morphism in C and consider the paths g� and g• as defined at the
beginning of the section. The application of f on the two paths g� and g• in X provides two
other paths in Y as follows.

f(g�) : %� · f(xq) ∼v� f(a) f(g•) : %• · f(yq) ∼v• f(b)

Consider a σ-path h : f(x) ∼σ f(y) in Y . As above, the source and target of the (P∗ · id)-
path dg�〈x, y〉g•e will be denoted by x′ and y′, respectively. First, the framing of vertebrae
fq implies a V q

σ∗(0)-path df(g�)hf(g•)efq . Because fq is induced by the simple q-framing of

nodes of spines (σ, v�, v•).
V
q σ∗, it follows from Proposition 3.53 that the source and target of

df(g�)hf(g•)efq , when seen as a (σ∗)-path, are equal to the source and target of the following
(P∗ · id)-path in Y .

df(g�)(β · h)f(g•)e = df(g�)〈f(x), f(y)〉f(g•)e
By Remark 3.46, this last element is equal to f(dg�〈x, y〉g•e), which is, by assumption, of the
form f(x′) ∼σ∗ f(y′) when seen as a (σ∗)-path. In other words, the above discussion provides
a simple q-tubular operator of the following form.

(3.24) T
f(g•)
f(g�)

: C(σ, Y )(f(x), f(y))→ C(σ∗, Y )(f(x′), f(y′))

More specifically, the following proposition holds.

Proposition 3.55. Let f : X → Y be a morphism in C. Any simple q-tubular operator of
the form T g•g� : C(σ,X)(x, y)→ C(σ∗, X)(x′, y′) implies another one of the form (3.24) making
the following diagram commute.

C(σ,X)(x, y)
T g•g�

//

f

��

C(σ∗, X)(x′, y′)

f
��

C(σ, Y )(f(x), f(y))
T
f(g•)
f(g�)

// C(σ∗, Y )(f(x′), f(y′))
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Proof. The first part of the statement is implied by the discussion preceding the present
proposition. The commutative diagram is, for its part, equivalent to the fact that the iden-
tity df(g�)f(h)f(g•)efq = f(dg�hg•efq) holds for every path h ∈ C(σ,X)(x, y), which is a
consequence of Remark 3.46. �

3.3.3.9. Hom-language for extensive framing of nodes of spines. Let C be a category, f : X →
Y be an object in C and (σ, v�, v•) .

E
q σ∗ be an extensive q-framing of nodes of spines where

v� : γq
ex v� and v• : γ′q

ex v•. We will denote the node of spines σ by P ·Ω and its respective
spinal seed and coseed by s and s′. Similarly, the spine σ∗ will be written as P∗ · Ω∗ and
its respective spinal seed and coseed will be denoted by s∗ and s′∗. Consider a pair (h, y)
in C(σ, f)(r, t) with the notations y : [tk]n ∼s′ [rk]n and two paths g� : %� · rq ∼v� a and
g• : %• · tq ∼v• b in X where %� and %• denote the discal transitions of the sevs v� and v•.
We deduce from Definition 3.52 and section 3.3.3.8 that the extensive q-framing applied on
the paths of the pair (h, y) gives rise to a (σ∗)-path df(g�)hf(g•)e in Y and an (s∗)-path
dg�yg•e in X. Note that the former path makes sense regarding the conditions on sources
and targets involved in section 3.3.3.8 by application of Proposition 3.38. By definition of
a node of spines, we may assume that the σ-path h is encoded by a (P · β)-path for some
β ∈ Ω. It follows from Definition 3.52 and section 3.3.2.9 that the source of the (σ∗)-path
df(g�)hf(g•)e is equal to

df(g�)((δ2β) · h)f(g•)e = df(g�)xf(g•)e
Similarly, the target of the (σ∗)-path df(g�)hf(g•)e is equal to

df(g�)((δ1β) · h)f(g•)e = df(g�)f(y)f(g•)e = f(dg�yg•e).
Regarding the induced simple q-framings (s′, v�, v•) .

V
q s
′
∗ and (s, v�, v•) .

V
q s∗, we also know

from Proposition 3.53 that the source and target of the (s′∗)-path dg�yg•e are the same as
those of the (P∗ ·id)-path dg�〈r, t〉g•e and the source and target of the (s∗)-path df(g�)xf(g•)e
are the same as those of the (P∗ · id)-path

df(g�)〈f(r), f(t)〉f(g•)e = df(g�)f(〈r, t〉)f(g•)e = f(dg�〈r, t〉g•e).
Thus, if we denote by r′ and t′ the source and target of dg�〈r, t〉g•e, the preceding discussion
shows that for every pair of paths g� : %� ·rq ∼v� a and g• : %• ·tq ∼v• b, there exists a diagram
of metafunctions

(3.25) C(s, Y )(f(r), f(t))
T
f(g•)
f(g�)
// C(s∗, Y )(f(r′), f(t′))

C(σ, f)(r, t) //

Rσ

OO

C(σ∗, f)(r′, t′)

Rσ∗

OO

whose bottom arrow maps any pair (h, y) to the pair of paths defined by

(df(g�)hf(g•)e, dg�yg•e).
The dashed arrow of diagram (3.25) will be denoted by T g•g� . The structure defined by the
previous metafunctions together with the associated pair of paths g� and g• will be called an
extensive q-tubular operator.

3.3.3.10. Sequences of framings of nodes of spines. In the sequel, the terms framing of nodes
of spines will be shortened to fonos. Let C be a category and ` be a positive integer. A
sequence of simple fonos’s of length ` in C consists of a sequence of ` simple fonos’s F :=
{f0, f1, . . . , f`−1} in C such that, for every 0 ≤ i ≤ ` − 1, the framing fi is a simple i-framing
of nodes of spines of the form (σi, v

i
�, v

i
•) .

V
i σi+1. In other words, we have a sequence of

consecutive framings of the following form.

(σ0, v
0
�, v

0
•) .V0 (σ1, v

1
�, v

1
•) .V1 . . . .V`−2 (σ`−1, v

`−1
� , v`−1

• ) .V`−1 σ`
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The set of extended vertebrae consisting of v0
�, . . . , v

`−1
� and v0

•, . . . , v
`−1
• will be called the

tubular shell of the sequence. A morphism that is a surtraction for every extended (node of)
vertebrae in the tubular shell of F will be called a tubular surtraction for F. Denote by ni
the degree of the nodes of spines σi for every 0 ≤ i ≤ `. The sequence of simple fonos’s F will
be said to be convergent if the relation n` = `− 1 holds.

Lemma 3.56. Let F be a sequence of simple fonos’s of length ` as above, g : X → Y be a
tubular surtraction for F and x and y be a pair of 0-parallel elements over g above the base
of σ0 in Y . There exists a composition of ` tubular operators

C(σ0, Y )(x, y)→ C(σ1, Y )(x1, y1)→ · · · → C(σn` , Y )(x`, y`)

such that x` and y` are (`− 1)-parallel under g above the base of σ` in Y .

Proof. Follows from successive uses of Proposition 3.54 and Proposition 3.41. �

Remark 3.57. If sequence F of Lemma 3.56 is convergent, then x` and y` are (n`)-parallel
under g above the base of σ` in Y , which means that they are parallel under g above the
head of σ` in Y . In other words, there exists a pair of parallel elements x′ and y′ above the
head of σ` in X such that x` = g(x′) and y` = g(y′).

3.3.4. Correspondences of vertebrae.

3.3.4.1. Correspondences of vertebrae. The reader might want to refer to section 3.1 regarding
the intuition behind correspondences, which, in a few words, is that of a pair of vertebrae
that are canonically related in the sense that one of the vertebrae should be viewed as the
image of the other via algebraic operations. Let C be a category and v = p · β and v = p · β
be two vertebrae in C with respective domains S and S. Denote by D′ and D′ the respective
codomains of the stems β and β. A correspondence of vertebrae between v and v consists
of an arrow κ : S → S in C, an object M in C, called the messenger, and two morphisms

u : D→M and u : D′ →M in C such that the relation

(3.26) u ◦ β ◦ Γ−1(p) ◦ κ = u ◦ β ◦ Γ−1(p)

holds in C (see section 3.3.1.3 for Γ−1). Such a correspondence will be denoted by the symbols
(u, u) ` v � v. The pair (u, u) will be replaced with a triple (κ, u, u) when the morphism κ
needs to be specified.

3.3.4.2. Strong correspondences of vertebrae. Let C be a category and v = p · β and v = p · β
be two vertebrae in C. Denote by D′ and D′ the respective codomains of the stems β and β.
A strong correspondence of vertebrae between v and v consists of an alliance of prevertebrae
p := (κ, ρ, ρ′,κ′) : p p, an object M in C, called the messenger and two arrows u : D→M
and u : D′ →M in C such that the relation

u ◦ β ◦ κ′ = u ◦ β

holds in C. Such a structure will be denoted by the symbols (u, u) ` v ∼� v. The pair (u, u)
will be replaced with a triple (p, u, u) when the alliance p needs to be specified. Note that
any strong correspondence of the form (p, u, u) ` v ∼� v in C gives rise to a correspondence
(κ, u, u) ` v � v in C with same messenger.

3.3.4.3. Morphisms of correspondences. Let C be a category and (κ, u, u) ` p · β � p · β and
(κ, u∗, u∗) ` p · β∗ � p · β∗ (resp. (p, u, u) ` p · β ∼� p · β and (p, u∗, u∗) ` p · β∗

∼� p · β∗)
be two (resp. strong) correspondences of vertebrae in C whose respective messengers will be
denoted by M and M∗. A morphism of correspondences from (u, u) to (u∗, u∗) consists of

1) two arrows a : p · β y p · β∗ and b : p · β y p · β∗ in Vert(C);
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2) an arrow κ : M∗ →M making the following diagram commute.

(3.27) D′∗
u∗ //

a

��

M∗

κ

��

D′∗

b
��

u∗oo

D′
u
// M D′

u
oo

This notion of morphisms defines a category of (resp. strong) correspondences of vertebrae
in C that will be denoted by Corov(C) (resp. Scov(C)). A morphism of correspondences as
defined above will be denoted by [κ, a, b] : (u, u)⇒ (u∗, u∗).

Remark 3.58. Let (u, u) ` p · β � p · β be a correspondence in Corov(C) whose messenger
will be denoted by M. It follows that post-composing the morphisms u and u with any arrow
κ : M → M′ in C provides a correspondence (κ ◦ u, κ ◦ u) ` p · β � p · β and a morphism
[κ, id, id] : (κ ◦ u, κ ◦ u)⇒ (u, u) in Corov(C)

Remark 3.59. Let (u, u) ` p · β � p · β be a correspondence in Corov(C) whose messenger
will be denoted by M and consider a pair of arrows a : p · β y p · β∗ and b : p · β y p · β∗
in Vert(C). It follows that pre-composing the morphisms u and u with a and b provides a
correspondence (u ◦ a, u ◦ b) ` p∗ ·β∗ � p∗ ·β∗ and a morphism [id, a, b] : (u, u)⇒ (u ◦ a, u ◦ b)
in Corov(C).

3.3.4.4. Mates for correspondences. Let C be a category and (κ, u, u) ` p · β � p · β be a
correspondence in Corov(C) equipped with a messenger M. The version of formula (3.26)
for the correspondence (u, u) implies that the next diagrams commute.

(3.28) S
γ◦κ
//

γ
��

D1 u◦β◦δ2

��

D2

u◦β◦δ2

66 M

S
γ′◦κ

//

γ′

��

D2 u◦β◦δ1

��

D1

u◦β◦δ1

66 M

A pair of mates for the correspondence (u, u) ` p · β � p · β consists of a pair of vertebrae
v� := ‖γ, γ ◦ κ‖ · β� : S ( S′� and v• := ‖γ′, γ′ ◦ κ‖ · β• : S ( S′• together with a pair of
morphisms $� : D′� → D′ and $• : D′• → D′ in C such that the diagrams given in (3.28)
factorise as follows.

(3.29) S
γ◦κ
//

γ
��

D1 u◦β◦δ2

��

δ�1
��

D2 δ�2 //

u◦β◦δ2

77S′�
β�
// D′�

$� // M

S
γ′◦κ

//

γ′

��

D2 u◦β◦δ1

��

δ•1
��

D1 δ•2 //

u◦β◦δ1

77S′•
β•
// D′•

$• // M
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This being defined, a quick rearrangement of the previous diagrams gives the next one, which
reminds of the type of diagrams considered for framings of vertebrae.

(3.30) S′

β

��

D2
δ2oo

β�◦δ�2 // D′�

$�

��

D2

δ1

OO

β•◦δ•2
��

D′

u

��

D′• $•
// M

Indeed, if one sees the vertebrae v� and v• as semi-extended vertebrae with trivial discal
transitions, section 3.3.2.5 shows that this commutative diagram fulfills all the conditions
required to suit a framing of p ·β along the pair of (semi-extended) vertebrae (v�, v•). The use
of the notation d$�u$•e shall thus make sense. The next proposition shows that morphisms
of correspondences are well-behaved with respect to pair of mates.

Proposition 3.60. Let [κ, a, b] : (u, u)⇒ (u∗, u∗) be an arrow in Corov(C). If the codomain
(u∗, u∗) is equipped with a pair of mates, then so is the domain (u, u). In addition, the
associated vertebrae are the same for both correspondences.

Proof. Denote by (v�, $�) and (v•, $•) the pair of mates associated with (u∗, u∗). Then,
post-compose the versions of diagrams (3.29) for the correspondence (u∗, u∗) with the arrow
κ : M∗ →M and use the relations available in diagram (3.27) as well as the equations defining
the morphisms of vertebrae a and b (see Remark 3.43) to rearrange the resulting diagrams
into the following ones.

S
γ∗◦κ

//

γ∗
��

D1 u◦β◦δ2

��

δ�1
��

D2 δ�2 //

u◦β◦δ2

77S′�
β�
// D′�

κ◦$� // M

S
γ′∗◦κ //

γ′∗
��

D2 u◦β◦δ1

��

δ•1
��

D1 δ•2 //

u◦β◦δ1

77S′•
β•
// D′•

κ◦$• // M

This shows that (v�, κ◦$�) and (v•, κ◦$•) defines a pair of mates for (u, u) as the equalities
of prevertebrae ‖γ∗, γ′∗‖ = ‖γ, γ′‖ and ‖γ∗, γ′∗‖ = ‖γ, γ′‖ hold by definition of the arrows a
and b in Vert(C). We can see that the pair of vertebrae associated with (u, u) is indeed the
same as that of (u∗, u∗). �

The previous proposition shows that it is possible to transmit a pair of mates from the
codomain to the domain. On the other hand, transmitting a pair of mates from domain to
codomain requires the morphism κ between the two messengers to be an identity (see Remark
3.59), which will rarely be the case. This last point motivates the following definition. We
will later denote by Mcov(C) the category whose objects are correspondences c in C equipped
with a pair of mates µ and whose arrows (c, µ)⇒ (c∗, µ∗) are morphisms c⇒ c∗ in Corov(C)
such that the pair of mates µ is induced by µ∗ as shown in Proposition 3.60.

3.3.4.5. Spans of correspondences. Let C be a category and (c, µ) and c† be two objects in
Mcov(C) and Scov(C), respectively. The pair ((c, µ), c†) will be said to form a span if both

correspondences c and c† are of respective form (κ, u, u) ` v � v and (p, u, u†) ` v
∼� v† where

κ is the spherical transition of p. Note that their messengers must be represented by the same
object M since the morphism u, going to the messenger M, is part of both correspondences. A
morphism of spans of correspondences from ((c, µ), c†) to ((c∗, µ∗), c]) consists of a morphism
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[κ, a, b] : (c, µ)⇒ (c∗, µ∗) in Mcov(C) and a morphism [κ, a, b†] : c† ⇒ c] in Scov(C). Notice
that the arrow κ : M∗ → M and the morphism of vertebrae a : v y v∗ – when supposing
that c and c∗ are of the form v � v and v∗ � v∗ with messengers M and M∗, respectively –
are common to both morphisms.

3.3.4.6. Framings of correspondences of vertebrae. Let C be a category and (c, µ) be an object
in Mcov(C) where c := (κ, u, u) ` v � v and µ := (v�, $�, v•, $•). A vertebra v† will be
said to frame the pair (c, µ) if it is equipped with a framing of vertebrae f := (v, v�, v•) . v†
(see section 3.3.4.4 for the use of vertebrae instead of sevs in framings). By definition of the
pair of mates µ and the framing f, if the prevertebra v = p · β is of the form ‖γ, γ′ : S′‖,
the prevertebra of v† = p† · β† must be of the form ‖γ ◦ κ, γ′ ◦ κ‖ (see section 3.3.2.3). The
universality of the codomain of p† then implies the existence of a canonical arrow θ (see next
diagram) inducing an alliance of prevertebrae p := (κ, id, id, θ) : p p†.

(3.31) S
γ′◦κ

//

γ◦κ
��

D1

δ
†
1
��

D1

δ1

��

D2
δ
†
2

// S′†
θ

��

D2
δ2

// S′

Also, recall that the discussion of section 3.3.4.4 showed that the framing f implied the
existence of an (v†)-path u† := d$�u$•ef : D† →M (see diagram (3.30)).

Proposition 3.61. The previously defined data (p, u, u†) defines a strong correspondence
with messenger M. If follows that the pair (c, µ) and the strong correspondence (p, u, u†)
define a span of correspondences.

Proof. This may be shown after some straightforward calculations by using the diagram-
matic relations given in (i) the top right parts of both diagrams of (3.29) for the pair of
mates µ and (ii) the versions of diagram (3.16) and diagram (3.15) for the framing of ver-
tebrae (v, v�, v•) . v†, to expose both arrows u ◦ β ◦ θ and d$�u$•ef ◦ β† as solutions of the
following commutative problem (see diagram (3.31) for the diagrammatic relations associated
with the arrow θ).

S′†

  

D1
δ
†
2oo

β�◦δ�1 // D′�

$�

��

D1

δ
†
1

OO

β•◦δ•1
��

D′• $•
// M

The universality of the pushout S′ then leads to the uniqueness of such a solution and provides
the wanted correspondence. �

Denote the strong correspondence (p, u, u†) by c†. In the sequel, the framing of the pair
(c, µ) by the vertebra v† will be denoted by the symbols (c, µ) . c†, thereby exposing the
structure of span produced by Propoposition 3.61. The correspondence c† will then be said
to frame the pair (c, µ). Such a structure will be referred to as a framing of correspondences
of vertebrae.
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3.3.4.7. Convention of notations. In the sequel, we shall associate any correspondence of the
form (κ , u , u ) ` v � v with the symbol c and any pair of mates (v�, $�, v•, $•) with the
symbol µ .

3.3.4.8. Hom-language for framing of correspondences of vertebrae. Let C be a category, X
be an object in C and c := (u, u) ` v � v be a correspondence of vertebrae in C with
messenger M. Consider an element h in C(M, X) and two paths of the form u · h : x ∼v y
and u · h : x ∼v y. When c is equipped with a pair of mates µ, both diagrams (3.29) induce
a v�-path $� : (δ2β) · u ∼v� (δ2β) · u and a v•-path $• : (δ1β) · u ∼v• (δ1β) · u. By applying
the arrow h : M→ X on them, we obtain the following two paths.

$� · h : x ∼v� x and $• · h : y ∼v• y
Finally, equipping the pair (c, µ) with a framing of correspondences (c, µ) . c† gives the
following series of equalities (see Remark 3.46).

d($� · h)(u · h)($• · h)e = d$�u$•e · h = u† · h
Note that the equality involved on both extremities looks like the type of formula obtained
for morphisms of framings of vertebrae when expressed in the hom-language.

3.3.4.9. Morphisms of framings of correspondences of vertebrae. The terms framing of cor-
respondences of vertebrae will be shortened to focov. Let C be a category and (c, µ) . c†
and (c∗, µ∗) . c] be two focovs in C. A morphism of focovs from the former to the latter
consists of a morphism [κ, a, b] : (c, µ) ⇒ (c∗, µ∗) in Mcov(C) and a morphism of framings
(b, b†) : (v, v�, v•) . v† y (v∗, v�, v•) . v] in Fov(C).

Proposition 3.62. The pair ([κ, a, b], [κ, a, b†]) defines a morphism of spans of correspon-
dences from ((c, µ), c†) to ((c∗, µ∗), c]).

Proof. The main difficulty is to prove that the diagram below commutes, where $� ?u∗ ?$•
denotes the canonical arrow induced by the version of diagram (3.30) for the framing (c∗, µ∗).
c]. It will then be easy to deduce the structure of morphism of spans of correspondences from
its outer commutative square.

M∗

κ

��

G′∗
$�?u∗?$•oo

κ(b)

��

(κ◦$�)?(b·u)?(κ◦$•)

vv

D′]
b†
��

π∗oo

M G′
(κ◦$�)?u?(κ◦$•)

oo D′†π
oo

First, the top left triangle follows from Remark 3.46 and the equation κ ◦ u∗ = u ◦ b given by
the definition of morphism [κ, a, b] in Mcov(C). The bottom left triangle follows from Remark
3.49 applied on the morphism (b, b†) in Fov(C). The rightmost square is, for its part, given by
definition of the morphism (b, b†) in Fov(C). The above commutative diagram then implies
the one, below, where the right-hand square is given by the outer commutative square of the
above diagram and the left-hand square is given by the definition of the morphism [κ, a, b] in
Mcov(C).

D′ u∗ //

a

��

M∗

κ

��

D′]
d$�u∗$•e
oo

b†
��

D′
u

// M D′†d(κ◦$�)u(κ◦$•)e
oo

According to section 3.3.4.6 and section 3.3.4.5, this last diagram together with the morphism
[κ, a, b] define a morphism of spans of correspondences ((c, µ), c†)⇒ ((c∗, µ∗), c]). �

This notion of morphism induces a category Focov(C) whose objects are the focovs in C.
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3.3.5. Conjugation of vertebrae.

3.3.5.1. Conjugable pairs of alliances of prevertebrae. Let C be category and consider two
alliances of prevertebrae a : p  p̂ and a[ : p∗  prv

[ in C such that the seed of p is equal
to the coseed of p∗. Suppose that a and a[ are of the form (κ, %, %′,κ′) and (κ[, %[, %′[,κ

′
[),

respectively.

κ[ //
OO

γ′
[

��

OO

γ∗

��%[ //
OO OO

γ[
��

〈
κ //

γ̂

��

〈

γ′∗

��

(∗)
r // % //

��

��

ks

κ //

γ̂′

��

γ̂

��

∠ ��

γ

��

∠

(∗)

% //

�� ��

//

�� ��κ′ //︸ ︷︷ ︸
a[

︸ ︷︷ ︸
a

The alliance a[ will be said to be conjugable with the alliance a along a morphism r : D[2 → D̂2

if the arrow seed(a[) : γ[ ⇒ γ factorises through seed(a) : γ̂ ⇒ γ along a commutative square
γ[ ⇒ γ̂ whose top arrow is an identity and whose bottom arrow is given by r (see preceding
diagram). In particular, this implies the factorisation %′[ = % ◦ r. Similarly, an alliance of
vertebrae a[ : v∗  vrv

[ will be said to be conjugable with another one a : v  v̂ if so are their
underlying alliances of prevertebrae.

Remark 3.63. By definition, the arrow r : D[2 → D̂2 induces an obvious communication
t : γ̂  γ[, which induces an obvious semi-extended vertebra (S[, r) : γ̂ ex v[.

3.3.5.2. Conjugation of vertebrae. Let C be category and consider four vertebrae v, v, v̈,
v̂ and an alliance of vertebrae a : v̈  v̂ in C. The triple (v, a, v) will be said to form a
conjugation of vertebrae in C if it is equipped with

1) two semi-extended vertebrae v� : γ ex v� and v• : γ′ ex v•;

2) two reflections of vertebrae a[ : v�  vrv
[ and a† : v•  vrv

† conjugable with the
alliances of vertebrae a and arv along morphisms

r[ : D[2 → D̂1 and r† : D†2 → D̂2,

respectively;

3) two framings of vertebrae (v, v�, v•) . v̈ and (v̂, v[, v†) . v where v[ and v† are the
underlying sevs (S[, r[) : γ̂ ex v[ and (S†, r†) : γ̂′ ex v† (see Remark 3.63).

The above structure will be denoted by (v, a, v) and said to be defined along the pairs v�, v•,
a[, a† and v[, v†. By definition of a framing, the domains of the vertebrae v, v̈ and sevs v�,
v• are the same, say S, and, similarly, the domains of the vertebrae v̂, v and sevs v[, v† must

also be equal to the same object, say S. The spherical transition of a is then an arrow S→ S,
which will be denoted by κ.

Proposition 3.64. A conjugation of vertebrae (p · β, a, p · β) as above induces an alliance
of prevertebrae p  p whose spherical transition is κ : S → S and whose discal and codiscal
transitions are the discal transitions of semi-extended vertebrae a[}v� and a†}v•, respectively.

Proof. First, the semi-extended vertebrae v� : γ ex v� and v• : γ′ ex v• give the factorisations
γ = %� ◦ γ� and γ′ = %• ◦ γ• where %� and %• denote the respective discal transitions of
v� and v•. Similarly, the alliances of vertebrae a[ : v�  vrv

[ and a† : v•  vrv
† give the

factorisations γ� ◦ κ = %[ ◦ γ′[ and γ• ◦ κ = %† ◦ γ′† where %[ and %† denote the respective
discal transitions of a[ and a†. This implies the following commutative diagram where, by
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definition, the prevertebra ‖γ′[, γ
′
†‖ corresponds to the prevertebra p and the dashed arrow θ

is the canonical morphism generated by the underlying universal problem over the codomain
of p.

(3.32) S γ

$$

γ′

��

S

κ
^^

x

γ′†
//

γ′
[
��

D†1 %•◦%†
//

δ†1
��

D1

δ1

��

D[2
%�◦%[
��

δ[2

// S′

θ

��

D2
δ2 // S′

Finally, the above diagram provides an alliance (κ, %� ◦ %[, %• ◦ %†, θ) : p p �

3.3.5.3. Morphisms of alliances of vertebrae. Let C be category and a : v  v and a∗ : v∗  v∗
be two alliances of vertebrae in C such that a = (p, u) and a∗ = (p, u∗). A morphism
of alliances of vertebrae a ⇒ a∗ consists of two morphisms of vertebrae w : v y v∗ and
w : v y v∗ for which the next diagram commute in C.

(3.33) D′∗

w
��

u∗ // D′∗
w

��

D′
u
// D′

This is also equivalent to saying that the equation a}w = w} a∗ holds in Ally(C) when the
arrows w and w in Vert(C) are seen as alliances of vertebrae. Thus, a morphism of alliances
is a particular morphism in the arrow category of Ally(C). The category whose objects
are alliances of vertebrae and whose arrows are morphisms of vertebrae will be denoted by
Alov(C).
3.3.5.4. Morphisms of conjugations of vertebrae. Let C be category and consider two con-
jugations of spines (v, a, v) and (v∗, a∗, v∗) defined along the same pairs v�, v•, a[, a† and
v[, v† and where a : v̈  v̂ and a∗ : v̈∗  v̂∗. Suppose that a and a∗ are of the form (p, u)
and (p, u∗), respectively. A morphism of conjugations from the former to the latter con-
sists of two morphisms of framings of vertebrae (w, ẅ) : (v, v�, v•) . v̈ y (v∗, v�, v•) . v̈∗ and
(ŵ, w) : (v̂, v[, v†).v y (v̂∗, v[, v†).v∗ in Fov(C) such that the pair (ẅ, ŵ) defines a morphism
of alliances of vertebrae a ⇒ a∗ in Alov(C). This notion of morphism induces a category
Conj(C) whose objects are the conjugations of vertebrae in C.
3.3.5.5. From conjugations to strong correspondences. Let C be a category. The aim of this
section is to define a functor Conj(C)→ Scov(C). Let us first define the mapping on objects.
Consider a conjugation of vertebrae (v, a, v) defined along some pairs v�, v•, a[, a† and v[, v†,

whose components will be denoted by (S , % ), (κ , % , %′ ,κ′, τ ) and (S , r ), respectively (see
section 3.3.5.2 for the notations of the respective sources and targets). We will suppose
a : v̈  v̂ where a = (κ, %, %′,κ′, u) and denote by π and π̂ the cylinder transitions of the first
and second framings of along v�, v• and v[, v†. First is recalled the version of diagram (3.16)
for the framing of vertebrae (v, v�, v•) . v̈ on left-hand side of the following implication. On
the right-hand side is the resulting diagram after a pre-composition with the discal transitions
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%[ and %† on the top and left faces, respectively.

(3.34) S̈′

β̈

��

D�1
δ̈2oo

β�◦δ�1 // D′�

ι�

��

D•1

δ̈1

OO

β•◦δ•1
��

D̈′

π

��

D′•
ι• // G

+3

S̈′

β̈

��

D[2
δ̈2◦%[oo

β[◦δ[2 // D′[

ι�◦τ[

��

D†2

δ̈1◦%†

OO

β†◦δ†2
��

D̈′

π

��

D′†
ι•◦τ†

// G

Note that the occurence of the arrows τ[ and τ† in the right-hand diagram comes from the
use of the commutative square triv(a[) and triv(a†). It turns out that the right-hand side
diagram of (3.34) defines a universal problem for the version of diagram (3.15) associated
with the framing (v̂, v[, v†) . v, which is given below in diagram (3.35). This follows from the
factorisations %[ = % ◦ r[ and %† = %′ ◦ r† given by conjugability (see section 3.3.5.1) and the

identities u ◦ β̂ ◦ δ̂2 = β̈ ◦ δ̈2 ◦ % and u ◦ β̂ ◦ δ̂1 = β̈ ◦ δ̈1 ◦ %′ given by the alliance a : v̈  v̂.

(3.35) Ŝ′

β̂

��

D[2
δ̂2◦r[oo

β[◦δ[2 // D′[

ι̂[

��

D†2

δ̂1◦r†

OO

β†◦δ†2
��

D̂′

ι̂

��

D′†
ι̂† // Ĝ

It then follows the existence of a canonical arrow ζ : Ĝ → G making the following three
diagrams commute.

(3.36) D′[
ι�◦τ[ //

ι̂[ ��

G

Ĝ

ζ

OO D̂′ π◦u //

ι̂
��

G

Ĝ

ζ

OO D′†
ι•◦τ†

//

ι̂† ��

G

Ĝ

ζ

OO

Now, consider the version of diagram (3.16) for the framing (v̂, v[, v†) . v (see the left-hand
side diagram of (3.37)) and apply the leftmost and rightmost relations of (3.36) on it after
post-composing with ζ. This provides the right-hand side commutative diagram of (3.37).

(3.37) S′

β

��

D[1
δ2oo

β[◦δ[1 // D′[

ι̂[

��

D†1

δ1

OO

β†◦δ†1
��

D′

π̂

��

D′†
ι̂†

// Ĝ

+3

S′

β

��

D[1
δ2oo

β[◦δ[1 // D′[

ι�◦τ[

��

D†1

δ1

OO

β†◦δ†1
��

D′

ζ◦π̂
��

D′† ι•◦τ†
// G

Lastly, if we consider the version of diagram (3.15) for the framing (v, v�, v•) . v̂, we obtain
the left-hand side of (3.38). Pre-composing this diagram with the codiscal transitions %′[ and
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%′† on the top and left faces then gives the diagram on the right.

(3.38) S′

β

��

D�2
δ2◦%�
oo

β�◦δ�2 // D′�

ι�

��

D•2

δ2◦%•

OO

β•◦δ•2
��

D′

ι

  

D′• ι•
// G

+3

S′

β

��

D[1
δ2◦%�◦%′[oo

β[◦δ[1 // D′[

ι�◦τ[

��

D†1

δ1◦%•◦%′†

OO

β†◦δ†1
��

D′

ι

��

D′† ι•◦τ†
// G

Again, the occurence of the arrows τ[ and τ† in the right-hand diagram comes from the use of
the commutative square triv(a[) and triv(a†). Interestingly, the respective right diagrams of
(3.37) and (3.38) provide two solutions for the following universal problem over the pushout
S′, namely ζ◦π̂◦β and ι◦β◦θ, where θ is the codiscal transition of the alliance of prevertebrae,
say p‡, defined by Proposition 3.64 (see diagram (3.32) for the same notations).

S
γ′
//

γ
��

D[1 ι�◦τ�◦β[◦δ[1

��

δ1
��

D†2
δ2 //

ι•◦τ•◦β†◦δ†1

55S′ // G

By universality, we deduce the identity ι ◦ β ◦ θ = ζ ◦ π̂ ◦ β. This equality defines a strong
correspondence of vertebrae in Scov(C) with messenger G as follows.

(3.39) Scor(v, a, v) := (p‡, ι, ζ ◦ π̂) ` p · β ∼� p · β

We are now going to send every morphism (w, ẅ, ŵ, w) : (v, a, v) y (v∗, a∗, v∗) defined
along the same pairs v�, v•, a[, a† and v[, v† in Conj(C) to a morphism of correspondences
Scor(v, a, v)⇒ Scor(v∗, a∗, v∗) in Scov(C). This morphism will arise in the following form.

(3.40) D′∗
ι∗ //

w

��

G∗

κ(w)

��

D′∗
ζ∗◦π̂∗

oo

w
��

D′ ι // G D′
ζ◦π̂

oo

First, considering the versions of diagram (3.18) and diagram (3.19) for the morphism of
framings (w, ẅ) : (v, v�, v•) . v̈ y (v∗, v�, v•) . v̈∗ and the version of diagram (3.36) for the
image Scor(v∗, a∗, v∗) provides the following diagrams.

D′�
ι� //

ι�∗   

G

G∗

κ(w)

OO D′•
ι• //

ι•∗   

G

G∗

κ(w)

OO D′ ι // G

D′∗

w

OO

ι∗
// G∗

κ(w)

OO D̈′ π // G

D̈′∗

ẅ

OO

π∗
// G∗

κ(w)

OO

D′[
ι�∗◦τ[ //

ι̂[∗ ��

G∗

Ĝ∗

ζ∗

OO
D′†

ι•∗◦τ†
//

ι̂†∗ ��

G∗

Ĝ∗

ζ∗

OO
(blank) D̂′∗

π∗◦u∗ //

ι̂∗ ��

G∗

Ĝ∗

ζ∗

OO

Then, considering the version of diagram (3.36) for the image Scor(v, a, v) and the versions
of diagrams (3.18, 3.19) for the morphism of framings (ŵ, w) : (v̂, v[, v†) . v y (v̂∗, v[, v†) . v∗
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provides the following diagrams.

D′[
ι�◦τ[ //

ι̂[ ��

G

Ĝ∗

ζ

OO D′†
ι•◦τ†

//

ι̂† ��

G

Ĝ

ζ

OO D̂′ π◦u //

ι̂
��

G

Ĝ

ζ

OO (blank)

D′[
ι̂[ //

ι̂[∗ ��

Ĝ

Ĝ∗

κ(ŵ)

OO D′†
ι̂† //

ι̂†∗ ��

Ĝ

Ĝ∗

κ(ŵ)

OO D̂′ ι̂ // Ĝ

D̂′∗

ŵ

OO

ι̂∗
// Ĝ∗

κ(ŵ)

OO D′ π̂ // Ĝ

D′∗

w

OO

π̂∗
// Ĝ∗

κ(ŵ)

OO

After pasting the previous two sets of diagrams as suggested by their arrangements and using
the version of diagram (3.33) for the pair (ẅ, ŵ), it follows that κ(w) ◦ ζ∗ and ζ ◦ κ(ŵ) are
solutions of the following universal problem over diagram (3.35).

D′[
ι�◦τ[ //

ι̂[∗ ��

Ĝ

Ĝ∗

OO D̂′∗
π◦ŵ◦u //

ι̂∗ ��

Ĝ

Ĝ∗

OO D′†
ι•◦τ†

//

ι̂†∗ ��

Ĝ

Ĝ∗

OO

By uniqueness, this implies an equality κ(w) ◦ ζ∗ = ζ ◦ κ(ŵ). Using this last equation with
the two squares that were not subject to a pasting in the previous process (pasting with a
blank diagram), we finally deduce the commutative diagram (3.40). The functoriality of Scor

finally follows from that of the construction κ( ) (see section 3.3.2.8). This therefore defines
a functor Scor : Conj(C)→ Scov(C).
3.3.5.6. Hom-language for conjugation of vertebrae. Let C be a category, X be an object in
C and (v, a, v) be a conjugation of vertebrae along pairs v�, v•, a[, a† and v[, v† as defined in
section 3.3.5.2. We will describe the strong correspondence Sorr(v, a, v) by the data (p‡, u, u) `
v
∼� v where the alliance of prevertebrae p‡ will be supposed to be of the form (κ, ρ, ρ′, θ) :

p p. According to Proposition 3.47, the framing of (nodes of) vertebrae f := (v, v�, v•) . v̈
provides a tubular operator

(3.41) T e•e� : C(v,X)(x, y) // C(v̈, X)(a, b)

for every pair of paths e� : %� · x ∼v� a and e• : %• · x ∼v• b. Then, Proposition 3.15 implies
that the alliance a : v̈  v̂ induces a metafunction of the following form.

(3.42) C(a, X) : C(v̈, X)(a, b) // C(v̂, X)(% · a, %′ · b)

By Proposition 3.15 and Remark 3.7, the two reflections a[ : v�  vrv
[ and a† : v•  vrv

† turn
the paths e� and e• into two paths as follows.

τ[ · e� : %′[ · a ∼v[ (%[%[) · x τ† · e• : %′† · b ∼v� (%†%†) · y

By conjugability, we know that the factorisations %′[ = % ◦ r[ and %′† = %′ ◦ r† hold in C.
Besides, Proposition 3.64 implies the identities ρ = %� ◦ %[ and ρ′ = %• ◦ %†. This gives the
two following expressions.

τ[ · e� : r[ · (% · a) ∼v[ ρ · x τ† · e• : r† · (%′ · b) ∼v† ρ
′ · y

Because we are provided with a framing f̂ := (v̂, v[, v†).v where v[ = (S[, r[) and v† = (S†, r†),
the previous two paths induce a tubular operator as follows.

(3.43) T
τ†·e•
τ[·e� : C(v̂, X)(% · a, %′ · b) // C(v,X)(ρ · x, ρ′ · y)
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We can see that the previous three arrows given in (3.41), (3.42) and (3.43) form a composable
set of metafunctions. We will denote their composite as follows.

U e•e� : C(v,X)(x, y)→ C(v,X)(ρ · x, ρ′ · y)

Consider a v-path h : x ∼v y in X. By construction, the metafunction U e•e� maps the path
h ∈ C(v,X)(x, y) to the v-path given on the left-hand side of equation (3.44). The series of
equations that then follows shows that this path may be expressed in the form of a v-path
(π̂ζ) · h′ where h′ is the canonical arrow e� ? h ? e• defined in section 3.3.2.5 for the framing
f := (v, v�, v•) . v̈.⌈

(τ[ · e�)
(
u · (e�he•)f

)
(τ† · e•)

⌉̂
f

=
⌈
(τ[ · e�)

(
(uπ) · h′

)
(τ† · e•)

⌉̂
f

(3.44)

=
⌈
((τ[ι

�) · h′)
(

(uπ) · h′
)

((τ†ι
•) · h′)

⌉̂
f

(3.45)

= d(τ[ι�)(uπ)(τ†ι
•)ê

f
· h′(3.46)

= (π̂ζ) · h′(3.47)

Equation (3.44) and equation (3.45) are given by the notations set up in section 3.3.2.5.
Equation (3.46) follows from Remark 3.46 and the conventions set up by section 3.2.1.1.
Finally, equation (3.47) is given by the universal property involved in the definition of the
diagrams of (3.36) . Note that the construction made in section 3.3.2.5 also implies the
identity ι · h′ = h (see middle diagram of (3.17)). The preceding discussion then shows the
next proposition.

Proposition 3.65. Any v-path h in X and its image U e•e� (h) may be expressed in terms of
a v-path ι · h′ and a v-path (π̂ζ) · h′ where the pair (ι, π̂ζ) forms a strong correspondence
according to equation (3.39) and h′ = e� ? h ? e•.

3.3.6. Allied and extended nodes of spines.

3.3.6.1. Alliance of prespines. Let C be category and n a non-negative integer. An alliance
of prespines of degree n consists of two prespines P = (pk) and P = (pk) of degrees n and an
alliance of prevertebrae of the form

(3.48) pk := (κk, %k, %′k,κk+1) : pk  pk

for every 0 ≤ k ≤ n. Note that the cospherical transition of an alliance pk is the spherical
transition of the alliance pk+1. Such a structure will be denoted as an arrow (p ) : P  P
and said to be of degree n. The alliance of prevertebrae pn will later be called the head of
the alliance (p ) : P  P . Finally, for any alliance of prespines p of positive degree n, it will
later come in handy to denote by ∂p the alliance of prespines of degree n − 1 consisting of
the alliances p0, p1, . . . and pn−1.

3.3.6.2. Allied structures. Let C be category and n a non-negative integer. An alliance of
spines (resp. nodes of spines) of degree n consists of two spines s = P · β and s = P · β
(resp. nodes of spines σ = P · Ω and σ = P · Ω) of degrees n together with an alliance of
prespines (p ) : P  P of degree n such that its head is equipped with a structure of alliance
of vertebrae (pn, u) : pn · β  pn · β (resp. of nodes of vertebrae (pn, φ, u) : pn · Ω pn · Ω).
The above structure will be denoted as an arrow (p , u) : s s (resp. (p , φ, u) : σ  σ) and
said to be of degree n.

Remark 3.66. An alliance of nodes of spines (p , φ, u) : σ  σ is completely encoded by a
collection of alliance of spines (p , uβ) : P · β  P · φ(β) where β runs over Ω.

Remark 3.67. Consider some non-negative integer q ≤ n as well as the notation I =
{0 → 1}. Any alliance of spines a := (p , u) : s  s of degree n, where p is as given
in formula (3.48), induces two alliances of vertebrae aq(0) := (pq, u) : V q

s (0)  V q
s (0) and
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aq(1) := (pq,κn+1) : V q
s (1) V q

s (1). The alliance of vertebrae associated with a also provides
a morphism aq(0)⇒ aq(1) in Alov(C) given by the following commutative square.

S′n
κn+1

//

β
��

S′n
β

��

D′
u
// D′

The previous data then defines a functor aq( ) : I→ Alov(C) mapping the objects 0 and 1 to
aq(0) and aq(1), respectively. Similarly, an alliance of nodes of spines a := (p , φ, u) : σ  σ
induces two alliances of nodes of vertebrae aq(0) : V q

σ (0) V q
σ (0) and aq(1) : V q

σ (1) V q
σ (1)

whose components are induced by the construction of Remark 3.66 on a := (p , φ, u) : σ  σ
and the first construction of the present remark. Because of its particular form, the alliance
aq(1) turns out to be an alliance of vertebrae (pq,κn+1) : V q

s (1)  V q
s (1) for any s ∈ σ and

s ∈ σ.

3.3.6.3. Zoo of an alliance of nodes of spines. The zoo associated with an alliance of nodes
of spines a := (p , φ, u) : σ  σ of some degree n ≥ 0 corresponds to the zoo associated with
the alliance of nodes of vertebrae an(0).

3.3.6.4. Hom-language for alliance of nodes of spines. Let C be a category, X be an object in C
and n be a non-negative integer. Consider an alliance of nodes of spines a := (p , φ, u) : σ  σ
of degree n with p = (κk, %k, %′k,κk+1) : pk  pk.

Proposition 3.68. Every relation h : [xk]n ∼σ [yk]n in X implies a relation u ·h : [%k ·xk] ∼σ
[%′k · yk]n in X where [%k · xk] = %n · xn and [%′k · yk] = %′n · yn.

Proof. It suffices to apply the operation %k · and %′k · on the equations of (3.14), for every
0 ≤ k ≤ n, and use the relations provided by the alliance a. �

By construction, the alliance of nodes of vertebrae aq(0) is an arrow V q
σ (0) V q

σ (0). The
previous proposition then shows that, for every parallel pair x and y above the base of σ in
X, the following diagram commutes.

(3.49) C(V q
σ (0), X)(xq, yq)

C(aq(0),X)
// C(V q

σ (0), X)(%q · xq, %q · yq)

C(σ,X)(x, y)
C(a,X)

//

⊆

OO

C(σ,X)(%n · x, %n · y)

⊆

OO

Note that, by definition, the vertical arrows of the previous diagram become identities when
q = n. This last point together with Remark 3.21 imply that a morphism f : X → Y in C
is an intraction for the alliance of nodes of spines a : σ  σ if and only if for every parallel
pair x ∈ C(D2, X) and y ∈ C(D1, X) above p, if the bottom left class of diagram (3.50) is
non-empty, then so is the right top class.

(3.50) C(σ,X)(x, y)
C(a,X)

//

f

��

C(σ,X)(%′n · x, %′n · y)

f

��

C(σ, Y )(f(x), f(y))
C(a,X)

// C(σ, Y )(%′n · f(x), %′n · f(y))
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3.3.6.5. Extended structures. Let C be a category and n be a positive integer. An extended
spine (resp. node of spines) of degree n in C consists of a spine s of degree n− 1 and a spine
s (resp. node of spines σ) of degree n equipped with an alliance of spines (p , %) : s  s∗ of
degree n − 1 where s∗ denotes the spinal seed of s (resp. spinal seed of σ) . This structure

will later be denoted as an arrow (p , %) : s EX s (resp. (p , %) : s EX σ) and said to be of degree
n.

Remark 3.69. Considering the notations s := P · γ, σ := P ·Ω and P = (pk), the extended
node of spines (p , %) induces an extended node of vertebrae γ ex pn · Ω encoded by the pair
(κn, %), where κn is the cospherical transition of pn−1.

3.3.6.6. Zoo of an extended node of spines. The zoo associated with an extended node of
spines (p , %) : P · γ EX P · Ω corresponds to the zoo associated with its underlying extended
nodes of vertebrae (κn, %) : γ ex pn · Ω (see Remark 3.69).

3.3.6.7. Hom-language for extended nodes of spines. Let C be a category, X be an object in
C and n be a positive integer. Consider an extended node of spines ς := (p , %) : s EX σ of
degree n with p = (κk, %k, %′k,κk+1) : pk  pk. The spinal seed of the node of spines σ will be
denoted by s∗ and the induced alliance of spines (p , %) : s s∗ will be denoted by a. It follows
from Proposition 3.22 and the construction of section 3.3.1.8 that a morphism f : X → Y is a
surtraction for ς : s EX σ if and only if for every choice of element x : 1→ C(s,X)(f(r), f(t))
where r and t are parallel above the base of s in X, the following dashed arrow exists and
makes the following diagram commute.

1

x

��

// C(σ, f)(%n−1 · r, %′n−1 · t)

Rσ
��

(h, f(y))
_

��
C(s, Y )(f(r), f(t))

C(a,X)
// C(s∗, Y )(%n−1 · f(r), %′n−1 · f(t)) % · x

To show that the above lifting exists from Proposition 3.22, set z := 〈r, t〉 and use Remark
3.16 to show the equation κ′n ·z = 〈%n−1 ·r, %′n−1 ·t〉. Then, Proposition 3.14 and section 3.2.1.2
allow one to conclude quite easily. To prove the other direction, take z as in Proposition 3.22
and set r := δ2 · z and t := δ1 · z. Note that the pair formed by r and t is parallel above s in
X. Remark 3.16 then provides the following equations.

κ′n · z = 〈(%n−1δ2) · z, (%′n−1δ1) · z〉 = 〈%n−1 · r, %′n−1 · t〉

Finally, the use of Proposition 3.14 and section 3.2.1.2 allows one to deduce Proposition 3.22
from the above lifting property.

3.3.7. Memories of spines and extended spines. The idea behind the concept of mem-
ory is that of a ‘pair of sets of vertebrae that partially correspond with each other’ in the sense
that the correspondences will only appear for the vertebrae that one would like to remember
through the various framing that one would like to use and the additional vertebrae are only
there to be carried along via the framings, meaning that only their existence suffices. For
more intuition, see section 3.1.

3.3.7.1. Memories of functors. Let C be a category, L and L′ be two small categories and
K be a connected subcategory of L and L′. Consider two functors A : L → Vert(C) and
B : L′ → Vert(C). The functor B will be said to (resp. strongly) remember the functor A
over K if it is equipped with a functor ϑ : K → Corov(C) (resp. ϑ : K → Scov(C)) with
the following mapping rules on objects (left-hand side) and arrows (right-hand side).

d 7→ (κ, ud, ud) ` A(d) � B(d) (t : d→ d′) 7→ [κt, A(t), B(t)]

(resp. (p, ud, ud) ` A(d)
∼� B(d))
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Such a structure will be called a (resp. strong) memory and denoted by (κ, u, u) ` A � B
(resp. (p, u, u) ` A ∼� B) where the triple (κ, u, u) (resp. the triple (p, u, u)) will sometimes
be replaced with the symbol ϑ. The connectedness of K ensures that the components κ and p
used in the definition of ϑ do not vary over K by definition of the morphisms in Corov(C) and
Scov(C). Let q be a non-negative integer and s and s be two spines in C whose respective
prespines are given by P and P . Both prespines will be supposed to be of non-negative
degrees n and m, respectively. The next two definitions assume that L = L′ = I and K is the
one-object category containing the terminal object of I (see section 3.3.3.1 for the definitions
of I and J).

Definition 3.70 (Simple memories of spines). A simple q-memory of spines between s and
s consists of an alliance of prespines (p ) : ∂n−q+1P  ∂m−q+1P of degree q−1 together with
a memory of functors of the form (κq, u, u) ` V q

s � V q
s over K, where κq is the cospherical

transition of pq−1. Such a simple q-memory of spines will later be denoted as (p , u, u) ` s �q
s.

Definition 3.71 (Simple strong memories of spines). A simple strong q-memory of spines
between s and s consists of an alliance of prespines (p ) : ∂n−qP  ∂m−qP of degree q
together with a memory of functors of the form (pq, u, u) ` V q

s
∼� V q

s over K, where pq is the
head of the previous alliance of prespines. Such a simple strong q-memory of spines will later
be denoted as a correspondence of vertebrae (p , u, u) ` s ∼�q s.

Remark 3.72. Considering the notation I := {0 → 1}, a simple q-memory of spines is
equivalent to requiring a correspondence of vertebrae (κq, u, u) ` V q

s (1) � V q
s (1). Because

the vertebrae V q
s (1) and V q

s (1) do not depend on the stems of s and s (see section 3.3.3.1),
Definition 3.70 may even be viewed as a correspondence of the form (κq, u, u) ` V q

P ·id(1) �
V q

P ·id(1). The only subtlety is that the functors V q
s and V q

s carries the information of the

stems, which will play a substantial role in the notion of framing. This remark also holds for
strong q-memories of spines when replacing the symbol � with the symbol

∼�.

The integer m is now going to be assumed to be positive. The next two definitions
suppose that L = K = I and L′ = J so that the inclusion K ⊆ L′ is given by iI,J (see the
end of section 3.3.3.1).

Definition 3.73 (Extensive memories of spines). An extensive q-memory of spines between
s and s consists of an alliance of prespines (p ) : ∂n−q+1P  ∂m−q+1P of degree q − 1
together with a memory of functors of the form (κq, u, u) ` V q

s � Eqs over K, where κq is the
cospherical transition of pq−1. Such an extensive q-memory of spines will later be denoted as
(p , u, u) ` s _q s.

Definition 3.74 (Extensive memories of spines). An extensive strong q-memory of spines
between s and s consists of an alliance of prespines (p ) : ∂n−qP  ∂m−qP of degree q
together with a memory of functors of the form (pq, u, u) ` V q

s
∼� Eqs over K, where pq is the

head of the previous alliance of prespines. Such an extensive strong q-memory of spines will
later be denoted as (p , u, u) ` s ∼_q s.

Remark 3.75. Because s is of positive degree, the spinal seed of s exists and will be denoted
by s∗. Considering the notation I := {0→ 1}, an extensive q-memory of spines is equivalent
to requiring two correspondences of vertebrae (κq, u0, u0) ` V q

s (0) � V q
s∗(0) and (κq, u1, u1) `

V q
s (1) � V q

s∗(1) as well as a morphism of correspondences from the former to the latter given
by the commutative diagram, below, for which the notations s = P · γ and s∗ = ∂P · γ∗ have
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been used.

S u1 //

γ

��

M1

κ

��

S∗
u1oo

γ∗
��

D2 u0

// M0 D∗2u0

oo

The only subtlety is that the functor Eqs carries the information of the antiseed, stem, trivial
stem and costem of the spine s, which will play a substantial role in the next notion of
framing. This remark also holds for strong extensive q-memories of spines when replacing
the symbol with � the symbol

∼�.

Proposition 3.76. Let s and s be two spines in C. Any strong memory of functors (p, u, u) `
V q
s
∼� V q

s over I gives rise to a memory of functors (κ′, u, u) ` V q+1
s � V q+1

s over I where
κ′ is the cospherical transition of p. The same result holds for memories defined over a
subcategory of I (instead of I).

Proof. Represent the category I by the arrow {0 t→ 1} and consider the notations s = P · β
and s = P · β where P = (pk) and P = (pk). By assumption, the alliance p must be of the
form (κ, %, %′,κ′) : pq  pq. By definition, a strong memory (p, u, u) ` V q

s
∼� V q

s amounts to
considering the next equalities.

u0 ◦ β ◦ Γq(P ) ◦ κ′ = u0 ◦ β ◦ Γq(P ) u1 ◦ Γq(P ) ◦ κ′ = u1 ◦ Γq(P )

A quick rearrangement of these equations then gives the following ones (see section 3.3.1.3
for the various relations satisfied by Γq).{

u0 ◦ (β ◦ Γq+1(P )) ◦ Γ−1(pq+1) ◦ κ′ = u0 ◦ (β ◦ Γq+1(P )) ◦ Γ−1(pq+1)

u1 ◦ Γq+1(P ) ◦ Γ−1(pq+1) ◦ κ′ = u1 ◦ Γq+1(P ) ◦ Γ−1(pq+1)

This exactly means that the correspondence (κ′, ud, ud) ` V q+1
s (d)

∼� V q+1
s (d) holds for any

object d in I. Now, the morphism [κt, V
q
s (t), V q

s (t)] is equivalent to giving a diagram as
follows.

S′ u1 //

β

��

M1

κt

��

S′

β
��

u1oo

D′
u0

// M0 D′
u0

oo

Because the previous data do not depend on both q and the structure of P and P , this is
also equivalent to giving a morphism of correspondences of the form [κt, V

q+1
s (t), V q+1

s (t)].

The strong memory (p, u, u) ` V q
s
∼� V q

s thus induces a functor I → Corov(C) encoding a

memory (κ′, u, u) ` V q+1
s � V q+1

s . The second part of the statement is straightforward from
what precedes. �

The last statement of Proposition 3.76 implies the next two propositions.

Proposition 3.77. Any simple strong q-memory (p , u, u) ` s ∼�q s gives rise to a simple
(q + 1)-memory (p , u, u) ` s �q+1 s.

Proposition 3.78. Any extensive strong q-memory (p , u, u) ` s ∼_q s gives rise to an
extensive (q + 1)-memory (p , u, u) ` s ∼_q+1 s.
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3.3.7.2. Mates for memories of functors. Let C be a category, L and L′ be two small categories
and K be a non-empty subcategory of L and L′. Suppose that L′ and K are connected
categories and consider two functors A : L → Vert(C) and B : L′ → Vert(C). A memory
ϑ ` A � B over K in C will be said to admit a pair of mates if its functor ϑ : K → Corov(C)
is equipped with a lift to Mcov(C) as follows.

Mcov(C)

����

(c, µ)
_

��
K

ϑ
//

Mϑ

::

Corov(C) c

Such a memory will later be denoted as (ϑ,Mϑ) ` A � B.

Remark 3.79. When K has a terminal object, say 1, Proposition 3.60 implies that it suffices
to equip ϑ(1) with a pair of mates to be able to lift the whole functor ϑ : K → Corov(C) to
Mcov(C).

Remark 3.80. Because K is non-empty, there exists at least an object in the image of ϑ,
say c ` v � v, that admits a pair of mates, say µ. Because K is connected, the definition of
a morphism in Mcov(C) implies that the pairs of vertebrae provided by the pairs of mates
in the image of Mϑ are all equal and a fortiori equal to that of µ. Similarly, because L′ is
connected, the definition of a morphism in Vert(C) implies that the bases of the vertebrae
in the image of B are all equal and a fortiori equal to the base of v, say p. Now, recall that
one of the conditions in order for the pair (c, µ) to admit a framing (c, µ) . c† is that the
prevertebra p is framed by another one, say p∗, along the vertebrae associated with µ.

(c, µ) . c† ⇒ (p, v�, v•) . p∗ ⇒ (B(d), v�, v•) . B∗(d)

In particular, this implies that the bases of all vertebrae in the image of B, which are equal
to p, are framed by the prevertebra p∗ along the vertebrae associated with µ. In other words,
because the notion of framing of vertebrae relies on the notion of framing of prevertebrae (see
section 3.3.2.4), any framing of a pair (c, µ) in the image of ϑ prepares a potential framing
of all the vertebrae in the image of B along the vertebrae of µ. This shows that even if K
consists of a small portion of L′, a framing over K entails a potential framing over L′ by
connectedness.

Definition 3.81. A pair of mates for either an extensive or a simple (resp. strong) memory
of spines is a pair of mates for its underlying memory of functors.

3.3.7.3. Spans of memories. Let C be a category, (ϑ,Mϑ) be a memory in C equipped with
a pair of mates over some category K and ϑ† be a strong memory over K in C. The pair
((ϑ,Mϑ), ϑ†) will be said to form a span over K if both memories ϑ and ϑ† are of respective

forms (κ, u, u) ` A � B and (p, u, u†) ` A
∼� B† such that both functors B and B† are

functors L′ → Vert(C) and κ is equal to the spherical transition of the alliance p. If the
functor A is defined on a category L, the span will be said to be defined along the triple
(K,L,L′) .

Remark 3.82. According to section 3.3.7.2, the use of the pair (ϑ,Mϑ) implies that the
categories K and L′ must be non-empty and connected, which is always the case for simple
and extensive memories of spine.

Definition 3.83. A span of simple (resp. extensive) q-memories of spines consists of an
alliance of prespines p of degree q, a simple (resp. extensive) q-memory of spines (∂p , u, u) `
s �q s and a simple (resp. extensive) strong q-memory of spines (p , u, u) ` s ∼�q s† such
that the underlying memories of functors of the two q-memories form a span of memories as
defined above.
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3.3.7.4. Framing of memories. Let C be a category and ((ϑ,Mϑ), ϑ†) be a span of memories
in C defined along a triple (K,L,L′). The strong memory ϑ† will be said to frame the memory
ϑ along the lift Mϑ if it is equipped with a functor K → Focov(C) with the mapping rules

d 7→Mϑ(d) . ϑ†(d) (t : d→ d′) 7→ [Mϑ(t), B†(t)]

and a functor L→ Fov(C) with the mapping rules

d 7→ (B(d), v•, v�) . B†(d) (t : d→ d′) 7→ (B(t), B†(t))

Recall that the notion of span was the structure chosen to express the data of the category
Focov(C) (see section 3.3.4.9). Also, remark that the last functor does make sense regarding
Remark 3.80. The above structure will later be denoted by (ϑ,Mϑ) . ϑ† and referred to as a
framing of memories.

Definition 3.84. A framing of simple (resp. extensive) q-memories of spines consists of a
span of simple (resp. extensive) q-memories of spines whose underlying memories of functors
form a framing of memories as defined above.

3.3.7.5. Simple memories of nodes of spines. Let C be a category, q be a non-negative integer
and σ = P · Ω and σ = P · Ω be two nodes of spines in C of degrees n and m, respectively.
A simple q-memory between σ and σ is a simple q-memory of spines between P · id and
P · id (see Remark 3.85). More precisely, such a structure consists of an alliance of prespines
(p ) : ∂n−q+1P  ∂m−q+1P of degree q − 1 together with a correspondence of vertebrae

(κq, u, u) ` pq · Γq(P ) � pq · Γq(P )

where κq denotes the cospherical transition of the alliance of prevertebrae pq−1. The previous
data will be referred to by the symbols (pk, u, u) ` σ �q σ.

Remark 3.85. The point of the above definition is that it defines a structure of simple
q-memory of the form ϑ ` P · β �q P · β independent of any choice of stem β and β in C
(see Remark 3.72). Specifying the stems β and β will however play a substantial role for
the notion of framing of simple q-memories. In particular, we will denote by ϑ(β) the simple
q-memory of spines of type P · id �q P · β encoded by the triple (κq, u, u) for every β ∈ Ω.

3.3.7.6. Simple strong memories of nodes of spines. Let C be a category, q be a non-negative
integer and σ = P ·Ω and σ = P ·Ω be two nodes of spines in C of degrees n and m, respectively.
A simple strong q-memory between σ and σ is a simple strong q-memory of spines between
P · id and P · id (see Remark 3.86). More precisely, such a structure consists of an alliance
of prespines (p ) : ∂n−qP  ∂m−qP of degree q together with a strong correspondence of
vertebrae

(pq, u, u) ` pq · Γq(P )
∼� pq · Γq(P )

where pq refers to the head of the previous alliance of prespines. The previous data will be

referred to by the symbols (p , u, u) ` σ ∼�q σ.

Remark 3.86. The point of the above definition is that it defines a structure of simple strong
q-memory ϑ ` P · β ∼�q P · β independent of any choice of stem β and β in C (see Remark

3.72). Specifying the stems β and β will however play a substantial role for the notion of
framing of simple strong q-memories. In particular, we will denote by ϑ(β) the simple strong
q-memory of spines of type P · id �q P · β encoded by the triple (pq, u, u) for every stem

β ∈ Ω.
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3.3.7.7. Mates for simple memories of nodes of spines. Let C be a category, q be a non-
negative integer and ϑ := (p , u, u) ` σ �q σ denote a simple q-memory of nodes of spines

in C where σ = P · Ω and σ = P · Ω. A pair of mates for the q-memory ϑ consists of a
pair of mates for the underlying correspondence of vertebrae (κq, u, u), where κq denotes the
cospherical transition of the alliance of prevertebrae pq−1.

Remark 3.87. This is equivalent to equipping all simple q-memories of spines ϑ(β) where
β ∈ Ω with a common pair of mates (see Remark 3.85).

3.3.7.8. Framing of simple memories of nodes of spines. Let C be a category, q be a non-
negative integer, ϑ ` σ �q σ be a simple q-memory of nodes of spines in C equipped with

a pair of mates µ and ϑ† ` σ
∼�q σ† be a simple strong q-memory of nodes of spines. The

memory ϑ† will be said to frame the memory ϑ along the pair of mates µ if it is equipped
with

1) a metafunction ψ : Ω→ Ω†, called its framing gear ;

2) a framing of q-memories of spines (ϑ(β), µ) . ϑ†(ψ(β)) for every β ∈ Ω.

The above structure will later be denoted by the symbols (ϑ, µ) .q ϑ†.

Remark 3.88. According to section 3.3.7.4, such a framing involves a simple q-framing of
the node of spines σ by the node of spines σ along the vertebrae of µ (see Definition 3.51 and
section 3.3.3.7).

3.3.7.9. Simple chaining of nodes of spines. Let C be a category, σ be a nodes of spines in
C and ` and q be non-negative integers. A simple q-chaining of nodes of spines of length `
above σ consists of a sequence of ` + 1 nodes of spines Σ := {σ0, σ1, . . . , σ`} in C together
with `+ 1 simple strong memories of nodes of spines of the form

ϑi := (pi, u, ui) ` σ
∼�q+i σi

for every 0 ≤ i ≤ ` and a sequence of ` framings of memories as follows.

(ϑ0, µ0) .q+1 (ϑ1, µ1) .q+2 (ϑ2, µ2) .q+3 · · · .q+`−1 (ϑ`−1, µ`−1) .q+` ϑ`

Note that the previous sequence of framings of simple memories makes sense by Proposition
3.77 as a simple strong (q + i)-memory ϑi may be seen as a simple (q + i+ 1)-memory, thus
allowing the next framing. Then, section 3.3.4.6 forces all memory ϑi to have a common
component u as assumed above. In particular, this implies that the messengers Mi of the
correspondences associated with the memories ϑi must be equal to one and the same object,
say M, for every 0 ≤ i ≤ `. Such a chaining will later be denoted by (σ,Σ, ϑ , µ ), where ϑ
stands for the collection of correspondences ϑ0, . . . , ϑ` and µ is the symbol used to denote
the pairs of mates along which the framings are done. A chaining such as (σ,Σ, ϑ , µ ) will
be said to be convergent if the degrees of the spines σ` and σ equal q + `.

Proposition 3.89. Suppose that (s,Σ, ϑ , µ ) is convergent for ` > 0. Let h′ ∈ C(M, X) for
some object X in C and consider (x, y) and (x′, y′) two parallel pairs above the bases of σ
and σ0, respectively. If 〈x, y〉 = u · h′ and 〈x′, y′〉 = u0 · h′, then there exists a sequence of
composable (q + i)-tubular operators defined along the pairs of paths $i

� · h′ and $i
• · h′, for

every 0 ≤ i ≤ `− 1, whose composite is of the form C(σ0, X)(x′, y′)→ C(σ`, X)(x, y).

Proof. Suppose that the prespines of the nodes of spines σ := P · Ω and σi := Pi · Ωi are of
degrees n and ni, for every 0 ≤ i ≤ `, respectively. First, the equalities 〈x, y〉 = u · h′ and
〈x′, y′〉 = u0 · h′ involve two paths of the following forms.

u · h′ : [xk]n ∼P [yk]n u0 · h′ : [x′k]n0 ∼P0 [y′k]n0
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For reasons of definition regarding the framing (ϑ0, µ0) .q+1 ϑ1, the degree of P0 must satisfy
the inequality n0 ≥ q + 1. Since the chaining is convergent and ` > 0, the inequality n > q
holds as well. It follows from Proposition 3.35 that the previous two paths give the next ones.

(3.51) u · h′ : xq+1 ∼V q+1
P ·id (0)

yq+1 u0 · h′ : x′q+1 ∼V q+1
P0·id

(0)
y′q+1

By assumption, the simple strong q-memory ϑ0 also provides the following correspondence
of vertebrae (see Proposition 3.77 and Remark 3.72).

(3.52) (u, u0) ` V q+1
P ·id (1) � V q+1

P0·id(1)

Applying the first part of the discussion of section 3.3.4.8 on the pair of paths given in (3.51)
and the correspondence (3.52) shows the existence of two paths $0

� · h′ : xq+1 ∼v0
�
x′q+1

and $0
• · h′ : yq+1 ∼v0

•
y′q+1. Because the framing of simple q-memories of nodes of spines

(ϑ0, µ0).q+1 ϑ1 involves a simple q-framing of nodes of spines (σ0, v
0
�, v

0
•).q+1 σ1 (see Remark

3.88), the previous pair of paths defines a tubular operator

T : C(σ0, X)(x′, y′)→ C(σ1, X)(x(2), y(2))

where x
(2)
q+1 = xq+1 and y

(2)
q+1 = yq+1 (see section 3.3.3.8). Section 3.3.3.8 also shows that,

since the element 〈x′, y′〉 is well-defined, the elements x(2) and y(2) are parallel above the base

of σ1. The definition of x(2) and y(2) discussed in section 3.3.3.8 and the end of section 3.3.4.8
then implies the following equations (see the following discussion for more details).

〈x(2), y(2)〉 = d($0
� · h′)〈x′, y′〉($0

• · h′)e = u1 · h′

The first identity is a consequence of Proposition 3.34 when seeing the middle element as a
(P1 · id)-path. The second identity is a consequence of section 3.3.4.8 when seeing the middle

element as a (V q+1
P1·id(0))-path. We thus come back to our initial situation, but with the two

equalities 〈x, y〉 = u · h′ and 〈x(2), y(2)〉 = u1 · h′. Repeating the above arguments `− 1 times
in regard to the memories ϑ1, . . . , ϑ`−1 then leads to the existence of a chain of ` tubular
operators along the pairs of paths $k

� · h′ and $k
• · h′, for every 0 ≤ k ≤ `, whose composite

is of the form

C(σ0, X)(x′, y′)→ C(σ`, X)(x(`+1), y(`+1))

where x
(`+1)
q+` = xq+` and y

(`+1)
q+` = yq+`. Since the chaining is convergent, these last two

equations may be rewritten as x(`+1) = x and y(`+1) = y. This finally proves the statement.
�

3.3.7.10. Extensive memories of nodes of spines. Let C be a category, q be a non-negative
integer, s = P · γ be a spine and σ := P · Ω be a node of spines in C of positive degree.
An extensive q-memory between s and σ is an extensive q-memory between s and P · id
(see Remark 3.90). More precisely, if we denote the head of P by ‖γ∗, γ′∗‖, such a structure
consists of an alliance of prespine (p ) : P  ∂P of degree q − 1, two correspondences of
vertebrae {

(κq, u, u) ` pq · (Γq(P )γ) � pq · (Γq(∂P )γ∗)

(κq, u!, u!) ` pq · Γq(P ) � pq · Γq(∂P )

where κq refers to the cospherical transition of the alliance pq−1 and a morphism of corre-
spondences from the former to the latter encoded by a diagram as follows.

S
u! //

γ

��

M!

κ

��

S∗
u!oo

γ∗
��

D2 u
// M D∗2u
oo

The previous data will be referred to by the symbols
(
u!,u!
u,u

)
[p , κ] ` s _q σ.
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Remark 3.90. The point of the above definition is that it defines a structure of extensive
q-memory ϑ ` P · γ �q P · β independent of any choice of stem β in C (see Remark 3.75).

Specifying the stem β will however play a substantial role for the notion of framing of simple q-
memories. We will later denote by ϑ(β) the extensive q-memory of spines of type P ·γ �q P ·β
encoded by the triple (κq, u, u) for every β ∈ Ω.

3.3.7.11. Extensive strong memories of nodes of spines. Let C be a category, q be a non-
negative integer, s = P · γ be a spine and σ := P · Ω be a node of spines in C of positive
degree. An extensive strong q-memory between s and σ is an extensive strong q-memory
between s and P · id (see Remark 3.91). More precisely, if we denote the head of P by
‖γ∗, γ′∗‖, such a structure consists of an alliance of prespine (p ) : P  ∂P of degree q, two
strong correspondences of vertebrae{

(pq, u, u) ` pq · (Γq(P )γ)
∼� pq · (Γq(∂P )γ∗)

(pq, u!, u!) ` pq · Γq(P )
∼� pq · Γq(∂P )

and a morphism of correspondences from the former to the latter encoded by a diagram as
follows.

S
u! //

γ

��

M!

κ

��

S∗
u!oo

γ∗
��

D2 u
// M D∗2u
oo

The previous data will be referred to by the symbols
(
u!,u!
u,u

)
[p , κ] ` s ∼_q σ.

Remark 3.91. The point of the above definition is that it defines a structure of extensive-
strong q-memory ϑ ` P · γ ∼�q P · β independent of any choice of stem β in C (see Remark

3.75). Specifying the stem β will however play a substantial role for the notion of framing of
simple q-memories. We will later denote by ϑ(β) the extensive q-memory of spines of type
P · γ ∼�q P · β encoded by the triple (κq, u, u) for every β ∈ Ω.

3.3.7.12. Mates for extensive memories of nodes of spines. Let C be a category and q be a
non-negative integer. Consider an extensive q-memory of nodes of spines as follows.

ϑ :=

(
u!, u!

u, u

)
[p , κ] ` s _q σ

A pair of mates for the q-memory ϑ consists of a pair of mates for the underlying corre-
spondence of vertebrae encoded by the triple (κq, u!, u!), where κq denotes the cospherical
transition of pq−1.

Remark 3.92. By Remark 3.79, this is equivalent to equipping all extensive q-memories of
spines ϑ(β) where β ∈ Ω with a common pair of mates.

3.3.7.13. Framing of extensive memories of nodes of spines. Let C be a category, q be a non-
negative integer, ϑ ` s _q σ∗ be a extensive q-memory of nodes of spines in C equipped with
a pair of mates µ and ϑ† ` s ∼_q σ† be an extensive strong q-memory of nodes of spines. The

classes of stems associated with σ∗ and σ† will be denoted by Ω and Ω†, respectively. The
memory ϑ† will be said to frame the memory ϑ along the pair of mates µ if it is equipped
with

1) a metafunction ψ : Ω→ Ω†, called its framing gear ;

2) following the notations of Remark 3.90 and Remark 3.91, a framing of extensive
q-memories of spines (ϑ(β), µ) . ϑ†(ψ(β)) for every β ∈ Ω.

The above structure will later be denoted by the symbols (ϑ, µ) .q ϑ†.
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Remark 3.93. According to section 3.3.7.4, such a framing involves an extensive q-framing
of the node of spines σ∗ by the node of spines σ† along the vertebrae associated with the pair
of mates µ. (see Definition 3.52 and section 3.3.3.7).

3.3.7.14. Recollections. Let C be a category, n be a positive integer, s be a spine of degree
n − 1 and σ be a node of spines of degree n in C. The spinal seed of σ will be denoted
by s∗. A recollection between s and σ is a simple strong (n − 1)-memory of spines between
the spines s and s∗. More explicitly, such a recollection consists of an alliance of prespines
(p ) : P  ∂P of degree n − 1 whose head is equipped with a strong correspondence of
vertebrae (pn−1, u, u) ` V n−1

s (0)
∼�n−1 V

n−1
s∗ (0) in C. Such a recollection will later be denoted

by (p , u, u) ` s ∼^ σ and said to be of height n.

Remark 3.94. For notations s := P · γ and s∗ := ∂P · γ∗, the previous recollection involves
an object M in C, standing for the messenger of the correspondence, and two morphisms
u : D2 → M and u : D∗2 → M in C for which the following identity holds in C, where κn
denotes the cospherical transition of pn−1.

u ◦ γ ◦ κn = u ◦ γ∗

3.3.7.15. Mates for recollections. Let C be a category and (p , u, u) ` s ∼^ σ be a recollection
of height n in C with notations s = P ·γ and σ = P ·Ω where the head of P will be supposed to
be of the form p∗ := ‖γ∗, γ′∗‖. The messenger of the recollection and the cospherical transition
of pn−1 will be denoted by M and κn, respectively. By Remark 3.94, the following diagram
must commute.

(3.53) Sn
γ◦κn

//

γ∗
��

D2
u

��

Dn2
u

66 M

A mate for the recollection (p , u, u) ` s ∼^ σ consists of a vertebra v◦ of the form ‖γ◦κn, γ∗‖·
β◦ : S ( S′◦ together with a morphism $◦ : D′◦ → D′ in C such that the diagram given in
(3.53) factorises as follows.

(3.54) Sn
γ◦κn

//

γ∗
��

D2 u

��

δ◦2
��

Dn2 δ◦1 //

u

77S′◦
β◦
// D′◦

$◦ // M

In order to prepare the next section on framings of recollections, note that the previous data
produce a pair of communicating extended nodes of vertebrae n◦ : γ ex v◦ and n∗ : γ∗

ex p∗ ·Ω,
where the spherical and discal transitions of the former are given by κn and an identity and
those of the latter are given by identities, respectively.

3.3.7.16. Framing of recollections. Let C be a category and (p , u, u) ` s ∼^ σ be a recollection
of height n in C where σ := P ·Ω and s := P ·γ. Suppose that the recollection (p , u, u) admits
a mate m◦. We will keep the same notations as in section 3.3.7.15. Let P] be a prespine of

degree n that is n-compatible with P and whose head is denoted by p]. An extended node of

spines of the form (p , %) : P ·γ EX P] ·Ω] will be said to frame the recollection (p , u, u) along
m◦ if its underlying extended node of vertebrae (κn, %) : γ ex p] ·Ω] (see Remark 3.69) frames

the communicating pair of extended nodes of vertebrae n◦ : γ ex v◦ and n∗ : γ∗
ex p∗ ·Ω in the

sense of Chapter 2 (see section 2.3.6.3 and section 2.3.6.4).
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Remark 3.95. By definition of a framing, the discal and spherical transitions of (κn, %) :
γ ex p] ·Ω] must be the same as those of n◦ : γ ex v◦ – which forces % to be an identity – and
the prevertebra p] must be of the form ‖γ ◦ κn, γ′∗‖.

3.3.7.17. Hom-language for framing of recollections. This section aims at translating the con-
tent of section 3.3.7.16 into the hom-language. Let C be a category, X be an object in C and
(p , u, u) ` s ∼^ σ be a recollection of height n in C as defined in section 3.3.7.14. Suppose
that (p , u, u) admits a mate m◦ as given in section 3.3.7.15 and is framed by an extended

node of spines ς] := (p , id) : P · γ EX P] · Ω] along m◦ as defined in section 3.3.7.16. We will
keep the same notations as in these sections and denote the node of vertebrae given by p] ·Ω]

as ν]. Consider a path of the form h : u · x ∼σ y in X. In that case, the element x must be
an arrow M → X in C. Note that diagram (3.54) also provides a path $◦ : u ∼v◦ u in M,
which produces, after applying x on it, a path $◦ · x : u · x ∼v◦ u · x in X. The source and
target of the paths h and $◦ · x imply that there exists a stem β ∈ Ω for which the following
diagram commutes.

D∗2
β◦◦δ◦1 //

β◦δ2
��

D′◦
x◦$◦
��

D′
h

// X

Because the extended node of spines ς] frames the recollection (p , u, u) along m◦, there exists
a stem β] : S] → D′] in Ω] such that the vertebra p] · β] is equipped with a pushout

(3.55) D∗2

x

β◦◦δ◦1 //

β◦δ2
��

D′◦
ε1

��

D′
ε2

// E

and a cooperadic transition η : D′] → E satisfying the following equalities (see section 2.3.6.3).

(3.56) ε2 ◦ β ◦ δ1 = η ◦ β] ◦ δ]1 ε1 ◦ β ◦ δ2 = η ◦ β] ◦ δ]2
By universality of the pushout of diagram (3.55), it follows that there exists a canonical
morphism ($◦ · x) ? h : E→ X making the following diagram commute.

D′◦
x◦$◦ //

ε1
  

X

E

($◦·x)?h

OO D′ h //

ε2
��

X

E

($◦·x)?h

OO

Now, if we denote by d($◦ ·x)he the composite arrow (($◦ ·x)?h)◦η : D′] → X, the equations

of (3.56) show that the element d($◦ ·x)he is a (ν])-path of the form u ·x ∼ν] y in X. We are
now going to translate the above discussion in terms of hom-language for extended nodes of
spines. For convenience, denote by s∗ and s\ the spinal seeds of σ and σ], respectively.

Remark 3.96. By Remark 3.95, the spines s∗ and s\ must be equal to the spines ∂P · γ∗
and ∂P · (κnγ), respectively. The remark also implies that the spinal coseed of σ] must be

equal to that of σ, which is of the form ∂P · γ′∗.

For every morphism f : X → Y in C and parallel pair of elements (r, t) in X above ∂P ,
denote by C(s∗, Y, u)(f(r), f(t)) the subclass of C(s∗, Y )(f(r), f(t)) whose elements may be
written as paths u · x for some x : M → Y . Similarly, denote by C(σ, f, u)(r, t) the subclass
of C(σ, f)(r, t) whose elements are sent via

Rσ : C(σ, f)(r, t)→ C(s∗, Y )(f(r), f(t))
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to the class C(s∗, Y, u)(f(r), f(t)). It follows from Remark 3.96 and diagram (3.53) holding
for the recollection (p , u, u) ` s ∼^ σ that there exists a inclusion functor

Lm◦ : C(s∗, Y, u)(f(r), f(t)) ↪→ C(s\, Y )(f(r), f(t))

mapping an element u · x : f(r) ∼s∗ f(t) to the element u · x : f(r) ∼s\ f(t). Now, the point
of previous discussion was to show that there also exists a metafunction

Mm◦ : C(σ, f, u)(r, t)→ C(σ], f)(r, t)

mapping a pair (h, y) to the element (d($◦ · x)he, y), where y : r ∼s′∗ t. The construction of
this last metafunction induces the following commutative diagram.

(3.57) C(s∗, Y, u)(f(r), f(t))
Lm◦ // C(s\, Y )(f(r), f(t))

C(σ, f, u)(r, t)

Rσ

OO

Mm◦ // C(σ], f)(r, t)

Rσ]

OO

The above commutative diagram together with the mate m◦ will be called a reminiscent
operator.

3.3.7.18. Extensive chainings of nodes of spines. Let C be a category, s be a spine in C and `
and q be non-negative integers. An extensive q-chaining of nodes of spines of length ` above
s consists of a sequence of `+ 1 nodes of spines Σ := {σ0, σ1, . . . , σ`} in C together with `+ 1
extensive strong memories of nodes of spines of the form

ϑi :=

(
ũ, ũi
u, ui

)
[pi, κ] ` s ∼_q+i σi with σi := Pi · Ωi and s := P · γ

for every 0 ≤ i ≤ ` and a sequence of ` framings of memories as follows.

(ϑ0, µ0) .q+1 (ϑ1, µ1) .q+2 (ϑ2, µ2) .q+3 · · · .q+`−1 (ϑ`−1, µ`−1) .q+` ϑ`

Note that the previous sequence of framings of memories makes sense by Proposition 3.78 as
an extensive strong (q + i)-memory ϑi may be seen as an extensive (q + i+ 1)-memory, thus
allowing the next framing. Note that the arrow κ is the same for every extensive memory,
which is forced by the notion of morphism in Focov(C) (section 3.3.4.9). We will later denote

the morphism κ as an arrow M̃ → M where M̃ and M denotes the respective messengers of
the correspondences encoded by (pi, ũ, ũi) and (pi, u, ui), for every 0 ≤ i ≤ `. Such a chaining
will later be denoted by (s,Σ, ϑ , µ ), where ϑ stands for the collection of correspondences
ϑ0, . . . , ϑ` and µ is the symbol used to denote the pairs of mates along which the framings
are done. An extensive chaining such as (s,Σ, ϑ , µ ) will be said to be semi-convergent if the
degrees of s and s` equal q + `.

Remark 3.97. For every 0 ≤ i ≤ `, denote the spinal seed of σi by si. By construction, the
extensive (q + i)-memory of nodes of spines ϑi comprises a simple (q + 1)-memory of (nodes
of) spines given by

ϑ̃i := (pi, ũ, ũi) ` s
∼�q+i si

(see, for instance, Remark 3.72 and Remark 3.75). The pair of mates µi then induces a pair

of mates µ̃i for the (q + i)-memory ϑ̃i. It follows that the extensive chaining (s,Σ, ϑ , µ )
induces a simple chaining of (nodes of) spines as follows.

(ϑ̃0, µ̃0) .q+1 (ϑ̃1, µ̃1) .q+2 (ϑ̃2, µ̃2) .q+3 · · · .q+`−1 (ϑ̃`−1, µ̃`−1) .q+` ϑ̃`

It also turns out that when the extensive chaining (s,Σ, ϑ , µ ) is semi-convergent, the simple

chaining of spines (s, S, ϑ̃ , µ̃ ), where S := {s0, . . . , s`}, is convergent.

Remark 3.98. If the extensive chaining (s,Σ, ϑ , µ ) is semi-convergent, then the strong
(q+ `)-memory ϑ` provides a recollection of height q+ `+ 1 encoded by its associated strong
(q + `)-correspondence (p`, u, u`) ` s

∼�q+` s` (see section 3.3.7.14).
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The extensive chaining (s,Σ, ϑ , µ ) will be said to be convergent if it is semi-convergent
and the recollection mentioned in Remark 3.98 is equipped with a mate as well as a framing
along that mate. By definition, a framing for the recollection ϑ` consists of an extended node
of spines of the form ς] : s EX σ]. The extended node of spines ς] will later be called the
closure of the extensive chaining.

Let f : X → Y be a morphism in C, z be an element of C(M̃, X) and (ri, ti) be any
parallel pair in X above the base of si, for some 0 ≤ i ≤ `. In the next proposition, we will
denote by C(si, Y, ϑi, z)(f(ri), f(ti)) the subclass of C(si, Y, ui)(f(ri), f(ti)) whose elements
may be written as paths ui · x for some elements x ∈ C(M, Y ) and for which both identities
f(z) = κ · x and 〈ri, ti〉 = ũi · z hold. We will also denote by C(σi, f, ϑi, z)(ri, ti) the subclass
of C(σi, f)(ri, ti) whose elements are sent via Rσi : C(σi, f)(ri, ti) → C(si, Y )(f(ri), f(ti))
to the class C(si, Y, ϑi, z)(f(ri), f(ti)). Because the next proposition considers a convergent
chaining, the closure will be denoted as above and the spinal seed of the node of spines σ] will

be denoted by s\. By construction, the extended node of spines ς] must be of the form (p`, id)

(see Remark 3.95). The head of the alliance of prespines (p`) : P  ∂P` will be encoded by
the data (κ, ρ, ρ′,κ′).

Remark 3.99. If ` > 0, then the discal and codiscal transitions ρ and ρ′ must be identities
in C. This is forced by the form of the alliance of prevertebrae constructed in section 3.3.4.6
for a framing of correspondences of vertebrae.

Proposition 3.100. Suppose that (s,Σ, ϑ , µ ) is convergent for ` ≥ 0 with closure ς]. Let

f : X → Y be a morphism in C and z ∈ C(M̃, X). Consider (r, t) and (r′, t′) two parallel
pairs in X above the bases of s and s0, respectively. If 〈r, t〉 = ũ · z and 〈r′, t′〉 = ũ0 · z,
then there exists a finite sequence of composable tubular operators and a reminiscent operator
whose composite is of the following form.

C(s0, Y, ϑ0, z)(f(r′), f(t′)) // C(s\, Y )(ρ · f(r), ρ′ · f(t))

C(σ0, f, ϑ0, z)(r
′, t′)

Rσ0

OO

// C(σ], f)(ρ · r, ρ′ · t)

Rσ]

OO

The top arrow then sends any element of the form u0 · x, where x ∈ C(M, Y ), to the element
u · x.

Proof. Suppose that ` = 0. By semi-convergence, the spines s and s0 must be of degree q.
Proposition 3.19 applied on the relation 〈r, t〉 = ũ · z implies a (P · id)-path ũ · z : r ∼P t
in X. Note that the alliance of prespines (p0) : P  ∂P0 induces an alliance of spines
(p0,κ′) : P · id  ∂P0 · id. By Proposition 3.3.6.4, this last alliance turns the (P · id)-path
ũ · z into a (∂P0 · id)-path in X as follows.

(κ′ũ) · z : ρ · r ∼∂P0 ρ
′ · t

On the one hand, the strong q-correspondence of spines (p0, ũ, ũ0) ` s ∼�q s0 provides an
identity ũ ◦ κ′ = ũ0, thus turning the previous path into a path ũ0 · z : ρ · r ∼∂P0 ρ

′ · t in X.
On the other hand, Proposition 3.19 applied on the equality 〈r′, t′〉 = ũ0 · z also shows that
the relation ũ0 · z : r′ ∼∂P0 t

′ must hold in X. These two expressions of the path ũ0 · z imply
that the equalities r′ = ρ · r and t′ = ρ′ · t must hold. In the end, applying the construction
of section 3.3.7.17 on the recollection provided by ϑ0 as well as the morphism f : X → Y
and the parallel pair (r′, t′) above ∂P0 provides the statement for ` = 0. Now, suppose the
inequality ` > 0 holds. In that case, it is possible to apply Proposition 3.89 on the convergent
simple chaining of (nodes of) spines (s, S, ϑ̃ , µ̃ ) defined in Remark 3.97 with respect to the
equations 〈r, t〉 = ũ · z and 〈r′, t′〉 = ũ0 · z. There then follows a sequence of simple tubular
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operators

Ti : C(si, X)(ri, ti) // C(si+1, X)(ri+1, ti+1)

for every 0 ≤ i ≤ ` − 1 where r0 = r′ and t0 = t′ by convention and r` = r and t` = t by
convergence. The metafunction Ti maps a (si)-path x inX to the (si+1)-path d($i

�·z)x($i
•·z)e

in X. By Proposition 3.55, the previous sequence of simple tubular operators induces another
one consisting of metafunctions of the form

T fi : C(si, Y )(f(ri), f(ti)) // C(si+1, Y )(f(ri+1), f(ti+1))

mapping an (si)-path x in Y to the (si+1)-path df($i
� · z)xf($i

• · z)e in Y . As mentioned in
Remark 3.93, the involved framings are also extensive framings of nodes of spines. Because

the paths along which the tubular operators T fi are defined are in the image of f( ), the
previous metafunctions may be lifted to extensive tubular operators of nodes of spines as
follows (see section 3.3.3.9).

C(si, Y )(f(ri), f(ti))
T fi // C(si+1, Y )(f(ri+1), f(ti+1))

C(σi, f)(ri, ti)

Rσi

OO

// C(σi+1, f)(ri+1, ti+1)

Rσi+1

OO

Composing the above sequence of tubular operators then provides the following commutative
diagram.

(3.58) C(s0, Y )(f(r′), f(t′)) // C(s`, Y )(f(r), f(t))

C(σ0, f)(r′, t′)

Rσ0

OO

// C(σ`, f)(r, t)

Rσ`

OO

Note that, by section 3.3.4.8, restricting the tubular operator T fi to the set5

C(si, Y, ϑi, z)(f(ri), f(ti))

provides a metafunction

C(si, Y, ϑi, z)(f(ri), f(ti))→ C(si+1, Y, ϑi+1, z)(f(ri+1), f(ti+1))

mapping a path ui · x to the path d($i
� · f(z))(ui · x)($i

• · f(z))e, which is equal to

d($i
� · (κ · x))(ui · x)($i

• · (κ · x))e = ui+1 · x

since the equality f(z) = κ ·x holds and κ◦$i
� and κ◦$i

• are the morphisms associated with
the pair of mates of the correspondence of vertebrae (κiq+i+1, u, ui), where κiq+i+1 denotes the

cospherical transition of piq+i (see Proposition 3.60 and the definition of Mcov(C) that follows

it). Along that restriction, diagram (3.58) leads to the following commutative diagram, where
the top arrow maps any (s0)-path u0 · x to the (s`)-path u` · x (see the definitions of section
3.3.7.17).

C(s0, Y, ϑ0, z)(f(r′), f(t′)) // C(s`, Y, u`)(f(r), f(t))

C(ς0, f, ϑ0, z)(r
′, t′)

Rς0

OO

// C(ς`, f, u`)(r, t)

Rς`

OO

Finally, the statement follows by applying the construction of section 3.3.7.17 on the recol-
lection induced by ϑ` (see Remark 3.98) and composing the version of diagram (3.57) thus

5The class of stems of a spine is always a singleton and a fortiori a set. It follows that the class of paths associated

with a spine is a set.
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obtained with the above commutative square. The source and target involved are coherent
with the statement by Remark 3.99. �

3.3.8. Conjugations of nodes of spines.

3.3.8.1. Conjugation of nodes of spines. Let C be category and q be a non-negative integer.

Consider four nodes of spines σ = P · Ω, σ = P · Ω, σ̈ = P̈ · Ω̈ and σ̂ = P̂ · Ω̂ of same degree
n ≥ 0 and an alliance of nodes of spines a : σ̈  σ̂ in C of degree n. The triple (σ, a, σ) will
be said to form a q-conjugation of nodes of spines in C if it is equipped with

1) two semi-extended vertebrae v� : γ ex v� and v• : γ′ ex v•;

2) two reflections of vertebrae a[ : v�  vrv
[ and a† : v•  vrv

† conjugable with the

alliances of vertebrae aq(1) and aq(1)rv along morphisms

r[ : D[2 → D̂1 and r† : D†2 → D̂2,

respectively;

3) two simple q-framings of nodes of spines (σ, v�, v•) .q σ̈ and (σ̂, v[, v†) .q σ where v[
and v† are the sevs (S[, r[) : γ̂q

ex v[ and (S†, r†) : γ̂′q
ex v† (see Remark 3.63).

The preceding structure will be denoted by (σ, a, σ) and said to be defined along the pairs
v�, v•, a[, a† and v[, v†. In the sequel, the discal transitions of v� and v• will be denoted by
%� and %•, respectively.

Proposition 3.101. The q-conjugation of nodes of spines (σ, a, σ) provides a conjugation of
vertebrae (pq · Γq(P ), aq(1), pq · Γq(P )) defined along the pairs v�, v•, a[, a† and v[, v†, where

aq(1) : p̈q · Γq(P̈ ) p̂q · Γq(P̂ ).

Proof. Directly follows from the definitions of the q-framings (σ, v�, v•).q σ̈ and (σ̂, v[, v†).qσ
and the definition of a conjugation of vertebrae (see section 3.3.5.2). �

We are going to show that the conjugation of Proposition 3.101 induces a simple strong
q-memory of nodes of spines between σ and σ. First, applying the functor Scor : Conj(C)→
Scov(C) of section 3.3.5.5 on the conjugation of Proposition 3.101 provides the strong cor-
respondence of vertebrae of (3.59) where p′q is an alliance of prevertebrae that has the same
spherical transition as the alliance aq(1).

(3.59) (p′q, u, u0) ` pq · Γq(P )
∼� pq · Γq(P )

By Definition 3.51, the two simple q-framings associated with the conjugation of nodes of

spines (σ, a, σ) force the pairs of prespines (P, P̈ ) and (P̂ , P ) to be q-compatible. This com-
patibility implies that the first q alliances of prevertebrae of a : σ̈  σ̂ induce an alliance of
prespines of degree q − 1 as follows.

(3.60) (p ) : ∂n+1−qP  ∂n+1−qP

By construction, the spherical transition of the alliance of prevertebrae p′q is equal to the
spherical transition of pq, which is also equal to the cospherical transition of pq−1. If, for
the sake of fitting the usual notations, we denote the alliance pk by the symbol p′k for every
0 ≤ k ≤ q − 1, the correspondence (p′q, u, u0) obtained in (3.59) together with the alliance of
prespines obtained in (3.60) define a simple strong q-memory of nodes of spines (see section
3.3.7.6) as follows.

ϑ0 := (p′ , u, u0) ` σ ∼�q σ
For convenience, denote the non-negative integer n − q by the symbol `. The conjugation
(σ, a, σ) will be said to be convergent if it is equipped with a convergent simple q-chaining of
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nodes of spines of length ` whose first memory is ϑ0. The conjugation is therefore equipped
with a sequence of framings as follows.

(ϑ0, µ0) .q+1 (ϑ1, µ1) .q+2 (ϑ2, µ2) .q+3 · · · .q+`−1 (ϑ`−1, µ`−1) .q+` ϑ`

From now on, the discussion assumes that the conjugation (σ, a, σ) is convergent and considers
the notations ϑi := (pi, u, ui) ` σ

∼�q+i σi for every 0 ≤ i ≤ `. Because the equality n = q + `
holds, the alliance of prespines associated with the strong n-memory ϑ` does not involve any
derivation; i.e. it is of the form (p`) : P  P`. Here, P` denotes the prespine of the node of
spines σ`, which the convergence assumption forces to be of degree n (see section 3.3.7.9).

Remark 3.102. By definition of a framing of simple memories of nodes of spines, and more
specifically, its compatibility condition, the equality pik = pi+1

k holds for any 0 ≤ k ≤ q + i

and 0 ≤ i ≤ `. In particular, this forces the alliance of prevertebra pik to be equal to the
previously defined alliance p′k for any 0 ≤ k ≤ q and 0 ≤ i ≤ `.

Remark 3.103. Although this remark holds for a general context, the notations used herein
will serve our next discussion as they correspond to the notations that have previously been
introduced. Let σ = P · Ω and σ` = P` · Ω` be two nodes of spines of positive degrees n
where ` stands for some given symbol. Equipping the two previous nodes of spines with an
alliance of prespines (p`) : P  P` of degree n gives rise to an alliance of nodes of spines
(p`, φ, id) : σ  σ] of degree n where

- the node of spines σ] is of the form P` · Ω];

- the class Ω] consists of the elements of Ω augmented by the class of elements of the
form β ◦κn+1 for every β ∈ Ω`, where κn+1 denotes the cospherical transition of the
alliance of prevertebrae pn;

- the metafunction φ : Ω→ Ω] maps a stem β to the stem β ◦ κn+1.

The assumptions of Remark 3.103 exactly correspond to the situation at the end of the
above discussion when the conjugation (σ, a, σ) is convergent. In that case, the alliance of
nodes of spines defined by Remark 3.103 will be denoted as all0(σ, a, σ) : σ  σ]. Note that
the data of Remark 3.103 also define an alliance of nodes of spines (idP` ,⊆, id) : σ`  σ]
encoded by the inclusion Ω` ⊆ Ω] and the identity alliance idP` : P`  P`. This second
alliance will be denoted by all1(σ, a, σ) : σ`  σ] in the case of a convergent conjugation
(σ, a, σ).

3.3.8.2. Hom-language for conjugation of nodes of spines. The aim of the present section is to
translate the constructions of section 3.3.8.1 into the hom-language. Let C be a category, X be
an object in C and q be an non-negative integer. Consider a q-conjugation of nodes of spines
(σ, a, σ) as defined in section 3.3.8.1. The conjugation will be supposed to be convergent. We
shall use the same notations as in section 3.3.8.1. Let x and y be a parallel pair in X above
the base of σ. By definition, the q-conjugation (σ, a, σ) provides two framings of nodes of
vertebrae

f := (V q
σ (0), v�, v•) .q V

q
σ̈ (0) and f̂ := (V q

σ̂ (0), v[, v†) .q V
q
σ (0)

and an alliance of nodes of vertebrae aq(0) : V q
σ̈ (0)  V q

σ̂ (0). We are now going to mimick
the first part of section 3.3.5.6 for this set of data. To do so, denote by

- %n and %′n the respective discal and codiscal transitions of an(0);

- %q and %′q the respective discal and codiscal transitions of aq(0);

- %� and %• the discal transitions of the sevs v� and v•

- ρ0 and ρ′0 the discal and codiscal transitions of the prevertebra p′q
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and consider two paths as follows.

e� : %� · x ∼v� a e• : %• · x ∼v• b

As explained in section 3.3.5.6, it follows from Proposition 3.15 and Remark 3.7 that the two
reflections a[ : v�  vrv

[ and a† : v•  vrv
† turn the paths e� and e• into two paths as follows.

τ[ · e� : %′[ · a ∼v[ (%[%[) · x τ† · e• : %′† · b ∼v† (%†%†) · y

By conjugability, the factorisations %′[ = %q ◦ r[ and %′† = %′q ◦ r† must hold in C. Besides,

Proposition 3.64 implies the identities ρ0 = %� ◦ %[ and ρ′0 = %• ◦ %†. The two expressions

τ[ · e� : r[ · (%q · a) ∼v[ ρ0 · x and τ† · e• : r† · (%′q · b) ∼v† ρ
′
0 · y

then follow. Because v[ and v† are encoded by the pairs (S[, r[) and (S†, r†), Proposition 3.47,
Proposition 3.15 and the previous two paths provide the following metafunctions.

T e•e� : C(V q
σ (0), X)(xq, yq)→ C(V q

σ̈ (0), X)(a, b)
C(aq(0), X) : C(V q

σ̈ (0), X)(a, b)→ C(V q
σ̂ (0), X)(%q · a, %′q · b)

T
τ†·e•
τ[·e� : C(V q

σ̂ (0), X)(%q · a, %′q · b)→ C(V
q
σ (0), X)(ρ0 · xq, ρ′0 · yq)

Notice that the previous three metafunctions are composable. Their composition will be
denoted by V e•

e� . According to section 3.3.3.8 and section 3.3.6.4, the three metafunctions
defining V e•

e� may be lifted to the hom-language of nodes of spines, so that the metafunction
V e•
e� itself may also be lifted to this language as follows.

(3.61) C(V q
σ (0), X)(xq, yq)

V e•e� // C(V q
σ (0), X)(ρ0 · xq, ρ′0 · yq)

C(σ,X)(x, y)
W e•
e�

//

⊆

OO

C(σ,X)(x′, y′)

⊆

OO

Since 〈x, y〉 is well-defined, section 3.3.3.8 ensures that the P̈ -path de�〈x, y〉e•e is well-defined,
which will be supposed of the form x′′ ∼P̈ y

′′. In particular, this implies that the component
C(a, X) of the metafunction W e•

e� is an arrow of the following form (see diagram (3.49)).

(3.62) C(a, X) : C(σ̈, X)(x′′, y′′)→ C(σ̂, X)(%n · x′′, %′n · y′′)

In this case, the discussion of section 3.3.3.8 applied to the tubular operator T
τ†·e•
τ[·e� forces the

following relation.

(3.63) d(τ[ · e�)〈%n · x′′, %′n · y′′〉(τ† · e•)e : x′ ∼P y
′

It follows from Proposition 3.34 applied on the P̈ -path de�〈x, y〉e•e and the path (3.63) as
well as Remark 3.16 applied on the head of the alliance a that the following identity holds,
where κn+1 denotes the cospherical transition of an(0).

(3.64) 〈x′, y′〉 = d(τ[ · e�)
(
κn+1 · de�〈x, y〉e•e

)
(τ† · e•)e

Similarly, it is possible to apply the construction of section 3.3.5.6 to the conjugation of
vertebrae provided by Proposition 3.101 (see conjugation χ below) for the paths e� : %� ·xq ∼v�
a and e� : %� · yq ∼v� b.

χ := (pq · Γq(P ), aq(1), pq · Γq(P ))

By doing so, we obtain another metafunction as follows.

C(pq · Γq(P ), X)(xq, yq)
Ue•e� // C(pq · Γq(P ), X)(ρ0 · xq, ρ′0 · yq)
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By Proposition 3.35, the P -path 〈x, y〉 may be seen as an element in the domain of the
metafunction U e•e� . Since the alliance aq(1) is of the form (pq,κn+1) : V q

σ̂ (1)  V q
σ̈ (1) (see

Remark 3.67), the definition of the metafunction U e•e� implies that the following identity holds.

U e•e� (〈x, y〉) = d(τ[ · e�)
(
κn+1 · de�〈x, y〉e•e

)
(τ† · e•)e

Equation (3.64) then turns the above identity into the following one.

(3.65) U e•e� (〈x, y〉) = 〈x′, y′〉

In order to conclude this section, we will have to distinguish between the cases where ` = 0
and ` > 0. First, suppose that ` = 0. In this case, the identity q = n holds, which implies
the equalities x′ = ρ0 · xn and y′ = ρ′0 · yn (see diagram (3.61)). The condition ` = 0 also
implies the equalities σ = σ0 = σ`. Section 3.3.8.1 hence provides an alliance of nodes of
spines all1(σ, a, σ) : σ  σ], which induces the following dashed metafunction.

(3.66) C(σ,X)(x, y)
W e•
e� // C(σ,X)(x′, y′) // C(σ], X)(ρ0 · xn, ρ′0 · yn)

Now, suppose that ` > 0. Recall that the strong correspondence associated with the q-
memory ϑ0 = (p′q, u, u0) is defined as the image Scor(χ). It follows from Proposition 3.65 and
equation (3.65) that the relations 〈x, y〉 = u·h′ and 〈x′, y′〉 = u0 ·h′ holds for h′ = e�?〈x, y〉?e•.
This last identities enable us to apply Proposition 3.89 on the spines σ and σ0 = σ, which
provides a composite of tubular operators of the following form.

T : C(σ,X)(x′, y′) // C(σ`, X)(x, y)

Furthermore, the condition ` > 0 implies that the alliance p`n is built up from section 3.3.4.6.
This means that the discal and codiscal transitions of p`n, say ρ` and ρ′`, are identities (see
diagram (3.31)). Hence, the equalities x = ρ` ·x and y = ρ′` ·y hold. The alliance all1(σ, a, σ) :
σ`  σ] then induces the following dashed metafunction.

(3.67) C(σ,X)(x, y)
T◦W e•

e� // C(σ`, X)(x, y) // C(σ], X)(ρ` · x, ρ′` · y)

Finally, diagram (3.66) and diagram (3.67) show that for any ` ≥ 0, there exists a metafunc-
tion of the form

C(σ,X)(x, y)
Se•e� // C(σ], X)(ρ` · x, ρ′` · y)

that may be factorised by W e•
e� , where ρ` and ρ′` denotes the discal and codiscal transitions

of p`n, respectively.

Remark 3.104. Interestingly, the metafunction induced by the alliance all0(σ, a, σ) : σ  σ]
for the pair (x, y), which is parallel above the base of σ, has the same domain and codomain
as the metafunction Se•e� since its head is equal to p`n.

(3.68) C(all0(σ, a, σ), X) : C(σ,X)(x, y)→ C(σ], X)(ρ` · x, ρ′` · y)

Proposition 3.105. If the codomain of the metafunction C(a, X) evaluated at the parallel
pair (x′′, y′′) (see diagram (3.62)) is non-empty , then so is the codomain of the metafunction
C(all0(σ, a, σ), X) evaluated at the parallel pair (x, y) (see diagram (3.68)).

Proof. By construction, the metafunction W e•
e� may be written as a composite of metafunc-

tions comprising C(a, X). It follows that if the codomain of C(a, X) is non-empty, then so is
the codomain of W e•

e� . Because W e•
e� factorises Se•e� , the codomain of Se•e� is non-empty. Since

the codomain of Se•e� is the same as that of the metafunction C(all0(σ, a, σ), X) evaluated at
the pair (x, y) (see Remark 3.104), the statement follows. �
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3.3.8.3. Sequences of conjugations of nodes of spines. Let C be a category and ` be a positive
integer. A sequence of conjugations of nodes of spines of length ` in C consists, for every
0 ≤ i ≤ `− 1, of a convergent i-conjugation of nodes of spines

χi := (σi, a
i+1, σi)

such that the alliance of nodes of spines ai+1 is of the form σi+1  σ̂i+1, for every 0 ≤ i ≤ `−1,
and the relation

ai = all0(χi)

holds for every 1 ≤ i ≤ `−1. We will later denote by a0 the alliance all0(χ0). By construction,
the alliance a0 is an arrow of the form σ0  σ] where σ] is defined as in section 3.3.8.1. The
conjugation χi will be supposed to be defined along pairs vi�, v

i
•, a

i
[, a

i
† and vi[, v

i
†. By definition

of a conjugation of nodes of spines, if σ0 is of degree n, then all nodes of spines σ0, . . . , σ`,
σ̂0, . . . , σ̂` and σ] are of degree n. The sequence will be said to be closed if the identity
n = `− 1 holds. In that case, the underlying sequence of simple framings of nodes of spines

(σ0, v
0
�, v

0
•) .V0 (σ1, v

1
�, v

1
•) .V1 . . . .V`−2 (σ`−1, v

`−1
� , v`−1

• ) .V`−1 σ`

is convergent. The above sequence of framings is, below, denoted by F.

Theorem 3.106. Let χ0, . . . , χ`−1 be a closed sequence of conjugations of nodes of spines of
length ` as above and f : Y → Z and g : X → Y be two morphisms in C. Suppose that g is
a tubular surtraction for F and the node of spines σ0 is g-projective. If f ◦ g is an intraction
for a`, then f is an intraction for a0.

Proof. According to section 3.3.6.4, the morphism f : Y → Z is an intraction for a0 : σ0  σ]
if for every pair of parallel elements x and y above the base of σ0 in Y , it satisfies the
property that if the class C(σ0, Z)(f(x), f(y)) is non-empty, then so is the codomain of the
metafunction C(a0, Y ) evaluated at the pair (x, y), namely the class C(σ], Y )(ρ0 · x, ρ′0 · y)
where ρ0 and ρ′0 are the respective discal and codiscal transitions of a0

n(0). To prove such a
statement, consider a pair of parallel elements x and y above the base of σ0 in Y and suppose
that C(σ0, Z)(f(x), f(y)) is non-empty. If P0 denotes the prespine of σ0, then Remark 3.9
provides the relation x ∼P0 y. Because the prespine P0 is g-projective, Proposition 3.42
implies that the pair x and y is 0-parallel over g in Y . By Lemma 3.56 and Remark 3.57,
there exists a pair of elements x′ and y′ parallel above σ` in Y and a sequence of tubular
operators of the form

T
ei•
ei�

: C(σi, Y )(xi, yi) // C(σi+1, Y )(xi+1, yi+1),

for every 0 ≤ i ≤ `−1, such that x0 = x and y0 = y and x` = g(x′) and y` = g(y′). As showed
in section 3.3.8.2 for any given pair of paths ei� and ei• in Y , the above tubular operators come
along with metafunctions

C(ai+1, Y ) : C(σi+1, Y )(xi+1, yi+1)→ C(σ̂i+1, Y )(ρi+1 · xi+1, ρ
′
i+1 · yi+1)

satisfying the property that if the codomain of C(ai+1, Y ) is non-empty, then that of C(ai, Y )
is non-empty (see Proposition 3.105). This implies, by induction, that if the codomain of
C(a`, Y ) is non-empty, then that of C(a0, Y ) is non-empty. Because x0 = x and y0 = y, this
means that if the codomain of C(a`, Y ) is non-empty, then f is an intraction for a0 (see above
discussion). To conclude the proof, it thus suffices to prove that the codomain of C(a`, Y ) is
non-empty. Note that applying the morphism f : Y → Z on the pairs of paths ei� and ei• in
Y , for every 0 ≤ i ≤ `− 1, induces another sequence of tubular operators as follows.

T
f(ei•)

f(ei�)
: C(σi, Z)(f(xi), f(yi)) // C(σi+1, Z)(f(xi+1), f(yi+1))

By assumption, the class C(σ0, Z)(f(x), f(y)) is non-empty, so the last class of the sequence
C(σ`, Z)(fg(x′), fg(y′)) is also non-empty. Because the composite f ◦ g is an intraction for
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a` : σ`  σ̂`, this implies that the class C(σ̂`, X)(ρ` · x′, ρ′` · y′) is non-empty. Applying
g : X → Y on the elements of this class shows that the class

C(σ̂`, Y )(ρ` · g(x′), ρ′` · g(y′)) = C(σ̂`, Y )(ρ` · x`, ρ′` · y`)

is non-empty. Because this last class is the codomain of the metafunction C(a`, Y ) defined
on C(σ̂`, Y )(x`, y`), what precedes shows that f is an intraction for a0. �

3.3.8.4. Extended conjugation of nodes of spines. Let C be category, n be a positive integer
and q be a non-negative integer. Consider a spine s = P · γ of degree n− 1, a node of spines
σ = P · Ω of degree n and an extended node of spines ς = s̈ EX σ̂ of degree n in C. The
underlying alliance of spines of ς of degree n−1 will be denoted by a : s̈ ŝ where ŝ denotes
the spinal seed of σ̂. The triple (s, ς, σ) will be said to form an extended q-conjugation of
node of spines in C if it is equipped with

1) two semi-extended vertebrae v� : γ ex v� and v• : γ′ ex v•;

2) two reflections of vertebrae a[ : v�  vrv
[ and a† : v•  vrv

† conjugable with the

alliances of vertebrae aq(1) and aq(1)rv along morphisms

r[ : D[2 → D̈1 and r† : D†2 → D̈2,

respectively.

3) a simple q-framing of spines (s, v�, v•) .q s̈ and an extensive q-framing of nodes of
spines (σ̂, v[, v†) .q σ where v[ and v† are the sevs (S[, r[) : γ̂q

ex v[ and (S†, r†) :
γ̂′q

ex v†.

The above structure will be denoted by (s, ς, σ) and said to be defined along the pairs v�, v•,
a[, a† and v[, v†. In the sequel, the discal transitions of v� and v• will be denoted by %� and
%•, respectively.

Remark 3.107. Denote by s∗ the spinal seed of σ. It follows from the definition of the simple
q-framing of spines (s, v�, v•).q s̈ and the extensive q-framing of nodes of spines (σ̂, v[, v†).q σ
that the extended conjugation (s, ς, σ) comes along with a functor I → Conj(C) whose
mapping rules on objects and arrows are as follows.

d 7→ (V q
s (d), aq(d), V q

s∗(d)) (t : d→ d′) 7→ (V q
s (t), V q

s̈ (t), V q
ŝ (t), V q

s∗(t))

The underlying conjugations are defined along the pairs v�, v•, a[, a† and v[, v†.

We are going to show that the functor of conjugations defined in Remark 3.107 induces
an extensive strong q-memory of nodes of spines between the spine s and the node of spines
σ. First, composing the functor Scor : Cong → Scov(C) of section 3.3.5.5 with the functor
I→ Conj(C) of Remark 3.107 provides two strong correspondences of vertebrae

(p′q, u, u0) ` V q
s (0)

∼� V q
s∗(0) and (p′q, ũ, ũ0) ` V q

s (1)
∼� V q

s∗(1)

where p′q is an alliance of prevertebrae that has the same spherical transition as the alliances
aq(1) and aq(1) and a morphism of strong correspondences of vertebrae from the former to
the latter encoded by the following diagram (see diagram (3.40)).

S

V qs (t)=γ
��

ũ // G1

κ(γ)

��

S∗
ũ0oo

γ∗=V
q
s∗ (t)

��

D2 u
// G0 D∗2u0

oo

For convenience, the morphism κ(γ) will later be denoted as κ. Denote by P̈ and P̂ the
respective prespines of s̈ and σ̂. By Definition 3.51 and Definition 3.52, the two q-framings
associated with the extended conjugation of nodes of spines (s, ς, σ) force the pairs of prespines
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(P, P̈ ) and (P̂ , P ) to be q-compatible. This compatibility implies that the first q alliances of
prevertebrae of a : s̈ ŝ induces an alliance of prespines of degree q − 1 as follows.

(3.69) (p ) : ∂n+1−qP  ∂n+1−qP

By construction, the spherical transition of the alliance of prevertebrae p′q is equal to the
spherical transition of pq, which is also equal to the cospherical transition of pq−1. If, for
the sake of fitting the usual notations, we denote the alliance pk by the symbol p′k for every
0 ≤ k ≤ q − 1, the correspondences (p′q, u, u0) and (p′q, ũ, ũ0) together with the alliance of
prespines obtained in (3.69) define an extensive strong q-memory of nodes of spines (see
section 3.3.7.11) as follows.

ϑ0 :=

(
ũ, ũ0

u, u0

)
[p′ , κ] ` s ∼_q σ

For convenience, denote the non-negative integer n − 1 − q by the symbol `. The extended
conjugation (s, ς, σ) will be said to be convergent if it is equipped with a convergent extensive
q-chaining of nodes of spines of length ` whose first memory is ϑ0. The conjugation is therefore
equipped with a sequence of framings as follows.

(ϑ0, µ0) .q+1 (ϑ1, µ1) .q+2 (ϑ2, µ2) .q+3 · · · .q+`−1 (ϑ`−1, µ`−1) .q+` ϑ`

From now on, the discussion assumes that the conjugation (s, ς, σ) is convergent and considers
the notations

ϑi :=

(
ũ, ũi
u, ui

)
[pi, κ] ` s ∼_q+i σi

for every 0 ≤ i ≤ `. Because the equality n − 1 = q + ` holds, the extensive strong (n − 1)-
memory ϑ` induces a recollection of height n (see Remark 3.98), which, by convergence, is
framed by an extended nodes of spines – the closure of the chaining, which will be denoted
by ς] : s EX σ] – along a given mate.

3.3.8.5. Hom-language for extended conjugation of nodes of spines. The aim of the present
section is to translate the constructions of section 3.3.8.4 into the hom-language. Let C be a
category, f : X → Y be a morphism in C and q be an non-negative integer. Consider an ex-
tended q-conjugation of nodes of spines (s, ς, σ) as defined in section 3.3.8.4. The conjugation
will be supposed to be convergent. We shall use the same notations as in section 3.3.8.4. Let
r and t be a parallel pair in X above the base of s. First, applying the construction of sec-
tion 3.3.5.6 (see following explanations) on the conjugation of vertebrae (V q

s (0), aq(0), V q
s (0))

provided by Remark 3.107 produces a metafunction of the form

C(V q
s (0), X)(rq, tq)

V e•e� // C(V q
s (0), X)(ρ0 · rq, ρ′0 · tq)

for every pair of paths of the form e� : %� ·rq ∼v� a and e• : %• · tq ∼v� b in X. The morphisms
%� and %• are given by the discal transitions of the sevs v� and v• and the morphisms ρ0 and
ρ′0 define the discal and codiscal transitions of the prevertebra p′q. The metafunction V e•

e� is
then the composition of three metafunctions

T e•e� : C(V q
s (0), X)(rq, tq)→ C(V q

s̈ (0), X)(a, b)
C(aq(0), X) : C(V q

s̈ (0), X)(a, b)→ C(V q
ŝ (0), X)(%q · a, %′q · b)

T
τ†·e•
τ[·e� : C(V q

ŝ (0), X)(%q · a, %′q · b)→ C(V
q
s (0), X)(ρ0 · rq, ρ′0 · tq)

where T e•e� and T
τ†·e•
τ[·e� are tubular operators and %q and %′q are the discal and codiscal transition

of aq(0). Proposition 3.65 of the same section then states that the metafunction V e•
e� maps

any V q
s (0)-path x from rq to tq in X to a V q

s (0)-path of the form u0 · x′ in X where x = u · x′
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and x′ = e� ? x ? e•. Now, according to section 3.3.3.8 and section 3.3.6.4, such a composite
allows one to lift the metafunction V e•

e� as follows.

(3.70) C(V q
s (0), X)(rq, tq)

V e•e� // C(V q
s (0), X)(ρ0 · rq, ρ′0 · tq)

C(s,X)(r, t)
W e•
e�

//

⊆

OO

C(s,X)(r′, t′)

⊆

OO

The metafunction W e•
e� then maps any s-path x from r to t in X to the s-path u0 · x′ in

X where the identity x = u · x′ and x′ = e� ? h ? e• holds by definition of V e•
e� . Since 〈r, t〉

is well-defined, the elements r′ and t′ are parallel above the base of s, so that the following
identity holds (see section 3.3.3.8 and Proposition 3.34).

(3.71) 〈r′, t′〉 = d(τ[ · e�)
(
κn · de�〈r, t〉e•e

)
(τ† · e•)e

The symbol κn denotes the cospherical transition of the head of a and the operation κn ·
appearing in formula (3.71) is deduced from Remark 3.16 in regard to the action of C(aq(0), X)
at the level of the spines (see diagram (3.49)). Note that the above data, holding in X, may
also be imitated in Y by applying Proposition 3.55 on the metafunctions defining W e•

e� . We
thus obtain a metafunction

(3.72) W
f(e•)
f(e�)

: C(s, Y )(f(r), f(t)) // C(s, Y )(f(r′), f(t′))

that is the composition of three other metafunctions
T
f(e•)
f(e�)

: C(s, Y )(f(r), f(t))→ C(s̈, Y )(f(a′), f(b′))

C(a, Y ) : C(s̈, Y )(f(a′), f(b′))→ C(ŝ, Y )(%n−1 · f(a′), %′n−1 · f(b′))

T
τ†·f(e•)

τ[·f(e�)
: C(ŝ, Y )(%n−1 · f(a′), %′n−1 · f(b′))→ C(s, Y )(f(r′), f(t′))

where %n−1 and %′n−1 denote the respective discal and codiscal transition of an−1(0) and a′

and b′ denote the source and target of the (P̈ · id)-path de�〈r, t〉e•e, respectively. Proposition
3.65 then states that the metafunction of (3.72) maps any s-path x : f(r) ∼s f(t) in Y to the
s-path u0 ·x′ in Y where x = u·x′ and x′ = f(e�)?x?f(e•). Note that such a mapping implies
that the image of the metafunction given in diagram (3.72) is included in the following class
(this type of class is defined in section 3.3.7.17).

C(s, Y, u0)(f(r′), f(t′))

Finally, note that it is also possible to apply the construction of section 3.3.5.6 on the other
conjugation of vertebrae χ := (V q

s (1), aq(1), V q
s (1)) given by Remark 3.107 along the paths

e� : %� · rq ∼v� a and e� : %� · tq ∼v� b in X. We thus obtain another metafunction as follows.

C(V q
s (1), X)(rq, tq)

Ue•e� // C(V q
s (1), X)(ρ0 · rq, ρ′0 · tq)

By Proposition 3.35, the P -path 〈r, t〉 may be seen as an element in the domain of the
metafunction U e•e� . Since the alliance aq(1) is of the form (pq,κn) : V q

ŝ (1)  V q
s̈ (1) (see

Remark 3.67), the definition of the metafunction U e•e� implies that the following identity
holds.

U e•e� (〈r, t〉) = d(τ[ · e�)
(
κn · de�〈r, t〉e•e

)
(τ† · e•)e

Equation (3.71) then turns this last identity into the identity U e•e� (〈r, t〉) = 〈r′, t′〉. Proposition
3.65 then states that the relations 〈r, t〉 = ũ · z and 〈r′, t′〉 = ũ0 · z hold for z = e� ? 〈r, t〉 ? e•.

Proposition 3.108. The image of the metafunction (3.72) is contained in the following
class.

C(s, Y, ϑ0, z)(f(r′), f(t′))

Recall that this type of class is defined in section 3.3.7.18.
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Proof. Because the equation 〈r′, t′〉 = u0 ·z holds and the image of the metafunction (3.72) is
already included in C(s, Y, u0)(f(r′), f(t′)), the statement is proven if the identity f(z) = κ ·x
can be shown to hold. To do so, consider the notation s := P · γ. The identity f(z) = κ · x
is then deduced from the following series of equalities.

f(z) = f(e� ? 〈r, t〉 ? e•) (by definition of z)

= f(e�) ? 〈f(r), f(t)〉 ? f(e•) (by universality)

= f(e�) ? (γ · x) ? f(e•) (by Proposition 3.34)

= κ(γ) · (f(e�) ? x ? f(e•)) (by Remark 3.49)

Because we renamed the arrow κ(γ) by κ in section 3.3.8.4, the statement follows. �

Recall that the extensive chaining (s,Σ, ϑ , µ ) of section 3.3.8.4 admits a closure ς] : s EX 
σ]. The spinal seed of the node of spines σ] will be denoted by s\ and the underlying alliance
of spines s  s\ will be denoted by a]. By construction, the extended node of spines ς] and

the alliance a] must be of the form (p`, id) (see Remark 3.95). The head of the alliance of

prespines (p`) : P  ∂P` will be encoded by the data (κ, ρ, ρ′,κ′). Because both relations
〈r, t〉 = ũ · z and 〈r′, t′〉 = ũ0 · z hold, Proposition 3.100 provides a commutative square

(3.73) C(s0, Y, ϑ0, z)(f(r′), f(t′))
T // C(s\, Y )(ρ · f(r), ρ′ · f(t))

C(σ0, f, ϑ0, z)(r
′, t′)

Rσ0

OO

T ′ // C(σ], f)(ρ · r, ρ′ · t)

Rσ]

OO

whose top arrow sends any element of the form u0 · x′ to the element u · x′. Since the spine
s is equal to the spine s0, the composite

(3.74) T ◦W f(e•)
f(e�)

: C(s, Y )(f(r), f(t)) // C(s\, Y )(ρ · f(r), ρ′ · f(t))

maps any s-path x : f(r) ∼s f(t) to the s\-path x : ρ · f(r) ∼s ρ′ · f(t). This mapping rule
comes from the identity x = u · x′ where x′ = f(e�) ? x ? f(e•).

Remark 3.109. The fact that the mapping rule of the previous metafunction is trivial (i.e.
of the form x 7→ x) does make sense at the level of the spines since, in the case where s is
denoted by P · γ, then s\ = ∂P] · (κ′γ) (see Remark 3.95).

Now, because the alliance a] is of the form (p`, id), the mapping rule of the metafunction,
below, must be the same as that of diagram (3.74). In other words, the metafunction of
diagram (3.74) is equal to the following one.

C(a], X) : C(s, Y )(f(r), f(t)) // C(s\, Y )(ρ · f(r), ρ′ · f(t))

The above discussion finally leads to the following proposition.

Proposition 3.110. If for any choice of element x : 1 → C(s̈, Y )(f(a′), f(b′)), the dashed
arrow of the next diagram exists and makes the commutative square commute

1

x

��

// C(σ̂, f)(%n−1 · a′, %′n−1 · b′)

Rσ̂
��

C(s̈, Y )(f(a′), f(b′))
C(a,X)

// C(ŝ, Y )(%n−1 · f(a′), %′n−1 · f(b′))
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then for any choice of element x′ : 1→ C(s, Y )(f(r), f(t)), the dashed arrow of the following
diagram exists and makes the commutative square commute.

(3.75) 1

x′

��

// C(σ], f)(ρ · r, ρ′ · t)

Rσ]
��

C(s, Y )(f(r), f(t))
C(a],X)

// C(s\, Y )(ρ · f(r), ρ′ · f(t))

Proof. To prove this statement, suppose that the hypothesis holds and consider a choice of
element as follows.

x′ : 1→ C(s, Y )(f(r), f(t))

The goal is to lift the composite C(a], X) ◦ x′ along Rσ] as shown in diagram (3.75). By the
previous discussion, we know that the metafunction C(a], X) may be expressed as a composite
of the following form.

(3.76) T ◦W f(e•)
f(e�)

= T ◦ T τ†·f(e•)

τ[·f(e�)
◦ C(a, Y ) ◦ T f(e•)

f(e�)

By assumption, we may lift the composite

(3.77) C(a, Y ) ◦ T f(e•)
f(e�)

◦ x′ : 1→ C(ŝ, Y )(%n−1 · f(a′), %′n−1 · f(b′))

along the metafunction Rσ̂. By section 3.3.3.9, because the paths τ[ · f(e�) = f(τ[ · e�) and
τ† · f(e•) = f(τ† · e•) are in the image of f , the following diagram exists and commutes.

C(σ̂, f)(%n−1 · a′, %′n−1 · b′)

Rσ̂
��

T
τ†·e•
τ[·e� // C(σ0, f)(ρ · r, ρ′ · t)

Rσ0

��

C(ŝ, Y )(%n−1 · f(a′), %′n−1 · f(b′))
T
τ†·f(e•)
τ[·f(e�)

// C(s0, Y )(f(r′), f(t′))

The above commutative diagram then transforms the lift associated with the choice of element
(3.77) into a lift associated with the following choice of element along the metafunction Rσ0 .

(3.78) T
τ†·f(e•)

τ[·f(e�)
◦ C(a, Y ) ◦ T f(e•)

f(e�)
◦ x′ : 1→ C(s0, Y )(f(r′), f(t′))

By Proposition 3.108, the above choice lies in the class C(s0, Y, ϑ0, z)(f(r′), f(t′)). Finally, by
using diagram (3.73) and equation (3.76) expressing the metafunction C(a], X), it is not hard
to see that the lift associated with the choice (3.78) along Rσ0 gives rise to a lift as shown in
diagram (3.75). �

3.3.8.6. Sequences of conjugations of extended nodes of spines. Let C be a category and ` be
a positive integer. A sequence of conjugations of extended nodes of spines of length ` in C
consists, for every 0 ≤ i ≤ `− 1, of a convergent extended i-conjugation of nodes of spines

χi := (si, ς
i+1, σi)

such that the extended nodes of spines ς i+1 is of the form si+1
EX σ̂i+1, for every 0 ≤ i ≤ `−1,

and ςi defines the closure of the chaining associated with the convergent conjugation χi for
every 1 ≤ i ≤ `− 1. The closure of the convergent conjugation χ0 will be denoted by ς0 and
the underlying alliance of spines of ς0 will be denoted by a0. By construction, the alliance
a0 is an arrow of the form s0

EX σ] where σ] is defined as in section 3.3.8.4. The conjugation
χi will be supposed to be defined along pairs vi�, v

i
•, ai[, a

i
† and vi[, v

i
†. By definition of a

conjugation of nodes of spines, if ς0 is of degree n, then all spines s0, . . . , s` are of degree n−1
and all nodes of spines σ̂0, . . . , σ̂` and σ] are of degree n. The sequence will be said to be
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closed if the identity n = ` holds. In that case, the underlying sequence of simple framings
of nodes of spines

(s0, v
0
�, v

0
•) .V0 (s1, v

1
�, v

1
•) .V1 . . . .V`−2 (s`−1, v

`−1
� , v`−1

• ) .V`−1 s`

is convergent. The above sequence of framings is, below, denoted by F.

Theorem 3.111. Let χ0, . . . , χ`−1 be a closed sequence of conjugations of extended nodes of
spines of length ` as above and f : Y → Z and g : X → Y be two morphisms in C. Suppose
that g is a tubular surtraction for F and the spine s0 is g-projective. If f ◦ g is a surtraction
for the extended nodes of spines ς`, then f is a surtraction for the extended nodes of spines
ς0.

Proof. The spinal seeds of the nodes of spines σ̂0, . . . , σ̂` and σ] will be denoted by ŝ0, . . . , ŝ`
and s\, respectively. According to section 3.3.6.7, the morphism f : Y → Z is a surtraction

for ς0 : s0
EX σ] if for every pair of parallel elements r and t above the base of s0 in Y and

any choice of element x : 1→ C(s0, Z)(f(r), f(t)), the dashed arrow, below, exists and makes
the following diagram commutes.

1

x

��

// C(σ̂, f)(ρ0 · r, ρ′0 · t)

Rσ̂
��

C(s0, Z)(f(r), f(t))
C(a0,X)

// C(s\, Z)(ρ0 · f(r), ρ′0 · f(t))

The notation ρ0 and ρ′0 refer to the discal and codiscal transitions of the head of the alliance
a0, respectively. Consider a pair of parallel elements r and t above the base of s0 in Y . By
Remark 3.9, the relation r ∼P0 t holds if P0 denotes the prespine of s0. Because the prespine
P0 is g-projective, Proposition 3.42 implies that the pair of elements r and t is 0-parallel over
g in Y . By Lemma 3.56 and Remark 3.57, there exists a pair of elements r′ and t′ parallel
above s` in Y and a sequence of tubular operators of the form

T
ei•
ei�

: C(si, Y )(ri, ti) // C(si+1, Y )(ri+1, ti+1),

for every 0 ≤ i ≤ ` − 1, such that r0 = r and t0 = t and r` = g(r′) and t` = g(t′). Section
3.3.8.2 shows that for any given pair of paths ei� and ei• in Y , the previous tubular operator
come along with metafunctions C(ai+1, Z) of the form

C(si+1, Z)(f(ri+1), f(ti+1))→ C(ŝi+1, Z)(ρi+1 · f(ri+1), ρ′i+1 · f(ti+1))

satisfying the property that if for any choice of element

xi+1 : 1→ C(si+1, Z)(f(ri+1), f(ti+1)),

the dashed arrow of the next diagram exists and makes the commutative square commute
(3.79)

1

xi+1

��

// C(σ̂i+1, f)(ρi+1 · f(ri+1), ρ′i+1 · f(ti+1))

Rσ̂i+1

��

C(si+1, Z)(f(ri+1), f(ti+1))
C(ai+1,X)

// C(ŝi+1, Z)(ρi+1 · f(ri+1), ρ′i+1 · f(ti+1))
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then for any choice of element xi : 1→ C(si, Z)(f(ri), f(ti)), the dashed arrow of the following
diagram exists and makes the commutative square commute (see Proposition 3.110).

1

xi
��

// C(σ̂i, f)(ρi · f(ri), ρ
′
i · f(ti))

Rσ̂i
��

C(si, Z)(f(ri), f(ti))
C(ai,X)

// C(ŝi, Z)(ρi · f(ri), ρ
′
i · f(ti))

Because the equalities r0 = r and t0 = t hold, the inductive process underlying the above
implication says that if diagram (3.79) exists for any choice x` (take i = ` − 1), then f is
a surtraction for ς0. But this is the case, since we know that both relations r` = g(r′) and
t` = g(t′) hold and f ◦ g is a surtraction for ς`, so that section 3.3.6.7 implies that diagram
(3.79) evaluated at i = `− 1 exists for any choice x`. �

3.4. Examples of everyday spines

3.4.1. Higher category theories and topological spaces. The introduction of the pres-
ent chapter already gave a taste of what the previous structures look like in Top. In fact, the
construction of spinal framings, conjugations, correspondences and convergent chainings of
memories will be done in Chapter 6 in a unified and detailed way for higher category theories
and topological spaces.

3.4.2. Simplicial sets. This section describes how to generate the multiple structures seen
in the present chapter for the case of simplicial sets. The considered vertebrae are those
defined in section 2.4.2.4 of Chapter 2, all contained in the class denoted by E . As noticed
in the aforementioned section, all our structures will arise from Γ-factorisations, that is to
say factorisations of the form p ◦ i where p is in llp(rlp(Γ)) and i is in rlp(Γ) where Γ is the
following set of arrows.

{γn : ∂∆n → ∆n}n∈ω

To illustrate this, consider a vertebra ‖gn, g′n‖ · β in sSet whose notations are conform with
those of section 2.4.2.4. To define a framing of this vertebra along two other vertebrae
‖gn, g′�‖ · β� and ‖g′n, g′•‖ · β•, first form the following left pushout in sSet.

Sq+1

β

!!

Dq2
δq2oo

β�◦δ�2 // D′�

ι�

��

Dq1

δq1

OO

β•◦δ•2
��

D′

ι

��

D′• ι•
// G

Sq
g′q
//

gq

��

Dq1
δq1
��

Dq2
δq2

// Sq+1

Pasting the above pushout diagram with the prevertebra given on the right along their com-
mon part comprising the cospan made of δq1 and δq2 then provides the following commutative
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diagram. The dashed arrow is generated from the universality of the pushout Sq+1.

Sq
g′q
//

gq

��

Dq1
δq1
��

β�◦δ�1 // D′�

ι�

��

Dq2
δq2

//

β•◦δ•1
��

Sq+1

u

!!

D′• ι•
// G

Finally, factorising the arrow u : Sq+1 → G into an arrow β∗ : Sq+1 → D′∗ in llp(rlp(Γ))
and a morphism π : D′∗ → G in rlp(Γ) exactly gives a vertebra ‖gn, g′n‖ · β∗ framing the
vertebra ‖gn, g′n‖ ·β along the pair ‖gn, g′�‖ ·β� and ‖g′n, g′•‖ ·β• where the cylinder transition
is provided by π : D′∗ → G.

Remark 3.112. It may be shown that the above framing is compatible with the morphisms
of vertebrae. This follows from the fact that the cylinder transitions are in the class rlp(Γ).
Specifically, considering two framings of vertebrae f := (p · β, v�, v•) . p∗ · β∗ and f[ := (p[ ·
β[, v�, v•) . p† · β† equipped with respective cylinder transitions π : D′∗ → G and π : D′† → G[

and a morphism of vertebrae u : p · β y p[ · β[ always provides a commutative diagram as
given below on the left (see also section 3.3.2.8 for the notations). The fact that β† is in
llp(rlp(Γ)) and the cylinder transition π is in rlp(Γ) then leads to the existence of a lift as
given below on the right.

S

β†
��

β∗
// D′∗

π

��

D′† π[
// G[

κ(u)
// G

⇒ S

β†
��

β∗
// D′∗

π

��

D′†

u∗

77

π[
// G[

κ(u)
// G

The lift u∗ : D′† → D′∗ exactly defines a morphism of vertebrae u∗ : p∗ · β∗ y p† · β† together

with a morphism of framings (u, u∗) : f y f[.

Similarly, it is possible to generate reflections of vertebrae. Let v := ‖gn, g′n‖ · β be a
vertebra in sSet as defined in section 2.4.2.4. There is a trivial alliance of prevertebrae
‖gn, g′n‖  (‖g′n, gn‖rv)rv. It may be shown that a straightforward Γ-factorisation provides
an arrow β∗ in llp(rlp(Γ)) inducing an alliance of vertebrae as follows.

‖gn, g′n‖ · β  (‖g′n, gn‖rv · β∗)rv

All the above constructions may be used to generate conjugations of vertebrae, spines
or nodes of spines. The correspondences resulting from this conjugations after apllication
of the functor Scor : Cong → Scov(C) comes along with commutative squares as given in
diagram (3.28). Again, Γ-factorisations may be used to fill these squares in with structures
of mates as shown in diagram (3.29). The ability of generating an unlimited number of
mates and framings eventually allows the construction of convergent chainings and convergent
conjugations of spines and nodes of spines. All the conditions of functoriality regarding simple
and extensive framings, chainings and other similar structures are ensured by right lifting
properties as illustrated in Remark 3.112.

In the end, this shows that Γ-factorisations are an efficient way of constructing the ele-
mentary structure permitting the application of Theorem 3.111 and Theorem 3.111.
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3.4.3. Chain complexes. Let R be a ring. This section only discusses the form of the
framings in the case of the category of non-negatively graded chain complexes ChR for the
(nodes) of vertebrae defined in section 2.4.3.4. First, recall that the vertebrae used are of the
following from, where R(δ) is R⊕2 when δ = 1 and 0 when δ = 0.

0

!
��

! //

x

Dn

��

Dn
// Sn

βn(δ)
// Dn(δ)

These vertebrae are obviously projective. Denote by v(δ) the above vertebra for every δ ∈
{0, 1}. It may be shown that a vertebra v(δ4) frames a vertebra v(δ1) along two vertebrae v(δ1)
and v(δ2) for any 4-tuple (δ1, δ2, δ3) . δ4 and cylinder transitions as follows (when truncated
at rank n and n+ 1).

R⊕R⊕R
µ◦µ
// R

R⊕R
(1,1,1).1

µ
//

R⊕0⊕R

OO

R

R⊕R⊕ 0
µ
// R

R⊕R
(1,1,0).1

µ
// R

0⊕R⊕R
µ
// R

R⊕R
(1,0,1).1

µ
// R

0⊕R⊕R
µ
// R

R⊕R
(1,0,0).1

µ
// R

R⊕ 0⊕R
µ
// R

R⊕R
(1,0,1).1

µ
// R

R⊕ 0⊕ 0 R

0

(0,1,0).0
!

//

!

OO

R

0⊕ 0⊕R R

0

(0,0,1).0
!

//

!

OO

R

0⊕ 0⊕ 0 R

0

(0,0,0).0
!

//

!

OO

R

The construction of the other structures is really an exercise of universal algebra, which is
left to the motivated reader.



Chapter 4

Vertebral and Spinal
Categories

4.1. Introduction

The present chapter organises the different structures of Chapters 2 & 3 into homotopy
theories called vertebral and spinal categories. Their properties are close to those of usual
homotopy theories (such as model categories and categories of fibrant objects). The work
established herein obviously paves the way for possible generalisations to homotopy theories
in bicategories and other higher categories (up to adequate generalisation of the concept
of vertebra). In the spirit of the theory of Quillen’s equivalences (see [38, 12]) and Crans’
transfers (see [9]), vertebral and spinal categories will be associated with a theory of functors.
In particular, the proof of the Homotopy Hypothesis will be sketched in general terms. The
chapter will finish with a series of examples.

Chapter 2 showed that a notion of homotopy resulted from the notion of vertebra – or,
in fact, the notions of extended node of vertebrae and alliance of nodes of vertebrae. It was
shown that the zoos with which these were associated had properties reminiscent of the kind
underpinning usual homotopy theories. This precisely happened when

1) the different vertebral structures interacted between each other via compositional
actions stemming from the composition of diagrams; e.g. right action of alliances of
nodes of vertebrae on extended nodes of vertebrae.

2) the vertebral structures were equipped with additional colimits and morphisms; e.g.
reflexive vertebrae and framings of extended nodes of vertebrae.

In both cases, the zoo of the solicited structures was used in such a way that some assumptions
on items pertaining to certain zoos lead to conclusions on items of other zoos (for instance,
see the propositions of section 2.3.4.2, which never concerns the same zoo).

This instability suggests the need of a bigger structure in which the different interactions
between vertebral structures would be stable. This would allow the definition of a unique
zoo satisfying properties independent of the involved structures – at least, in appearance.

Our first homotopical structure is called vertebral category and relies on the results of
Chapter 1. For a chosen category C, it consists of (i) a structure E containing extended nodes
of vertebrae in C; (ii) two structures A and A′ containing alliances of nodes of vertebrae in
C. The extended nodes of vertebrae in E may diagrammatically be composed, thus giving

155
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rise to a monoid-like structure

E ⊗ E → E︸ ︷︷ ︸
‘pasting’ of two extended nodes of vertebrae

the structures A and A′ will act on the right of E and be related via a particular type of map
called a prolinear map.

E ⊗A→ E E ⊗A′ → E︸ ︷︷ ︸
‘pasting’ of alliances on extended nodes of vertebrae

A′ # A︸ ︷︷ ︸
prolinear map

Finally, following the example of the structure of category, a vertebral category will be
equipped with a main notion of composition, given by framings of extended nodes of verte-
brae, and a notion of identity, given by reflexive nodes of vertebrae.

Σ0E ⊗ Σ1E → Σ?E︸ ︷︷ ︸
framings of extended nodes of vertebrae

1→ E︸ ︷︷ ︸
picks out reflexive nodes of vertebrae

The symbols Σ0, Σ1 and Σ? here stands for operations on E that will be made explicit later
on. Such a vertebral category (C, E,A,A′) will be associated with a zoo where

- the (trivial) fibrations will be defined with respect to the alliances of A′;

- the intractions will be defined with respect to the alliances of A;

- the surtractions and pseudofibrations will be defined with respect to E.

The algebraic operations previously defined will then enable stable interactions between the
different protagonists of the zoo.

The problem that arises regarding vertebral categories is that they are not sufficient to
show the entire two-out-of-six property, which requires the notion of spine defined in Chapter
3. Roughly, a spine is a vertebra equipped with a notion of dimension encoded by a prespine.
To permit the two-out-of-six property in vertebral categories, we will therefore need to equip
the nodes of vertebrae of the vertebral category with structures of spine.

(node of spines)

σ � //

(node of vertebrae)

ν

Such attributions require one to choose a dimension for every vertebra in the vertebral cat-
egory. We will thus have maps associating spines with vertebrae such that this mappings
ensures that every vertebra has a lifting to a spine of some dimension.

Figure 1. Picture of a spinal category

We will thus need to cover vertebral categories with elementary structures characteristic
of a particular dimension. Because the notion of zoo associated with the vertebral category
will have to be transported at the level of spines, these structures will be given by pairs
(An, En) for every n ∈ ω, where
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- every spine in An and En is of dimension n;

- the objects of An are sent to the objects of A;

- the objects of En are sent to the objects of E.

A vertebral category equipped with a covering of its elements by the previously described
structures will be called a spinal category when equipped with some additional operations.
These operations will enable us to achieve the proof of the two-out-of-six property. Precisely,
these will be ternary operations encoding the framings of spines along semi-extended nodes
of vertebrae as defined in Chapter 3 (see the following pair of operations).

Tn(E)⊗An ⊗ To(E)→ An Tn(E)⊗ En ⊗ To(E)→ En

The operations Tn( ) and To( ) appearing in the preceding maps take the extended node of
vertebrae of E and derive them into semi extended-nodes of vertebrae.

(extended vertebra)

n � //

(semi-extended vertebra)

b} dn

Somehow, the structures Tn(E) and Tn(E) will resemble tangent bundles for these deriva-
tions. We will finally require the image of the previous framings to be equipped with an
inverse process, which will be defined in terms of convergent conjugations. The cancella-
tion theorems of Chapter 3 will then allow the proof of the two-out-of-six property in spinal
categories.

Finally, we will discuss various notions of functors that transfer the zoo of vertebral and
spinal categories to other categories. The fact that only the zoo is potentially transferred is
here important as functors do not transport the spinal and vertebral structures in general.
The notion of transfer will take the form of functors F : C → D that send the elements of E,
A and A′ to similar structure in the category D, which will give rise to classes of elements
F (E), F (A) and F (A′). This will allow us to make sense of a notion of zoo in the category
D. Then, any spinal or vertebral structure on C will provide the zoo of D with properties
similar to those obtained for spinal or vertebral categories.

4.2. Preparation

4.2.1. Warming-up on vertebrae and spines.

4.2.1.1. Reminder of the second chapter. In Chapter 2, the concept of framing concerned the
notion of extended nodes of vertebrae. Specifically, we had two extended node of vertebrae
n : γ ex ν∗ and n[ : γ′∗

ex ν[ where the preseed γ′∗ of the latter was equal to the coseed of the
node of vertebrae ν∗. This last condition on the two extended nodes of vertebrae presented
the pair (n, n[) as a communicating pair. From such a setting was then defined the notion
of framing for such a pair, which consisted of a third extended node of vertebrae n• : γ ex ν•
where the coseed of ν• was equal to that of ν[. To resume, if we denote by E(γ, γ′∗) the class
of extended nodes of vertebrae whose preseed and coseed are equal to γ and γ′∗, respectively,
the concept of framing of extended node of vertebrae takes any pair in the left product of
classes, below, and associate it with an extended node of vertebrae in the corresponding right
class.

E(γ, γ′∗)× E(γ′∗, γ
′
[)

// E(γ, γ′[)

Later on, we will be interested in providing such a process with specific choices so that we
obtain a metafunction of the form E(γ, γ′∗)× E(γ′∗, γ

′
[)→ E(γ, γ′[).
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4.2.1.2. Reminder of the third chapter. In Chapter 3, the concept of framing of nodes of
spines considered the combination of two semi-extended nodes of vertebrae together with a
node of spines and gave another node of spines as output. Specifically, for every fixed non-
negative integer q, the operation of q-framing considered a node of spines σ = (pk) · Ω of
degree greater than or equal to q along two semi-extended nodes of vertebrae n� : γq  ν�
and n• : γ′q  ν• where the prevertebra pq was of the form ‖γq, γ′q‖. The output was then a
node of spines σ∗ = (p∗k) · Ω∗ where

- (compatibility) the equality pq = p∗k held for every 0 ≤ k ≤ q − 1;

- (framing) the prevertebra p∗q was of the form ‖γ′•, γ′�‖ where γ′• and γ′� were the
coseeds of ν� and ν•, respectively.

In other words, if we denote by Ok(γ, γ′) the class of nodes of spines (pk)·Ω whose prevertebra
pk is of the form ‖γ, γ′‖ and by T (γ, γ′) the class of semi-extended nodes of vertebrae whose
preseeds and coseeds are equal to γ and γ′, respectively, the concept of framing of spines
takes any triple in the left product of classes, below, and associate it with a node of spines
in the corresponding right class.

T (γ, γ′�)×Ok(γ, γ′)× T (γ′, γ′•) // Ok(γ′�, γ′•)

Later on, we will be interested in providing such a process with specific choices so that we
obtain metafunctions of the form T (γ, γ′�)×Ok(γ, γ′)× T (γ′, γ′•)→ Ok(γ′�, γ′•). The images
of these operations will be equipped with structures of convergent conjugation, that is to say
some extra structure allowing the ‘reverse’ of the involved framing. Such assumptions will
suffice to achieve the wanted properties for which spinal categories are defined.

4.2.1.3. Conventions on hom-sets. For convenience, the hom-sets of the category of nodes of
vertebrae Ally(C) will later be denoted as Ally(ν, ν∗).

4.2.1.4. Notations. Let C be a category and n be a non-negative integer. In the sequel,
we shall let Aos(C, n) denote the category whose objects are spines of degree n and whose
morphisms are alliances between them. Similarly, we shall let Anos(C, n) denote the category
whose objects are nodes of spines of degree n and whose morphisms are alliances between
them.

4.2.2. Factorisation properties.

4.2.2.1. Purpose of this section. The goal of this section is to reformulate the property already
defined in Chapter 2, but in terms of factorisation games. The reason for these reformulations
is to hide the cumbersome parts of future calculations. For illustration, it follows from
Yoneda’s Lemma that a morphism f : X → Y in some category C has the rlp with respect to
a morphism γ : A→ B if and only if for every commutative diagram of the form given below
on the left, there exists a ‘lift’ h : 1→ C(B,X) making the diagram on the right commute.

1
x //

y

��

C(A,X)

C(A,f)
��

C(B, Y )
C(γ,Y )

// C(A, Y )

⇒

1

h

##

x

$$

y

((

C(B,X)
C(γ,X)

//

C(B,f)
��

C(A,X)

C(A,f)
��

C(B, Y )
C(γ,Y )

// C(A, Y )

The previous implication essentially consists in stating that any natural transformation of
the form 1⇒ F over the category made of two opposite arrows • → • ← • lifts to a natural
transformation 1⇒ G over the product category 2×2. This type of language will be that of
factorisation games and will turn out to be extremely useful to prove our future properties.
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4.2.2.2. Factorisation games. A factorisation game consists of an inclusion of small categories
i : P ↪→ O, a class Ω, called attacking configuration, a class Ω′, called defending configuration,
a collection of functors

{Aβ : P→ Set}β∈Ω

called collection of attacking moves and a collection of functors

{D(β,β′) : O→ Set}(β,β′)∈Ω×Ω′

called collection of defending moves, such that the restriction of D(β,β′) along i : P ↪→ O equals
the functor Aβ for every (β, β′) ∈ Ω× Ω′.

P
Aβ
//

i
��

Set

O

D(β,β′)

==

Such a structure will later be denoted as a 4-tuple (A,D,Ω,Ω′) and said to be of type i : P ↪→
O. This will be denoted as an arrow (A,D,Ω,Ω′) a P ↪→ O. A play for a factorisation game
(A,D,Ω,Ω′) a P ↪→ O consists of an element β ∈ Ω and a morphism ∆P(1)⇒ Aβ in SetP. A
factorisation game (A,D,Ω,Ω′) a P ↪→ O will then be said to have a winning strategy if for
every play ℘ : ∆P(1)⇒ Aβ in SetP, there exists β′ ∈ Ω′ and an arrow ℘′ : ∆O(1)⇒ D(β,β′) in

SetO whose image via the functor Seti : SetO → SetP induced by the pre-composition with
i : P ↪→ O is equal to the play ℘.

SetO

◦i
��

SetP

∆O(1)
_

◦i
��

℘′ +3 D(β,β′)
_

◦i
��

∆P(1)
℘ +3 Aβ

4.2.2.3. Equivalences of factorisation games. An equivalence of factorisation games from a
factorisation game (A,D,Ω,Ω∗) to factorisation game (A[, D[,Ω[,Ω†) of the same type i :
P ↪→ O consists of

1) two surjective metafunctions ψ : Ω→ Ω[ and ψ∗ : Ω∗ → Ω†;

2) a collection of isomorphisms

aβ : Aβ ∼= A[ψ(β)

in SetP for every β ∈ Ω as well as a collection of isomorphisms

d(β,β∗) : D(β,β∗)
∼= D[

(ψ(β),ψ∗(β∗))

in SetO for every (β, β∗) ∈ Ω × Ω∗ such that the image of d(β,β∗) via the functor

Seti : SetO → SetP is equal to aβ

The point of equivalent factorisation games is the following proposition.

Proposition 4.1. Let (A,D,Ω,Ω∗) and (A[, D[,Ω[,Ω†) be two equivalent factorisation games
of type i : P ↪→ O as defined above. The factorisation game (A,D,Ω,Ω∗) admits a winning

strategy if and only if (A[, D[,Ω[,Ω†) admits a winning strategy.

Proof. Let us prove that if the factorisation game (A,D,Ω,Ω∗) admits a winning strategy,

then so does (A[, D[,Ω[,Ω†). Consider the play, below, with β[ ∈ Ω[ for the factorisation

game (A[, D[,Ω[,Ω†).

℘ : ∆P(1)⇒ A[β[
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Because the metafunction ψ : Ω → Ω[ is surjective, there must exist β ∈ Ω such that the
equality ψ(β) = β[ holds. Then, using the isomorphism aβ, we may define the following play
for (A,D,Ω,Ω∗).

∆P(1)
℘ +3 A[β[

a−1
β +3 Aβ

Because (A,D,Ω,Ω∗) admits a winning strategy, there exists some β∗ ∈ Ω∗ for which the
preceding play may be lifted to SetP as follows.

SetO

◦i
��

SetP

∆O(1)
℘′ +3

_

◦i
��

D(β,β∗)_

◦i
��

∆P(1)
℘ +3 A[β[

a−1
β +3 Aβ

Using the isomorphism d(β,β∗), we may finally expose a lift of the initial play ℘ : ∆P(1)⇒ A[β[
to SetO as follows.

SetO

◦i
��

SetP

∆O(1)
℘′ +3

_

◦i
��

D(β,β∗)_

◦i
��

d(β,β∗)+3 D(β[,ψ∗(β∗))_

◦i
��

∆P(1)

℘

/7
℘ +3 A[β[

a−1
β +3 Aβ

aβ +3 A[β[

Conversely, consider a play ℘ : ∆P(1)⇒ Aβ for the factorisation game (A,D,Ω,Ω∗). Because

the factorisation game (A[, D[,Ω[,Ω†) admits a winning strategy, there exists some β† ∈ Ω†
for which the following lift holds.

SetO

◦i
��

SetP

∆O(1)
℘′ +3

_

◦i
��

D(ψ(β),β†)_

◦i
��

∆P(1)
℘ +3 Aβ

aβ +3 A[ψ(β)

Since ψ∗ : Ω∗ → Ω† is surjective, there must exists some β∗ ∈ Ω∗ such that the equality
ψ∗(β∗) = β† holds. Finally, the inverse of dβ,β∗ allows us to build a lift of the play ℘ :
∆P(1)⇒ F in SetO as follows.

SetO

◦i
��

SetP

∆O(1)
℘′ +3

_

◦i
��

D(ψ(β),β†)_

◦i
��

d−1
(β,β∗)+3 D(β,β∗)_

◦i
��

∆P(1)

℘

/7
℘ +3 Aβ

aβ +3 A[ψ(β)

a−1
β +3 Aβ

This finishes the proof of the statement. �

4.2.2.4. Lifting properties as factorisation games. Let C be a category. If follows from the
Yoneda Lemma and the definition of section 2.2.1.1 that a morphism f : X → Y has the
right lifting property with respect to a commutative square

(4.1) A′
θ //

γ′

��

A

γ

��

B′
θ′
// B
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which will later be denoted as an arrow s : γ′ ⇒ γ in C2, if and only if for every pair of
functions x : 1→ C(A,X) and y : 1→ C(B, Y ) making the following diagram commute

(4.2) C(A,X)
C(θ,X)

//

C(A,f)

��

C(A′, X)

C(A′,f)

��

1

y
88

y

��

C(A, Y )
C(θ,Y )

// C(A′, Y )

C(B, Y )

C(γ,Y )
99

C(θ′,Y )
// C(B′, Y )

C(γ′,Y )

88

there exists a function (lift) h : 1→ C(B′, X) such that the following diagram commutes.

(4.3) C(A,X)
C(θ,X)

//

��

C(A′, X)

C(A′,f)

��

1

x
99

y

��

h
-- C(B′, X)

��

C(γ′,X)

88

C(A, Y ) // C(A′, Y )

C(B, Y )

C(γ,Y )
99

C(θ′,Y )
// C(B′, Y )

C(γ′,Y )

88

Let now C(s, f)A0 denote the diagram resulting from the removal of the object 1 and the
morphisms x and y in (4.2). Similarly, let C(s, f)D0 denote the result of removing 1, x, y and
h from (4.3).

Proposition 4.2. The morphism f : X → Y has the right lifting property with respect to
diagram (4.1) if and only if the factorisation game (A,D,Ω,Ω∗), where

- Ω and Ω∗ are singletons equal to {0};
- A0 is given by the diagram of hom-sets C(s, f)A0 ;

- D0 is given by the diagram of hom-sets C(s, f)D0 ,

has a winning strategy.

Proof. The previous definition shows how any natural transformation of the form (x, y) :
1 ⇒ C(s, f)A0 implies a lift (x, y, h) : 1 ⇒ C(s, f)D0 that restricts to the previous natural
transformation. �

4.2.2.5. Simplicity as factorisation gaming. Let C be a category and S := (Ω,κ,Ω′) be a
scale in C where k : A′ → A. Recall that the two classes Ω and Ω′ contain morphisms in C
whose domains are equal to A and A′, respectively. It follows from the Yoneda Lemma that
a morphism f : X → Y in C is simple with respect to S if and only if for every morphism
β : A→ B in Ω and every pair of functions x : 1→ C(A,X) and y : 1→ C(B, Y ) making the
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following diagram commute

(4.4) C(A,X)
C(k,X)

//

C(A,f)

��

C(A′, X)

C(A′,f)

��

1

x
88

y

��

C(A, Y )
C(k,Y )

// C(A′, Y )

C(B, Y )

C(β,Y )

99

there exist a morphism β′ : A′ → B′ in Ω′ and a function h : 1 → C(B′, X) such that the
following diagram commutes.

(4.5) C(A,X)
C(k,X)

//

��

C(A′, X)

C(A′,f)

��

1

x
99

y

��

h
-- C(B′, X)

��

C(β′,X)

88

C(A, Y ) // C(A′, Y )

C(B, Y )

C(β,Y )
99

C(B′, Y )

C(β′,Y )

88

Let now C(S, f)Aβ denote the diagram resulting from the removal of the object 1 and the

morphisms x and y in (4.4). Similarly, let C(S, f)Dβ,β′ denote the result of removing 1, x, y

and h from (4.5).

Proposition 4.3. The morphism f : X → Y is simple with respect to (Ω,κ,Ω′) if and only
if the factorisation game (A,D,Ω,Ω′), where

- Aβ is given by the diagram C(S, f)Aβ for every β ∈ Ω;

- Dβ,β′ is given by the diagram C(S, f)Dβ,β′ for every (β, β′) ∈ Ω× Ω′,

has a winning strategy.

Proof. Straightforward. �

4.2.2.6. Division as factorisation gaming. Let C be a category and consider a besom in C
made of the following two commutative squares as well as a class Ω in C whose domains are
all equal to B′′.

A′
θ //

γ
��

A

γ

��

B′
θ′
// B

A′
γ′
//

γ
��

A′′

δ1
��

B′
δ2

// B′′

The preceding besom, which was denoted as a triple of the form (Ω,d, θ) in Chapter 2,
will here be denoted by the letter B. It follows from the Yoneda Lemma that a morphism
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f : X → Y in C is divisible by B if and only if for every pair of functions x : 1 → C(A,X)
and y : 1→ C(B, Y ) making the following diagram commute

(4.6) C(A,X)
C(θ,X)

//

C(A,f)

��

C(A′, X)

C(A′,f)

��

1

x
88

y

��

C(A, Y )
C(θ,Y )

// C(A′, Y )

C(B, Y )

C(γ,Y )
99

C(θ′,Y )
// C(B′, Y )

C(γ,Y )

88

there exist an arrow β : B′′ → A in Ω and a pair of functions x′ : 1 → C(A′′, X) and
y′ : 1→ C(B′′, Y ) making the following diagram commute in Set.

(4.7) C(A,X)
C(θ,X)

//

��

C(A′, X)

��

C(A′′, X)

C(A′′,f)

��

C(γ′,X)
oo

1

x
99

x′

11

y

��

y′

))

C(A, Y ) // C(A′, Y ) C(A′′, Y )oo

C(B, Y )

C(γ,Y )
99

C(θ′,Y )
// C(B′, Y )

C(γ,Y )

99

C(B′′, Y )

C(β◦δ1,Y )

88

C(β◦δ2,Y )
oo

Let now C(B, f)A0 denote the diagram resulting from the removal of the object 1 and the
morphisms x and y in (4.6). Similarly, let C(B, f)D0,β denote the result of removing 1, x, y, x′

and y′ from (4.5).

Proposition 4.4. The morphism f : X → Y is divisible by B if and only if the factorisation
game (A,D, {0},Ω) where

- A0 is given by the diagram C(B, f)A0 ;

- D0,β is given by the diagram C(B, f)D0,β,

has a winning strategy.

Proof. Straightforward. �

4.3. Algebraic structures on vertebrae and spines

The following section might seem a little bit slow and repetitive to the reader as it only gives
a dictionary of elementary structures that will be used later on, the goal being to abstract and
encode the common features and structures corresponding to the various actions coming from
the concepts given in earlier chapters. The important definitions of the section are however
Definition 4.20, Definition 4.24 and section 4.3.8.4. The section also provides examples that
will be used as basic definitions for our structures of vertebrae.

4.3.1. Spans.
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4.3.1.1. Spans. The notion of span appears under various forms in the literature. The fol-
lowing definition gives a category-like presentation of it. A span consists of

1) a higher class S0, called the left object-class;

2) a higher class S1, called the right object-class;

3) for every γ ∈ S0 and a ∈ S1, a higher class E(γ, a), called the hom-class.

Such a structure will usually be referred to by the letter used to denote its hom-classes; e.g.
the previous structure is a span E. The object-classes S0 and S1 will then be denoted as
ObjL(E) and ObjR(E), respectively.

Example 4.5. Let C be a category. The metacategory Ally(C) defines an obvious span
whose left and right object-classes are equal to the class of objects of Ally(C) and whose
hom-class are given by the hom-classes of Ally(C).

Example 4.6. Let C be a category. For every object γ in Com(C) and ν in Ally(C), denote
by Enov(γ, ν) the set of extended nodes of vertebrae in C whose preseeds are equal to γ and
whose underlying nodes of vertebrae are equal to ν. This induces a span Enov(C) over the
2-classes Obj(Com(C)) and Obj(Ally(C)).

Example 4.7. Let C be a category and n be a positive integer. For every spine s in
Aos(C, n − 1) and nodes of spines σ in Anos(C, n) (see notations of section 4.2.1.4), de-

note by Enosn(s, σ) the set of extended nodes of spines of degree n in C of the form s EX σ.
This induces a span Enosn(C) over the 2-classes Obj(Aos(C, n− 1)) and Obj(Anos(C, n)).

4.3.1.2. Morphisms of spans. The notion of morphism given in this section is more general
than the one usually appearing in the literature. Let F and E be two spans. A morphism of
spans from F to E consists of

1) a metafunction fL : ObjL(F )→ ObjL(E);

2) a metafunction fR : ObjR(F )→ ObjR(E);

3) for every γ ∈ ObjL(F ) and a ∈ ObjR(F ), a metafunction as follows.

fH : F (γ, a)→ E(fL(γ), fR(a))

Such a morphism will later be written by (fL, fR, fH) : F ⇒ E. The composition of two such
morphisms is componentwise.

Example 4.8. Let C be a category and n be a positive integer. There is an obvious morphism
of spans λn := (λn0 , λ

n
1 , λ

n
2 ) : Enosn(C)⇒ Enov(C) where

1) the component λn0 maps any spine P · γ of degree n− 1 in C to its stem γ;

2) the component λn1 maps any node of spines P · Ω of degree n in C to the node of
vertebrae pn · Ω associated with its head pn;

3) the component λn2 maps any extended nodes of spines P ·γ EX P ·Ω to its underlying
extended nodes of vertebrae γ ex pn · Ω.

Example 4.9. Let C be a category. The operation ext( ) mapping an alliance a : ν  ν∗ to
its underlying extended node of vertebrae ext(a) : γ  ν∗ induces a morphism of spans from
Ally(C) to Enov(C) whose component

1) fL is given by the metafunction mapping a node of vertebrae to its seed;

2) fR is given by the identity metafunction;

3) fH : Ally(ν, ν∗)→ E(γ, ν∗) is given by the operation ext( ).
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4.3.1.3. Fibration of spans. This section defines the notion of fibration of spans, which is
a generalisation of the notion of fibration for categories. Let F and E be two spans. A
morphism of spans (fL, fR, fH) : F ⇒ E will be called a fibration if for every γ ∈ ObjL(E),
a ∈ ObjR(E) and e ∈ E(fL(γ), a), there exists a′ ∈ ObjR(F ) and e′ ∈ F (γ, a′) such that the
equalities fR(a′) = a and fH(e′) = e hold.

4.3.1.4. Subspans. Let E be a span. A subspan of E is a span F equipped with a morphism
of spans (fL, fR, fH) : F ⇒ E whose components fL, fR and fH are all inclusions of higher
classes. The fact of being a subspan will later be denoted with the symbol inclusion; e.g. in
the previous case F ⊆ E.

4.3.2. Precompasses and graphs.

4.3.2.1. Precompasses. A precompass consists of a span E and a metafunction h : ObjR(E)→
ObjL(E), called the hinge. Such a structure will later be denoted by (E, h).

Example 4.10. Let C be a category. The span Enov(C) of Example 4.6 defines a precompass
when equipped with the metafunction η : Obj(Ally(C, n)) → Obj(Com(C, n − 1)) mapping
a node of vertebrae to its seed.

Example 4.11. Let C be a category, n be a positive integer. The span Enosn(C) defined
in Example 4.7 may be seen as a precompass when equipped with the metafunction η :
Obj(Anos(C, n))→ Obj(Aos(C, n− 1)) mapping a node of spines to its spinal seed.

4.3.2.2. Morphisms of precompasses. Let (F, hF ) and (E, hE) be two precompasses. A mor-
phism of precompasses from (F, hF ) to (E, hE) is a morphism of spans (fL, fR, fH) : F ⇒ E
for which the following diagram commutes.

ObjR(F )
hF //

fR

��

ObjL(F )

fL

��

ObjR(E)
hE

// ObjL(E)

Example 4.12. Let C be a category and n be a positive integer. The morphism of spans
λn : Enosn(C) ⇒ Enov(C) of Example 4.8 extends to a morphism of precompasses for the
structures given by Example 4.10 and Example 4.11.

4.3.2.3. Subprecompasses. Let (E, hE) be a precompass. A precompass (F, hF ) will be said to
define a subprecompass of (E, hE) if it is equipped with a morphism of precompasses inducing
an inclusion of spans F ⊆ E.

4.3.2.4. Graphs. A graph is a precompass whose hinge is an identity. In other words, the
equality ObjL(A) = ObjL(A) holds. In this case, both object-classes will be denoted by
Obj(A). In the sequel, a graph of the form (A, id) will be denoted by the letter A.

Example 4.13. Let C be a category and n be a positive integer. The categories Anos(C, n)
and Ally(C) define obvious graphs.

Example 4.14. Let us fix some category C. An example of interest will be the graph Sev(C)
whose object-class is the class of arrows of C and whose hom-class Sev(γ, γ′) contains all semi-
extended vertebrae whose preseeds and coseeds are equal to γ and γ′. If the class Sev(γ, γ′)
is non-empty, then the domains of γ and γ′ are equal.

4.3.2.5. Morphisms of graphs. Let A and B be two graphs. A morphism of graphs from B to
A is a morphism of precompasses of the form (fL, fR, fH) : (B, id) ⇒ (A, id). The fact that
the hinges are identities forces the equality fL = fR to hold for every morphism of graphs.
Later on, such a morphism will be denoted as a pair (fR, fH).
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Example 4.15. Let C be a category and n be a positive integer. There is an obvious
morphism of graphs κn := (κn1 , κ

n
2 ) : Anos(C, n) ⇒ Ally(C) mapping any alliance of nodes

of spines P · Ω to the node of vertebrae pn · Ω associated with its head pn.

4.3.2.6. Subgraphs. Let A be a graph. A graph B will be said to define a subgraph of A if it
is equipped with an inclusion A ⊆ B of subprecompasses.

4.3.3. Compasses, magmoids and algebras.

4.3.3.1. Compasses. The idea behind the notion of compass is to add a composition operation
to the structure of a precompass. A compass is a precompass (E, h) equipped, for every
γ ∈ ObjL(E) and a, b ∈ ObjR(E), with a metafunction of the following form, which will be
called a composition.

� : E(γ, a)× E(h(a), b)→ E(γ, b),

Such a structure will usually be referred to as a triple (E, h,�).

Example 4.16. Let C be a category. The precompass (Enov(C),η) of Example 4.6 may
be endowed with a structure of a compass (Enov(C),η,�) by considering, for every γ ∈
Obj(Com(C)) and ν∗, ν[ ∈ Obj(Ally(C)), the operation

� : Enov(γ, ν∗)×Enov(η(ν∗), ν[)→ Enov(γ, ν[)

that maps any extended nodes of vertebrae n : γ ex ν∗ and n∗ : η(ν∗)
ex ν[ to the extended

node of vertebrae n∗ � com(n) : γ ex ν[.

4.3.3.2. Morphisms of compasses. The present notion of morphism extends the notion of
morphism of spans to that of morphism of compasses. Let (F, hF ,�F ) and (E, hE ,�E) be
two compasses. A morphism of compasses from (F, hF ,�F ) to (E, hE ,�E) is a morphism of
spans (fL, fR, fH) : F ⇒ E for which the following diagrams commute, where the latter holds
for every γ ∈ ObjL(E) and a, b ∈ ObjR(E).

ObjR(F )
hF //

fR

��

ObjL(F )

fL

��

ObjR(E)
hE

// ObjL(E)

F (γ, a)× F (hF (a), b)

fH×fH

��

�F // F (γ, b)

fH

��

E(γ, a)× E(hE(a), b)
�E
// E(γ, b)

4.3.3.3. Subcompasses. Let (E, hE ,�E) be a compass. A compass (F, hF ,�F ) will be said to
be a subcompass of (E, hE ,�E) if it is equipped with a morphism of compasses (fL, fR, fH) :
(F, hF ,�F )⇒ (E, hE ,�E) inducing an inclusion of spans.

4.3.3.4. Magmoids. A magmoid is a compass (A, h,}) whose hinge h is an identity. Later
on, the left and right object-classes of A, which are equal, will be denoted by Obj(A). Such
a structure will later be denoted as a pair (A,}).

Example 4.17. Any category is a magmoid for its underlying compositions. In the sequel,
the metacategory Ally(C) will be an example of interest.

4.3.3.5. Morphisms of magmoids. Let (A,}A) and (B,}B) be two magmoids. A morphism
of magmoids from (B,}B) to (A,}A) is a morphism of compasses of the from (fL, fR, fH) :
(B, id,}B)⇒ (A, id,}A). The fact that the hinges are identities forces the equality fL = fR

to hold for every morphism of magmoids. Later on, such a structure will be denoted as a
pair (fR, fH).

Example 4.18. Any functor of categories induces a morphism of magmoids.
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4.3.3.6. Submagmoids. Let (A,}) and (B,}′) be two magmoids. The latter will be said to
be a submagmoid of the former if it is equipped with a morphism of magmoids from (A,})
to (B,}′) whose components are inclusions of higher classes.

Example 4.19. Let C be a category. Any subcategory of the category Ally(C) is a sub-
magmoid of Ally(C). However, a submagmoid of Ally(C) is not necessarily a subcategory of
Ally(C) as some identities might be missing.

4.3.3.7. Algebras. An algebra is a precompass (E, h) equipped with two metafunctions h0, h1 :
ObjR(E) → ObjL(E), called the source hinge and the target hinge, respectively, such that
the higher classes

Σ0E(γ, γ′) :=
∑

h0(a)=γ′

E(γ, a) Σ1E(γ, γ′) :=
∑

h1(a)=γ′

E(γ, a)

Σ?E(γ, γ′) :=
∑

h(a)=γ′

E(γ, a)

defined for every pair γ, γ′ ∈ ObjL(E), are endowed with a metafunction of the following
form for every γ, γ∗, γ

′
[ ∈ ObjL(E), which will be called an algebraic composition.

Σ0E(γ, γ∗)× Σ1E(γ∗, γ
′
[)→ Σ?E(γ, γ′[)

Definition 4.20 (Vertebral algebras). Let C be a category and denote by η′ : Ally(C) →
Com(C) the metafunction mapping a node of vertebrae to its coseed. A vertebral algebra is a
subprecompass (E, h) of the precompass (Enov(C),η′) equipped with a structure of algebra
along two hinges h0, h1 : ObjR(E)→ ObjL(E) such that an algebraic composition

Σ0E(γ, γ∗)× Σ1E(γ∗, γ
′
[)→ Σ?E(γ, γ′[)

maps any pair of extended nodes of vertebrae n : γ ex ν and n∗ : γ′∗
ex ν∗ (for which the

relations h0(ν) = γ∗ and h1(ν∗) = γ′[ must hold) to an extended node of vertebrae n• : γ ex ν[
(where γ′[ must be the coseed of ν[) of the form n• = b} 〈n∗ � t, n〉 where

- b is some alliance ν†  ν[ in Ally(C);
- t : γ′  γ∗ is a communication in Com(C);
- 〈n∗ � t, n〉 : γ ex ν† denotes an extended node of vertebrae in C that frames the

communicating pair n : γ ex ν and n∗ � t : γ′ ex ν∗.

By definition of the higher class Σ?E(γ, γ′[), the extended node of vertebrae n• must belong
to E.

4.3.4. Compasses and precompasses over graphs.

4.3.4.1. Precompasses over graphs. Let A be a graph. An A-precompass is a precompass
(E, h) equipped with an inclusion of the form Obj(A) ⊆ ObjR(E). Any A-precompass that
is a compass will be called an A-compass.

Example 4.21. Let C be a category. The compass (Enov(C),η) defines an Ally(C)-compass
while the precompass (Enosn(C),η) defines an Anos(C, n)-precompass for every positive
integer n.

4.3.4.2. Morphisms of precompasses over graphs. Let A and B be two graphs, (E, hE) be an
A-precompass and (F, hF ) be a B-precompass. A morphisms of precompass over graphs from
E to F consists of

1) a morphism of graphs (gR, gH) : B ⇒ A;
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2) a morphism of precompasses (fL, fR, fH) : (F, hF )⇒ (E, hE) for which the following
diagram commutes.

Obj(B)

gR

��

⊆
// ObjR(F )

fR

��

Obj(A)
⊆
// ObjR(E)

Similarly, a morphism from a B-compass to an A-compass is a morphism of compasses coming
along with a morphism of graphs B ⇒ A. The above structure will later be denoted as an
arrow (g, f) : (B,F, hF )⇒ (A,E, hE).

Example 4.22. Let C be a category and n be a positive integer. The morphism of compasses
λn : Enosn(C)⇒ Enov(C) of Example 4.12 extends to a morphism of compasses over graphs
along the morphism of graphs κn : Anos(C, n)⇒ Ally(C) defined in Example 4.15.

4.3.4.3. Subprecompass over graphs. Let A and B be two graphs and (E, hE) be a A-precom-
pass. A B-precompass (F, hF ) will be said to define a B-subprecompass of (E, hE) if it is
equipped with a morphism of precompasses over graphs consisting of inclusions (F, hF ) ⊆
(E, hE) and B ⊆ A. Similarly, a B-compass (F, hF ,�F ) will be said to define a B-subcompass
of an A-compass (E, hE ,�E) if it is equipped with a morphism of precompasses over graphs
consisting of inclusions (B,F, hF ,�F ) ⊆ (A,E, hE ,�E) and B ⊆ A.

4.3.5. Modules over graphs.

4.3.5.1. Right modules. Let A be a graph. A right A-module is an A-compass (E, h,�)
equipped with a metafunction of the following form for every γ ∈ ObjL(E) and a, b ∈ Obj(A).

~ : E(γ, a)×A(a, b)→ E(γ, b)

Such a structure will later be denoted as a triple (E, h,�,~).

Example 4.23. Let C be a category. The Ally(C)-compass (Enov(C),η,�) defines a right
Ally(C)-module (Enov(C),η,}) where an algebraic composition

} : Enov(γ, ν∗)×Ally(ν∗, ν[)→ Enov(γ, ν[)

maps any extended node of vertebrae n : γ ex ν∗ and alliance of nodes of vertebrae a∗ : ν∗  ν[
to the extended node of vertebrae a∗ } n : γ ex ν[.

4.3.5.2. Morphisms of right modules. Let A and B be two graphs, (E, hE ,�E ,~E) be a right
A-module and (F, hF ,�F ,~F ) be a right B-module. A morphism of right modules from E
to F consists of a morphism of compasses over graphs

(g, f) : (B,F, hF ,�F )⇒ (A,E, hE ,�E)

such that the following diagram commutes for every γ ∈ ObjL(F ) and a, b ∈ Obj(B).

F (γ, a)×B(a, b)

~F
��

fH×gH
// E(fL(γ), gR(a))×A(gR(a), gR(b))

~E
��

F (γ, b)
fH

// E(fL(γ), fR(b))

4.3.5.3. Right submodules. Let A and B be two graphs, (E, hE ,�E ,~E) be a right A-module.
A right B-module (F, hF ,�F ,~F ) will be said to define a submodule of (E, hE ,�E ,~E) if it
is equipped with a morphism of right modules

(g, f) : (B,F, hF ,�F ,~F )⇒ (A,E, hE ,�E ,~E)

whose components are all inclusions of higher classes.
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4.3.6. Substructures and prolinearity.

4.3.6.1. Systems. The following notion constitutes the common base to all our future struc-
tures (see Definition 4.24). Let M be a graph and (N,h) be a M -precompass. An N -system
consists of

1) two subgraphs A,A′ ⊆M ;

2) both an A- and A′-subprecompass (E, h) ⊆ (N,h).

Such a structure will usually be denoted as a triple (A,A′, E).

Definition 4.24 (System of vertebrae). Let C be a category. A system of vertebrae is an
Enov(C)-system for the precompass structure defined in Example 4.21. A system of vertebrae
only makes sense when associated with a notion of zoo. Let S := (A,A′, E) be a system of
vertebrae in C. If f : X → Y denotes a morphism in C, then it is called

- i) fibration; ii) trivial fibration in S if for every node of vertebrae ν ∈ Obj(A′), there
exists an alliance a : ν  ν in A′ for which f : X → Y is a i) fibration; ii) trivial
fibration, respectively;

- iii) intraction in S if for every node of vertebrae ν ∈ Obj(A), there exists an alliance
a : ν  ν in A for which f : X → Y is an iii) intraction;

- iv) surtraction; v) pseudofibration in S if for every arrow γ in ObjL(E), there exists
an extended node of vertebrae n : γ ex ν in E for which f : X → Y is a iv) surtraction;
v) pseudofibration.

Later on, it will come in handy to denote a system of vertebrae as if it were equipped with
its ambient category, namely as a quadruple (C, A,A′, E). The arrows of C that belong to
the left object-class of the span E will be called the E-seeds.

4.3.6.2. Prolinear map. Let (M,}) be a magmoid and A and K be a pair of subgraphs of M
for which the equality Obj(K) = Obj(A) holds. Note that for every triple a, b, c ∈ Obj(K),
there exists a restriction of the compositions of (M,}) as follows.

} : K(a, b)×M(b, c) ↪→M(a, b)×M(b, c) −→M(a, c)

Denote by M(b, A), M(a,A) and A(a,A) the higher classes defined by the following coproduct
of higher classes, respectively.∑

c∈Obj(A)

M(b, c)
∑

c∈Obj(A)

M(a, c)
∑

c∈Obj(A)

A(a, c)

In particular, notice that the previous metafunction induces a map as follows.

} : K(a, b)×M(b, A) −→M(a,A)

A M -prolinear map from K to A, denoted as an arrow K # A, is given, for every a, b ∈
Obj(A), by two metafunctions fa,b and La,b making the following diagram commute (an
explicit description is given beneath the diagram).

K(a, b)× 1 K(a, b)
idoo

La,b
��

fa,b
// A(a,A)

⊆
��

K(a, b)×M(b, A)

id×!

hh

}
// M(a,A)

In other words, for every element x ∈ K(a, b), there exists some element c(x) ∈ Obj(A) and
y(x) ∈M(b, c(x)) such that the following relations hold.

fa,b(x) = y(x)} x ∈ A(a, c(x)) La,b(x) = (x, y(x))
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The form of the left-hand equation reminds that of a linear map when y does not depend on
x, which explains the name ‘pro-linear’. Such a structure will later be denoted by (L, f) :
K # A.

Example 4.25. Let (M,}, id) be a category and A be a subgraph of (M,}). For every
pair a, b ∈ Obj(A) and x ∈ A(a, b), denote by La,b(x) the pair (x, idb) in A(a, b) ×M(b, b).
It follows that the following diagram commutes and induces an obvious M -prolinear map
(L,⊆) : A# A.

A(a, b)× 1 A(a, b)× 1
idoo

id×I
��

⊆
// A(a,A)

⊆
��

A(a, b)×M(b, A)

id×!

hh

}
// M(a,A)

Example 4.26. Let (M,}, I) be a category and A be a subgraph of (M,}) such that for
every a ∈ Obj(A), there exists c(a) ∈ Obj(A) for which A(a, c(a)) is non-empty. For every
a ∈ Obj(A), choose some y(a) ∈ A(a, c(a)). Now, denote by A◦ the subgraph of (M,})

- whose object-class is Obj(A);

- whose hom-classes A(a, b) are empty if a 6= b and equal to the singleton consisting
of the identity ida otherwise.

For every pair a, b ∈ Obj(A) and x ∈ A◦(a, b), the pair (x, y(a)) belongs to A(a, b)×M(b, b).
Defining La,b = (x, y(a)) therefore induces a prolinear map A◦ # A.

4.3.6.3. Prolinear modules. Let (M,}) be a magmoid and (N,h,�,~) be a right M -module.
An N -prolinear module consists of

1) two submagmoids (A,}), (A′,}) ⊆ (M,});

2) an M -prolinear map (L, f) : A′ # A;

3) a right A- and A′-submodule (E, h,�,~) ⊆ (N,h,�,~);

Such a structure will later be denoted as a triple (A,A′, E).

Example 4.27. Let (M,}, id) be a category and (N,h,�,~) be a right M -module. Accord-
ing to Example 4.25, any set of data consiting of

- a submagmoid (A,}) ⊆ (M,});

- a right A-submodule (E, h,�,~) ⊆ (N,h,�,~),

induces an N -prolinear module (A,A,E).

Example 4.28. Later on, we will mainly consider (Enov(C),η,�,})-prolinear modules in
regard to the module structure defined in Example 4.23. However, contrary to Example 4.27,
our prolinear modules will be supposed of the form (A,A′, E) where A′ is not necessarily
equal to A.

4.3.7. Local echelons over graphs.

4.3.7.1. Cograded graphs. The following notion is a generalisation of the notion of graph. Let
n be a non-negative integer. A cograded graph of rank n consists of

1) two collections of n+ 1 higher classes O0, O1, . . . , On and S0, S1, . . . , Sn;

2) a pair of metafunctions sk, tk : Ok → Sk for every 0 ≤ k ≤ n;

3) a metafunction hk : Ok+1 → Ok for every 0 ≤ k ≤ n− 1.
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On

sn

��

tn
��

hn−1
// On−1

sn−1

��

tn−1

��

hn−2
// On−2

sn−2

��

tn−2

��

hn−3
// . . .

h0 // O0

s0
��

t0
��

Sn Sn−1 Sn−2 . . . S0

Later on, such a structure will be denoted as a pair (s , t ) potentially equipped with the type
(O , h )⇒ S .

Remark 4.29. When n = 0, the above structure may be seen as a graph O whose object-
class Obj(O) is given by S0 and whose hom-classes O(a, b) are given by the higher classes of
elements x ∈ On satisfying the equations sn(x) = a and tn(x) = b.

In the sequel, for any pair a, b ∈ Sk where 0 ≤ k ≤ n, we will denote by Ok(a, b) the class
of elements x ∈ On for which the following equations hold.

sk ◦ hk ◦ · · · ◦ hn−1(x) = a and tk ◦ hk ◦ · · · ◦ hn−1(x) = b

For every 0 ≤ k ≤ n− 1, the metafunction hk will be called the k-th hinge.

4.3.7.2. Morphisms of cograded graphs. Let n be a non-negative integer, (s , t ) : (O , h )⇒ S
and (s′ , t′) : (O′ , h′) ⇒ S′ be two cograded graphs of rank n. A morphism of cograded
graphs from (s , t ) to (s′ , t′) consists of a metafunction uk : Ok → O′k and a metafunction
vk : Sk → S′k for every 0 ≤ k ≤ n making the following diagrams commute for every
0 ≤ k ≤ n.

Ok
uk //

sk

��

O′k

s′k
��

Sk vk
// S′k

Ok
uk //

tk
��

O′k

t′k
��

Sk vk
// S′k

Such a morphism will later be denoted as a pair (u , v ) : (s , t )⇒ (s′ , t′).

4.3.7.3. Cograded subgraphs. Let n be a non-negative integer and (s′ , t′) be a cograded graph
of rank n. A cograded graph (s , t ) of rank n will be said to define a subgraph of (s′ , t′) if it
is equipped with a morphism of cograded graphs (u , v ) : (s , t )⇒ (s′ , t′) whose components
uk and vk are inclusions of higher classes for every 0 ≤ k ≤ n.

4.3.7.4. Echelons over graphs. Let A be a graph and n be a non-negative integer. The next
definition needs to distinguish between the cases n = 0 and n > 0.

If n > 0, an A-precompass (E, h) will be said to be echeloned and of rank n if it is equipped
with a cograded graph (s , t ) : (O , h )⇒ S of rank n whose (n− 1)-th hinge hn−1 is equal
to the restriction of the hinge h of E along the underlying inclusion Obj(A) ⊆ ObjR(E).

Obj(A)

�� ��

h // ObjL(E)

�� ��

hn−2
// On−2

�� ��

hn−3
// . . .

h0 // O0

�� ��

Sn Sn−1 Sn−2 . . . S0

If n = 0, an A-precompass (E, h) will be said to be echeloned and of rank 0 if it is
equipped with a cograded graph (s0, t0) : O0 ⇒ S0 of rank 0 such that s0 is equal to the
restriction of the hinge h of E along the underlying inclusion Obj(A) ⊆ ObjR(E).

Obj(A)
h //

t0
// ObjL(E)

Such a structure will later be denoted by the data (E, h, s , t ). For short, an echeloned
A-precompass will be called an A-echelon.
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Example 4.30. Let C be a category. The Ally(C)-precompass (Enov(C),η) defines an
Ally(C)-echelon of rank 0 whose cograded graphs is defined by the following diagram where
η and η′ send a node of vertebrae to its seed and coseed, respectively.

Obj(Ally(C))

η

��

η′

��

Obj(Com(C))

Example 4.31. Let C be a category and n be a positive integer. The Anos(C, n)-precompass
(Enosn(C),η) defines an Anos(C, n)-echelon of rank n whose cograded graph is defined by
the following diagram where all metafunctions η map a node of spines (or a spine) to its
spinal seed and where ηk and υk map a node of spines (or a spine)with prespine P = (pk) to
the seed and coseed of the prevertebra pk, for every 0 ≤ k ≤ n.

Obj(Anos(C, n))

ηn

��

η′n
��

η
// Obj(Aos(C, n− 1))

ηn−1

��

η′n−1

��

η
// Obj(Aos(C, n− 2))

ηn−2

��

η′n−2

��

η
// . . .

Obj(Com(C)) Obj(Com(C)) Obj(Com(C)) . . .

. . .
η
// Obj(Aos(C, 1))

η1

��

η′1
��

η
// Obj(Aos(C, 0))

η0

��

η′0
��

. . . Obj(Com(C)) Obj(Com(C))

4.3.7.5. Morphisms of echelons. Let A and B be two graphs, n be a non-negative integer,
(E, hE) and (F, hF ) be two A- and B-echelons of rank n whose cograded graphs will be
denoted by the pairs (sE , tE) : (OE , hE) ⇒ SE and (sF , tF ) : (OF , hF ) ⇒ SF , respectively.
A morphism of echelons from (F, hF ) to (E, hE) consists of

1) a morphism of precompasses (g, f) : (B,F, hF )⇒ (A,E, hE);

2) a morphism of cograded graphs (u , v ) : (sF , tF )⇒ (sE , tE) such that
- the equations un = gR and un−1 = fL hold when n > 0;
- the equations un = gR and vn = fL hold when n = 0;

Such a morphism will later be denoted as a 4-tuple (g, f, u , v ).

4.3.7.6. Subechelons. Let A and B be two precompasses, n be a non-negative integer and
(E, hE , s

E , tE) be an A-echelon of rank n. A B-echelon (F, hF , s
F , tF ) will be said to be a

subechelon of (E, hE) if it is equipped with a morphism of echelon

(g, f, u , v ) : (B,F, hF , s
F , tF )⇒ (A,E, hE , s

E , tE)

whose components encode inclusions of precompasses over graphs and cograded graphs.

4.3.7.7. Local echelons over graphs. We now arrive to the structure that will allow us to asso-
ciate our vertebrae with spines of some given dimension (see section 4.1 for more explanation).
The different possible dimensions, given by natural integers, leads to a decomposition of our
base structure, here, captured by the notion of morphism of precompasses (see Example 4.32
for more intuition). Let A be a graph. An A-precompass (E, h) will be said to be locally
echeloned if, for every n ∈ ω, it is equipped with a graph An, an An-echelon (En, hEn) of
rank n and a morphism of precompasses over graphs{

in := (in0 , i
n
1 , i

n
2 ) : (En, hEn)⇒ (E, h)

jn := (jn1 , j
n
2 ) : An ⇒ A
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such that the following two collections of metafunctions are jointly surjective.

{in0 : ObjL(En)→ ObjL(E)}n∈ω {jn1 : Obj(An)→ Obj(A)}n∈ω

Such an object will later be denoted by the symbols [i , j ](E, h) and will be said to be defined
under An-echelons (En, hEn). A locally echeloned module as above will be said to be regular
if the arrows in and jn are fibrations of spans for every n ∈ ω. For short, a locally echeloned
A-precompass will be called a local A-echelon.

Example 4.32. For consistency, denote by (Enos0(C),η) the Ally(C)-echelon of rank 0
defined by the Ally(C)-precompass (Enov(C),η) (see Example 4.30). The following collection
of morphisms defines a local echelon [λ , κ ](Enov(C),η).{

λn : (Enosn(C),η)⇒ (Enov(C),η)
κn : Anos(C, n)⇒ Ally(C) (∀n ∈ ω)

This follows from the fact that the morphisms λ0 and κ0 are identities and therefore makes
the collections (λn)n∈ω and (κn)n∈ω jointly surjective. It is however not regular for a general
category C.

4.3.7.8. Morphisms of local echelons. Let [i , j ](E, hE) be a local A-echelon defined under
An-echelons (En, hEn) and [w , x ](F, hF ) be a local B-echelon defined under Bn-echelons
(Fn, hFn). A morphism of local echelons from [w , x ](F, hF ) to [i , j ](E, hE) consists of
morphisms

1) of precompasses over gaphs (g, f) : (B,F, hF )⇒ (A,E, hE);

2) of echelons (gn, fn) : (Bn, Fn, hFn)⇒ (An, En, hEn) for every n ∈ ω;

making the following diagram of morphisms of precompasses over graphs commute.

(Bn, Fn, hFn)
(gn,fn) +3

(jn,in)
��

(Bn, En, hEn)

(xn,wn)
��

(B,F, hF )
(g,f)

+3 (A,E, hE)

4.3.7.9. Local subechelon. Let [i , j ](E, hE) denote a local A-echelon. A local B-echelon
[w , x ](F, hF ) will be said to be a local subechelon of [i , j ](E, hE) if it is equipped with
a morphism of local echelons [w , x ](F, hF ) ⇒ [i , j ](E, hE) whose two compenents induce
inclusions of echelons and precompasses over graphs.

4.3.8. Locally whiskered echelons.

4.3.8.1. Derived cograded graphs. Let n be a non-negative integer and consider a cograded
graph (s , t ) : (O , h ) ⇒ S of rank n. The derived graph of (s , t ) is the induced cograded
graph of rank n− 1 made of the following metafunctions.

On−1

sn−1

��

tn−1

��

hn−2
// On−2

sn−2

��

tn−2

��

hn−3
// . . .

h0 // O0

s0
��

t0
��

Sn−1 Sn−2 . . . S0

The above cograded graph will later be denoted by ∂(s , t ) : ∂(O , h ) ⇒ ∂S . Note that
when n = 0, the derived graph of (s , t ) is empty.
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4.3.8.2. Whiskered cograded graphs. Let Tn and To be two graphs and n be a non-negative
integer. A (Tn, To)-whiskered cograded graph of rank n consists of a cograded graph (s , t ) :
(O , h )⇒ S of rank n equipped with

1) inclusions Sk ⊆ Obj(Tn) and Sk ⊆ Obj(To) for every 0 ≤ k ≤ n
2) for every 0 ≤ k ≤ n and γ, γ�, γ

′, γ• ∈ Sk, a metafunction of the following form,
called the k-whiskering.

( n o )k : Tn(γ, γ�)×Ok(γ, γ′)× To(γ′, γ•)→ Ok(γ�, γ•)

4.3.8.3. Whiskered echelons. Let A, Tn and To denote three graphs and n be a non-negative
integer. An A-echelon (E, h, s , t ) of rank n will be said to be (Tn, To)-whiskered if

- the cograded graph (s , t ) is (Tn, To)-whiskered.

- the cograded graph ∂(s , t ) is (Tn, To)-whiskered.

If n is zero, then the whiskering on the derivative is trivial (i.e. empty). The k-whiskering
induced by the cograded graph (s , t ) will be denoted by the symbols ( n o )Ak for every
0 ≤ k ≤ n while the k-whiskering induced by its derivation ∂(s , t ) will be denoted by
( n o )Ek for every 0 ≤ k ≤ n− 1.

Example 4.33. For every non-negative interger n, we will later consider some subechelon
[j , i ](E, h) of the Anos(C, n)-echelon (Enosn(C),η) whose whiskering structure will be in-
duced by framings of nodes of spines and framings of spines along subgraphs Tn and To of
Sev(C).

4.3.8.4. Locally whiskered echelons. Let A, Tn and To be three graphs. A local A-echelon
[j , i ](E, h) will be called a locally (Tn, To)-whiskered A-echelon if the An-echelon (En, hEn)
is (Tn, To)-whiskered for every n ∈ ω. A locally whiskered echelon will be said to be regular
if so is its underlying local echelon.

Example 4.34. Later on, we will be interested in providing some local subechelon of the
local Ally(C)-echelon (Enov(C),η) with a structure of locally whiskered echelons whose
whiskerings will be of the form described in Example 4.33.

4.4. Theory of spinal categories

4.4.1. Vertebral categories.

4.4.1.1. Vertebral categories. A category C will be said to be vertebral if it is endowed with
a (Enov(C),η,�,})-prolinear module (A,A′, E) such that

1) (compositions) the span E defines a subprecompass of (Enov(C),η′) together
with a structure of vertebral algebra (see Definition 4.20) along two metafunctions
h0, h1 : ObjR(E)→ ObjL(E) ;

2) (identities) for every γ ∈ ObjL(E), there exists a reflexive node of vertebrae ν ∈
Obj(A) for which the set E(γ, ν) is non-empty.

The above structure will later be denoted as a 4-tuple (C, A,A′, E). Following the convention
of systems of vertebrae, the arrows in ObjL(E) will be referred to as E-seeds.

4.4.1.2. Zoo associated with a vertebral category. The zoo of a vertebral category encompass
the zoo of its underlying system of vertebrae (see Definition 4.24). It additionally comprises

notions of ‘cofibrations’. Let Ĉ := (C, A,A′, E) be a vertebral category. A morphism f : X →
Y will be said to be a

- i) fibration; ii) trivial fibration in Ĉ if for every node of vertebrae ν ∈ Obj(A′), there
exists an alliance a : ν  ν in A′ for which f : X → Y is a i) fibration; ii) trivial
fibration, respectively;
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- iii) intraction in Ĉ if for every node of vertebrae ν ∈ Obj(A), there exists an alliance
a : ν  ν in A for which f : X → Y is an iii) intraction;

- iv) surtraction; v) pseudofibration in Ĉ if for every E-seed γ, there exists an extended
node of vertebrae n : γ ex ν in E for which f : X → Y is a iv) surtraction; v)
pseudofibration.

In addition, the morphism f : X → Y will be called a

a) cofibration if it has the llp with respect to every trivial fibration in Ĉ;
b) trivial cofibration if it has the llp with respect to every fibration in Ĉ;
c) weak equivalence if it is both an intraction and a surtraction in Ĉ.

Most of the results proven in Chapter 2 extend to the case of vertebral categories. The
statements of the next propositions refer to the zoo of Ĉ.

Proposition 4.35. Fibrations define a coherent C-class.

Proof. Let f : Y → Z and g : X → Y be two fibrations in Ĉ. Consider a node of vertebrae
ν ∈ Obj(A′). By assumption, there exists an alliance a : ν  ν∗ in A′ for which f : Y → Z
is a fibration. Similarly, there exists an alliance a∗ : ν∗  ν[ in A′ for which g : X → Y
is a fibration. It then follows from Proposition 2.40 that the composite f ◦ g is a fibration
for the alliance a∗ } a : ν  ν[. This last alliance is in A′ since (A′,}) is a submagmoid of
Ally(C). Finally, it follows from Proposition 2.28 that the class of fibrations is a coherent
C-classes. �

There is a similar result for pseudofibrations that requires a bit more explanation.

Proposition 4.36. Pseudofibrations define a coherent C-class.

Proof. Consider an E-seed γ. By assumption, there exists an extended node of vertebrae
n : γ ex ν∗ in E for which f : Y → Z is a pseudofibration in Ĉ. By Proposition 2.27, this is
equivalent to saying that f is a pseudofibration for the underlying communication of com(n) :
γ ex η(ν∗). Since η(ν∗) is an E-seed, there exists an extended node of vertebrae n∗ : η(ν∗)

ex ν[
in E for which g : X → Y is a pseudofibration. It then follows from Proposition 2.38 that
the composite f ◦ g is a pseudofibration for the extended node of vertebrae n∗ � com(n) :
γ ex ν[. This last extended node of vertebrae belongs to E since (E,η,�) is a subcompass of
(Enov(C),η,�). Finally, it follows from Proposition 2.28 that the class of pseudofibrations
is a coherent C-classes. �

Proposition 4.37. The classes of cofibrations and trivial cofibrations are coherent C-classes.

Proof. Follows from Proposition 1.33 and Remark 1.35. �

Proposition 4.38. Fibrations and trivial fibrations are preserved under pullbacks. Similarly,
cofibrations and trivial cofibrations are preserved under pushouts.

Proof. The first statement follows from Proposition 2.29. The second one follows from
Proposition 1.32. �

Proposition 4.39. Fibrations, trivial fibrations, cofibrations, trivial cofibrations, surtrac-
tions, intractions and weak equivalences are stable under retracts.

Proof. Follows from Proposition 2.30 in the case of fibrations, trivial fibrations, surtractions,
intractions and weak equivalences. See section 1.2.2.2 otherwise. �

Proposition 4.40. Every trivial fibration is a fibration. Every trivial cofibration is a cofi-
bration.
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Proof. The first fact follows from Proposition 2.32. The second fact easily follows from the
first one. �

Proposition 4.41. Every trivial fibration is an intraction.

Proof. The proof uses the notion of prolinearity. Denote by (L, f) : A′ # A the prolinear

map associated with the vertebral category Ĉ. To prove the statement, let f : X → Y be a
trivial fibration in Ĉ and ν be a node of vertebrae in Obj(A). By definition of a prolinear
map, the node of vertebrae ν must be in Obj(A′). By assumption, there exists an alliance of
node of vertebrae a : ν  ν∗ in A′ for which f is a trivial fibration. By Proposition 2.33, the
morphism f is also an intraction for a, which however does not necessarily belong to A. Now,
if the prolinear map provides the identity Lν,ν∗(a) = (a, y(a)) where y(a) ∈ Ally(ν∗, c(ν)),
then we know that the composite y(a)}a is in A(ν, c(ν)). By Proposition 2.42, the morphism
f is an intraction for y(a)} a : ν  c(ν), which proves the statement. �

Proposition 4.42. Every fibration that is a surtraction is a pseudofibration.

Proof. Let f be both a fibration and a surtraction in Ĉ and γ be an E-seed. By assumption,
there exists an extended node of vertebrae n : γ ex ν∗ in E for which f is a surtraction. There
also exists an alliance a∗ : ν∗  ν[ in A′ for which f is a fibration. By Proposition 2.48, this
implies that f is a pseudofibration for the composite a∗ } n : γ ex ν[. The statement follows
from the fact that E is an A′-submodule of (Enov(C),η,�,}). �

Proposition 4.43. Let f and g be two morphisms such that f ◦ g exists. If f and g are
intractions, then so is f ◦ g.

Proof. Follows from Proposition 2.41 and the fact that (A,}) is a magmoid. �

Proposition 4.44. Let f and g be two morphisms such that f ◦ g exists. If f ◦ g is an
intraction, then so is g.

Proof. Follows from Proposition 2.34. �

Proposition 4.45. Let f and g be two morphisms such that f ◦ g exists. If f ◦ g is a
surtraction and f is an intraction, then g is a surtraction.

Proof. Let γ be an E-seed. By assumption, there exists an extended node of vertebrae
n : γ ex ν∗ in E for which f ◦ g is a surtraction. By assumption, there also exists an alliance
a∗ : ν∗  ν[ in A for which f is an intraction. By Proposition 2.49, it follows that g is a
surtraction for the extended node of vertebrae a∗ } n : γ ex ν[, which is in E by definition of
an A-submodule of (Enov(C),η,�,}). �

Proposition 4.46. Every isomorphism in C is an intraction.

Proof. Follows from Proposition 2.35. �

Proposition 4.47. Every pseudofibration is a surtraction.

Proof. Let f be a pseudofibration in Ĉ and γ be an E-seed. By assumption, there exists an
extended node of vertebrae n : γ ex ν in E for which f is a pseudofibration. By Proposition
2.27, this also equivalent to saying that f is a pseudofibration for the underlying commu-
nication com(n) : γ ex η(ν). By definition of a vertebral category, there exists a reflexive
extended node of vertebrae n∗ : η(ν) ex ν[ in E. Proposition 2.28 shows that any identity in
C is a pseudofibration for n∗. It then follows from Proposition 2.43 that f is a pseudofibra-
tion for the composite n∗ � com(n) : γ ex ν[, which is in E by definition of a subcompass of
(Enov(C), η,�). Finally, since the extended node of vertebrae n∗�com(n) : γ ex ν[ is reflex-
ive, Proposition 2.50 implies that the morphism f is a surtraction for n∗�com(n) : γ ex ν[. �
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Proposition 4.48. Every trivial fibration is a pseudofibration.

Proof. Let f be a trivial fibration in Ĉ and γ be an E-seed. By assumption on Ĉ, there
exists an extended node of vertebrae n : γ ex ν∗ in E where ν∗ is in Obj(A′). By hypothesis
on f , there must exist an alliance of nodes of vertebrae a∗ : ν∗  ν[ in A′ for which f is a
trivial fibration. It follows from Proposition 2.31 that f is a pseudofibration for a∗ : ν∗  ν[,
so that Proposition 2.44 implies that f is a pseudofibration for the composite a∗} n : γ ex ν[,
which is in E by definition of an A′-submodule of (Enov(C),η,�,}). �

We easily deduce that

Theorem 4.49. A trivial fibration is both a fibration and a weak equivalence. On the other
hand, a fibration that is a weak equivalence is a pseudofibration.

Proof. One direction follows from Proposition 4.40, Proposition 4.41 and Proposition 4.47
together with Proposition 4.48. The other direction is nothing but Proposition 4.42. �

Lemma 4.50. Let i : X → Y be a morphism in C. If there exists an intraction r : Y → X
in C such that r ◦ i = idX , then i a weak equivalence.

Proof. By Proposition 4.44 and Proposition 4.46, the morphism i is an intraction in the
vertebral category Ĉ. To prove it is a surtraction, consider an E-seed γ. By definition of a
vertebral category, there exists a reflexive node of vertebrae ν∗ in Obj(A) and an extended

node of vertebrae n : γ ex ν∗ in E. Because f is an intraction in Ĉ, there exists an alliance
a∗ : ν∗  ν[ in A for which f is an intraction. Since ν∗ is reflexive, the alliance a∗ is
coreflexive and Lemma 2.52 implies that the morphism i is a surtraction for a∗. It follows
from Proposition 2.46 that f is a surtraction for the composite a∗ } n : γ ex ν[, which is in E
by definition of an A-submodule of (Enov(C),η,�,}). �

The previous lemma implies – and is even equivalent to – the next proposition.

Proposition 4.51. Every isomorphism in C is a surtraction.

Proof. Follows from Proposition 4.50. �

Proposition 4.52. Let f and g be two morphisms such that f ◦ g exists. If f and g are
surtractions, then so is f ◦ g.

Proof. Let f : Y → Z and g : X → Y be two surtractions in Ĉ and γ be an E-seed.
By assumption, there exists an extended node of vertebrae n : γ ex ν∗ for which f is a
surtraction. Similarly, since h0(ν∗) is an E-seed, there exists an extended node of vertebrae
n∗ : h0(ν∗)

ex ν[ for which g is a surtraction. Since the pair (n, n∗) belongs to the product
Σ0E(γ, h0(ν∗)) × Σ1E(h0(ν∗), h1(ν[)), the structure of vertebral algebra of E implies that
there exists an extended node of vertebrae n• : γ ex ν† in E of the form b} 〈n∗ � t, n〉 where

- b is some alliance in Ally(C);
- t is a communication in Com(C) via which n and n∗ communicate;

- and 〈n∗ � t, n〉 : γ ex ν† denotes an extended node of vertebrae in C that frames the
communicating pair n and n∗ � t.

By Proposition 2.46, the morphism g must be a surtraction for n∗� t. Proposition 2.58 then
implies that f ◦ g is a surtraction for 〈n∗ � t, n〉. Finally, Proposition 2.46 shows that f ◦ g is
a surtraction for n•, which is in E. �

Theorem 4.53. Let f ,g and h be morphisms such that the composite f ◦ g ◦ h exists in C.
If f ◦ g and g ◦ h are weak equivalences, then g is an intraction and both h and f ◦ g ◦ h are
weak equivalences.
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Proof. If the composite morphisms f ◦g and g◦h are intractions, then so are g, h and f ◦g◦h
by Proposition 4.44 and Proposition 4.43. When g ◦ h is also a surtraction, the morphism h
is a surtraction by Proposition 4.45. Now, if f ◦ g is in addition a surtraction, then f ◦ g ◦ h
is a surtraction by Proposition 4.52. �

4.4.2. Refined and discrete vertebral categories. The following section is more a dis-
cussion about properties with which vertebral categories may be endowed than a section
contributing to the theoretical construct initiated by the previous sections. The only prop-
erty that will turn out to have a theoretical use will be that of refinement (see Chapter
5).

4.4.2.1. Refined vertebral categories. Let C be a category. A system of vertebrae in C will
be said to be refined if all its fibrations that are weak equivalences are trivial fibrations.
Similarly, a vertebral category will be said to be refined if so is its underlying system of
vertebrae.

Theorem 4.54. In a refined vertebral category, a morphism is a trivial fibration if and only
if it is a fibration and a weak equivalence.

Proof. Follows from Theorem 4.49. �

In the sequel, the morphisms of a vertebral category that are both fibrations and weak
equivalences will be called acyclic fibrations.

Proposition 4.55. In a refined vertebral category, trivial fibrations form a C-coherent class.

Proof. Follows from Theorem 4.54 and the fact that acyclic fibrations form a C-coherent
class by Proposition 4.35, Proposition 4.46, Proposition 4.52 and Proposition 4.51. �

A system of vertebrae in C will be said to be strongly refined if all its pseudofibrations
are trivial fibrations. Similarly, a vertebral category will be said to be strongly refined if so
is its underlying system of vertebrae.

Remark 4.56. In any strongly refined vertebral category, the class of pseudofibrations and
the class of trivial fibrations are equal to the class of acyclic fibrations by Proposition 4.48
and Theorem 4.49.

Remark 4.57. Every strongly refined vertebral category is refined by Remark 4.56.

4.4.2.2. Saturation. This section generalises the usual notion of saturation appearing in ab-
stract homotopy theory. Let C be a category and consider two commutative squares of the
following form, where the left one will be referred to as s : γ′ ⇒ γ in C2 while the right one
will be referred to as an arrow z : x⇒ y in C2.

A′

γ′

��

θ // A

γ

��

B′
θ′
// B

A′

x
��

θ // A

y

��

C ′ κ
// C

Forming the pushout (in C2) of the preceding right commutative square along the left one
with respect to their common arrow θ provides the following left commutative cube. A little
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arrangement on the top of the cube then provides the commutative cube on the right.

A′

θ   

x //

γ′

��

C ′

β′

��

κ

  

A

x

y
//

γ

��

C

β

��

B′
δ′

//

θ′   

D′

κ′

  

B
δ

// D

⇒ A′

θ   

x //

γ′

��

C ′

β′

��

A

x

y
//

γ

��

C

β◦κ

��

B′
δ′

//

θ′   

D′

κ′

  

B
δ

// D

The left face of the previous right commutative cube will be denoted as an arrow Pz(s) :
β′ ⇒ β ◦ κ in C2. Note that this commutative square is the biased square of the left face of
the first cube.

Remark 4.58. By Remark 2.15 (and Proposition 2.14 ), if a morphism in C has the rlp with
respect to s, so does it with respect to Pz(s).

Remark 4.59. Recall that right lifting properties are stable with respect to vertical pasting
of biased squares. More specifically, it follows from Proposition 2.5 that if a morphism in C
has the rlp with respect to the following leftmost two commutative squares, then it has the
rlp with respect to the vertical pasting of the two squares given on the right.

A′

δ′

��

A

δ◦θ
��

B′
θ∗
// B

B′

β′

��

B′

β◦θ∗
��

C ′
θ†

// C

⇒ A′

β′◦δ′
��

A

β◦δ◦θ
��

C ′
θ†

// C

Let S and Z be two classes of arrows in C2. Denote by SZ the smallest class containing
S that is stable under

- the operation s 7→ Pz(s) for any arrow z in Z for which Pz(s) makes sense;

- the vertical pasting of biased squares.

The saturation of S along Z is the class obtained after the removal of all the non-biased
squares of SZ . The saturation of S along Z will later be denoted by SatZ(S). If the class Z
consists of all the commutative squares in C, then the saturation of S along Z will later be
denoted by Sat(S). The foregoing definition forces all the squares of SatZ(S) to be biased
squares.

Proposition 4.60. If a morphism f : X → Y in C has the rlp with respect to the commutative
squares of S, then it has the rlp with respect to SatZ(S) for any class Z of arrows in C2.

Proof. Follows from Remark 4.59 and Remark 4.58. �

Now, let Ĉ := (C, A,A′, E) be a vertebral category. An E-seed γ will be said to be
canonical if any pair of extended node of vertebrae n : γ ex ν∗ and n[ : γ ex ν[ in E satisfies
the following equation.

seed(n∗) = seed(n[)

Now, denote by Seed(Ĉ) the class containing the commutative squares seed(n) for every
extended node of vertebrae n : γ ex ν whose preseed γ is canonical. Similarly, denote by
Bste(Ĉ) the class containing all the commutative biased squares bste(a) where a runs over
the alliances of A′. The next proposition uses that fact observed in Example 4.9 that the
operation ext( ) defines a morphism of spans from Ally(C) to Enov(C).
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Proposition 4.61. If the inclusion Bste(Ĉ) ⊆ Sat(Seed(Ĉ)) holds and the operation ext( )

induces a fibration of spans from A′ to E, then Ĉ is strongly refined.

Proof. Let f : X → Y be a pseudofibration in Ĉ. We are first going to show that f has the
rlp with respect to any commutative square in Sat(Seed(Ĉ)). Let seed(n) be a commutative

square in Seed(Ĉ) and γ be the preseed of the extended node of vertebrae n. Since γ is an
E-seed and f is a pseudofibration, there exists an extended node of vertebrae n∗ : γ ex ν[
for which f is a pseudofibration. This means that f has the rlp with respect to seed(n∗).
Because γ must be canonical, the morphism f must have the rlp with respect to seed(n)
too. It finally follows from Proposition 4.60 that f has the rlp with respect to any square in
Sat(Seed(Ĉ)). Note that, by assumption, this implies that f has the rlp with respect to any

biased square Bste(Ĉ).
We are now going to show the statement; i.e. f is a trivial fibration in Ĉ. Let ν be a node

of vertebrae in Obj(A′) whose seed will be denoted by γ. By assumption, there exists an
extended node of vertebrae n : γ ex ν for which f is a pseudofibration. Since ext( ) induces a
fibration of spans A′ ⇒ E, there must exist an alliance a : ν ex ν in A′ such that the equality
ext(a) = n holds. By Proposition 2.26, the morphism is a pseudofibration for a. In other
words, it has the rlp with respect to seed(a). On the other hand, the above discussion showed
that f had the rlp with respect to bste(b) for every alliance b in A′. These two rlp proves
that f is a trivial fibration for a, which finishes the proof. �

Remark 4.62. Other operations could now be used to augment the image of the operation
Sat ( ). For instance, transfinite compositions would constitute a good candidate. In this
case, a generalisation of Proposition 5.9 would extend the previous proposition.

4.4.2.3. Discrete vertebral categories. Let C be a category. A system of vertebrae (A,A′, E)
in C will be said to be discrete if

1) all the nodes of vertebrae in ObjR(E) are singleton, i.e. vertebrae;

2) all the alliances in A and A′ are identity alliances, i.e. vertebrae;

3) all the extended nodes of vertebrae in E are trivial, i.e. vertebrae.

Similarly, a vertebral category (C, A,A′, E) will be said to be discrete if its underlying system
of vertebrae is discrete. Because the equality Obj(A) = Obj(A′) holds in the case of vertebral
categories (see section 4.3.6.2), the two magmoids A and A′ are then equal.

Remark 4.63 (Saturation). In any discrete vertebral category, the class Seed(Ĉ) corre-
sponds to the class of identity commutative squares between two copies of the same E-seeds
γ (see below) while the class Bste(Ĉ) corresponds to the class of identity commutative squares
between two copies of the same stems β in A (or A′).

S
γ

��

S
γ

��

D2 D2

S′

β
��

S′

β
��

D′ D′

In addition, the operation ext( ) induces a trivial morphism of spans from A′ to E mapping
any vertebra v in A to the vertebra v in E and may be identified with the inclusion Obj(A′) ⊆
ObjR(E). The operation ext( ) therefore induces a fibration of spans A′ ⇒ E. Note that,

in the case where the inclusion Bste(Ĉ) ⊆ Sat(Seed(Ĉ)) holds, the conditions of Proposition
4.61 are all satisfied.

Let Ĉ = (C, A,A′, E) be a discrete vertebral category such that for every E-seed γ, there
exists a vertebra v in A whose base is of the form ‖γ, γ‖. In addition, let Z be the class of all
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identity commutative squares in C (identified with arrows in C) and PshZ(Seed(Ĉ)) denote

the smallest class containing Seed(Ĉ) that is stable under

- the operation s 7→ Pz(s) for any arrow z in Z for which Pz(s) make sense;

- coproduct of arrows in C, i.e. {γi : Ai → Bi}i∈I 7→
∐
i∈I γi;

Proposition 4.64. If the above assumptions are satisfied and the class of arrows Bste(Ĉ) is

included in PshZ(Seed(Ĉ)), then any surtraction in Ĉ is a weak equivalence.

Proof. Let f : X → Y be a surtraction in Ĉ. We are going to show that f is simple with
respect to any stem in Bste(Ĉ) and is hence an intraction in Ĉ. Because for every E-seed γ,
there exists a vertebra v in E whose base is of the form ‖γ, γ‖, it follows from Proposition 2.9
that any f : X → Y is simple with respect to any E-seed. It is therefore simple with respect
to any arrow in Seed(Ĉ). We are now going to show that simplicity is stable with respect to
the operation Pz( ) for any admissible z in Z and coproducts. For some arrow z : A → A′,
consider the following leftmost commutative square where Pz(γ) : A → A′ is the pushout of
an arrow γ : A → B along z. Using the underlying pushout square and the fact that f is
simple with respect to γ leads to the existence of a lift h : B→ X making the top triangle of
the following middle diagram commute. Reforming the pushout of γ along z then produces
a canonical arrow h′ : B′ → X making the corresponding rightmost triangle commute and
proves that f is simple with respect to Pz(γ) : A→ A′.

A′

Pz(γ)
��

x // X

f
��

B′
y
// Y

⇒ A z //

γ

��

A′ x // X

f
��

B //

h

77

B′
y
// Y

⇒ A′

Pz(γ)
��

x // X

B′
h′

>>

Similarly, it is not hard to show that if f is simple with respect to every arrow contained
in a collection of arrows {γi}i∈I in C, then it is simple with respect to the coproduct of all
these arrows in C. Finally, the above discussion shows that f is simple with respect to any
arrow in PshZ(Seed(Ĉ)). It is therefore simple with respect to the stems of A and hence is

an intraction in Ĉ. �

Unfortunately, simplicity is not stable with respect to compositions of arrows in general,
this prevents one from extending the above proposition to the saturation SatZ(Seed(Ĉ)).

Remark 4.65 (Construction). Saturation suggests how to generate strongly refined discrete
vertebral categories. For instance, it is always possible to start with an arrow γ : S→ D and
generate the leftmost diagram, below. In an ideal case, we may assume that the corresponding
middle pushout exists, which leads to the existence of a boundary contraction u : S′ → D for
the induced prevertebra ‖γ, γ‖ on the right.

S
γ

��

γ
// D

D D

& S
γ

��

γ
//

x

D

δ1
��

D
δ2

// S′

⇒ S
γ

��

γ
//

x

D

δ1
��

idD

��

D
idD

77

δ2 // S′ u // D

By using usual methods (i.e. small object argument), it is often possible to factorise u :
S′ → D into two arrows α ◦ β where the arrow β : S′ → D′ belongs to the saturated class
Sat(Seed(Ĉ)). The vertebra ‖γ, γ′‖ · β then defines a reflexive vertebra with homotopy
contraction α : D′ → D. After generating as many reflexive vertebrae as one wants, one may
use similar methods to create the framings of those reflexive vertebrae (see section 2.4.2.4).
Interestingly, Proposition 2.56 ensures that the framings are also reflexive. In the end, we
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obtain a strongly refined discrete vertebral category wherein all the vertebrae are reflexive.
This type of algorithmic process will be the key of Chapter 6 to provide Grothendieck’s
∞-groupoids with a vertebral category – or in fact a spinal category (see section 4.4.4).

4.4.2.4. Epi-correction for discrete vertebral categories. This section defines an operation
making vertebral categories more likely to be refined (at least in practice). Let C be a
category. A vertebra v := ‖γ, γ′‖ ·β in C will be said to be rectifiable if its stem β : S′ → D′ is
an epimorphism in C. In this case, the definition of an epimorphism implies that the prever-
tebra ‖β, β‖ is well-defined and of the form S′( (idD′ , idD′). The trivial vertebra ‖β, β‖ · idD′

that results from this will be referred to as the rectification of v and denoted as Rec(v).

Proposition 4.66. Let v be a rectifiable vertebra. A morphism is a surtraction for Rec(v)
if and only if it is an intraction for v.

Proof. We shall denote v by ‖γ, γ′‖ ·β. Let f : X → Y be a surtraction for Rec(v). To show
that f is an intraction for v, start with the left commutative square, below. Because f is a
surtraction for Rec(v), there exists an arrow h : D′ → X making the corresponding middle
diagram commute, but note that this diagram is equivalent to the triangle on the right.

S′

β
��

x // X

f
��

D′
y
// Y

⇒ S′

β
��

x

((
β // D′

h
// X

f
��

D′

y

66D′
y
// Y

⇒ S′

β
��

x //

D′
h

@@

On the other hand, let f : X → Y be an intraction for v. To show that f is an surtraction for
Rec(v), start with the following leftmost commutative square. Because f is an intraction for
v, there exists a semi-lift h : D′ → X making the corresponding middle diagram commute.
But this diagram is equivalent to giving the rightmost one since the leftmost two diagrams
imply the equality y ◦ β = f ◦ h ◦ β and hence y = f ◦ h.

S′

β
��

x // X

f
��

D′
y
// Y

⇒ S′

β
��

x //

D′
h

@@ ⇒ S′

β
��

x

((
β // D′

h
// X

f
��

D′

y

66D′
y
// Y

�

Proposition 4.67. Let v be a rectifiable vertebra. The vertebra Rec(v) is reflexive and
communicates with itself. It also frames two copies of itself.

Proof. The reflexivity and communication is obvious. Since β is an epimorphism, checking
that Rec(v) frames two copies of itself boils down to observing that the equality idD′ = idD′

is true. �

Let Ĉ := (C, A,A′, E) be a discrete system of vertebrae. An E-rectifiable vertebra is a
rectifiable vertebra in E whose stem is not an E-seed. A system of vertebrae (C, A,A′, E) will
be said to be epi-correctible if it is discrete and satisfies the property that if two E-rectifiable
vertebrae v and v∗ in E have same stems, then v and v∗ are equal.

Let Ĉ := (C, A,A′, E) be an epi-correctible system of vertebrae. We shall call the epi-

correction of Ĉ the discrete system of vertebrae Epic(Ĉ) that consisting of Ĉ to which is
added
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- the stems of the E-rectifiable vertebrae in its object-classes;

- the rectifications of the E-rectifiable vertebrae in its hom-classes.

A vertebral category will be said to be epi-correctible if its underlying system of vertebrae is.

Proposition 4.68. Let Ĉ be an epi-correctible vertebral category. The epi-correction Epic(Ĉ)
is a vertebral category. In addition, a morphism is a weak equivalence in Ĉ if and only if it
is one in Epic(Ĉ).

Proof. Denote Ĉ := (C, A,A′, E). If we extend the source and target hinges of (E,η) via
a trivial mapping rule ‖γ, γ‖ · idS′ 7→ β, then the first statement follows from Proposition
4.67 as any other framing is prevented by the fact that if two E-rectifiable vertebrae v and
v∗ have same stems, then v and v∗ are equal and the fact that the stem of any E-rectifiable
vertebra is not an E-seed. The second statement regarding weak equivalences follows from
Proposition 4.66. �

4.4.3. Whiskering bundles for extended nodes of vertebrae. This section transforms
the extended nodes of vertebrae of a vertebral category into semi-extended nodes of vertebrae.
If all the extended nodes of vertebrae of the vertebral category are already semi-extended,
then the operation of this section is trivial. The derivation of an extended nodes of vertebrae
into a semi-extended one may be related to the process of differentiation in analysis where
the idea is to obtain the closest description of a function in terms of the most elementary
ones, namely the linear maps.

4.4.3.1. Differentiable nodes of vertebrae. Let C be a category. The next notion, which is
that of differentiability for extended nodes of vertebrae, may be seen as the ability of those
to generate a semi-extended node of vertebrae when pushing out their diskads along their
spherical transitions. Specifically, an extended node of vertebrae n := (κ, %) : γ ex ν in C will
be said to be differentiable if

1) every vertebra ‖γ, γ′‖ · β in ν is equipped with three pushouts in C of the following
form (where the leftmost two do not depend on β);

S

xγ
��

κ // S

γ?

��

D2 %?
// D?2

S

xγ′

��

κ // S

γ′?
��

D1
%′?

// D?1

S

xβ◦δ2◦γ
��

κ // S

e?
β

��

D′
u?
β

// D′?

2) the pair of arrows γ? and γ′? is equipped with a structure of prevertebra ‖γ?, γ′?‖ :
S( S′? in C.

Because the left vertical arrow of the rightmost square of item 1) is also equal to the composite
β ◦ δ1 ◦ γ′, the universality of the leftmost two pushouts of item 1) implies that there must
exist two canonical arrows b1 : D?1 → D′? and b2 : D?2 → D′? making the following diagrams
commute.

S

xκ
��

γ′
// D1

%′?
��

β◦δ1
// D′

u?
β

��

S
e?
β

66γ′? // D?1
b1 // D′?

S

xκ
��

γ
// D2

%?

��

β◦δ2
// D′

u?
β

��

S
e?
β

66
γ? // D?2

b2 // D′?

The fact that the bottom arrow of the two previous commutative diagrams is equal provides
the following left commutative square. Then, the structure of prevertebra ‖γ?, γ′?‖ : S( S′?
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leads to the existence a canonical morphism ϕ(β) : S′? → D′? making the following right
diagram commute.

(4.8) S
γ′? //

γ?

��

D?1
b1
��

D?2 b2

// D′?

⇒ S

x

γ′? //

γ?

��

D?1
δ?1
��

b1

��

D?2 δ?2
//

b2

66S′?
ϕ(β)

// D′?

Denote by Ω? the class of arrows ϕ(β) : S′? → D′? for every stem β of Ω. The mapping
β 7→ ϕ(β) defines a metafunction ϕ : Ω→ Ω?. Denote by ν? the node of vertebrae ‖γ?, γ′?‖ ·
Ω?, which contains all the vertebrae of the form given on the right-hand side of (4.8) after
removing the arrows b1 and b2. Denoting by κ′? the canonical arrow induced by the following
leftmost universal problem then leads to an alliance of nodes of vertebrae of the form given
on the right. The commutative squares in brackets are, for their part, induced by universality
using b1 and b2.

S

γ

��

κ? //

γ

~~

S

γ?

��

γ′?

~~

D1

δ1

��

%′? // D?1

δ?1

��

D2 %? //

δ2

��

D?2

δ?2��

S′
κ′? // S′?

a? := (κ, %?, %′?,κ′?, ϕ, u?) : ν?  ν


S′

β
��

κ′? // S′

ϕ(β)
��

D′
u?
β

// D′?



Now, recall that the extended node of vertebrae n := (κ, %) : γ ex ν is equipped with the
leftmost commutative diagram, below, which implies the existence of a unique arrow %[ :
D?2 → D2 making the succeeding right diagram commute.

S

xγ
��

κ // S

γ

��

D2 %
// D2

⇒ S

xγ
��

κ // S

γ?

��

γ

��

D2 %?
//

%

99
D?2

%[ // D2

The canonical arrow %[ : D?2 → D2 then defines a semi-extended node of vertebrae n? :
(idS, %[) : γ ex ν?. Interestingly, note that composing a? with n? gives back the extended node
of vertebrae n as shown in the following equations.

a? } n? = (κ, %?, %′?,κ′?, ϕ, u?)} (idS, %[)

= (κ, %[ ◦ %?)
= (κ, %) = n

The semi-extended node of vertebrae n? : γ ex ν? will later be called the derivative of n : γ ex ν
and denoted as dn : γ ex dν.

Remark 4.69. If n is a semi-extended node of vertebrae, then dn = n and dν = ν.

Proposition 4.70. A morphism in C is a surtraction for n : γ ex ν if and only if it is a
surtraction for dn : γ ex dν.
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Proof. Let f : X → Y be a morphism in C. The notations for the extended node of
vertebrae dn : γ ex dν will be the same as those used for the above discussion. Suppose that f
is a surtraction for n : γ ex ν and let us prove that it is a surtraction for dn : γ ex dν. Consider
a commutative diagram of the form given below on the right. Because f is a surtraction for

n : γ ex ν, there exists a stem β : S′ → D′ in Ω and two arrows x′ : D1 → X and y′ : D′ → Y
making the following right diagram commute.

S
γ

��

x // X

f
��

D2 y
// Y

⇒ S
γ′

~~

γ
��

κ // S

γ

��

u // X

f

��

D1

x′

66

β◦δ1
��

D2 %
//

β◦δ2

~~

D2 v
// Y

D′ y′

77

Pushing out the diskad of the vertebra ‖γ, γ′‖ · β along κ : S → S then makes the diskad of
the associated vertebra ‖γ?, γ′?‖ · ϕβ appear as follows.

S

γ′

��

γ

��

κ // S

γ?

��

γ′?

~~

γ

��

u // X

f

��

D?1

44

��

D1

77

x′

;;

β◦δ1

��

D2
//

β◦δ2

��

D?2

��

%[ // D2
v // Y

D′?

44

D′

77

y′

;;

The existence of dotted canonical arrows D?1 → X and D′? → Y as shown above then proves
that f : X → Y is divisible by the underlying besom of n? : γ ex ν?. In other words, the
morphism f : X → Y is a surtraction for dn : γ ex dν. Conversely, since the equation
n = a? } dn holds, it follows from Proposition 2.46 that if f is a surtraction for dn : γ ex dν,
then it is a surtraction for n : γ ex ν. �

4.4.3.2. Semi-alliances of nodes of vertebrae. Later on, the term semi-alliance of nodes of
vertebrae will be used for any alliance of nodes of vertebrae whose spherical transition is an
identity, namely an alliance of the form b := (id, %, %′,κ′, ϕ, u).

Remark 4.71. Composing a semi-alliance b : ν  ν† in Ally(C) with a semi-extended node
of vertebrae n : γ ex ν produces a semi-extended nodes of vertebrae of the form b}n : γ ex ν†.

4.4.3.3. Whiskering bundles. The intuition behind the notion of whiskering bunble is the
same as that of tangent bundle for differentiation in differential geometry. Let C be a category
and E be a subspan of the span Enov(C) in C. Consider some subclass S ⊆ ObjL(E). A
whiskering bundle of E above S consists of a subgraph T of Sev(C) such that

1) (base) the inclusion S ⊆ Obj(T ) holds;

2) (smoothness) for every arrow γ ∈ S, node of vertebrae ν ∈ ObjR(E) and extended
node of vertebrae n ∈ E(γ, ν), the derivative dn : γ ex dν exists;
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3) (tangent vectors) there exists a semi-alliance b : dν  ν† in Ally(C) such that
the coseed η′(ν†) belongs to S and every semi-extended vertebra contained in b}dn
belongs to the class T (γ,η′(ν†)).

Proposition 4.70 implies the following proposition, which states that surtractions are pre-
served from the span E to its associated whiskering bundle.

Proposition 4.72. If a morphism in C is a surtraction for some extended node of vertebrae
n : γ ex ν in E where γ ∈ S, then there exists a semi-extended vertebra v† : γ ex v† in T , where
η′(v†) ∈ S, for which it is a surtraction.

Proof. Let f : X → Y be a morphism in C that is a surtraction for some extended node of
vertebrae n : γ ex ν in E where γ ∈ S. Because T is a whiskering bundle of E over S, the
derivative dn exists. By Proposition 4.70, f is a surtraction for dn. By assumption on T ,
we know that there exists a semi-alliance b : ν  ν† in Ally(C) such that the coseed η′(ν†)
belongs to S and every extended vertebra contained in b}dn belongs to the class T (γ,η′(ν†)).
By Proposition 2.46, the morphism f : X → Y is also a surtraction for the composite b} dn.
In particular, this means that there exists a semi-extended vertebra v† : γ ex v† in the senov
b } dn whose underlying besom divises f . This means that f is a surtraction for the sev
v† : γ ex v†. Finally, since the equality η′(ν†) = η′(v†) holds, the relation η′(ν†) ∈ S implies
the relation η′(v†) ∈ S. �

4.4.4. Spinal categories.

4.4.4.1. Spinal categories. A category C will be said to be spinal if it is endowed with a
subgraph A ⊆ Ally(C), a pair of subgraphs Tn, To ⊆ Sev(C) and a regular locally (Tn, To)-
whiskered A-subechelon [π , τ ](E,η) ⊆ [λ , κ ](Enov(C),η) such that

1) (zoology) the triple (C, A,E) is equipped with a structure of vertebral category,

which will later be denoted by Ĉ;
2) (local projectivity) the local A-echelon (E,η) is defined under An-echelons (En,η)

such that, for every n ∈ ω, the node of spines in Obj(An) and spines in ObjL(En)

are projective with respect to every surtraction of the vertebral category Ĉ. The
cograded graph of (En, µn) will be denoted by (sn, tn) : (On, hn) ⇒ Sn for every
n ∈ ω;

3) (whiskering) The subgraphs Tn and To are whiskering bundles of E above the
class Snk for every pair of integers k and n satisfying the inequalities 0 ≤ k ≤ n;

Remark 4.73. Recall that for every pair of integers k and n such that 0 ≤ q ≤ n and pair of
arrows γ, γ′ ∈ Snq , the object-class Onq (γ, γ′) is a 2-class of nodes of spines (pk) · Ω of degree
n in Obj(An) whose prevertebra pq is of the form ‖γ, γ′‖.

5) (framing i) for every pair of integers q and n such that 0 ≤ q ≤ n and 3-tuple of
the form

(v�, σ, v•) ∈ Tn(γ, γ′�)×Onq (γ, γ′)× To(γ′, γ′•),

the T -whiskering (v� n σ o v•)
A
q is a node of spines that simply frames the node of

spines σ along the pair of sev’s v� and v• at rank q;

6) (conjugation i) every 3-tuple of the form

(v�, σ, v•) ∈ Tn(γ, γ′�)×Onk (γ, γ′)× To(γ′, γ′•)

where 0 ≤ q ≤ n and alliance of nodes of spines in An of the form

a : (v� n σ o v•)
A
q  σ̂
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is associated with a structure of convergent conjugation of nodes of spines (σ, a, σ)
in C such that the canonical alliance of nodes of spines all0(σ, a, σ) defined in section
3.3.8.1 – which must be of the from σ  σ] – belongs to An.

Remark 4.74. Recall that for every pair of integers q and n such that 0 ≤ q ≤ n − 1 and
pair of arrows γ, γ′ ∈ Snq , the object-class ∂Onq (γ, γ′) is a class of spines (pk) · β of degree
n− 1 in ObjL(En) whose prevertebra pq is of the form ‖γ, γ′‖.

7) (framing ii) for every pair of integers q and n such that 0 ≤ q ≤ n− 1 and 3-tuple
of the form

(v�, s, v•) ∈ Tn(γ, γ′�)× ∂Onq (γ, γ′)× To(γ′, γ′•),

the T -whiskering (v� n so v•)
A
q is a spine that simply frames the spine s along the

pair of sev’s v� and v• at rank q;

8) (conjugation ii) every T -whiskering 3-tuple

(v�, s, v•) ∈ Tn(γ, γ′�)× ∂Onk (γ, γ′)× To(γ′, γ′•)

where 0 ≤ q ≤ n− 1 and extended nodes of spines in En of the form

ς : (v� n so v•)
A
q

EX σ̂

is associated with a structure of convergent extended conjugation of nodes of spines
(s, ς, σ) in C such that the closure of the conjugation – which must be of the form

s EX σ] – belongs to En.

Such a structure will later be denoted as a 4-tuple (C, A,E, T ) where the symbol T will stand
for the pair of graphs (Tn, To).

4.4.4.2. Zoo associated with a spinal category. The zoo of a spinal category is, by definition,
the same as that of its underlying vertebral category. The next proposition will concern a
spinal category of the same form as that defined in section 4.4.4.1.

Proposition 4.75. Let f and g be two morphisms such that f ◦g exists. If g is a surtraction
and f ◦ g is an intraction, then f is an intraction.

Proof. Let ν be a node of vertebrae in A. We are going to show that there exists an alliance
of nodes of vertebrae a : ν  ν in A for which f is an intraction. By assumption, there exists
a non-negative integer n and a node of spines σ0 in Obj(An) such that the identity τn(σ0) = ν
holds. Suppose that σ0 is of the form P0 ·Ω0 with P0 = (p0

k) and p0
k = ‖γ0

k , γ
′0
k ‖. By definition

of the cograded graph (sn, tn), the arrows γ0
0 and γ′00 must belong to Sn0 . It follows from item

3) of section 4.4.4.1 and Proposition 4.72 that there must exist two semi-extended vertebrae
v0
� : γ0

0
ex v0
� and v0

• : γ′00
ex v0
• in T for which g is a surtraction and such that the coseeds

η′(v0
�) and η′(v0

�) are in Sn0 . The T -whiskering operation

( n o )A0 : Tn(γ0
0 ,η
′(v0
�))×On0 (γ0

0 , γ
′0
0 )× To(γ′00 ,η

′(v0
•))→ On0 (η′(v0

�),η
′(v0
•))

then provides a node of spines σ1 := (v0
� n σ0 o v0

•)
A
0 that simply frames the node of spines

σ0 along v0
� and v0

•. We may now repeat the above operation by induction as follows. Let
σi be a node of spines of the form Pi · Ωi with Pi = (pik) and pik = ‖γik, γ′ik ‖. By item 3) of
section 4.4.4.1 and Proposition 4.72, there exist two semi-extended vertebrae vi� : γii

ex vi� and
vi• : γ′ii

ex vi• for which g is a surtraction and such that the coseeds η′(vi�) and η′(vi�) are in
Sni . The T -whiskering operation

( n o )Ai : Tn(γii ,η
′(vi�))×Oni (γii , γ

′i
i )× To(γ′ii ,η

′(vi•))→ Oni (η′(vi�),η
′(vi•))

then provides a node of spines σi+1 := (vi� n σi o vi•)
A
i that simply frames the node of spines

σi along vi� and vi•. Let this operation be repeated until i = n. We thus obtain a sequence of
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simple framings of nodes of spines as follows.

(σ0, v
0
�, v

0
•) .V0 (σ1, v

1
�, v

1
•) .V1 · · · .Vn−1 (σn, v

n
� , v

n
• ) .Vn σn+1

By construction, the morphism g is a surtraction for its tubular shell. Also, by definition, the
node of spines σn+1 is in Obj(An), which implies that τn(σn+1) is a node of vertebrae in A.
By assumption on f ◦g, there exists an alliance of nodes of vertebrae an+1 : τn(σn+1) ν̂n+1

in A for which f ◦ g is an intraction. Because the local A-echelon E is regular, the alliance
an+1 : τn(σn+1) ν̂n+1 may be lifted to an alliance of nodes of spines bn+1 : σn+1  σ̂n+1 in
An along τn : An → A. By definition, the morphism f ◦ g is an intraction for the alliance of
nodes of spines bn+1. By item 6) of section 4.4.4.1, the existence of such an alliance implies
the existence of a convergent conjugation of nodes of spines χn := (σn, bn+1, σn) in C such
that the canonical alliance of nodes of spines bn := all0(χn) : σn  σ̂n belongs to An. Because
we again obtain an alliance bn : σn  σ̂n in An, we may keep doing the above process so that
we obtain a sequence of convergent conjugations χ0, χ1, . . . , χn where χi is an i-conjugation
of the form

(σi, bi+1, σi)

wherein bi+1 is of the form σi+1  σ̂i+1 for every 0 ≤ i ≤ n and bi = all0(χi) for every
1 ≤ i ≤ n+1. By item 2) of section 4.4.4.1, the node of spines σ0 is g-projective, so it follows
from Theorem 3.106 that f is an intraction for the alliance b0 := all0(χ0) : σ0  σ̂0, which
is in An. This is also equivalent to saying that f is an intraction for the alliance of nodes of
vertebrae τn(b0) : ν  τn(σ̂0), which belongs to A. �

Proposition 4.76. Let f and g be two morphisms such that f ◦g exists. If g is a surtraction
and f ◦ g is an surtraction, then f is a surtraction.

Proof. Let γ be an E-seed. We are going to show that there exists an extended nodes of
vertebrae n : γ ex ν in E for which f is an surtraction. By assumption, there exists a non-
negative integer n and an element s0 in ObjL(En) such that πn(s0) = γ. If n = 0, then s0

is an object of Com(C) and equal to the arrow γ itself. It follows from item 2) of section
4.4.4.1 that the domain of γ is g-projective. Because the composite f ◦ g is a surtraction,
there exists an extended node of vertebrae n : γ ex ν in E for which f ◦ g is a surtraction. In
particular, the extended node of vertebrae n is g-projective. It then follows from Proposition
3.24 that f is a surtraction for n. The above reasoning shows that f is a surtraction in Ĉ.
Now, suppose that n > 0. In this case, the lifting πn(s0) = γ provides a spine s0 of degree
n − 1 of the form P0 · β0 with P0 = (p0

k) and p0
k = ‖γ0

k , γ
′0
k ‖. By definition of the cograded

graph ∂(sn, tn), the arrows γ0
0 and γ′00 must belong to Sn0 . It follows from item 3) of section

4.4.4.1 and Proposition 4.72 that there must exist two semi-extended vertebrae v0
� : γ0

0
ex v0
�

and v0
• : γ′00

ex v0
• in T for which g is a surtraction and such that the coseeds η′(v0

�) and η′(v0
�)

are in Sn0 . The T -whiskering operation

( n o )E0 : T (γ0
0 ,η
′(v0
�))× ∂On0 (γ0

0 , γ
′0
0 )× T (γ′00 ,η

′(v0
•))→ On0 (η′(v0

�),η
′(v0
•))

then provides a spine s1 := (v0
� n s0 o v0

•)
E
0 that simply frames the spine s0 along v0

� and v0
•.

We may now repeat the above operation by induction as follows. Let si be a spine of the
form Pi · Ωi with Pi = (pik) and pik = ‖γik, γ′ik ‖. By item 3) of section 4.4.4.1 and Proposition
4.72, there exist two semi-extended vertebrae vi� : γii

ex vi� and vi• : γ′ii
ex vi• for which g is a

surtraction and such that the coseeds η′(vi�) and η′(vi�) are in Sni . The T -whiskering operation

( n o )Ei : T (γii ,η
′(vi�))× ∂Oni (γii , γ

′i
i )× T (γ′ii ,η

′(vi•))→ Oni (η′(vi�),η
′(vi•))

then provides a spine si+1 := (vi� n si o vi•)
E
i that simply frames the node of spines si along

vi� and vi•. Let this operation be repeated until i = n. We thus obtain a sequence of simple
framings of nodes of spines as follows.

(s0, v
0
�, v

0
•) .V0 (s1, v

1
�, v

1
•) .V1 · · · .Vn−1 (sn, v

n
� , v

n
• ) .Vn sn+1
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By construction, the morphism g is a surtraction for its tubular shell. Also, by definition, the
node of spines sn+1 is in ObjL(En), which implies that πn(sn+1) is an element in ObjL(E),
namely an object of Com(C). It follows that there exists an extended node of vertebrae
nn+1 : πn(sn+1) ex ν̂n+1 in E for which f ◦g is an intraction. Because the local A-echelon E is
regular, the extended node of vertebrae nn+1 : πn(sn+1) ex ν̂n+1 may be lifted to an extended

node of spines ςn+1 : sn+1
EX σ̂n+1 in En along πn : En → E. By definition, the morphism

f ◦ g is an intraction for the extended node of spines ςn+1. By item 8) of section 4.4.4.1,
the existence of such a ςn+1 implies the existence of a convergent extended conjugation of
nodes of spines χn := (sn, ςn+1, σn) in C such that the closure of the underlying chaining of

the convergent conjugation χn, say ςn : sn
EX σ̂n, belongs to En. Because we again obtain

an extended node of spines ςn : sn
EX σ̂n in En, we may keep doing the above process so

that we obtain a sequence of convergent extended conjugations χ0, χ1, . . . , χn where χi is
an i-conjugation of the form

(si, ςi+1, σi)

wherein ςi+1 is of the form si+1
EX σ̂i+1 for every 0 ≤ i ≤ n and ςi is the closure of the

underlying chaining of the convergent conjugation χi for every 1 ≤ i ≤ n + 1. By item 2)
of section 4.4.4.1, the spine s0 is g-projective, so it follows from Theorem 3.111 that f is a
surtraction for the extended node of spines ς0 : s0

EX σ̂0, which is in En. This is also equivalent
to saying that f is an surtraction for the extended nodes of vertebrae πn(ς0) : γ ex πn(σ̂0),
which belongs to E. �

Theorem 4.77 (two-out-of-six property). The class of weak equivalences satisfies the two-
out-of-six property, that is to say: Let f , g and h be morphisms such that the composite
f ◦ g ◦ h exists in C. If f ◦ g and g ◦ h are weak equivalences, then f , g, h and f ◦ g ◦ h are
weak equivalences.

Proof. A part of the theorem is proven by Theorem 4.53. It remains to prove that g is a
surtraction and f is a weak equivalence. Since h is a surtraction and g ◦ h is a surtraction, it
follows from Proposition 4.76 that g is a surtraction. Finally, since f ◦g is a weak equivalence
and g is a surtraction, it follows from Proposition 4.75 and Proposition 4.76 that f is a weak
equivalence. �

4.4.4.3. Refined spinal categories. A spinal category will be said to be refined (resp. strongly
refined) if its underlying vertebral category is. It follows from the previous sections that the
following properties hold in any refined spinal category.

S0 Weak equivalences, fibrations and cofibrations form coherent C-classes;

S1 Let f , g and h be morphisms such that the composite f ◦ g ◦ h exists in C. If f ◦ g
and g ◦ h are weak equivalences, then so are f , g, h and f ◦ g ◦ h;

S2 Weak equivalences, fibrations and cofibrations are stable under retracts;

S3 Every cofibration has the llp with respect every acyclic fibration;

Axiom S0 is provided by Proposition 4.37 and Proposition 4.35. Axiom S1 is nothing but
Theorem 4.77. Axiom S2 is given by Proposition 4.39 and axiom S3 comes from the refinement
hypothesis and Proposition 4.54.

4.4.4.4. Discrete spinal categories. A spinal category will be said to be discrete if its under-
lying vertebral category is discrete.

4.4.5. Functors of systems of vertebrae.
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4.4.5.1. Vertebrae as functors. Let C and D be two categories and F a functor C → D. In
Chapter 2, a vertebra v in C could be seen as a model of the sketch Vert in C, that is to say
in terms of a functor v : Vert→ C preserving the chosen colimits of Vert. It therefore makes
sense to consider the composite functor F ◦ v : Vert→ D, which defines a vertebra in D if it
preserves the chosen colimit of the sketch Vert. The functor will be said to send the vertebra
v to D if the functor F ◦ v defines a vertebrae in D. The resulting vertebra in D will then be
denoted by F (v). Let ν be a node of vertebrae in C. The functor F : C → D will be said to
send the node of vertebrae ν to D if it sends every vertebra contained in ν to D. The class
made of the image vertebrae F ◦v for every v ∈ ν then forms a node of vertebrae in D, which
will be denoted as F (ν).

Proposition 4.78. Let ν be a node of vertebrae in C that is sent to D via the functor F . If
ν is reflexive, then so is F (ν).

Proof. Note that the definition of a reflexive node of vertebrae (see Chapter 2) only requires
the commutativity of certain diagrams, which is preserved by functoriality. �

Let a := (κ, %, %′,κ′, φ, u) : ν  ν be an alliance of nodes of vertebrae in C whose domain
and codomain are sent to D by the functor F . The functor F : C → D will be said to send
the alliance a to D if the mapping F (β) 7→ F (φ(β)) defines a metafunction from the class of
stems of F (ν) to that of F (ν). In this case, the resulting metafunction will be denoted by
φF . By functoriality, it follows that if F sends the alliance a to D, then the following alliance
of node of vertebrae exists in D.

(F (κ), F (%), F (%′), F (κ′), φF , u) : F (ν) F (ν)

This alliance in D will later be denoted as F (a).

Remark 4.79. In the above situation, the identities φF (F (β)) = F (φ(β)) and F (φF (β′)) =
φ(F−1(β′)) hold for every stem β of ν and β′ of F (ν), respectively.

Similarly, let n := (κ, %) : γ ex ν be an extended node of vertebrae in C. The functor
F will be said to send n to D if it sends ν to D. In this case, the functor F gives rise to
an extended node of vertebrae (F (κ), F (%)) : F (γ) ex F (ν) in D. This extended node of
vertebrae in D will be denoted by F (n).

4.4.5.2. Functors of systems of vertebrae. Let C and D be two categories equipped with
systems of vertebrae Ĉ := (C, A,A′, E) and D̂ := (D, B,B′, F ). A functor of systems of

vertebrae from Ĉ to D̂ is a functor of categories G : C → D that sends

1) all arrows in ObjL(E) to arrows in ObjL(F ) via a metafunction

[G]L :

(
ObjL(E) → ObjL(F )
γ 7→ G(γ)

)
;

2) all nodes of vertebrae in ObjR(E) to ObjR(F ) via a metafunction

[G]R :

(
ObjR(E) → ObjR(F )
ν 7→ G(ν)

)
;

3) all extended nodes of vertebrae in E to F via functions

[G]H :

(
E(ν, ν) → F (G(γ), G(ν))
n 7→ G(n)

)
.

4) all nodes of vertebrae in Obj(A) to Obj(B) via

〈G〉R :

(
Obj(A) → Obj(B)
ν 7→ G(ν)

)
;
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5) all alliances of nodes of vertebrae in A to B functions

〈G〉H :

(
A(ν, ν) → B(G(ν), G(ν))
a 7→ G(a)

)
;

6) all nodes of vertebrae in Obj(A′) to Obj(B′) a metafunction

〈G〉′R :

(
Obj(A′) → Obj(B′)
ν 7→ G(ν)

)
;

7) all alliances of nodes of vertebrae in A′ to B′ via functions

〈G〉′H :

(
A′(ν, ν) → B′(G(ν), G(ν))
a 7→ G(a)

)
;

such that the triple ([G]L, [G]R, [G]H) equipped with the pairs (〈G〉R, 〈G〉H) and (〈G〉′R, 〈G〉′H)
define two morphisms of precompasses over graphs (A,E,η) ⇒ (B,F,η) and (A′, E,η) ⇒
(B′, F,η), respectively. A functor of systems of vertebrae such as above will be said to be

- smooth if its components [G]L, 〈G〉R and 〈G〉′R are injective;

- 0-regular if its components [G]L, 〈G〉R and 〈G〉′R are surjective;

- 1-regular if the morphisms of spans ([G]L, [G]R, [G]H) : E ⇒ F , (〈G〉R, 〈G〉H) : A⇒
B and (〈G〉′R, 〈G〉′H) : A′ ⇒ B′ are fibrations of spans.

- pseudo-1-regular if the morphisms of spans (〈G〉R, 〈G〉H) : A⇒ B and (〈G〉′R, 〈G〉′H) :
A′ ⇒ B′ are fibrations of spans.

4.4.5.3. Transfers. Let Ĉ := (C, A,A′, E) be a system of vertebrae and D be some other

category. A transfer of structure from Ĉ to D is a functor of categories F : C → D that sends

1) all nodes of vertebrae of A, A′ and E to D;

2) all alliances of nodes of vertebrae of A and A′ to D;

3) all extended nodes of vertebrae of E to D.

A transfer F : C → D as defined above induces a structure of system of vertebrae for
D given by the image of F in D. Precisely, the system of vertebrae is given by a triple
(F (A), F (A′), F (E)) where

i) F (A) is the subgraph of Ally(D) whose object-class is the image of Obj(A) via F
and whose hom-classes

F (A)(F (ν), F (ν∗))

are the unions of the images of all hom-classes of A(ν ′, ν ′∗) where ν ′ and ν ′∗ are those
nodes of vertebrae sent to F (ν) and F (ν∗) via F , respectively;

ii) F (A′) is the subgraph of Ally(D) defined as above, but with respect to A′.

iii) F (E) is the subspan of Enov(D) whose left and right object-classes are the images
of ObjL(E) and ObjR(E) via F and whose hom-classes

F (E)(F (γ), F (ν∗))

are the unions of the images of all hom-classes of E(γ′, ν ′∗) such that γ′ and ν ′∗ are
sent to F (γ) and F (ν∗) via F , respectively;

The preceding system of vertebrae category will be denoted as F (Ĉ).

Proposition 4.80. Let Ĉ := (C, A,A′, E) be a system of vertebrae. Suppose that a functor

F : C → D induces a transfer of structure from Ĉ to D. The functor F induces a 0-regular
functor of systems from Ĉ to F (Ĉ). If this functor is smooth, then it is 1-regular. If Ĉ is
discrete, then F is pseudo-1-regular.
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Proof. The fact that F induces a functor of systems of vertebrae is straightforward. To see
that F is 0-regular, it suffices to observe that any F (E)-seed in F (Ĉ) is of the form F (γ)

where γ is an E-seed in Ĉ by definition. Similarly, any node of vertebrae F (E) is of the form
F (ν) where ν is a node of vertebrae in E.

Now, suppose that F is smooth. For every E-seed γ and extended node of vertebrae in
n : F (γ) ex ν in F (E), the definition of F (Ĉ) implies that there exists an extended node of
vertebrae n∗ : γ∗

ex ν∗ in E such that the equality F (n∗) = n holds. By smoothness, the seeds
γ and γ∗ must be equal, which shows that ([G]L, [G]R, [G]H) : E ⇒ F is a fibration of spans.
Similarly, for every node of vertebrae ν and alliance of nodes of vertebrae in a : F (ν)  ν

in F (A), the definition of F (Ĉ) implies that there exists an alliance of nodes of vertebrae
a∗ : ν∗  ν∗ in A such that the equality F (a∗) = a holds. By smoothness, the seeds ν and
ν∗ must be equal. A similar argument for the graphs A′ and F (A′) finally shows that the
functor F : C → D is 1-regular.

If Ĉ is discrete, then the alliances of A and A′ are identities. The pseudo-1-regularity is
therefore straightforward. �

Example 4.81. Let (C, A,E, T ) be a discrete spinal category whose underlying system of

vertebrae will be denoted by Ĉ and D be a small category for which the functor Land : C → CD
exists for some object d in D (see Example 1.21). As a left adjoint, the functor Land preserves
all colimits of C and a fortiori all vertebrae in C. Because (C, A,E, T ) is discrete, the functor

Land : C → CD induces a transfer of structure from Ĉ to CD. The functor Land therefore
provides a system of vertebrae Land(Ĉ) for the category CD. Proposition 4.80 then states

that Land induces a 0-regular functor of systems of vertebrae from Ĉ to Land(Ĉ). Because Ĉ
is discrete, the functor Land is pseudo-1-regular.

Example 4.82. Let K be a colimit sketch. Even if K does not have a structure of a spinal
category, it may happen that the free completion KO of K has one, say given by (KO , A,E, T ),
whose vertebrae are defined over pushouts produced by either the free cocompletion or the
chosen colimits of K. Denote by K̂O the underlying system of vertebrae of (KO , A,E, T ). As a
functor preserving the chosen colimits of K and those resulting from the free cocompletion, the
free extension K[ ] : KO →Mod(Kop) (see Example 1.19) defines a transfer of structure from
K̂O to Mod(Kop). Proposition 4.80 then states that K[ ] induces a 0-regular functor of systems
of vertebrae from K̂O to K[K̂O ]. It also follows from the Yoneda Lemma that the functor K[ ]
is smooth (by fully faithfulness of X 7→ K( , X) and definition of the free completion KO) and
hence 1-regular by Proposition 4.80.

4.4.5.4. Contravariant action on vertebrae. Let C be a category, E be a metacategory and
F : Cop → E be a functor. Any vertebra v in C of the form given below on the left is sent via
F to an object in EVertop

of the form given on the right.

S
γ′
//

γ

��

x

D1

δ1
��

D2
δ2

// S′
β
// D′

⇒ F (S) oo
F (γ′)

OO

F (γ′)

F (D1)
OO

F (δ1)

F (D2) oo
F (δ2)

F (S′) oo
F (β)

F (D′)

The above right diagram will be denoted as F (`v) where ` means that v is first sent to Cop

by reversing the direction of the arrows. Similarly, any alliance of vertebrae a : v  v in
C leads to a morphism F (`a) : F (`v) ⇒ F (`v) in EVertop

. Note that the order of source
and target are not reversed as the components of an alliance are defined in Cop. In the
same way, any extended vertebra n : γ ex v in C is sent to an obvious diagram, but this
diagram does not live in EVertop

. More specifically, the diagram consists of the diagram
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F (`seed(n)) : F (`γ)⇒ F (`γ), which lives in the arrow category of E , as well as the diagram
F (`v), which lives in EVertop

.

4.4.5.5. Congruent presheaves over alliances of nodes of vertebrae. Let C and D be two cat-
egories, E be a metacategory and F : Cop → E and G : Dop → E two functors. Consider
two alliances of nodes of vertebrae a : p · Ω  p∗ · Ω∗ and b : p[ · Ω[  p† · Ω† in D and C,
respectively. The respective components of a and b for β ∈ Ω and β[ ∈ Ω[ will be denoted
by aβ : p · β  p∗ · ϕ(β) and bβ[ : p[ · β[  p† · ϕ[(β[) where ϕ : Ω → Ω∗ and ϕ : Ω[ → Ω†
are the respective metafunctions associated with a and b. The pair (F,G) will be said to be
congruent over the pair (a, b) if it is equipped with

1) two surjective metafunctions ψ∗ : Ω∗ → Ω† and ψ : Ω → Ω[ making the following
diagram commute;

Ω
ψ
//

ϕ

��

Ω[

ϕ[
��

Ω∗
ψ∗
// Ω†

2) for every β ∈ Ω and β∗ ∈ Ω∗, two isomorphisms in [Vertop, E ] of the form

F (`p · β) ∼= G(`p[ · ψ(β)) F (`p∗ · β∗) ∼= G(`p† · ψ∗(β∗))

making the following diagram commute for every stem β ∈ Ω.

F (`p · β)

F (`aβ)

��

∼= +3 G(`p[ · ψ(β))

G(`bψ(β))

��
F (`p∗ · ϕ(β)) ∼=

+3 G(`p† · (ψ∗ ◦ ϕ(β)))

Such a congruence will later be denoted as (ψ,ψ∗) ` F (a) ≡ G(b) and said to lie in the
category E . It will usually not be needed to give names to the isomorphisms required in item
2).

4.4.5.6. Congruent presheaves over extended nodes of vertebrae. Let C and D be two cate-
gories, E be a metacategory and F : Cop → E and G : Dop → E two functors. Consider two
extended nodes of vertebrae n : γ ex p∗ ·Ω∗ and m : γ[

ex p† ·Ω† in D and C, respectively. The
respective components of n and m for β∗ ∈ Ω∗ and β† ∈ Ω† will be denoted by nβ : γ ex p∗ ·β∗
and mβ† : γ[

ex p† · β†. The pair (F,G) will be said to be congruent over the pair (n,m) if it
is equipped with

1) a surjective metafunction ψ∗ : Ω∗ → Ω†;

2) for every β∗ ∈ Ω∗, an isomorphism in [Vertop, E ] as given below on the left such that
its restriction on the seeds (i.e. F (`γ∗) ∼= G(`γ†)) comes along with an isomorphism
F (`γ) ∼= F (`γ[) making the right diagram commute in E2.

F (`p∗ · β∗) ∼= G(`p† · ψ∗(β∗)) ⇒

F (`γ)

F (`seed(nβ))

��

∼= +3 G(`γ[)

G(`seed(mψ(β)))

��
F (`γ∗) ∼=

+3 G(`γ†)

Such a congruence will later be denoted as ψ∗ ` F (n) ≡ G(m) and said to lie in the
category E . It will usually not be needed to give names to the isomorphisms required in item
2).
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4.4.5.7. Covertebral functors. Despite being long, the proofs of the results of the present sec-
tion are quite automatic (and all very similar). Let Ĉ := (C, A,A′, E) and D̂ := (D, B,B′, F )

be two systems of vertebrae. A covertebral functor from Ĉ to D̂ consists of a functor of
categories U : C → D such that

1) for every node of vertebrae ν in A (resp. A′), there exists a node of vertebrae in ν[
in B (resp. B′) such that for every alliance of nodes of vertebrae b : ν[  ν† in B
(resp. B′), there exists an alliance of nodes of vertebrae a : ν  ν∗ in A (resp. A′)
for which there exists a congruence of presheaves in [Cop,Set] over the pair (b, a) as
follows;

(ψ,ψ∗) ` D(b, U( )) ≡ C(a, )

2) for every E-seed γ, there exists an F -seed γ[ such that for every extended node of
vertebrae n : γ ex ν∗ in E, there exist an extended node of vertebrae m : γ[

ex ν† in
F for which there exists a congruence of presheaves in [Cop,Set] over the pair (m, n)
as follows;

ψ∗ ` D(m, U( )) ≡ C(n, )

A pseudo-covertebral functor from Ĉ to D̂ is a functor of categories U : C → D that only
satisfies item 1).

Proposition 4.83. A (pseudo-)covertebral functor U : Ĉ → D̂ reflects fibrations and trivial
fibrations.

Proof. Because the proof is very similar between the two classes of morphisms, only the case
of fibrations will be discussed. Let f : X → Y be a morphism such that U(f) is a fibration

in the system of vertebrae D̂ and consider a node of vertebrae ν in A′. The goal is to find
an alliance a : ν  ν∗ in A′ for which f is a fibration. By assumption on U , there exists a
node of vertebrae ν[ in B′ satisfying property 1) relative to ν. Since U(f) is a fibration in D̂,
there exists an alliance b : ν[  ν† in B′ for which U(f) is a fibration. Because U satisfies
item 1), there must exist an alliance a : ν  ν∗ in A′ such that the following isomorphism of
diagrams in [Cop,Set] holds for every β[ ∈ Ω[ (see section 4.4.5.5).

D(`bβ[ , U( )) ∼= C(`aψ(β[), )

If the naturality of the earlier isomorphism is applied on f : X → Y , this isomorphism leads
to the following isomorphism of diagrams in Set for every β[ ∈ Ω[ (think of an isomorphism
in dimension 4).

(4.9) D(`bβ[ , U(f)) ∼= C(`aψ(β[), f)

A restriction of isomorphism (4.9) on certain and obvious subcategories of its category of
definition leads to the following pair of isomorphisms of diagrams (see definitions of section
4.2.2.4).

(4.10)

{
D(triv(bβ[), U(f))A0

∼= C(triv(aψ(β[)), f)A0
D(triv(bβ[), U(f))D0

∼= C(triv(aψ(β[)), f)D0

If we denote by (Aa, Da, {0}, {0}) and (Ab, Db, {0}, {0}) the factorisation games defined by
Proposition 4.2 for the respective commutative squares triv(aψ(β[)) and triv(bβ[), then the

isomorphisms of (4.10) define an equivalence of factorisation games from (Ab, Db, {0}, {0})
to (Aa, Da, {0}, {0}) (see section 4.2.2.3). We now have all the arguments to prove that
f : X → Y is a fibration for the alliance of nodes of vertebrae a : ν  ν[. First, because
U(f) is a fibration for b, Proposition 4.2 and the definition of (Ab, Db, {0}, {0}) imply that the
factorisation game (Ab, Db, {0}, {0}) has a winning strategy. The above equivalence of factori-
sation games and Proposition 4.1 then implies that the factorisation game (Aa, Da, {0}, {0})
also has a winning strategy. Finally, Proposition 4.2 and the definition of (Aa, Da, {0}, {0})
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imply that the morphism f : X → Y is a fibration for aψ(β[). Since the metafunction ψ is
surjective, it follows that the morphism f : X → Y is a fibration for a. The above discussion
thus proves that f is fibration in Ĉ. �

Proposition 4.84. A (pseudo-)covertebral functor U : Ĉ → D̂ reflects intractions.

Proof. Let f : X → Y be a morphism such that U(f) is an intraction in the system of

vertebrae D̂ and consider a node of vertebrae ν in A. The goal is to find an alliance a : ν  ν∗
for which f is an intraction. By assumption on U , there exists a node of vertebrae ν[ in B
satisfying property 1) relative to ν. Since U(f) is an intraction in D̂, there exists an alliance
b : ν[  ν† in B for which U(f) is an intraction. Because U satisfies item 1), there must exist
an alliance a : ν  ν∗ in A such that the following isomorphisms of diagrams in [Cop,Set]
hold for every β[ ∈ Ω and β† ∈ Ω† (see section 4.4.5.5).

D(`bβ[ , U( )) ∼= C(`aψ(β[), ) D(`p† · β†, U( )) ∼= C(`p∗ · ψ∗(β†), )

If the naturality of the earlier isomorphisms is applied on f : X → Y , these isomorphisms
lead to the following isomorphisms of diagrams in Set for every β[ ∈ Ω[ and β† ∈ Ω† (think
of isomorphisms in dimension 4 and 3).

(4.11) D(`bβ[ , U(f)) ∼= C(`aψ(β[), f) D(`p† · β†, U(f)) ∼= C(`p∗ · ψ∗(β†), f)

If we denote by Sa and Sa the respective scales of b and a, a restriction of the isomorphisms
of (4.11) on certain and obvious subcategories of their categories of definition leads to the
following pair of isomorphisms of diagrams for every β[ ∈ Ω[ and β† ∈ Ω† (see definitions of
section 4.2.2.5)

(4.12)

{
D(Sb, f)Aβ[

∼= C(Sa, f)Aψ(β[)

D(Sb, f)Dβ[,β†
∼= C(Sa, f)Dψ(β[),ψ∗(β†)

If we denote by (Aa, Da,Ω,Ω∗) and (Ab, Db,Ω[,Ω†) the factorisation games defined by Propo-
sition 4.3 for the respective scales Sa and Sb, then the isomorphisms of (4.12) define an equiv-
alence of factorisation games from (Ab, Db,Ω[,Ω†) to (Aa, Da,Ω,Ω∗) (see section 4.2.2.3). We
now have all the arguments to prove that f : X → Y is an intraction for the alliance of nodes
of vertebrae a : ν  ν[. First, because U(f) is an intraction for b, Proposition 4.3 and the
definition of (Ab, Db,Ω[,Ω†) imply that the factorisation game (Ab, Db,Ω[,Ω†) has a winning
strategy. The above equivalence of factorisation games and Proposition 4.1 then implies that
the factorisation game (Aa, Da,Ω,Ω∗) also has a winning strategy. Finally, Proposition 4.3
and the definition of (Aa, Da,Ω,Ω∗) imply that the morphism f : X → Y is simple with
respect to Sa and is hence an intraction for a. The above discussion thus proves that f is
intraction in Ĉ. �

Proposition 4.85. A covertebral functor U : Ĉ → D̂ reflects surtractions and pseudofibra-
tions.

Proof. The proof for pseudofibrations is very similar to that of Proposition 4.83. Let f :
X → Y be a morphism such that U(f) is a surtraction in the system of vertebrae D̂ and
consider an E-seed γ. The goal is to find an extended node of vertebrae n : γ ex ν∗ for which
f is a surtraction. By assumption on U , there exists an F -seed γ[ satisfying property 2)

relative to γ. Since U(f) is a surtraction in D̂, there exists an extended node of vertebrae
m : γ[

ex ν† in F for which U(f) is a surtraction. Because U satisfies item 2), there must
exist an extended node of vertebrae n : γ ex ν∗ in E such that the following isomorphisms of
diagrams in [Cop,Set] hold for every β† ∈ Ω† where the bottom one is compatible with the
top one over the seeds γ∗ and γ† (see section 4.4.5.6).{

D(`seed(mβ†), U( )) ∼= C(`seed(nψ∗(β†)), )

D(`p† · β†, U( )) ∼= C(`p∗ · ψ∗(β†), )
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If the naturality of the earlier isomorphisms is applied on f : X → Y , these isomorphisms lead
to the following isomorphisms of diagrams in Set for every β† ∈ Ω† (think of isomorphisms
in dimension 4 and 3).

(4.13)

{
D(`seed(mβ†), U(f)) ∼= C(`seed(nψ∗(β†)), f)

D(`p† · β†, U(f)) ∼= C(`p∗ · ψ∗(β†), f)

If we denote by Bn and Bn the respective besoms of m and n, a restriction of the isomorphisms
of (4.13) on certain and obvious subcategories of their categories of definition leads to the
following pair of isomorphisms of diagrams for every β† ∈ Ω† (see definitions of section 4.2.2.6)

(4.14)

{
D(Bm, f)A0

∼= C(Bn, f)A0
D(Bm, f)D0,β†

∼= C(Bn, f)D0,ψ∗(β†)

If we denote by (An, Dn, {0},Ω∗) and (Am, Dm, {0},Ω†) the factorisation games defined by
Proposition 4.4 for the respective besoms Bn and Bm, then the isomorphisms of (4.14) de-
fine an equivalence of factorisation games from (Am, Dm, {0},Ω†) to (An, Dn, {0},Ω∗) (see
section 4.2.2.3). We now have all the arguments to prove that f : X → Y is a surtraction
for the alliance of nodes of vertebrae n : γ ex ν∗. First, because U(f) is a surtraction for
m, Proposition 4.4 and the definition of (Am, Dm, {0},Ω†) imply that the factorisation game
(Am, Dm, {0},Ω†) has a winning strategy. The above equivalence of factorisation games and
Proposition 4.1 then implies that the factorisation game (An, Dn, {0},Ω∗) also has a winning
strategy. Finally, Proposition 4.4 and the definition of (An, Dn, {0},Ω∗) imply that the mor-
phism f : X → Y is divisible with respect to the besom Bn and is hence a surtraction for n.
The above discussion thus proves that f is surtraction in Ĉ. �

An dual version of the previous gives the following. An opcovertebral functor from the
system of vertebrae Ĉ to the system of vertebrae D̂ consists of a functor of categories U : C →
D such that

3) for every node of vertebrae ν[ in B (resp. B′), there exists a node of vertebrae in ν
in A (resp. A′) such that for every alliance of nodes of vertebrae a : ν  ν∗ in A
(resp. A′), there exists an alliance of nodes of vertebrae b : ν[  ν† in B (resp. B′)
for which there exists a congruence of presheaves in [Cop,Set] over the pair (b, a) of
the following form;

(ψ,ψ∗) ` D(b, U( )) ≡ C(a, )

4) for every F -seed γ[, there exists an E-seed γ such that for every extended node of
vertebrae n : γ ex ν∗ in E, there exist an extended node of vertebrae m : γ[

ex ν† in
F for which there exists a congruence of presheaves in [Cop,Set] over the pair (m, n)
of the following form;

ψ∗ ` D(m, U( )) ≡ C(n, )

A pseudo-opcovertebral functor from Ĉ to D̂ is a functor of categories U : C → D that only
satisfies item 1). The proof of the following propositions are the logical dual of the above
propositions given in the case of covertebral functors.

Proposition 4.86. An (pseudo-)opcovertebral functor U : Ĉ → D̂ preserves fibrations and
trivial fibrations.

Proof. Because the proof is very similar between the two classes of morphisms, only the case
of fibrations will be discussed. Let f : X → Y be a fibration in the system of vertebrae Ĉ
and consider a node of vertebrae ν[ in B′. The goal is to find an alliance b : ν[  ν† for
which U(f) is a fibration. By assumption on U , there exists a node of vertebrae ν in A′

satisfying property 3) relative to ν[. Since U(f) is a fibration in Ĉ, there exists an alliance
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a : ν  ν∗ in A′ for which f is a fibration. Because U satisfies item 3), there must exist an
alliance b : ν[  ν† in B′ such that the following isomorphism of diagrams in [Cop,Set] holds
for every β[ ∈ Ω[ (see section 4.4.5.5).

D(`bβ[ , U( )) ∼= C(`aψ(β[), )

If the naturality of the earlier isomorphism is applied on f : X → Y , this isomorphism leads
to the following isomorphism of diagrams in Set for every β[ ∈ Ω[ (think of an isomorphism
in dimension 4).

(4.15) D(`bβ[ , U(f)) ∼= C(`aψ(β[), f)

A restriction of isomorphism (4.15) on certain and obvious subcategories of its category of
definition leads to the following pair of isomorphisms of diagrams (see definitions of section
4.2.2.4).

(4.16)

{
D(triv(bβ[), U(f))A0

∼= C(triv(aψ(β[)), f)A0
D(triv(bβ[), U(f))D0

∼= C(triv(aψ(β[)), f)D0

If we denote by (Aa, Da, {0}, {0}) and (Ab, Db, {0}, {0}) the factorisation games defined by
Proposition 4.2 for the respective commutative squares triv(aψ(β[)) and triv(bβ[), then the

isomorphisms of (4.16) define an equivalence of factorisation games from (Ab, Db, {0}, {0})
to (Aa, Da, {0}, {0}) (see section 4.2.2.3). We now have all the arguments to prove that
U(f) : U(X) → U(Y ) is a fibration for the alliance of nodes of vertebrae b : ν[  ν∗. First,
because f is a fibration for a, Proposition 4.2 and the definition of (Aa, Da, {0}, {0}) imply
that the factorisation game (Aa, Da, {0}, {0}) has a winning strategy. The above equiva-
lence of factorisation games and Proposition 4.1 then implies that the factorisation game
(Ab, Db, {0}, {0}) also has a winning strategy. Finally, Proposition 4.2 and the definition of
(Ab, Db, {0}, {0}) imply that the morphism U(f) : U(X)→ U(Y ) is a fibration for bβ[ . The

above discussion thus proves that U(f) is fibration in D̂. �

Proposition 4.87. An (pseudo-)opcovertebral functor U : Ĉ → D̂ preserves intractions.

Proof. Let f : X → Y be an intraction in the system of vertebrae Ĉ and consider a node of
vertebrae ν[ in B. The goal is to find an alliance b : ν[  ν† for which U(f) is an intraction.
By assumption on U , there exists a node of vertebrae ν in A satisfying property 3) relative

to ν[. Since f is an intraction in Ĉ, there exists an alliance a : ν  ν∗ in A for which f is
an intraction. Because U satisfies item 3), there must exist an alliance b : ν[  ν† in B such
that the following isomorphisms of diagrams in [Cop,Set] hold for every β[ ∈ Ω and β† ∈ Ω†
(see section 4.4.5.5).

D(`bβ[ , U( )) ∼= C(`aψ(β[), ) D(`p† · β†, U( )) ∼= C(`p∗ · ψ∗(β†), )

If the naturality of the earlier isomorphisms is applied on f : X → Y , these isomorphisms
lead to the following isomorphisms of diagrams in Set for every β[ ∈ Ω[ and β† ∈ Ω† (think
of isomorphisms in dimension 4 and 3).

(4.17) D(`bβ[ , U(f)) ∼= C(`aψ(β[), f) D(`p† · β†, U(f)) ∼= C(`p∗ · ψ∗(β†), f)

If we denote by Sa and Sa the respective scales of b and a, a restriction of the isomorphisms of
(4.17) on certain and obvious subcategories of their categories of definition leads to the next
pair of isomorphisms of diagrams for every β[ ∈ Ω[ and β† ∈ Ω† (see definitions of section
4.2.2.5)

(4.18)

{
D(Sb, f)Aβ[

∼= C(Sa, f)Aψ(β[)

D(Sb, f)Dβ[,β†
∼= C(Sa, f)Dψ(β[),ψ∗(β†)
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If we denote by (Aa, Da,Ω,Ω∗) and (Ab, Db,Ω[,Ω†) the factorisation games defined by Propo-
sition 4.3 for the respective scales Sa and Sb, then the isomorphisms of (4.18) define an equiv-
alence of factorisation games from (Ab, Db,Ω[,Ω†) to (Aa, Da,Ω,Ω∗) (see section 4.2.2.3). We
now have all the arguments to prove that U(f) : U(X)→ U(Y ) is an intraction for the alliance
of nodes of vertebrae b : ν[  ν†. First, because f is an intraction for a, Proposition 4.3 and
the definition of (Aa, Da,Ω,Ω∗) imply that the factorisation game (Aa, Da,Ω,Ω∗) has a win-
ning strategy. The above equivalence of factorisation games and Proposition 4.1 then implies
that the factorisation game (Ab, Db,Ω[,Ω†) also has a winning strategy. Finally, Proposition

4.3 and the definition of (Ab, Db,Ω[,Ω†) imply that the morphism U(f) : U(X) → U(Y ) is
simple with respect to Sb and is hence an intraction for b. The above discussion thus proves
that U(f) is intraction in D̂. �

Proposition 4.88. An opcovertebral functor U : Ĉ → D̂ preserves surtractions and pseud-
ofibrations.

Proof. The proof for pseudofibrations is very similar to Proposition 4.86. Let f : X → Y
be a surtraction in the system of vertebrae Ĉ and consider an F -seed γ[. The goal is to find
an extended node of vertebrae m : γ[

ex ν† for which U(f) is a surtraction. By assumption
on U , there exists an E-seed γ satisfying property 4) relative to γ[. Since f is a surtraction

in Ĉ, there exists an extended node of vertebrae n : γ ex ν∗ in A for which f is a surtraction.
Because U satisfies item 4), there must exist an extended node of vertebrae m : γ[

ex ν† in E
such that the following isomorphisms of diagrams in [Cop,Set] hold for every β† ∈ Ω† where
the bottom one is compatible with the top one over the seeds γ∗ and γ† (see section 4.4.5.6).{

D(`seed(mβ†), U( )) ∼= C(`seed(nψ∗(β†)), )

D(`p† · β†, U( )) ∼= C(`p∗ · ψ∗(β†), )

If the naturality of the earlier isomorphisms is applied on f : X → Y , these isomorphisms lead
to the following isomorphisms of diagrams in Set for every β† ∈ Ω† (think of isomorphisms
in dimension 4 and 3).

(4.19)

{
D(`seed(mβ†), U(f)) ∼= C(`seed(nψ∗(β†)), f)

D(`p† · β†, U(f)) ∼= C(`p∗ · ψ∗(β†), f)

If we denote by Bn and Bn the respective besoms of m and n, a restriction of the isomorphisms
of (4.19) on certain and obvious subcategories of their categories of definition leads to the
following pair of isomorphisms of diagrams for every β† ∈ Ω† (see definitions of section 4.2.2.6)

(4.20)

{
D(Bm, f)A0

∼= C(Bn, f)A0
D(Bm, f)D0,β†

∼= C(Bn, f)D0,ψ∗(β†)

If we denote by (An, Dn, {0},Ω∗) and (Am, Dm, {0},Ω†) the factorisation games defined by
Proposition 4.4 for the respective besoms Bn and Bm, then the isomorphisms of (4.20) define
an equivalence of factorisation games from (Am, Dm, {0},Ω†) to (An, Dn, {0},Ω∗) (see section
4.2.2.3). We now have all the arguments to prove that U(f) : U(X)→ U(Y ) is a surtraction
for the alliance of nodes of vertebrae m : γ[

ex ν†. First, because f is a surtraction for
n, Proposition 4.4 and the definition of (An, Dn, {0},Ω∗) imply that the factorisation game
(An, Dn, {0},Ω∗) has a winning strategy. The above equivalence of factorisation games and
Proposition 4.1 then implies that the factorisation game (Am, Dm, {0},Ω†) also has a winning
strategy. Finally, Proposition 4.4 and the definition of (Am, Dm, {0},Ω†) imply that the
morphism U(f) : U(X) → U(Y ) is divisible with respect to the besom Bm and is hence a

surtraction for m. The above discussion thus proves that U(f) is surtraction in D̂. �
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Any functor that is both covertebral and opcovertebral will be called a bicovertebral
functor. This type of functor come in handy when reflecting properties involving different
items of a same zoo.

Proposition 4.89. A bicovertebral functor U : Ĉ → D̂ reflects (strong) refinement.

Proof. We shall prove that a bicovertebral functor reflects strong refinement. The statements
about refinement being very similar. Suppose that D̂ is strongly refined and consider a
pseudofibration f : X → Y in Ĉ. Because U is opcovertebral, Proposition 4.86 implies that
the morphism U(f) : U(X)→ U(Y ) is a pseudofibation in D̂. By strong refinement, U(f) is
a trivial fibration. Now, using the fact that U is covertebral, Proposition 4.83 implies that f
is a trivial fibration, which shows that Ĉ is strongly refined. �

The next statement is a generalisation of the Crans’ Transfer Theorem stated in [9,
Theorem 3.3] at the level of systems of vertebrae.

Proposition 4.90. Suppose to be given three systems of vertebrae Ĉ, D̂ and Ŝ, two functors
of systems of vertebrae G : Ŝ → Ĉ and H : Ŝ → D̂ and a functor U : C → D for which there
is a natural isomorphism in Z and X as follows.

(4.21) D(H(Z), U(X)) ∼= C(G(Z), X)

1) If H is 1-regular and G is 0-regular, then U covertebral;

2) If H is 0-regular and G is 1-regular, then U opcovertebral;

3) If H is pseudo-1-regular and G is 0-regular, then U pseudo-covertebral;

4) If H is 0-regular and G is pseudo-1-regular, then U pseudo-opcovertebral;

Proof. Consider the notations Ĉ = (C, A,A′, E), D̂ = (D, B,B′, F ) and Ŝ = (S, I, I ′, J). Let
us prove item 1) and item 3). To do so, suppose given a node of vertebrae ν in A. Because
G is 0-regular, there exists an alliance ν ′ in I such that the equality ν = G(ν ′) holds. Now,
define ν[ := H(ν ′) in B. If there exists an alliance of nodes of vertebrae b : ν[  ν† in B,
then because H is 1-regular, there exists an alliance of nodes of vertebrae b′ : ν ′  ν ′† in I

such that H(b′) = b. Denote by a : ν[  ν∗ the image G(b′) in A. Now, for every stem
β[ ∈ Ω[, choose a stem β′ ∈ Ω′ such that the equality H(β′) = β[ holds (which is possible by
definition of ν[) and define the metafunction ψ : Ω[ → Ω mapping β[ to G(β′). Similarly, for
every stem β† ∈ Ω†, choose a stem β′† ∈ Ω′† such that the equality H(β′†) = β† holds (which is

possible by definition of ν ′†) and define the metafunction ψ∗ : Ω† → Ω∗ mapping β† to G(β′†).
It follows from the definition of the image of a node of vertebrae via a functor of systems
of vertebrae (see section 4.4.5.1) that ψ and ψ∗ are surjective. Denote by ϕ[, ϕ and ϕ′ the
metafunctions associated with the alliances b, a and b′, respectively. Because the equalities

ϕ(G(H−1(β[))) = G(ϕ′(H−1(β[))) = G(H−1(ϕ[(β[)))

hold (see Remark 4.79), it is easy to check that following diagram commutes.

(4.22) Ω[
ψ
//

ϕ[
��

Ω

ϕ

��

Ω†
ψ∗
// Ω∗

By replacing the object Z with the vertebrae p′ · β′ and p′† · β′† in isomorphism (4.21) and
using the definition of ψ and ψ∗, we deduce that the following isomorphisms holds for every
β[ ∈ Ω[ and β† ∈ Ω†.

D(`p[ · β[, U(X)) ∼= C(`p · ψ(β[), X) D(`p† · β†, U(X)) ∼= C(`p∗ · ψ∗(β†), X)
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It follows from diagram (4.22) and isomorphism (4.21) that the two previous isomorphisms
make the following square commute for every stem β[ ∈ Ω[.

D(`p[ · β[, U(X))

D(`bβ[ ,U(X))

��

∼= +3 C(`p · ψ(β[), X)

C(`aψ(β[)
,X)

��
D(`p† · ϕ[(β[), U(X)) ∼=

+3 C(`p∗ · (ψ∗ ◦ ϕ(β[)), X)

In other words, the following congruence holds, which proves one of the three congruences
involved by item 1).

(ψ,ψ∗) ` D(b, U( )) ≡ C(a, )

Since the proof of the second congruence copies the above reasoning with respect to A′, B′

and I ′, item 3) is proven and there only remains to prove the last congruence involved by
item 1). To finish the proof of item 1), suppose given an E-seed γ. Because G is 0-regular,
there exists a J-seed γ′ such that the equality γ = G(γ′) holds. Now, define γ[ := H(γ′) in F .
If there exists an alliance of nodes of vertebrae m : γ[

ex ν† in F , then because H is 1-regular,
there exists an extended node of vertebrae m′ : γ′ ex ν ′† in J such that H(m′) = m. Denote

by n : γ[
ex ν∗ the image G(m′) in E. Now, for every stem β† ∈ Ω†, choose a stem β′† ∈ Ω′†

such that the equality H(β′†) = β† holds (which is possible by definition of ν ′†) and define

the metafunction ψ∗ : Ω† → Ω∗ mapping β† to G(β′†). It is straightforward to check that ψ∗
is surjective. By replacing the object Z with the vertebra p′† · β′† in isomorphism (4.21), we
deduce an isomorphism of the following form, which holds for every β† ∈ Ω†.

D(`p† · β†, U(X)) ∼= C(`p∗ · ψ∗(β†), X)

By construction, the restriction of this isomorphism on the seeds makes the following diagram
commute for every stem β[ ∈ Ω[.

D(`γ[, U(X))

D(`seed(nβ[ ),U(X))

��

∼= +3 C(`γ,X)

C(`seed(mψ∗(β[)
),X)

��
D(`γ†, U(X)) ∼=

+3 C(`γ∗, X)

In other words, the following congruence holds, which proves the other half of item 1).

ψ∗ ` D(m, U( )) ≡ C(n, )

Because the proof of item 1) and item 3) did not depend on the object U(X) or X, it is easy
to see that a dual reasoning leads to the proof of item 2) and item 4). �

Example 4.91. Let (C, A,E, T ) be a discrete spinal category whose underlying system of

vertebra will be denoted by Ĉ and D be a small category. If the functor Land : C → CD exists
for some object d in D, then the functor ∆D : C → CD defines a opcovertebral functor from
Ĉ to Land(Ĉ). To be more specific, the adjunction Land a ∇d first provides the following
natural isomorphisms in Z and Y .

CD(Land(Z),∆D(Y )) ∼= C(Z,∇d ◦∆D(Y )) = C(Z, Y )

It then follows from Example 4.81 and Proposition 4.90 that the functor ∆D : C → CD defines
a opcovertebral and pseudo-covertebral functor from Ĉ to Land(Ĉ).

Example 4.92. Let K be a colimit sketch, KO be a free cocompletion of K equipped with a
system of vertebra K̂O and let K[K̂O ] denote the resulting system of vertebrae for Mod(Kop) as
defined in Example 4.82. Let now C be a cocomplete category and (C, A,E, T ) be a spinal

category of system of vertebrae Ĉ for which there exists a functor i : K→ C such that the free
extension iO : KO → C induces a 0- and 1-regular funtor of system of vertebrae.
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We are going to show that the following functor induces a bivertebral functor from Ĉ to
K[K̂O ].

C(i( ), ) : C →Mod(Kop)

However, before showing this, notice that any object s in KO may be expressed either as an
object of K or a colimit of K over some functor of the form x : I → K. Because any object of K
is a colimit of K, the definition of the functor K[ ] then states that the object K[s] is a colimit
in Mod(Kop) of the following form where s is equal to the colimit colk xk in K.

K[s] ∼= colk K( , xk)

Now, by Proposition 4.90 and the fact that K[ ] is 0- and 1-regular (see Example 4.82), the
following series of natural isomorphisms in s and Y shows that C(i( ), ) is a bivertebral
functor in the case where the functor iO is 0- and 1-regular.

Mod(Kop)(K[s], C(i( ), Y )) ∼= Mod(Kop)(colk K( , xk), C(i( ), Y ))

∼= limk Mod(Kop)(K( , xk), C(i( ), Y ))

∼= limk C(i(xk), Y )

∼= C(colk i(xk), Y )

∼= C(iO(colk xk), Y )

∼= C(iO(s), Y ).

Proposition 4.93 (Crans’ transfer). Suppose that a functor F : C → D has a right adjoint
U : D → C. The functor F induces a transfer of structure from any discrete system of
vertebrae Ĉ to D while the functor U induces a covertebral functor U : F (Ĉ) → Ĉ. If F
turns out to be a 1-regular (resp. pseudo-1-regular) functor, then U is opcovertebral (resp.
pseudo-opcovertebral).

Proof. Since any left adjoint preserves colimits, the functor F sends any vertebra in C to
D and thereby induces a transfer of structure from any discrete system of vertebrae Ĉ to D.
The statement regarding the functor U is a consequence of Proposition 4.90 as the adjunction
F a U provides an isomorphism D(Y, U(X)) ∼= C(F (Y ), X) natural in X and Y and F is 0-

regular from F (Ĉ) to Ĉ by Proposition 4.80. The last statement also follows from Proposition
4.90. �

Example 4.94. Let (C, A,E, T ) be a discrete spinal category with system of vertebrae Ĉ, D
be a small category and suppose that the functor Land : C → CD exists for some object d in
D. It follows from Proposition 4.93 and Example 4.81 that the right adjoint ∇d : CD → C
induces a covertebral and pseudo-opcovertebral functor from Land(Ĉ) to Ĉ.

4.4.5.8. Covertebral equivalences. Let Ĉ and D̂ be two systems of vertebrae. A covertebral
equivalence from Ĉ to D̂ consists of a bicovertebral functor U : C → D and a left adjoint
F a U such that all the components of the unit η( ) : idD( )⇒ UF ( ) are weak equivalences

in D̂.

Proposition 4.95. Suppose that D̂ is equipped with a structure of spinal category. A mor-
phism f : X → U(Y ) is a weak equivalence in D̂ if and only if the morphism εY ◦ F (f) :

F (X)→ Y is a weak equivalence in Ĉ.

Proof. Consider the following equation given by the universal property of the adjunction
F a U .

f = U(εY ◦ F (f)) ◦ ηX
If f is a weak equivalence, then Theorem 4.77 implies that U(εY ◦F (f)) is a weak equivalence
since ηX is also a weak equivalence. Finally, because U covertebral, it reflects weak equiva-
lences (see Proposition 4.84 and Proposition 4.85), which implies that εY ◦ F (f) is a weak
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equivalence. Conversely, if εY ◦F (f) is a weak equivalence, then so is U(εY ◦F (f)) since U is
opcovertebral (see Proposition 4.87 and Proposition 4.88). Theorem 4.77 then implies that
f = U(εY ◦ F (f)) ◦ ηX is a weak equivalence. �

Example 4.96. Let K be a colimit sketch, C be a category and i : K → C be as defined in
Example 4.92. When C is cocomplete, the bicovertebral functor

C(i( ), ) : C →Mod(Kop)

has a left adjoint that is given by the following calculation.

Mod(Kop)
(
X( ), C(i( ), Y )

)
∼= Nat

(
X( ), C(i( ), Y )

)
∼=
∫
a∈K

Set
(
X(a), C(i(a), Y )

)
∼=
∫
a∈K
C
(
X(a)⊗ i(a), Y

)
∼= C

(∫ a∈K
X(a)⊗ i(a), Y

)
If the underlying system of vertebrae of Mod(Kop) is equipped with a spinal structure and
each component of the unit of the above adjunction is a weak equivalence in Mod(Kop), then
the functor C(i( ), ) defines a covertebral equivalence.

4.5. Everyday examples of vertebral and spinal categories

4.5.1. Set and higher category theory.

4.5.1.1. Sets. The category Set has an obvious discrete spinal category made of the following
reflexive vertebra.

∅

x

! //

!
��

1

δ1
��

1
δ2

// 1 + 1
β
// 1,

The structure of vertebral algebra follows from the ability of the above vertebra to frame two
copies of itself. The convergent conjugations are made of obvious diagrammatic constructions
using the arrows displayed above. It is worth noting that the spinal category made of the
above vertebra is not refined and the proof of Theorem 4.54 actually uses Lemma 2.64.
However, it may be turned into a strongly refined spinal category by considering the epi-
correction of its vertebral category, which is given by the following vertebra.

1 + 1

x

! //

!
��

1

!
��

1
!
// 1 1,

The last vertebra is equipped with the structure of a spine of degree 2 when endowed with
the base of the very first vertebra (as explained in Example 1.9).

4.5.1.2. Higher categories. The case of 1-categories, 2-categories as well as that of strict ω-
categories are the natural extensions of that of Set and have already been discussed in the
introduction. The spines and vertebra presented there are reflexive and admit convergent
conjugations for natural framing operations. The case of weak ω-groupoids and categories is
discussed in detailed in Chapter 6.
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4.5.1.3. Closed model structures. In section 1.1.2.3, a set of vertebrae was associated with
a closed model structure. Using the technics described in Example 3.4.2 with respect to
the weak factorisation system for the cofibrations and the acyclic fibrations, it is possible to
show that these vertebrae (see vertebra (1.7)) induce a vertebral category and even a spinal
category by taking the ‘extension’ of vertebra (1.7) to a spine as follows.

∅ ! // U

∅
!
// U

x

γ
//

γ

��

V

δγ1
��

V
δγ2

// V ∪U V
u

55
β
// I(γ)

u′ // V

4.5.2. Algebraic topology and abstract algebra.

4.5.2.1. Topological spaces. The category of topological spaces Top is equipped with a struc-
ture of strongly refined discrete spinal category made of the following reflexive vertebrae for
every n ∈ ω.

Vn := Sn−1 γn
//

γn

��

x

Dn

δn1
��

Dn
δn2

// Sn
γn+1

// Dn+1

The case of this category is further discussed in Chapter 6.

4.5.2.2. Simplicial sets. The category of simplicial sets sSet is equipped with an obvious
structure of spinal category arising from the class of reflexive vertebrae E defined in Example
2.4.2.4 and discussed in both Example 2.4.2.4 and Example 3.4.2.

4.5.2.3. Chain complexes. Let R be a ring. The category of non-negatively graded chain com-
plexes ChR is equipped with a structure of spinal category arising from the class containing
the following reflexive nodes of vertebrae for every n ∈ ω and δ ∈ {0, 1} (see section 2.4.3.4
for the notations).

0

!
��

! //

x

Dn

��

Dn
// Sn

βn(δ)
// Dn(δ)

This spinal category may be shown to be refined by Lemma 2.64 (see section 2.4.3.4 for more
details). It is however not strongly refined.





Chapter 5

Construct of
Homotopy Theories

5.1. Introduction

We saw in Chapter 1 as well as in Chapter 4 via the notions of saturation and epi-correction
that weak equivalences could be characterised by surtractions. Specifically, in the case of a
discrete system of vertebrae (C, A,A′, E), a weak equivalence is an object f : X → Y in C2

that has the right lifting property with respect to all the diskads of the vertebrae in ObjL(E).

(5.1) S
γ

  
γ

��

x // X
f

  

D

β◦δ2

��

y
// Y

D

β◦δ1   

>>

D′

∃

>>

⇔ S
γ

  
γ

��

x // X
f

  

��

D

β◦δ2

��

y
// Y

��

D

β◦δ1   

>>

// 1

  

D′

>>

// 1

From this characterisation of weak equivalences in terms of right lifting property, it is
tempting to try to see there is a vertebra in C2 for which the weak equivalences are the fibrant
objects for this vertebra, namely the object f of C2 such that the canonical arrow f ⇒ 1 is
a fibration for that vertebra – provided that C2 has a terminal object 1. The answer may be
given by all sorts of vertebrae. There are however two canonical vertebrae that only use the
data given by the initial vertebra in C (see diagrams below).

·
γ

//

γ′

��

·

δ2

��

· ·

γ

@@

· δ1 // ·
β

// ·

·

γ′
@@

·
γ′

//

δ1◦γ′
@@

·
β◦δ1

@@

·
γ

//

γ′

��

·

δ2

��

·

γ′

��

·

γ′

��

γ

@@

· δ1 // ·
β

// ·

· ·
δ1

@@

·
β◦δ1

@@

205
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The problem with such vertebrae is that if the vertebra v := ‖γ, γ′‖ · β is reflexive, then the
above-displayed ones are not necessarily so. We may only transport the reflexive structure
of v when considering the previous diagrams for the dual vertebra vrv. In this case, only the
vertebra on the right will be reflexive. The left vertebra is reflexive when the seed γ of v
(or coseed of vrv) is a split monomorphism, which never happens in practice. This therefore
prevents the construction of a vertebral category in C2 by using the preceding pair1. A first
idea would be to remove the vertebra on the left, but this would prevent the definition of a
source hinge for a vertebral algebra2. The solution is to construct these vertebrae in Cω –
instead of C2 – to shift the structure of the left vertebra so that the seeds of the vertebrae
resulting from the right one run over the seeds of the vertebrae resulting from the left one,
allowing these to not be reflexive. The information spreading beyond C2 within the category
Cω will later be recovered by the notion of cohesion (see section 5.3.2.5).

The goal of section 5.3 will be to formalise the previous construction and extract from
‘good’ vertebral categories in C a structure of vertebral category in Cω where the fibrant
objects will be the sequences of arrows whose successive compositions from 0 to any ordinal
in ω are weak equivalences. This property will be used to characterise the general notions
of sheaves, models for a sketch, spectra and even flabby sheaves (for sheaf cohomology) as
fibrant objects in Cω by embedding the descent condition expressed in C2 into the category
Cω.

X
f
// Y 7→ X

f
// Y Y Y Y . . .

Such a characterisation will require us to generalise the notions of Grothendieck’s pretopology
and sketch to that of croquis (see section 5.3.1.2). The embedding C2 ↪→ Cω will enable us
to fetch the homotopical properties living in Cω to the categories of presheaves, prespectra
and so on and see the sheaves, spectra and so on in terms of fibrant objects (see section 5.5).
The proposed method obviously paves the way for the characterisation of weaker objects such
as stacks, (∞, n)-stacks and even strong stacks (see [31]). This prospect is briefly discussed
in section 5.3.2.9 in comparison to the model structures of [30] and the systems of fibrant
objects of [37].

The transport of spinal structures from C to the functor category Cω is more subtle and is
not treated. Its treatment is somewhat cumbersome due to the need of the notion of alliance
(see Chapter 1 at the end of section 1.1.2.4) and would thus require its own chapter. Future
work will aim at writing up the whole structure in detail.

Lastly, the right lifting property of (5.1) suggests that we could use Quillen’s small object
argument [38] to construct sheafification, stackification, spectrumification functors or even
Godement replacements. Such an argument would require us to produce a functor F :
D → C such that some of the morphisms that it induces in C2 (i.e. the morphisms for the
descent conditions) satisfy a right lifting property with respect to the diskads of a certain
set of vertebrae. In this respect, section 5.4 will provide a generalisation of the small object
argument processing a morphism of functors (i.e. the unit of the reflection) at two different
levels:

- a ‘usual’ small object argument in CD;

- a generalised small object argument in C2 conditioning the usual one;

1By definition of a vertebral category, because the seeds of the vertebrae are different, they both need to be
reflexive.

2The need of the right vertebra is substantial since there is no possible communication between the seed and coseed
of two copies of the left vertebra, at least when one only requires the use of the data provided by the initial vertebrae

in C.
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The idea behind the new argument is to start with a (collection of) commutative cube as
the one given below on the left, wherein the symbol D stands for the descent data of a
certain descent condition. Then, applying a ‘functorial’ small object argument on its back
face produces a functor N1 : D → C and an arrow π1 : D2 → N1(U) factorising the left
diagram into the diagram of non-dotted arrows given on the right.

S

γ

��

//

γ′   

F (U)

##

��

D1

β◦δ1

��

// D(F )

��

D2

β◦δ2   

// G(U)

##

D′
y

// D(G)

S

γ

��

//

γ′   

F (U)

$$

��

D1

β◦δ1

��

// D(F )

��

N1(U)

�� $$

D2

π1

66

β◦δ2   

// G(U)

$$

D(N1)

��

D′
y

//

?

55

D(G)

The problem is that the usual small object argument does not provide the dotted filler of the
preceding right diagram as the descent data D( ) does not generally commute with pushouts.
To obtain such a lift, we will need to force the next step of the small object argument to
make it appear. Later on, this forcing will take the form of a modifier (see section 5.4.4.2)
that will influence the ‘functorial’ small object argument in the second step.

Specifically, we will use the pushout of the vertebra that appears in the previous right com-
mutative cuboid (see the following left cuboid) to form a collection of commutative squares
of the form given below on the right, where ε represents a natural transformation coming
along with D( ). These squares exactly represent the ‘local obstruction at V ’ preventing the
descent data from commuting with pushouts.

F (U) // D(F )

��

S

<<

γ′
//

γ

��

D1

||
β◦δ1

��

<<

D(N1)

��

S′

β

""

h 66

D(G)

D2

<<

β◦δ2 // D′

y
<<

⇒

S′

β
��

h // D(N1)

��

εV // N1(V )

��

D′
y
// D(G)

εV
// G(V )

Putting these ‘obstruction squares’ in the set of squares to be factorised in the next step of
the ‘usual’ small object argument will allow us to obtain a commutative diagram as given
below on the left. Inserting this diagram in the preceding left cuboid will then allow us to
form the wanted lift up to shifting of the pushout N1 to that of the second step (as shown
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below, on the right).

S′

β

��

// D(N1)

��

zz

D(N2)

$$

D′
D($1)

<<

y // D(G)

⇒

F (U) // D(F )

��

S

<<

γ′
//

γ

��

D1

||
β◦δ1

��

<<

D(N2)

��

S′

β

""

D(G)

D2

<<

β◦δ2 // D′

D($1)

EE

y

<<

Continuing this process to a certain limit ordinal will finally enable us to produce a factorisa-
tion of the form F ⇒ N ⇒ G in CD where the right-hand arrow will satisfy some fibrational
property in C2 while the left-hand arrow will satisfy componentwise left lifting properties in
C (see Theorem 5.83). In the case where G is a terminal object in CD, the functor N : D → C
will satisfy the wanted descent conditions. The universal properties associated with the arrow
F ⇒ N may be unravelled when further specifying the properties satisfied by our vertebrae3.

In terms of interpretation, forming the pushout N1 corresponds to the process of adding
‘gluings’ to F while adding the obstruction square to the next step of the argument corre-
sponds to the process of quotienting the gluings that have been added too many times in
N1. Future work will aim at using this algorithm to obtain a combinatorial description of the
reflection associated with the category of Grothendieck’s ∞-groupoids and thus characterise
the colimits living there.

The inductive process that produces the factorisation F ⇒ N ⇒ G is more general than
that used in the usual small object argument. Of course, it recovers the usual argument by
taking degenerate vertebrae in the algorithm, but it will need to be generalised in various
aspects. First, the usual notion of ‘small object’ will not be sufficient and the notion of
convergent functor (see section 5.2.1.1) will be used instead. In addition, the usual pushouts
will need to be replaced with weaker pushouts. This type of information will be carried
by the notion of narrative (see section 5.4.2.1). Finally, we will introduce the notion of
constructor (see section 5.4.3.2) to formally describe the algorithm described above. The
notion of constructor will then give rise to a pair of narratives that will recover the preceding
construction.

We will finish the chapter (see section 5.5) by briefly discussing the construction of homo-
topy theories for sheaves, spectra and so on via the notions of vertebral and spinal theories.
The consideration of the preceding small object argument will provide us with the usual fac-
torisation axioms in order to define model categories and categories of fibrant objects. This
section will be the appropriate place to discuss the construction of model categories in detail.

5.2. Preparation

5.2.1. Functors with properties.

3This is reminiscent of some combinatorial difficulty appearing in the usual small object argument when proving

that one of arrow must be an acyclic cofibration
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5.2.1.1. Convergent functors. Let κ be a limit ordinal in O and C be a category. Denote by
ικ the inclusion functor O(κ) ↪→ O(κ + 1). For any class of objects of C, say G, a functor
F : O(κ+1)→ C will be said to be G-convergent in C if for every object D in G, the canonical
function

colO(κ)C(D, F ◦ ικ( ))→ C(D, F (κ))

is an isomorphism in Set. If the class G turns out to be a singleton {D}, the functor will
more explicitly be said to be D-convergent.

Let now T and S denote two small categories and G : T → C be a functor. A functor
F : O(κ + 1) → CS will be said to be uniformly G-convergent in C if for every object s in S

and object t in T, the canonical function

colO(κ)C(G(t), F ◦ ικ( )(s))→ C(G(t), F (κ)(s))

is an isomorphism in Set. In other words, the evaluation of F at an object s in S is {G(t) | t ∈
Obj(T)}-convergent.

Lemma 5.1. Let T and S be two small categories such that |T| ≤ κ and C be a category. Let
G : T→ C be a functor and consider a uniformly G-convergent functor F : O(κ+ 1)→ CS in
C. For any pair of functors g : CS → CT and ĝ : SetS → SetT satisfying a natural isomorphism
(in the variables X, Y and t) of the form

(5.2) C
(
X, g(Y )(t)

)
∼= ĝ
(
C(X,Y ( ))

)
(t)

where ĝ : SetS → SetT commutes with colimits over O(κ), the composite functor g ◦ F :
O(κ+ 1)→ CT is G-convergent in CT.

Proof. The following series of natural isomorphisms proves the statement. The combinatorial
subtlety of the theorem resides in the use of Proposition 1.23. Remark 1.24 is implicitly used
from one line to another.

CT(G, g ◦ F (κ)) ∼=
∫
t∈T
C
(
G(t), g ◦ F (κ)(t)

)
(Example 1.22)

∼=
∫
t∈T

ĝ
(
C
(
G(t), F (κ)( )

))
(t) (Equation (5.2))

∼=
∫
t∈T

ĝ
(

colO(κ)C
(
G(t), F (ικ( ))( )

))
(t) (Uniform conv.)

∼=
∫
t∈T

colO(κ)ĝ
(
C
(
G(t), F (ικ( ))( )

))
(t) (Hyp. on ĝ)

∼= colO(κ)

∫
t∈T

ĝ
(
C
(
G(t), F (ικ( ))( )

))
(t) (Prop. 1.23 & 1.29)

∼= colO(κ)

∫
t∈T
C
(
G(t), g(F ◦ ικ( ))(t)

)
(Equation (5.2))

∼= colO(κ)CT(G, g ◦ F ◦ ικ( )) (Example 1.22)

This last isomorphism shows that g ◦ F is G-convergent in CT. �

The next remarks show different uses of Lemma 5.1. In particular, the remarks give a
first taste of the type of mathematical tool that will be used later on.

Remark 5.2. Lemma 5.1 can be used to show that if a functor F : O(κ+1)→ CT is uniformly
G-convergent in C and the inequality |T| ≤ κ holds, then the functor F : O(κ + 1) → CT is
G-convergent in CT. Precisely, this implication follows from Lemma 5.1 by taking the set S

to be T, the functor g to be the identity idCT and the functor ĝ to be the identity idSetT . The
assumptions of Lemma 5.1 are obviously satisfied in this case.
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Remark 5.3. It follows from Lemma 5.1 that if a functor F : O(κ + 1) → C is uniformly
G-convergent in C, then F : O(κ+1)→ C is colT(G)-convergent in C. Specifically, this follows
from the fact that ∆T commutes with hom-sets (see section 1.2.1.36) and the following series
of isomorphisms.

C(colTG,F (κ)) ∼= CT(G,∆T(F (κ))) (adjointness)

∼= colO(κ)CT(G,∆T ◦ F ◦ ικ( )) (Lemma 5.1)

∼= colO(κ)C(colTG,F ◦ ικ( )) (adjointness)

Remark 5.4. For any small category A satisfying the inequality |A| ≤ κ such that the
adjunction limA a ∆A holds in C, Lemma 5.1 may be applied to the choices T := 1, S := A,
g := limA : CA → C and ĝ := limA : SetA → Set. Equation (5.2) is then proven at the
beginning of section 1.2.1.36. The fact that ĝ( ) : SetA → Set commutes with colimits over
O(κ) follows from Proposition 1.29. In this case, Lemma 5.1 states that for every uniformly
D-convergent functor F : O(κ + 1) → CA in C, where D is an object of C, the following
isomorphism holds.

C(D, limAF (κ)) ∼= colO(κ)C(D, limA ◦ F ◦ ικ( ))

Remark 5.5. Consider a small category A satisfying the inequality |A| ≤ κ such that the
adjunction limA a ∆A holds in C. Denote by η the unit of the adjunction limA a ∆A. By
section 1.2.1.19, the unit η may be seen as a functor C → C2 mapping an object X to ηX .
Lemma 5.1 may be applied to the choices T := 2, S := 1, g := η : C → C2 (the unit η in
C) and ĝ := η : Set → Set2 (the unit η in Set). Equation (5.2) is then proven at the end
of section 1.2.1.36. The fact that ĝ : Set → SetT commutes with colimits over O(κ) follows
from Proposition 1.30. In this case, Lemma 5.1 states that for every uniformly γ-convergent
functor F : O(κ+1)→ C in C, where γ : S→ D is an object of C2, the following isomorphism
holds.

C2(γ, ηF (κ)) ∼= colO(κ)C2(γ, η ◦ F ◦ ικ( ))

Remark 5.6. Remark 5.4 and Remark 5.5 may be extended as follows. First, consider a
small category A satisfying the inequality |A| ≤ κ such that the adjunction limA a ∆A holds
in C. Denote by η the unit of the adjunction limA a ∆A. Then, consider a small category D
as well as a cone r : ∆A(d)⇒ U in DA where d is an object of D and U is a functor A→ D.
Now, take T to be 2, S to be D, g : CD → C2 to be the obvious functor mapping an object
P : D → C of CD to the arrow

P (d)
ηP (d)

// limA∆A(P (d))
limAPr// limAP ◦ U

and ĝ : SetD → Set2 to be the version of g when C is taken to be Set. Equation (5.2) is
proven from the results of section 1.2.1.36. The fact that ĝ : SetD → SetT commutes with
colimits over O(κ) follows from Proposition 1.30 and Proposition 1.29. In this case, Lemma
5.1 states that for every uniformly γ-convergent functor F : O(κ + 1) → CD in C, where
γ : S→ D is an object of C2, the following isomorphism holds.

C2(γ, g(F (κ))) ∼= colO(κ)C2(γ, g ◦ F ◦ ικ( ))

Remark 5.7. Remark 5.6 may further be extended. First, consider a small category A
satisfying the inequality |A| ≤ κ such that the adjunction limA a ∆A holds in C. Denote by
η the unit of the adjunction limA a ∆A. Then, consider a small category D as well as a cone
r : ∆A(d) ⇒ U in DA where d is an object of D and U is a functor A → D. Now, take T

to be 2, S to be 2 × D, g : (CD)2 → C2 to be the obvious functor mapping any morphism
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θ : P ⇒ P ′ of CD to the arrow

P (d)
ηP (d)

// limA∆A(P (d))
limAPr//

limA(θU?Pr)

((

limAP ◦ U
limAθU// limAP

′ ◦ U

and ĝ : (SetD)2 → Set2 to be the version of g when C is taken to be Set. Equation
(5.2) is again proven from the results of section 1.2.1.36. The fact that ĝ : (SetD)2 → SetT

commutes with colimits over O(κ) follows from Proposition 1.30 and Proposition 1.29. In this
case, Lemma 5.1 states that for every uniformly γ-convergent functor F : O(κ+ 1)→ (CD)2

in C, where γ : S→ D is an object of C2, the following isomorphism holds.

C2(γ, g(F (κ))) ∼= colO(κ)C2(γ, g ◦ F ◦ ικ( ))

Example 5.8. Let κ be a limit ordinal in O and A be a colimit sketch whose chosen colimits
are defined above diagrams of the form x : I → A where I has cardinality less than or equal
to κ. This last assumption implies that any colimit over the category O(κ) in Mod(Aop) is
computed, componentwise, in Set (see Proposition 1.29). It then follows from the Yoneda
Lemma that any functor F : O(κ+ 1)→Mod(Aop) that satisfies the equation

F (κ) ∼= colO(κ)F ◦ ικ
is uniformly convergent in Mod(Aop) with respect to the functor A( , ) : A → Mod(Aop).
More specifically, the Yoneda Lemma implies the following series of isomorphisms for every
object a in A.

Mod(Aop)(A( , a), coli∈O(κ)Fi( )) ∼=
(
coli∈O(κ)Fi( )

)
(a)

∼= coli∈O(κ)Fi(a)

∼= coli∈O(κ)Mod(Aop)(A( , a), Fi( ))

5.2.1.2. Sequential functors. Let κ be some ordinal in O and C be a category admitting for
every limit ordinal α in O(κ + 1) colimits over the ordinal category O(α). For any limit
ordinal α in O(κ + 1), denote by ια the restriction functor O(α) ↪→ O(κ + 1). A functor
F : O(κ + 1) → C will be said to be sequential if for any limit ordinal α in O(κ + 1), the
object F (α) may be identified with a colimit of the functor F ◦ ια such that the collection of
morphisms

{ F (k < α) : F (k)→ F (α) }k∈α
that induces a natural transformation of type

F ◦ ια ⇒ ∆O(α)(F (α)) or F ◦ ια ⇒ ∆O(α)(colO(α)F ◦ ια)

over O(α) corresponds to the unit of the adjunction colO(α) ` ∆O(α) evaluated at the com-
posite functor F ◦ ια.

The next proposition is a well-known result.

Proposition 5.9. If a morphism f : X → Y has the rlp with respect to every arrow F (k <
k + 1) for every k ∈ κ, then f has the rlp with respect to the arrow F (0 < k) for every
k ∈ κ+ 1.

Proof. Follows from a transfinite induction using Proposition 1.33. �

5.2.1.3. Coretractive functors. Let C and D be two categories. A functor U : C → D will be
said to be coretractive if it is equipped with a retraction R : D → C.

5.2.2. Universal shiftings.
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5.2.2.1. Universal shifting and cylindanias. Let A0 and A1 be two small categories and C be
a complete category. Recall that any functor a : A1 → A0 induces a pre-composition functor
whose rules on objects and morphisms are defined as follows.

◦ a :

 CA0 → CA1

F 7→ F ◦ a
θ : F ⇒ G 7→ θa : Fa⇒ Ga


Because C is complete, the following composition of functor exists.

CA0

lima

66
◦a // CA1

limA1 // C

The short notation lima will later be conventional. It follows from the structure of the
adjunctions

C
∆A0 //
⊥ CA0

limA0

oo and C
∆A1 //
⊥ CA1

limA1

oo

that any object F in CA0 may be associated with the following canonical arrows.

(counit)
(post-comp. with a)

(unit)

∆A0 limA0 F ⇒ F

∆A1 limA0 F ⇒ F ◦ a
limA0 F → limA1 F ◦ a

in CA0

in CA1

in C
In particular, the last arrow induces a natural transformation

ua : limA0 ⇒ lima

valued in C over CA0 . This arrow will later be referred to as a universal shifting.

Remark 5.10. By universality, it is not hard to show that for any commutative diagram of
functors of the form

(5.3) A1
a // A0

A′1
a′ //

F1

OO

A′0

F0

OO

the following diagram commutes in C for any functor P : A0 → C.

limA0P
ua(P )

//

uF0
(P )

��

limA1P ◦ a

uF1
(P◦a)

��

limA′0
P ◦ F0

ua′ (P◦F0)
// limA′1

P ◦ a ◦ F1

Note that the above commutative square shows a semblance of functoriality with respect to
diagram (5.3).

In regard to the previous remark, the rest of the section addresses the question whether
there exists a category on which the natural transformation ua( ) may somehow be seen as
a functor in a : A0 → A1. The answer is positive when one considers the following category.
Fix a complete category C and denote by Cylia(C) the category whose objects are pairs (a, P )
where a is a functor in Cat(1) and P is a functor composable with a as follows

A1
a // A0

P // C

and whose morphisms from A1
a→A0

P→C to A′1
a′→A′0

P ′→C are triples (F0, F1, t) where F0 :
A′0 → A0 and F1 : A′1 → A1 are functors in Cat(1) such that the equality a ◦ F1 = F0 ◦ a′
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holds and t is a natural transformation of the form P ◦ F0 ⇒ P ′. These data provide the
following diagram.

A1
a // A0

P //

⇒ t

C

A′1
a′ //

F1

OO

A′0
P ′ //

F0

OO

C
The composition of the morphisms is the obvious one, that is to say that given by the following
compositions of functors and natural transformations.

(F ′0, F
′
1, t
′) ◦ (F0, F1, t) = (F0 ◦ F ′0, F1 ◦ F ′1, t′ ◦ (tF0))

The object of Cylia(C) will be called cylindania4. Now, it is not hard to see that there is a
metafunction from the objects of Cylia(C) to the objects of C2 mapping a pair (a, P ) to the
arrow

ua(P ) : limA0(P )→ lima(P )

and an arrow (F0, F1, t) : (a, P )⇒ (a′, P ′) to the outer commutative square of the following
commutative diagram.

limA0P
ua(P )

//

uF0
(P )

��

limA1P ◦ a

uF1
(P◦a)

��

limA′0
P ◦ F0

ua′ (P◦F0)
//

limA′0
t

��

limA′1
P ◦ a ◦ F1

limA′1
ta′

��

limA′0
P ′

ua′ (P
′)

// limA′1
P ′ ◦ a′

The top square commutes by Remark 5.10 and the bottom square commutes by naturality
of ua′ . The functorality of the mapping (a, P ) 7→ ua(P ) then follows from the naturality and
universality of the morphisms ‘u’ on both sides.

5.2.2.2. Universal shifting for colimits. As in the case of limits, colimits admit universal
shiftings. In this section, some hypotheses and notations might be different from that given
in section 5.2.2.1 due to the different treatment given to limits and colimits in the sequel.
Let S and T be two small categories and C be a category that admits colimits over S and T.
As in section 5.2.2.1, define, for every functor i : T→ S, the following composite functor.

CS

coli

77
◦i // CT colT // C

The short notation coli will later be conventional. It then follows from the structure of the
adjunctions

CS
colS //
⊥ C
∆S

oo and CT
colT //
⊥ C
∆T

oo

that any object F in CS may be associated with the following canonical arrows.

(unit)
(post-comp. with i)

(counit)

F ⇒ ∆ScolS F

F ◦ i ⇒ ∆TcolS F

colT F ◦ i → colS F

in CS
in CT
in C

In particular, the last arrow induces a natural transformation ξi : coli ⇒ colS valued in C
over CS. This arrow will later be referred to as a universal shifting.

4Name for a half cylinder.
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5.3. System of models for a croquis

5.3.1. Presheaves, prespectra and premodels.

5.3.1.1. Cylinders. Let D be a category. A face in the category D consists of a small category
A and a functor d : A → D in Cat(1). A cylinder (or morphism of faces) from a face
d0 : A0 → D to a face d1 : A1 → D consists of a functor a : A1 → A0 and a natural
transformation t : d0 ◦ a ⇒ d1 in D. A cylinder (a, t) : d0 ⇒ d1 may thus be represented by
the following picture.

A0

d0

��

⇒t
A1

aoo

d1

��

D D

The composition of cylinders is the obvious one, namely for two morphisms (a0, t0) : d0 ⇒ d1

and (a1, t1) : d1 ⇒ d2, the composition (a1, t1) ◦ (a0, t0) : d0 ⇒ d2 is given by the following
pair of compositions.

A0 A1
a1oo A2

a0oo d0 ◦ a0 ◦ a1
t0a1 +3 d1 ◦ a1

t1 +3 d2

The category of faces and cylinders will be denoted by Cyl(D).

Remark 5.11. This remark is made for future use and concerns the form of the morphisms
in the arrow category of Cyl(D). Explicitly, a morphism of the form (a, t) V (a′, t′) in
Cyl(D)2 consists of an equality of pasting of two cells as follows.

A0

⇒v0

⇒ t

>>
F0

oo a

d0

��

A1

d1

��

A′0

d′0

��

D
=

D

D D

=

A0

=

>>
F0

oo a
A1

⇒v1

d1

��

A′0

⇒t′d′0

��

oo a′
A′1

F1

>>

d′1

��

D

D D

More concisely, this means that the following diagrams commute.

A0 A1
aoo

A′0

F0

OO

A′0

F1

OO

a′
oo

d0F0a
′

v0a′

��

tF1 +3 d1F1

v1

��
d′0a
′

t′
+3 d′1

Remark 5.12. Let D be a small category. Remark 5.11 shows that there exists an obvious
functor Cyl(D)2 → Cylia(D) whose mapping on the object is defined as follows.

A0

d0

��

⇒t
A1

aoo

d1

��

D D

7→ A1
a // A0

d0 // D

Remark 5.13. The category of faces and cylinders induce a metafunctor Cyl( ) that maps
any category D to the category Cyl(D) and any functor P : D → C to the functor Cyl(P ) :
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Cyl(D)→ Cyl(C) that post-composes faces and cylinders in D with the functor P .

A0

d0

��

⇒t
A1

aoo

d1

��

D D

7→ A0

P◦d0

��

⇒Pt
A1

aoo

P◦d1

��

C C

By section 1.2.1.20, the functor Cyl(P ) obviously extends to a functor Cyl(D)2 → Cyl(C)2.

Remark 5.14. Denote by 1 a terminal object of Cat(1). There is an obvious functor
I1 : D → Cyl(D) mapping an object d of D to the following cylinder in D.

1

d
��

⇒ idd

1
!oo

d
��

D D

Note that the functor I1 : D → Cyl(D) is injective on objects, which implies that its image
is a category.

5.3.1.2. Croquis. Let D be a category. A croquis category or croquis5 in D consists of a small
subcategory K ⊆ Cyl(D)2 and a functor T : D → D equipped with two functors I1 : D → K
and T · : K → K making the following diagrams commute.

K

⊆
��

D
I1
//

I1

;;

Cyl(D)2

K

⊆
��

T · // K

⊆
��

Cyl(D)2

Cyl(T )
// Cyl(D)2

Such a structure will be denoted by a triple (D,K, T ). When the ambient category D is
obvious, the previous croquis will often be referred to as a pair (K,T ). Note that if the
functor T : D → D is the identity, then so is the functor T · : K → K. In this case, the
croquis will be denoted by (D,K) or K only.

Example 5.15 (Arrow categories). Let D be a small category and T : D → D be some
given endofunctor. The arrow category D2 may be seen as a croquis category via the functor
mapping an arrow t : d0 → d1 in D to the cylinder of the following form.

1

d0

��

⇒ t
1

!oo

d1

��

D D

When seen as a subcategory of Cyl(D)2, the category D2 will be denoted by Cr(D,T ). It
is straightforward to check that I1 : D → Cyl(D)2 lifts to a functor I1 : D → Cr(D,T ).
Similarly, the endofunctor T : D → D induces an endofunctor T · : Cr(D,T )→ Cr(D,T ).

Example 5.16 (Spectra). Let N denote the discrete subcategory of O(ω) containing all its
objects and succ : N→ N be the successor operation n 7→ n+ 1. Denote by I1(N) the image
of the functor I1 : N→ Cyl(N)2 (see Remark 5.14). The triple (N, I1(N), succ) then defines
a croquis in N. This croquis will later be used to characterise spectra.

5The word ‘croquis’ is another word for ‘sketch’ (from French).
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Example 5.17 (Sketches). Let S be a limit sketch. A chosen cone in S is a natural trans-
formation of the form t : ∆A(u) ⇒ v( ) on some small category A, which may also be seen
as a cylinder as follows.

1

⇒ tu
��

A
!oo

v
��

S S

The limit sketch S may thus be associated with the full subcateogry KS ⊆ Cyl(D)2 whose
objects are given by the cylinder of the above form. By definition of a sketch, the functor
I1 : S→ Cyl(S)2 lifts to KS, which shows that KS defines a croquis in S.

Example 5.18 (Grothendieck’s pretopologies). Let J denote a Grothendieck’s pretopology
on a small (opposite) category Dop. A covering family S = {vi → u}i∈A in Ju may be defined
as a natural transformation of the form t : ∆A(u) ⇒ v( ) in D over A. If one denotes by
A′ → Dop/d the stabilisation of S (see Remark 1.20), this cone gives rise to another cone
t′ : ∆A′(u)⇒ v′( ) in D over A′, which may be seen as a cylinder as follows.

1

⇒ tu
��

A′
!oo

v
��

D D

The Grothendieck’s pretopology J may be associated with the full subcateogryKJ ⊆ Cyl(D)2

whose objects are given by the cylinders of the preceding form. In particular, the identity
axiom of a Grothendieck’s pretopology forces the functor I1 : D → Cyl(D)2 to lift to KJ .
This shows that the pair (D,KJ) is a croquis.

Example 5.19 (Flabby pretopologies). Let J denote a Grothendieck’s pretopology on a
small (opposite) category Dop. The croquis that will later give rise to flabby sheaves and the
Godement’s resolution is the union of the two croquis (D,KJ) and Cr(D, idD). Precisely,
this croquis consists of the union of the two subcategories KJ and D2 in Cyl(D)2 equipped
with the identity functor id : KJ ∪D2 → KJ ∪D2 and the obvious functor I1 : D → KJ ∪D2.

5.3.1.3. Conical croquis. Let D be a category and (K,T ) be a croquis in D. A cylinder in
K will be said to be conical if the face encoding its domain is a terminal category. In other
words, the cylinder c has the following form.

1

⇒ t
d0

��

A
!oo

d1

��

S S

The face d0 of the cylinder c thus picks out a particular object d0 in D. This object will
be called the peak of c and denoted by peakK(c). A croquis (K,T ) in D will be said to be
conical if all its cylinders in K are conical. In this case, the operation peakK( ) induces a
(truncation) functor from K to D.

5.3.1.4. Cardinality of a croquis. Let D be a category and consider a croquis (K,T ) in D.
An elementary shape in (D,K, T ) is a small category A such that there exists a cylinder c in
K of the following form.

1

⇒ t
d0

��

A
!oo

d1

��

D D
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Because K is a small category, the class of elementary shapes of (D,K, T ) is a set, which will
be denoted by Es(K). The cardinality of a croquis (D,K, T ) is then given by the cardinal of
the coproduct of the small categories in Es(K).

|(K,T )| := |
∐

A∈Es(K)

A|

5.3.1.5. Domain, codomain and top functors for croquis. Let D be a small category and (K, s)
be a croquis in D. The restriction of the domain and codomain functors Cyl(D)2 → Cyl(D)
to K will later be denoted by domK and codK , respectively. Similarly, consider the functor
of arrow categories

top : Cyl(D)2 → (Cat(1)op)2

induced by the functor Cyl(D)→ Cat(1)op that maps a face d : A→ D to the small category
A and any cylinder of the following form to the functor a : A1 → A0.

A0

d0

��

⇒t
A1

aoo

d1

��

D D

We will denote by topK the restriction of top to K.

5.3.1.6. Premodels of a croquis. Let D be a small category, (K,T ) be a croquis in D and
C be a category. For any endofunctor R : C → C, an R-premodel of (K,T ) in C consists a
functor P : D → C that is equipped with a functor E : K → Cyl(C)2 making the following
diagrams commute.

Cyl(D)
Cyl(P )

// Cyl(C)

K
E //

domK

OO

codnK
��

Cyl(C)2

dom

OO

cod
��

Cyl(D)
Cyl(R◦P◦T )

// Cyl(C)

Cyl(D) Cyl(C)

K
E //

topK

OO

Cyl(C)2

top

OO

In other words, the functor E will map any morphism of cylinders (F, v) : (a, t)V (a′, t′) in
K, say of the form given in Remark 5.11, to a morphism in cylinder Cyl(C)2 as follows.

A0

⇒

Pv0

⇒E(t)

>>
F0

oo a

Pd0

��

A1

d1

��

A′0

Pd′0

��

C
=

C

C C

=

A0

=

>>
F0

oo a
A1

⇒RPTv1

RPTd1

��

A′0

⇒E(t′)
Pd′0

��

oo a′
A′1

F1

>>

RPTd′1

��

C

C C
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The above equality of diagrams is equivalent to saying the following diagram commutes in
CA′1 .

(5.4) Pd0F0a
′

Pv0a′

��

E(t)F1 +3 RPTd1F1

RPTv1

��
Pd′0a

′
E(t′)

+3 RPTd′1

A morphism of R-premodels of (K,T ) from (P,E) to (P ′, E) is given by any morphism
α : P ⇒ P ′ in CD that induces a natural transformation [α] : E ⇒ E′ such that the
evaluation of [α] at a cylinder (a, t) : d0 ⇒ d1 in K is given by a morphism in Cyl(C)2 of the
following form.

(5.5)

A0

d0

�� ⇒E(t)

A1
aoo

d1

��

A0

d0

��

D

⇒

α

P

��

D

R◦P◦T

��

D

P ′

��

C C

C C

=

A0 A1
aoo

d1

��

A0

d0

��
⇒E′(t)

A1
aoo

d1

��

D

⇒

RαT

R◦P◦T

��

D

P

��

D

R◦P ′◦T

��

C

C C
The above equality of diagrams is equivalent to saying the following diagram commutes in
CA′1 .

(5.6) Pd0a
E(t) +3

αd0a
��

RPTd1

RαTd1

��
P ′d0a

E′(t)
+3 RP ′Td1

The category whose objects are R-premodels of K in C and whose morphisms are the mor-
phisms of premodels between them will be denoted by PmC(K,R, T ).

5.3.1.7. Natural premodels. Let D be a small category and C be a category. For any pair of
endofunctors R : C → C and T : D → D, denote by NpC(D,R, T ) the category whose objects
are pairs (P, e) where P is a functor of type D → C and e is a natural transformation P ⇒
RPT and whose morphisms, say of the form (P, e) ⇒ (P ′, e′), are natural transformations
α : P ⇒ P ′ for which the following diagram commutes.

(5.7) P
α +3

e
��

P ′

e′

��
R ◦ P ◦ T

RαT
+3 R ◦ P ′ ◦ T

The goal of this section is to show that there exists a coretractive inclusion of the following
form.

U : NpC(D,R, T ) ↪→ PmC(K,R, T )
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The functor U is defined as follows. Any object (P, e) in NpC(D,R, T ) is mapped to an R-
premodel (P, [e]) where the functor [e] : K → Cyl(C)2 is the obvious functor post-composing
a cylinder in K with the natural transformation e : P ⇒ R ◦ P as follows.

A0

d0

��

⇒t
A1

a0oo

d1

��

D D
7→

A0

d0

��

⇒t
A1

a0oo

d1

��

D

P
��

⇒e
D

R◦P◦T
��

C C

It is then easy to induce the mapping on the morphisms since every commutative diagram of
the form (5.7) may be used to define a commutative diagram of the form (5.5) with respect
to the above mapping on objects.

The retraction V : PmC(K,R, T )→ NpC(D,R, T ) associated with U is defined as follows.
An R-premodel (P,E) is mapped to the pair (P,E ◦ I1) where the composite E ◦ I1 maps an
object d of D to a cylinder as follows.

1

P (d)
��

⇒E0(idd)

1

RPT (d)
��

C C

Such a cylinder provides a morphism E(idd) : P (d) ⇒ RPT (d) in C that is natural in d by
functoriality of E. In other words, the composite E ◦ I1 : D → Cyl(C)2 encodes a natural
transformation of the form P ⇒ R◦P ◦T . The mapping on the morphisms is the obvious one
since diagram (5.6) shows that any morphism α : (P,E) ⇒ (P ′, E′) of R-premodels makes
the following diagram commute for every object d of D.

P (d)
E0(idd) +3

αd
��

R ◦ P ◦ T (d)

RαT (d)

��
P ′(d)

E′0(idd)
+3 R ◦ P ′ ◦ T (d)

Example 5.20 (Functors). The category of functors from a small category D to a category
C corresponds to the full subcategory of NpC(D, idC , idD) whose objects (P, e) are such that
the natural transformation e : P ⇒ P is an identity.

Example 5.21 (Presheaves). The category of presheaves over a category Dop corresponds
to the full subcategory of NpSet(D, idSet, idD) whose objects (P, e) are such that the natural
transformation e : P ⇒ P is an identity.

Example 5.22 (Prespectra). If Ω : pTop → pTop denotes the loop space functor on the
category of pointed topological spaces and succ denotes the successor operation n 7→ n + 1
on N, then the category of prespectra is exactly NpTop(N,Ω, succ).

5.3.1.8. Categories of premodels. Let D be a small category, (K,T ) be a croquis in D and C
be a category. For any given endofunctor R : C → C, a category of R-premodels over (K,T )
is a subcategory of the category PmC(K,R, T ).

Example 5.23. Prespectra, functors and presheaves on a site are examples of such categories
(see Example 5.22, Example 5.20 and Example 5.21)
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5.3.1.9. Categories of premodels to functor categories. Let D be a small category, (K,T ) be
a croquis in D and C be a complete category. For any given endofunctor R : C → C in C,
consider a subcategory P ⊆ PmC(K,R, T ). The goal of this section is to define a functor
GlK : P → (C2)K (where Gl stands for the word ‘gluing’).

For every object (P,E) in P, the object GlK(P,E) in (C2)K is given by the functor
K → C2 that maps any cylinder in K of the form given on the left to an arrow in C of the
form given on the right.

A0

d0

��

⇒t
A1

a0oo

d1

��

D D

7→ limA0 Pd0
ua(Pd0)

// limA1 Pd0a
limA1

E(t)
// limA1 RPTd1

The mapping on the arrows of K is deduced from those of the functors ua, E, Cyl(P ) and
Cyl(R◦P ◦T ). Specifically, a morphism of cylinders (F, u) : (a, t)V (a′, t′) of the form given
in Remark 5.11 will be mapped to the following commutative diagram.

limA0 Pd0
ua(Pd0)

//

uF0
(Pd0)

��

limA1 Pd0a

uF1(Pd0a)

��

limA1
E(t)

// limA1 RPTd1

uF1
(RPTd1)

��

limA′0
Pd0F0

ua′ (Pd0F0)
//

limA′0
Pv0

��

limA′1
Pd0F0a

′
limA′1

E(t)F1

//

limA′1
Pv0a′

��

limA′1
RPTd1F1

limA′1
RPTv1

��

limA′0
Pd′0

ua′ (Pd0)
// limA′1

Pd0a
′

limA′1
E(t′)

// limA′1
RPTd′1

The commutativity of the top-left square follows from Remark 5.10, that of the top-right
squares follows from naturality of uF1 , that of the bottom-left square follows from the natu-
rality of the universal shifting ua′0 and that of the bottom-right square follows from diagram

(5.4).

For every morphism α : (P,E)⇒ (P ′, E′), the arrow

GlK(α) : GlK(P,E)⇒ GlK(P ′, E′)

is given by a natural transformation in C2 over K whose components above a cylinder (a, t) :
d0 ⇒ d1 in K is encoded by the following morphism in C2.

limA0 Pd0

limA0
αd0

��

ua(Pd0)
// limA1 Pd0a

limA1 αd0a

��

limA1
E(t)

// limA1 RPTd1

limA1
RαTd1

��

limA0 P
′d0

ua(P ′d0)
// limA1 P

′d0a
limA1

E′(t)
// limA1 RP

′Td1

The commutativity of the left square follows from naturality of ua while that of the right
square follows from diagram (5.6).

Proposition 5.24. In the case where the category P is equal to CD, the functor GlK is
coretractive.

Proof. Let us show that the functor GlK : P → (C2)K admits a retraction (C2)K → P when
P is equal to CD. This follows from the fact that for every object G in (C2)K provides a
functor domC ◦G ◦ I1 : D → C. The statement follows from the fact that for every premodel
(P, e) in CD, the composite functor

D
I1 // K

GlK(P,[e])
// C2 domC // C
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may be identified with the functor P : D → C. This shows that the functor GlK : P → (C2)K

admits a retraction (C2)K → P when P is equal to CD. �

5.3.2. System of models for a croquis.

5.3.2.1. Combinatorics for omega-functors. Let C be a category and n be some non-negative
integer. For every finite sequence of n + 1 arrows {fi : Xi → Xi+1}0≤i≤n in C and every
increasing6 sequence of n+ 1 integers {xi}0≤i≤n, we shall denote by

(5.8) [x0]f
[x1]
0 f1 . . .

[xn]fn

the functor O(ω) → C mapping the arrow xi → xi + 1 to the arrow fi : Xi → Xi+1 and
all the other arrows to identities on the objects X0, X1, . . . Xn and Xn+1 in the obvious way.
Even though the mapping is clearly not defined at the arrow xi → xi + 1 where xi ≤ −1,
the notation of (5.8) will still be relevant for such values. For the sake of convenience, it will
later come in handy to denote formula (5.8) as follows when x0 = x1 − 1.

[·]f
[x1]
0 f1 . . .

[xn]fn

A morphism in Cω of the form

[x0]f
[x1]
0 f1 . . .

[xn]fn ⇒ [x0]f
[x1]
0 f1 . . .

[xn]fn

is always determined by an arrow e : X0 → Y0 and a sequence of arrows {ei : Xi+1 →
Xi+1}0≤i≤n making the following diagrams commute.

X0
f0
//

e

��

X1

e0
��

Y0
g0
// Y1

Xi
fi
//

ei−1

��

Xi+1

ei
��

Yi
gi
// Yi+1

Such a morphism will later be denoted as a sequence of the form given below on the left, if
e is not an identity and of the form given on the right otherwise.

(5.9) |·e|x0e0
|x1e1 . . .

|xnen
|x0e0

|x1e1 . . .
|xnen

Of course, the composition for such a notation is componentwise. A very important point
to remember about the previous notations is that morphisms as in (5.9) are equal to the
following morphisms for every xn+1 > xn, respectively.

|·e|x0e0
|x1e1 . . .

|xnen
|xn+1en

|x0e0
|x1e1 . . .

|xnen
|xn+1en

In order to make the above notations less cumbersome, we shall also forget the symbols
of composition as often as possible; .e.g an object [s]γ[r]β ◦ δ2 for some s < r will instead
be denoted as [s]γ[r]βδ2 while the composition rule will be written in the form (|x0e0

|x1e1) ◦
(|x0h0

|x1h1) = |x0e0h0
|x1e1h0. We shall also denote by 1 any identity morphism used in the

notation (5.9).

The previous language will be applied in the context of vertebrae in section 5.3.2.4, but
before before doing so, we will need to introduce some terminology, which justifies the next
two sections (i.e. section 5.3.2.2 and section 5.3.2.3) whose content is quite unrelated to the
present section.

5.3.2.2. Semi-communications. Let C be a category. A semi-communication in C is a com-
munication (κ, %) : γ  γ′ living in the category Com(C) whose spherical transition κ is an
identity morphism of C.

6In the strict sense.
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5.3.2.3. Semi-direct vertebral algebras and categories. Let C be a category. A vertebral alge-
bra (E,η) defined along source and target hinges h0, h1 : ObjR(E) → ObjL(E) will be said
to be semi-direct if it involves algebraic operations

Σ0E(γ, γ∗)× Σ1E(γ∗, γ
′
[)→ Σ?E(γ, γ′[)

mapping any pair of extended nodes of vertebrae n : γ  ν and n∗ : γ∗  ν∗ to an extended
node of vertebrae of the form n• : γ  ν• where n• frames the pair n and n∗ along a given
semi-communication (id, %) : γ′  γ∗ between n and n∗.

Remark 5.25. Because, in the previous case, the E-seed h1(n∗) is determined by the coseed
of ν∗, the algebra structure of (E,η) is equivalent to only specifying the source hinge h0 and
a mapping

(5.10) (n, n∗) 7→ (id, %(n, n∗)) : η(n) h0(n)

defined for any pair of extended nodes of vertebrae (n, n∗) such that the seed η(n∗) equals
h0(n) and the communication allows a framing of n and n∗. The mapping given in (5.10) will
later be referred to as an extensive communication for (E,η).

In the sequel, a vertebral category whose underlying vertebral algebra is semi-direct will
also be said to be semi-direct.

5.3.2.4. Transport of vertebrae towards omega-functors. Let C be a category and v be a
vertebra in C of the form given below on the left. For every pair s and r of non-negative
integers satisfying the inequality s < r, it is not hard to see that the following righthand
diagram defines a vertebra in Cω wherein the morphism ‘id’ stands for the obvious identity
morphisms.

(5.11) S

x
γ′
//

γ

��

D1

δ1
��

D2
δ2

// S′
β
// D′

⇒ id

x

|s1|rγ′ +3

|sγ|rγ
��

[r]γ′

|sγ|rδ1
��

[s]γ
|s1|rδ2

+3 [s]γ[r]δ2 |rβ

+3 [s]γ[r]βδ2

The right vertebra will be denoted by Tr
s(v) for every pair of integers s and r (i.e. non

necessarily non-negative) satisfying the inequality s < r.

Proposition 5.26. If v is reflexive with reflexive transition λ : D1 → D2 and homotopic
contraction α : D′ → D2, then so is Tr

s(v) with reflexive transition |sγ|rλ : [r]γ′ ⇒ [s]γ and

homotopic contraction |rα : [s]γ[r]βδ2 ⇒ [s]γ.

Proof. The proof follows from a straightforward verification of the definitions. The reflexivity
of the base of Tr

s(v) is given by the equation (|sγ|rλ) ◦ (|s1|rγ′) = |sγ|rγ while the reflexive
structure of Tr

s(v) follows from the commutativity of the following diagram.

id

x

|s1|rγ′ +3

|sγ|rγ
��

[r]γ′

|sγ|rδ1
��

|sγ|rλ

�'
[s]γ

|s1|rδ2 +3

|s1|r1

[s]γ[r]δ2

|rβ +3 [s]γ[r]βδ2

|rα +3 [s]γ

�

It is possible to extend the definition of Tr
s(v) to the case where s = r. For any integer r,

the extension Tr
r(v) is given by the following right vertebra, which is not reflexive but does
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preserve the structure of communication and framing.

(5.12) S

x

γ′
//

γ

��

D1

δ1
��

D2
δ2

// S′
β
// D′

⇒ id

x

|rγ′ +3

|rγ
��

[r]γ′

|rδ1
��

[r]γ
|rδ2

+3 [r]δ2γ |·γ|rβ

+3 [·]γ[r]βδ2

Proposition 5.27. If two vertebrae v and v∗, seen as extended vertebrae γ ex v and γ∗
ex v∗,

communicate via a semi-communication (id, %) : γ′  γ∗, then so do Tr
s(v) and Tn

q (v∗) for ev-
ery quadruple of non-negative integers s ≤ r ≤ q ≤ n via the following semi-communications
with respect to the underlying conditions.

(|r1, |rγ′|q%) : |rγ′  |qγ∗︸ ︷︷ ︸
when r<q

(|r1, |r%) : |rγ′  |rγ∗︸ ︷︷ ︸
when r=q

Proof. It suffices to notice that following left diagram commutes when r < q while the right
one commutes for any non-negative integer r.

id
|r1|q1

|r1|qγ∗
��

id

|rγ′
��

[q]γ∗ |rγ′|q%

+3 [r]γ′

id
|r1

|rγ∗
��

id

|rγ′
��

[r]γ∗ |r%

+3 [r]γ′

The preceding squares indeed define semi-communications. �

Although the next proposition is proven for particular cases of the inequalities s ≤ r ≤
q ≤ n, its statement may be extended to all cases. However, only the cases that are listed
will turn out to be necessary to the purposes of this thesis.

Proposition 5.28. If a vertebra v• frames a pair of vertebrae v and v∗ that communicate
via a semi-communication (id, %) : γ′  γ∗, then the vertebra

1) Tn
s (v•) frames the induced communicating pair Tr

s(v) and Tn
q (v∗) for non-negative

integers satisfying the inequalities s < r ≤ q < n or the relations r = q = n and
s = q − 1;

2) Tn
r−1(v•) frames the induced communicating pair Tr

s(v) and Tn
q (v∗) for non-negative

integers satisfying the inequalities s = r ≤ q < n or the equalities s = r = q = n;

Proof. Denote v := ‖γ, γ‖ ·β and v∗ := ‖γ∗, γ′∗‖ ·β∗ so that the framing vertebra v• must be
of the form ‖γ, γ′∗‖ · β•. The structure of framing for the communicating pair v : γ ex v and
v∗� (id, %) : γ′ ex v∗ will be supposed to be given by the following left pushout square as well
as a cooperadic transition η : D′• → E (making the right diagram commute).

D∗2

x

β◦δ1◦%
//

β∗◦δ∗2
��

D′

ε1

��

D′∗ ε2
// E

S′•
η◦β•

&&

D∗1
δ•1oo

ε2◦β∗◦δ∗1
��

D2

δ•2

OO

ε1◦β◦δ2
// E

Throughout the proof, the quantity x will stand for the integer s when s < r and r− 1 when
s = r. Proposition 5.27 shows that the vertebrae Tr

s(v) and Tn
q (v∗) communicate for every

set of integers s ≤ r ≤ q ≤ n. In the case where s ≤ r < q < n, the discal transition given by
Proposition 5.27 is of the form |rγ′|q%. It then takes a few line of calculation to check that
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the framing structure is given by the following left pushout square in Cω while the cooperadic
transition is given by the right vertical morphism.

[q]γ∗

x

|xγ|rβδ1γ′|qβδ1%|nβδ1% +3

|x1|nβ∗δ∗2
��

[x]γ[r]βδ2

|x1|nε1
��

[q]γ∗
[n]β∗δ

∗
2 |xγ|rβδ2γ|qβδ1%|nε2

+3 [x]γ[r]βδ2
[n]ε1

[x]γ[n]β•δ
•
2

|rβδ2|nη
��

[x]γ[r]βδ2
[n]ε1

In the case where s ≤ r = q < n, the discal transition given by Proposition 5.27 is of the form
|q%. It then takes a few line of calculation to check that the framing structure is given by
the following left pushout square in Cω while the cooperadic transition is given by the right
vertical morphism.

[q]γ∗

x

|xγ|qβδ1%|nβδ1% +3

|x1|nβ∗δ∗2
��

[x]γ[q]βδ2

|x1|nε1
��

[q]γ∗
[n]β∗δ

∗
2 |xγ|qβδ1%|nε2

+3 [x]γ[q]βδ2
[n]ε1

[x]γ[n]β•δ
•
2

|qβδ2|nη
��

[x]γ[q]βδ2
[n]ε1

In the case where r = q = n and s is equal to either q− 1 or q, the discal transition given by
Proposition 5.27 is of the form |q%. It then takes a few line of calculation to check that the
framing structure is given by the following left pushout square in Cω while the cooperadic
transition is given by the right vertical morphism.

[q]γ∗

x

|·γ|qβδ1% +3

|·1|qβ∗δ∗2
��

[·]γ[q]βδ2

|·βδ2|qε1
��

[q]β∗δ
∗
2γ∗ |·βδ1%|qε2

+3 [·]βδ2γ
[q]ε1

[·]γ[q]β•δ
•
2

|·βδ2|qη
��

[·]βδ2γ
[q]ε1

Finally, this covers all the cases of the statement. �

5.3.2.5. Cohesive set of vertebrae. Let C be a category and V be a set of vertebrae in C. Denote
by A(V) the subgraph of Ally(C) (see section 2.3.2.1) whose object-class is equal to V and
whose alliances are identities in Ally(C). Similarly, denote by E(V) the subspan of Enov(C)
whose left object-class contains the seed of the vertebrae in V, whose right object-class is
equal to V and whose extended nodes of vertebrae are given by the vertebrae of V.

Proposition 5.29. The triple (A(V), A(V), E(V)) defines a Enov(C)-prolinear module whose
prolinear map is given by the identity A(V)# A(V) (see Example 4.25).

Proof. It is easy to check that A(V) defines a submagmoid of Ally(C); E(V) defines a sub-
precompass of (Enov(C),η,�) and the trivial action (v, idv) 7→ v gives a structure of right
A-submodule of (Enov(C),η,�,}) to E(V). �

This structure will be referred to as the modular structure of V. A set V of vertebrae in C
will be said to be cohesive if

1) the seeds and coseeds of the vertebrae in V are not identities in C;
2) it is equipped with a function ψ : V→ V, called cohesion, such that for every vertebra

v ∈ V,
- vrv communicates with (ψ(v))rv via a semi-communication tv;
- vrv frames the communicating pair vrv and (ψ(v))rv � tv;
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3) the modular structure of V is equipped with a structure of a semi-direct vertebral
category;

Now, for every cohesive set V of vertebrae in C, define the following set of vertebrae in the
category Cω, which is going to be the set of vertebrae defining the homotopy theory associated
with Cω.

V(ω) := {Tr
s(v) | v ∈ V and s = r = 0 or − 1 ≤ s < r}

Proposition 5.30. For every seed g of a vertebra in V(ω), there exists a unique pair (x, γ)

such that g = |xγ where γ is an E(V)-seed. Similarly, every vertebra v in V(ω), there exists a
unique triple (s, r, v) such that v = Tr

s(v).

Proof. For both statements, the existence follows from the definitions. To show the unique-
ness of the statement regarding the seeds, suppose that an equality of the form |xγ = |yγ
holds. It is not hard to see that if the inequality x 6= y holds, then the previous equality
forces the identities γ = γ′ = id, which is impossible since V is cohesive. Now, suppose that
an equality of the form Tr

s(v) = Tn
q (v∗) holds for any pair of vertebrae v = ‖γ, γ‖ · β and

v∗ = ‖γ∗, γ′∗‖ · β∗. If the inequality s 6= q holds, then the equality involved at the level of
the seeds implies the identities γ = γ∗ = id, which is impossible. Similarly, the equality
involved at the level of the coseeds makes the inequality r 6= n impossible. In other words,
the identities s = q and r = n hold, which force the equalities γ = γ∗, γ

′ = γ′∗ and β = β∗
and hence v = v∗. �

Proposition 5.31. For every cohesive set of vertebrae V in C, the modular structure of V(ω)

induces a semi-direct vertebral category in Cω.

Proof. Recall that a vertebral category is a vertebral algebra satisfying some reflexivity
condition (see section 4.4.1.1, p. 174). Let us first prove the structure of vertebral algebra
structure. Following Remark 5.25, suppose that the precompass (E(V),η) has a structre of
algebra determined by its source hinge h0 : ObjR(E(V)) → ObjL(E(V)) and an extensive
communication (v, v∗) 7→ (id, %(v, v∗)). By Proposition 5.30, it makes sense to define a
metafunction

hT0 : ObjR(E(V(ω)))→ ObjL(E(V(ω)))

with a mapping rule of the form Tr
s(v) 7→ |xh0(v) for any choice x ≥ r. It also follows

from Proposition 5.30 that if hT0 (Tr
s(v)) is equal to the seed of a vertebra Tn

q (v∗) in V(ω),
then the equality x = q holds and the E(V)-seed h0(v) is equal to the seed of v∗. Because
E(V) is a semi-direct vertebral algebra, there must hence exist a vertebra v• framing the
pair v and v∗ via a semi-communication (id, %(v, v∗)) : γ′  γ∗. Let us use this framing to
define the framing of Tr

s(v) and Tn
q (v∗). First, Proposition 5.27 implies that the extensive

communication of V(ω) may be defined as follows.

(Tr
s(v),Tn

q (v∗)) 7→
{

(|r1, |rγ′|q%(v, v∗)) when r < q = x;

(|r1, |r%(v, v∗)) when r = q = x;

By definition of V(ω), the only possible quadruples of integers s ≤ r ≤ q ≤ n for the pair
(Tr

s(v),Tn
q (v∗)) must be the following.

(−1, 0, 0, 0) (−1, 0, 0 < n) (−1, 0 < q < n) (0, 0, 0, 0)

(0, 0, 0 < n) (0, 0 < q < n) (1 < r ≤ q < n)

This exactly covers the cases of Proposition 5.28. This means that the vertebra Tn
x(v•) frames

the communicating pair Tr
s(v) and Tn

q (v∗) where the quantity x stands for r− 1 when s = r

and s when s < r. It only remains to check that Tn
x(v•) belongs to V(ω). If the equality s = r

holds, then s and r must be zero, which implies that (x, n) = (−1, n) with n > −1. Otherwise,
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it is straightforward. This shows that the modular structure of V(ω) has a vertebral algebra
structure.

Let us now prove the reflexive structure. By Proposition 5.30, any E(V)-seed g is of

the form |sγ – where the inequality s ≥ −1 must hold. Because E(V) defines a vertebral
category, there exists a reflexive vertebra γ  v in V. The E(V)-seed g is therefore the seed
of any vertebra of the form Tr

s(v), which, by Proposition 5.26, is reflexive in the case where
s < r. �

In the sequel, for any cohesive set V of vertebrae in C and every vertebra v in V, a vertebra
of the form Tr

s(v) in V(ω) will formally be denoted as follows.

I(v)

x

γ′ +3

γ

��

Dr(v)

δ1
��

Ds(v)
δ2

+3 Srs(v)
β
+3 Dr

s(v)

5.3.2.6. Fibrant objects. Let C be a category and V be a cohesive set of vertebrae in C. An
object X in Cω will be said to be V-fibrant if for every vertebra Tr

s(v) in V(ω) and morphism
of the form Dr(v)⇒ X in Cω, there exists a morphism h : Dr

s(v)⇒ X making the following
diagram commute.

Dr(v)

β◦δ1
��

x +3 X

Dr
s(v)

h

8@

If the category Cω has a terminal object 1, this is equivalent to saying that the canonical
arrow X ⇒ 1 is a fibration for every vertebra in V(ω) and hence a fibration for its structure
of vertebral category.

In the following two propositions, the image of the arrow n → n + 1 via the object
X : O(ω)→ C will be denoted as an arrow in : Xn → Xn+1 for every n ∈ ω.

Proposition 5.32. If X is V-fibrant, then the image of the arrow 0 → n via the functor X
is a surtraction for the dual vrv of every vertebra v in V for every n ≥ 1.

X0
in−1◦···◦i0

// Xn

Proof. Let vrv := ‖γ′, γ‖ · β be the dual of a vertebra in V and denote by fn : X0 → Xn the
arrow displayed in the above statement for every n ≥ 1. To show that fn is a surtraction for
vrv, consider a commutative square as given below on the left, for some integer n ≥ 1. The
diagram on the right-hand side of the implication is the same diagram that has been reflected
about the diagonal top-left to bottom-right.

(5.13) S x //

γ′

��

X0

fn
��

D1 y
// Xn

⇒ S

x

��

γ′
// D1

y

��

X0
fn
// Xn

If we decompose the morphism fn into its composite ik for every 0 ≤ k ≤ n − 1, the above
right diagram may be turned into the following one, which exactly corresponds to giving a
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morphism a : Dn−1(v)⇒ X in Cω.

S = //

x

��

S

i0◦x
��

= // S

i1◦i0◦x
��

= // . . .
= // S

��

γ′
// D1

y

��

= // . . .

X0
i0
// X1

i1
// X2

i2
// . . .

in−2

// Xn−1
in−1

// Xn
// . . .

Since the object X is a V-fibrant, their exists a lift h : Dn−1
0 (v) ⇒ X making the left

diagram, below, commute in Cω. When n = 1, this factorisation provides the succeeding
right factorisation in C when evaluated above the inequality 0 < 1 in O(ω). This exactly
says that f0 is divisible by the underlying besom of the vertebra vrv, which means that f0 is
a surtraction for vrv.

Dn−1(v)

β◦δ1
��

x +3 X

Dn−1
0 (v)

h

7? ⇒ S
x

((

γ′

��

γ // D2

β◦δ2
��

h0
// X0

f1

��

D1

y

66

β◦δ1
// D′ h1

// X1

In the case where n > 1, we are going to use an inductive argument. Suppose that the
inequality n > 1 holds and the statement of the proposition is true for n− 1. The above left
factorisation provides the following commutative diagram.

(5.14) S = //

=

��

x

��

S

γ

��

= // S

γ

��

= // . . .
= // S

γ

��

γ′
// D1

β◦δ1
��

= //

y

��

. . .

S
γ
//

h0

��

D2

h1

��

= // D2

h2

��

= // . . .
= // D2

hn−1

��

β◦δ2
// D′

hn
��

= // . . .

X0
i0
// X1

i1
// X2

// . . .
in−2

// Xn−1
in−1

// Xn
// . . .

Before continuing, recall that the cohesion ψ : V → V is defined so that the vertebra
vrv = ‖γ′, γ‖ · β communicates with the image (ψ(v))rv, say of the form ‖γ′∗, γ∗‖ · β∗, via
a communication (id, %) : γ  γ′∗ and vrv frames the communication. In particular, this last
point forces the equality γ∗ = γ. Below is given from left to right the structure of communica-
tion, the pushout of the framing and the commutative diagram associated with the following
cooperadic transition η : D′ → E.

(5.15) S∗
γ′∗
��

S

γ

��

D∗2 %
// D2

D∗2

x

β◦δ2◦%
//

β∗◦δ∗1
��

D′

ε1

��

D′∗ ε2
// E

S′

η◦β

&&

D∗2
δ2oo

ε2◦β∗◦δ∗2
��

D1

δ1

OO

ε1◦β◦δ1
// E

Now, if we come back to the proof, diagram (5.14) leads to the following left commutative
diagram. Using the factorisation γ = % ◦ γ′∗ of diagram (5.15) and the fact that fn−1 : X0 →
Xn−1 is a surtraction for (ψ(v))rv (by induction), there exist two arrows x′ : D2 → X0 and
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h : D′ → Xn−1 factorising this latest diagram into the right commutative diagram.

S

γ′

��

x //

γ

  

X0

fn−1

��

fn

��

D2

β◦δ2
��

h1
// Xn−1

in−1

��

D1

y

55β◦δ1 // D′ hn // Xn

⇒ S

γ′

��

x

**

γ′∗

  

γ
// D2

β∗◦δ∗2
��

x′ // X0

fn−1

��

D∗1
β◦δ2◦%
��

h1◦%
44

β∗◦δ∗1 // D′∗
h′ // Xn−1

in−1

��

D1

y

44β◦δ1 // D′ hn // Xn

If follows from the structure of framing given in (5.15) that we may form the pushout E in
the above right diagram. This implies the existence of a canonical arrow h′ : E→ Xn making
the following left diagram commute. Using the diagrammatic relations of the left diagram of
(5.15) then leads to the corresponding right commutative diagram.

S

γ′

��

x

))

γ′∗

  

γ
// D2

β∗◦δ∗2
��

x′ // X0

fn−1

��

D∗1
β◦δ2◦%
��

β∗◦δ∗1 // D′∗
ε2

��

h′ // Xn−1

in−1

��

D1

y

99
β◦δ1 // D′

hn

55

ε1 // E h // Xn

⇒ S

γ′

��

x

))
γ // D2

β◦δ2
��

// X0

fn−1

��

fn

��

D′

h◦η◦β
""

Xn−1

in−1

��

D1

y

55

β◦δ1

>>

Xn

This last diagram exactly proves that fn : X0 → Xn is a surtraction for vrv, which proves
the statement by induction. �

Proposition 5.33. If X is an object in Cω whose image above 0 → n is a surtraction for
the dual vrv of every vertebra v in V for every n ≥ 1, then X is V-fibrant.

X0
in−1◦···◦i0

// Xn

Proof. Let vrv := ‖γ′, γ‖ · β be the dual of a vertebra in V and denote by fn : X0 → Xn the
arrow displayed in the statement for every n ≥ 1. Let us show that X is V-fibrant. First,
note that any morphism x : Dr(v)⇒ X has the following form.

(5.16) S = //

x0

��

S

x1

��

= // S

x2

��

= // . . .
= // S

xr
��

γ′
// D1

xr+1

��

= // . . .

X0
i0
// X1

i1
// X2

i2
// . . .

ir−1

// Xr
ir
// Xr+1

// . . .

This commutative diagram leads to the following left commutative square in C. Now, the
fact that fr+1 : X0 → Xr+1 is a surtraction for vrv implies that there exist two morphisms
x′0 : D2 → X0 and x′r+1 : D′ → Xr+1 in C factorising this commutative square into the
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following right commutative diagram.

S x0 //

γ′

��

X0

fr+1

��

D1 xr+1

// Xr+1

⇒ S

x0

))
γ //

γ′

��

D2

β◦δ2
��

x′0
// X0

fr+1

��

D1

xr+1

55
β◦δ1 // D′ x′r+1

// Xr+1

By using the diagrammatic relations involved in diagram (5.16), the above rightmost factor-
ization may be rewritten in terms of the following diagram for every s ≤ r (modulo some
obvious truncation when s < 0 ≤ r).

S = //

x0

��

. . .
= // S = // S

γ

��

= //xl+1

��

. . .
= // S

γ

��

γ′
// D1

β◦δ1
��

= //xr+1

��

. . .

S = //

x′0
��

. . .
= // S

fl◦x′0
��

γ
// D2

fl+1◦x′0
��

= // . . .
= // D2

fr◦x′0
��

β◦δ2
// D′

x′r+1

��

= // . . .

X0
i0
// . . .

il−1

// Xl
il

// Xl+1
// . . .

ir−1

// Xr
ir
// Xr+1

// . . .

This last commutative diagram clearly exposes a factorization of the arrow x : Dr(v) ⇒ X
(defined in (5.16)) in terms of the trivial stem β ◦ δ1 : Dr(v) ⇒ Dr

s(v) and an arrow x′ :
Dr
s(v)⇒ X in Cω. This therefore proves the statement. �

The previous two propositions show the following theorem.

Theorem 5.34. Let C be a category and V be a cohesive set of vertebrae in C. An object X
of Cω is V-fibrant if and only if its image above the arrow 0→ n is a surtraction for the dual
vrv of every vertebra v in V for every n ≥ 1.

5.3.2.7. Portfolios of vertebrae. Let C be a category and K be a small category. A portfolio
of vertebrae in C over K consists, for every object c in K, of a set of vertebrae Vc in C. Such
a collection will usually be denoted as V. A portfolio V in C over K will be said to be cohesive
when all its components Vc are cohesive sets of vertebrae in C.
5.3.2.8. Systems of models. Let D be a small category, (K,T ) be a conical croquis in D and C
be a complete category. The terminal object of C will be denoted by 1. For every endofunctor
R : C → C, a system of R-models in C consists of

1) a cohesive portfolio V of vertebrae in C over K;

2) a category of R-premodels P for K;

Such a structure will be denoted as a quadruple (V,P,K, T ). Now, denote by GlK0 (P,E) the
functor resulting from the composition of GlK(P,E) : K → C2 with the obvious inclusion
C2 ↪→ Cω, which maps an arrow a : X0 → X1 to the sequence of arrows consisting of
a : X0 → X1 followed by identities on X1. An R-model for (V,P,K, T ) is an R-premodel
(P,E) in P such that for every cylinder c in K, the canonical arrow

GlK0 (P,E)(c)⇒ 1

is a fibration in the vertebral category of V
(ω)
c (see Proposition 5.31).

Remark 5.35. The fact that the portfolio of vertebrae V is cohesive will be used in section
5.5 to equip the category P with a homotopy theory (coming along with notions of fibration,
cofibration and weak equivalence) where the models will exactly be the fibrant objects.
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Theorem 5.36. An R-premodel (P,E) in P is an R-model in (V,P,K, T ) if and only if the

following morphism is a surtraction for the dual of every vertebra in V
(ω)
c for every cylinder

c of the form (!, t) : peakK(c)⇒ d1.

GlK0 (P,E)(c) : P (peakK(c))→ limd1RPT

Proof. Follows from Theorem 5.34. �

Example 5.37 (Spectra). Define the system of models consisting of the category of prespec-
tra NppTop(N,Ω, succ), the croquis (N, I1(N), succ) and, for every cylinder c in I1(N), the
set consisting of the vertebrae of pointed spaces defined in section 2.4.2.3 together with what
could be seen as their generalised epi-corrections, namely the following vertebrae

- where the object Sn−1/∂ is the quotient of the (n− 1)-sphere by itself,

- where the object Dn/∂ is the quotient of the n-disc by its boundary,

- where the object Sn/∂ is the quotient of the n-sphere by its equator

- where the object Dn+1/∂ is the quotient of the (n+ 1)-disc by its equator,

- where the object Dn+1/hn is the quotient of the (n+1)-disc by one of its hemispheres,

- where the maps between the different objects are induced by the obvious inclusions.

(5.17) Sn−1/∂
γn

//

γn

��

x

Dn/∂

δn1
��

Dn/∂
δn2

// Sn/∂
βn
// Dn+1/∂

Dn/∂
γ′n //

γ′n
��

x

Dn+1/hn

δn1
��

Dn+1/hn
δn2

// Dn+1/∂ Dn+1/∂

This set is equipped with an obvious cohesive structure where the cohesion is given by the
identity function. The Ω-models for such a system correspond to the Ω-spectra.

Example 5.38 (Models for a sketch). For every limit sketch S, define the system of models
consisting of the functor category CS ⊆ NpSet(S, idSet, idD), the croquis KS (see Example
5.17) and, for every cylinder c in KS, the set consisting of the canonical vertebra of Set (see
section 2.4.1.1) and its epi-correction.

∅

x

! //

!
��

1

δ1
��

1
δ2

// 1 + 1
β
// 1,

1 + 1

x

! //

!
��

1

1 1 1,

This set is equipped with an obvious cohesive structure where the cohesion is given by the
identity function. The idSet-models for such a system correspond to the models for the sketch
S.

Example 5.39 (Sheaves). For every site (Dop, J), define the system of models consisting
of the functor category CD ⊆ NpSet(D, idSet, idD), the croquis KJ and, for every cylinder
c in KJ , the set consisting of the canonical vertebra of Set (see section 2.4.1.1) and its
epi-correction.

∅

x

! //

!
��

1

δ1
��

1
δ2

// 1 + 1
β
// 1,

1 + 1

x

! //

!
��

1

1 1 1,

The idSet-models for such a system correspond to the sheaves over (Dop, J).
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Example 5.40 (Flabby sheaves). For every site (Dop, J), define the system of models con-
sisting of the functor category CD ⊆ NpSet(D, idSet, idD), the croquis KJ ∪ D2 defined in
Example 5.19 and

i) for every cylinder c in KJ , the set consisting of the canonical vertebra of Set (see
section 2.4.1.1) and its epi-correction;

ii) for every cylinder c in D2, the set consisting of the canonical vertebra of Set only.

The idSet-models F : D → Set for such a system correspond to the sheaves over (Dop, J)
whose morphisms F (U)→ F (V ) over an arrow U → V in D are surjective, namely the flabby
sheaves over (Dop, J).

5.3.2.9. Towards other models. Of course, the list of examples previously given is not exhaus-
tive and do not consider the possible enrichement.

For instance, one could define the fibrant objects of the Jardine’s model structure [30] by
considering simplicial presheaves over a croquis containing coverings as well as hypercoverings
(see [29]). The involved vertebrae would be those defined in section 2.4.2.4. Regarding the
homotopy theory mentioned in Remark 5.35, one could recover the weak equivalences of
simplicial presheaves of [13] from those of section 5.5 by taking the ‘local configuration’ (see
section 5.5) to be the functor peakK : K → D.

In the spirit of [37], another prospect would be the generalisation of the notion of vertebra
to that of 2-vertebra to characterise stacks valued in Cat(1) as fibrant objects. The weak
equivalences of ibid are required to be locally essentially surjective and fully faithful. Such a
definition would be obtained from the definitions of section 5.5 by taking a ‘local configuration’
managing the local essential surjectivity on one side and the fully faithfulness on the other
side7.

Before discussing the homotopy theories of section 5.5, it is necessary to discuss the
construction of weak factorisation systems and fibrant replacements. This is precisely the
goal of section 5.4.

5.4. From narratives to combinatorial categories

5.4.1. Lifting systems and tomes.

5.4.1.1. Numbered categories and compatibility. In the sequel, the term numbered category
will be used for any pair (C, κ) where C is a category and κ is a limit ordinal. A small
category T will be said to be compatible with (C, κ) if

1) the category C admits colimits over T;

2) the inequality |T| ≤ κ holds.

By extension, a functor of small categories i : T → S will be said to be compatible with a
numbered category (C, κ) if its domain T is compatible with (C, κ).

5.4.1.2. Lifting systems. This section defines in formal terms what will later be seen as a set
of generating cofibrations for the small object argument. Let (C, κ) be a numbered category.
A lifting system in (C, κ) consists of

1) a small category S as well as a functor ϕ : S→ C2;

2) a set J of functors in Cat(1) that are compatible with (C, κ) and whose codomains
are equal to S.

Such a lifting system will later be denoted by (J,ϕ) : S→ C2.

7Specifically, the local configuration would be the coproduct of the functor peakK : K → D with the identity
functor idK : K → K. The functor peakK would serve the encoding of the local essential surjectivity while the functor

idK would serve the encoding of the fully faithfulness.
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5.4.1.3. Lifting properties. This section generalises the notion of right lifting property with
respect to an arrow defined in Chapter 2. On the other hand, the notion of left lifting property
will remain the same. Let (C, κ) be a numbered category and (J,ϕ) : S → C2 be a lifting
system in (C, κ). The image of any object s in S via ϕ will be denoted by ϕ(s) : A(s)→ B(s).
A morphism f : X → Y in C will be said to have the right lifting property with respect to the
system (J,ϕ) : S → C2 if for any functor i : T → S in J , the morphism f : X → Y has the
right lifting property with respect to the next arrow in C.

colT(ϕ ◦ i) : colT(A ◦ i)→ colT(B ◦ i)

Example 5.41. If J is the set of functors of the form 1 → S picking out the objects of S,
then having the right lifting property with respect to (J,ϕ) : S→ C2 is equivalent to having
the right lifting property with respect to every object in the image of ϕ (i.e. arrow in C).

In the sequel, the class of morphisms of C that have the right lifting property with
respect to a lifting system (J,ϕ) : S → C2 (as defined above) will be denoted by rlpκ(J,ϕ).
By definition, the following equality holds.

(5.18) rlpκ(J,ϕ) = rlp({colT(ϕ ◦ i) | ∀i : T→ S in J})

5.4.1.4. Overcategories. Let C be a category and X be an object in C. Recall that the
category over X, denoted by C/X, is the category whose objects are morphisms of C of the
form f : A→ X and whose morphisms are given by commutative squares as follows.

(5.19) A

f
��

h // B

g

��

X X

One may see the category C/X as a subcategory of C2. From this point of view, there is an
obvious domain functor ∂ : C/X → C mapping an arrow f : A→ X to the object A in C and
a morphism as in diagram (5.19) to the arrow h : A→ B.

Remark 5.42. Let X be an object in some category C and let T be a small category. Any
functor of the form F : T → C/X may be seen as a natural transformation in C over T of
the form h : ∂ ◦ F ⇒ ∆T(X) where ∆T is the functor that maps an object X to the constant
functor T→ C whose unique value on objects is X.

Note that the mapping X 7→ C/X is functorial in X. To be more specific, the post-
composition of any morphism u : X → Y in C induces a functor C/u : C/X → C/Y mapping
an object f : A → X to an object u ◦ f : A → Y . It is not hard to see that for any pair of
composable morphism u : X → Y and v : Y → Z, the following relation holds.

C/v ◦ C/u = C/(v ◦ u)

Let h : A → C be a functor. It will come in handy to denote the metafunctor on A satisfying
the following mapping rule by C

(

h.

X 7→ C/h(X)
(u : X → Y ) 7→ C/h(u)

Finally, for every object X in C and functor M : C → B, we will denote by the same letter
M the obvious functor C/X → B/M(X) whose mapping rule on objects is of the following
form.

f : A→ X 7→ M(f) : M(A)→M(X)
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Note that this functor is compatible with the domain functors ∂ relative to C and B in the
sense that the following diagram commutes.

C/X M //

∂
��

B/M(X)

∂
��

C M // B

Remark 5.43. In the sequel, the preceding definitions will be applied in the case of arrow
categories. More specifically, we will be interested in functors of the form C2

(

h where h
denotes some functor A → C2. Remark 5.42 then states that for any small category T and
object ϑ in A, a functor of the form F : T→ C2/h(ϑ) may be seen as a natural transformation
in C over T of the following form where ∆T goes from C2 to the functor category (C2)T.

h : ∂F ⇒ ∆T ◦ h(ϑ)

5.4.1.5. Tomes. Let C be a category. A tome in C is a triple consisting of a morphism
h : X → Y in C, a small category S on which C admits all colimits and a functor ϕ : S→ C2/h.
According to Remark 5.42 applied to the arrow category C2, a way of seeing a tome in C is
in the form of a cocone in C2 over the functor ∂ϕ : S→ C2.

∆S(h)

∂ϕ

(u,v)

KS
X

h // Y

A(t)
∂ϕ(t)

//

ut

aa

B(t)

vt

aa

A(s)
∂ϕ(s)

//

us

FF

. . .

B(s)

vs

FF

. . .

Because C has all colimits over S, the earlier cocone provides an arrow colS∂ϕ⇒ h in C2 that
is obtained by using the counit of the adjunction colS a ∆S. This may be presented by the
following diagram, which will be referred to as the content of (h, S, ϕ).

colSA
colSu //

colS∂ϕ
��

X

h
��

colSB
colSv

// Y

Note that for any functor i : T→ S, we may paste the universal shifting induced by i on the
content of (f, S, ϕ) as follows.

(5.20) colS(A ◦ i)

colS∂ϕ◦i
��

ξi(A)
// colSA

colSu //

colS∂ϕ

��

X

h
��

colS(B ◦ i)
ξi(B)

// colSB
colSv // Y

Such a construction will later play a central role and be referred to as the content of (f, S, ϕ)
along i : T→ S. Now, a loose morphism of tomes from T0 := (h0, S0, ϕ0) to T1 := (h1, S1, ϕ1)
is given by a morphism (x, y) : h0 ⇒ h1 in C2 (see the left-hand square, below). A (regular)
morphism of tomes T0 ⇒ T1 is given by a morphism (x, y) : h0 ⇒ h1 in C2 and a functor
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σ : S0 → S1 making the corresponding right diagram commute.

X0

h0

��

x // X1

h1

��

Y0
y
// Y1

S0

ϕ0

��

σ // S1

ϕ1

��

C2/h0
C2/(x,y)

// C2/h1

The arrow associated with loose morphisms will be denoted as T0
?⇒T1. The category whose

objects are tomes in C and whose arrows are morphisms (resp. loose morphisms) of tomes
will be denoted by Tome(C) (resp. Ltom(C)). For a fixed object Q in C, the subcategory of

Ltom(C) containing all the objects and restricted to the loose morphisms (x, y) : T0
?⇒T1

are such that Y0 = Y1 = Q and y = idQ will be denoted by Ltom(Q, C).

5.4.2. Oeuvres and narratives.

5.4.2.1. Oeuvres and narratives. Let (C, κ) be a numbered category and Q be an object in
C. An oeuvre of theme Q in (C, κ) is a functor O : O(κ+ 1)→ Ltom(C) factorising through
Ltom(Q, C) as follows.

Ltom(Q, C)

⊆
��

O(κ+ 1)
O

//

O′
77

Ltom(C)

The rest of the section fixes some conventional notations for such a structure and finishes
with the notion of narrative. The image of an inequality k < l in O(κ+ 1) via an oeuvre O
will be denoted as follows.

(χlk, idQ) : (hk, Sk, ϕk)
?⇒(hl, Sl, ϕl)

For convenience, when l is successor of k in O(κ+ 1), the notations χlk will be shortened to
χk. For every object k in O(κ + 1), the morphism hk will be denoted as an arrow Gk → Q
while the image of the composite functor ∂ϕk : Sk → C2 at an object s in Sk will be denoted
as ϕk(s) : Ak(s)→ Bk(s). Now, a narrative of theme Q in (C, κ) is an oeuvre O : O(κ+1)→
Ltom(C) of theme Q equipped with

1) (events) a set Jk of functors in Cat(1) that are compatible with (C, κ) and whose
codomains are equal to Sk for every ordinal k ∈ κ;

2) (transitions) a factorisation as follows for every ordinal k ∈ κ;

Gk+1

hk+1

��

χk+1

&&

λk

// Nk

αk

��

ρk
// Gk+2

hk+2

��

Q Q Q

3) (point-of-view) for every functor i : T→ Sk in the set Jk, a morphism πik : colT(Bk ◦
i) → Nk factorising the content of (hk, Sk, ϕk) along i : T → Sk into a commutative
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diagram as follows for every ordinal k ∈ κ.

colT(Ak ◦ i)
colSku◦ξi(Ak)

//

colT∂ϕk◦i

��

Gk

hk

��

λk◦χk
||

Nk
αk

##

colT(Bk ◦ i)
colSkv◦ξi(Bk)

//

πik
88

Q

For every k ∈ κ, the set Jk and morphism πik : colT(Bk ◦ i) → Nk will later be referred to
as set of events at rank k and point of view at rank k along i, respectively. The morphisms
λk and ρk will be called pre-transition and post-transition morphisms at rank k, respectively.
The factorisation of χk that they induce will be referred to as the transition factorisation.
Finally, the functor induced by the sequence of arrows χlk : Gk → Gl for every inequality
k < l in O(κ+ 1) will be denoted as G : O(κ+ 1)→ C and called the context functor. Note
that any oeuvre and a fortiori any narrative as defined above provides a factorisation in C
as follows.

(5.21) G0

h0

::

χκ0 // Gκ
hκ // Q

5.4.2.2. Small object argument. Let (C, κ) be a numbered category, Q be an object in C and
O : O(κ + 1) → Ltom(C) be a narrative of theme Q with the notations of section 5.4.2.1.
A lifting system (J,ϕ) : S → C2 in (C, κ) will be said to agree with the narrative O if for
every ordinal k ∈ κ, every functor i : T → S in J and every functor ψ : T → C2/hk making
the following left diagram commute, there exists a functor i′ : T → Sk in Jk making the
corresponding right diagram commute.

T

ψ !!

ϕ◦i // C2

C2/hk

∂

OO ⇒ T
ϕ◦i //

i′

��
ψ ""

C2

Sk ϕk
// C2/hk

∂

OO

Proposition 5.44. Let (J,ϕ) : S→ C2 be a lifting system in (C, κ) agreeing with the narrative
O. If the context functor G : O(κ + 1) → C is uniformly (dom ◦ ϕ)-convergent in C, then
the morphism hκ : Gκ → Q appearing in diagram (5.21) has the rlp with respect to the lifting
system (J,ϕ) : S→ C2.

Proof. For every object in s ∈ S, the image ϕ(s) will be denoted as an arrow A(s)→ B(s).
The goal of the proof is to show that the morphism hκ : Gκ → Q is in rlpκ(J,ϕ). Let
i : T→ S be a functor in J and consider a commutative square as follows.

(5.22) colT(A ◦ i)

colT(ϕ◦i)
��

x // Gκ

hκ
��

colT(B ◦ i) y
// Q

By assumption, the functor G : O(κ + 1) → C is uniformly (dom ◦ ϕ)-convergent in C. It
follows from Remark 5.3 and the fact that κ is limit that there exist an ordinal k ∈ κ and an
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arrow x′ : A→ Gk making the following diagram commute.

(5.23) colT(A ◦ i)

colT(ϕ◦i)
��

x′
//

x

))
Gk

hk
��

χk
// Gk+1

hk+1

��

χk+1
// Gk+2

hk+2

��

χκk+2

// Gκ

hκ
��

colT(B ◦ i) y
// Q Q Q Q

Note that an application of the universal property of the adjunction colT a ∆T on the leftmost
commutative square of diagram (5.23) provides a commutative square of arrows in CT as
follows (where η denotes the unit of colT a ∆T).

(5.24) A ◦ i( )

ϕ◦i( )

��

∆T(x′)◦ηA◦i
// ∆T

(
Gk
)

∆Thk
��

B ◦ i( )
∆T(y)◦ηB◦i

// ∆T

(
Q
)

According to Remark 5.43, diagram (5.24) induces a functor ψ : T → C2/hk, which makes
the following leftmost diagram commute.

T

ψ !!

ϕ◦i // C2

C2/hk

∂

OO ⇒ T
ϕ◦i //

i′

��
ψ ""

C2

Sk ϕk
// C2/hk

∂

OO

Because the lifting system (J,ϕ) agrees with the narrative O, there must exists a functor
i′ : T→ Sk making the preceding right diagram commute. Now, the equation ψ = ϕk ◦ i′ says
that the content of (hk, Sk, ϕk) along i′ : T → Sk exactly corresponds to the content of the
tome induced by the triple (hk, T, ψ). By definition of ψ : T→ C2/hk, the latter content is the
left commutative square of diagram (5.23). It then follows from the point-of-view structure
along i′ : T→ Sk associated with (hk, Sk, ϕk) that the following diagram commutes.

colT(A ◦ i)
x′ //

colT(ϕ◦i)

��

Gk

hk

��

λk◦χk

~~

Nk

αk

  

colT(B ◦ i) y
//

πi
′
k

99

Q

Inserting the relations of the above commutative diagram into diagram (5.23) and using the
structure of transition factorisation associated with the narrative O at rank k provides the
following commutative diagram.

colT(A ◦ i)

colT(ϕ◦i)
��

x′ //

u

**
Gk

χk
// Gk+1

λk // Nk

αk

��

ρk
// Gk+2

hk+2

��

// Gκ

hκ
��

colT(B ◦ i) y
//

πi
′
k

33

Q Q Q Q Q

The above commutative diagram defines a lift for diagram (5.22). �
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5.4.2.3. Strict narratives. Let (C, κ) be a numbered category and Q be an object in C. For
any narrative O : O(κ+ 1)→ Ltom(C) of theme Q, the set of events Jk gives a collection of
functors that induces a coproduct functor as shown by the following implication.

Sk

T

j
??

. . . T′

j′
``

︸ ︷︷ ︸
∈Jk

⇒ Sk

∐
j∈Jk dom(j)

∐
j∈Jk

j

OO

The preceding right functor will be called the total functor of Jk and denoted as an arrow
τk : Rk → Sk. By definition, for every functor i : T→ Sk, there is a canonical arrow κi : T→ Rk
such that the composite τk ◦ κi : T → Sk is equal to the functor i : T → Sk itself. It follows
that, when C admits coproducts over Rk, pasting the content of the tome (hk, Sk, ϕk) along
τk : Rk → Sk with the universal shifting induced by κi : T → Sk gives back the content of
(hk, Sk, ϕk) along i : T→ Sk.

(5.25) colT(Ak ◦ i)

colT∂ϕk◦i
��

ξκi (Ak◦τk)
// colRk(Ak ◦ τk)

colRk∂ϕk◦τk
��

ξτk (Ak)
// colSAk

colSu //

colS∂ϕk
��

X

h

��

colT(Bk ◦ i)
ξκi (Bk◦τk)

// colRk(Bk ◦ τk)
ξτk (Bk)

// colTBk
colSv // Y

The notations of the above commutative diagram will be used in the next definition. A
narrative O : O(κ+ 1)→ Ltom(C) of theme Q will be said to be strict in C if

1) the category C admits coproducts over Rk for every k ∈ κ;

2) for every ordinal k ∈ κ, the morphism λk : Gk+1 → Nk is an identity;

3) it is equipped with a morphism πk : colRk(B ◦ τk)→ Gk+1 factorising the content of
(hk, Sk, ϕk) along τk : Rk → Sk into a pushout as follows

colRk(Ak ◦ τk)

x

colSku◦ξτk (Ak)
//

colRk (∂ϕk◦τk)

��

Gk

hk

��

χk

~~

Nk

αk

  

colRk(Bk ◦ τk)
colSkv◦ξτk (Bk)

//

πk

88

Q

such that for every functor i : T→ Sk in Jk, the following composite arrow is equal
to the point of view πik : colT(Bk ◦ i)→ Nk along i : T→ Sk;

colT(Bk ◦ i)
ξκi (Bk◦τk)

// colRk(Bk ◦ τk)
πk // Nk

4) the context functor G : O(κ+ 1)→ C is sequential (see section 5.2.1.2).

For convenience, we will later denote by υk(j) and υk(j) the composite arrows colKu ◦ ξj(Ak)
and colKv ◦ ξj(Bk) resulting from the shifting of the content of a narrative along any functor
j : K→ Sk, respectively.

Proposition 5.45. If a morphism f : X → Y has the rlp with respect to the lifting system
defined by the pair (Jk, ∂ϕk) : Sk → C2 for every k ∈ κ, then it has the rlp with respect to the
morphism χκ0 : G0 → Gκ of diagram (5.21)
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Proof. Let f : X → Y be a morphism that has the rlp with respect to the lifting system
(Jk, ∂ϕk) : Sk → C2 for every k ∈ κ. This means that it has the rlp with respect to the
following arrow in C for every functor i : T→ Sk in Jk.

colSk(∂ϕk ◦ i) : colSk(Ak ◦ i)→ colSk(Bk ◦ i)

It directly follows that f has the rlp with respect to the coproduct of these arrows over Jk –
for some fixed k ∈ κ – which may be identified to the arrow colSk(∂ϕk ◦τk) up to isomorphism
as shown below.∐

i∈Jk

colSk(∂ϕk ◦ i) ∼= colSk(
∐
i∈Jk

∂ϕk ◦ i) (colimits commute)

∼= colSk(∂ϕk ◦ (
∐
i∈Jk

i)) (universality)

∼= colSk(∂ϕk ◦ τk) (definition)

It follows from Proposition 1.32 that, since f has the rlp with respect to colSk(∂ϕk ◦ τk),
it has the rlp with respect to any of its pushouts, and in particular χk for any k ∈ κ. It
finally follows from Proposition 5.9 and the fact that the context functor G : O(κ + 1) → C
is sequential that f has the rlp with respect to the arrow χκ0 : G0 → Gκ in C. �

5.4.2.4. Morphisms of oeuvres and narratives. Let (C, κ) be a numbered category. For every
pair of oeuvres O : O(κ+1)→ Ltom(C) and O′ : O(κ+1)→ Ltom(C), of respective themes
Q and Q′, a morphism of oeuvres from O to O′ consists, for every ordinal k ∈ κ, of a regular
morphism of tomes

(xk, yk,σk) : Ok ⇒ O′k (with yk : Q→ Q′)

such that the underlying loose morphisms (xk, yk) : Ok
?⇒O′k induce a morphism O ⇒ O

in the functor category Ltom(C)O(κ+1). Such a definition implies that all the arrows yk are
equal to the same morphism y : Q → Q′ for every k ∈ κ + 1. In addition, it forces the
following diagram to commute C for every k ∈ κ.

(5.26) Gk

χk

��

xk // G′k

χ′k
��

Gk+1 xk+1

// G′k+1

The category whose objects are oeuvres for the numbered category (C, κ) and whose arrows
are morphisms of oeuvres will be denoted by Oeuv(C, κ).

Now, if the oeuvres O and O′ are equipped with structures of narratives whose respective
sets of events are given by Jk and J ′k for every k ∈ κ, a morphism of narratives from O to O′

is a morphism of oeuvres O⇒ O′, say encoded, at rank k ∈ κ, by the following components

(5.27) (xk, y,σk) : (hk, Sk, ϕk)⇒ (h′k, S
′
k, ϕ

′
k)

such that for every functor i : T→ Sk in Jk and k ∈ κ, the composite functor σk ◦ i : T→ S′k
belongs to the set J ′k. In other words, the post-composition by σk induces a function σk :
Jk → J ′k. The category whose objects are narratives for the numbered category (C, κ) and
whose arrows are morphisms of narratives will be denoted by Narr(C, κ).

Remark 5.46. Let k be some ordinal in κ and i : T → Sk be a functor in Jk. For every
morphism of narratives O ⇒ O′ as defined above, the function σk : Jk → J ′k induces an
inclusion functor k :

∐
j∈Jk dom(j) →

∐
j′∈J ′k

dom(j′) making the following right diagram
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commute, where the notations κ and τ are defined in section 5.4.2.3.


Rk :=

∐
j∈Jk dom(j)

R′k :=
∐
j′∈J ′k

dom(j′)

T

i

&&κi // Rk

k
��

τk // Sk

σk
��

T

σk◦i
88

κσk◦i // R′k
τ′k // S′k

The next proposition will only be used for expository purposes.

Proposition 5.47. Consider a morphism of narratives O⇒ O′ as given by equation (5.27)
where the narratives O to O′ are strict. For every functor i : T → Sk in Jk and k ∈ κ,
pasting the (pushout) square associated with the point of view of O at rank k along i with
diagram (5.26) gives the (pushout) square associated with the point of view of O′ at rank k
along i′ := σk ◦ i.

colT(Ak ◦ i)

colT(∂ϕk◦i)
��

υ(i)
// Gk

χk

��

xk // G′k

χ′k
��

colT(Bk ◦ i)
πik

// Nk xk+1

// N ′k

= colT(A
′
k ◦ i′)

colT(∂ϕ′k◦i
′)

��

υ′(i′)
// G′k

χ′k
��

colT(B
′
k ◦ i′)

πi
′
k

// N ′k

Proof. By definition of a morphism of oeuvres O⇒ O′, the following left diagram commutes.
By pre-composing this diagram with the total functor τk : Rk → Sk and using Remark 5.46,
we obtain the commutative diagram given below on the right.

Sk

ϕk
��

σk // S′k

ϕ′k
��

C2/hk
C2/(xk,y)

// C2/h′k

⇒ Rk

ϕk◦τk
��

k // R′k

ϕ′k◦τ
′
k

��

C2/hk
C2/(xk,y)

// C2/h′k

The preceding right diagram then induces a morphism of diagram between the content of Ok

along τk and the content of O′k along τ′k. More specifically, this means that the following two
commutative diagrams are equal.

colRk(Ak ◦ τk)

x

υ(τk)
//

colRk (∂ϕk◦τk)

��

Gk

hk

��

χk

~~

xk // G′k

h′k

��

Nk

αk

  

colRk(Bk ◦ τk)
υ(τk)

//

πk

88

Q
y

// Q′

colRk(A′k ◦ τ′k ◦ k)

colRk (∂ϕ′k◦τ
′
k◦k)

��

ξk (A′k◦τ
′
k)

// colR′k(A′k ◦ τ′k)

x

υ′(τ′k)
//

colR′
k

(∂ϕ′k◦τ
′
k)

��

G′k

h′k

��

χ′k

��

N ′k
αk

  

colRk(B′k ◦ τ′k ◦ k)
ξk (B′k◦τ

′
k)

// colRk(B′k ◦ τ′k) υ′(τ′k)
//

π′k

99

Q′
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The leftmost vertical arrows of the previous two diagrams are indeed equal since post-
composing the domain functor ∂ : C2/h′k → C2 with the functor C2/(xk, y) : C2/h′k → C2/h′k
gives the domain functor ∂ : C2/hk → C2. Now, it follows from the universality of Nk that
the preceding equality of diagrams induces a canonical arrow from Nk to N ′k, which must
necessarily be equal to the arrow xk+1 : Nk → N ′k by strictness of O and O′. In other words,
we obtain the following equality.

colT(Ak ◦ τk)

colT(∂ϕk◦τk)

��

υ(τk)
// Gk

χk

��

xk // G′k

χ′k
��

colT(Bk ◦ τk) πk
// Nk xk+1

// N ′k

= colT(A
′
k ◦ τ′k ◦ k)

colT(∂ϕ′k◦τ
′
k)

��

υ′(τ′k◦k)
// G′k

χ′k
��

colT(B
′
k ◦ τ′k ◦ k)

πk◦ξk (B′k◦τ
′
k)
// N ′k

Pre-composing the above two diagrams with the following commutative square (universal
shifting along κi : T→ Rk) finally leads to the statement since both relations τk ◦ κi = i and
τ′k ◦ k ◦ κi = i′ hold by Remark 5.46.

colT(Ak ◦ i)

colT∂ϕk◦i
��

ξκi (Ak◦τk)
// colRk(Ak ◦ τk)

colRk∂ϕk◦τk
��

colT(Bk ◦ i)
ξκi (Bk◦τk)

// colRk(Bk ◦ τk)

�

5.4.3. Constructors and their tomes.

5.4.3.1. Notations. Let A and C be two categories and F : A → C2 be a functor. In order
to make our reasonings less cumbersome, the image F (X) of an object X of A in the arrow
category C2 will be denoted as F (X) : F ◦(X) → F •(X). This implies that every morphism
f : X → Y in A implies a commutative diagram as follows.

F ◦(X)

F ◦(f)

��

F (X)
// F •(X)

F •(f)

��

F ◦(Y )
F (Y )

// F •(Y )

Remark 5.48. For every functor G : A → C, the identity natural transformation idG : G⇒
G may be seen as a functor A → C2 whose images are given by identities in C. In this case,
the equation id◦G = G holds.

Let now A, B and C be three categories. The image of any functor of the form G :
A× B → C will later be denoted as Fa(b) for any pair of objects (a, b) in A× B – instead of
the usual notation F (a, b).

5.4.3.2. Constructors. Let C, B be two categories and K, D be two small categories. A
constructor of type [K ↓ D] × B in C consists of a portfolio V of vertebrae in C over K, a
functor H : K → D and two functors I : D × B → C and L : K × B → C2 making the
following diagram commute.

K × B L◦ //

H×idB
��

C

D × B
I

77

Such a structure will later be denoted as a 4-tuple (V, H, I,L).
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Definition 5.49 (Circle operation). In this definition, the superfix ◦ does not strictly denote
the operator defined in section 5.4.3.1, but refers to its action as will be seen later. Let
Γ = (V, H, I,L) be a constructor as defined above. Denote by V◦ the portfolio over D whose
component V◦d at an object d in D contains all the ‘degenerate’ vertebrae in C of the form
given below for every vertebra p ·β in Vθ and object θ in K satisfying the equation H(θ) = d.

S′

xβ
��

S′

β
��

D′ D′ D′

We shall let Γ◦ denote the constructor of type [D ↓ D] × B in C made of the quadruple
(V◦, idD, I, idI( )) where idI( ) denotes the identity natural transformation on I. The fact
that such a quadruple is a constructor follows from Remark 5.48.

Definition 5.50 (Star operation). Let Γ = (V, H, I,L) be a constructor as defined above.
Denote by V? the portfolio over K whose component V?θ at an object θ in K contains all the
vertebrae of the following form in C2 for every vertebra v = ‖γ, γ′‖ · β in Vθ.

idS
γ′ +3

γ

��

x

idD1

δ1
��

idD2 δ2

+3 idS′
β +3 idD′

Such a vertebra will later be denoted as idv as it may be seen as the identity morphism on v
in Mod(Vert). We shall let Γ? denote the constructor of type [K ↓ K]×B in C2 made of the
quadruple (V?, idK ,L, idL( )). Again, the fact that such a quadruple is a constructor follows
from Remark 5.48.

Example 5.51 (Categories of premodels). Let C be a complete category, D be a small
category and (K,T ) be a conical croquis in D. Suppose given an adjunction L a R where
R and L are endofunctors of C. It follows that the functors R and L commute with limits
and colimits, respectively. This means that the image of any vertebra v in C via L defines
a vertebra L(v) in C. Let us consider a portfolio V of vertebrae in C over K such that the
mapping v 7→ L(v) defines a function Vc → VT ·c for every cylinder c in K. Any portfolio may
be completed in such a way8. Let P ⊆ NpC(D,R, T ) be a category of R-premodels for K.
Since the equation

domC(GlK(X, e)(c)) = X(peakK(c))

holds (see section 5.3.1.3 for peakK), the category P is equipped with a natural constructor
(V, peakK , I,L) of type [K ↓ D]× P in C where I and L are the obvious functors defined as
follows on the objects.

I :

(
D × P → C
(d, (X, e)) 7→ X(d)

)
L :

(
K × P → C2

(c, (X, e)) 7→ GlK(X, e)(c)

)
This constructor will later be referred to as ΓK .

5.4.3.3. Playgrounds. The term ‘playground’ refers to the fact that most of our (combinato-
rial) activities will take place there. Let Γ = (V, H, I,L) be a constructor of type [K ↓ D]×B
in C. For every object d in D and morphism f : X → Y in B, the playground of Γ at (f, d)
is the set of 4-tuples (θ, v, t, c) consisting of an object θ in K, a vertebra v in Vθ, an arrow
t : H(θ) → d in D and a commutative cube c in C encoding an element of the hom-set
Csq(disk(v),Lθ(f)). Such a set will be denoted by SΓ (f, d).

8Any portfolio V′ of vertebrae in C over K generates a portfolio of the previous form by considering the collection
made of the set Vc :=

⋃
c=Tn·c[

Ln(V′c[ ) for every object c in K.
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Remark 5.52. In the case where v is of the form ‖γ, γ′‖ · β, the commutative cube c may
be seen as a commutative square in C2 of the form given below on the left, which represents
the right commutative cube when viewed from above.

(5.28)

γ
x +3

disk(v)

��

IH(θ)(f)

Lθ(f)

��
β ◦ δ1 y

+3 L•θ(f)

· Lθ(X) //

��

·

��

←−Lθ(f)
·

disk(v)−→

γ′
//

γ

��

@@

·

β◦δ1

��

@@

· // ·

· β◦δ2 //

@@

·

@@

Remark 5.53. The function (f, d) 7→ SΓ (f, d) extends to an obvious functor B2 ×D → Set
by mapping any arrow s : d → d′ in D and morphism η : f ⇒ f ′ in B2 to the function
SΓ (f, d) → SΓ (f, d′) satisfying the mapping rule (θ, v, t, c) 7→ (θ, v, s ◦ t,Lθ(η) ◦ c) where the
composite Lθ(η) ◦ c is more explicitly as follows.

disk(v)
c +3 Lθ(f)

Lθ(η) +3 Lθ(f
′)

The functor SΓ (f, ) : D → Set will later be referred to as the playground of the con-
structor Γ at f . In the sequel, this functor will be seen as a functor valued in Cat(1) by
identifying its images with discrete categories.

Example 5.54. Let Γ = (V, H, I,L) be a constructor of type [K ↓ D] × B in C. For
every object d in D and morphism f in B, the playground of Γ◦ at (f, d) is the set of 4-
tuples (d′, v, t, c) consisting of an object d′ in D, a degenerate vertebra v in V◦d′ , a morphism
t : d′ → d in D and commutative cube c in C encoding an arrow of the following form in Csq.

c : disk(v)⇒ idId′ (f)

Because of the particular form of v, the cube c may instead be seen as an arrow

s : β ⇒ Id′(f)

in C2 when v is equal to ‖β, id‖ · id. This is how we will later regard the cubes associated
with the elements of SΓ◦(f, d).

Example 5.55. Let Γ = (V, H, I,L) be a constructor of type [K ↓ D] × B in C. For every
object θ in K and morphism f in B, the playground of Γ? at (f, θ) is the set of 4-tuples
(θ′, idv, t,h) consisting of an object θ in K, a vertebra idv in V?θ′ , a morphism t : θ′ → θ in K
and a commutative hypercube h in C encoding an arrow of the following form in (Csq)2.

h : disk(idv)⇒ idLθ(f)

It follows from the particular form of the vertebrae in V? that the hypercube c may be seen
as an obvious commutative cube in C or an arrow as follows in Csq.

c : disk(v)⇒ Lθ(f)

This is how we will later regard the hypercubes of the elements of SΓ?(f, θ).

Example 5.56 (Categories of premodels). Consider the constructor ΓK defined in Example
5.51 for some category of premodels P ⊆ NpC(D,R, T ) over a conical croquis (K,T ). For
every morphism f : (X, e) ⇒ (Y, e′) in P, we are going to show that there exists a natural
transformation as follows.

SΓK (f, )⇒ SΓK (f, T ( ))
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For every object d in D, consider an object (c, v, t, c) in SΓK (f, d) where c is a cylinder in K,
t : peakK(c) → d is an arrow in D and c is as shown in diagram (5.28). The cylinder c will
be encoded by the following left diagram so that the object peakK(c) in D is given by d[. It
follows that c has the form of the right commutative square.

(5.29) 1

⇒ t[d[
��

A†
!oo

d†
��

D D

⇒ γ
x +3

disk(v)

��

limd[f

Lc(f)
��

β ◦ δ1 y
+3 limd†RfT

Now, it comes from the naturality of e : X ⇒ RXT and e′ : Y ⇒ RY T ; the functoriality of
GlK( )(c) and GlK( )(T · c) and the definition of the morphism f : (X, e)⇒ (Y, e′) in P that
the following cuboid commutes in C. Note that the commutativity of R with the limits of C
is used implicitly on the left face.

limd[X

Lc(X)
&&

limd[
f

��

limd[
e

// limd[RXT

limd[
RfT

��

RLT ·c(X)

''

limd†RXT

limd†RfT

��

limd†ReT
// limd†R

2XT 2

limd†R
2fT 2

��

limd[Y

Lc(Y )

&&

limd[
e′
// limd[RY T

RLT ·c(Y )
''

limd†RY T limd†Re
′T

// limd†R
2Y T 2

The above cuboid may be expressed in terms of the left commutative diagram, below, in C2

when seen from above. Pasting this commutative diagram with the right commutative square
of (5.29) then leads to the commutative square given below on the right.

limd[f

Lc(f)

��

limdef +3 limd[RfT

RLT ·c(f)
��

limd†RfT
limd†RefT

+3 limd†R
2fT 2

⇒ γ

disk(v)

��

limdef◦x +3 limd[RfT

RLT ·c(f)
��

β ◦ δ1
limd†RefT◦y

+3 limd†R
2fT 2

As previously assumed, the preceding right commutative diagram may be considered up
to canonical isomorphisms of the form Rlim ∼= limR. In this case, applying the functor
L : C → C on the resulting diagram provides the following left-hand commutative square in
C2. Post-composing this diagram with the naturality square of the counit ε : LR ⇒ idC of
the adjunction L ` R leads to the succeeding right commutative diagram.

L(γ)

L(disk(v))

��

L(limdef◦x)
+3 LRlimd[fT

LRLT ·c(f)
��

L(β ◦ δ1)
LR(limd†efT◦y)

+3 LRlimd†RfT
2

⇒ L(γ)

L(disk(v))

��

ε∗◦L(limdef◦x)
+3 limd[fT

LT ·c(f)
��

L(β ◦ δ1)
ε∗◦L(limd†RefT◦y)

+3 limd†RfT
2

The notation ε∗ is used to make the previous diagram less cumbersome, but the star should
rigorously be thought of as the appropriate object. In the end, by putting the functor T
in the indices of the limits, the preceding right diagram provides a commutative cube c′ as



244 5. Construct of Homotopy Theories

follows.

L(γ)

disk(L(v))

��

x′ +3 limT◦d[f

LT ·c(f)
��

L(β ◦ δ1)
y′

+3 limT◦d†Rf

Since the vertebra L(v) belongs to VT ·c, the preceding cube is associated with the quadruple
(T · c, L(v), T (t), c′) in the discrete category SΓK (f, T (d)). In fact, the mapping (c, v, t, c) 7→
(T ·c, L(v), T (t), c′) defines a functor from SΓK (f, d) to SΓK (f, T (d)), which is obviously natural
in the variable d by functoriality of T . The induced natural transformation will later be
denoted as follows.

ζΓK : SΓK (f, )⇒ SΓK (f, T ( ))

Example 5.57 (Categories of premodels). The construction of Example 5.56 also holds for
the constructor Γ◦K as its underlying portfolio V◦ of vertebrae is also equipped with mappings
v 7→ L(v) from V◦d to V◦T (d) when V is. Specifically, for every morphism f : (X, e)⇒ (Y, e′) in

the category of premodels P, the natural transformation

ζΓ◦K : SΓ◦K (f, )⇒ SΓ◦K (f, T ( ))

maps a 4-tuple (d′, v, t, s), where d′ is an object of D and s is an arrow β ⇒ f(d′) in C2 (see
Example 5.54), to the 4-tuple (T (d′), L(v), T (t), s′) where s′ is the arrow ε∗ ◦ L(e(d′) ◦ s) :
L(β)⇒ fT (d′) in C2.

5.4.3.4. Tomes of a constructor. Let C be a category that admits all coproducts and Γ =
(V, H, I,L) be a constructor of type [K ↓ D]×B in C. For every object d in D and morphism
f in B, the tome of Γ at (f, d) is the functor ϕΓ ,d : SΓ (f, d)→ C2/Id(f) that maps a 4-tuple
(θ, v, t, c) to the composite arrow

γ
top(c) +3 IH(θ)(f)

It(f) +3 Id(f)

where top : Csq → C2 is the domain functor of C2, which sends any commutative cube living in
Csq(disk(v),Lθ(f)) to the underlying commutative square in C2(γ,IH(θ)(f)) (diagram (5.28)
might turn out to be useful). We will later refer to this tome as a triple of the following form.

TΓ (f, d) := (Id(f),SΓ (f, d), ϕΓ ,d)

Example 5.58. Let C be a category admitting all coproducts and Γ = (V, H, I,L) be a
constructor of type [K ↓ D]× B in C. The tome associated with the constructor Γ◦ provides
for every object d in D and morphism f in B, a functor ϕΓ◦,d : SΓ◦(f, d)→ C2/Id(f) mapping
a 4-tuple (d′, v, t, s) to the following composite arrow in C2 (see convention in Example 5.54).

β
s +3 Id′(f)

It(f) +3 Id(f)

Example 5.59. Let C be a category admitting coproducts and Γ = (V, H, I,L) be a con-
structor of type [K ↓ D]× B in C. The tome of the constructor Γ? provides for every object
θ in K and morphism f in B, a functor ϕΓ?,θ : SΓ?(f, θ) → Csq/Lθ(f) mapping a 4-tuple
(θ′, idv, t, c) to the following composite arrow in C2 (see convention in Example 5.55).

disk(v)
c +3 Lθ′(f)

Lt(f) +3 Lθ(f)

Proposition 5.60. The functor ϕΓ ,d : SΓ (f, d) → C2/Id(f) is natural in d over D and f

over B2. This is equivalent to saying that the mapping (f, d) 7→ TΓ (f, d) induces a functor
B2 ×D → Tome(C).
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Proof. Let f : x → Y and f ′ : X ′ → Y ′ be two arrows in B. For every pair of morphisms
η : f ⇒ f ′ in B2 and s : d → d′ in D, the following diagram commutes, which turns
the mapping (f, d) 7→ TΓ (f, d) into a first functor B2 × D → LTom(C) by functoriality of
I : D × B → C.

Id(X)

Id(f)

��

Id(η)
// Id(X

′)

Id(f ′)
��

It(X′)
// Id′(X

′)

Id′ (f
′)

��

Id(Y )
Id(η)

// Id(Y
′)

Is(Y ′)
// Id′(Y

′)

We are now going to show that this functor lift to Tome(C). For this, we need to show that
the action of this commutative square as a functor C2/Id(f)→ C2/Id′(f

′) is compatible with
the tomes ϕΓ ,d : SΓ (f, d)→ C2/Id(f) and ϕΓ ,d′ : SΓ (f ′, d′)→ C2/Id′(f

′) along the playground
functor SΓ (η, s) : SΓ (f, d) → SΓ (f ′, d′). In this respect, consider the above commutative
diagram in C2 and paste the image ϕΓ ,d(θ, v, t, c) next to it as follows.

γ
top(c) +3 IH(θ)(f)

It(f) +3 Id(f)
Id(η) +3 Id(f

′)
Is(f ′)+3 Id′(f

′)

After using the functoriality of I : D × B → C, the above sequence of arrows may be turned
into the following one.

(5.30) γ
top(c) +3 IH(θ)(f)

IH(θ)(η)
+3 IH(θ)(f

′)
Is◦t(f ′)+3 Id′(f

′)

Because the equation

IH(θ)(η) ◦ top(c) = top(Lθ(η) ◦ c)

holds (by dedinition of a constructor), the composite of the sequence of arrows (5.30) belongs
to ϕΓ ,d′ ◦ SΓ (η, s)(θ, v, t, c) by Remark 5.53. This shows that the mapping (f, d) 7→ TΓ (f, d)
defines a functor to Tome(C). �

5.4.4. Modifiers and obstruction squares.

5.4.4.1. Local modifiers. Let Γ = (V, H, I,L) be a constructor of type [K ↓ D]× B in C. For
every morphism f in B, a local modifier of Γ at f is a subfunctor of the playground of Γ◦ at
f . In other words, a local modifier of Γ at f is a functor mf : D → Set such that

1) for every object d in D, the inclusion mf (d) ⊆ SΓ◦(f, d) holds;

2) for every morphism t : d → d′ in D, the function mf (t) : mf (d) → mf (d′) is the
restriction of SΓ◦(f, t) along the respective inclusions of the domains and codomains.

5.4.4.2. Modifiers. Let Γ = (V, H, I,L) be a constructor of type [K ↓ D]×B in C. A modifier
of Γ is a collection of local modifiers mf at every morphism f in B.

Remark 5.61. According to Example 5.54, for every object d in D and morphism f : X → Y
in B, the image mf (d) of some modifier m of Γ contains data consisting of an object d′ in D,
a stem β : S′ → D′ of some vertebra in Vd′ , a morphism t : d′ → d in D and a commutative
square in C as follows.

S′

β
��

x // Id′(X)

Id′ (f)

��

D′
y
// Id′(Y )

For every modifier m as defined above, we will denote by m̃f the functorD → Set obtained
by the image factorisation (i.e. epi-mono factorisation) of the natural transformation resulting
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from the composition of the inclusion mf ⊆ SΓ◦(f, ) together with the tome ϕΓ◦ : SΓ◦(f, )⇒
C2

(

I(f). In other words, we obtain a canonical factorisation as follows.

mf
+3 +3 m̃f

ϕ̃Γ◦ +3 C2

(

Υ(f)

For every object d ∈ D, the image q̃(d) will be thought of as a quotiented set of q(d)

5.4.4.3. Modified playground. Let Γ = (V, H, I,L) be a constructor of type [K ↓ D]× B in C
and m be a modifier of Γ . The modified playground Γ along m is the functor Sm(f, ) : D → Set
defined by the following formal sum in Set for every object d in D.

Sm(f, d) = m̃f (d) + SΓ (f, d)

In the sequel, any modified playground and modifier will be seen as a functor valued in Cat(1)
by identifying their images with discrete categories.

Example 5.62 (Categories of premodels). In the sequel, a modifier m will be said to be
admissible for the constructor ΓK if the transformation ζΓ◦K (f, ) : SΓK (f, ) ⇒ SΓK (f, T ( ))

restricts on the domain and lifts on the codomain to a natural transformation ζΓ◦K (f, ) :

mf ( ) ⇒ mf ◦ T ( ) for every morphism f in P. The mapping rules of ζΓ (f, ) and ζΓ◦K (f, )
then extend to the modified playground along m in terms of a natural transformation as
follows.

ζm(f, ) : Sm(f, )⇒ Sm(f, T ( ))

5.4.4.4. Modified tomes of a constructor. Let C be a category that admits all coproducts,
Γ = (V, H, I,L) be a constructor of type [K ↓ D] × B in C and m be a modifier of Γ . The
modified tome of Γ along m is the functor ϕm

d : Sm(f, d)→ C2/Id(f) defined as the coproduct
in Cat(1) of the cocone induced by the following two functors.

ϕΓ ,d : SΓ (f, d)→ C2/Id(f) ϕ̃Γ◦,d : m̃f (d)→ C2/Id(f)

This functor is therefore equipped with the following mapping rules.{
(θ, v, t, c) 7→ It(f) ◦ top(c) : γ ⇒ Id(f) over SΓ (f, d)
(d′, v, t, s) 7→ It(f) ◦ s : β ⇒ Id(f) over mf (d)

The above tome will later be referred to by the following triple.

TΓm(f, d) := (Id(f), Sm(f, d), ϕm
d )

Proposition 5.63. The functor ϕm
d : Sm(f, d) → C2/Id(f) is natural in d over D. This is

equivalent to saying that the mapping d 7→ TΓm(f, d) induces a functor D → Tome(C) defined
by post-composition.

Proof. Follows from Proposition 5.60, the definition of ϕm
d as a coproduct functor and the

fact that mf is a subfunctor of the playground SΓ◦(f, ). �

Remark 5.64. The naturality of ϕm : Sm(f, ) ⇒ C2

(

I (f) over D extends to the content
of the tome TΓm(f, d). Specifically, recall that the content of the tome TΓm(f, d) is obtain by
applying the colimit functor on ϕm

d (see section 5.4.1.5). If we denote by Sd the category
Sm(f, d), the functoriality of the colimit functor implies that the content given below on the
left-hand side in C extends to the right commutative square in CD.

colSdAd

colSdu //

colSd∂ϕ
m
d

��

Id(X)

Id(f)

��

colSdBd
colSdv

// Id(Y )

⇒ colSA
colSu +3

colS∂ϕm

��

I(X)

I(f)

��
colSB

colSv
+3 I(Y )

The above right diagram will be referred to as the functorial content of TΓm(f, ).
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Proposition 5.65. For every object d in D, the mapping f 7→ TΓm(f, d) induces an obvious
functor B2 → Ltom(C).

Proof. It suffices to notice that the following diagram commutes for every morphism η : f ⇒
f ′ in B2 where f : X → Y and f ′ : X → Y ′.

Id(X)

Id(f)

��

Id(η)
// Id(X

′)

Id(f ′)
��

Id(Y )
Id(η)

// Id(Y
′)

�

5.4.4.5. Combinatorial constructors. Let Γ = (V, H, I,L) be a constructor of type [K ↓ D]×B
in C and m be a modifier of Γ . The functorial content of TΓm(f, ) will be said to admit a
pushout in CD if one may form a pushout square inside the functorial content of TΓm(f, ) as
shown below.

(5.31) colSA

x

colSu +3

colS∂ϕm

��

I(X) I(f)

��
qmf
��

colSB

colSv

4<πm
f

+3 Nm
f

amf +3 I(Y )

The functor d 7→ Nm
f (d) will then be called the pushout construction under m at f .

Definition 5.66 (Combinatorial constructors). A constructor Γ = (V, H, I,L) of type [K ↓
D] × B in C will be said to be combinatorial along a modifier m at a morphism f : X → Y
in B if

1) the functorial content of TΓm(f, ) admits a pushout in CD as given in (5.31);

2) there exists a factorisation of f : X → Y in B of the form given below, on the left,
that lifts the corresponding right-hand factorisation of I(f) along I : B → CD.

(5.32) X

f

""

{f}m
// Nm

f bfcm
// Y

I7−→ I(X)

I(f)

 (

qmf

+3 Nm
f amf

+3 I(Y )

A constructor Γ of type [K ↓ D]× B in C that is combinatorial9 along a modifier m at every
morphism of B will be said to be combinatorial along m and will sometimes be referred to as
a pair (Γ,m).

Example 5.67 (Categories of premodels). Suppose that the category C of Example 5.56
admits pushouts. By Proposition 1.27, the functor category CD has componentwise pushouts.
We are going to show that the constructor ΓK is combinatorial along any admissible modifier
m when the category of R-premodels P is equal to NpC(D,R, T ). Let f : (X, e)⇒ (Y, e′) be
a morphism in NpC(D,R, T ). To start with, define the obvious natural transformation over
D of the form

ζ′ΓK : C2

(

f ⇒ C2

(

fT

9Here, the term ‘combinatorial’ refers to the common practice, in homotopy theory, of calling a structure ‘combi-

natorial’ to mean that it allows the application of the small object argument.
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that maps an object z : δ ⇒ f(d) in C2/f(d) to the composite arrow displayed below, on
the left, where ef (d) denotes the arrow f(d)⇒ RfT (d) in C2 as displayed in brackets on the
right.

ε∗ ◦ L(ef (d) ◦ z) : L(δ)⇒ fT (d)


X(d)

f(d)

��

e(d)
// RXT (d)

RfT (d)

��

Y (d)
e′(d)
// RY T (d)


Let us show that this natural transformation makes the following left diagram commute, the
underlying mapping rules being given on the right.

Sm(f, )
ζm +3

ϕm

��

Sm(f, T ( ))

ϕm
T
��

C2

(

f
ζ′ΓK

+3 C2

(

fT


(c, v, t, c) � ζm //

_

ϕm

��

(T · c, L(v), T (t), c′)
_

ϕm
T

��

It(f) ◦ top(c) �
ζ′ΓK

// IT (t)(f) ◦ top(c′)


Specifically, the commutativity of the preceding diagram at an object (c, v, t, c) (with the
same notation as in Example 5.56) follows from the next few equations, where the limit
limd ef over a functor d : 1→ D has been replaced with the evaluation ef (d).

ζ′ΓK ,d(ϕ
m
d (c, v, t, c)) = ε∗ ◦ L(ef (d) ◦ It(f) ◦ x) (definition)

= ε∗ ◦ L(RIT (t)(f) ◦ ef (d[) ◦ x) (naturality of ef )

= IT (t)(f) ◦ ε∗ ◦ L(ef (d[) ◦ x) (naturality of ε)

= ϕm
T (d)(ζm,d(c, v, t, c)) (definition)

Interestingly, the preceding equation between the first and last terms allows us to express the

content of the tome TΓKm (f, T (d)) along ζm,d : Sm(f, d)→ Sm(f, T (d)) in terms of the content

of the tome TΓKm (f, d). To show this, let us regard (as usual) the functor ∂ϕm
d : Sm(f, d)→ C2

as a natural transformation ∂ϕm
d : Ad ⇒ Bd in C over Sm(f, d). Under the correspondence

established in section 5.4.1.5 between tomes and their contents, the equation

(5.33) ϕm
T ◦ ζm = ζ′ΓK ◦ ϕ

m

says that the functorial content of ϕm
T shifted along ζm : Sm(f, )⇒ Sm(f, T ( )), namely

(5.34) colSAT ◦ ζm
colS∂ϕm

T ◦ζm
��

ξζm (AT )
+3 colSAT

colS∂ϕm
T

��

colSuT +3 XT

fT

��
colSBT ◦ ζm

ξζm (BT )
+3 colSBT

colSvT

+3 Y T,

is equal to the image of the contents of Tm(f, ) via the components of the transformation
ζ′ΓK : C2

(

f ⇒ C2

(

fT (up to canonical isomorphism colSL ∼= LcolS), which is given below.

(5.35) colSLA

colSL∂ϕm

��

∼= +3 LcolSA
L(colSu)+3

LcolS∂ϕm

��

LX

Lf
��

Le +3 LRXT

LRfT
��

ε∗ +3 XT

fT
��

colSLB ∼=
+3 LcolSB

L(colSv)
+3 LY

Le′
+3 LRY T

ε∗
+3 Y T

Remark 5.68. Because the equation ∂ ◦ ζ′ΓK = L ◦ ∂ holds, equation (5.33) implies the
equality ∂ ◦ϕm

T ◦ ζm = L ◦ ∂ϕm, which corroborates the fact that the leftmost vertical arrows
of the previous two diagrams are the same.
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After forming the pushout construction under m at f in the functorial content given by
diagram (5.34), the equality between (5.34) and (5.35) allows us to show that the following
diagram commutes where the bottom and top commutative parts come from diagram (5.35).

LcolSA

ε∗◦L(e◦colSu)

&.

LcolS∂ϕm

��

∼= +3 colSLA

colSL∂ϕm

��

ξζm (AT )
+3 colSAT

x
colSuT +3

colS∂ϕm
T

��

XT
fT

��
qmf T

��
LcolSB ∼=

+3

ε∗◦L(e′◦colSv)

2:colSLB
ξζm (BT )

+3 colSBT

colSvT

2:
πmT +3 Nm

f T
amf T +3 Y T

If η : idC ⇒ RL denotes the unit of the adjunction L a R, it follows from the definition of an
adjunction that the function R( ) ◦ η∗ is inverse of ε∗ ◦ L( ). Applying the function R( ) ◦ η∗
on the earlier diagram therefore provides the following commutative diagram.

colSA
colSu +3

colS∂ϕm

��

X
e +3 RXT

RfT

��

Rqmf T

v~
RNm

f T
Ramf T

 (
colSB

colSv
+3

RπT
6>

Y
e′
+3 RY T

Now, because the top left corner of the previous diagram corresponds to the top left corner
of the commutative square defining the pushout construction Nm

f , it follows that there exists
of a natural transformation em : Nm

f ⇒ RNm
f T making the following diagram commute.

colSA

x

colSu +3

colS∂ϕm

��

X
e +3

qmf

w�

RXT

��

Rqmf T

v~
Nm
f

em +3 RNm
f T

Ramf T

 (
colSB

colSv
+3

π
8@

RπT

19

Y
e′
+3 RY T

The previous diagram provides a morphism qmf : (X, e) ⇒ (Nm
f , em) in the category of R-

premodels NpC(D,R, T ). The universality of Nm
f also provides a morphism amf : (Nm

f , em)⇒
(Y, e′) in NpC(D,R, T ). These two morphisms obviously define a factorisation of the mor-
phism f : (X, e)⇒ (Y, e′) in NpC(D,R, T ).

In other words, the factorisation of f : X ⇒ Y in CD induced by the pushout construction
under m at f lifts to the category of premodels NpC(D,R, T ). This shows that when C
admits all pushouts, the constructor ΓK is combinatorial along any admissible modifier m at
any morphism f in NpC(D,R, T ).

Definition 5.69 (Fibered category of premodels). Let C be a category admitting all pushouts,
P be a category of R-premodels in NpC(D,R, T ) over some croquis (K,T ), ΓK be the asso-
ciated constructor and m be an admissible modifier of ΓK . The category P will be said to be
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fibered along m if for every morphism f : (X, e)⇒ (Y, e′) in P, the factorisation

(X, e)
qmf +3 (Nm

f , em)
amf +3 (Y, e′)

belongs to the subcategory P ⊆ NpC(D,R, T ).

. If e and e′ are identity natural transformations, then so is em. This means that a
functor category CD ⊆ NpC(D, idC , idD) is fibered along any admissible modifier m.

. If the equation P = NpC(D,R, T ) holds, then P is fibered along any admissible
modifier m.

5.4.4.6. Trigger functors. Let Γ = (V, H, I,L) be a constructor of type [K ↓ D] × B in C
equipped with one of its modifiers m. For every object d in D and morphism f : X → Y in
B, a trigger functor at (f, d) along m is a functor i : 1 → Sm(f, d) that picks out a 4-tuple
(θ, v, t, c) in the subcategory SΓ (f, d) ⊆ Sm(f, d) such that the arrow t : H(θ) → d is an
identity in C.

SΓ (f, d)

⊆
��

1
i
//

<<

Sm(f, d)

i(∗) = (θ, v, idH(θ), c)

In the sequel, the term Γ -collection of triggers along m will be used to refer to any collection
of sets J(f, d), where the indices run over every object d in D and morphism f in B, whose
elements are trigger functors at (f, d) along m.

Definition 5.70 (Upper star operation). For every trigger functor i picking out the 4-tuple
(θ, v, idH(θ), c) in the modifier playground Sm(f, d) associated with Γ , we shall denote by i? the
trigger functor picking out the 4-tuple (θ, idv, idθ, c) in the playground SΓ?(f, θ) associated
with the constructor Γ?.

Definition 5.71 (Lower star operation). For every trigger functor i picking out the 4-tuple
(θ, idv, idθ, c) in SΓ?(f, θ) associated with the constructor Γ?, we shall denote by i? the trigger
functor picking out the 4-tuple (θ, v, idH(θ), c) in the modifier playground Sm(f, d) associated
with Γ .

Remark 5.72. It follows from the preceding definitions that when the lower star operation
is seen as a function (or functor) of the form SΓ?(f, θ) ↪→ Sm(f,H(θ)), then the upper star
operation turns it into a one-to-one correspondence.

5.4.4.7. Obstruction squares. Let Γ = (V, H, I,L) be a constructor of type [K ↓ D]× B in C
combinatorial along a modifier m at some morphism f : X → Y in B and d be an object
in D. For every functor i : 1 → Sm(f, d) picking out a quadruple (θ, v, t, c) in the modified
playground Sm(f, d), the content of the tome

TΓm(f, d) = (Id(f), Sm(f, d), ϕm
d )

along the functor i is given by the composite ϕm
d ◦ i. By definition, this commutative square

is the composite It(f) ◦ top(c). Wherever the image of the functor i lands in Sm(f, d), this
square is of the form given below on the left, where δ : S → D stands for either a seed or a
stem of a vertebra in Vθ. Extracting this square in the pushout construction under m at f
(see diagram (5.31)) via the universal shift along i leads to the following right commutative
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diagram.

S

δ
��

It(X)◦x
// Id(Y )

Id(f)

��

D
It(Y )◦x′

// Id(Y )

⇒ colSAd ◦ i

It(X)◦x

))

δ

��

ξi(A)
// colSdAd

colSdu //

colSd∂ϕ
m
d

��

Id(X) Id(f)

��

qmf (d)

��

colSdBd ◦ i

It(Y )◦x′

88ξi(Bd)
// colSdBd

colSdv

88πm
f (d)
// Nm

f (d)
amf (d)

// Id(Y )

If we denote the composite πmf (d) ◦ ξi(Bd) by the arrow πif (d) : D→ Nm
f (d), the earlier right

diagram may be simplified into the following left one.

(5.36) S x //

δ

��

Id(X)

qmf (d)

��

Nm
f (d)

amf (d)

��

D

πif (d)
88

x′
// Id(Y )

Id(X)

qmf (d)

��

Lθ(X)
// L•θ(X)

L•θ({f}m)

��

Nm
f (d)

amf (d)

��

Lθ(Nm
f )

// L•θ(N
m
f )

L•θ(bfcm)

��

Id(X)
Lθ(Y )

// L•θ(Y )

From now on, suppose that i is a trigger functor that picks out a quadruple of the form
(θ, v, idd, c). In this case, the morphism δ : S → D corresponds to the seed of the vertebra
v, which will be denoted by γ. Because the identity H(θ) = d holds, the image of the
factorisation f = bfcm ◦ {f}m via the functor Lθ : B → C2 is of the form given on the
above right. Note that the two diagrams of (5.36) may be pasted in an obvious way, so
that pasting these and merging the resulting diagram with the commutative cube defined by
c : disk(v)⇒ Lθ(f) leads to the following factorisation of the cube c itself for the notations
v = ‖γ, γ′‖ · β.

(5.37) S

γ

��

x //

γ′   

Id(X)

Lθ(X)

%%

��

D1

β◦δ1

��

y
// L•θ(X)

L•θ({f}m)

��

Nm
f (d)

��

Lθ(Nm
f )

$$

D2

πif (d)

66

β◦δ2 ��

x′ // Id(Y )

Lθ(Y )

$$

L•θ(N
m
f )

L•θ(bfcm)

��

D′
y′

// L•θ(Y )

Now, notice that the above commutative cube provides the following left commutative square.
By definition of the vertebra ‖γ, γ′‖ · β, we may form a pushout in it so that we obtain a
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canonical arrow w : S′ → L•θ(N
m
f ) making the next right diagram commute.

S

γ

��

γ′
// D1

L•θ({f}m)◦y
��

D2
Lθ(Nm

f )◦πif (d)

// L•θ(N
m
f )

⇒ S

xγ

��

γ′
// D1

δ1
��

L•θ({f}m)◦y

��

D2
δ2 //

Lθ(Nm
f )◦πif (d)

55
S′ w // L•θ(N

m
f )

It is then not hard to deduce from the universality of this pushout that the two arrows

L•θ(bfcm) ◦ w : S′ → L•θ(Y ) and y′ ◦ β : S′ → L•θ(Y )

are solutions for the same universal problem over S′ (diagram (5.37) might come in handy to
visualise this fact). By uniqueness of a universal solution, the following diagram must then
commute.

S′

β

��

w // L•θ(N
m
f )

L•θ(bfcm)

��

D′
y′

// L•θ(Y )

For any trigger functor i : 1→ Sm(f, d), the previous commutative square will be referred to
as the obstruction square of (Γ ,m) triggered by i. This terminology has a certain topological
connotation (e.g. obstruction theory) and mainly refers to the fact that the previous com-
mutative square is representative of the obstruction generated by L•θ(bfcm) to complete the
object S′, which one would like to think of as an abstract sphere, into the object D′, which
one would like to think of as an abstract disc.

5.4.4.8. Rectifying modifiers. Let Γ = (V, H, I,L) be a constructor of type [K ↓ D]× B in C
combinatorial along a modifier m at some morphism f : X → Y in B and d be an object in
D. For every Γ -collection of triggers J along m, a modifier u of Γ will be said to rectify the
modifier m over J at f , which will be denoted by the relation m ≺Jf u, if

1) the constructor Γ is combinatorial along u at bfcm : Nm
f → Y ;

2) for every object d in D and functor i in J(f, d) picking out a quadruple (θ, v, t, c) in
Sm(f, d), it is equipped with an arrow

$i
u(f, d) : D′ → L•θ(N

u
bfcm)

factorising the obstruction square of (Γ ,m) triggered by i as follows, where the
factorisation bfcm = bbfcmcu ◦ {bfcm}u holds in B by item 1).

(5.38) S′

β

��

w // L•θ(N
m
f )

L•θ(bfcm)

��

L•θ({bfcm}u)

yy

L•θ(N
u
bfcm)

L•θ(bbfcmcu)

&&

D′
y′

//

$iu(f,d)

;;

L•θ(Y )

Remark 5.73 (Points of view). Let u be a modifier of Γ that rectifies the modifier m over a
collection of triggers J at a morphism f in B. For every trigger functor i in J(f, d) picking
out a quadruple (θ, v, idd, c) in Sm(f, d), diagram (5.38) may be used to complete diagram
(5.37) into diagram (5.39), where, for the sake of convenience, the compositions

L•θ({bfcm}u) ◦ Lθ(Nm
f ) and L•θ({bfcm}u) ◦ L•θ({f}m)
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have been shortened to the symbols hθ(f |m, u) and h′θ(f |m, u), respectively.

(5.39) S

γ

��

x //

γ′   

Id(X)

Lθ(X)

%%

��

D1

β◦δ1

��

y
// L•θ(X)

h′θ(f |m,u)

��

Nm
f (d)

��

hθ(f |m,u)
%%

D2

πif (d)

66

β◦δ2 ��

x′ // Id(Y )

%%

L•θ(N
u
bfcm)

L•θ(bbfcmcu)

��

D′ y′ //

$iu(f,d)

55

L•θ(Y )

Interestingly, the outer commutative cube of diagram (5.39) exactly corresponds to the
content of TΓ?(f, θ) along the trigger functor i? : 1 → SΓ?(f, θ) picking out the 4-tuple
(θ, idv, idθ, c).

Example 5.74 (Categories of premodels). This part continues the discussion implicitly sug-
gested by Definition 5.69 by considering a category of R-premodels P ⊆ NpC(D,R, T ) over
some conical croquis (K,T ) that is fibered along some admissible modifier m. The goal is to
define a modifier u rectifying the modifier m over any Γ -collection of triggers J .

Let us consider some Γ -collection of triggers J and a morphism g : (X, e) ⇒ (Y, e′) in
P. Recall that, for every object d[ in D, the obstruction square of (ΓK ,m) along a functor
i : 1→ Sm(g, d[) in J(g, d[) that picks out a 4-tuple (c, v, idd[ , c) is of the following form when
the cylinder c is of the form (!, t) : d[ ⇒ d†.

S′

β

��

w // L•c(N
m
g )

L•c(bgcm)

��

D′
y′

// L•c(Y )

⇒ S′

β

��

w // limd†RN
m
g T

limd†Ramg T

��

D′
y′

// limd†RY T

Applying the functor L : C → C on the previous right commutative square and post-composing
with the counit ε : LR ⇒ idC (up to canonical isomorphism Rlim ∼= limR) leads to the
following one.

L(S′)

L(β)

��

L(w)
// L(limd†RN

m
g T )

L(limd†Ramg T )

��

∼=
r
// LRlimd†N

m
g T

LRlimd†a
m
g T

��

ε∗ // limd†N
m
g T

limd†a
m
g T

��

L(D′)
L(y′)

// L(limd†RY T ) ∼=
r // LRlimd†Y T ε∗

// limd†Y T

The symbols r refers to the canonical isomorphisms making the functor R commute with
the limits of C. Then, using the universal cone associated with the limits involved in the
rightmost vertical arrow of the above diagram, say ς : ∆A† limA† ⇒ idC , provides the following
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commutative square for every object z in the domain A† of d†.

L(S′)

L(β)

��

ε∗◦r◦L(w)
// limd†N

m
g T

limd†a
m
g T

��

ςz // Nm
g Td†(z)

amg Td†(z)

��

L(D′)
ε∗◦r◦L(y′)

// limd†Y T ςz
// Y Td†(z)

The outer square of the earlier commutative diagram, which will be referred to as a morphism
s′i(z) : L(β)⇒ amg Td†(z) in C2, gives rise to a quadruple

modi(z, t) := (Td†(z), L(‖β, id‖ · id), t, s′i(z))

in the set SΓ◦K (amg , d) for any arrow t : T (d†(z)) → d in D. These quadruples are going to
‘generate’ the rectifying modifier we are looking for. Before defining such a modifier, let us
first define for every object d in D the set vg(d) of all quadruples of the form modi(z, t) for
every

- object d[ in D and trigger functor i(∗) = (c, v, idd[ , c) in Sm(g, d[);

- object z in the small category A† associated with the cylinder c;

- arrow t : Td†(z)→ d in D.

The sets vg(d), which are subsets of SΓ◦K (amg , d), inherit the functoriality of the functor

SΓ◦K (amg , ) and thus define a local modifier of ΓK at the morphism amg . This local modi-
fier may be extended to an obvious modifier u of ΓK by considering the equations given
below.

(5.40)

{
uf (d) := vg(d) if f = amg
uf (d) := ∅ otherwise

However, this modifier is not admissible in the sense of Example 5.56. This may be corrected
by considering the smallest subfunctor u′f containing the images of uf that is stable under
application of the following function.

ζΓK ,d : SΓ◦K (amf , d)→ SΓ◦K (amf , T (d))

Specifically, since the category SetD is complete, the subfunctor u′f is given by the pullback of

all the inclusions mf ( ) ↪→ SΓ◦K (amf , ) where mf ( ) is stable under ζΓK and uf is a subfunctor

of mf ( ). This leads to the following formula.

u′f (d) := {(d[, v, t, s) | t : d[ → d in D and ∃n : (d[, v, ∗, s) ∈ ζnΓK ,d[(uf (d[))}

The collection u′ consisting of the functor u′f for every morphism f : (X, e) ⇒ (Y, e′) in P
finally induces an admissible modifier for ΓK . It directly follows from Definition 5.69 that ΓK
is combinatorial along u′ at amg when, for instance, one of the following equations hold.

P = CD P = NpC(D,R, T )

This therefore proves the first item of the definition of a rectifying modifier for such categories
of R-premodels. From now on, we shall assume that P is such that ΓK is combinatorial along
u′ at amg .

The rest of the section shows that u′ actually rectifies the modifier m over J at g by
showing that item 2) of section 5.4.4.8 is satisfied. In this respect, consider an object d in
D and a trigger functor i(∗) = (c, v, idd[ , c) in Sm(g, d[) in J(g, d). For every object z in
the category A† associated with c, denote by jz : 1→ u′(amg , Td†(z)) the functor picking out
the quadruple modi(z, idTd†(z)) defined above. In particular, the following equation hold by

definition of ϕu′ .

ϕu′

Td†(z)
◦ jz = s′i(z)
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It follows from the preceding equation that the content of the tome Tu′(a
m
g , Td†(z)) along the

functor jz is equal to the outer square of the next commutative diagram, wherein the pushout
construction under u′ at the morphism amg has been added (since ΓK is combinatorial along
u′ at amg ).

L(S′)

L(β)

��

ε∗◦r◦L(w)
// limd†N

m
f T

ςz // Nm
f Td†(z)

amg Td†(z)

��

qu
′

amg
Td†(z)

xx

Nu′
amg
Td†(z)

au
′

amg
Td†(z)

&&

L(D′)

π
jz
amg
Td†(z)

66

ε∗◦r◦L(y′)
// limd†Y T ςz

// Y Td†(z)

By definition of the quotient ũ′, the functor jz : 1 → ũ′(amg , Td†(z)) must be functorial in z
(this functoriality was the main reason for defining such a quotient), which implies that the
above commutative diagram is functorial in the variable z. This means that we may form
the limit of the underlying cone above A† as follows.

L(S′)

L(β)

��

ε∗◦r◦L(w)
// limd†N

m
f T limd†N

m
f T

limd†a
m
g T

��

limd†q
u′
amg
T

xx

limd†N
u′
amg
T

limd†a
u′
amg
T

&&

L(D′)

limd†π
jz
amg
T

66

ε∗◦r◦L(y′)
// limd†Y T limd†Y T

Now, using the universal property of the adjunction L a R and the fact that the isomorphisms
r : limA†R

∼= RlimA† are universal, the above diagram may be transformed into the following

one, which proves that u′ rectifies m over J at f .

S′

β

��

w // limd†RN
m
f T

limd†Ramg T

��

limd†Rqu
′

amg
T

ww

limd†RN
u′
amg
T

limd†Rau
′

amg
T

''

D′
y′

//

$i
u′ (g,d)

::

limd†RY T

For convenience, the rectifying modifier u′ will later be denoted as Rec[m|f ].

5.4.5. Combinatorial categories.

5.4.5.1. Numbered constructors. Let B, C be two categories and K, D be two small categories.
A numbered constructor of type [K ↓ D]×B in C consists of a constructor Γ of type [K ↓ D]×B
in C together with a limit ordinal κ such that the category B admits colimits over the category
O(λ) for every limit ordinal λ in O(κ+ 1). Such a structure will be denoted as a pair (Γ , κ)
and usually defined via an equation of the form Γ = (V, H, I,L)κ when the constructor Γ is
of the form (V, H, I,L).

5.4.5.2. Factorisable morphisms of a numbered constructor. Let Γ = (V, H, I,L)κ be a num-
bered constructor of type [K ↓ D]× B in C. A morphism f : X → Y in B will be said to be
(Γ , κ)-factorisable if it is equipped with
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- a sequence (un)n∈κ of modifiers of Γ ;

- a sequence of Γ -collections of triggers (Jn)n∈κ relative to the respective modifiers of
(un)n∈κ for the corresponding indices;

satisfying the following inductive conditions:

. initial case: The constructor Γ is combinatorial along u0 at f0 where we symbolically
set the notation f0 := f ;

. successor cases: The modifier un+1 rectifies the modifier un at fn over Jn where we
inductively define fn+1 := bfncun ;

. limit cases: for any (infinite) limit ordinal λ, the constructor Γ is combinatorial along
uλ at fλ where fλ is the colimit coln∈O(λ)fn in B of the diagram, below.

(5.41) X

f0

��

{f0}u0 // Nu0
f0

f1

��

{f1}u1 // Nu1
f1

f2

��

{f2}u2 // . . . // N
un−1

fn−1

fn
��

{fn}un// Nun
fn

fn+1

��

// . . .

Y Y Y . . . Y Y . . .

Specifically, this is the colimit of the cocone formed by the morphisms fn+1 : Nun
fn
→ Y over

the sequence of composable morphisms {fn}un for every n ∈ λ. It follows that the domain
Nλ
f of the colimit

fλ : Nλ
f → Y,

thus obtained, is also a colimit, namely the colimit of the sequence of arrows {fn}un where n
runs over λ (see diagram (5.41)). We will denote by χλn(f) the canonical arrow

Nun
fn
→ Nλ

f

induced by the universal cocone of this colimit in B. By induction, these arrows give rise to
a sequential functor G(f) : O(κ+ 1)→ B with the following mapping rules.

n+ 1 7→ Nun
fn

(succ. objects)

λ 7→ X if λ = 0 and Nλ
f otherwise. (lim. objects)

n+ 1 < n+ 2 7→ {fn}un (succ. arrows)
n+ 1 < λ 7→ χλn(f) (lim. arrows)
λ < λ+ 1 7→ {fλ}uλ (lim. arrows)

Remark 5.75. The functor G(f) : O(κ+ 1)→ B turns the mapping n 7→ fn into an obvious
functor spc(f) : O(κ+ 1)→ B2 (see diagram (5.41)).

In terms of pictural representation, a (Γ , κ)-factorisable morphism is associated with a
sequence of modifiers satisfying the following relations where n runs over κ.

u0 ≺fJ0
u1 ≺f1

J1
u2 ≺f2

J2
· · · ≺fn−1

Jn−1
un ≺fnJn un+1 ≺fn1+1

Jn+1
. . .

Example 5.76 (Categories of premodels). This part continues the discussion of Example
5.67 for the category of R-premodels NpC(D,R, T ). We shall assume that C is cocomplete.
Let κ denote a limit ordinal. We are going to show that every morphism f : (X, e)⇒ (Y, e′)
of NpC(D,R, T ) may be equipped with a structure of a (ΓK , κ)-factorisable morphism.

In this respect, because the empty subfunctor ∅ : D → Set of SΓ◦K (f, ) is admissible, let
us define our first modifier u0 as the empty subfunctor. Because a ΓK-collection of triggers
never depends on the modifier with which ΓK is associated, we may consider any sequence
of ΓK-collection of triggers (Jn)n∈κ for the structure characterising the factorisability of f .
Now, let us define the sequence of modifiers (un)n∈κ as follows:

. initial case: Denote f0 := f ;
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. successor cases: Define un+1 := Rec[un|fn], which rectifies the modifier un at fn over
Jn according to Example 5.74 and denote fn+1 := bfncun ;

. limit cases: for any (infinite) limit ordinal λ, define uλ := ∅ and take fλ to be the
colimit coln∈O(λ)fn in B of the following diagram.

X

f0

��

{f0}u0 // Nu0
f0

f1

��

{f1}u1 // Nu1
f1

f2

��

{f2}u2 // . . . // N
un−1

fn−1

fn
��

{fn}un// Nun
fn

fn+1

��

// . . .

Y Y Y . . . Y Y . . .

It is easy to check that the preceding construction gives the structure of a (ΓK , κ)-factorisable
morphism to f .

Example 5.77 (Categories of premodels). Let C be a cocomplete category, P be a category
of R-premodels in NpC(D,R, T ) over some conical croquis (K,T ) and ΓK be the associated
constructor. If the category P is fibered along any admissible modifier of ΓK , then the
discussion of Example 5.76 implies that every morphism f : (X, e) ⇒ (Y, e′) of P is (ΓK , κ)-
factorisable for every limit ordinal κ. According to Definition 5.69, the categories of R-
premodels CD and NpC(D,R, T ) are examples.

Proposition 5.78. Let f : X → Y be a (Γ , κ)-factorisable morphism. For every object d in
D, the mapping n 7→ TΓun(fn, d) induces an oeuvre Of (d) : O(κ + 1) → Ltom(C) of theme
Id(Y ). The mapping Of : d 7→ Of (d) may then be equipped with a structure of functor
D → Narr(C, κ) whose images are strict narratives.

Proof. The fact that the mapping n 7→ TΓun(fn, d) induces an oeuvre directly follows from
Proposition 5.65 and Remark 5.75. One thus obtains an oeuvre Of (d) : O(κ+1)→ Ltom(C)
of theme Id(Y ). Proposition 5.63 shows that the mapping d 7→ Of (d) defines a functor
D → Oeuv(C, κ). The narrative structure is defined as follows:

1) for every n ∈ κ, the set of events Jdn contains all the functors 1→ Sun(fn, d);

2) for every n ∈ κ, the transition factorisation is given by the commutative diagram

Nun
fn

(d)

Id(fn+1)

��

Nun
fn

(d)

Id(fn+1)

��

q
un+1
fn+1

(d)
// N

un+1

fn+1
(d)

Id(fn+2)

��

Id(Y ) Id(Y ) Id(Y )

which is deduced from the factorisation of fn+1 in terms of fn+2;

3) for every n ∈ κ and functor i : 1 → Sun(fn, d) in Jdn, the point of view is given by
the morphism πifn(d) defined in section 5.4.4.7 for the rectifying modifier un, which

makes the next diagram commute according to the left diagram of (5.36).

col1(Ak ◦ i)
υk(i)

//

col1(∂ϕun◦i)

��

Id(N
un−1

fn−1
)

qunfn (d)

yy

Id(fn)

��

Nun
fn

(d)

Id(fn+1)

%%

col1(Bk ◦ i)

πifn (d)

88

υk(i)
// Id(Y )

The object N
un−1

fn−1
stands for X when n = 0.
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It follows from the definition of section 5.4.2.3 that such a narrative is strict. Since, for
every morphism t : d→ d′, the functor Sun(fn, t) : Sun(fn, d)→ Sun(fn, d

′) induces a functor

Jdn → Jd
′
n by post-composition, the mapping d 7→ Of (d) is functorial in Narr(C). �

Proposition 5.79. Let f : X → Y be a (Γ , κ)-factorisable morphism. For every object θ in
K, the mapping n 7→ TΓ?(fn, θ) induces an oeuvre O?

f (θ) : O(κ + 1) → Ltom(C2) of theme

Lθ(Y ). The mapping O?
f : θ 7→ O?

f (θ) induces a functor K → Oeuv(C2, κ) whose images are
equipped with narrative structures.

Proof. The fact that the mapping n 7→ TΓ?(fn, θ) induces an oeuvre directly follows from
Proposition 5.60 applied to the constructor Γ? and Remark 5.75. One thus obtains an oeuvre
O?
f (θ) : O(κ+ 1)→ Ltom(C2) of theme Lθ(Y ). Proposition 5.60 applied to the constructor

Γ? also shows that the mapping θ 7→ O?
f (θ) defines a functor K → Oeuv(C, κ). The narrative

structure is defined as follows:

1) for every n ∈ κ, the set of events J?θn contains all the trigger functors of the form
1→ SΓ?(fn, θ) along the empty modifier;

2) for every n ∈ κ, the transition factorisation is given by the following commuta-
tive diagram where hθ(fn|un, un+1) denotes the arrow defined in Remark 5.73 when

applied to the morphism fn and the relation un ≺fnJn un+1.

Nun
fn

(d)

Id(fn+1)

��

Nun
fn

(d)

Id(fn+1)

��

q
un+1
fn+1

(d)
// N

un+1

fn+1
(d)

Id(fn+2)

��

Id(Y ) Id(Y ) Id(Y )

L•θ(N
un
fn

)
||

Lθ(Nun
fn

)

L•θ(fn+1)

��

L•θ({fn+1}un+1 )
// L•θ(N

un+1

fn+1
)

��

hθ(fn|un,un+1)

L•θ(fn+2)

��

L•θ(N
un+1

fn+1
)

L•θ(fn+2)

��

��

Lθ(N
un+1
fn+1

)

L•θ(Y )
||

L•θ(Y )
��

L•θ(Y )
��

Lθ(Y )

3) for every n ∈ κ and functor i : 1→ SΓ?(fn, θ) in J?θn , the point of view is given by the

pair of morphisms πi?fn(d) and $i?
un+1

(fn, d) defined in section 5.4.4.7 for the trigger

functor i? (see Definition 5.71). The version of diagram (5.39) for the morphism fn
and the rectification of un by un+1 then provides a factorisation of the content of
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TΓ?(fn, θ) along the trigger i as follows (see end of Remark 5.73 and Remark 5.72).

S

γ

��

//

γ′
��

N
un−1

fn−1
(d)

Lθ(N
un−1
fn−1

)

%%

qunfn

��

D1

β◦δ1

��

// L•θ(N
un−1

fn−1
)

h′θ(fn|un,un+1)

��

Nun
fn

(d)

��

hθ(fn|un,un+1)
&&

D2

πi?fn (d)

66

β◦δ2 ��

// Id(Y )

&&

L•θ(N
un+1

fn+1
)

L•θ(fn+2)

��

D′ //

$i?un+1
(fn,d)

44

L•θ(Y )

The object N
un−1

fn−1
stands for X when n = 0.

�

5.4.5.3. Notations. Let D be a small category, C be a category and V be a portfolio of verte-
brae in C over K. We shall let Gen(V) denote the set of the domains and codomains of every
coseed of any vertebra in Vθ for every object θ in K. Similarly, we shall let Disk(V) denote
the set of the coseeds of every vertebra in Vθ for every object θ in K, which may alternatively
be seen as the set of the domains of every codiskad disk(vrv) : γ′ ⇒ β ◦ δ2 (seen as arrows in
C2) of any vertebra v in Vθ for every object θ in K.

5.4.5.4. Combinatorial categories. Let C be a category. A category B will be said to be
combinatorial in C if it is equipped with a numbered constructor Γ = (V, H, I,L)κ of type
[K ↓ D]× B in C such that

1) every morphism in B is (Γ , κ)-factorisable;

2) for every morphism f in B and object θ in K, the context functor

Lθ ◦G(f) : O(κ+ 1)→ C2

of the oeuvre O?
f (θ) is Disk(V)-convergent.

Remark 5.80. In practice, it is easy to prove that for every morphism f in B and object d
in D, the context functor Id ◦G(f) : O(κ+1)→ C of the oeuvre Of (d) is Gen(V)-convergent.
This is generally due to the fact that the context functor is the result of colimit constructions
using the elements in the image of the functor ∂ϕun

d : Sun(fn, d) → C2, which consists of the
seeds and stems of V.

Example 5.81 (Categories of premodels). Let C be a cocomplete category, P be a category
of R-premodels in NpC(D,R, T ) over some conical croquis (K,T ) and ΓK be the associated
constructor for a given portfolio V of vertebrae in C over K. Suppose that the category P
is fibered along any admissible modifier of ΓK . In this case, Example 5.77 shows that every
morphism in P is (ΓK , κ)-factorisable for any limit ordinal κ. Let us prove that the category
P becomes combinatorial if κ is a well-chosen ordinal and the statement of Remark 5.80
holds.

As specified by Remark 5.80, for every morphism f : (X, e)⇒ (Y, e′) in P and object d in
D, the context functor Nd

f : O(κ+1)→ C of the oeuvre Of (d) is generally Gen(V)-convergent.
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Recall that this functor lifts to the category P in the form of a functor Nf : O(κ + 1) → P
satisfying the following mapping rule.

n 7→ (N
un−1

fn−1
, eun−1) where (N

u−1

f−1
, eu−1) = (X, e)

Let c denote a cylinder of the form (!, t) : d⇒ d† in K where d† is a functor A† → D. Let also

g denote the functor (CD)2 → C2 defined in Remark 5.7 where the cone ‘r’ thereof is replaced
with the natural transformation t : ∆A†(d)⇒ d†. By definition, the following equation holds.

GlK(N
un−1

fn−1
, eun−1)(c) = g(eun−1)

In the case where the inequality |A†| ≤ κ holds, Remark 5.7 then says that the following
isomorphism holds for every coseed γ′ of a vertebra in V

C2(γ′,GlK(Nf (κ), id)(c)) ∼= colO(κ)C2(γ′,GlK(Nf (ικ( )), id)(c))

In other words, this shows that if κ is equal to the cardinality |(K,T )| defined in section
5.3.1.4, then the composite of the functor Nf : O(κ+1)→ P with the functor Lc : P → C2 is
Disk(V)-convergent. To put it differently, this shows that the context functor of the oeuvre
O?
f (θ) is Disk(V)-convergent.

Definition 5.82 (Lifting system). Let B be a combinatorial category as defined above and
θ be an object in K. Denote by Ssoa

θ (V) the discrete subcategory of (C2)2 containing the
codiskad disk(vrv) : γ′ ⇒ β ◦ δ2 of every vertebra v in Vθ. By definition, this provides
an inclusion of categories ϕsoa

θ : Ssoa
θ (V) ↪→ (C2)2. If κ is not zero, the functor ϕsoa

θ may be
equipped with an obvious structure of a lifting system by taking the associated set of functors
J soa
θ to be the set containing all the functors of the form 1→ Ssoa

θ (V) picking out a codiskad
of a vertebra in Vθ.

Let us now show that the lifting system (J soa
θ ,ϕsoa

θ ) : Ssoa
θ (V) ↪→ (C2)2 agrees with the

narrative O?
f (θ) for every object θ in K and morphism f in B. In this respect, consider an

ordinal n ∈ κ, functor i : 1→ Ssoa
θ (V) in J soa

θ and a functor ψ : 1→ (C2)2/Lθ(fn) making the
following left diagram commute. When i : 1 → Ssoa

θ (V) picks out the codiskad of a vertebra
v = ‖γ, γ′‖ · β, this exactly means that the functor ψ picks out a commutative cube of the
form given on the right.

1

ψ $$

ϕ◦i // (C2)2

(C2)2/Lθ(fn)

∂

OO

⇒

· Lθ(Nun
fn

) //

��

·

��

←−Lθ(fn)
·

disk(v)−→

γ′
//

γ

��

@@

·

β◦δ1

��

@@

· // ·

· β◦δ2 //

@@

·

@@

Now, observe that this commutative cube is associated with the trigger functor i′ : 1 →
SΓ?(fn, θ) picking out the 4-tuple (θ, ‖γ, γ′‖ · β, idθ, ψ(∗)). In particular, this trigger functor
makes the following diagram commute.

T
ϕ◦i //

i′

��
ψ &&

(C2)2

SΓ?(fn, θ) ϕΓ?,θ

// (C2)2/Lθ(fn)

∂

OO

This thus proves that the lifting system (J soa
θ ,ϕsoa

θ ) : Ssoa
θ (V) ↪→ (C2)2 agrees with the narra-

tive O?
f (θ) for every object θ in K and morphism f in B.
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Theorem 5.83. Let B be a combinatorial category as defined above where κ is non-zero.
Every morphism f : X → Y may be factorised into two arrows

X
χκ0 (f)

// G(f)(κ)
fκ
// Y

such that for every object θ in K, the arrow Lθ(fκ) : Lθ(G(f)(κ)) → Lθ(Y ) in C2 has
the rlp with respect to the codiskad of every vertebra in Vθ and for every object d in D,
the arrow Id(χ

κ
0(f)) : Id(X) → Id(G(f)(κ)) has the llp with respect to every morphism in

rlpκ(Jdn, ∂ϕ
un) for every n ∈ κ.

Proof. The factorisation is given by the image of the arrow 0 → κ in O(κ + 1) via the
functor spc(f) : O(κ+1)→ B2 defined in Remark 5.75. The statement on the arrow Lθ(fκ) :
Lθ(G(f)(κ))→ Lθ(Y ) follows from Proposition 5.44 applied to (J soa

θ ,ϕsoa
θ ) : Ssoa

θ (V) ↪→ (C2)2

since the context functor

Lθ ◦G(f) : O(κ+ 1)→ C2

of the oeuvre O?
f (θ) is Disk(V)-convergent (and hence (dom ◦ ϕsoa

θ )-convergent). The state-

ment on the arrow Id(χ
κ
0(f)) : Id(X) → Id(G(f)(κ)) follows from Proposition 5.78, which

ensures that Of (d) is a strict narrative for every object d in D and Proposition 5.45. �

Example 5.84. For a system of models (P,K, T, V) where P ⊆ NpC(D,R, T ) is equipped
with the structure of a combinatorial category as discussed in Example 5.81, Theorem 5.83
provides any arrow (X, e)⇒ 1 in P with a factorisation of the form

X
χ(f) +3 G(X) +3 1

where G(X) is an R-model and the arrow χ(f) satisfies good lifting properties.

Remark 5.85. In fact, the last assertion of Theorem 5.83 may be used to prove that the
given factorisation gives rise to a reflection from the premodels to the models of a system of
models. The proof is however not straightforward and uses results taking advantage of the
strictness of Of , such as Proposition 5.47, to transform the lifting properties of the arrows
Id(χ

κ
0(f)) into a lifting property for I(χκ0(f)).

Let κ be a non-zero limit ordinal. A category C will be said to be trivially κ-combinatorial
over a set G of arrows in C if it is combinatorial as a category of idC-premodels in Np(1, id, id)
for the numbered constructor (G, id1, idC , ididC)κ of type [1 ↓ 1] × C in C where the set G is
regarded as a portfolio of one set consisting of degenerate vertebrae of the following form for
every δ ∈ G.

S

xδ
��

S

δ
��

D D D

Corollary 5.86. Let C be a cocomplete (and optionally complete) category that is trivially
combinatorial over a set of arrows G in C. Every morphism f : X → Y in C may be factorised
into two arrows χκ0(f) : X → G(f)(κ) and fκ : G(f)(κ) → Y where the arrow fκ is in the
class rlp(G) and the arrow χκ0(f) is in the class llp(rlp(G)).

Proof. Theorem 5.83 and Example 5.81 imply that every morphism f : X → Y in C may
be factorised into two arrows χκ0(f) : X → G(f)(κ) and fκ : G(f)(κ) → Y where the arrow
fκ is in the class rlp(G) and the arrow χκ0(f) has the llp with respect to every morphism in
rlpκ(Jdn, ∂ϕ

un) for every n ∈ κ. But because of the triviality of all our data, it follows from
formula (5.18) that the equality rlpκ(Jdn, ∂ϕ

un) = rlp(G) holds for every n ∈ κ. �
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5.5. From spinal categories to homotopy theories

The aim of this section is to explain how to extend the notion of spinal category to that of
spinal theory in order to be able to recover the type of homotopy theory usually defined for
sheaves and other similar structures. The section is deliberately concise regarding sheaf-like
structures and rather focuses on the construction of model categories (see section 5.5.2).

5.5.1. Spinal and vertebral theories.

5.5.1.1. Recapitulation on transfers and some notations. Let E be a category equipped with
the structure of a discrete system of vertebrae Ê and K be some small category. Chapter 4
shows that if the left Kan extension Lanc : E → EK exists for some object c in K, then it
gives rise to a (discrete) system of vertebrae Lanc(Ê) in EK (see Example 4.81). In this case,

the underlying transfer of structure Lanc : Ê → Lanc(Ê) is 0-regular and pseudo-1-regular.
As seen in Example 4.94, this implies that the right adjoint ∇c : EK → E of the functor Lanc
is a pseudo-opcovertebral and covertebral for every object c in K.

Remark 5.87 (Notations). Later on, it will come in handy to denote any composition of
functors U : C → EK and ∇c : EK → E as a functor of the form Uc : C → E .

5.5.1.2. Local configurations. Let K and D be two small categories. A local configuration is
a functor H : K → D such that for every object d in D, the fiber H−1(d) above d may be
equipped with the structure of a partially ordered set such that for every object c and c′ in
H−1(d), there exists an object c′′ in H−1(d) satisfying the inequalities c, c′ ≤ c′′. A fiber of
the form H−1(d) will later be denoted by Hd.

Example 5.88. The identity functor on a small category is a local configuration.

Example 5.89. Any functor H : K → D such that, for every object d in D, the fiber Hd

above d admits coproducts, is associated with the structure of an obvious local configuration
in which the partial order c ≤ c′ is induced by the existence of an arrow of the form c→ c′.

5.5.1.3. Spinal and vertebral theories. A spinal theory (resp. vertebral theory) consists of a
category C, a local configuration H : K → D whose domain will be called the sketch of the
theory, a category E equipped, for every object c in K, with the structure of a discrete spinal
(resp. vertebral) category symbolically denoted as Êc and a functor U : C → EK such that

1) for every morphism f in C, object d in D and pair of objects c ≤ c′ in Hd, if Uc(f)

is a weak equivalence in Êc, then so is Uc′(f) in Êc′ ;
2) for every object c in K, the transfer of structure Lanc : Êc → Lanc(Êc) exists;

Such a structure will be denoted as an arrow U : C → ÊH . A spinal (resp. vertebral) theory

U : C → ÊH will be said to be

- fully faithful (abbrev. ff) if its underlying functor U : C → EK is so;

- cartesian if its underlying functor U : C → EK preserves pullbacks;

- standard if its local configuration is an identity functor.

Example 5.90. Any system of vertebrae Ĉ equipped with a discrete vertebral (resp. spinal)
category defines a standard fully faithful vertebral (resp. spinal) theory whose functor U is
given by the identity functor on the ambient category C and whose underlying sketch is given
by any terminal category.

Example 5.91. Let C be a cocomplete category equipped with a structure of discrete ver-
tebral (resp. spinal) category whose system of vertebrae is given by Ĉ and D be a small
category. Because C is cocomplete, Remark 1.28 implies that Land : C → CD exists for every
object d in D. The functor category CD is then associated with a standard fully faithful
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vertebral (resp. spinal) theory U : CD → CD given by the identity functor on CD. The
underlying sketch is given by the category D.

Example 5.92 (Sheaves and Stacks). Let (Dop, J) be a site. It follows from the locality
and stability axioms for Grothendieck’s pretopologies that peakKJ : KJ → D defines a local
configuration in the sense of Example 5.89. It is a consequence of Proposition 5.31 and
Proposition 5.24 that the system of idSet-models for sheaves (see Example 5.39) induces a
fully faithful vertebral theory along the local configuration peakK given by the following
functor.

GlK0 : P ↪→ (Setω)K

The vertebral structure on Setω is provided by the cohesive set of vertebrae defined in
Example 5.39. The axioms of a vertebral theory follows from the combinatorial properties
of Set (for item 2)) and the functoriality of sheaves (for item 1)). The astute reader might
notice that the above reasoning may be generalised to any category of sheaves valued in any
nice category (e.g. Cat(1)).

Example 5.93 (System of models). Let D be a small category, (K,T ) be a croquis in D,
C be a cocomplete and complete category and R : C → C be an endofunctor commuting
with the limits of C. Proposition 5.31 implies that any system of R-models (V,P,K, T ) in C
induces a standard vertebral theory along the identity local configuration on K given by the
following functor.

GlK0 : P ↪→ (Cω)K

The vertebral structure on Cω is induced by the cohesive sets Vc for every cylinder c in K.
Because the functor GlK0 consists exclusively out of right adjoint functors, it commutes with
pullbacks so that the vertebral theory is cartesian.

5.5.1.4. Refined spinal and vertebral theories. A spinal (resp. vertebral) theory U : C → ÊH
along a configuration H : K → D will be said to be refined if the underlying system of
vertebrae Êc is refined for every object c in K. A spinal (resp. vertebral) theory that is fully
faithful and refined will be said to be ffr.

5.5.1.5. Quasi-small spinal and vertebral theories. A spinal (resp. vertebral) theory U : C →
ÊH will be said to be quasi-small if for every object c in K where Êc = (E , Ac, A′c, Ec) the
object-class of the magmoid A′c is a set.

Remark 5.94. In the case of a quasi-small theory as defined above, the transferred graph
Lanc(A

′
c) of Lanc(Êc) is a set of vertebrae in EK . This set will later be denoted as GCofc(U).

The union of all the sets GCofc(U) where c runs over the set of objects K will be denoted as
GCof(U).

An object X in C will be said to be fibrant if for every trivial stem β ◦ δ1 : D1 → D′ of a
vertebra in GCof(U) and morphism f : D1 → U(X), the arrow f factorises through the trivial
stem β ◦ δ1. When the functor category EK has a terminal object, say 1, this is equivalent
to saying that U(X)→ 1 is a fibration for the system of vertebrae Lanc(Êc) for every object
c in K.

Example 5.95 (System of models). Any system of R-models P ⊆ PmC(K,R, T ) as defined
in Example 5.93 defines a quasi-small vertebral category. Since the right adjoint ∇c of Lanc
is opcovertebral, pseudo-covertebral (see Example 4.94) and preserves terminal objects, it
follows from Proposition 4.83 and Proposition 4.86 that an object X in P defines an R-model
in P if and only if it is a fibrant object for the vertebral theory GlK : P ↪→ (Cω)K .
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5.5.1.6. Zoo of a spinal or vertebral theory. Vertebral and spinal theories inherit a ‘natural’
notion of zoo from their underlying system of vertebrae. Let U : C → ÊH be a vertebral
theory. A morphism f : X → Y in C will be said to be a i) fibration; ii) weak equivalence for
U if, for every object d of D, the image Uc(f) is

i) a fibration in Êc for every object c in Hd;

ii) a weak equivalence in Êc for some object c in Hd;

A morphism f : X → Y in C will be said to be a iii) cofibration; iv) trivial cofibration for U
if, for every object d in D, the image U(f) has the llp with respect to the morphisms of ED
that are

iii) trivial fibrations in Lanc(Êc) for some object c in Hd;

iv) fibrations in Lanc(Êc) for every object c in Hd.

Any fibration (resp. cofibration) for U that is also a weak equivalence for U will later be
called an acyclic fibration (resp. acyclic cofibration) for U . The zoo of a spinal theory is the
same as its underlying vertebral theory.

Example 5.96. In the case of Example 5.92, the local configuration peakK forces the weak
equivalences to be what are usually called local weak equivalences in the literature. In the
case where the configuration is an identity (see Example 5.90, Example 5.91 or Example
5.93), the weak equivalences are component-wise weak equivalences.

Lemma 5.97. Let U : C → ÊH be a vertebral theory as above. A morphism f : X → Y in C
is a fibration for U if and only if its image U(f) is a fibration in Lanc(Êc) for every object c
of K.

Proof. Suppose that f is a fibration for U and choose an object c in K. By definition,
the image ∇c ◦ U(f) is a fibration in the vertebral category Êc. Because the functor ∇c is
covertebral, it follows from Proposition 4.83 that the image U(f) is a fibration in the system

of vertebrae Lanc(Êc).
Suppose that U(f) is a fibration in Lanc(Êc) for every object c of K. Because the functor

∇c is pseudo-opcovertebral, it follows from Proposition 4.86 that the image ∇c ◦ U(f) is a

fibration in the vertebral category Êc. By definition, this means that f is a fibration for
U . �

Lemma 5.98. Let U : C → ÊH be a refined vertebral theory as above. A morphism f : X → Y
in C is an acyclic fibration for U if and only if for every object d of D, there exists an object
c in Hd such that U(f) is a trivial fibration in Lanc(Êc).

Proof. Suppose that f is an acyclic fibration for U and choose an object d in D. By
definition, there exists an object c in H−1(d) such that ∇c ◦ U(f) is an acyclic fibration in

the refined vertebral category Êc. By Theorem 4.54 (refinement), the image ∇c ◦ U(f) is
a trivial fibration. Because the functor ∇c is covertebral, it follows from Proposition 4.83
that the image U(f) is a trivial fibration in the system of vertebrae Lanc(Êc). Conversely,
suppose that for every object d of D, there exists an object c in H−1(d) such that U(f) is

a trivial fibration in Lanc(Êc). Because the functor ∇c is pseudo-opcovertebral, it follows
from Proposition 4.86 that the image ∇c ◦ U(f) is a trivial fibration in the refined vertebral

category Êc. By Theorem 4.54 (refinement), the image ∇c ◦ U(f) is an acyclic fibration in

Êc. �

Proposition 5.99. Any vertebral theory U : C → ÊH satisfies the properties from S0 to S6.
Any spinal theory U : C → ÊH satisfies the properties from S0 to S7.

S0 Weak equivalences, fibrations and cofibrations form coherent C-classes;
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S1 If U is cartesian, then every fibration is stable under pullbacks. If U is refined and
cartesian, then every acyclic fibration is stable under pullbacks;

S2 The classes of weak equivalences and fibrations are stable under retracts;

S3 The classes of cofibrations and trivial cofibrations are stable under retracts;

S4 If U is ffr, then cofibrations have the llp with respect acyclic fibrations;

S5 If U is ff, then trivial cofibrations have the llp with respect to fibrations;

S6 If f ◦ g and g ◦ h are weak equivalences, then so are h and f ◦ g ◦ h;

S7 If f ◦ g and g ◦ h are weak equivalences, then so are f , g, h and f ◦ g ◦ h;

Proof. Let us first deal with the case of a vertebral theory.

Let us prove Axiom S0 for weak equivalences. Let f : Y → Z and g : X → Y be two
weak equivalences in C. By assumption, for every object d in D, there exist objects c and
c′ in Hd such that Uc(f) and Uc′(g) are weak equivalences in Êc and Êc′ , respectively. By
definition of a vertebral theory, there exists c′′ in Hd such that Uc′′(f) and Uc′′(g) are weak

equivalences in Êc′′ . By Theorem 4.53, the composite Uc′′(f ◦g) is a weak equivalences in Êc′′ ,
which proves that f ◦ g is a weak equivalence.

More generally, axioms S0, S2 and S6 for weak equivalences and fibrations follow from
the axioms of section 5.5.1.3, the functoriality of Uc : C → E for every object c in K and the
properties of section 4.4.1.2. Axiom S0 for cofibrations follows from Proposition 1.33, Remark
1.35 and the functoriality of U : C → ED. Axiom S3 for cofibrations and trivial cofibrations
follows from the properties listed in section 1.2.2.2 about retracts and the functoriality of U .

Let us prove Axiom S1 for acyclic fibrations, the case of fibrations being similar and even
simpler. Let f : X → Y be an acyclic fibration for U and f∗ : X∗ → Z be a pullback
of it along an arrow y : Z → Y . For every object c in K, the arrow ∇c(U(f)) is the
pullback of ∇c(U(f∗)) along ∇c(U(y)) as the right adjoint ∇c : EK → E of Lanc preserves
limits. By assumption, for every object d in D, there exists an object c in Hd such that the
arrow ∇c(U(f)) is an acyclic fibration in Êc and hence a trivial fibration by Theorem 4.54
(refinement). By Proposition 4.38, it follows that the pullback ∇c(U(f∗)) is a trivial fibration

and hence an acyclic fibration in Êc (by refinement).

To prove axiom S4, consider a commutative square of the form given below on the left,
where i is a cofibration and f is an acyclic fibration. It follows from Lemma 5.98 that for
every object d in D, there exists c in Hd such that morphism U(f) is a trivial fibration in
Lanc(Ec). As a result, the middle diagram, below, admits a lift, which is lifted to the category
C by fully faithfulness of U .

A

i
��

u // X

f
��

B
v
// Y

⇒ U(A)

U(i)

��

U(u)
// U(X)

U(f)

��

U(B)
U(v)

//

h
;;

U(Y )

⇒ A

i
��

u // X

f
��

B

h′
>>

v
// Y

Axiom S5 is proven in the same fashion as axiom S4 by using Lemma 5.97. The case of a
spinal theory follows from the fact that the zoo of its underlying spinal category is the same
as of its underlying vertebral category. Axiom S7 is proven in much the same way as axiom
S0 or S6 by using Theorem 4.77. �

Remark 5.100 (Towards homotopy theories). Axioms S0; S1 and S7 are meant to be used
for the construction of categories of fibrant objects (see Example 5.93) while axioms S0; S2;
S3; S4; S5 and S7 are meant to be used for the construction of model categories (see Example
5.90, Example 5.91 and Example 5.92). The type of properties that Proposition 5.99 lacks are
the factorisation axioms. In practice, the factorisation associated with categories of fibrant
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objects is given by Theorem 5.83 while the pair of factorisations associated with model
categories are given by Corollary 5.86.

5.5.2. From quasi-small spinal theories to model categories.

5.5.2.1. Combinatorial spinal theories. Let U : C → ÊD be a standard quasi-small spinal
theory such that ED is cocomplete. We shall let Icof denote the set of the seeds and stems
of the vertebrae in GCof(U) and Jcof denote the set of the trivial stems of the vertebrae
in GCof(U). For any non-zero limit ordinal κ, the spinal theory U will be said to be κ-
combinatorial if it is refined and the category ED is trivially κ-combinatorial (see section
5.4.5.4) over the sets Icof and Jcof such that, for every morphism f : X → Y in C, the two
factorisations of U(f) resulting from Corollary 5.86 lift along the functor U : C → ED to two
factorisations of f as follows.

(5.42) X
i(f)
// R(f)

p(f)
// Y︸ ︷︷ ︸

for Icof

X
j(f)
// Q(f)

q(f)
// Y︸ ︷︷ ︸

for Jcof

Proposition 5.101. In the case of a κ-combinatorial U : C → ÊD as defined above, the
arrow i(f) is a cofibration; the arrow p(f) is an acyclic fibration; the arrow j(f) is a trivial
cofibration; the arrow q(f) is an fibration;

Proof. By Corollary 5.86, the image of U(p(f)) is in rlp(Icof). Because, the system of

vertebrae Land(Êd) is discrete for every object d in D, the class rlp(Icof) corresponds to the

class of morphisms that are trivial fibrations in Land(Êd) for every object d in D. By Lemma
5.98, the arrow p(f) is an acyclic fibration for U . By Corollary 5.86, the image U(i(f))
is in llp(rlp(Icof)), which means that it has the llp with respect to the trivial fibrations in

Land(Êd) for every object d in D and is hence a cofibration for U . By Corollary 5.86, the image

of U(q(f)) is in rlp(Jcof). Because, the system of vertebrae Land(Êd) is discrete for every
object d in D, the class rlp(Jcof) corresponds to the class of morphisms that are fibrations

in Land(Êd) for every object d in D. By definition, the arrow q(f) is hence a fibration for
U . By Corollary 5.86, the image U(j(f)) is in llp(rlp(Jcof)), which means that it has the

llp with respect to the fibrations in Land(Êd) for every object d in D and is hence a trivial
cofibration for U . �

5.5.2.2. Well disposed combinatorial spinal theories. Let κ denote a limit ordinal and U :
C → ÊD be a κ-combinatorial spinal theory. By construction, for every morphism f : X → Y
in C, the arrow

U(j(f)) : U(X)→ U(Q(f))

resulting from the factorisation of (5.42) generated with respect to the set of arrows Jcof is
the evaluation at the inequality 0 < κ of a sequential functor G(f) : O(κ+ 1)→ ED. Below,

we shall regard the set Jcof as a small subcategory of (ED)2. The spinal theory U : C → ÊD
will be said to be well disposed for surtractions (resp. intractions) if

1) for every morphism f : X → Y in ED, the functor Gf : O(κ+1)→ ED is convergent
with respect to the domain and codomain of every seed in GCof(U) (resp. of every
stem in GCof(U)).

2) for every small category T and functor ϕ : T → Jcof that is compatible with the
numbered category (ED, κ), the image of any pushout of the colimit colTϕ via the

functor ∇d : ED → E is a surtraction (resp. intraction) in Êd for every object d in
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D (see implication, below).

colT A

xcolT ϕ
��

x // X

p

��

colT B // P

⇒ ∇d(p) surtraction

(resp. intraction) in Êd

Proposition 5.102. If U : C → ÊD is well disposed for surtractions (resp. intractions), then

the morphism ∇d ◦ U(j(f)) is a surtraction (resp. intraction) in Êd for every object d of D.

Proof. Let us deal with the case of surtractions, the case of intractions being similar. Denote
by χnk(f) the image of the inequality k < n via G(f) : O(κ + 1) → ED. We are going to
prove, by using a transfinite induction on n that the arrow χn0 (f) is a surtraction for every
1 ≤ n ≤ κ. By definition of a trivially κ-combinatorial category and, more particularly,
the construction of the functor G(f) as the context functor of a strict narrative, any arrow
χnk(f) : G(f)(n) → G(f)(n + 1) (for every n ∈ κ + 1) is given by a pushout of the form

below where ϕn : T→ (ED)2 is a certain functor10 compatible with (ED, κ), which factorises
through the discrete category Jcof .

colT An

xcolTϕn

��

x // G(f)(n)

χn+1
n (f)
��

colT Bn // G(f)(n+ 1)

Since U is well-disposed for surtractions, the image of the arrow χn+1
n (f) : G(f)(n) →

G(f)(n + 1) via ∇d is a surtraction in Êd for every object d in D. In particular, this means

that ∇d(χ1
0(f)) is a surtraction in Êd. Now, consider some successor ordinal n such that the

arrow ∇d(χn−1
0 (f)) is a surtraction in Land(Êd) for every object d in D. It follows from the

equation

χn0 (f) = χnn−1(f) ◦ χn−1
0 (f)

and the fact that surtractions are composable in Êd (see Proposition 4.52) that the arrow

∇d(χn0 (f)) is a surtraction in Êd for every object d in D.

Finally, consider some limit ordinal λ. For convenience, let us fix some object d in D.
To prove that ∇d(χλ0(f)) is a surtraction in Land(Êd), we are going to use the definition in
terms of divisiblity with respect to the besoms11 of the vertebrae of GCofd(U). Let γ be an
Ed-seed and consider a commutative diagram as given below on the left. By adjointness, we
obtain the commutative diagram displayed on the right-hand side.

(5.43) S

γ

��

x // ∇dG(f)(0)

∇dχλ0 (f)
��

D2 y
// ∇dG(f)(λ)

⇒ Land(S)

Land(γ)

��

x∗ // G(f)(0)

χλ0 (f)
��

Land(D2)
y∗

// G(f)(λ)

Since G(f) is {Land(S),Land(D)}-convergent in ED by assumption, the functor O(κ+ 1)→
(ED)2 induced by the mapping n 7→ χn0 (f) is uniformly Land(γ)-convergent in ED (by defini-
tion). It follows from Remark 5.2 that this functor is {Land(γ)}-convergent in (ED)2. This

10This functor is more precisely the composition of one of the elements of the set of events at rank n with the

tome of the oeuvre at rank n.
11In this case, they are clearly given by the diskads of the vertebrae.
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implies that there exists some k ∈ λ for which diagram (5.43) factorises as follows.

Land(S)

Land(γ)

��

x′∗ // G(f)(0)

χk0(f)
��

G(f)(0)

χk+1
0 (f)
��

G(f)(0)

χλ0 (f)
��

Land(D2)
y′∗

// G(f)(k) // G(f)(k + 1) // G(f)(λ)

Since ∇dχk0(f) is a surtraction in Êd, there exists a vertebra v in GCofd(U) for which it is
a surtraction. It is then easy to see that, after applying the adjunction Land a ∇d on the
above diagram, the divisibility property satisfied by ∇dχk0(f) with respect to the besom of v
transfers to the arrow ∇dχλ0(f), so that ∇dχλ0(f) is surtraction for v. This shows that the

arrow ∇dχλ0(f) is a surtraction in Êd. The above induction then shows that ∇d ◦ U(j(f)) =

∇d(χκ0(f)) is a surtraction in Êd for every object d of D, which proves the statement. �

Remark 5.103. There exist other ways of proving that the arrow is an intraction∇d◦U(j(f))

in Êd for every object d of D. For instance, when all the vertebrae of Êd are reflexive with
identity reflexive transitions, the homotopy contractions, α, used, define retractions with
the trivial stems (i.e. α ◦ β ◦ δ1 = idD1). These retractions may be used in the small
object argument (in a fairly straightforward way) to show that there exists a morphism
r(f) : G(f)(γ)→ U(X) such that the equation r(f)◦U(j(f)) = idU(X) holds. It then follows

from Lemma 2.52 that the arrow ∇d ◦U(j(f)) is an intraction in Êd for every object d of D.

Theorem 5.104. Let κ be a limit ordinal and U : C → ÊD be a fully faithful κ-combinatorial
spinal theory that is well-disposed for intractions and surtractions. The category C admits a
model structure with respect to its underlying weak equivalences, fibrations and cofibrations.

Proof. Most of the properties of a model structure are proven by Proposition 5.99 (retract
axiom; two-out-of-three property; coherent C-classes; llp of cofibrations with respect to acyclic
fibrations). The factorisation axioms are given by Proposition 5.102 and Proposition 5.101.
There only remains to show that any acyclic cofibration is a trivial cofibration, which will
prove by Proposition 5.99 that acyclic cofibrations have the llp with respect to fibrations.
Let h : A → B be an acyclic cofibration in C. By Proposition 5.102 and Proposition 5.101,
we know that h may be factorised in terms of a composite p ◦ i where i : A → H is both a
trivial cofibration and weak equivalence and p : H → B is a fibration.

A

h
��

i // H

p

��

B B

Because h and i are weak equivalences, the two-out-of-six property for weak equivalences
implies that p is a weak equivalence and hence an acyclic fibration. It follows that the
cofibration h has the llp with respect to p. This means that the above commutative square
admits a lift h′ : B → H that leads to a retraction as follows.

A

idA

''

h
��

A

i
��

A

p

��

B

idB

77
h′ // H

p
// B

Since trivial cofibrations are stable under retracts by Proposition 5.99, the arrow h is a trivial
cofibration, which finishes the proof. �
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We will see in Chapter 6 how to provide a certain class of categories – which will be
called coheroids – with spinal theory structures. In some cases, such as 1-groupoids or strict
∞-groupoids (it follows from the main result of [5] that strict ∞-groupoids are coheroids), it
is straighforward – even though somewhat cumbersome – to check that these spinal theories
are well-disposed for intractions and surtractions. In these particular cases, Theorem 5.104
retrieves the classical model structures on 1-groupoids or strict ∞-strict groupoids.





Chapter 6

Towards the Homotopy
Hypothesis

6.1. Introduction

In this chapter, the category of Grothendieck’s ∞-groupoids is equipped with the structure
of a spinal category. The construction we give also works for topological spaces, strict n-
categories for every n ≥ 1, strict ω-categories and Maltsiniotis’ ∞-categories. In much the
same way as the definition of Grothendieck’s ∞-groupoids is inductive, the definition of
the spinal category will inherit an inductive pattern. Unfortunately, I have not found any
proper way of reducing the length of these induction reasonings as every case has its own
particularity. Going through every construction simply seems to be the way to go.

To some extent, this chapter only consists in applying the constructions already discussed
in the previous chapters and no actually new method is introduced – only variations of those
seen before. The present introduction gives a concise description of the main ideas and goals
of every section.

The chapter is divided in three main sections:

Section 6.2, called vertebral structure, gives the definitions of coherator and coheroid.
Coherators are the sketches for the categories of Grothendieck’s∞-groupoids while coheroids
give the domain of discourse in which the present chapter is written – the latter notion is
more general than the former. The section ends with the construction of vertebral categories
for coheroids.

Section 6.3, called spines and their functorial framings, defines all the tools needed to
handle the notions of simple and extensive framings of spines. The main difficulty is to define
the functoriality of these. In Chapter 3, ‘simple framings’ were framings compatible with
the stems of the spines while ‘extensive framings’ were framings compatible with the diskad
of the heads of the spines. Contrary to the type of functoriality discussed in Chapter 3,
the functoriality considered in this chapter concerns the whole structure of the spines. Such
framings will require an inductive definition on the dimension of the spines.

Section 6.4, called spinal structure, deals with the definition of spinal categories for co-
heroids. The main task is to define the notion of convergent conjugations. The conjugations
will arise from the framings defined in section 6.3. The convergence will then be inductively
defined by successively specifying every pair of mates that allows its realisation.

271
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Our strategy for section 6.2 is the following. We first start with the definition of the ω-
globular and ω-spinal sketches. The globular world is that in which the sketch of∞-groupoids
lives while the spinal world is that in which the notion of homotopy lives. This first section
therefore makes a systematic comparison between the two worlds. We introduce the notions of
ω-spinal and ω-globular objects and show that they are related by a one-to-one correspondence
when the ambient category has pushouts and initial objects. We then define the notion of
globular and spinal pre-extension, the most meaningful being the latter. The pre-extensions
followingly become extensions when all the globular sums encoding the concept of gluing of
discs exist in the ambient category of the pre-extensions. Globular and spinal extensions are
again compared. We pursue the discussion with the notion of parallelism in both globular
and spinal extensions and compare the two notions. Then follows the notion of coheroid,
which equips an extension with a class of parallel arrows for which certain lifting properties
hold in the ambient category. The concept of coheroid will constitute the playground for the
generation of spinal categories. We define the notion of Grothendieck coherator and briefly
describe that of Maltsiniotis coherator by referring to [35] for complete details. We show that
the categories of models for these sketches are endowed with canonical coheroids. Finally,
we finish the section by defining a natural set of vertebrae for coheroids and show that these
generate a vertebral category when the coheroid contains certain parallel arrows;

→ Reflexive spinal coheroids come along with reflexive vertebrae;

→ Magmoidal spinal coheroids come along with framing of vertebrae;

Our strategy for section 6.3 goes as follows. We introduce the kappa and tau constructions
κm1,k, κ

m
2,k and τm1,k(β), τm2,k(β) linking globular sums of some dimension to those of lower

dimension implied by their borders. Specifically, using the analogy between the notion of cell
in an ∞-groupoid and that of topological discs, the kappa and tau constructions will link a
gluing of discs of the form given below on the left to the gluing of discs as given on the right.

• • ∼ • • 7→
• • • •

• • • •

The kappa constructions κm1,k, κ
m
2,k are to handle gluings as above where the middle discs are

‘non-reversible’ (e.g. for spinal seeds) while tau constructions τm1,k(β), τm2,k(β) are to handle

gluings as above where the middle discs are ‘reversible’ (e.g. a node of spines whose head will
help define the zoo of the spinal category). We then carry on with the notion of normality and
transitivity, which realise the preceding gluings as actual compositional operations. These
notions have inductive definitions and rely on the kappa and tau constructions.

→ (k, 0)-normal spinal coheroids come along with a morphism π0
k linking a ‘non-

reversible’ disc of dimension k to a gluing of a ‘non-reversible’ disc of dimension
k along two reversible ones of the same dimension and thus define a ternary compo-
sition of discs;

• // • 7→ • • // • •

→ (k, 1)-normal spinal coheroids come along with a morphism π1
k linking a ‘non-

reversible’ disc of dimension k+ 1 to a gluing of a ‘non-reversible’ disc of dimension
k+1 along two reversible ones of dimension k and thus define a ternary composition
of discs. This notion depends on the construction π0

k, which defines the composition
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of the borders.

• ((
66

−→ • 7→ • •
��

>>

−→ • •

→ (k,m− k)-normal spinal coheroids are then defined as above by induction.

The next notion is that of transitivity and copies the definition of normality by replacing
the kappa constructions with the tau constructions. Broadly, a (k,m − k)-transitive spinal

coheroid is equipped with morphisms υm−kk (β) encoding the compositions of ‘reversible’ discs
of dimension m along ‘reversible’ discs of dimesion k.

•

−→ • 7→ • •

−→

β • •

The functoriality of these compositions will be ensured via the notion of closedness requiring
the composition to be compatible with the spheres induced by the borders of the discs.
Precisely, this requires the existence of the gluings of spheres along any pair of ‘reversible’
discs.

• • • •

Closedness will come along with canonical morphisms dm1,k, d
m
2,k, κ

m
k and τmk (β) that factorises

the kappa and tau constructions in canonical ways.

κmi,k = κmk ◦ dmi,k τm−1
i,k (β) = τmk (β) ◦ dmi,k

These morphisms will help define the functoriality of our framings. Specifically, the functori-
ality will follow from the commutative diagrams constructed in section 6.3.3.2, called closed-
ness and normality and section 6.3.3.3, called closedness and transitivity, via the canonical
properties of the morphims dm1,k, d

m
2,k, κ

m
k and τmk (β) as follows:

- diagrams (6.30), (6.34) and (6.39) of section 6.3.3.2 will define the compatibility
from the compositions of non-reversible discs to the compositions of spheres;

- diagrams (6.32), (6.33) and (6.38) of section 6.3.3.2 will define the compatibility
from the compositions of spheres to the compositions of non-reversible discs;

- diagrams (6.40) and (6.41) of section 6.3.3.3 will define the compatibility from the
compositions of reversible discs to the compositions of spheres;

We then finish the section by giving a summary of all the preceding constructions in the form
of propositions explicitly exposing the framings of spines involved and their functoriality.

Finally, our strategy regarding section 6.4 goes as follows. We first define two reflections
of vertebrae via the notion of symmetric spinal coheroid. These reflections give a ‘reversible’
structure to all our vertebrae and thereby allow us to define conjugations of spines. Once
these conjugations are defined, the correspondences that result from them provide two pairs
of parallel arrows. The notion of (k,m−k)-coherent spinal coheroid (see section 6.4.1.2) then
provides these two pairs of parallel arrows with liftings giving rise to pairs of mates for the
underlying correspondences. As in Chapter 3, the mates will be transferred throughout the
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whole spines via the notion of morphism of correspondences (see Proposition 3.60).

reversible−→

•a 55
))⇒

? ←−mates
↓

•b
←−reversible

reversible−→

•

?
•
←−reversible

•a 55
))⇒ •b

The transfer of the mates along the whole spines then enables us to frame the whole spines
and carry along the information necessary to define the notion of (k,m − k + 1)-coherent
spinal coheroid. Defining mates by induction provides sequences of chainings whose ranks of
definition gradually increase and eventually run over the degrees of all the involved spines
(see Figure 1). This ultimately equips the memories of every conjugation with structures
of convergent (and functorial) chaining of memories. In other words, we obtain convergent
conjugations of spines. These conjugations are both simple and extensive since the involved
framings are ‘everywhere functorial’.

Figure 1. Iterative process to generate convergent chainings of memories

We end the chapter (see section 6.4.2) by defining the spinal structure of Grothendieck’s
∞-groupoids, stemming from the convergent conjugations, and give a sketch of the proof of
the Homotopy Hypothesis.

6.2. Vertebral structure

6.2.1. Globular and spinal extensions.

6.2.1.1. Omega-globular sketches. An ω-globular sketch is a small category whose structure
is freely generated from a graph consisting of

1) objects Dk for every k ∈ ω;

2) arrows sk : Dk → Dk+1 and tk : Dk → Dk+1 for every k ∈ ω,

such that the following relations hold for every i ∈ ω.

(6.1) sk+1 ◦ sk = tk+1 ◦ sk sk+1 ◦ tk = tk+1 ◦ tk
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All omega-globular sketches are obviously isomorphic and will be denoted by the symbol
Glob. These categories may be presented by a diagram of the following form.

D0

s0 //

t0
// D1

s1 //

t1
// D2

s2 //

t2
// . . .

sk−1
//

tk−1

// Dk

sk //

tk
// Dk+1

sk+1
//

tk+1

// . . .

6.2.1.2. Omega-spinal sketches. An ω-spinal sketch is a small category whose structure is
freely generated from a graph consisting of

1) objects Dk for every k ∈ ω;

2) objects Sk−1 for every k ∈ ω;

3) arrows γk : Sk−1 → Dk, δ
k
1 : Dk → Sk and δi2 : Dk → Sk for every k ∈ ω,

such that the following relation holds for every k ∈ ω.

δk1 ◦ γk = δk2 ◦ γk
All omega-spinal sketches are obviously isomorphic and will be denoted by the symbol Spine.
These categories may be presented by a diagram of the following form.

D0

δ01

  

D1

δ11

  

S−1

γ0

==

γ0
!!

S0

γ1

>>

γ1
  

S1

D0

δ02

>>

D1

δ12

>>
. . .

Dk

δk1

  

Sk−1

γk

<<

γk
""

Sk

Dk

δk2

>>
. . .

Remark 6.1. The object Sk is initial when k = −1 and is a pushout object for the following
square for every k ∈ ω.

Sk−1
γk
//

γk
��

Dk

δ1
k
��

Dk
δ2
k

// Sk

6.2.1.3. Omega-spinal and omega-globular objects. Let C be a category that has all pushouts
and initial objects. Any functor of the form F : Glob→ C will be called an ω-globular object
in C. Similarly, the term ω-spinal object will be used to refer to any functor of the form
G : Spine → C that preserves the universal structure of the objects Sk−1 pointed out by
Remark 6.1 for every k ∈ ω. Specifically, an ω-spinal object is a functor G : Spine→ C such
that the object G(S0) is initial in C and, for every k > 0, the following square is a pushout
square in C.

G(Sk−1)
G(γk)

//

G(γk)
��

G(Dk)

G(δ1
k)

��

G(Dk)
G(δ2

k)

// G(Sk)

Remark 6.2. Because the small categories Glob and Spine are free categories generated
over some graphs, ω-globular and an ω-spinal objects in C may be identified with the image
of the generating graph of Glob and Spine in C, respectively.

There is a one-to-one correspondence (bijection) between ω-globular objects and ω-spinal
objects in C.
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Proposition 6.3. Any ω-globular object F : Glob→ C in C gives rise to an ω-spinal object
F̂ : Spine→ C. Conversely, any ω-spinal object G : Spine→ C gives rise to ω-globular object
G† : Glob→ C in C. These mappings define a one-to-one correspondence between ω-globular
objects and ω-spinal objects in C.

Proof. Let F be a ω-gobular object such that the image of the generating graph of Glob via
F is given by a diagram of the following form in C.

D0

s0 //

t0
// D1

s1 //

t1
// D2

s2 //

t2
// . . .

sk−1
//

tk−1

// Dk
sk //

tk
// Dk+1

sk+1
//

tk+1

// . . .

Denote by S−1 the initial object of C. Note that the following commutative diagram commute
in C.

S−1
! //

!
��

D0

s0
��

D0 t0
// D1

Forming the pushout of the span involved in the preceding square, which will be denoted by
S0, leads to the existence of a canonical arrow γ1 : S0 → D1 making the following diagram
commute.

S−1

x

! //

!
��

D0 s0

��

δ0
1
��

D0

t0

==δ0
2

// S0 γ1

// D1

The canonical morphism ! : S−1 → D0 will later be denoted by γ0. Suppose that the following
pushout square is defined for every k ≥ n for some n ∈ ω.

Sk−1

x

γk
//

γk
��

Dk sk

��

δk1
��

Dk

tk

<<δk2

// Sk γk+1

// Dk+1

Equation (6.1) implies that pre-composing the preceding diagram with the arrows sk+1 :
Dk+1 → Dk+2 and tk+1 : Dk+1 → Dk+2 provides two solutions for the same universal problem
as follows.

Sk−1

x

γk
//

γk
��

Dk sk+1◦sk

��

δk1
��

Dk

tk+1◦tk

99δk2

// Sk tk+1◦γk+1

// Dk+1

Sk−1

x

γk
//

γk
��

Dk sk+1◦sk

��

δk1
��

Dk

tk+1◦tk

99δk2

// Sk sk+1◦γk+1

// Dk+1

By universality of the pushout Sk+1, it follows that the following left diagram commutes.
Forming the pushout over the span made from two copies of the arrow γk+1 then provides
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the canonical morphism γk+2 : Sk+1 → Dk+2.

Sk
γk+1

//

γk+1

��

Dk+1

sk+1

��

Dk+1 tk+1

// Dk+2

⇒ Sk

x

γk+1
//

γk+1

��

Dk+1 sk+1

��

δk+1
1
��

Dk+1

tk+1

::δk+1
2

// Sk+1 γk+2

// Dk+2

By induction, the ω-globular object F finally induces an ω-spinal object given by

- the object Dk for every k ∈ ω;

- the object Sk−1 for every k ∈ ω;

- the arrows γk : Sk−1 → Dk, δk1 : Dk → Sk and δi2 : Dk → Sk for every k ∈ ω.

This ω-spinal object will later be denoted by F̂ : Spine → C. Conversely, every ω-spinal
object G : Spine→ C of the form

D0
δ0
1

  

D1
δ1
1

  

S−1

γ0

==

γ0
!!

S0

γ1

>>

γ1
  

S1

D0

δ0
2

>>

D1

δ1
2

>>
. . .

Dk
δk1

  

Sk−1

γk
<<

γk
""

Sk

Dk
δk2

>>
. . .

induces an obvious ω-globular object, say G†, given by the following diagram.

D0

γ1◦δ0
1 //

γ1◦δ0
2

// D1

γ2◦δ1
1 //

γ2◦δ1
2

// D2

γ3◦δ2
1 //

γ3◦δ2
2

// . . .
γk◦δk−1

1 //

γk◦δk−1
2

// Dk
γk+1◦δk1//

γk+1◦δk2
// Dk+1

γk+2◦δk+1
1 //

γk+2◦δk+1
2

// . . .

It is not hard to check that the mapping F 7→ F̂ and G 7→ G† define a one-to-one correspon-
dence. �

Later on, for every ω-globular object F : Glob → C, the ω-spinal object F̂ : Spine → C
defined in Proposition 6.3 will be referred to as the underlying ω-spinal object of F .

Following Remark 6.2, any ω-spinal object given by a diagram of the form

D0
δ0
1

  

D1
δ1
1

  

S−1

γ0

==

γ0
!!

S0

γ1

>>

γ1
  

S1

D0

δ0
2

>>

D1

δ1
2

>>
. . .

Dk
δk1

  

Sk−1

γk
<<

γk
""

Sk

Dk
δk2

>>
. . .

will be denoted as a quadruple (S,D, γ, δ) : Spine → C, thereby referring to all the symbols
of the diagram. The indexing will then follow the above conventions. In addition, for every
pair of integers k and m satisfying the inequalities −1 ≤ k ≤ m, the arrow Sk → Sm defined
by the following composite of arrows will be denoted by the symbol Γmk .

Sk
δk+1
1 ◦γk+1

// Sk+1

δk+2
1 ◦γk+2

// . . .
δm−1
1 ◦γm−1

// Sm−1

δm1 ◦γm // Sm
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By convention, when the equality k = m holds, the arrow Γmk will be the identity on Sk.
Similarly, an ω-globular object given by a diagram as follows will be denoted as a triple
(D, s, t) : Glob→ C.

D0

s0 //

t0
// D1

s1 //

t1
// D2

s2 //

t2
// . . .

sk−1
//

tk−1

// Dk
sk //

tk
// Dk+1

sk+1
//

tk+1

// . . .

The indexing will then be deduced from the above conventions. In addition, for every pair of
integers k and m satisfying the inequalities 0 ≤ k < m, the arrows Dk → Dm defined as the
composites of the sequences of arrows

Dk
sk // Dk+1

sk+1
// . . .

sm−2
// Dm−1

sm−1
// Dm

and

Dk
tk // Dk+1

tk+1
// . . .

tm−2
// Dm−1

tm−1
// Dm

will be denoted by the symbols smk and tmk , respectively.

6.2.1.4. Globular and spinal pre-extensions. A globular pre-extension consists of a category
C equipped with an ω-globular object F : Glob→ C. Such a structure will be denoted by its
associated ω-gobular object. A spinal pre-extension consists of a category C equipped with

1) an ω-spinal object (S,D, γ, δ) : Spine→ C;
2) a class Ωk of morphisms in C with domain Sk satisfying the following inclusion for

every k ∈ ω.

Ωk ⊆ llp(rlp({γm | m ∈ ω}))

The union of Ωk with the singleton {γk+1 : Sk → Dk+1} will be denoted by Ω◦k. Later on,
such a structure will be denoted as an arrow of the following form.

(S,D, γ, δ) · Ω : Spine→ C

Remark 6.4. Note that, for every category C that has pushouts and initial objects, any
globular pre-extension F : Glob→ C gives rise to a spinal pre-extension where

1) the spinal object is given by the underlying ω-spinal object F̂ : Spine→ C;
2) for every k ∈ ω, the class Ωk is the singleton consisting of γk+1 : Sk → Dk+1.

In this case, the class Ωk is equal to the class Ω◦k. The above spinal pre-extension will later
be referred to as the underlying spinal pre-extension of F .

Example 6.5 (Topological spaces). The set of topological discs in Top define an obvious
globular pre-extension given, for every integer n ≥ 0, by the inclusions the n-discs Dn into
the two hemispheres of the (n + 1)-discs Dn+1. For every integer n ≥ 0, the object Sn
associated with the underlying spinal pre-extension of the resulting globular object (D, s, t)
is the topological sphere.

6.2.1.5. Globular sums in globular pre-extensions. Let (D, s, t) : Glob → C be a spinal pre-
extension and q be a non-negative integer. A q-globular sum in the pre-extension (D, s, t)
consists of

- a table of non-negative integers(
j1 j2 . . . jq+1

i1 i1 . . . iq

)
where ik is less than jk and jk+1 for every 1 ≤ k ≤ q + 1;
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- a colimit in C for the diagram of the form

Dj1 Dj2 Dj3

Di1
s
j1
i1

aa

t
j2
i1

==

Di2
s
j2
i2

aa

t
j3
i2

== . . .
Djq−1 Djq+1

Diq
s
jq
iq

bb

t
jq+1
iq

<<

Later on, the underlying colimit object associated with a q-globular sum will be referred to
as its universal object. By definition, note that the object Dk defines a 0-globular sum of
(D, s, t) equipped with the singleton table (k) for every k ∈ ω and will thus be referred to as
the universal object of a 0-globular sum.

6.2.1.6. Globular sums in spinal pre-extensions. Let (S,D, γ, δ) · Ω : Spine → C be a spinal
pre-extension and q be a non-negative integer. A q-globular sum in (S,D, γ, δ) ·Ω consists of

- a table of non-negative integers(
j1 j2 . . . jq+1

i1 i1 . . . iq

)
where ik is less than or equal to jk and jk+1 for every 1 ≤ k ≤ q + 1;

- a morphism βk : Sjk → Ak in the class Ω◦k for every integer 1 ≤ k ≤ q + 1;

- a colimit in C for the diagram of the form

A1 A2 A3

Di1
s
j1
i1

aa

t
j2
i1

==

Di2
s
j2
i2

aa

t
j3
i2

== . . .
Aq Aq+1

Diq
s
jq
iq

``

t
jq+1
iq

<<

where the following notation hold.

sj1i1 := βk ◦ Γjkik ◦ δ
ik
2 tj1i1 := βk ◦ Γjkik ◦ δ

ik
1

Later on, the underlying colimit object associated with a q-globular sum will be referred to
as its universal object. By definition, note that the object Dk defines a 0-globular sum of
(S,D, γ, δ) · Ω when equipped with the singleton table (k) for every k ∈ ω and will thus be
referred to as the universal object of a 0-globular sum.

Remark 6.6. Let C be a category that has pushouts and initial objects. According to
Remark 6.4, the globular sums of any globular pre-extension F : Glog → C corresponds to

the globular sums of the underlying spinal pre-extension F̂ : Spine→ C.

6.2.1.7. Globular extensions. A globular pre-extension (D, s, t) : Glob→ C is called a globular
extension if it admits all globular sums.

6.2.1.8. Spinal extensions. A spinal pre-extension (S,D, γ, δ)·Ω : Spine→ C is called a spinal
extension if it admits the following globular sums:

- for every non-negative integers i ≤ j, pair of arrows β� : Si → A� and β• : Si → A•
in Ωi and arrow β : Sj → A in Ω◦j , the diagram

A� A A•

Di
β�◦δi2

``

tji

??

Di
sji

__

β•◦δi1

>>

admits a colimit in C in which the following notations apply.

sji := β ◦ Γji ◦ δ
i
2 tji := β ◦ Γji ◦ δ

i
1
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The universal object associated with the above 3-globular sum will be denoted by

Gj
i (β�, β, β•);

- for every non-negative integer i and pair of arrows β : Si → A and β′ : Si → A′ in
Ωi, the following diagram admits a colimit in C.

A A′

Di
β◦δi2

__

β′◦δi1

>>

The universal object associated with the previous 2-globular sum will be denoted by
Ei(β, β′).

Remark 6.7. Globular extensions are particular cases of spinal extensions when the under-
lying globular pre-extension is seen as a spinal pre-extension.

Remark 6.8. Let C be a category that has pushouts and initial objects. By Remark 6.6,
any globular extension in F : Glob→ C corresponds to a spinal extension F̂ : Spine→ C in
regard to the correspondence defined in Proposition 6.3.

Example 6.9 (Topological spaces). Because the category Top is cocomplete, the topological
globular pre-extension (D, s, t) defines in Example 6.5 gives rise to a globular extension. By
Remark 6.8, its underlying spinal pre-extension define a spinal extension.

6.2.2. Parallelism in globular and spinal extensions.

6.2.2.1. Parallel arrows in globular extensions. Let (D, s, t) : Glob → C be a globular exten-
sion and B be a universal object of a q-globular sum in (D, s, t) for some q ≥ 0. For every
k ∈ ω, a pair of morphisms f : Dk → B and g : Dk → B will be said to be k-parallel in (D, s, t)
if the integer k is equal to 0 or if the following two diagrams commute for k ∈ ω\{0}.

Dk−1

tk−1
//

tk−1

��

Dk
f

��

Dk g
// B

Dk−1

sk−1
//

sk−1

��

Dk
f

��

Dk g
// B

6.2.2.2. Parallel arrows in spinal extensions. Let (S,D, γ, δ) · Ω : Spine → C be a globular
extension and B be an object in C that may possibly be

1) the universal object of a q-globular sum in (S,D, γ, δ) · Ω for some q ≥ 0;

2) the codomain of an arrow in Ωn for some n ∈ ω;

For every k ∈ ω, a pair of morphisms f : Dk → B and g : Dk → B will be said to be k-parallel
in (S,D, γ, δ) · Ω if the following diagram commutes.

(6.2) Sk−1
γk
//

γk
��

Dk
f

��

Dk g
// B

The next proposition considers a globular extension (D, s, t) : Glob → C and denotes by
(S,D, γ, δ) · Ω : Spine → C its underlying spinal extension mentioned in Remark 6.8. In
particular, for every k ∈ ω, the class Ωk is the singleton containing the arrow γk+1 : Sk →
Dk+1.
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Proposition 6.10. Suppose that C has pushouts and a initial object. Two arrows f : Dk → B
and g : Dk → B are k-parallel in (D, s, t) if and only if they are k-parallel in the underlying
spinal extension (S,D, γ, δ) · Ω.

Proof. Let f : Dk → B and g : Dk → B be two parallel arrows in the spinal extension
(S,D, γ, δ) · Ω. Since f and g are obviously parallel in (D, s, t) when k is equal to 0, suppose
that k ∈ ω\{0}. In this case, diagram (6.2) implies that the following square commutes.

Dk−1

γk◦δk−1
2 //

γk◦δk−1
2
��

Dk
f

��

Dk g
// B

Dk−1

γk◦δk−1
1 //

γk◦δk−1
1
��

Dk
f

��

Dk g
// B

This exactly means that f and g are parallel in the globular extension (D, s, t). Now, suppose
that f : Dk → B and g : Dk → B are two parallel arrows in the globular extension (D, s, t). If
the equality k = 0 holds, the following diagram commutes as S−1 is initial, which shows that
f and g are parallel in (S,D, γ, δ) · Ω.

S−1
γ−1
//

γ−1

��

D0

f

��

D0 g
// B

Now, suppose that k ∈ ω\{0}. The fact that f and g are parallel in (D, s, t) means that the
following diagrams commute.

(6.3) Dk−1

γk◦δk−1
2 //

γk◦δk−1
2
��

Dk
f

��

Dk g
// B

Dk−1

γk◦δk−1
1 //

γk◦δk−1
1
��

Dk
f

��

Dk g
// B

These commutative diagrams then imply that the following universal problem has two solu-
tions given by f ◦ γk : Sk−1 → B and g ◦ γk : Sk−1 → B.

Dk−2

x

γk−1
//

γk−1

��

Dk−1

δk−1
1
��

f◦γk◦δk−1
1

��

Dk−1

δk−1
2 //

f◦γk◦δk−1
2

99Sk−1
// B

By universality of Sk−1, this implies that the following diagram must commute, which also
proves that f and g are parallel in (S,D, γ, δ) · Ω.

Sk−1
γk
//

γk
��

Dk
f

��

Dk g
// B

�
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Remark 6.11. For any parallel pair f : Dk → B and g : Dk → B in a spinal extension
(S,D, γ, δ) ·Ω : Spine→ C, the associated commutative square (6.2) gives rise to a canonical
morphisms df, ge : Sk → B making the following diagram commute.

Sk−1

x

γk
//

γk
��

Dk
δk1
��

g

��

Dk
δk2

//

f

::Sk
df,ge

// B

6.2.3. Globular and spinal coheroids.

6.2.3.1. Globular coheroids. A globular coheroid is a globular extension (D, s, t) : Glob → C
equipped with a class A of pairs of parallel arrows in (D, s, t) such that for every k ∈ ω and
k-parallel pair f, g : Dk → B in A, there exists a morphism h : Dk+1 → B, called a lift for
(f, g), making the following diagram commute.

B

Dk sk
//

f
11

Dk+1

h

OO

Dktk
oo

g
mm

A pair (f, g) in A will be said to be admissible to distinguish it from any other choice of
pair of parallel arrows in (D, s, t) that is not in A. A globular coheroid such as above will be
denoted as an arrow of the form (D, s, t) : Glob→ (C,A).

Example 6.12 (Topological spaces). The topological globular extension defined in Example
6.9 comes along with an obvious globular coheroid (D, s, t) : Glob→ (Top,A) where A is the
class of parallel arrows going from any topological disc to any globular sum for (D, s, t).

6.2.3.2. Spinal coheroids. A spinal coheroid is a spinal extension (S,D, γ, δ) · Ω : Spine→ C
equipped with a class A of pairs of parallel arrows in (S,D, γ, δ) ·Ω such that for every k ∈ ω
and k-parallel pair f, g : Dk → B in A for k ∈ ω, there exists an arrow β : Sk → A in Ω◦k and
a morphism h : A→ B, called a lift for (f, g), making the following diagram commute.

A
h

&&Sk

β

OO

df,ge
// B

A pair (f, g) in A will be said to be admissible to distinguish it from any other choice of pair
of parallel arrows in (S,D, γ, δ) · Ω that is not in A. A spinal coheroid such as above will be
denoted as an arrow of the form (S,D, γ, δ) · Ω : Spine→ (C,A).

Remark 6.13. It follows from Proposition 6.10 that if C has pushouts and an initial object,
then any globular coheroid (D, s, t) : Glob→ (C,A) gives rise to a spinal coheroid (S,D, γ, δ) ·
Ω : Spine → (C,A). This comes from the fact that the following left-hand commutative
diagram implies the corresponding right-hand one.

B

Dk
γk+1◦δk2

//

f
11

Dk+1

h

OO

Dk
γk+1◦δk1
oo

g
mm ⇒ B

Dk
δk2

//

f
11

Dk+1

h◦γk+1

OO

Dk
δk1

oo

g
mm
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By universality of the object Sk, the rightmost commutative diagram implies that the follow-
ing triangle commutes.

A
h

&&Sk

γk+1

OO

df,ge
// B

Example 6.14 (Topological spaces). According to Remark 6.13, because Top is cocomplete,
the globular coheroid (D, s, t) : Glob → (Top,A) of Example 6.12 gives rise to an obvious
spinal coheroid (D, S, δ, γ) : Spine→ (Top,A).

6.2.4. Grothendieck and Maltsiniotis coherators.

6.2.4.1. Coherators. A coherator is a globular coheroid (D, s, t) : Glob→ (C,A) whose cate-
gory C is the colimit of a sequence of functors between small categories as follows

Glob −→ C0 −→ C1 −→ . . . −→ Cn −→ Cn+1 −→ . . . −→ C ∼= colk∈O(ω)Ck

where, for every n ≥ 0, the composite Glob → Cn is a globular extension equipped with a
set of parallel arrows An so that

1) the functor Glob→ C0 is a free cocompletion of Glob by the globubar sums;

2) the composite Glob → Cn+1 is the universal globular extension of Glob → Cn
obtained by formally adding a lift for every pair of arrows in An.

A coherator as above is called

- Grothendieck coherator if A is the set of pairs of parallel arrows in C;

- Maltsiniotis coherator if A is the set of pairs of parallel arrows in C that are ‘ad-
missible’ in the sense of [35, sec. 4.3, page 18] and, for every n ≥ 0, the set An only
consists of pair of parallel arrows that are ‘admissible’ in the sense of [35];

Proposition 6.15. Let F : C → C ′ be a fully faithful functor where C ′ is a cocomplete
category. For every coherator (D, s, t) : Glob → (C,A), the composite functor F ◦ (D, s, t) :
Glob→ C ′ defines a globular coheroid when equipped with the image of the class A via F .

Proof. First, the composite functor F ◦ (D, s, t) : Glob → C ′ defines an obvious globular
object by composition. Since C ′ is cocomplete, this functor actually defines a globular exten-
sion. Now, to show that it is a globular coheroid, take a pair (f, g) in F (A). By definition,
the arrows f and g go from an image F (Dk) to an image F (B) where Dk and B are uniquely
determined by injectivity of F . Because F is fully faithful, there exists a unique pair of arrows
f ′, g′ : Dk → B in C such that F (f ′) = f and F (g′) = g. By uniqueness, the pair (f ′, g′) must
belong to A. The fully faithfulness of F : C → C ′ also implies that any commutative diagram
in C ′ of the form given below on the left provides a non-dashed commutative diagram in C
as given on the right. By assumption, there exists a dashed lift h : Dk+1 → B making the
following right diagram commute.

F (B)

F (Dk)
F (sk)

//

f
22

F (Dk+1) F (Dk)
F (tk)
oo

g
ll ⇒ B

Dk sk
//

f ′
11

Dk+1

h

OO

Dktk
oo

g′
mm

Applying the functor F on the previous right diagram then provides a lift for the correspond-
ing left diagram and proves the statement. �

The globular coheroid produced by Proposition 6.15 will later be denoted by F (D, s, t) :
Glob→ (C ′, F (A)).
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Remark 6.16. There exists two canonical choices for the functor F : C → C ′ of Proposition
6.15. The first one is the free cocompletion of C given by the Yoneda embedding C → Psh(C)
(see section 1.2.1.25) and the second one C →Mod(Cop) is the lifting of the first one to the
category of models for the sketch C when C is equipped with its globular sums as chosen
colimits (see Proposition 1.17).

6.2.4.2. Spinal coheroids for coherators. Let (D, s, t) : Glob→ (C,A) be a coherator equipped
with a fully faithful functor F : C → C ′ where C ′ is cocomplete. Since C ′ is complete,
Remark 6.13 provides a spinal coheroid F (D, S, γ, δ) ·Ω : Spine→ (C ′, F (A)) stemming from
the globular coheroid F (D, s, t) : Glob → (C ′, F (A)) of Proposition 6.15. A spinal coheroid
for the coherator (D, s, t) along F is given by any spinal coheroid made of

- the functor F (D,S, γ, δ) : Spine→ C ′;

- the class of pairs of parallel arrows F (A);

- a class Ω′ consisting of the image of Ω via F and, for every pair (f, g) in F (A), an
arrow β ∈ llp(rlp({F (γm) | m ∈ ω})) factorising the canonical arrow df, ge into a
composite u ◦ β;

A structure as above defines a spinal coheroid by cocompleteness of C ′.

Example 6.17 (Grothendieck coherators). In the case where the globular extension (D, s, t) :
Glob → (C,A) is a Grothendieck coherator, a natural choice of class Ω′ is the image class
F (Ω).

Example 6.18 (Maltsiniotis coherators). In the case where the globular extension (D, s, t) :
Glob → (C,A) is a Maltsiniotis coherator, a natural choice of class Ω′ consists of the image
of Ω via F and, for every pair (f, g) in F (A), every arrow β ∈ llp(rlp({F (γm) | m ∈ ω}))
factorising the canonical arrow df, ge into a composite u◦β where u ∈ rlp({F (γm) | m ∈ ω}).
This spinal coheroid will however not define that required for the spinal structure and it will
be necessary to extend the class F (A) along the inductive process underlying its construction.
It may be checked by the learned reader that the extension of the class F (A) in C ′ will follow
the same spirit as the definition of the arrows of A given in [35].

6.2.4.3. Infinity-groupoids and infinity categories. A category of Grothendieck’s ∞-groupoids
is the category of models for a Grothendieck coherator when equipped with its globular sums
as chosen colimits. A category of Maltsiniotis’ ∞-categories is the category of models for a
Maltsiniotis coherator when equipped with its globular sums as chosen colimits.

Remark 6.19. By Remark 6.16, choosing F to be the embedding C → Mod(Cop) in
Example 6.17 and Example 6.18 provides the previous two (cocomplete) categories with
(canonical) spinal coheroids.

6.2.5. Vertebrae for spinal coheroids.

6.2.5.1. Reflexive spinal coheroids. Let (S,D, γ, δ) · Ω : Spine→ (C,A) be a spinal coheroid.
Consider some element k ∈ ω. Since the object Dk is a universal object of a 0-globular sum
and the following diagram commutes in C, the pair of arrows (idDk , idDk) is k-parallel.

Sk−1
γk
//

γk
��

Dk
idDk
��

Dk
idDk

// Dk

The spinal coheroid (S,D, γ, δ) · Ω will be said to be reflexive if the parallel pair (idDk , idDk)
is admissible for every k ∈ ω so that there exists an arrow β : Sk → A in Ωk and a morphism
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α : A→ Dk making the following diagram commute.

A
α

&&
Sk

β

OO

didDk ,idDke
// Dk

Note that the arrow β belongs to Ωk and not necessarily to its augmentation Ω◦k.

Example 6.20 (Topological spaces). The topological spinal coheroid (D, S, δ, γ) : Spine →
(Top,A) is obviously reflexive by definition of A.

Example 6.21 (Grothendieck’s∞-groupoids). The spinal coheroid of a category of Grothen-
dieck ∞-groupoids is reflexive. The pair (idDk , idDk) is indeed admissible and the arrow β
stands for the arrow γk+1 contained in Ω′k (see Example 6.17).

Example 6.22 (Maltsiniotis’ categories). The spinal coheroid of a category of Maltsiniotis
∞-categories is reflexive. The pair (idDk , idDk) is indeed admissible and the arrow β stands
for the arrow γk+1 contained in Ω′k (see Example 6.18).

6.2.5.2. Magmoidal spinal coheroid. Let (S,D, γ, δ) ·Ω : Spine→ (C,A) be a spinal coheroid.
Consider some element k ∈ ω. Recall that for every pair of arrows β : Sk → A and β′ : Sk → A′
in the class Ωk, the following pushout exists.

Dk

x

β◦δk1 //

β′◦δk2
��

A

ε1
��

A′
ε2

// Ek(β, β′)

Pre-composing the preceding diagram with γk : Sk−1 → Dk and using the relation δk1 ◦ γk =
δk2 ◦ γk provides a commutative diagram as follows.

Sk−1
γk

//

γk

��

Dk

ε1◦β◦δk2
��

Dk
ε2◦β′◦δk1

// Ek(β, β′)

The preceding commutative diagram exposes a pair of parallel arrows. The spinal coheroid
(S,D, γ, δ) · Ω will be said to be magmoidal if the parallel pair

(ε2 ◦ β′ ◦ δk2 , ε1 ◦ β ◦ δk1 )

is admissible for every k ∈ ω and pair β, β′ ∈ Ωk so that there exists an arrow β• : Sk → A•
in Ωk and a morphism η : A• → B making the following diagram commute.

A•
η

))Sk

β•

OO

dε2◦β′◦δk2 ,ε1◦β◦δk1 e
// B

Note that the arrow β belongs to Ωk and not to its augmentation Ω◦k.

Example 6.23 (Topological spaces). The topological spinal coheroid (D, S, δ, γ) : Spine →
(Top,A) is magmoidal by definition of A.
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Example 6.24 (Grothendieck’s∞-groupoids). The spinal coheroid of a category of Grothen-
dieck ∞-groupoids is magmoidal. The arrows β and β′ must be equal to γk+1 so that the
pair (ε2 ◦ β′ ◦ δk2 , ε1 ◦ β ◦ δk1 ) is admissible since Ek(β, β′) is a globular sum in the coherator.
The arrow β• is then provided by γk+1, which is the only element of Ω′k.

Example 6.25 (Maltsiniotis’ categories). The spinal coheroid of a category of Maltsiniotis
∞-categories becomes magmoidal when the class of parallel arrows is augmented by all the
pairs of the form (ε2 ◦ β′ ◦ δk2 , ε1 ◦ β ◦ δk1 ). Since the ambient category Mod(Cop) associated
with the spinal coheroid is cocomplete (see Remark 6.19) and all the sequential functors
in Mod(Cop) are convergent with respect to the representable models (see Example 5.8),
Corollary 5.86 (small object argument) may be used to generate the arrow β•, which, in this
case, satisfies all the properties required by Example 6.18 to belong to Ω′k.

6.2.5.3. Vertebrae for spinal coheroids. Any spinal coheroid of the form

(S,D, γ, δ) · Ω : Spine→ (C,A)

may be associated with the canonical node of vertebrae ‖γk, γk‖ · Ωk for every k ∈ ω where
the prevertebra ‖γk, γk‖ is given by the following pushout square.

Sk−1

x

γk
//

γk
��

Dk
δk1
��

Dk
δk2

// Sk

Note that the commutative triangle

Sk−1
γk
//

γk
��

Dk

idDk||

Dk

provides ‖γk, γk‖ with a reflexive prevertebra structure.

Proposition 6.26. If the spinal coheroid (S,D, γ, δ) · Ω : Spine → (C,A) is reflexive, then
the node of vertebrae ‖γk, γk‖ · Ωk is reflexive for every k ∈ ω.

Proof. We need to prove that the node of vertebrae ‖γk, γk‖·Ωk contains a reflexive vertebra.
Denote by uk : Sk → Dk the canonical arrow making the following diagram commute.

Sk−1

x

γk
//

γk
��

Dk
δk1
��

idDk

��

Dk
δk2

//

idDk

==
Sk

uk // Dk

The arrow uk may be identified with the canonical arrow didDk , idDke. Since the pair of
identities (idDk , idDk) belongs to A and the spinal coheroid is reflexive, the arrow α : Sk → Dk
may be factorised as follows for some β : Sk → A in Ωk.

Sk

β
��

uk // Dk

A
α

>>
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In other words, the vertebra ‖γk, γk‖·β is reflexive when equipped with the arrow α : A→ Dk.
This shows the statement since it belongs to the node of vertebrae ‖γk, γk‖ · Ωk. �

Note that for every k ∈ ω, the node of vertebrae ‖γk, γk‖ · Ωk communicates with itself
since its coseed is equal to its seed.

Proposition 6.27. If the spinal coheroid (S,D, γ, δ) ·Ω : Spine→ (C,A) is magmoidal, then
the node of vertebrae ‖γk, γk‖ · Ωk frames two copies of itself for every k ∈ ω.

Proof. We need to show that every pair of vertebrae ‖γk, γk‖·β and ‖γk, γk‖·β′ in ‖γk, γk‖·Ωk

is framed by a third one in ‖γk, γk‖·Ωk. First, notice that for every pair of vertebrae ‖γk, γk‖·β
and ‖γk, γk‖ · β′ in ‖γk, γk‖ · Ωk, the following pushout exists.

(6.4) Dk
x

β◦δk1 //

β′◦δk2
��

A

ε1
��

A′
ε2

// Ek(β, β′)

Pre-composing the previous diagram with γk : Sk−1 → Dk and using the diagrammatic
relations defining the prevertebra ‖γk, γk‖ provides a commutative diagram as follows.

Sk−1
γk

//

γk

��

Dk

ε2◦β′◦δk1
��

Dk
ε1◦β◦δk2

// Ek(β, β′)

Since the pair (ε1◦β◦δk2 , ε2◦β′◦δk1 ) is inA and the spinal coheroid is magmoidal, there exists an
arrow β• : Sk → A• in Ωk factorising the canonical arrow dε1◦β◦δk2 , ε2◦β′◦δk1e : Sk → Ek(β, β′)
as follows.

Sk

β•
&&

dε1◦β◦δk2 ,ε2◦β′◦δk1 e // Ek(β, β′)

A•
η

66

In particular, this factorisation provides a commutative diagram as follows.

(6.5) Sk

η◦β•

""

Dk
δk1oo

ε2◦β′◦δk1

��

Dk
ε1◦β◦δk2

//

δk2

OO

Ek(β, β′)

Finally, diagram (6.4) and diagram (6.5) show that the pair of vertebrae ‖γk, γk‖ · β and
‖γk, γk‖ · β′ is framed by ‖γk, γk‖ · β• where the underlying cooperadic transition is given by
η : A• → Ek(β, β′). This induces a structure of framing of ‖γk, γk‖ · Ωk by itself. �

6.2.5.4. Underlying vertebral category of spinal coheroids. Consider a reflexive magmoidal
spinal coheroid (S,D, γ, δ) · Ω : Spine → (C,A) whose ω-spinal object is given by a faithful
and injective-on-objects functor Spine → C. This means that the objects and arrows of the
spinal object are completely determined by their indexing. Denote by νk the node of vertebrae
‖γk, γk‖ · Ωk for every k ∈ ω. The goal of this section is to define a vertebral category
structure (C, A′, A,E) for the spinal coheroid (S,D, γ, δ) · Ω whose prolinear submodule is
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of the type presented in Remark 4.27, namely the two magmoids A and A′ are equal, the
prolinear map is given by the identity and the prolinear submodule consists of a submagmoid
(A,}) ⊆ (Ally(C),}) and a right A-submodule (E,η,�,}) ⊆ (Enov(C),η,�,}). First,
define the submagmoid A of Ally(C) whose object-class is given by the set of nodes of
vertebrae

Obj(A) := {νk | k ∈ ω}
and whose hom-classes are defined as follows.

A(νk, νm) =

{
∅ if k 6= m
{idνk} if k = m

It is not hard to check that it has a structure of magmoid for the composition } of Ally(C).
Then, consider the A-submodule (E,η,�,}) of the right Ally(C)-module (Enov,η,�,})
whose left and right object-classes are given by the sets

ObjL(E) := {γk | k ∈ ω} and ObjR(E) := {νk | k ∈ ω}
and whose hom-classes are defined as follows.

E(γk, νm) =

{
∅ if k 6= m
{νm} if k = m

This defines a right A-module E whose right object-class is equal to that of A. To define
a vertebral algebra structure on (E,η′), take the source and target hinges to both be the
metafunction η′ that maps a nodes of vertebrae to its coseed. It follows that the graphs Σ0E,
Σ1E and Σ?E are equal to the same graph, say ΣE, defined as follows.

ΣE(γk, γm) =

{
∅ if k 6= m
{νk} if k = m

The graph ΣE has a structure of magmoid whose compositions are defined as follows for
every k ∈ ω.

ΣE(γk, γk)× ΣE(γk, γk) → ΣE(γk, γk)
(νk, νk) 7→ νk

By Proposition 6.27, this composition exactly gives a (semi-direct) vertebral algebra structure
to (E,η′). Finally, it follows from Proposition 6.26 that for every γk ∈ ObjL(E), the node
of vertebrae νk is reflexive. Since the set E(γk, νk) is non-empty, the above discussion shows
that the triple (C, A,E) defines a vertebral category.

6.3. Spines and their functorial framings

6.3.1. Kappa and tau constructions.

6.3.1.1. Kappa constructions. Let (S,D, γ, δ) · Ω : Spine → (C,A) be a spinal coheroid. By
definition of the spinal extension associated with (S,D, γ, δ) · Ω, the following two double
pushouts1 must exist for every pair m, k ∈ ω where m ≥ k+1 and pair of arrows β� : Sk → A�
and β• : Sk → A• in Ωk.

Sk
γm+1◦Γmk
""

Dk
δk2oo

β�◦δk1 // A�

ι�k,m

��

Dk

δk1

OO

β•◦δk2
��

Dm+1

ιk,m

''

A•
ι•k,m

// Gm
k (β�, γm+1, β•)

1These pushouts are the pushouts required by the definition of section 3.3.2.4, which tells more about the geometric

meaning of these.



6.3. Spines and their functorial framings 289

Sk
γm◦Γm−1

k

!!

Dk
δk2oo

β�◦δk1 // A�

ι�k,m−1

��

Dk

δk1

OO

β•◦δk2
��

Dm
ιk,m−1

''

A•
ι•k,m−1

// Gm−1
k (β�, γm, β•)

Because the equation

γm+1 ◦ Γmk = (γm+1 ◦ δmi ) ◦ γm ◦ Γm−1
k

holds for every i ∈ {1, 2}, there exists a canonical arrow

κmi,k : Gm−1
k (β�, γm, β•)→ Gm

k (β�, γm+1, β•)

for every i ∈ {1, 2} making the following three diagrams commute.

A�
ι�k,m

//

ι�k,m−1
''

Gm
k (β�, γm+1, β•)

Gm−1
k (β�, γm, β•)

κmi,k

OO
A•

ι•k,m
//

ι•k,m−1
''

Gm
k (β�, γm+1, β•)

Gm−1
k (β�, γm, β•)

κmi,k

OO

Dm+1

ιk,m
// Gm

k (β�, γm+1, β•)

Dm

γm+1◦δmi

OO

ιk,m−1

// Gm−1
k (β�, γm, β•)

κmi,k

OO

Also, because the equation

γm+2 ◦ δm+1
1 ◦ γm+1 ◦ δmi = γm+2 ◦ δm+1

2 ◦ γm+1 ◦ δmi

holds in C, the universality of the object Gm−1
k (β�, γm, β•) provides the following equation

for every i ∈ {1, 2}.

(6.6) κm+1
1,k ◦ κ

m
i,k = κm+1

2,k ◦ κ
m
i,k

6.3.1.2. Tau constructions. Let (S,D, γ, δ)·Ω : Spine→ (C,A) be a spinal coheroid. Consider
an integer m ∈ ω and an arrow β : Sm+1 → A in Ωm+1. By definition of the spinal extension
associated with (S,D, γ, δ) · Ω, the following two pushouts must exist for every k ∈ ω where
m ≥ k and pair of arrows β� : Sk → A� and β• : Sk → A• in Ωk.

Sk
β◦Γm+1

k

  

Dk
δk2oo

β�◦δk1 // A�

ε�k,m+1

��

Dk

δk1

OO

β•◦δk2
��

A
εk,m+1

&&

A•
ε•k,m+1

// Gm+1
k (β�, β, β•)
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Sk
γm+1◦Γmk
""

Dk
δk2oo

β�◦δk1 // A�

ι�k,m

��

Dk

δk1

OO

β•◦δk2
��

Dm+1

ιk,m

''

A•
ι•k,m

// Gm
k (β�, γm+1, β•)

Because the equation

β ◦ Γm+1
k = (β ◦ δm+1

i ) ◦ γm+1 ◦ Γmk

holds for every i ∈ {1, 2}, there exist a canonical arrow

τmi,k(β) : Gm
k (β�, γm+1, β•)→ Gm+1

k (β�, β, β•)

for every i ∈ {1, 2} making the following three diagrams commute.

A�
ε�k,m+1

//

ι�k,m
''

Gm+1
k (β�, β, β•)

Gm
k (β�, γm+1, β•)

τmi,k(β)

OO
A•

ε•k,m+1
//

ι•k,m
''

Gm+1
k (β�, β, β•)

Gm
k (β�, γm+1, β•)

τmi,k(β)

OO

Dm+1

εk,m+1
// Gm+1

k (β�, β, β•)

Dm

β◦δm+1
i

OO

ιk,m
// Gm

k (β�, γm+1, β•)

τmi,k(β)

OO

Also, because the equation

β ◦ δm+1
1 ◦ γm+1 ◦ δmi = β ◦ δm+1

2 ◦ γm+1 ◦ δmi

holds in C, the universality of the object Gm−1
k (β�, γm, β•) provides the following equation

for every i ∈ {1, 2} when k < m.

(6.7) τm1,k(β) ◦ κmi,k = τm2,k(β) ◦ κmi,k

6.3.2. Normal and transitive spinal coheroids. This section defines natural contexts
in which one may see the kappa and tau constructions – which one would like think of as
mapping cylinders – as actual cells or discs. In terms of intuition, these should therefore
be understood as some sorts of compositions. On the one hand, normal spinal coheroids
will permit the composition of cylinders whose ‘bases’ are non-invertible cells but whose
sides are (the composition being realised by the factorisations of the parallel pairs therefore),
while, on the other hand, transitive spinal coheroids will permit the composition of cylinders
whose ‘bases’ and sides are all invertible (the composition being realised by the factorisations
of the parallel pairs therefore). The term normal refers to the fact the composition of a
non-invertible bases along two invertible cells are somewhat elementary operations while the
term transitive refers to the fact the composition of three invertible cells are reminiscent of
a terminary transitive property if one sees ∞-groupoids as generalisations of the notion of
equivalence relation.
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6.3.2.1. Normal spinal coheroids. Let (S,D, γ, δ) · Ω : Spine → (C,A) be a spinal coheroid.
Let us fix some k ∈ ω and consider the following pushout in the spinal extension (S,D, γ, δ) ·Ω
for some pair of arrows β� : Sk → A� and β• : Sk → A• in Ωk.

(6.8) Sk
γk+1

""

Dk
δk2oo

β�◦δk1 // A�

ι�k,k

��

Dk

δk1

OO

β•◦δk2
��

Dk+1

ιk,k

''

A•
ι•k,k

// Gk
k(β�, γk+1, β•)

Pre-composing the top-right and bottom-left commutative part of diagram (6.8) with the
arrow γk : Sk−1 → Dk and using the diagrammatic relations defining the prevertebra ‖γk, γk‖
leads to the following commutative square.

Sk−1
γk

//

γk

��

Dk
ι•k,k◦β•◦δ

k
1

��

Dk
ι�k,k◦β�◦δ

k
2

// Gk
k(β�, γk+1, β•)

This gives a new k-parallel pair in (S,D, γ, δ) ·Ω. The spinal coheroid (S,D, γ, δ) ·Ω will then
be said to be (k, 0)-normal if the parallel pair

(ι�k,k ◦ β� ◦ δk2 , ι•k,k ◦ β• ◦ δk1 )

is admissible for every pair β�, β• ∈ Ωk so that there exists a morphism π0
k : Dk+1 → B

making the following diagram commute.

(6.9) Dk+1
π0
k

++

Sk

γk+1

OO

dι�k,k◦β�◦δ
k
2 ,ι
•
k,k◦β•◦δ

k
1 e

// Gk
k(β�, γk+1, β•)

Note that, by definition of the canonical morphism dι�k,k ◦ β� ◦ δk2 , ι•k,k ◦ β• ◦ δk1e, the previous
factorisation may also be written as a commutative diagram of the following form.

(6.10) Sk
γk+1

""

Dk
δk2oo

β�◦δk2 // A�

ι�k,k

��

Dk

δk1

OO

β•◦δk1
��

Dk+1

π0
k

''

A•
ι•k,k

// Gk
k(β�, γk+1, β•)

Post-composing diagram (6.9) with the kappa construction

κk+1
i,k : Gk

k(β�, γk+1, β•)→ Gk+1
k (β�, γk+2, β•)
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for some i ∈ {1, 2} then provides the following commutative diagram.

(6.11) Sk
γk+1

""

Dk
δk2oo

β�◦δk2 // A�

ι�k,k+1

��

Dk

δk1

OO

β•◦δk1
��

Dk+1
κk+1
i,k ◦π

0
k

''

A•
ι•k,k+1

// Gk+1
k (β�, γk+2, β•)

The earlier diagram provides two different solutions for the same universal problem over Sk
depending on the index i ∈ {1, 2}. It follows from the universality of Sk that the two solutions
are equal, which may be expressed in terms of the following commutative diagram.

Sk
γk+1

//

γk+1

��

Dk+1

κk+1
1,k ◦π

0
k

��

Dk+1
κk+1

2,k ◦π
0
k

// Gk+1
k (β�, γk+2, β•)

Note that the preceding diagram provides a (k + 1)-parallel pair of arrows in the spinal
extension (S,D, γ, δ) · Ω. The spinal extension (S,D, γ, δ) · Ω will be said to be (k, 1)-normal
if it is (k, 0)-normal and the parallel pair of arrows

(κk+1
2,k ◦ π

0
k, κ

k+1
1,k ◦ π

0
k)

is admissible so that there exists a morphism π1
k : Dk+2 → Gk+1

k (β�, γk+2, β•) making the
following diagram commute.

(6.12) Dk+2
π1
k

++

Sk+1

γk+2

OO

dκk+1
2,k ◦π

0
k,κ

k+1
1,k ◦π

0
ke

// Gk+1
k (β�, γk+2, β•)

It follows from diagram (6.11) and the definition of the canonical arrow

dκk+1
2,k ◦ π

0
k, κ

k+1
1,k ◦ π

0
ke : Sk → Gk+1

k (β�, γk+2, β•)

that the previous factorisation gives rise to the following commutative diagram.

Sk
γk+2◦Γk+1

k

""

Dk
δk2oo

β�◦δk2 // A�

ι�k,k+1

��

Dk

δk1

OO

β•◦δk1
��

Dk+1

π1
k

''

A•
ι•k,k+1

// Gk+1
k (β�, γk+2, β•)

Ind. . The sequel extends the notion of normality by induction. To do so, suppose that
for some m ≥ k+ 1, the spinal coheroid (S,D, γ, δ) ·Ω : Spine→ (C,A) is (k,m− k)-normal.
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By construction, this means that we are given the next two commutative diagrams.

(6.13) Dm+1
πm−kk

++

Sm

γm+1

OO

dκm2,k◦π
m−k−1
k ,κm1,k◦π

m−k−1
k e

// Gm
k (β�, γm+1, β•)

(6.14) Sk
γm+1◦Γmk
""

Dk
δk2oo

β�◦δk2 // A�

ι�k,m

��

Dk

δk1

OO

β•◦δk1
��

Dm+1

πm−kk

''

A•
ι•k,m

// Gm
k (β�, γm+1, β•)

Post-composing diagram (6.13) with the kappa construction

κm+1
i,k : Gm

k (β�, γm+1, β•)→ Gm+1
k (β�, γm+2, β•)

gives the following factorisation.

(6.15) Dm+1
κm+1
i,k ◦π

m−k
k

,,

Sm

γm+1

OO

κm+1
i,k ◦dκ

m
2,k◦π

m−k−1
k ,κm1,k◦π

m−k−1
k e

// Gm+1
k (β�, γm+2, β•)

Note that the equation κm+1
2,k ◦ κ

m
i,k = κm+1

1,k ◦ κ
m
i,k obtained in (6.6) implies that the following

equalities hold in C, where the symbol π∗ stand for πm−k−1
k .

κm+1
2,k ◦ dκ

m
2,k ◦ π∗, κm1,k ◦ π∗e = dκm+1

2,k ◦ κ
m
2,k ◦ π∗, κm+1

2,k ◦ κ
m
1,k ◦ π∗e

= dκm+1
1,k ◦ κ

m
2,k ◦ π∗, κm+1

1,k ◦ κ
m
1,k ◦ π∗e

= κm+1
1,k ◦ dκ

m
2,k ◦ π∗, κm1,k ◦ π∗e

This means that the two factorisations involved in diagram (6.15) are the factorisations of a
same arrow. This therefore implies that the following diagram commutes.

Sm
γm+1

//

γm+1

��

Dm+1

κm+1
1,k ◦π

m−k
k

��

Dm+1
κm+1

2,k ◦π
m−k
k

// Gm+1
k (β�, γm+2, β•)

The preceding diagram exposes a parallel pair of arrows in (S,D, γ, δ) ·Ω. The spinal coheroid
(S,D, γ, δ) · Ω is then said to be (k,m+ 1− k)-normal if the parallel pair of arrows

(κm+1
2,k ◦ π

m−k
k , κm+1

1,k ◦ π
m−k
k )
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is admissible so that there exists a morphism πm−k+1
k : Dm+2 → Gm+1

k (β�, γm+2, β•) making
the following diagram commute.

(6.16) Dm+2
πm−k+1
k

++

Sm+1

γm+2

OO

dκm+1
2,k ◦π

m−k
k ,κm+1

1,k ◦π
m−k
k e

// Gm+1
k (β�, γm+2, β•)

If we now post-compose diagram (6.14) with the kappa construction

κm+1
i,k : Gm

k (β�, γm+1, β•)→ Gm+1
k (β�, γm+2, β•)

we obtain the following commutative diagram.

(6.17) Sk
γm+1◦Γmk
""

Dk
δk2oo

β�◦δk2 // A�

ι�k,m+1

��

Dk

δk1

OO

β•◦δk1
��

Dm+1

κm+1
i,k ◦π

m−k
k

''

A•
ι•k,m+1

// Gm+1
k (β�, γm+2, β•)

It follows from factorisation (6.16) that the following equations hold for every i ∈ {1, 2}.
κm+1
i,k ◦ πm−kk ◦ γm+1 ◦ Γmk = dκm+1

2,k ◦ π
m−k
k , κm+1

1,k ◦ π
m−k
k e ◦ δm+1

i ◦ γm+1 ◦ Γmk

= πm−k+1
m ◦ γm+2 ◦ δm+1

i ◦ γm+1 ◦ Γmk

= πm−k+1
m ◦ γm+2 ◦ Γm+1

k

The preceding equations together with diagram (6.17) finally show that the following diagram
commutes.

Sk
γm+2◦Γm+1

k

""

Dk
δk2oo

β�◦δk2 // A�

ι�k,m+1

��

Dk

δk1

OO

β•◦δk1
��

Dm+1

πm−k+1
m

''

A•
ι•k,m+1

// Gm+1
k (β�, γm+2, β•)

This last diagram together with factorisation (6.16) finishes the induction reasoning and
thereby defines a notion of normality for any pair of integer (k,m−k) where m ≥ k. A spinal
coheroid will later be said to be (k, ω)-normal for some k ∈ ω if it is (k,m − k)-normal for
every m ≥ k.

Example 6.28 (Topological spaces). The topological spinal coheroid (D,S, δ, γ) : Spine →
(Top,A) is (k, ω)-normal by definition of A.

Example 6.29 (Grothendieck’s∞-groupoids). The spinal coheroid of a category of Grothen-
dieck ∞-groupoids is (k, ω)-normal for every k ∈ ω as factorisations (6.9), (6.12) and (6.16)
hold by definition of the class Ω′k and lifting condition for the parallel pairs in A.

Example 6.30 (Maltsiniotis’ categories). The spinal coheroid of a category of Maltsiniotis
∞-categories becomes magmoidal when the class of parallel arrows is augmented by all the
pairs involved in factorisations (6.9), (6.12) and (6.16). These parallel pairs depend on the
morphisms β in llp(rlp({F (γm) | m ∈ ω})) and the previously listed factorisations are
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therefore not straightforward. They may be obtained from canonical comparisons (using
classical arguments) between the arrows γk and β expressed in terms of factorisations. These
comparisons then allow to factorise the admissible parallel pairs through parallel pairs living
in the initial set F (A). Because these pairs factorise through the morphisms γk, the property
is shown. The details are left to the reader.

6.3.2.2. Transitive spinal coheroids. Let (S,D, γ, δ) ·Ω : Spine→ (C,A) be a spinal coheroid.
Let us fix some k ∈ ω and consider the following pushout for every triple of arrows β� : Sk →
A�, β• : Sk → A• and β : Sk → A in Ωk.

(6.18) Sk
β

  

Dk
δk2oo

β�◦δk1 // A�

ε�k,k

��

Dk

δk1

OO

β•◦δk2
��

A
εk,k

%%

A•
ε•k,k

// Gk
k(β�, β, β•)

Case 0 . Pre-composing the top-right and bottom-left commutative part of diagram
(6.18) with the arrow γk : Sk−1 → Dk and using the diagrammatic relations defining the
prevertebra ‖γk, γk‖ leads to the following commutative square.

Sk−1
γk

//

γk

��

Dk
ε•k,k◦β•◦δ

k
1

��

Dk
ε�k,k◦β�◦δ

k
2

// Gk
k(β�, β, β•)

This gives a new k-parallel pair in (S,D, γ, δ) ·Ω. The spinal coheroid (S,D, γ, δ) ·Ω will then
be said to be (k, 0)-transitive if the parallel pair

(ε�k,k ◦ β� ◦ δk2 , ε•k,k ◦ β• ◦ δk1 )

is admissible for every pair β�, β• ∈ Ωk so that there exist an arrow β∗ : Sk → A∗ in Ωk and
a morphism υ0

k(β) : A∗ → Gk
k(β�, β, β•) making the following diagram commute.

(6.19) A∗
υ0
k(β)

++

Sk

β∗

OO

dε�k,k◦β�◦δ
k
2 ,ε
•
k,k◦β•◦δ

k
1 e

// Gk
k(β�, β, β•)

Note that, by definition of the canonical morphism dε�k,k ◦β� ◦ δk2 , ε•k,k ◦β• ◦ δk1e, the preceding
factorisation may also be written as a commutative diagram of the following form.

Sk
β∗

""

Dk
δk2oo

β�◦δk2 // A�

ε�k,k

��

Dk

δk1

OO

β•◦δk1
��

Dk+1

υ0
k(β)

&&

A•
ε•k,k

// Gk
k(β�, β, β•)
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Case 1 . The rest of the section extends the notion of transitivity by using the notion of
normality. Fix some k ∈ ω and suppose that the spinal coheroid (S,D, γ, δ)·Ω is (k, 0)-normal.
By construction, the following diagram commutes for every pair of arrows β� : Sk → A� and
β• : Sk → A• in Ωk.

Sk
γk+1

""

Dk
δk2oo

β�◦δk2 // A�

ι�k,k

��

Dk

δk1

OO

β•◦δk1
��

Dk+1

π0
k

''

A•
ι•k,k

// Gk
k(β�, γk+1, β•)

Post-composing the previous diagram with the tau construction

τki,k(β) : Gk
k(β�, γk+1, β•)→ Gk+1

k (β�, β, β•)

gives the following commutative diagram for every i ∈ {1, 2}.

(6.20) Sk
γk+1

""

Dk
δk2oo

β�◦δk2 // A�

ε�k,k+1

��

Dk

δk1

OO

β•◦δk1
��

Dk+1
τki,k(β)◦π0

k

&&

A•
ε•k,k+1

// Gk+1
k (β�, β, β•)

The previous commutative diagram means that the two composite arrows τk1,k(β)◦π0
k : Dk+1 →

Gk+1
k (β�, β, β•) and τk2,k(β) ◦ π0

k : Dk+1 → Gk+1
k (β�, β, β•) are solutions of a same universal

problem over the pushout Sk. It follows from the universality of Sk that the following diagram
commutes.

Sk
γk+1

//

γk+1

��

Dk+1

τk1,k(β)◦π0
k

��

Dk+1
τk2,k(β)◦π0

k

// Gk+1
k (β�, β, β•)

Note that the preceding diagram provides a (k + 1)-parallel pair of arrows in the spinal
extension (S,D, γ, δ) ·Ω. The spinal extension (S,D, γ, δ) ·Ω will be said to be (k, 1)-transitive
if it is (k, 0)-normal (as previously supposed) and the parallel pair of arrows

(τk2,k(β) ◦ π0
k, τ

k
1,k(β) ◦ π0

k)

is admissible so that there exists an arrow β∗ : Sk+1 → A∗ in Ωk+1 and a morphism υ1
k(β) :

A∗ → Gk+1
k (β�, β, β•) making the following diagram commute.

(6.21) A∗
υ1
k(β)

++

Sk+1

β∗

OO

dτk2,k(β)◦π0
k,τ

k
1,k(β)◦π0

ke
// Gk+1

k (β�, β, β•)

It follows from diagram (6.20) and the definition of the canonical arrow

dτk2,k(β) ◦ π0
k, τ

k
1,k(β) ◦ π0

ke : Sk → Gk+1
k (β�, β, β•)
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that the previous factorisation gives rise to the following commutative diagram.

Sk
β∗◦Γk+1

k

  

Dk
δk2oo

β�◦δk2 // A�

ε�k,k+1

��

Dk

δk1

OO

β•◦δk1
��

A∗
υ1
k(β)

&&

A•
ε•k,k+1

// Gk+1
k (β�, β, β•)

Ind. . Now, suppose that the spinal coheroid (S,D, γ, δ) · Ω is (k,m − k)-normal for
some m ≥ k+ 1. By definition, the following two diagrams commute for every pair of arrows
β� : Sk → A� and β• : Sk → A• in Ωk.

(6.22) Dm+1
πm−kk

++

Sm

γm+1

OO

dκm2,k◦π
m−k−1
k ,κm1,k◦π

m−k−1
k e

// Gm
k (β�, γm+1, β•)

(6.23) Sk
γm+1◦Γmk
""

Dk
δk2oo

β�◦δk2 // A�

ι�k,m

��

Dk

δk1

OO

β•◦δk1
��

Dm+1

πm−kk

''

A•
ι•k,m

// Gm
k (β�, γm+1, β•)

Post-composing diagram (6.22) with the tau construction

τmi,k(β) : Gm
k (β�, γm+1, β•)→ Gm+1

k (β�, β, β•)

gives the following factorisation for every i ∈ {1, 2}.

(6.24) Dm+1
τmi,k(β)◦πm−kk

,,

Sm

γm+1

OO

τmi,k(β)◦dκm2,k◦π
m−k−1
k ,κm1,k◦π

m−k−1
k e

// Gm+1
k (β�, β, β•)

Note that the equation τm2,k(β) ◦ κmi,k = τm1,k(β) ◦ κmi,k obtained in (6.7) implies that the next

equalities hold in C, where the symbol π∗ stand for πm−k−1
k .

τm1,k(β) ◦ dκm2,k ◦ π∗, κm1,k ◦ π∗e = dτm1,k(β) ◦ κm2,k ◦ π∗, τm1,k(β) ◦ κm1,k ◦ π∗e
= dτm2,k(β) ◦ κm2,k ◦ π∗, τm2,k(β) ◦ κm1,k ◦ π∗e
= τm2,k(β) ◦ dκm2,k ◦ π∗, κm1,k ◦ π∗e
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This means that the two factorisations involved in diagram (6.24) are the factorisations of a
same arrow. This therefore implies that the following diagram commutes.

Sm
γm+1

//

γm+1

��

Dm+1

τm1,k(β)◦πm−kk
��

Dm+1
τm2,k(β)◦πm−kk

// Gm+1
k (β�, β, β•)

The preceding diagram exposes a parallel pair of arrows in (S,D, γ, δ) ·Ω. The spinal coheroid
(S,D, γ, δ) · Ω is said to be (k,m− k + 1)-transitive if the parallel pair of arrows

(τm2,k(β) ◦ πm−kk , τm1,k(β) ◦ πm−kk )

is admissible so that there exist an arrow β∗ : Sm+1 → A∗ in Ωm+1 and a morphism
υm−k+1
k (β) : A∗ → Gm+1

k (β�, β, β•) making the following diagram commute.

(6.25) A∗
υm−k+1
k (β)

++

Sm+1

β∗

OO

dτm2,k(β)◦πm−kk ,τm1,k(β)◦πm−kk e
// Gm+1

k (β�, β, β•)

If we now post-compose diagram (6.23) with the tau construction

τmi,k(β) : Gm
k (β�, γm+1, β•)→ Gm+1

k (β�, β, β•)

we obtain the following commutative diagram.

(6.26) Sk
γm+1◦Γmk
  

Dk
δk2oo

β�◦δk2 // A�

ε�k,m+1

��

Dk

δk1

OO

β•◦δk1
��

A∗

τmi,k(β)◦πm−kk

&&

A•
ε•k,m+1

// Gm+1
k (β�, β, β•)

It follows from factorisation (6.25) that the following equations hold for every i ∈ {1, 2}.

τmi,k(β) ◦ πm−kk ◦ γm+1 ◦ Γmk = dτm2,k(β) ◦ πm−kk , τm1,k(β) ◦ πm−kk e ◦ δm+1
i ◦ γm+1 ◦ Γmk

= υm−k+1
k (β) ◦ β∗ ◦ δm+1

i ◦ γm+1 ◦ Γmk

= υm−k+1
k (β) ◦ β∗ ◦ Γm+1

k

The previous equations together with diagram (6.26) finally show that the following diagram
commutes.

Sk
β∗◦Γm+1

k

  

Dk
δk2oo

β�◦δk2 // A�

ε�k,m+1

��

Dk

δk1

OO

β•◦δk1
��

A∗
υm−k+1
k (β)

&&

A•
ε•k,m+1

// Gm+1
k (β�, β, β•)



6.3. Spines and their functorial framings 299

A spinal coheroid will later be said to be (k, ω)-transitive for some k ∈ ω if it is (k,m− k)-
transitive for every m ≥ k. By definition, any (k, ω)-transitive spinal coheroid is (k, ω)-
normal.

Example 6.31 (Topological spaces). The topological spinal coheroid (D, S, δ, γ) : Spine →
(Top,A) is (k, ω)-transitive by definition of A.

Example 6.32 (Grothendieck’s∞-groupoids). The spinal coheroid of a category of Grothen-
dieck ∞-groupoids is (k, ω)-transitive for every k ∈ ω as factorisations (6.19), (6.21) and
(6.25) hold by definition of A.

Example 6.33 (Maltsiniotis’ categories). The spinal coheroid of a category of Maltsinio-
tis ∞-categories becomes magmoidal when the class of parallel arrows is augmented by all
the pairs involved in factorisations (6.19), (6.21) and (6.25). The related factorisations are
provided by Corollary 5.86 (small object argument).

6.3.3. Closed spinal coheroids. The idea behind closed spinal coheroids is that the spinal
coheroid is closed under the interesting pushouts, namely those that one would like see as
the spheres.

6.3.3.1. Closed spinal coheroids. A spinal coheroid (S,D, γ, δ) · Ω : Spine → (C,A) will be
said to be closed if for every non-negative integers k ≤ m and pair of arrows β� : Sk → A�
and β• : Sk → A• in Ωk, the following diagram admits a colimit in C.

A� Sm A•

Dk
β�◦δk2

``
Γmk ◦δ

k
1

==

Dk

Γmk ◦δ
k
2

aa

β•◦δk1

>>

Def. κkk . The universal object associated with the above colimit will be denoted by the

symbol Gm
k (β�, id, β•) and its universal cocone will be given by the following arrows.

Sk
Γmk

!!

Dk
δk2oo

β�◦δk1 // A�

�k,m

��

Dk

δk1

OO

β•◦δk2
��

Sm
k,m

&&

A•
•k,m

// Gm
k (β�, id, β•)

Recall that the spinal coheroid (S,D, γ, δ) · Ω is provided with the following commutative
diagram.

Sk
γk+1

""

Dk
δk2oo

β�◦δk1 // A�

ι�k,k

��

Dk

δk1

OO

β•◦δk2
��

Dk+1

ιk,k

''

A•
ι•k,k

// Gk
k(β�, γk+1, β•)

The universality of the pushout Gk
k(β�, id, β•) then provides a canonical arrow

κkk : Gk
k(β�, id, β•)→ Gk

k(β�, γk+1, β•)
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making the following three diagrams commute.

Gk
k(β�, γk+1, β•)

A�

ι�k,k

88

�k,k

// Gk
k(β�, id, β•)

κkk

OO
Gk
k(β�, γk+1, β•)

A•

ι•k,k

88

•k,k

// Gk
k(β�, id, β•)

κkk

OO

Dk+1

ιk,k
// Gk

k(β�, γk+1, β•)

Sk k,k
//

γk+1

OO

Gk
k(β�, id, β•)

κkk

OO

Def. dmi,k, κ
m
k . Similarly, recall that, for every m ≥ k + 1, we are provided with the

following two pushouts.

Sk
γm◦Γm−1

k

!!

Dk
δk2oo

β�◦δk1 // A�

ι�k,m−1

��

Dk

δk1

OO

β•◦δk2
��

Dm
ιm−1
k

''

A•
ι•k,m−1

// Gm−1
k (β�, γm, β•)

Sk
γm+1◦Γmk
""

Dk
δk2oo

β�◦δk1 // A�

ι�k,m

��

Dk

δk1

OO

β•◦δk2
��

Dm+1

ιmk

''

A•
ι•k,m

// Gm
k (β�, γm+1, β•)

The universality of the pushouts Gm
k (β�, id, β•) and Gm−1

k (β�, γm, β•) provides a canonical
factorisation

Gm−1
k (β�, γm, β•)

κmi,k

55

dmi,k
// Gm

k (β�, id, β•)
κmk // Gm

k (β�, γm+1, β•)

making the following three diagrams commute.

Gm
k (β�, γm+1, β•)

A�

ι�k,m
55

�k,m
//

ι�k,m−1 ))

Gm
k (β�, id, β•)

κmk

OO

Gm−1
k (β�, γm, β•)

dmi,k

OO
κmi,k

ff
Gm
k (β�, γm+1, β•)

A•

ι•k,m
55

•k,m
//

ι•k,m−1 ))

Gm
k (β�, id, β•)

κmk

OO

Gm−1
k (β�, γm, β•)

dmi,k

OO
κmi,k

ff
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Dm+1

ιk,m
// Gm

k (β�, γm+1, β•)

Sm
k,m

//

γm+1

OO

Gm
k (β�, id, β•)

κmk

OO

Dm

δmi

OO

ιk,m−1

// Gm−1
k (β�, γm, β•)

dmi,k

OO
κmi,k

ff

Also, because the equation δm+1
1 ◦ γm+1 = δm+1

2 ◦ γm+1 holds in C, the universality of the
object Gm

k (β�, id, β•) provides the following two equations for every i ∈ {1, 2}.

(6.27) dm+1
1,k ◦ κ

m
k = dm+1

2,k ◦ κ
m
k dm+1

1,k ◦ κ
m
i,k = dm+1

2,k ◦ κ
m
i,k

Def. τkk . The rest of the section copies the above reasoning with respect to tau con-

structions. Recall that, for every arrow β : Sk → A in Ωk, the spinal coheroid (S,D, γ, δ) · Ω
is provided with the following commutative diagram.

Sk
β

  

Dk
δk2oo

β�◦δk1 // A�

ε�k,k

��

Dk

δk1

OO

β•◦δk2
��

A
εk,k

%%

A•
ε•k,k

// Gk
k(β�, β, β•)

The universality of the pushout Gk
k(β�, id, β•) then provides a canonical arrow

τkk (β) : Gk
k(β�, id, β•)→ Gk

k(β�, β, β•)

making the following three diagrams commute.

Gk
k(β�, β, β•)

A�

ε�k,k

88

�k,k

// Gk
k(β�, id, β•)

τkk (β)

OO
Gk
k(β�, β, β•)

A•

ε•k,k

88

•k,k

// Gk
k(β�, id, β•)

τkk (β)

OO

Dk+1

εk,k
// Gk

k(β�, β, β•)

Sk k,k
//

β

OO

Gk
k(β�, id, β•)

τkk (β)

OO
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Def. τmk . Similarly, recall that, for every m ≥ k + 1 and arrow β : Sm → A in Ωm, we

are provided with the following two pushouts.

Sk
γm◦Γm−1

k

!!

Dk
δk2oo

β�◦δk1 // A�

ι�k,m−1

��

Dk

δk1

OO

β•◦δk2
��

Dm
ιm−1
k

''

A•
ι•k,m−1

// Gm−1
k (β�, γm, β•)

Sk
β◦Γmk
""

Dk
δk2oo

β�◦δk1 // A�

ε�k,m

��

Dk

δk1

OO

β•◦δk2
��

Dm+1

εmk

&&
A•

ε•k,m

// Gm
k (β�, β, β•)

The universality of the pushouts Gm
k (β�, id, β•) and Gm−1

k (β�, γm, β•) provides a canonical
factorisation

Gm−1
k (β�, γm, β•)

τm−1
i,k (β)

55

dmi,k
// Gm

k (β�, id, β•)
τmk (β)

// Gm
k (β�, β, β•)

making the following three diagrams commute.

Gm
k (β�, β, β•)

A�

ε�k,m
55

�k,m
//

ι�k,m−1 ))

Gm
k (β�, id, β•)

τmk (β)

OO

Gm−1
k (β�, γm, β•)

dmi,k

OO

τm−1
i,k (β)

ff
Gm
k (β�, β, β•)

A•

ε•k,m
55

•k,m
//

ι•k,m−1 ))

Gm
k (β�, id, β•)

τmk (β)

OO

Gm−1
k (β�, γm, β•)

dmi,k

OO

τm−1
i,k (β)

ff

Dm+1

εk,m
// Gm

k (β�, β, β•)

Sm
k,m

//

β

OO

Gm
k (β�, id, β•)

τmk (β)

OO

Dm

δmi

OO

ιk,m−1

// Gm−1
k (β�, γm, β•)

dmi,k

OO
τm−1
i,k (β)

ff

Example 6.34 (Topological spaces). The topological spinal coheroid (D,S, δ, γ) : Spine →
(Top,A) is closed by cocompleteness of Top.

Example 6.35 (Groupoids and categories). The spinal coheroid of a category of Grothen-
dieck∞-groupoids (i.e. the category of models Mod(C) for a Grothendieck coherator C; see
section 6.2.4.3) or a category of Maltsiniotis ∞-categories is closed by cocompleteness of the
category in which it lands (i.e. the category of models in question).
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6.3.3.2. Closedness and normality. This section studies closed spinal coheroid under some
normality conditions. Let (S,D, γ, δ) · Ω : Spine → (C,A) be a closed spinal coheroid and
fix some k ∈ ω. Before using any normality condition, we shall proceed to a preliminary
construction. It follows from the definition of a closed spinal coheroid that the following
pushout exists for every pair of arrows β� : Sk → A� and β• : Sk → A• in Ωk.

(6.28) Sk Dk
δk2oo

β�◦δk1 // A�

�k,k

��

Dk

δk1

OO

β•◦δk2
��

Sk
k,k

%%

A•
•k,k

// Gk
k(β�, id, β•)

Case 0 . Pre-composing the top-right and bottom-left commutative parts of diagram
(6.28) with the arrow γk : Sk−1 → Dk and using the diagrammatic relations defining the
prevertebra ‖γk, γk‖ leads to the following commutative square.

Sk−1
γk

//

γk

��

Dk
•k,k◦β•◦δ

k
1

��

Dk
�k,k◦β�◦δ

k
2

// Gk
k(β�, id, β•)

Forming the pushout Sk in the previous diagram leads to the existence of a canonical arrow
υ0
k : Sk → Gk

k(β�, id, β•) making the following diagram commute.

(6.29) Sk

υ0
k

##

Dk
δk2oo

β�◦δk2 // A�

�k,k

��

Dk

δk1

OO

β•◦δk1
��

A•
•k,k

// Gk
k(β�, id, β•)

Now, post-composing the preceding diagram with the canonical arrow

κkk : Gk
k(β�, id, β•)→ Gk

k(β�, γk+1, β•)

provides the following commutative diagram.

Sk

κkk◦υ
0
k

$$

Dk
δk2oo

β�◦δk2 // A�

ι�k,k

��

Dk

δk1

OO

β•◦δk1
��

A•
ι•k,k

// Gk
k(β�, γk+1, β•)
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Recall that diagram (6.10) provides a similar commutative diagram as follows.

Sk

π0
k◦γk+1

$$

Dk
δk2oo

β�◦δk2 // A�

ι�k,k

��

Dk

δk1

OO

β•◦δk1
��

A•
ι•k,k

// Gk
k(β�, γk+1, β•)

These last two diagrams give two solutions κkk ◦ υ0
k : Sk → Gk

k(β�, γk+1, β•) and π0
k ◦ γk+1 :

Sk → Gk
k(β�, γk+1, β•) for the same universal problem over the pushout Sk. By universality,

it follows that the following diagram must commute.

(6.30) Sk
γk+1

//

υ0
k
��

Dk+1

π0
k
��

Gk
k(β�, id, β•) κkk

// Gk
k(β�, γk+1, β•)

Case 1 . Now, suppose that the spinal coheroid (S,D, γ, δ) · Ω : Spine → (C,A) is
(k, 0)-normal. By construction, this means that we are given the commutative diagram:

Sk
γk+1

""

Dk
δk2oo

β�◦δk2 // A�

ι�k,k

��

Dk

δk1

OO

β•◦δk1
��

Dk+1

π0
k

''

A•
ι•k,k

// Gk
k(β�, γk+1, β•)

Post-composing the previous diagram with the canonical arrow

dk+1
i,k : Gk

k(β�, γk+1, β•)→ Gk+1
k (β�, id, β•)

gives the following commutative diagram.

(6.31) Sk
γk+1

""

Dk
δk2oo

β�◦δk2 // A�

�k,k+1

��

Dk

δk1

OO

β•◦δk1
��

Dk+1
dk+1
i,k ◦π

0
k

&&

A•
•k,k+1

// Gk+1
k (β�, id, β•)

By universality of the object Sk, the following square must commute.

Sk
γk+1

//

γk+1

��

Dk
dk+1

1,k ◦π
0
k

��

Dk
dk+1

2,k ◦π
0
k

// Gk+1
k (β�, id, β•)
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Forming the pushout Sk+1 in the earlier diagram leads to the existence of a canonical arrow

υ1
k : Sk+1 → Gk+1

k (β�, id, β•) making the following diagram commute.

(6.32) Sk

x

γk+1
//

γk+1

��

Dk+1

δk+1
1

��

dk+1
1,k ◦π

0
k

��

Dk+1

dk+1
2,k ◦π

0
k

77
δk+1
2

// Sk+1

υ1
k // Gk+1

k (β�, id, β•)

In particular, this last diagram turns diagram (6.31) into the following one.

Sk
Γk+1
k

""

Dk
δk2oo

β�◦δk2 // A�

�k,k+1

��

Dk

δk1

OO

β•◦δk1
��

Sk+1

υ1
k

&&

A•
•k,k+1

// Gk+1
k (β�, id, β•)

Now, post-composing diagram (6.32) with the canonical arrow

κk+1
k : Gk+1

k (β�, id, β•)→ Gk+1
k (β�, γk+2, β•)

provides the following commutative diagram.

(6.33) Sk

x

γk+1
//

γk+1

��

Dk+1

δk+1
1

��

κk+1
1,k ◦π

0
k

��

Dk+1

κk+1
2,k ◦π

0
k

66δk+1
2

// Sk+1

κk+1
k ◦υ1

k
// Gk+1

k (β�, γk+2, β•)

By universality, the preceding diagram gives a factorisation of the canonical arrow dκk+1
2,k ◦

π0
k, κ

k+1
1,k ◦ π

0
ke : Sk+1 → Gk+1

k (β�, γk+2, β•) as follows.

Sk+1

υ1
k &&

dκk+1
2,k ◦π

0
k,κ

k+1
1,k ◦π

0
ke

// Gk+1
k (β�, γk+2, β•)

Gk+1
k (β�, id, β•)

κk+1
k

55

Recall that diagram (6.12) also provided another factorisation for the canonical arrow dκk+1
2,k ◦

π0
k, κ

k+1
1,k ◦ π

0
ke : Sk+1 → Gk+1

k (β�, γk+2, β•), so that, if both expressions are combined, the

diagram, below, commutes.

(6.34) Sk+1

υ1
k
��

γk+2
// Dk+2

π1
k
��

Gk+1
k (β�, id, β•)

κk+1
k

// Gk+1
k (β�, γk+2, β•)
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Ind. . Now, suppose that the spinal coheroid (S,D, γ, δ)·Ω : Spine→ (C,A) is (k,m−k)-
normal for some m ≥ k + 2. By definition, this means that we are given the following two
commutative diagrams.

(6.35) Dm+1
πm−kk

++

Sm

γm+1

OO

dκm2,k◦π
m−k−1
k ,κm1,k◦π

m−k−1
k e

// Gm
k (β�, γm+1, β•)

(6.36) Sk
γm+1◦Γmk
""

Dk
δk2oo

β�◦δk2 // A�

ι�k,m

��

Dk

δk1

OO

β•◦δk1
��

Dm+1

πm−kk

''

A•
ι•k,m

// Gm
k (β�, γm+1, β•)

Post-composing diagram (6.35) with the canonical arrow

dm+1
i,k : Gm

k (β�, γm+1, β•)→ Gm+1
k (β�, id, β•)

gives the following factorisation.

(6.37) Dm+1
dm+1
i,k ◦π

m−k
k

,,

Sm

γm+1

OO

dm+1
i,k ◦dκ

m
2,k◦π

m−k−1
k ,κm1,k◦π

m−k−1
k e

// Gm+1
k (β�, id, β•)

Note that the equation dm+1
2,k ◦κ

m
i,k = dm+1

1,k ◦κ
m
i,k obtained in (6.27) implies that the following

equalities hold in C, where the symbol π∗ stands for πm−k−1
k .

dm+1
2,k ◦ dκ

m
2,k ◦ π∗, κm1,k ◦ π∗e = ddm+1

2,k ◦ κ
m
2,k ◦ π∗, dm+1

2,k ◦ κ
m
1,k ◦ π∗e

= ddm+1
1,k ◦ κ

m
2,k ◦ π∗, dm+1

1,k ◦ κ
m
1,k ◦ π∗e

= dm+1
1,k ◦ dκ

m
2,k ◦ π∗, κm1,k ◦ π∗e

This means that the two factorisations involved in diagram (6.37) are factorisations of the
same arrow. This implies that the following diagram commutes.

Sm
γm+1

//

γm+1

��

Dm+1

dm+1
1,k ◦π

m−k
k

��

Dm+1
dm+1

2,k ◦π
m−k
k

// Gm+1
k (β�, id, β•)
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Forming the pushout Sm+1 in the preceding diagram leads to the existence of a canonical
arrow υm−k+1

k : Sm+1 → Gm+1
k (β�, id, β•) making the following diagram commute.

(6.38) Sm

x

γm+1
//

γm+1

��

Dm+1

δm+1
1

��

dm+1
1,k ◦π

m−k
k

��

Dm+1
δm+1
2

//

dm+1
2,k ◦π

m−k
k

77
Sm+1

υm−k+1
k // Gm+1

k (β�, id, β•)

In particular, this last diagram turns diagram (6.36) into the following one.

Sk
Γm+1
k

""

Dk
δk2oo

β�◦δk2 // A�

�k,m+1

��

Dk

δk1

OO

β•◦δk1
��

Sk+1

υm−k+1
k

''

A•
•k,m+1

// Gm+1
k (β�, id, β•)

Finally, post-composing diagram (6.38) with the canonical arrow

κm+1
k : Gm+1

k (β�, id, β•)→ Gm+1
k (β�, γm+2, β•)

provides the commutative diagram:

Sm

x

γm+1
//

γm+1

��

Dm+1

δm+1
1

��

κm+1
1,m ◦π

m−k
m

$$

Dm+1

κm+1
2,m ◦π

m−k
m

55
δm+1
2

// Sm+1

κm+1
m ◦υm−k+1

k // Gm+1
k (β�, γm+2, β•)

By universality, the preceding diagram gives a factorisation of the canonical arrow dκm+1
2,m ◦

πm−km , κm+1
1,m ◦ πm−km e : Sm+1 → Gm+1

k (β�, γm+2, β•) as follows.

Sm+1

υm−k+1
k &&

dκm+1
2,m ◦π

m−k
m ,κm+1

1,m ◦π
m−k
m e

// Gm+1
k (β�, γm+2, β•)

Gm+1
k (β�, id, β•)

κm+1
k

55

Recall that diagram (6.12) also provided another factorisation for the canonical arrow dκm+1
2,m ◦

πm−km , κm+1
1,m ◦ πm−km e : Sm+1 → Gm+1

k (β�, γm+2, β•), so that, if the two expressions are com-
bined, the following diagram commutes.

(6.39) Sm+1

υm−k+1
k

��

γm+2
// Dm+2

πm−k+1
k
��

Gm+1
k (β�, id, β•)

κm+1
k

// Gm+1
k (β�, γm+2, β•)
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6.3.3.3. Closedness and transitivity. This section studies closed spinal coheroid under some
transitivity conditions. Let (S,D, γ, δ) · Ω : Spine → (C,A) be a closed spinal coheroid and
fix some k ∈ ω. Recall that the beginning of section 6.3.3.2 gave the following commutative
diagram (see diagram (6.29)).

Sk

υ0
k

##

Dk
δk2oo

β�◦δk2 // A�

�k,k

��

Dk

δk1

OO

β•◦δk1
��

A•
•k,k

// Gk
k(β�, id, β•)

Case 0 . Post-composing the previous diagram with the tau construction

τkk (β) : Gk
k(β�, id, β•)→ Gk

k(β�, β, β•)

provides another commutative diagram as follows.

Sk

τkk (β)◦υ0
k

##

Dk
δk2oo

β�◦δk2 // A�

ε�k,k

��

Dk

δk1

OO

β•◦δk1
��

A•
ε•k,k

// Gk
k(β�, β, β•)

By universality of Sk, the preceding diagram gives a factorisation of the canonical arrow
dε�k,k ◦ β� ◦ δk2 , ε•k,k ◦ β• ◦ δk1e : Sk → Gk

k(β�, β, β•) as follows.

Sk

υ0
k %%

dε�k,k◦β�◦δ
k
2 ,ε
•
k,k◦β•◦δ

k
1 e

// Gk
k(β�, β, β•)

Gk
k(β�, id, β•)

τkk (β)

77

If the spinal coheroid is supposed to be (k, 0)-transitive, then diagram (6.19) provides another
factorisation for the canonical arrow dε�k,k◦β�◦δk2 , ε•k,k◦β•◦δk1e : Sk → Gk

k(β�, β, β•) depending
on some arrow β∗ : Sk → A∗ in Ωk, so that the following diagram commutes when both
factorisations are combined.

(6.40) Sk

υ0
k
��

β∗
// A∗

υ0
k(β)
��

Gk
k(β�, id, β•) τkk (β)

// Gk
k(β�, β, β•)

Ind. . From now on, suppose that the spinal coheroid (S,D, γ, δ)·Ω is (k,m−k)-transitive
for some m ≥ k + 1. First, because the spinal coheroid is closed, diagram (6.38), which is
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recalled below, holds in the category C.

Sm−1

x

γm
//

γm

��

Dm
δm1
��

dm1,k◦π
m−k−1
k

��

Dm
δm2

//

dm2,k◦π
m−k−1
k

88
Sm

υm−kk // Gm
k (β�, id, β•)

Post-composing the previous diagram with the tau construction

τkk (β) : Gk
k(β�, id, β•)→ Gk

k(β�, β, β•)

then provides another commutative diagram as follows.

Sm−1

x

γm
//

γm

��

Dm
δm1
��

τm−1
1,k (β)◦πm−k−1

k

!!

Dm
δm2

//

τm−1
2,k (β)◦πm−k−1

k

66Sm
τmk (β)◦υm−kk // Gm

k (β�, β, β•)

By universality of Sm, the preceding diagram gives a factorisation as follows.

Sm

υm−kk ((

dτm−1
2,k (β)◦πm−k−1

k ,τm−1
1,k (β)◦πm−k−1

k e
// Gm

k (β�, β, β•)

Gm
k (β�, id, β•)

τmk (β)

44

Since the spinal coheroid is now supposed to be (k,m−k)-transitive, diagram (6.25) provides

another factorisation for the canonical arrow dτm−1
2,k (β) ◦ πm−k−1

k , τm−1
1,k (β) ◦ πm−k−1

k e : Sm →
Gm
k (β�, β, β•) depending on some arrow β∗ : Sk → A∗ in Ωm, so that the following diagram

commutes when both factorisations are combined.

(6.41) Sm

υm−kk
��

β∗
// A∗

υm−kk (β)
��

Gm
k (β�, id, β•)

τmk (β)
// Gm

k (β�, β, β•)

6.3.4. Spines and their framings.

6.3.4.1. Spines for spinal coheroids. Let n be a non-negative integer. Any spinal coheroid
(S,D, γ, δ) · Ω : Spine→ (C,A) may be associated with a canonical node of spines of degree
n consisting of the prevertebrae p0 := ‖γ0, γ0‖, . . . , pn := ‖γn, γn‖ and the class of arrows
Ωn. The prespine defined by the prevertebrae

S−1
p0
◦S0

p1
◦S1

p2
◦ . . .

pn−1
◦Sn−1

pn
◦Sn

will later be denoted by Pn. The node of spines Pn ·Ωn will be denoted by σn for every n ∈ ω.

Proposition 6.36 (Local projectivity). For every n ∈ ω, the node of spines σn is projective
with respect to every surtraction of the vertebral category (C, A,E).

Proof. Follows from the fact that S−1 is initial in the category C. �
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Proposition 6.37. For every k ∈ ω, m ≥ k and pair of vertebrae v� := pk ·β� and v• := pk ·β•
in the node of vertebrae νk, if the spinal coheroid (S,D, γ, δ) · Ω is

1) closed and (k,m− k)-normal, then the node of spines pk ·Γmk frames itself along the
pair of vertebrae vrv

� and v• as follows;

(pk · Γmk , vrv
� , v•) . pk · Γmk

2) (k,m− k)-normal, then the node of spines pk · (Γnkγn+1) frames itself along the pair
of vertebrae vrv

� and v• as follows;

(pk · (Γmk γm+1), vrv
� , v•) . pk · (Γmk γm+1)

3) (k,m− k)-transitive, then the node of spines pk · (Γmk β) frames itself along the pair
of vertebrae vrv

� and v• as follows;

(pk · (Γmk β), vrv
� , v•) . pk · (Γmk β)

Proof. Recall that framings as given in the statement consist of pushout diagrams together
with additional arrows, called cylinder transitions, making some other diagrams commute.
Suppose that the spinal coheroid (S,D, γ, δ) ·Ω is closed and (k,m− k)-normal. The framing
of item 1) is given by the pushout

Sk
Γmk

!!

Dk
δk2oo

β�◦δk1 // A�

�k,m

��

Dk

δk1

OO

β•◦δk2
��

Sm
k,m

&&

A•
•k,m

// Gm
k (β�, id, β•)

and the cylinder transition is given by the arrow υm−kk : Sm → Gm
k (β�, id, β•) (defined by

induction in section 6.3.3.2), which makes the following diagram commute.

Sk
Γmk

!!

Dk
δk2oo

β�◦δk2 // A�

�k,m

��

Dk

δk1

OO

β•◦δk1
��

Sm
υm−kk

&&

A•
•k,m

// Gm
k (β�, id, β•)

Suppose that the spinal coheroid (S,D, γ, δ) ·Ω is (k,m− k)-normal. The framing of item 2)
is given by the pushout

Sk
γm+1◦Γmk
""

Dk
δk2oo

β�◦δk1 // A�

ι�k,m

��

Dk

δk1

OO

β•◦δk2
��

Dm+1

ιk,m

''

A•
ι•k,m

// Gm
k (β�, γm+1, β•)
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and the cylinder transition is given by the arrow πm−kk : Dm+1 → Gm
k (β�, γm+1, β•) (defined

by induction in section 6.3.2.1), which makes the following diagram commute.

Sk
γm+1◦Γmk
""

Dk
δk2oo

β�◦δk2 // A�

ι�k,m

��

Dk

δk1

OO

β•◦δk1
��

Dm+1

πm−kk

''

A•
ι•k,m

// Gm
k (β�, γm+1, β•)

Finally, suppose that the spinal coheroid (S,D, γ, δ) ·Ω is (k,m− k)-transitive. The framing
of item 3) is given by the pushout

Sk
β◦Γmk
  

Dk
δk2oo

β�◦δk1 // A�

ε�k,m

��

Dk

δk1

OO

β•◦δk2
��

A
εk,m

%%

A•
ε•k,m

// Gm
k (β�, β, β•)

and the cylinder transition is given by the arrow υm−kk (β) : A∗ → Gm
k (β�, β, β•) (defined by

induction in section 6.3.2.2), which makes the following diagram commute for some given
β∗ : Sm → A∗ in Ωm.

Sk
β∗◦Γmk
  

Dk
δk2oo

β�◦δk2 // A�

ε�k,m

��

Dk

δk1

OO

β•◦δk1
��

A∗
υm−kk (β)

%%

A•
ε•k,m

// Gm
k (β�, β, β•)

This finishes the proof. �

6.3.4.2. Functoriality of framings. Let n be a non-negative integer and (S,D, γ, δ) · Ω :
Spine → (C,A) be a (k, ω)-transitive and closed spinal coheroid. Consider some spine s
of degree n in the node of spines σn. If the spine s is of the form (pk) · β, then the following
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diagram in Vert(C) will be denoted by Σk
s .

pk · Γkk oo
γk+1

OO

γk+1

pk · (Γkkγk+1)
OO

δk+1
1

pk · (Γkkγk+1) oo
δk+1
2

pk · Γk+1
k

. . .

pk · Γn−1
k
oo

γn

OO

γn

pk · (Γn−1
k γn)
OO

δn1

pk · (Γn−1
k γn) oo

δn2
pk · ΓnkOO
β

pk · (Γnkβ)

Later on, the diagram Σk
s will be regarded as a functor Z → Vert(C) where Z is the free

category over a graph of the preceding form where the squares commute. The prespine
(pk)0≤k≤n of degree n will be denoted by Pn.

Proposition 6.38. For every k ∈ ω, n ≥ k and spine Pn · β in σn, there exists a stem
β∗ ∈ Ωn such that the functor Σk

Pn·β∗ frames the functor Σk
Pn·β along any vertebra vrv

� in νrv
k

and v• in νk, which may be written as follows;

(Σk
Pn·β, v

rv
� , v•) . Σk

Pn·β∗

Proof. The morphisms of framings of the form

(pk · (Γmk γm+1), vrv
� , v•) . pk · (Γmk γm+1) y (pk · Γmk , vrv

� , v•) . pk · Γmk

are provided by the pair (γm+1, γm+1) as well as diagram (6.30), diagram (6.34) and diagram
(6.39), which may be compressed into the following one.

Sm
γm+1

//

υm−kk
��

Dm+1

πm−kk
��

Gm
k (β�, id, β•)

κmk

// Gm
k (β�, γm+1, β•)

The next morphisms of framings of the form

(pk · Γm+1
k , vrv

� , v•) . pk · Γm+1
k y (pk · (Γmk γm+1), vrv

� , v•) . pk · (Γmk γm+1)

are provided by the pairs (δm+1
1 , δm+1

1 ) and (δm+1
2 , δm+1

2 ) as well as diagram (6.32) and
diagram (6.38), which give the following commutative diagram for every i ∈ {1, 2}.

Dm+1

πm−kk
��

δm+1
i,k

// Sm+1

υm−k+1
k
��

Gm
k (β�, γm+1, β•)

dm+1
i,k

// Gm+1
k (β�, id, β•)
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The equation dm+1
1,k ◦ κmk = dm+1

2,k ◦ κkm obtained in (6.27) for every k ∈ ω and m ≥ k then

implies that the following diagram commutes in Vert(C).

pk · Γmk
γm+1

//

γm+1

��

pk · (Γmk γm+1)

δm+1
1
��

pk · (Γmk γm+1)
δm+1
2

// pk · Γm+1
k

Finally, the morphism of framings of the form

(pk · (Γmk β), vrv
� , v•) . pk · (Γmk β) y (pk · Γmk , vrv

� , v•) . pk · Γmk
is provided by a pair (β, β∗), where β∗ is given by transitivity and the commutative diagram,
below, which follows from diagram (6.40) when m = k and diagram (6.41) otherwise.

Sm

υm−kk
��

β∗
// A∗

υm−kk (β)
��

Gm
k (β�, id, β•)

τmk (β)
// Gm

k (β�, β, β•)

�

By the axiom of choice, for every arrow β : Sn → A in Ωk, we may choose an arrow
ψβ : Sn → A∗ in Ωk such that the following framing holds.

(Σk
Pn·β, v

rv
� , v•) . Σk

Pn·ψβ

These choices will be expressed in terms of a metafunction ψ : Ωk → Ωk mapping the arrow
β to the choice ψβ. For such any metafunction ψ : Ωk → Ωk, the preceding collection of
framings will be called a framing of the spine σn by itself along the pair of vertebrae vrv

� and
v• and will be referred to by the expression:

(Σk
σn , v

rv
� , v•) . Σk

σn

The underlying metafunction ψ : Ωk → Ωk will then be referred to as a framing gear for the
framing of the spine σn by itself along the pair of vertebrae vrv

� and v•.

6.4. Spinal structure

6.4.1. Symmetric and coherent spinal coheroids.

6.4.1.1. Symmetric spinal coheroids. Let (S,D, γ, δ) ·Ω : Spine→ (C,A) be a spinal coheroid
and k be some integer in ω. By definition, any arrow β : Sk → A in Ωk gives rise to a vertebra
pk · β in νk, for which the following diagram commutes.

Sk−1
γk

//

γk
��

Dk
β◦δk2
��

Dk
β◦δk1

// A

This commutative square provides a parallel pair of arrows in (S,D, γ, δ) · Ω. The spinal
coheroid (S,D, γ, δ) · Ω will then be said to be symmetric if the parallel pair

(β ◦ δk1 , β ◦ δk2 )
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is admissible for every β ∈ Ωk so that there exist an arrow β∗ : Sk → A∗ in Ωk and an
morphism ξ(β) : A∗ → A making the following diagram commute.

(6.42) A∗
ξ(β)

&&Sk

β∗

OO

dβ◦δk1 ,β◦δk2 e
// A

For every β ∈ Ωk, we may choose a particular arrow β∗ ∈ Ωk so that we obtain a meta-
function φ : Ωk → Ωk mapping β to the choice β∗. Because diagram (6.43) commutes, this
metafunction induces two alliances of nodes of vertebrae

(id,κk, ξ) : νk  νrv
k and (id,κk, ξ) : νrv

k  νk

where κk denotes the canonical symmetry Sk → Sk as shown below.

(6.43) Sk−1
γk

//

γk

��

Dk

δk2

��

Sk−1
x

γk
//

γk

��

Dk

δk1

��

Dk
δk1

// Sk
κk

  

φ(β)
// A∗

ξ(β)

��

Dk
δk2

// Sk
β

// A

Example 6.39 (Topological spaces). The topological spinal coheroid (D,S, δ, γ) : Spine →
(Top,A) is symmetric by definition of A (see Example 6.12, page 282).

Example 6.40 (Grothendieck’s∞-groupoids). The spinal coheroid of a category of Grothen-
dieck ∞-groupoids is symmetric. This follows from the fact that the arrow β must be equal
to γk+1 so that the pair (β ◦ δk1 , β ◦ δk2 ) belongs to A (see section 6.2.4.2). Factorisation (6.42)
follows by definition of a spinal coheroid.

Example 6.41 (Maltsiniotis’ categories). The spinal coheroid of a category of Maltsiniotis
∞-categories becomes symmetric when the class of parallel arrows is augmented by all the
pairs involved in factorisations (6.42). The factorisation is provided by Corollary 5.86 (small
object argument).

6.4.1.2. Coherent spinal coheroids. This section aims at defining a general notion of coherence
in a spinal coheroid from the notion of conjugation of vertebrae. Let k be some integer in ω
and (S,D, γ, δ) · Ω : Spine → (C,A) be a symmetric closed (k, ω)-transitive spinal coheroid.
Let v� := pk · β� and v• := pk · β• be two vertebrae in the node of vertebrae νk and consider
the two alliances of vertebrae

(id,κk, ξ(β�)) : vrv
�  pk · φ(β�) and (id,κk, ξ(β•)) : v•  prv

k · φ(β•)

stemming from the pair of alliances of nodes of vertebrae (id,κk, ξ(β�)) : νrv
k  νk and

(id,κk, ξ(β�)) : νrv
k  νk. The two vertebrae pk · φ(β�) and pk · φ(β•), which belong to the

node of vertebrae νk, will be denoted by v[ and v†, respectively.

Remark 6.42. The alliances of prevertebrae (id,κk) : prv
k  (prv

k )rv and (id,κk) : pk  prv
k

are conjugable with the identity alliance on pk along the identity morphism on Dk as shown
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by the following diagram of identity morphisms.

Sk−1

γk
��

Sk−1

γk
��

Sk−1

γk
��

Dk Dk Dk

It follows that the alliance (id,κk, ξ(β�)) : vrv
�  (vrv

[ )rv is conjugable with any iden-
tity alliance such that the base of its underlying vertebra is pk. Similarly, the alliance
(id,κk, ξ(β•)) : v•  vrv

† is conjugable with any identity alliance such that the base of
its underlying vertebra is pk.

Case 0 . It follows from Remark 6.42 that the triple

χk(γk+1) := ( pk · γk+1, idpk·γk+1
, pk · γk+1 )

defines a conjugation of vertebrae along the following three pairs.

(vrv
� , v•) ((id,κk, ξ(β�)), (id,κk, ξ(β•))) (v[, v

rv
† )

More specifically, the conjugation is given by

1) the pair of vertebrae vrv
� := prv

k · β� and v• := pk · β•;
2) the following two alliances of vertebrae;

(id,κk, ξ(β�)) : vrv
�  (vrv

[ )rv (id,κk, ξ(β•)) : v•  vrv
†

3) the following pair of framings of vertebrae.{
(pk · γk+1, v

rv
� , v•) . pk · γk+1

(pk · γk+1, v
rv
[ , v†) . pk · γk+1

It follows from the construction of section 3.3.5.5 that the previous conjugation gives rise
to a strong correspondence between two copies of the vertebra pk · γk+1 via the functor
Scor : Conj(C) → Scov(C), which, in the present case, may be written as a commutative
square

(6.44) Sk
γk+1

//

γk+1

��

Dk+1

ιk,k
��

Dk+1
ζ0
k,k◦π

0
k

// Gk
k(β�, γk+1, β•)

where ζ0
k,k : Gk

k(φ(β[), γk+1, φ(β†))→ Gk
k(β�, γk+1, β•) is the universal morphism making the

following diagrams commute.

A[
ι�k,k◦ξ(β�)

//

ι�k,k
''

Gk
k(β�, γk+1, β•)

Gk
k(φ(β�), γk+1, φ(β•))

ζ0
k,k

OO
A†

ι•k,k◦ξ(β•)
//

ι•k,k
''

Gk
k(β�, γk+1, β•)

Gk
k(φ(β�), γk+1, φ(β•))

ζ0
k,k

OO

Dk+1

π0
k //

ιk,k
((

Gk
k(β�, γk+1, β•)

Gk
k(φ(β�), γk+1, φ(β•))

ζ0
k,k

OO
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In particular, diagram (6.44) provides a (k+ 1)-parallel pair of arrows in the spinal extension
(S,D, γ, δ) · Ω. The spinal coheroid (S,D, γ, δ) · Ω will be said to be (k, 0)-coherent if the
parallel pair of arrows

(ζ0
k,k ◦ π0

k, ιk,k)

is admissible for every β�, β• ∈ Ωk so that there exist a morphism β̂0 : Sk → Â0 in Ωk and a

morphism $0
k : Â0 → Gk

k(β�, γk+1, β•) making the following diagram commute.

(6.45) Â0

$0
k

**

Sk+1

β̂0

OO

dζ0
k,k◦π

0
k,ιk,ke

// Gk
k(β�, γk+1, β•)

Example 6.43 (Topological spaces). The topological spinal coheroid (D, S, δ, γ) : Spine →
(Top,A) is (k, 0)-coherent by definition of A.

Example 6.44 (Grothendieck’s∞-groupoids). The spinal coheroid of a category of Grothen-
dieck ∞-groupoids is (k, 0)-coherent since the pair (ζ0

k,k ◦ π0
k, ιk,k) belongs to the image of A

in the category of models for the coherator.

Example 6.45 (Maltsiniotis’ categories). The spinal coheroid of a category of Maltsiniotis
∞-categories becomes symmetric when the class of parallel arrows is augmented by all the
pairs involved in factorisations (6.45). The factorisation is provided by Corollary 5.86 (small
object argument).

Prep. I . Similarly, it is possible to use the framings of vertebrae given by Proposition

6.38 to define other conjugations. For every m ≥ k, the two triples{
χk(Γ

m
k ) := ( pk · Γmk , idpk·Γmk , pk · Γmk );

χk(Γ
m
k γm+1) := ( pk · (Γmk γm+1), idpk·(Γmk γm+1), pk · (Γmk γm+1) ),

define two other conjugations of vertebrae along the following three pairs.

(vrv
� , v•) ((id,κk, ξ(β�)), (id,κk, ξ(β•))) (v[, v

rv
† )

The conjugations χk(Γ
m
k ) and χk(Γ

m
k γm+1) are determined by the following respective pairs

of framings of vertebrae.{
(pk · Γmk , vrv

� , v•) . pk · Γmk
(pk · Γmk , vrv

[ , v†) . pk · Γ
m
k

{
(pk · (Γmk γm+1), vrv

� , v•) . pk · (Γmk γm+1)
(pk · (Γmk γm+1), vrv

[ , v†) . pk · (Γ
m
k γm+1)

Recall that Proposition 6.38 provides the morphism of framings (γm+1, γm+1) of the following
form.

(pk · (Γmk γm+1), vrv
� , v•) . pk · (Γmk γm+1) y (pk · Γmk , vrv

� , v•) . pk · Γmk
This morphism induces a morphism of conjugations(

(γm+1, γm+1), (γm+1, γm+1)
)

: χk(Γ
m
k γm+1) y χk(Γ

m
k )

since it determines a pair of morphisms of framings such that the second component of the
first morphism (γm+1, γm+1) is equal to the first component of the second morphism, which in
the present case turns out to be the same pair (γm+1, γm+1). This morphism of conjugations
becomes, via the functor Scor : Conj(C) → Scov(C), a morphism of strong correspondences
of vertebrae

(6.46) (ιk,m, ζ
0
k,m ◦ πm−kk )︸ ︷︷ ︸

pk·(Γmk γm+1)
∼� pk·(Γmk γm+1)

⇒ (k,m, ζ
0
k,m(id) ◦ υm−kk )︸ ︷︷ ︸

pk·Γmk
∼� pk·Γmk
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which must be encoded by a commutative diagram of the form

Sm
γm+1

��

k,m
// Gm

k (β�, id, β•)

κmk
��

Sm
ζ0
k,m(id)◦υm−kk
oo

γm+1

��

Dm+1 ιk,m
// Gm

k (β�, γm+1, β•) Dm+1
ζ0
k,m◦π

m−k
k

oo

where the canonical arrows

ζ0
k,m(id) : Gm

k (φ(β�), id, φ(β•))→ Gm
k (β�, id, β•)

ζ0
k,m : Gm

k (φ(β�), γm+1, φ(β•))→ Gm
k (β�, γm+1, β•)

are determined by the functor Scor : Conj(C)→ Scov(C).
Prep. II . Now, suppose that the inequality m ≥ k + 1 holds. Notice that for every

i ∈ {1, 2} and every non-negative integer q satisfying the inequalities k ≤ q ≤ m − 1,

Proposition 6.38 provides a morphism of framings (Γmq+1 ◦ δ
q+1
i ,Γmq+1 ◦ δ

q+1
i ) of the following

form.

(pk · Γmk , vrv
� , v•) . pk · Γmk y (pk · (Γqkγq+1), vrv

� , v•) . pk · (Γ
q
kγq+1)

This morphism induces a morphism of conjugations(
(Γmq+1 ◦ δ

q+1
i ,Γmq+1 ◦ δ

q+1
i ), (Γmq+1 ◦ δ

q+1
i ,Γmq+1 ◦ δ

q+1
i )

)
: χk(Γ

m
k ) y χk(Γ

q
kγq+1)

since it determines a pair of morphisms of framings such that the second component of the first
morphism (Γmq+1 ◦ δ

q+1
i ,Γmq+1 ◦ δ

q+1
i ) is equal to the first component of the second morphism,

which in the present case turns out to be the same morphism (Γmq+1 ◦ δ
q+1
i ,Γmq+1 ◦ δ

q+1
i ). This

morphism of conjugations becomes, via the functor Scor : Conj(C) → Scov(C), a morphism
of strong correspondences of vertebrae

(6.47) (k,m, ζ
0
k,m(id) ◦ υm−kk )︸ ︷︷ ︸

pk·Γmk
∼� pk·Γmk

⇒ (ιk,q, ζ
0
k,q ◦ π

q−k
k )︸ ︷︷ ︸

pk·(Γqkγq+1)
∼� pk·(Γqkγq+1)

,

which must be encoded by a commutative diagram of the form

(6.48) Dq

Γmq+1◦δ
q
i

��

ιk,q
// Gq

k(β�, γq+1, β•)

κ(Γmq+1◦δ
q
i )

��

Dq
ζ0
k,q◦π

q−k
k

oo

Γmq+1◦δ
q
i

��

Sm k,m
// Gm

k (β�, id, β•) Sm
ζ0
k,m(id)◦υm−kk

oo

where the canonical arrow κ(Γmq+1 ◦ δ
q
i ) : Gq

k(β�, γq+1, β•) → Gm
k (β�, id, β•) is determined by

the definition of the functor Scor : Conj(C)→ Scov(C).

Remark 6.46. By universality, because the composite Γmq+1◦δ
q
i is an alternation of arrows of

the form γr+1 : Sr → Dr+1 and δr+1
j : Dr+1 → Sr+1 for every non-negative integer r satisfying

the inequalities q ≤ r ≤ m and any choice j ∈ {1, 2}, the arrow κ(Γmk+1 ◦ δki ) is equal to the
composite

Gq
k(β�, γk+1, β•)

dqi,k
// Gq+1

k (β�, id, β•)
κq+1
k // . . .

dmj,k
// Gm

k (β�, id, β•)

where the dots should be completed with an alternation of arrows of the form κr+1
k and dr+1

j,k

for every q ≤ r ≤ m and any choice j ∈ {1, 2}.
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Reminder . Similarly, for every non-negative integer q and q′ satisfying the inequalities
k ≤ q ≤ q′ − 1, Proposition 6.38 provides a morphism of framings

(γq′+1 ◦ Γq
′

q+1 ◦ δ
q+1
i , γq′+1 ◦ Γq

′

q+1 ◦ δ
q+1
i )

of the following form.

(pk · (Γq
′

k γq′+1), vrv
� , v•) . pk · (Γ

q′

k γq′+1) y (pk · (Γqkγq+1), vrv
� , v•) . pk · (Γ

q
kγq+1)

Two copies of this morphism of framings induce a morphism of conjugations

χk(Γ
q′

k γq′+1) y χk(Γ
q
kγq+1)

This morphism of conjugations becomes, via the functor Scor : Conj(C) → Scov(C), a
morphism of strong correspondences of vertebrae

(6.49) (ιk,q′ , ζ
0
k,q′ ◦ π

q′−k
k )︸ ︷︷ ︸

pk·(Γq
′
k γq′+1)

∼� pk·(Γq
′
k γq′+1)

⇒ (ιk,q, ζ
0
k,q ◦ π

q−k
k )︸ ︷︷ ︸

pk·(Γqkγq+1)
∼� pk·(Γqkγq+1)

,

which must be encoded by a commutative diagram of the form

(6.50) Dq

γq′+1◦Γ
q′
q+1◦δ

q+1
i

��

ιk,q
// Gq

k(β�, γq+1, β•)

κ(γq′+1◦Γ
q′
q+1◦δ

q+1
i )

��

Dq
ζ0
k,q◦π

q−k
k

oo

γq′+1◦Γ
q′
q+1◦δ

q+1
i

��

Dq′+1 ιk,q′
// Gq′

k (β�, γq′+1, β•) Dq′+1
ζ0
k,q′◦π

q′−k
k

oo

where the canonical arrow

κ(γq′+1 ◦ Γq
′

q+1 ◦ δ
q+1
i ) : Gq

k(β�, γq+1, β•)→ Gq′

k (β�, γq′+1, β•)

is determined by the definition of the functor Scor : Conj(C) → Scov(C). In fact, the
definition of Scor requires this arrow to be equal to the following composite.

Gq
k(β�, γk+1, β•)

κ(Γq
′
q+1◦δ

q+1
i )
// Gq′

k (β�, id, β•)
κk+1
k // Gq′

k (β�, γq′+1, β•)

Mates for I . We are now going to use the previous constructions to build a pair of

mates for the memory induced by the morphism of correspondences of (6.46). First, because
the inequality m ≥ k+ 1 holds, it follows from Proposition 3.76 that the morphism of strong
correspondences

(ιk,m, ζ
0
k,m ◦ πm−kk )︸ ︷︷ ︸

pk·(Γmk γm+1)
∼� pk·(Γmk γm+1)

⇒ (k,m, ζ
0
k,m(id) ◦ υm−kk )︸ ︷︷ ︸

pk·Γmk
∼� pk·Γmk

may be seen as morphism of correspondences as follows.

(ιk,m, ζ
0
k,m ◦ πm−kk )︸ ︷︷ ︸

pk+1·(Γmk+1γm+1)� pk+1·(Γmk+1γm+1)

⇒ (k,m, ζ
0
k,m(id) ◦ υm−kk )︸ ︷︷ ︸

pk+1·Γmk+1� pk+1·Γmk+1

In the same spirit as Proposition 3.60, we may use the morphisms of correspondences given
in (6.47) to provide the domain and codomain of the preceding morphism of correspondences
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with two mates stemming from the following vertebra induced by factorisation (6.45).

Sk
γk+1

//

γk+1

��

Dk+1 ιk,k

$$

δk1
��

Dk+1

ζ0
k,k◦π

0
k

77

δk2 // Sk+1
β̂0

// Â
$0
k // Gk

k(β�, γk+1, β•)

To do so, post-compose the earlier vertebra with the morphism

κ(Γmk+1 ◦ δki ) : Gk
k(β�, γk+1, β•)→ Gm

k (β�, id, β•)

for every i ∈ {1, 2}, which leads to the following diagram by using the relations of diagram
(6.48).

Sk
γk+1

//

γk+1

��

Dk+1 k,m◦Γmk+1◦δ
k
i

%%

δk1
��

Dk+1

ζ0
k,m(id)◦υm−kk ◦Γmk+1◦δ

k
i

66

δk2 // Sk+1
β̂0

// Â
κ(Γmk+1◦δ

k
i )◦$0

k
// Gm

k (β�, id, β•)

The pair of vertebrae given by the previous diagram for i = 1 and i = 2 does define a pair
of mates, but at this stage, no framing may be defined along this pair. To rectify this, we
need to use the fact that the spinal coheroid is symmetric and consider the following pair of
mates.

(6.51) Sk
γk+1

//

γk+1

��

Dk+1 k,m◦Γmk+1◦δ
k
2

''

δk2
��

Dk+1

ζ0
k,m(id)◦υm−kk ◦Γmk+1◦δ

k
2

55

δk1 // Sk+1
φ(β̂0)

// Â
κ(Γmk+1◦δ

k
2 )◦$0

k◦ξ(β̂0)
// Gm

k (β�, id, β•)

(6.52) Sk
γk+1

//

γk+1

��

Dk+1 k,m◦Γmk+1◦δ
k
1

%%

δk1
��

Dk+1

ζ0
k,m(id)◦υm−kk ◦Γmk+1◦δ

k
1

66

δk2 // Sk+1
β̂0

// Â
κ(Γmk+1◦δ

k
1 )◦$0

k
// Gm

k (β�, id, β•)

Notice that the vertebra appearing in diagram (6.51) belongs to νrv
k+1 while the vertebra

appearing in diagram (6.52) belongs to νk+1. In the sequel, the vertebra prv
k+1 · φ(β̂0) of

diagram (6.51) will be denoted by v0
� while the vertebra pk+1 · β̂0 of diagram (6.52) will be

denoted by v0
•. The pair of vertebra (v0

�, v
0
•) then induces a pair of mates µ0,m

k (id) for the
codomain of the following morphism of correspondences.

(6.53) (ιk,m, ζ
0
k,m ◦ πm−kk )︸ ︷︷ ︸

pk+1·(Γmk+1γm+1)� pk+1·(Γmk+1γm+1)︸ ︷︷ ︸
=:c0,mk

⇒ (k,m, ζ
0
k,m(id) ◦ υm−kk )︸ ︷︷ ︸

pk+1·Γmk+1� pk+1·Γmk+1︸ ︷︷ ︸
=:c0,mk (id)
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By Proposition 3.60, the pair of mates is also transferred to the domain of the preceding
morphism in the form of another pair of mates µ0,m

k . By Proposition 6.38, the framing

(Σk
σm , v

0
�, v

0
•) . Σk

σm exists. In particular, this framing involves the following two framings.{
(pk+1 · Γmk+1, v

0
�, v

0
•) . pk+1 · Γmk+1

(pk+1 · (Γmk+1γm+1), v0
�, v

0
•) . pk+1 · (Γmk+1γm+1)

These two framings of vertebrae imply that

1) the vertebra pk+1 · Γmk+1 frames the pair (c0,m
k (id), µ0,m

k (id));

2) the vertebra pk+1 · (Γmk+1γm+1) frames the pair (c0,m
k , µ0,m

k );

By the definitions of section 3.3.4.6 and Proposition 3.61, the preceding framings induce

1) a span of correspondences ((c0,m
k (id), µ0,m

k (id)), c1,m
k (id)) where c1,m

k (id) is a strong
correspondence of vertebrae of the form

(idpk+1
, k,m, u

1,m
k (id)) ` pk+1 · Γmk+1

∼� pk+1 · Γmk+1

consisting of the identity alliance of prevertebrae over pk+1, the canonical arrow

k,m : Sm → Gm
k (β�, id, β•) and the canonical arrow u1,m

k (id) : Sm → Gm
k (β�, id, β•)

encoded by the following pushout arrow.

dκ(Γmk+1 ◦ δk2 ) ◦$0
k ◦ ξ(β̂0)︸ ︷︷ ︸

first mate

(
ζ0
k,m(id) ◦ υm−kk

)
κ(Γmk+1 ◦ δk1 ) ◦$0

k︸ ︷︷ ︸
second mate

e

2) a span of correspondences ((c0,m
k , µ0,m

k ), c1,m
k ) where c1,m

k is a strong correspondence
of vertebrae of the form

(idpk+1
, ιk,m, u

1,m
k ) ` pk+1 · (Γmk+1γm+1)

∼� pk+1 · (Γmk+1γm+1)

consisting of the identity alliance of prevertebrae over pk+1, the canonical arrow ιk,m :

Dm+1 → Gm
k (β�, γm+1, β•) and the canonical arrow u1,m

k : Dm+1 → Gm
k (β�, γm+1, β•)

encoded by the following pushout arrow.

dκmk ◦ κ(Γmk+1 ◦ δk2 ) ◦$0
k ◦ ξ(β̂0)︸ ︷︷ ︸

first mate

(
ζ0
k,m ◦ πm−kk

)
κmk ◦ κ(Γmk+1 ◦ δk1 ) ◦$0

k︸ ︷︷ ︸
second mate

e

Recall that the conventions on correspondences were made so that the preceding two spans
define two framings of correspondences as follows.

(c0,m
k (id), µ0,m

k (id)) . c1,m
k (id) (c0,m

k , µ0,m
k ) . c1,m

k

The morphism of correspondences involved in diagram (6.53) also induces a morphism of
framings of correspondences

(c0,m
k , µ0,m

k ) . c1,m
k ⇒ (c0,m

k (id), µ0,m
k (id)) . c1,m

k (id)

when equipped with the morphism of framing (γm+1, γm+1) of the following form.

(pk+1 · (Γmk+1γm+1), v0
�, v

0
•) . pk+1 · (Γmk+1γm+1) y (pk+1 · Γmk+1, v

0
�, v

0
•) . pk+1 · Γmk+1

By the definitions of section 3.3.4.9 and Proposition 3.62, the above data induces a morphism
of spans of correspondences as follows.

((c0,m
k , µ0,m

k ), c1,m
k )⇒ ((c0,m

k (id), µ0,m
k (id)), c1,m

k (id))

In particular, the previous reasoning gave a morphism of strong correspondences

(ιk,m, u
1,m
k )︸ ︷︷ ︸

pk+1·(Γmk+1γm+1)
∼� pk+1·(Γmk+1γm+1)︸ ︷︷ ︸

=:c1,mk

⇒ (k,m, u
1,m
k (id))︸ ︷︷ ︸

pk+1·Γmk+1

∼� pk+1·Γmk+1︸ ︷︷ ︸
=:c1,mk (id)
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that is encoded by a commutative diagram of the following form.

Sm
γm+1

��

k,m
// Gm

k (β�, id, β•)

κmk
��

Sm
u1,m
k (id)

oo

γm+1

��

Dm+1 ιk,m
// Gm

k (β�, γm+1, β•) Dm+1
u1,m
k

oo

Mates for II . We are now going to build a pair of mates for the memory induced by

the morphism of correspondences (6.47). In the case where the inequalities q ≥ k + 1 and
m ≥ k + 1 holds, Proposition 3.76 implies that the morphism of strong correspondences

(k,m, ζ
0
k,m(id) ◦ υm−kk )︸ ︷︷ ︸

pk·Γmk
∼� pk·Γmk

⇒ (ιk,q, ζ
0
k,q ◦ π

q−k
k )︸ ︷︷ ︸

pk·(Γqkγq+1)
∼� pk·(Γqkγq+1)

may be seen as a morphism of correspondences as follows.

(k,m, ζ
0
k,m(id) ◦ υm−kk )︸ ︷︷ ︸

pk+1·Γmk+1

∼� pk+1·Γmk+1

⇒ (ιk,q, ζ
0
k,q ◦ π

q−k
k )︸ ︷︷ ︸

pk+1·(Γqk+1γq+1)
∼� pk+1·(Γqk+1γq+1)

In the same spirit as Proposition 3.60, we may use the morphisms of correspondences given
in (6.49) to provide the domain and codomain of the earlier morphism of correspondences
with two mates stemming from the following vertebra induced by factorisation (6.45).

Sk
γk+1

//

γk+1

��

Dk+1 ιk,k

$$

δk1
��

Dk+1

ζ0
k,k◦π

0
k

77

δk2 // Sk+1
β̂0

// Â
$0
k // Gk

k(β�, γk+1, β•)

To do so, post-compose the preceding vertebra with the morphism

κqk ◦ κ(Γqk+1 ◦ δ
k
i ) : Gk

k(β�, γk+1, β•)→ Gq
k(β�, γq+1, β•)

for every i ∈ {1, 2}, which leads to the following diagram by using the relations of diagram
(6.50).

Sk
γk+1

//

γk+1

��

Dk+1 ιk,q◦γq+1◦Γqk+1◦δ
k
i

''

δk1
��

Dk+1

ζ0
k,q◦υ

q−k
k ◦γq+1◦Γqk+1◦δ

k
i

55

δk2 // Sk+1
β̂0

// Â
κqk◦κ(Γqk+1◦δ

k
i )◦$0

k
// Gq

k(β�, γq+1, β•)

The pair of vertebrae given by the previous diagram for i = 1 and i = 2 does define a pair
of mates, but at this stage, no framing may be defined along this pair. To rectify this, we
need to use the fact that the spinal coheroid is symmetric and consider the following pair of
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mates.

(6.54) Sk
γk+1

//

γk+1

��

Dk+1 ιk,q◦γq+1◦Γqk+1◦δ
k
2

''

δk2
��

Dk+1

ζ0
k,q◦υ

q−k
k ◦γq+1◦Γqk+1◦δ

k
2

55

δk1 // Sk+1
φ(β̂0)

// Â
κqk◦κ(Γqk+1◦δ

k
2 )◦$0

k◦ξ(β̂0)
// Gq

k(β�, γq+1, β•)

(6.55) Sk
γk+1

//

γk+1

��

Dk+1 ιk,q◦γq+1◦Γqk+1◦δ
k
1

''

δk1
��

Dk+1

ζ0
k,q◦υ

q−k
k ◦γq+1◦Γqk+1◦δ

k
1

55

δk2 // Sk+1
β̂0

// Â
κqk◦κ(Γqk+1◦δ

k
1 )◦$0

k
// Gq

k(β�, γq+1, β•)

Notice that the vertebra appearing in diagram (6.54) is exactly v0
� while the vertebra appear-

ing in diagram (6.55) is exactly v0
•. The pair of mates µ0,q

k associated with (v0
�, v

0
•) is therefore

a pair of mates for the codomain of the following morphism of correspondences.

(6.56) (k,m, ζ
0
k,m(id) ◦ υm−kk )︸ ︷︷ ︸

pk+1·Γmk+1� pk+1·Γmk+1︸ ︷︷ ︸
=:c0,mk (id)

⇒ (ιk,q, ζ
0
k,q ◦ π

q−k
k )︸ ︷︷ ︸

pk+1·(Γqk+1γq+1)� pk+1·(Γqk+1γq+1)︸ ︷︷ ︸
=:c0,qk

By Proposition 3.60, the pair of mates µ0,q
k is transferred to the domain of the above morphism

in the form of the pair of mates µ0,m
k (id). The framing (Σk

σm , v
0
�, v

0
•).Σk

σm given by Proposition
6.38 involves the following two framings.{

(pk+1 · Γmk+1, v
0
�, v

0
•) . pk+1 · Γmk+1

(pk+1 · (Γqk+1γq+1), v0
�, v

0
•) . pk+1 · (Γqk+1γq+1)

These two framings of vertebrae imply that

1) the vertebra pk+1 · Γmk+1 frames the pair (c0,m
k (id), µ0,m

k (id));

2) the vertebra pk+1 · (Γqk+1γq+1) frames the pair (c0,q
k , µ0,q

k );

By the definitions of section 3.3.4.6 and Proposition 3.61, the above framings induce

1) a span of correspondences ((c0,m
k (id), µ0,m

k (id)), c1,m
k (id)) where c1,m

k (id) is a strong
correspondence of vertebrae of the form

(idpk+1
, k,m, u

1,m
k (id)) ` pk+1 · Γmk+1

∼� pk+1 · Γmk+1

consisting of the identity alliance of prevertebrae over pk+1, the canonical arrow

k,m : Sm → Gm
k (β�, id, β•) and the canonical arrow u1,m

k (id) : Sm → Gm
k (β�, id, β•)

encoded by the following pushout arrow.

dκ(Γmk+1 ◦ δk2 ) ◦$0
k ◦ ξ(β̂0)︸ ︷︷ ︸

first mate

(
ζ0
k,m(id) ◦ υm−kk

)
κ(Γmk+1 ◦ δk1 ) ◦$0

k︸ ︷︷ ︸
second mate

e

2) a span of correspondences ((c0,q
k , µ0,q

k ), c1,q
k ) where c1,q

k is a strong correspondence of
vertebrae of the form

(idpk+1
, ιk,q, u

1,q
k ) ` pk+1 · (Γqk+1γq+1)

∼� pk+1 · (Γqk+1γq+1)
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consisting of the identity alliance of prevertebrae over pk+1, the canonical arrow

ιk,q : Dq+1 → Gq
k(β�, γq+1, β•) and the canonical arrow u1,q

k : Dq+1 → Gq
k(β�, γq+1, β•)

encoded by the following pushout arrow.

dκqk ◦ κ(Γqk+1 ◦ δ
k
2 ) ◦$0

k ◦ ξ(β̂0)︸ ︷︷ ︸
first mate

(
ζ0
k,q ◦ π

q−k
k

)
κqk ◦ κ(Γqk+1 ◦ δ

k
1 ) ◦$0

k︸ ︷︷ ︸
second mate

e

The conventions on correspondences were made so that the preceding two spans define two
framings of correspondences as follows.

(c0,m
k (id), µ0,m

k (id)) . c1,m
k (id) (c0,q

k , µ0,q
k ) . c1,q

k

The morphism of correspondences involved in diagram (6.56) also induces a morphism of
framings of correspondences

(c0,m
k (id), µ0,m

k (id)) . c1,m
k (id)⇒ (c0,q

k , µ0,q
k ) . c1,q

k

when equipped with the morphism of framing (Γmq+1 ◦ δ
q+1
i ,Γmq+1 ◦ δ

q+1
i ) of the following form.

(pk+1 · Γmk+1, v
0
�, v

0
•) . pk+1 · Γmk+1 y (pk+1 · (Γqk+1γq+1), v0

�, v
0
•) . pk+1 · (Γqk+1γq+1)

By the definitions of section 3.3.4.9 and Proposition 3.62, the above data induces a morphism
of spans of correspondences as follows.

((c0,m
k (id), µ0,m

k (id)), c1,m
k (id)) ((c0,q

k , µ0,q
k ), c1,q

k )

In particular, the above reasoning produces a morphism of strong correspondences

(k,m, u
1,m
k (id))︸ ︷︷ ︸

pk+1·Γmk+1

∼� pk+1·Γmk+1︸ ︷︷ ︸
=:c1,mk (id)

⇒ (ιk,q, u
1,q
k )︸ ︷︷ ︸

pk+1·(Γqk+1γq+1)
∼� pk+1·(Γqk+1γq+1)︸ ︷︷ ︸

=:c1,qk

that is encoded by a commutative diagram of the following form.

Dq

Γmq+1◦δ
q
i

��

ιk,q
// Gq

k(β�, γq+1, β•)

κ(Γmq+1◦δ
q
i )

��

Dq
u1,q
koo

Γmq+1◦δ
q
i

��

Sm k,m
// Gm

k (β�, id, β•) Sm
u1,m
k (id)

oo

Case 1 Let us now look at the correspondence (ιk,q, u
1,q
k ) in the case where the equality

q = k + 1 holds. In this case, we have the following strong correspondence of vertebrae.

(ιk,k+1, u
1,k+1
k ) ` pk+1 · γk+2

∼� pk+1 · γk+2

This correspondence is, by definition, equipped with a commutative diagram as follows.

Sk+1

γk+2
//

γk+2

��

Dk+2

ιk,k+1

��

Dk+2
u1,k+1
k

// Gk+1
k (β�, γk+2, β•)

The previous commutative square provides a (k + 2)-parallel pair of arrows in the spinal
extension (S,D, γ, δ) ·Ω. The spinal coheroid (S,D, γ, δ) ·Ω will be said to be (k, 1)-coherent
if the parallel pair of arrows

(u1,k+1
k , ιk,k+1)
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is admissible for every β�, β• ∈ Ωk so that there exist a morphism β̂1 : Sk+2 → Â1 in Ωk+2

and a morphism $1
k : Â1 → Gk+1

k (β�, γk+2, β•) making the following diagram commute.

(6.57) Â1

$1
k

**

Sk+2

β̂1

OO

du1,k+1
k ,ιk,k+1e

// Gk+1
k (β�, γk+2, β•)

Ind. . The rest of this section adapts the previous constructions to define, inductively,
the notion of coherency. Consider two integers m and n satisfying the inequalities m > n ≥
k+ 1. Suppose that the spinal coheroid (S,D, γ, δ) ·Ω is (k, n−k)-coherent. By construction,
we are given the parallel pair

(6.58) Sn
γn+1

//

γn+1

��

Dn+1

ιk,n
��

Dn+1
un−k,mk

// Gn
k(β�, γn+1, β•)

for which there exist a morphism β̂n−k : Sn → Ân−k in Ωk and a morphism $n−k
k : Ân−k →

Gn
k(β�, γn+1, β•) making the following diagram commute.

(6.59) Ân−k
$n−kk

**

Sn+1

β̂n−k

OO

dun−k,mk ,ιk,ne
// Gn

k(β�, γn+1, β•)

In addition, we are provided with

- a morphism of strong correspondences of vertebrae

(6.60) (ιk,m, u
n−k,m
k )︸ ︷︷ ︸

pn·(Γmn γm+1)
∼� pn·(Γmn γm+1)︸ ︷︷ ︸

=:cn−k,mk

⇒ (k,m, u
n−k,m
k (id))︸ ︷︷ ︸

pn·Γmn
∼� pn·Γmn︸ ︷︷ ︸

=:cn−k,mk (id)

that is encoded by a commutative diagram of the following form.

Sm
γm+1

��

k,m
// Gm

k (β�, id, β•)

κmk
��

Sm
un−k,mk (id)

oo

γm+1

��

Dm+1 ιk,m
// Gm

k (β�, γm+1, β•) Dm+1
un−k,mk

oo

- a morphism of strong correspondences of vertebrae

(6.61) (k,m, u
n−k,m
k (id))︸ ︷︷ ︸

pn·Γmn
∼� pn·Γmn︸ ︷︷ ︸

=:cn−k,mk (id)

⇒ (ιk,q, u
n−k,q
k )︸ ︷︷ ︸

pn·(Γqnγq+1)
∼� pn·(Γqnγq+1)︸ ︷︷ ︸

=:cn−k,qk
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for every non-negative integer q satisfying the inequality n ≤ q ≤ m − 1, which is
encoded by a commutative diagram of the following form for every i ∈ {1, 2}.

Dq

Γmq+1◦δ
q
i

��

ιk,q
// Gq

k(β�, γq+1, β•)

κ(Γmq+1◦δ
q
i )

��

Dq
un−k,qkoo

Γmq+1◦δ
q
i

��

Sm k,m
// Gm

k (β�, id, β•) Sm
un−k,mk (id)

oo

- A fortiori, by composing the previous two morphisms for general m’s and q’s, a
morphism of strong correspondences of vertebrae

(6.62) (ιk,q′ , u
n−k,q′
k )︸ ︷︷ ︸

pn·(Γq
′
n γq′+1)

∼� pn·(Γq
′
n γq′+1)︸ ︷︷ ︸

=:cn−k,q
′

k

⇒ (ιk,q, u
n−k,q
k )︸ ︷︷ ︸

pn·(Γqnγq+1)
∼� pn·(Γqnγq+1)︸ ︷︷ ︸

=:cn−k,qk

for every non-negative integers q and q′ satisfying the inequality n ≤ q ≤ q′ − 1,
which is encoded by a commutative diagram of the following form.

Dq

γq′+1◦Γ
q′
q+1◦δ

q+1
i

��

ιk,q
// Gq

k(β�, γq+1, β•)

κ(γq′+1◦Γ
q′
q+1◦δ

q+1
i )

��

Dq
un−k,qkoo

γq′+1◦Γ
q′
q+1◦δ

q+1
i

��

Dq′+1 ιk,q′
// Gq′

k (β�, γq′+1, β•) Dq′+1
un−k,q

′
k

oo

We are now going to use the above constructions to build a pair of mates for the memory
induced by the morphism of correspondences (6.60). First, because the inequality m ≥ n+ 1
holds, it follows from Proposition 3.76 that the morphism of strong correspondences

(ιk,m, u
n−k,m
k )︸ ︷︷ ︸

pn·(Γmn γm+1)
∼� pn·(Γmn γm+1)

⇒ (k,m, u
n−k,m
k (id))︸ ︷︷ ︸

pn·Γmn
∼� pn·Γmn

may be seen as morphism of correspondences as follows.

(ιk,m, u
n−k,m
k )︸ ︷︷ ︸

pn+1·(Γmn+1γm+1)� pn+1·(Γmn+1γm+1)

⇒ (k,m, u
n−k,m
k (id))︸ ︷︷ ︸

pn+1·Γmn+1� pn+1·Γmn+1

In the same spirit as Proposition 3.60, we may use the morphisms of correspondences given
in (6.61) to provide the domain and codomain of the earlier morphism of correspondences
with two mates stemming from the following vertebra induced by factorisation (6.59).

Sn
γn+1

//

γn+1

��

Dn+1 ιk,n

##

δn1
��

Dn+1

un−k,mk

77

δn2 // Sn+1
β̂n−k

// Â
$n−kk // Gn

k(β�, γn+1, β•)

To do so, post-compose the preceding vertebra with the morphism

κ(Γmn+1 ◦ δni ) : Gn
k(β�, γn+1, β•)→ Gm

k (β�, id, β•)
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for every i ∈ {1, 2}, which leads to the following diagram by using the relations of diagram
(6.48).

Sn
γn+1

//

γn+1

��

Dn+1 k,m◦Γmn+1◦δni

''

δn1
��

Dn+1

un−k,mk ◦Γmn+1◦δni

55

δn2 // Sn+1
β̂n−k

// Â
κ(Γmn+1◦δni )◦$n−kk

// Gm
k (β�, id, β•)

The pair of vertebrae given by the previous diagram for i = 1 and i = 2 does define a pair
of mates, but at this stage, no framing may be defined along this pair. To rectify this, we
need to use the fact that the spinal coheroid is symmetric and consider the following pair of
mates.

(6.63) Sn
γn+1

//

γn+1

��

Dn+1 k,m◦Γmn+1◦δn2

((

δn2
��

Dn+1

un−k,mk ◦Γmn+1◦δn2

44

δn1 // Sn+1
φ(β̂n−k)

// Â
κ(Γmn+1◦δn2 )◦$n−kk ◦ξ(β̂n−k)

// Gm
k (β�, id, β•)

(6.64) Sn
γn+1

//

γn+1

��

Dn+1 k,m◦Γmn+1◦δn1

''

δn1
��

Dn+1

un−k,mk ◦Γmn+1◦δn1

55

δn2 // Sn+1
β̂n−k

// Â
κ(Γmn+1◦δn1 )◦$n−kk

// Gm
k (β�, id, β•)

Notice that the vertebra appearing in diagram (6.63) belongs to νrv
n+1 while the vertebra

appearing in diagram (6.52) belongs to νn+1. In the sequel, the vertebra prv
n+1 · φ(β̂n−k) of

diagram (6.63) will be denoted by vn−k� while the vertebra pn+1 · β̂n−k of diagram (6.52)
will be denoted by vn−k• . The pair of vertebra (vn−k� , vn−k• ) then induces a pair of mates

µn−k,mk (id) for the codomain of the following morphism of correspondences.

(6.65) (ιk,m, u
n−k,m
k )︸ ︷︷ ︸

pn+1·(Γmn+1γm+1)� pn+1·(Γmn+1γm+1)︸ ︷︷ ︸
=cn−k,mk

⇒ (k,m, u
n−k,m
k (id))︸ ︷︷ ︸

pn+1·Γmn+1� pn+1·Γmn+1︸ ︷︷ ︸
=cn−k,mk (id)

By Proposition 3.60, the pair of mates is also transferred to the domain of the preceding

morphism giving another pair of mates µn−k,mk . By Proposition 6.38, the framing

(Σk
σm , v

n−k
� , vn−k• ) . Σk

σm

exists. In particular, this framing involves the following two framings.{
(pn+1 · Γmn+1, v

0
�, v

0
•) . pn+1 · Γmn+1

(pn+1 · (Γmn+1γm+1), v0
�, v

0
•) . pn+1 · (Γmn+1γm+1)

These two framings of vertebrae imply that

1) the vertebra pn+1 · Γmn+1 frames the pair (cn−k,mk (id), µn−k,mk (id));

2) the vertebra pn+1 · (Γmn+1γm+1) frames the pair (cn−k,mk , µn−k,mk );
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By the definitions of section 3.3.4.6 and Proposition 3.61, the preceding framings induce

1) a span of correspondences ((cn−k,mk (id), µn−k,mk (id)), cn−k+1,m
k (id)) where the object

cn−k+1,m
k (id) is a strong correspondence of vertebrae of the form

(idpn+1 , k,m, u
n−k+1,m
k (id)) ` pn+1 · Γmn+1

∼� pn+1 · Γmn+1

consisting of the identity alliance of prevertebrae over pn+1, the canonical arrow

k,m : Sm → Gm
k (β�, id, β•) and the arrow un−k+1,m

k (id) : Sm → Gm
k (β�, id, β•)

encoded by the following pushout arrow.

dκ(Γmn+1 ◦ δn2 ) ◦$n−k
k ◦ ξ(β̂n−k)︸ ︷︷ ︸

first mate

(
un−k,mk (id)

)
κ(Γmn+1 ◦ δn1 ) ◦$n−k

k︸ ︷︷ ︸
second mate

e

2) a span of correspondences ((cn−k,mk , µn−k,mk ), cn−k+1,m
k ) where the object cn−k+1,m

k is
a strong correspondence of vertebrae of the form

(idpn+1 , ιk,m, u
n−k+1,m
k ) ` pn+1 · (Γmn+1γm+1)

∼� pn+1 · (Γmn+1γm+1)

consisting of the identity alliance of prevertebrae over pn+1, the canonical arrow ιk,m :

Dm+1 → Gm
k (β�, γm+1, β•) and the arrow un−k+1,m

k : Dm+1 → Gm
k (β�, γm+1, β•)

encoded by the following pushout arrow.

dκmk ◦ κ(Γmn+1 ◦ δn2 ) ◦$n−k
k ◦ ξ(β̂n−k)︸ ︷︷ ︸

first mate

(
un−k,mk

)
κmk ◦ κ(Γmn+1 ◦ δn1 ) ◦$n−k

k︸ ︷︷ ︸
second mate

e

Recall that the conventions on correspondences were made so that the preceding two spans
define two framings of correspondences as follows.

(cn−k,mk (id), µn−k,mk (id)) . cn−k+1,m
k (id) (cn−k,mk , µn−k,mk ) . cn−k+1,m

k

The morphism of correspondences involved in diagram (6.65) also induces a morphism of
framings of correspondences

(cn−k,mk , µn−k,mk ) . cn−k+1,m
k ⇒ (cn−k,mk (id), µn−k,mk (id)) . cn−k+1,m

k (id)

when equipped with the morphism of framing (γm+1, γm+1) of the following form.

(pn+1 · (Γmn+1γm+1), vn−k� , vn−k• ) . pn+1 · (Γmn+1γm+1)
y

(pn+1 · Γmn+1, v
n−k
� , vn−k• ) . pn+1 · Γmn+1

By the definitions of section 3.3.4.9 and Proposition 3.62, the previous data induces a mor-
phism of spans of correspondences as follows.

((cn−k,mk , µn−k,mk ), cn−k+1,m
k )⇒ ((cn−k,mk (id), µn−k,mk (id)), cn−k+1,m

k (id))

In particular, the previous reasoning gives a morphism of strong correspondences

(ιk,m, u
n−k+1,m
k )︸ ︷︷ ︸

pn+1·(Γmn+1γm+1)
∼� pn+1·(Γmn+1γm+1)︸ ︷︷ ︸

=:cn−k+1,m
k

⇒ (k,m, u
n−k+1,m
k (id))︸ ︷︷ ︸

pn+1·Γmn+1
∼� pn+1·Γmn+1︸ ︷︷ ︸

=:cn−k+1,m
k (id)

that is encoded by a commutative diagram of the following form.

Sm
γm+1

��

k,m
// Gm

k (β�, id, β•)

κmk
��

Sm
un−k+1,m
k (id)

oo

γm+1

��

Dm+1 ιk,m
// Gm

k (β�, γm+1, β•) Dm+1
un−k+1,m
k

oo
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We are now going to build a pair of mates for the memory induced by the morphism of
correspondences (6.61). In the case where the inequalities q ≥ n + 1 and m ≥ n + 1 holds,
Proposition 3.76 implies that the morphism of strong correspondences

(k,m, u
n−k,m
k (id))︸ ︷︷ ︸

pn·Γmn
∼� pn·Γmn

⇒ (ιk,q, u
n−k,q
k )︸ ︷︷ ︸

pn·(Γqnγq+1)
∼� pn·(Γqnγq+1)

may be seen as morphism of correspondences as follows.

(k,m, u
n−k,m
k (id))︸ ︷︷ ︸

pn+1·Γmn+1
∼� pn+1·Γmn+1

⇒ (ιk,q, u
n−k,q
k )︸ ︷︷ ︸

pn+1·(Γqn+1γq+1)
∼� pn+1·(Γqn+1γq+1)

In the same spirit as Proposition 3.60, we may use the morphisms of correspondences given
in (6.62) to provide the domain and codomain of the earlier morphism of correspondences
with two mates stemming from the vertebra

Sn
γn+1

//

γn+1

��

Dn+1 ιk,n

##

δn1
��

Dn+1

un−k,mk

77

δn2 // Sn+1
β̂n−k

// Â
$n−kk // Gn

k(β�, γn+1, β•)

induced by factorisation (6.59). To do so, post-compose the preceding vertebra with the
morphism

κqk ◦ κ(Γqn+1 ◦ δ
n
i ) : Gn

k(β�, γn+1, β•)→ Gq
k(β�, γq+1, β•)

for every i ∈ {1, 2}, which leads to the diagram, below, by using the relations of diagram
(6.50).

Sn
γn+1

//

γn+1

��

Dn+1 ιk,q◦γq+1◦Γqn+1◦δni

''

δn1
��

Dn+1

un−k,qk ◦γq+1◦Γqn+1◦δni

55

δn2 // Sn+1
β̂n−k

// Â
κqk◦κ(Γqn+1◦δni )◦$n−kk

// Gq
k(β�, γq+1, β•)

The pair of vertebrae given by the previous diagram for i = 1 and i = 2 does define a pair
of mates, but at this stage, no framing may be defined along this pair. To rectify this, we
need to use the fact that the spinal coheroid is symmetric and consider the following pair of
mates.

(6.66) Sn
γn+1

//

γn+1

��

Dn+1 ιk,q◦γq+1◦Γqn+1◦δn2

((

δn2
��

Dn+1

un−k,qk ◦γq+1◦Γqn+1◦δn2

44

δn1 // Sn+1
φ(β̂n−k)

// Â
κqk◦κ(Γqn+1◦δn2 )◦$n−kk ◦ξ(β̂n−k)

// Gq
k(β�, γq+1, β•)
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(6.67) Sn
γn+1

//

γn+1

��

Dn+1 ιk,q◦γq+1◦Γqn+1◦δn1

''

δn1
��

Dn+1

un−k,qk ◦γq+1◦Γqn+1◦δn1

55

δn2 // Sn+1
β̂n−k

// Â
κqk◦κ(Γqn+1◦δn1 )◦$n−kk

// Gq
k(β�, γq+1, β•)

Notice that the vertebra appearing in diagram (6.66) is exactly vn−k� while the vertebra

appearing in diagram (6.67) is exactly vn−k• . The pair of mates µn−k,qk associated with

(vn−k� , vn−k• ) is therefore a pair of mates for the codomain of the following morphism of
correspondences.

(6.68) (k,m, u
n−k,m
k (id))︸ ︷︷ ︸

pn+1·Γmn+1� pn+1·Γmn+1︸ ︷︷ ︸
=:cn−k,mk (id)

⇒ (ιk,q, u
n−k,q
k )︸ ︷︷ ︸

pn+1·(Γqn+1γq+1)� pn+1·(Γqn+1γq+1)︸ ︷︷ ︸
=:cn−k,qk

By Proposition 3.60, the pair of mates µn−k,qk is transferred to the domain of the preceding

morphism in the form of the pair of mates µn−k,mk (id). The framing (Σk
σm , v

n−k
� , vn−k• ) .Σk

σm
given by Proposition 6.38 involves the following two framings.{

(pn+1 · Γmn+1, v
n−k
� , vn−k• ) . pn+1 · Γmn+1

(pn+1 · (Γqn+1γq+1), vn−k� , vn−k• ) . pn+1 · (Γqn+1γq+1)

These two framings of vertebrae imply that

1) the vertebra pn+1 · Γmn+1 frames the pair (cn−k,mk (id), µn−k,mk (id));

2) the vertebra pn+1 · (Γqn+1γq+1) frames the pair (cn−k,qk , µn−k,qk );

By section 3.3.4.6 and Proposition 3.61, the preceding framings induce

1) a span of correspondences ((cn−k,mk (id), µn−k,mk (id)), cn−k+1,m
k (id)) where the object

cn−k+1,m
k (id) is a strong correspondence of vertebrae of the form

(idpn+1 , k,m, u
n−k+1,m
k (id)) ` pn+1 · Γmn+1

∼� pn+1 · Γmn+1

consisting of the identity alliance of prevertebrae over pn+1, the canonical arrow

k,m : Sm → Gm
k (β�, id, β•) and the arrow un−k+1,m

k (id) : Sm → Gm
k (β�, id, β•)

encoded by the pushout arrow:

dκ(Γmn+1 ◦ δn2 ) ◦$n−k
k ◦ ξ(β̂n−k)︸ ︷︷ ︸

first mate

(
un−k,mk (id)

)
κ(Γmn+1 ◦ δn1 ) ◦$n−k

k︸ ︷︷ ︸
second mate

e

2) a span of correspondences ((cn−k,qk , µn−k,qk ), cn−k+1,q
k ) where the object cn−k+1,q

k is a
strong correspondence of vertebrae of the form

(idpn+1 , ιk,q, u
n−k+1,q
k ) ` pn+1 · (Γqn+1γq+1)

∼� pn+1 · (Γqn+1γq+1)

consisting of the identity alliance of prevertebrae over pn+1, the canonical arrow

ιk,q : Dq+1 → Gq
k(β�, γq+1, β•) and the arrow un−k+1,q

k : Dq+1 → Gq
k(β�, γq+1, β•)

encoded by the pushout arrow:

dκqk ◦ κ(Γqn+1 ◦ δ
n
2 ) ◦$n−k

k ◦ ξ(β̂n−k)︸ ︷︷ ︸
first mate

(
un−k,qk

)
κqk ◦ κ(Γqn+1 ◦ δ

n
1 ) ◦$n−k

k︸ ︷︷ ︸
second mate

e
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The conventions on correspondences were made so that the preceding two spans define two
framings of correspondences as follows.

(cn−k,mk (id), µn−k,mk (id)) . cn−k+1,m
k (id) (cn−k,qk , µn−k,qk ) . cn−k+1,q

k

The morphism of correspondences involved in diagram (6.68) also induces a morphism of
framings of correspondences

(cn−k,mk (id), µn−k,mk (id)) . cn−k+1,m
k (id)⇒ (cn−k,qk , µn−k,qk ) . cn−k+1,q

k

when equipped with the morphism of framinsg (Γmq+1 ◦δ
q+1
i ,Γmq+1 ◦δ

q+1
i ) of the following form

(note that the symbol of the arrows is displayed between the two given framings).

(pn+1 · Γmn+1, v
n−k
� , vn−k• ) . pn+1 · Γmn+1

y
(pn+1 · (Γqn+1γq+1), vn−k� , vn−k• ) . pn+1 · (Γqn+1γq+1)

By the definitions of section 3.3.4.9 and Proposition 3.62, the above data induces a morphism
of spans of correspondences as follows.

((cn−k,mk (id), µn−k,mk (id)), cn−k+1,m
k (id)) ((cn−k,qk , µn−k,qk ), cn−k+1,q

k )

In particular, the above reasoning produces a morphism of strong correspondences

(k,m, u
n−k+1,m
k (id))︸ ︷︷ ︸

pn+1·Γmn+1
∼� pn+1·Γmn+1︸ ︷︷ ︸

=:cn−k+1,m
k (id)

⇒ (ιk,q, u
n−k+1,q
k )︸ ︷︷ ︸

pn+1·(Γqn+1γq+1)
∼� pn+1·(Γqn+1γq+1)︸ ︷︷ ︸

=:cn−k+1,q
k

that is encoded by a commutative diagram of the following form.

Dq

Γmq+1◦δ
q
i

��

ιk,q
// Gq

k(β�, γq+1, β•)

κ(Γmq+1◦δ
q
i )

��

Dq
un−k+1,q
koo

Γmq+1◦δ
q
i

��

Sm k,m
// Gm

k (β�, id, β•) Sm
un−k+1,m
k (id)

oo

Let us now look at the correspondence (ιk,q, u
n−k+1,q
k ) in the case where the equality

q = n+ 1 holds. In this case, we have the following strong correspondence of vertebrae.

(ιk,n+1, u
n−k+1,n+1
k ) ` pn+1 · γn+2

∼� pn+1 · γn+2

This correspondence is, by definition, equipped with a commutative diagram as follows.

Sn+1
γn+2

//

γn+2

��

Dn+2

ιk,n+1

��

Dn+2
un−k+1,n+1
k

// Gn+1
k (β�, γn+2, β•)

The previous commutative square provides a (n + 2)-parallel pair of arrows in the spinal
extension (S,D, γ, δ) · Ω. The spinal coheroid (S,D, γ, δ) · Ω will be said to be (k, n− k + 1)-
coherent if the parallel pair of arrows

(un−k+1,n+1
k , ιk,n+1)

is admissible for every β�, β• ∈ Ωk so that there exist a morphism β̂n−k+1 : Sk → Ân−k+1 in

Ωn+2 and a morphism $n−k+1
k : Ân−k+1 → Gn+1

k (β�, γn+2, β•) making the following diagram
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commute.

Ân−k+1

$n−k+1
k

**

Sn+2

β̂n−k+1

OO

dun−k+1,n+1
k ,ιk,n+1e

// Gn+1
k (β�, γn+2, β•)

A spinal coheroid (S,D, γ, δ) · Ω : Spine → (C,A) will be said to be (k, ω)-coherent if it is
(k,m)-coherent for every m ∈ ω.

Example 6.47 (Topological spaces). The topological spinal coheroid (D, S, δ, γ) : Spine →
(Top,A) is (k, ω)-coherent by definition of A.

Example 6.48 (Grothendieck’s∞-groupoids). The spinal coheroid of a category of Grothen-
dieck ∞-groupoids is (k, ω)-coherent by definition of A.

Example 6.49 (Maltsiniotis’ categories). The spinal coheroid of a category of Maltsiniotis
∞-categories becomes (k, ω)-coherent when the class of parallel arrows is augmented by the

pairs of parallel arrows (un−k,nk , ιk,n) for every k ≤ n. The underlying factorisations are again
provided by Corollary 5.86 (small object argument).

6.4.2. Towards the Homotopy Hypothesis.

6.4.2.1. Underlying spinal categories of spinal coheroids. Let (S,D, γ, δ) ·Ω : Spine→ (C,A)
be a spinal coheroid that is

1) reflexive;

2) magmoidal;

3) (k, ω)-coherent for every k ∈ ω (which includes (k, ω)-normality for every k ∈ ω;
(k, ω)-transitivity for every k ∈ ω; closedness and symmetry),

and whose ω-spinal object is given by a faithful and injective-on-objects functor Spine→ C,
which means that the objects and arrows of the spinal object are completely determined
by their indexing. The goal of this section is to define the structure of a spinal cate-
gory (C, A ,E , T ) for the underlying vetebral category (C, A′, A,E) of the spinal coheroid
(S,D, γ, δ) · Ω. To define the local echelon, first define the collection of subgraphs {An}n∈ω
of (Ally(C),}). For every n ∈ ω, the object-class of An is given by the singleton set

Obj(An) := {σn}

while its hom-set An(σn, σn) is defined as the singleton containing the identity alliance on
σn. It is not hard to check that there is an obvious collection of morphisms of graphs

τn :

[
An ⇒ A
σn 7→ νn

]
that is jointly surjective on objects. Then, define the An-subprecompass

{(En,ηn)}n∈ω

of the Ally(C)-precompass (Enov,η,�,}). For every n ∈ ω, the left and right object-classes
of (En,η) are given by the singletons

ObjL(En) := {Pn−1 · γn} and ObjR(En) := {σn}

and its hom-set En(Pn−1 · γn, σn) is defined as the singleton containing the obvious extended

nodes of spines Pn−1 · γn EX σn. It is not hard to check that there is an obvious collection of
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morphism of precompasses as follows that is jointly surjective on the left object-class.

πn :

 En ⇒ E
Pn−1 · γn 7→ γn

σn 7→ νn


For every n ∈ ω, the arrows τn and πn define a morphisms of precompasses over graphs. In
addition, it is straightforward to check that the An-precompass (En,η) is echeloned for the
following trivial cograded graph.

On

����

Sn

: {σn} //

����

{σn−1} //

����

{σn−2} //

����

. . . // {σ1} //

����

{σ0}

����

{γn} {γn−1} {γn−2} . . . {γ1} {γ0}

In other words, the A-precompass (E,η) is locally echeloned under the collection of An-
precompass (En,η) for every n ∈ ω. Since the morphisms τn and πn are obvious fibrations
(over identity alliances), the resulting local A-echelon [π, τ](E,η) is regular. To define a
whiskered structure on E, define two subgraphs Tn and To of Sev(C) whose object-classes
are given by the set

Obj(Tn) = {γk | k ∈ ω} = Obj(To)

and whose hom-classes are given by the following equations.

Tn(γk, γm) =

{
∅ if k 6= m
νrv
k if k = m

To(γk, γm) =

{
∅ if k 6= m
νk if k = m

The pregraphs Tn and To define two whiskering bundles of E above the singleton {γk} for
every k ∈ ω. This is obvious for To since the derivation dνk may be identified with νk
itself and the extended node of vertebrae encoded by νk may therefore be identified with the
following extended node of vertebrae.

γk
dνk // νk

idνk // νk

To see this for Tn, it suffices to notice that a node of vertebrae νrv
k is equal to the node of

vertebrae given by the following composite (see section 6.4.1.1).

γk
dνk // νk

(id,κk,ξ( ),φ)
// νrv
k

The pair (Tn, To) will later be denoted as T . The quadruple (C, A,E, T ) is then equipped
with a structure of spinal category if

1) (framing i) for every pair of integers q and n such that 0 ≤ q ≤ n and 3-tuple of
the form

(v�, σn, v•) ∈ Tn(γq, γq)×Onq (γq, γq)× To(γq, γq),

the T -whiskering (v� n σn o v•)
A
q is given by the nodes of spines σn, which implies

a simple framing of node of spines of the following form by Proposition 6.38;

(σn, v�, v•) . σn

2) (framing ii) for every pair of integers q and n such that 0 ≤ q ≤ n− 1 and 3-tuple
of the form

(v�, Pn−1 · γn, v•) ∈ Tn(γq, γq)× ∂Onq (γq, γq)× To(γq, γq),
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the T -whiskering (v�nPn−1 ·γno v•)Aq is given by the spine Pn−1 ·γn, which implies
a simple framing of node of spines of the following form by Proposition 6.38.

(Pn−1 · γn, v�, v•) . Pn−1 · γn
The next two propositions show that the quadruple (C, A,E, T ) indeed defines a spinal

category.

Proposition 6.50. Every 3-tuple of the form

(v�, σn, v•) ∈ Tn(γq, γq)×Onq (γq, γq)× To(γq, γq)

where 0 ≤ q ≤ n is associated with a structure of convergent conjugation of nodes of spines
(σn, idσn , σn) in C where the canonical alliance of nodes of spines all0(σn, idσn , σn) defined in
section 3.3.8.1 is equal to σn.

Proof. Let v� := pq · β� and v• := pq · β• be two vertebrae in the node of vertebrae νq and
consider the two alliances of vertebrae

(id,κq, ξ(β�)) : vrv
�  pq · φ(β�) and (id,κq, ξ(β•)) : v•  prv

q · φ(β•)

stemming from the pair of alliances of nodes of vertebrae (id,κq, ξ(β�)) : νrv
q  νq and

(id,κq, ξ(β�)) : νrv
q  νq. The two vertebrae pq · φ(β�) and pq · φ(β•), which belong to the

node of vertebrae νk, will be denoted by v[ and v†, respectively. The structure of conjugation
is given by

1) the pair of vertebrae vrv
� := prv

q · β� and v• := pq · β•;
2) the following two alliances of vertebrae;

(id,κq, ξ(β�)) : vrv
�  (vrv

[ )rv (id,κq, ξ(β•)) : v•  vrv
†

3) the following pair of simple q-framings of spines induced by Proposition 6.38.{
(σn, v

rv
� , v•) . σn

(σn, v
rv
[ , v†) . σn

The preceding pair of framings comprises the following two framings of vertebrae.{
(pq · Γnq , vrv

� , v•) .
V
q pq · Γnq

(pq · Γnq , vrv
[ , v†) .

V
q pq · Γnq

It follows from the construction of section 3.3.5.5 that the earlier conjugation gives rise to
a strong correspondence between two copies of the vertebra pq · Γnq via the functor Scor :
Conj(C)→ Scov(C), which also defines a memory of nodes of spines between σn and itself.

This memory is, by definition, given by the correspondence c0,n
q (id) ` pq+1 ·Γnq+1 � pq+1 ·Γnq+1.

The following sequence of framings of correspondences, defined throughout section 6.4.1.2,
then exactly says that the conjugation is convergent.

(c0,n
q (id), µ0,n

q (id)) .q+1 . . . (c
1,n
q (id), µ1,n

q (id)) .q+2 .nc
n−q,n
q (id)

This finishes the proof since the last framing involved in the previous sequences of framings
forces all0(σn, idσn , σn) to be σn by definition. �

Proposition 6.51. Every T -whiskering 3-tuple

(v�, Pn−1 · γn, v•) ∈ Tn(γq, γq)× ∂Onq (γq, γq)× To(γq, γq)

where 0 ≤ q ≤ n − 1 is associated with a structure of convergent extended conjugation of
nodes of spines (Pn−1 · γn, σn, σn) in C where the closure of the conjugation is equal to σn.
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Proof. Let v� := pq · β� and v• := pq · β• be two vertebrae in the node of vertebrae νq and
consider the two alliances of vertebrae

(id,κq, ξ(β�)) : vrv
�  pq · φ(β�) and (id,κq, ξ(β•)) : v•  prv

q · φ(β•)

stemming from the pair of alliances of nodes of vertebrae (id,κq, ξ(β�)) : νrv
q  νq and

(id,κq, ξ(β�)) : νrv
q  νq. The two vertebrae pq · φ(β�) and pq · φ(β•), which belong to the

node of vertebrae νk, will be denoted by v[ and v†, respectively. The structure of conjugation
is given by

1) the pair of vertebrae vrv
� := prv

q · β� and v• := pq · β•;
2) the following two alliances of vertebrae;

(id,κq, ξ(β�)) : vrv
�  (vrv

[ )rv (id,κq, ξ(β•)) : v•  vrv
†

3) the following pair of simple q-framings of spines induced by Proposition 6.38.{
(Pn−1 · γn, vrv

� , v•) . Pn−1 · γn
(σn, v

rv
[ , v†) . σn

The preceding pair of framings comprises the following two framings of vertebrae.{
(pq · Γn−1

q , vrv
� , v•) .

V
q pq · Γn−1

q

(pq · Γn−1
q , vrv

[ , v†) .
V
q pq · Γn−1

q

{
(pq · (Γn−1

q γn), vrv
� , v•) .

V
q pq · (Γn−1

q γn)

(pq · (Γn−1
q γn), vrv

[ , v†) .
V
q pq · (Γn−1

q γn)

It follows from the construction of section 3.3.5.5 that the earlier conjugations give rise to
a strong correspondence between two copies of the vertebra pq · Γn−1

q and a strong corre-

spondence between two copies of the vertebra pq · (Γn−1
q γn) via the functor Scor : Conj(C)→

Scov(C). These correspondences define a strong memory of extended nodes of spines between
Pn−1 · γn and σn. If q = n− 1, then the following diagram defines a mate for the underlying
recollection.

Sn−1
γn
//

γn

��

Dn ιq,n−1

##

δn−1
1

��

Dn

ζ0
q,q◦π0

q

77

δn−1
2 // Sn

β̂0
// Â

$0
q

// Gn−1
q (β�, γn, β•)

Because the spinal coheroid is magmoidal, the previous vertebra and the head of σn admit a
framing, which is equal to σn. The conjugation is therefore convergent and the closure is equal
to σn. If q < n−1, this memory is, by definition, given by the two correspondences c0,n−1

q (id) `
pq+1 · Γn−1

q+1 � pq+1 · Γn−1
q+1 and c0,n−1

q ` pq+1 · (Γn−1
q+1γn) � pq+1 · (Γn−1

q+1γn) and the obvious
morphism between them. The following two sequences of framings of correspondences, defined
throughout section 6.4.1.2, then exactly say that the conjugation is convergent.

(c0,n−1
q (id), µ0,n−1

q (id)) .q+1 (c1,n−1
q (id), µ1,n−1

q (id)) .q+2 · · · .n−1 c
n−1−q,n−1
q (id)

(c0,n−1
q , µ0,n−1

q ) .q+1 (c1,n−1
q , µ1,n−1

q ) .q+2 · · · .n−1 c
n−1−q,n−1
q

This finishes the proof since the last correspondence, which defines a recollection, involve a
mate

Sn−1
γn
//

γn

��

Dn ιq,n−1

##

δn−1
1

��

Dn

un−1−q,n−1
q

77

δn−1
2 // Sn

β̂n−1−q
// Â

$n−1−q
q

// Gn−1
q (β�, γn, β•)
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along which it is possible to frame the head of the node of spine σn (since the spinal coheroid
is magmoidal). Again, the closure is equal to σn. �

6.4.2.2. Homotopy Hypothesis. The goal of this section is to take the results proven earlier
and rearrange them to set up the foundations for a proof of the Homotopy hypothesis for
Grothendieck’s ∞-groupoids.

Theorem 6.52. The spinal coheroid associated with a category of Grothendieck ∞-groupoids
admits a (quasi-small refined) spinal structure.

Proof. This follows from the examples entitled ‘Grothendieck’s ∞-groupoids’ as well as
section 6.2.5.4 for the vertebral category structure; Proposition 6.36 for the local projectivity;
section 6.4.2.1 for the whiskering axioms; Proposition 6.50 and Proposition 6.51 for the
framing and conjugation axioms. The fact that the spinal category is quasi-small and refined
is obvious as the classes Ω are singletons and the refinement follows from Proposition 4.61. �

Proposition 6.53. If the spinal structure of a category of Grothendieck’s ∞-groupoids is
well-disposed for surtractions, then its defines a model structure for the underlying weak
equivalences, fibrations and cofibrations.

Proof. The statement follows from (1) Theorem 6.52 when the spinal structure of the cat-
egory of ∞-groupoids is seen as an obvious fully faithful spinal theory (see Example 5.90)
and (2) an obvious variation of Theorem 5.104 that replaces the assumption that the spinal
structure must be well-disposed for intractions with the result of that Remark 5.103. This
second point is possible since (2.a) any sequential functor in Mod(Cop) is convergent with
respect to the representable models (see Example 5.8) and (2.b) all vertebrae involved in
the spinal structure of a category of Grothendieck’s ∞-groupoids are reflexive with trivial
reflexive transitions (see Remark 5.103). �

Checking the assumption of Proposition 6.53 requires the computation of a colimit of
Grothendieck’s ∞-groupoids. This kind of calculation amounts to giving an elementary
description of the reflection functor Mod(Cop)→ Psh(C), which was exactly the purpose of
Chapter 5. It only remains to apply the construction thereof to the models of some coherator
C and use this construction to show by induction that any category of Grothendieck’s ∞-
groupoids is well-disposed for surtractions.

Then, a strategy to show the Homotopy Hypothesis is to combine Proposition 6.53 to-
gether with Remark 4.96. Specifically, there is a functor i : C → Top constructed in [35]
whose free extensions iO : CO → Top are 0- and 1-regular. By copying the reasoning in
which the category of Grothendieck’s ∞-groupoids have been equipped with a spinal cate-
gory structure, one may show that the free cocompletion CO ∼= Psh(C) has a spinal category
(see Remark 6.16). Finally, Remark 4.96 shows that if the unit of the adjunction∫ g∈C

∇g( )⊗ i(g) ` Top(i( ), )

(defined thereof) is a componentwise weak equivalence in Mod(Cop), then Top(i( ), ) :
Top → Mod(Cop) is a covertebral equivalence, which by Proposition 1.47 and Proposition
4.95, would prove the Homotopy Hypothesis.

6.4.3. Link with Ara’s work. In his manuscript of 1983 (see [24]), Grothendieck gave a
definition of weak equivalence different from that given in this thesis. Specifically, for every
∞-groupoid X and 0-cell p ∈ X, he describes a collection of ‘homotopy groups’

{π0(X)} ∪ {πn(X, p)}n≥1,
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whose definitions are very similar to those defined for topological spaces (see [4, section 4.17]
or [3, section 4.3]). For every morphism of ∞-groupoids f : X → Y and 0-cell p ∈ X, every
homotopy group induce functions of the form π0(f) : π0(X)→ π0(Y ) or πn(f, p) : πn(X, p)→
πn(Y, f(p)) for n > 0. He then goes on defining a weak equivalence as a morphism of ∞-
groupoids f : X → Y whose images π0(f) : π0(X) → π0(Y ) and πn(f, p) : πn(X, p) →
πn(Y, f(p)) are isomorphisms for every n ≥ 1.

As seen in Proposition 3.20 and Proposition 3.22, the notion of weak equivalence given
in the present thesis may be described as a morphism of ∞-groupoids f : X → Y such that
for every pair of parallel n-cells u and v in X, a certain morphism of groups of the following
form (described in [4, section 4.11] or [3, section 4.4.8]) is an isomorphism.{

π0(f) : π0(X)→ π0(Y ) (if n = 0)
πn(f, u, v) : πn(X,u, v)→ πn(Y, f(u), f(v)) (if n > 0)

It is a result of D. Ara (see [4, Theorem 4.18] or [3, section 4.3.5]) that the two previous
notions are equivalent.
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A

List of Symbols

x

, x . . . . . . . . . used to indicate pushout and pullback objects

N . . . . . . . . . . . . the set of non-negative integers

ω . . . . . . . . . . . . the least infinite ordinal

Set . . . . . . . . . . category of sets

Top . . . . . . . . . category of topological spaces

ModR . . . . . . . category of left R-modules

ChR . . . . . . . . . category of non-negatively chain complexes of left R-modules

Aff(k) . . . . . . . category of affine varieties over a field k

Sch . . . . . . . . . . category of schemes (Algebraic Geometry)

Cat(n) . . . . . . category of (small) n-categories

CD . . . . . . . . . . . category of functors D → C from a small category

O(κ) . . . . . . . . . preordered category of ordinals less than κ

1 . . . . . . . . . . . . any terminal object

∇d . . . . . . . . . . . evaluation functor CD → C at an object d in D

∆D . . . . . . . . . . pre-composition functor from C to CD mapping an object 1→ C to the
composite D → 1→ C

[D, C] . . . . . . . . category of functors D → C between categories

ModC(S) . . . . category of models over a sketch S

Land . . . . . . . . . left Kan extension along the constant functor d : 1→ D

Ho(C) . . . . . . . . homotopy category of C
‖γ, γ′‖ . . . . . . . prevertebra of seed γ and coseed γ′

p · β . . . . . . . . . vertebra of base p and stem β

p · Ω . . . . . . . . . node of vertebrae of base p and class of stems Ω

P · β . . . . . . . . . spine of base P and stem β

P · Ω. . . . . . . . . node of spines of base P and class of stems Ω

V k
s , Eks , V k

σ , Ekσ functors of vertebrae associated with a spine s and a node of vertebrae
σ, respectively

Γk(P ) . . . . . . . . k-th central cord of a prespine P

Prev . . . . . . . . . sketch for prevertebrae, p. 52
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Vert . . . . . . . . . sketch for vertebrae, p. 55

prv, vrv, νrv . . dual of a prevertebra p, vertebra v and node of vertebrae ν

disk(v) . . . . . . the diskad of a vertebra v, p. 55

seed(a) . . . . . . the commutative square between the seeds of an alliance a, p. 55

triv(a). . . . . . . the commutative square between the trivial stems of an alliance a, p. 55

bste(a) . . . . . . the biased commutative square between the stems of an alliance a, p.
55

rlp(A) . . . . . . . class of arrows that have the right lifting property with respect to the
arrows of a class A

llp(A) . . . . . . . class of arrows that have the left lifting property with respect to the
arrows of a class A

〈x, y〉 . . . . . . . . universal arrow associated with two parallel paths x and y

( , v�, v•) . . . framing along two semi-extended vertebrae v� and v•

C(v,X)(x, y), C(ν,X)(x, y) the classes of paths, in an object X, going from x to y

de�he•e . . . . . . universal arrow associated with a framing (hom-language)

∂P , ∂p . . . . . . derived prespine, derived alliance of prespines

�,
∼� . . . . . . . . . correspondences

�q,
∼�q, _q,

∼
_q q-memories

^,
∼
^ . . . . . . . . recollections

all0(σ, a, σ), all1(σ, a, σ) the two canonical alliances resulting from a convergent conju-
gation of node of spines (σ, a, σ)∐

. . . . . . . . . . . . coproduct

limA, limd . . . . limits over a category A or shifted by a functor d

colA, cold . . . . colimits over a category A or shifted by a functor d∫
a∈K,

∫ a∈K
. . . ends and coends

KO . . . . . . . . . . . free cocompletion of a colimit sketch K

Ĉ . . . . . . . . . . . . short notation for a system of vertebrae of ambient category C
Glob . . . . . . . . . sketch of globular sets

Spine . . . . . . . . sketch of spinal sets

Ally(C) . . . . . . category of nodes of vertebrae and alliances of these in C, p. 58

Vert(C). . . . . . category of vertebrae and morphisms of vertebrae in C, p. 107

Fov(C) . . . . . . category of framings of vertebrae in C, p. 110

Corov(C) . . . . category of correspondences of vertebrae in C, p. 116

Scov(C) . . . . . category of strong correspondences of vertebrae in C, p. 116

Mcov(C) . . . . category of correspondences of vertebrae equipped with pairs of mates
in C, p. 117

Focov(C) . . . . category of framings of correspondences of vertebrae in C, p. 120

Alov(C) . . . . . category of alliances of vertebrae and morphisms of alliances of vertebrae
in C, p. 122

Aos(C, n) . . . . category of spines of degree n in C, p. 158

Anos(C, n) . . category of nodes of spines of degree n in C, p. 158

Enov(C) . . . . . span of extended nodes of vertebrae in C, p. 164

Enosn(C) . . . . span of extended nodes of spines of degree n in C, p. 164
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Besom, 49

Category of fibrant objects, 36
Central cord, 104
Chainings

extensive, 138
simple, 133

Circle operation, 241
Class, 2-class, 22

higher, 22
Codomain

functor, 25
of a prevertebra, 52

Cofibration, 174, 264
acyclic, 264
trivial, 174, 264

Coherator, 283
Coheroid

closed, 299
coherent, 314
globular, 282
magmoidal, 285
normal, 291
reflexive, 284
spinal, 282
symmetric, 313
transitive, 295

Cohesive set of vertebrae, 224
Combinatorial category, 259

trivially, 261
Communication, 57, 69

semi-, 221
Compass, 166

over graphs, 167
Compatibility, 112, 231
Conjugable pair, 121
Conjugation

of nodes spines, 141
of nodes spines (extended), 146
of vertebrae, 121
sequences of, 145, 150

Construction
kappa, 288
tau, 289

Constructor, 240
combinatorial, 247
numbered, 255

Cooperadic transition, 42, 70
Correspondence, 116

strong, 116
morphism of, 116

Coseed, 52
spinal, 106

Croquis, 215
cardinality of, 216
conical, 216

Cylinders, 214

Divisibility, 49
Domain

functor, 25
of a prevertebra, 52

Epi-correction, 182
Extension

globular, 279
spinal, 279

Factorisation game, 159
Fibrant object, 226, 263
Fibration, 60, 264

acyclic, 264
trivial, 60, 174, 264

Framing
extensive, 113
of correspondences, 119, 110
of extended prevertebrae, 70
of extended vertebrae, 70
of extended nodes of vertebrae, 71
of extensive memories, 135
of functors, 112
of memories, 132
of nodes of vertebrae, 109
of nodes of spines, 113
of prevertebrae, 108
of prespines, 112
of recollections, 136
of simple memories, 133
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of vertebrae, 108
morphism of, 110
simple, 112

Functor,
0-regular, 191
1-regular, 191
bicovertebral, 198
convergent, 209
coretractive, 211
of systems of vertebrae, see system of vertebrae
pseudo-1-regular, 191
(pseudo-)covertebral, 194
(pseudo-)opcovertebral, 196
sequential, 211
smooth, 191
trigger, 250

Globular sums, 278, 279
Graph, 165

cograded, 170

Hom-language, 97

Intraction, 60

Lifting property, 33, 44
left (llp), 33, 44
right (rlp), 33 , 44

Llp, see left lifting property
Local configuration, 262
Local echelon, 172

whiskered, 174

Magmoid, 166
Mates (Pair of)

for correspondences, 117
for memories, 131, 133, 135
for recollections, 136

Memory
extensive, 129, 134
of functors, 128
simple, 129, 132
strong, 129, 129, 132

Metacategory, 23
Metafunction, 23
Model category, 35
Modifier, 245

local, 245
rectifying, 252

Module, 168
prolinear, 170

Narrative, 234
morphism of, 238
strict, 237

Node of spines, 106,
allaince of, 126
extended, 128
projective, 107

Node of vertebrae, 56,
alliance of, 56
differentiable, 183
extended, 57
projective, 101

reflected, 73
reflections of, 73
reflexive, 67-69
reversible alliance of, 73
semi-extended, 108
semi-alliance of, 185

Numbered category, 231
compatible functor with, see compatibility

Obstruction square, 250
Oeuvre, 234

morphism of, 238
Overcategory, 27, 232

Parallel arrows, 280
Parallelism

Over-, 102
Under-, 102

Playground, 241
modified, 246

Portfolio of vertebrae, 229
Precompass, 165

over graphs, 167
Pre-extension 278
Premodel, 217

natural, 218
Preseed, 54
Prespine, 103

alliance of, 126
derived, 104
extended, 128
projective, 107

Prevertebra, 52
alliance of, 52
extended, 54
projective, 101
reflexive, 67
semi-extended, 108

Prolinear map, 169
Pseudofibration, 60

Recollection, 136
Rlp, see right lifting property

Scale, 48
Seed, 52

spinal, 106
Sieve, 28
Simplicity, 48
Sketch (limit & colimit), 26

free (co)completion of, 27
inclusion of, 27

Span, 164
fibration of, 165
of correspondences, 118
of memories, 131

Spinal category, 186
discrete, 189
refined, 189

Spinal theory, 262
combinatorial, 266
refined, 263
quasi-small, 263
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well-disposed, 266
Spine, 105

alliance of, 126
extended, 128
projective, 107

Star operation, 241
lower, 250
upper, 250

Stem, 55
trivial, 55

Surtraction, 60
tubular,

System of models, 229
System of vertebrae, 169

discrete, 180
functor of, 190
refined, 178

Tomes, 233
Topology (Grothendieck), 28
Transfer, 191

Universal shiftings, 212-213

Vertebra, 52
alliance of, 55
extended, 56
morphism of, 107
morphism of alliances of, 122
projective, 101
reflexive, 67
semi-extended, 108

Vertebral algebra, 167
Vertebral category, 174

discrete, 180
refined, 189

Vertebral theory, see spinal theory

Whiskering bundle, 185

Zoo
of a communication, 61
of an alliance of nodes of spines, 127
of an alliance of nodes of vertebrae, 60
of an extended nodes of spines, 128
of an extended node of vertebrae, 61
of a spinal category, 187
of a spinal or vertebral theory, 264
of a system of vertebrae, 169
of a vertebral category, 174
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