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Abstract

This project aims to study the Brownian motion of a diamond micro-particle in a harmonic trap at

pressures as low as 1× 10−6 Torr. A novel, purely magnetic trap was designed with three dimensional

magnetic modelling, optimising its shape to produce the highest resonant trapping frequencies. Exper-

imental power spectral densities and mean square displacements match the theory very well, clearly

showing observation of Brownian motion at low pressure. An attempt is also made to test the energy

equipartition theorem at low pressure. There is potential for this trap configuration to be used to as a

platform on which a macroscopic quantum superposition of states can be created and maintained one

day. There is also more immediate potential of the miniaturisation and integration of this trap system

into electronics as a precision inertial sensor.
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1
Introduction

This project proposes the design and use of a novel magnetic trap to study Brownianmotion at very low

pressures, as a new possible trapping method for the creation of macroscopic quantum superposition

of states, and for precision sensing technology. The study of Brownian motion at low pressures for

the verification of Einstein’s theory of Brownian motion is still largely unexplored. Firstly, we will

discuss some of the history and fundamentals of Brownian motion relevant to this project. Then a

slight detour will be made to explain the fundamentals of optical trapping, a technology which allows

manipulation and observation of objects from the nano-scale to micro-scale, with focused lasers. This

will become immediately relevant, as we will next outline recent optical trapping work which tested

the energy equipartition theorem at low pressures by the observation of Brownian motion. After

discovering the conditions that are necessary for the study of Brownian motion at low pressures, and

how optical trapping meets them, we will outline the field of optomechanics, in which optical trapping

has recently found a niche. This accommodation to the field of research focused on the study of the

coupling of light with mechanical motion seems simple enough, but the fulfilment of the conditions

for the study of Brownian motion are the same, though weaker, for the requirements in optomechanics
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for creating a quantum superposition of states, and precision sensing technology. Thus, these goals

become ultimate goals of the project. The penultimate section outlines the only other particle trap

which traps using permanent magnets (to the author’s knowledge). This is a good study to hold as

a benchmark, as magnetic trapping of particles as harmonic oscillators is an emerging technology.

Finally, the goals, and methods of our project shall be briefly outlined.

1.1 Brownian Motion

Brownian motion is the seemingly random movement of microscopic particles in fluid. It was first

systematically documented by Robert Brown (after whom the motion is named), who observed the

movement in micron-sized particles from organic and inorganic sources [1, 2]. Brown was satisfied

by observation that the motion was not due to currents in the fluid, or evaporation. Almost 80 years

later, after many attempts to explain the phenomenom, the first successfully convincing and rigourous

explanation was given by Albert Einstein [3, 4]. Using kinetic atomic theory, Einstein showed that the

random motions of the microscopic particles were exclusively caused by the thermal motion of the

molecules making up the fluid. These molecules have insignificant kinetic energy in comparison to

the inertia of the Brownian particle, but can produce the observed Brownian motion by constructive

collisions; the collisions of molecules with the particle are random, but the net result for a set time

is an extraordinarily large number of molecules pushing the Brownian particle in the same direction,

resulting in the random changes in motion. The temperature and density of molecules in the fluid

determines how rapid the change in the motion is, but the motion is always random. In explaining

Brownian motion, Einstein derived the root mean square displacement of a Brownian particle,√
〈[∆xdif(t)]2〉 =

√
2Dt =

√
(2kBT/γ)t, (1.1)

where ∆xdif(t) is the displacement of a particle in the diffusive regime, D is the diffusion coefficient,

kB is the Boltzmann constant, T is the temperature of the fluid, γ is the Stokes friction coefficient, and

t is time. This expression shows a dependence on the square root of time, a consequence of Brownian

motion’s characteristic random walk [5]. Furthermore, this expression was experimentally verified by

Jean Perrin in 1909, the measurements shown in Figure 1.1. Perrin’s work on Brownian motion was

the primary reason he was awarded a Nobel Prize in 1926 [6, 7].

In a later paper, Einstein discussed the concept of the speed of a Brownian particle [4, 8]. By

taking his expression for root mean square displacement and dividing by time, he gained an expression

for the speed. However, this speed is shown to have an inverse square root relationship with time,
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Figure 1.1: Perrin’s experimental verification of Einstein’s root mean square displacement formula.

These measurements show the random nature of Brownian motion well [6, 7].

From Annales de Chimie et de Physique, Series 8, J. Perrin, Mouvement Brownien et Réalité

Moléculaire, 1909.

resulting in non-physical speeds as time approaches zero. This led to the understanding that Brownian

motion is continuous, but not differentiable. Einstein even went so far as to say that the concept of

speed does not correspond to any physical property in terms of Brownian motion [5]. In that same

paper, Einstein stipulated the equipartition theorem for Brownian particles, which states that “the

kinetic energy of the motion of the centre of gravity of a particle is independent of the size and nature

of the particle, and independent of the nature of its environment”. If the instantaneous velocity of

a Brownian particle were measured, then the kinetic energy of that particle could be calculated. As

such, the energy equipartition theorem could be experimentally verified. However, as has been stated,

Einstein did not think it was possible to measure the instantaneous velocity. This was mostly due to

the limitations of the technology of the early 20th century, the time in which Einstein lived. On the

other hand, this velocity can be measured with today’s technology, and so the equipartition theorem of

Brownian particles can be experimentally tested. A recent study did just that, using optical trapping

in vacuum at low pressures. Firstly though, we will outline the general concept of optical trapping.
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1.2 Optical Trapping

Optical trapping is a relatively recent technology, first reported by Arthur Ashkin et al. in 1986 [9]. It

is the method of focusing a laser to hold, or trap, a microscopic particle. To understand how optical

trapping works, we will consider the forces involved: the gradient, scattering, and gravitational forces.

The gradient force is the trapping force, or restoring force. This force is dependent on the polarisability

of the particle, which determines the degree to which applied electric fields from the laser generate

dipoles in the particle. The resulting dipoles interact with the inhomogeneous electric field of the

focused laser, resulting in a force in the direction of the field gradient [10]. For a focused laser with

a Gaussian intensity profile, this force creates a three-dimensional potential well. This potential is

harmonic for small excursions of the particle from the centre of the potential in any direction. The

Figure 1.2: A ray optics description of the main forces involved in optical trapping for a Gaussian

profile beam [11].

Reprinted from Advances in Atomic, Molecular and Optical Physics, Vol. 56, K. Dholakia,

W. M. Lee, Optical Trapping Takes Shape: The Use of Structure Light Fields, pp. 261-337, Copyright

(2008), with permission from Elsevier.

scattering force concerns the transfer of momentum from the absorption and re-emission of photons

from the laser by the particle. The absorption of a photon results in a momentum transfer in the

http://www.sciencedirect.com/science/article/pii/S1049250X08000153
http://www.sciencedirect.com/science/article/pii/S1049250X08000153
http://www.sciencedirect.com/science/article/pii/S1049250X08000153
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direction that the photon was incident. There is also a momentum transfer due to the re-emission of

photons. If this re-emission is an isotropic process, then the net momentum transfers from re-emitted

photons will average to zero after many re-emissions. Thus the particle experiences an average force

in the direction of the incident photon due to the momentum transfer associated with the absorption of

photons. The net result of this force is to shift the potential well from the focal point in the direction of

the propagation of the beam. The gravitational force simply applies a force on the particle downwards,

shifting the potential well downwards. As a result of the gravitational and scattering forces, the centre

of the potential well is below and along the beamline from the focal point. Optical trapping developed

the capability to isolate, manipulate and monitor an individual particle in water, but particles have

also been optically trapped in air and vacuum successfully [9, 12]. An example of this was the study

in which Brownian motion and the energy equipartition theorem were tested at low pressures [12].

1.3 Brownian Motion in an Optical Trap

While Einstein thought that the instantaneous velocity of a Brownian particle was practically impos-

sible to measure, a recent study reported measuring this variable by using optical trapping, and fast

photodetectors [4, 8, 12]. The Brownian motion that Einstein described was in the regime where the

observation time scale is much larger than the time it takes a Brownian particle to be stopped by the

thermal motion of the fluid molecules, called the momentum stopping time τp. This is to say that

the regime in which Einstein explained Brownian motion was that where the observations took place

many times less frequently than the change in direction of the Brownian particle. This regime is the

diffusion regime, defined by t >> τp = m/γ, where m is the mass of the Brownian particle, and γ is

the Stokes friction coefficient of the fluid environment. However, for time scales much shorter than

τp, the Brownian motion is in the ballistic regime, such that the true motion of the Brownian particle

can be measured.

In this regime, Einstein’s diffusive results for the mean square displacement (MSD),

〈[∆x(t)]2〉 = 2Dt = (2kBT/γ)t, (1.2)

do not describe the motion of a Brownian particle. Instead, the motion is dominated by inertia, and

the MSD is given by

〈[∆xbal(t)]2〉 = (kBT/m)t2 = (D/τp)t2, (1.3)

obtained from the Langevin equation, where ∆xbal(t) is the displacement of a Brownian particle in

the ballistic regime, and is dependent on t2. This means that, though there is no meaning for an
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instantaneous velocity of a Brownian particle in the diffusive regime, an instantaneous velocity of a

Brownian particle exists in the ballistic regime. In this study, the momentum relaxation time of a

Brownian particle was increased by decreasing the density of the air by decreasing the pressure in the

vacuum chamber to as low as 2.75 kPa. This decreased the Stokes friction coefficient, and allowed

the observation time scale to become much less than τp. An optical trap was used to suspend the

Brownian particle in air, while also enabling observation of the suspended particle by producing an

image of that particle. The trapped particle in this study was a micron sized spherical silica bead.

The optical trap consisted of 2 counter-propagating lasers which optically trapped the bead in the

vacuum chamber, causing the average scattering forces to cancel. To avoid interference signals, the

lasers were orthogonally polarised and detuned in frequency. The image from one beam was bisected

by a sharp D-mirror, dividing the image, with each half collected by a fast photodiode detector. The

resulting signal was related to the position of the particle in one dimension. Position measurements

as a function of time were made at 99.8 kPa and 2.75 kPa. The finite difference method was used

on the position measurements to find the instantaneous velocity. The normalised velocity distribution

at each pressure was plotted, and found to match the normalised Maxwell-Boltzmann distribution for

room temperature,

f (v) = exp
(
−

mv2

2kBT

)
, (1.4)

regardless of the change in pressure, where v is the instantaneous velocity of the Brownian particle.

As stated above, the energy equipartition theorem states that the kinetic energy of the motion of

the centre of gravity of a particle is independent of the shape and nature of the particle, and of the

nature of the environment, and that the average energy of a particle will be distributed equally among

available degrees of freedom. Thus, for a particle in thermal equilibrium with room temperature,

the root mean square velocity can be calculated. The measured root mean square velocities were

within the uncertainty (about 5%) of the prediction of the equipartition theorem, which was within the

noise of the measurements. This confirmed the energy equipartition theorem down to these pressures.

Measured values were used to fit curves to the data for measured mean square displacements, which

matched the theory from the Langevin equation, [13]

〈[∆xtra(t)]2〉 =
2kBT
mω2

0

[
1 − exp(−t/2τp)

(
cos(ω1t) +

sin(ω1t)
2ω1τp

)]
, (1.5)

where ∆xtra(t) is the displacement of a trapped particle in the ballistic regime, ω0 is the resonant

frequency of an undamped trapped particle, and ω1 =
√
ω2

0 − 1/(2τp)
2. Figure 1.3 clearly shows the

difference of Einstein’s predictions for the diffusive regime and the results for the ballistic regime.
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The measured MSDs show close agreement with the theory at short time scales. At long timescales,

Figure 1.3: MSDs from the study of Brownian motion at low pressure using an optical trap. The

symbols are the experimental data. A) The experimental MSDs clearly show ballistic Brownian

motion, by the agreement with the theory (solid red and black lines, given by Equation 1.5), and

disagreement with the diffusive theory (dashed lines, given by Equation 1.2). The oscillation and

convergence to a constant is due to the trapping. B) The experimental data has a clear t2 dependence.

The dotted line is the theory for a free Brownian particle in the ballistic regime [12].

From Science, Vol. 328, Issue 5986, T. Li, S. Kheifets, D. Medellin, M. G. Raizen, Mea-

surement of the Instantaneous Velocity of a Brownian Particle, pp. 1673-1675, Copyright (2010).

Reprinted with permission from AAAS.

the mean square displacement converges to a constant value due to the optical trap. Thus, the

equipartition theorem and Maxwell-Boltzmann velocity distribution were experimentally confirmed,

and the instantaneous velocity of a Brownian particle was observed. However, the conditions under

which the equipartition theoremwas tested here were limited, likely due to the balance of trap strength,

laser heating and cooling necessary to optically trap at lower pressures. As such, further testing of

the equipartition function could be done at lower pressures, with a trap that does not intrinsically heat

the motion of the trapped particle, as will be done in this project. The conditions necessary for the

observation of the instantaneous velocity of a Brownian particle - a harmonic oscillator, and reduced

damping from the environment - are similar to those necessary in reaching the goals of optomechanics.

http://science.sciencemag.org/content/328/5986/1673
http://science.sciencemag.org/content/328/5986/1673


8 Introduction

1.4 Optomechanics

The field of optomechanics studies the effect of radiation pressure on mechanical systems, such as

the mirrors of interferometers. To study these effects with high sensitivity, high mechanical quality

harmonic oscillators must be developed. As a result of developing such sensitive oscillators with low

noise environments, high precision sensing technology can be developed. This technology uses these

sensitive oscillators to measure things like changes in inertia, or electromagnetic waves. Precision

sensing technology is such a big application of optomechanics research that it has become a secondary

goal of the field [14].

The archetypical optomechanical system is an optical cavity formed by one fixed mirror, and

another mirror on a cantilever, such that the cantilever allows that mirror freedom to move in one

dimension [15]. This freedom of movement allows for the radiation pressure from a laser to change

the length of the cavity, and hence change the resonant frequency. This can be exploited to cool the

motion of the mirror by detuning the laser frequency below the natural cavity resonant frequency.

Cooling of the motion of the mechanical oscillator to the motional ground state is necessary to

comprehensively study the coupling of light with the mechanical motion. Typical optomechanical

setups are affected by mechanical noise through contact of the cavity mirrors with the environment,

limiting the ability to cool the motion of the oscillator. More recently, optical trapping of the oscillator

in vacuum has been used to reduce the environmental mechanical noise by isolating the mechanical

oscillator from the mechanical environment [16]. The motion of an optically trapped mechanical

oscillator can be cooled by the use of active feedback cooling from an additional laser beam in each

direction, and has been achieved to the millikelvin regime [17]. By measuring the position of the

oscillator, its instantaneous velocity can be calculated, as above. The intensities of the cooling beams

are then modulated to apply a force proportional to that velocity, opposing the motion, such that the

oscillator is forced to the centre of the trap. Cooling can be made even more efficient by isolating the

oscillator from sources of thermal noise. This isolation and the cooling to themotional ground state are

necessary conditions for the creation of a long-lived, macroscopic, quantum superposition of states, or

cat state, after Schrödinger’s cat thought experiment. As these conditions align with the conditions of

studying the coupling of radiation pressure with mechanical systems with high sensitivity, it became

one of the goals of optomechanics to create cat states [14].

The cat state is sensitive to noise from the environment, which destroys the quantum effects by

decoherence, returning the state of the oscillator to the classical physics regime. Therefore, the

oscillator must be isolated from the sources of decoherence for the cat state to be maintained. This
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isolation from noise includes the collisions from the thermal motion of a gas environment, which can

be reduced by decreasing the pressure of the environment. It has been proposed that diamond nano-

particles with nitrogen vacancy centres could be optically levitated, as the vacancy centre provides a

quantum handle on the cat state [18]. However, it has been found that optically trapped nano-diamond

burns and graphetises at low pressure, setting back this proposal with optical traps [19]. However, this

proposal could still be achieved by using a trap which doesn’t intrinsically heat the trapped particle.

A recent study has done just this, using a magneto-gravitational trap to levitate diamond nano-crystals

with nitrogen vacancy centres, and measure the excitement of the flouresence of those NV centres at

high vacuum pressures without burning or graphitising the diamond [20].

1.5 Magneto-Gravitational Trap

A recent study was published involving a trap with limited intrinsic motional heating of the trapped

particle [20]. Light is not used for the trapping mechanism in this study; instead, magnetic and

gravitational forces are used to trap a particle. In order for stable magnetic trapping to be achieved,

a diamagnetic material must be involved [21, 22]. The simplest arrangement is when the particle to

be trapped is diamagnetic. This particle will experience a force in an inhomogeneous magnetic field

away from the increasing field gradient, as shown by the equation of the magnetic force

Fmag =
χV
2µ0
∇B2 =

χV
µ0

B∇B, (1.6)

where χ is the magnetic susceptibility of the particle, V is the volume of the particle, µ0 is the

permeability of free space, and B = (B • B)1/2 is the magnitude of the magnetic field vector B. Thus,

the strength of the magnetic force on a diamagnetic particle depends on both the local magnetic field

strength, and the local magnetic field gradient. As such, a diamagnet will seek a lower magnetic field

to minimise its energy. In this recent study, the magnetic field was engineered using 2 anti-parallel

permanent magnets, as seen in Figure 1.4a. FeCo pole pieces were shaped to concentrate the magnetic

field in the small region shown in the centre of Figure 1.4b. This region was where the trapping

potential was formed. The shape of the pole pieces in Figure 1.4, with shorter z dimensions for the

upper pair than the lower pair, created an upward curved potential well along the z-axis. The force

due to gravity prevented the particle from exploring the full length of this curved potential trough and

escaping. Thus, the trap relied on gravity to trap in the z direction, and magnetic fields to trap in

the x and y directions. In the study, diamond nano-crystal clusters were trapped under vacuum [20].

These diamond nano-crystals contained nitrogen vacancy (NV) centres, as described in the proposal



10 Introduction

Figure 1.4: (a) The arrangement of the rare earth magnets (blue) and FeCo pole pieces (grey) used to

create the trapping potential in the magneto-gravitational trap. (b) An enlarged view of the trapping

region. Note that the upper pole pieces are not the same dimensions as the lower pole pieces, creating

a magnetic potential which curves gently upward from the centre along the z direction, such that

gravity is required to form a trapping potential [20].

From Sci. Rep., Vol. 6, Article 30125, J.-F. Hsu, P. Ji, C. W. Lewandowski, B. D’Urso,

Cooling the Motion of Diamond Nanocrystals in a Magneto-Gravitational Trap in High Vacuum,

Copyright (2016) Springer Nature. Reused under Creative Commons License CC BY, with the only

modifications being exclusions of the original caption and part c of the figure.

above. The fluorescence of the zero phonon line of these NV centres was used to confirm the identity

of the trapped particles, and to show that the fluorescence could be measured with the setup of this

trap without losing the diamonds. In order to characterise the trap, the resonant frequency of each

mode was found by tracking the motion of a trapped diamond nano-crystal cluster and producing the

power spectral densities (PSDs). Theoretical calculations give the resonant frequencies as 104 Hz,

130 Hz, 9.6 Hz for the x, y, and z modes, respectively. To observe these frequencies experimentally,

diamond nano-crystals were loaded, which formed a cluster once trapped. A 520 nm laser drove the

fluorescence of the NV centres, and an 830 nm laser was used to detect the motion of the cluster. Light

scattered from the cluster was collected and directed to a high speed camera, and quadrant photodiode

detector. The high speed camera was used to track the centre of mass motion of the cluster, producing

the position measurements for the PSDs. The peaks of these plots show the oscillation frequency

of the trap in each measured direction. Lower pressures have less damping, and so showed taller,

thinner peaks in the PSD. The ratio of the height to width of these peaks provides a measure for the

https://www.nature.com/articles/srep30125
https://www.nature.com/articles/srep30125
https://www.nature.com/articles/srep30125
https://creativecommons.org/licenses/
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mechanical quality factor (Qmech factor) of the trap at different pressures. The Qmech factor indicates

how long the cluster takes to lose energy to the environment, so is ideally maximised. To reduce the

possibility of heating the motion of the diamond with the lasers, only low power lasers were used,

and the 520 nm laser was pulsed to allow time for cooling of the additional energy. Direct feedback

cooling was implemented by a current carrying wire, which runs over the lower pole pieces, out of the

trapping region. The current produces a magnetic field, providing another magnetic force upon the

diamond. The position signal measured by the quadrant photodiode was used to find the displacement

from the centre of the trap in each direction. This displacement was used to determine the amplitude

of each direction’s cooling signal. These cooling signals were driven at the corresponding resonant

frequency of the trap. As the resonant frequencies of the trap were well separated, each of these

signals only significantly affected the motion in the desired mode. These cooling signals were then

filtered, amplified, phase shifted, and combined to produce the total cooling signal. With this setup,

the research group was able to keep a diamond nano-crystal cluster trapped at 7 × 10−8 mbar because

of the cooling system.

This passive trap gives impressive results. However, the trap relies on gravity for trapping in its

final dimension, limiting the applications of this technique in the future, as the trapmust be kept upright

at all times. Additionally, the resonant frequencies are relatively small, especially compared to the

frequencies achievable with optical trapping - in the kilo-Hertz regime [17]. Indeed, the researchers

admitted their trap was “soft”, though claimed that this was key to its success.

1.6 Magnetic Trap

This project proposes a fully magnetic, passive trapping technique. This technique does not intrinsi-

cally inject energy into the oscillator system by the trapping mechanism. The capability of this fully

magnetic trap to keep a particle trapped will not rely on the change in potential due to gravity, and will

be designed to be a strong trap with high resonant frequencies, unlike the magneto-gravitational trap.

To ensure this, the trap will be optimised by modelling the magnetic field in three dimensions. Particle

kinetics will be simulated for this optimised magnetic trap, using a Langevin equation and a numeric

differential solver, with these PSDs and MSDs compared to the theory to test the effectiveness of the

simulations. Themodelling can only be tested by the experimental results. This trap will be used to test

the equipartition theorem at conditions far more extreme than previous optical trapping experiments

(at pressures reaching 1 × 10−6 Torr), and to observe the individual Brownian motion effects at these
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extreme conditions. This will be done by finding the velocity distributions, the MSDs, and calculating

the root mean square velocity, as in the previous Brownian motion study [12]. The PSDs will also

be plotted, which also show the Brownian motion, but are primarily useful for identifying the power

of the resonant modes, and identifying the resonant frequencies and cooling temperatures, as in the

magneto-gravitational study.



2
Modelling

In this chapter we will discuss the feasibility of a purely magnetic trap, and how the magnetic

trap can be engineered by choosing magnet shapes. Furthermore, our ideal magnetic trap will be

modelled, plotting the resonant frequency for diamond micro-particle for varying shape parameters.

The movement of a trapped diamond micro-particle will be simulated, analysed, and compared to the

Brownian theory.

2.1 Magnetic Trapping for One Dimension

In this section we will outline the theory of a purely magnetic trap, using finite element modelling to

prove that the concept of trapping a micron-scale diamagnetic particle with permanent magnets in one

dimension is theoretically possible.

In Chapter 1 it was seen that trapping diamond particles has been achievedwith a permanentmagnet

basedmagneto-gravitational trap. This trap requires no power - electrical, optical, or any other external

energy injection - in order to trap, which is beneficial for later integration into electronics as a precision
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sensor. However, the magneto-gravitational trap is reliant on orientation, as gravity is a key in forming

the trapping potential. This limits the application of this trap in electronics. Furthermore, this trap has

very low resonant frequencies, whereas the creation of a macroscopic quantum superposition of states

requires a high resonant frequency. This relation can be seen through the mechanical quality factor,

Qmech, which must be maximised for quantum applications, and depends on the resonant frequency

by Qmech = ω j/Γ0, where ω j is the angular resonant frequency in the j dimension, and Γ0 is the

damping coefficient. This leaves little application for the current magneto-gravitational trap design.

On the other hand, we believe a strong, fully magnetic trap will have great potential to meet both of

these goals. Therefore, we endeavour to design a trap which has high resonant frequencies, can trap

diamond micro-particles at low pressures, all without requiring any form of power to keep a particle

trapped.

With this aim in mind, our design goal is to engineer the magnetic field between two powerful

rare-earth magnets, such that a local magnetic field minimum surrounded by a strong field gradient is

produced. This will be achieved by choosing an appropriate shape for the magnets. If we are able to

design the magnetic field effectively, our trap will have a strong trapping potential, as given by

Umag = −
χB2V
2µ0

, (2.1)

. Note that χ is negative for a diamagnetic material, such that a diamagnetic particle will seek a

magnetic field minimum to minimise its energy. We find the force on the particle from this potential

to be F = −∇U = (χV/µ0)B∇B, as in Equation 1.6. Therefore, to produce the greatest trapping

force, we must have a strongly increasing magnetic field gradient, such that both ∇B and B will be

maximised. Our chosen configuration has the like poles of two rare-earth magnets facing each other.

This will result in the repulsion of the magnetic fields from each magnet, forming a magnetic field

minimum. We used finite element analysis modelling (the program FEMM) to model the magnetic

field of cylindrical magnets with conical shaped tips. The conical shaped tip encourages the magnetic

field to flow through the magnetic material to the tip vertex, rather than leaving the magnet earlier due

to the presence of the opposing magnetic field. As such, the magnetic field which comes from the tip

vertex is very strong, creating the desired trapping environment.

To test the ability of this setup to trap diamagnetic material, values were taken from the FEMM

model in order to perform a calculation of the resonant frequency of the axial mode. Instead of

diamond, we will use graphite in this rough calculation, as we wish only to prove that our design

concept is feasible, and graphite is more strongly diamagnetic than diamond, and less dense. The

modelled magnets were 8 mm long, with a radius of 1 mm, with conical tips with an angle of ascension
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from the base of the cone to the side of the cone of 45◦, similar to what is shown in Figure 2.5. The

gap between the tip vertices was set as 100 µm. The measurements from the FEMM modelling are

displayed in Figure 2.1. Figure 2.1a shows the magnetic field along the axial axis in the gap between

the magnet tips. This shows a promising shape, with the field reaching 0 T at the centre of the gap,

producing a minimum in the potential. Figure 2.1b gives a clearer indication of the approximately

linear, central region in Figure 2.1a. This region should produce a harmonic potential. By taking

the values of the magnetic field at 0.02 mm and 0.06 mm as 0.2 T and −0.2 T respectively, we find

the linear equation which approximates the magnetic field in the region near the centre of the trap.

Using this equation for the magnetic field, we can calculate the acceleration of a graphite particle due

to the magnetic field, using χgra/ρgra = −2.0 × 10−7 m3kg−1 for graphite, where χgra is the magnetic

susceptibility of graphite, and ρgra is the mass density of graphite [23]. Examining the equation for

the acceleration of a harmonic oscillator

a = −k x/m = ω2
0 x, (2.2)

where k is the spring constant, x is the position of the oscillator, and m is the mass of the oscillator, we

see that we can find the resonant frequency by taking the spatial derivative of the acceleration. Thus,

as ω0 = 2πν, we find the linear resonant frequency of the magnetic trap, ν, with conical tips in the

axial dimension as approximately 600 Hz. This resonant frequency is already much higher than the

highest resonant frequency in the magneto-gravitational trap, prior to any optimisation of our design,

indicating that our pure magnetic trap has the potential to work. However, it should be noted that

the magnetic susceptibility of graphite is anisotropic, with the value used above being true in only

one dimension; in the other dimensions, the susceptibility is weaker. In the other dimensions, the

resonant frequency would be around 200 Hz. Therefore, the case shown above only demonstrates the

proof-of-concept for the basic idea of our design - that it has some potential to be proven successful.

In this section we have proposed the design of a purely magnetic trap. The theory of magnetic

trapping was reviewed, and the suggested magnet tip shape outlined. Modelling with finite element

analysis software gave the magnetic field between 2 cylindrical magnets with conical tips with angle

of ascension of 45◦. This field was used to calculate the resonant frequency in the axial direction

as roughly 200 Hz, suggesting our magnetic trap design has the potential to be an effective trapping

method.
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Figure 2.1: The magnetic field as modelled by the FEMM program along the axial axis, between 2

cylindrical magnets with 45◦ conical tips, and a gap between the tips of 100 µm. (a) The magnetic

field in the axial direction from magnet tip to magnet tip. (b) The magnetic field in the axial direction,

focused on the approximately linear, central region from (a), such that 0 mm in (b) is at 0.01 mm on

(a). This region provides an approximately harmonic potential, with a resonant frequency of 600 Hz

for a graphite particle.

2.2 Modelling of a Magnetic Trap in Three Dimensions

In the previous section, simple modelling was produced to prove that the concept of a purely magnetic

passive trap was possible. In this section, three dimensional modelling shall be shown to optimise the

design of the magnetic trap, such that it is capable of trapping diamond micro-particles.

It is necessary to optimise the shape of our magnets to create a strong potential, so that a diamond

micro-particle will be strongly trapped at low pressures. Using a 3D modelling package for Math-

ematica called Radia, we modelled the conical tip trap introduced above in three dimensions [24].

However, as the magnetic trap is axially symmetric, we need only consider the magnetic field in two

dimensions: the axial and radial dimensions. We modelled the magnets with the same length and

radius as the magnets in the FEMM simulation (8mm and 1mm, respectively), varying the angle of

ascension of the cone tip, and gap size. The magnetic material modelled was a NdFeB magnet, with

an internal field of 1.2 T. Note that the magnetic field is weaker in the radial dimension than in the

axial dimension, the resonant frequencies for the radial mode will be lower. In calculating the resonant

frequencies we used a χdia/ρdia of diamond equal to −7× 10−9 m3kg−1 [25]. Calculating the resonant

frequencies of the two modes separately, we plot as a function of gap size and angle of ascension,

and assuming an harmonic potential near at the centre of the trap. These results are displayed in

Figures 2.2a and 2.2b for the axial and radial dimensions, respectively. These plots show that the
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smaller the gap between magnet tips, the higher the resonant frequency. However, the trend shown

is not likely to be entirely accurate at small gap sizes, due to the strong repulsion from the like poles

of the magnets. This will result in the demagnetisation of some of the magnetic material, reducing

the resonant frequency, which is not considered by this model. Examining Figures 2.2a and 2.2b also

reveals that there is an optimal angle of ascension for maximising the resonant frequency around 35◦.

(a) (b)

Figure 2.2: Resonant frequency for diamond micro-particle in the (a) axial and (b) radial modes, for

a conical tip magnetic trap, as a function of gap size and angle of tip ascension. The angle that gives

the highest resonant frequency is around 35◦.

The resonant frequencies from Figures 2.2a and 2.2b show that it is possible to trap a diamond

micro-particle with a purely magnetic trap, as resonant frequencies larger than those for the magneto-

gravitational trap can be engineered. However, due to experimental restrictions, it is not feasible to

shape conical tips on magnets. As a compromise, we decided to shape the tips into square pyramids.

Repeating the same modelling for square pyramid tips, we produced Figures 2.3a and 2.3b. These

plots show similar trends to Figures 2.2a and 2.2b. There is once again an optimal angle of ascension

that will maximise the resonant frequency of the diamond in the trap. This angle is the same for both

axial and radial resonant frequencies, at 28.75◦. This differs to the optimal angle from the conical tip

case. This is likely due to the change in distribution of magnetic material from the change of number

of sides.

Now, in the conical case, we assumed that the magnetic field was axially symmetric because the

magnets were axially symmetric. However, square pyramid tipped magnets are no longer axially

symmetric. One might expect to see a break in rotational symmetry of the magnetic field in the radial

plane, which might lead to two different radial trapping frequencies. To check whether the magnetic

field is axially symmetric, we examined the field in the central horizontal plane - that is, the radial

plane equidistant from the points of the magnet tips. This is shown in Figure 2.4. As can be seen, the

magnetic field is still completely axially symmetric in this plane, so that we are justified in considering
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(a) (b)

Figure 2.3: Resonant frequency for a diamond micro-particle in the (a) radial and (b) axial modes, for

a square pyramid tip magnetic trap, as a function of gap size and angle of tip ascension. The angle

that gives the highest resonant frequency is 28.75◦ in both plots. This differs from the optimal angle

found in Figure 2.2. This is because the material in the square pyramid tip with an angle of ascension

of 28.75◦ will be equal to that of a conical tip with 35◦ angle of ascension.

the resonant frequencies for diamond of only 2 modes in this trap, as there are only 2 modes still.

With the tools we have made, we can optimise the diamond resonant frequency of our ideal square

pyramid tip magnetic trap, as seen in Figure 2.5. Setting the angle of ascension to the optimal angle

from Figures 2.3a and 2.3b, 28.75◦, we find the relation between resonant frequency and gap size for

both the axial and radial modes, shown in Figure 2.6. This shows that, like the angle of ascension,

the resonant frequencies of both modes follow the same trend, with the axial frequency appearing to

be approximately twice the radial frequency for any gap size. This allows the gap size to be chosen

to suit our needs. For as strong a trap as possible, we will choose as small a gap size as possible, but

which is still large enough to allow particles to be launched into the trap. We also cannot choose a gap

size that is too small, as the repelling force from the magnets can be so large as to make creating the

trap practically impossible. With these considerations in mind, we chose a gap size of 28 µm. This

gives us an axial resonant frequency of 340 Hz, and a radial resonant frequency of 170 Hz.

To this point, we have ignored the effects of gravity for our trap. However, gravity could shift the

centre of the trapping potential significantly. We therefore consider the shift of the potential due to

gravity, which preserves the harmonicity of the trapping potential

Utot = A(x̃)2 − C = Umag +Ugrav =
1
2

mω2
0 x2 − mgx, (2.3)

where x̃ is of the form x̃ = x + G, g is the acceleration due to gravity, taken as 9.8 ms−2, and A, C,

and G are constants. Choosing to align the trap such that the axial mode aligned exactly with the force

due to gravity, such that we take ω0 = 340 Hz and solving this for G gives g/ω2
0 = 2.1 µm. Therefore



2.3 Simulation of a Magnetically Trapped Diamond Micro-Particle in One Dimension 19

Magnetic Field 
Strength (T)

(a)

Magnetic Field 
Strength (T)

(b)

Figure 2.4: Magnetic field strength for square pyramid tip magnet trap, in the horizontal plane (a)

halfway between the tip points, and (b) 10 µm up from the centre plane. This shows that the edges

of the faces of the pyramid tip do not change the shape of the magnetic field, but that it is axially

symmetric, such that there is only one horizontal mode - the radial mode. The blotches in (b) are

modelling discrepancies.

the trapping potential is shifted down by 2.1 µm due to the force of gravity.

We have shown the conical tipped trap and the square pyramid tipped trap both produce resonant

frequencies capable of trapping a diamond micro-particle. The modelling allowed for optimisation of

the angle of ascension of the tip, and to find the resonant frequency for a chosen gap size. A square

pyramid design was chosen, with an angle of ascension of 28.75◦ and a gap size of 28 µm, producing

an axial resonant frequency of 340 Hz and a radial resonant frequency of 170 Hz. Furthermore, the

shift in the trapping potential due to gravity was calculated, and found to be 2.1 µm.

2.3 Simulation of a Magnetically Trapped Diamond Micro-Particle

in One Dimension

Having optimised the design of the magnetic trap, the kinetics of a diamond micro-particle will now

be numerically simulated. This data will be analysed, compared with the theory, Brownian motion

observed, and the effects of the trap considered.

Using the resonant frequency of diamond in the ideal square pyramid trap modelled previously,

we can simulate the kinetics of a trapped diamond particle. However, we will only simulate the

kinetics for one dimension. With the trap oriented such that the axial axis is vertical, the experimental

detection system will measure the movement of the particle in the horizontal direction. As such, we
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Figure 2.5: Model of the ends of the magnet tips. These magnets have the same pole facing each

other, and are shaped to square pyramids at the tip. These magnets are 28 µm apart.

will simulate the kinetics of a diamond particle under the effects of the radial potential. This will not

include the effects of gravity, which are assumed to not change the resonant frequency of the radial

mode.

Firstly, we need to calculate the parameters we will be using in our simulation. We will use the

radial frequency of 170 Hz found by the three dimensional modelling. We will need a temperature, so

we will assume the gas in the (simulated) vacuum chamber is always at thermal equilibrium at room

temperature, taking this to be T = 298.15 K. We must calculate the damping coefficient of the gas Γ0,

so will use the formula given in previous work [17],

Γ0 =
6πηr

m
0.619

0.619 + Kn
(1 + cK), (2.4)

where Kn = l/r is the Knudsen number, where l is the mean free path of the gas molecules, r is the

radius of the particle, and cK = (0.31Kn)/(0.785+ 1.152Kn +K2
n ) [17]. Thus we need to calculate the

mean free path, so we will use the formula from kinetic theory

l =
kBT
√

2πd2p
, (2.5)
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Figure 2.6: Resonant frequency for a diamond micro-particle in a square pyramid tip magnetic trap,

with angle of ascension of 28.75◦, as a function of gap size. It is clear that no particular gap size is

necessary to optimise a ratio of radial resonant frequency to axial resonant frequency, which appears

approximately constant at 1:2.

which assumes the gas molecules behave like hard spheres of diameter d, like an ideal gas. For

d, we will use the kinetic diameter of molecular nitrogen, 364 pm [26]. The pressure p is our

independent variable to choose as we will. r is taken as 1 µm, as this is the average size of our

individual diamond particles, and m is the mass of the trapped particle. This is calculated to be

1.3× 10−14 kg, approximating the shape of the particle as spherical, and assuming the particle has the

density of bulk diamond, 3150 kgm−3 [27]. T is the temperature taken as 298.15 K. The viscosity

coefficient of air η is taken for the value at 25◦C, which is 18 × 10−6 Pa s [28]. Γ0 was calculated for

various pressures covering our experimental pressure range, from 1.0 × 103 Torr (the measurement

of atmospheric pressure by our thermocouple pressure gauge, though atmospheric pressure is truly

760 Torr) to 1.2 × 10−6 Torr.

With our parameters in hand, we used XMDS2, a numeric differential equation solver, to simulate

the kinetics of the trapped particle in one dimension [29]. Specifically, the program was given the

following Langevin equation:

d2x
dt2 =

√
2mΓ0kBT

m
ζn − Γ0

dx
dt
− ω2

0 x, (2.6)
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where ζn isWiener noise, such that the first term simulates the thermal noise which drives the Brownian

motion, the second term is the damping due to the air, and the third term is themass-normalised force on

the particle due to the trapping potential. The simulations use the Runge-Kutta integration algorithm

with fixed step size, which is correct to the fourth-order in the step size. The particle is given as

initially stationary at the centre of the potential;

x(t = 0) = 0,
dx
dt

����
t=0
= 0. (2.7)

The simulation solves for 2 blocks: the first block is to ensure the particle has time enough to thermalise

from rest at the lowest pressures, solving for the first 500 seconds of motion, with step size of 5 µs;

the second block serves as the measurement block, generating the output kinetic data by solving for

the next 600 seconds of the particle’s motion with the same step size. The kinetics data output by the

second block is time and position data for 60 million equally spaced instances.

Once the data is simulated, it can be analysed in MATLAB and compared to the theory. The

theory for the power spectral density of a Brownian particle in a harmonic trap is given in previous

work [17],

S(Ω) =
2kBT

m
Γ0

(ω2
0 −Ω

2)2 +Ω2Γ2
0
, (2.8)

where Ω is angular frequency. We found the simulation power spectral densities (PSDs) to follow

a similar trend to theory. A selection of the simulation PSDs and theory for chosen pressures is

presented in Figure 2.7. This plot shows that the simulation has the same basic shape as the theory; a

flat starting baseline, some sort of peak around the resonant frequency, and then the roll-off in power for

frequencies greater than those forming the resonant peak. These features are properties of Brownian

motion. The simulation also follows the trend of the power of the starting baseline decreasing with

decreasing pressure. Furthermore, there is agreement in the trend of the shape of the resonant peaks at

170 Hz with changing pressure; the change in pressure results in a narrower, taller peak as the pressure

decreases in both the theory and the simulation.

However, it is also clear that there are differences between the theory and the simulation PSDs.

It seems that, as the pressure decreases, the baseline power of the theory drops further below the

simulated PSD’s baseline power. This is possibly due to the limitations on the calculation of the PSD

from the simulated data. This limitation is a trade-off that must be made between noise in power and

resolution in frequency, such that as noise is decreased, the frequency resolution is increased, and vice

versa. The noise in power occurs because of the simulated thermal noise, and is reduced by dividing

the kinetic data into equal subsets. These subsets produce a PSD each, and the final PSD is obtained
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by averaging them all. Therefore, we reduce the noise in power by dividing into more subsets, but this

sacrifices frequency resolution. The chosen balance was for 12 data subsets, giving the noise seen in

Figure 2.7, and a frequency resolution of 20 mHz.

The other difference between the simulation PSDs and the theory seen in Figure 2.7 is that of the

roll-off. The theory shows a monomial-like relation after the resonant peak between frequency and

power, which has the same slope regardless of the pressure. However, while the the roll-off from the

simulation PSDs is largely monomial-like, the slope changes when at the lowest pressure, such that it

has a gentler slope. Note that the plateau after 4 × 104 Hz is an artefact caused in producing the PSD.

This may be the lower power limit of this PSD. As such, the roll-off of the lowest pressure simulation

PSD heads directly to this limit at 4 × 104 Hz, and so the explanation for the change in slope may be

that the PSD is limited by the lower power limit.

Figure 2.7: Power Spectrum Densities (PSDs) of the simulated data for the selected pressures, and the

theory at corresponding pressures. The general shape of the simulation PSDs match the theory well,

with differences only in the power values, and the shape of the roll-off after the resonant peak. The

difference in power values is likely an effect of noise, while the roll-off difference is possibly due to

the lower power limit of our evaluation of the simulation MSDs, seen above 40 kHz.

The simulation data was also used to produce Mean Square Displacements (MSDs), which were
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compared to the theory for the MSD of a Brownian particle in a harmonic trap, given by the formula

〈[∆xtra(t)]2〉 =
2kBT
mω2

0

(
1 − exp

(
−

t
2τp

)) (
cos(ω1t) +

sin(ω1t)
2ω1τp

)
, (2.9)

where ω1 =
√
ω2

0 − (1/2τp)
2, where τp = 1/Γ0 is the momentum relaxation time of the air. The MSDs

at select pressures are shown in Figure 2.8. From this we see that the simulation MSDs fit the theory

exactly. The highest pressure MSDs (at 1.0 × 103 Torr) show the diffusive regime, and at short time

scales agree with Einstein’s formula for theMSD, given by 〈[∆xdif(t)]2〉 = 2Dt, where D = (kBT/Γ0m)

is the diffusion coefficient. At long time scales, these MSDs tend to a constant due to the trapping

potential. For the lower pressure MSDs, we observe the ballistic regime. At short time scales, the

simulation MSDs follow the same t2 slope indicative of the ballistic regime. At long time scales, the

simulationMSDs converge to a constant value, again because of the trapping potential. At intermediate

time scales, the MSDs oscillate with decaying amplitude, with the oscillation frequency depending on

the resonant frequency. At the lowest pressure, we see the peak to peak amplitude oscillate, and very

little decay is seen at all, as the pressure is so low that only the short and intermediate time scales are

produced for this MSD.

Thus we have simulated the motion of a diamond micro-particle in our ideal, harmonic trap. It

has been seen that the simulated PSDs match the theory fairly well, with some differences in power

level and the behaviour at frequencies over those for the resonant peak. The simulated MSDs match

the theory exactly, and show interesting behaviour at the lower end of our pressure range.

In this chapter, we have used modelling to prove that an appropriately engineered, purely magnetic

trap may trap diamagnetic micro-particles. Further modelling showed how this trap could be designed,

by optimising the shape of the magnets used, resulting in a more practical design which takes

experimental considerations into account. The modelling allowed this ideal trap to be characterised,

by finding the resonant frequencies for diamond micro-particles in both harmonic fundamental modes,

the values of which were 170 Hz and 340 Hz. These frequencies are larger than those of the magneto-

gravitational trap, which was successful at trapping diamond nano-particles. This indicates that our

trap should be able to trap diamond micro-particles. Simulations of the kinetics of a particle using

the trap characteristics for a pressure range spanning 8 magnitudes, down to 1.0 × 10−5 Torr, agreed

well with the theory. As such, we have found XMDS2 to be a reliable tool in simulating the Brownian

motion, even at extremely low pressures, as the simulations agree with the theory. If the experimental

results agree with the simulations, the 3 dimensional modelling will be validated, proving the 3

dimensional modelling an accurate tool for further magnetic trap designs.
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Figure 2.8: Mean Square Displacements (MSDs) of the simulated data for the selected pressures, and

the theory at corresponding pressures. The highest pressure data shows the diffusive regime, while

the lower pressures show the ballistic regime. The simulation MSDs match the theory extremely well.

The MSDs converge to a constant value at long time scales due to the trap. At short time scales, the

highest pressure MSDs have a slope proportional to t, while the lower pressures are proportional to t2.
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Experimental

In this chapter we will discuss the experimental setup of the project, starting with the practicalities of

building the magnetic trap, including shaping and positioning the magnets. Following this we will

briefly mention how the trap is positioned in the vacuum chamber, and the main specifications of

interest of the vacuum system. A detailed discussion of the optical system then follows, as there are

many components and practicalities to mention. This is an important system as the optical system is

instrumental for measuring the motion of the trapped particle. Following this discussion is a section

on the material choice of particles and their properties, as well as the description of the particle loading

procedure. Finally, the active feedback cooling system is described.

3.1 Building the Magnetic Trap

The magnetic trap is formed by two faceted magnets, positioned with like poles facing each other

around 20 µm apart. The two magnets are glued to an alumina strip, with a hole cut through it for

optical access to the trap region. This hole also allows particle loading. This assemblage is coated in
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1 µm thick layer of gold by evaporation deposition, to alleviate the build up of electrostatic charge.

Each magnet was polished to the shape of a square prism, with a tip in the shape of a four sided

pyramid. This design was discussed in Chapter 2. The apex of this pyramid was aimed to be of

the order of a micron across. This is around the sharpness limit of the tip, as the magnets are rare

earth, Neodymium Iron Boron (NdFeB), and therefore made from a sintered powder. Consequently,

the material has a granular structure, and is quite hard. The magnets were polished to the desired

shape using a gemstone faceting machine, with diamond grit plates run at a low revolution rate and

oil cooling lubrication. Previously we had tried laser machining and standard machining techniques.

The gemstone faceting machine allows for precision shaping, while the lubrication and low revolution

rate kept the surface of the magnet below the critical temperature of 40◦, over which the material

demagnetises. The process of shaping the magnets was quite a challenge, and was a key part of the

project, as the shape of the magnets and the field strengths at the magnets’ surfaces are instrumental

to the shape of the magnetic field, and so the magnetic trap.

These NdFeB magnets are very powerful, with a 2 T magnetic field produced from the tips, as

can be seen in Chapter 2. As such, when in the trapping configuration described (producing an

anti-Helmholtz magnetic field), the repelling magnetic forces are substantial, making positioning and

holding the magnets in place a non-trivial affair. The alignment of the tips was essential in producing

the modelled trap, and proved challenging. In the end, a micro stage from Thorlabs was purchased

and a custom magnet holding rig was used. Thus, after the first magnet was glued to the alumina

strip, the second magnet could be positioned with 50 nm precision. The trap was then positioned in

a small vacuum chamber with optical ports, as we wish to change the pressure and nature of the gas

surrounding a trapped particle.

3.2 Holding the Trap in the Vacuum Chamber

The trap was fitted into an aluminium holder at an optical port. The aluminium holder had an optical

access hole, and an adjoining hole for loading the particle. The windows for this chamber are usually

around 4 mm thick, but as this is the working distance of our microscope objective, the window which

the trap was up against had to be redesigned. The design implemented was to fit a smaller window

frame into the existing frame, producing a smaller area for the window. This lowered the force on the

window, allowing for a thinner window. This replacement window was made from a 330 µm thick

piece of sapphire crystal.
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3.3 The Vacuum System

The vacuum system used in this project was small, with optical ports. Two pumps were used: a dry

mechanical pump for atmospheric to low vacuum pressures, and a 90 L/s turbomolecular pump for

higher vacuum pressures. Two vacuum gauges were used to monitor the pressure range covered. A

leak valve was used in concert with these gauges to control the pressure over the range of 1× 103 Torr

to 1 × 10−5 Torr.

3.4 The Optical System

To observe the trapped particles, an optical system is used, as presented in Figure 3.1.

Lens

Vacuum chamber

Microscope 
objective

Variable iris

Beam splitter
High-speed 
camera

Sharp D-mirror

Photodiode 
detectors

LED

N

N

30um

Figure 3.1: A schematic of the apparatus. The light from the red light emitting diode (LED) is

collected and directed by the lens onto the trapping region in the vacuum chamber. This light is then

collected by a long working distance microscope objective, which magnifies the trapping region. A

variable iris is used to narrow the beam to the area the trapped particle can occupy. A beam splitter

sends half of the beam to a high-speed camera, and the other half to a detection system. This detection

systems consists of a sharp-edged D-mirror, upon which the image of the particle is formed, and which

cuts the image in half, reflecting one half to one photodiode detector, and the other half to another

photodiode detector.

The apparatus was covered in a dark sheet to reduce noise in the optical signal, as the spectrum of
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the room lighting contains a non-trivial contribution at the wavelength of the optical signal. Unlike

the research discussed in Chapter 1, our light source is an LED, not a laser. This reduces noise by

eliminating the speckle pattern of a laser, and does not heat the motion of the particle.

To collect the light from the trapping region so that information of the particle’s position can be

measured, a microscope objective is used. However, as the particle is in the vacuum chamber, and

the microscope objective is not, placing a sapphire window between the two, an objective with a long

working distance is required. The objective we used is a metallurgical objective, with a working

distance of 4 mm. This objective produces an image of the trapped particle on the sharp edged

D-mirror, as seen in Figure 3.1.

A beam splitter then directs half of the signal to a high-speed camera, and the other half toward

the sharp edge of a D-mirror and a position measurement system. The camera is used to confirm the

presence of a trapped particle, as well as the apparent size and shape of said particle. The camera must

be high-speed because the resonant frequency of the trapped particles is of the order of hundreds of

Hertz, so that a conventional camera cannot track the position of the particle accurately, due to aliasing.

It should be noted that the particle on these images appears as a dark shape, rather than light, because

this optical system tracks the movement of the particle’s shadow. This is seen in Figure 3.2 important

in considering the measurement of the particle’s position. The image plane formed by the microscope

objective falls upon the sharp edge of the D-mirror. This D-mirror cuts the image in half, allowing

half to continue on to one photodiode detector, and reflecting the other half to the other photodiode

detector. This piece of equipment is instrumental in detecting the particle’s movement. Furthermore,

the D-mirror must lie in the image plane created by the objective to form a clear image to bisect, which

reduces the uncertainty of determining the transition of the particle over the bisecting line. Thus, the

clearer the image on the D-mirror, the more sensitive our detection system is to measuring a signal

related to the particle’s position. As seen in Figure 3.3, the half of the image in which the shadow

of the particle is undergoes a decrease in signal intensity. This allows us to track the position of the

particle over some central line, determined by the alignment of the image signal on the sharp edge of

the D-mirror.

The two halves of the image signal are collected by two photodiode detectors, converting the signal

of light intensity into a voltage signal. These signals are sent to a bandpass filter and amplifier, where

one is subtracted from the other, resulting in a position-related intensity signal in volts. This signal is

digitised by a 14-bit Cleverscope oscilloscope, giving a dynamic range of 72 dB. The digital signal

is then analysed on a computer. Next, the signal is analysed to produce the measure of the resonance
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Figure 3.2: Photo from the high speed camera, of the trapping region. The arrow points to the trapped

diamond particle. The tips of the magnets can be seen above and below, seen to be blunted rather

than sharp as in the ideal trap design. Note that other blurs are particles stuck to the vacuum chamber

window, or the magnets.

frequency of the trapping system, and the Brownian motion of the particle. However, the Brownian

motion signal is much smaller than the resonance signal, such that the Brownian motion will appear

as noise relative to the resonance signal. As such, to accurately measure the Brownian signal and

nothing else, other sources of noise need to be minimised. One such noise source is room vibrations,

which could shake both the vacuum chamber and the optical system to varying degrees, producing

a significant false aspect to the position signal. To avoid this, the system is isolated from this noise

somewhat by mounting the optical system and vacuum chamber on a floating optical table.

The main measurement device is the 14-bit Cleverscope oscilloscope. As mentioned above, this

14-bit capability gives a maximum dynamic range of 72 dB between the highest signal measured and

the lowest signal measured (when the highest signal is almost overloading the oscilloscope). In reality,

the noise-floor of the signal will reduce the practical dynamic range to something more like 50 dB.

This will limit the feedback cooling signal, limiting the amount of cooling achievable. Additionally,

as the mechanical quality factor of the system is expected to reach the thousands, and the resonant
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Figure 3.3: A demonstration of the detection system. The top left images show scenarios a and b,

where the particle is fully on one side of the line bisecting the image. The bottom left image shows

the approximate shape of the signal for each photodiode detector (PD1 and PD2) as the particle moves

back and forth across the bisecting line. When the particle is fully on one side, as in scenario a or b,

the signal becomes truncated, as no additional information of the position of the particle is measured.

frequency is of the order of 300 Hz, frequency resolution of milliHertz is required to measure the

response of our system. The Cleverscope has a very steady, temperature controlled timebase, and

high sampling rate. To achieve fine frequency resolution from our digitised signal, we require a high

sampling rate, and many samples. Therefore, it becomes important for these samples to be evenly

spaced in time, and the Cleverscope’s steady timebase regulates that. Thus, the Cleverscope isolated

oscilloscope helps to reduce uncertainty, and to quantify the uncertainty that remains.

It should also be noted that the intensity signal that we measure is not directly proportional to the

position of the particle. The position of the centre of a spherical particle as it moves over a line will not

be proportional to the area of the cross-section over that line. Instead, the relationship is non-linear.

3.5 The Particles

As discussed in Chapter 1, a magnetic trap requires a diamagnetic material. As mentioned earlier in

this chapter, our trap consists of two sharp magnets producing a magnetic field in an anti-Helmholtz
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configuration, and requiring a diamagnetic particle. The more strongly diamagnetic the particle

material is, the stronger the trapping forces. As such, we first trapped pyrolytic graphite. This strongly

negative magnetic susceptibility resulted in a strong trapping potential. However, this magnetic

susceptibility value is in only one plane, with values in the other axes weaker by an order of magnitude.

This anisotropy, together with the irregular shape of the particles, resulted in tumbling, widely varying

motion, so that while the particles were strongly trapped, the motion, and by extension the resonant

frequency of the trap, was difficult to measure. This resulted in an inability to characterise themagnetic

trap using a pyrolytic graphite micro-particle. However, a more suitable material was chosen, which

was used to produce all the experimental data in Chapter 4; monocrystalline diamond particles, from

1-2.5 µm in size. These diamond particles were purchased from Microdiamant, and were made by

detonation processes. To prevent electrostatics from influencing the experiment, the particles were

coated with thin conductive films by mixing in a consumer anti-static solution, then baking and

breaking up the dried agglomeration.

The particles were loaded into the trap on a stream of gas, directed at the trap. Once a particle

was trapped, the vacuum chamber was closed and sealed, and pumped down. This solution is likely to

work uniquely for our trap, as our purely magnetic trap is more robust than optical traps or previous

magnetic hybrid traps.

3.6 Cooling

The final section of this chapter is concerning the cooling of motion of the trapped particle. In Chapter

1 feedback cooling was discussed in both an optical trapping system, and the magnetogravitational

system. While these two systems cool by different methods practically, both cool by altering the

trapping potential slightly, shifting the centre of the trap away from the position of the particle. The

magnitude of this shift is dependent on the measured velocity of the particle. We perform the same

type of cooling in our experiment (the alternative is to strengthen and weaken the trapping potential

depending on the particle’s position). We used a feedback signal to drive a current through a pair of

large coils outside of the vacuum chamber to manipulate the magnetic field. The measured position

signal is differentiated and this is sent to a power amplifier, which performs the gain function for the

signal. This drives an alternating current through a pair of Helmholtz coils, positioned either side of

the trap, on the same axis as the magnets. This signal then shifts the centre of the trap dependent on

the velocity of the particle.
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Results

In this chapter, the experimental measurements of the kinetics of the trapped diamond micro-particle

of the project will be presented and discussed in the following order: the data collection process will be

outlined, followed by the presentation of the power spectral densities (PSDs) of non-cooled kinetics,

and a detailed analysis and comparison of this data with regard to theory. Following this, the PSDs

of the cooled kinetics will be presented and discussed, including an estimation of the centre of mass

thermal temperature of the trapped particle and the limiting lowest temperature achieved. The mean

square displacements (MSDs), both experimental and theory, will be presented and briefly discussed.

We end with a statistical analysis of the lowest non-cooled experimental kinetics and a discussion of

the observed behaviour within the confines of statistical mechanics.

4.1 The Data Collection

To gather the data of the particle’s position as a function of time along the weak trapping axis, the

particle was initially magnetically trapped at atmospheric pressure. Then the chamber was sealed, and
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the pressure lowered until each target pressure was reached, at which point the pressure was stabilised

and measurements taken. When the pressure was low enough so that when the magnetic feedback

cooling system was turned on, the motion of the particle was damped noticeably along the cooled

direction, as indicated by the measurement signal, data was also recorded with the cooling on. When

these conditions were met, the cooling was left on as the pressure was lowered further, to ensure

that the particle remained in the trap. When a suitable lower pressure was reached, the cooling was

turned off and the particle was allowed 10 minutes to reach thermal equilibrium with its environment

before any measurements were taken. These measurements are denoted “thermal kinetics”. Data was

recorded for at least a 10 minute duration during each measurement, with a sampling frequency of

100 kHz, producing over 60 million samples per measurement run.

The only exception to the described process was in reaching 1.0 × 10−3 Torr. The roughing pump

alone could not lower the pressure any further than 1.9 × 10−2 Torr, so the turbo pump had to be

turned on to lower the pressure further. The cooling was also turned on to ensure the particle remained

trapped. However, pressure readings cannot be taken with the thermocouple pressure gauge when the

turbo pump is operating. This is due to the positioning of the thermocouple gauge, such that it is cut off

from the part of the chamber containing the trap when the turbo pump is operating. Furthermore, the

cold cathode gauge cannot be switched on until the pressure is approximately 1 × 10−3 Torr. With no

way to determine this pressure, the turbo and cooling were run for 10 minutes before the cold cathode

gauge was turned on. At this point the reading on the gauge was two orders of magnitude lower than

the target pressure, and so the pressure had to be raised substantially, after which the cooling could be

turned off. After this, the procedure described earlier was followed to attain the other target pressures.

Finally, a dataset was also recordedwith no particle in the trap, at very low pressure (2.3×10−6 Torr)

to account for the noise in the detection system.

4.2 Non-Cooled PSDs

Each dataset was divided into 12 equal subsets, and a PSD produced for each subset. These 12 PSDs

were then averaged to produce the final spectrum for that measured data, with 20 mHz resolution.

Producing the PSD of a larger dataset results in lower frequency resolution. However, such a PSD will

have a lot of random noise. This random noise is reduced by the averaging process, and so a balance

was found between the frequency resolution and the amount of manageable random noise.

We will briefly justify the choice of the frequency range for the PSDs, an example of which is 4.1.
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At the low end, the bandpass filter attenuates the signal for frequencies less than 10 Hz. This is also

the case at the high end for above 10 kHz. This is also the region where we reach the noise floor of

the detection system (that is, the lowest levels that the system can detect). This region is dominated

by noise, and no features are discernible, much like the region above 2 kHz.

The PSD for the data when no particle was in the trap gives an indication of the noise in the

measurement system. With reference to Figure 4.1, the peaks at 50, 100, and 120 Hz are from line

noise, the fluorescent room lights, and the computer monitor refresh rate, respectively. Harmonics of

these noise peaks can also be seen through the spectrum, particularly when the line noise and room

light harmonics align. Mechanical vibrations such as from the turbo can be seen at 1500 Hz, and

other sources of noise such as room noise not dampened enough by the optical table are likely present

in this spectrum. Interesting peaks in the noise PSD to make a note of are the peaks which are not

narrow, primarily that at 125 Hz, and, to a lesser extent, at 168 Hz. The sources of noise for these

peaks are unknown, but it seems that this noise drives the motion of the particle in the trap, as most of

the other spectra at these points have higher amplitudes than the noise spectrum. The noise at these

frequencies is probably a mechanical vibration. This would either move the trapping magnets, driving

the motion of the trapped particle, or move parts of the detection system, such as the D-mirror. The

latter scenario would only make it appear that the motion of the particle is being driven because of a

shift in the line which bisects the image of the particle, and so defines the signal measured. It should

also be noted that there is additional noise generated from the turbo pump not captured in the noise

spectrum. This noise is from the turbo pump when running in standby mode (at 70% of full speed),

which was only for the 1.0 × 10−3 Torr and 1.0 × 10−5 Torr measurements, as seen in Figure 4.4. The

turbo pump was running at full speed when the noise dataset was recorded, so the peak is at 1500 Hz,

as seen in Figure 4.6 rather than 1050 Hz.
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Each theoretical prediction for a one dimensional harmonic trap was scaled to match the amplitude

of the corresponding spectrum at low frequencies. The unscaled PSDs from simulated data are shown

in Figure 4.2. From Figures 4.1 and 4.2 we can identify the three observed regimes. The highest

pressure regime is that which shows fair agreement with the simulation, seen in Figure 4.3. The next

regime is defined by its fair agreement with the simulation until after the resonant peak at 170 Hz.

Other than that, the observed peaks are shorter andwider than the simulated peaks. Comparing Figures

4.1 and 4.2, we also see that while we expect the amplitude of the baseline of the spectra to keep

decreasing with decreasing pressure, it instead increases for the 3 lowest pressures. Therefore, we split

the spectra into 3 regimes: the highest pressures, seen in Figure 4.3, which match the simulations well;

the middling pressures, seen in Figure 4.4, which agree with simulations in the trend of decreasing

baseline amplitude and show a resonant peak; and the lowest pressures, seen in Figure 4.6, which only

partly agree with the shape predicted and in which the amplitude of the baseline rises with decreasing

pressure.

Figure 4.2: Power spectral density of all non-cooled simulated data (unscaled). Compare with Figure

4.1 to see the deviation from the expected results in terms of baseline amplitude.



38 Results

4.2.1 The High Pressures

The high pressure regime, seen in Figure 4.3, agrees very well with the theory in all features, with

difference at high frequency because of the dynamic range of the detection system. The data slope

changes around 400 Hz, falling faster than the simulation at those frequencies. It isn’t until the

simulation reaches 1−2 kHz that it changes slope, by which time the simulation has reached the limit

of the detection system. At the lowest measured pressure in this regime - 1.0 × 101 Torr - the trend of

the data changes, so that both the recorded and the simulated spectrum roll off from the baseline value,

with slopes matching extremely well before the recorded spectrum reaches the detection limit. The

only discrepancy at this pressure is the frequency at which the roll off starts. This is likely due to some

slight variation in the trapping frequency in the physical trap, which may be caused by wandering over

time, variation in temperature, or slight shifts in the trapping magnets. This variation is difficult to

detect in this regime, as there is no well defined resonance peak.

Figure 4.3: Power spectral density of selected high pressure spectra, with measured and simulated

data.
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4.2.2 The Middling Pressures

In the middle pressure regime, seen in Figures 4.4 and 4.5 we can see the resonant frequency forming

a peak in both recorded and simulated spectra. The variation of the resonance frequency suggested

previously can be seen in this regime, with the peak centred around 171 Hz. The simulations’ resonant

peak is taller and has a wider base than the measured peak at each pressure in this regime, with the

height and base-width increasing as the pressure decreases. This indicates that the recorded spectra

have larger damping coefficients than the simulations. Since the simulations use values of Γ0 calculated

from the measured pressures, this would indicate that the measured pressure is not the pressure the

trapped particle experiences. By finding the relation between the height of the baseline and the height

of the resonant peak from the theoretical formula of the spectrum,

S(Ω) =
2kBT0

m
Γ0

(ω2
0 −Ω

2)2 +Ω2Γ2
0
, (4.1)

we find
S(ω0)

S(0)
=
ω2

0

Γ2
0
. (4.2)

While there is a large relative uncertainty associated with the pressure measurement (around 20%),

this does not account for the damping coefficients necessary to match the recorded peak. However, it

is likely that the pressure measurement does not represent the pressure in the trapping region, as this

is quite a confined space, and it is known that confined spaces have higher pressures. This may be

enough to account for the difference between the recorded and simulated shape of the peak.

Note that peaks can also be seen around 225 Hz, seen in Figure 4.5, which also vary in frequency

for different measurements. These peaks are interpreted to be the resonant frequency in the direction

of the beamline - the parallel dimension. In the ideal case, the magnets are shaped to a perfect point,

and are symmetric under a rotation of π/2 around the axial axis. However, the shaping process not

perfect, and the final magnets have tips that are more like slightly blunted wedges than perfect sharp

pyramids. Thus, instead of one radial resonant frequency, there are two. These peaks around 225 Hz

are thought to be this parallel frequency. The amplitude of these peaks is likely not small because of

low occupancy of this mode, but because the detection system is not designed to detect motion in this

dimension well. There is another noise peak inside this supposed resonant peak, so it is possible that

this motion is being driven by the noise, similarly to the previously discussed primary resonant peak.

Other new peaks have emerged in this regime, namely harmonics of the resonant peaks. There

are noticeable peaks around 510 Hz (3 times the primary resonant frequency), and even small peaks

around 440 Hz (roughly twice the parallel resonant frequency). In this regime, the simulation spectra
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Figure 4.4: Power spectral density of middling pressure spectra, with measured and simulated data.

after the peak drops away with a large gradient, while the recorded spectra has a small gradient until

around 900Hz. This is similar to the higher pressure regime, and could be detection of the axial

frequency. The spectrum at 1.0 × 10−3 Torr is a special case, which will be discussed presently.

A Peculiar Case in the Middling Pressure Regime

The exception to several of the observations and conjectures in this regime is the recorded spectrum

at 1.0× 10−3 Torr, as seen in Figure 4.4. At this pressure, the slope after the peak shows no noticeable

change until it reaches the detection limit, though it still does not match the simulated slope. According

to the interpretation above, this suggests that there is no detection of the axial resonant frequency.

Furthermore, while the resonant peak as seen in Figure 4.5 the simulated spectrum is taller and wider

at the base than the recorded spectrum as for the other pressures in this regime, these observations are

no longer explained solely by a larger damping coefficient. This is because the recorded resonant peak

has a different shape; it has become asymmetric. While this asymmetry may have contributions from

the noise peak at 168 Hz, this cannot be the sole cause. A possible interpretation of this asymmetry is

that there are many peaks making up this broad peak. Physically, this would mean that we can detect

multiple resonant frequencies at this pressure.

Another peculiarity at 1.0× 10−3 Torr is that the spectrum does not have a change in slope around
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Figure 4.5: Power spectral density of middle pressure spectra, with measured and simulated data,

focused on the resonant peaks.

900 Hz. This is the only pressure for which the PSD (from both cooled and non-cooled data sets)

does not show the change in slope below 1.0 × 10−1 Torr. This may have been caused by the process

of reaching this pressure, as described earlier. That is, the great length of time with the cooling on,

and the possible change in the particle’s environment from the raising of the pressure by two orders

of magnitude has effected the particle’s motion significantly. However, we see a peak at 340 Hz,

where we expected the axial peak from the modelling chapter. There appears to be no contribution

from this mode in this spectrum; the peaks around 500 Hz are harmonics of the line noise, the peak

at 126 Hz, and the primary resonant peak at 170 Hz. However, the absence of a peak at the axial

resonant frequency in this spectrum is not to say that the axial mode was unoccupied, just that it was

unobserved for this measurement. It is possible that the detection system, which is designed to detect

the horizontal motion of the trapped particle, simply did not produce a significant signal capturing the

axial motion.

It is worth noting that the spectrum at this pressure is the closest in amplitude to the noise spectrum

of the entire catalogue of measurements, so may well be the cleanest data recorded in the project. The

parallel resonant peak around 220 Hz is still visible in this data, but the change in slope was attributed

to the axial resonant frequency around 500 Hz. Further harmonics are identifiable in this spectrum, as
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were identified earlier for the other pressures in this regime. The peak at 340 Hz could be interpreted

as a harmonic of the main 170 Hz peak, but we have already stated above that this aligns with the

predicted axial mode frequency, which is what it likely is.

4.2.3 The Lowest Pressures

The lowest pressure regime, seen in Figure 4.6, was defined by the violation of the expected trend for

the amplitude of the baseline to continue decreasing with decreasing pressure. That our data shows

the opposite is also perplexing because of our measurement system. When the pressure decreases, the

damping coefficient decreases, allowing the particle to explore more of the trap. This increases the

amplitude of the particle’s motion, such that the entirety of the shadow of the particle is detected by

only one photodetector. This results in a maximum value of the signal, such that no extra position data

is collected other than that the particle is in a particular region. This reduction in position information

should decrease the general amplitude of the PSD, while raising the amplitude of the harmonics of

the resonant frequency. While the amplitudes of the third harmonics are raised compared to previous

pressures, the baseline also rises.

Figure 4.6: Power spectral density of the low pressure spectra, with measured and simulated data.

The peaks discussed for the previous regime are all present in Figures 4.6 and 4.7: the primary

resonant peak at 170 Hz with second and third harmonics, the parallel resonant peak at 220 Hz and
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its second harmonic, and various noise peaks. The change in slope around 900 Hz is present once

more. We can also see contributions from the axial peak, which aligns with the second harmonic of

the main resonant peak at these pressures.The trend of the primary resonant peaks in the simulation

spectra being taller and wider at the base than the measured spectra has continued. Furthermore, the

main resonant peaks of the measured spectra in this regime are wide and asymmetric, with the width

increasing as the pressure decreases. This is a strong indicator that the trap is not a harmonic potential,

as was originally thought, but an anharmonic potential.

Figure 4.7: Power spectral density of the low pressure spectra, with measured and simulated data,

focused on the resonant peaks.

An Anharmonic Potential?

To confirm the hypothesis that the trapping potential is anharmonic rather than harmonic, we expanded

the region examined in the three dimensional magnetic modelling, seen in Figure 4.8. By expanding

the square of the magnetic field (which is proportional to the trapping potential) into a Taylor series,

we found that the quartic term had a non-trivial component. The ratio of the quartic and quadratic

coefficients, λ, was used to simulate the potential again. The peak in the spectrum of this simulation

looked similar to the broader, asymmetric peaks measured at 1.0× 10−3 Torr and below, but the width

did not quite match, as seen in Figure 4.9. With a λ a few orders of magnitude larger, a match in
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width was found. This larger anharmonicity is likely caused by the non-ideal shape of the magnets, as

discussed previously, together with the porosity, large grain size, and demagnetisation of the magnets.

This larger value of λ also produced a peak at the third harmonic in the simulation spectra, which is

seen in the measured spectra as well. However, we were unable to produce simulations that agreed

well with the recorded peaks for all of the measured pressures which saw this anharmonicity. This

was due to the varying nature of the resonant frequency, as changing this frequency in the simulation

to match the recorded frequency produced a differently shaped peak. Indeed, merely changing the

pressure in the simulation changed the shape of the peak in the simulation, sometimes quite drastically.

Furthermore, as knowing the exact value of λ was of little importance, time was not spent trying to

find better fits for all other relevant pressures.

Figure 4.8: The magnetic field strength squared (y-axis, with units of T2) in the radial dimension

(x-axis, with units of mm) of the ideal magnetic trap from the three dimensional modelling (middle).

Other plots show the 6th order Taylor series expansion (upper), and the 4th order Taylor series

expansion (lower).

With this anharmonicity in mind, it is understood that at high pressures - the pressures above

1.0 × 10−3 Torr - the particle is confined to the harmonic parts of the trap due to the strong damping

of the air, such that a single peak is observed, as was initially expected. However, for pressures at

1.0 × 10−3 Torr and below, the damping due to the air is weak enough that the particle can explore

more of the trap. The parts of the trap further from the centre are more strongly anharmonic, such that

harmonic theory can no longer account for the observed motion of the particle.

It should be noted that it is also likely that the cause of some of the amplitude of the widened peak

and its harmonics is from the nonlinear detection system. However, this cannot account for all of the
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Figure 4.9: Power spectral density of measured, expected and simulated data at 5.1 × 10−6 Torr,

around the resonant peaks. Simulations with different values of the quartic potential coefficient λ are

displayed, simulating the harmonic potential, the ideal potential given by the magnetic modelling, and

fitting the measured potential.

observed motion, especially as the particle is too strongly trapped at low pressures to be exploring a

harmonic potential.

All in all, the recorded PSDs show some of the elements expected for the motion of a Brownian

particle: the flat baseline before the peak, the peak itself (when the pressure is low enough), and the

rolling away after the peak. While the slope of the latter does not agree with the expected slope from

the one dimensional case, and the starting points of the roll off are also in disagreement, the presence

of these features in a non-ideal, multidimensional system is an observation of Brownian motion.

4.3 Cooling

Our cooling system uses the differential of the measured signal to produce a magnetic field from a

pair of Helmholtz coils. This cools the motion of the trapped particle in the measured dimension by

effectively increasing the damping coefficient depending on the particle’s position. The usual practice

when measuring the position of a cooled, trapped particle is to cool the particle’s motion until an
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equilibrium point is reached, such that the energy removed by cooling is matched by the thermal noise

in the system. After this equilibrium state is reached, the cooling is turned off, and data is recorded

as the particle’s motion slowly heats up. However, in our case, the time it takes for the particle to

resume its motion is around 6 seconds, which is too short a time in which to take data by this method.

This quick reheating indicates that there is coupling between the cooled dimension of motion and the

other dimensions of motion of the particle. If this coupling were strong, and energy was still in one

of the other dimensions of motion, then the energy could pass quickly into the transverse dimension

of motion. However, if the coupling were strong, then cooling the particle’s motion in the transverse

dimension would mean energy could pass into that dimension from the other dimensions of motion,

and so cool all dimensions, resulting in low energy in all dimensions of motion. The opposite is also

true; if the coupling is weak, more energy can remain in the non-cooled dimensions of motion, but

that energy would not return to the cooled dimension of motion quickly. Regardless of the strength

of the coupling, we could not take data by the usual procedure. Instead, data was recorded while the

cooling was on, for the same length of time and sampling frequency as outlined earlier.

Figure 4.10 shows that the PSDs for the lowest pressures, at which the cooling actually cooled

the motion of the particle, are very similar to the PSDs which did not have cooling on at the same

pressures, in Figures 4.4 and 4.6. Notable differences include the reduction of the main resonant peak

and its harmonics to close to the baseline of each spectrum, and the increase in the amplitude of the

peak around 125 Hz, the parallel resonant peak at 225 Hz and its second harmonic. The decrease of

the main resonant peak shows the cooling has cooled the transverse motion at this frequency almost

completely. However, the increase in amplitude of the parallel resonance peak suggests that the motion

in the dimension parallel to the beam has increased. This may not be the case, as the increase could

be due to increased sensitivity to other motion with the motion in the transverse dimension almost

completely removed - that is, the decrease of the “signal” in the motion at the transverse resonant

frequency has increased the effect of the “noise” of the motion at the parallel resonant frequency.

With these cooled PSDs, we can attempt to find the lowest temperature limit of this system. In

previous work, it has been suggested that the cooling force in one dimension does not affect the velocity

of the particle in another dimension, then the effective damping from the cooling, Γc can simply be

added to the damping coefficient from the gas, Γ0, to produce the total damping experienced by the

particle, Γtot = Γ0 + Γc [17]. This total damping coefficient replaces Γ0 in the formula for the expected

spectrum. Additionally, the temperature of the gas T0 can be replaced with the temperature limit with
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Figure 4.10: Power spectral density of all cooled measured data, with fits of Sc(Ω) on the peak at

170 Hz. The temperature is calculated from these fits, giving an indication of the lowest temperatures

achievable with our system at each pressure.

the cooling on Tc = T0Γ0/Γtot, producing the equation

Sc(Ω) =
2kBT0Γ0

m
1

(ω2
0 −Ω

2)2 +Ω2(Γ0 + Γc)2
. (4.3)

By fitting this equation to the cooled PSDs, but being careful not to include data significantly affected

by the noise peak at 167 Hz, the temperature at each recorded pressure could be calculated, as seen

in Figure 4.11. A value for Γ0 was required for this calculation, and so the values used were those

calculated from the pressures measured. As discussed earlier, these values are not ideal for the data

at these pressures because the particle spends a significant amount of time exploring the anharmonic

regions of the trapping potential at these pressures. Equation 4.3 also considers a harmonic potential,

when we have an anharmonic potential. However, as the motion of the particle has been cooled so

heavily, we can approximate our potential to a harmonic potential, as the particle does not explore the

anharmonic regions when cooled. Therefore, the concerns of whether the value of Γ0 is accurate lie

only with the measurement of the pressure in a confined space, and the difficulties associated with

that outlined previously. As such, the calculated temperatures give a good indication of the level of

cooling possible with our system, but should not be interpreted as accurate.
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Figure 4.11: Power spectral density of all cooled measured data, with fits of Sc(Ω) on the peak at

170 Hz, which the view is focused around. The temperatures are calculated using the fits, which give

an indication of the lowest temperatures achievable with our system at each pressure. The fits are for

only about half the cooled resonant peak, because of the nearby noise peak.

4.4 MSDs

As the data we recorded is not a true position signal, but some nonlinear relation to the true position

signal (limited when the amplitude of the motion is too large), the amplitude values, and units, of our

MSDs only describe the mean square of the change in intensity of the optical signal. However, the

MSDs are still useful, as they show the shape of the true MSDs, and so can be used to observe the

Brownian motion of the trapped particle as the environment changes in pressure.

In previous work, the mean square displacement was used to show that Brownian motion was

recorded in the ballistic regime, rather than the diffusive regime considered by Einstein [12]. These

MSDs showed an increase at a rate proportional to t2 at short time scales, and converged at long time

scales to a constant dependent on the trapping frequency. In the intermediate time scale, the MSDs

oscillated with an amplitude decaying in time. A similar behaviour is seen in our MSDs at higher

pressures - those at 1.0 × 10−1 Torr or above, as seen in Figure 4.12. These MSDs match the shape of

the previous work well [12]. However, at 1.0 × 10−3 Torr and below we see different behaviour. In
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this regime, the amplitude of the troughs in the oscillation increase at a faster rate than the decrease

of the amplitude of the peaks. This behaviour is expected by the equations for a harmonic trapping

potential at low pressure. This is odd, as the PSDs show a clear departure from the expected values

at the lowest pressures. The only departures from the expected results here are misalignment of the

oscillations in time, which could be caused by the variation in resonant frequency, and the amplitude

of the troughs. The measured troughs are much higher than the expected values, which could be due to

the noise in the measurements, the limits of the detection system, and the inaccurate pressure readings.

The noise is very high, and it is unclear how it influences the data in this analysis. The detection limit

restricts the measurement range, which would result in smaller peak to peak amplitudes than expected.

Finally, the pressure readings are used to calculate the damping coefficient used for the predictions;

if the pressure in the trap is higher than what is measured, the damping coefficient would be higher,

and the predictions would not match. To test whether an anharmonic potential can contribute to the

observed disparities, we will compare the measured data with simulations and the prediction for a

single pressure in Figure 4.13.
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Figure 4.12: Mean square displacement of all non-cooled measured data, and expected results. The

noise MSD is quite large, showing how noisy our system is.

Examining Figure 4.13 shows that nothing about the measured MSD is explained better by the

anharmonic simulations than by the harmonic results. It seems odd that the anharmonic simulations
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match the harmonic simulations so well. One might expect the period of the oscillations to change, as

they seem dependent on the resonant frequency, and the measured and anharmonic simulated PSDs

at this pressure had wider peaks, rather than well define harmonic frequencies. Instead, with the

agreement of theory and all simulations, there is no argument for or against whether our trapping

potential is harmonic or anharmonic, as the measured results fit the expected data quite well, showing

that we have indeed observed Brownian motion at very low pressures.
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Figure 4.13: Mean square displacement of measured data at 5.1 × 10−6 Torr, expected results for

a harmonic trap, and simulations for a harmonic potential, the anharmonic potential suggested by

magnetic modelling, and the anharmonic potential found in Figure 4.9.

4.5 Velocity Measurements and Statistical Mechanics

In previouswork,measurements of the instantaneous velocity of aBrownian particle at sub-atmospheric

pressures were made to test statistical physics [12]. Observations of the Maxwell-Boltzmann velocity

distribution, and experimental confirmation of the energy equipartition theorem were accomplished.

We analysed our data in a similar fashion, shown in Figure 4.14, using the difference between con-

secutive data values and the change in time between those measurements to produce an instantaneous

velocity signal.
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Figure 4.14: Instantaneous velocity distribution histograms, calculated by finite difference of the

measured data. Both plots match normal distributions, with approximately equal means and standard

deviations. a) The velocity distribution of the lowest pressure measured, 1.2 × 10−6 Torr. b) The

velocity distribution of the noise data.

We can see that our velocity distributions have a normal distribution, matching the Maxwell-

Boltzmann velocity distribution. However, we must also consider the noise in the measurement

system, given by the velocity distribution of the data taken with no particle in the trap. This shows a

distribution with the same range and amplitude as the measured data. This indicates that there is too

much noise in our measurement system to create usable velocity data. As such, we cannot test the

energy equipartition theorem, as any calculated root mean square velocity would be so noisy as to be

meaningless.

On the other hand, considering that our measured data is not a true position signal, this velocity

distribution would not have had the meaning we were to ascribe to it. What we have produced in Figure

4.14 is the distribution of the change in the intensity of light. These distributions have a nonlinear

relation to the position data of the particle. Therefore, the finite difference of our signal will not give

a true instantaneous velocity signal.
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Conclusion

With the results presented and discussed, this chapter will look to summarise this project, and its place

in the broader field of research. This will entail: a summary of the ultimate goals of the project in the

broader field of research, which are to create and sustain amacroscopic quantum superposition of states

and to build precision sensing technology; the goals of this project, which are to observe Brownian

motion at low pressures, test the energy equipartition theorem at low pressures, and characterise a

novel, passive, magnetic trap; and the progress made towards these goals by this project. We will

finish by outlining areas of the system which should be improved to reach the ultimate goals of the

broader field of research, and the applications and implications this project has on the broader field of

research.

5.1 Project Summary

This section will summarise the goals of the broader field of research, the goals of this project, and

how we worked towards those goals.
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In this project, we set out to design and build a passive magnetic trap which could trap diamond

micro-particles. The ultimate goals of this trap would be to create a macroscopic quantum super-

position of states (or cat state) with the trapped micro-particle, and to create an harmonic oscillator

of high quality to enable precision inertial and electromagnetic measurement. In order to reach the

former goal, the trap must be engineered such that the trapped particle will have a very low rate of

energy loss. In our setup, this means very low pressures must be reached with the particle remaining

trapped. It also requires our trap to have a harmonic potential with a high resonant frequency. The

observation of Brownian motion in the ballistic regime and the test of the energy equipartition theorem

also require these conditions, but to a lesser extent. As such, observing the Brownian motion and

testing the equipartition theorem at lower pressures than before is a fine test of the capabilities of our

trap.

In order to design our trap to keep a particle trapped at low pressures and have a high resonant

frequency, we used magnetic field modelling to optimise the design of the magnets. We simulated the

position data of a diamond micro-particle trapped by this ideal magnetic trapping configuration for

various pressures, with thermal noise to reproduce Brownian motion. This gave promising results, so

the challenging task of shaping the magnets was undertaken. Once magnets were sufficiently shaped,

the trap was made and mounted in the vacuum chamber. A cooling system was also constructed of

Helmholtz coils, to use a direct feedback cooling signal to cool the motion of the trapped particle.

Cooling the particle’s motion was expected to be necessary for the particle to remain trapped at lower

pressures. A cooling systemwould also be necessary for the cooling of the particle’s motion to achieve

a cat state.

Therefore, the aims of this project were to design and build a passive magnetic trap, trap a diamond

micro-particle, keep it trapped at very low pressures, characterise the shape and strength of the trap,

observe Brownian motion for the pressure range covered, determine the effectiveness of the cooling

system, and test the energy equipartition theorem at low pressures. Achieving these goals will be

major progress towards the goals of the broader field of research of the creation of a cat state, and

precision inertial and electromagnetic measurement technology.

5.2 Our Progress to Our Goals

In this section we will summarise the progress we have made toward the project goals, and toward the

ultimate goals outlined above.
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Wewere successful in building a purelymagnetic trap, capable of trapping diamondmicro-particles

at the lowest pressures our vacuum system reached, which was 1 × 10−6 Torr. Furthermore, once a

particle was trapped and the pressure lowered, the particle would remain trapped indefinitely without

assistance from the cooling system. This long-term passive trapping was achieved at these pressures

by the unexpected shape of the trapping potential. We expected the potential to be harmonic, which

it is (approximately) around the centre of the trap, but the further the particle went from the centre of

the trap, the more the anharmonic potential affected it. This anharmonicity produced a much stronger

trapping force the further the particle went from the centre, preventing the particle from escaping the

trap at low pressures. This anharmonicity was also seen when examining the Power Spectrum Density

(PSD) plots at low pressures, and was predicted by the magnetic modelling once we expanded the

region of evaluation of the potential. With this finding, the simulations at low pressure were adjusted

accordingly to better reflect the nature of the motion the trapped particle undergoes in our trap at low

pressure. However, the anharmonicity of the potential of our trap was found to be larger than what

was modelled. This disparity is likely due to the physical differences of our trap to the ideal trap that

was modelled. These differences include: the physical shape of the magnet tips, which were supposed

to be sharp square pyramids, but ended up with more of a wedge shape, with a blunt tip; the larger

grain size of the magnetic material, which changed the shape of the tips; and demagnetisation of the

tips from close proximity to like poles, which the modelling software does not account for.

The anharmonic potential therefore allows the observation of Brownian motion at very low pres-

sures at room temperature. The Brownian motion was seen in the PSDs and Mean Square Displace-

ments (MSDs), where the experimental and simulated data mostly agree with the theory. The general

shape of the PSDs at higher pressures where no anharmonic potential is observed match the theory for

the Brownian motion well. This includes: the flat baseline, the peak around the resonant frequency

the magnetic modelling predicted, and the roll-off of the power of the frequencies above the resonant

frequency. Now, the theory is for Brownian motion in one dimension. However, as our trap is not

ideal, and because of our detection system, we observe Brownian motion from two dimensions, and

effects of the third dimension. This is likely the reason why the slopes of the roll-off do not match.

The PSDs also help to characterise the trap, as we find the resonant frequency for the mode transverse

to the beam line to be 170 Hz, and the mode parallel to the beam line to be 225 Hz. We cannot

determine the frequency of the vertical mode, as there is not enough power in the signal to produce a

clear peak. Note that the shapes of the peaks do not quite match exactly, likely due to some difference

in the calculated damping coefficient to the real damping coefficient. This difference can be explained
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by the large uncertainty is measuring the pressure, and the higher than measured pressure of the

confined region of the trap. Fitting the theory to the experimental PSDs would likely give a much

higher damping coefficient than the one measured, and the confined region having a higher pressure

explains that.

At the lowest pressures, at 1.0 × 10−3 Torr and below, the anharmonic potential is evident in the

widening of the resonant peak, and the change in shape to an asymmetric peak. At these pressures, the

experimental data does not match the harmonic theory. An anharmonic simulation at 5.1 × 10−6 Torr

agrees with the width of the peak of the experimental PSD for the same pressure, suggesting that the

discrepancies with the theory at these lowest pressures is due to the particle exploring more of the

anharmonic potential. The MSDs match the theory for the Brownian motion almost exactly (after

scaling), with only the noise in the system, and the measurement of the pressure in the trapping region

limiting the agreement. The agreement is in the slope at short time scales, the decaying oscillations

at intermediate time scales, and the convergence to a constant at long time scales. It is surprising that

the anharmonicity does not affect the MSD as much as it did the PSD, though this may be due to the

noise and sampling rate of the detection system and simulations.

The anharmonic potential of the trap not only keeps the particle trapped at low pressures, but also

increases the damping acting on the particle, increasing the rate at which the particle loses energy.

This is detrimental to the ultimate goal of a harmonic oscillator with high mechanical quality for

quantum and sensing applications. At least, it would be if the particle were allowed to explore the

regions of the trap where the potential is more strongly anharmonic. Using cooling, we can keep the

particle near the centre of the trap, such that the particle will experience an approximately harmonic

potential. The evaluation of the data recorded with the cooling on found that the motion of the cooled

mode could be cooled to the order of tens of milli-Kelvin with the current system. However, the

time it takes for the particle to reach thermal equilibrium after the cooling is switched off is around

6 seconds. This must be due to mechanical noise shaking the magnets and injecting energy into the

system. Therefore, the current system, with the noise and the current temperature limit, is unsuitable

for conducting experiments to create a cat state.

The noise that injects energy into the system, thermalising the cooled particle so quickly, also

hindered our testing of the the energy equipartition theorem. The instantaneous velocity distributions

shown in the previous chapter showed almost identical trends for the experimental data from the

lowest pressure and the experimental data for the trap with no particle in it, which gives a measure

for the noise in the system. As such, any calculation of the root mean square velocity would have
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enormous uncertainty. It is also worth noting that as our detection system produces data which is

nonlinearly related to the signal of the position of the trapped particle, the finite difference method

used to determine the instantaneous velocity of our signal did not give the instantaneous velocity of

the particle.

In summary, our project did not meet all the project goals, as it failed to test the energy equipartition

theorem due to the amount of noise in our system. However, the project succeeded in observing

Brownian motion at low pressures, and partly succeeded in characterising the magnetic trap. In order

to fully characterise the trap, the resonant frequencies in all directions must be identified, and we are

lacking the resonant frequency of the vertical mode. The cooling system proved very effective, though

the noise in the system heated the motion of the cooled particle much too quickly for this system to be

used to create a cat state as it is.

5.3 Future Work and Applications

The progress made in this project toward the ultimate goals of a system capable of the creation of a

cat state, and improving sensing technology has been mixed. The effectiveness of the current system

has been evaluated; now the areas that need improving to reach the ultimate goals for the broader field

of research, and for the project, will be identified. The future work needed to reach the ultimate goals,

and the future applications of this research will also be discussed.

The project shows that the current setup is not yet ready for the creation and measurement of a cat

state. This is partly because the system not only has to be a platform capable of creating such a state,

but also must be able to maintain that state for a long enough period of time to enable operations upon

that state. As mentioned above, there is significant noise in the system, such that the particle heats up

from a cooled temperature in roughly 6 seconds. To extend the coherence time requires minimising

this noise. This noise comes from a variety of sources. One such source is the turbo vacuum pump,

which shakes the entire vacuum chamber at 1050 Hz when in standby mode, and at 1500 Hz when

at full speed. This noise source can be removed by installing an ion vacuum pump. The ion pump

will enable much lower pressures than the turbo pump, and allows the turbo pump to be switched off,

removing it as a source of noise. As the ion pump has no moving parts, and no outlet, it will not cause

mechanical noise. The large voltages that ionise and embed the gas particles in a block of tantalum

produce a large magnetic field, but magnetic shielding can be used to preserve the trapping potential.

Therefore, not only would we be able to remove noise from the system, but we would be able to
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reach much lower pressures, further lowering the cooling limit of the system. However, to reach these

low pressures with this pump would also require a higher quality vacuum chamber. This should also

provide an environment which is more isolated from the mechanical vibrations which pass through

the optical table. An improved floating optical table could also reduce mechanical noise influencing

the particle from other sources in the laboratory.

In addition to the mechanical noise influencing the particle, we have electrical noise interfering

with our signal. This affects the measurements from the signal, as well as the cooling signal, and so

affects the effectiveness of the cooling. Noise peaks from the room lights being used by other lab

users, from the electrical mains lines, and from the refresh rate from the computer monitors are littered

throughout our experimental PSDs, but there is little that can be done about this other than improved

light shielding around the apparatus. Other sources of electrical noise occur in the detection of the

optical signal by the photodiodes, the filtering and amplification of this signal by the preamplifier, and

in the digitising of the signal by the oscilloscope, all limiting the signal in some way. These noise

sources can be reduced by upgrading the equipment. However, improving the dynamic range with

a different digital oscilloscope would likely sacrifice some of the stability of the time base, and the

stability of the time base is what gives the certainty in producing accurate frequency measurements.

As such, the current digital oscilloscope is likely the best option, such that 72 dB is the best dynamic

range we are likely to get. These improvements should allow for the testing of the energy equipartition

theorem at low pressures. As mentioned, the noise in the measured signal also affects the cooling

signal. Furthermore, the cooling signal receives additional noise from the power amplifier. Therefore,

using a power amplifier with a higher signal-to-noise ratio would improve the transmission of a cleaner

cooling signal, providing more effective cooling. Effective cooling means that cooling to the ground

state, required for creating a cat state, is more achievable.

To probe the created cat state, the quantum system will need a handle. With the capability to

trap diamond micro-particles, the ideal handle would be the spin states of a nitrogen vacancy (NV)

centre, or some other colour centre. However, due to the build up of static charge, we needed to

coat our diamond particles in an anti-static agent to trap them. This coating would be detrimental

to the probing of an NV centre’s spin state, and would cause noise in a quantum measurement. As

such, the trap mounting design will need to be improved to prevent the build up of static charge, such

that coating the diamond particles is unnecessary. Indeed, engineering a new method to launch the

diamond particles into the trap may be required, as the current method of directing the particles with

a stream of gas is the apparent cause of the static charge. A piezoelectric launcher could prove to
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remove this issue, and would allow for the launching of smaller diamond particles. On the other hand,

smaller particles are likely to be harder to trap, and keep trapped, requiring a stronger trap. It would

also be much harder to trap single particles, and the motion of two or more trapped particles is likely

to be much more complicated. Thus designing a novel launching method could prove an invaluable

step towards creating a cat state with this trap.

It was found that the magnet tips were not quite the desired shape. The desired shape of the

tips was a square pyramid, with a 28.75◦ angle of ascension between each face and the base of the

pyramid, with the faces coming together to form a sharp point. However, due to the large grain size of

the magnet, the resulting tips were more wedge shaped. This is because that while the tip was being

faceted, the large grain size caused the point to fracture. As such, the closest shape possible was a

wedge, where one pair of opposite faces did not quite meet, thus avoiding fracturing, but forming a

ridge rather than a point. The production of a sharper tip would not only require faceting with greater

finesse, but also a magnetic material with a finer grain size, so that the length of the ridge would be

smaller. This will allow a more pointed tip to be faceted, increasing the symmetry of the magnet

and the magnetic field, bringing the design closer to the ideal shape. This would cause the second

horizontal resonant frequency to approach equality with the first, such that only one horizontal and one

vertical resonant frequency are found. A quadrant photodiode could then be used to find the resonant

frequency in both directions simultaneously, in place of the current detection system.

A necessary improvement to this system is in the analysis of the optical signals. As has been

mentioned, the measured signal is nonlinearly related to the position of the particle because the

experimental measurement depends on movement of the cross-section of the particle over a dividing

line. If the shape of the particle were approximated to a sphere, then a mathematical transformation

could be applied to the signal to provide a truer measurement of the particle’s position. However,

as diamond crystals are not spherical, and the size and shape of the shadow changes as the particle

rotates and moves parallel to the beamline, this may not improve the analysis of the experimental data

markedly.

Further progress with this project could be made with more in-depth theoretical predictions and

simulations. The effect from other modes aside from the one we were focusing on were evident in the

PSDs, such that the one dimensional simulations did not quite match. If three dimensional simulations

of the harmonic and anharmonic potentials were accomplished, then a more informed analysis of the

experimental measurements could be made.

Despite the improvements that can be made to this system, this research has current applications.
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For instance, in inertial sensing technology. While the trapped particle may heat up quickly after the

cooling is switched off, it is cooled quite effectively when the cooling is on. However, the active

cooling of the particle’s motion is not the only use for this signal. The cooling signal provides

information about the instantaneous velocity of the particle, and our detection system provides very

precise measurement of the movement of the particle, down to sub-microns, and with a stable and

fine time step of 10 µs. This provides information for the instantaneous velocity with high precision,

which is exactly what an inertial sensor provides. Together with the magnetic trap being a passive

trap, and the anharmonic potential keeping the particle trapped seemingly indefinitely at low pressures,

this system is a great candidate for becoming an inertial sensor. Miniaturisation of the system for

integration into electronics is possible, as no bulky and power consuming components are necessary,

unlike optical traps. Integrating a magnetic trap into electronics would require magnetic shielding, to

protect the trap and the electronics from interference, but this should be simple enough.

While this system is not yet ready to create and sustain cat states, the anharmonic potential does

not disqualify the magnetic trap design from the possibility to create them in the future. Although a

cat state requires a harmonic potential, and an anharmonic potential introduces unnecessary damping,

a cat state must also be cooled substantially. As has already been mentioned, a particle with a low

motional temperature will only explore the region around the trap centre, and the potential of this

region in our trap is approximately harmonic. If the improvements discussed above - reducing the

noise in the system, removing the need for the anti-static coating on the diamond micro-particles, and

reducing the minimum achievable pressure - are made, then the trap should be capable of creating and

sustaining cat states. This reduction in noise will result in the particle’s motion taking a much longer

time to heat up after being cooled. Therefore, the trap will have the potential to create and sustain cat

states. The only limiting factor for this will be if enough noise can be removed from the system so

that the coherence time of the cat state is long enough for the necessary operations to be performed

on that state.

This project has exciting prospects. As we have discussed, there are many improvements to be

made, such as those to reduce the noise in the system, to lower the pressure further, and to simplify

the shape of the trapping potential. However, the progress made in this project towards cooling to the

ground state, and in producing a system with the potential to be integrated into electronic devices as

an inertial sensor is noteworthy. If more work is done in improving this system, it may not be long

before a macroscopic quantum superposition of states is created.
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√
〈[∆xdif(t)]2〉 is the root mean square displacement of a Brownian particle in the diffusive

regime

∆xdif(t) . . . . . . is the displacement of a particle in the diffusive regime

D . . . . . . . . . . . is the diffusion coefficient

kB . . . . . . . . . . is the Boltzmann constant

T . . . . . . . . . . . is the temperature of the fluid

γ . . . . . . . . . . . is the Stokes friction coefficient

t . . . . . . . . . . . . is time

τp . . . . . . . . . . is the momentum stopping time

m . . . . . . . . . . . is the mass of the Brownian particle

γ . . . . . . . . . . . is the Stokes friction coefficient of the fluid environment

〈[∆xdif(t)]2〉 . is Einstein’s diffusive mean square displacement

〈[∆xbal(t)]2〉 . is the ballistic mean square displacement

∆xbal(t) . . . . . is the displacement of a particle in the ballistic regime

f (v) . . . . . . . . is the normalised Maxwell-Boltzmann distribution

v . . . . . . . . . . . is the instantaneous velocity of the Brownian particle

〈[∆xtra(t)]2〉 . is the MSD of a trapped Brownian particle, at low pressures
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∆xtra(t) . . . . . . is the displacement of a trapped particle in the ballistic regime

ω0 . . . . . . . . . . is the resonant angular frequency of the trap

ω1 =
√
ω2

0 −
1

2τp
2

Fmag . . . . . . . . is the magnetic force on a diamagnet

χ . . . . . . . . . . . is the magnetic susceptibility of the particle

V . . . . . . . . . . . is the volume of the particle

µ0 . . . . . . . . . . is the permeability of free space

B = (B • B)1/2 is the magnitude of the magnetic field vector B

Qmech = ω j/Γ0 is the mechanical quality factor

ω j . . . . . . . . . . is the angular resonant frequency in the j dimension

Γ0 . . . . . . . . . . is the damping coefficient

Umag . . . . . . . . is potential due to magnetic field

χgra . . . . . . . . is the magnetic susceptibility of graphite

ρgra . . . . . . . . . is the mass density of graphite

a = −k x/m = ω2
0 x is the acceleration on of a harmonic oscillator

k . . . . . . . . . . . is the spring constant

x . . . . . . . . . . . is the position of the oscillator

ν . . . . . . . . . . . is the linear frequency of the oscillator

χdia . . . . . . . . . is the magnetic susceptibility of diamond

ρdia . . . . . . . . . is the mass density of diamond

Utot . . . . . . . . . is the trapping potential

g . . . . . . . . . . . is the acceleration due to gravity
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x̃ = x + G . . .

A, C and G . . are constants

Kn = l/r . . . . is the Knudsen number

l . . . . . . . . . . . . is the mean free path of the gas molecules

cK =
0.31Kn

0.785+1.152Kn+K2
n

d . . . . . . . . . . . diameter

p . . . . . . . . . . . pressure

r . . . . . . . . . . . is the radius of the trapped diamond microparticle

η . . . . . . . . . . . is the viscosity coefficient of air

x . . . . . . . . . . . is the position of the particle

ζn . . . . . . . . . . . is Wiener noise

x(t = 0) = 0, dx
dt |t=0 = 0

S(Ω) . . . . . . . . is the power spectral density for Brownian particle in a harmonic trap

Ω . . . . . . . . . . . is angular frequency

τp = 1/Γ0 . . . is the momentum relaxation time

D = kBT
Γ0m . . . . . is the diffusion coefficient

λ . . . . . . . . . . . is the ratio of the quartic and quadratic coefficients

Γc . . . . . . . . . . is the effective damping from the cooling

Γtot = Γ0 + Γc is the total damping experienced by the particle when the cooling is on

T0 . . . . . . . . . . is the temperature of the gas

Tc = T0Γ0/Γtot is the temperature limit with the cooling on

Sc(Ω) . . . . . . . is the power spectral density with cooling on
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