
OPTIMISATION TECHNIQUES FOR

STORING AND QUERYING XML DATA IN

RELATIONAL DATABASE SYSTEMS

A thesis submitted in fulfilment of the requirements of

the degree of Doctor of Philosophy

Mo’ad Maghaydah

December 2010

Master of Engineering Science (University of New South Wales) 2001

Bachelor of Engineering (Jordan University of Science and Technology) 1995

Department of Computing

Faculty of Science

Macquarie University, NSW 2109, Australia

© 2010 Moad Maghaydah

III

Acknowledgements

I am grateful to my supervisor, Professor Mehmet A. Orgun, for his supervision,

encouragement, unbounded enthusiasm, and generous support from the preliminary to

the concluding level. He led me to the correct direction at every stage of the research.

Without his care, supervision and friendship, this thesis would not have been possible.

I am also grateful to my co-supervisor, Dr. Abhaya Nayak, for his suggestions and

support.

I am deeply indebted to my wife Hadeel and my two beautiful children Tamir and Talah

who brought a great deal of love and inspiration to my life, and have always been by my

side to encourage and motivate me.

I would like to express my appreciation to the managers and my colleagues in the IT

Department at Star Track Express Pty Limited for their understanding and support

during my time there as an IT Systems Specialist (2004–2010), while I was also

carrying out this research.

I would like to acknowledge that this thesis was edited by Dr Lisa Lines director and

head editor of Elite Editing and Tutoring, the editorial intervention was restricted to

Standards D and E of the Australian Standards for Editing Practice.

Lastly, I offer my regards and blessings to all of those who supported me in any respect

during the completion of the thesis.

V

Declaration

I hereby certify that the work embodied in this thesis is the result of original research.

This work has not been submitted for a higher degree to any other university or

institution.

Signed: ____________________

Date : ____________________

VII

Abstract

Extensible Markup Language (XML) has recently emerged as a standard for electronic

information interchange, due to its flexibility and portability. For instance, in service-

oriented applications, XML messages are commonly used for inter-company

interactions. However, those XML messages may be used for purposes other than

transactions and data interchange (for example, purchase orders and invoice statements)

and they must often be retained for later use and analysis. This requires scalable

technology to effectively store and query XML data.

Due to their widespread availability and robustness, relational database management

systems (RDBMS) still offer the most affordable technology to develop XML database

systems. However, the XML data model presents new challenges such as maintaining

the document order and supporting complex structural-join queries, which require tree-

aware processing mechanisms. While the state-of-the-art approaches to support XML

data in relational systems require new algorithms and indexing techniques that make

them powerful, it has been observed that some of those changes may not be directly

applicable to relational database systems and/or they may present a trade-off between

performance and storage usage. Further, the modification of the relational system’s

kernel is hardly an option for many RDBMS vendors. There are still considerable

benefits in developing solutions that do not involve changes to the RDBMS’s kernel,

thereby reducing the cost of re-engineering relational database systems.

In order to improve the process of storing and querying XML data in relational systems,

in this thesis, we propose a new compact Dewey-based labelling scheme to support it.

The new label structure, composed of two components (parent, child) in the Dewey

format, would significantly improve the performance of those XML queries that are

based on parent-child and sibling relationships. Moreover, we propose advanced query

optimisation techniques based on certain features that exist in Dewey labels and based

on a better utilisation of the document schema summary of XML documents. Our

techniques are portable and can be applied to any Dewey-based labeling technique

proposed for storing and querying XML data. Through extensive experimental studies,

we show that these techniques make off-the-shelf relational systems more tree-aware,

and significantly improve their capabilities to support XML data.

IX

Contents

List of Figures .. XIII

List of Tables.. XVII

Chapter 1: Introduction ... 1

1.1 Introduction .. 1
1.2 XML Database Systems ... 2

1.2.1 Relational-based XML Database Systems.. 3
1.2.2 Native XML Database Systems .. 4

1.3 Motivation .. 5
1.4 Problem Definitions ... 6
1.5 Research Contributions .. 8

1.6 Publications .. 9
Chapter 2: XML Overview ... 13

2.1 Introduction .. 13
2.1.1 XML Application Domains .. 14

2.2 XML Data Model ... 15

2.2.1 Features of the XML Tree Data Model .. 16
2.2.2 XML Schema .. 17

2.3 XML Documents .. 19

2.3.1 XML Syntax ... 20
2.3.2 A Well-formed XML Document .. 21

2.3.3 A Valid XML Document .. 22
2.4 Querying XML Data .. 22

2.4.1 XPath Path Expressions Overview ... 24

2.4.2 XQuery Overview ... 25

2.5 Conclusion .. 26
Chapter 3: Prefixing on Demand Labelling Approach ... 29

3.1 Introduction .. 29

3.1.1 Motivation... 30
3.2 Background .. 31

3.2.1 Labelling and Indexing Techniques in XML Database Systems.................. 32

3.2.1.1 Range and Intervals Encoding Techniques ... 33
3.2.1.2 Prefix-free String and Dewey Labels .. 35

3.2.1.3 Other Labelling Approaches ... 37
3.3 Prefixing on Demand (PoD) ... 38

3.3.1 Basic Labelling Unit (BLU) ... 38

3.3.2 Supporting the Insertion of New Nodes ... 40

3.3.3 Features of the PoD Labelling Scheme .. 42
3.3.4 Two-component Dewey Labels .. 44
3.3.5 New Nodes Insertion Is Still Supported in Pod-S Mode 46

3.3.6 PoD Space Requirement Analysis .. 48
3.3.7 User-defined Functions Used in PoD ... 49

3.4 Evaluation Experiments ... 50
3.4.1 Study Overview .. 50
3.4.2 Evaluating Different Configurations of PoD .. 52

3.4.2.1 Test Setup .. 52

X

3.4.2.2 Results and Discussion ... 53

3.4.2.3 Brief Discussion .. 56
3.4.3 Evaluating PoD Space Efficiency Using Double Parsing 56

3.4.3.1 Test Setup .. 57

3.4.3.2 Results and Discussion ... 57
3.4.4 Comparing PoD-4 with Other Dewey Labelling Approaches 58

3.4.4.1 Test Setup .. 58
3.4.4.2 Results and Discussion ... 58

3.4.5 Evaluating Space Requirements for PoD-Split .. 59

3.4.5.1 Test Setup .. 60
3.4.5.2 Results and Discussion ... 60

3.4.6 Evaluating the Effect of Inserting New Nodes ... 61
3.4.6.1 Test Setup .. 61
3.4.6.2 Results and Discussion ... 61

3.4.7 Evaluating the Effect of Label Size on the Query Performance................... 62
3.4.7.1 Test Setup .. 63

3.4.7.2 Results and Discussion ... 63
3.5 Conclusion .. 64

Chapter 4: Navigating the XML Tree Using the PoD Approach 67

4.1 Introduction .. 67

4.2 XML Query Optimisation Objectives .. 68
4.3 XML Query in Relational Database Systems .. 69

4.3.1 Labelling Techniques Effect ... 70
4.3.2 XML Schema Information Effect ... 71

4.4 XML Schema Summary in the PoD System .. 72

4.4.1 Capturing XML Document Schema Summary .. 72
4.4.1.1 In-memory Schema Summary ... 74

4.4.1.2 XML Schema Summary in Table Format .. 75
4.5 PoD Optimisation Approach .. 76

4.5.1 Supporting Search on Path Expression ... 77
4.5.2 Optimising Child and Descendants Axis Steps .. 78
4.5.3 Evaluating Ancestor at any Level of the Tree .. 79

4.5.4 Evaluating Document Structure and Statistics Queries 81
4.6 Evaluating and Optimising the XPath Axis Steps .. 81

4.6.1 XPath Axis Steps Overview ... 82
4.6.2 The Child Axis Step ... 83
4.6.3 The Descendant Axis Step .. 85

4.6.4 The Descendant-self Step ... 85
4.6.5 The Attribute Axis Step .. 86

4.6.6 The Following Axis Step .. 86
4.6.7 The Following-sibling Axis Step .. 87

4.6.8 The Parent Axis Step .. 87
4.6.9 The Ancestor Axis Step .. 88
4.6.10 The Ancestor-self Axis Step ... 90
4.6.11 The Preceding Axis Step .. 90
4.6.12 The Preceding-sibling Step ... 90

4.7 XPath Axis Steps Experimental Evaluation ... 91
4.7.1 Study Overview .. 91
4.7.2 Experiment Setup ... 91
4.7.3 Child Axis Step ... 92

XI

4.7.4 Descendant Axis ... 95

4.7.5 Following Axis ... 97
4.7.6 Following-sibling Axis ... 98
4.7.7 Parent Axis.. 100

4.7.8 Ancestor Axis ... 101
4.7.9 Preceding Axis .. 104
4.7.10 Preceding-sibling Axis.. 105

4.8 Conclusion .. 106
Chapter 5: Optimising XML Structural-join Queries ... 107

5.1 Introduction .. 107
5.2 XML Query Optimisation Techniques ... 108

5.2.1 Optimisation Based on Query Rewriting .. 109
5.2.2 Implementation of New Join Operators .. 110
5.2.3 New Labelling and Indexing Techniques ... 111

5.2.4 Effect of Indexing Data Values .. 112
5.2.5 XML Schema to Relational Schema Mapping Techniques 113

5.2.5.1 Model-Mapping (Fixed Relational Schema) 113
5.2.5.2 Structure-Mapping (DTD Dependents) .. 115
5.2.5.3 XML Data Type ... 116

5.3 PoD Relational Schema .. 116

5.3.1 The Edge Approach .. 117
5.3.2 The Node Type Approach .. 118

5.4 Finding Optimal Join Order in the PoD System... 119
5.5 PoD Approach for Optimising Twig Queries ... 122

5.5.1 Sibling-based Twig Queries ... 123

5.5.2 Ancestor-descendent Twig Queries .. 124
5.6 Minimising XML Queries .. 126

5.6.1 Building the XPath Matrix.. 127
5.6.2 Minimising the XPath Matrix ... 128

5.7 Putting It All Together ... 131
5.8 Experimental Evaluations ... 136

5.8.1 Experiment Setup.. 137

5.8.2 Join Order Effect... 137
5.8.2.1 Experiment Setup .. 138

5.8.2.2 Results and Analyses ... 139
5.8.3 Twig Query Optimisation ... 141

5.8.3.1 Test Setup .. 141

5.8.3.2 Result and Analysis ... 142
5.8.4 Efficiency of Off-the-shelf Relational Systems .. 143

5.8.4.1 Test Setup .. 143
5.8.4.2 Results and Discussion ... 144

5.9 Conclusion .. 149
Chapter 6: Conclusions and Future Work ... 151

6.1 Conclusions .. 151
6.2 Future Work ... 154

Appendix A: XML Benchmarks ... 155

Bibliography .. 177

XIII

List of Figures

Figure 2-1: Sample XML tree representing the XML data model. 15

Figure 2-2: Sample XML schema using XSD language. .. 19

Figure 2-3: Sample bookstore XML document. ... 21

Figure 2-4: Sample XQuery/XPath expressions. .. 23

Figure 2-5: Sample XML tree fragment from sample bookstore XML document. 26

Figure 2-6: Sample XQuery and equivalent SQL query. .. 26

Figure 3-1: Region encoding representation (pre, size, level) for a sample XML tree. .. 34

Figure 3-2: Dewey label representation for a sample XML tree. 35

Figure 3-3: ORDPATH labelling scheme, which eliminates relabelling. 37

Figure 3-4: PoD labelling for a sample people database... 43

Figure 3-5: Space requirements comparison between BLU_D and BLU_4. 57

Figure 3-6: Maximum label length comparison between PoD and two other Dewey-

based labelling techniques (Ordpath and QED). .. 59

Figure 3-7: Total label size comparison in logarithmic scale between PoD and two other

Dewey-based labelling techniques (Ordpath and QED) using documents

from Table 3-5. ... 59

Figure 3-8: Total label size comparison in logarithmic scale between PoD and PoD-S

(Split mode) using the documents from Table 3-6. 60

Figure 3-9: Queries’ run time in logarithmic scale for 16 queries from the Michigan

benchmark evaluated using different Dewey-based labelling schemes. 64

Figure 3-10: Queries’ run time in logarithmic scale for 16 queries from the Michigan

benchmark evaluated using different Dewey-based labelling schemes. 64

Figure 4-1: Block diagram for XML-schema summary in the PoD System. 73

Figure 4-2: A sample XML document. ... 76

Figure 4-3: Relational schema for major relational-based approaches. 77

Figure 4-3: Query run-times in logarithmic scale for queries Q1, Q2, and Q3 in Table 4-

2. ... 93

Figure 4-4: Query run-times in logarithmic scale for queries Q4, Q5, and QR2 in Table

4-2. .. 93

Figure 4-5: Query run-times in logarithmic scale for queries Q2, Q3 in Table 4-2. 94

Figure 4-6: Query run-times in logarithmic scale for queries Q4, Q5 in Table 4-2. 94

Figure 4-7: Query run times in logarithmic scale for queries Q1 and Q2 in Table 4-3. . 95

Figure 4-8: Query run times in logarithmic scale for queries Q3, Q4 and QR3 in Table

4-3. .. 96

Figure 4-9: Query run times in logarithmic scale for queries Q1 and Q2 in Table 4-3. . 96

XIV

Figure 4-10: Query run times in logarithmic scale for queries Q3 and Q4 in Table 4-3.

 .. 97

Figure 4-11: Query run times in logarithmic scale for queries Q1 and Q2 in Table 4-4.

 .. 98

Figure 4-12: Query run times in logarithmic scale for queries Q3 and Q4 in Table 4-4.

 .. 98

Figure 4-13: Query run times in logarithmic scale for queries Q1 and Q2 in Table 4-5.

 .. 100

Figure 4-14: Query run times in logarithmic scale for queries Q3 and Q4 in Table 4-5.

 .. 100

Figure 4-15: Query run-times in logarithmic scale for Q1 and Q2 in Table 4-5. 101

Figure 4-16: Query run times in logarithmic scale for Q3 and Q4 in Table 4-5. 101

Figure 4-17: Query run times in logarithmic scale for Q1 and Q2 in Table 4-5 using the

ancestor axis. .. 102

Figure 4-18: Query run times in logarithmic scale for Q3 and Q4 in Table 4-5 using the

ancestor axis. .. 102

Figure 4-19: Query run times in logarithmic scale for Q1 and Q2 in Table 4-5 for the

ancestor axis using XGP function. ... 103

Figure 4-20: Query run times in logarithmic scale for Q3 and Q4 in Table 4-5 for the

ancestor axis using XGP function. ... 103

Figure 4-21: Query run times in logarithmic scale for Q1& Q2 in Table 4-5 for

preceding axis. .. 104

Figure 4-22: Query run times in logarithmic scale for Q3& Q4 in Table 4-5 for

preceding axis. .. 104

Figure 4-23: Query run times in logarithmic scale for Q1 and Q2 for preceding-sibling

axis. .. 105

Figure 4-24: Query run times in logarithmic scale for Q3 and Q4 for preceding-sibling

axis. .. 105

Figure 5-1: Edge relational schema in PoD and PoD-S. ... 118

Figure 5-2: Node type relational schema in PoD. ... 118

Figure 5-3: Join order that might result in a slower execution plan. 119

Figure 5-4: A more efficient Join order for XML queries. ... 120

Figure 5-5: Sample XML twig queries that search for the occurrence of the shaded node

patterns. .. 123

Figure 5-6: Initial XQuery and XPath query path matrix. .. 127

Figure 5-7: Initial XPath matrix for query in Example 5-2. ... 128

Figure 5-8: An example of cyclic structural relationship joins. 129

Figure 5-9: Sample Join_list based on the query in Example 5-2. 130

Figure 5-10: Algorithm outline to minimise XPath matrix... 131

XV

Figure 5-11: Algorithm outline to generate optimised join list..................................... 132

Figure 5-12: Algorithm outline to generate optimised SQL query. 133

Figure 5-13: Initial XPath Matrix for XML query in Example 5-3. 135

Figure 5-14: Minimised XPath Matrix for XML query in Example 5-3. 135

Figure 5-15: The join_list for XML query in Example 5-3. ... 135

Figure 5-16: Query run times in logarithmic scale for 11 queries from XMark

benchmark for three Dewey-based labelling schemes showing the

difference between forced join order (SJ) and the join order generated by

the system built-in optimiser. ... 139

Figure 5-17: Query run times in logarithmic scale for 11 queries from XMark

benchmark for three Dewey-based labelling schemes showing the

difference between forced join order (SJ) and the join order generated by

the system built-in optimiser. ... 140

Figure 5-18: Query run times in logarithmic scale for XMark benchmark queries against

a medium XML document for three different approaches in XML

management systems. ... 145

Figure 5-19: Query run times in logarithmic scale for XMark benchmark queries against

a large XML document for three different approaches in XML

management systems. ... 146

Figure 5-20: Query run times in logarithmic scale for three different XML management

systems using the Michigan benchmark with a 50MB document. 147

Figure 5-21: Query run times in logarithmic scale for three different XML management

systems using the Michigan benchmark with 500MB document. 148

XVII

List of Tables

Table 3-1: Dewey and PoD representations for some sample labels in Example 3-1. ... 40

Table 3-2: Some suggested configurations for BLU of 4 bits. 44

Table 3-3: PoD and PoD-S representations for the labels in Example 3-3. 46

Table 3-4: PoD and PoD-Split representation for labels: N1, Nx, and N2 in Example 3-4.

 .. 47

Table 3-5: The features of some XML documents from different XML benchmarks.... 51

Table 3-6: BLUs of different sizes and configurations, which are used in space

evaluation test. .. 52

Table 3-7: The maximum label length for small BLU configurations using the

evaluation documents from Table 3-5. ... 53

Table 3-8: The total label size for small BLU configurations using the evaluation

documents from Table 3-5. .. 53

Table 3-9: The maximum label length for medium BLU configurations using the

evaluation documents from Table 3-5. ... 54

Table 3-10: The total label size for medium BLU configurations using the evaluation

documents from Table 3-5. .. 54

Table 3-11: The maximum label length for large BLU configurations using evaluation

documents from Table 3-5. .. 55

Table 3-12: The total label sizes for large BLU configurations using evaluation

documents from Table 3-5. .. 55

Table 3-13: Details of some update queries from the Michigan benchmark. 61

Table 3-14: The number of nodes that were added and deleted after executing each

update query in Table 3-13... 62

Table 3-15: Label size changes after executing update queries in Table 3-13. 62

Table 4.1: XPath axis steps. .. 83

Table 4-2: Queries used to evaluate the child axis step. ... 92

Table 4-3: Queries used to evaluate the descendant axis step. 95

Table 4-4: Queries used to evaluate the following axis step. .. 97

Table 4-5: Queries used to evaluate the following-sibling axis step. 99

Table 5-1: Join relationship priority. ... 129

Table 5-2: Run time results for selected twig queries from XMark benchmark. 142

1

Chapter 1: Introduction

Information may be the most valuable commodity in the modern world. It can

take many different forms—such as accounting and payroll information,

information about customers and orders, scientific and statistical data,

graphics, or multimedia. We are virtually swamped with data, and we

cannot—or at least we’d like to think about it this way—afford to lose it.

These days we simply have too much data to keep storing it in file cabinets or

cardboard boxes. The need to store large collections of persistent data safely,

‘slice and dice’ it efficiently from different angles by multiple users, and

update it easily when necessary is critical for every enterprise. That need

mandates the existence of databases, which accomplish all the tasks listed, and

then some [Kriegel & Trukhnov 2008].

1.1 Introduction

Extensible Markup Language (XML), which appeared in the mid-90s, has emerged as a

dominant language for Internet applications and a technology for information

representation and exchange over the Internet [Nambiar et al., 2002; Silberschatz et al.,

2002].

XML is an open standard, which has been developed and managed by the World Wide

Web Consortium (W3C) [Bray et al., 2008]. It provides a unified model for

representing data, content, and metadata in a self-describing simple text, which is

known as an XML document. An XML document is easily readable by both humans

and machines. It is vendor and platform independent, highly flexible and extensible.

The XML data model is suited for any combination of structured, unstructured and

semi-structured data. These features have led to its adoption by a wide range of

industries [Beyer et al., 2006; Lee and Team, 2009]. Beyer et al. [2005] state:

Virtually every industry is working to standardize XML representations for

their common business objects. As one industry analyst puts it, Hundreds of

vertical schemas, in fields as diverse as government, biology, finance, and

travel, are publicly available and being actively used. Undoubtedly, there are

thousands more in private hands.

Key applications for XML include web services and service-oriented applications; XML

messages are commonly used for inter-company interactions. However, these XML

messages may be more than transactions and data interchanges (such as purchase orders

and invoice statements) and they must be retained for later use and analysis.

Chapter 1. Introduction

2

The growing trend of using XML in many applications, ranging from a simple format

for data exchange to archiving data, requires a scalable technology to effectively store

and query XML data. This growth has led to the development of a wide range of XML

management systems [Cathey et al., 2007]. However, developing efficient techniques

for storing massive XML documents and retrieving information from them is one of the

core problems that require investigation in the database and XML area.

1.2 XML Database Systems

An XML database is a data persistence software system that allows data to be stored in

XML format at the logical level as a minimum. This data can then be queried, exported

and serialised into the desired format. An XML management system should provide

natural and efficient ways to:

 Describe the structure of XML documents

 Store XML documents

 Extract information from XML documents

The last point is the most important. However, the way in which XML documents are

viewed determines how they can be queried.

The efforts to store and manage XML data have explored most available technologies

ranging from simple file systems to advanced Object-oriented database systems [Carey

et al., 2000; Klettke and Meyer, 2000; Mertz; Surjanto et al., 2000]. Other systems have

been developed from the ground up based on semi-structured and tree-based data

models to handle XML data [AG, 2009; Fiebig et al., 2002; Jagadish et al., 2002;

McHugh et al., 1997]; these systems are called Native XML Management Systems.

However, relational-based XML database systems are still the most available and

affordable solution because this approach seeks to utilise the power of the existing,

robust and mature relational database technology [Cathey et al., 2007; Härder, 2005;

Lewis et al., 2002; Nambiar et al., 2002].

The following subsections briefly highlight the features, motivations, and advantages of

the two major XML database approaches: the native approach and relational-based

approach.

Chapter 1. Introduction

3

1.2.1 Relational-based XML Database Systems

Based on a sound theory, the relational database management systems (RDBMS) have

evolved over three decades to become arguably the most widely used form of database

management systems [Gartner, 2007; Kriegel and Trukhnov, 2008; Melton and Buxton,

2006].

The relational model supports a set of tables in which each table contains a fixed

collection of columns (fields). An indefinite number of rows (records) occurs within

each table. The order of the rows is not important. The queries issued on relational data

need a schema to be known. Each row must have a unique primary key. In addition,

tables typically have secondary keys that correspond to primary keys in other tables.

Recently, many studies have been conducted to provide support for the emerging XML

data within the mature relational database systems. The most common method is to

shred XML documents and store them in relational tables. XML queries are then

relationally mapped to structured query language (SQL) to retrieve the desired results.

The motivations behind developing relational-based XML database systems can be

summarised as follows:

 XML is seen as another data format for relational and object-relational data-

processing tools.

 RDB systems are robust and mature, they have been developed over three decades;

they support advanced features such as concurrency control, query optimisation,

scalability and failure recovery and they should not be discarded [Cathey et al.,

2007; Weigel et al., 2005].

 Relational database systems are widespread, their market is still growing and they

are reasonably priced [Gartner, 2007; Hoven, 2002].

 RDB systems will survive because they are the best storage solution when the data

are well defined and rigid, like in an accounting system. Kriegel and Trukhnov

[2008] assert that ‘for better or for worse, relational database systems have come to

rule on planet Earth’.

 Most of the data around the globe are stored in (object) relational database systems

[Gartner, 2007; Kriegel and Trukhnov, 2008]. This mature platform has been

outstandingly supporting different kinds of applications; extending it to support

Chapter 1. Introduction

4

XML applications will provide one common platform in which different kinds of

data models and applications can coexist and communicate.

Starting in 2001, most commercial relational database vendors began adding support for

XML data into their products [Beyer et al., 2006; Oracle, 2009; Pal et al., 2005b].

Initially, the focus was on merely storing and retrieving XML documents as a whole,

without the ability to perform significant operations on the content of those documents.

However, many techniques have been developed over the years; new indexing methods,

shredding document’s contents techniques, and new XML data types have all been

introduced to support efficient storing and querying of XML documents in relational

systems. Further, the commercial relational database systems support XML query

languages such as XPath and XQuery, as well as the ability to transform ordinary

relational data into XML structures of the users’ choice.

However, the XML data model (i.e. nested hierarchical ordered data) presents

significant challenges to the relational database systems; XML query performance for

complex structural-join queries that XQuery language allows is still considered a critical

issue. Developing a complete and comprehensive relational-based management system

for XML data is still some time off.

1.2.2 Native XML Database Systems

Due to the differences between the relational data model and the XML data model,

many researchers and companies started developing dedicated database systems to

handle XML data. These systems store and manipulate XML in a more native form.

Moreover, they implement the native XML query languages, such as XQuery, and

query results are naturally in the XML format [Bourret, 2005b; Fiebig et al., 2002;

Jagadish et al., 2002].

Unlike relational systems, the native systems lack solid theory; however, there are some

valid reasons and motivation behind developing native XML systems:

 The XML model is highly flexible; thus, it may be difficult to decide in advance on

a single, correct schema. The structure of data may evolve rapidly, data elements

may change types, or data not conforming to the previous structure may be added

[McHugh et al., 1997].

Chapter 1. Introduction

5

 An XML document is ordered, while the order is ignored in the relational model.

 An XML document has a logical structure and hierarchical nested elements. It is

very costly to support this structure in flat relations.

 The query result of the relational database system is flat relations, and XML data

format needs to be reconstructed again.

Native XML database systems are still relatively new and require a great deal of work

to support features that already exist in relational-based systems, such as transactions,

scalability and concurrency control. The cost of developing such a system is considered

expensive. Further, these systems are dedicated for XML support and do not support

any other data format (such as relational data or object data).

With the advances in relational-based systems and their ability to better support XML

data in their native format, it is less likely that pure native XML database systems will

replace relational database systems any time soon. However, they will present a better

option for document-centric XML applications (such as manufacturing parts databases)

[Bourret, 2005a; Staken, 2001].

1.3 Motivation

Many recent studies have demonstrated that shredding an XML document, and labelling

and indexing its elements to recover the document order is still a competitive approach

to develop efficient and affordable XML database systems based on off-the-shelf

relational database systems [Florescu and Kossmann, 1999; Grust et al., 2007; Härder,

2005; O'Neil et al., 2004; Yoshikawa et al., 2001]. Moreover, with the advent of the

new XML data type in commercial relational databases, the relational database systems

have gained significant strength as a base technology to build XML database systems.

These new data types allow relational systems to support XML data in their native

format, and reduce the cost of reconstructing the original documents.

However, there are significant advantages to improving and developing an approach

that is based on shredding and labelling XML document nodes using the existing

standard relational technologies:

Chapter 1. Introduction

6

 Most of the off-the-shelf and widely used open source relational database systems,

such as MySQL server [MySQL, 2009], do not yet have a specific advanced XML

data type; therefore, using the binary large object (BLOB) data type and shredding

XML documents approach are the only available options.

 Some applications are data-centric, and shredding data will significantly improve

query performance by avoiding parsing the document during run time. Without

doubt, indexing the new XML data types will improve performance for the most

frequent queries. However, it is hard to cover a broad range of queries without going

back to the document and parsing it during run time.

 Shredding an XML document, or part of it, and building more traditional relations

and indexes will better utilise the power of relational databases. Moreover, this

approach reduces the cost of data updates in XML applications.

 Labelling techniques, which are heavily used to support the shredding approach, are

also used in native XML systems, and in hybrid systems to support the new XML

data types. Improving the labelling techniques will also benefit off-the-shelf

relational database systems.

 Developing efficient solutions based on this approach will reduce the cost of re-

engineering relational systems and enhance application portability by avoiding

changes to the database system kernel. Such solutions can be adopted in widely used

open source relational database systems at minimal cost.

This research aims to investigate and develop techniques that will improve the

capabilities of relational-based XML management systems based on existing technology

that is available in off-the-shelf RDBMS without the need to change the system kernel.

1.4 Problem Definitions

When an XML document is shredded and stored in relational tables, the document order

and structure are lost. However, the document order and structure are very important

features of the XML data model and they are at the centre of most XML queries. Node

labelling is a common technique in relational-based systems to capture the document

order and support containment relationships (such as ancestor-descendent relationships).

Further, node labelling is also used in hybrid XML database systems (i.e. relational

systems with a built-in XML data type) to answer document-centric queries with

Chapter 1. Introduction

7

minimal access to the original XML document. However, further work is required to

improve the features and structure of the labelling methods to allow more efficient

utilisation of the underlying relational technology, such as indexes.

Further, the evolution of XQuery and XPath as query languages for XML data has

introduced more challenges to the relational-based systems, since they allow complex

queries based on different types of structural-join relationships. The query processors

and optimisers in relational systems have been designed and implemented to support

flat relational data that is fundamentally different from the XML data model. Thus, the

generated query execution plans are far from optimal.

This research investigates and develops techniques to address the following challenges

that are related to storing and querying XML documents in off-the-shelf relational

database systems:

1. The Dewey-based labelling technique for XML nodes has emerged as the most

suitable labelling technique to support dynamic XML documents [Härder et al.,

2005; O'Neil et al., 2004; Tatarinov et al., 2002]. It supports variant operations on

dynamic XML documents, from inserting large sub-trees, without relabelling the

existing nodes, to fine-grained locking thereby avoiding access to external storage as

much as possible [Haustein et al., 2005]. In the Dewey-based labelling technique,

some special functions may be used to compare node labels to verify parent-child, or

ancestor-descendent relationships. However, Dewey labels, which are represented as

binary strings, are considered too long for very large and deeply nested XML

documents. Further, functions are used to process the labels and validate

relationships between nodes, which might not result in efficient use of the relational

database indexing mechanisms.

2. Recently, researchers started to focus on the use of the document structure summary

to improve the efficiency of XML database systems and relational-based systems in

particular [Goldman and Widom, 1997; Moro et al., 2008], because no labelling

technique on its own can efficiently support all types of structural-join XML

queries. The document structure summary can be helpful to produce optimised

queries. Moreover, it can be used to validate some queries, such as validating the

existence of certain path expressions, without the need to access the real XML data.

More work is required to develop techniques that integrate both the schema

Chapter 1. Introduction

8

summary and node labels (such as Dewey labels) to improve XML database system

capabilities.

3. With the arrival of the XQuery language, XML Query processing in off-the-shelf

relational database systems has become more challenging for two major reasons:

a. Due to the differences between the hierarchical structure of XML data and the

flat relational data model, the query optimiser in relational database systems

fails, in most cases, to find the right join order for XML queries. Failing to

produce an optimal join order has a severe effect on the query execution

performance.

b. XQuery is a powerful query language that allows complex tree-pattern queries.

This type of query is very expensive to run in a relational system due to the high

number of join operations. While new algorithms and techniques have been

proposed to address this type of query, some are not directly applicable to

relational database systems and may require changes to the system kernel [Bao et

al., 2008; Bruno et al., 2002; Grust et al., 2003; Jagadish et al., 2002; Jiang et

al., 2007].

1.5 Research Contributions

This thesis focuses on the development of an XML database system based on the

relational technology available in off-the-shelf relational database systems. We

summarise the main contributions of this research as follows:

1. A more compact, parameterised and flexible Dewey-based labelling scheme has

been developed. This labelling technique can reduce the total label size of an XML

document by an average of 20 per cent compared with other recent Dewey-based

labelling approaches. Moreover, it can be tuned to provide further label size

reduction for particular applications. Reducing the label size can be useful in space-

limited environments such as application on hand-held devices. Further, smaller

labels means that more labels can be loaded in the main memory, which would

reduce the costly I/O disk operations.

Moreover, we propose an enhanced structure for Dewey-based labels, which would

reduce the use of functions and make more efficient use of the current indexing

mechanisms that are available in off-the-shelf relational database systems. The

Chapter 1. Introduction

9

enhanced structure provides efficient support for structural-join queries that are

based on parent-child and sibling relationships. Chapter 3 provides complete details

about our new labelling approach.

2. We have developed alternative techniques, beyond the traditional range methods, to

improve the performance of evaluating XPath axis steps in the presence of the

Dewey labelling scheme. XPath axis steps are the core of any XML query in the

XQuery/XPath query language. Our approach is based on exploiting the document

schema summary and features of Dewey labels. Our approach does not rely on the

existence of a document schema (such as data type definitions, DTD). We capture

the document structure summary during the initial parsing of an XML document.

More details are provided in Chapter 4.

3. Chapter 5 discusses new, advanced optimisation techniques to make relational

database systems more tree-aware without modifying the system kernel by:

a. Developing effective rules that can produce an optimal join order for most of the

XML queries. The optimal join order produces smaller intermediate results by

forcing the use of a structure index (i.e. node labels) at early stages of the query

execution plan. Moreover, this technique takes advantage of the document

structure summary to make the right selection of the path expressions that should

be evaluated first.

b. Developing techniques to improve the performance of evaluating complex

structural-join queries, such as twig queries, by reducing the number of relational

join operators that are required to produce correct results. These techniques are

based on the features of Dewey-based labels; every Dewey label id contains the

label id(s) of its ancestor nodes.

Combining that with detailed information about each node (path) in the

document structure summary table (i.e. node level), ancestor nodes can be

evaluated without the need to apply range methods that use an excessive number

of join operations. Further, proving that two nodes are descendants of the same

ancestor node can be evaluated with a lower number of joins.

1.6 Publications

The findings and major contributions of this thesis have been reported in five

international conferences. An extended version of one conference paper has also been

Chapter 1. Introduction

10

invited for post-conference publication in an established journal. Below is a brief

summary of each publication starting with the earliest:

1. Maghaydah, M. & Orgun, M. A. (2006). Labelling XML nodes in RDBMS. The 8
th

Asia Pacific Web Conference (APWeb) Workshop. Harbin, China, pp. 122–126.

2. Maghaydah, M. & Orgun, M. A. (2006). XMask: An enabled XML management

system. The 4th International Conference Advances in Information Systems

(ADVIS’06). Izmir, Turkey, pp. 38–47.

Storing XML documents in relational database systems is still the most affordable and

available storage solution. We presented an abstract design for a relational-based XML

management system. The paper contains a performance study between some labelling

approaches and a superseded labelling scheme that we proposed earlier, and is reported

in the first paper with primarily test results. The superseded XMask labelling approach

provided a number-based representation for Dewey-like labels. The proposed approach

has some limitations, such as supporting deeply nested XML documents. However, that

study has led to developing the Prefixing on Demand (PoD) labelling approach. Chapter

3 provides complete details of the PoD labelling approach. Further, the paper

highlighted the importance of capturing the document structure summary, which has

been used intensively in our subsequent works to develop optimisation techniques for

XML queries; the document structure summary is discussed in Chapter 4.

3. Maghaydah, M. & Orgun, M. A. (2007). An adaptive labelling method for dynamic

XML documents. IEEE International Conference on Information Reuse and

Integration. Las Vegas, NV, pp. 618–623.

The Dewey-based labelling technique for XML nodes has emerged as the most suitable

labelling approach to support dynamic XML documents. It supports variant operations

on dynamic XML documents (such as inserting large sub-trees and deleting nodes)

without relabelling the existing nodes. However, Dewey labels, which are represented

as binary strings, are considered too long for very large and deeply nested XML

documents, or when there is a frequent node insertion. We proposed a new labelling

technique based on Dewey Identifiers, called PoD. Our technique reduces the label

lengths and the total label size of general XML documents without any prior knowledge

about the document structure (i.e. DTD or XSchema). Moreover, PoD, with its

Chapter 1. Introduction

11

parameterised features, can use the XML metadata to further reduce label lengths for

specific XML documents in applications in which the label or index size is more

important than other considered factors. Further, PoD minimises the processing

overhead by not using variable length prefix-free binary strings. Instead, PoD uses

predefined fixed-width blocks that can be adjusted throughout a given XML document.

The evaluation test showed that PoD reduces the total label sizes by more than 20 per

cent compared with other recent Dewey-based labelling approaches. Chapter 3 contains

full details on the PoD labelling concept, storage requirements analysis, and extensive

evaluation tests using well-known XML benchmarks.

4. Maghaydah, M. & Orgun, M. A. (2010). Efficiently querying XML documents

stored in RDBMS in the presence of Dewey-based labelling scheme. The 2
nd

 Asian

Conference on Intelligent Information and Database Systems (ACIIDS). Hue City,

Vietnam, pp. 43–53.

5. Maghaydah, M. & Orgun, M. A. (2010). Efficiently querying dynamic XML

Documents stored in relational database systems. International Journal of Intelligent

Information and Database Systems. (Accepted).

The reported work proposed techniques for utilising the current indexing mechanisms

available in relational database systems. The major contributions of these two papers

can be applied to any Dewey-based labelling scheme. First, we proposed a new

structure for Dewey labels by splitting any given Dewey label into two components

(Parent id, Pid, and Child id, Cid). This new label structure, PoD-Split (PoD-S), would

significantly enhance the query performance for XML queries that are based on parent-

child and sibling relationships. The second technique provides an efficient mechanism

to navigate upwards an XML tree. A new user-defined function has been introduced that

uses the label id of the context node to retrieve the label id of any ancestor node by

utilising the node’s level value, which is available as part of the document structure

summary. The evaluation tests demonstrated significant performance gain. The journal

paper discusses the PoD approach in more detail. We also introduced a new approach to

evaluate queries involving the XPath ‘ancestor’ axis step. Moreover, we report on

extended evaluation tests that cover a wide range of XML benchmarks. The two papers

are based on the materials provided in Chapters 3 and 4.

Chapter 1. Introduction

12

6. Maghaydah, M., Orgun, M. A. & Khazali, I. (2010). Optimizing XML twig queries

in relational systems. The 14
th

 International Database Engineering and Applications

Symposium (IDEAS). Montreal, Canada, pp. 123-129.

This paper presented advanced optimisation techniques for efficiently evaluating

complex structural-join XML queries in off-the-shelf relational database systems. These

techniques make a relational database system more tree-aware without changing the

kernel of the database system. We presented techniques to produce query execution

plans with an optimal join order for XML queries in relational database systems. This

has proven to play a significant role in improving the performance of XML queries. The

second contribution aimed to reduce the number of joins for XML twig queries by a

better utilisation of the XML document structure summary and features of Dewey

labels. Finally, the paper discussed an experimental evaluation of our approach and two

other established XML database systems using well-known XML benchmarks. The

results demonstrated that our approach performed very closely to the Monet system

[Boncz et al., 2006], which is a mature and very well-established in-memory XML

management system. Moreover, our approach outperformed the native XML database

system eXist [Meier, 2006]. The paper demonstrates that off-the-shelf relational

database systems still provide a competitive, robust and mature platform for developing

XML management systems at an affordable cost. The paper is based on materials

presented in Chapter 5.

13

Chapter 2: XML Overview

XML has emerged as a dominant language for Internet applications. This chapter

introduces the XML technology, data model and XML documents. In addition, it

highlights the development of XML query languages.

2.1 Introduction

XML is a framework for defining markup languages, which is used for representing

structured information in a simple text-based format. Unlike Hyper Text Markup

Language (HTML), which is used for web page formatting, there is no fixed collection

of markup tags in XML. Instead, XML allows us to define our own specialised tags,

tailored for the kind of information that we wish to represent. Each set of XML tags is

developed for a particular application domain but they share many features: they all use

the same basic markup syntax and they all benefit from a common set of generic tools

for processing XML documents [Evjen et al., 2007; Melton and Buxton, 2006; W3C,

2010b].

XML was originally designed to become the successor to HTML, more powerful than

HTML yet less complex than the Standard Generalized Markup Language (SGML).

SGML parsers require strict adherence to the DTD, making SGML too complex for

everyday use, such as web publishing. Conversely, HTML parsers make no such

demand, thereby making it difficult to add semantics to HTML data [Nambiar et al.,

2002]. Further, HTML tags describe how to display the data and they are primarily used

for document formatting [Silberschatz et al., 2002]. XML has been designed with some

simple but powerful principles in mind; XML parsers do not require content to adhere

to structural rules, yet XML documents must be well formed, a concept that will be

explained in the following sections. Moreover, XML tags describe the data itself, so an

XML document is in a self-described data format.

The XML and related technologies are still evolving; the W3C [W3C, 2010a] has

released several editions of XML recommendations since the first edition in 1998 to

refine and enhance the XML framework. The fifth edition of XML recommendations

(current) was released in 2008 [Bray et al., 2008].

Chapter 2. XML Overview

14

2.1.1 XML Application Domains

XML was originally designed to meet the challenges of large-scale electronic

publishing by isolating content from formatting. Separating the content of a document

from how it is to be formatted simplifies development and maintenance. Different

people from different fields expertise can work independently on the information

captured in a document, on the format, style, and aesthetics [Melton and Buxton, 2006].

XML, with its expressive and extensible key features, has proven useful in data

exchange; it can be used to exchange data on the web between applications or between

applications and users. Using style sheets, such as eXtensible Stylesheet Language

(XSL) or Cascading Style Sheets (CSS), XML documents can be easily transformed

into a presentable format such as HTML.

Another key advantage of XML is its ability to integrate data and documents; most

languages are designed to be better at expressing the rigid, absolute content and

structure of data or the flexible, free-form text of documents, but XML does both

equally well. It can capture the structure of scientific or financial data as well as

formatting a letter for sending via email, or it can be used to publish a poem. Not only

can XML represent data and free-form text, it can also do both in the same document.

XML is designed to communicate content in a flexible and extensible representation.

Thus, descriptions of the data can be iteratively refined as the underlying domain

changes. This makes XML particularly useful for areas whose knowledge has a

complex organisation that undergoes frequent revision. Some of the early adopters of

the XML technology include scientific areas such as biology, chemistry and

mathematics. Scientific standards based on XML exist in those areas, namely, BioML,

CML, and MathML.

There are other advantages for using XML, as provided by the W3C, XML will:

 Enable internationalised media-independent electronic publishing.

 Allow industries to define platform-independent protocols for the exchange of data,

especially the data of electronic commerce.

Chapter 2. XML Overview

15

 Deliver information to user agents in a form that allows automatic processing after

receipt.

 Make it easier to develop software to handle specialised information distributed over

the web.

 Make it easy for people to process data using inexpensive software.

 Allow people to display information in the way they want it under style sheet

control.

 Make it easier to provide meta-data (data about information) that will help people

find information and help information producers and consumers find each other.

2.2 XML Data Model

XML language and concepts related to its use are created within standards bodies,

especially W3C. This is a new phenomenon; traditionally, artefacts in computer science

were created in academic and industrial research labs before being adopted by the

industry or standards committees. Researchers and academics have been involved in

validating and improving XML capabilities, and they have been trying to find a sound

theoretical model for XML data.

Figure 2-1: Sample XML tree representing the XML data model.

XML is sometimes perceived as a hybrid of other data models: hierarchical, relational

and object-oriented. However, all data models proposed for semi-structured data

represent that data as some kind of a labelled graph or tree, which also agrees with the

XPath data model [Berglund et al., 2007], in which:

 Nodes in the graph correspond to compound objects (elements) or atomic values.

A

B C D

E F G

Chapter 2. XML Overview

16

 Each edge indicates an object-subobject or object-value relationship.

 Each node in the tree has only one parent node.

 Leaf nodes, i.e. nodes with no outgoing edges, have a value associated with them

 There is no separate schema and no auxiliary descriptions; the data in the graph is

self-describing.

Figure 2-1 shows a sample XML tree; nodes are drawn as circles. The topmost node is

called the root node. The edges show the parent-child relationship between the nodes,

for example, node B is a child of node A.

2.2.1 Features of the XML Tree Data Model

The nested hierarchy structure of the XML data model is widely represented as tree-

structured information. The XML tree is in top-down representation with the root node

at the top of the tree. The XML tree is constructed mainly from two node types: first,

the intermediate nodes, which are nodes with outgoing edges (i.e. they have child

nodes), and they are known as parent nodes. The second type is the leaf nodes, they are

nodes without any outgoing edges and they mainly contain textual values (i.e. they

contain no child nodes). The content of a parent node is the sequence of its child nodes.

In Figure 2-1, the content of node A is the sequence (B, C, D) and subsequently their

child nodes (E, F, G).

Document order (i.e. the order of the nodes) is a major feature of the XML data model;

the document order of a node represents its location within the document or in the XML

tree using top-down and left-to-right tree traversal. For example, node B in Figure 2-1 is

before node C in the document order.

The XPath query language for XML documents is based on the XML tree data model.

However, XPath extends the simple tree model to define more features and properties;

following is a brief description of the major aspects of the XPath data model:

The ancestors of a node: consist of the node’s parent, the parent of the parent, and so

forth, all the way back to the root node, which is also included.

Chapter 2. XML Overview

17

The descendents of a node: consist of the node’s children, the children of the children,

and so forth. However, that does not include attribute nodes.

The siblings of a node: the other children of the same parent node.

Element nodes: an element node defines a logical grouping of the information

represented by its descendents.

Attribute nodes: An attribute node is associated with an element node, that is, its

parent is always an element. An attribute is a pair of name and value. Every element can

have at most one attribute of a given name. However, the attributes of a node are not

included with the children group of the node.

Comment nodes: A comment node is a special leaf node labeled with a text string.

They are ignored by processing tools.

Processing instruction nodes: A processing instruction node has a target node and a

value, and can be used to convey specialised meta-information to various XML

processing tools. For example, the target could be an XML-stylesheet, which is

recognised by XSLT processors, and the value a URI reference to an XSLT style sheet

used by such a processor.

The root node: Every XML tree starts with a single root node, which represents the

entire document. The children of the root node consist of any number of comment and

processing instruction nodes together with exactly one element node, which is called the

root element.

2.2.2 XML Schema

An XML schema is a description of a type of XML document, typically expressed in

terms of constraints on the structure and content of the documents of that type, above

and beyond the basic syntactical constraints imposed by XML itself. These constraints

are generally expressed using some combination of grammatical rules governing the

order of elements, Boolean predicates that the content must satisfy data types governing

the content of elements and attributes, and more specialised rules such as uniqueness

and referential integrity constraints.

Chapter 2. XML Overview

18

There are languages developed specifically to express XML schemas. The Document

Type Definition (DTD) language [Bray et al., 2008], which is native to the XML

specification, is a schema language that is of relatively limited capability, but it has

other uses in XML apart from the expression of schemas. However, the DTD language

has a number of limitations [Connolly and Begg, 2010]:

 It is written in a different syntax (non-XML).

 It has no support for namespaces.

 It only offers extremely limited data typing.

The W3C has also developed and approved the XML schema language (which has been

renamed recently to XML Schema Definition, XSD) [W3C, 2004] as a successor for

DTD; XSD is a more expressive XML schema language and is widely used. The XML

schema language specifies how each type of an element in the schema is defined and

with which type that element is associated. Moreover, the schema is itself an XML

document; it can be processed by the same tools that are used to process XML data. An

XML schema can be used to:

 Provide a list of elements and attributes in a vocabulary.

 Associate types, such as integer and string, or more specifically, user-defined types,

such as hatsize and sock_colour, with values found in documents.

 Constrain where elements and attributes can appear, and what can appear inside

those elements, such as saying that a chapter title occurs inside a chapter, and that a

chapter must consist of a chapter title followed by one or more paragraphs of text.

 Provide documentation that is both human-readable and machine-processable.

 Give a formal description of one or more documents.

Figure 2-2 shows a sample XML schema segment. Information in schema documents is

often used by XML-aware editing systems so that they can offer users the most likely

elements to occur at any given location in a document. Checking a document against a

schema is known as validating against that schema; validating against a schema is an

important component of quality assurance.

Chapter 2. XML Overview

19

Figure 2-2: Sample XML schema using XSD language.

XML schema can also be used as a base for mapping from XML schema to relational

schema, which produces an optimised relational storage for XML data [Deutsch et al.,

1999; Lee et al., 2003; Shanmugasundaram et al., 1999]. However, in many XML

applications, the data schema might not be available, or due to the nature of some

applications in which the document structure keeps changing, it is essential to develop

XML management systems that are able to store and query XML data in the absence of

XML document schema [Florescu and Kossmann, 1999]. An alternative approach is to

capture the document structure summary during parsing of the original XML document;

the main use of the structure summary is to develop efficient XML query optimisation

techniques [Moro et al., 2008]. Further discussion is provided in Chapters 4 and 5.

2.3 XML Documents

From the data perspective, XML is a standardised approach to storing text-based data in

a hierarchical manner and to defining metadata about these data. The data and their

representation come together in one unit, which is called an XML document. No matter

which conceptual data model is used to represent the XML data model, the actual

textual representation of an XML document is the same.

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="note">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="to" type="xs:string"/>

 <xs:element name="from" type="xs:string"/>

 <xs:element name="heading" type="xs:string"/>

 <xs:element name="body" type="xs:string"/>

 </xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Chapter 2. XML Overview

20

An XML document is written as a Unicode text with markup tags and other meta-

information representing the elements, attributes, and other nodes. An XML document

consists of three parts:

 XML declaration: starts with <?xml> declaration, which specifies the version and

encoding of XML being used, and whether the document is standalone or references

other documents.

 XML schema: which can be in DTD or (recently) in XML-schema specifications. It

constrains the structure of XML instances and data typing, and corresponds to an

extended context-free grammar. XML processors can use a schema to validate an

XML document and report errors if the document does not comply with rules and

definitions in the schema.

 XML instance: a hierarchy of elements. These elements are nested and start with a

root element.

The first two parts are not mandatory.

2.3.1 XML Syntax

The syntax of XML can be summarised in the simple definition of the XML document.

An XML document is a hierarchy of nested tagged elements, which may have attributes,

starting by a root element. There are no restrictions or predefined set of tags in XML,

which gives XML its flexibility and power. Figure 2-3 shows a sample XML document.

Some components of an XML document structure are:

 XML Tags: describe the structure of a document and identify its content. XML tags

are opened and closed with angle brackets, ‘<’ and ‘>’, the identification name, or

label, is located within these brackets (i.e. <TAGNAME>).

 Elements: provide additional information about the contents of the document. The

tags of elements must be properly formatted and paired for the parser to work

correctly:

 Element naming rules:

1. Names are case specific.

2. No white space is allowed.

3. Names cannot start with numbers.

Chapter 2. XML Overview

21

Figure 2-3: Sample bookstore XML document.

 Attributes: provide metadata about the information contained within an element.

Unlike subelements, no order is imposed on attributes. They are defined within the

starting tag of an element to which they belong.

o The use of attributes can provide:

1. Additional details

2. A means to control the appearance of an element in addition to style sheets

 Namespaces: give documents the ability to use multiple elements of the same name

within the same document. A uniform resource locator (URL) can be attached to an

element to specify their correct sources:

<element name Xmlns: prefix= ‘namespace URL’>.

 XML documents can have a type of referential integrity by using the ID and IDREF

attribute types. An element with the attribute type of IDREF can reference another

element with the ID attribute type, which happens uniquely within the document.

2.3.2 A Well-formed XML Document

The syntax rules of XML are strict: XML tools will not process files that contain errors,

but instead will report error messages so the developer can fix them. This means that

almost all XML documents can be processed reliably by computer software. Satisfying

<bookstore>

 <book id = ‘B001’>

 <author> Brundage, Michael </author>

 <title> XQuery: The XML Query Language </title>

 <genre> Computer </genre>

 <publish_date> 12-02-2004 </publish_date>

 <description>

 An excellent early look at the emerging XML Query standard

 </description>

 </book>

 :

</bookstore>

Chapter 2. XML Overview

22

these strict rules produces a well-formed XML document. An XML document is well

formed if the following conditions are adhered to:

 It has a unique root element that contains all the other elements.

 It contains only properly encoded legal Unicode characters.

 None of the special syntax characters such as ‘<’ and ‘&’ appear except when

performing their markup-delineation roles.

 The opening and closing brackets, which delimit the elements, are correctly nested,

with none missing or overlapping.

 The element tags are case-sensitive; the beginning and end tags must match exactly.

 An attribute can occur at most once in a given opening tag, its value must be

provided, and this value must be quoted [Lewis et al., 2002].

 Empty elements can be closed as normal, ‘<happiness></happiness>’ or a special

short-form, ‘<happiness />’ can be used instead.

All XML documents must be well formed.

2.3.3 A Valid XML Document

An XML document is valid if it is well formed and conforms to the rules and definitions

in a schema file (such as a DTD or XML schema XSD file). XML data parsers and

processors can be configured not to check document validity. However, they must check

that the document is well formed before passing the information in the document on to

the application.

2.4 Querying XML Data

With the rapid increase in the use of XML documents, there is an increasing need to be

able to extract information from these documents. Various XML query languages have

been proposed such as Lorel [Abiteboul et al., 1997], XML-QL [W3C, 1998], XQL

[W3C, 1999], and Quilt [Chamberlin et al., 2000]. However, most of these have been

associated with certain proposed storage systems. Recently, the XQuery/XPath

language has emerged as the standard query language for XML data [Fernandez et al.,

Chapter 2. XML Overview

23

2007]. XQuery is derived from an XML query language called Quilt [Chamberlin et al.,

2000]. XQuery provides the means to extract and manipulate data from XML

documents or any data source that can be presented as XML, such as relational

databases or office documents.

Figure 2-4: Sample XQuery/XPath expressions.

SQL/XML is an ANSI and ISO standard that specifies SQL-based extensions for using

XML in conjunction with SQL. The XML data type is introduced, as well as several

routines, functions and XML-to-SQL data type mappings, to support manipulation and

storage of XML in the context of a relational database system that supports SQL. As

SQL is the standard language for accessing and managing data stored in relational

databases, it is natural that enterprises and users worldwide need the ability to integrate

their XML data into their relational data through the use of SQL facilities [SQLX.org,

2004].

XQuery and its subset XPath have been developed and standardised by the W3C. While

XPath can only perform selections on an XML document, XQuery supports richer

operations (joins, aggregations and element construction). However, XQuery uses the

XPath syntax for locating paths within the XML documents. XPath uses expressions

that are composed of a sequence of location steps separated by the ‘/’ symbol. Figure 2-

4 shows some sample XPath and XQuery expressions using the sample XML document

in Figure 2-3.

The major vendors of RDBMS are providing support for SQL/XML specifications to

support XML documents that are stored in relational database systems (such as MSSQL

Sample XPath queries

/bookstore/book/title (returns all the book titles in the entire document).

//book[price >40]/title (returns all the book titles only with prices above $40).

XQuery representation for the second XPath query

For $x in doc(‘books.xml’)//book

Where $x/price > 40

Return $x/title

Chapter 2. XML Overview

24

server) [Pal et al., 2005a]. SQL language and XQuery language can be used together to

access relational data or XML data.

However, many off-the-shelf relational-based systems do not have an XQuery interface

and XML data are shredded down and stored into relations (tables). The best approach

to support queries on XML data is to translate the query to equivalent SQL statements

that are supported in those systems. Further details are provided in Chapters 4 and 5.

2.4.1 XPath Path Expressions Overview

The XPath path expressions can be used to locate nodes within XML documents. They

consist of a series of one or more steps separated by "/" or "//", and optionally beginning

with "/" or "//" in the following format [Berglund et al., 2007]:

PathExpr ::= ("/" RelativePathExpr?)
|("//" RelativePathExpr)
| RelativePathExpr

RelativePathExpr ::= StepExpr (("/" | "//") StepExpr)*

An initial "/" or "//" is an abbreviation for one or more initial steps that are implicitly

added to the beginning of the path expression, a ‘/’ at the beginning of a path expression

is an abbreviation for the initial step ‘root’ which is treated as ‘document-node()’. A ‘//’

at the beginning of a path expression is an abbreviation for initial step ‘root’ and its

descendent nodes (document-node()/descendent-or-self::node()/’.

StepExpr is a part of the path expression that generates a sequence of items and then

filters the sequence by zero or more predicates. The value of the step consists of those

items that satisfy the predicates, working from left to right. A step expression may be

either an axis step or a filter expression as in the following syntax:

StepExpr ::= FilterExpr | AxisStep

AxisStep ::= (ReverseStep | ForwardStep) PredicateList

ForwardStep ::= (ForwardAxis NodeTest) | AbbrevForwardStep

ReverseStep ::= (ReverseAxis NodeTest) | AbbrevReverseStep

PredicateList ::= Predicate*

Chapter 2. XML Overview

25

Chapter 4 provides a detailed discussion on our approach to optimise XPath queries in

relational database systems based on optimising the evaluation of XPath axis steps.

2.4.2 XQuery Overview

XQuery is designed for querying XML data that represents the tree data model; each

document is regarded as an ordered tree of nodes or items. The items can be simple (i.e.

atomic) such as integers, dates and strings. Items can also be complex, which are nodes

that can contain other nodes (i.e. elements).

Every input to a query is an instance of the data model as well as every output returned

by the query. In other words, the input and output can be an XML document or a

fragment of an XML document.

In XQuery, a series of items are called sequences. A sequence may contain nodes,

atomic values, or any mixture of nodes and atomic values. However, a sequence cannot

contain another sequence. When sequences are combined, the result is always a

‘flattened’ sequence, for example, the sequence (a, (b, c)) is equivalent to the sequence

(a, b, c).

One of the main features of XQuery is the FLWOR expression (pronounced as flower),

which has a query structure similar to that of SQL and it consists of clauses such as

FOR, LET, WHERE, ORDER BY, and RETURN. The FOR and LET clauses use

XPath expressions to bind parts of the XML documents to the variables that will be

used in the query. The difference between FOR and LET is that the FOR clause iterates

over a sequence of items and successively binds a variable $v to be used in the rest of

the query. LET clause binds a variable $v to an item or a whole list of items. Other

clauses have almost the same meaning and use as in the SQL queries.

The Query example in Figure 2-6 below depicts a typical FLWOR query incorporating

XPath expressions evaluated on the sample XML tree representation in Figure 2-5. The

shaded nodes in Figure 2-5 represent the tree branch that needs to exist in the document

to satisfy the query in Figure 2-6.

Chapter 2. XML Overview

26

 Figure 2-5: Sample XML tree fragment from sample bookstore XML document.

Figure 2-6: Sample XQuery and equivalent SQL query.

Chapter 5 discuses optimisation techniques for complex structural-join queries and

XML twig queries. Moreover, we explain our approach to translate XQuery queries into

optimised SQL statements.

2.5 Conclusion

XML has emerged as a standard format for data exchange and representation, in

particular, for web applications. Its use has been growing rapidly due to its simple yet

powerful data model and structure.

XML schema provides a mechanism to define constraints on the structure and content

of the documents of that type. However, the schema definitions may not be available in

XQuery FLWOR example

For $x in doc(‘books.xml’)//book

LET $y := $x//author

Where count ($y) > 2

Return $x/title

An equivalent query in SQL

SELECT title

FROM books

GROUP BY title

HAVING count(author) > 2

Book

Title Genre

Authors

Author

@ID

Author

Chapter 2. XML Overview

27

many applications. In this thesis, we have decided to follow the approach that is based

on the absence of XML schema for the following reasons:

 For many applications, the XML schema (i.e. DTD or XSchema) may not be

available.

 The query optimisation techniques to be developed for this approach can be

portable, scalable and DTD independent.

 It is a more appropriate technique to support dynamic XML documents.

New technologies have also been developed to store and query XML data; the

XQuery/XPath language has been approved by the W3C as the standard query language

for XML data. In Chapters 4 and 5, we provide a detailed study about optimising

XQuery/XPath queries in relational database systems in the presence of a Dewey-based

labelling scheme and document structure summary.

29

Chapter 3: Prefixing on Demand Labelling Approach

Maintaining the document order and structure in a given XML document is the most

important feature, yet it is the most challenging task that XML management systems

need to efficiently support. Storing an XML document in native XML systems can

maintain a document’s order and structure, since XML documents will be stored in their

native format. However, it will be very expensive to answer queries by parsing and

scanning the stored documents during run time, especially for large XML documents.

The problem is far more complex in relational systems because XML documents are

typically shredded and stored as individual records in database tables. The widely used

approach to address this problem is to capture the document order and structure as data

and store it beside the actual document data. This process is called ‘labelling and

indexing’ XML document nodes (i.e. elements and attributes).

However, the labelling technique determines the features and the strength of the XML

database system that is built on top of it. Label size and structure play a major role in

determining the efficiency of the system since they determine storage requirements and

the capability of addressing query requirements such as XPath axis steps. This chapter

introduces our Dewey-based labelling approach, which provides a more compact and

more efficient labelling scheme that better utilises the current relational systems

indexing mechanisms.

3.1 Introduction

XML query languages like XQuery/XPath [Fernandez et al., 2007] have been designed

to retrieve information from XML documents using two main techniques:

1. The path traversal technique, which uses a sequence of tag names to determine

which parts of a given XML document are targeted by any given XML query.

2. The containment join and structural-join techniques, which determine the

relationship between a document’s nodes as ancestor-descendent, sibling and parent-

child relationships.

Several labelling techniques have been proposed to address the document order issue

and to support containment-based queries. Some of those techniques have been widely

Chapter 3. PoD Labelling Approach

30

used in both native and relational XML database systems [Beyer et al., 2006; CWI,

2009; exist-db.org, 2009; Jagadish et al., 2002; Oracle, 2009; Pal et al., 2005b;

UWMRG, 2002]. The underlying idea in all these techniques is to uniquely identify

each node in the document by allocating a unique value or a set of values (numbers or

strings) to each node, which also helps to determine the relationship between nodes (i.e.

node ‘B’ is after node ‘A’ in the document order if label of ‘B’ > label of ‘A’). There

are two major labelling techniques: the numeric-based range encoding and the binary

string Dewey-based encoding. We cover the features of each technique in the next

section. However, Dewey-based labels support dynamic XML documents (i.e. inserting

and deleting) more efficiently than other labelling methods.

In this chapter, we revisit our motivation to develop a new labelling technique as a basis

for the rest of the work in this thesis. In Section 3, we explain in detail our proposed

labelling scheme. Section 4 contains an extensive evaluation study and analysis for our

labelling technique, and present comparison studies between our approach and other

well-known labelling methods.

3.1.1 Motivation

The Dewey-based labelling technique for XML nodes has emerged as the most suitable

labelling approach to support dynamic XML documents [Tatarinov et al., 2002]. It

supports variant operations on dynamic XML documents, from inserting large sub-trees

without relabelling the existing nodes to fine-grained locking thereby avoiding access to

external storage as much as possible [Härder, 2005]. The Dewey label of any given

node, known as the context node, is the concatenation of the local order values of all the

nodes on the path from the root node to the context node (for example, 1.5.8.1). The

work by Tatarinov et al., [2002], which was the first to introduce Dewey labels to XML

systems, encoded the Dewey labels in 8-bit unicode transformation format (UTF-8)

strings. The major drawback of UTF-8 is its inflexibility since its compression is poor

for small ordinals (for example, 1.1.1.1 uses four one-byte components).

Several approaches have been proposed based on the prefix-free algorithm and Dewey

identifiers [Böhme and Rahm, 2004; Cohen et al., 2002; Li and Ling, 2005; Lu et al.,

2005; O'Neil et al., 2004]. ORDPATH [O'Neil et al., 2004] is a recent Dewey-based

approach used in the Microsoft SQL server [Pal et al., 2005b]. ORDPATH eliminates

Chapter 3. PoD Labelling Approach

31

the need for relabelling the existing nodes in a given XML document when new nodes

are inserted. However, ORDPATH reserves even numbers for future insertion, which is

considered a waste of space because in real applications, we do not insert new nodes

between every two existing nodes. Further, it uses the variable length prefix-free

technique [Cohen et al., 2002; Kaplan et al., 2002], which is not the ultimate

compression technique.

Dewey labels, including ORDPATH, rely on a set of functions to manipulate the labels

and evaluate relationships between nodes, in particular, a function to retrieve the parent

node’s id and a function to find the upper limit of the label value for descendent nodes.

Using functions may not make efficient use of the indexing technology in relational

systems, especially in the widely used open source systems like MySQL server

[MySQL, 2009].

We observe that there is scope for improving the label size and performance of the

current Dewey-based approaches, such as ORDPATH [O'Neil et al., 2004], by

eliminating the need for complex and excessive variable-length prefix-free strings.

Further, current approaches waste space in favour of providing efficient support for

frequent node insertion; meanwhile, most of the XML applications are static or require

minor update operations. Our approach provides better size compression without losing

support for dynamic XML documents. Moreover, we propose an enhanced Dewey-

based label structure that reduces the use of functions mainly for the parent-child and

sibling relationships to exploit the existing indexing mechanisms in off-the-shelf

RDBMS. We also observe a need for capturing and storing the XML document schema

and utilise it with the Dewey labelling scheme to further improve the XML query

performance in relational-based systems.

3.2 Background

Recently, labelling XML document nodes has become more important than just a

technique to capture the document order due to the rapid increase in the use of XML in

Internet applications. XML database systems rely on the labelling and indexing

techniques to efficiently answer more practical and yet more complex queries that are

Chapter 3. PoD Labelling Approach

32

based on structural-join queries. However, the labelling scheme should have the

following characteristics:

 Deterministic: The relationships between two nodes can be determined uniquely and

quickly by simply examining their labels.

 Dynamic: Updating XML documents will not require relabelling of the existing

nodes in the XML trees.

 Compact: The size of the labels should be minimal in order to fit in the main

memory.

 Flexible: The scheme can be used to support all kinds of XQuery/XPath functions.

This section covers in detail the related work in this area. The discussion of related

work is divided into two main subsections. The first subsection provides a detailed

review of labelling and indexing techniques in XML database systems, some of these

techniques apply to both native and relational systems. The second subsection includes

schema-mapping approaches for mapping between the XML schema and the relational

schema.

3.2.1 Labelling and Indexing Techniques in XML Database Systems

The XML query is initially processed by tree traversal. In the Lore system [McHugh et

al., 1997], which was designed specifically for semi-structured data, an XML document

is modelled as a labelled directed graph. Elements are represented as objects with a

unique object id (oid). Objects can contain other objects; a special indexing mechanism

(Link Edge Index) links each element to its ancestor nodes. Lore engine is built around

standard operators (such as scan and join). Scan operator returns all oids that are sub-

objects of a given object. In Lore, evaluating some queries might be very expensive

since scan operator involves top-down traversal, whereas indexes support bottom-up

traversal. The DataGuide [Goldman and Widom, 1997] is utilised as a summarisation

for the path information in the XML file. Piloted by DataGuide, the query processing

system can conduct a vertical tree traversal to determine whether there exists any

ancestor-descendant relationship between two nodes. However, such a tree traversal-

based technique is dependent on the XML document size and structure, and on the

XML query complexity.

Chapter 3. PoD Labelling Approach

33

The Edge system [Florescu and Kossmann, 1999], which is a relational-based system,

uses a simple labelling technique by parsing the document depth-first and assigns a

global unique number to every node. Nodes are stored in a single relational table along

with their parent id (Pid) and tag name. Query evaluation might be very efficient for

simple queries based on parent-child and sibling relationships. However, evaluating

ancestor-descendent relationships is very inefficient and might be impossible due to the

multiple numbers of self-join operations. Further, path traversal queries in this system

are costly because there is no path summary information. However, Edge pioneered the

development of XML database systems on top of existing relational technologies.

To overcome the problems of Edge, a number of researchers have proposed new

labelling schemes such that it is possible to determine the relationship between any two

XML nodes by comparing their label values only. We classify these labelling

techniques into two major approaches: the numeric-based range encoding and Dewey-

based encoding schemes.

3.2.1.1 Range and Intervals Encoding Techniques

The range encoding, or containment encoding, was proposed to support ancestor-

descendant relationships [Yoshikawa et al., 2001]. Nodes are labelled by two values

that represent boundaries for other nodes that are contained by the context nodes. These

boundary values are commonly called Start (S) and End (E) values. The start and end

values can be assigned based on the number of bytes within the document, which

represent the location of the start (or opening) and end (or close) tags. However,

updating or inserting new nodes is very costly since minor changes, even updating

values, can trigger the relabelling of all nodes. More work was performed to address

this problem but the node positions were still based on counting the number of bytes in

the document [Kha et al., 2001].

As an alternative, the start and end values can be generated by performing a depth-first

traversal of the XML tree and sequentially assigning a number when a node is visited

for the first time, the Start (S) value, and another number after visiting all the

descendant nodes of the context node, the End (E) value [Zhang et al., 2001]. Further,

this approach also stores the tree level of each node; the label of each node is

Chapter 3. PoD Labelling Approach

34

represented as a tuple (S, E, L), which can be used to support the parent-child

relationship.

Based on the range encoding, a node ‘A’ is an ancestor of node ‘B’ if and only if:

(A.S < B.S) And (A.E > B.E)

and B is a child of A if and only if:

(A.S < B.S) And (A.E > B.E) And (A.L +1 = B.L)

The range (or intervals) approach efficiently supports static XML documents. However,

the insertion of new nodes can trigger an expensive relabelling process for some of the

existing nodes. One of the proposed solutions is to skip a range of numbers and reserve

that for inserting new nodes; the end value is replaced by the size of the node and the

label becomes the tuple (start, size, level) [Jagadish et al., 2002; Li and Moon, 2001].

The size represents the number of all descendent nodes that are contained by the context

node, as in Figure 3-1.

Figure 3-1: Region encoding representation (pre, size, level) for a sample XML tree.

To support the insertion of new nodes, the size value is made larger than the actual

number of existing nodes. Relabelling is not required until all spare numbers have been

exhausted. The work by Amagasa and Yoshikawa [2003] used floating-point values for

numbering the start and end values; the use of floating-point value still does not

completely eliminate relabelling since a floating-point value is represented in a

computer with a fixed number of bits, which again places a limit on the number of

nodes that can be inserted between two adjacent nodes without triggering the relabelling

process.

a

b c

d f e

1, 5, 1

2, 1, 2

3, 0, 3

4, 2, 2

5, 0, 3 6, 0, 3

Chapter 3. PoD Labelling Approach

35

To support certain XPath axis steps such as ‘preceding’ and ‘following’, an enhanced

region labelling technique was proposed [Grust et al., 2004]. It uses the same pre-order

value as in other region methods; however, the post-order value for the context node

represents the number of closing tags before the context node. In other words, it

represents the number of nodes before the context node excluding its ancestor nodes.

3.2.1.2 Prefix-free String and Dewey Labels

Due to the limited capabilities of the intervals labelling approach in supporting dynamic

XML documents and its inefficient support for some of the XPath axis steps, such as

reverse axis steps, a new labelling technique was proposed in which the nodes inherit

their parents’ labels as the prefix to their own labels [Abiteboul et al., 2001; Cohen et

al., 2002; Kaplan et al., 2002]. In this prefixing scheme, the ancestor-descendant

relationship between any two nodes can be evaluated by testing wether one label is a

prefix of the other. The labels are bit strings that are built by concatenating ‘0’ and ‘1’

as appropriate to the parent’s label to ensure that:

 Labels are unique.

 Labels are in lexicographic order.

The work by Kaplan et al. [2002] studied two cases: fixed-width components and

variable-width prefixes. The two techniques provide a trade-off between label size and

complexity. Further, the support for insertion of new nodes still has some limitations.

The Dewey labelling concept was first introduced by Tatarinov et al. [2002]; a Dewey

label is built by concatenating the integer values that represent the local order of each

node on the path from the root node to the context node. Figure 3-2 shows a sample

XML tree with Dewey labels assigned to the tree nodes.

Figure 3-2: Dewey label representation for a sample XML tree.

a

b c

d f e

1

1.1

1.1.1

1.2

1.2.1 1.2.2

Chapter 3. PoD Labelling Approach

36

To avoid using any delimiter (such as the dot ‘.’), the labels are encoded and stored in

UTF-8 format. The major drawback of UTF-8 is its inflexibility since its compression is

poor for small ordinals, for example, the label 1.1.1.1 uses four one-byte components.

This approach has reduced the cost of relabelling, since relabelling is still required for

all sibling nodes and their descendants after the insertion point. Many later works based

on Dewey identifiers focused primarily on reducing the label size and completely

eliminating tree relabelling [Böhme and Rahm, 2004; Ha¨rder et al., 2005; Haustein et

al., 2005; Li et al., 2006; O'Neil et al., 2004] .ORDPATH is a recent and popular

Dewey-based labelling technique that completely eliminates the need for relabelling the

existing nodes when new nodes are inserted [Haustein et al., 2005; O'Neil et al., 2004].

It uses the odd numbers for initial labelling and reserves the even numbers as insertion

points. Figure 3-3 demonstrates the ORDPATH approach; the insertion of node ‘g’ does

not require tree relabelling.

To reduce the label size, ORDPATH uses the prefix-free algorithm to generate the local

value before it concatenates all the local values in a compact bit string label; each local

value has the format:

O.L

Where the O represents the prefix-free component, which also indicates the length of

the L component, and L represents the actual local order.

For example, the ‘O’ component can be the binary string ‘001’, which is also mapped to

a label length ‘L’ of 6 bits; the local order of the fourth node is ‘000100’, which leads to

the complete label in the form ‘001000100’.

However, the label size is still considered long and replacing the complex prefix-free

technique would save space and reduce overhead processing. Further, the even numbers

are reserved for future insertion, which is considered a waste of space, since in real

applications we do not insert new nodes between every two existing nodes.

QED [Li and Ling, 2005] is a compact encoding technique, which can be applied to

both containment and Dewey labelling techniques. QED provides efficient support for

frequent node insertions; however, QED requires XML documents to be parsed twice

when they are stored for the first time. Further, QED-Prefix, which uses the special code

Chapter 3. PoD Labelling Approach

37

‘0’ (2 bits) as a separator between the values that compose the Dewey label, does not

provide a significant label size reduction over ORDPATH for XML documents with

small fan-outs. Both ORDPATH and QED-Prefix add further processing time overhead

since both techniques still require, as in the earlier prefix labelling techniques, parsing

labels bit-by-bit to retrieve different components (i.e. the parent label).

Figure 3-3: ORDPATH labelling scheme, which eliminates relabelling.

3.2.1.3 Other Labelling Approaches

A few labelling approaches have been proposed based on ideas and properties not

considered in the major two approaches in the previous two subsections. The reasons

behind these approaches are primarily to produce smaller size labels or to support

certain XML features efficiently. Prime [Wu et al., 2004] is a number-based labelling

scheme that uses the property of prime numbers; the label of each node is the product of

its own self-label (a unique prime number) and its parent’s label. Prime mainly supports

ancestor-descendent relationships; node A is an ancestor of node B if the label of node

B is divisible by the label of node A. When the ancestor-candidate node list has m nodes

and the descendant-candidate list has n nodes, m x n scans are necessary to evaluate any

structural-join operation. Prime does not provide a significant saving on the label size,

especially for deeply nested documents, and the results cannot be sorted by the node’s

label to reflect the document order; however, a special mapping algorithm is used to

reflect the document order.

EXEL [Min et al., 2007], similar to VLEI code [Kobayashi et al., 2005], is a recent

approach that aimed to completely eliminate the relabelling problem in the range

encoding technique by replacing the numbers for start and end values with bit strings

values. The bit strings are in the lexicographical order, which means the range operators

a

b c

d f e

1

1.1

1.1.1

1.3

1.3.1 1.3.3

g 1.3.2.1

Chapter 3. PoD Labelling Approach

38

(i.e. ‘<’, ‘>’, and ‘=’) are still applicable. While EXEL and VLEI address the insertion

of new nodes, there is no significant saving of label size; especially, there are two

values (Start and End) in bit strings format for each node. Moreover, arithmetic

operations on numbers are faster than operations on bit strings are.

More sophisticated labelling and indexing techniques have been proposed to make the

region encoding (pre and post) more insertion friendly. However, these techniques may

add processing overhead as they require special indexing technology [Silberstein et al.,

2005], and arithmetic operations (for example, division) to determine relationships

between data nodes [Weigel et al., 2005].

3.3 Prefixing on Demand (PoD)

This section discusses in detail our labelling approach ‘Prefixing on Demand’ (PoD).

The PoD is a Dewey-based labelling scheme, which can be used in both native and

relational XML systems. However, this thesis focuses on developing a relational

solution for XML management systems.

3.3.1 Basic Labelling Unit (BLU)

As was mentioned in the previous sections, Dewey-based labels are more suitable to

support dynamic XML documents. However, the label length is still relatively long

since most of the labelling approaches focus on supporting the insertion of multiple

nodes at the same point and between every two existing nodes. In fact, most XML

applications are static applications or rarely modifying XML documents.

The Basic Labelling Unit (BLU) approach aims to reduce the label length by replacing

the complex prefix-free algorithm with a fixed-width prefix, which reduces overhead

processing. Moreover, our approach reduces the label length by using most of the

numbers available for labelling within any range, which means it reduces the need for

long labels (i.e. for a label of length L bits: 2L nodes can be labelled). PoD fully

maintains the document order and supports dynamic XML documents.

The basic concept of our labelling scheme is to have a BLU with a fixed length of (L

bits). Most of the values in the BLU will be used to label nodes based on their document

order. To address a large number of nodes, some of the highest values within the BLU

Chapter 3. PoD Labelling Approach

39

will be preserved for prefixing the extended labels. This technique makes it possible to

label more nodes using shorter labels before the need to use extended labels arises.

Proposition 3-1: A fixed number of bits (L) can be used to label up to M number of

XML elements within the same parent node where the label value (v) does not have

a prefixing component and the value (v) is in the range:

0 ≤ v < M (1)

M = 2L – X (2)

Where X is the number of the highest values within the BLU that are preserved for

prefixing the extended labels. We call those values the set of prefix values P, where:

M ≤ p < 2L, p P (3)

Based on formulas (1), (2) and (3), we have the following properties:

 We can label up to M sibling nodes without any need for prefixing; where the label

value v {0,…, M-1} and the length (v) = L.

 Each value p in the set P is used to prefix a certain extended label.

 The number of the extended labels (X), their corresponding lengths (L`1, L`2,…, L`x)

and the distance between them (L`j - L`i) can all be adjusted to achieve an optimal

label length based on the document structure and the average fan-out value if prior

knowledge about a given XML document is available.

 The extended labels are of the format: p.v`, where p P and v` {0,…, 2L`
}.

Example 3-1: For a BLU of length L = 3 and the number of extended labels X = 2,

based on the proposition (3-1) above, we will have:

 M = 2
3
 – 2 = 6, which is the maximum number of child nodes that can be labelled

without prefixing or using extended labels {0,…, 5}

 p P = {6, 7}, prefixing values for the extended labels

 Li` {5, 7}; the length of the extended labels (an arbitrary selection for this

example)

Chapter 3. PoD Labelling Approach

40

 v` {0,..,32} for L`1 = 5, which will label sequence nodes in the range {6 to 38}

since the first range {0 to 5} can be labelled using the BLU itself

 v` {0,..,128} for L`2 =7, which will label sequence nodes in the range {39 to 167}.

The setup in this example can label nodes with fan-out values of up to 167.

Table 3-1 shows some Dewey-based labels and their representations using PoD

labelling scheme with the setup in Example 3-1.

Table 3-1: Dewey and PoD representations for some sample labels in Example 3-1.

Dewey Label PoD Labelling Representation

1.5.2.1 001.101.010.001

1.20 001.110 01110

1.103.4 001.111 0100011.100

Note: the 3-bit components in underline font represent the prefix part of the label. In

addition, the dots between labels components were added for ease of reading.

3.3.2 Supporting the Insertion of New Nodes

The Dewey-based labelling techniques for XML documents support the insertion of

new nodes without any need to relabel any of the existing nodes. One approach to

achieve this is to use either the even or odd values as insertion points, as in ORDPATH

[O'Neil et al., 2004]. For instance, the odd numbers may be used to label the nodes

based on their order in an XML document, and the even values will be considered as

virtual parents for the new inserted nodes. For example, if a new node were inserted

between two adjacent existing nodes with label values 1.1 and 1.3, the new node label

value would be 1.2.1.

This approach has a size disadvantage regardless of the compression technique used to

build the Dewey labels because the actual number of values that are available for

labelling in any range (i.e. 4-bit or 6-bit) would be half of the total number of values in

that range. This means that the extended and longer labels would be used more often.

For example, for a 4-bit string, the total number of values is 2
4
 = 16, but only half of

that number (8) will be available for labelling XML nodes and to label more nodes (>8)

Chapter 3. PoD Labelling Approach

41

within the same parent node (i.e. node’s fan-out >8); thus, extended labels need to be

used (i.e. 6-bit or 8-bit length labels).

PoD provides an alternative approach that can support the insertion of new nodes

without relabelling the existing nodes, whilst simultaneously maintaining shorter label

lengths by not using most of the numbers available within any given range. Based on

the BLU that is used in PoD, we allocate the maximum (the last) value in any given

BLU as an insertion point instead of using it to prefix extended labels.

Proposition 3-2: Given a BLU with length (L) and two consecutive nodes N1 and N2

with labels V1 and V2 respectively, where V2 > V1, if a new node N is inserted

between N1 and N2 then the label for node N is:

V1. (2L -1).1 (4)

Example 3-2: For a BLU with L = 4, the values (12, 13, 14) in this BLU are preserved

for prefixing the extended labels. Based on Proposition 3-2 above, the last value in BLU

(15) is the insertion point and given two adjacent nodes: N1, with label V1 = 1.5.1, and

N2, with label V2 = 1.5.2.

The Dewey and PoD representations for V1 and V2 are:

V1 = 1.5.1 (0001.0101.0001)

V2 = 1.5.2 (0001.0101.0010)

The label value (V) of the new node N to be inserted between N1 and N2 is:

V = V1.15.1 = 1.5.1.15.1

And the PoD representation is:

1.5.1.15-1(0001.0101.0001.1111 0001)

The insertion of the new node still preserves the document order since PoD maintains

the labels in lexicographic order, which results in the property:

V1 < V < V2

Chapter 3. PoD Labelling Approach

42

3.3.3 Features of the PoD Labelling Scheme

The PoD labelling scheme provides a size-efficient Dewey-based numbering technique.

Further, PoD’s compressed labelling technique still supports operations (such as

inserting and updating) on dynamic XML documents.

To provide a better structure and more efficient access for attribute nodes in the PoD

labelling scheme, the value 0 of any BLU is used to create a virtual parent node for the

attributes of any XML node. This is because the attribute nodes are certainly leaf nodes

and the label lengths of XML attributes do not have much effect on the total label size

in most cases. One advantage of this technique is that it leaves the other values within

the BLU to create short labels for element nodes, some of which might have children

and grandchildren nodes.

Further, the PoD labelling scheme with its variable parameters (L: length of the BLU, X:

the number of prefix values, and Li`: the length of the extended labels) can be

configured to suit various document sizes and structures. This would achieve ultimate

label lengths for applications in which data size is of concern, such as those applications

that run on resource-limited devices (for example, hand-held devices). However, prior

knowledge about the document’s size and structure can help to establish a more

efficient PoD with variant BLUs within the same document, either by analysing the

document schema (i.e. DTD or XSchema) or by conducting double-phase parsing.

Double-phase scanning (parsing) can be used to analyse the document and establish

proper BLU values based on the maximum and average fan-out values for each node’s

type in the document (the unique path, not the unique instance of each path). For

example, if the first-phase parsing finds that the path (/Regions) has only six child nodes

(the continents) and another path like (/Regions/Europe/Country) has 50 children, then

we can assign (BLU=3) to /Regions and assign (BLU=5) to /Regions/Europe/Country,

which would give a more efficient label size than using a single BLU for the whole

document. The main advantage of this technique is to provide a smaller label size but

the label structure would be more complex, and it would naturally take longer to parse

for insertion operations. However, the double-parsing technique and multiple BLUs

within the same document can be used for applications with static XML documents,

Chapter 3. PoD Labelling Approach

43

which would help in reducing the label size further. Figure 3-4 shows a sample XML

document with its XML tree representations in the PoD system.

Figure 3-4: PoD labelling for a sample people database.

The PoD labelling scheme also eliminates the need for parsing the node labels bit-by-

bit, which cannot be avoided in other variable length prefix-free models. In PoD, any

label-parsing function would identify a fixed-width block of bits equal to the width of

the BLU and process it all together, and based on its value, it can easily determine

whether this block is a label value or a prefix value and how many bits it should pick up

on the next run.

The 4-bit BLU best represents the idea behind PoD since in most of the XML

documents the fan-out for most of the nodes is small (less than ten). This means that

most of the nodes within an XML document can be labelled without prefixing, which

would produce shorter labels than other approaches. Further, with extended labels of

lengths (such as 8, 12, 16 and 20), the structure of the resulting label will eliminate the

need for parsing the label bit-by-bit to decode it; the processing units will be either a

Person

Name Phone Address

Insert

Email WebPage

Work Home @ID @Gender

1

1.1 1.2 1.9

1.0.2 1.0.1 1.9.1 1.9.2

1.1.15.1 1.1.15.2

<People>
 <Person ID = ‘ABC9999’ Gender = ‘M’>
 <Name> John Smith </Name>
 <Phone> +61 1 8888 8888 </Phone>
 :
 :
 <Address>
 <Home> home address </Home>
 <Work> work address </Work>
 </Address>
 </Person>
</People>

Chapter 3. PoD Labelling Approach

44

full byte or a half byte. Table 3-2 shows some suggested configurations for the PoD of a

4-bit BLU.

Table 3-2: Some suggested configurations for BLU of 4 bits.

Values for labels Prefix values / Extended label lengths (bits) Suitable for

{0-12} (13/8) (14/12)
Small and medium

fan-out

{0-10} (11/8) (12/12) (13/16) (14/20)
large fan-out

(general use)

{0-8} (9/8) (10/12) (11/16) (12/20) (13/24) (14/32) Very large fan-out

Note: the value (15), which is the maximum value in 4-bit BLU, is preserved to support

new nodes insertion.

We have conducted extensive label size studies using different configurations of BLUs

and using different XML benchmarks. The evaluation tests are reported in Section 4.

3.3.4 Two-component Dewey Labels

Dewey-based labels, including those of PoD, are stored as compact binary strings. To

evaluate the different relationships that exist between XML nodes, such as parent-child

and ancestor-descendent relationships, built-in and user-defined functions are required

to process the Dewey-labels (for example, a function to find the parent label from a

given context node’s label). However, the use of functions may not make efficient use

of the indexing techniques in some of the RDBMS systems. Moreover, some of the

relational database systems do not support indexes on functions, as in the widely used

database engine MySQL.

Splitting the Dewey label into two components (parent label and child label) would

significantly improve the performance for queries that have the parent-child relationship

or sibling relationship by building a B-tree or B
+
-tree index on the two columns of

(parent, child). Most XML queries in real applications involve either the parent-child

relationship or sibling relationship. Further, evaluating parent-child and sibling types of

queries will require an equijoin operation for these two relationships.

Chapter 3. PoD Labelling Approach

45

The new two-component labels are both in the Dewey format; a special concatenation

algorithm is used to retrieve the original PoD label for any given node by stitching the

two components together.

Proposition 3-3: The PoD label for any given node N can be split into two

components as follows:

PL(N) CL(N)
(5)

Where: PL is the parent’s label of node N.

CL is the self label of node N (i.e. the local order of the node N in Dewey format).

 is the XML label concatenation operation.

While the above proposal can be applied to any binary-string Dewey label, the flexible

structure of the PoD of 4-bit BLU makes it even easier than any other approach to split

the Dewey label into two components: parent label and child label. This research project

will focus on using PoD labels of 4-bit BLU; the following rules apply for a 4-bit PoD

label:

 If the last byte of the parent label is a full byte, the child label will be the rest of the

bytes in the original PoD label.

 If the last byte of the parent label is a half byte, the first byte of the child label will

be left padded with (0000)b.

 If the node is an attribute, the first byte of the child (self) component will be zeros

(0000 0000)b and then the above rules apply.

Example 3-3: Let Node (N1) = 1.7, N1 be the parent node for an attribute node (N2) =

1.7.0.1, and another element node (N3) = 1.7.20, which represents the 20
th

 child of (N1):

Table 3-3 shows the PoD and the PoD-S representations for the three labels using the

second BLU configuration in Table 3-2.

To retrieve the one-component Dewey label from a split label, we have implemented a

user-defined function called XML CONCAT (XCONCAT). The XCONCAT function

takes two parameters (parent, child) and returns one label in the Dewey format.

Following is the concatenation algorithm, which is used in the XCONCAT function.

Chapter 3. PoD Labelling Approach

46

Table 3-3: PoD and PoD-S representations for the labels in Example 3-3.

Dewey Label PoD Label Pod-S Label

 Parent Component Child (Self) Component

1.7 0001.0111 0001 0000 0111

1.7.0.1 0001.0111.0000.0001 0001.0111 0000 0000.0000 0001

1.7.20 0001.0111.1011 0000 1010 0001.0111 0000 1011 0000 1010

Note: the zeros (0000) components in italic font are added because the smallest storage

unit is a byte and they are not part of the label value.

Algorithm 3-1: Concatenating two component labels.

For any given node N, let PL and CL be the parent and child (Self) label components

respectively; the following algorithm is used to retrieve the original PoD label without

any need to parse the PL component:

Algorithm XML Label CONCAT:

Input (PLPoD Dewey label, CLPoD Dewey label)

Output: (PoD Dewey label)

if (CL[firstByte] >15)

{

 Label = CONCAT (PL, CL)

}

else

{

 PL[lastByte] = PL[lastByte] | CL[firstByte]

 Label = CONCAT (PL, CL [starting form firstByte+1])

}

Where (|) is the bit OR operation, and CONCAT() is the built-in string concatenation

function.

Note: the above algorithm is developed for the PoD system. However, the same logic

can be applied to any Dewey-based labelling scheme.

3.3.5 New Nodes Insertion Is Still Supported in Pod-S Mode

PoD provides efficient support for operations on dynamic XML documents (such as

insertion and deletion) without the need to relabel the existing nodes. In PoD, the

Chapter 3. PoD Labelling Approach

47

maximum (last) value in any given BLU is used as an insertion point, as in Proposition

3-2. However, the insertion of new nodes without relabelling is still supported in Pod-S

mode by extending formula (4) in Proposition 3-2 as follows:

Proposition 3-4: Having a BLU with length (L) and two consecutive nodes N1 and

N2 with labels V1 and V2 respectively, where V2 > V1, if a new node N is inserted

between N1 and N2 then the label for node N is:

V1. (2L -1).1 (PoD mode) (4)

From formula (5) in Proposition 3-3: V1 can be represented as PL(V1)

CL(V1); and formula (4) can be re-written as:

PL(V1) CL(V1). (2L -1).1 (PoD-S mode) (6)

Example 3-4: Based on formulas (4), (5) and (6) above, a node Nx can be inserted

between two adjacent nodes N1 = 1.1 and N2 = 1.2 as follows:

Nx = N1.15.1 = 1.1.15.1 = 1 1.15.1

Table 3-4: PoD and PoD-Split representation for labels: N1, Nx, and N2 in Example 3-4.

Dewey Label PoD Label Pod-S Label

 Parent Component Child (Self) Component

1.1 0001.0001 0001 0000 0000 0001

1.1.15.1
(inserted)

0001.0001.1111 0001 0001 0000 0000 0001.1111 0001

1.2 0001.0010 0001 0000 0000 0010

Note: the underlined components (1111) represent the insertion point. The italic (0000)

components are padded since the smallest storage unit is one byte and to maintain the

lexicographic order property of Dewey labels.

Chapter 3. PoD Labelling Approach

48

3.3.6 PoD Space Requirement Analysis

PoD delays the use of prefixes until the node order becomes high. This technique suits

Dewey labels more, since the label of any given node (the context node) is constructed

by concatenating the local order of all the nodes on the path from the root node to the

context node. This means that reducing the label length of the nodes at the top of the

tree will significantly reduce the total label size, since the label of the parent nodes at

the top of the tree will be part of every node that descends from them.

For example, suppose that we have a BLU of 4 bits, which have the values 12, 13, and

14 reserved as prefixes for extended labels of length 8 bits, 12 bits, and 16 bits

respectively. Using this BLU, we can use the values from 0 to 11 to label the first 12

child elements of any node on the XML tree before using the BLU as a prefix for

extended labels. Based on the tree-like nature of XML documents and knowing that

most XML documents in real applications have most of the nodes with fan-out values

less than 10, the use of this labelling approach will substantially reduce the total label

size for any given document.

Meanwhile, other techniques use labels composed of a prefix value and a labelling

value, which will make the labelling component long, even for low ordinal nodes. For

example, ORDPATH (a) requires a labelling component of a length of 5 bits to label the

first nodes in the range [0,…,7]. However, ORDPATH reserves the even values for

future node insertions, which brings the number of available labels to four. In addition,

it has to go to the next level of labelling, 7-bit component, to be able to label another

eight nodes. The result will be that PoD can concatenate the local order of two levels in

one byte, whereas it requires two bytes to do the same in ORDPATH.

The numeric-based interval approach always produces a fixed length label since it uses

three integer value components (star, end, level) and the length of any given label will

12 bytes. The storage requirements of the interval approach will be in most cases

equivalent to those of the Dewey labels and it could be larger in many cases. However,

the interval approach is a better option for very deeply nested XML documents.

Chapter 3. PoD Labelling Approach

49

3.3.7 User-defined Functions Used in PoD

As with every other Dewey-based labelling scheme, some functions are required to

process the labels such as retrieving the parent node’s label from the context node’s

label [O'Neil et al., 2004; Tatarinov et al., 2002].

However, we have found that implementing new functions can significantly improve

the performance for some XML queries. Following are the functions we have

implemented in the PoD system followed by a brief explanation of each function, in

particular, the newly proposed functions.

Definition 3-1: XML Parent Function (XP): the XP function takes one Dewey label

as input and returns the parent node’s label.

This function removes the last component of the Dewey label and returns the rest of the

label in the Dewey format.

Definition 3-2: XML Child Component Function (XCC): the XCC function takes one

Dewey label as input and returns the child (self) component of the label.

This function returns the last component of the Dewey label by removing all the prefix

components (ancestor components).

Definition 3-3: XML Maximum Child Function (XMC): the XMC function takes one

Dewey label as input and returns the upper limit value for all child and descendent

nodes.

In the PoD labelling scheme, the upper limit value is the result of concatenating the

label and the value of the insertion point, V.15

Definition 3-4: XML Grandparent Function (XGP): the XGP function takes one

Dewey label and the level of the ancestor node as input and returns the ancestor

node’s label.

This function allows navigating upward the XML tree at minimal cost. It takes two

parameters: the label of the context node and the level of the ancestor node, whose label

we want to retrieve.

Chapter 3. PoD Labelling Approach

50

Example 3-5: Given a node N with label value = 1.2.3.4, applying the above functions

would return the following results:

Parent of N = xp(N) = 1.2.3

Child (self) component of N = xcc(N) = 4

Maximum child label of N = xmc(N) = 1.2.3.4.15

The ancestor’s label of N at level 2 = xgp(N, 2) = 1.2

Chapters 4 and 5 contain details about using these functions to develop more efficient

query execution plans in relational database systems.

3.4 Evaluation Experiments

We have conducted extensive space experiments to evaluate PoD’s space efficiency.

We have also conducted one test to evaluate the effect of the label size on query

performance.

3.4.1 Study Overview

The theoretical analysis shows that the PoD labels are expected to be smaller than the

labels of other current Dewey-based labelling methods are. However, using benchmark

documents to evaluate the space efficiency of any given labelling approach is the

common method used in the research community, since benchmark documents are

designed to test different aspects including the space efficiency by having different

document sizes, different structures, different fan-out values and different document

depths. We used XML documents that are commonly used for evaluating the label size.

Table 3-5 provides more details about the documents that were used in this test.

Evaluating the label size normally should focus on evaluating three major values:

 The maximum label size: this value represents the length (in bytes) of the longest

generated label in a given document; this value has an effect on the length of the

index for individual records, which will affect the total index size.

 The average label size: the length (in bytes) of the average length of all labels in a

given document. The average label length reflects the document structure.

Chapter 3. PoD Labelling Approach

51

 The total label size: the total size (in bytes) of all labels in a given document. This

value represents the storage requirement of the all labels. This may be significant for

XML database systems that run on limited-resource devices (such as hand-held

devices) in which memory-space requirements may affect system stability.

The first test we conducted was to evaluate the parameterised features of PoD, which

allow selecting an appropriate size for BLU, the number of extended labels, and their

length. In addition, we conducted a space test using double-phase parsing; the double-

phase parsing method allows analysing the document and allocating variable BLU sizes,

which would achieve the ultimate label size.

Table 3-5: The features of some XML documents from different XML benchmarks.

Doc

ID
Benchmark Size Depth

Total Number

of Nodes
Source of Benchmark

D1
Merchant.xml

(Shakes play)

183KB 6 4,152 [Bosak, 1999]

D2 SigmodRecords.xml 482KB 7 19,000 [UWDG, 2002]

D3 Mondial-3.0.xml 1.65MB 6 73,832 [UWDG, 2002]

D4 Movies 5.39MB 9 320,580 [UWMRG, 2002]

D5
Shakespeare plays

(37 files)

7.5MB 6 180,253 [Bosak, 1999]

D6 Nasa.xml 24.6MB 8 562,200 [UWDG, 2002]

D7 Treebank.xml 82MB 36 2,437,667 [UWDG, 2002]

D8 dblp.xml 131MB 6 3,816,709 [UWDG, 2002]

D9 SwissProt.xml 109 5 5,166,890 [UWDG, 2002]

D10 XMark benchmark 10MB 12 234,161 [Schmidt et al., 2002]

D11 XMark benchmark 100MB 12 2,328,505 [Schmidt et al., 2002]

D12 XMark benchmark 500MB 12 11,675,206 [Schmidt et al., 2002]

D13 XMark benchmark 1000MB 12 23,346,658 [Schmidt et al., 2002]

D14
Protein Sequence

Database

683MB 7 22,435,474 [UWDG, 2002]

D15 Michigan benchmark 50MB 18 603,019 [Runapongsa et al. 2003]

D16 Michigan benchmark 500MB 18 6,582,640 [Runapongsa et al. 2003]

Chapter 3. PoD Labelling Approach

52

3.4.2 Evaluating Different Configurations of PoD

3.4.2.1 Test Setup

The test aimed to evaluate the different configurations of PoD against small, medium

and large XML documents; the documents all have different structures (i.e. depth and

average fan-outs). However, PoD settings were configured without any prior knowledge

of the document structures and sizes, as in Table 3-6.

Table 3-6: BLUs of different sizes and configurations, which are used in space evaluation test.

BLU Setup Values for Labelling Prefixing Value / Extended Label Length(bit)

BLU_3_S {0,…,4} (5/4) (6/7)

BLU_3_M {0,…,3} (4/5) (5,8) (6/10)

BLU_3_L {0,…,2} (3/6) (4/9) (5/12) (6/16)

BLU_4_VS {0,…,12} (13/6) (14/8)

BLU_4_VM {0,…,11} (12/6) (13/8) (14/12)

BLU_4_VL {0,…,9} (10/6) (11/9) (12/12) (13/16) (14/20)

BLU_4_S {0,…13} (14/8)

BLU_4_M {0,…,12} (13/8) (14/12)

BLU_4_L {0,…10} (11/8) (12/12) (13/16) (14/20)

BLU_5_S {0,…,28} (29/7) (30/9)

BLU_5_L {0,…,24} (25/7) (26/9) (27/12) (28/16) (29/20) (30/24)

Note: The maximum value of each BLU cannot be used for prefixing since it is

reserved for supporting new node insertions.

The more useful length for BLU values are 3 bits, 4 bits, and 5 bits. A smaller BLU

length (i.e. < 3) is too small to label documents without using extended labels most of

the time. Larger BLU length (i.e. > 5) would waste space since the fan-out value for

most of the nodes in most of XML documents is much less than 32. For each BLU, we

had three setups: one for small fan-out values (with suffix _S), one for medium fan-out

values (with suffix _M), and one for large fan-out values (with suffix _L). It was

unnecessary to include a configuration for BLU_5_M because the BLU of 5 bits has

enough values to use as prefixes for well-compressed extended labels.

Chapter 3. PoD Labelling Approach

53

For the 4-bit BLU test, we had two different configurations. The first one denoted as

BLU_4V indicates a variable length for extended components (such as 6 bits or 10 bits).

The other configuration is denoted with BLU_4, which has extended labels of the length

of complete bytes (such as 8, 16 and 24), or half bytes (such as 12 and 20). We

evaluated each group of setups (i.e. S, M and L) separately using appropriate XML

documents of different sizes and structures.

3.4.2.2 Results and Discussion

BLU Small

The BLU_Small, as expected, successfully labelled three documents with small fan-out

sizes, but it could not support the rest of the documents in Table 3-6. Tables 3-7 and 3-8

demonstrate the space test results for BLU_3_S, BLU_4_VS, BLU_4_S, and BLU_5_S.

The BLU of 3 bits achieved better label-size compression than the other two setups (4

bits and 5 bits) due to the very small fan-out values of these documents. However,

BLU_3_S performed worse for D1 due to the relatively high average fan-out at two

levels within the document. BLU_4_VS and BLU_4_S both performed better than

BLU_5_S.

Table 3-7: The maximum label length for small BLU configurations using the evaluation

documents from Table 3-5.

Doc ID Maximum Label Length (Byte) for BLU Small

 BLU_3_S BLU_4_VS BLU_4_S BLU_5_S

D1 6 5 5 5

D2 6 7 7 7

D3 9 10 10 12

Table 3-8: The total label size for small BLU configurations using the evaluation documents

from Table 3-5.

Doc ID Total Label Size (KB) for BLU Small

 BLU_3_S BLU_4_VS BLU_4_S BLU_5_S

D1 14.87 14.31 14.33 15.68

D2 76.27 84.35 88.67 94.68

D3 4165 4981 4981 6375

Chapter 3. PoD Labelling Approach

54

BLU Medium

This test included medium fan-out size documents, which could not be labelled

successfully using the small BLU configuration. The maximum label size and total label

size results for five XML documents are shown in Tables 3-9 and 3-10 respectively.

Table 3-9: The maximum label length for medium BLU configurations using the evaluation

documents from Table 3-5.

Doc ID Maximum Label Length (Byte) for BLU Medium

 BLU_3_M BLU_4_VM BLU_4_M BLU_5_M

D4 6 6 7 7

D5 0 8 8 8

D6 7 6 7 7

D7 0 9 10 10

D8 0 8 8 8

Table 3-10: The total label size for medium BLU configurations using the evaluation

documents from Table 3-5.

Doc ID Total Label Size (MB) for BLU Medium

 BLU_3_M BLU_4_VM BLU_4_M BLU_5_M

D4 0.29 0.3 0.3 0.33

D5 0 1.4 1.39 1.6

D6 0.89 0.77 0.77 0.82

D7 0 1.05 1.05 1.21

D8 0 2.61 2.61 2.94

The 4-bit BLU was the winner and for both configurations (BLU_4_VM and

BLU_4_M), the maximum label length was better for BLU_4_VM. However, the total

label size results were almost equal for both configurations. The BLU_3_M failed to

label three documents that could have been successfully labelled if we had longer

extended labels (as the case in BLU_3_L); however, that would not have produced

better results than the 4-bit BLU. The 5-bit BLU performed well in terms of the

Chapter 3. PoD Labelling Approach

55

maximum label length; however, the total label sizes were larger than those of the 4-bit

BLU for all documents.

BLU Large

This section of the test reported only the BLU_Large results for documents with large

average fan-outs. Although the BLU large configurations supported all other smaller

documents, we did not report the results for the smaller documents since they were

covered by the small and medium BLUs, which had better compression results. The

maximum label size and total label size results for six XML documents are shown in

Tables 3-11 and 3-12 respectively.

Table 3-11: The maximum label length for large BLU configurations using evaluation

documents from Table 3-5.

Doc ID Maximum Label Length (Byte) for BLU Large

 BLU_3_L BLU_4_VL BLU_4_L BLU_5_L

D9 25 20 20 25

D10 0 7 7 8

D11 11 10 10 12

D12 7 8 8 8

D13 0 10 10 12

D14 0 7 8 8

Table 3-12: The total label sizes for large BLU configurations using evaluation documents from

Table 3-5.

Doc ID Total Label Size (MB) for BLU Large

 BLU_3_L BLU_4_VL BLU_4_L BLU_5_L

D9 15.10 14.29 14.29 17.02

D10 0 15.27 15.19 17.5

D11 13.66 11.71 11.64 13.38

D12 23.67 25.79 25.8 26.39

D13 0 61.72 61.23 70.2

D14 0 115.68 115.32 130.72

Chapter 3. PoD Labelling Approach

56

The 4-bit BLU achieved the best compression values, since the 4-bit BLUs suit the

nature of the XML documents better when most of the nodes have small fan-out values

and only a few nodes have large fan-out values. The small fan-out values can be

labelled using the labelling values within the BLU. The BLU_3_M failed to label three

documents, which could successfully have been labelled if we had longer extended

labels; however, that would not produce better results than the 4-bit BLU. The 5-bit

BLU did not perform well because these documents are deeper than the smaller nodes

and the 5-bit components would accumulate into longer labels.

3.4.2.3 Brief Discussion

The PoD labelling technique, which is based on using a fixed-width basic labelling unit

(BLU), has the capability to label any XML document of any structure and size. Based

on the tests we reported in this section, the parameterised features of PoD labelling

scheme can be used to achieve an optimal label length and size. However, the 4-bit

BLU is the most appropriate setup for labelling XML documents, especially if the one-

phase parsing technique is used and no prior information about the document structure

is available. Further, the BLU_4, which uses extended labels of length with multiple

bytes or half bytes, has space results that are almost identical to the BLU_4Vx. The

BLU_4 has one advantage over the BLU_4Vx in that it makes the label structure

simpler and easier to process, which reduces some of the overhead in the processing

time.

The 5-bit BLU can achieve an efficient compression rate for shallow documents.

However, the deeper the document is, the longer the label becomes and the space

requirements become far larger than the space requirements for BLU_4.

3.4.3 Evaluating PoD Space Efficiency Using Double Parsing

Having prior knowledge about the document’s size and structure may help to select a

more appropriate BLU setup. However, the double-parsing technique can also provide

enough information about the XML document and can be used to select the most

appropriate BLU setup. Further, different BLUs can be used within the same document,

which can be allocated either by level or by node type.

Chapter 3. PoD Labelling Approach

57

We conducted the next test to compare the space requirements between the BLU_4 and

the optimised BLU setup using the double parsing approach; we denoted this approach

as BLU_D for dynamic allocation of BLUs. We only selected the BLU_4 because it is

the most practical setup, which represents the idea behind the PoD approach.

3.4.3.1 Test Setup

We evaluated the two approaches using XML documents from two well-known

benchmarks: the XMark (XM) and Michigan benchmark (Mich) [Runapongsa et al.,

2003; Schmidt et al., 2002]; Table 3-5 contains detailed information about these

documents. We used different BLU setups for the BLU_D; the BLUs were based on 3-

bit, 4-bit and 5-bit BLUs.

3.4.3.2 Results and Discussion

The dynamic allocation of BLUs (BLU_D) reduced the space requirements for the PoD

labelling scheme. Both the maximum label length and total label size dropped by

approximately 20 per cent. Figures 3-5 illustrates the maximum label length and total

label size for BLU_D and BLU_4.

Figure 3-5: Space requirements comparison between BLU_D and BLU_4.

Given that BLU_4 already provides smaller labels compared with other approaches in

the literature, the complexity and the cost of the document double-parsing operation

makes this option less favourable than the BLU_4. This is because processing labels to

evaluate relationships between document nodes would become an expensive operation.

However, the BLU_D can still be useful for applications in which space is more

important than other factors, in particular, for static XML documents.

0

2

4

6

8

10

12

14

D3 D11 D13 D15

BLU_D

BLU_4

M
ax

 L
ab

el
 L

en
gt

h
(B

yt
e)

BLU_D vs BLU_4

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

D3 D11 D13 D15

BLU_D

BLU_4

To
ta

l L
ab

el
 S

iz
e

(M
B

)

BLU_D vs BLU_4

Chapter 3. PoD Labelling Approach

58

3.4.4 Comparing PoD-4 with Other Dewey Labelling Approaches

We conducted a similar test for space requirements to compare the PoD of 4-bit BLU

with other recent Dewey-based labelling techniques. We only picked one configuration

of PoD based on the BLU of 4-bit length, which was based on the space analysis in

Section 3.9 and the test results discussed in the previous subsections.

We compared PoD, which is a Dewey-based labelling scheme, to other Dewey-based

labelling schemes. We did not include the numeric-based range encoding because its

space requirements are fixed and well known; it requires three integer numbers at least,

excluding the document id, to label each node (start, end and level), which means that

the total label length is 12 bytes (given that each integer value is a 4-byte length).

3.4.4.1 Test Setup

We conducted this test using most of the documents in Table 3-5 to ensure diversity in

document sizes and structures. We mainly focused on medium, large and very large

XML documents.

We implemented two well-known Dewey-based labelling schemes: the ORDPATH,

with its two configurations (a) and (b) [O'Neil et al., 2004]; and the QED labelling

technique [Li and Ling, 2005] using a double-parsing process to produce an optimal

label length.

3.4.4.2 Results and Discussion

The results show that PoD-4 outperformed the other two techniques for all documents in

this test. PoD-4 reduced the space requirements for Dewey labels despite the

document’s size and structure, which provides a consistent labelling technique that can

guarantee short labels. Figures 3-6 and 3-7 illustrate the maximum label length and total

label size respectively for PoD-4, ORDPATH and QED.

Meanwhile, QED performed better than ORDPATH except for XML documents from

the Michigan benchmark, which indicates that QED compression techniques are

insufficient for deep documents with small fan-out values. QED performed well for

documents with a low ratio between the maximum fan-out and the average fan-out.

Chapter 3. PoD Labelling Approach

59

Figure 3-6: Maximum label length comparison between PoD and two other Dewey-based

labelling techniques (Ordpath and QED).

Figure 3-7: Total label size comparison in logarithmic scale between PoD and two other

Dewey-based labelling techniques (Ordpath and QED) using documents from Table 3-5.

For documents D5 and D6, PoD and QED had the same maximum label length value;

however, the total label size for PoD was slightly smaller for both documents.

The ORDPATH labels required more space due to the use of longer prefix values.

Moreover, ORDPATH skips the even values and reserves them to support the insertion

of new nodes, which requires using a longer labelling-range most of the time.

3.4.5 Evaluating Space Requirements for PoD-Split

To exploit current indexing technologies in off-the-shelf database systems, we propose

to split any given Dewey label into two Dewey-based components: Pid and Cid.

0

5

10

15

20

25

30

D5 D6 D7 D8 D12 D13 D15 D16

PoD_4

Ordpath_a

Ordpath_b

QED

M
ax

 L
ab

el
 L

en
gt

h
(B

yt
e)

PoD vs Other Dewey-based Labels

0.1

1.0

10.0

100.0

1000.0

D5 D6 D7 D8 D12 D13 D15 D16

PoD_4

Ordpath_a

Ordpath_b

QED

To
ta

l L
ab

el
 S

iz
e

(M
B

)

PoD vs Other Dewey-based Labels

Chapter 3. PoD Labelling Approach

60

However, this new structure may slightly increase the storage requirements for Dewey

identifiers.

This test evaluated the cost of splitting the Dewey label into two components. We

conducted the test using our PoD-4 labelling scheme. We did not run the test for other

labelling schemes because the same concept applies and it is much easier to implement

the split concept using PoD-4.

3.4.5.1 Test Setup

We implemented the PoD of BLU-4 with extended labels of length (for example, 8, 12

and 16). We also implemented a split mode based on the same BLU setup, which we

called PoD-S. We conducted the space test using the documents from Table 3-5. In this

test, we wanted to measure the total label size increase in split mode.

3.4.5.2 Results and Discussion

The results showed that there is an increase in the space requirements for the PoD-S

mode. However, the increase was approximately nine per cent for some (D6, D7, D12,

D13 and D15) and up to approximately 20 per cent for others (D5, D8 and D16). This

depends on the way in which we store the split components; if the last byte of the parent

component is a half-byte, the child component will be right-shifted by a half byte,

which may acquire an extra byte. Figure 3-8 shows the increase in total label size using

the split mode.

Figure 3-8: Total label size comparison in logarithmic scale between PoD and PoD-S (Split

mode) using the documents from Table 3-6.

0.1

1.0

10.0

100.0

1000.0

D5 D6 D7 D8 D12 D13 D15 D16

PoD

PoD-S

To
ta

l L
ab

el
 S

iz
e

(M
B

)

PoD vs PoD-S

Chapter 3. PoD Labelling Approach

61

The advantages of having a split-label, which would significantly improve query

performance, might justify this increase in the space requirements, bearing in mind that

PoD is a very compact labelling scheme.

3.4.6 Evaluating the Effect of Inserting New Nodes

PoD supports operations on dynamic XML documents, such as inserting new nodes

without relabelling any of the existing nodes. In this test, we evaluated PoD and PoD-S

capabilities of supporting operations such as insert and delete, and compared the results

with those from the ORDPATH technique.

3.4.6.1 Test Setup

The Michigan benchmark provides update queries to evaluate the efficiency of a

labelling scheme in handling insert and delete operations. We conducted the test using

PoD and ORDPATH_a. We used two different sized documents from the same

benchmark. Table 3-13 shows the update queries.

Table 3-13: Details of some update queries from the Michigan benchmark.

Query

ID

Query Text Comments

QU1

Insert a new node below the node with

aUnique1 = 10102

Point Insert Operation: will insert a

complete eNest node with its

attributes

QU2

Delete the node with aUnique1 = 10102

and transfer all its children to its parent

Point Delete Operation: the

transferred nodes will be inserted in

the new location

QU3

Insert a new node below each node with

aSixtyFour = 1. Each new node has

attributes identical to its parent, except

for aUnique1, which is set to some new

large, unique value, not necessarily

contiguous with the values already

assigned in the database

Bulk Insert Operation.

3.4.6.2 Results and Discussion

Table 3-14 shows the statistics information of the changes that were caused by running

each update query. In total, the three update queries inserted 9441 nodes in Doc1

Chapter 3. PoD Labelling Approach

62

(50MB) and 102330 nodes in Doc2 (500MB). The update queries slightly changed the

maximum label size and the total label size for the three labelling schemes PoD, PoD-S

and ORDPATH_a. Table 3-15 shows the changes of the maximum label size and the

total label size after running the three update queries.

Table 3-14: The number of nodes that were added and deleted after executing each update

query in Table 3-13.

Query ID
Inserted Nods Deleted Nodes Relabelled because of

transfer

 Doc1(50MB) Doc2(500MB) Doc1(50MB) Doc2(500MB) Doc1(50MB) Doc2(500MB)

QU1 9 9 0 0 0 0

QU2 0 0 9 9 54 0*

QU3 9378 102321 0 0 0 0

(*): no nodes were transferred in Doc2 since the deleted node did not have any element

child nodes.

Table 3-15: Label size changes after executing update queries in Table 3-13.

Labelling

Scheme

Doc1 max label

length (byte)

Doc2 max label

length (byte)

Doc1 total label

size (MB)

(%) change of total

label size

 before after % before after % before after % before after %

POD 10 11 10 12 13 7.7 4.86 4.95 1.86 53.47 54.44 1.81

POD-S 11 12 9 14 15 7.2 5.37 5.47 1.86 65.89 67.09 1.82

ORDPATH_a 14 14 0 14 15 7.2 6.55 6.66 1.72 73.26 74.52 1.72

The results show that PoD and PoD-S can support operations on dynamic XML

documents without the need to relabel the existing nodes. However, there was a slight

increase in both the maximum label length and the total label size. The effect on

ORDPATH_a was less than PoD since ORDPATH sacrifices the initial space

requirements to support efficient insertion between every two adjacent nodes.

3.4.7 Evaluating the Effect of Label Size on the Query Performance

Reducing the label size might also improve the query performance since it will increase

the amount of data that can be cached in the main memory, especially on resource-

limited devices. We conducted this test to evaluate the effect of the label size on the

Chapter 3. PoD Labelling Approach

63

query performance by running the same query using different Dewey-based labelling

schemes. However, better query optimisation techniques have a major role in improving

query performance, which will be discussed in the following chapters.

3.4.7.1 Test Setup

We implemented PoD-4 (PoD), QED, and ORDAPTH (a) and (b). MySQL database

engine v5.1 was used as a backend relational storage [MySQL, 2009]. The test was

conducted on an Intel Duel Core (1.8GH) machine with 1GB of memory. We used 16

different queries from the Michigan benchmark; we selected queries from each group

based on its relevance to the purpose of this test. We used the benchmark tools to

generate two XML documents of different sizes: 50MB and 500MB. We conducted the

same set of queries 10 times per query against both documents; we ignored the first run

time for each query. More details about the Michigan benchmark queries can be found

in Appendix A-2.

3.4.7.2 Results and Discussion

The results in Figures 3-9 and 3-10 demonstrate that PoD can be used effectively to

address almost all queries against XML documents that are stored in an off-the-shelf

relational database system. Further, for almost all queries, PoD ran consistently faster

than the ORDPATH and QED labelling scheme by around 10 per cent; this is due to the

fact that PoD has shorter label lengths than ORDPATH and QED by around 20 per cent

and 35 per cent respectively.

The 10% performance gain is more obvious using the Michigan benchmark’s second

document Mich2 (500MB). Since the size of the labels became very large, this also

determined the size of the primary index. At this level, space reduction becomes more

valuable.

Chapter 3. PoD Labelling Approach

64

Figure 3-9: Queries’ run time in logarithmic scale for 16 queries from the Michigan benchmark

evaluated using different Dewey-based labelling schemes.

Figure 3-10: Queries’ run time in logarithmic scale for 16 queries from the Michigan

benchmark evaluated using different Dewey-based labelling schemes.

3.5 Conclusion

The PoD approach provides an efficient, flexible and compact labelling technique. PoD

is a Dewey-based labelling technique that supports operations on dynamic XML

documents (such as insert and delete) without relabelling the existing nodes. Further,

PoD with its parameterised features can be tuned to provide ultimate compression ratio

for label lengths by using double-parsing processing and dynamic BLU allocation.

0.01

0.1

1

10

100

Q
R

1

Q
R

2

Q
R

3

Q
S1

Q
S3

Q
S7

Q
S8

Q
S1

1

Q
S1

8

Q
S1

9

Q
S2

1

Q
S2

8

Q
S3

0

Q
J3

Q
A

1

Q
A

2

POD4

OPA

OPB

QED

Q
u

er
y

R
u

n
 T

im
e

(S
ec

)
Mich 1 (50MB)

0.1

1

10

100

1000

Q
R

1

Q
R

2

Q
R

3

Q
S1

Q
S3

Q
S7

Q
S8

Q
S1

1

Q
S1

8

Q
S1

9

Q
S2

1

Q
S2

8

Q
S3

0

Q
J3

Q
A

1

Q
A

2
POD4

OPA

OPB

QED

Q
u

er
y

R
u

n
 T

im
e

(S
ec

)

Mich 2 (500MB)

Chapter 3. PoD Labelling Approach

65

However, using complex techniques to reduce the label size further can add processing

overhead. We recommend PoD-Dynamic only for applications in which space is

expensive and may affect the system performance, such as hand-held devices.

The space evaluation tests showed that the PoD of 4-bit BLU has outperformed recent

Dewey-based labelling approaches by reducing the label size by 20 per cent. Moreover,

PoD provides a consistent compression technique for almost all types of XML

documents. Meanwhile, other approaches only work well with a certain type and

structure of XML documents.

PoD, with its fixed-width basic labelling unit (BLU), simplifies the label structure and

removes processing overhead because it eliminates the need to parse any generated label

bit-by-bit. Labels can be processed by blocks of bits, especially in the BLU of four.

To take full advantage of the current indexing technologies that are available in off-the-

shelf relational database systems, we have introduced a new structure for Dewey-based

labels. The new structure is based on splitting any given Dewey id into two

components: Pid and Cid. This structure would significantly enhance query

performance for queries that are based on parent-child and sibling relationships. The

new split mode can be applied to any Dewey-based labelling scheme. However, it is

much easier to apply it to PoD-4 due to its simplified structure.

PoD-S mode requires more space than PoD. However, the performance improvement

that comes with this approach may justify this slight label size increase (approximately

nine per cent on average).

Minimising the Dewey label size and simplifying its structure are major steps towards

more efficient storage and processing of XML documents in relational-based systems;

the PoD system also integrates the document schema summary, which we capture in the

XML_Path table, with XML query processing to provide alternative query optimisation

techniques for Dewey-based labelling schemes. The next two chapters will provide

detailed discussions about our query optimisation techniques in the PoD system.

67

Chapter 4: Navigating the XML Tree Using the PoD

Approach

XML language has provided a powerful platform for both business-to-business and

business-to-user Internet applications. However, XML introduces trade-offs and

complications, such as the need to efficiently retrieve information stored in XML

documents. The W3C has approved XQuery and its subset XPath as standard query

languages for XML data. In this chapter, we introduce the PoD approach to evaluate all

XPath axis steps, which are the basic building unit of any XML query, and provide

alternative new techniques for efficiently querying XML data. While these techniques

are based on PoD, they can be easily applied to other Dewey-based labelling schemes.

4.1 Introduction

Various XML query languages have been proposed, most associated with certain

proposed storage systems. Recently XQuery/XPath language has emerged as the

standard query language for XML data [Fernandez et al., 2007]. XQuery is a strongly

typed functional language that supports both the transformation and querying of XML

documents.

XQuery uses XPath syntax for locating paths within the XML documents. The XPath

syntax is based on navigating the document using the XML tree model; XPath uses

expressions that are composed of a sequence of location steps separated by the ‘/’

symbol. Evaluating these different types of axis steps is a challenging task, especially

for XML data stored in relational-based systems. Label ids are used to capture the

document order and relationships among the document nodes.

XQuery is relatively new and many issues with respect to implementation and

optimisation remain unresolved. In most of the off-the-shelf and widely used open-

source relational databases, XQuery and XPath queries are translated into equivalent

SQL statements before they are run against shredded XML documents.

Several studies in the literature compare Dewey-based labels to other labelling methods

for storage requirements and general performance evaluation. We have not discovered

Chapter 4. Navigating the XML Tree Using PoD System

68

any detailed studies for optimising XPath axis steps based on Dewey labels because

most of these studies have used the current techniques that are applied for number-based

range encoding.

In the following sections, we discuss XML query-related issues, implementations and

optimisation techniques. Further, we introduce alternative query optimisation

techniques based on Dewey-labels using off-the-shelf relational databases. We report on

extensive experimental evaluation studies using well-known XML benchmarks.

4.2 XML Query Optimisation Objectives

XML and XQuery data models provide great support for semi-structured data, and

provide flexibility for data integration and data-exchange applications. However, the

new data model and XQuery semantic definitions, as set by the W3C, have introduced

complexity and challenges to an efficient implementation of XQuery. For example, the

XQuery and XPath semantics require that each intermediate step in a path expression

returns its results in the document order, which is not originally part of the relational

systems due to the mismatch between the two data models.

Recent works have focused on developing techniques for XML query optimisation and

efficient implementation. We can summarise optimisation objectives as follows:

 Eliminate duplicate removal and sorting operations when they are unnecessary;

sorting and removing duplicates after each step is an expensive operation and slows

down system performance. For example, a singleton result is always sorted and

duplicate free, which means there is no need to apply sort and duplicate removal

operators [Al-Khalifa et al., 2002; Bao et al., 2008; Fernandez et al., 2005; Grust et

al., 2003; Lu et al., 2005].

 Developing XQuery Algebra based on XQuery formal semantic and core mapping as

defined by W3C. The presence of XQuery Algebra makes it easier to optimise join

operators [Draper et al., 2007; Lee, 2003; Michiels et al., 2007; Pal et al., 2005b; Re

et al., 2006].

 Developing appropriate indexing rules and/or new indexing techniques that better

suit the XML data model. Some of indexing techniques are necessary to maintain the

XML document order and structure (i.e. parent-child and ancestor-descendent

relationships) [Florescu and Kossmann, 1999; McHugh et al., 1997; McHugh et al.,

Chapter 4. Navigating the XML Tree Using PoD System

69

1998; O'Neil et al., 2004; Pal et al., 2004; Shui et al., 2005; Tatarinov et al., 2002;

Yoshikawa et al., 2001]. Other indexing techniques are proposed to improve queries

that use tag names, which are parts of almost every XQuery and XPath query

statement [Kaushik et al., 2002; Lu et al., 2005; Pal et al., 2005a].

 Make better use of data schema (when it exists) to further optimise XML query

performance. Data schema is helpful in optimising certain types of queries. Further,

data schema can be used to answer some queries without going back to the actual

data, given that the data schema is much smaller than the data instance [Cooper et

al., 2001; Goldman and Widom, 1997; Grinev, 2002; Lu et al., 2005].

4.3 XML Query in Relational Database Systems

Supporting XML data in relational database systems has become more popular due to

the reasons mentioned in previous chapters. With the rapid increase in the use of XML

documents over the Internet and in many other applications, the challenge of efficiently

supporting querying XML data in relational systems has increased. One of the major

challenges is retrieving the full XML document or large portions of it. The industry has

responded to this challenge by introducing a new data type called XML, which is

similar to the character large object (CLOB) data type. The new XML data type can

store an XML document in its native format, which eliminates the processing overhead

for reassembling the document [Beyer et al., 2006; Liu et al., 2005; Pal et al., 2005b].

The rise of XQuery as a standard query language for XML data has also added new

challenges to the relational-based systems. XQuery with its FLWOR statements allows

more complex queries against the structure and data within the XML documents. To

avoid scanning the stored XML document during run time, relational-based systems

make use of the existing relational techniques by capturing the document order and

structure in special indexes that are used to answer queries without the need to parse the

original document. Moreover, the major vendors of database systems are providing an

option to shred the XML document into relations to be used for data-centric queries.

When XML is stored in relational systems (shredded and/or indexed) the labelling

technique will play a major role in determining the way the XML query will be

implemented or translated into SQL statements. It will also be used in the query

performance.

Chapter 4. Navigating the XML Tree Using PoD System

70

4.3.1 Labelling Techniques Effect

As was mentioned in the previous chapters, there are two main labelling techniques

reported in the literature that are used to capture document order and relationships

between document nodes (i.e. parent-child and ancestor-descendent relationships).

These two techniques are:

 The numeric intervals or ranges encoding.

 The binary string Dewey-based encoding.

The intervals approach has demonstrated competitive performance compared with

native approaches due to the fact it uses operations on numbers [Amagasa and

Yoshikawa, 2003; Jagadish et al., 2002; Kha et al., 2001; Yoshikawa et al., 2001;

Zhang et al., 2001]. Based on the range encoding and the popular (pre, post, level) label,

a node ‘A’ is an ancestor of node ‘B’ if:

(A.pre < B.pre) and (A.post > B.post)

And B is a child of A if:

(A.pre < B.pre) and (A.post > B.post) and (A.Level +1 = B.Level)

However, the theta-join (θ-join) (which is based on ‘>’ and ‘<’ comparisons) is

considered slower than the equijoin (i.e. using ‘=’ operator); the interval approach does

not provide alternatives to make use of the equijoin, which runs faster with the presence

of the BTree indexes. Further, the interval approach cannot efficiently support

operations on dynamic XML documents (such as inserting new nodes), which will

trigger an expensive node-relabelling operation. Further, some interval approaches

require storing additional fields (such as the node’s level and parent label) to support

additional XPath access steps (like parent-child). This makes the size of the label

structure larger than the size of Dewey-based labels.

While the interval approaches have been studied extensively in the literature and

optimised to support all XPath path expressions and axes steps, there are no similar

detailed studies for Dewey-based labels. In addition, a widely used approach is to use

the same range’s concept to evaluate the XPath axis steps [Abiteboul et al., 2001;

Böhme and Rahm, 2004; O'Neil et al., 2004; Tatarinov et al., 2002].

Chapter 4. Navigating the XML Tree Using PoD System

71

4.3.2 XML Schema Information Effect

An XML document does not require content to adhere to structural rules. However, to

facilitate data processing, some applications might require XML documents to conform

to certain structures and data definitions, known as document schema (such as DTD).

The existence of XML can be used to perform some optimisations on path expressions

by trying to eliminate impossible path expressions (i.e. expressions that are known to be

always empty).

Labelling a document’s nodes can maintain the XML document’s order and some of its

structure. However, the node-labelling technique alone still does not provide an efficient

and complete answer to all types of XML queries. Recently, the importance of capturing

the document schema summary has increased because it can be used in XML query

optimisation, path validations and document presentations [Moro et al., 2008]. The most

popular usage of schema information is as secondary indexes that can identify XML

nodes reachable from specific path patterns, because the schema information is captured

in a much smaller representation than the actual data instance [Goldman and Widom,

1997; Pal et al., 2005a].

Recent proposals [Bao et al., 2008; Kwong and Gertz, 2002; Michiels, 2003] have

expanded the usage of XML data schema information to include:

 Browsing data structure

 Storing information, such as statistics and sample values

 Enabling XML query optimisation:

o Removing redundant conditions

o Simplifying conditions

o Detecting contradictory conditions and satisfyability

The schema information, such as data types (i.e. integer and string) and node types (i.e.

element and attribute) can be used in native XML management systems to avoid

scanning the whole tree. In addition, the schema information or summaries can be used

to minimise the number of joins in the relational management systems.

Chapter 4. Navigating the XML Tree Using PoD System

72

In this chapter, we introduce new optimisation and query evaluation techniques for

XPath axis steps based on a combination of document schema summary, captured in the

XML_Path table, and Dewey-based labels.

4.4 XML Schema Summary in the PoD System

An XML document is in a self-described data format [Nambiar et al., 2002]; XML tags

describe the data itself, and their locations in the document declare containment and

structural relationships. An XML document does not require content to adhere to

structural rules. However, to facilitate data processing, some applications might require

XML documents to confirm to certain structures and data definitions, known as

document schema (such as DTD and XSD). The existence of document schema can lead

to more efficient mapping to relational schema, as mentioned in Section 2.2.2. Further,

XML document schema can be used in advanced query optimisation techniques. Some

XML queries can be answered or validated by accessing the XML schema without any

need to access the actual document itself or its contents.

However, in many other XML-based applications, the XML document schema might be

absent or not required, which limits the capabilities of the data management systems

(either native or relational) to answer some XML queries in an efficient manner.

Further, storing XML documents in relational systems can result in losing the document

structure and schema information.

This section will focus on developing techniques to capture XML schema information

in the absence of DTD or XSD. Further, the captured schema information can be used to

provide alternative execution plans for XML queries in relational database systems with

the presence of a Dewey labelling scheme such as the PoD system.

4.4.1 Capturing XML Document Schema Summary

The schema summary can be captured when the document is initially parsed and stored

in the relational system; the schema summary can be represented in memory using a

hierarchical data structure or it can be stored as a table(s) in the relational system. Since

the schema summaries are typically very small, we propose having two versions of the

schema summary. First, an in-memory hierarchical structure that can be integrated and

Chapter 4. Navigating the XML Tree Using PoD System

73

used by middleware applications, such as during parsing documents and storing them in

RDBMS, or during XML query translation. Second, a table structure that can be used

during query executions and in some cases can be used to answer certain groups of

XML queries. Figure 4-1 shows the suggested schema summary in the PoD system.

Figure 4-1: Block diagram for XML-schema summary in the PoD System.

Our schema summary (or data guide) captures the document structure by capturing all

unique path expressions in the document. Further, we store information about each node

name in the document (not node instances), such as node type and the node’s level on

the XML tree.

The following section defines the items that are used to construct the document

structure summary, as in our ‘XML_Path’ table.

Definition 4-1: Path Expression: a sequence of concatenated tag names from the

root to the context node, separated by ‘/’, which matches the XPath representation.

For example, the path expression for node ‘Name’ in Figure 3-4 is:

‘/People/Person/Name’

Definition 4-2: Path id: a unique integer value corresponding to every unique path

expression.

XML
Structure

Summary
Data (document

contents)

RDBMS

In-Memory

XML Structure
Summary

XML
Document

Parser

XML Query Parser and SQL
Translator

XML Query

XML

Document

Chapter 4. Navigating the XML Tree Using PoD System

74

Definition 4-3: Node Type: the node type, as in the W3C recommendations for the

XML Data Model [Bray et al., 2008]; an integer value (such as element or attribute)

is used to represent each data type.

The node type for the node ‘Name’ is an element that is represented by ‘0’.

Recent versions of XML parsers, such as Apache Xerces XML parsers [Apache.org,

2005], comply with W3C recommendations for XML; these parsers can report and

handle different types of nodes, such as document, element, processing instruction and

text.

Definition 4-4: Node Level: the node’s level value on the XML data tree with

ascending values starting from the root node at level 0.

Example: the node ‘Name’ in Figure 3-4 is at level 2.

Definition 4-5: Node Occurrence: statistics information representing the number of

instances of one particular node (i.e. path expression) in the actual database.

This accumulated number can be helpful to generate optimised query execution plans,

as will be demonstrated in Chapter 5.

4.4.1.1 In-memory Schema Summary

The in-memory schema summary is a tree structure rooted at a virtual root node. Each

XML node is represented with an object, called XNode. The main features of the

XNode object are:

 An Object Id: equivalent to the Path id

 Object Name: represents the XML Tag name

 Object Type: represents the node type (such as element and attribute)

 A Pointer to its Parent Object: allows bottom-up traversal

 Occurrence: an integer value representing the actual number of instances of this

node in the database

 getPathExp() Function: returns the path expression by traversing up the tree and

concatenates the tag name of each object on the path to the root node

Chapter 4. Navigating the XML Tree Using PoD System

75

The XNode object is used to represent all XML node types except the element node

type, which is represented by an extended object from the XNode object.

The element object contains the following extra sub-objects:

 Child Elements: a hash table containing all the node’s child elements with ‘tag

name’ as a key to allow searching the collection by a tag name.

 Attributes: a hash table containing all the node’s attribute nodes, with ‘attribute

name’ as a key to allow searching the collection by an attribute name.

 Sequence: tracks the number of children that will be used to generate the Dewey

labels.

Although the memory size of this approach depends on the number of distinguished

paths in the document, the size is still relatively small since the average number of paths

in real XML documents is normally a few hundred.

The advantage of this approach over the stack approach is that it eliminates creating and

destroying objects during document parsing, which is considered an expensive process.

Further, the traversing pointer for this data structure will be moving in the same

direction as in the serial SAX XML parser.

4.4.1.2 XML Schema Summary in Table Format

To facilitate using the captured schema summary, we store the captured XML schema

summary in the relational system as a table, which we call ‘XML_PATH’, with the

following definitions:

XML_PATH = {Path_id: Integer, PathExp: String, Level: Integer,

Node_Type: Integer, Occurrence: Integer}

The path_id column is a primary key for this relation and is used as a foreign key in

other relations that contain the actual data instances.

In this chapter and Chapter 5, we propose new optimisation techniques for querying

XML data in relational systems based on the existence of the XML_Path table and

combined with a Dewey-based labelling scheme like PoD and PoD-S.

Chapter 4. Navigating the XML Tree Using PoD System

76

4.5 PoD Optimisation Approach

In this section, we will exploit the combinations of the Pod-S and the XML_Path table

to expand the capabilities of the relational systems to support XML queries efficiently

without modifying the relational systems kernel. The PoD optimisation approach is

based on shorter labels, split Dewey-labels (i.e. two-component labels), and exploiting

the XML schema summary captured in XML_Path table. Figure 4-2 shows a sample

XML document, which will be used as an example to demonstrate and explain our

techniques.

Figure 4-2: A sample XML document.

<Booklist>

 <Book>

 <Title> XML: the Complete Reference </Title>

 <Year> 2005 </Year>

 <Authors>

 <Author>

 <Name> Heather Williamson </Name>

 <Address>

 <City> New York </city>

 <zip> 99999 </zip>

 <Contacts>

 <Email>name@net-address</Email>

 </Contacts>

 </Address>

 </Author>

 </Authors>

 <Section>

 <Title> section title </Title>

 <Section>

 :

 </Section>

 :

 </Section>

 </Book>

 :

</Booklist>

Chapter 4. Navigating the XML Tree Using PoD System

77

Figure 4-3 illustrates the relational schema for the major approaches that will be used in

the evaluation tests for easy comparison. We only mentioned the Element_Table

because the same techniques can be applied to the Atrribute_Table and any other similar

tables containing document nodes.

Figure 4-3: Relational schema for major relational-based approaches.

4.5.1 Supporting Search on Path Expression

We have noticed that storing path expressions in their original format (i.e. /A/B/C), or

as it was proposed in XRel (which does not add the ‘#’ character to the tag name of the

last entry of the path expression ‘/A#/B#/C’) [Yoshikawa et al., 2001], does not support

XML documents with tag names that might have a few words in common (such as

<Book> and <BookList>). To overcome this problem, we add the ‘#’ postfix at the end

of each tag name, including attributes and all other node types, to distinguish them.

Proposition 4-1: For any path expression in the format ‘/A/B/C’ that exists in the

XML document d, an equivalent path in the format ‘#/A#/B#/C#’ is created in the

XML_Path table.

Element_Table (Dewey and PoD)

Id path_id value

Element_Table (PoD-Split)

Pid Cid path_id value

Element_Table (Enhanced Range Encoding)

start end level path_id value

XML_Path (XRel and others)

path_id pathExp

XML_Path (PoD)

path_id pathExp type level occurrence table_name

Chapter 4. Navigating the XML Tree Using PoD System

78

The reason for this path representation is to support the SQL wildcard search on the

path expressions and tag names in the XML documents (i.e. use ‘%’).

The following example will clarify the effect of that addition. Given a query in XPath

language (//Section), this expression should retrieve all the elements in the document

with the tag name ‘Section’. Using XRel Path table, which stores path expressions in

the format (/A#/B#/C), the (//Section) query can be evaluated in either one of the

following ways:

1. (Where pathExp like ‘%/Section’): would select only leaf nodes

2. (Where pathExp like ‘%/Section#%’): would select only parent nodes

(nodes in the middle of the tree)

3. (Where pathExp like ‘%/Section%’): would select both types of nodes (i.e.

parent and leaf nodes) but might include other irrelevant tag names that start with

the word ‘Section’ (for example, <Section-Abstract>)

None of the three options would cover all the correct evaluations of the tag name

<Section>.

However, using Proposition 4-1, the XPath query (//Section) can be safely translated to:

(Where pathExp like ‘#%/Section#%’): this will retrieve all the occurrences

of <Section> and only <Section> elements regardless of their location in the tree (i.e.

leaf or parent nodes).

4.5.2 Optimising Child and Descendants Axis Steps

Many implementations for child or descendant axis steps start by finding the context

node and then use the label id (either Dewey or interval encoding) to retrieve all child

nodes or descendant nodes as follows:

Select t2.results

From element_table t1, element_table 2, PathExp t3

Where t3.path = ‘pathExpression’

 and t3.path_id = t1.path_id

 and t2.id > t1.pre and t2.post < t1.post

And using Dewey labels, the last line can be changed to:

Chapter 4. Navigating the XML Tree Using PoD System

79

and t2.id between the t1.id and xmc(t1.id)

The run cost of this plan is the cost of the range join (θ-join) of the label id index on

itself, which primarily depends on the number of records in the label id column and

their index physical structure. Further, using the Dewey labels can be an advantage

because the range evaluation will occur on the same value (‘t2.id’), while the number-

based interval approach requires two different values: ‘pre’ and ‘post’.

However, the XML_Path table provides an alternative way to validate such queries by

using the SQL wildcard search on the path expression combined with the node type

field to filter out the attribute or other types of nodes. Storing the node type in the

XML_Path rather than in the data tables along the instance of each path (such as the

Edge table or equivalent tables) will save storage space and reduce the search space at

early stages during the query run as follows:

Select t1.results

From element_table t1, XML_Path t2

Where t2.path like ‘pathExpression#%’

and t2.nodetype = 0

and t2.path_id = t1.path_id

The run cost of this plan will be the cost of using the foreign key to retrieve the target

results, all of which will be part of the result. This technique eliminates any

intermediate results, which is one of the most important goals of XML query

optimisation.

4.5.3 Evaluating Ancestor at any Level of the Tree

Despite the fact that Dewey labels were originally adapted into XML management

systems to support dynamic operations (such as insert, delete and update), Dewey labels

also have another powerful feature. The Dewey label of any node contains the label ids

of its ancestors, all the way back to the root node, encoded as part of its label. This

feature can be used to retrieve any ancestor node’s label id at any level of the tree.

For example, given the Dewey label of a node ‘E’ with path expression like

‘/A/B/C/D/E’, we can retrieve the label of the ancestor node ‘B’ by recursively applying

Chapter 4. Navigating the XML Tree Using PoD System

80

the parent function xp(). Or by applying the XGP function xgp() and passing the level

of node B as a second parameter. This technique represents the significance of the

document structure information or schema summary (such as level values).

Some of the previous works in the literature suggested that there is no need to store the

level value because it can be retrieved or calculated by parsing the label id and counting

the number of components in that label [O'Neil et al., 2004; Tatarinov et al., 2002].

Moreover, with absolute path expressions that do not contain the descendent axis ‘//’, it

is also easy to find the level of each node by parsing the path expression.

However, it will be a challenging task to find the label of an ancestor node in

expressions that contain the descendent axis ‘//’. For example, if we are given the label

id of node E in an expression like ‘/A//B//D/E’ and it is required to find the label id of

node B. With such path expression, it is relatively difficult and complex to find the level

of the right node B, which is an ancestor of node E by just parsing the path expression.

Moreover, this validation or path expression parsing may happen in the middleware

layer, which might not take advantage of the capabilities of the relational database

systems. The widely used approach in the literature to address that sort of query is to

have a self-join statement on the element table or similar tables, and find the label of

node B that encloses the label of node E as follows:

Select t2.results

From element_table t1, element_table t2, PathExp t3, pathExp t4

Where t3.path like ‘#/A#%/B#%/D#/E#’

 and t4.path like ‘#/A#%/B#’

and t3.path_id = t1.path_id

and t4.path_id = t2.path_id

and t2.id < t1.id and xmc(t2.id) > xmc (t1.id)

The query plan will not be efficient, especially if the element table contains millions of

records.

However, by using the extended information (i.e. the level field) in the XML_Path

table, we can optimise the above query to be more cost-effective, which does not need

to have expensive self-join on the element table:

Chapter 4. Navigating the XML Tree Using PoD System

81

Select xgp(t1.id, t4.level)

From XML_Path t3, XML_Path t4, element_table t1

Where t3.path like ‘#/A#%/B#%/D#/E#’

 and t4.path like ‘#/A#%/B#’

and t3.path_id = t1.path_id

The same technique can be used to find the labels of all ancestor nodes of a certain

node, which we will explore when we discuss optimising the ‘ancestor’ axis step in

Section 4.6.9.

4.5.4 Evaluating Document Structure and Statistics Queries

The extended XMP_Path table can also be used to answer some structure queries

without the need to run the query against the actual data instance tables. The

combinations of the pathExp, level, type and occurrence fields provide enough

information to evaluate:

 the existence of a certain path expression;

 the number of certain nodes at a certain level;

 the number of all nodes at a certain level; and

 the existence of attributes, elements, leaf nodes and other type of nodes.

Further, one more field, the ‘table_name’, can be added to the XML_Path to provide

information about where to find the instances of each path expression. This can be used

with advanced optimisation based on data partitioning. The XML document can be

partitioned in more tables than just the traditional ones (such as elements, attribute and

text). This can be useful for very large XML documents to group frequently queried

nodes in certain tables.

4.6 Evaluating and Optimising the XPath Axis Steps

Some of the range methods to evaluate XPath axis steps were also adapted by the

Dewey-based labelling approaches to evaluate ancestor-descendent relationships

[Böhme and Rahm, 2004; O'Neil et al., 2004; Tatarinov et al., 2002]. Node B is a

descendent of node A if the id (label value) of node B is greater than the id of node A

Chapter 4. Navigating the XML Tree Using PoD System

82

and smaller than the maximum upper limit for all A’s descendent nodes. Two main

functions are proposed to help in evaluating some axis steps based on the range

comparison:

 Parent (id) function: removes the last component of the Dewey label id of the context

node to return the Dewey label id of the parent node.

 Maximum Child (id) function: returns the label upper limit for any child node that

descends from the context node.

We are building on these findings; however, we will discuss further optimisation

techniques for each axis step. The following abbreviations will be used in the next

subsections:

 The Dewey label id for context node:

o One-component label mode: idcn (cn denotes context node)

o Split-label mode (parent, child): Pidcn and Cidcn respectively

 The Dewey label id for result node (node to find):

o One component label mode: id.

o Split-Label mode (parent, child): Pid and Cid respectively.

 Parent (id) function: xp(id), which stands for XML parent id.

 Maximum Child (id) function: xmc(id), which stands for XML Maximum child id.

 Concatenate (parent, child) components to form equivalent Dewey id: xconcat(Pid,

Cid), which stands for XML concatenate, and is used in the split-label mode.

 Self (or child) component function: xcc(id), which stands for XML child id, and

returns the last component of any Dewey id.

4.6.1 XPath Axis Steps Overview

XPath axis steps are the basic structure unit of every XPath expression; they determine

the direction of traversing an XML tree. An axis step returns a sequence of nodes that

are reachable from the context node via a specified axis; an axis step may be a forward

step or a reverse step that indicates the direction of navigation through the XML tree.

Table 4.1 shows the axis steps in XQuery and XPath languages based on the format

(contextNode / Step :: node()).

Chapter 4. Navigating the XML Tree Using PoD System

83

Table 4.1: XPath axis steps.

Step Description

Forward Axis

Child Return the child element nodes of the context node

Attribute Return the attribute nodes of the context node

Self Return the context node

Descendent Return the element nodes descendants of the context node

descendent-or-self Same as ‘descendent’ plus the context node

Following
Return the nodes following the context node in document order

(excluding the descendent of the context node)

following-sibling
Same as ‘following’, except return only those node share the same

parent with context node

namespace:: Return namespace node of the context node

Reverse Axis

Parent Return the parent node of the context node

Ancestor
Return all the ancestor nodes of the context node (i.e. parent,

parent of the parent and so forth until the root node)

ancestor-or-self Same as ‘ancestor’ plus the context node

Preceding
Return the nodes that are not ancestor of the context node and

occur before the context node in document order

preceding-sibling
Same as ‘preceding’ except return only those nodes share the same

parent with context node

4.6.2 The Child Axis Step

There are four methods to find the child nodes of the context node:

1. Return all the nodes that have ‘parent id = context node id

xp(id) = idcn

This will scan the whole label id index and evaluate every label id record using the

‘xp’ function. This is not the optimum evaluation technique. However, it can be

enhanced if we build an index on the function xp(id) in the database systems that

support indexes on functions.

Chapter 4. Navigating the XML Tree Using PoD System

84

2. The most popular alternative option is to use the range technique (RT). This involves

finding all the nodes with the label id that is greater than the context node label (the

idcn) and less than the upper limit for any child node of the context node:

Return all nodes that have

(id > idcn and id < xmc(idcn) and their level = levelcn + 1)

This technique will generate a large fragment of irrelative intermediate results, which

can be costly if the context node has a very large number of descendent nodes.

3. Using the schema summary in the XML_Path table, which we have developed as

part of the PoD, the wildcard SS on the path field can be used to find possible

matches for the context node and its possible child nodes. This can be joined to the

element_table using the path_id as a foreign key:

Return all nodes in Element_table that have path_id = path_id2 in

XML_Path where:

Path1 = ‘context node path’

and path2 like ‘context node path/%’

and their level = levelcn + 1

and their node_type = 0

This approach is powerful because the XML_Path table is relatively small. By using

the foreign key, this approach can efficiently support very large documents almost in

linear time.

4. Using our approach for Split Dewey id (Pid and Cid):

Return all nodes that have Pid = xconcat(Pidcn, Cidcn)

This technique can be even faster than the third option and it can be applied to any

database system that will take advantage of the available indexing techniques.

Further, the number of intermediate results will be minimal due to the efficient use of

the primary BTree index on (ParentLabel, ChildLabel).

Chapter 4. Navigating the XML Tree Using PoD System

85

4.6.3 The Descendant Axis Step

The optimised technique is to use the range search, which makes use of the index on the

label id, as follows:

Return all nodes that have id > idcn and id < xmc(idcn)

And for split-label:

Return all nodes that have Pid between xconcat(Pidcn, Cidcn) and

xmc(xconcat(Pidcn, Cidcn))

Another powerful technique is SS using the schema summary in the XML_Path table,

which is the same as the technique we proposed for the child axis step:

Return all nodes in Element_table that have path_id = path_id1 in

XML_Path where:

Path1 = ‘context node path/%’

and their node_type = 0

The query has been simplified to a join between the XML_Path table and Element_table

based on the foreign key path_id.

Note: special consideration is needed if a wildcard search is used (i.e. //node) mainly in

recursive XML schema, as we will cover in detail in Section 4.6.8.

4.6.4 The Descendant-self Step

The descendant-self axis step is similar to the descendant axis, only modifying the range

of the search to include the parent node as follows:

Return all nodes that have id between idcn and xmc(idcn)

And for split-label:

Return all nodes that have Pid between xconcat(Pidcn, Cidcn) and

xmc(xconcat(Pidcn, Cidcn))

Union

Return all nodes that have Pid = Pidcn and Cid = Cidcn

Chapter 4. Navigating the XML Tree Using PoD System

86

The last line is necessary for split-label representation to retrieve the context node itself.

In addition, the SS approach can be used with slight modifications as follows:

Return all nodes in Element_table that have path_id = path_id1 in

XML_Path where:

path1 like ‘context node path%’

and their node_type = 0

4.6.5 The Attribute Axis Step

This step is similar to the ‘child’ step; however, it should target the right table for the

attribute or use the node type to distinguish the attribute nodes as follows:

Return all nodes that have id > idcn and id < xmc(idcn)

And their node_type = 1

In addition, the SS approach can be applied as follows:

Return all nodes in Atribute_table that have path_id = path_id1 in

XML_Path where:

Path1 = ‘context node path/@%’

and their node_type = 1

4.6.6 The Following Axis Step

The following nodes are all the nodes that come after the context node in a document

order, excluding its descendant nodes. This axis step can be evaluated by using the

upper limit value for any child node that descends from the context node as follows:

Return all nodes that have id > xmc (idcn)

And for split-label

Return all nodes that have xconcat(Pid,Cid) > xmc(xconcat(Pidcn,

Cidcn))

Chapter 4. Navigating the XML Tree Using PoD System

87

The one-component label has an advantage over the split mode because the split mode

has to evaluate each record in the index after applying the xconcat function, which will

be slower than the one-component Dewey label.

4.6.7 The Following-sibling Axis Step

We can use the same technique that is used for the ‘following’ axis step; however, one

more condition is required to select only sibling nodes:

Return all nodes that have id > idcn and xp(id) = xp(idcn)

And by using the optimised RT, it can be rewritten as follows:

Return all nodes that have

id between xp(idcn) and xmc(xp(idcn))

id > idcn

and level = levelcn

However, the spilt-label can take advantage of its structure and evaluate this axis step

more efficiently:

Return all nodes that have Pid = Pidcn and Cid > Cidcn

Meanwhile, the ‘following-sibling’ axis step is evaluated very slowly using the number-

based range encoding since the parent-child and sibling relationships are the most

challenging axis step for this labelling method.

4.6.8 The Parent Axis Step

The ‘parent’ axis step is one of the reverse axis steps that can be evaluated more

efficiently in Dewey representation rather than the range labelling method.

Return all nodes that have id = xp(idcn)

And for split-label:

Return all nodes that have xconcat(Pid, Cid) = Pidcn

Chapter 4. Navigating the XML Tree Using PoD System

88

However, the split-label mode would be much slower than the one-component label for

this query because it would be scanning the whole label id index and applying the

‘xconcat’ function to each record. To further optimise this query for split-label, we can

rewrite it as follows based on the fact the Pid of the context node is the Dewey label of

the parent of the context node:

Return all nodes that have Pid = xp(Pidcn) and Cid = xcc(Pidcn)

Using the functions xp and xcc allows us to retrieve the split label of the parent node

(parent id Pid and child components respectively). Breaking the Pidcn into the two

components Pid and Cid significantly improves the efficient use of the label index to

search for these values.

Note: it is very important to use the DISTINCT in the select statement because we need

to return duplicate-free results and there might be more than one child node that

matches the selection conditions, which will result in returning the same Pid more than

once.

4.6.9 The Ancestor Axis Step

One option to evaluate this axis step is to apply the ‘xp’ function recursively. However,

this might require modification to how relational database systems execute functions.

The widely used approach is the range method, which requires no modifications to the

database kernel:

Return all nodes that have id < idcn and xmc(id) > xmc(idcn)

The run-time highly depends on the global order of the context node within the XML

document. The same is true for the split-label mode:

Return all nodes that have Pid < Pidcn and xmc(xconcat(Pid,Cid)) >

xmc(xconcat(Pidcn,Cidcn))

However, this axis step can be optimised to run faster by utilising the document

structure and schema information in the XML_Path table.

Chapter 4. Navigating the XML Tree Using PoD System

89

A broader search is required on all the valid paths that end with the context node (i.e.

‘%PathExp’) and pass their level values to the xgp() function as a second parameter, as

follows:

Select xgp(t1.id, t4.level)

From XML_Path t3, XML_Path t4, element_table t1

Where t3.path like ‘#%/PathExp#’

 and t3.path startsWith(t4.path)

and t3.path_id = t1.path_id

It can be extended at nearly no cost to retrieve more information about the ancestor

nodes in case they are required for another evaluation or comparison within the same

query:

Select t1.id, t1.path_id

From XML_Path t4, XML_Path t3, element_table t2, element_table t1

Where t4.path like ‘#%/PathExp#’

 and t4.path startsWith(t3.path)

 and t4.path_id = t2.path_id

and t3.path_id = t1.path_id

and t3.level < t4.level

and t1.id = xgp(t2.id,t3.level)

The ‘startsWith’ function, which is used for string comparison, would ensure that the

query processor will evaluate correctly only ancestor nodes of the valid context node.

The ‘startsWith’ function is a built-in function that is provided by almost all database

vendors and there is no need to invade the relational system to be able to apply the xp()

function recursively or run such an evaluation in the middleware layer. For example, the

MySQL syntax for the ‘startsWith’ function looks like:

String1 REGEXP concat(‘^’, String2) ;

which means String1 starts with String2.

It is worth mentioning that such a task is challenging if we only use the RTs.

Chapter 4. Navigating the XML Tree Using PoD System

90

4.6.10 The Ancestor-self Axis Step

The axis step is similar the ‘ancestor’ axis step and the only difference is replacing the

‘<’ and ‘>’ operators with ‘<=’ and ‘>=’ respectively.

4.6.11 The Preceding Axis Step

This axis step can be evaluated using the same technique that is used in the range

labelling method:

Return all nodes that have xmc(id) < idcn

This can be optimised by avoiding scanning all nodes in the label id index as follows:

Return all nodes that have (id < idcn and xmc(id) < idcn)

And for split-label:

Return all nodes that have

(Pid <= Pidcn and xmc(xconcat(Pid,Cid)) < xconcat(Pidcn,Cidcn))

The spilt-label mode might be slightly slower than one-component label representation

in some cases.

4.6.12 The Preceding-sibling Step

This is similar to the ‘preceding’ axis step, except it returns only sibling nodes that have

a document order less than the context node’s document order:

Return all nodes that have (id < idcn and xp(id) = xp(idcn))

And for spilt-label:

Return all nodes that have (Pid = Pidcn and Cid < Cidcn)

The split-label will run more efficiently because it better utilises the index on the label

id.

Chapter 4. Navigating the XML Tree Using PoD System

91

4.7 XPath Axis Steps Experimental Evaluation

4.7.1 Study Overview

We have not discovered detailed studies for optimising XPath axis steps based on

Dewey labels because most of the studies have made use of the current techniques that

are applied for number-based range encoding. This experimental study aims to evaluate

the capability and efficiency of Dewey-based labels in addressing queries based on the

XPath axis steps and comparing that to the efficiency of the number-based labelling

methods.

While the experimental evaluation has been conducted by translating XML queries into

SQL statements, we believe some of the proposed techniques can be used or

implemented in other XML management systems (such as native and hybrid systems).

The reason for using SQL is to evaluate the efficiency of unmodified relational database

systems for supporting XML documents.

4.7.2 Experiment Setup

We have implemented PoD and PoD-S as mentioned in the discussion in Chapter 3. In

addition, we have implemented all the required functions in section 3.3.7. MySQL

server 5.1 was used as a backend relational storage system. We have also implemented

numeric-based interval (such as range) encoding as mentioned in the literature

[Yoshikawa et al., 2001], using the node identification key (pre, post, level). The three

implementations used the similar XML_PATH table, which contains summary

information of the document structures and schema.

The sample XML documents were generated using very well-known XML benchmarks:

XMark [Schmidt et al., 2002], and the Michigan benchmark [Runapongsa et al., 2006].

We used documents from both benchmarks of different sizes; for XMark, we used

documents of two sizes, 10MB and 100MB, and for the Michigan benchmark, we used

two documents of size 50MB and 500MB. We had to build some queries to address the

axis steps that we were evaluating because the two benchmarks do not have queries that

specifically challenge the capability and efficiency to support the XPath axis steps

without having other factors included, such as conditions on the data values.

Chapter 4. Navigating the XML Tree Using PoD System

92

Apache Java parser was used for parsing and loading XML documents. Java was also

used for automating and implementing the tests. This test was run on an Intel Core2

CPU (2.8GHz) machine with 4GB of RAM. We ran each query ten times and reported

the average run time after excluding the first run.

4.7.3 Child Axis Step

As mentioned in Section 4.6.2, the child axis step can be evaluated in three different

ways: Range Technique (RT); using the SS on the path values in the XML_PATH table

(SS); and using the parent value in Pod-S (PR). We have evaluated the first technique

against PoD, Pod-S and number-based range encoding (Range). However, the second

technique can be applied to those systems that have the XML_Path table (such as PoD

and Pod-S), and the third approach (PR) can only be applied to Pod-S.

None of the provided queries in either benchmark has simple querying based on the

child axis; Q1 of XMark and QR2 of the Michigan benchmark contain child axis

evaluation but as a part of simple twig queries or tree-pattern match, Appendix A

provides complete list of the queries in each benchmark. However, we created the

following queries (see Table 4-2) based on XML documents in each benchmark:

Table 4-2: Queries used to evaluate the child axis step.

Query Benchmark Query Statement

Q1 XM

benchmark query: simple twig query, which involves child axis

step:

FOR $b IN /site/regions/namerica/item[@id="item20748"]

RETURN $b/name/text()

Q2
Using XM /site/closed_auctions/closed_auction/annotation/description/text/bo

ld/Child::node()

Q3 Using XM /site/open_auctions/open_auction/Child::node()

Q4 Using Mich /eNest/eNest/eNest/Child::node()

Q5 Using Mich /eNest/eNest/eNest/eNest/eNest/eNest/eNest/Child::node()

QR2 Mich

benchmark query: simple twig query which involves Child axis

step:

 //eNest[@aSixtyFour=2]/Child::node()

Figures 4-3 and 4-4 illustrate the run-time results of the queries in Table 4-2 using XML

documents from the XMark and Michigan benchmarks respectively.

Chapter 4. Navigating the XML Tree Using PoD System

93

Figure 4-3: Query run-times in logarithmic scale for queries Q1, Q2, and Q3 in Table 4-2.

Figure 4-4: Query run-times in logarithmic scale for queries Q4, Q5, and QR2 in Table 4-2.

The results demonstrate that Dewey-based labels outperformed the numeric intervals

approach for all queries in Table 4-2 and for all documents from the two benchmarks.

The main advantage of the Dewey label is that the evaluation occurs for a single value

(i.e. the label id); meanwhile, the numeric intervals approach involves two different

values (Pre, and Post), which makes it much slower to scan the index and find the

correct results. Further, the numeric intervals approach performance did not scale up

well when the number of the targeted nodes increased by increasing the document size

or when it went deep down the XML tree as we moved from Q1 to Q2 and from Q4 to

Q5. In some cases, the (XRel) approach did not return results within an hour (3600sec)

and we had to abort the query run.

0.003
0.006

0.075

0.006
0.012

0.227

0.299

2.652

37.88

0.001

0.01

0.1

1

10

100

Q1 Q2 Q3

POD-S

POD

Range

Sec XM(10MB)

0.031

0.131

2.237

0.03

0.137

2.1713.171

295.7

3600

0.01

0.1

1

10

100

1000

10000

Q1 Q2 Q3

POD-S

POD

Range

Sec XM(100MB)

0.001

0.012

0.304

1.123 1.156

0.586

1.395

37.79

311.9

0.001

0.01

0.1

1

10

100

1000

Q4 Q5 QR2

POD-S

POD

Range

Sec Mich(10MB)

0.001

0.147

3.377

11.96 12.29 9.14514.94

3600 3600

0.001

0.01

0.1

1

10

100

1000

10000

Q4 Q5 QR2

POD-S

POD

Range

Sec Mich(500MB)

Chapter 4. Navigating the XML Tree Using PoD System

94

As expected and mentioned in the discussion, the Dewey label in split mode (PoD-S)

runs much faster than the one-component Dewey label (PoD) due to the more efficient

use of the index on the label values; for such axis steps, it used the equijoin on the

parent component rather than the range join.

We also evaluated the string search (SS) approach that we proposed in Section 4.5.1.

We ran queries Q2, Q3, Q4 and Q5 using translated queries based on the path string

match. The results in Figures 4-5 and 4-6 illustrate that the SS approach significantly

enhanced the query run time for PoD, especially for the recursive XML documents,

such as those in the Michigan benchmark documents. However, the performance gain

was less in the case of the PoD-S mode, since the PoD-S approach is efficient for the

child axis step queries.

Figure 4-5: Query run-times in logarithmic scale for queries Q2, Q3 in Table 4-2.

Figure 4-6: Query run-times in logarithmic scale for queries Q4, Q5 in Table 4-2.

0.006

0.215

0.003

0.065

0.012

0.227

0.001

0.046

0.001

0.01

0.1

1

Q2 Q3
POD-S

POD-S
SS

POD

POD
SS

Sec XM(10MB)

0.131

2.237

0.003

0.664

0.137

2.171

0.003

0.511

0.001

0.01

0.1

1

10

Q2 Q3

POD-S

POD-S
SS

POD

POD
SS

Sec XM(100MB)

0.001

0.012

0.001

0.007

1.123 1.156

0.001

0.005

0.001

0.01

0.1

1

10

Q4 Q5

POD-S

POD-S
SS

POD

POD
SS

Sec Mich(10MB)

0.001

0.147

0.001

0.132

11.96 12.29

0.001

0.099

0.001

0.01

0.1

1

10

100

Q4 Q5

POD-S

POD-S
SS

POD

POD
SS

Sec Mich(500MB)

Chapter 4. Navigating the XML Tree Using PoD System

95

4.7.4 Descendant Axis

The descendant axis is similar to the child axis except it returns all the nodes that are

enclosed by the context node. In other words, we can apply the same RT in the previous

subsection with a slight modification to the level condition; more details are provided in

Section 4.6.3. The same technique will be used for the Pod-S mode because the parent

approach (PR) cannot be used to evaluate this axis step.

Table 4-3 contains a modified version of the queries in Table 4-2. The queries in table

4-3 were used to evaluate the ‘Descendent’ axis step, using XML documents from both

benchmarks.

Table 4-3: Queries used to evaluate the descendant axis step.

Query Benchmark Query Statement

Q1
Using XM /site/closed_auctions/closed_auction/annotation/description/text/bo

ld'/Descendant::node()

Q2 Using XM /site/open_auctions/open_auction/Descendant::node()

Q3 Using Mich /eNest/eNest/eNest/Descendant::node()

Q4 Using Mich /eNest/eNest/eNest/eNest/eNest/eNest/eNest/Descendant::node()

QR3 Mich
benchmark query: simple twig query which involves Descendant

axis step. //eNest[@aSixtyFour=2]/Descendant::node()

The results shown in Figure 4-7 for XMark queries and Figure 4-8 for Michigan

benchmark queries, demonstrate the superiority of Dewey-based labels over the numeric

intervals approach.

Figure 4-7: Query run times in logarithmic scale for queries Q1 and Q2 in Table 4-3.

0.012

0.315

0.012

0.296

2.667

38.16

0.01

0.1

1

10

100

Q1 Q2

POD-S

POD

Range

Sec XM(10MB)

0.127

3.001

0.14

3.04

292.8

3600

0.1

1

10

100

1000

10000

Q1 Q2

POD-S

POD

Range

Sec XM(100MB)

Chapter 4. Navigating the XML Tree Using PoD System

96

Figure 4-8: Query run times in logarithmic scale for queries Q3, Q4 and QR3 in Table 4-3.

The numeric intervals approach again did not scale up well and three queries did not

finish within an hour (3600sec); Q2 against XMark (100MB) and Q3 and Q4 against the

Michigan benchmark (500MB). The efficiency of the PoD and PoD-S is due to the size

and structure of the labels since the range queries include calculations and comparison

on the same value (label id), which is a more expensive operation for intervals because

it has to calculate the range condition for two different values (pre and post).

We also ran the queries Q1, Q2, Q3 and Q4 using the SS approach; as expected, there

was significant performance enhancement comparing to PoD and PoD-S (RT)

techniques. The results are illustrated in Figures 4-9 and 4-10.

Figure 4-9: Query run times in logarithmic scale for queries Q1 and Q2 in Table 4-3.

1.272 1.299

0.485

1.207 1.194

0.595

2.079

38.45

312.3

0.1

1

10

100

1000

Q3 Q4 QR3

POD-S

POD

Range

Sec Mich(10MB)

14.28 14.7
7.96712.71 13.05 9.456

21.7

3600 3600

1

10

100

1000

10000

Q3 Q4 QR3

POD-S

POD

Range

Sec Mich(500MB)

0.012

0.278

0.001

0.135

0.012

0.267

0.001

0.115

0.001

0.01

0.1

1

Q1 Q2

POD-S

POD-S
SS

POD

POD
SS

Sec XM(10MB)

0.127

3.001

0.006

1.767

0.14

3.04

0.003

1.564

0.001

0.01

0.1

1

10

Q1 Q2
POD-S

POD-S
SS

POD

POD
SS

Sec XM(100MB)

Chapter 4. Navigating the XML Tree Using PoD System

97

Figure 4-10: Query run times in logarithmic scale for queries Q3 and Q4 in Table 4-3.

4.7.5 Following Axis

The ‘following axis’ step highly depends on the path expression length (i.e. node

depth), document global order and document size. To evaluate this axis step for Dewey

labels, it is required to return any label id that is greater than the upper limit label‘s

value for any descendent of the context node (i.e. id > xmc(idcn)). However, this is

challenging for the two-component Dewey labels, such as Pod-S, because the split

mode has to evaluate each record in the index after applying the xconcat function (see

Section 4.6.6).

We conducted this test using the queries in Table 4-4 and by applying the RT, which we

believe is the only feasible technique to evaluate this axis step because it is required to

find all label ids based on their lexicographic order (i.e. id > xmc(idcn)).

Table 4-4: Queries used to evaluate the following axis step.

Query Benchmark Query Statement

Q1
Using XM /site/closed_auctions/closed_auction/annotation/description/text/bo

ld'/Following::node()

Q2 Using XM /site/open_auctions/open_auction/ Following::node()

Q3 Using Mich /eNest/eNest/eNest/ Following::node()

Q4 Using Mich /eNest/eNest/eNest/eNest/eNest/eNest/eNest/ Following::node()

The results in Figures 4-11 and 4-12 demonstrate that this axis step is a challenge for

relational systems regardless of the labelling techniques. The numeric-based intervals

techniques did better than the Dewey labels due to the structure of the label (pre and

1.272 1.299

0.268 0.268

1.207 1.194

0.2 0.195

0.1

1

10

Q3 Q4

POD-S

POD-S
SS

POD

POD
SS

Sec Mich(10MB)

14.28 14.7

3.189 3.191

12.71 13.05

2.364 2.36

1

10

100

Q3 Q4

POD-S

POD-S
SS

POD

POD
SS

Sec Mich(500MB)

Chapter 4. Navigating the XML Tree Using PoD System

98

post), the query processor will be looking for ‘pre’ values that are greater than the ‘post’

value of the context node. As expected, the split mode was the slowest due to the need

to apply the xconcat() function to each label (Pid, Cid) record in the label columns.

Further, the run time highly depends on the context node’s location in the XML

document and whether the query will generate many duplicate nodes. We noticed that

this axis is very slow due to the use of the ‘distinct’ keyword, which is used in SQL

statements to remove duplicate records in the final results.

Figure 4-11: Query run times in logarithmic scale for queries Q1 and Q2 in Table 4-4.

Figure 4-12: Query run times in logarithmic scale for queries Q3 and Q4 in Table 4-4.

4.7.6 Following-sibling Axis

The ‘following-sibling axis’ can be seen as a mixture of two axis steps: child axis and

following axis steps. We compared PoD and intervals approaches using RT. However,

41.31

177.8

13.67

220.8

11.87

163.4

1

10

100

1000

Q1 Q2

POD-S

POD

Range

Sec XM(10MB)

3600 3600

1404

3600

1279
3600

1

10

100

1000

10000

Q1 Q2

POD-S

POD

Range

Sec XM(100MB)

1.272 1.299

0.268 0.268

1.207 1.194

0.2 0.195

0.1

1

10

Q3 Q4

POD-S

POD-S
SS

POD

POD
SS

Sec Mich(10MB)

77.57

3600

77.77

3600

71.39

3600

1

10

100

1000

10000

Q3 Q4

POD-S

POD

Range

Sec Mich(500MB)

Chapter 4. Navigating the XML Tree Using PoD System

99

the PoD-S was evaluated differently, taking advantage of the Pid value, which has to be

the same for sibling nodes.

We used a modified version of the queries in Table 4-4 by replacing Q2 with another

more appropriate query to reduce the effect of using the keyword ‘distinct’. Our

objective was to focus on evaluating the effect of labelling and optimisation techniques

on evaluating this XPath axis step. Further, the new query generates higher load when it

is used for evaluating reverse axes as in the following subsections. Table 4-5 shows the

queries that were used in this test, we translated the queries based on the discussion in

Section 4.6.7.

Table 4-5: Queries used to evaluate the following-sibling axis step.

Query Benchmark Query Statement

Q1
Using XM /site/closed_auctions/closed_auction/annotation/description/text/bo

ld'/Following-sibling::node()

Q2 Using XM /site/regions/namerica/item/name/ Following-sibling::node()

Q3 Using Mich /eNest/eNest/eNest/ Following-sibling::node()

Q4
Using Mich /eNest/eNest/eNest/eNest/eNest/eNest/eNest/ Following-

sibling::node()

The PoD-S mode showed outstanding performance in the figures above, even for large

XML documents, because of the efficient use of the parent component (Pid) in the split

label (Pid, Cid). The PoD label outperformed the numeric-based interval coding despite

the fact that both were evaluated using the RT. However, the intervals approach requires

three self-joins on the element_table to be able to validate a sibling relationship between

any two nodes. Therefore, it must first find the parent node that encloses the two sibling

nodes.

Figures 4-13 and 4-14 illustrate the results of the test for the Follwoing-sibling axis step

using different document sizes from two benchmarks.

Chapter 4. Navigating the XML Tree Using PoD System

100

Figure 4-13: Query run times in logarithmic scale for queries Q1 and Q2 in Table 4-5.

Figure 4-14: Query run times in logarithmic scale for queries Q3 and Q4 in Table 4-5.

4.7.7 Parent Axis

The ‘parent axis’ step is one of the reverse axis steps that navigates up the XML tree.

Meanwhile, each Dewey label contains the label values of its ancestors, including the

parent node, which makes Dewey labels more suitable and efficient to evaluate reverse

axis steps. We evaluated the parent axis for PoD, PoD-S and intervals approaches using

the same queries in Table 4-5 with the proper axis step ‘/Parent::node()’. The equivalent

SQL queries for PoD and PoD-S were rewritten based on the discussion in Section

4.6.8.

The results illustrated in Figures 4-15 and 4-16 confirm one of the advantages of Dewey

labels: the Dewey label of any given node includes the Pid of its parent and ancestor

0.009

0.072

0.018

0.162

45.57

116.9

0.001

0.01

0.1

1

10

100

1000

Q1 Q2

POD-S

POD

Range

Sec XM(10MB)

0.09

0.664

0.205

1.469

3600 3600

0.01

0.1

1

10

100

1000

10000

Q1 Q2

POD-S

POD

Range

Sec XM(100MB)

0.001

0.005

1.868
3.2522.838

77.39

0.001

0.01

0.1

1

10

100

Q3 Q4

POD-S

POD

Range

Sec Mich(10MB)

0.001

0.068

19.81

96.3
30.68

3600

0.001

0.01

0.1

1

10

100

1000

10000

Q3 Q4

POD-S

POD

Range

Sec Mich(500MB)

Chapter 4. Navigating the XML Tree Using PoD System

101

nodes. Applying the xp() function to the label id of the context node can retrieve the id

of the parent node, which will result in an equijoin rather than range join on the (pre,

post) values. Moreover, the Dewey labels scaled up very well, which was not the case

with the numeric-based interval code.

Figure 4-15: Query run-times in logarithmic scale for Q1 and Q2 in Table 4-5.

Figure 4-16: Query run times in logarithmic scale for Q3 and Q4 in Table 4-5.

4.7.8 Ancestor Axis

The ‘ancestor axis’ can be represented as a recursive parent axis; however, this would

add complexity to the way in which it can be handled in relational systems. We ran the

first test to evaluate the efficiency of using the RT to address this axis step.

We used the same query set as those in the previous subsection, only modifying the axis

step to ‘/Ancestor::node()’. The results in Figures 4-17 and 4-18 illustrate the

0.003
0.0060.006

0.009

42.35
30.64

0.001

0.01

0.1

1

10

100

Q1 Q2

POD4-S

POD4

Range

Sec XM(10MB)

0.028
0.09

0.028
0.071

3600 3600

0.01

0.1

1

10

100

1000

10000

Q1 Q2

POD4-S

POD4

Range

Sec XM(100MB)

0.001 0.0010.001
0.002

1.068

38.41

0.001

0.01

0.1

1

10

100

Q3 Q4

POD4-S

POD4

Range

Sec Mich(50MB)

0.001

0.008

0.001

0.006

11.578

3600

0.001

0.01

0.1

1

10

100

1000

10000

Q3 Q4

POD4-S

POD4

Range

Sec Mich(500MB)

Chapter 4. Navigating the XML Tree Using PoD System

102

advantages of the Dewey labels over the numeric-based intervals encoding, even though

we used the same RT for both labelling schemes. The PoD was faster than PoD-S due to

the need to apply the xmc() function and the xconcat() function to the two-component

labels. Once again, the numeric-based intervals encoding did not scale up well for larger

documents and longer path expressions; Q2 and Q4 had to be aborted after one hour of

execution.

Figure 4-17: Query run times in logarithmic scale for Q1 and Q2 in Table 4-5 using the

ancestor axis.

Figure 4-18: Query run times in logarithmic scale for Q3 and Q4 in Table 4-5 using the

ancestor axis.

We also evaluated our proposed optimisation technique for this axis step, discussed in

Section 4.6.9, which is based on using the schema summary in the XML_Path table

together with the XGP function xgp().

1.354
2.131

0.876

1.098

42.21

30.53

0.1

1

10

100

Q1 Q2

POD-S

POD

Range

Sec XM(10MB)

141.2
214.9

91.6
107.3

3600 3600

1

10

100

1000

10000

Q1 Q2

POD-S

POD

Range

Sec XM(100MB)

0.002

0.071

0.001

0.06

1.071

38.43

0.001

0.01

0.1

1

10

100

Q3 Q4

POD-S

POD

Range

Sec Mich(50MB)

0.002

5.575

0.001

4.5
11.52

3600

0.001

0.01

0.1

1

10

100

1000

10000

Q3 Q4

POD-S

POD

Range

Sec Mich(500MB)

Chapter 4. Navigating the XML Tree Using PoD System

103

As illustrated in Figures 4-19 and 4-20, our new optimised technique outperformed the

traditional RT for PoD and PoD-S, especially when the path expression is long or when

the location of the context node is deep down the XML tree. The performance gain was

significant in large XML documents; it was more than 900 times faster in the XMark

100MB document and more than 100 times faster in the Michigan benchmark 500MB

document.

Figure 4-19: Query run times in logarithmic scale for Q1 and Q2 in Table 4-5 for the ancestor

axis using XGP function.

Figure 4-20: Query run times in logarithmic scale for Q3 and Q4 in Table 4-5 for the ancestor

axis using XGP function.

1.354

2.131

0.018 0.018

0.876

1.098

0.012 0.012
0.01

0.1

1

10

Q1 Q2

POD-S

POD-S
XGP

POD

POD
XGP

Sec XM(10MB)

141.2
214.9

0.143 0.146

91.6
107.3

0.093 0.109

0.01

0.1

1

10

100

1000

Q1 Q2

POD-S

POD-S
XGP

POD

POD
XGP

Sec XM(100MB)

0.002

0.071

0.002

0.005

0.001

0.06

0.001

0.004

0.001

0.01

0.1

1

Q3 Q4

POD-S

POD-S
XGP

POD

POD
XGP

Sec Mich(50MB)

0.002

5.575

0.002

0.035

0.001

4.5

0.001

0.025

0.001

0.01

0.1

1

10

Q3 Q4

POD-S

POD-S
XGP

POD

POD
XGP

Sec Mich(500MB)

Chapter 4. Navigating the XML Tree Using PoD System

104

4.7.9 Preceding Axis

This axis step can be evaluated using the RT as discussed in Section 4.6.11. This axis

step is similar to the ‘following’ axis step, which is again considered a challenge for

Dewey-based labels due to the nature of the Dewey labels and the need to apply

functions to each record in the label id column. We tested the RT on PoD, PoD-S and

intervals approach using the same queries in Table 4-5 with only modifying the axis

step to ‘/Preceding::node()’. The results in Figures 4-21 and 4-22 demonstrate a slow

response time for all labelling schemes with a slight advantage for the numeric-based

intervals approach.

Figure 4-21: Query run times in logarithmic scale for Q1& Q2 in Table 4-5 for preceding axis.

Figure 4-22: Query run times in logarithmic scale for Q3& Q4 in Table 4-5 for preceding axis.

232.1

49.69

236.8

47.78

161.7

36.27

1

10

100

1000

Q1 Q2

POD-S

POD

Range

Sec XM(10MB)

3600 36003600
36003600 3413

1

10

100

1000

10000

Q1 Q2

POD-S

POD

Range

Sec XM(100MB)

4.167

167.6

4.249

151.6

3.813

127.7

1

10

100

1000

Q3 Q4

POD-S

POD

Range

Sec Mich(10MB)

69.81

3600

72.73

3600

51.32

3600

1

10

100

1000

10000

Q3 Q4

POD-S

POD

Range

Sec Mich(500MB)

Chapter 4. Navigating the XML Tree Using PoD System

105

Neither of the three approaches were able to support this axis step against large XML

documents. However, the main reason for this problem is using the keyword ‘distinct’,

which is used to remove a very large number of duplicate nodes in the final result sets.

We cannot see a feasible solution without modifying the database system kernel to be

able to handle this axis step as well as the ‘following’ axis step.

4.7.10 Preceding-sibling Axis

This axis is almost identical to the following-sibling axis step with one modification to

the condition on the siblings order. We used the techniques discussed in Sections 4.6.11

and 4.6.12 to evaluate PoD, Pod-S and the intervals approaches. The same set of queries

were used by only modifying the axis step to ‘/Preceding-Sibling::node()’.

Figure 4-23: Query run times in logarithmic scale for Q1 and Q2 for preceding-sibling axis.

Figure 4-24: Query run times in logarithmic scale for Q3 and Q4 for preceding-sibling axis.

0.006

0.018
0.022

0.031

42.6

9.001

0.001

0.01

0.1

1

10

100

Q1 Q2

POD4-S

POD4

Range

Sec XM(10MB)

0.103 0.159
0.202

0.315

42.6

3600

0.1

1

10

100

1000

10000

Q1 Q2

POD4-S

POD4

Range

Sec XM(100MB)

0.001

0.007

0.621

1.9721.602

40.2

0.001

0.01

0.1

1

10

100

Q3 Q4

POD4-S

POD4

Range

Sec Mich(10MB)

0.001

0.098

6.565

85.26

17.287

3600

0.001

0.01

0.1

1

10

100

1000

10000

Q3 Q4

POD4-S

POD4

Range

Sec Mich(500MB)

Chapter 4. Navigating the XML Tree Using PoD System

106

As expected, the PoD-S showed an outstanding performance (see Figures 4-23 and 4-

24) due to the efficient use of the parent component Pid which is part of the label id

(Pid, Cid); the candidate nodes must have equal Pid values. The numeric-based interval

approach suffered a very slow run time due to the fact that it is very expensive to

validate sibling relationships among XML nodes using this encoding method.

4.8 Conclusion

Optimising XML query for relational-based systems has been the recent focus of

researchers in the industry. As we have already discussed new ideas to improve the

performance of XML queries, in this chapter we focused on optimising the XPath axis

steps because they are the basic building unit of any XML query. Our techniques are

based on Dewey label identifiers, which have not been covered in detail in the literature.

Our techniques can be applied to any Dewey-based labelling scheme even though the

best results have been achieved using our version of Dewey labels: PoD-S.

The evaluation tests have shown that our Dewey-based PoD-S labelling technique

(which is based on splitting the label into two components [parent and child] in Dewey

format) has significantly improved the performance of the execution of XML queries. In

addition, it outperformed the typical Dewey-based one-component label scheme.

Further, PoD-S approach can be applied to other Dewey-based labelling schemes

without sacrificing any of the Dewey label features (for example, supporting dynamic

XML documents).

The tests also showed that our optimisation techniques for PoD and PoD-S, which

exploit the schema summary in the XML_Path table, combined with a set of functions

(such as xgp() function), have outperformed the traditional RTs for most of the XPath

axis steps. We can conclude that the Dewey-based labels in general, and the PoD-S in

particular, are far more efficient than the traditional number-based interval approach.

However, the ‘following’ and the ‘preceding’ axis steps are still considered quite

challenging to the relational systems due to a large number of duplicate nodes in the

final result for some queries. We believe the run time for these two axis steps can be

improved by modifying the relational system algorithms for handling duplicate values.

107

Chapter 5: Optimising XML Structural-join Queries

XQuery, the W3C’s standard query language for XML data, is a powerful declarative

query language for XML data. XQuery goes beyond XPath in its ability to build

complex queries that can manipulate the XML document structure and content.

However, supporting and/or implementing these new features in relational databases

require developing new algorithms and optimisation techniques that can efficiently

support the tree structural nature of XML data. In this chapter, we investigate

developing optimisation rules that make the relational systems more tree-aware without

the need to modify the database kernel. Further, we discuss optimisation techniques for

the expressive yet expensive structural-join queries using off-the-shelf-relational

database. We report on extensive experimental studies including an evaluation study

between our approach and established native and modified-relational XML database

systems.

5.1 Introduction

The efficient storage and querying of XML data have become an important issue as the

XML and related technologies, such as XQuery, have gained popularity in recent years.

Effective query optimisation is crucial to obtaining good performance from an XML

database. A join is frequently the most expensive physical operation in evaluating a

relational query. Thus, selection of join order is a critical component for optimising a

relational query. This observation is true for XML query optimisation as well. A join in

the relational context is usually a value-based join, which involves two tables and is

based on the values of two columns, one in each table. In the XML context, even though

there are value-based joins, structural joins occur much more frequently. A structural-

join query focuses on the containment relationship (i.e. ancestor-descendant or parent-

child) of the XML elements to be joined. The join condition is specified not on the

value of the XML elements, but on their relative positions in the XML document.

An XML data model is quite different from relational data model. Queries on XML data

have some features that are different from queries on the relational data. Therefore, the

query optimisation techniques in the XML context are also different.

Chapter 5. Optimizing XML Structural Join queries

108

While the state-of the-art approaches in both native and relational-based systems

involve new join algorithms and indexing techniques that make them powerful and

efficient [Al-Khalifa et al., 2002; Boncz et al., 2006; Bruno et al., 2002; May et al.,

2004; Wu et al., 2003], some of these approaches are not directly applicable to the

relational database systems. Changing the relational system’s kernel is hardly an option

for many RDBMS vendors.

In this chapter, we discuss the various approaches to optimise XML queries with special

focus on relational-based XML databases. We also highlight potential working areas to

enhance XML query run time. Further, we present the PoD approach to utilise the

current relational storage and indexing technologies to make off-the-shelf relational

database more tree-aware by introducing new technique to select the most efficient join

order. Moreover, we present PoD approach to enhance the performance of Twig queries

by reducing the number of relations (i.e. tables) that are involved in join operations.

We report on query performance tests using XML benchmarks to evaluate the efficiency

of our complete approach and compare the results with those of dedicated XML

management systems (i.e. native systems and modified relational-based systems).

5.2 XML Query Optimisation Techniques

The efficiency of querying XML documents depends primarily on two factors: first, the

way in which the XML documents are stored and indexed. Secondly, efficiency also

depends on the query semantics and structure. Query optimisation techniques mainly

target these two areas; however, query optimisation can occur at different levels starting

from the query itself, and all the way to the physical storage structure of the data.

In general, the query optimisation is carried out based on:

 Query context and information obtained from the query itself;

 Views to which the queries are addressed;

 Integrity constraints;

 Schema of data, when it exists; and

 Data statistics that can be used in cost-based plan optimisation.

Chapter 5. Optimizing XML Structural Join queries

109

However, XML query optimisation techniques can also be platform or storage layout

dependent; the two main platforms available for storing XML documents are the native

and relational storage engines.

In this section, we discus optimisation directions that apply to both platforms as well as

some of the platform-dependent optimisation directions.

5.2.1 Optimisation Based on Query Rewriting

Many user queries, web-based queries in particular, are not in the optimal format for

many reasons; one of them can be lacking knowledge of the data schema and structure.

Therefore, the need arises for rewriting the user queries into equivalent queries that will

produce the same results. However, the equivalent queries will have more efficient

execution plans, in most cases, since other optimisation rules can be applied to the

equivalent queries. The rewriting process happens before the query being translated into

a logical plan.

XQuery rewriting can take place at two different levels: XQuery core level and

algebraic level. The XQuery core level makes use of the formal semantic approach

[Draper et al., 2007], which translates the query into more functional language

representation where existing optimisation techniques for functional languages can be

applied.

We can summarise the major areas that are covered by the rewriting process:

 XPath Rewriting: XPath is used in XQuery to identify the XML document nodes that

are targeted in the query. Rewriting aims to remove complexity by including more

explicit location steps. Or by removing reverse axis (i.e. parent and ancestors) since

some systems cannot handle these types of axes (for example, stream data-processing

systems) [Olteanu et al., 2002].

 Order and duplicate removing: using formal semantic, XPath is translated to an

XQuery core expression such that every step in the XPath is followed by a distinct

doc-order operator. This maintains document order and removes duplicate but can be

a very expensive operation and slow down system performance [Al-Khalifa et al.,

2002; Fernandez et al., 2005].

Chapter 5. Optimizing XML Structural Join queries

110

 Join Reordering: widely used techniques in databases that use algebra with joins

[May et al., 2004; Wu et al., 2003]. For XML it requires the uses of order-preserving

joins. However, these types of joins are associative but not commutative, which

reduces the number of alternative plans that can be generated by the optimiser.

 Plan Simplification: use predefined equivalence rules to simplify the plan by

pruning, for example some obsolete input columns and/or replace a join with a

projection [Grust, 2005].

5.2.2 Implementation of New Join Operators

Due to the differences between the relational data model and the hierarchical XML data

model, the use of the traditional relational query techniques will not efficiently address

queries against XML data. Modifications, new algorithms, and new query operators

have been proposed for both native and relational-based XML management systems.

Researchers in academia and industry have been working on optimising XML queries in

native systems by developing new operators and new merge-join algorithms similar to

those already exist in the relational technology. However, the new operators and join

algorithms are designed from scratch to be more tree-aware. The DDO operator that

forces distinct-decorder (document order) has been introduced to comply with XQuery

formal semantics [Fernandez et al., 2005]; the new operator ensures that intermediate

results are sorted in document order and duplicate free. However, applying the DDO

function after each step may be an expensive operation. A special optimisation plan is

also used to decide when the DDO operator needs to be applied, which will enhance the

query run time and ensure the correctness of the results.

Several new stack-based join algorithms have been proposed to handle structural and

twig joins efficiently [Al-Khalifa et al., 2002; Bao et al., 2008; Jiang et al., 2007]. The

twig-join techniques typically decompose a query into a set of binary patterns or single

paths and then search for matches for these individual pattern/paths. Finally, these

matches are stitched together to form the answers to the twig query. Most if not all of

these approaches use stacks to capture the patterns and they all aim to reduce the size of

intermediate results. Another twig-join approach is based on combining a new labelling

technique based on Dewey labels and a new twig-join algorithm [Lu et al., 2005]. The

Dewey labels are extended to include information about the tag name and element

Chapter 5. Optimizing XML Structural Join queries

111

order. It is a tree-aware labelling scheme that is used in a new join algorithm TJ Fast to

reduce the cost of the twig-join queries. The TJ Fast can skip a significant number of

nodes making use of the extended Dewey labels. However, this technique requires extra

storage space (30 per cent increase). Further, it depends on the presence of a document

schema.

New operators and join algorithms have also been proposed for relational-based XML

storage systems to enhance XML document support within existing RDBMS [Boncz et

al., 2006; Dehaan et al., 2003; Grust et al., 2004; Li and Moon, 2001]. The Staircase

join algorithm is a tree-aware join approach which requires modification to the RDBMS

kernel to be aware of the tree nature of the XQuery [Grust et al., 2003]. The Staircase

join is based on the numeric interval labelling technique that partitions the document

around any given context node into four areas: preceding, descendent, ancestor, and

following. The pre/post-plane can be used to optimise XPath queries:

 Using pruning: remove redundant nodes when evaluate each step.

o Example: a node v2 is a potential descendant of node v1 if the following holds:

v2.pre <= v1.post+h and v2.post>= v1.pre+h

Where h: is the tree height.

Pre: is the node’s order when visited for the first time.

Post: is the node’s order after visiting all its descendant nodes.

 Using staircase join rather than normal join; only join potential nodes based on the

valid partitions for that query and can be enhanced by skipping empty regions.

Further, the major relational database vendors have introduced new XML data type,

functions, and operators to support XML documents [Beyer et al., 2006; Liu et al.,

2005; Pal et al., 2005b]. The following sections contain more detailed discussion about

the XML query support and optimisation in relational database systems.

5.2.3 New Labelling and Indexing Techniques

Labelling XML document nodes were initially proposed to capture XML document

order. However, recent labelling techniques such as containment labelling and Dewey-

based labelling schemes can also provide efficient support for structural queries.

Chapter 5. Optimizing XML Structural Join queries

112

However, these labelling techniques have limitations because they cannot efficiently

support all types of structural queries. The containment labels can support ancestor-

descendent relationship but not sibling or parent-child relationships [Yoshikawa et al.,

2001]. Enhancements were proposed such as storing the level information, which would

provide support for more XPath axis steps such as child axis step [Li and Moon, 2001;

Zhang et al., 2001], and ‘Preceding’ and ‘Following’ axis steps [Grust et al., 2004].

However, that will slightly increase the storage requirements and still cannot address the

requirements of dynamic XML documents.

Conversely, the Dewey labels can efficiently support the parent-child relationship

[O'Neil et al., 2004; Tatarinov et al., 2002]; however, using functions to process labels

may cause the inefficient use of current relational indexing technology that is available

in off-the-shelf relational database systems.

Neither technique on its own can provide efficient support for the complex structural

queries, such as twig queries and chain structural queries. Other labelling and indexing

approaches were proposed to encode more data in the label id itself, either tag names or

data values, to provide more information about the document structure and data values

[Chen et al., 2007; Silberstein et al., 2005; Weigel et al., 2005; Xu et al., 2009].

However, these techniques increased the level of complexity and reduced efficient

support for dynamic XML documents. Further, they required more storage space than

traditional labelling schemes and it might be difficult task to implement them in

relational database systems.

Recently, researchers became more aware of importance of other document structural

information, which is called document schema summary [Moro et al., 2008]. This

information needs to be integrated with the labelling approach to develop more efficient

techniques to support twig queries without sacrificing the space, which is part of our

contribution in this chapter.

5.2.4 Effect of Indexing Data Values

Many XML queries include predicates on values, which represent a challenge for XML

data management systems. However, indexing the data values is a widely used approach

[Pal et al., 2004]. In some cases, the index size might become a concern that affects

performance. We believe this part is highly application dependent and it would be more

Chapter 5. Optimizing XML Structural Join queries

113

effective if the most frequently queried element values are indexed. Further, more than

one index might be also needed depending on the values that are covered by that index.

Partitioning the data value table based on the tag name (horizontal partition) can also

help improving query performance, and that has been proved in some studies [Florescu

and Kossmann, 1999].

Data value indexing is beyond the scope of this thesis.

5.2.5 XML Schema to Relational Schema Mapping Techniques

Motivated by the reliability and capabilities of the relational systems that have evolved

over three decades, many research efforts have focused on storing XML data in

RDBMS. Recently, the major RDBMS vendors have introduced the new ‘XML’ data

type, which is similar to the CLOB and BLOB data types [Beyer et al., 2006; Lee,

2003; Pal et al., 2005b]. The new data type allows storing an XML document as one

record in a traditional relational field, which is considered as the most effective method

to retrieve the whole original document. However, to effectively answer queries against

data within the document, the process of shredding the XML document and labelling its

individual nodes still cannot be avoided.

The approaches based on shredding XML documents can be classified into two major

categories:

 Model-mapping approach: database schemas represent constructs of the XML

document model. In this approach, a fixed database schema is used to store the

structure of all XML documents.

 Structure-mapping approach: database schemas represent the logical structure

(DTDs [Bray et al., 2008] or XSchema [W3C, 2004] if they are available) of target

XML documents. In a basic design method, a relation is created for each element

type in XML documents. In the structure-mapping approach, a database schema is

defined for each XML document.

5.2.5.1 Model-Mapping (Fixed Relational Schema)

The basic Edge approach [Florescu and Kossmann, 1999] is the most common

approach; it is a simple approach that places all the edges in an edge-labelled XML data

Chapter 5. Optimizing XML Structural Join queries

114

tree into a single relational table. The schema of the basic Edge approach would have

the following definition:

Edge = (Label: String, Source: Integer, Target: Integer, Flag: String,

Value: String)

The pair (Source, Target) represents the two end points of an edge. Label represents the

tag name, whereas Flag and Value give the type and value, respectively, of the target

node of an edge. The Edge labelling technique has limited capabilities and can

efficiently support only parent-child queries ‘/’ and sibling queries.

Node1.Target = Node2.Source (Parent-Child Relationship)

Node1.Source = Node2.Source (Sibling Relationship)

Despite that fact that other labelling techniques can significantly enhance the Edge

approach’s capabilities to answer ancestor-descendent (‘//’) and twig queries; its major

drawback is that all nodes are stored in one table, which means that the evaluation of

XML queries would involve accessing a large amount of unrelated data. Further, it

requires a high number of join operations to process some queries; for example, the

number of required join operations is the number of nodes (edges) in a twig query

minus 1.

The Binary approach was also evaluated in Edge study; in the binary approach, every

edge name (‘Label’) is stored in its own table. This means only related data would be

included during query evaluation. The evaluation tests for the basic Edge approache

showed that binary approach outperformed the one-table Edge approach [Florescu and

Kossmann, 1999]. However, reconstructing the original XML document or major parts

of it would be very expensive process.

To reduce the number of join operations, a path-based approach was proposed in

[Yoshikawa et al., 2001]. It stores all the possible path expressions in a given XML

document in a separate relational table. The path expression for any node is the

concatenated labels, tag names, from the root node to the context node separated by ‘/’.

Each path expression is allocated a unique path id that will be used as a foreign key in

the Edge table to replace the ‘Label’ field. Further, it stores the actual data instances of

elements, attributes, and text nodes in three separate tables. Various combinations of the

Chapter 5. Optimizing XML Structural Join queries

115

Path table and other data tables have been proposed [Jiang et al., 2000; Schmidt et al.,

2000]. This approach can significantly reduce the number of required joins for twig

queries and queries that involve ‘//’ axis. However, it may not return correct results for

recursive XML schema.

An enhanced Path approach was proposed in Pal et al. [2004], which is based on using

reversed path expressions. The reversed path approach can support recursive XML

schema.

5.2.5.2 Structure-Mapping (DTD Dependents)

In many practical applications, XML data also conforms to an XML ‘schema’ (such as

DTD or XSD). The existence of such schema information provides an opportunity for

more compact storage and efficient querying of XML data [Tian et al., 2002]. Unlike

the schemaless approaches (such as Edge and Path), which generate the same relational

schema for all types of XML data regardless of their structure, the Structure-Mapping

approach generates a different relational schema for a different XML document schema

(i.e. different DTDs) [Shanmugasundaram et al., 1999].

This technique is the most efficient technique to support data-centric queries since it

will require the least number of I/O operations among all other approaches as well as

least storage size. This approach relies on the existence of the XML schema (DTD or

XSchema); the XML schema is analysed and the required and optional items are

identified. The idea is to inline as much as possible child nodes with their parent nodes

as one tuple in the same table. After retrieving the parent node, retrieving its attribute

nodes and child leaf nodes can happen at minimal cost since they will be stored on the

same physical page. The Other child element nodes will overflow into other tables with

references to the parent nodes [Deutsch et al., 1999; Lee et al., 2003;

Shanmugasundaram et al., 1999].

This technique is more suitable for XML documents that were originated from

relational data, or for applications with more structured data rather than semi-structured

data with the existence of the XML schema. Further, this technique is highly dependent

on the XML schema and any simple change to the XML schema may trigger significant

changes to the relational schema that might affect the optimisation methods.

Chapter 5. Optimizing XML Structural Join queries

116

The cost of reconstructing the original XML document from the shredded tables will be

much higher than the first approach; however, this approach is the best approach to take

full advantage of the features that exist in the powerful relational systems

5.2.5.3 XML Data Type

XML data type, similar to CLOB data type, is a very recent data type that allows storing

the whole XML document in its native format as one record in relational database

systems. The main advantage of this technique is the efficient retrieval of the original

XML document, since no recomposing or rebuilding is required.

Special indexes can be built on the new data type, which support document-centric

queries and some data-centric quires without the need to parse the original XML

document during run time. However, it is hard to cover a broad range of queries without

going back to the document and parse it during run time.

The main concern with this technique is the storage requirements; the storage size

would be twice if not more than the size of the original XML documents. Further,

updating operations can be very expensive, since any slight modification to the original

XML document requires the whole XML document to be restored in the database.

This technique is more suitable for small-size XML documents in applications where

the whole document or large portions of it are more likely to be retrieved, and where the

full XML document can be loaded in memory at minimal cost.

Recently, major database vendors are providing more than one technique, including the

shredding option, to allow users chose the most appropriate storage option for their

applications [Oracle, 2009].

5.3 PoD Relational Schema

We have discussed in the background section the different approaches to build a

relational schema for an XML document; the fixed-map approach has some advantages

over the structural-mapping approach. The fixed-map approach reduces the cost of

supporting dynamic XML documents and applications where the XML schema is absent

or not required.

Chapter 5. Optimizing XML Structural Join queries

117

The focus of this research project is to enhance the efficiency of relational-based XML

database systems by introducing more efficient labelling techniques and by introducing

more efficient query optimisation techniques, which can be portable as well as

integrated with the existing relational technologies.

We have followed the fixed-map approach, which allows us to evaluate the effect of our

proposed techniques directly and isolate the effect of other factors like having the

ultimate relational schema design.

We used our XML_Path table, discussed in Chapter 4, combined with two mapping

approaches for the various tests in this thesis. First, we used the Edge technique where

all nodes are stored in one table. Second, we created a table for each node type (for

example, Elements, Attributes and Text).

5.3.1 The Edge Approach

The Edge approach is a simple approach that has been widely used by researchers, as

we discussed earlier in Section 5.2.5.1. Following is the schema definition for this

approach:

Edge for PoD = {id: binary string, path_id: integer, value: string}

Where: the ‘id’ is the Dewey label id in PoD format.

Path_id: is an integer value to distinguish the path expression of each node; path _id is

foreign key from the XML_Path relation. A B-tree index is built on the (id) column as a

primary index.

And for the Split-Mode

Edge for PoD-S = {Pid: binary string, Cid: binary string, path_id:

integer, value: string}

Where: ‘Pid’ and ‘Cid’ are the parent and child (self) components of the Dewey label id.

A B-tree index is built on the (Pid, Cid) columns as the primary index.

Chapter 5. Optimizing XML Structural Join queries

118

Figure 5-1 shows the complete enhanced relational schema for this mapping approach.

Figure 5-1: Edge relational schema in PoD and PoD-S.

5.3.2 The Node Type Approach

Having all nodes in one table may have some disadvantages for the query execution and

mainly for value-join queries since a large amount of irrelevant data might be involved.

Storing each node type in a separate table would help reduce the effect of that problem

[Yoshikawa et al., 2001]. However, the ultimate solution for this issue would be storing

each node name (tag) or each path_id in a separate relation. In this approach, we used

our XML_Path table with the following relations:

Element = {id: binary string, path_id: integer}

Text = {id: binary string, path_id: integer, value: string}

The element table contains only parent nodes, and the Text table contains text nodes,

leaf nodes and their values.

Attribute = {id: binary string, path_id: integer, value: string}

The primary index is based on the id column, and the path_id is a foreign key in the

three tables. Figure 5-2 shows the complete relational schema for this approach.

Figure 5-2: Node type relational schema in PoD.

Path_id Path Expression Level Node_Type Occurrence

XML_Path

id Path_id

Element

id Path_id Value

Attribute

id Path_id Value

Text

Path_id Path Expression Level Node_Type Occurrence

XML_Path

id Path_id Value

Edge: PoD

Pid Path_id Value

Edge: PoD-S

Cid

Chapter 5. Optimizing XML Structural Join queries

119

The same schema is applied to PoD-S with a slight modification: the id field is replaced

by two columns: ‘Pid’ and ‘Cid’.

5.4 Finding Optimal Join Order in the PoD System

Several studies have reported that some XML queries run very slowly in relational-

based management system even though the query was expected to run much faster than

that. Query analyses have shown that in some cases the query optimiser and processor

in the relational database system generates an execution plan with a certain join order

that would generate a large amount of intermediate results for some queries, which

means more I/O operations and slower query run. The query processor’s behaviour can

be explained within the scope of the fundamental differences between the two data

models. Figure 5-3 shows how RDBMS may generate a join order that might not be the

optimal join order and can result in a slower execution plan.

Figure 5-3: Join order that might result in a slower execution plan.

It has become very well known that the relational systems need to be more aware of the

tree data model of XML data. One of the proposed solutions is to modify the relational

systems kernel to be more tree-aware by introducing new operators and modifying the

join algorithms [Grust et al., 2003]. The other approach, which is the motivation for this

thesis, is developing techniques that would bridge the gap between the two data models

without the need to change the relational systems kernel.

We have observed that forcing a certain join order can achieve consistent high

performance query runs without the need to change the database system kernel. Forcing

certain join orders can be considered to make the relational system a more tree-aware

S2: α Path

XML_Path

Element

Table

Element

Table

XML_Path

S3: Path_id S4: Path_id

S1: α Path

S5: label id

S6: Results

Chapter 5. Optimizing XML Structural Join queries

120

system. In this section, we discuss rules that can be applied to determine the join order

that will produce the best query performance in most cases, if not in all.

The basic idea here is to reduce the number of I/O operations and ensure efficient use of

the indexes. We need to make efficient use of the label id index in particular, which also

represents the document structure and inter-nodes relationships. This is quite important

in the case of twig quires and complex queries that contain predicates.

The flowchart in Figure 5-4 shows a more efficient join order for a typical twig query

that has a faster execution plan in most cases. Using this join order, the relational

systems become more tree-aware without the need to change the systems kernel.

Figure 5-4: A more efficient join order for XML queries.

Figure 5-4 shows the join flow for a simple twig-join, which is represented in stages

from S1 to S5 for clarification, as follows:

S1: one path expression is evaluated from the XML_Path table.

S2: the results are joined with the first instance of element_table using the foreign key

path_id.

S3: the first instance of element_table is joined with the second instance of

element_table (self-join) using the label id to evaluate the values for the second path

expression (for example, find all siblings and find parent).

S5: Results

XML_Path

Element

Table

Element

Table

XML_Path

S2: Path_id
S3: label id

S4: Path_id

S1: α Path

Chapter 5. Optimizing XML Structural Join queries

121

S4: the second instance of element_table is joined with the second instance of

XML_Path table using the foreign key path_id to include only the nodes that match the

second path expression.

However, some other factors should be taken into account when that join order is

decided:

Which path expression should we start with?

What will happen if there is a value predicate?

What order should we have if we intend to use xgp function?

The XML_Path table, which serves as a schema summary or data guide, provides

extended information about each node like level and occurrence, which can be used to

make more appropriate decisions in terms of join order. We suggest that the XML query

should be broken down to its basic path expressions and consult the XML_Path table

for each path expression to gather information like existence, level, number of

occurrence and relationship with other path expressions in the query. Based on this

information, we can drop redundant path expressions, and simplify the query by

pushing operators and functions down or up the tree. This phase should precede the

query translation. Following are rules that can be used to decide the join order:

Proposition 5-1: For a twig query of two path expressions with no value predicates,

we start with the path expression of less occurrence value.

Proposition 5-2: For a twig query of two path expressions with a value predicate

and recursive schema, we start with evaluating the data value if there is a data

value index and then join back on the XML_Path table before continuing with the

rest of the tables. In the absence of data value index, proposition 5-1 applies.

Proposition 5-3: The path expression of the common ancestor node that provides

the level information for xgp function needs to be evaluated before the element

table on which it will be applied.

Chapter 5. Optimizing XML Structural Join queries

122

Example 5-1: return the book titles for all books that were published in 2005:

/BookList/Book[Year = 2005]/Title

We can identify three path expressions as follows:

P1 = /BookList/Book

P2 = /BookList/Book/Year

P3 = /BookList/Book/Title

From the query semantics, we can discard P1 because we can ensure that P2 and P3 are

sibling nodes by evaluating their label id values. Moreover, based on Propsition 5-2, we

start with P2. The full translation and join order is as follows:

Select Straight_Join t3.results

From XML_Path t2, element_table t1, element_table t3, XML_Path t4

Where t2.path like ‘/BookList/Book/Year’

 and t4.path like ‘/BookList/Book/Title’

 and t2.path_id = t1.path_id

 and t4.path_id = t3.path_id

 and t1.value = ‘2005’

 and t1.Pid = t3.Pid

Some special considerations need to be taken into account if the XML document is

recursive, or if it contains similar tag names at different levels and locations. This

implies a slight change to the join order to start with the value index rather than the

path_id index as follows:

From element_table t1, XML_Path t2, element_table t3, XML_Path t4

5.5 PoD Approach for Optimising Twig Queries

The XQuery language is as powerful as the SQL query language that allows complex

queries beyond the basic XPath axis steps queries. One of the major types of XML

queries is the twig-join queries, which search for the occurrence of certain tree patterns

Chapter 5. Optimizing XML Structural Join queries

123

rather than individual nodes. The twig-join queries are very expensive to evaluate since

they normally produce large intermediate results.

Figure 5-5: Sample XML twig queries that search for the occurrence of the shaded node

patterns.

The shaded node patterns in Figure 5-5 represent sample twig-join queries; the pattern

(C, D, E) in the tree on the left side represents a simple but common twig-join query

that contains parent-child and sibling relationships, in which the pattern (G, H, I) in the

tree on the right side represents the twig-join query with ancestor-descendent

relationships. Moreover, the twig-join queries can be a mixture of both cases and they

may include more branches in some complex queries.

As mentioned earlier in this chapter, new join algorithms have been proposed to handle

and improve the performance of the Twig-join queries in native XML management

systems and relational database systems. However, these techniques require changes to

the relational systems that might not be an easy option for many database vendors and it

might affect portability.

In this section, we present a technique that will substantially improve the execution of

twig queries in off-the-shelf relational systems and without the need to modify the

database system kernel.

5.5.1 Sibling-based Twig Queries

In many real applications, it might be a common query to find a certain XML document

element that has another sibling element with certain conditions. In other words, for

F B

A

C

D E

A

G

H I

Chapter 5. Optimizing XML Structural Join queries

124

node E to be included in the result set, another node D must exist in which the parent’s

id of E equals the parent’s id of D.

Applying the range encoding technique for Dewey labels will result in three costly joins

on the element_table, as follows:

Select t5.results

From element_table t1, xml_path t2, element_table t3, xml_path t4,

element_table t5, xml_path t6

Where t2.path like ‘//C’

 and t4.path like ‘//C/D’

 and t6.path like ‘//C/E’

 and t2.path_id = t1.path_id

 and t4.path_id = t3.path_id

 and t6.path_id = t5.path_id

 and t3.id between t1.id and xmc(t1.id)

 and t5.id between t1.id and xmc(t1.id)

However, using the PoD-S technique with the extended XML_Path table, the sibling-

based queries can be reduced to two self-joins on the element_table rather than three

self-joins with a more efficient use of the label id index as follows:

Select t3.results

From element_table t1, xml_path t2, element_table t3, xml_path t4

Where t2.path like ‘//C/D’

 and t4.path like ‘//C/E’

 and t2.path_id = t1.path_id

 and t4.path_id = t3.path_id

 and t3.Pid = t1.Pid

5.5.2 Ancestor-descendent Twig Queries

The ancestor-descendent twig-join queries are among the most expensive query

structures, which normally generate large intermediate results. The main objective of all

optimisation techniques and the new proposed join algorithms in the literature is to

reduce the size of the intermediate results. This means reducing the number of joins in a

relational database system and pushing some of the projection operators down the query

execution plan [Seah et al., 2007].

Chapter 5. Optimizing XML Structural Join queries

125

Proposition 5-4: for any two nodes N2 and N3 at any two equal or different levels,

both nodes are descended from the node N1 if:

(N1 < N2 < xmc(N1)) and (N1 < N3 < xmc(N1))

Where xmc() function returns the maximum label value for any child that descends

from node N1.

This translation is still faster than the numeric-based intervals because the later requires

evaluation on a larger number of different values of the ‘pre’ and ‘post’ values of each

node involved in that pattern.

Using the range technique (RT) above to evaluate the tree pattern in Figure 5-3(b) will

produce the following SQL query:

Select t5.results

From element_table t1, xml_path t2, element_table t3, xml_path t4,

element_table t5, xml_path t6

Where t2.path like ‘//G’

 and t4.path like ‘//G//H’

 and t6.path like ‘//G//I’

 and t2.path_id = t1.path_id

 and t4.path_id = t3.path_id

 and t6.path_id = t5.path_id

 and t3.id between t1.id and xmc(t1.id)

 and t5.id between t1.id and xmc(t1.id)

However, this approach might be very expensive since it involves three joins (or three

self-joins) on a very large table(s). Based on the fact that the Dewey-based label for any

given node does contain the labels of its parent and ancestor nodes, the xgp() function

can be used to produce an optimised alternative translation that eliminates one

expensive join to evaluate the id(s) of N1 as follows:

Proposition 5-5: for any two nodes N2, and N3 at any equal or different level, both

nodes are descended from the node N1 if:

xgp(N2, level(N1))) = xgp(N3, level(N1))

The above rule can be further optimised for efficient use of the label index as follows:

Chapter 5. Optimizing XML Structural Join queries

126

N2 BETWEEN xgp(N3, level(N1)) AND xmc(xgp(N3, level(N1)))

The sibling-based twig query is seen as a subset or a special case of the ancestor-

descendant scenario in which both nodes are at the same level and their nearest

enclosing node is their parent node; the above formula can be reduced to:

N2 BETWEEN xp(N3) AND xmc(xp(N3))

This can be evaluated more efficiently in PoD-S mode as follows:

PidN2 = PidN3

We can now rewrite the SQL query for the tree pattern in Figure 5-3-b with a lower

number of joins as follows:

Select t5.results

From xml_path t2, xml_path t4, element_table t3, element_table t5,

xml_path t6

Where t2.path like ‘//G’

 and t4.path like ‘//G//H’

 and t6.path like ‘//G//I’

 and t4.path_id = t3.path_id

 and t6.path_id = t5.path_id

 and t5.id between xgp(t3.id,t2.level) and xmc(xgp(t3.id, t2.level))

We can also add the string match statement to reduce the size of the intermediate results

as follows:

 and t4.path startsWith(t2.path)

This might be helpful in recursive XML schemas or when there are similar tag names at

different levels of the XML tree.

5.6 Minimising XML Queries

XQuery, like SQL, is a powerful structural query language; however, many XML

queries on the Internet may not be in optimal form due to different reasons, such as

lacking knowledge or missing the document schema. Rewriting queries in a more

Chapter 5. Optimizing XML Structural Join queries

127

efficient form, or at least removing redundant path expressions, will improve the

performance of the query run by reducing the number of join operations.

In this section, we propose a technique called XPath Matrix, which would eliminate

redundant paths in the query and provide alternative execution plans at a high level. We

believe this technique can be used for either relational-based or native-based XML

management systems. However, we are focusing on relational-based systems.

5.6.1 Building the XPath Matrix

The basic idea is to parse the XML twig query (either XPath or XQuery) and build a

matrix that contains all the paths in the query and information from the XML_Path table

about each path. The matrix can be used to determine relationships between paths and to

identify which paths can be discarded without affecting the query results.

Figure 5-6: Initial XQuery and XPath query path matrix.

Figure 5-6 shows the suggested matrix in which P1, P2 and Pn are the distinctive paths

in the query. The matrix cells will have different key information about each path as

follows:

 Condition column: this indicates the type of condition on the corresponding path:

o 0: no conditions.

o 1: must have a condition (like value predicates) or it is part of the results.

o 2: condition that may be pushed to another node in the matrix and discard the

original path.

o 3: this path might be required to provide level information for xgp() function.

 Result (Yes/No): indicates whether this path is part of the final result set.

 Occurrence (Integer): indicates how many instances of this path are in the element

table.

 P1 P2 … Pn Conditions Result Occurrence

P1 -

P2 -

…

Pn -

Chapter 5. Optimizing XML Structural Join queries

128

 The intersection cells between paths hold information about the relationship between

each pair of paths as follows:

P = P1 is Parent of P2.

C = P1 is Child of P2.

S = P1 is Sibling of P2.

D = P1 is Descendant of P2.

A = P1 is Ancestor of P2.

GC = P1 and P2 are descendents of the same ancestor node.

VE = P1 has value equivalency condition with P2.

Example 5-2: The query (/A[B = ‘value’]/C) is a typical twig query. We can extract

three paths from this query:

P1 = /A

P2 = /A/B and B = ‘value’

P3 = /A/C (result)

The initial XPath matrix for this query is shown in Figure 5-7:

Figure 5-7: Initial XPath matrix for query in Example 5-2.

5.6.2 Minimising the XPath Matrix

The first phase of our technique is to scan the XPath matrix, remove redundant paths or

paths that are not required (mainly parent and ancestor paths) to produce correct results,

and identify the paths to be joined together by creating a Join_List.

We would like to introduce some XML query features that can be used in the query

minimisation and translation algorithms to reduce the number of joins between tables

and to select the most efficient join options.

 P1 P2 P3 Conditions Result Occurrence

P1 - P P 3 - Number

P2 C - S 1 - Number

P3 C S - 1 Yes Number

Chapter 5. Optimizing XML Structural Join queries

129

Cyclic Structural Join: several complex twig queries may contain redundant join

entries, referred to as cyclic structural-join entries; Figure 5-8 shows an example of a

cyclic structural join.

Figure 5-8: An example of cyclic structural relationship joins.

One of these join-entries in Figure 5-8 can be removed without affecting the correctness

of the result. This kind of optimisation can be applied to join operations that are based

on the S and GC relationships.

Priority of Join Operations: When it is decided to remove one or more join

operations, it is important to know that some join-operations between path expressions

are either essential or can be evaluated faster than other relationships in the PoD (for

example, a sibling relationship is faster to evaluate than any other relationships). Table

5-1 summarises the priority of the XML join operations; the entries in the table are in

descending order based on the priority level.

Table 5-1: Join relationship priority.

Join Relationship

VE

S

GC

Lower Occurrence

Note: the last row represents the number of occurrences for a certain path, which can be

used when the join relationships are at the same level, which can also be used to

determine the join order

P1

P1 is Sibling of P2

P2 is Sibling of P3

P3 is Sibling of P1

P2 P3

Chapter 5. Optimizing XML Structural Join queries

130

XML Functions and Conditions: some of the XML conditions in the query can be

pushed either down or up the query tree, which leaves the original path expression

redundant and able to be removed from the join_list. Following are primarily rules that

can be used to move conditions to other paths that already exist in the query and reduce

the number of required path expressions:

 The order of node N11, which is a child of node N1, is BEFORE the order of N21,

which is a child of node N2, if N1 is before N2. The same is true for the operator

AFTER.

 For a given query, the Count of Node N1 is equal to the count of a child Node Nc

that meets a certain condition that is used to filter the result of Node N1.

 To retain a self node and its children: one path string can be used to search the path

table and filter the results by level and node type.

 To retain a self node and its children: one path string can be used to search the path

table and filter the results by level only to avoid recursion.

 The absolute order of node N can be evaluated in a subquery.

The Join_List would look like a table with four columns, as in Figure 5-9; the fourth

column is only required with the join relationship of type GC (both P1 and P2 are

descendants of P3). This is required to provide the level information for the xgp

function.

Figure 5-9: Sample Join_list based on the query in Example 5-2.

Path Path Join Relationship Level Path for GC

P1 P2 S -

P1 P2 GC P3

Chapter 5. Optimizing XML Structural Join queries

131

5.7 Putting It All Together

In this section, we introduce algorithm outlines that can be a base for more advanced

algorithms to minimise and translate XML query into an optimised SQL query. The

algorithm outlines include the minimisation and optimisation techniques in this chapter

and Chapter 4. We separate these techniques into three algorithms: minimising XML

query; generating join list; and translating to SQL query in sequence, in which the

output of each is the input of the following one. Moreover, the first two algorithm

outlines can also be used in native XML database systems.

Figure 5-10: Algorithm outline to minimise XPath matrix.

Algorithm 5-1: Minimizing XPath Matrix

Input: Initial XPath Matrix

Output: Minimised XPath Matrix

01: For each path in XPath Matrix

02: identify relationship with all other paths:

 // (e.g. if P1:P:P2, P1:P:P3, then P2:S:P3)

03: End loop

04: For each condition in Condition column

05: if (condition == 2) And (condition can be moved)

06: move condition to another node in the query

07: condition = 0

08: End if

09: End loop

10: For each path in XPath Matrix

11: if (condition == 0)

12: Remove path;

13: End loop

14: End

Chapter 5. Optimizing XML Structural Join queries

132

The next algorithm has the minimised XPath matrix as input; it adds join entries to the

Join_List for related paths in the matrix. Finally, the Join_List will be scanned and

redundant join entries will be removed.

Figure 5-11: Algorithm outline to generate optimised join list.

The last part has the ordered join_list as input and it generates the appropriate SQL

statements. As a result of applying the three algorithms (minimising, optimising, and

translation), the equivalent SQL statements are expected to be optimal.

Algorithm 5-2: Generating Join_List

Input: Minimised XPath Matrix

Output: Join List Table

01: For each path Pi in XPath Matrix

02: For each path Pj in XPath Matrix

03: If ((Pi relationWith Pj) == S, VE, or GC)

04: add to Join_List (Pi join Pj)

05: End if

06: End loop

07: End loop

08: For each entry in Join_List

09: Search for cyclic join

10: If (cyclic join exists)

11: remove the most expensive join

12: update the join_list accordingly

13: End if

14: End loop

15: Sort the Join_List

// using Table 5-1

16: Reorder the elements of each join entry

// using rules in Section 5.4

17: End

Chapter 5. Optimizing XML Structural Join queries

133

Figure 5-12: Algorithm outline to generate optimised SQL query.

The algorithm above focuses on building the optimised structural-join part of any given

XML query; there are other parts to be added to the translated query; however, they are

straightforward and have been covered in the literature.

Algorithm 5-3: Generating SQL Query

Input: Join_List

Output: SQL Query

01: For each entry in Join_List

 //Generate SQL equivalent statements

02: Switch (join relationship)

03: Case S:

04: Add_to_FROM (‘XML_Path ti, Elements tj,

 Elements tk, XML_Path tn’)

05: Add_to_WHERE (‘ti.path like ‘P1’

 and tn.path like ‘P2’

 and tj.Pid = tk.Pid’)

06: Case GC:

07: Add_to_FROM (‘XML_Path ta, XML_Path ti,

 Elements tj, Elements tk,

 XML_Path tn’)

08: Add_to_WHERE (‘ti.path like ‘P1’

 and tn.path like ‘P2’

 and ta.path like ‘P3’

 and(tk.Pid between xgp(tj.Pid,ta.level)

 and xmc(xgp(tj.Pid,ta.level)))’)

09: Case VE:

10: If (paths do not exist in the From clause)

11: Add_to_FROM (the required XML_Path and Element

 tables)

12: Add_to_WHERE (the required path

 string-match statements)

13: End if

14: Add_to_Where (‘and tx.value VE ty.value’)

 //VE: can be <, >,=,<>…etc

15: End Switch

16: End Loop

17: End

Chapter 5. Optimizing XML Structural Join queries

134

Example 5-3: We demonstrate our optimisation and translation technique using query

Q4 from the XMark benchmark.

Q4 (XMark benchmark): List the reserves of those open auctions in which a certain

person issued a bid before another person.

FOR $b IN document("auction.xml")/site/open_auctions/open_auction

WHERE $b/bidder/personref[id="person18829"] BEFORE

 $b/bidder/personref[id="person10487"]

RETURN <history> $b/initial/text() </history>

We can break down this query into different paths as follows:

P1 = /site/open_auctions/open_auction

P2 = /site/open_auctions/open_auction/bidder/personref

P3 = /site/open_auctions/open_auction/bidder/personref/id

P4 = /site/open_auctions/open_auction/bidder/personref

P5 = /site/open_auctions/open_auction/bidder/personref/id

P6 = /site/open_auctions/open_auction/initial

Condition1 = P3 value = ‘person18829’

Condition2 = P5 value = ‘person10487’

Condition3 = P2 Doc order < P4, which means Dewey label id of P2 < P4 label id

Figure 5-13 shows the initial XPath Matrix for this query example (we have ignored the

occurrence field because it can be used when statistics about real data are available).

After applying the first phase of the algorithm, we identify the relationships between

other paths and check the conditions of P2 and P4, and whether it can be pushed to a

query leaf node. The document order constraint on P2 and P4 can be safely pushed to

P3 and P5 since:

P3 BEFORE P5 if and only if P2 BEFORE P4

Chapter 5. Optimizing XML Structural Join queries

135

Figure 5-13: Initial XPath Matrix for XML query in Example 5-3.

In addition, the occurrence of P3 implies the occurrence of P2 and the occurrence of P5

implies the occurrence of P4. Therefore, P2 and P4 can also be removed from the XPath

matrix since there are no other conditions on them. Figure 5-14 demonstrates the

minimised XPath Matrix.

Figure 5-14: Minimised XPath Matrix for XML query in Example 5-3.

Applying the first phase of the algorithm will also produce a join_list as in Figure 5-15.

Figure 5-15: The join_list for XML query in Example 5-3.

Applying the second phase of the algorithm will translate the XML query into an

optimised SQL statement as follows:

Path Path Join Relationship Level Path for GC

P3 P5 GC P1

P3 P6 GC P1

 P1 P3 P5 P6 Conditions Result

P1 - A A P 3 -

P3 D - GC GC 1 -

P5 D GC - GC 1 -

P6 C GC GC - 1 Yes

 P1 P2 P3 P4 P5 P6 Conditions Result

P1 - A A A A P 3 -

P2 D - P - - - 2 -

P3 D C - - - - 1 -

P4 D - - - p - 2 -

P5 D - - C - - 1 -

P6 C - - - - - 1 Yes

Chapter 5. Optimizing XML Structural Join queries

136

SELECT straight_join t61.value

FROM xml_path t1, xml_path t3, elements t31, elements t51,

xml_path t5, elements t61, xml_path t6

WHERE t1.path = '#/site#/open_auctions#/open_auction#'

 AND t3.path =

'#/site#/open_auctions#/open_auction#/bidder#/personref#/@person#'

 AND t5.path =

'#/site#/open_auctions#/open_auction#/bidder#/personref#/@person#'

 AND t6.path = '#/site#/open_auctions#/open_auction#/initial#'

 AND t3.path_id = t31.path_id

 AND t5.path_id = t51.path_id

 AND t6.path_id = t61.path_id

 AND t31.value = 'person18829'

 AND t51.value = 'person10487'

 AND t31.id < t51.id

 AND t51.id BETWEEN xgp(t31.id,t1.level) AND

xmc(xgp(t31.id,t1.level))

 AND t61.id BETWEEN xgp(t31.id,t1.level) AND
xmc(xgp(t31.id,t1.level))

5.8 Experimental Evaluations

The experimental studies in this chapter have two major directions:

 Evaluating the optimisation techniques proposed in this chapter with a special focus

on XML Twig queries and with a special focus on the join order effect using off-the-

shelf relational database systems.

 Evaluating the efficiency of storing XML documents in off-the-shelf relational

database systems using our proposed techniques on top of the schema mapping and

labelling techniques that have been developed over nearly a decade, and comparing

that to the efficiency of dedicated XML management systems.

While the experimental evaluation has been conducted by translating XML queries into

SQL statements, we believe some of the proposed techniques can be used or

implemented in other XML management systems (such as native and hybrid systems).

Chapter 5. Optimizing XML Structural Join queries

137

The reason for using SQL is to evaluate the efficiency of unmodified relational database

systems for supporting XML documents.

5.8.1 Experiment Setup

We have implemented PoD and PoD-S, as mentioned in Chapter 3. MySQL server 5.1

was used as a backend relational storage system. We have also implemented range

encoding as mentioned in the literature [Yoshikawa et al., 2001], using a node

identification key (pre, post, level). Apache Java parser was used for parsing and

loading XML documents. Java was also used for automating the tests.

The sample XML documents were generated using very well-known XML benchmarks:

XMark and Michigan. Documents of different sizes were used in the tests. To

standardise the test and make it repeatable, we used the same query sets provided by

each benchmark to evaluate different aspects of our solution, Appendix A contains the

complete list of queries in each benchmark. Further details about the setup of each test

will be provided in the proper subsection of each test.

5.8.2 Join Order Effect

The join order problem is quite common when XML data are stored in relational

systems; one of the main reasons for this problem is the differences between the

hierarchal XML data model and the flat relational model. As we discussed in Section

5.4, we worked on developing an approach to pick up the right join order for XML

queries. Our approach does not require any modification to the relational systems

kernel; however, our approach relies on having XML schema summary available, or to

be built during document parsing and loading into the database system. The schema

summary contains information about each node and path expression in the XML

document.

The join order is either managed by the query processor or by forcing a certain join

order using the keyword ‘STRAIGHT_JOIN’. The objective of this test is to evaluate

the effect of having the right or the optimal join order for any query execution plan. We

compared the query run time results between the forced order and those of the same set

of queries but without forcing any join order (the database system produces the join

order).

Chapter 5. Optimizing XML Structural Join queries

138

5.8.2.1 Experiment Setup

We used XMark benchmark’s documents and queries for this test; we ran the test

against a medium document size of 100MB and once more against a larger document of

500MB. We conducted the test on an Intel Core2 CPU (2.8GHz) machine with 4GB of

RAM. The queries were translated identically for both approaches; the only difference

was the join order, we used the SQL keyword ‘STRAIGHT_JOIN’ to force the join

order. In the following example, we demonstrate the difference between the two

approaches:

Q19 (XMark benchmark): Give an alphabetically ordered list of all items along with

their location.

FOR $b IN document("auction.xml")/site/regions//item

LET $k := $b/name/text()

RETURN <item name=$k> $b/location/text() </item>

SORTBY (.)

We translated this query into SQL statements based on our approach and as follows:

SELECT STRAIGHT_JOIN t1.value,t3.value

FROM XML_Path t4, Elements t3, Elements t1, XML_Path t2

WHERE t4.path like '#/site#/regions#%/item#/location#'

 AND t2.path like '#/site#/regions#%/item#/name#'

 AND t4.path_id = t3.path_id

 AND t2.path_id = t1.path_id

 AND t1.id between xp(t3.id) and xmc(xp(t3.id))

ORDER BY t1.value

We call this group SJ for the STRAIGHT_JOIN keyword. However, the second group

was translated in exactly the same manner but without the keyword

‘STRAIGHT_JOIN’.

We focused on Dewey-based labels, so we used our labelling schemes PoD, PoD-S,

along with ORDPATH (a), which is another well-known Dewey-based labelling

scheme. We evaluated this test using these three labelling schemes to ensure the

consistency of the results.

Chapter 5. Optimizing XML Structural Join queries

139

5.8.2.2 Results and Analyses

The results demonstrated that the typical relational system query processor failed to find

the optimal join order for most of the translated XML queries. Failing to find the

optimal join order has a serious effect on the query run time. The system-controlled

queries showed no consistency in terms of join order for the three labelling methods and

for the different document sizes; for the majority of the queries, the query processor

failed to find the optimal join order across the three labelling methods. Further, we had

to abort some of the system-controlled queries (non-SJ) after running for more than half

an hour (1800s) without returning results.

However, the results in Figures 5-16 and 5-17 illustrate that our join order approach has

achieved the best query run time for all queries and across the different labelling

schemes. The performance gain was significant and it was approximately 400 times

faster for queries like Q8 and Q9. The results for the ‘STRAIGHT_JOIN’ (SJ) approach

show a steady outcome for both small and large XML documents. Our approach is

consistent and is based on the rules in Section 5.4.

Figure 5-16: Query run times in logarithmic scale for 11 queries from XMark benchmark for

three Dewey-based labelling schemes showing the difference between forced join order (SJ) and

the join order generated by the system built-in optimiser.

0.001

0.01

0.1

1

10

100

1000

10000

Q1 Q4 Q5 Q7 Q8 Q9 Q10 Q13 Q16 Q18 Q19

PoD-S_SJ

PoD-S

PoD_SJ

PoD

OPA_SJ

OPA

Sec XMark (100MB)

Chapter 5. Optimizing XML Structural Join queries

140

The results in Figure 5-16 demonstrate that the database system optimiser produced

optimal join order for Q1 for PoD-S but not for the other two labelling schemes, the

same result was observed for Q4, Q10 and Q18. The optimiser produced optimal join

order for ORDPATH (a) OPA for Q5, Q7 and Q13. For PoD labelling scheme, the

optimiser produced optimal join order only for Q10. It is difficult to explain the

behaviour of the system query processor; however, the labels’ structures, sizes and their

physical layout may play a role in this inconsistent behaviour of the query optimiser.

Interestingly, the system optimiser produced only one execution plan with a more

efficient join order than our approach, which was for Q8 and only for the PoD-S

labelling scheme.

Figure 5-17: Query run times in logarithmic scale for 11 queries from XMark benchmark for

three Dewey-based labelling schemes showing the difference between forced join order (SJ) and

the join order generated by the system built-in optimiser.

The same scenario occurred for the larger XML document (500MB), illustrated in

Figure 5-17. The optimiser produced the optimal execution plan only for Q1 and Q18.

The Q18 run time for the non-SJ approach (system optimiser elected the join order)

looked faster than our approach; however, analysing the query execution plan showed

that the optimiser produced the same join order as our approach but it happened to be

faster by a few milliseconds.

0.001

0.01

0.1

1

10

100

1000

10000

Q1 Q4 Q5 Q7 Q8 Q9 Q10 Q13 Q16 Q18 Q19

PoD-S_SJ

PoD-S

PoD_SJ

PoD

OPA_SJ

OPA

Sec XMark (500MB)

Chapter 5. Optimizing XML Structural Join queries

141

We analysed each query execution plan using the provided tools from MySQL. We

found that the system optimiser produced a join order similar to the one in Figure 5-4

for most queries.

5.8.3 Twig Query Optimisation

The XQuery language allows tree-pattern match queries as well as queries for individual

nodes. These tree pattern queries are called Twig-join queries. Twig-join queries are

considered expensive queries because they normally produce large intermediate results.

Most of the Twig-join queries are based on either parent and sibling relationships or

ancestor-descendant relationships. Dewey labels in general and PoD-S in particular can

efficiently support the first type of Twig queries. However, we proposed a new

technique in Section 5.5 to support the second type of twig queries based on a

combination of schema summary and xgp() function. This technique considers the

sibling-based twig queries as a special case of the ancestor-descendant twig queries. Our

technique can be used to optimise both types of Twig queries or any combination of

them. Further, it can be applied to any Dewey-based labelling scheme.

We evaluated our approach against the typical RT as discussed in Section 5.5.

5.8.3.1 Test Setup

We evaluated the PoD of 4 bits and ORDPPATH (a) as two Dewey-based labelling

techniques. We did not include PoD-S because the split mode might have taken

advantage of its split structure and we only want to evaluate the effect of the technique

we proposed in Section 5.5. We included ORDPATH, a very well-known labelling

scheme, as another Dewey labelling scheme to evaluate the possibility and effect of

applying our optimisation techniques on another Dewey-based labelling method.

We used XMark benchmark to generate two documents of different sizes (100MB and

500MB). We also picked up five queries with obvious twig-join case from the XMark

benchmark; we evaluated Q1, Q4, Q9, Q16, and Q19. Appendix A-1 contains details

about these queries. We ran the same set of queries using XML documents of 100MB

and 500MB. The queries were translated into SQL statements based on the techniques

in Sections 5.4 and 5.5.

Chapter 5. Optimizing XML Structural Join queries

142

The test was conducted on an Intel Duel Core (1.8GHz) machine with 1GB of memory.

As with all other tests, we used MySQL server 5.1 as the backend relational storage.

The documents were stored in one main table (Element_table) similar to the Edge table.

However, the XML_Path table was used for both labelling methods and the proper

implementation of the xgp() function for both labelling schemes.

5.8.3.2 Result and Analysis

The results show that our optimisation techniques provided a significant performance

gain over the default technique for both PoD and ORDPATH. Further, the performance

gain was achieved for the large XML document (500MB) and in some cases, the

performance gain was higher than that of the smaller document, as in Q4. Table 5-2

shows the run time results of this test.

Table 5-2: Run time results for selected twig queries from XMark benchmark.

XMark

Query

XM (100MB)/Time (S) XM (500MB)/Time (S)

PoD ORDPATH (a) PoD ORDPATH (a)

DEF XGP DEF XGP DEF XGP DEF XGP

Q1 0.125 0.0001 0.122 0.0001 0.58 0.001 0.59 0.001

Q4 0.39 0.001 .406 0.001 1.99 0.001 2.09 0.001

Q9 5.19 3.65 5.33 3.85 277.2 270.7 295.5 289.4

Q16 1.343 0.084 1.4 0.087 6.859 0.412 6.953 0.437

Q19 10.22 5.684 10.39 6.10 58.02 34.98 65.52 45.97

The performance of the default technique, which is based on the RT, implies the

numeric-based intervals approach would not achieve better results, as we found in the

evaluation tests in the previous chapter.

It is worth mentioning that the performance enhancement for Q9 is less than other

queries. This is due to other factors in the query; this query is complex and it involves

data value comparisons (join on value), which took a major part of the query run time.

Note: Queries Q19 and Q1 are sibling-based queries (i.e. For Each item Return

‘//Item/Name and //Item/Location’). However, we translated it as if it were an ancestor-

descendant relationship (‘//Item//Name’ and ‘//Item//Location’), which returned the

same results. We did this to evaluate our approach against more benchmark queries.

Chapter 5. Optimizing XML Structural Join queries

143

5.8.4 Efficiency of Off-the-shelf Relational Systems

There are acknowledged advantages of using the mature relational database systems to

develop and build storage systems that can efficiently support the XML data model and

XML documents. However, there is another approach based on developing new data

management systems from scratch to support the new XML data model due to the

existing limitation in the relational systems. We conducted a test to evaluate the

efficiency of using off-the-shelf relational database systems with labelling and

optimisation techniques that are used in PoD-S, and compared the results to those of

other well-known XML management systems. We have chosen one native XML system

(eXist) and another relational-based system (MonetDB/XQuery), which has been

modified to support features in XML models by introducing new structural-join

algorithms.

The test also aimed to identify the strength and weakness of each approach.

5.8.4.1 Test Setup

We have used our PoD of a 4-bit BLU system in split mode (PoD-S); the PoD-S has

proven to be a very efficient configuration and has outperformed other Dewey-based

labels by order of magnitudes for most of the evaluation tests that we have conducted

thus far. The document nodes (i.e. elements, attributes and leaf nodes) have been stored

in three separate tables to reduce the effect of involving irrelevant data in some query

evaluations. We translated each query into an equivalent SQL statement using the

optimisation techniques and algorithms in this chapter and Chapter 4.

For other XML management systems, we have downloaded the (eXist) management

system [exist-db.org, 2009; Meier, 2006]. eXist is a native system that stores XML

documents in their original format. We configured eXist to use most of the available

memory on the system by increasing the memory space for the Java virtual machine

(VM) to 1GB.

We also download the latest version of the MonetDB system for XQuery [Boncz et al.,

2006; CWI, 2009]. The core of this system is an in-memory relational-base system that

also shreds XML documents and stores them in binary relations. Both systems have

XQuery interfaces that allowed us to run the benchmark queries without any need to

Chapter 5. Optimizing XML Structural Join queries

144

translate them. However, MonetDB translates XQuery queries internally into SQL-

equivalent statements.

Both systems report the query translation time and query execution time; we ignored the

query translation times and only reported the query execution time as it was reported by

both systems.

We used the Michigan and XMark benchmarks. Every query ran six times; we ignored

the first run time and reported the average run time for each query. We aborted any

query that did not return results within half an hour (1800sec). We ran almost all queries

in each benchmark except for the queries that are not applicable (as QS13, QS14 and

QA3 in the Michigan benchmark), or the queries that contain function definitions like

QA2 and QA6 in the Michigan benchmark. In addition, we did not run the queries that

included ‘Full Text’ SS (such as QS11 and QS12 in the Michigan benchmark and Q14

in the XMark benchmark) because ‘Full Text’ indexing is not supported by MySQL

InnoDB engine while the other two systems support this feature.

This test ran on an Intel Core2 CPU (2.8GHz) machine with 4GB of RAM using the

latest version of MySQL server (5.1) and the latest version of Java VM (1.6.0_18).

5.8.4.2 Results and Discussion

The results of both benchmark queries showed a very promising outcome for our

approach, which is based on using a new Dewey-based label structure and advanced

optimisation techniques without any change to the relational system kernel; our

approach outperformed the other two XML management systems for a certain group of

queries. Further, our approach outperformed the native eXist system by returning results

for more queries in the test. This demonstrates the reliability and scalability of the

mature relational database systems and the advantages of developing solutions on top of

them.

We are not going to compare the absolute run time of each query on each system due to

the differences between these systems and also to isolate the effect of other factors like

configuration and setup. However, we will be focusing on the capabilities and

behaviour of each system.

Chapter 5. Optimizing XML Structural Join queries

145

XMark Benchmark Results: Figure 5-18 shows the run time of the XMark queries for

XML document of 100MB; the three systems did well for most of the queries in this

part of the test. As expected, MonetDB showed strong performance and stability for

many reasons: first, MonetDB is a relational-based system; second, MonetDB is an in-

memory system; third, MonetDB uses modified structural-join algorithms, which

combined with other features in mature relational systems, produced a steady

performance. The native system eXist demonstrated a strong performance for ordered

access queries (Q2 and Q3), which is an advantage of native systems. However, eXist

ran slowly for Q4, even though Q4 is a mix of value’s exact match (such as Q1) and

nodes global ordering. eXist also did not finish within the 1800 second mark for

‘chasing references’ queries (Q8 and Q9) since they involved structural joins and value

joins (attribute ‘id’ referencing other nodes). The same outcome occurred for joins on

values (Q11 and Q12). eXist did very well for regular path expression queries (Q6 and

Q7), path traversal queries, missing element queries (Q15, Q16 and Q17), and sorting

and aggregation queries (Q19 and Q20).

Figure 5-18: Query run times in logarithmic scale for XMark benchmark queries against a

medium XML document for three different approaches in XML management systems.

However, PoD-S was not far behind MonetDB; it was more reliable and efficient than

the native system eXist. PoD-S showed strong performance for regular path expression

queries and path traversal queries due to the use of the XML_Path table, which contains

information about the nodes and paths in the documents, and due to the mature indexing

0.001

0.01

0.1

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q15 Q16 Q17 Q18 Q19 Q20

eXist

MontDB

PoD-S

Sec XMark (100MB)

Chapter 5. Optimizing XML Structural Join queries

146

mechanism, such as the ‘foreign key’ feature. We did not focus PoD-S on supporting all

ordered access queries like Q2, Q3 and Q4; however, some queries, especially those

about global document order (like node ‘A’ before/after node ‘B’) as in Q4, can be

addressed very efficiently in PoD-S. Q11 and Q12 were slightly challenging for PoD-S

because they are complex structural-join queries that also include joins on value. PoD-S

did very well for the rest of the queries due to the advanced optimisation techniques that

we developed around PoD-S and due to the mature relational systems query-processing

engine.

The same trends almost occurred for the larger XML document except MonetDB could

not return results for Q11 and the server crashed after exhausting all free memory

available to the system (2.6GB). Further, MonetDB ran relatively slowly for Q12,

which may raise a question about this system’s scalability for this type of query. PoD-S

showed excellent scalability and capability to support even larger documents. Figure 5-

19 illustrates the results of XMark benchmark queries running against an XML

document of 500MB.

Figure 5-19: Query run times in logarithmic scale for XMark benchmark queries against a large

XML document for three different approaches in XML management systems.

0.001

0.01

0.1

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q15 Q16 Q17 Q18 Q19 Q20

eXist

MontDB

PoD-S

Sec XMark (500MB)

Chapter 5. Optimizing XML Structural Join queries

147

The Michigan Benchmark Results: The Michigan benchmark is a micro-benchmark

that covers different aspects of the XML data model, in particular, twig queries. We

evaluated two documents of sizes 50MB and 500MB using more than 40 queries from

this benchmark. Figure 5-20 shows the results for the 50MB document.

Figure 5-20: Query run times in logarithmic scale for three different XML management

systems using the Michigan benchmark with a 50MB document.

The three systems demonstrated excellent performance for most of the queries.

However, MonetDB was steadier and it outperformed the eXist system for the value-

join and reference-join queries (QJ1, QJ2, QJ3 and QJ4). The native system eXist did

not perform well for some of the structural aggregation queries like QA4 and QA5.

However, both systems did well for structural join, chain and containment, and twig-

join queries (Q20–Q34) since both systems use special structural-join algorithms for

tree data.

PoD-S performance was outstanding for this benchmark and surprisingly, it did very

well for queries Q20–Q34 even when we are using an unmodified off-the-shelf

relational system. This outstanding performance of PoD-S is due to the contribution of

the small Dewey-label PoD with a split structure (parent, child), and the right join order

rules and algorithms. Further, we found that PoD-S followed the same performance

pattern as MonetDB. However, PoD-S could not answer one of the very complex twig

queries (Q33) due to the massive size of intermediate results. In addition, PoD-s did not

return results for the two value-join queries (QJ1 and QJ2).

0.001

0.01

0.1

1

10

100

1000

10000

Q
R

1

Q
R

3

Q
S1

Q
S3

Q
S5

Q
S7

Q
S9

Q
S1

5

Q
S1

7

Q
S1

9

Q
S2

1

Q
S2

3

Q
S2

5

Q
S2

7

Q
S2

9

Q
S3

1

Q
S3

3

Q
S3

5

Q
J2

Q
J4

Q
A

4

eXist

MontDB

PoD-S

Sec Mich (50MB)

Chapter 5. Optimizing XML Structural Join queries

148

Figure 5-21: Query run times in logarithmic scale for three different XML management

systems using the Michigan benchmark with 500MB document.

Figure 5-21 shows the run time of the same set of queries from the Michigan benchmark

against the 500MB XML document. Surprisingly, the native system eXist did not scale

up for the complex chain and twig queries (Q28–Q34). In addition, it did not return

results for Q35 and as expected, it did not answer value-join queries QJ1–QJ4. Further,

it did not return results for structural aggregation queries QA4 and QA5.

MonetDB showed a strong performance and scaled up very well for most of the queries

and it performed very well for value-join queries (QJ1–QJ4). However, MonetDB

crashed on Q25, Q31, and Q33 after exhausting all the available free memory of the

system (2.6GB), and unexpectedly, it crashed on QA4.

PoD-S performance was again outstanding and it was very close to the MonetDB

performance and capabilities. Further, it outperformed MonetDB for Q25, Q31 and

QA4 since it returned results within a relatively short time (less than five seconds) and it

did not crash. We can conclude that PoD-S scaled up better than the other two systems

for this benchmark. Again, the value-join queries were a challenge for PoD-S because it

was the same case for the XMark benchmark.

0.01

0.1

1

10

100

1000

10000

eXist

MontDB

PoD-S

Sec Mich (500MB)

Chapter 5. Optimizing XML Structural Join queries

149

5.9 Conclusion

We have discussed new ideas to improve the performance of XML queries without the

need to change the relational system kernel. Our approach addresses three major issues

for optimising XML queries in relational database systems:

 Finding the optimal join order for XML queries by developing rules that can

generate the right join order and evaluation sequence for XPath path expressions in

any given query.

 Improving the performance of structural-join queries by reducing the number of

joins based on using XML document schema summary and an enhanced Dewey-

based label structure such as Pod-S.

 Minimising XML queries by developing algorithms outline to minimise any given

XML query to the only required XPath paths and elements.

The evaluation tests have shown that our Dewey-based PoD-S labelling technique has

significantly improved the performance of the execution of XML queries, and the

sibling-based twig queries in particular. Further, using the XGP function has

significantly improved the performance of ancestor-descendent-based structural-join

queries.

The join order tests demonstrated some of the difficulties that face relational system

query optimisers due to the hierarchical nature of the XML data model. However, using

the schema summary ‘XML_Path’ table along with the rules we have discussed in

Section 5.4, we managed to produce an optimal join order for more than 90 per cent of

the queries.

Finally, by comparing our complete approach to other mature XML management

systems, we showed that the relational systems can still be used effectively to store and

manage XML documents. Further, as the labelling and optimisation techniques have

significantly improved (as in PoD-S), the relational-based systems can easily

outperform native XML management systems at an affordable cost.

151

Chapter 6: Conclusions and Future Work

6.1 Conclusions

Recent studies have shown that relational systems are still competitive as a base

technology to develop and build affordable and reliable XML database systems that

support all type of XML applications. However, there are major differences between the

XML hierarchical data model and the relational data model. These differences, such as

document order and containment relationships, present a challenge to the current

relational technology available in off-the-shelf relational database systems. Several

approaches have been proposed to address these challenges in both native and

relational-based systems. However, some of those approaches are not directly applicable

to the relational database systems and they require changes to the system’s kernel,

which is hardly an option for many RDBMS vendors, especially the widely used open

source relational database systems.

We have presented the PoD system as an XML database system using an off-the-shelf

relational database system. The PoD approach provides new techniques to minimise the

storage requirements of XML documents, efficient navigation of XML trees, and

advanced optimisation techniques for complex XML structural-join queries without the

need to modify the relational database kernel. The PoD approach turns traditional

relational systems into affordable, reliable and portable systems that can seriously

compete with the expensive, immature and feature-limited native XML database

systems.

We set out by introducing the importance of XML technology, in particular for Internet-

based applications. We also explained the need to have XML databases to support the

rapidly increasing XML documents.

In Chapter 2, we provided an overview of XML, which covers the foundations of XML

technology, the XML data model, and XML document structure and syntax. We briefly

highlighted related technologies such as DTD and XML schema, which can be used to

add domain constrains and to enforce the required document structure. The W3C has

recently released XQuery 1.0 as a standard query language for XML data. XQuery is a

Chapter 6. Conclusions

152

powerful query language; it is equivalent to the SQL query language. Yet, full support

and optimised implementation of XQuery is still an open research area in both native

and relational-based systems.

In Chapter 3, we presented the PoD system. PoD is a Dewey-based labelling technique

that supports operations on dynamic XML documents (such as insert and delete)

without relabelling the existing nodes. Node labelling is a widely used technique in both

relational-based and native XML systems to capture the document order and support

structural relationships such as parent-child and ancestor-descendant relationships. The

PoD approach provides an efficient, flexible and compact labelling technique. Smaller

label sizes mean that more labels can be loaded in the memory, which reduces the costly

I/O disk operations.

The space evaluation tests showed that the PoD of a 4-bit BLU outperformed recent

Dewey-based labelling approaches by reducing the label size by a magnitude of 20 per

cent. Further, PoD provides a consistent compression technique for most types of XML

documents. Meanwhile, other approaches only work well with a certain type and

structure of XML documents.

We have also introduced a new structure for Dewey-based labels. The new structure is

based on splitting any given Dewey id into two components: Pid and Cid. The new

structure would significantly enhance query performance for queries that are based on

parent-child and sibling relationships. The PoD in split mode (PoD-S) makes more

efficient use of the current indexing technologies that are available in off-the-shelf

relational databases. Further, the PoD-S approach can be applied to other Dewey-based

labelling schemes without sacrificing any of the Dewey label features (for example,

supporting dynamic XML documents).

Minimising the Dewey label size and simplifying its structure is a major step towards

efficiently storing and processing XML documents. However, the labelling technique

on its own cannot provide an efficient support for advanced XML queries such as

complex structural-join queries. In Chapter 4, we introduced new and efficient

techniques to navigate the XML tree and evaluate XPath axis steps by utilising the

document structure information. PoD captures the document structure summary (i.e.

schema summary) during initial document parsing and stores that in two formats: the in-

Chapter 6. Conclusions

153

memory data structure, which can be used during query translation and minimisation;

and the schema summary in the relational format in the XML_Path table. The

XML_Path table is used to provide alternative query optimisation techniques for

Dewey-based labelling schemes. To the best of our knowledge, this is the most detailed

study for optimising XPath axis steps in the presence of Dewey labels and schema

summary.

The evaluation tests in Chapter 4 demonstrated that our Dewey-based PoD-S labelling

technique has significantly improved the performance of the evaluation of XPath axis

steps. In addition, it outperformed the typical Dewey-based one-component label

scheme. The tests also showed that our optimisation techniques for PoD and PoD-S,

which exploit the schema summary in the XML_Path table, have outperformed the

traditional RTs for most of the XPath axis steps.

In Chapter 5, we introduced advanced XML query optimisation techniques. While some

of these techniques can be applied to native XML database systems, the focus was to

address XML query challenges in relational database systems. In particular, we

developed techniques to find the optimal join order for query path expressions, improve

the performance of structural-join queries by reducing the number of joins, and

developing algorithms to minimise XML queries and translate them into equivalent

optimised SQL queries. The evaluation tests have shown that our approach has

significantly improved the performance of the execution of XML queries in general, and

the sibling-based twig queries in particular. The join order tests demonstrated some of

the difficulties that face relational system query optimisers due to the nested hierarchical

nature of the XML data model. However, by using the PoD system techniques that were

discussed in Section 5.4, we managed to produce an optimal join order for more than 90

per cent of the queries.

Finally, by comparing our complete approach to other mature XML management

systems (both native and modified relational systems), we showed that the unmodified

relational systems can still be used effectively to store and manage XML documents.

Further, as the labelling and optimisation techniques have significantly improved (as in

PoD-S), the relational-based systems can easily outperform native XML management

systems at a very affordable cost.

Chapter 6. Conclusions

154

6.2 Future Work

While we consider the PoD system a successful project, there are still plenty of research

opportunities since XML database management systems are relatively new. Recently,

the major vendors of relational database systems have started to provide integrated

support for XML data in their commercial products. These new hybrid systems support

XML data in its native format and integrate that with the existing mature relational

technology. However, node-labelling still plays a major role in these systems. For future

work, we would like to investigate the opportunities of using the compact labelling

scheme and optimisation techniques of PoD with these hybrid systems.

XQuery, which has emerged as the standard query language for XML data, is quite a

new technology and there is no complete implementation and support for this language

yet in relational systems. Moreover, some of the XQuery language features are still a

challenge for relational systems, such as absolute and relative order-based queries (for

example, ‘preceding’ and ‘following’ axis steps). These types of queries generate a

large number of duplicate values. Further, absolute order (i.e. position) queries may

require complex subquery translations. A promising direction for future work is to

investigate the possibility of introducing new operators or new algorithms that handle

duplicate values at earlier stages of the query execution plan in a way that reduces the

cost of reengineering the relational database systems.

Finally, there is no doubt that document-shredding techniques improve XML query

performance for data-centric queries. However, based on our own research findings,

supporting value-join queries for large XML documents with recursive features and the

absence of an XML schema is still relatively slow. We observed the same outcome in

other native and modified relational-based XML database systems. More work is still

required to address the challenge of value-join queries in relational systems in the

absence of XML document schema.

155

Appendix A: XML Benchmarks

A-1. XMark Benchmark

The complete list of XMark benchmark Queries in XQuery language

-- Q1: Return the name of the person with ID `person0'.

let $auction := doc("auction.xml") return

for $b in $auction/site/people/person[@id = "person0"] return

$b/name/text()

-- Q2: Return the initial increases of all open auctions.

let $auction := doc("auction.xml") return

for $b in $auction/site/open_auctions/open_auction

return <increase>{$b/bidder[1]/increase/text()}</increase>

-- Q3: Return the IDs of all open auctions whose current increase is at least
-- twice as high as the initial increase.

let $auction := doc("auction.xml") return

for $b in $auction/site/open_auctions/open_auction

where zero-or-one($b/bidder[1]/increase/text()) * 2

<= $b/bidder[last()]/increase/text()

return

 <increase

 first="{$b/bidder[1]/increase/text()}"

 last="{$b/bidder[last()]/increase/text()}"/>

-- Q4: List the reserves of those open auctions where a certain person issued a
-- bid before another person.

let $auction := doc("auction.xml") return

for $b in $auction/site/open_auctions/open_auction

where

 some $pr1 in $b/bidder/personref[@person = "person20"],

Appendix A. XML Benchmarks

156

 $pr2 in $b/bidder/personref[@person = "person51"]

 satisfies $pr1 << $pr2

return <history>{$b/reserve/text()}</history>

-- Q5. How many sold items cost more than 40?

let $auction := doc("auction.xml") return

count(

 for $i in $auction/site/closed_auctions/closed_auction

 where $i/price/text() >= 40

 return $i/price

)

-- Q6: How many items are listed on all continents?

let $auction := doc("auction.xml") return

for $b in $auction//site/regions return count($b//item)

-- Q7: How many pieces of prose are in our database?

let $auction := doc("auction.xml") return

for $p in $auction/site

return

 count($p//description) + count($p//annotation) + count($p//emailaddress)

-- Q8: List the names of persons and the number of items they bought.
-- (joins person, closed_auction)

let $auction := doc("auction.xml") return

for $p in $auction/site/people/person

let $a :=

 for $t in $auction/site/closed_auctions/closed_auction

 where $t/buyer/@person = $p/@id

 return $t

return <item person="{$p/name/text()}">{count($a)}</item>

-- Q9: List the names of persons and the names of the items they bought in
-- Europe. (joins person, closed_auction, item)

Appendix A. XML Benchmarks

157

let $auction := doc("auction.xml") return

let $ca := $auction/site/closed_auctions/closed_auction return

let

 $ei := $auction/site/regions/europe/item

for $p in $auction/site/people/person

let $a :=

 for $t in $ca

 where $p/@id = $t/buyer/@person

 return

 let $n := for $t2 in $ei where $t/itemref/@item = $t2/@id return $t2

 return <item>{$n/name/text()}</item>

return <person name="{$p/name/text()}">{$a}</person>

-- Q10: List all persons according to their interest; use French markup in the
-- result.

let $auction := doc("auction.xml") return

for $i in

 distinct-values($auction/site/people/person/profile/interest/@category)

let $p :=

 for $t in $auction/site/people/person

 where $t/profile/interest/@category = $i

 return

 <personne>

 <statistiques>

 <sexe>{$t/profile/gender/text()}</sexe>

 <age>{$t/profile/age/text()}</age>

 <education>{$t/profile/education/text()}</education>

 <revenu>{fn:data($t/profile/@income)}</revenu>

 </statistiques>

 <coordonnees>

 <nom>{$t/name/text()}</nom>

 <rue>{$t/address/street/text()}</rue>

 <ville>{$t/address/city/text()}</ville>

 <pays>{$t/address/country/text()}</pays>

Appendix A. XML Benchmarks

158

 <reseau>

 <courrier>{$t/emailaddress/text()}</courrier>

 <pagePerso>{$t/homepage/text()}</pagePerso>

 </reseau>

 </coordonnees>

 <cartePaiement>{$t/creditcard/text()}</cartePaiement>

 </personne>

return <categorie>{<id>{$i}</id>, $p}</categorie>

-- Q11: For each person, list the number of items currently on sale whose price
-- does not exceed 0.02% of the person's income.

let $auction := doc("auction.xml") return

for $p in $auction/site/people/person

let $l :=

 for $i in $auction/site/open_auctions/open_auction/initial

 where $p/profile/@income > 5000 * exactly-one($i/text())

 return $i

return <items name="{$p/name/text()}">{count($l)}</items>

-- Q12: For each richer-than-average person, list the number of items currently
-- on sale whose price does not exceed 0.02% of the person's income.

let $auction := doc("auction.xml") return

for $p in $auction/site/people/person

let $l :=

 for $i in $auction/site/open_auctions/open_auction/initial

 where $p/profile/@income > 5000 * exactly-one($i/text())

 return $i

where $p/profile/@income > 50000

return <items person="{$p/profile/@income}">{count($l)}</items>

-- Q13. List the names of items registered in Australia along with their
-- descriptions.

let $auction := doc("auction.xml") return

for $i in $auction/site/regions/australia/item

Appendix A. XML Benchmarks

159

return <item name="{$i/name/text()}">{$i/description}</item>

-- Q14: Return the names of all items whose description contains the word
-- ‘gold’.

let $auction := doc("auction.xml") return

for $i in $auction/site//item

where contains(string(exactly-one($i/description)), "gold")

return $i/name/text()

-- Q15: Print the keywords in emphasis in annotations of closed auctions.

let $auction := doc("auction.xml") return

for $a in

 $auction/site/closed_auctions/closed_auction/annotation/description/parlist/

 listitem/

 parlist/

 listitem/

 text/

 emph/

 keyword/

 text()

return <text>{$a}</text>

-- Q16: Return the IDs of those auctions that have one or more keywords in
-- emphasis. (cf. Q15)

let $auction := doc("auction.xml") return

for $a in $auction/site/closed_auctions/closed_auction

where

 not(

 empty(

 $a/annotation/description/parlist/listitem/parlist/listitem/text/emph/

 keyword/

 text()

)

)

Appendix A. XML Benchmarks

160

return <person id="{$a/seller/@person}"/>

-- Q17: Which persons do not have a homepage?

let $auction := doc("auction.xml") return

for $p in $auction/site/people/person

where empty($p/homepage/text())

return <person name="{$p/name/text()}"/>

-- Q18: Convert the currency of the reserve of all open auctions to another
-- currency.

declare namespace local = "http://www.foobar.org";

declare function local:convert($v as xs:decimal?) as xs:decimal?

{

 2.20371 * $v (: convert Dfl to Euro :)

};

let $auction := doc("auction.xml") return

for $i in $auction/site/open_auctions/open_auction

return local:convert(zero-or-one($i/reserve))

-- Q19: Give an alphabetically ordered list of all items along with their location.

let $auction := doc("auction.xml") return

for $b in $auction/site/regions//item

let $k := $b/name/text()

order by zero-or-one($b/location) ascending empty greatest

return <item name="{$k}">{$b/location/text()}</item>

-- Q20: Group customers by their income and output the cardinality of each
-- group.

let $auction := doc("auction.xml") return

<result>

 <preferred>

 {count($auction/site/people/person/profile[@income >= 100000])}

 </preferred>

Appendix A. XML Benchmarks

161

 <standard>

 {

 count(

 $auction/site/people/person/

 profile[@income < 100000 and @income >= 30000]

)

 }

 </standard>

 <challenge>

 {count($auction/site/people/person/profile[@income < 30000])}

 </challenge>

 <na>

 {

 count(

 for $p in $auction/site/people/person

 where empty($p/profile/@income)

 return $p

)

 }

 </na>

</result>

Appendix A. XML Benchmarks

162

A-2. The Michigan Benchmark

The complete list of the Michigan benchmark Queries in XQuery language:

-- QR1: Select all elements with aSixtyFour = 2
-- (Return only the element in question)

for $e in //eNest[@aSixtyFour=2] return

 <eNest aUnique1="{$e/@aUnique1}">

 </eNest>

-- QR2: Select all elements with aSixtyFour = 2
-- (Return the element and all its immediate children)

for $e in //eNest[@aSixtyFour=2] return

 <eNest aUnique1="{$e/@aUnique1}">

 {

 for $c in $e/eNest return

 <child aUnique1="{$c/@aUnique1}">

 </child>

 }

 </eNest>

-- QR3: Select all elements with aSixtyFour = 2 (Return the entire subtree)

for $e in //eNest[@aSixtyFour=2] return

 <eNest aUnique1="{$e/@aUnique1}">

 <descedants>

 {

 for $c in $e//eNest return

 <descedant aUnique1="{$c/@aUnique1}" aFour="{$c/@aFour}">

 </descedant>

 }

 </descedants>

 </eNest>

-- QR4: Select all elements with aSixtyFour = 2 and selected descendants

Appendix A. XML Benchmarks

163

-- with aFour = 1

for $e in //eNest[@aSixtyFour=2] return

 <eNest aUnique1="{$e/@aUnique1}">

 <descedants>

 {

 for $c in $e//eNest[@aFour=1] return

 <descedant aUnique1="{$c/@aUnique1}" aFour="{$c/@aFour}">

 </descedant>

 }

 </descedants>

 </eNest>

-- QS1: Select elements with aString = 'Sing a song of oneB4'

for $e in //eNest[@aString = 'Sing a song of oneB4'] return

 <eNest aUnique1="{$e/@aUnique1}" aString="{$e/@aString}">

 </eNest>

-- QS2: Select elements with aString = 'Sing a song of oneB1'

for $e in //eNest[@aString = 'Sing a song of oneB1'] return

 <eNest aUnique1="{$e/@aUnique1}" aString="{$e/@aString}">

 </eNest>

-- QS3: Select elements with aLevel = 10

for $e in //eNest[@aLevel=10] return

 <eNest aUnique1="{$e/@aUnique1}" aString="{$e/@aLevel}">

 </eNest>

-- QS4: Select elements with aLevel = 13

for $e in //eNest[@aLevel=13] return

 <eNest aUnique1="{$e/@aUnique1}" aString="{$e/@aLevel}">

 </eNest>

-- QS5: Select nodes that have aSixtyFour between 5 and 8.

Appendix A. XML Benchmarks

164

for $e in //eNest[@aSixtyFour>=5 and @aSixtyFour<=8] return

 <eNest aUnique1="{$e/@aUnique1}" aSixtyFour="{$e/@aSixtyFour}">

 </eNest>

-- QS6: Select nodes with aLevel = a13 and have the returned nodes
-- sorted by aSixtyFour attribute.

for $e in //eNest[@aLevel=13]

 order by (/@aSixtyFour)

 return

 <eNest aUnique1= "{$e/@aUnique1}" aString="{$e/@aLevel}"

 aSixtyFour="{$e/@aSixtyFour}">

 </eNest>

-- QS7: Select nodes with aSixteen = 1 and aFour = 1.

for $e in //eNest[@aSixteen=1 and @aFour=1] return

 <eNest aUnique1="{$e/@aUnique1}" aSixteen="{$e/@aSixtyFour}"

 aFour="{$e/@aFour}">

 </eNest>

-- QS8: Selection based on the element name, eOccasional

for $e in //eOccasional return

 <eOccasional aRef="{$e/@aRef}">

 </eOccasional>

-- QS9: Select the second child of every node with aLevel = 7

for $e in //eNest[@aLevel=7] return

 <parent aUnique1="{$e/@aUnique1}" aLevel="{$e/@aLevel}">

 {

 for $c in $e/eNest[position()=2] return

 <secondChild aUnique1="{$c/@aUnique1}" aLevel="{$c/@aLevel}">

 </secondChild>

 }

 </parent>

Appendix A. XML Benchmarks

165

-- QS10: Select the second child of every node with aLevel = 9

for $e in //eNest[@aLevel=9] return

 <parent aUnique1="{$e/@aUnique1}" aLevel="{$e/@aLevel}">

 {

 for $c in $e/eNest[position()=2] return

 <secondChild aUnique1="{$c/@aUnique1}" aLevel="{$c/@aLevel}">

 </secondChild>

 }

 </parent>

-- QS11: Get 'eOccasional' nodes that have element content
-- contains "oneB4"

for $e in //eOccasional

 where contains($e/text(), "oneB4") return

 <eOccasional aRef="{$e/@aRef}">

 </eOccasional>

-- QS12: Get nodes that have element content contains "oneB4"

for $e in //eNest

 where contains($e/text(), "oneB4") return

 <eNest aUnique1="{$e/@aUnique1}">

 </eNest>

-- QS13: select all nodes with element content that the distance
-- between keyword "oneB5" and the keyword "twenty" is not more than four

N/A

-- QS14: select all nodes with element content that the distance between
-- keyword "oneB2" and the keyword "twenty" is not more than four

N/A

-- QS15: Local ordering. Select the second element with aFour = 1
-- below each element with aFour = 1 if that second element also has aFour = 1

Appendix A. XML Benchmarks

166

for $e in //eNest[@aFour=1] return

 for $c in $e/eNest[position()=2 and @aFour=1] return

 <parent aUnique1="{$e/@aUnique1}" aLevel="{$e/@aLevel}"

 aFour="{$e/@aFour}">

 <secondChild aUnique1="{$c/@aUnique1}" aLevel="{$c/@aLevel}"

 aFour="{$c/@aFour}">

 </secondChild>

 </parent>

-- QS16: Global ordering. Select the second element with aFour = 1
-- below any element with aSixtyFour = 1

for $e in //eNest[@aSixtyFour=1] return

 for $c in $e/eNest[position()=2 and @aFour=1] return

 <parent aUnique1="{$e/@aUnique1}" aLevel="{$e/@aLevel}"

 aSixtyFour="{$e/@aFour}">

 <secondChild aUnique1="{$c/@aUnique1}" aLevel="{$c/@aLevel}"

 aFour="{$c/@aFour}">

 </secondChild>

 </parent>

-- QS17: Reverse ordering. Among the children with aSixteen = 1 of the parent
-- element with aLevel = 13, select the last child

for $e in //eNest[@aLevel=13] return

 for $c in $e/eNest[@aSixteen=1 and position()=last()-1] return

 <parent aUnique1="{$e/@aUnique1}" aLevel="{$e/@aLevel}">

 <child aUnique1="{$c/@aUnique1}" aLevel="{$c/@aLevel}"

 aSixteen="{$c/@aSixteen}">

 </child>

 </parent>

-- QS18: Moderate selectivity of both parent and child.
-- Select nodes with aLevel = 13 that have a child with attribute aSixteen = 3

for $e in //eNest[@aLevel=13] return

 if (exists($e/eNest[@aSixteen=3])) then

Appendix A. XML Benchmarks

167

 <eNest aUnique1="{$e/@aUnique1}">

 </eNest>

 else()

-- QS19: High selectivity of parent and low selectivity of child.
-- Select nodes with aLevel = 15 that have a child with attribute aSixtyFour = 3

for $e in //eNest[@aLevel=15] return

 if (exists($e/eNest[@aSixtyFour=3])) then

 <eNest aUnique1="{$e/@aUnique1}">

 </eNest>

 else()

-- QS20: Low selectivity of parent and high selectivity of child.
-- Select nodes with aLevel = 11 that have a child with attribute aFour = 3

for $e in //eNest[@aLevel=11] return

 if (exists($e/eNest[@aFour=3])) then

 <eNest aUnique1="{$e/@aUnique1}">

 </eNest>

 else()

-- QS21: Moderate selectivity of both ancestor and descendant.
-- Select nodes with aLevel = 13 that have a descendant with aSixteen = 3

for $e in //eNest[@aLevel=13] return

 if (exists($e//eNest[@aSixteen=3])) then

 <eNest aUnique1="{$e/@aUnique1}">

 </eNest>

 else()

-- QS22: High selectivity of ancestor and low selectivity of descendant
-- Select nodes with aLevel = 15 that have a descendant with aSixtyFour = 3

for $e in //eNest[@aLevel=15] return

 if (exists($e//eNest[@aSixtyFour=3])) then

 <eNest aUnique1="{$e/@aUnique1}">

 </eNest>

Appendix A. XML Benchmarks

168

 else()

-- QS23: Low selectivity of ancestor and high selectivity of descendant
-- Select nodes with aLevel = 11 that have a descendant with aFour = 3

for $e in //eNest[@aLevel=11] return

 if (exists($e//eNest[@aFour=3])) then

 <eNest aUnique1="{$e/@aUnique1}">

 </eNest>

 else()

-- QS24: Moderate selectivity of both ancestor and descendant.
-- Select nodes with aSixteen = 3 that have a descendant with aSixteen = 5

for $e in //eNest[@aSixteen=3] return

 if (exists($e//eNest[@aSixteen=5])) then

 <eNest aUnique1="{$e/@aUnique1}">

 </eNest>

 else()

-- QS25: High selectivity of ancestor and low selectivity of descendant
-- Select nodes with aFour = 3 that have a descendant with aSixtyFour= 3

for $e in //eNest[@aFour=3] return

 if (exists($e//eNest[@aSixtyFour=3])) then

 <eNest aUnique1="{$e/@aUnique1}">

 </eNest>

 else()

-- QS26: Low selectivity of ancestor and high selectivity of descendant
-- Select nodes with aSixtyFour = 9 that have a descendant with aFour = 3

for $e in //eNest[@aSixtyFour=9] return

 if (exists($e//eNest[@aFour=3])) then

 <eNest aUnique1="{$e/@aUnique1}">

 </eNest>

 else()

-- QS27: Low selectivity of ancestor and high selectivity of descendant

Appendix A. XML Benchmarks

169

-- Select nodes with aSixtyFour = 9 that have a descendant with
-- aFour = 3. Return a pair of ancestor and descendant nodes.

for $e in //eNest[@aSixtyFour=9] return

 if (exists($e//eNest[@aFour=3])) then

 <eNest aUnique1="{$e/@aUnique1}">

 {

 for $d in $e//eNest[@aFour=3] return

 <descendant aUnique1="{$d/@aUnique1}">

 </descendant>

 }

 </eNest>

 else()

-- QS28: One chain query with three parent-child joins with the selectivity
-- pattern: high-low-low-high, to test the choice of join order in evaluating
-- a complex query. To achieve the desired selectivities, we use the following
-- predicates: aFour = 3, aSixteen = 3, aSixteen = 5, and aLevel = 16

for $e in //eNest[@aFour=3] return

 if (exists($e/eNest[@aSixteen=3]/eNest[@aSixteen=5]/eNest[@aLevel=16]))

 then

 <firstLevel aUnique1="{$e/@aUnique1}">

 {

 for $c1 in $e/eNest[@aSixteen=3] return

 <secondLevel aUnique1="{$c1/@aUnique1}">

 {

 for $c2 in $c1/eNest[@aSixteen=5] return

 <thirdLevel aUnique1="{$c2/@aUnique1}">

 {

 for $c3 in $c2/eNest[@aLevel=16] return

 <fourthLevel aUnique1="{$c2/@aUnique1}">

 </fourthLevel>

 }

 </thirdLevel>

 }

Appendix A. XML Benchmarks

170

 </secondLevel>

 }

 </firstLevel>

else()

-- QS29: One twig query with two parent child selection, low selectivity of
-- parent aLevel = 11, high selectivity of left child aFour = 3,
-- and low selectivity of right child aSixtyFour = 3

for $e in //eNest[@aLevel=11] return

 if (exists($e/eNest[@aFour=3]) and exists($e/eNest[@aSixtyFour=3])) then

 <parent aUnique1="{$e/@aUnique1}" aLevel="{$e/@aLevel}">

{ for $c1 in $e/eNest[@aFour=3] where $c1/position()=1 return

 <child1 aUnique1="{$c1/@aUnique1}" aFour="{$c1/@aFour}">

 </child1>

}

{ for $c2 in $e/eNest[@aSixtyFour=3] where $c2/position()=1 return

 <child2 aUnique1="{$c2/@aUnique1}" aSixtyFour="{$c2/@aSixtyFour}">

 </child2>

}

 </parent>

else()

-- QS30: One twig query with two parent child selection, low selectivity of parent
-- aLevel = 11, high selectivity of left child aFour = 3, and low selectivity of right
-- child aSixtyFour = 3

for $e in //eNest[@aFour=1] return

 if (exists($e/eNest[@aLevel=11]) and exists($e/eNest[@aSixtyFour=3])) then

 <parent aUnique1="{$e/@aUnique1}" aLevel="{$e/@aLevel}">

{ for $c1 in $e/eNest[@aLevel=11 and position()=1] return

 <child1 aUnique1="{$c1/@aUnique1}" aLevel="{$c1/@aLevel}">

 </child1>

}

{ for $c2 in $e/eNest[@aSixtyFour=3 and position()=1] return

 <child2 aUnique1="{$c2/@aUnique1}" aSixtyFour="{$c2/@aSixtyFour}">

 </child2>

Appendix A. XML Benchmarks

171

}

 </parent>

else()

-- QS31: One chain query with three ancestor-descendant joins with the
-- selectivity pattern: high-low-low-high, to test the choice of join order in
-- evaluating a complex query. To achieve the desired selectivities, we use the
-- following predicates: aFour = 3, aSixteen = 3, aSixteen = 5, and aLevel = 16

for $e in //eNest[@aFour=3] return

 if (exists($e//eNest[@aSixteen=3]//eNest[@aSixteen=5]//eNest[@aLevel=16]))

 then

 <firstLevel aUnique1="{$e/@aUnique1}">

 {

 for $c1 in $e//eNest[@aSixteen=3] where

 exists($c1//eNest[@aSixteen=5]//eNest[@aLevel=16]) return

 <secondLevel aUnique1="{$c1/@aUnique1}">

 {

 for $c2 in $c1//eNest[@aSixteen=5] where exists($c2//eNest[@aLevel=16])

 return

 <thirdLevel aUnique1="{$c2/@aUnique1}">

 {

 for $c3 in $c2//eNest[@aLevel=16] return

 <fourthLevel aUnique1="{$c3/@aUnique1}">

 </fourthLevel>

 }

 </thirdLevel>

 }

 </secondLevel>

 }

 </firstLevel>

else()

-- QS32: One twig query with two ancestor descendant selection, low selectivity
-- of ancestor aLevel = 11, high selectivity of one descendant aFour = 3,
-- and low selectivity of another descendant aSixtyFour = 3

Appendix A. XML Benchmarks

172

for $e in //eNest[@aLevel=11] return

 if (exists($e//eNest[@aFour=3]) and exists($e//eNest[@aSixtyFour=3])) then

 <ancester aUnique1="{$e/@aUnique1}" aLevel="{$e/@aLevel}">

{ for $c1 in $e//eNest[@aFour=3 and position()=1] return

 <descendant1 aUnique1="{$c1/@aUnique1}" aFour="{$c1/@aFour}">

 </descendant1>

}

{ for $c2 in $e//eNest[@aSixtyFour=3 and position()=1] return

 <descendant2 aUnique1="{$c2/@aUnique1}" aSixtyFour="{$c2/@aSixtyFour}">

 </descendant2>

}

 </ancester>

else()

-- QS33: One twig query with two ancestor descendant selection, low selectivity
-- of ancestor aFour = 1, low selectivity of one descendant aLevel = 11,
-- and low selectivity of another descendant aSixtyFour = 3

for $e in //eNest[@aFour=1] return

 if (exists($e//eNest[@aLevel=11]) and exists($e//eNest[@aSixtyFour=3])) then

 <ancester aUnique1="{$e/@aUnique1}" aLevel="{$e/@aLevel}">

{ for $c1 in $e//eNest[@aLevel=11 and position()=1] return

 <descendant1 aUnique1="{$c1/@aUnique1}" aLevel="{$c1/@aLevel}">

 </descendant1>

}

{ for $c2 in $e//eNest[@aSixtyFour=3 and position()=1] return

 <descendant2 aUnique1="{$c2/@aUnique1}" aSixtyFour="{$c2/@aSixtyFour}">

 </descendant2>

}

 </ancester>

else()

-- QS34: One twig query with two ancestor descendant selection, high
-- selectivity of ancestor aFour = 1, low selectivity of a child with aLevel = 11,
-- and low selectivity of another descendant aSixtyFour = 3

for $e in //eNest[@aFour=1] return

Appendix A. XML Benchmarks

173

 if (exists($e/eNest[@aLevel=11]) and exists($e//eNest[@aSixtyFour=3])) then

 <ancester aUnique1="{$e/@aUnique1}" aLevel="{$e/@aLevel}">

{ for $c1 in $e/eNest[@aLevel=11 and position()=1] return

 <child aUnique1="{$c1/@aUnique1}" aLevel="{$c1/@aLevel}">

 </child>

}

{ for $c2 in $e//eNest[@aSixtyFour=3 and position()=1] return

 <descendant aUnique1="{$c2/@aUnique1}" aSixtyFour="{$c2/@aSixtyFour}">

 </descendant>

}

 </ancester>

else()

-- QS35: Missing Elements. Find all BaseType elements that there is no
-- OccasionalType elements below them. 1) Find all BaseType elements that
-- there is some OccasionalType elements below them. 2) Return elements that
-- are not in 1)

for $e in //eNest return

 if (not(exists($e/eOccasional))) then

 <eNest aUnique1="{$e/@aUnique1}" aLevel="{$e/@aLevel}">

 </eNest>

 else()

-- QJ1: Low selectivity join: select nodes based on aSixtyFour = 2 and join
-- with nodes with aSixtyFour = 3

for $e1 in //eNest[@aSixtyFour=2] return

for $e2 in //eNest[@aSixtyFour=2] where $e2/@aUnique1=$e1/@aUnique1
return

 <eNest1 aUnique1="{$e1/@aUnique1}" aSixtyFour="{$e1/@aSixtyFour}"

 aLevel="{$e1/@aLevel}">

 <eNest2 aUnique1="{$e2/@aUnique1}" aSixtyFour="{$e2/@aSixtyFour}"

 aLevel="{$e2/@aLevel}">

 </eNest2>

 </eNest1>

Appendix A. XML Benchmarks

174

-- QJ2: High selectivity join: select nodes based on aSixteen = 2 and join with
-- nodes with aSixteen = 3

for $e1 in //eNest[@aSixteen=2] return

for $e2 in //eNest[@aSixteen=2] where $e2/@aUnique1=$e1/@aUnique1 return

 <eNest1 aUnique1="{$e1/@aUnique1}" aSixteen="{$e1/@aSixteen}"

 aLevel="{$e1/@aLevel}">

 <eNest2 aUnique1="{$e2/@aUnique1}" aSixteen="{$e2/@aSixteen}"

 aLevel="{$e2/@aLevel}">

 </eNest2>

 </eNest1>

-- QJ3: Low selectivity join: select all OccasionalType nodes that point to a
-- node with aSixtyFour = 3

for $e1 in //eOccasional return

for $e2 in //eNest[@aSixtyFour=3] return

 if ($e2/@aUnique1=$e1/@aRef) then

 <eOccasional aRef="{$e1/@aRef}">

 <eNest aUnique1="{$e2/@aUnique1}" aSixtyFour="{$e2/@aSixtyFour}">

 </eNest>

 </eOccasional>

 else()

-- QJ4: High selectivity join: select all OccasionalType nodes that point to a
-- node with aFour = 3

for $e1 in //eOccasional return

for $e2 in //eNest[@aFour=3] return

 if ($e2/@aUnique1=$e1/@aRef) then

 <eOccasional aRef="{$e1/@aRef}">

 <eNest aUnique1="{$e2/@aUnique1}" aSixtyFour="{$e2/@aSixtyFour}">

 </eNest>

 </eOccasional>

 else()

-- QA1: Over all nodes at level 15, compute the average value for the

Appendix A. XML Benchmarks

175

-- aSixtyFour attribute

<avgaSixtyFour average="{avg(for $e1 in //eNest[@aLevel=15] return
$e1/@aSixtyFour)}">

 </avgaSixtyFour>

-- QA2: Over all nodes at all levels, compute the average value for the
-- aSixtyFour attribute

define function one_level(eNest $e)

{

 <average avgaSixtyFour="{avg(for $a in $e/eNest return $a/@aSixtyFour)}"

 aLevel="{$e/@aLevel+1}">

 {one_level($e/eNest)}

 </average>

}

one_level(/eNest)

-- QA3: Select elements that have at least two occurrences of keyword "oneB1"
-- in their content

N/A

-- QA4: Amongst the nodes at level 11, find the node(s) with the largest fan-out.

<maxFanout aUnique1="{

 for $e in //eNest[@aLevel=11] return

 for $p in //eNest[@aLevel=11] where count($e/eNest)=max(count($p/eNest))
return

 $e/@aUnique1

 }">

</maxFanout>

-- QA5: select elements that have at least two children that satisfy aFour = 1

for $e in //eNest where count($e/eNest[@aFour=1])>=2 return

<eNest aUnique1="{$e/@aUnique1}">

</eNest>

Appendix A. XML Benchmarks

176

-- QA6: For each node at level 7 (7,3), determine the height of the sub-tree
-- rooted at this node

DEFINE FUNCTION depth($e) RETURNS xsd:integer

{ IF (empty($e/eNest)) THEN 1 ELSE max(depth($e/eNest)) + 1 }

for $e in //eNest[@aLevel=7] return

<eNest aUnique1="{$e/@aUnique1}" aLevel="{$e/@aLevel}"
depth="{depth($e)}">

</eNest>

QU1-QU6

N/A

177

Bibliography

Abiteboul, S., Kaplan, H. & Milo, T. (2001). Compact labelling schemes for ancestor

queries. Proceedings of the twelfth annual ACM-SIAM symposium on Discrete

algorithms. Washington, DC: Society for Industrial and Applied Mathematics.

Abiteboul, S., Quass, D., Mchugh, J., Widom, J. & Wiener, J. L. (1997). The Lorel

query language for semistructured data. International Journal on Digital

Libraries, 1, 68–88.

AG, S. (2009). Tamino: XML managment system [Online]. Available:

http://www.softwareag.com/au/products/wm/tamino/default.asp [Accessed

2010].

Al-Khalifa, S., Jagadish, H. V., Koudas, N., Patel, J. M., Srivastava, D. & Wu, Y.

(2002). Structural joins: A primitive for efficient XML Query pattern matching.

The 18th International Conference on Data Engineering (ICDE), San Jose, CA,

IEEE Computer Society, 141–152.

Amagasa, T & Yoshikawa, M (2003). QRS: A Robust numbering scheme for XML

documents. The 19th ICDE Conference. Bangalore, India, 705-707.

Apache.org. (2005). Apache XML Projects [Online]. Apache Software Foundation.

Available: http://projects.apache.org/indexes/category.html#xml [Accessed

2006].

Bao, Z., Ling, T. W., Lu, J. & Chen, B. (2008). Semantic twig: A semantic approach to

optimize XML query processing. The 13th DASFAA Conference. New Delhi,

India: Springer, 282-298.

Berglund, A., Boag, S., Chamberlin, D., Fernández, M., Kay, M., Robie, J. & Siméon, J.

(2007). XML path language (XPath) 2.0 [Online]. Available:

http://www.w3.org/TR/xpath20/ [Accessed 2008].

Beyer, K., Cochrane, R., Hvizdos, M., Josifovski, V., Kleewein, J., Lapis, G., Lohman,

G., Lyle, R., Nicola, M., Zcan, F. O., Pirahesh, H., Seemann, N., Singh, A.,

Truong, T., Linden, R. C. V. D., Vickery, B., Zhang, C. & Zhang, G. (2006).

DB2 goes hybrid: Integrating native XML and XQuery with relational data and

SQL. IBM Systems Journal, 45, 271–298.

Beyer, K., Cochrane, R. J., Josifovski, V., Kleewein, J., Lapis, G., Lohman, G., Lyle,

B., Özcan, F., Pirahesh, H., Seemann, N., Truong, T., Linden, B. V. D., Vickery,

B. & Zhang, C. (2005). System RX: One part relational, one part XML.

Proceedings of the 2005 ACM SIGMOD International Conference on

Management of Data. Baltimore, Maryland: ACM, 347-358.

Böhme, T. & Rahm, E. (2004). Supporting efficient streaming and insertion of XML

data in RDBMS. Third International Workshop on Data Integration over the

Web. Riga, Latvia, 70–81.

Boncz, P., Grust, T., Keulen, M. V., Manegold, S., Rittinger, J. & Teubner, J. (2006).

MonetDB/XQuery: A fast XQuery processor powered by a relational engine.

ACM SIGMOD Conference on Management of Data. Chicago, IL, 479-490.

Bosak, J. (1999). Shakespeare 2.00 [Online]. Available:

http://www.cs.wisc.edu/niagara/data/shakes/shaksper.htm [Accessed 2005].

Bourret, R. (2005a). Going Native: Making the case for XML Databases [Online].

Available: http://www.xml.com/pub/a/2005/03/30/native.html [Accessed 2008].

Bourret, R. (2005b). XML Database Products [Online]. Available:

http://www.rpbourret.com/xml/XMLAndDatabases.htm [Accessed 2005].

http://www.softwareag.com/au/products/wm/tamino/default.asp
http://projects.apache.org/indexes/category.html#xml
http://www.w3.org/TR/xpath20/
http://www.cs.wisc.edu/niagara/data/shakes/shaksper.htm
http://www.xml.com/pub/a/2005/03/30/native.html
http://www.rpbourret.com/xml/XMLAndDatabases.htm

178

Bray, T., Paoli, J., Sperberg-Mcqueen, C. M., Maler, E. & Yergeau, F. (2008).

Extensible markup language (XML) 1.0 (Fifth Edition). W3C Recommendation

[Online]. Available: http://www.w3.org/TR/2008/REC-xml-20081126/

[Accessed 2009].

Bruno, N., Koudas, N. & Srivastava, D. (2002). Holistic twig joins: Optimal XML

pattern matching. Proceedings of the 2002 ACM SIGMOD International

Conference on Management of Data. Madison, Wisconsin: ACM, 310-321.

Carey, M., Kiernan, J., Shanmugasundaram, J., Shekita, E. & Subramanian, S. (2000).

XPERANTO: A middleware for publishing object-relational data as XML

documents. The 26th of VLDB conference, Cairo, Egypt, 646-648.

Cathey, R. J., Beitzel, S. M., Jensen, E. C., Grossman, D. & Frieder, O. (2007). Using a

relational database for scalable XML search. Journal of Supercomputing, 4,

146–178.

Chamberlin, D., Robie, J. & Florescu, D. (2000). Quilt: An XML query language for

heterogeneous data sources. In WebDB. Dallas, Texas: Springer-Verlag, 1-25.

Chen, Z., Gehrke, J., Korn, F., Koudas, N., Shanmugasundaram, J. & Srivastava, D.

(2007). Index structures for matching XML twigs using relational query

processors. Data & Knowledge Engineering, 60, 283–302.

Cohen, E., Kaplan, H. & Milo, T. (2002). Labelling dynamic XML trees. Twenty-first

ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database

Systems, Madison, Wisconsin: ACM, 271–281.

Connolly, T. & Begg, C. (2010). Database Systems: A practical approach to design,

implementation, and management, Pearson Education International.

Cooper, B. F., Sample, N., Franklin, M. J., Hjaltason, G. & Shadmon, M. (2001). A fast

index for semistructured data. The 27th VLDB Conference, Roma, Italy, 341-

350.

CWI, D. G. (2009). MonetDB/XQuery [Online]. Centrum Wiskunde & Informatica

(CWI). Available: http://monetdb.cwi.nl/ [Accessed 2009].

Dehaan, D., Toman, D., Consens, M. P. & Ozsu, M. T. (2003). A Comprehensive

XQuery to SQL translation using dynamic interval encoding. ACM SIGMOD

Conference on Management of Data, San Diego, CA: ACM, 623-634.

Deutsch, A., Fernandez, M. & Suciu, D. (1999). Storing semistructured data with

STORED. ACM SIGMOD, Philadelphia, PN: ACM, 431–442.

Draper, D., Fankhauser, P., Fernandez, M., Malhotra, A., Rose, K., Rys, M., Simeon, J.

& Wadler, P. (2007). XQuery 1.0 and XPath 2.0 Formal Semantics [Online].

World Wide Web Consortium. Available: http://www.w3.org/TR/xquery-

semantics/ [Accessed 2007].

Evjen, B., Sharkey, K., Thangarathinam, T., Key, M., Vernet, A. & Ferguson, S. (2007).

Professional XML, Wiley Publishing.

exist-db.org. (2009). eXist-db Open Source Native XML Database [Online].

sourceforge.net. Available: http://exist.sourceforge.net/ [Accessed 2009].

Fernandez, M., Hidders, J., Michiels, P., Simeon, J. & Vercammen, R. (2005).

Optimizing sorting and duplicate elimination in XQuery path expressions. 16th

DEXA Conference. Copenhagen, Denmark: Springer, 554-563.

Fernandez, M., Malhotra, A., Marsh, J. & Nagy, M. (2007). XQuery 1.0 and XPath 2.0

Data Model [Online]. World Wide Web Consortium. Available:

http://www.w3.org/TR/xpath-datamodel/ [Accessed 2007].

Fiebig, T., Helmer, S., Kanne, C.-C., Mildenberger, J., Moerkotte, G., Schiele, R. &

Westmann, T. (2002). Anatomy of a native XML base management system. The

VLDB Journal, 11, 292-314.

http://www.w3.org/TR/2008/REC-xml-20081126/
http://monetdb.cwi.nl/
http://www.w3.org/TR/xquery-semantics/
http://www.w3.org/TR/xquery-semantics/
http://exist.sourceforge.net/
http://www.w3.org/TR/xpath-datamodel/

179

Florescu, D. & Kossmann, D. (1999). Storing and querying XML data using an

RDBMS. IEEE Data Engineering Bulletin, 22, 27–34.

Gartner. (2007). Market share: Relational database management systems by operating

system, worldwide [Online]. Available:

http://www.gartner.com/it/page.jsp?id=507466.

Goldman, R. & Widom, J. (1997). DataGuides: Enabling query formulation and

optimization in semistructured databases. The 23rd VLDB Conference, Athens,

Greece, 436–445.

 Grinev, M. (2002). XQuery optimization based on rewriting. 6th East European

Conference on Advances in Databases and Information Systems. Bratislava,

Slovakia.

Grust, T. (2005). Purely relational FLWORs. XIME-P. Paris, France.

Grust, T., Keulen, M. V. & Teubner, J. (2003). Staircase join: Teach a relational DBMS

to watch its (axis) steps. The 29th VLDB Conference. Berlin, Germany, 524-535.

Grust, T., Keulen, M. V. & Teubner, J. (2004). Accelerating XPath Evaluation in any

RDBMS. ACM Transactions on Database Systems, 29, 91-131.

Grust, T., Rittinger, J. & Teubner, J. (2007). Why off-the-shelf RDBMSs are better at

XPath than you might expect. The ACM SIGMOD International Conference on

Management of Data, Beijing, China: ACM, 949–958.

Härder, T., Haustein, M., Mathis, C. & Wagner, M. (2005). Node labelling schemes for

dynamic XML documents reconsidered. Data & Knowledge Engineering, 60,

126–149.

Härder, T. (2005). XML databases and beyond—Plenty of architectural challenges

ahead. Advances in Databases and Information Systems, 9th East European

Conference. Tallinn, Estonia: Springer, 1-16.

Haustein, M. P., Härder, T., Mathis, C. & Wagner, M. (2005). DeweyIDs—The key to

fine-grained management of XML documents. 20th Brazilian Symposium on

Databases, Uberlandia, Brazil: UFU, 85–99.

Hoven, J. V. D. (2002). And then there were three. Information Systems Management,

19, 88–90.

Jagadish, H., Al-Khalifa, S., Chapman, A., Lakshmanan, L., Nierman, A., Paparizos, S.,

Patel, J., Srivastava, D., Wiwatwattana, N., Wu, Y. & Yu, C. (2002). TIMBER:

A native XML database. . The VLDB Journal, 11, 274-291.

Jiang, H., Lu, H., Wang, W. & Yu, J. X. (2002). Path materialization revisited: An

efficient storage model for XML data. The 13th Australasian Database

Conference, Melbourne, Australia: Australian Computer Society, 85-94.

Jiang, Z., Luo, C., Hou, W.-C., Zhu, Q. & Che, D. (2007). Efficient processing of XML

twig pattern: A novel one-phase holistic solution. 18th DEXA. Regensburg,

Germany.

Kaplan, H., Milo, T. & Shabo, R. (2002). A comparison of labelling schemes for

ancestor queries. The Thirteenth Annual ACM-SIAM Symposium on Discrete

Algorithms. San Francisco, CA, 954-963.

Kaushik, R., Bohannon, P., Naughton, J. & Korth, H. (2002). Covering indexes for

branching path queries. ACM SIGMOD, Madison, WI: ACM, 133-144.

Kha, D. D., Yoshikawa, M. & Umeura, S. (2001). An XML indexing structure with

relative region coordinate. The 17th International Conference on Data

Engineering, Heidelberg, Germany: IEEE Computer Society, 313–320.

Klettke, M. & Meyer, H. (2000). XML and object-relational database systems—

Enhancing structural mappings based on statistics. The 3rd International

Workshop on the Web and Databases (WebDB). Dallas, TX, 63-68.

http://www.gartner.com/it/page.jsp?id=507466

180

Kobayashi, K., Liang, W., Kobayashi, D., Watanabe, A. & Yokota, H. (2005). VLEI

Code: An efficient labelling method for handling XML documents in an RDB.

The 21st ICDE Conference. Tokyo, Japan.

Kriegel, A. & Trukhnov, B. M. (2008). SQL bible, Wiley Inc.

Kwong, A. & Gertz, M. (2002). Schema-based optimization of XPath expressions.

Techincal Report. Davis: University of California.

Lee, D., Mani, M. & Chu, W. (2003). Schema conversions methods between XML and

relational models. Knowledge Transformation for the Semantic Web, IOS Press,

95, 1–17.

Lee, G. (2003). SQL 2003 standard support in Oracle Database 10g [Online].

Available:

http://www.oracle.com/technology/products/database/application_development/

pdf/SQL_2003_TWP.pdf [Accessed 2008].

Lee, G. & Team, O. X. D. (2009). Oracle database 11g release 2 XML DB new features.

. Available: http://www.oracle.com/technetwork/database/features/xmldb/oracle-

19.pdf.

Lewis, P. M., Bernstein, A. & Kifer, M. (2002). Databases and transaction processing,

an application-oriented approach, Addison-Wesley.

Li, C. & Ling, T. W. (2005). QED: A novel quaternary encoding to completely avoid

relabelling in XML updates. Conference on Information and Knowledge

Management (CIKM). Bremen, Germany : ACM, 501-508.

Li, C., Ling, T. W. & Hu, M. (2006). Efficient processing of updates in dynamic XML

data. The 22nd ICDE Conference. Atlanta, GA, 13-23.

Li, Q. & Moon, B. (2001). Indexing and querying XML data for regular path

expressions. The 27th VLDB Conference, Roma, Italy: ACM, 361-370.

Liu, Z. H., Krishnaprasad, M. & Arora, V. (2005). Native XQuery processing in oracle

XMLDB. ACM SIGMOD. Baltimore, MD: ACM, 828-833.

Lu, J., Ling, T. W., Yong, C. & Chen, T. (2005). From region encoding to extended

dewey: On efficient processing of XML twig pattern matching. The 31st VLDB

Conference. Trondheim, Norway, 193-204.

May, N., Helmer, S., Kanne, C.-C. & Moerkotte, G. (2004). XQuery processing in

Natix with an emphasis on join ordering. XIME-P. Paris, France, 49-54..

McHugh, J., Abiteboul, S., Goldman, R., Quass, D. & Widom, J. (1997). Lore: A

database management system for semistructured data. SIGMOD, 26, 54–66.

McHugh, J., Widom, J., Abiteboul, S., Luo, Q. & Rajaraman, A. (1998). Indexing

semistructured data. Stanford, CA: Stanford University.

Meier, W. (2006). Index-driven XQuery processing in the eXist XML database [Online].

Available: http://exist-db.org/xmlprague06.html.

Melton, J. & Buxton, S. (2006). Querying XML: XQuery, XPath and SQL/XML in

Context, Elsevier.

Mertz, D. (2001). Putting XML in context with hierarchal, relational, and object-

oriented models [Online]. IBM developerWorks. Available: http://www-

106.ibm.com/developerworks/library/x-matters8/index.html [Accessed 2008].

Michiels, P. (2003). XQuery optimization. VLDB PhD Workshop. Berlin, Germany.

Michiels, P., Mihaila, G. & Simeon, J. (2007). Put a tree pattern in your algebra. ICDE.

Istanbul, Turkey, 246-255.

Min, J.-K., Lee, J. & Chung, C.-W. (2007). An efficient encoding and labelling for

dynamic XML data. The 12th DASFAA, Bangkok, Thailand: Springer, 715-726.

Moro, M., Vagena, Z. & Tsotras, V. (2008). XML structural summaries. Proceedings of

the VLDB Endowment, 1, 1524-1525.

http://www.oracle.com/technology/products/database/application_development/pdf/SQL_2003_TWP.pdf
http://www.oracle.com/technology/products/database/application_development/pdf/SQL_2003_TWP.pdf
http://exist-db.org/xmlprague06.html
http://www-106.ibm.com/developerworks/library/x-matters8/index.html
http://www-106.ibm.com/developerworks/library/x-matters8/index.html

181

MYSQL. (2009). MySQL database server [Online]. Available: http://www.mysql.com

[Accessed 2009].

Nambiar, U., Lacroix, Z., Bressan, S. & Lee, M. L. (2002). Current approaches to XML

management. Internet Computing, IEEE, 6, 43–51.

O'Neil, P., O'Neil, E., Pal, S., Cseri, I., Schaller, G. & Westbury, N. (2004).

ORDPATHs: Insert-friendly XML node labels. The ACM SIGMOD

International Conference on Management of Data. Paris, France: ACM, pp.

903–908.

Olteanu, D., Meuss, H., Furche, T. & Bry, F. (2002). XPath: Looking forward. The 8th

Extending Database Technology—EDBT Workshops. Prague, Czech Republic.

Oracle. (2009). Oracle XML DB [Online]. Oracle Technology Network. Available:

http://www.oracle.com/technology/tech/xml/xmldb/index.html [Accessed 2009].

Pal, S., Cseri, I., Seeliger, O., Rys, M., Schaller, G., Yu, W., Tomic, D., Baras, A., Berg,

B., Churin, D. & Kogan, E. (2005a). XQuery implementaion in a relational

database system. The 31st VLDB Conference, Trondheim, Norway: VLDB

Endowment, 1175-1186.

Pal, S., Cseri, I., Seeliger, O., Schaller, G., Giakoumakis, L. & Zolotov, V. (2004).

Indexing XML data stored in a relational database. The 30
th

 VLDB Conference.

Toronto, Canada: ACM, 1146-1157.

Pal, S., Fussell, M. & Dolobowsky, I. (2005b). XML support in Microsodt SQL server

2005 [Online]. Available: http://msdn.microsoft.com/en-

au/library/ms345117(SQL.90).aspx [Accessed 2008].

Re, C., Simeon, J. & Fernandez, M. (2006). A complete and efficient algebraic compiler

for XQuery. The 22nd ICDE Conference, Atlanta, GA, 14-26.

Runapongsa, K., Patel, J. M., Jagadish, H. V., Chen, Y. & Al-Khalifa, S. (2003). The

Michigan benchmark [Online]. EECS The University of Michigan. Available:

http://www.eecs.umich.edu/db/mbench/ [Accessed 2007].

Runapongsa, K., Patel, J. M., Jagadish, H. V., Chen, Y. & Al-Khalifa, S. (2006). The

Michigan benchmark: Towards XML query performance diagnostics.

Information Systems, 31, 73–97.

Schmidt, A., Kersten, M., Windhouwer, M. & Waas, F. (2000). Efficient relational

storage and retrieval of XML documents. The World Wide Web and Databases,

Third International Workshop WebDB. Dallas, TX: Springer, 47–52.

Schmidt, A., Waas, F., Kerten, M., Carey, M. J., Manolescu, I. & Busse, R. (2002).

XMARK: A benchmark for XML data management. Proceedings of the 28th

VLDB Conference. Hong Kong, China: VLDB Endowment, 974–985.

Seah, B.-S., Widjanarko, K., Bhowmick, S., Choi, B. & Leonardi, E. (2007). Efficient

support for ordered XPath processing in tree-unaware commercial relational

databases. DASFAA. Bangkok, Thailand, 793-806..

Shanmugasundaram, J., Tufte, K., He, G., Zhang, C., Dewitt, D. & Naughton, J. (1999).

Relational databases for querying XML documents: Limitations and

opportunities. The 25th VLDB Conference. Edinburgh, Scotland. Morgan

Kaufmann, 302–314.

Shui, W. M., Lam, F., Fisher, D. K. & Wong, R. K. (2005). Querying and maintaining

ordered XML data using relational databases. The 16th Australasian Database

Conference. Newcastle, NSW: Australian Computer Society, 85-94.

Silberschatz, A., Korth, H. & Sudarshan, S. (2002). Database system concepts, McGraw

Hill.

http://www.mysql.com/
http://www.oracle.com/technology/tech/xml/xmldb/index.html
http://msdn.microsoft.com/en-au/library/ms345117(SQL.90).aspx
http://msdn.microsoft.com/en-au/library/ms345117(SQL.90).aspx
http://www.eecs.umich.edu/db/mbench/

182

Silberstein, A., He, H., Yi, K. & Yang, J. (2005). BOXes: Efficient maintenance of

order-based labelling for dynamic XML data. The 21st International Conference

on Data Engineering, ICDE. Tokyo, Japan: IEEE Computer Society, 285-296.

SQLX.ORG. (2004). SQL & XML Working Together [Online]. Available:

http://sqlx.org/ [Accessed 2008].

Staken, K. (2001). Introduction to native XML databases [Online]. Available:

http://www.xml.com/pub/a/2001/10/31/nativexmldb.html.

Surjanto, B., Ritter, N. & Loeser, H. (2000). XML content management based on

object-relational database technology. The 1st WISE. Hong Kong, China, 70-79.

Tatarinov, I., Beyer, K., Shanmugasundaram, J., Viglas, S. D., Shekita, E. & Zhang, C.

(2002). Storing and querying ordered XML using a relational database system.

ACM SIGMOD. Madison, Wisconsin: ACM, 204–215.

Tian, F., Dewitt, D. J., Chen, J. & Zhang, C. (2002). The design and performance

evaluation of alternative XML storage strategies. SIGMOD Record, 31, 5–10.

UWDG. (2002). University of Washington XML repository [Online]. University of

Washington database group Available:

http://www.cs.washington.edu/research/xmldatasets/ [Accessed 2008].

UWMRG. (2002). NIAGARA Experimental Data [Online]. University of Wisconsin-

Madison database research group. Available:

http://www.cs.wisc.edu/niagara/data.html [Accessed 2009].

W3C. (1998). XML-QL: A query language for XML [Online]. Available:

http://www.w3.org/TR/NOTE-xml-ql/ [Accessed 2008].

W3C. (1999). XML query language (XQL). Available:

http://www.w3.org/TandS/QL/QL98/pp/xql.html.

W3C. (2004). XML Schema [Online]. Available: http://www.w3.org/TR/2004/REC-

xmlschema-0-20041028/ [Accessed 2007].

W3C. (2010a). World Wide Web consortium [Online]. Available: http://www.w3c.org.

W3C. (2010b). XML essentials [Online]. Available:

http://www.w3.org/standards/xml/core.

Weigel, F., Schulz, K. U. & Meuss, H. (2005). The BIRD numbering scheme for XML

and tree databases—Deciding and reconstructing tree relations using efficient

arithmetic operations. The 3rd XML Database Symposium, XSym2005.

Trondheim, Norway, 49-67.

Wu, X., Lee, M. L. & Hsu, W. (2004). A prime number labelling scheme for dynamic

ordered XML trees. The 20th ICDE Conference. Boston, MA: IEEE Computer

Society, 66–78.

Wu, Y., Patel, J. & Jagadish, H. (2003). Structural join order selection for XML query

optimization. The 19th ICDE Conference. Bangalore, India, 443-454.

Xu, L., Ling, T. W., Wu, H. & Bao, Z. (2009). DDE: From dewey to a fully dynamic

XML labelling scheme. SIGMOD. Providence, Rhode Island: ACM, 719-730.

Yoshikawa, M., Amagasa, T., Shimura, T. & Uemura, S. (2001). XRel: A path-based

approach to storage and retrieval of XML documents using relational database.

ACM Transactions on Internet Technology, 1, 110–141.

Zhang, C., Naughton, J., Dewitt, D., Luo, Q. & Lohman, G. (2001). On supporting

containment queries in relational database management systems. SIGMOD Rec.,

30, 425–436.

http://sqlx.org/
http://www.xml.com/pub/a/2001/10/31/nativexmldb.html
http://www.cs.washington.edu/research/xmldatasets/
http://www.cs.wisc.edu/niagara/data.html
http://www.w3.org/TR/NOTE-xml-ql/
http://www.w3.org/TandS/QL/QL98/pp/xql.html
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
http://www.w3c.org/
http://www.w3.org/standards/xml/core

