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Abstract

In our first chapter, we will define categories, functors, and natural transformations internally to any

category with pullbacks E , and we will prove in detail that they form a Cat-enriched category, or 2-category

Cat (E), with powers by 2 and any conical limits that E also has. Along the way we will describe how certain

familiar notions of category theory can be made sense of internally. In Chapter Two we will explore how

some properties of E are inherited by, or give rise to other properties in Cat (E). In Chapter Three we will

investigate the extension of the assignment E 7→ Cat (E) to various 2-functors, and in particular equip one

of them with various monad-like structures. One of these was remarked upon in [6], but to our knowledge

the other two have not appeared elsewhere in the literature. Chapter Four will be an intermezzo on the

Grothendieck Construction in preparation for Chapter Five, where we will explore factorisations of internal

functors, including in particular the comprehensive factorisation.
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Introduction

A small category consists of a set of ‘arrows’ with a distinguished subset of ‘objects’, or ‘identities’, and a par-

tially defined binary operation called ‘composition’. The pairs of arrows (f, g) for which composition is defined

are precisely those whose ‘source’ and ‘target’ match in the following way: • • •f g
. Furthermore,

this operation is required to satisfy certain axioms pertaining to associativity and left and right unit laws. These

notions are usually made precise in the language of sets and functions. However, only certain properties of sets

and functions are needed in order for such notions to be meaningful. Specifically, one needs to be able to express

the criteria for composability, which requires the pullback of sets. As such, the theory of categories, functors

and natural transformations has models internal to any ambient category which has pullbacks, not just the

category of sets and functions, Set.

The theory of internal categories was introduced by Ehresmann in the 1960s, with motivations originally coming

from applications to differential geometry. It was soon realised that many familiar notions from category theory

can also be made sense of internal to a category E , often under certain relatively mild assumptions on E . Our

interests will be in categories with similar properties to Set, such as having exponentials, a subobject classifier,

extensive coproducts, or a generating family. All but the last of these are properties of elementary toposes, while

Grothendieck toposes also have generating families. In this thesis we will assume traditional category theory in

Set, and use this to explore how category theory manifests itself internal to other such categories. We will look

closely at the extension of the assignment E 7→ Cat (E) to various 2-functors, and in particular equip it with

various monad-like structures. This includes a pseudocomonad structure which arises from a biadjunction, and

a skew and coskew pseudomonad structure which we will see arise from a very general setting. Following this

we will give an account of the Grothendieck Construction, which will allow us to view split fibrations over an

internal category as categories internal to discrete fibrations over that category. In our final chapter we look at

two factorisation systems on internal functors. One of these is often called the full image factorisation, whose

left class consists of the isomorphism on objects internal functors and whose right class consists of the fully

faithful internal functors. The other is often called the comprehensive factorisation, whose left class consists

of the final internal functors and right class consists of the discrete fibrations. We will follow the two-step

construction of this given in [30]. Following this will be some concluding remarks and an Appendix containing

most of the diagrammatic calculations and tabulated data used in this thesis.

Conventions

In this thesis we will need to assume two universes of sets, S and L, where all of the sets in S are also sets in

L. We will refer to members of S as being small, and the members of L as being large. In particular we will

assume that if X and Y are small then so is the function set Y X . A small category will be one whose set of

objects and set of morphisms are both in S, while a locally small category will be one whose hom-sets are all

in S and set of objects is in L. We will on occasion consider categories whose set of objects is large but not

necessarily small, such as categories of presheaves of small categories. Such categories will live in 2-categories,

and we will need to place some restrictions on the size of categories which appear as objects in the 2-categories

which we consider. We hence fix the following notational convention.

Notation 0.0.1. 1. Let Set denote the locally small category of sets which are members of S, and arbitrary

functions between them. Let Cat denote the 2-category of small categories, and arbitrary functors and

natural transformations.

2. Let CAT denote the 2-category of locally small categories, and arbitrary functors and natural transforma-

tions between them. Thus if C is an object of CAT, then all of its homs C (X,Y ) are members of S, while

its set of objects is a member of L but not necessarily of S. For example Set ∈ CAT, but Set /∈ Cat.

3. Let 2-Cat denote the 2-category of small 2-categories, 2-functors and 2-natural transformations.
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When we say that a map preserves a universal construction, we will mean that it does so up to a unique

isomorphism coherent with the data of the universal construction. When this isomorphism is in fact the

identity, we will say that the map strictly preserves the construction. Apart from the 2-categories listed above,

there will also be more specialised 2-categories which we will need to consider. These will typically involve

categories with some structure, and functors which preserve that structure.

Notation 0.0.2. 1. Let Lex denote the 2-category of small categories with finite limits, finite limit preserv-

ing functors, and arbitrary natural transformations.

2. Let 2-Lex denote the 2-category of small 2-categories with finite weighted limits in the sense of [18],

2-functors which preserve these, and arbitrary 2-natural transformations.

3. Just as above, let LEX and 2-LEX denote similar 2-categories to their uncapitalised versions, but with

objects given by locally small categories with finite limits and finite weighted limits respectively.

4. Let LFP be the 2-category of locally finitely presentable categories, finitary right adjoints and arbitrary

natural transformations.

Notation 0.0.3. We adopt the following notational convention for morphisms induced by universal properties.

Unless otherwise stated, the morphism induced into a pullback P as in the following diagram by the equation

fh = gk will be denoted (h, k). In other words, (h, k) will denote the unique morphism satisfying p (h, k) = h

and q (h, k) = k, as in the diagram below. Similarly, the morphism induced into the composite of a sequence of

composable spans by the morphisms f1, ...fn will be denoted (f1, ..., fn). We will be consistent with this notation,

and provide diagrams where context is needed.

X

P A

B C

h

(h,k)

k

p

q f

g

1 Internal Categories, Functors and Natural Transformations

Our aim for this chapter is to introduce the concepts of internal categories, functors, and natural transformations,

which will be central to the topic of this thesis. Defining and discussing examples of these will comprise the

first three sections of this chapter, and this information will be collected in the form of a 2-category in Section

1.4. Finally in Section 1.5 we will introduce some further concepts, and prove some more preliminary results

which will be used throughout the thesis.

1.1 Internal Categories

Let ∆ denote the ‘simplex category’, whose objects are non-empty finite ordered sets and morphisms are order

preserving functions. Identify each object in ∆ with its representative ordered set [n] := {0, 1, 2..., n} in the

skeleton of ∆, and for k ≤ n, let δnk : [n]→ [n+ 1] denote the unique monotonic function whose image does not

contain k ∈ [n+ 1].

Definition 1.1.1. A category internal to a locally small category E is a diagram C : ∆op → E shown partially

on the left below, which sends the pushout squares in ∆ shown on the right below, to pullback squares in E .

...C (2) C (1) C (0)

n+ 3 n+ 2 n+ 1

n+ 2 n+ 1 n

δn+2
3 δn+1

2

δn+2
0

δn+1
2

δn+1
0

δn1

δn0
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In the literature, internal categories are usually defined as consisting of only the data shown above on the left,

subject to certain conditions. The standard definition is given below, and it will be useful for intuition. These

definitions are the same up to equivalence of categories.

Definition 1.1.2. Let E be a category with pullbacks. Then, a category C := (C0, C1, d0, d1, i,m) internal to E

is given by the datum of a diagram C2 C1 C0
m

d0

d1

i in E , where C0, C1 are called the object of objects

and object of arrows respectively, and the morphisms d0, d1, i,m are called source, target, identity assigner and

composition. The object of composable n-tuples Cn is defined inductively for n ≥ 2 by the pullbacks below, with

the base case shown on the left:

C2 C1

C1 C0

y

π2,0

π2,1 π1,1

π1,0

where π1,0 := d0 and π1,1 := d1, and

Cn Cn−1

Cn−1 Cn−2

y

πn,0

πn,1 πn−1,1

πn−1,0

As a shorthand, the morphisms π2,j will be denoted as just πj for j ∈ {0, 1}. This data is subject to axioms

asserting the commutativity of certain diagrams in E :

• Sources and targets for identities and composites:

C0 C1

C0

i

1C0

d0

C0 C1

C0

i

1C0

d1

C2 C1

C1 C0

m

π0 d0

d0

C2 C1

C1 C0

m

π1 d1

d1

• The associativity and left and right unit laws for composition:

C3 C2

C2 C1

m0

m1 m

m

C1 C2 C1

C1

i0

1C1

m

i1

1C1

Where the morphism m0 := (mπ3,0, π1π3,1) is induced by the universal property of C2 and the commuta-

tivity of the first diagram in Diagram 7.0.1, while m1 := (π0π3,0,mπ3,1) is induced by the commutativity

of the second diagram there, and the morphisms i0 := (id0, 1C1
) and i1 := (1C0

, id1) are induced by the

equations d01C = d0 = 1C0
d0 = d1id0 and d11C1

= d1 = 1C0
d1 = d0id1 respectively.

Definition 1.1.1 effectively identifies an internal category with its nerve, as will be discussed further in Remark

1.2.2. For our purposes, it will be preferable to Definition 1.1.2 since it determines the data of all objects of

composable n-tuples up to equality rather than up to isomorphism, since they will be the values of the functor

C : ∆op → E on the objects n ∈ ∆. Since these definitions are equivalent however, we will feel free to use the

notation and notions as described in Definition 1.1.2. We describe these in more detail.

Remark 1.1.3. In Definition 1.1.2, m0 and m1 are thought of as taking composable triples and returning

composable pairs obtained by composing the first two and the second two, respectively. For a morphism

(x, y, z) : X → C3 in E , we then see that πjmk (x, y, z) is given by table in Diagram 7.0.2. In particular,

m (x,m (y, z)) = mm1 (x, y, z) = mm0 (x, y, z) = m (m (x, y) , z), a relationship which we will refer to this as

‘equational associativity’. Meanwhile, i0 is thought of as taking a morphism and returning the composable pair

consisting of that morphism and the identity on its domain, while i1 returns the composable pair consisting of

the morphism and the identity on its codomain.

Remark 1.1.4. From this definition, one can construct many of the familiar notions of category theory. For

example,

• The opposite of an internal category, denoted Cop, by switching the roles of d0 and d1 and precomposing

composition with the twist isomorphism (π1, π0) : (Cop)2 → C2.
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• The object of endomorphisms, denoted Cend, is given by the domain of the equaliser e := Eq (d1, d0). Then

since d0e = d1e, there is an induced morphism k : Cend → C2 uniquely satisfying π0e = π1e = k. Thus we

may further define Cidemp, the object of idempotents, to be the domain of the equaliser Eq (mk, e).

• The kernel pairs of d0, d1, and m respectively give

– Cspan, the object of spans

– Ccospan, the object of cospans

– CSq, the object of commutative squares. This will feature in the construction of powers by 2 in Section

1.5.

• The pullback of i : C0 → C1 along m : C2 → C1 may be thought of as the ‘object of composable pairs

whose composite is an identity’, or ‘one-sided inverses’ Cinv. To get the ‘object of isomorphisms’ Ciso,

one takes the intersection (or pullback) of Cinv with Cop
inv. An internal category may be called an internal

groupoid if the canonical map Ciso → C1 is invertible.

• If E has products and the morphism (d0, d1) : C1 → C0 × C0 induced by the universal property of the

product is a monomorphism, then we may call C an internal poset. If E has a terminal object, we may

call C a monoid if C0 is the terminal object.

Finally, we mention an alternative view on internal categories as monads in the bicategory Span (E), which

is treated in more detail in [5]. These are spans C0 C1 C0d0

d1 with unit and multiplication, which

correspond to identity assigners and composition respectively. Sources and targets for identities and composites

say precisely that these are well defined as morphisms of spans, while the associativity and left and right unit

axioms for the monad and internal category data coincide. Then an action of the internal category is a map

X → C0 equipped with an algebra structure.

1.2 Internal Functors

Definition 1.2.1. Let E be a category with pullbacks and let A,B : ∆op → E be categories internal to E . An

internal functor from A to B is a natural transformation f : A⇒ B.

Remark 1.2.2. Once again, it is more common in the literature for internal functors to be defined explicitly as

given by a component on objects f0 : A0 → B0 and a component on arrows f1 : A1 → B1 in E which satisfy the

commutativity of the diagrams shown below. Here the morphism f2 := (f1π0, f1π1), is induced by the universal

property of B2 given the commutativity of the third diagram in Diagram 7.0.1. All other components of f are

determined from this information by the universal property of the objects Bn in a similar way. The diagrams

express f ’s respect for sources, targets, identities, and composition, and they all follow from the definition given

above by naturality of f .

A1 B1

A0 B0

f1

d0 d0

f0

A1 B1

A0 B0

f1

d1 d1

f0

A0 B0

A1 B1

f0

i i

f1

A2 B2

A1 B1

f2

m m

f1

The morphism f2 is thought of as taking a composable pair in A and returning the composable pair given by

its image under f . Given (x, y) : X → A2, the morphism f2 composes with (x, y) to give (f1x, f1y), and so

the equation f1m (x, y) = m (f1x, f1y) follows by respect for composition. Finally, note that it is clear from

the definition that if (f0, f1) : A → B is an internal functor, then the same data defines an internal functor

fop : Aop → Bop.

It is evident from their definition that internal categories and internal functors form a category, in fact a

full subcategory of [∆op, E ]. We write this category as Cat (E)1, using the subscript ‘1’ to distinguish it from
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the 2-category which will be the subject of Section 1.4. The inclusion functor N : Cat (E) → [∆op, E ], which

sends an internal category to its underlying simplicial object in E , is often called the nerve. Thus the nerve

may be thought of as forgetting that the objects of composable n-tuples need to be pullbacks, and a simplicial

object in E is conversely an internal category precisely if they are. In particular, Cat (E)1 is small (resp. locally

small) if E is small (resp. locally small), since ∆op is certainly small.

The following proposition, which will be rephrased in Remark 1.2.6, will be used repeatedly throughout this

thesis.

Proposition 1.2.3. Let f, g : A→ B be internal functors in E such that f1 = g1. Then f = g.

Proof. Since f1 = g1, in particular f1iA = g1iA. Since f and g both preserve identities, this is equivalent to

saying that iBf0 = iBg0. But by sources (or targets) for identities in B, we may compose these equal morphisms

in E with the source (or target) map of B to see that f0 = g0.

The remark below describes a few different types of internal functors. Of particular interest are fully-faithful

functors, and discrete fibrations which will both feature as the right class of orthogonal factorisation systems in

Cat (E), as we will see in Sections 5.1 and 5.4. Following this remark will be a characterisation of monomor-

phisms in Cat (E)1.

Remark 1.2.4. One can define various familiar notions on internal functors f : A→ B.

• If the component on objects of an internal functor is an isomorphism, we may call it isomorphism on

objects.

• If the commutative square attesting f ’s respect for sources or targets is in fact a pullback, we may call f

a discrete opfibration or discrete fibration, respectively.

• If the square attesting f ’s respect for identities is a pullback, we may say that f has the property of

reflecting identities.

• If the square attesting f ’s respect for composition is a pullback, we may call f a discrete Conduché functor.

These may be described externally as having the special property of ‘uniquely lifting factorisations’.

• Finally, f may be called fully-faithful if the squares attesting f ’s respect for sources and targets, when

joined along f1, exhibit A1 as a limit of the zigzag A0 B0 B1 B0 A0
f0

d1

d0

f0
.

The component on objects of an internally fully faithful functor need not be a monomorphism, but given an

internal category B, a monomorphism g : X0 → B0 gives rise to a fully-faithful internal functor into B in a

canonical way, analogous to the external construction of the full-subcategory on a subset of objects. Explicitly,

we may set X1 to be the limit of a zigzag similar to the above with g in place of f0 and then realise X0 and

X1 to be the object of objects and object of arrows of an internal category by taking the projections as source

and target maps, and inducing identities and composition maps from those of B. Indeed, this construction does

not require g to be a monomorphism. When E has products the condition for being fully-faithful simplifies to

the condition that the first diagram in Diagram 7.0.3 is a pullback. This square always at least commutes, for

any internal functor, given the commutativity of the second diagram in Diagram 7.0.3 for j ∈ {0, 1}. Thus we

always have a morphism f ′ : A1 → P into the pullback of the cospan, even if it is not itself isomorphic to A1.

We may call the internal functor faithful if the induced morphism f ′ is a monomorphism in E .

Proposition 1.2.5. An internal functor f : A→ B is a monomorphism in Cat (E)1 if and only if it is faithful

and f0 is a monomorphism.

Proof. Note that f = (f0, f1) is a monomorphism in Cat (E)1 if and only if both f0 and f1 are monomorphisms

in E . Thus it suffices to show that under the assumption that f0 is a monomorphism, f1 is a monomorphism
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if and only if f is faithful. But if f0 is a monomorphism, then so is f0 × f0, since the diagonal functor

E → E × E preserves limits. Hence, since monomorphisms are stable under pullback, the pullback of f0 × f0

along (d0, d1) : B1 → B0 × B0 is also a monomorphism. The statement then follows from the two-out-of-three

property for monomorphisms.

We now discuss some functors associated to Cat (E)1. Since [∆op, E ] is a functor category, it has evaluation

functors evn : [∆op, E ] → E for all n ∈ ∆op, and evaluation natural transformations evφ : evn ⇒ evm for all

φ ∈ ∆ (m,n).

Remark 1.2.6. For all non-negative integers n, there is a functor evEn : Cat (E)1 → E defined as the nerve functor

of Remark 1.2.2 followed by evaluation. Thus it acts so that C 7→ Cn, and (f : C→ D) 7→ (fn : Cn → Dn).

There are natural transformations dE0 , d
E
1 : evE1 ⇒ evE0 whose components on an internal category are given by

its source and target maps respectively. Similarly, there are natural transformation iE : evE0 ⇒ evE1 ⇐ evE2 : mE

with identity assigners and composition maps as components, respectively. These can all be seen as whiskering

the nerve with evaluation natural transformations. As limits in functor categories are computed pointwise, evE2

is the pullback of dE0 and dE1 in the functor category [Cat (E)1 , E ]. Then it is easy to see that the data just

described combine to give a category internal to [Cat (E)1 , E ], as the axioms follow pointwise. We will refer to

this as the evaluation category internal to [Cat (E)1 , E ], and denote it by E . We will often refer to evE0 , evE1

and evE2 as ObE , ArrE and PairE respectively, and we will drop the subscript ‘E ’ whenever possible. Note that

Proposition 1.2.3 just says that Arr is faithful.

Recall that when E = Set there is a sequence of adjunctions Π0 a Disc a Ob a coDisc, where Π0 sends

a category to its set of connected components and Disc and coDisc equip a set with morphisms, giving it

the structure of a discrete and codiscrete category respectively. The remarks which follow discuss sufficient

conditions for a similar result to hold internally to E . The proofs are straightforward verification of the axioms

of internal categories and functors, and of the triangle identities, using the various universal properties involved.

These adjunctions will feature in various places throughout this thesis.

Remark 1.2.7. Under no conditions, the functor Ob has a left adjoint Disc : E → Cat (E)1, which sends X ∈ E
to the internal category whose object of objects is X, and source, target, identity and composition maps are all

1X . The components of the unit of this adjunction on X ∈ E are all given by identities, while the components

of the counit on an internal category A are given by the internal functor εEA :=
(
1A0

, iA
)
. That is, its component

on objects is the identity and its component on arrows is the identity assigner.

Remark 1.2.8. If E has products then the functor Ob has a right adjoint coDisc : E → Cat (E)1 which sends

X ∈ E to the internal category X : ∆op → E with X (n) given by the n + 1-fold product X × ... × X. The

diagonal (1X , 1X) : X → X ×X is the identity assigner, while source, target and composition maps are given

by product projections. The counit is the identity, while the unit has its component on an internal category

A given by the internal functor ηEA := (1A0
, (d0, d1)). That is, its component on objects is the identity and its

component on arrows is induced by the universal property of the product in E , given the data of the source

and target maps of A. The counit of the previous adjunction and the unit of this adjunction have components

which are fully faithful internal functors, and an internal functor f is fully faithful if and only if the naturality

square of ηE on f is a pullback.

Remark 1.2.9. Assume E has coequalisers of reflexive pairs. Then Disc has a left adjoint Π0 : Cat (E) → E
which sends every internal category A to the codomain of the coequaliser qA of its source and target, and every

internal functor (f0, f1) : A → B to the morphism shown below, which is induced by the universal property of

Π0A, given the serial commutativity of the square on the left:
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A1 A0 Π0A

B1 B0 Π0B

d0

d1
f1

qA

f0 Π0(f)
d0

d1
qB

The component of the unit q : 1Cat(E) ⇒ Disc◦Π0 on an internal category A is given on objects by the coequaliser

qA above, and on arrows by the identity assigner of A followed by this morphism, while the component of the

counit on an object X ∈ E is just given by the identity on that object. The triangle identities then hold since

by the universal property of coequalisers, Π0 maps qA to the identity, and since coequalisers of identities are

identities.

Finally, although internal categories A,B are precisely monads in Span (E), the morphisms of these monads

may not be internal functors. Indeed, the ones which are internal functors are precisely those for which the

component spans An ← Xn → Bn have left legs which are identities.

1.3 Internal Natural Transformations

Definition 1.3.1. Given internal functors (f0, f1) , (g0, g1) : (A0, A1)→ (B0, B1), an internal natural transfor-

mation is a morphism α : A0 → B1 such that the following diagrams commute:

• Assignation of components:

A0 B1

B0

α

f0
d0

A0 B1

B0

α

g0
d1

• Internal naturality is given by the square on the left, where the morphisms α0 := (αd0, g1) : A1 → B2

and α1 := (f1, αd1) : A1 → B2 are respectively induced as shown in the other two diagrams, given

d1αd0 = g0d0 = d0g1 and d0αd1 = f0d1 = d1f1.

A1 B2

B2 B1

α0

α1 m

m

A1 A0

B2 B1

B1 B0

d0

α0

g0

α

π0

π1 d1

d0

A1

B2 B1

A0 B1 B0

d1

f1

α1

π0

π1 d1

α d0

Here α0 is thought of as taking a morphism in A and returning the composable pair in B consisting of the

image of that morphism under g, together with the component of α on its domain. Similarly, α1 is thought of as

returning the composable pair consisting of the image of the morphism under f , together with the component

of α on its domain. If α : A0 → B1 is an isomorphism in E then α has the property which may be externally

described as that ‘every morphism in B is the component of α at some object in A’. Meanwhile, if the square

giving the naturality condition is a pullback in E , then α has the property which may be externally described

as that ‘every commutative square in B is the naturality square of a unique morphism in A’. We will show

in Theorem 1.5.4 that these properties both hold precisely when α is the universal 2-cell of a power by 2 in

Cat (E). Since all notions involved in their definition involve only finite limits, the properties of being an

internal category, functor or natural transformation is both preserved by all hom-functors E (X,−) : E → Set,

and jointly reflected by them.

1.4 The 2-Category Cat (E)

Definition 1.4.1. Let A B

h

g

f

α

β
be internal natural transformations. Then define their vertical composite

β ◦ α by A0 B2 B1
(α,β) m , where (α, β) is induced since d0β = g0 = d1α.
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Proposition 1.4.2. The vertical composite of internal natural transformations β ◦ α as defined above is itself

well-defined as an internal natural transformation.

Proof. Considering the diagrams in Diagram 7.0.4, we see that the first two respectively show sources and

targets for components of β ◦α, while the third shows internal naturality. In the third diagram, the three lower

quadrilaterals are associativity axioms, while the two triangles and the two upper quadrilaterals can be verified

to commute by the universal property of B2. We elaborate on the left triangle and left upper quadrilateral, as

the right triangle and right upper quadrilateral are similar. Of the four diagrams in Diagram 7.0.5, the first

two show the commutativity of the left triangle while the second two show the commutativity of the upper left

quadrilateral.

Proposition 1.4.3. Let A, B be categories internal to E. Then there is a category Cat (A,B) with

• Objects given by internal functors from A to B,

• Hom-sets Cat (A,B) (f, g) given by internal natural transformations from f to g,

• Composition is given by the vertical composite of internal natural transformations, described above.

• The identity internal natural transformation 1f of f : A→ B is given by if0, or equivalently by f1i.

This category is small if E is locally small.

Proof. Composition can be seen to be associative by equational associativity in B. We show that identities

are well-defined as internal natural transformations. Indeed, 1f respects sources as d0if0 = f0, and targets as

d1if0 = f0. It is natural, since in the diagram below, the lower and right triangles commute by the left and

right unit laws in B, while the upper and left triangles can be seen to commute by the universal property of B2.

A1 B2

B1

B2 B1

(1f )
1

f1

(1f )
0 m

i1

i0

1B1

m

That 1f indeed defines a left identity for f is clear since if α : e⇒ f is an internal natural transformation, then

1fα = m (if0, α) = m (id0α, α) = m (id0, 1B1
)α = α. By an analogous argument, one sees that 1f is also a

right identity. This establishes that internal functors from A to B and internal natural transformations between

them form a category, a required. The size conditions hold since both internal functors and internal natural

transformations are determined by finite sets of morphisms of E subject to certain conditions.

Definition 1.4.4. The left whiskering and right whiskering pictured below are defined as βf0 and g1α respec-

tively.

A B Cf
g

g′

β A B C
f

f ′

gα

Proposition 1.4.5. The left and right whiskerings as defined are well-defined as internal natural transforma-

tions.

Proof. The left whiskering respects sources as d0βf0 = g0f0 = (gf)0, and targets as d1βf0 = g′0f0 = (g′f)0.

The right whiskering also respects sources as d0g1α = g0d0α = g0f0 = (gf)0, and targets as d1g1α = g0d1α =

g0f
′
0 = (gf ′)0. It can then be shown by the universal property of C2 that the whiskerings satisfy the identities

(gα)k = g2αk and (βf)k = βkf1 for k ∈ {0, 1}, where for the latter identity one uses the axiom that f preserves

sources and targets for k = 0 and k = 1 respectively.
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The left and right whiskerings can be seen to be natural by the commutativity of the diagrams in Diagram

7.0.6. In the first of these diagrams, the triangles commute by the second of the identities above, while the

quadrilateral commutes by the naturality axiom for β. Meanwhile, in the second of the diagrams, the triangles

commute by the first of the identities above, and the quadrilaterals are the naturality axiom for α, and g’s

respect for composites. Thus the whiskerings are well-defined internal natural transformations, as required.

Theorem 1.4.6. Let E be a category with pullbacks. Categories internal to E are the objects of a 2-category

Cat (E) whose hom-categories are described in Proposition 1.4.3, and whose horizontal composition of 2-cells

defined via the above whiskerings in the usual way as described in Proposition II 3.1 of [26]. If E is small (resp.

locally small), then Cat (E) is small (resp. has small hom-categories).

Proof. We first show that we have a uniquely defined notion of horizontal composition β∗α : gf ⇒ g′f ′ : A→ C.

This requires that (βf) ◦ (g′α) = (gα) ◦ (βf ′). To see this, consider the first diagram of Diagram 7.0.7. The

quadrilateral is the naturality axiom for β, while the triangles commute by the universal property of C2 given

the commutativity of the other four diagrams of Diagram 7.0.7; the second and third for the top triangle and

the fourth and fifth for the triangle on the left.

Associativity and unit laws for whiskerings are immediate from their definition as they are directly inherited

from E . The left whiskering’s respect for vertical composition is also immediate, while for the right whiskering

this follows since g1m (α, β) = mg2 (α, β) = m (g1α, g1β), by g’s respect for composition and the definition of

g2. Thus internal categories, functors, and natural transformations form a 2-category, as required. The size

conditions follow from the embedding of Cat (E)1 into [∆op, E ].

Corollary 1.4.7. The assignment A 7→ Aop, (f : A→ B) 7→ (fop : Aop → Bop) , α 7→ α constitutes an isomor-

phism of 2-categories Cat (E)→ Cat (E)
co

.

Proof. It suffices just to check that if α : f ⇒ g : A→ B is an internal natural transformation, then α : gop ⇒
fop : Aop → Bop is as well. But this is clear since switching the sources and targets of B swaps the axioms

for sources and targets for components for α. Then the 2-natural transformations exhibiting the equivalence of

2-categories have identity components, so that it is in fact an isomorphism of 2-categories.

Remark 1.4.8. We briefly remark upon some examples of internal categories which are considerably different

to the ones on which we will primarily be focussing in this thesis. In fact, the notion of internal categories,

functors, and natural transformations can be made sense of internal to an ambient category E under weaker

assumptions than the existence of all pullbacks in E . For the data A2 A1 A0
m

d0

d1

i to be a well-defined

internal category, we really just need that all pullbacks along d0 and d1 exist. Indeed, the original motivating

example for the theory of internal categories took E to be the category of smooth manifolds. There the main

objects of interest are internal groupoids, or Lie groupoids, which are formed by ensuring that their domain and

codomain maps are submersions, a class of maps along which pullbacks do exist. One can also take E to be the

category of abelian groups, in which case Cat (E)1 is in fact equivalent to E2, as a special case of the Dold–Kan

correspondence [12].

1.5 n-tuple Categories, Powers by 2, and the Double Category of Squares

In this section, we examine how the operation of sending E 7→ Cat (E) can be iterated to form what are some-

times called ‘multiple categories’, and what we will call ‘n-tuple categories’. Following this, we describe powers

by 2 in Cat (E), and prove some properties of their universal 2-cells which will be useful in later chapters. We

will also see how powers of an object in any 2-category K give rise to a category internal to K in a well-behaved

(2-functorial and limit preserving) way. The case of K = Cat (E) will be used in Section 3.4, and will be

called the double category of squares. As well as the notion of an internal category itself, the notions of n-tuple
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categories and double categories of squares are also originally due to Ehresmann.

Since limits commute with one another up to isomorphism, it is clear that Cat (E)1 inherits limits from E ,

with structure maps induced by universal properties. Then the functors evEn : Cat (E)1 → E of Remark 1.2.6

all strictly preserve limits. This allows the following definition.

Definition 1.5.1. 1. Recursively define n-tuple-Cat (E) as Cat (E) when n = 1 and Cat
(

(n− 1) -tuple-Cat (E)1

)
for integers n ≥ 1. Call its objects, 1-cells and 2-cells n- tuple categories, functors and natural transfor-

mations in E respectively.

2. When n ∈ {2, 3, 4} we will denote n-tuple-Cat (E) by DblCat (E), TrplCat (E) and QdplCat (E) re-

spectively, and replace the prefix ‘n-tuple’ with ‘double’, ‘triple’ and ‘quadruple’.

3. Viewing the data of a double category A like so

A2,0 A2,1 . .
.

A1,0 A1,1 A1,2 · · ·

A0,0 A0,1 A0,2 · · ·

m m

d0 d1

i

d0

d1

d0 d1

m

i

i

d0

d1

i

m

each row, and each column, forms a category internal to E . For j ∈ N, respectively call the jth row and

column, the jth horizontal and vertical category of A. When j ∈ {0, 1}, we will call these the horizontal

and vertical categories of {objects, arrows}, respectively.

4. We give a recursive definition of an n-tuple functor to be extremal.

• Base case: a 1-tuple functor is extremal if it is the identity on objects.

• A functor (f0, f1) internal to (n− 1)-tuple-Cat (E) is an extremal n-tuple functor if f0 is the identity

and f1 is an extremal (n− 1)-tuple functor.

5. Let TE : DblCat (E)→ DblCat (E) be the involutary 2-functor which swaps the vertical and horizontal

categories of a double category. Call TE (A) the transpose of the double category A, and call A symmetric

if TE (A) = A.

The language of n-tuple categories will be used in the proofs of some of the main results of Chapter Three, in

particular the various monad-like structures on the assignment E 7→ Cat (E)1. We will provide some examples

for the concepts in the above definition later in this section. Note that we have already seen a simple example

for extremal n-tuple functors for the case when n = 1, such as the unit of the adjunction in Remark 1.2.8 and

the counit of the adjunction in Remark 1.2.7.

More than just inheriting conical limits from E , Cat (E) also has powers by 2. We describe the internal con-

struction of the usual ‘arrow category’ in the example below, and prove its universal property in the subsequent

theorem. Throughout, for n ∈ N\{0} let n := {0→ ...→ (n− 1)} denote the path category.

Example 1.5.2. For A ∈ Cat (E), define the internal category A2 to have object of objects A1, and object of

arrows given by the kernel pair of composition ASq from 1.1.4, whose projections we will refer to as p0 and p1. Its

domain and comdomain maps are given by d20 := π0p0 and d21 := π1p1 respectively, and its identity i2 := (i0, i1)

is induced by the universal property of the pullback. Letting π2
0 and π2

1 denote the respective pullback projections

of
(
A2
)

2
, set the following notation for morphisms induced into the pullback A2.
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q0 :=


(
A2
)

2
ASq A2 A1

π2
0 p0 π1

(
A2
)

2
ASq A2 A1

π2
1 p0 π1

 q1 :=


(
A2
)

2
ASq A2 A1

π2
0 p1 π0

(
A2
)

2
ASq A2 A1

π2
1 p1 π0


r0 :=

 (
A2
)

2
ASq A2 A1

π2
0 p0 π0(

A2
)

2
A2 A1

q0 m

 r1 :=


(
A2
)

2
A2 A1

q1 m

(
A2
)

2
ASq A2 A1

π2
1 p1 π1


The morphisms q0 and q1 may be thought of externally as taking a composable pair of commutative squares

such as the one depicted below and returning the composable pairs (a0, b0) and (a1, b1), while the morphisms r0

and r1 return the composable pairs corresponding to the ‘two ways of traversing the boundary’, (f, b1a1) and

(b0a0, k) respectively. Then the composition map m2 is given by (r0, r1) :
(
A2
)

2
→ ASq.

X0 Y0 Z0

X1 Y1 Z1

a0

f

b0

g k

a1 b1

In summary, if f : X →
(
A2
)

2
is a morphism in E so that πjpkπ

2
l f := fl,k,j for (j, k, l) ∈ {0, 1}×{0, 1}×{0, 1},

then πjpkm
2f is given by the first table in Diagram 7.0.8. Note that the domain and codomain maps provide the

internal functors (dA, d0) , (cA, d1) : A2 → A, and that we have an internal natural transformation λA : dA ⇒ cA

given by λA := 1A1 : A1 → A1. Indeed, all constructions involved are representable, so the axioms follow since

they hold for E = Set.

Theorem 1.5.3. Let E be a category with finite limits. Then Cat (E) has finite weighted limits.

Proof. Recall [18] that 2 is a strong generator for Cat, and that weighted limits may be constructed using

conical limits and powers by a strong generator. It therefore suffices just to prove the universal property of the

above construction. To do this, we need to give a functor F from the functor category [2,Cat (E) (B,A)] to

the hom-category Cat (E)
(
B,A2

)
which exhibits horizontal composition by λA as an isomorphism of categories

natural in B.

We define F on objects. Given φ : f0 ⇒ f1 : B → A let Fφ : B → A2 be the internal functor whose

component on objects is given by φ and component on arrows is given by (φ0, φ1) : B1 → ASq, the morphism

induced by the pullback given the naturality axiom for φ. Then Fφ respects sources and targets automatically

by definition, and can be seen to respect identities by the universal properties of ASq and A2 given the commu-

tativity of the diagrams in Diagram 7.0.9 for j ∈ {0, 1}. Fφ may furthermore be seen to respect composition

given the commutativity of the first two diagrams in Diagram 7.0.10 for (j, k) ∈ {0, 1} × {0, 1}, where the

triangular region in the second diagram commutes by the universal property of A2, given the commutativity of

the third diagram for (k, l) ∈ {0, 1} × {0, 1}.

We define F on arrows. Given the commutative square Γ in Cat (E) (B,A) as shown below, considered as

a morphism from φ0 to φ1 in
(
Cat (E) (A,B)

)2
, let its image under F be induced by the universal property of(

A2
)

2
so that πkpjFΓ is given by the second table in Diagram 7.0.8. Then sources and targets of components

for FΓ is immediate from the definition, while internal naturality follows by the commutativity of the first two

diagrams in Diagram 7.0.11 for j ∈ {0, 1}. In the second of these and when j = 0, the upper triangle commutes

by the universal property of A2 given the commutativity of the last two diagrams there, while all other regions

can be shown to commute similarly.

For functoriality of F , let the commutative square Ω shown below be viewed as a morphism φ1 → φ2 in(
Cat (E)

)2
.
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Γ :=

f0 g0

f1 g1

φ0

α0

φ1

α1

Ω :=

g0 h0

g1 h1

φ1

β0

φ2

β1

Then the following calculation follows from the tables of values in Diagram 7.0.8. One can similarly use the

unit laws of A to verify that F preserves identities, so that F is well-defined as a functor.

(FΩ) ◦ (FΓ) = m2

(
FΓ

FΩ

)
= m2

((
φ0, α1

) (
α0, φ1

)(
φ1, β1

) (
β0, φ2

)) =

(
φ0 m

(
α1, β1

)
m
(
α0, β0

)
φ2

)
= F (Ω ◦ Γ)

Since λA : A1 → A1 is just an identity morphism in E , it is easy to see that λA ∗ FΓ = Γ, and conversely

for γ : s ⇒ t : B → A2, we have F (λA ∗ γ) = γ. Thus F is indeed an isomorphism of categories. Finally,

for naturality in B, precomposition by an internal functor e : C → B commutes with F since F is defined by

universal properties of limits.

The following characterisation of universal 2-cells of powers by 2 in Cat (E) was promised after the definition

of an internal natural transformation, and will be useful in determining when certain functors preserve powers

by 2.

Theorem 1.5.4. An internal natural transformation α : f ⇒ g : A→ B is the universal 2-cell exhibiting A as

the power by 2 of B if and only if α : A0 → B1 is an isomorphism in E, and the square involved in the naturality

axiom for α is a pullback.

Proof. If the internal natural transformation α is the universal 2-cell exhibiting A as the power by 2 of B then

α : B1 → B1 is the identity, and the square giving its naturality axiom is just the pullback square defining(
B2
)

1
. Conversely, suppose that α : A0 → B1 is an isomorphism in E and that the square involved in the

naturality axiom for α is a pullback. These conditions respectively say that the morphisms α : A0 →
(
B2
)

0

and u := (αd0, αd1) : A1 →
(
B2
)

1
:= m ×B1 m are invertible in E . We claim that (α, u) and

(
α−1, u−1

)
are

the data of internal functors which give an isomorphism A ∼= B2 in Cat (E)1. It suffices to check that these are

well-defined internal functors. One can either do this directly via calculations such as those above, or use the

yoneda embedding of E to reduce to the case when E = Set, where the proof is easier. For further details, see

Propositions 3.19 and 12.1 of [6], where the second of these approaches is taken.

The remark below, and the subsequent proposition, examine the relationship between powers by 2 in Cat (E)

and the various adjunctions from Remarks 1.2.7, 1.2.8, and 1.2.9. The information in the remark will be useful

in Chapter Three, and the proposition will be used to prove the comprehensive factorisation in Chapter Five.

Remark 1.5.5. Let X ∈ E and A ∈ Cat (E), and recall the adjunction Disc a ObE from Remark 1.2.7. Then

there are the following natural bijections:

E (X,A1) = E
(
X,ObE

(
A2
)) ∼= Cat

(
DiscE (X) ,A2

)
1
∼= ArrSet

(
Cat (DiscE (X) ,A)1

)
Thus morphisms from X to the object of arrows of an internal category A are in natural bijection with internal

natural transformations between internal functors from the discrete category on X to A.

Proposition 1.5.6. Suppose E has coequalisers of reflexive pairs. Then the internal functor qA : A → Disc ◦
Π0 (A) which was the component of the unit of the adjunction from Remark 1.2.9 is the coidentifier of the

universal 2-cell of the power of A by 2.

Proof. For the 1-dimensional universal property, let f : A → B be an internal functor so that f.λA is an iden-

tity internal natural transformation. Then in particular f1id0 = f0id1, and hence since f preserves identities

if0d0 = if0d1. By sources (or targets) for identities in B, we may compose by either of these on the right, to get

that f0d1 = f0d1. Now by the universal property of Π0 (A) as a coequaliser in E , we have an induced morphism
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u : Π0 (A)→ B0, and since Disc◦Π0 (A) is a discrete category, this is clearly well-defined as an internal functor.

The universal property in E assures that it is indeed the unique internal functor commuting with f and qA.

For the 2-dimensional universal property, let f, g : A → B be internal functors with f.λA and g.λA both

identities, and let β : f ⇒ g be any internal natural transformation. Examining the two ways of forming the

horizontal composite β ∗ λ and recalling that these must be equal, we see that βd0 = βd1 since both fλA and

gλA are identities. Hence induce γ : Π0 (A) → B1 by the universal property of the coequaliser, and define

h0 := d0γ and k0 := d1γ. It is once again clear that (h0, ih0) and (k0, ik0) constitute internal functors from

Disc ◦ Π0 (A) to B. Furthermore, γ : h ⇒ k is well-defined as an internal natural transformation. Assignation

of components follows by the definitions of h0 and k0, while naturality follows from the left and right unit laws

for B, as in Diagram 7.0.12. Note once again that uniqueness follows from the universal property in E .

We now give a construction of a category internal to the underlying category of any 2-category with powers K,

and show that this construction is 2-functorial. This 2-functor will feature significantly in Section 3.4 as the

component at K of a pseudonatural transformation, which will itself be the unit of a biadjunction discussed

there.

Theorem 1.5.7. Let K be a 2-category with powers by finite categories and denote its underlying 1-category by

K1. Let A ∈ K have

1. α : a2
0 ⇒ a2

1 : A2 → A as the universal 2-cell of its power by 2

2. The diagram a3
0 a3

1 a3
2

α0 α1 in the hom-category K
(
A3, A

)
as the universal composable pair of

2-cells of its power by 3.

Then

1. The following square is a pullback in Cat (E), where α ∗ α′j = αj for j ∈ {0, 1}.

A3 A2

A2 A

α′0

α′1

y
a21

a20

2. Let ∆A : A→ A2 denote the diagonal morphism which satisfies α∆A = 11A , and let m : A3 → A2 be the

unique morphism satisfying αm = α1 ◦ α0. Then the data A3 A2 Am
a0

a1

∆A , which we collectively

denote by ηK (A), is a category internal to K1.

3. The assignment A 7→ ηK (A) extends to a 2-functor ηK : K → Cat (K1) that preserves powers and any

conical limits that exist in K.

Proof. For part (1), first observe that the square commutes since a2
1α
′
0 = a3

1 = a2
0α
′
1. Then, for the 1-dimensional

universal property, let 1-cells x0, x1 : X → A2 satisfy a2
1x0 = a2

0x1. This commutativity condition says precisely

that the codomain of χ0 := α.x0 is the domain of χ1 := α.x1. In other words, we have a composable pair in

K (X,A). Let (χ0, χ1) : X → A3 be hence induced by the universal property of the power by 3. It follows

from the universal property of the power by 2 that (χ0, χ1) is the unique 1-cell satisfying α′j (χ0, χ1) = xj for

j ∈ {0, 1}, since αα′j (χ0, χ1) = αj (χ0, χ1) = χj = α.xj . The 2-dimensional universal property of the pullback

follows from the 1-dimensional universal property, given the assumption that K has powers. In fact, this ar-

gument extends by induction on n to show that K has pullbacks along projections from powers by any path

category n.

For part (2), firstly note that sources and targets for identities and composition follow immediately from the
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definition of ηK and m. Furthermore, the universal property of A2 reduces associativity and left and right unit

laws of ηK (A) to those of the hom-categories K
(
A4, A

)
and K

(
A3, A

)
respectively.

For part (3), given a 1-cell f : A→ B, the data ηK (f) :=
(
f, f2

)
defines an internal functor ηK (A)→ ηK (B);

respect for sources and targets is immediate, while respect for identities and composition follow from easy

calculations similar to those above. Similarly, let g : A → B be another 1-cell and β : f ⇒ g a 2-cell. Take

ηK (β) : A→ B2 to be the 1-cell induced by the universal property of B2 given β. Then ηK (β) : ηK (f)⇒ ηK (g)

is an internal natural transformation. Once again, sources and targets for components follows immediately, while

internal naturality is easy to check using the universal property of the power by 2. Functoriality between hom-

categories and 2-functoriality can also be checked using the 2-dimensional and 1-dimensional universal properties

of B2 respectively. Finally, since all constructions involved mention only finite weighted limits, it is clear that

they are preserved.

Remark 1.5.8. When K = Cat (E), we will denote the underlying functor of the 2-functor ηK above as δE , and

we will call δE (A) the double category of squares in A, for A ∈ Cat (E). In particular double categories of

squares are symmetric, as defined in Definition 1.5.1. As mentioned above, the 2-functors ηK : K → Cat (K1)

will feature as the components of the unit of a biadjunction in Theorem 3.4.2. Furthermore, the functors

δE : Cat (E)1 → DblCat (E)1 will also feature as the components of the comultiplication for a pseudocomonad

structure on the assignment E 7→ Cat (E)1 in Section 3.4.

The isomorphisms up to which ηK : K→ Cat (K1) preserves powers by 2 will also be of importance in Section

3.4. In the special case of K = Cat (E), these will feature as the components of the modification up to

which coassociativity of the pseudocomonad holds in Theorem 3.4.4. For now, we prove naturality of certain

assignments as described in the following proposition.

Proposition 1.5.9. Let F : K → L be a 2-functor which preserves powers by 2 up to coherent isomorphisms

F
(
A2
) ∼= (FA)

2
which we denote by

(
ηFA
)

1
. Then

1. The assignment
(
ηF
)

1
: A 7→

(
ηFA
)

1
is 2-natural in A ∈ K.

2. The assignment F 7→
(
ηF
)

1
is natural in F .

Proof. Let αX denote the universal 2-cell of X’s power by 2 for X in either of K or L, and let f : A → B be

a 1-cell in K. Then part (1) follows from the universal property of the power by 2 in L given the following

calculation, wherein the second and fourth steps use 2-functoriality of F and all other steps use definitions of

morphisms induced into powers by 2:

αFB .
(
ηFB
)

1
.F
(
f2
)

= F (αB) .F
(
f2
)

= F
(
αB .f

2
)

= F (f.αA)

= F (f) .F (αA)

= (Ff) . (αFA) .
(
ηFA
)

1

= αFB . (Ff)
2
.
(
ηFA
)

1

Let α : F ⇒ G be a 2-natural transformation. Then part (2) follows from the following calculation, where the

third step uses 2-naturality of φ and all other steps use definitions of morphisms induced into powers by 2.
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αGA. (φA)
2
.
(
ηFA
)

1
= φA.αFA.η

F
A

= φA.F (αA)

= G (αA) .φA2

= αGA.
(
ηGA
)

1
.φA2

Remark 1.5.10. A special case of Proposition 1.5.9 which will be useful later is when L = Cat (K1) and F is

itself the functor ηK : K → Cat (K1) of Theorem 1.5.7. Then the isomorphism ηηA : ηK
(
A2
) ∼= (

ηKA
)2

up to

which ηK : K → Cat (K1) preserves powers by 2 is the internal functor whose component on objects is the

identity, and whose component on arrows the isomorphism A2×2 ∼=
(
A2
)2

. This is an extremal internal functor

in the sense of Definition 1.5.1. As an even more special case, when K is itself Cat (E), the isomorphisms(
δE (A)

)2 ∼= δE
(
A2
)

up to which δE preserves powers by 2 can be described analogously as being double func-

tors which are the identity on objects, and the unique isomorphism of internal categories A2×2 ∼=
(
A2
)2

on

arrows. This isomorphism of internal categories is again of course itself the identity on objects, and so this is an

example of an extremal double functor in the sense of Definition 1.5.1. Indeed, the objects of objects of A2×2

and
(
A2
)2

are both just ASq.

On the other hand, the objects of arrows of
(
A2
)2

and A2×2 may both be thought of externally as ‘objects

of commutative cubes in A’, however they are constructed in different ways. The object of arrows of
(
A2
)2

is

constructed as the object of ‘commutative squares of commutative squares’, or the kernel pair of the composition

map in A2. In contrast, the object of arrows of A2×2 is constructed as the object of ‘six commutative squares

whose edges match in such a way so as to make a commutative cube’. We describe its construction. First, take

the six product projections s1, ..., s6 :
(∏6

k=1 ASq

)
→ ASq, each corresponding to a face of a cube. Then form

twelve pullbacks, each asserting the equality of a pair of edges, and finally, take the intersection of all twelve of

these pullbacks.

2 Constructions Cat (E) inherits from E

In the last section of the previous chapter, we saw that Cat (E) inherits conical limits from E since the data of

an internal category mention only finite limits. We also saw that a certain 2-categorical property emerged in

Cat (E), namely that of having powers by 2. In this chapter we will look at some other properties of E which

Cat (E) inherits directly, namely cartesian closedness in Section 2.1 and extensivity and a natural numbers

object in Section 2.2. We will also see some other 2-categorical properties emerge in Cat (E) under certain

assumptions on E in the final two sections of this chapter, namely copowers by 2 in Section 2.3, and a classifier

for full subobjects in Section 2.4. We will the collect the results of this chapter into a list of properties Cat (E)

has when E is an elementary topos, and finish this chapter by remarking upon some properties that Cat (E)

does not inherit from E .

2.1 Cartesian Closedness

Suppose that E is a cartesian closed category with finite limits and let A,B ∈ Cat (E). We construct the

exponential BA. Its object of objects
(
BA
)

0
will be given by the intersection, or limit, of six equalisers into

B0
A0 × B1

A1 × B2
A2 . Each of the four internal functoriality axioms are encoded by one of these equalisers,

while the remaining two equalisers together encode the defining property of an internal functor’s component

on composable pairs. The object of arrows of BA will be given by the intersection of seven equalisers into(
BA)

0
×
(
BA)

0
×B2

A1 ×B2
A1 . Four of these equalisers encode the defining properties of the morphisms which
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‘send an arrow of A to either side of its naturality square’, while the other three each encode an axiom for

an internal natural transformation. The source, target, identity and composition maps of BA are induced by

universal properties, and its universal property may be checked directly. However, it is easier to show that

Cat (E) is in fact an exponential ideal of [∆op, E ].

Theorem 2.1.1. Let A be a category, let E be a category with finite limits and exponentials, and recall the

nerve functor N : Cat (E)1 → [∆op, E ] of Remark 1.2.2.

1. The functor category [A, E ] has an exponential object for F,G : A → E given by the functor k 7→∫
n

A (n, k) t GnFn.

2. The exponential GF preserves any limits G preserves.

3. For A ∈ Cat (E) and F ∈ [∆op, E ], the exponential object (NA)
F

: ∆op → E is an internal category.

4. The internal category NANB has the universal property of the exponential in Cat (E).

Proof. Part (1) follows from the following natural bijections, where • and t denote the Set-enriched copower

and power, respectively:

E

X,∫
n

A (n, k) t GnFn

 ∼= E (A (n, k) •X,GnFn
)

∼= E (A (n, k) •X × Fn,Gn)

∼= E ((A (−, k) •X)× F (−) , G (−))

∼= [A,E ]
(
A (−, k) •X,GF (−)

)
∼= E

(
X,GF (k)

)
For Part (2), consider the following sequence of natural bijections, where by P QC we denote the set

of morphisms from P to Q in the category C, and by Ê we denote the presheaf category [Eop,Set]. The proof

follows by noticing that each natural bijection preserves the property of a morphism being invertible.

GF
(

lim
i
Bi

)
lim
i
GF (Bi)

E
(
X,GF

(
lim
i
Bi

))
E
(
X, lim

i
GF (Bi)

)

E
(
X,
∫
n

A
(
n, lim

i
Bi

)
t GnFn

)
E

X, lim
i

∫
n

A (n,Bi) t GnFn



E
(
X,
∫
n

lim
i
A (n,Bi) t GnFn

)
E

X, lim
i

∫
n

A (n,Bi) t GnFn



E

X, lim
i

∫
n

A (n,Bi) t GnFn

 E

X, lim
i

∫
n

A (n,Bi) t GnFn



E

Ê

Ê

Ê

Ê

Part (3) then follows from part (2) and the characterisation of those simplicial objects which are internal

categories, namely that they preserve certain pullbacks. For part (4), the one dimensional universal property

follows from Part (3). For the 2-dimensional universal property, let 2 t C denote the power by 2 in Cat (E), then

since exponentiation is a right adjoint, (2 t C)
B

has at least the 1-dimensional universal property in Cat (E)

of the power by 2 of the exponential CB from Cat (E)1. Then the following natural bijections show that the
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2-dimensional universal property is also satisfied:

{A× B⇒ C} ∼= {A× B→ 2 t C}
∼= {A→ (2 t C)

B}
∼= {A→ 2 t

(
CB)}

∼= {A⇒ CB}

2.2 Extensivity

Since the definition of an internal category involves pullbacks, some commutativity with pullbacks is needed

for colimits in E to be inherited in Cat (E). The functor category [∆op, E ] has whatever colimits E has as

they are computed pointwisely. All of these give rise to colimits in Cat (E)1 when Cat (E)1 is a reflective

subcategory of [∆op, E ], which holds when E is locally presentable [1]. Under different assumptions, coproducts

restrict to Cat (E)1 when E is extensive. Recall that extensivity means that for all A,B ∈ E , the functor

E/A× E/B → E/ (A+B), which takes the coproduct, is an equivalence of categories [8].

Proposition 2.2.1. Let E be an extensive category with pullbacks. Then Cat (E) has coproducts as computed

in [∆op, E ].

Proof. Let A and B be categories internal to E . Then the diagrams which need to be pullbacks for A + B to

be well-defined as an internal category are precisely the coproducts in E of the corresponding pullbacks which

exhibit A and B as internal categories. But by extensivity of E , these will be pullbacks as well. Thus Cat (E)1

has coproducts as computed in [∆op, E ]. But since Cat (E) has powers as we saw in Proposition 1.5.3, the

2-dimensional universal property is also satisfied.

In particular, the coprojections from the coproduct in Cat (E) are discrete conduche fibrations, discrete fibra-

tions, discrete opfibrations, and reflect identities, as described in Remark 1.2.4.

Coequalisers on the other hand may not be inherited from [∆op, E ], even if coequaliser diagrams are stable

under pullback. As an example, when E = Set, the two distinct functors from the terminal category 1 to the

free-living morphism 2 have a coequaliser given by the free monoid on one generator, whose object of arrows

is the set of natural numbers N rather than 2. This is because identifying the two objects of 2 produces the

new composable pair, namely the unique non-identity morphism s ∈ 2 (0, 1), which becomes composable with

itself. The existence of a natural numbers object in Set allows us to produce this particular coequaliser in

Cat (Set) = Cat. However, for E = Setf , the category of finite sets, no such natural numbers object exists,

and indeed neither does the coequaliser of this parallel pair in Cat (Setf ). In general, coequalisers require the

construction of a category from its presentation, which can be done in the presence of list objects [15]. We end

this section by looking at a special case of list objects which are inherited in Cat (E) from E .

Definition 2.2.2. Let E have finite products. A list object for an object X ∈ E is a diagram such as that

shown below on the left, which is initial among diagrams of the form shown below on the right.

1 L (X) X × L (X)
empty

append
1 Y X × Y

When X = 1, L (X) is called a natural numbers object.

Corollary 2.2.3. If E has finite limits and a natural numbers object, then Cat (E) has a natural numbers

object.

Proof. It is clear that as a left adjoint functor which preserves finite products, Disc : E → Cat (E) preserves

list objects, and so in particular gives rise to a natural numbers object in Cat (E).
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2.3 Copowers by 2

We next construct copowers by 2 in Cat (E). Recall that when E = Set, the copower by 2 of a category A is

given by 2×A, since Cat (2×A,B) ∼= Cat (2,Cat (A,B)) by cartesian closedness of Cat. We therefore first

construct the free-living arrow 2 internally.

Notation 2.3.1. Let n ∈ N and X ∈ E. Then by nX we denote the coproduct
∑n
j=1X.

Example 2.3.2. Assume E is lextensive in the sense of [8], in that it is extensive and has finite limits. Denote

the terminal object in E by 1. Then we may define the free living arrow, internal to E, which we denote 2E , to

have

• Object of objects and object of arrows given by 2 and 3 respectively, and object of n-tuples given by n+ 1.

• Identity assigner, source, and target maps induced as indicated in the following diagrams from the universal

property of the respective coproducts.

1 2 1

3 3 3

p1

p1 i

p2

p3

∼= ∼=

2 3 1

2

p1,2

p1
d0

p3

p2

1 3 2

2

p1

p1
d1

p2,3

p2

• Composition m : 4→ 3 is the unique morphism making the following diagrams commute.

1 4 1

3

p1

p1
m

p4

p3

1 4 1

3

p2

p2
m

p3

p2

Then internal category axioms follow from extensivity and the universal property of the coproducts. Note also

in particular that the following diagrams commute in E:

1 3

3 2

p1

p2 d1

d0

1 3

3 2

p2

p3 d1

d0

Remark 2.3.3. By extensivity, the data of the internal category 2E × A satisfies the following properties:

• The identity assigner, source, target and composition maps are the unique morphisms satisfying the

commutativity of each of the respective diagrams, for j ∈ {1, 2} and k ∈ {2, 3}.

A0 A0 +A0 A0

A1 A1 +A1 +A1 A1

p1

i i

p2

i

p1 p3

A1 3A1 A1

A0 2A0 A0

pj

d0 d0

p3

d0

p1 p2

A1 3A1 A1

A0 2A0 A0

p1

d1 d1

pk

d1

p1 p2

A2 4A2 A2

A1 3A1 A1

p1

m m

p4

m

p1 p3

A2 4A2

A1 3A1

pk

m m

p2

• The following data define internal functors A→ 2E

a′A :=

 A0 1 2! p1

A0 1 3! p1

 b′A :=

 A0 1 2! p2

A0 1 3! p3


• The data A0 1 3! p2

defines an internal natural transformation ρ′A : aA ⇒ bA.
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• Thus by the 1-dimensional universal property of 2E ×A as a product, there are induced internal functors

aA := (a′A, 1A) , bA := (b′A, 1A) : A→ 2E × A

• Finally by the 2-dimensional universal property we have an induced internal natural transformation ρA :=

(ρ′A, 11A) : aA ⇒ bA.

Remark 2.3.4. Recall that the category of finite sets Setf is the free completion under finite coproducts of the

terminal category. Furthermore, for lextensive E , the unique coproduct preserving functor FE : Setf → E which

preserves the terminal object will also preserve all other finite limits. As will be discussed in further detail in the

next chapter, any finite limit preserving functor between finite limit categories G : S → E gives rise to a 2-functor

Cat (G) : Cat (S) → Cat (E), which acts componentwisely on all data. Taking S = Setf and applying the

2-functor Cat (FE) : Cat (Setf )→ Cat (E) to the free living arrow 2 ∈ Cat (Setf ) gives the internal category

2E . Furthermore, the description of the internal natural transformation ρA given in remark 2.3.3 may then also

be described as the whiskering with the unique internal functor A → 1 of the internal natural transformation

Cat (FE) (α), where α is the unique non-identity natural transformation between the two distinct functors from

1 to 2. In light of the next theorem, this is to say that Cat (FE) : Cat (Setf ) → Cat (E) preserves copowers

by 2.

Theorem 2.3.5. For A ∈ Cat (E), the internal category 2E ×A has the universal property of the copower of A
by 2 in Cat (E), with the universal 2-cell given by ρA as described in Remark 2.3.3.

Proof. For B ∈ Cat (E), we need to find an assignment both on objects and morphisms F : Cat
(
2,Cat (E) (A,B)

)
→

Cat (E) (2E × A,B) which is inverse to the precomposition functor ρA∗(−) : Cat (E) (2E × A,B)→ Cat
(
2,Cat (E) (A,B)

)
.

Suppose α : A0 → B1 defines an internal natural transformation α : f0 ⇒ f1 : A → B. Then define

(Fα)0 :=
(
f0

0 , f
1
0

)
: 2A0 → B0 and (Fα)1 :=

(
f0

1 , α̂, f
1
1

)
: 3A1 → B1 to be induced by the universal prop-

erty of the coproducts, where α̂ is the morphism A1 → B1 given by either side of the naturality axiom for α.

We show that this is well-defined as an internal functor. For j ∈ {0, 1}, respect for sources follows from the

diagrams Diagram 7.0.13, and respect for targets follows similarly. Respect for identities follows by the first

diagram in Diagram 7.0.14, while respect for composition follows by the second diagram in Diagram 7.0.14 and

the two diagrams in Diagram 7.0.15. The respective triangular regions in the diagrams in Diagram 7.0.15 can

be shown to commute by the universal property of B2 using similar arguments to one another. Considering

those in the first of them from left to right, their commutativity follows respectively from the pairs of diagrams

in Diagram 7.0.16.

Now suppose β : h ⇒ k : A → B is an internal natural transformation, and let the commutative square

shown below on the left be viewed as a morphism from α to β in Cat (E) (A,B)
2
. Then define the morphism

F (γ, δ) : 2A0 → B1 to be induced by the universal property of the coproduct. We claim that F (γ, δ) is an

internal natural transformation Fα⇒ Fβ. Sources for components follows from the universal property of 2A0

given the commutativity of the diagram below on the right for j ∈ {0, 1}, and targets for components follows

from a similar argument.

f0 f1

g0 g1

α

γ δ

β

2A0 B1

A0 B0

FΓ

d0p1+j
βj

fj0

It is natural by the commutativity of the diagrams in Diagram 7.0.17, where similar calculations involving left

and right unit laws may be used to verify the commutativity of the six upper regions of the larger diagram.

Furthermore, calculations using universal properties may then be used to verify that F is an isomorphism of

categories natural in B. It is then easy to see that this assignment is indeed inverse to precomposition.

19



We finish this section with some applications of copowers by 2 in Cat (E), namely relating the power by 2 to

the exponential by 2E , and seeing how 2E ×DiscE (−) : E → Cat (E) strictly preserves generating families.

Corollary 2.3.6. Suppose E has finite limits, extensive coproducts, and is cartesian closed. Then the exponential

object A2E has the universal property of the power by 2 of A.

Proof. Let B ∈ Cat (E) and observe that the following isomorphisms of categories are natural in B: Cat (E)
(
B,A2

) ∼=
[2,Cat (E)

(
B,A

)
] ∼= Cat (E)

(
2E × B,A

) ∼= Cat (E)
(
B,A2E

)
.

Corollary 2.3.7. Recall that a family of objects G in a category C is said to be generating if the family of

hom-functors C (X,−) for X ∈ G are jointly faithful. Suppose that E has finite limits, extensive coproducts, and

a generating family of objects G. Form the family of internal categories Ĝ := {2E ×Disc (X) |X ∈ G}. Then Ĝ
is a generating family for Cat (E)1.

Proof. Let f, g : A → B be internal functors and assume that fh = gh for all internal functors h : 2E ×
Disc (X) → A where X ∈ G. To show that Ĝ is a generating family, we must show that f1 = g1 under

this assumption. Denoting by α the internal natural transformation which corresponds to h via the universal

property of the coproduct, fα = gα. But recall that by Remark 1.5.5, any morphism X → A1 is E corresponds

to an internal natural transformation between internal functors from Disc (X) to A This amounts to saying

that f1α = g1α for all α : X → A1, and hence f1 = g1 as X ∈ G.

2.4 Subobject Classifiers in E give rise to Classifiers for Full Subobjects in Cat (E)

Recall that for a category with finite limits E , a subobject classifier > : 1→ Ω, if it exists, is a terminal object in

the category whose objects are monomorphisms in E and morphisms are pullback squares. Recall the adjunction

Ob a1
ηE coDisc from Remark 1.2.8. For this section, let E be a category with finite limits and a subobject

classifier. Call an internal functor (f0, f1) a full subobject if it is fully-faithful and f0 is a monomorphism. This

title is justified by Proposition 1.2.5.

Theorem 2.4.1. Suppose E has a subobject classifier > : 1→ Ω. Then coDisc (>) is a terminal object in the

category whose objects are full subobjects in Cat (E), and morphisms are pullback squares.

Proof. Since coDisc is a right adjoint it preserves monomorphisms, and moreover it is clear that coDisc (>)

satisfies the criterion for being fully-faithful from Remark 1.2.4. Let f : A → B be a full subobject, let

φ0 : B0 → Ω be the classifier for the monomorphism f0, and let φ : B → coDisc (Ω) be the internal functor

corresponding to φ0 across the natural bijection Cat (E)1 (B, coDisc (Ω)) ∼= E (Ob (B) ,Ω). Thus the component

on arrows of φ is induced by the universal property of Ω×Ω as a product given the morphisms φ0d
B
0 and φ0d

B
1 .

We claim that φ is the unique internal functor making the square below on the left a pullback in Cat (E). In

fact, by adjointness it will suffice just to check that this square actually is a pullback. For the 1-dimensional

universal property, let g : C→ B be an internal functor satisfying φg = coDisc (>)!. Then define h0 : C0 → A0

to be the morphism induced by the universal property of A0 as a pullback, and let h1 be induced as in the

diagram on the right below, given the commutativity of the first diagram in Diagram 7.0.25 for j ∈ {0, 1}.

A 1

B coDisc (Ω)

!

f

y
coDisc(>)

φ

C1

A1 B1

A0 ×A0 B0 ×B0

h1

g1

(h0d0,h0d1)

f1

(d0,d1)

y
(d0,d1)

f0×f0

Then h respects sources and targets by the universal property of A0 given the commutativity of the second

diagram in Diagram 7.0.25, and respects identities by the universal property of A1 as a pullback given the

commutativity of the first row of diagrams in Diagram 7.0.26. Similarly, the second row of diagrams in Diagram
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7.0.26 show that h respects composition, with the top triangle in the first of these commuting by the universal

property of B2 as a pullback, given the commutativity of the second of these. For uniqueness, let h′ : C → A
satisfy fh′ = g, and hence in particular fjh

′
j = gj .

Finally, for the 2-dimensional universal property, let α : g0 ⇒ g1 : C → B be an internal natural transfor-

mation and let h0 and h1 denote the internal functors from C to A given by the one dimensional universal

property. Consider the diagrams in Diagram 7.0.27 for j ∈ {0, 1}. The first shows sources and targets of

components for β, and in light of the commutativity of the diagrams in Diagram 7.0.28, the second and third

show internal naturality while the fourth shows uniqueness of β. This completes the proof.

The fullness aspect of the morphisms which coDisc (>) classifies is a genuinely 2-categorical notion. It does

not in contrast classify subobjects in Cat (E). Recall that a category E is called an elementary topos if it has

finite limits, exponentials, and a subobject classifier. Recall also that elementary toposes can be shown to have

all finite colimits and right adjoints to every pullback functor (Corollaries 2.2.9 and 2.3.4, Part A in [15]). The

results of this chapter combine to give the following result.

Theorem 2.4.2. Let E be an elementary topos. Then the 2-category Cat (E) has

1. Finite weighted limits, and coidentifiers for universal 2-cells of powers by 2

2. Finite Extensive Coproducts

3. Copowers by 2

4. 2-categorical exponentials

5. A full-subobject classifier

Furthermore, if E has a natural numbers object, then Cat (E) also has one.

Proof. Part (1) was Theorem 1.5.3 and Proposition 1.5.6 of the previous chapter, part (2) was Theorem 2.2.1,

part (3) was Theorem 2.3.5, part (4) was Theorem 2.1.1, and part (5) was Theorem 2.4. Natural numbers

objects were treated in Corollary 2.2.3.

We conclude this chapter by remarking upon some properties that Cat (E) does not inherit from E . We have

already seen that Cat (E) need not have coequalisers even if E does, with a counterexample being E = Setf

and the parallel pair being the two distinct functors from 1 to 2. Furthermore, pullback functors of E having

right adjoints, a property known as local cartesian closedness which is shared by all toposes, need not give local

cartesian closedness in Cat (E). Indeed, even when E = Set, certain functors have no right adjoint to their

associated pullback functor. A necessary and sufficient condition for an internal functor to have a right adjoint

to its pullback functor was given in [10]. This means that while Cat has a classifier for full subobjects from

Theorem 2.4.1, it does not have a genuine subobject classifier, since we already know that it has limits and

exponentials, and it is not locally cartesian closed [15].

3 The 2-Functors of the form Cat (−)

Having described the 2-category of categories, functors, and natural transformations internal to a category

with finite limits, we now examine the properties of the extension of the assignment E 7→ Cat (E) to various 2-

functors. In the first section of this chapter we give a description of these 2-functors, and use this view to upgrade

some of the data introduced in Chapter One to being components of pseudo (or 2)-natural transformations,

or modifications. In Section 3.2 we will see how some of this data combine in a very general way to give

pseudomonad-like structures on Cat (−)1 : Lex→ Lex. These are the (co)skew monads of [20]. We will recall
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the definitions of the various monad-like structures we use along the way. In Section 3.3 we will examine some

of the properties preserved by 2-functors of the form Cat (−) : Lex → K where K is either 2-Cat, Lex or

2-Lex. The information presented in that section will be helpful for the main result of Chapter Four, and

Section 5.4. Finally, in Section 3.4 we will construct a pseudocomonad structure on Cat (−)1 : Lex → Lex

from a biadjunction between Cat (−) : Lex → 2-Lex and the underlying functor UndLex : 2-Lex → Lex.

This biadjunction was first proven in [6], and pseudocomonadicity was also remarked upon there. In addition,

we will show that the action of sending a double category to its transpose is a strict distributive law for this

pseudocomonad Cat (−)1 : Lex→ Lex over itself, and moreover a compatible flip. We will refer the reader to

external sources for definitions of strict distributive laws [25] and compatible flips [27], but recall the definitions

of other 2-categorical notions as we need.

Definition 3.0.1. 1. Recall [23] that if F,G : K → L are 2-functors between 2-categories, then a pseudo-

natural transformation consists of a function X 7→ αX from the objects of K to the 1-cells of L, and

for each X,Y ∈ K, a constraint assigning natural isomorphism, whose component on f ∈ K (X,Y ) is

given by the isomorphism αf : αY .Ff ⇒ Gf.αX and is called the pseudonaturality constraint at f . As

well as being natural in f , this data is also required to satisfy a pseudonaturality condition given by the

equality of pastings below, for all composable pairs X Y Z
f g

in K. Note that if all constraint

isomorphisms αf are in fact identities then this reduces to a 2-natural transformation.

FX FY FZ

GX GY GZ

Ff

αX

Fg

αYαf
αZαg

Gf Gg

=

FX FZ

GX GZ

F (gf)

αX αgf
αZ

G(gf)

2. Recall [23] that if α, β : F ⇒ G : K → L are pseudonatural transformations between 2-functors which go

between 2-categories, that a modification Γ : α V β is a function X 7→ ΓX from the objects of K to the

2-cells of L, subject to the axiom that the following equalities of pastings hold in L.

FX FY

GX GY

Ff

αX βX βYαf

Gf

ΓX =

FX FY

GX GY

Ff

αX βYβX

βF

Gf

ΓY

Remark 3.0.2. We also recall the following useful facts about the compositional structure of pseudonatural

transformations and modifications.

• Recall [13] that given any two 2-categories K and L with possibly large hom-categories, there is a large 2-

category GRAY
(
K,L

)
whose objects are 2-functors from K to L, 1-cells are pseudonatural transformations

between these, and 2-cells are modifications between those. Such 2-categories will be denoted [K,L].

• Recall [13] that modifications in [K,K] compose pointwisely in both vertical and horizontal directions.

• Recall [13] that pseudonatural transformations F G Hα β
compose vertically by pointwise

composition of their 1-cell components, and pasting together of their 2-cell components on f ∈ K (X,Y )

along Gf .

• Recall [13] that pseudonatural transformations as pictured below on the left have two possible ways of

composing horizontally, given by the square shown in the middle, and that while these are not in general

equal, there is always an invertible modification between them given by X 7→ βαX . The modification axiom

follows from naturality of β’s pseudonaturality constraint on αX , and the pseudonaturality condition for

β on each side of the square below on the right.
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K L M

F

F ′

α

G

G′

β

GF GF ′

G′F G′F ′

Gα

βF βF ′
βα

G′α

Notation 3.0.3. 1. Let Und : 2-Cat→ Cat denote the 2-functor that sends a 2-category to its underlying

category, and let UndLex : 2-Lex→ Lex be defined similarly.

2. Let [Lex,Lex] denote the 2-category whose objects are 2-functors, 1-cells are pseudonatural transforma-

tions, and 2-cells are modifications.

Remark 3.0.4. We recall the particular isomorphism up to which the composite of two finite limit preserv-

ing functors preserves finite limits. This will be useful in proving many of the results in this chapter. Let

E S TF G be 1-cells in either Lex or LEX, and for a diagramD : D → E , let φ ∈ S
(
lim (FD) , F (limD)

)
and ψ ∈ T

(
lim (GFD) , Glim (FD)

)
be the isomorphisms up to which the functors preserve the limit of the

diagram. Then their composite GF preserves the limit of D up to the following isomorphism

lim (GFD) Glim (FD) GF lim (D)
ψ Gφ

Much of what we will have to say in this chapter is illuminated by the following result.

Theorem 3.0.5 (Gabriel–Ulmer Duality). [11] Let LFP denote the 2-category of locally finitely presentable

categories, finitary (or filtered colimit preserving) right adjoints, and natural transformations. Then the 2-

functor LEX (−,Set) : Lexop → CAT factors through LFP by a biequivalence Lexop ∼= LFP.

3.1 The 2-Functors, and their associated Transformations and Modifications

Proposition 3.1.1. For E ∈ Lex, the assignment E 7→ Cat (E) extends to a 2-functor Cat (−) : Lex→ 2-Cat.

Proof. As the data and axioms of an internal category mention only finite limits, given a finite limit preserving

functor F : E → S, there is a 2-functor Cat (F ) : Cat (E) → Cat (S) which takes the image under F of each

piece of data, producing the required structure in Cat (S). Furthermore, given a 2-cell φ : F ⇒ G : E → S in

Lex, there is a 2-natural transformation Cat (φ) : Cat (F )⇒ Cat (G) whose component at C ∈ Cat (E) is the

internal functor Cat (F )C→ Cat (G)C whose object and morphism assignment is given by the component of φ

on C0 and C1 respectively; all conditions for internal functoriality follow by naturality of φ, as does 2-naturality

of Cat (φ). All of these observations combine to describe a 2-functor Cat (−) : Lex → 2-Cat; the axioms of

2-functoriality and functoriality between hom-categories are evident from the component-wise description of the

data involved.

We will often write Cat (F )C and Cat (φ)C as just F∗C and φC respectively.

Example 3.1.2. Given X ∈ E, the hom-functor E (X,−) preserves finite limits and hence gives rise to a

2-functor Cat (E)→ Cat.

Remark 3.1.3. We remark briefly upon issues of size. As noted previously in Theorem 1.4.6, if E is small then

so is Cat (E), and if E is locally small then the hom-categories of Cat (E) are small. We can therefore define

a completely analogous 2-functor from LEX to 2-CAT. This would have values for locally small categories

such as such as Set, and hence also categories of presheaves [Cop,Set] of small categories C ∈ Cat. In this

light, the yoneda embedding YE : E → [Eop,Set] of any small finite limit category is a 1-cell of LEX, and

so another example is given by Cat (YE) : Cat (E) → Cat[Eop,Set], where by Cat[Eop,Set] we denote the

2-category Cat (T ) where T := [Eop,Set]. We will return to this example after proving Theorem 3.3.2. For

further information on issues of size, see [31].
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Remark 3.1.4. The 2-functor Cat (−) : LEX → 2-CAT sends representable functors E (X,−) : E → Set to

representable 2-functors Cat (E) (DiscE (X) ,−) : Cat (E) → Cat, as is clear from the adjunction of Remark

1.2.7. Note that functors internal to S = Set are representably fully-faithful, discrete fibrations, or discrete

opfibrations if and only if they satisfy the conditions described in Remark 1.2.4. It follows that functors internal

to arbitrary locally small categories with finite limits satisfy these representable notions precisely if they satisfy

the conditions described in Remark 1.2.4.

In fact, the functors Cat (F ) preserve finite weighted limits, which leads to the following proposition.

Proposition 3.1.5. The 2-functor Cat (−) : Lex→ 2-Cat factors through the inclusion 2-Lex→ 2-Cat, and

the 2-functor Cat (−)1 := Und ◦ Cat (−) : Lex → Cat factors through the inclusion Lex → Cat. In other

words, the functors Cat (−) : Lex→ 2-Cat and Cat (−)1 : Lex→ Cat lift to give functors Cat (−) : Lex→ 2-

Lex and Cat (−)1 : Lex→ Lex. There are also 2-functors LEX→ 2-CAT and LEX→ 2-LEX which restrict

to these.

Proof. Since we have already shown that Cat (E) has finite weighted limits, it suffices to show that for

F ∈ LEX (E ,S) the 2-functor Cat (F ) : Cat (E) → Cat (S) preserves finite weighted limits. Conical limit

preservation clearly follows from that of F , and recalling the characterising conditions for internal natural

transformations which are universal 2-cells of powers by 2, as described in Theorem 1.5.4, we see that Cat (F )

preserves these too. Finally, since hom-categories in Cat (E) have sets of objects which are no larger than the

hom-sets of E , we have the required restriction to Lex.

In the remark below, we describe in more detail the particular isomorphisms up to which the functors Cat (F )1

preserve powers by 2. These will feature as the components of the pseudonaturality constraint of a pseudonat-

ural transformation which will be the compultimplication of the pseudocomonad on which Section 3.4 will focus.

Remark 3.1.6. As a particular case of the functors Cat (F )1 preserving limits, we have the isomorphisms

δFA :=
(
1A0

, FASq

)
: (FA)

2 ∼= F
(
A2
)

in Cat (S), where FASq
: (FA)Sq

∼= F (ASq) are the isomorphisms up

to which F preserves that pullback. It will be useful later to note that these internal functors are extremal in

the sense of Definition 1.5.1. Note also that the assignment δF : A 7→ δFA is indeed natural in A, and that the

assignment F 7→ δF is natural in F , for finite limit preserving functors F . This follows from similar calculations

to those in the proof of Proposition 1.5.9.

Recall the transposition 2-functor TE defined in Definition 1.5.1, which swaps the vertical and horizontal

categories in a double category. Its underlying functor will feature as the component at E of a strict distributive

law of the pseudocomonad Cat (−)1 over itself, in fact a compatible flip in the sense of [27]. For now, we prove

2-naturality.

Proposition 3.1.7. Let DblCat (−) : Lex → 2-Lex and DblCat (−)1 : Lex → Lex be given by Cat (−) ◦
Cat (−) and Cat (−)1 ◦Cat (−)1, analogously to what is described in Definition 1.5.1. The assignments E 7→
TE : DblCat (E) → DblCat (E) and E 7→ TE := UndeLex (TE) : DblCat (E)1 → DblCat (E)1 are 2-natural

in E.

Proof. It suffices to show 2-naturality of E 7→ TE , as the other will just be its whiskering with UndLex. But

it is easy to see that transposition of a double category commutes with taking the image of its data under any

finite limit preserving functor.

Remark 3.1.8. Let n ≥ 2 and consider the involutions on n-tuple-Cat (E)1 given by functors of the form k-

tuple-Cat
(
Tj-tuple-Cat(E)1

)
1
, where j, k ∈ Z/nZ such that j + k = n− 2, and 0-tuple-Cat (−)1 is interpreted

as 1Lex. We observe that these are precisely the adjacent transpositions in the group theoretic sense, which

generate the symmetric group on n letters Sn as at least a subgroup of the group of automorphisms on n-tuple-

Cat (E)1. This observation will clarify some calculations in Section 3.4.
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We conclude this section by examining how some of the functors associated to Cat (E)1 in Chapter One vary

in E ∈ Lex. Proposition 3.1.11 will be used in the next section, and we will have more to say about Theorem

3.1.9 through this chapter, particularly following the proof of Theorem 3.3.2.

Theorem 3.1.9. Let E ∈ Lex, let Cat (−)1 : Lex→ Lex the the 2-functor described in Proposition 3.1.5, and

recall the data of the evaluation category internal to [Cat (E)1 , E ] from Remark 1.2.6.

1. The functors evEn : Cat (E)1 → E of Remark 1.2.6 are the components at E ∈ Lex of 2-natural transfor-

mations evEn : Cat (−)1 ⇒ 1Lex.

2. The natural transformations of Remark 1.2.6 are the components at E of modifications.

3. This data defines a category internal to [Lex,Lex] (Cat (−) ,1Lex).

Proof. Part (1) is clear, while the modification axiom for dE0 , dE1 , i
E and mE follow from the definition of Cat (F )

on objects. For example, for mE , it follows from the commutativity of the first diagram in Diagram 7.0.18.

To see that this data forms an internal category it suffices to check that the pullbacks are well-defined in

[Lex,Lex] (Cat (−)1 , 1Lex), since the commutativity conditions involved in the axioms of an internal category

will follow pointwisely. We show that the 2-natural transformation Pair is the pullback of the modifications

d0 and d1 via the projection modifications π0 and π1, since all other pullback conditions will follow by similar

arguments. Let α : Cat (−)1 → 1Lex be a pseudonatural transformation with component at E ∈ Lex written as

αE and pseudonaturality constraint written as αF . Let p0, p1 : αV Arr be modifications satisfying d0p1 = d1p0.

Then in particular their components on E ∈ Lex satisfy this equation, and so since PairE is the pullback of

dE0 and dE1 in [Cat (E)1 , E ], we have an induced natural transformation (p0, p1)
E

: αE ⇒ PairE . It suffices to

show that the assignment E 7→ (p0, p1)
E

is a modification, since if it is so then it will be unique by the universal

property from which its components have been defined. The modification axiom requires the commutativity

of the second diagram in Diagram 7.0.18, and this holds by the universal property of (FA)2 as a pullback in

S given the commutativity of the third diagram in Diagram 7.0.18 for j ∈ {0, 1}, where the region labelled *

commutes by the modification axiom for pj on F ∈ Lex (E ,S).

Remark 3.1.10. Note that the category [Lex,Lex] (Cat (−)1 , 1Lex) does not have all pullbacks, but it does

have those pullbacks necessary for the construction of the internal category above. Also note that had we

defined internal categories in the usual way, with objects of composable n-tuples determined not up to equality

but up to isomorphism, then the 2-natural transformations above would instead be only pseudonatural in E ,

with pseudonaturality constraints on F : E → S being given by the isomorphisms up to which F preserves the

relevant pullbacks.

Proposition 3.1.11. Recall the adjunctions DiscE aε
E

1 ObE a1
ηE coDiscE of Remarks 1.2.7 and 1.2.8.

1. The assignment E 7→ DiscE is 2-natural in E.

2. The assignment E 7→ coDiscE is pseudonatural in E, with pseudonaturality constraints on F : E → S
being natural isomorphisms whose component on X ∈ E is the internal functor (1X , FX), where FX :

FX × FX ∼= F (X ×X) is the isomorphism up to which F preserves the product.

3. The assignments E 7→ ηE and E 7→ εE are modifications.

4. This data describes a pair of adjunctions in the 2-category [Lex,Lex].

Proof. The proofs are similar to those of the previous theorem. Part (1) is clear from the definition. For part

(2), naturality of X 7→ (1X , FX) follows by the universal property of the product, while pseudonaturality of

E 7→ coDiscE follows from Remark 3.0.4. The modification axiom for E 7→ εE follows from that of i, while

the modification axiom for ηE follows from Remark 3.0.4. Finally, the triangle identities for the adjunctions in

[Lex,Lex] follow pointwisely from those of the original adjunctions.
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3.2 Skew and coSkew Pseudomonad Structures on Cat (−)

In this chapter we will see that the 2-functor Cat (−)1 : Lex → Lex can be equipped with two different

monad-like structures. Both of these arise from a general setting of a 2-natural transformation into an identity

2-functor having a left (respectively, right) adjoint with an identity unit (respectively, counit). We will therefore

first prove the general statement and then specialise it to our example of interest. To begin, we recall the precise

definitions of monad-like structures on endo-2-functors on 2-categories, which can be found in [9] and [25]. More

general definitions involving pseudofunctors on bicategories also exist, but they will not be needed in this thesis.

In this section we will focus on skew-pseudomonad variants of the definition below, while in Section 3.4 we will

see a pseudocomonad structure on Cat (−)1 : Lex→ Lex. In both cases, we will have something to say about

the (co)algebras for the (co)monads.

Definition 3.2.1. Let 1K T T 2η µ
be a cospan in GRAY

(
K,K

)
, and let τ , α and β be invertible

modifications as pictured.

T 3 T 2

T 2 T

Tµ

µT µ

µ

τ

T T 2

T

Tη

1
µ

α

T 2 T

T

µ

ηT
1

β

Call the data (T, µ, τ, η, α, β) a pseudomonad on K if the following equalities of pastings in Diagram 7.0.19 hold.

Call a pseudomonad on Kop a pseudocomonad on K. If µ and η are 2-natural, and τ, α, β are identities, replace

the prefix ‘pseudo’ with the prefix ‘2−’. Finally, if α is non-invertible with direction as indicated above, say the

data has a skew left unit law, while if it has the opposite direction then say the data has a coskew left unit law.

Definition 3.2.2. Let (T, µ, τ, η, α, β) be a pseudomonad on K as in the above definition. A pseudoalgebra for

the pseudomonad is a 1-cell a : TA→ A and two 2-cells

T 2A TA

TA A

Ta

µA a

a

α

A TA

A

ηA

1
a

α

such that the diagrams in Diagram 7.0.20 commute. If α and α are identities then this is called a strict algebra.

Finally, if (T, µ, τ, η, α, β) is instead a pseudo/2-comonad, then this data is called a pseudo/strict coalgebra.

We now show the general setting from which the skew and coskew pseudomonad structures on Cat (−)1 :

Lex→ Lex arise.

Theorem 3.2.3. Let C : K → K be a 2-functor on a 2-category, and let µ : C → 1K be a pseudonatural

transformation whose pseudonaturality constraints on its own components are identities.

1. Suppose ρ : 1K → C is right adjoint to µ in GRAY
(
K,K

)
with unit η and identity counit, and so that the

pseudonaturality constraints of ρ on the components of µ are identities. Then C is a pseudomonad with

strict associativity for a multiplication given by Cµ, a strict right unit law for a unit given by ρ, and a lax

left unit law for ρ holding up to the modification η.

2. Suppose λ : 1K → C is left adjoint to µ in GRAY
(
K,K

)
with counit ε and identity unit, and so that the

pseudonaturality constraints of λ on the components of µ are identities. Then C is a pseudomonad with

strict associativity for a multiplication given by Cµ, a strict right unit law for a unit given by λ, and a

colax left unit law for λ holding up to the modification ε.
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3. The components of µ : C → 1K equip their codomains with the structure of a strict algebra for both of the

above monad-like structures.

Proof. Let E ∈ K, and consider the pseudonaturality constraint of µ on µE . This is the identity by assumption,

and taking its image under C gives the strict associativity law in both cases. To see that the right unit laws

hold strictly in both cases, note that for κ ∈ {λ, ρ} it holds that Cµ.Cκ = C (µ.κ) = C (1) = 1, where the third

equality holds in each case since the counit of µ a ρ and the unit of λ a µ are identities by assumption. Note

that λ and ρ do indeed ‘type check’ as non-invertible modifications up to which the left unit laws may hold since

in the following pastings, the quadrilaterals commute by the assumption on the pseudonaturality constraints of

λ and ρ on the components of µ.

CE CCE

E

CE CE

λCE

µE

C(µE)

λE
εE

C (E) CCE

E

CE CE

ρC(E)

µE

C(µE)

ρE
ηE

The unit axioms for the pseudomonad are just the images under C of the triangle identities for the respective

adjunctions in each case. Finally, note that the multiplication law for µ as a strict algebra holds trivially, while

the unit law holds in each case due to the adjunctions having identity unit or counit. Then the unit axioms for

the strict algebra are just the respective triangle identities.

Applying this result to the case where K = Lex, C = Cat (−)1 , µ = Ob, and η and ε are from the adjunctions

Disc aε1 Ob a1
η coDisc, we obtain the following corollary.

Corollary 3.2.4. Consider the 2-functor Cat (−)1 : Lex→ Lex and the 2-natural transformation Cat (Ob)1,

and recall the adjunctions in [Lex,Lex] described in Proposition 3.1.11. Then Cat (Ob) equips Cat (−)1 with

a multiplication in

1. A 2-monad on Lex, with unit given by the 2-natural transformation Disc, and a lax left unit law holding

up to the modification η.

2. A pseudomonad on Lex, with unit given by the pseudonatural transformation coDisc and colax left unit

law holding up to the modification ε.

Furthermore, the components of Ob are strict algebras for these monad-like structures.

3.3 Properties Cat (−) preserves, and the Unit Category

A consequence of the Gabriel–Ulmer Duality is that the 2-functor Cat (−)1 : Lex→ Cat is representable, with

representing object the opposite category of finitely presented models for the finite limit theory of categories;

(f .p.Cat)
op

. In particular this means that Cat (−) : Lex → 2-Cat preserves any limits which exist in Lex.

One can alternatively show by direct but lengthy calculation that it preserves products, inserters and equifiers;

certain 2-categorical limits from which those 2-categorical limits known as ‘PIE limits’ can be constructed.

These limits are inherited in Lex directly from Cat [28]. For our purposes it will be enough to know that it

preserves powers and fully-faithful morphisms, which is what we show next.

Proposition 3.3.1. The 2-functors Cat (−), which go from Lex to 2-Cat and 2-Lex respectively, send fully

faithful functors to 2-fully faithful functors. The same is true for the 2-functors from LEX to either 2-CAT or

2-LEX.

Proof. Note that since 2-fully-faithful morphisms in 2-LEX are precisely those morphisms whose underlying

2-functors are 2-fully-faithful, it suffices to show this for Cat (−) : LEX → 2-CAT. Let F : E → S be a

fully faithful finite limit preserving functor, and let A,B ∈ Cat (E) be internal categories. For A,B ∈ E , let
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φA,B : S (FA,FB)→ E (A,B) denote the inverse to taking the image under F , given by fully-faithfulness of F .

Define the functor ΦA,B : Cat (S) (FA, FB)→ Cat (E) (A,B) as follows:

• For an internal functor f : F∗A→ F∗B given by the data f := (f0, f1) : (FA0, FA1)→ (FB0, FB1), take

ΦA,B (f) to have objects and arrows assignment given by φAj ,Bj (fj) for j ∈ {0, 1}. This is well-defined as

an internal functor since the diagrams required to commute in E are sent by F to commutative diagrams

in S, and F is faithful and finite limit preserving.

• For an internal natural transformation α : f ⇒ g : F∗A → F∗B given by the data α ∈ S (FA0, FB1),

define ΦA,B (α) := φA0,B1
(α). Once again, this is well defined by faithfulness and finite limit preservation

of F .

To complete the proof, observe that since FAj ,Bk : E (Aj , Bk) ↔ S (FAj , FBk) : φAj ,Bk is a bijection, and

the functors FA,B and ΦA,B are entirely defined via these functions, they must constitute an isomorphism of

categories. It is easy to see that the same argument applies when Cat (−) is restricted to Lex.

In particular, the yoneda embedding YE : E → [Eop,Set] is a fully faithful functor which preserves finite limits,

and hence a 1-cell in LEX. Thus it gives rise to a 2-fully faithful 2-functor Cat (YE) : Cat (E)→ Cat ([Eop,Set]).

Theorem 3.3.2. The 2-functors Cat (−) : Lex → 2-Cat and Cat (−)1 : Lex → Cat preserve powers by

small categories, as do the 2-functors Cat (−) : Lex → 2-Lex and Cat (−)1 : Lex → Lex, and the analogous

2-functors with domain LEX.

Proof. Since the power of S ∈ LEX by E ∈ Cat is given by the functor category [E ,S] we need to prove that,

for E a small category and S a locally small category with finite limits, there is an isomorphism of 2-categories

Cat[E ,S] ≡ 2-Cat
(
E ,Cat (S)

)
. To prove this, we will construct 2-functors S (−) : [E ,Cat (S)] → Cat[E ,S]

and (̂−) : Cat[E ,S]→ [E ,Cat (S)]. These 2-functors will respectively act by whiskering or composing with the

evaluation category S, and taking images or components of data. It will be clear from their construction that

these 2-functors constitute an isomorphism of 2-categories.

Given a 2-functor F : E → Cat (S), it may be whiskered and composed with the data of the evaluation

category S to produce a category in [E ,S], which we denote SF . Internal category axioms are inherited from

those for S. Conversely, given a category A := (A0, A1, d0, d1, i,m) internal to [E ,S], we may define the 2-functor

Â : E → Cat (S) by taking the image or component under each relevant piece of data of A. Functoriality between

hom-categories is immediate as E is a 1-category and hence has discrete hom-categories, while 2-functoriality

of Â follows from functoriality of A0 and A1. It is easy to see from their definition that these constructions are

mutually inverse.

Given a 2-natural transformation φ : F ⇒ G : E → Cat (S), whiskering it with ObS and ArrS give an

internal functor Sφ : SF → SG in [E ,S]. The internal functoriality axioms follow from the naturality of source,

target, identity and composition of S. Conversely, given an internal functor f := (f0, f1) : A → B in [E ,S]

and an object X ∈ E , the components (fj)X : Aj (X) → Bj (X) for j ∈ {0, 1} define an internal functor

f̂X : AX → BX, with internal functoriality axioms inherited from those of f : A → B. Note that 2-naturality

of the assignment X 7→ f̂X follows from naturality of f0 and f1. Once again, it is clear from their definition

that these constructions are mutually inverse.

Given a modification Γ : φ V ψ : F ⇒ G : E → Cat (S), its component for every X ∈ E is an internal

natural transformation given by the data ΓX : ObS (FX) → ArrS (GX). Define this to be the X com-

ponent of the natural transformation SΓ : Sφ ⇒ Sψ. Conversely, given an internal natural transformation

α : f ⇒ g : A→ B in [E ,S] given by the data α : A0 ⇒ B1, we may define the modification α̂ : φ̂ V ψ̂ to have

component on X ∈ E given by αX . We note then that

• The modification axiom for Γ and naturality of SΓ coincide.
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• The internal naturality axioms for ΓX and SΓ coincide.

• Naturality of α and the modification axiom for α̂ coincide.

• Internal naturality axioms for α and α̂X coincide.

• These constructions are once again mutually inverse.

To finish the proof, note that both (̂−) and S are functorial between hom-categories, and 2-functorial, and that

this isomorphism is indeed natural in E .

Remark 3.3.3. Let E ∈ Lex and consider in particular the isomorphism of categories Cat[Cat (E)1 , E ]1 ∼=
[Cat (E)1 ,Cat (E)1]. Recall that the category of endofunctors on the right has a strict monoidal structure given

by composition, and that its unit is given by the identity on Cat (E)1. Transporting this monoidal structure

across this isomorphism of categories, one sees that the evaluation category is the unit for this transported

monoidal structure on Cat[Cat (E)1 , E ]1.

3.4 A Pseudocomonad Structure on Cat (−)1
In Section 3.2 we equipped the 2-functor Cat (−)1 : Lex → Lex with structures of pseudomonads with skew

and co-skew left unit laws. In this section, we will follow the theory developed in [6] and prove a biadjunction

between the 2-functor UndLex : 2-Lex → Lex and the 2-functor Cat (−) : Lex → 2-Lex. We will then use

this to equip Cat (−)1 : Lex → Lex with the structure of a pseudocomonad, and see that the operation of

transposition on double categories is an involutary strict distributive law between this pseudocomonad and itself

satisfying the Yang–Baxter equation, or a compatible flip in the sense of [27]. We will conclude this chapter by

looking at some of its coalgebras.

In this section Cat (−) will always denote the 2-functor from Lex to 2-Lex, and Cat (−)1 : Lex → Lex

will always denote UndLex ◦Cat (−).

The following definition is taken directly as presented in [6].

Definition 3.4.1. Let F : K → L and G : L → K be 2-functors between 2-categories, let ε : FG ⇒ 1L and

η : 1K ⇒ GF be pseudonatural transformations, and let θ : Gε ◦ ηG V 1G and φ : 1F V εF ◦ Fη be invertible

modifications. Then this data is called a biadjunction if both of the pastings shown in Diagram 7.0.21 are

identities. In this case, G is said to be right biadjoint to F and F is said to be left biadjoint to G. The

pseudonatural transformations η and ε are called the unit and counit respectively. If ε and η are 2-natural, and

θ and φ are identity modifications, then the data is called a 2-adjunction.

Note that the modifications θ and φ may be thought of as mediating what would be the usual triangle identities

of an ordinary adjunction. The biadjunction we will present will be simpler than the general case defined above

in the following ways: the invertible modifications φ and θ will in fact be identities, while the counit will be Ob,

which was 2-natural, as shown in Theorem 3.1.9. We have also already encountered the data for the unit of

this biadjunction in Theorem 1.5.7, which gave its components, and in Proposition 1.5.9, where we gave what

we will see is the only non-identity part of its pseudonaturality constraints.

Theorem 3.4.2. Recall the 2-functors ηK : K→ Cat (K1) from Theorem 1.5.7, which send A ∈ K to the category

A3 A2 Am
a0

a1

∆A internal to K1, the underlying category of K. Recall also the natural isomorphisms

F 7→ ηF of Remark 1.5.9, whose components on A ∈ K are extremal internal functors in the sense of Definition

1.5.1. Recall further that their components on arrows are given by the isomorphisms up to which F preserves

power of A by 2, and that extremality means that their components on objects are identities.

29



1. The assignment K 7→ ηK is pseudonatural in K, with pseudonaturality constraints given by the natural

isomorphism ηF .

2. The data (UndLex,Cat (−) , η,Ob, 1, 1) exhibits Cat (−) as right biadjoint to UndLex.

Proof. Given that the components of Arr are faithful, as was shown in Proposition 1.2.3, the proofs of Theorem

1.5.7 and Proposition 1.5.9 are enough to see that the required naturality conditions hold. Then pseudonaturality

of K 7→ ηK follows from Remark 3.0.4. This completes the proof of part (1). For part (2), the fact that the

triangle identities hold up to identity modifications is evident from extremality of the components of ηK, since

in both triangle identities one takes either Cat (Ob) or ObUndLex, and extremality says that these will always

be the identity. The coherence conditions for the biadjunction are also clear for similar reasons.

Remark 3.4.3. Recall [22] that a general biadjunction as defined above in Definition 3.4.1 gives rise to a pseu-

docomonad as defined in Definition 3.2.1. In our particular case, the pseudocomonad structure is given by

• Taking the 2-functor Cat (−)1 to be the composite UndLex ◦Cat,

• Taking the counit Ob directly from the adjunction, and the modifications up to which the counit laws

hold to be identities,

• Taking the comultiplication δ to be the whiskering UndLex ◦ η ◦Cat (−). Recall from Remark 1.5.8 that

this has components on E ∈ Lex which send a category internal to E to its double category of squares.

• Taking the modification Γ up to which coassociativity will hold to be ηη, the pseudonaturality constraint

of η on itself. Note that this is precisely the modification mediating between the two ways of horizontally

composing the pseudonatural transformation η with itself, as mentioned in Remark 3.0.2. The component

natural transformations of this modification will themselves have components on A ∈ Cat (E) given by

the extremal internal triple functors whose only non-identity component will be
(
A2
)2 ∼= A2×2.

• Noticing that the counit laws hold strictly by since the category of objects of the double category of

squares of A is just A itself, and recalling from 1.5.8 that double categories of squares are symmetric.

• Either noticing that the pseudocomonad coherence axiom for comultiplication given in Definition 3.2.1

follows directly from the triangle identities, or noticing by the faithfulness of Arr established in Proposition

1.2.3, that it follows from the universal property of powers.

Theorem 3.4.4. The pseudonatural transformation δ : Cat (−)1 ⇒ DblCat (−)1 := Cat (Cat (−)1)
1

and the

2-natural transformation Ob : Cat (−)1 ⇒ 1Lex are the comultiplication and counit respectively of a pseudo-

comonad structure on Cat (−)1 : Lex → Lex, in which both counit laws hold strictly and coassociativity holds

up to the modification Γ.

Theorem 3.4.5. The transposition 2-natural transformation T : DblCat (−)1 ⇒ DblCat (−)1 is a strict

distributive law between this pseudocomonad and itself, satisfying the relevant axioms from [25]. Moreover, it is

a compatible flip in the sense of [27].

Proof. To see that transposition is a strict distributive law of this pseudocomonad over itself, firstly note that

the counit laws are clear from symmetry of double categories in the image of δ. By the involutary nature of

transposition, the comultiplication laws are logically equivalent to one another. Chasing a double category A
around the diagram in Diagram 7.0.22 we see that its image in the bottom left and bottom right categories are

Cat (δE)1 ◦ TE (A) and δCat(E)1
(A) respectively. Recalling Remark 3.1.8, these triple categories are related to

one another via sequence of transpositions and hence an element of the symmetric group on three letters, in

particular one which is not its own inverse. There are two such elements in S3, and one of them is indeed the

bottom row. However, since the double categories in the image of δE are symmetric, we also have that these

two triple categories are themselves invariant under transposition in the first and second dimension, and second

and third dimension, respectively. Thus whichever of the two elements of the symmetric group on three letters
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corresponds to the bottom row, it will suffice to make the diagram commute. While this is sufficient to see that

the diagram above commutes, an explicit diagram chase is given in Diagram 7.0.23. We are grateful to Richard

Garner for his help in its construction.

We also need to check that it satisfies the nine coherence axioms for a pseudodistributive law, of [25]. Since

the pseudodistributivity and counit axioms hold strictly, the only one of these axioms which may involve non-

identity isomorphisms are 4, 6, and 9. Letting D be a double category and using faithfulness of the components

of Arr, it suffices to show

• For 4, that the component of Cat
(
ΓE
)

1
on D is the component of ΓCat(E)1 on the transpose of D,

• For 6, that the component of δδE on D is its component on the transpose of D,

• For 9, that the component of Cat
(
ΓE
)

1
on the transpose of D is the component of ΓCat(E)1 on D.

These are all clear by faithfulness of Arr, Cat (−)1’s preservation of faithfulness as shown in Proposition 3.3.1,

and symmetry of transposition. Finally, now that we have shown that T is indeed an involutary distributive

law, the only aspect of a compatible flip as in [27] which remains to be checked is the Yang–Baxter identity for

transpositions of triple categories. In light of Remark 3.1.8 this just says that the two adjacent transpositions

σ1 and σ2 of S3 satisfy σ1σ2σ1 = σ2σ1σ2, which is certainly the case. This completes the proof.

Remark 3.4.6. We describe the conditions for a finite limit preserving functor Φ : E → Cat (E)1 to equip E with

the structure of a strict coalgebra for the pseudocomonad Cat (−)1. For a morphism f in E , the counit axiom

for Φ says precisely that the assignment on objects of (Φf) is just f itself. Letting P denote the composite shown

on the left below, the comultiplication axiom then yields the commutativity of the diagram below on the right,

so that in particular PPf = (Φf)Sq, and PαΦX = αPΦX for any natural transformation α ∈ {dE0 , dE1 , iE ,mE}
giving data for the evaluation category E .

E Cat (E)1 EΦ ArrE

E Cat (E)1

E E

Φ

P (−)ESq

P

Then the 2-cell coherences for Φ as a strict coalgebra say precisely that the internal categories ΦX are such

that the isomorphisms
(

(ΦX)
2
)2 ∼= (ΦX)

2×2
, discussed in Remark 1.5.10 are equal to the isomorphisms

P (PPX) = PP (PX), or in other words that they are in fact identities.

Example 3.4.7. The components of Disc on E ∈ Lex equip E with the structure of a strict coalgebra for this

pseudocomonad. The coherence axiom for counits holds trivially, and the coherence axiom for comultiplication

holds since if A is discrete then A22

= A2×2, and since Disc preserves limits strictly the pseudonaturality

constraint of δ on Disc is also the identity. Similarly, the components of coDisc on E ∈ Lex equip E with the

structure of a pseudocoalgebra for this pseudocomonad. These have a strict counit law and a comultiplication

law holding up to a natural isomorphism φ. The components of φ on X ∈ E are given by the extremal double

functors with non-identity component the unique isomorphisms between (X ×X)× (X ×X) and the kernel pair

X3 ×X2 X3, where we write Xn for the n-fold product X × ...×X. The counit coherence holds by extremality

of φX , while the comultiplication coherence follows from the universal property of limits in E.

The following theorem will help us describe the coalgebras for this pseudocomonad in more detail. In particular,

given a pseudocoalgebra Φ : E → Cat (E) there is a 2-category EΦ whose underlying category is E . This 2-

category will have powers by 2 for X ∈ EΦ given by PX.

Theorem 3.4.8. For X,Y ∈ E, define the category EΦ (X,Y ) to have

• A set of objects given by the hom-set E (X,Y ).
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• Morphisms α : f → g consisting of morphisms α ∈ E (X,PY ) so that d0α = f and d1α = g.

• Composition f g hα β
given by m (α, β), and identities for f given by if .

Then

1. The forgetful functor Cat (E) (ΦX,ΦY )→ EΦ (X,Y ) is part of an isomorphism of categories.

2. The categories EΦ (X,Y ) are hom-categories of a 2-category structure on the objects of E.

3. The 2-category EΦ just described has powers by 2 given by Y 2 = PY , and hence all finite weighted limits.

The universal 2-cells of the power by 2 of Y are given by the identity in E on PY .

4. For all X,Y ∈ E and f, g ∈ E (X,Y ), let E (X,Y ) (f, g) be a set such that this equips E with a class of 2-

cells giving it the structure of a 2-category with powers by 2. Recall the 2-functor η introduced in Theorem

1.5.7, which also featured as the unit of the biadjunction 3.4.2. Then Φ := UndLex
(
ηE
)

: E → Cat (E)1

is a pseudocoalgebra for the pseudocomonad Cat (−)1 with a strict counit law.

Proof. For part (1), note that an object f ∈ EΦ,X,Y is sent to the internal functor Φf , while a morphism α : f → g

does indeed give a well-defined internal natural transformation, as can be seen by the commutativity of Diagram

7.0.24. Part (2) follows from part (1) as we may inherit the structure for horizontal composition from Cat (E).

For part (3), first note that the identity on PY indeed constitutes a 2-cell from d0 : PY → Y to d1 : PY → Y .

To see that this is the universal 2-cell of a power by 2 in EΦ, observe that a 2-cell α : f ⇒ g : X → Y is also a

1-cell α : X → PY . Meanwhile, a commutative square of 2-cells

f f ′

g g′

ϕ

α β

ψ

viewed as a morphism from α to β in [2, EΦ (X,Y )] induces a morphism X → PPY in E by the universal

property of PPY = (ΦY )Sq, and this constitutes a 2-cell from α to α′. It follows from the universal property of

the pullback that this assignment is functorial, and indeed inverse to horizontal composition by 1PX. That EΦ
has finite weighted limits follows since E ∈ Lex has conical limits, and we have just shown that it has powers

by 2. For part (4), firstly note that the counit law for the pseudocoalgebra Φ is clearly strict since for X ∈ E

the object of objects of ηE (X) is just X. The comultiplication law for the pseudocoalgebra Φ holds up to the

isomorphism up to which powering by 2 commutes with the taking of pullbacks. The 2-cell coherences follow

from universal properties.

Remark 3.4.9. The identity on PY provides a choice for the universal 2-cell of the power by 2 of Y . In

particular, observe that Y 7→ PY is the monad induced by powering by 2 on EΦ, with unit given by iΦ

and multiplication given by the natural transformation µΦ which sends a commutative square to its mutual

composite. Furthermore, the Kleisli category of this monad is precisely the underlying category of 0 and 2-cells

of EΦ, as is evident from the definition of horizontal composition in EΦ.

There are also notions of pseudocoalgebra morphisms and 2-cells between them, and in this example they will be

2-functors which preserve finite weighted limits and arbitrary 2-natural transformations. We end this Chapter

by quoting the result capturing this information, which is discussed in Remark 3.3.4 of [6]. There they offer

a proof which uses a bicategorical version of Beck’s Monadicity Theorem [22]. The Kleisli 2-category for this

pseudocomonad is also described in Sections 4.3 and 4.4 of [6].

Theorem 3.4.10. [6] The 2-category of pseudocoalgebras for the pseudocomonad Cat (−)1 is biequivalent to

2-Lex.
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4 The Grothendieck Construction

This is an expository chapter in which we will summarise the Grothendieck construction, and how it relates split

opfibrations into a category, to 2-functors from that category into Cat. We have already seen in Theorem 3.3.2

that there is an isomorphism of 2-categories between Cat[E ,Set] and [E ,Cat]. One may recall that [E ,Set] is

isomorphic to the category of discrete opfibrations into E , and dually [Eop,Set] is isomorphic to the category

of discrete fibrations into E . Our aim in this chapter will be to show an equivalence between SFib (E) and

Cat (DFib (E)) ∼= Cat[E ,Set]. As a corollary, we will obtain a result which we will need in the next chapter,

which is that when B ∈ Cat (E), there is an equivalence of 2-categories Cat (DFib (B)) ∼= SFib (B). We

will begin by recalling definitions. For further information on the material in this chapter, the reader should

consult [7], where they also investigate the case where E is a 2-category or a bicategory.

Definition 4.0.1. Let P : A → B be a functor.

• A morphism f : X → Y in A is called cartesian with respect to P if given a morphism g : W → Y in A
and a morphism h : PW → PX in B satisfying (Pf)h = Pg, there is a unique morphism h′ : W → X in

A satisfying Ph′ = h and fh′ = g.

• The functor P has the structure of a cloven fibration if for every X ∈ B, Y ∈ A and f ∈ B (X,PY ) there

is a chosen cartesian f ′ ∈ A (X ′, Y ) such that Pf ′ = f . Then f ′ is called the cartesian lift of f given Y .

• A cloven fibration is split if

– For any X PY PZ
f g

, the chosen lift of gf given Z is the composite of the chosen lift

g′ : Y → Z of g given Z, and the chosen lift f : X ′ → PY = Y ′ of f given Y .

– For any X ∈ B, the lift of 1X given any object is an identity.

• If for every f : X → PY in B there is a unique f ′ : B′ → A in A such that Pf ′ = f , then P is called a

discrete fibration.

• A functor whose opposite is a split fibration is called a split opfibration, and in this case the lift will instead

be referred to as op-cartesian.

• Let K be a 2-category and let p : A → B be a 1-cell in K. Then p is called a cloven/split/discrete

(op)fibration if

– For every object X ∈ K, the composition functor K (X, p) : K (X,A)→ K (X,B) is so.

– These liftings are natural in X.

• For X ∈ K, let

– SFib (X)K be the locally full sub-2-category of K/X on split fibrations and 1-cells that representably

preserve chosen cartesian lifts.

– Let SoFib (X)K be the same but for split opfibrations and 1-cells which representably preserve chosen

op-cartesian lifts.

– Let DFib (X)K be the locally discrete sub-2-category of K/X on discrete fibrations, and arbitrary

1-cells between them.

– Let DoFib (X)K be the same but for discrete opfibrations.

We will omit the subscript K whenever it is clear from context.

Note that a discrete fibration is automatically a split fibration.

Example 4.0.2. The forgetful functor from pointed sets to sets P : Set∗ → Set which forgets the chosen

element is a discrete opfibration. Given f : P (X,x)→ Y , the lift is given by f : (X,x)→ (Y, f (x)). It is easy

to see that this lift is unique.
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In fact, this example is ‘universal’ in the sense that every discrete opfibration in CAT is the pullback of P

along some unique functor into Set. This is related to the familiar construction of categories of elements of

copresheaves. This chapter will describe a generalisation of this in the form of the Grothendieck Construction.

4.1 From Cat-valued 2-presheaves to Split opfibrations

Let E be a category and Q : E → Cat be a 2-functor. Define the category of elements of Q, Q̂, as follows:

• The objects in Q̂ are of the form (V, v), where V ∈ E and v is an object in the category QV . We may

refer to V and v as the first and second component of (V, v), respectively.

• The morphisms (F, f) : (V, v)→ (W,w) in Q̂ consist of a morphism F : V →W in E and f : (QF ) v → w

is a morphism in QW . We may refer to F and f as the first and second components of (F, f), respectively.

• The morphisms (V, v) (W,w) (X,x)
(F,f) (G,g)

compose to give a morphism whose first component is

GF and second component is Q (GF ) v (QG) (QF ) v (QG)w x
(QG)f g

, while the identity

of (X,x) is given by (1X , 1x) where 1X is the identity of X in E and 1x is the identity of x in QX.

• Associativity and left and right unit laws are inherited from E , given 2-functoriality of Q.

There is a canonical projection El (Q) : Q̂ → E which ‘forgets the second component’. Note that this func-

tor can be given the structure of a split opfibration by choosing, for any morphism F : El (Q) (V, v) → W

in E , the morphism
(
F, 1(QF )v

)
: (V, v) → (W, (QF ) v). Then it is clear that

(
F, 1(QF )v

)
is opcartesian since

whenever (G, g) : (V, v) → (X,x) is such that there exists a morphism H : W → X satisfying HF = G, then

(H, g) : (W, (QF ) v) → (X,x) is the unique morphism which P maps to H. Finally, the composite of chosen

morphisms is itself also chosen, since the chosen morphisms are just those whose second component is an identity.

Our aim in this section will be to show how El : [E ,Cat]→ SoFib (E) as just described on objects extends to

a 2-functor. This 2-functor will be one side of an equivalence of 2-categories which we will prove by the end of

the chapter.

Given a 2-natural transformation σ : Q ⇒ R : E → Cat, we may define the functor El (σ) : Q̂ → R̂ in

the following way:

• (X,x) 7→ (X,σX (x))

•
(

(F, f) : (X,x) → (Y, y)
)
7→
(

(F, σY (f)) : (X,σX (x)) → (Y, σY (y))
)
, which is well-defined as a 1-cell

by 2-naturality of σ.

Functoriality of El (σ) follows from functoriality of σY . Finally, notice that El (σ) commutes with the respective

projection functors as it only alters the second component of any data in Q̂. This describes El on 1-cells.

Let Γ : σ V τ : Q → R : E → Cat be a modification, with component natural transformation on X ∈ E
written as ΓX : σX → τX : QX → RX, and its component on x ∈ QX written as ΓXx : σX (x) → τX (x).

Then consider the morphism
(
1X ,Γ

X
x

)
: (X,σX (x)) → (X, τX (x)) in R̂. We claim that the assignment

(X,x) 7→
(
1X ,Γ

X
x

)
constitutes a natural transformation El (Γ) : El (σ) ⇒ El (τ), and that this whiskers with

the projection El (R) : R̂ → E to give the projection El (Q) : Q̂ → E . Now naturality of El (Γ) requires that

for every (F, f) : (X,x) → (Y, y) in E , the first of the two diagrams in Diagram 7.0.31 commutes in R̂. On

components in E , this diagram commutes since 1Y F = f = f1X . The condition on the second component holds

by the commutativity of the second diagram in Diagram 7.0.31 in RY , in which the right square is the modifica-

tion axiom for Γ on F , the equalities hold by 2-naturality of σ and τ , and the left square is naturality of ΓY on f .
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Then it is clear that this natural transformation commutes with the projections as the first component of its

components are simply identities. This describes El on 2-cells. It is clear that El is well-defined as a 2-functor,

since functoriality between hom-categories follows from compositional properties of natural transformations,

and 2-functoriality follows from compositional properties of functors.

4.2 From Split Opfibrations to Cat-valued 2-presheaves

We now describe the 2-functor (−)
−1

: SoFib (E)→ [E ,Cat] which we will show will be inverse to El. Suppose

P : D → E is a split opfibration. Then define the 2-functor P−1 (−) : E → Cat in the following way:

• For an object X ∈ E , let P−1X be the category whose

– Objects are those in D which P maps to X,

– Morphisms are those in D which P maps to 1X ,

– Composition is as given in D.

• For a morphism f : X → Y , the functor P−1
f : P−1X → P−1Y is defined in the following way:

– Let A ∈ P−1X, and let fA : A → P−1
f A be the chosen opcartesian 1-cell mapped to f . Then P−1

f

sends A to P−1
f A.

– Let s : A→ B be a morphism in the category P−1X, hence a 1-cell in D which is sent by P to 1X .

By the universal property of fA as an opcartesian morphism for P , since f1X factors through f by

1Y , there is an induced P−1
f (s) : P−1

f A → B′ in D which is unique so that PP−1
f (s) = 1Y and the

square on the left in Diagram 7.0.30 commutes in the underlying category of D. Then P−1
f sends s

to P−1
f (s).

To see that P−1
f is well defined as a functor, note that P−1

f (1A) = (fA, 1Y ) = 1YA,f , while for t : B → C

a morphism in the category PX, the universal property of fA as an opcartesian morphism ensures that

P−1
f (t)P−1

f (s) = P−1
f (ts), since the diagram the right in Diagram 7.0.30 commutes.

For functoriality of this assignment, it is clear that P1X
−1 fixes all objects and morphisms, and is hence the

identity functor on P−1X. Finally, let k ∈ E (Y,Z). Then by splitness of P : D → E , chosen lifts compose to

give chosen lifts, and hence their respective codomains must agree, so P−1
k P−1

f and P−1
kf agree on objects. For

morphisms, let s : A→ B be a morphism in P−1X as above, and consider P−1
k

(
P−1
f (s)

)
. By opcartesianness

of (kf)A it suffices to note that in the first diagram in Diagram 7.0.32, the triangles commute by splitness of

P , and the quadrilaterals define P−1
k and P−1

f on morphisms. Thus P−1 is well-defined as a 2-functor.

On morphisms, suppose P : D → E and P ′ : D′ → E are split opfibrations, and let a functor S : D → D′

satisfy P ′S = P . Then for X ∈ E we may define the functor (S)
−1
X : P−1X → P ′

−1
X by taking the image

under S. This is well-defined by the commutativity condition on S, and is functorial by functoriality of S.

We claim that the assignment X 7→ (S)
−1
X constitutes a natural transformation from P−1 to P ′−1. That is,

for a morphism F : X → Y in E , the second of the diagrams in Diagram 7.0.32 commutes. That this square

commutes on objects is just to say that SP−1
F A = P ′

−1
F SA, which is indeed the case since P = P ′S. Similarly,

if we chase a morphism t : A→ B around the diagram we see that the results are the same by opcartesianness

of SFA with respect to P ′, once again using the fact that P = P ′S. Just as for El, it is clear that (−)
−1

is also

well-defined as a 2-functor.

4.3 The Equivalence of 2-categories

We now show that El and (−)
−1

together give an equivalence of 2-categories.

Theorem 4.3.1. The composite 2-functor (−)
−1

El is 2-naturally isomorphic to the identity 2-functor on

[E ,Cat].

35



Proof. For X ∈ E , the category (El (Q))
−1

(X) has

• Objects are (X,x) where x is an object of QX

• Morphisms are (1X , f) : (X,x)→ (X,x′) where f : x→ x′ is a morphism in QX.

There are functors ηQX : QX → (El (Q))
−1

(X) and εQX : (El (Q))
−1

(X) → QX which respectively act by

‘inserting and dropping the first component’. It is then easy to see that ηQX and εQX together form an isomorphism

of categories, and that both of the assignments X 7→ ηQX and X 7→ εQX are 2-natural in X. We claim that the

2-transformations ηQ : Q ⇒ (El (Q))
−1

and εQ : (El (Q))
−1 ⇒ Q are themselves the respective components at

Q ∈ [E ,Cat] of 2-natural transformations η : 1[E,Cat] ⇒ (−)
−1

El (−) and ε : (−)
−1

El (−) ⇒ 1[E,Cat]. Indeed

it suffices to notice that for a 2-transformation σ : Q⇒ R : E → Cat, the functors (Elσ)
−1
X are constant on the

first component and act just as σX does on the second component. Thus ε and η exhibit the 2-functor (−)
−1

El

as being 2-naturally isomorphic to the identity.

Theorem 4.3.2. The composite 2-functor El (−)
−1

is 2-naturally isomorphic to the identity 2-functor on

SoFib (E).

Proof. Let P : D → E a split opfibration. The category P̂−1 has

• Objects all pairs of the form (X,A) for A ∈ D and X ∈ E satisfying PA = X. We may write these simply

as (PA,A).

• Morphisms (F, f) : (PA,A) → (PB,B) where F : PA → PB is a 1-cell in E , and f : P−1
F A → B is a

morphism in D which P maps to 1Y .

Then we define the functor ε′P : P̂−1 → D. On objects (PA,A) 7→ A, and on morphisms
(

(F, f) : (PA,A) →

(PB,B)
)
7→ A P−1

F A B
FA f

. Note that functoriality follows from splitness. We claim that the

assignment P 7→ εP defines a 2-natural transformation ε′ : El (−)
−1 ⇒ 1LDSoF(E). Let P ′ : D → E be a split

opfibration, and let S : D → D′ be a functor satisfying P ′S = P . We must then show that the following diagram

commutes:

P̂−1 L

P̂ ′−1 D′

El(S−1)

ε′P

S

ε′
P ′

Traversing this diagram in both directions we see that an object (PA,A) is sent to SA, and a morphism (F, f)

is sent to S (f.FA).

Next, we define the 2-functor η′P : D → P̂−1 on objects as A 7→ (PA,A), and on morphisms as η′P (f : A→ B) =(
Pf, vPf

)
: (PA,A) → (PB,B), where vPf : P−1

PfA → B is the ‘vertical’ part of f , induced by opcartesianness

of (Pf)A given 1Y , and unique such that the following below on the left commutes in D. Indeed, functoriality

follows from that of P and the splitness condition. We claim that the assignment P 7→ ηP defines a 2-natural

transformation η′ : 1SoFib(E) → El (−)
−1

. Let P ′ : D → E be a split opfibration, and let a functor S : D → D′

satisfy P ′S = P . We must then show that the diagram below on the right commutes. Traversing this diagram

in both directions, we see that an object A ∈ D is sent to (PA, SA), and a morphism f : A → B in D is sent

to
(
Pf, vP

′

Sf

)
.

A P−1
PfA

B

(Pf)A

f
vPf

D P̂−1

D′ P̂ ′−1

S

η′P

El(S−1)

η′
P ′
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We claim that η′ and ε′ exhibit El (−)
−1

as being 2-naturally isomorphic to the identity on SoFib (E). To

establish this, we must show that η′P and ε′P themselves constitute an isomorphism of 2-categories. But this is

clear from their description as ε′η′ and η′ε′ are equal to the identity 2-functors.

Theorem 4.3.3. 1. The 2-functors El and (−)
−1

constitute an equivalence of 2-categories between [E ,Cat]

and SoFib (E).

2. There is an equivalence of categories [E ,Set] ∼= DoFib (E).

3. For S ∈ Lex, B ∈ Cat (S), there is an equivalence of 2-categories SoFib (B) ∼= Cat (DoFib (B)).

4. With this notation, there is also an equivalence of 2-categories SFib (B) ∼= Cat (DFib (B)).

Proof. Combining the previous two theorems yields part (1). Part (2) can be seen from the above analysis

by noticing that restricting SoFib (E) to discrete objects corresponds to restricting [E ,Cat] to those functors

which factor through Set. Part (3) follows Theorem 3.3.2 given that the Yoneda Embedding of E preserves and

jointly reflects finite limits, and thus reduces the proof to the case where S = Set, which was itself part (1).

Part (4) is just the dual of part (3).

5 Factorisation Systems

In this chapter we will give two orthogonal factorisation systems on Cat (E)1. The first of these is often called

the full image factorisation, since its right class consists of the fully faithful functors introduced in Remark 1.2.4,

which encode inclusions of full subcategories. The left class of this factorisation system consists of isomorphism-

on-objects functors, which were also introduced in Remark 1.2.4. This will be treated in the first section of

this chapter. The second factorisation system on Cat (E)1 actually comes in two varieties which are related

under dualisation on the level of the 2-cells in Cat (E). One of these factorisation systems has as its right class

the discrete fibrations while the other has as its right class the discrete opfibrations. Both of these notions

were defined at the beginning of the previous chapter. These factorisation systems are called comprehensive,

because they correspond to consistent comprehension schemes on Cat (E)1 in the sense of [4], though we will not

investigate this aspect of them. We will treat the variant in which the right class consists of discrete fibrations

in detail, and mention along the way how our considerations can be dualised to give the variant involving

opfibrations. Section 5.2 will look at both classes of this factorisation system in detail and prove the required

orthogonality properties. The approach we take to this factorisation closely follows that of [30]. In Section 5.3

we use ‘oplax limits of 1-cells’, or comma objects of the form Y/f for f : X → Y , to factorise an internal functor

into a right adjoint followed by a split fibration. Finally in Section 5.4, we combine several of the results we saw

along the course of this thesis to further factorise the split fibration into a coidentifier followed by a discrete

fibration. Composing the right adjoint and coidentifier, we will have factorised an arbitrary internal functor into

a ‘final functor’ followed by a discrete fibration. Since many of the proofs of this chapter only require certain

2-categorical properties of Cat (E) we will give proofs in a more general context wherever possible.

5.1 The Full Image Factorisations of Internal Functors

In this section we will see how the full image factorisation of an internal functor into a isomorphism on objects

internal functor followed by a fully faithful internal functor arises. We first prove the required orthogonality

property.

Proposition 5.1.1. Isomorphism-on-objects internal functors are left orthogonal to fully faithful internal func-

tors.

Proof. In the square of internal functors shown below on the left, let b be isomorphism on objects and f be

fully faithful. Define u0 := b−1
0 h0 : B0 → C0, and note that f0u0 = f0h0b

−1
0 = g0b0b

−1
0 = g0. Then further
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define u1 : B1 → C1 to be the morphism induced by the pullback as shown in the middle diagram below, given

the commutativity of the first diagram in the first row in Diagram 7.0.34. We claim that u := (u0, u1) is the

required internal functor shown in the diagram on the right which makes both triangles commute.

A C

B D

h

b f

g

B1

B0 ×B0 C1 D1

C0 × C0 D0 ×D0

g1

u1
(d0,d1)

u0×u0

(d0,d1)

f1

(d0,d1)

f0×f0

A C

B D

h

b f
u

g

Consider the diagrams in Diagram 7.0.33 for j ∈ {0, 1}. The first of these diagrams shows that u respects

sources and targets, while the second and third diagrams show by the universal property of C1 as a pullback

that u1b1 = h1. Then, again using the universal property of C1 as a pullback and for j ∈ {0, 1}, the second row

of diagrams in Diagram 7.0.34 show that u respects identities, while the third row of diagrams there show that

u respects composition.

Thus far we have shown that u is a well-defined internal functor making the required triangles commute.

For uniqueness, suppose v : B → C is also an internal functor satisfying fv = g and h = vb. Then note that

in particular v0b0 = h0 =⇒ v0b0b
−1
0 = h0b

−1
0 =⇒ v0 = u0, so the assignments on objects of u and v agree.

To see that their assignments on arrows also agree, we once again use the universal property of C1. Noting

that f1v1 = g1 = f1u1, the proof is completed by the commutativity of the second diagram in the first row of

Diagram 7.0.34.

We are now ready to give the construction of the full image factorisation. Let (̂−) denote coDisc ◦ Ob :

Cat (E)→ Cat (E). Let B ∈ Cat (E), and let FF (B) be the full sub-2-category of Cat (E) /B on fully faithful

internal functors. Let f : A→ B be an internal functor, and consider the diagram

A

Im (f) B

Â B̂

uf

f

ηEA

L(f)

f
y

ηEB

f̂

in which the pullback is taken in Cat (E), the boundary is the naturality square for ηEB , and uf is the internal

functor induced by the commutativity of the boundary. Note that Lf is then fully-faithful, while the object

assignment of uf is an isomorphism in E . The following corollary follows by combining this with Proposition

5.1.1.

Corollary 5.1.2. There is an orthogonal factorisation system on Cat (E) whose left class consists of isomor-

phism on objects internal functors and right class consists of fully faithful internal functors.

5.2 Discrete Fibrations and Final Internal Functors

The purpose of this section is to describe in some detail the two classes of internal functors which will feature

in the comprehensive factorisation, which we will describe in Section 5.4. We take a similar route to the one

in [30].
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5.2.1 Discrete Fibrations

Remark 5.2.1. Recall the representable definition for discrete fibrations inside a 2-category that we gave in

Definition 4.0.1. Expanding this, a 1-cell p : C → D in a 2-category K is a discrete fibration if and only if for

every X ∈ K with f : X → C, g : X → D, α : g ⇒ pf there exists a unique 1-cell h : X → C, and a unique

2-cell α′ : h ⇒ f which satisfying pα′ = α. The 2-cell α′ is then the lift of α with respect to p. Note that

in particular pf = g. The uniqueness clause in the definition says that if β : h ⇒ f and β′ : h′ ⇒ f satisfy

pβ = pβ′, then β = β′; or in particular, p is representably faithful. Furthermore, taking α to be the identity, α′

is an identity 2-cell if and only if pα′ is an identity 2-cell. Finally, note that reversing the 2-cells in all of the

above gives the analogous notions for discrete opfibrations.

We give some useful facts about discrete fibrations.

Proposition 5.2.2. A functor is a discrete fibration in Cat if and only if it satisfies the condition in the remark

above for X = 1.

Proof. The ‘only if’ direction is clear. In Cat functors from 1 are just objects in their codomain, while natural

transformations between them are just morphisms between those objects. So the condition says that if a functor

P : C → D is a discrete fibration then for every C ∈ C, f ∈ D (D,PC) there is a unique morphism f ′ with

codomain C so that Pf ′ = f .

Assume that this condition holds for the functor P , and let F : X → C and G : X → D be functors

with α : G ⇒ PF a natural transformation. Then for every X ∈ X , let βX : F ′X → FX be the lift

of αX : GX → PFX, so that in particular PX ′ = GX. So, given a morphism f ∈ X (W,X), we may

take the lift F ′f : F ′W → F ′X of Gf : GW → GX as GX = PF ′X. Then the assignment X 7→ F ′X

and f 7→ F ′f defines a functor F ′ : X → C. Indeed, given another morphism g ∈ X (X,Y ) we have

P (F ′g.F ′f) = P
(
(Gg)

′
. (Gf)

′)
= P (Gg)

′
.P (Gf)

′
= Gg.Gf = G (gf) = PF ′ (gf). Hence F ′ (gf) = F ′g.F ′f .

Also, F ′1X = (G1X)
′

= 1′Gx = 1F ′x. So F ′ is a functor. Furthermore, the assignment x 7→ βx : F ′x → Fx

defines a natural transformation β : F ′ ⇒ F , since the image of its naturality square under P is the naturality

square for α. Finally, for uniqueness, suppose that F ′′ : X → C is a functor and γ : F ′′ → F is a natural

transformation such that Pγ = α. But then PγX = αX for all X ∈ X , and hence γX = βX so γ = β.

Proposition 5.2.3. Let f : A→ B be a 1-cell and g : B → C a discrete fibration. Then f is a discrete fibration

if and only if gf is a discrete fibration.

Proof. Let x : X → A and y : X → C be 1-cells, and let λ : y ⇒ gfx be a 2-cell. Since g is a discrete fibration,

there exists a 1-cell h : X → B and a 2-cell µ : h⇒ fx which is unique such that gµ = λ. Hence in particular

gh = y.

Now if f is a discrete fibration then we have a 1-cell k : X → A and a 2-cell ν : k → x which is unique

so that fν = µ, and hence in particular fk = h. Thus gfν = gµ = λ. Furthermore, given a 2-cell ν′ with

domain x so that gfν′ = λ, by uniqueness of µ, we see that fν′ = µ and similarly, by uniqueness of ν we have

ν′ = ν. So gf is a discrete fibration.

Conversely, if gf is a discrete fibration then there is a 2-cell λ′ with domain x which is unique so that gfλ′ = λ.

Hence fλ′ = µ, by uniqueness of µ. Finally, suppose λ′′ is a 2-cell with domain x such that fλ′′ = µ. Then

gfλ′′ = gµ = λ, hence by uniqueness of λ′ we see that λ′′ = λ′. So f is a discrete fibration.

Proposition 5.2.4. Let p : A→ B be a discrete fibration. Then DFib (B) /p ∼= DFib (A).

Proof. An object of DFib (B) /p is a 1-cell q : X → A such that pq is a discrete fibration. Hence by Proposition

5.2.3, q is also a discrete fibration. Let r : Y → A be another object in DFib (B) /p. A morphism s ∈
DFib (B) /p (r, q) is just a 1-cell s : Y → X such that qs = r. This is precisely the category DFib (A).

39



In light of the Grothendieck Construction of the previous chapter, when K is the 2-category of locally small

categories this is analogous to saying that slicing over a presheaf produces a category equivalent to the presheaf

category of its category of elements.

Proposition 5.2.5. The pullback of a discrete fibration is a discrete fibration.

Proof. Let p : X → Z be a discrete fibration, let j : Y → Z be a 1-cell and let π1 : P → X and π2 : P → Y

exhibit P as a pullback of f and j. Let h : A → Y and k : A → P be 1-cells, with λ : h ⇒ π2k a 2-cell. Then

there is a 2-cell µ : g ⇒ π1k which uniquely satisfies fµ = jλ, and in particular fg = jh.

Hence by the universal property of P , there exists a 1-cell u : A → P which is unique such that π1u = g

and π2u = h. Then by the two dimensional universal property of P , since µ : π1u ⇒ π1k and λ : π2u ⇒ π2k

satisfy fµ = jλ, there is an induced λ′ : u⇒ k which uniquely satisfies both π2λ
′ = λ and π1λ

′ = µ.

To show uniqueness, suppose λ′′ : u′ ⇒ k is a 2-cell which satisfies π2λ
′′ = λ. Then fπ1λ

′′ = jπ2λ
′′ = jλ = fµ,

and hence π1λ
′′ = µ as f is a discrete fibration. Thus λ′′ satisfies the defining properties of λ′, and hence these

2-cells are equal.

Remark 5.2.6. We describe the construction of comma objects from powers by 2 and pullbacks. Let f : A→ C

and g : B → C be 1-cells and let λ : d ⇒ c : C2 → C be the universal 2-cell of the power by 2. The comma

object f/g is then given by the iterated pullback of the zigzag from A to B, with the universal 2-cell given by

whiskering with λ. This situation is depicted in the diagram below. Then C/g and f/C will comma object when

f and g are identities, respectively. These are often called the lax limit and oplax limit of g and f respectively.

f/g C/g B

f/C C2 C

A C C

y y
g

y

c

d 1C

f

λ

1C

Proposition 5.2.7. Let K be a 2-category with pullbacks and powers by 2. Let λ : d ⇒ c : C2 → C be the

universal 2-cell of the power by 2 of C, let p : C → D be a 1-cell, and let µ : π2 ⇒ pπ1 be the universal 2-cell of

the comma object D/p. Then p is a discrete fibration if and only if the unique 1-cell u : C2 → D/p satisfying

µu = pλ is an isomorphism.

Proof. Suppose that p : C → D is a discrete fibration. Then by the universal property of D/p, the 2-cell pλ

induces a 1-cell u : C2 → D/p which is unique so that c = π1u, pd = π2u, and pλ = µu. Meanwhile by the

universal property of C2, µ′ induces a 1-cell v : D/p→ C2 which is unique so that λv = µ′. Hence in particular

dv = f , cv = π1. But µuv = pλv = pµ′ = µ, while π1uv = cv = π1, and π2uv = pdv = pf = π2. Hence

uv = 1D/p by the universal property of µ. Similarly, pλvu = pµ′u = µu = pλ, so λvu = λ since p is a discrete

fibration. Thus vu = 1C2 by the universal property of λ.

Conversely, suppose the induced u : C2 → D/p has an inverse u−1. Let h : X → C, k : X → D be 1-

cells and γ : k ⇒ ph be a 2-cell. Then the universal property of D/p induces q : X → D/p which is unique so

that π1q = h, π2q = k and µq = γ. Then λu−1q : du−1q ⇒ cu−1q : X → C satisfies pλu−1q = µuu−1q = µq = γ.

It remains to show that this lift is unique, so let h′ : X → C be a 1-cell and let φ : h′ ⇒ h satisfy pφ = γ, so

that in particular we also have ph′ = k. Now by the universal property of C2, φ induces w : X → C2 unique

so that φ = λw. Hence in particular, h = cw and h′ = dw. Then π1uw = cw = h, π2uw = pdw = ph′ = k,

and µuw = pλw = pφ = γ. Thus uw = q since q was induced to uniquely satisfy these conditions. Hence

λu−1q = λu−1uw = λw = φ, as required.
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Remark 5.2.8. All of the proofs in this subsection apply just as well to discrete opfibrations, provided that one

reverses the direction of any 2-cells in sight. In particular, discrete opfibrations are also stable under pullback,

a fact that we will use in Proposition 5.2.10 in the next section.

5.2.2 Final Internal Functors

In this subsection we give a description of the left class of the comprehensive factorisation system which we

will prove in Section 5.4. Internal functors in this class are called final. For this subsection, let E be a

category with finite limits and reflexive coequalisers, and let Π′0 : Cat (E) → LocDisc (E) denote the trans-

pose of the functor Π0 : Cat (E)1 → E from Remark 1.2.9 under the adjunction Cat
(
Cat (E)1 , E

) ∼= 2-

Cat
(
Cat (E) ,LocDisc (E)

)
, where LocDisc : Cat → 2-Cat sends a category to itself viewed as a locally

discrete 2-category, and write LocDisc (E) as just E .

Definition 5.2.9. Call a 1-cell f : X → Y powerful if its pullback functor K/Y → K/X has a right adjoint.

An internal functor j : A → B is final if for all powerful discrete opfibrations q : X → B, the 2-functor

Π′0 : Cat (E)→ E sends the pullback of j along q to an isomorphism in E . Call the internal functor j : A→ B
initial if instead Π′0 sends the pullback of j along any powerful discrete fibration to an isomorphism in E .

As mentioned previously, we will primarily be treating the case of final internal functors. However, reversing

the 2-cells in all of our statements about internal final functors will give equivalent statements about internal

initial functors.

Proposition 5.2.10. A composite of final internal functors is final.

Proof. Suppose that in the pullback diagram below, the internal functors in the bottom row are final and the

internal functor q is a powerful discrete opfibration.

A B C

D E F

h

f

p

g

q

j k

Then since powerful morphisms are stable under pullback (part 3 of Corollary 2.6 in [30]), it follows from Propo-

sition 5.2.5 by duality that p is also a discrete opfibration. But then Π′0 sends both f and g to isomorphisms.

The proof is complete by 2-functoriality of Π′0.

As mentioned at the beginning of this chapter, the left class will itself be the composite of internal functors

from two separate classes. In particular, they will take the form of a right adjoint followed by a coidentifier, as

we will show in Section 5.3. In light of Proposition 5.2.10, it will be easier to treat these classes separately.

Proposition 5.2.11. Coidentifiers are final, and initial.

Proof. Let n : A→ B be a coidentifier and let p : X → B be powerful. Then pullback along p is a left adjoint,

so p∗ (n) is a coidentifier. Similarly, Π′0 is a left adjoint and so Π′0 (p∗ (n)) is a coidentifier in E . But there are

no non-identity 2-cells in E and hence coidentifiers in E are isomorphisms, so n is both final and initial.

We now prove two lemmas which will be needed in order to show that right adjoints are also final.

Lemma 5.2.12. Let the first diagram below be a comma square with q : F → B a discrete opfibration, and let

the second be a pullback square. Let λ′ : r ⇒ k be the lift of λ along q. Then there are induced 1-cells as depicted

in the third and fourth diagrams below such that u∗ is induced by 1qg : qg ⇒ jh, and there is an adjunction

u∗ a u∗.
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q/j A

F B

f

r j

q

λ

q

P A

F B

h

g
y

j

qq

P

q/j A

F B

u∗

h

g

f

r j
λ

q

q/j

P A

F B

u∗

f

k
y

h

g j

q

Proof. Note that the 2-cells λ′ and 1f satisfy the equality of pastings shown in Diagram 7.0.35, and hence by

the 2-dimensional universal property of q/j we have an induced ηu : 1q/j ⇒ u∗u
∗ which is unique such that

rηu = λ′, and fηu = f . Consider λ′u∗ : ru∗ ⇒ ku∗. This 2-cell whiskers with the discrete opfibration q to

give λu∗, which is an identity 2-cell, and hence it is also an identity 2-cell. Thus g = ku∗, or g = gu∗u∗, and

also hu∗u∗ = fu∗ = h. But since g and h are jointly monic, u∗u∗ = 1P . We claim that ηu : 1q/j ⇒ u∗u
∗

and 11P : u∗u∗ ⇒ 1P are the unit and counit respectively of an adjunction u∗ a u∗. To show this we need to

show that u∗ηu and ηuu∗ are identities. For both of these, we use the universal properties defining u∗ and u∗

respectively.

For the first triangle identity, we firstly note that qkηu = jfηu = jf = qk, and hence kηu = k since q is a discrete

opfibration. Now we have u∗ηu = kηu = k. Also, h (u∗) . (u∗ηu) = (hu∗) . (hu∗ηu) = hu∗ (hu∗ηu) = f.fη = f .

Thus the first triangle identity follows from the universal property of u∗. For the second triangle identity, we

firstly note that qλ′u∗ = λu∗ = qg, and hence λ′u∗ = g since q is a discrete opfibration. Now, using functoriality

of horizontal composition, we see λ′ (u∗) . (ηuu∗) = (λ′u∗) . (ru∗) . (rηuu∗) = (λ′u∗) .g. (λ
′u∗) = g. Similarly,

(qru∗) . (qrηuu∗) = (qg) . (qλ′u∗) = (qg) . (λu∗) = qg, and hence r (u∗) . (ηuu∗) = g since q is a discrete opfibra-

tion. Finally, we have f (u∗) . (ηuu∗) = (fu∗) . (fηuu∗) = h. (fu∗) = h. Thus the second triangle identity follows

from the universal property of u∗, and hence we have established the adjunction as required.

Lemma 5.2.13. Consider again the comma square of Proposition 5.2.12. Instead of supposing that q is a

discrete opfibration, this time instead suppose that j∗ := j has a left adjoint j∗ with unit ηj : 1B ⇒ j∗j
∗ and

counit εj : j∗j∗ ⇒ 1A. Then the 1-cell r∗ : F → q/j induced by ηjq : q ⇒ j∗j
∗q is left adjoint to r∗ with the

adjunction r∗ a r∗ having an identity unit.

Proof. We first note that since r∗ : F → q/j∗ was induced by a universal property, it is unique such that r∗r
∗ =

1F , fr∗ = j∗q, and λr∗ = ηjq. Now consider the two 2-cells 1r∗ : r∗r
∗r∗ ⇒ r∗, and (εjf) . (j∗λ) : fr∗r∗ ⇒ r∗.

Note that (j∗j
∗λ) . (ηjqr∗) = (ηjj∗f) .λ by functoriality of horizontal composition. Thus the equality of pastings

depicted below holds, and hence by the 2-dimensional universal property of q/j∗, there is an induced 2-cell

εr : r∗r
∗ ⇒ 1q/j∗ which is unique such that r∗εr = r∗ and fεr = (εjf) . (j∗λ).

A B A B

=

q/j F q/j F

j∗

1A

j∗
εj j∗

r∗

λ
f

r∗

q

r∗

f
λ

q =

A A

q/j F B B

1A

j∗ j∗f

r∗

λ λ

q

j∗

1B

εj

We claim that ηr = 11F and εr are the unit and counit of an adjunction r∗ a r∗. Indeed, the triangle identity

for r∗ holds immediately, while for r∗ it simplifies to (εrr
∗) r∗ which is the identity. This establishes the triangle

identities and completes the proof.

Corollary 5.2.14. Right adjoints are final, while left adjoints are initial.

Proof. Consider once again the comma square for Lemmas 5.2.12 and 5.2.13, this time under both the assump-

tion that q is a discrete opfibration and that j∗ := j is a right adjoint. Then the pullback projection g = ru∗ is

the composite of two right adjoint 1-cells and is hence itself a right adjoint. Since 2-functors preserve adjoints,

and adjoints in locally discrete 2-categories are just isomorphisms, g is therefore sent by Π′0 to an invertible
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morphism in E , as required for j∗ to be final. This completes the proof that right adjoints are final. Finally,

note that the reversing of 2-cells interchanges left and right adjoints, and thus left adjoints are initial.

We now prove left orthogonality of both coidentifiers and right adjoints to discrete fibrations.

Proposition 5.2.15. Let λ : f ⇒ g : X → A have coidentifier n : A → B. Let p : C → D be a discrete

fibration, and let u : A → C, v : B → D satisfy vn = pu. Then there is a diagonal filler w : B → C, which is

unique such that pw = v and wn = u.

X A B

C D

f

g

n

u v
w

p

λ

Proof. Note that puλ = vnλ, and that this 2-cell is an identity since n coidentifies λ. Hence uλ is also an

identity since p is a discrete fibration. So by the universal property of n, we have an induced w : B → C which

is unique so that wn = u. Then pwn = pu = vn, and hence pw = v as n is an epimorphism, since it is a

coidentifier. For uniqueness, suppose w′ : B → C satisfies pw′ = v and w′n = u. Indeed, w′n = u is sufficient

to conclude that w′ = w since w was induced by the fact that uλ is an identity.

Proposition 5.2.16. Let r : A→ B have a left adjoint l : B → A with unit η : 1B ⇒ rl and counit ε : lr ⇒ 1A.

Let p : C → D be a discrete fibration, and let u : A→ C and v : B → D satisfy pu = vr. Then there is a 1-cell

w : B → C which uniquely satisfies pw = v and wr = u.

Proof. Since p is a discrete fibration, the 2-cell vη : v ⇒ pul induces a 2-cell γ with codomain ul which uniquely

satisfies pγ = vη. Letting w : B → C denote the domain of γ, we see that in particular pw = v. We claim that

w is the required diagonal filler. Note that the equality of pastings depicted below holds, where the latter is

just the identity 2-cell on vr by the triangle identity. Hence wr = u by the discrete fibration property of p.

A A C D

B

1A

r

u p

l

w

ε γ =

A A

B B D

1A

r
rlε

1B

v

η

Finally, let w′ : B → C satisfy u = w′r and v = pw′. We need to show that w′ = w. Hence consider

w′η : w′ ⇒ w′rl = ul. Then pw′η = vη = pγ. So γ = w′η as p is a discrete fibration. Hence in particular their

domains are equal, and so w = w′.

Note that under the reversing of 2-cells we have also proven that left adjoints, and coidentifiers, are left orthog-

onal to discrete opfibrations.

5.3 The Split Fibrations 2-monad

We are now ready to present the first stage of the comprehensive factorisation of an internal functor. As

previously mentioned, since this construction is possible in any 2-category with oplax limits, we will give it at

that level of generality.

Notation 5.3.1. We adopt the convention when displaying morphisms in comma categories that the horizontally

displayed arrows represent objects, and the commutative square determined by the vertical arrows represents a

morphism in the comma category. Thus for example, if F : A → B is a functor then the following commutative

square in a category B is a morphism from φ to φ′ in the comma category B/F .

b Fa

b′ Fa′

φ

β Fα

φ′
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Proposition 5.3.2. A 1-cell f : A→ B in a 2-category with oplax limit of 1-cells as described in Remark 5.2.6

factorises as a right adjoint followed by a split fibration.

Proof. Let u : B/f → A and v : B/f → B be comma projections, and let λ : v ⇒ fu be the universal 2-cell of

B/f as a comma object. Then 1f : f ⇒ f1A induces a 1-cell r : A→ B/f which is unique such that ur = 1A,

vr = f and λr = f . This situation is depicted in the following diagram.

A B/f A

B

r

f

1A

u

v
f

λ

Now by the 2-dimensional universal property of B/f , since 1u : u ⇒ uru and λ : v ⇒ fu = vru satisfy

λru.λ = λ = f1u.λ, we have an induced η : 1B/f ⇒ ru which is unique such that uη = u and vη = λ. We claim

that η is the unit of an adjunction u a r whose counit is 11A . The triangle identity involving the left adjoint

follows as (11Au).(ηr) = u. For the triangle identity involving r, we first note that ηr = r by the universal

property of B/f as uηr = ur = 11A and vηr = λr = f . Hence r. (ηr) = r. Thus we have established that

f = vr where r is a right adjoint.

It remains to show that v is a split fibration. Pick X ∈ K and herein let Y denote K (X,Y ) for any Y in

the data of the diagram above, so that we may work representably in Cat. We claim that given φ ∈ B (b, fa)

and β : b′ → b, the morphism in B/f shown below on the left is cartesian. To see this, let g : b′′ → b′ be a

morphism in B and let the square below on the right be a morphism in B/f . Both of these morphisms in B/f

have source given by the top row and target given by their bottom row, as depicted.

(β, 1a) =

b′ b fa

b fa

β

β

φ

f(1a)

φ

(βg, α) =

b′′ fa′′

b′

b fa

φ′

g

f(α)

β

φ

Then clearly α : a′ → a uniquely satisfies 1aα = α and fαφ′′ = φβg. This shows that the projection v : B/f → B

is a fibration, and since the chosen cartesian lifts are sent by u to identities, they compose just as in B. So

the composite of chosen cartesian morphisms is a chosen cartesian morphism, and hence the fibration is split.

Finally, note that all these calculations are stable under composition in K by some 1-cell into X, so we have

established the result required in K.

Theorem 5.3.3. With notation as in the proof of Proposition 5.3.2, f 7→ v defines the left adjoint L to the

forgetful 2-functor SFib (B)→ K/B.

Proof. We describe the 2-functor to which this assignment extends. Let f ′ : A′ → B have the comma object

B/f ′ with the universal 2-cell λ′ : v′ ⇒ f ′u′. For a 1-cell g ∈ K/B (f ′, f), or equivalently g : A′ → A in K such

that fg = f ′, Lg : B/f ′ → B/f is induced by λ′ by the universal property of B/f in K. Thus Lg uniquely

satisfies the following conditions the conditions depicted in the diagrams below.

B/f ′ B/f

A′ A

Lg

u′ u

g

B/f ′ B/f

B

Lg

v′ v

B/f ′ B/f A

B

Lg u

v
f

λ

=

B/f ′ A′ A

B

u′

v′
f ′

g

λ′

f

For a 2-cell α : g ⇒ g′ in K/B, or equivalently one in K such that fα = f ′, the equality of pastings in Diagram

7.0.29 holds, or equivalently the diagram of 2-cells below commutes. Hence the 2-cells αu′ : uLg = gu′ ⇒ g′u′ =

uLg′ and 1v′ : vLg′ ⇒ vLg induce the 2-cell Lα : Lg ⇒ Lg′ by the 2-dimensional universal property of B/f in

K. Thus Lα : Lg ⇒ Lg′ is unique so that uLα = αu′ and vLα = v′.
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vLg vLg′

fα (Lg) fα (L′g)

1

λLg λLg′

fα

To see that this assignment is functorial on hom-categories, let β : g′ ⇒ g′′ be a 2-cell in K/B, so that fβ = f ′.

We see that u (Lβ.Lα) = (uLβ) . (uLα) = (βu′) . (αu′) = (β.α)u, and v (Lβ.Lα) = (vLβ) . (vLα) = v′. Hence

L (β.α) = Lβ.Lα, by the universal property of the former. Similarly, to check that the assignment strictly

respects horizontal composition, we let g ∈ K/B (f ′′, f ′) and check that LgLg′ satisfies the conditions uniquely

identifying L (gg′) according to the universal property by which it is induced. Indeed, λLgLg′ = λ′Lg′ = λ′′,

while vLgLg′ = v′Lg′ = v′′ and uLgLg′ = gu′Lg′ = gg′u′′. Finally noting that identities are preserved by L,

we have shown that L is well defined as a 2-functor.

We claim that r ∈ K/B (f, v) is the component of the unit of this adjunction at f . For 2-naturality, we

show that Lg.r′ = rg using the universal property of B/f . Indeed, we see that uLg.r′ = gu′r′ = g = urg,

vLg.r′ = v′r′ = f ′ = fg = vrg, and λLg.r′ = λ′r′ = f ′ = fg = λrg, and hence by the universal property

we have shown 2-naturality. Next, we verify the universal property of the unit. Let h : C → B be a split

fibration and k : A → C be a 1-cell such that f = hk. Then as h is a split fibration, λ : v ⇒ hku induces a

chosen 2-cell ξ : g ⇒ ku : B/f → C such that hξ = λ, and hence in particular hg = v. We claim that g is

the required unique morphism of split fibrations satisfying gr = k in K/B. To see that g preserves chosen lifts,

we work representably in Cat. Let (β, 1a) : (φβ, a) → (φ, a) be the chosen lift of β : b′ → v (φ, a) = b. Then

g (β, 1a) ∈ C (g (φβ, a) , g (φ, a)) commuting with the components of ξ : g ⇒ ku at (φβ, a) and (φ, a). But since

these components are chosen, so is g (β, 1a), and hence g is a morphism of split fibrations.

Note that since ξ is chosen, so is ξr : gr ⇒ kru = k, as can be seen when working representably in Cat.

But hξr = λr = f , so ξr is an identity 2-cell and hence gr = k. Now for uniqueness, suppose g′ : B/f → C is a

morphism of split fibrations from v to h so that gr = k. Working representably in Cat, we note that the chosen

lift of β ∈ B (b, b′) will be of the form (β, 1a) ∈ B/f (φ, φ′) where φ : b → fa and φ′ : b′ → fa are morphisms

of B. We need to show that g (β, 1a) = g′ (β, 1a). But hg (β, 1x) = v (β, 1x) = β, and similarly hg′ (β, 1x) = β.

Since these are both chosen lifts of β, they are equal. So g = g′ as required.

Remark 5.3.4. Let v : B/f → B be as above and let λ′ : v′ ⇒ vu′ be the universal 2-cell exhibiting B/v as

an oplax limit of v in K. The monad T induced by this adjunction has unit component on f given by r, and

multiplication component on f given by the 1-cell m : B/v → B/f induced by the pasting below, and hence

unique such that um = uu′, vm = v′, and λm = λu′.λ′.

B/u B/f A

B

u′

v′
v

u

λ′

f

λ

Theorem 5.3.5. The forgetful 2-functor SFib (B)→ K/B is 2-monadic.

Proof. Once again, by representability, it suffices to show that this is true when K = Cat. We begin by setting

up the notation which will be used in this proof, and describing what the monad axioms say in this notation.

Following this we will summarise how the structure of a T -algebra and a split fibration, and morphisms thereof,

give rise to one another.

Letting v denote Tf as above, an object in B/v consists of a morphism ψ : b′ → b in B, an object a ∈ A

and a morphism φ : b′ → fa in B, and will be denoted (ψ, φ, a). A morphism (ψ1, φ1, a1)→ (ψ2, φ2, a2) in B/v

consists of morphisms β′ : b′1 → b′2, β : b1 → b2 and α : a1 → a2 so that the squares below commute, and will

be denoted (β′, (β, α)).
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b1 fa1

b2 fa2

φ1

β fα

φ2

b′1 b1

b′2 b2

ψ1

β′ β

ψ2

Then the monad multiplication m : B/v → B/f described in Remark 5.3.4 maps the morphism (β′, (β, α)) :

(ψ1, φ1, a1)→ (ψ2, φ2, a2) to (β′, α) : (φ1ψ1, a1)→ (φ2ψ2, a2). Denote the image of an object (φ, a) under a func-

tor t : B/f → A as φ∗ (a) and denote the image of a morphism (β, α) ∈ B/f ((φ1, a1) , (φ2, a2)) as (β, α). Note

then that fφ∗ (a) = fa. Then Tt maps the morphism (β′, (β, α)) to
(
β′, (β, α)

)
: (ψ1, φ1

∗ (a))→ (ψ2, φ2
∗ (a)).

Thus the multiplication axiom for such a t exhibiting f as a T -algebra would say on the generic object (φ, ψ, a) ∈
B/v that ψ∗φ∗ (a) = (φψ)

∗
(a), and on the generic morphism (β′ (β, α)) ∈ B/v ((ψ1, φ1, a1) , (ψ2, φ2, a2)) that(

β′, (β, α)
)

= (β′, α). Meanwhile, the unit axiom for t would say on objects that 1fa
∗ (a) = a, and on mor-

phisms that (fα, α) = α. We will proceed by showing how the structure of a split fibration and an algebra for

T give rise to one another.

Assume t : B/f → A exhibits f : A → B as a T -algebra. Choose the lift of a morphism φ ∈ B (b, fa) to

be (φ, 1a). It suffices to show that this morphism is cartesian for f since the lift of an identity is clearly an

identity and the composite of chosen lifts is clearly also a chosen lift. For all α : a′ → a and φ : b → fa,

the morphism (β, α) : a′ → φ∗ (a) satisfies the commutativity of the first two triangles below. For uniqueness,

suppose γ : a′ → φ∗ (a) satisfies fγ = β and the third triangle below. Then we may factorise γ as shown in the

fourth triangle below, which corresponds to diagram in B shown on the right.

a′ φ∗ (a)

a

(β,α)

α (φ,1a)

fa′ b

fa

β

fα
φ

a′ φ∗ (a)

a

γ

α (φ,1a)

a′ (fγ)
∗

(a)

φ∗ (a)

(1fa′ ,γ)

γ (β,1a)

fa′ fa′

fa′ fφ∗ (a)

b fa

1fa′

1fa′ fγ

fγ

β f(1a)

φ

Thus f(1fa′ , γ) = 1. Hence it is enough to show uniqueness for the case where β is an identity, so herein we

assume fγ = 1fa′ . Now (1fa′ , γ) : (1fa′ , a
′)→ (1fa′ , a

′) composes with (1fa′ , α) : (1fa′ , a
′)→ (φ, a′) in B/f to

give (1fa′ , α) : (1fa′ , a
′)→ (φ, a). But functoriality of t says that the following diagram commutes

a′ φ∗ (a)

(fα)
∗

(a′)

γ

(1fa′ ,α)

(
1fa′ ,(1fa′ ,φ)

)

so it is enough to show that
(

1fa′ , (1fa′ , φ)
)

= 1φ∗(a). But this is just the multiplication axiom for t as a

T -algebra, applied to the morphism (1b, (φ, 1a)) ∈ B/v ((1b, φ, a) , (φ, 1fa, a)). So f is a split fibration.

Conversely, suppose f : A → B is a split fibration, with chosen lift for β : b → fa′ given by α : a → a′.

Then there is a functor t : B/f → A given

• On objects by sending φ : b→ fa to the domain of its chosen lift with respect to f , as a morphism in B.

• On morphisms by sending (β, α) : (φ, a) → (φ′, a′) to the morphism t (φ, a) → t (φ′, a′) induced by the

universal property of the cartesian lift of φ′ along f , since α composed with the cartesian lift of φ is also

a morphism into a′.

Then ft = v is clear from the definition, while the unit axiom for t as a T algebra holds since f lifts identities to

identities, and the multiplication axiom for t as a T algebra can be seen to hold since chosen lifts of f compose

to give a chosen lift. Furthermore, it is clear that this assignment is inverse to that described from T -algebras
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to split fibrations.

We now look at the 1-cells of the respective 2-categories. Let f : A→ B and f ′ : A′ → B be T -algebras, and let

a functor g : A→ A′ be a morphism T -algebras between them. Then Tg maps an object (φ : b→ fa, a) ∈ B/f
to (φ : b→ f ′ga, ga), and a morphism (β, α) to (β, gα). Then the algebra morphism axiom for g applied to the

generic cartesian morphism (φ, 1a) ∈ B/f (φ : b→ fa, 1fa : fa→ fa) says precisely that g preserves these and

is hence itself a morphism of split fibrations.

For the converse, suppose g is a morphism of split fibrations. To establish the axiom for a morphism of

split fibrations, we need to show that t′ (β, gα) = gt (β, α). Consider the commutative square in B/f shown

below on the left, where φ : b → fa, φ′ : b′ → fa and β : b → b′ are morphisms in B, and α : a → a′ is a

morphism in A. This is equivalently given by the commutative cube in B shown in the middle diagram below,

and the commutative square in B shown on the right.

(φ, a) (φ′, a′)

(1fa, a) (1fa′ , a
′)

(β,α)

(φ,1fa) (φ′,1fa′)

(fα,α)

b fa

b′ fa′

fa′ fa′

φ

β fα

φ′

φ 1fa′

1fa′

=

b fa

fa fa

fa′ fa′

φ

φ f1a

1fa

fα α

1fa′

a a

a′ a′

1a

α α

1a′

This square is sent by t to the following square in A, where we used α = (fα, α) by the unit axiom for t.

(φ, a) (1fa, a)

(φ′, a′) (1fa, a
′)

(φ,1fa)

(β,α) α

(φ′,1fa)

Note that (φ, 1fa) and (φ′, 1fa′) are cartesian with respect to v and v′ respectively, with images under both t

and t′ cartesian with respect to f and f ′ respectively. So it follows from the universal property of cartesian

morphisms that gt (β, α) = t′ (β, gα), as required.

One can easily see that 2-cells of split fibrations and 2-cells of T -algebras coincide, completing the proof.

In contrast to the inclusion of 2-categories of fully faithful internal functors into the slice categories of Cat (E),

the inclusion of split fibrations into the slice categories in K is not fully faithful, even when K = Cat (E). This is

because 1-cells in K may admit more than one split fibration structure. However, any split fibration structures

they admit will be unique up to a unique isomorphism of split fibrations. Such a situation is often called

essential uniqueness. To see this is the case for split fibrations, we prove that moreover, the split fibrations

monad T is colax idempotent. This notion has several equivalent definitions which can be found in [19]. We

recall one of these here.

Definition 5.3.6. Let T : K → K be a 2-monad with multiplication µ : T 2 ⇒ T and unit η : 1K ⇒ T . Then

(T, µ, η) is called colax idempotent if

• Every T -algebra action x : TX → X is right adjoint to ηX : X → TX in K,

• This adjunction ηX a x has an identity unit.

Note that the desired essential uniqueness of a T -algebra structure is indeed a consequence of T being colax

idempotent, since adjoints are essentially unique.
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Theorem 5.3.7. The 2-monad T described in Remark 5.3.4 is colax idempotent, and in particular a 1-cell in

K admits at most one split fibration structure, up to unique isomorphism of split fibrations.

Proof. We show colax idempotence of T by showing that 11A : 1A ⇒ tr = 1A is the unit of an adjunction r a t.
Note that since f : A → B is a split fibration, λ : v → fu induces a cartesian α : t ⇒ u satisfying fα = λ.

So by the two dimensional universal property of B/f , there is a unique ε : tr ⇒ 1B/f satisfying vε = 1v and

uε = α. Note also that αr is a chosen lift for λr = 1v, and hence αr = 11A . For the triangle identities we need

to show tε = t, and εr = r. For the first of these, we use cartesianness of α. Indeed ftε = vε = 1v, and α.η = α,

so tε = t since fα = λ. For the second of these, we see that vεr = vr = f and uεr = αr = 11A , so εr = r

follows by the 2-dimensional universal property of B/f . Then finally, since adjoints are unique up to a unique

isomorphism, so must be the algebras for the 2-monad T .

Remark 5.3.8. Once again, under the reversal of 2-cells in K, the results of this chapter show that if K has lax

limits of 1-cells then any f : A → B factorises as A f/B Bl w where l is a left adjoint and w is a

split opfibration, and that the forgetful functor SoFib (B)→ K/B is monadic, and furthermore lax idempotent

in the sense of [19], which is the 2-cell dual of Definition 5.3.6.

5.4 Comprehensive Factorisation

Having seen how the 1-cells of a 2-category factorise into a right adjoint followed by a split fibration in the

previous section, we now look at the next step of the factorisation. In Cat (E), this will factorise the split

fibration into a coidentifier of the universal 2-cell of a power by 2, followed by a discrete fibration.

The first result of this section describes powers by 2 in the slice category of a 2-category with powers by 2

and pullbacks.

Proposition 5.4.1. Let ε : e0 ⇒ e1 : E2 → E and β : b0 → b1 : B2 → B be universal 2-cells of the respective

powers by 2 in K, let p : E → B be a 1-cell and let X denote the pullback in K of ∆B and p2, with projections

q : X → B and g : X → E2. Then εg : e0g ⇒ e1g : X → E is the universal 2-cell exhibiting q : X → B as the

power by 2 of (E, p) ∈ K/B.

X E2 E

B B2 B

g

q
y

e0

e1
p2 p

∆B

b0

b1

ε

β

Proof. That εg is well defined as a 2-cell in K/B is clear since pεg = βp2g = β∆Bq = q. Now suppose

γ : h ⇒ k : Y → E satisfies pγ = s for some 1-cell s : Y → B. To establish the universal property of εg as the

universal 2-cell of a power by 2 in K/B we must show that there is a unique 1-cell m : Y → X in K such that

qm = s and γ = εg.m. But by the universal property of E2, γ induces a 1-cell u : Y → E2 which is unique so

that εu = γ. Now since βp2u = pεu = pγ = s = β∆Bs, p
2u = ∆Bs by the universal property of B2. Then

by the universal property of X as a pullback, there is an induced 1-cell m : Y → X which is unique so that

qm = s and gm = u, so in particular εgm = εu = γ. For uniqueness, suppose m′ : Y → X satisfies εg.m′ = γ

and qm′ = s. Then gm′ = u by definition of u, and hence m′ = m by definition of m.

Since we know that SFib (B) is equivalent to Cat
(
DFib (B)

)
, and Proposition 1.5.6 characterised coidentifiers

of universal 2-cells of powers by 2, it will suffice to know that DFib (B) has reflexive coequalisers. This is the

subject of the next two propositions.
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Proposition 5.4.2. For g ∈ E (X,Y ), let g∗ : E/Y → E/X denote the pullback functor and let Σg : E/X → E/Y

denote its left adjoint, which composes a morphism into X with g. Let B2 B1 B0
m

d0

d1

i be a category

internal to E. Then the composite functor E/B0 E/B1 E/B0
d0∗ Σd1 is a monad T on E/B0.

Proof. Let X ′ be the domain of the pullback of f along d1. The unit is given on component f : X → B0

by (1X , if) : X → X ′. Letting X ′′ denote the further pullback of Tf along d1, the components for the

monad’s multiplication are similarly induced by the universal property of B1 given the pullback projections

and the composition map of B. Then naturality of η and µ follow from the universal property of X ′, while the

associativity and unit laws for the monad follow from those of the internal category B.

Note that by interchanging the roles of d0 and d1, we obtain an analogous result to the above for discrete

opfibrations. In fact, the category of algebras for this monad is DFib (B), as shown for example in Proposition

2.2.1 of [14].

Proposition 5.4.3. Let E have finite limits and pullback stable reflexive coequalisers. Then DFib (B) and

DoFib (B) have finite limits and reflexive coequalisers.

Proof. Monadic functors create limits, and also create any colimits preserved by their corresponding monad. As

a left adjoint, Σd0 preserves all limits, and if coequalisers are stable under pullback in E then so will d∗1. Thus

since DFib (B) is the category of algebras as described, it follows that DFib (B) has finite limits and reflexive

coequalisers. The case for DoFib (B) follows by duality.

Theorem 5.4.4. Let E a category with finite limits and pullback stable reflexive coequalisers. Then

1. The functor Π′0 : SFib (B) → DFib (B) of Remark 1.2.9 sends the split fibration v : B/f → B of

Proposition 5.3.2 to a discrete fibration p : C→ B, through which it factors via the coidentifier of Remark

1.5.6.

2. Cat (E) has an orthogonal factorisation system whose left class consists of the final internal functors and

right class consists of the discrete fibrations.

3. Cat (E) has an orthogonal factorisation system whose left class consists of the initial internal functors

and right class consists of the discrete opfibrations.

Proof. Taking K = Cat (E) in Proposition 5.3.2, we factorised f : A → B into a right adjoint r : A → B/f
followed by a split fibration v : B/f → B. Since SFib (B) is monadic over Cat (E) /B, it inherits limits from

the slice 2-category. In particular, the universal 2-cell of the power by 2 of v : B/f → B will be computed in

SFib (B) just as described by Proposition 5.4.1. Now view SFib (B) as Cat (DFib (B)) by part 4 of Theorem

4.3.3. By Proposition 1.5.6, the coidentifier n : B/f → P of this 2-cell will be the coequaliser of the reflexive

pair corresponding to the domain and codomain maps of v ∈ Cat (DFib (B)), which are themselves discrete

fibrations. It follows that v factorises as pn where p : P → B is the discrete fibration induced by the universal

property of n as a coidentifier. This proves part 1.

For part 2, note that what we have just described is a factorisation of an arbitrary internal functor into a

final internal functor followed by a discrete fibration: by Proposition 5.2.11 and Corollary 5.2.14, both right

adjoints and coidentifiers are final, and by Proposition 5.2.10, the composite of r and n is also final. But by

Propositions 5.2.16 and 5.2.15, both of these are left orthogonal to discrete fibrations, and since we have also

shown that any final internal functor factorises as a right adjoint followed by a coidentifier, we have proven

the desired factorisation is orthogonal. Part 3 is an analogous conclusion to the same construction with 2-cells

reversed.
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6 Concluding Remarks

In Chapter One we gave an introduction to the theory of internal categories, functors, and natural transforma-

tions. We proved that they form a 2-category with finite weighted limits, and gave examples of various familiar

notions internal to a category with finite limits. These included several functors between Cat (E)1 and E which

featured in various places along the course of this thesis. We also introduced notions of multiple categories, and

a construction of a category internal to a 2-category with powers by finite categories. These featured later in

Chapter Three.

In Chapter Two, we took a closer look at some other properties familiar in Cat, and gave an account of

certain assumptions under which they generalised to Cat (E) for other finite limit categories E . In particular,

we saw that Cat (E) inherits cartesian closedness, the existence of a natural numbers object, and extensivity

from E . Meanwhile, we noted that coequalisers are not in general inherited by Cat (E), but they are under

assumptions like the existence of list objects or local presentability of E . We remarked that pullback functors in

Cat (E) need not have right adjoints, and indeed only some do even when E = Set. We saw that copowers by 2

will exist when E is lextensive, and in this case Cat (E)1 inherits generating families from E via Disc. Finally,

we saw that if E has a subobject classifier > : 1 → Ω then Cat (E) has a classifying full subobject, given by

coDisc (>).

In Chapter Three we looked at how the assignment E 7→ Cat (E) extends to various 2-functors, and saw

how the various functors and natural transformations between Cat (E) and E varied in E . We saw in particular

that the data giving an internal category, which we collectively referred to as the evaluation category, itself

forms a category internal to [Lex,Lex] (Cat (−) , 1Lex), despite this category not having all pullbacks. We

saw three distinct monad like structures on the 2-functor Cat (−) : Lex → Lex. Two of these were lax and

colax pseudomonads structures, which arose from a very general setting, given the adjoints to Ob. The other

was a pseudocomonad structure involving the double category of squares as the comultiplication. This arose

from a biadjunction in which Ob also featured as the counit. We also described the pseudocoalgebras for this

pseudocomonad as 2-categories with finite weighted limits. We also saw that transposition of double categories

forms a compatible flip in the sense of [27].

In Chapter Four we looked at the Grothendieck Construction, from which for our purposes the main result

was that the 2-category of split fibrations is equivalent to the 2-category of categories in discrete fibrations.

This formed one of the main ingredients in the comprehensive factorisation in Chapter Five, where we factorised

an internal functor into a right adjoint followed by a split fibration, and then further factorised the split fibration

into a coidentifier followed by a discrete fibration. We also remarked upon the dual construction, factorising an

internal functor into a left adjoint, followed by a coidentifier followed by a discrete opfibration.

Future work from this thesis could include investigating the lax and colax algebras for the skew and coskew pseu-

domonad structures on Cat (−)1 : Lex → Lex, as well as looking at the lift of the pseudocomonad Cat (−)1

to its 2-categories of strict or pseudocoalgebras, using the compatible flip provided by transposition which is in

particular a strict distributive law.
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7 Appendix

Diagram 7.0.1. .

C3 C2 C1

C2 C1

C1 C0

π3,0

π3,1

m

π1

d1
π0

π1
d1

d0

C3 C2 C1

C2 C1

C1 C0

π3,0

π3,1

π0

π1

d1
π0

m
d0

d0

A2 A1 B1

A1 A0

B1 B0

π0

π1

f1

d1

d1
d0

f1
f0

d0

Diagram 7.0.2. .

HH
HHH

Hj

k
0 1

0 m (x,y) x

1 z m (y,z)

Diagram 7.0.3. .

A1 B1

A0 ×A0 B0 ×B0

y

f1

(d0,d1) (d0,d1)

f0×f0

A1 A0 ×A0 B0 ×B0

A0

B1 B0 ×B0 B0

(d0,d1)

dj

f1

f0×f0

pj

pj

f0

(d0,d1)

dj

pj

Diagram 7.0.4. .

B2 B1

B1

A0 B0

m

π0

d0
d0

(α,β)

α

f0

B2 B1

B1

A0 B0

m

π1

d1
d1

(α,β)
β

h0

A1

B3 B3 B3

B2 B2 B2 B2

B1

(β◦α)1
(f1,αd1,βd1)

(αd0,g1,βd1)

(αd0,βd0,h1)
(β◦α)0

m1 m0 m0 m1 m1 m0

m

m m

m

Diagram 7.0.5. .

A1 B3 B2

B2 B1

(f1,αd1,βd1)

(f1,m(α,β)d1)
f1

m1

π0

π0

A1 B3 B2

B2 B1

(f1,αd1,βd1)

(f1,m(α,β)d1)
m(α,β)d1

m1

π1

π1
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A1 B3 B2

B2 B2

B3 B2 B1

(αd0,g1,βd1)

(αd0,g1)(f1,αd1)

(f1,αd1,βd1)

m0

π0

m
m

m0 π0

A1 B3 B2

A0

B3 B2 B1

(αd0,g1,βd1)

d1

(f1,αd1,βd1)

m0

π1

β

m0 π1

Diagram 7.0.6. .

A1 C2

B1

C2 C1

(βf)1

f1

(βf)0 m

β1

β0

m

A1 C2

B2

B2 B1

C2 C1

(gα)0

α0
α1

(gα)1 mm

g2

m
g2 g1

m

Diagram 7.0.7. .

A0 C2

B1

C2 C1

(βf0,g′1α)

α

(g1α,βf ′0) m
β0

β1

m

A0 C2

B1 B0

C2 C1

(βf0,g1′α)

f0
α

π0
d0

β0

β

π0

A0 C2

B1

C2 C1

(βf0,g1′α)

α

π1

g1
′

β0

π1

A0 C2

B1

C2 C1

(g1α,βf0′)

α

π0

g1
′

β1

π0

A0 C2

B1 B0

C2 C1

(g1α,βf0′)

α
f0
′

π0
d1

β1

β

π1

Diagram 7.0.8. .

HH
HHH

Hj

k
0 1

0 f0,0,0 m (f0,1,0, f1,1,0)

1 m (f0,0,1, f1,0,1) f1,1,1

HH
HHH

Hj

k
0 1

0 φ0 α1

1 α0 φ1

Diagram 7.0.9. .

B0 A1 ASq

B1 A0 A2

ASq A2 A1

φ

fk0i

(i0,i1)

dk p1−k

fk1(φ0,φ1)
i πk

p1−k πx

B0 A1 ASq

B1 B0 A2

ASq A2 A1

φ

1B0
i

(i0,i1)

1A1

pj

(φ0,φ1)

dj

φ
πj

pj πj
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Diagram 7.0.10. .

B2

(
A2
)

2
ASq

B1 ASq

B1 A2

B0 A2

ASq A2 A1

(Fφ)2

πj

m

m2

pj
π2
j(φ0,φ1)

dj pj
dj

(φ0,φ1) πj

φ πj

pj πj

B2

(
A2
)

2
ASq

B1 A2 A2

ASq A2 A1

(Fφ)2

fk2
m r1−k

m2

p1−k

(φ0,φ1)
fk1

m πk

p1−k πk

B2

(
A2
)

2
A2

B1 ASq A2

A2 A1

(Fφ)2

πl

fk2

r1−k

π2
l

πl

(Fφ)1

fk1

p1−k

πk

πl

Diagram 7.0.11. .

B1

(
A2
)

2
ASq

B0 ASq

(
A2
)

2
A2 A2

ASq A2

ASq A2 A1

(FΓ)1−j
(Fφj)

1

dj

(FΓ)j

π2
j

m2

pj

φj

FΓ

pj

m2
π2
j πj

πj
pj

πj

pj πj

B1

(
A2
)

2
ASq

(
A2
)

2
A2 A2

A2

ASq A2 A1

(FΓ)0

αj0

αj1

(FΓ)1

m2

r1−j p1−j

r1−j

m
m π1−j

m2

p1−j πj

B1

(
A2
)

2
A2

B0 ASq A2

A2 A1

(FΓ)0

d0

α0
0

r1

π2
0

π0
FΓ

α0

p0

π1

π0

(
A2
)

2
A2

B1 ASq A2

A2 A1

r1

π2
0

π1

F(φ1)

f0α0
1

(FΓ)0

p1

π1

π1

Diagram 7.0.12. .

Π0 (A) B2

B1

B2 B1

(γ,id1γ)

(id1γ,γ)

γ

m

(1B1
,id1)

(id0,1B1)
1B1

m

Diagram 7.0.13. .

A0 2A0

2A0 A1 3A1

B0 B1

pj

i

fj0

pj i

(Fα)0 fj1

pj

(Fα)1

i

A1 3A1

3A1 A0 2A0

B1 B0

p1+2j

d0

fj1

p1+2j d0

(Fα)1 fj0

p1+j

(Fα)0

d0
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Diagram 7.0.14. .

A1 3A1

3A1 B2 B1 A0 2A0

B1 B0

p2

d0

f1
α1

p2 d0

(Fα)1

π0

m
d0

p1

f0
(Fα)0

d0

4A2 A2 4A2

B2 A1 3A1

B1

(Fα)2

p1+3j

fj2

m

p1+3j

m

m

p1+2j

fj1 (Fα)1

Diagram 7.0.15. .

4A2

A2 A1 3A1

B3 B2

4A2 B2 B1

mp2

m  mf0
2

αd1π1


f0
1π0

f0
1π1

αd1π1


f0

1π0

α̂π1


p2

p2

α1

(Fα)1m0

m1 m

(Fα)2
m

4A2

A2 A1 3A1

B3 B2

4A2 B2 B1

mp3

m αd0π0

mf1
2


αd0π0

f1
1π0

f1
1π1


 α̂π0

f1
1π1


p3

p2

α0

(Fα)1m1

m0 m

(Fα)2
m

Diagram 7.0.16. .

A2 B3 B2

A1 B2

B2 B1

(f1π0,f1π1,αd1π1)

π1

(f1π0,α̂π1)

m1

π1
(f1,αd1)

m

π1

A2 B3 B2

A1

B2 B1

(f1π0,f1π1,αd1π1)

π0

(f1π0,α̂π1)

m1

π0

f1

π0

A2 B2

B2

B3 B2 B1

(mf2,αd1π1)

f2

(f1π0,f1π0,αd1π1) π0

m

m0 π0

A2 B2

A1 A0

B3 B2 B1

(mf2,αd1π1)

π1

(f1π0,f1π0,αd1π1) π1
d1

α

m0 π1
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A2 A1 B2

B2

B2 B1

m

f2

(mf2,αd1π1)

α1

f1
π0

m

π0

A2 A1 B2

A1 A0

B2 B1

m

π1

(mf2,αd1π1)

α1

d1

π1
d1

α

π1

A2 4A2 B2

A1 3A1

B2 B1

p2

π0

(f1π0,α̂π1)

(Fα)2

π0

π0
p1

f1

(Fα)1

π0

A2 4A2 B2

A1 3A1

B2 B1

p2

π1

(f1π0,α̂π1)

(Fα)2

π1

π1
p2

α̂

(Fα)1

π1

Diagram 7.0.17. .

3A1 A1 3A1

B3 B3

B2 B3 B2

B2 B2

B1

(FΓ1)

p2(
β0d0,α̂1

)
(
β0d0,α̂1id0,g

1
1

)

(
α̂0id0,β

1d0,g
1
1

)

(
α̂0id0,f

1
1 ,β

1d1
)

(
α̂0,β1d1

)
p2

(FΓ0)

m1

m0 m1

m0

m

m0 m1

m
m m

A1 3A1 B2

3A1

B2 B1

p1+2j

βj0

p1+2j

βj1

(FΓ0)

m

(FΓ1)

m

A2 3A1 B2

A0 2A0

B2 B1

p1

d0

β0
0

(FΓ0)

d0

π0
p1

β0
0

FΓ

π0

A1 3A1 B2

B2 B1

p1

g01
β0
0

(FΓ0)

(Fα1)
1 π1

π1

Diagram 7.0.18. .

(FA)2 (FA)1

F (A2) F (A1)

mFA

FA
2

F (mA)

F
(
αEA
)

F (A2)

αSFA (FA)2

F (p0,p1)EA

αFA

(p0,p1)SFA

F
(
αEA
)

F (A2) (FA)2

∗

αSFA (FA)2 FA1

F (p0,p1)EA

(FpEj )A
αFA Fπj πj

(pSj )A

(p0,p1)SA
πj
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Diagram 7.0.19. .

T 4 T 3

T 3 T 3 T 2

T 2 T

T 2µ

µT 2

TµT

Tµ
Tτ

µT

Tµ

µT µ

µ

τT

τ

=

T 4 T 3

T 3 T 2 T 2

T 2 T

T 2µ

µT 2 Tµ
µT

Tµ

µT µ
τ µ

µ

µµ

τ

T 3 T 3 T 2

T 2 T 2 T

1 Tµ

µT µTηT

1 µ

αT τ =

T 3 T 3 T 2

T 2 T 2 T

1 Tµ

µTηT

1

1

µ

Tβ

Diagram 7.0.20. .

T 3A T 2A

T 2A T 2A TA

TA A

T 2a

µTA
TµA

Ta
Tα

µA

Ta

µA a

a

τA

α

=

T 3A T 2A

T 2A TA TA

TA A

T 2a

µTA Ta
µA

Ta

µA a
α a

a

(µa)−1

α

T 2A T 2A TA

TA TA A

1 Ta

µA aTηA

1 a

λA α

=

T 2A T 2A TA

TA TA A

1 Ta

aTηA

1

1

a

Tα

Diagram 7.0.21. .

FGD

FGD FGFGD D

FGD

εD

εεD
FηGD

1

1

φGD

FθD

εFGD

FGεD εD

GFC

GFC GFGFC C

GFC

ηC

ηηC
GεFC

1

1

GφC

θGC

GFηC

ηGFC
ηC

Diagram 7.0.22. .

DblCat (E)1 DblCat (E)1

TrplCat (E)1 TrplCat (E)1 TrplCat (E)1

TE

Cat(δE)1 δCat(E)1

TCat(E)1 Cat(TE)1
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Diagram 7.0.23. .

A1,1 A0,1

A1,0 A0,0

A1,1

A1,0

A0,1

A0,0

(
A2
−,1
)

1

(
A2
−,0
)

1

A1,1 A0,1

(
A2
−,1
)

0

(
A2
−,0
)

0

A1,0 A0,0

(
A2
−,1
)

1
A1,1

(
A2
−,1
)

0
A1,0

(
A2
−,0
)

1
A0,1

(
A2
−,0
)

0
A0,0

Diagram 7.0.24. .

PX (ΦX)2

PPX

(ΦX)2 PX

(αd0,g)

(f,αd1)

αd0 f

g αd1


m

p0

p1

m

Diagram 7.0.25. .

C1 B1 B0 ×B0

C0 A0

A0 ×A0 B0 ×B0 B0

g1

(h0d0,h0d1)

dj

(d0,d1)

dj

pj

g0

h0

f0

f0×f0 pj

C1 A1 A0

B1

C0 A0 B0

h1

g1

dj

dj

f1

f0

dj

h0

g0

f0
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Diagram 7.0.26. .

C0 A0 A1

C1 B0

A1 B1

h0

g0
i f0

i

f1

g1
h1

i

f1

C0 A0 A1

C1 C0 A0 ×A0

A1 A0 ×A0 A0

h0

i

i

(d0,d1)

djdj

h1 h0 pj

(d0,d1)

dj

pj

C2 A2 A1

B2

C1 A1 B1

h2

g2

m

m

f2

f1

m

h1

g1

f1

C2 B2

C1

A2

A1

B2 B1

g2

πj

h2

πj
g1

h1

πj

f2

f1

πj

C2 A2 A1

C1 A1

C1 A0 ×A0

C0

A1 A0 ×A0 A0

h2

πj

m

m

πj

(d0,d1)

dj

h1

dj

djdj
h1 pj

h0

(d0,d1) pj

Diagram 7.0.27. .

C0 A0

A1 B1

A0 B0

hj0

αβ gj0

f0
f1

dj dj

f0

C1 A2

A2 B2 A1

A1 B1

(βd0,h0
1)

(h1
1,βd1)

f2
m

f2

m
m

f1

f1

C1 A2

A2 A1 B2

B2 B1

(βd0,h1
1)

(h0
1,βd1)

πj
f2

πj

f2
f1 πj

πj

C1 A2 A1 A0 ×A0

A1

A2 A1 A0 ×A0 A0

(h0
1,βd1)

(βd0,d11)

m

πj

(d0,d1)

dj
pj

dj

m

πj

(d0,d1)

dj

pj

Diagram 7.0.28. .

C0 B1

A0 ×A0 A0 B0 ×B0

B0 ×B0 B0

α

gj0hj0(h0
0,h

1
0)

(d0,d1)

djpj

f0×f0
f0 pj

pj

C1 A2

C0

A2 A1

(βd0,d11)

d0

(h0
1,βd1)

h0
1

π0

β

π0

C1 A2

C0

A2 A1

(βd0,d11)

d1

(h0
1,βd1)

h1
1

π1

β

π1
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Diagram 7.0.29. .

B/f ′ A′

B/f A

B

u′

Lg

v′

g′g

f ′

u

v f

λ

α

=

B/f A′

B

u′

v′
f ′

λ′

=

B/f ′ B/f A

B

Lg u

v
f

λ

Diagram 7.0.30. .

A B

P−1
f A P−1

f B

s

fA fB

P−1
f (s)

A B C

P−1
f A P−1

f B P−1
f C

s

fA fB

t

fC

P−1
f (s) P−1

f (t)

Diagram 7.0.31. .

El (σ)
(

(X,x)
)

El (σ) (Y ,y)

El (τ)
(

(X,x)
)

El (τ)
(

(Y ,y)
)

El(σ)
(

(F,f)
)

El(Γ(X,x)) El(Γ(Y ,y))

El(τ)
(

(F,f)
)

σY (y) σY (QF (x)) RF (σX (x))

τY (y) τY (QF (x)) RF (τX (x))

σY (f)

ΓYy ΓYQF (x) RF(ΓXx )

τY (f)

Diagram 7.0.32. .

A B

P−1
f A P−1

f B

P−1
k P−1

f A P−1
k P−1

f B

s

fA

(kf)A

fB

(kf)BP−1
f (s)

kA kB

P−1
k

(
P−1
f (s)

)

P−1X P−1Y

P ′
−1
X P ′−1Y

S−1
X

P−1
F

S−1
Y

P ′−1
F

Diagram 7.0.33. .

B1 C1

B0 ×B0 C0 × C0

B0 C0

u1

(d0,d1)

dj

(d0,d1)

dj

pj

u0×u0

pj

u0

A1 B1 C1

C1 D1

b1

h1

u1

g1
f1

f1

A1 B1 C1 C0 × C0

C1 A0 B0

C0 × C0 C0

b1

dj
h1

u1

dj

(d0,d1)

pj

dj
(d0,d1)

b0

h0 u0

pj
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Diagram 7.0.34. .

B1 D1 D0 ×D0

B0 ×B0 B0 D0

C0 × C0 C0 D0 ×D0

g1

dj
(d0,d1)

(d0,d1)

dj
pj

pj

u0×u0

g0

u0

pj

f0×f0

f0 pj

B1 C1 C0 × C0

C1 B0

C0 × C0 C0

v1

dj
u1

(d0,d1)

dj
pj

dj
(d0,d1)

v0

u0

pj

B0 B1

A0 A1

C0 C1

D0

C1 D1

i

b−1
0

u0 u1
i

h0

b1

h1

i

f0

i f1

i

f1

B0 B1 C1

C0 B0 C0 × C0

C1 C0 × C0 C0

i

u0

u1

dj
(d0,d1)

dj

i
u0

pj

(d0,d1)

dj

pj

B2 B1 C1

D2

C2 C1 D1

m

g2

u2

u1

g1
f1

mf2

m f1

B2 B1 C1

C2 C1 B1 B0 C0 × C0

C1 C0 × C0 C0

m

πj
u2

u1

dj

(d0,d1)

dj
πj

m
dj

u1 dj

u0 pj

(d0,d1)

dj

pj

Diagram 7.0.35. .

q/j F B

=

=

P q/j A

r

k

u∗

q

λg

u∗

r

f

j

λ′

=

F B

q/j A

q

λr

f

j
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