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ABSTRACT

Over the years, robots have been designed to perform various tasks much quicker
and more efficient than humans. Though these robots may be fast and capa-
ble, controlling them can be slow and cumbersome. Hand gesture control is an
emerging method of controlling robots in a simplified and more efficient manner.
Using hand gesture control over other control options is beneficial as it incorpo-
rates natural human movement to achieve the same or even more control in an
uncomplicated fashion. The project seeks to develop a cheap and simple method
of hand gesture control for a robotic arm with five degrees of freedom (DOF). The
proposed method is a glove fitted with various sensors that will interpret hand
gestures, process them and control the robot. A flex sensor, two accelerometers,
and a gyroscope will be attached to the glove to achieve this control. The result is
a cheap and simple prototype that has full control over the 5 DOF of the robotic
arm. The concepts of this project can be applied to many areas of industry with
possibilities such as military applications. medical procedures or even handling

hazardous waste such as nuclear etc.
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Chapter 1

Introduction

Robots aid us in many ways every single day. They are designed to be proficient at
completing arduous repetitive tasks quickly, efficiently and with great precision. Robots
can complete tasks deemed too dangerous for humans and can operate in extreme condi-
tions where humans would be unable to effectively complete tasks. Though these robots
have their advantages, robot-human collaboration could be considered a weakness and an
area of improvement [4]. Various methods of control for robot currently exist: manual
control with joysticks, or buttons, and autonomous control with micro-controllers With
the aid of a prototype input device, the possibility of creating an improved human-robot
interface using hand gestures will be explored. The success of this project could mean
the advancement in areas such as handling of dangerous or harmful substances. Medical
procedures in locations at which a physician can complete the procedure without the need
to physically access the area [3], and completing tasks in harsh environments unsuitable
for human occupation, which can be impacted by this projects outcome.

1.1 Project Overview

This project aims to create a fully functional prototype controller for a hand gesture
controlled system. A hand will perform certain movements and the controller will be
able to understand those movements and direct a robotic arm to follow accordingly. The
robotic arm is fully articulated with 5 degrees of freedom. Joint 1: baseplate rotation,
joint 2: elbow articulation, joint 3: wrist articulation, joint 4: wrist rotation, and joint 5:
gripper articulation as shown in figure 1.1. Four sensors will be attached to a glove and
this glove will read the hand gestures and direct the robot. Two accelerometers are used
to measure x-axis, y-axis, and z-axis movement for joints 2, 3, and 4 a flex sensor is used
to detect finger movement, and a gyroscope is used to rotate the arm. These sensors will
measure acceleration and rotational movements of the hand and transfer the signals to
the robotic arm.
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loint 4
Wrist Rotation

Gripper Articulation
Joint 5

Wrist Articulation

Elbow Articulation
loint 2

Baseplate Rotation
Joint 1

Figure 1.1: Robotic Arm

1.1.1 Objectives

The first objective is the overall goal for the project while the subsequent objectives
contribute to the final goal.

e Hand gesture control of the robotic arm
e Accelerometer control of wrist articulation and rotation

Accelerometer control of elbow articulation

e Gyroscope control of base plate rotation

e Flex sensor control of gripper articulation




Chapter 2

Background and Related Work

2.1 Introduction

Existing information on this topic must be appraised to gain a knowledge base for which
to begin the project. This chapter evaluates a few past projects that have similar goals
and objectives. These projects will be critically evaluated and placed in context with this
current project. Decisions made as a result of the study of similar projects with be clearly
stated and explained.

2.2 Method of Gesture Input

A project by Peter Girovsk and Mat Kundrt using dynamixel motors to control a robotic
arm employs the use of a glove to achieve gesture control [1]. This "data glove” as it has
been named, is able to house a total of four sensors and the electronics that are required
to operate them. Figure 2.1 shows this glove with the sensors and electronics.

Bending sensors

Accelerometer
Electronics

Figure 2.1: Data Glove [1]
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Another project uses a glove to achieve control of an animatronic hand. This glove
was able to house six sensors. five of the sensors control the gripping and relaxing of
fingers and the sixth sensor controls the orientation of the hand [2]. Figure 2.2 shows this
glove with the sensors attached.

Figure 2.2: Glove housing six sensors [2]

In a separate project, a control method was developed for operation of a military
mine detection and removal robot. The original control for this robot included joysticks,
mechanical switches, and push buttons housed in a large heavy case. The new control
method is a wireless glove fitted with motion sensors on the back of the hand and fingertips

3]

With the proven usefulness of gloves as a method of control, the nominated method
of input will be a glove. The glove will house four sensors and the resulting electronics
that are required for full functionality.

2.3 Sensors

Girovsk and Kundrt opted to use three unidirectional piezoresistive elements and a three
axis accelerometer [1]. The glove that has been designed to accommodate for 6 sensors
uses 5 potentiometers to control the flexion and extension of each finger. An accelerometer
is used to control the orientation of the hand [2]. The wireless glove designed to control
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the mine detection robot uses three accelerometers on the tips of the thumb, pointer and
middle finger as well as an additional hand orientation motion sensor on the rear of the
hand. Figure 2.3 shows these sensors.

Finger bending
sensor

Hand orientation
and motion sensor

Finger bending
sensor

Figure 2.3: Accelerometers on tips of fingers and rear of hand [3]

As the robotic arm for this project only has one gripping motion, this can be controlled
with one piezoresistive element as in [1]. The orientation of joints three, and four will be
controlled with two separate accelerometers. An additional gyroscopic sensor will control
the orientation of joint one as in [3].

2.4 Software and Communications Protocol

The first mentioned project created the control software in in C-mex for matlab. The three
piezoresistive sensors, and all three axes of the accelerometer are measured and a UART
signal is sent to the Dynamixel motors in the robotic atm after each measurement [1].
The use of UART for Dyanmixel will be interchanged with (Serial Peripheral Interface)
SPI as well as the control software being created in Arduino as opposed to matlab. The
SPI interface is superior to UART as the UART only operates between 0.3-1Mbps while
SPI can operate at up to 50Mbps. Arduino has been nominated for its simplicity with
implementing new sensors.

2.5 Cost

The cost of production of these systems can be consolidated and and made cheaper by
implementing a few changes. In [2] 6 sensors are being used. the proposed design for
the current prototype only uses four sensors. In the design for [3] the same amount of
sensors are being used however the system is wireless as well. This can be made more cost
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effective by using piezoresistive sensors on the tips of fingers instead of accelerometers and
removing the wireless capability of the system.




Chapter 3

Approach and Methodology

3.1 Introduction

This chapter is organised as follows. Section 3.2 details information regarding the robotic
arm, accelerometer, flex sensor, and gyroscope implementation. In Section 3.3, the soft-
ware components are described and a medium level description of the control code is
given.

3.2 Hardware

3.2.1 Robotic Arm

The Robotic arm is actuated using 7 Dynamixel AX12-A servo motors from Robotis.
These high performance motors communicate with each other via daisy chain method
and can be programmed directly via Arduino with the Digital Servo Driver Shield or
through matlab via USB2dynamixel. Within the compact frame of the dynamixel motor
is a gear reducer, built in encoder with up to 1024 steps of precision, and a DC motor.
Angular position, angular velocity, and load torque feedback is available to read from
each motor. Ax-12a motors have two modes: joint, and wheel mode. Joint mode will
be used for joints 2, 3, 4, and 5 in the robotic arm, while joint 1 will operate in wheel
mode. Each motor is built in with a red status LED to alert the user of any errors.
Due to its high quality manufacturing standard, the dynamixel motor can produce a high
amount of torque for its size, and is resilient to external forces, making this a perfect
motor for the robotic arm [6]. Individual parameters of each motor can be changed using
USB2dynamixel, and the software provided by Robotis: RoboPlus. This program allows
the user to change settings of the Dynamixel motor such as toggling between joint mode
or wheel mode, changing motor ID, baud rate, angle limit, max torque, max speed, etc.
All motor settings can be changed in other programs, however RoboPlus is the simplest
way to edit settings.
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3.2.2 Dynamixel Shield

The Dynamixel shield is a circuit board compatible with the Arduino Uno layout. This
shield supports dynamixel Ax-12a motors over SPI interface (Digital 10,11,12,13). It has
a UART interface in the event of a requirement for deeper development. There are 7 servo
connector points. Dimensions of the board are: 59x53mm [7].

3.2.3 Accelerometer

Two ADXIL345 3-axes accelerometers are used to control the robotic arm. The ADX1.345
accelerometer is a suitable choice of sensor as it is small, lightweight, thin measuring
3mmx5mmx lmm, and consumes low power. Measurements for this sensor are at a high
13-bit resolution and can sense up to 16g of force. Digital output data is accessed through
the Inter-integrated Circuit (I2C) digital interface on Arduino to allow for more than one
accelerometer to be used for control [8]. As there are two accelerometers, they will act as
slaves to the Arduino master and will be addressed accordingly. There are two different
address types for the ADXL345 accelerometer. The first sensor "DEVICE A” is addressed
as (0x1D) and the second sensor "DEVICE B” is addressed as (0x53). Therefore allowing
both sensors to be operated on the 12C interface.

fritzing

Figure 3.1: Accelerometer Circuit Diagram

3.2.4 Flex sensor

One 5.5cm flex sensor is used to actuate the gripper on joint 5 of the robotic arm. This flex
sensor acts as a potentiometer when bent, increasing or decreasing resistance depending
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on how far the sensor is flexed. The resistance value ranges between 10K ohm and TOK
Ohm when flexed.

3.2.5 Gyroscope

One ITG-3200 gyroscope is used to control the base rotation. This gyroscope has three
inbuilt 16 bit analogue-to-digital converters (ADC’s) to read the three different rotational
axes of movement. The ITG-3200 is operational between 2.6V and 3.6V, the 12C pins on
the Arduino Uno howeve,r still transmit signal at 5V, so extended use without a logic level
converter is not recommended. There is a VLOGIC pin (VIO) that acts as a reference for
the logic signals coming in and out of the sensor. The VIO pin can be set to any voltage
between 1.71V and the max input voltage VDD.

3.2.6 Implementation

Placement of sensors is crucial to gaining accurate control of the robotic arm. Both
accelerometers are strategically positioned to best control the arm. The first accelerometer
(ACC1) is fixed to the rear of the left hand on a 2.6 x 2.5 centimetre cut of vero board.
ACCI controls wrist joints 3 and 4 (motors 4, 5 and 6) on the arm. The X-Axis on the
accelerometer is assigned to control wrist articulation while the Y-Axis controls the wrist
rotation. These joints can be seen in Figure 1.1. The second accelerometer (ACC2), along
with the Arduino board and gyroscope, is fixed to the rear of the wrist on two separate
sections of veroboard. One section houses circnits for ACC2, and the gyroscope, and the
second cut of vero board hold the Arduino and Dynamixel shield. The X-Axis on ACC2
controls the elbow articulation in joint 1 (motors 2, and 3). Initially, the veroboard
was fixed to the glove with double sided tape. This method proved to be ineffective,
as increased movement of the glove caused the boards to become loose or completely
detached. Hot glue is now used to firmly fix the boards to the glove and acts as an
adequate mitigation to the detachment issue.

ADXL345 accelerometers have 5 pins: ground (GND), voltage (VCC), chip select
(CS), interrupt 1 (Intl), interrupt 2 (Int2), serial data out (SDQ), serial data (SDA),
and serial clock (SCL). GND, and VCC are connected respectively to the ground and 5v
pins on the Arduino. CS is pulled up to HIGH to enable 12C mode. SDO controls the
address type: 0x1D or 0x53 depending on if SDO is set to HIGH or LOW. SDA sends
and receives information from the master and can be connected to either the SDA pin
or analogue pin A4 on the Arduino. SCL receives the clocking signal from the master,
and can be connected to either the SCL or analogue pin [8]. The SDA and SCL pins are
both pulled up to HIGH through 5K6 resistors. ACC1 connects its SCL and SDA pins in
parallel back to the ACC2 board and then into the Arduino. ACC1’s SDO pin is set to
HIGH and ACC2’s SDO pin is LOW conversely. By connecting the SCL and SDA pins
in parallel, this reduces the number of wires needed to connect to the Arduino. Only 4
wires are needed to connect both accelerometers to the Arduino.
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fritzing

Figure 3.2: Two Accelerometer Circuit diagram

The flex sensor’s position was originally set to be placed along the index finger on the
inside of the left hand. This however has been revised and the sensor is now located on
the rear of the middle finger. The connector pins are insulated with hot glue and fixed to
the glove above the first knuckle of the middle finger. A little further along the sensor, hot
glue is applied to fix the sensor to the glove above the base segment of the finger. The end
of the flex sensor is enclosed in a housing above the middle segment of the finger. This
allows free horizontal movement of the sensor. This housing is necessary due to the flex
sensor being unable to stretch along the rear of the second knuckle. This housing allows
the flex sensor to flex freely without being damaged. The first pin of the flex sensor is
connected to the 5V pin of the Arduino. The second pin of the flex sensor is connected to
ground through a 47K ohun resistor. The Sensor is connected to the Arduino as a voltage
divider via any of the analogue pins as seen in Figure 3.3.

R1

Vout = Vin ¥ —————
ou m*Rl-O-R2

The flex sensor is printed on one side with a polymer ink that has conductive particles
embedded in it. When the sensor is in its resting position, a resistance of roughly 30K
Ohms can be read from the sensor due to the arrangement of the particles. When the
sensor is curved away from the ink, conduction is decreased as the particles move away
from each other, thus increasing the resistance. The opposite effect occurs when the
sensor is bent towards the ink, the particles are closer together therefore, decreasing the
resistance [9].

The ITG-3200 gyroscope as apposed to the ADXL345, measures rotational accelera-
tion. This sensor is positioned on the rear of the wrist along with ACC2 to control the
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fritzing

Figure 3.3: Flex Sensor Circuit Diagram

joint 1 base rotation. Figure 3.4 shows the circuit board of the ITG-3200, ACC1 and the
Arduino.

Figure 3.4: Arduino, Accelerometer 2, and Gyroscope Circuit Board

Because the ITG-3200 has a max voltage of 3.6V, the VCC pin on the sensor is
connected to the 3.5V pin on the Arduino. VIO is connected straight directly to VCC as
the max input voltage will be used as the logic reference [?]. The GND pin is connected
to the ground rail for the flex sensor and then sent to the second ground pin in the shield.
The SDA and SCL pins are connected to analogue pins 4 and 5 (A4 and A5) respectively.
This can be seen in Figure 3.5.

The ITG-3200 measures rotational acceleration and as such, is positioned at the fur-
thest point from the wrist. This position aids with gyroscope measurements and accuracy
as it is closer to the point of rotation at the elbow.
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EX040

fritzing

Figure 3.5: Gyroscope Circuit Diagram

3.3 Software

3.3.1 RoboPlus

Before coding can begin on the Arduino, each servo must be calibrated to the correct
servo number and baud rate. This is done using the Dynamixel wizard within RoboPlus.
RoboPlus is a software envoronment created by Robotis that contains the necessary soft-
ware for controlling all Robotis products. Within the Roboplus software environment is
the Dynamixel wizard. This section of RoboPlus allows firmware settings to be changed
on the Dynamixel motors. The baud rate for each motor is set to 1000000 and number
addresses are assigned to each motor. Motor 1 controls the base plate rotation, motors 2
and 3 control the elbow articulation, motors 4 and 5 control the wrist articulation, motor
6 controls the wrist rotation, and motor 7 controls the gripper movement. Each motor
has a choice between joint mode and wheel mode Once the motors are calibrated, they
can respond accordingly to commands from the arduino.

3.3.2 I2C

Both the Accelerometers and the Gyroscope operate on the 12C protocol. This communi-
cation protocol is selected as multiple slave devices can be controlled from the one master
device. Alternately, SPI was considered as the communication protocol however as each
additional device requires a new chip select 1/O pin, 12C became the more favourable
method of communication [10].
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3.3.3 SPI

The Dynamixel Ax-12a motors are controlled on the SPI bus through a dynamixel digital
device driver shield. The 7 dynamixel motors are daisy chained together and are connected
to the dynamixel shield.

3.3.4 Software Architecture

The following is a description of the command blocks within the Arduino code. Firstly,
global variables are declared and libraries are included. This section is divided in to
initialisation for the accelerometers, motors, flex sensor, and gyroscope. Under the ac-
celerometer section, Wire.h is included for 12C protocol and accelerometers are assigned
addresses: 0x1D for ACCI and 0x53 for ACC2. X, y, and z variables are set for both
accelerometers and the register address for the ”axis-acceleration-data” is stated. Two
functions; writeTo, and readFrom are created to send data to and from the accelerometers:
writeTo starts communication to the device, which then sends the register address, sends
the value to be written, and then ends communication. readFrom starts communication,
sends the address to be read from, requests the data from the specified address, and then
ends communication. When reading data from the module, each axis is comprised of two
bits of data, the data is broken down to three axes and saved to the variables x, v, and
z. Libraries required for Dynamixel motors are now included. Dynamixel motors are
controlled through SPI bus with the aid of a digital servo driver shield, therfore SPLh in
included. ServoCdsb5.h is the library that contains the commands necessary to control
the Dynamixel motors and pins-arduino.h defines pin functions. Setup for the flex sensor
needs only to define three global variables for effective use. The Gyroscope requires ad-
dresses for the device address, and x, y, z output address to be defined as characters so
they can be sent to the sensor. Three functions are created to read the x, y, and z values
of the gyroscope.

The setup function is now run. The [2C serial bus is joined and the baud rate is set to
1000000. Both Accelerometers are turned on by sending the value 724" to address: 0x2D.
For the Dynamixel motors the SPI bus is joined and the SPI clock is set to one-eigth of
the program clock speed. Servo select (SS) is set to high and the gyroscope is setup by
sending the address to the device.

Within the loop function, x, v, and z values for the gyroscope are read first. Next,
acceleration data from ACC1 and ACC2 are read using the readFrom function mentioned
earlier. Each of the acceleration data variables need to be scaled in order to be understood
by the motors. The accelerometers measure values and send them to the Arduino within
a range of -260 and 260. Each motor has a range of 0-300 when in joint mode. This range
is subject to change depending on where the motors are placed in the robotic arm. The
maximum and minimum range values for each motor are shown in table 3.1. The x-axis
on ACC2 controls elbow articulation and is scaled to a value between 80 and 260. The
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x-axis on ACC1 controls wrist articulation and is scaled with respect to ACC2’s x-axis so
that the robotic arm follows the movements of the glove correctly. ACC1’s y-axis controls
wrist rotation and is scaled to output a value between 0 and 300. Figure 3.6 shows the
co-ordinate axis of ACCI1 on the hand. Base rotation is controlled by either the gyroscopes
z or y axis. An if statement decides which axis to send to the motors depending on the
orientation of the glove. If the glove is supinated, the y-axis values are sent, and if the
glove is pronated, z-axis values are sent. Data is sent to the glove with the myservo.rotate
command. This command takes two input arguments: the motor number and the speed
of rotation. Speed of rotation can be either a positive or negative number depending
on the direction of rotation. Motor velocity is fixed for the rest of the motors using the
setVelocity command. Motor velocity can be anywhere between 0 and 300. The elbow,
and wrist joints have a fixed velocity of 20 and the gripper has a velocity of 30. Here,
a buffer smoothing method is used to stabilise the robotic arm. Even when stationary,
the accelerometers give fluctuating signals, resulting in the robot becoming shaky when it
should be completely stable. This buffer method is simply an if statement that checks to
see if the signal has fluctuated above or below a given threshold. If the signal breaches the
threshold, it is then allowed to be sent to the motor. Signals are sent to the motors using
the myservo.write command. Myservo.write takes two input argnments: servo number
and position. The flex sensor signal data is mapped in the same way to the accelerometers
and gyroscope. The given range for the gripper motion is from 150-250. Buffer smoothing
is also used to help stabilise the flex sensor signal.

z
|

Figure 3.6: Co-ordinate Axis of ACC1 on Rear of Left Hand

Finally, two functions are created for the gyroscope to call on. The first function
itgWrite, which initiates communication with the gyroscope and sets the register address.
The second function itgRead, asks the gyroscope for data, waits for a response from the
device, and returns it so that the data can be used.
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Motor Number | Minimum Position | Maximum Position | Default Position
1 0 300 55
2,3 80 260 260
4,5 40 260 40
6 0 300 150
7 150 205 160

Table 3.1: Min and Max Ranges, Default Positions
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Chapter 4

Experimental Procedures

Introduction In this chapter,a description of experimental procedures that were preformed
to produce is given. These experiments are designed to produce results regarding sensor
signals and error analysis.

4.1 Accelerometer offset test

This experiment is designed to gather data regarding the robotic arms response to signals
sent by sensors on the glove. An accelerometer sensor will be fixed to different parts of
the robot. This test sensor will be compared to the corresponding sensor on the glove.

A separate accelerometer testing circuit is constructed using a Sparkfun ADLXL345
accelerometer and an Arduino Uno. This circuit is fixed to the top of the wrist rotation
joint (joint 4), as seen in Figure 4.1.

Figure 4.1: Placement of Accelerometer Testing Circuit

17
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The accelerometers must now be calibrated. This is done by opening the serial monitor
on Arduino for each circuit and matching the outputs. Firstly, the glove accelerometer
is positioned in a natural horizontal position and the output is measured. Next, the
test accelerometer is adjusted until its value is the same as the glove accelerometer. The
accelerometer signals are scaled to the ACC1 x-axis scale, and sent to the serial plotter
with buffer smoothing. Figure 4.2 shows the calibrated outputs of both accelerometers.

a1 510

- T £ B ] T ] M- ) THE o ER =T Tien

150000 b g baad |

Figure 4.2: Glove Accelerometer (Left) and Test Accelerometer (Right) Calibrated to
Show Same Static Output

This process is repeated when testing the elbow joint. Once the calibration is complete,
movements are made with the glove sensor and compared with the test sensor. These
results are detailed in the next chapter.




Chapter 5

Results and Discussion

5.1 Introduction

In this chapter, the final developmental prototype of the input device is exhibited. An
analysis of results from experimental procedures in chapter 4 is also displayed and dis-
cussed. These results are gathered from sensor data on the glove and robot.

5.2 Glove

When the development of the software was complete, the glove was assembled. Figure
5.1 shows the final product of all the hardware elements.

Figure 5.1: Final Glove Design

The four sensors can be clearly seen on the glove. Flex sensor positioned on the middle
finger with the aforementioned housing (Figure 5.2), ACC1 on the rear of the palm (Figure

19
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5.3), ACC2, and gyroscope on the end of the forearm (Figure 5.4)

Figure 5.2: Flex Sensor With Housing

Figure 5.2 shows the flex sensor with the insulated connections, and second connection
point. It also shows the housing on the tip of the sensor. This housing allows the sensor
to bend along with the finger without being fixed to the glove.

y

Figure 5.3: Accelerometer Circuit

Figure 5.3 shows the accelerometer circuit with pullup resistors and extension wires
that connect hack to the Arduino.

Figure 5.4 shows the circuit for ACC2, gyroscope and their connections back to the
Arduino and Dynamixel shield.
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Figure 5.4: Accelerometer, Gyroscope, and Arduino on Glove

5.3 Arm and Glove Comparison

The following Figures 5.5, 5.6, and 5.7 show the robotic arm’s repose to certain glove
positions.

Figure 5.5: Open Hand vs Closed Hand Gripper Comparison

Figure 5.5 shows the response of the arm to the pronated hand being open and closed.

Figure 5.6 shows a side view of the hand at a roughly 30 degree angle in a neutral
position and a pronated position. As you can see there is a slight difference in the angles
between the hand and the arm. This will be discussed in section 5.4
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Figure 5.7: Bent Wrist, Robotic Arm Response

Finally in Figure 5.7, the hand is bent at the wrist to show the robotic arm position

when ACCI1 and ACC2 are at differing angles

5.4 Accuracy testing

The movement being tested is an upward extension, and then a return to neutral position
of the wrist (Figure 5.8). This movement uses motors 4, and 5 of the robotic arm.
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Figure 5.8: Wrist Extension Movement

Figure 5.9 shows the signal output from the glove accelerometer and the test accelerom-
eter. Taking the data points and plotting them in Excel gives a better visualisation of
the signals for us to compare. Figure 5.10 shows the comparison in an excel graph.

5.4.1 Total Settling time

There are a few things that can be discussed with this data. The delayed rise time to arrive
to the desired angle is due to the low motor speed setting. The Dynamixel motors have a
no load speed of 59rpm. Within Arduino, this speed is broken up into a range of 0-300 that
can be sent to the motors with the myservo.write command. The current speed setting
for the wrist and elbow movement is 20. This translates to a no load speed of 3.93rpm.
If the motors are programmed to faster settings, the desired position is reached earlier
however due to the characteristics of the robotic arm, the whole arm shakes dramatically
leading to an increase in settling time of the robot. The total time for motors 4 and 5 to
reach the extended position is 8.7 seconds and the total time to settle back to the neutral
position is 10.2 seconds. Figure 5.12 Shows the test accelerometer data for a rotation
movement from pronation to neutral as seen in Figure 5.11. The total time taken to
reach the neutral position is 6.4 seconds, and the time to return to the pronated position
is 7.3 seconds. This movement is more efficient than the wrist extension because there
is less inertia involved in this rotation movement compared to the extension movement.
Also, the wrist extension and flexion movements are controlled by dual motors. If there is
any slight delay in signal between the motors, settling time will be increased as opposed
to the single motor rotation where this possible problem is completely eliminated.

5.4.2 Overshoot

The sections of the data that overshoot the desired position can provide some interesting
information. The Dynamixel motors themselves are quite accurate and have negligible
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Figure 5.9: Glove Accelerometer (Left) and Test Accelerometer (Right) Showing Signals
for Extension Movement (x-axis = miliseconds, y-axis = degrees)

overshoot. With this knowledge it can be deduced that any instability of the robotic arm
is attributed to the looseness of some of the joints in the arm. The overshoot can be
calculated for the tested movements. These overshoot errors are shown in Table 5.1

Ioe

(AT v | ~

Movement Max Overshoot Error (deg) | Final Steady State Error (deg)
Wrist Extension 23 7
Wrist Neutral 22 4
Wrist Pronation 25 19
Wrist Neutral 14 4

Table 5.1: Error Calculation

The final resting position of the arm after the extension movement shows that there
is only a difference of 7 degrees between the glove and test sensor. Compared to the
rotation movement on the arm, this is a fairly accurate response to the signal. Figure
5.12 shows the increased difference between glove sensor position and test sensor position.
The reason there is such a large difference in steady state positions is due to accelerometer
signal scaling. In future, these motor movements can be tweaked in Arduino to match
each other more accurately.
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Figure 5.10: Improved Signal Comparison for Extension Movement

5.5 Base Rotation

Rotation for the base of the robot was a major challenge in the delivery of this project.
Initially it was attempted to rotate the robot with only the accelerometers that have
already implemented. Figure 5.13 shows the movement that will rotate the robot.

To use this motion to control the robot rotation, the possibility of using the y-axis of
ACC1 to send acceleration information to the robots was explored. Figure 5.14 shows the
signal for a right internal rotation and a left external rotation.

It can be seen that the acceleration signal data for an internal rotation dips first
and then peaks before returning to a constant acceleration value. The reverse is seen
for the external rotation. This signal is not suitable to be sent to the arm with the
myservo.write command because as you can see, once the motor moves one direction, it
will then move the opposite direction and return back to its original position. Even with
the myservo.rotate command, the use of this method of control will not accomplish the
desired result.

With the failure to control rotation with existing sensors, research was performed to
find another method of control. This lead to the discovery of the TIG-3200 gyroscope.
This gyroscope measures rotation at a point. Figure 5.15 shows the data signal for the
same right internal and left external rotation that was performed in Figure 5.14. This
signal is much cleaner and requires less signal processing to achieve the same result.
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Figure 5.12: Signal Comparison for Pronation to Neutral Test
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Figure 5.15: Gyroscope Data of Right Internal and Left External Rotation




Chapter 6

Conclusions and Future Work

6.1 Conclusions

The aim of this project was to create a fully functional prototype to interpret hand
gestures in such a way that a 5 degree of freedom robotic arm can be controlled. With
a review of current literature, a knowledge base was created to start this project. The
design stage commenced and prototype development produced the final product. This
goal was achieved and is now set to be a starting platform for many future projects. With
various improvements to the system, this project can be implemented into industry for
many applications. The concepts of this project can be extrapolated to many areas such
as medical, military, nuclear and others.

6.2 Future Work

Signals recieved from accelerometers are converted from raw signal data to a range between
0 and 300 degrees as this is the accpeted range of movement for the Dynamixel motors
while in joint mode. Simply mapping raw data to the new range is not enough, the raw
accelerometer data must be smoothed. Figure 6.1 shows the x and y axis signals from
ACC1 while the accelerometer is stationary. (All figures referenced in this chapter have
x-axis in miliseconds and y-axis in degrees)

As you can see, this signal has a small amount of noise which the motors respond
to. This noise causes the motors to jitter and move sporadically, therefore causing the
system to become unstable and decrease the accuracy of the robotic arm. Currently, this
is mitigated by including a buffer of 10 degrees before sending the signal to the motor.
Figure 6.2 shows the x and y axis signals of ACC1 with the buffer smoothing while the
sensor is stationary.

The signal is completely smooth with this method of smoothing however when per-
forming any type of movement, the the signal is still quite jerky and can sometimes be

29
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Figure 6.2: Signal of Accelerometer Data With Buffer Smoothing While ACC1 is Static

inaccurate due to the 10 degree buffer. Figure 6.3 shows the signals of a pronation-to-
neutral and an extention movement of the left hand (after each movement, the hand
returns to a resting position).
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Figure 6.3: Signal of Accelerometer Data With Buffer Smoothing While ACC1 is Moving

The signal of dynamic movement with buffer smoothing is only slightly smoother than
the raw signal shown in figure 6.4. It becomes apparent that it is necessary to smooth
the signals further, therefore a method window averaging was developed. This method of
signal processing reads the last 10 values of the input signal and averages them, therefore

outputting a smooth signal. Its effects on static and dynamic signals are shown in figures
6.5 and 6.6.

The way this method works is by sending each variable through a smoothing function
and using the returned integer as the signal for the motors. In theory this method of
smoothing would greatly improve the stability of the system. However, due to the nature
of the software required to use this method of smoothing, many problems were encountered
when attempting to complete implementation. During testing, the arm was sluggish and
it appeared variables being sent through the function were not being sent correctly.

This method would have been a great addition to the system however due to the many
problems encountered, it will need to be implemented later in future work.
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Appendix A

Arduino Code

//accel include (Wire.h,
define DEVICE-A (0x1D)
J/first  ADXL345  device
address define DEVICE-B
(0x53) //second ADXL345
device address define TO-
READ (6) //num of bytes
we are going to read each
time (two bytes for each
axis)

byte buff TO-READ] ;
//6 bytes buffer for sav-
ing data read from the de-
vice char str[512]; //string
buffer to transform data be-
fore sending it to the serial
port char output[512];

void  writeTo(int  de-
vice, byte address, byte val)

Wire.beginTransmission(devicgAddress =

//start transmission to de-
vice  Wire.write(address);
//  send  register ad-
dress Wire.write(val);
// send value to write
Wire.endTransmission();
//end transmission

void
device,
int  num,

readFrom(int
byte  address,
byte  buff]])

Wire.beginTransmission(deviced; 0; int yaValP = 0;

//start transmission to de-
vice  Wire.write(address);
//sends address to read from
Wire.endTransmission();
//end transmission

J///flex  const  int
analogIlnPin = AQ; // Ana-
log input pin that the po-
tentiometer is attached to

int sensorValue = 0; //

Wire.begin Transmission(desdbed; read from the pot int

/[start transmission to de-

flexSensor = 0; // value out-

vice Wire.requestFrom(device,put to the PWM (analog

num); // request 6 bytes
from device

int i = 0 while
(Wire.available()) //de-
vice may send less than
requested (abnormal)
bufffj = Wireread();
/[ receive a hyte i++;

Wire.endTransmission();

//end transmission int re-
0x32; //first
axis-acceleration-data regis-
ter on the ADXL345 int xa

=0, ya=0,za=0; int xb
=0,yb =0, zb=0;

/ /dynamix include
iSPLhy, include iSer-
voCdshb.h; include ”pins-
arduino.h” ServoCdsbb
myservo; int baseRot = 200;

int xbValP = 0; int xaValP

35

out) int flexP = 0;

//Gyro char WHO-AM-
I = 0x00; //Address of
sensor char SMPLRT-DIV
= (0x15; char DLPF-I'S =
0x16; char GYRO-XOUT-
H = 0x1D; char GYRO-
XOUT-L = 0x1E; char
GYRO-YOUT-H = 0x1F;
char GYRO-YOUT-L =
0x20; char GYRO-ZOUT-H
= 0x21; char GYRO-ZOUT-
L = 0x22;

char DLPF-CFG-0 = (1
ii 0); char DLPF-CFG-1 =
(1 ji 1); char DLPF-CFG-
2 = (1 jj 2); char DLPF-
FS-SEL-0 = (1 jj 3); char
DLPFFS-SEL-1 = (1 jj 4);

char  itgAddress =
0x69; int readX(void) int
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data = 0; data it-
gRead(itgAddress, GYRO-
XOUT-H) ji 8; data —=
itgRead(itgAddress, GYRO-

XOUT-L); return data;

int  readY (void) int
data = 0; data = it-
gRead(itgAddress, GYRO-
YOUT-H) j; 8 data —=

itgRead(itgAddress, GYRO-
YOUT-L); return data;

int readZ(void) int
data = 0; data = it-
gRead(itgAddress, GYRO-

ZOUT-H) jj 8 data —=
itgRead(itgAddress, GYRO-
ZOUT-L); return data;

void setup() Wire.begin();
// Jjoin i2c bus (address
optional for master) Se-
rial.begin(1000000); // start
serial for output

/ [accel //Turning
on the both ADXL345s
writeTo(DEVICE-A, 0x2D,
24);  writeTo(DEVICE-B,
0x2D, 24);

//dynamix //Dy-
namixel.begin(1000000);
digitalWrite(SS, HIGH);

//Gyro int xRate, yRate,
zRate; //Read the x,y and
z output rates from the gy-
roscope. xRate = readX();
yRate = readY(); zRate =
readZ();

ues when glove is supinated
if (vaVal j 100 —— yaVal ;,
220) myservo.rotate(l, xg-
Val); else myservo.rotate(1,
zgVal);
myservo.setVelocity(20);

//Accel readFrom(DEVICEE ((xbVal ; xbValP + 5)

A, regAddress, TO-READ,
buff); //read the accelera-
tion data from the ADXL345
//each axis reading comes in
10 bit resolution, ie 2 bytes.
Least Significat Byte first!!
//thus we are converting
both bytes in to one int xa =
(((int)buff[1]) i 8) — buff[0];
va = (((int)buff[3]) jj 8) —
buff[2]; za = (((int)buff[5]) jj
8) — buff[4];
readFrom(DEVICE-B,

regAddress, TO-READ,
buff); //read the accel-
eration data from the

second ADXL345 xb
(((int)bufi[1]) 1; 8) — buff[0];
yb = (((int)buff[3]) j; 8) —
buff[2]; zb = (((int)buff[5])
i 8) — buff[4];

//interval scaling int xg-
Val = map(xRate, -10000,

SPLbegin (); SPLsetClockDividee(8E 1000, 1000); int zg-

CLOCK-DIVB);

//gyro char id = 0;
id = itgRead(itgAddress,
0x00);  //Serial.print(”ID:

”); //Serial.printIn(id,
HEX); itgWrite(itgAddress,
DLPF-FS, (DLPF-FS-
SEL-0 DLPF-F5-
SEL-1 DLPF-CFG-
0));  itgWrite(itgAddress,
SMPLRT-DIV, 9);

void loop()

Val = map(zRate, -10000,
10000, -1000, 1000); int xb-
Val = 300 - map(xb, -255,
255, 80, 260); int ybVal =
300 - map(yb, -255, 255,
0, 300); int xaVal = 300 -
map(xa, -255, 255, xbVal -
90, xbVal + 150); int yaVal
= 300 - map(ya, -400, 400,
0, 300);

//Base rotation with
Gyro //gyro switches val-

—— (xbVal j xbValP - 5))
myservo.write(2, xbVal);
myservo.write(3, xbVal); xb-
ValP = xbVal;

if ((xaVal ; xaValP +
5) —— (xaVal | xaValP -
5)) myservo.write(4, xaVal);
myservo.write(5, xaVal);
xaValP = xaVal;

if ((vaVal ; vaValP +
10) —— (yaVal | yaValP
- 10)) myservo.write(6,
yaVal); yaValP = yaVal,

//flex  sensor  stuff
sensor Value = analo-
gRead(analogInPin);

flexSensor = map(sensorValue,
900, 700, 150, 250);

myservo.set Velocity(30);
if ((flexSensor ; flexP +
20) —— (flexSensor j flexP
- 20)) myservo.write(7,
flexSensor); flexP = flexSen-
sor;

void itgWrite(char ad-
dress, char registerAddress,
char data)  //Initiate a
communication sequence
with the desired i2¢ device
Wire.beginTransmission(address);
//Tell the 12C address which
register we are writing to
Wire.write(registerAddress);
//Send the value to write
to the specified register
Wire.write(data);  //End
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Wire.endTransmission();

unsigned char it-
gRead(char address, char
register Address)

//This variable will hold
the contents read from the
i2c device. unsigned char
data = 0

//Send the  regis-

ter address to be read.

device for data

Wire.beginTransmission(address);

Wire.beginTransmission(addre$¥jre.requestFrom(address,

//Send the Register Address
Wire.write(register Address);
//End the commu-
nication sequence.
Wire.endTransmission();

/[ Ask the 2C

1);

//Wait for a response
from the [2C device if
(Wire.available())  //Save
the data sent from the 12C
device data = Wire.read();
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