IMPROVING THE CODEBASE OF SIGNBANK

Joshua Goddard

Bachelor of Engineering
Software Engineering

MACQUARIE
University

SEYDMEY -AUSTRALIA

Department of Computing
Macquarie University

September 5, 2016

Supervisor: A /P Steve Cassidy

ACKNOWLEDGMENTS
I would like to acknowledge my supervisor, Steve Cassidy, for proposing this
project, for explaining it to me and for helping me with queiries and problems
I have had. [would also like to acknowledge the various signbank developers
for showing enthusasim for this project and for lending their experience with

Signbank to me whenever I have needed it.

STATEMENT OF CANDIDATE

I, Joshua Goddard, declare that this report, submitted as part of the require-
ment for the award of Bachelor of Engineering in the Department of Computing,
Macquarie University, is entirely my own work unless otherwise referenced or
acknowledged. This document has not been submitted for qualification or assess-

ment an any academic institution.

Student’s Name: Joshua Goddard
Student’s Signature: Joshua Goddard (electronic)

Date: September 5, 2016

ABSTRACT

The purpose of this project is to improve the codebase of Signbank, a web-
application written in Django that provides information relating to sign lan-
guages. The codebase is suffering from a lack of tests, from being out of date
(with respect to the latest versions of Python and Django), from lacking docu-
mentation, and from containing commponents that should be independent from
one another but are not. By the end of this project, the Signbank codebase was
improved by writing tests for it, by making components that should be indepen-
dent from one another independent from one another, by writing documentation,
and by upgrading the codebase to the latest versions of Django and Python, ver-
sions 1.10 , and 3.5, respectively. The project did fall short in some areas (as
is to be expected from a large software project). Some advice is given to future

developers on how they can tie up the lose ends left by this project.

Contents

Acknowledgments
Abstract

Table of Contents
List of Figures
List of Tables

1 Introduction

1.1 Overviewoffeatures
1.2 Goalsoftheproject
1.2.1 Independent apps o
1.2.2 Use the latest Django and Python versions
L T 1 -
1.24 Documentation
1.3 Projectplanming L Lo e e e e
130 BCOPE & s o iosodocod dod s om R R R R R R A G R R R G R R R &
1302 COFES.: & o o 6 o s o d 5 6 5 B E B e b R R R R R R B R & b B
133 Time
2 Literature Review
B 0 ., - T
211 Web-Framework.
212 Django and MVCo
2.1.3 The typical components of a Django application
214 Independent apps
22 Testingin Django e e
221 Twokindsoftesting
2.2.2 Continuous Integration L. L.
223 Testcoverage i o it it i i e e e e
2.3 Documentation e e

iii
vil
ix

xiii

x CONTENTS
3 Approach 15
3.1 Overview of the development environment 15
3.2 Overview on the structure of the project 15
3.3 Set up cookiecutter-django-package 16
331 tests ..o 17
332 appmame e e e e e e e e e e 17
333 travisovml .. oL 0L L L Lo 17

B TR 00 S 1111 .-) = . 17
O - 1 o 1, O PP 18
3.3.6 Requirementsfiles.o oL 18

34 Setup TravisCL e i 18
35 SetupCodecav i e e e e e e e e e e 20
3.6 Modularise the feedback app o o 20
3.6.1 Overview of the feedback app 20

3.6.2 Making the app independent 00000 21
3.6.3 Upgradethecosebase, 22

3.6.4 Writing documentation 24

3.65 Writingtests e e 24

366 Conclusion. Lo 31

3.7 Modularise the videoapp L oL o 32
3.71 Overviewof the videoapp 32

3.7.2 Making the app independent 32
3.7.3 Upgrade the cosebase oL 35

3.7.4 Writing documentationo oL oL L 36

3.75 Writingtests e e 36

376 Conclusiono oo cw s om susms cssssssssss s 42

3.8 Modularise the registration appo 0 0oL 42
3.9 Modularise the dictionary app L0000 42
3.9.1 Overview of the dictionary app 43

3.9.2 Making the app independent oL 44
393 Upgradethecosebase, 44

3.94 Writing documentationo L0000 0oL oL 45

395 Writingtests e e 45

398 Conclusion.ouooeuwumesnssenssssensss 47

3.10 Modularise the pagesapp L oo 47
3.11 Modularise the attachments app 47
3.12 Integrate the apps.« . . e e e e 47
4 Conclusion 49
5 Future work 51
5.1 Future work for the feedback app 51
5.1.1 Interpreter feedbacko 51

CONTENTS xi

5.1.2 User uploaded video 51

5.2 Future work for the videoappo 52
53 Theiframe function oo o o 52
5.4 Future work for the dictionary app 52
5.5 Future work for the attachments app and pagesapp 52
5.6 Future work for the integration 53

6 Abbreviations 55
A Attendance slip 57

Bibliography 57

List of Figures

1.1 Thefront pageof Auslan 2
1.2 The front page of BSL oL L. 2
1.3 Gaptehart : - : ¢ 5 o 5 o a6 s s o s s s s @i s E s e s G e &G e 5
3.1 Travis badge L L e 19
3.2 Code coverage for the dictionary app, 20
3.3 The word jab, as it appears in the dictionary. Its accompanying video is
ontheleft 32
3.4 The sign for the keyword dog L L. 43
Al Attendance slip L L e 58

xiii

List of Tables

1.1 What must bedone o v v i e e e e e e e e

XV

Chapter 1

Introduction

Auslan.org.au and bslsignbank.uc.ac.uk are websites that provide information relating to
Sign Languages. The principal feature of these websites is a dictionary of signs.

Briefly, a sign is a combination of hand movements, facial expressions, and arm move-
ments that, together, convey meaning. [1]

Sign language, like its oral counterpart, comes in many varieties. Two such varieties
are Australian Sign Language (Auslan) and British Sign Language (BSL). Auslan.org.au
provides information relating to Auslan, and bslsignbank.uc.ac.uk provides information
relating to BSL.

Auslan.org.au was designed and implemented first, and bslsignbank.uc.ac.uk forked it
sometime later. Since this time, the two websites have diverged greatly (with separate
developers working on each). In addition to the British and Australian websites, there
are a Finnish one and a Dutch one. Both the Finish and the Dutch versions are based on
copies of the Australian version’s source code. If is estimated that the copies took place
two vears ago.

The supervisor of this project, Steve Cassidy, wrote the Auslan website in Django,
a web-framework written in Python. When Steve wrote Auslan, he used the then most
recent version of Django, version 1.6. Since this time, however, Django has moved on to
version 1.10. The website has not changed with Django, and as a result is deficient in
some aspects. Broadly, the goal of this project is to ameliorate these deficiencies.

The codebase of the Auslan website shall be referred to as the Signbank codebase for
the remainder of this document.

1.1 Overview of features
The following list contains the features available on the Auslan website:
e A dictionary, with an entry for each sign in Auslan. Each entry in the dictionary

contains a definition of the sign, a video of a person signing the sign. linguistic
information about the sign, and a link to submit feedback on the sign.

2 Chapter 1. Infroduction

auslan.

signbank

Welcome to Auslan Signbank

Auslan Signbark is a language rescurces sie for Auslan |Austraiian Sign Lay
you wil find:

- 3 dictonary 5
abilty 1o search for signs related ta medical and health oplcs Welcome to BSL Slg nBank
= abilty 10 cearch for e nelated 1o educational and |.mm lapics

E A : W irnvite you all to explore SignBank and the visual language that is Brilish
= videos of deal people using the listed Auslan signs

informaSon on the dead community in Ausiralia Hipriom
® |inks 1o Auslan classes # BEL dicfionary
Figure 1.1: The front page of Auslan Figure 1.2: The front page of BSL

e The dictionary is searchable.
s Information on the deafness, and on the Auslan-speaking community of Australia.
e Resources for learning finger spelling.

e An interface for the administrator of the website to view feedback, and to manage
the content of the website.

e A user-login system.

The BSL website, being derived from Auslan, contains similar features.

1.2 Goals of the project

The current state of the Signbank codebase is not good. It uses a version of Django that
is several years old, it contains sections that should be independent from one another but
are not, it lacks documentation, and it lacks tests. The goal of this project, then, is to fix
these problems, and thus improve the codebase of Signbank.

The sections referred to in the previous paragraph are
e Video
e Dictionary

Feedback

Registration

Pages

Attachments

1.3 Project planning 3

These sections will be important for understanding the goals of the project.
What follows is an overview of the goals of the project.

1.2.1 Independent apps

From the perspective of someone who uses the Auslan website, each of the items in the
above list can be thought of as a feature. From the Signbank developer’s perspective,
however, each item should, ideally, be thought of as a pluggable Django application as
independent from the other items in the list as is possible. One of the problems with
Signbank is that some of the items in the list are tied to other items in the list beyvond
what is reasonable. The first goal, then, of this project is to take each item as it exists
now in the Aunslan codebase and to turn it into an independent Django application.

It should then be possible to recreate Signbank by combining all of these indeped-
nent applications together, into a single Django Project. (For an explanation on the
terminology Django application and Django project, see chapter 2.)

1.2.2 Use the latest Django and Python versions

Sigbank was written in the 1.6 version of Django. This version is several years old.

The second goal of this project, then, is to upgrade the Signbank codebase to version
1.10 of Django, the latest version; and to use the latest version of Python, version 3.5;
and to try, where reasonable, to maintain compatibility with the older version of Django
and Python.

1.2.3 Tests

The Auslan codebase lacks tests. The third goal, then, of this project is to write tests.
Each Django application should have its own suite of tests. In addition, tests which span
the entire Signbank codebase should be written.

A code coverage of at least 85 percent is desired.

1.2.4 Documentation

The Auslan codebase lacks documentation. The fourth goal, then, of this project is to
write documentation. Each Django application should have its own documentation.

1.3 Project planning

Each of the following subsections deals with an aspect of project planning.

4 Chapter 1. Introduction

Task Name Start Date | End Date | Duration
Gain initial, broad understanding of the project | 25/07/2016 | 1/08/2016 | 7
Identify requirements 1/08/2016 | 5/08/201G | 4
Learn Django 25/07/2016 | 1/11/2016 | 99
Write the progress report 10/08/2016 | 5/09/2016 | 26
Set up Travis CI (continuous integration) 5/08/2016 6G,/08/2016 |1
Set up cookiecutter-django-package 5/08/2016 6/03/2016 | 1
Set up Codecov (test coverage) 5/08/2016 | 6/08/2016 |1
Modularise the feedback app 5/08/2016 | 2/09/2016 | 28
Modularise the video app 2/09/2016 | 30/09/2016 | 28
Modularise the registration app 30/09/2016 | 3/10/2016 |3
Modularise the dictionary app 3/10/2016 31/10/2016 | 28
Modularise the Pages app 31/10/2016 | 7/11/2016 |7
Modularise the Attachments app 31/10/2016 | 7/11/2016 |7
Intergrate all of the apps 5/08/2016 7/11/ 2016 | 94
Write the final report 15/10/2016 | 7/11/2016 | 23
Give presentation 14/11/2016 | 15/11/2016 | 1

Table 1.1: What must be done

1.3.1 Scope

The major goals of the project were given in section 1.2. Presented in the table above are
the concrete tasks that, if completed successfully, will realise these goals. Each row of the
table corresponds to a task. The tasks that have the word modularise in them require a
few words of explanation.

By modularise, the following things are meant:

s Make each app independent from the other apps (to the extent that it it reasonable
to do so).

Write tests for each app.

Write documentation for each app.

Upgrade the cosebase so that it adheres to the best-practices for Django 1.10, and
Python 3.5.

As can be gleaned from the table, there is a lot to do, perhaps too much. In the
end, the Pages and Attachments apps were not successfully modularised. That said,
these two apps are, according to Steve Cassidy, very broken and therefore not worth
salvaging. Research into what could replace these apps was undertaken; wagtail, a Content
Management System (CMS) for Django, looks promising. Future developers, picking up

1.3 Project planning 5

Gantt Chart
8416 9316 216 10/13/16 1172116
Wirite the progres i ==
Set up Taves O (continuous intargraticn]
Set up cookies utterd)s 3 "
Set up Codecoy (D v
Modularine the feedback app ———
Medularee the video app —_—
Madilaria the fe o APP -
y app ————
s app —
5 App —
apps
POt —_—
Give presentation Ll

Figure 1.3: Gant chart

from where this project ended, should consider that app as a replacement for the Pages
and Attachments apps.

1.3.2 Costs

No formal budget was allocated to this project.
The need to make a purchase never arose, perhaps because the project cons
of free software.

s entirely

1.3.3 Time

The gantt chart, figure 1.3, gives a visual overview of the time allocated to each task. In
the end, it took longer to modualrise the dictionary app, the feeback app, and the video
app than was anticipated.

Chapter 1. Intraduction

Chapter 2

Literature Review

The goals outlined in section 1.2 draw upon three fields of knowledge:
e Django
e Testing in Django
o Documentation

The literature on each of these different fields is surveyed in this chapter. Because this
is a software project, some of the literature is written in the form of a blog post.

2.1 Django

Django is a web-framework written in pvthon. [t was created in 2003 by developers
working for the newspaper Lawrence Journal-World. 2]

2.1.1 Web-Framework

A web-framework is a software framework for writing a web-application. It provides the
generic functionality required by a web-application, leaving the user of the framework to
provide the functionality specific to his web-application. [3] There are many benefits to
using a web-framework. In all but a very few cases, the benefits outweigh the costs. Using
a web-framework saves time; it lowers the barriers to entry for writing a web-application;
it provides functionality that is well-tested for bugs, and that is eflicient in terms of speed
and memory usage.

Django is one of many web-frameworks. It happens to be the 5th most popular one
as of the September, 2016. [4]. Due to its popularity, there are a plethora of resources on
it. The following list contains each resource that is referenced in this literature review:

e The official Django documentation [5]

8 Chapter 2. Literature Review

Test Driven Development with Python [6]

Test-Driven Development with Django [7]

The Django Book [2]

e Two Scoops of Django [8]

2.1.2 Django and MVC

The three most important words in Django development are models, views and urls. These
words appear everywhere, and for good reason: they promote a well-established software
architectural pattern known as Model View Controller (MVC). [2]

The MVC pattern is a famous architectural pattern in software. It provides a template
for solving a commonly occuring problem in software: the display and manipulation of
data. An application that uses the MVC pattern is splif into three independent compo-
nents: 2]

e The model — this component of the software handles how the data are stored in the
databases. [2]

e The view — this component of the software handles how the data are displayed (to
the user). [2]

e The controller — this component of the software handles user input, mapping it to
an appropriate action in the system, which may involve manipulating data and/or
displaying data back to the user. [2]

Because each component is independent from the other components , a change can
be made in one component without affecting the other components. For example, the
database, defined in the models component, could be changed from Sqlite3 to PostgreSQL
without the need to change code in the views and controller components of the application.
As it turns out, this occurrs commonly in Django applications.

Django uses the MVC pattern, though with a slight variation: Django lacks a con-
troller component. Due to this variation, the question of whether Django really uses MVC
commonly comes up. The official django documentation has this to say:

"...In our interpretation of MVC, the view describes the data that gets presented to
the user. Its not necessarily how the data looks, but which data is presented. The view
describes which data you see, not how you see it. Its a subtle distinction. [...] Where
does the controller fit in, then? In Djangos case, its probably the framework itself: the
machinery that sends a request to the appropriate view, according to the Django URL
configuration.” [5]

So, Django itself acts as the controller, with the urls defined in the wrls component
of a Django application mapping user input to an appropriate action in the Django ap-
plication. The quote also mentions that the views component of a Django application is

5 B T R

2.1 Django 9

responsible for whai data are displayed, not how the data look. This, too, is another way
in which Django deviates from the MVC pattern. In Django, how the data are displayed
is controlled by femplates. templates, views, models and wrls are explained in the next
section.

2.1.3 The typical components of a Django application

mysite
| _manage.py
— myapp

admin.py

tests.py

models.py

views.py

templates

| myapp

i_ index.html

| mysite

settings.py

urls.py

wSgi.py

The directory structure above is typical of a Django application. [3]. Before going

any further, a few points on Django terminology are necessary. In Django terminology,
mysite in the directory structure above is called a project, not an app. The word app is
reserved for myapp in the directory above. An app in django is a “small library designed
to represent a single aspect of a project.” [8]. So, in the case of Signbank, Signbank is a
project, and it contains various apps, each of which represents a single aspect of it. The
various apps of which Signbank consists were listed earlier. Ideally, these apps should
be independent from one another, a topic which will be addressed later in the literature

review.
The following sub-subsections give a (very) brief overview of the key components of a
django application

Models

In a Django app, the file models.py is the model component of the app. This file defines
the data of the app. [5]. A typical models.py file looks like this

from django.db import models

class Person(models. Model):
first name = models. CharField (max_length=30)
last_name = models. CharField (max_length=30)

10 Chapter 2. Literature Review

g

The class Person defines a database called Person: the class variables are the fields
of the database. It is very straighforward, and one of the strengths of Django. The
data stored in the database can be queried (retrieved) though Django’s Object Relational

Mapping (ORM).

Urls

In a Django app. the file uris.py is part of the controller component of the app. This file
defines each valid URL in the app, and it defines which view , defined in views.py and
explained in the next sub-subsection, should be called for a given URL. [5]

1 from django.conf.urls import url

2

3 from feedback import views

4

5

G app.name = "feedback”

7 urlpatterns = |

8 # ex: /

9 url(r”"$”, views.index, name="index”),

10 # ex: generalfeedback/

11 url(r” " generalfeedback /8", views.GeneralFeedbackCreate.as_view (),
12 name="generalfeedback™),

13 # ex: show/

14 url(r’ " show’, views.showfeedback , name = ’showfeedback '),

15 # ex: general/delete/1/

16 url (r’"(?P<kind>general | sign | missingsign)/delete /(?P<id >\d+)/8 ",
17 views .delete , name = 'delete '),

18 # ex: missingsign/

19 url (r’ " missingsign/$’, views.missingsign ,
20) name="missingsign ') ,
21 # ex: abscond—1/
22 url (r’" sign /(?7P<keyword >.+)—(?P<n>\d+)/$’, views.signfeedback,
23 name = 'signfeedback '),
24]

The code snippet above is from the feedback app of Signbank. It defines, using regexes,
each valid url in the app. If a URL entered by a user matches one of the definitions in the
code snippet above, then the function in views.py corresponding to the URL definiton is
called.

[SR

Qo =1 v Ot

2.1 Django 11

Views

In a Django app, the file views.py is the view component of the app. This file defines
what action should be taken for a given URL. [5].

from django.shortcuts import render, get_object_or_404 ., redirect
from django.conf import settings
def index(request):
return render(request , "feedback/index.html”,
{"language”: settings .LANGUAGENAME,
"country”: settings .COUNTRYNAME, })

The above code snippet comes from the feedback app of Signbank. The index() func-
tion is called when a user enters the URL that corresponds to it. The function calls the
render() function. This function generates HTML per a template, explained next, and
then that HTML is returned by the index() function, ultimatley making its way back to
the user who requested it.

Templates

In a Django app, templates serve the purpose of a view in the MVC pattern. Templates
control how the data look to the user. This is done through Django’s templating language,
though other language can be subsituted if desired. jinja is a popular substitute. [2]

2.1.4 Independent apps

To eonclude the discussion on Django, the concept of an independent app is given a brief
overview, This concept is very important for the project.

As has been mentioned previously, a Django project consists of apps, each of which ,
ideally, represents one aspect of the project. The authors of Two Scoops of Django offer
this advice:

“In essence, each app should be tightly focused on its task. If an app cant be explained in
a single sentence of moderate length, or you need to say and more than once, it probably
means the app is too big and should be broken up.”

In the extreme case, the app is so decoupled from the project that it can be used in an
arbitrary Django project. That is the ideal that this project strives for. Both the official
Django documentation and Two Scoops of Django offer advice on how to achieve this, and
on how to package the app. The authors of Two Scoops of Django provide a convenient
program called ccookiecutte-django-package, which is capable of generating the template
for an independent Django app. [8] [9]

12 Chapter 2. Literature Review

2.2 Testing in Django

“Testing is a pillar of professional software development” [7]; “Automated testing is an
extremely useful bug-killing tool for the modern Web developer. You can use a collection
of tests a test snite to solve, or avoid, a number of problems...” [5] All of the literature
reviewed had only good things to say about testing. The official Django documentation
gives two benefits to testing: [';]

e “When voure writing new code, you can use tests to validate your code works as
expected.”

e “ When youre refactoring or modifving old code, vou can use tests to ensure your
changes havent affected vour applications behavior unexpectedly.”

2.2.1 Two kinds of testing

There are myriad categories of tests. [7] In this literatue review, two kinds will be consid-
ered:

e [unctional tests
e Unit tests

Unit tests test the correctness of source code functions, while functional tests test the
correctness of a feature (or features) of the app. A feature could span multiple source
code functions. [7] . Unif tests should be short and self-contained. Functional tests, on
the other hand, can be large and can span multiple components of an app. [7] Both kinds
of tests should be written [3] as each offers unique benefits.

Django makes it very easy to write unit tests and functional tests. [5]

Unit tests

Django adds features ontop of pvthon's unittest module to make writing unit tests for

django apps very easy. To ensure that unit tests are self-contained, Django creates a clean

database at the beginning of each test and tears it down once the test has finished. [5]
Django provides two different classes for writing unit tests:

e RequestFactory

e (Client

The literature is mixed on which to use. Test Driven Development with Python [6]
does not touch upon RequestFactory, but Test-Driven Development with Djange [7] does.
For writing unit tests, Kevin Harvey, the anthor of Test-Driven Development with Django,
makes a convincing case for why RequestFactory is superior to Client. RequestFactory

2.2 Testing in Django 13

is closer to the ideal unit test because it is more self-contained than the Client. To give
a concrete example, in order to test a view funection with the Client, the url must be
correct. This adds a dependency which has nothing to do with the view function under
test. RequestFactory does not suffer from this problem because it makes no assumptions
about the url.

RequestFactory’s benefits come at a cost, however. It is harder to write tests using
the RequestFactory class, largely due to lacking documentation. [8]

Functional tests

Django does not provide a native functional test library(though some argue that the
Client class is really a functional test library [10]). This literature review considers two
third-party libraries

o Selenium [11]
e Web-Test [12]

These two libraries can test a django app from the perspective of the user, right down
to simulating a button press. Selenium differs from web-test in that selenium runs in
the browser. [13] Web-test, on the other hand, does not. It uses the WSGI protocol, a
protocol for python applications to communicate with web-servers, to test the app. [?] For
this reason, it only works for python apps. For the purposes of this project, that weh-test
only works for python apps is not a problem.

For the purposes of this project, web-test is superior. The only reason one would use
selenium over web-test is to test java script running in the browser. [13] Signbank does
not appear to have much complicated java script, so selenium is not worth the cost of
being slow compared to web-test. [13].

2.2.2 Continuous Integration

Two scoops of django recommends Jenkins, but Jenkins is outdated. [8] Steve Cassidy
has recommended Travis CL

Travis CI is a clond-based confinuous integration system. If will build your app . run
the app’s tests, and then report whether the build was successful. It integrates seamlessly
with GitHub; it detects when a new commit is pushed to an app’s GitHub page, and then
it runs the buld process described previously.

Travis CI has extensive documentation that will be useful for constructing the .travis.yml

files, the file that configures the build process.

2.2.3 Test coverage

Both the official Django documentation and Two Scoops recommend [8] [5] coverage.py
as a way to measure how much of the app is covered by the tests.

14 Chapter 2. Literature Review

To supplement Coverage, a cloud-based code coverage tool called Codecov will be
used. This tool enables one to see the lines of an app’s code that are not being covered

by the app’s tests,

2.3 Documentation

Kevin Harvey identified documentation as a pillar of great software development. [7]. In
the field of documentation writing, Sphinx is the undisputed champion. [8]

Chapter 3

Approach

This chapter describes how the tasks identified in section 1.3.1 were tackled. Note that
not all of the tasks identified in 1.3.1 are described here; the tasks not described here are
too frivial to be worthy of an explanation.

It’s also worth mentioning the system on which the app was developed; this is descibed
in the next section.

3.1 Overview of the development environment

The Signbank codebase is primarily written in Django; this means that it should be able
to run on Windows, Ubuntu and other Linux distributions, and Mac. Because Ubuntu
is easiest to work on, it was chosen as the development environment for this project;
specifically, version 16.04 of Ubuntu was used. Django’s own web-server was used as the
HTTP server for development. So that was the development environment, but there was
also the production envionment.

In general the production environment isn't necessarily the same as the development
environmen for an app. For development, one wouldn't nuse Django’s own web-server,
for example. Instead, one would use nginz or apache. Worrving about production issues
was beyvond the scope of this project, however. Still, it’s worth mentioning because the
difference between production and development can be confusing.

3.2 Overview on the structure of the project

Signbank is, in the Django vernacualr, a Djangoe project made up of Djano apps.

The video app, feedback app, and dictionary app have their own GitHub repositories
that were created at various stages thougout this project. The registration app also has
a GitHub repository, though one created and owned by a third party (all of this will be
explained later when the registration app is explained.)

The purpose of mentioning that was to clarify, for a third time, the difference between
a Django app and a Django package. This distinction will be important for understanding

15

16 Chapter 3. Approach

the next three sections, which describe how cookiecutter-django-package, Travis CI, and
Codecov were set up. Note that each of these three tasks, setting up cookicutter-django-
package, setting up Travis CI, and setting up Codecov, had to be done for each app
(except for the registration app).

3.3 Set up cookiecutter-django-package

Cookiecutter-django-package is a template for rensable Django applications. (For a back-
ground on reusable Django applications, see chapter 2.) The video app, the feedback
app, and the dictionary app are based on the template provided by cookiecutter-django-
package.

What follows are the steps that were followed to set up cookiecutter-django-package.

1. Install a python program called cookiecutter.

2. Run the program. The progarm will ask vou questions, such as, ‘What is your
name?’, “What software license do vou want to use?’, and, ‘“What is the name of
yvour app?’ It uses your answers to these questions to configure the template for
vour particular circumstances.

3. When the program finishes quizzing vou, it will create the directory structure of
your app.

The directory structure is important. It contains all of the files that constitute your
app: cookiecutter-django-package organises them cleanly for you, and fills them with ini-
tial data to get you started.

signbank-video

| .github

,__docs

Lo Eest B nirrnnninsnsrrrasmesasn T Lhisfolder- containe the tests
| video. ... This folder contains the views, models, ete of the app.
| _editorconfig

| .gitignore

, .travis.yml

| AUTHORS.rst

. CONTRIBUTORS.RST

,_HISTORY.rst

| _LICENSE

|__MANIFEST.in

, _Makefile

, _README.rst

| _requirements.txt

. _requirements_dev.txt

3.3 Set up cookiecutter-django-package 17

requirements_test.txt
runtests.py. This file is the settings.py file, and test runner, combined.
setup.cfg

setup.py
tox.ini

The directory structure above is the directory structure of the video app. This di-
rectory structure was created by running cookiecutter. Some of the files created by
cookiecutter were not used; the most important files and directories are listed below:

e fests

* app name (in the directory structure above, this is called video.
e .travis.yml

o runtests.py

e setup.py

e the requirements files (requirements.txt, et etc)

3.3.1 tests

The tests directory contains all of the tests for an app, as well as all of the data that the
tests require to rumn.,

Due to a name-spacing issue, it was necessary to create a urls.py file inside the tests
directory, and to make this urls.py the ROOT_-URLCONF, defined in runtests.py.

3.3.2 app name

This directory contains the logic, data definitions, and static assets of the app. In Django
vernacular, this directory contains the models, views, urls, and templates, and static
images, videos, JS code, and CSS code, of the app.

3.3.3 .travis.yml

More will be said about this file in section 3.5.

3.3.4 runtests.py

This file runs the tests defined in the tests directory. It also acts acts as the settings. py
file for the app when the tests are being run.

The tests can be run with the command python3 runtests.py. That command will
run all of the tests inside the tests directory, and the output of the tests will be sent to
the terminal.

e B e

o

18 Chapter 3. Approach

3.3.5 setup.py

This file installs the app on the computer. The command python3 setup.py install
will install the app on the computer, making it available to a Django project, or to another
Django app.

3.3.6 Requirements files

The three files requirements . txt, requirements_dev.txt, and requirements_test.txt
define the python apps (not necessarily Django apps) that an app depends on. This
project only eneded up using requirements.txt, and requirements_text.txt The dif-
ference between these two files is that the the latter contains only the apps required for the
tests to run. More will be said on these two files in each app’s section of this document.

3.4 Set up Travis CI

Travis Ci (Travis) is a cloud-based continuous integration sytem. (For more of a beack-
ground on it , see chapter 2.)

Each app’s GitHub repository was connected to Travis. This was done through a nify
interface on Travis' website. Travis was then set up to run an app’s test suite whenever a
new commit was pushed to the app’s GitHub repository. Pass or failure of the test suite
was conveniently indicated on the app’s GItHub page by a badge, as in figure 3.2. When
the tests fail, that badge turns red, and the text on it reads, ‘Failing.” Travis also keeps
a history of test results on its website.

So that was a high-level overview of how Travis was used in this project. What follows
is a more detailed description.

When Travis detects a new new commif on an app’s GitHub repository, it creates a
virtual Ubuntu 12.04 environment and builds the app in it. Travis’ build instructions
come from a file called .travis.yml, located in the root directory of the app. The
cookiecutter-django package conveniently creates this file for you.

Config file for auntomatic testing at travis—ci.org

language: python

python:

(=]
o

(%]

13

[S]
=1 &=

before_install:
— pip install codecov
— sudo apt—get —qq update
— sudo apt—get install —y ffmpeg

14
15
16
17
18
19
20

3.4 Set up Travis CI 19

B setup.cfg first commit
El setup.py first commit
E) tox.ini first commit
README.rst

signbank-dictionary

pypl package | 222 | build ‘passing

The dictionary component of Signbank

Figure 3.1: Travis badge

install: pip install —r requirements_test.txt
script: coverage run ——source video ——omit=x/fields .py
after_success:

— codecov

The listing above is the .travis.yml file of the video app. It will serve as an example
for explaining how the file works in general.

s The third line of the file tells Travis that the app is written in Python.

e The 5th to 8th lines tell travis that it should use versions 3.5, 3.4, and 2.7 of Python.
Travis repeats the build process for each of these versions of Python; this ensures
that vour app is compatiable across a range of Python versions. Interestingly, it was
found that all of the apps failed to pass their test suites for version 3.3 of Python.
It was decided that it wouldn’t be worth the effort of making the apps compatible
with Python 3.3. That's why Python 3.3 is not in the the .travis.yml file.

e The 10th to 15th lines install all programs that are external to the app.

e Line 17 runs the tests, defined in the app’s tests directory. It also measures the code
coverage achieved by the tests; that’s what the coverage command is for.

20 Chapter 3. Approach

[dictionary =
Files . . - Coveragn

v 1 1 ¢ o 100%

& & o o 1005

e gy g @ o L] 1008

models oy 190 164 0 2% 8531%

P 5 5 o 4} 10056

viwrEEY 114 we 0 i1 P35

Foldor Tetals 325 288 0 a7 aBal%

Project Totals (= les 325 258 o aw B841%

Figure 3.2: Code coverage for the dictionary app

e Line 19 sends the coverage data off to Codecov, a cloud-based code coverage service
that will be described in a later section.

3.5 Set up Codecov

Codecov is a cloud-based code coverage visualisation tool. (For more of a background on
it, see chapter 2.)

cookiecutter-django-package sets up the .travis.yml file to integrate with Codecov.
That happens on line 19 of the .travis.yml file above. One manual setp was required,
however, for the integration to work: Codecov has to be connected with the app being
tested. This was done through Codecov’s website.

Figure 3.2 shows one of the visualisations that Codecov can produce. That picture is
showing the percentage of lines in each of the dictionary app’s source code files that are
covered by the tests.

More on this will be said in the sections that describe the approach taken for modu-
larising each app.

3.6 Modularise the feedback app

The feedback app handles the user-submitted feedback. Here is the GItHub page of the
feedback app created in this project: https://github.com/hujosh/signbank-feedback

3.6.1 Overview of the feedback app

The feedback app allows users to submit five kinds of feedback:

e Feedback on a sign — This is feedback on a word in the dictionary.

R

-] 2 n

3.6 Modularise the feedback app 21

o Feedback on a missing sign — If a user feels like a sign is missing from the dictionary,
then he can make that known via this kind of feedback.

e Feedback on a gloss — This is for feedback on the sign itself.

e Interpreter feedback — this is for feedback on a sign that is submitted by an inter-
preter.

e General feedback — This is for feedback that doesn’t fit into any of the above cate-
gories.

The feedback app also handles showing the feedback to the administrator of the web-
site, and allowing the administrator to delete feedback.

3.6.2 Making the app independent

The models. py component of the feedback app had some unnecessary dependencies with
the dictionary app.
class SignFeedback (models. Model):

LR "

"Store feedback on a particular sign”"”

user = models. ForeignKey (authmodels. User, editable=False)
date = models.DateTimeField (auto_.now_add=True)
translation = models. ForeignKey(Translation , editable=False)

The code above comes from the models. py file of the feedback app. Line seven contains
a foreign key to a row in the translation databas, which is defined in the dictionary app.
Now, what exactly a translation is will be explained later, in the dictionary app section;
the point to be made here is that, from the perspective of the feedback app, it doesn’t
matter what a translation is.

Before removing the dependency, it was necessary to understand why it was there in
the first place. The reason was traced to the part of the feedback app that was responsible
for showing feedback to the administrator. The administrator needed a way to view, in
the dictionary, the sign (gloss), or word that the feedback was about. The translation
foreign key was used to get the URL, and thus the location in the dictionary, of the sign
(gloss), or word.

Knowing why the dependency was there enabled it to removed without breaking the
aforementioned functionality required by the administrator. Here's how that was achieved.

All words in the dictionary had the following URL form /dictionary/words/keyword-n,
where Feyword is the word itself, and n is a number used to differentiate between words
that have the same word (this can occur, for example, when two words are homonyms).
So, if all that was required to locate a word in the dictionary was its URL, why not just
store the URL in the feedback app rather than the translation foreign key? So that was
how the problem was solved. The same solution was applied to the gloss feedback.

e L B e

C=e < I oo IS

11
12
13
14
15
16
17
18
19
20

QO =1 O Uv o LD D e

22 Chapter 3. Approach

Removing that dependency brought the feedback closer to the ideal of being indepen-
dent. Unfortunately, it was not possible to remove all dependencies. The missing sign
feedback allowed users to upload a video, and the uploaded video depended on functions
defined in the video app that could not be removed.

3.6.3 Upgrade the cosebase

Upgrading the codebase was quite a lot of work, but in the end it paid off. The views.py
file, where the most extensive code upgrading took place, went from 300 lines of code to
140 lines of code. This large reduction in lines of code was achieved by converting the
forms of the feedback app to ModelForms.

Compare the same function that in the first code listing using a ModelForm, and in
the second code listing does not use a ModelForm.

@login_required
def missingsign(request):
if request.method = "POST":

form = MissingSignFeedbackForm (request .POST, request.FILES)

if form.is_valid ():

form_to_save = form.save(commit=False)
form_to_save.user = request.user
form_to_save.save ()

success_message = Thank yvou for your feedback...’

messages . success (request , success_message)

return HttpResponseRedirect (reverse (feedback:missingsign’

Any other kind of request goes here
else :
form = MissingSignFeedbackForm ()
return render(request , ‘feedback/missingsign_form.html ",

{

‘country ' settings .COUNTRYNAME,
"title ":” Report a Missing Sign”,
"form ': form

D

"language ': settings .LANGUAGENAME,

@login_required
def missingsign(request):

posted = False # was the feedback posted?
if request.method = "POST":

fb = MissingSignFeedback ()

fb.user = request.user

form = MissingSignFeedbackForm (request .POST, request.FILES)

if form.is_valid ():

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

3.6 Modularise the feedback app 23

either we get video of the new sign or we get the
description via the form
if form.cleaned_data.has_key(video') and
form.cleaned _data |’ video '] != None:
fb.video = form.cleaned_data |’ video 7]
else :
get sign details from the form
fb . handform = form.cleaned_data | handform 7]
fb . handshape = form.cleaned_data [handshape]
fb.althandshape = form.cleaned_data |’ althandshape 7|
fb.location = form.cleaned_data |’ location ']

fb .
th .
fb .

relativelocation = form.cleaned_data[relativelocation
handbodycontact = form.cleaned_data [’ handbodycontact]
handinteraction = form.cleaned_data [handinteraction]

fb.direction = form.cleaned_data[direction ']
fb . movementtype = form.cleaned_data [’ movementtype]
fb .smallmovement = form.cleaned_data [smallmovement 7]
fb.repetition = form.cleaned_data[repetition]
these last two are required either way (video or not)
fb . meaning = form. cleaned_data | meaning ']
fb .comments = form.cleaned_data [comments ']
fb.save ()
posted = True
else:
form = MissingSignFeedbackForm ()
return render_to_response (' feedback /missingsign.html’,
{
"language ': settings .LANGUAGENAME,
‘country ': settings . COUNTRYNAME,
"title ":” Report a Missing Sign”,
"posted ': posted ,
“form 7 form

},

context_instance=RequestContext(request))

The first code listing is much shorter, and much more readable, and subsequently
much more maintainable.

Another improvement made to the codebase was the way in which success messages
were handled. In the code listing directly above, on line 31 a variable, posted, is being set
to true if the feedback is successfully posted. This variable is then sent to the template
feedback/missingsign.html, where it is used thus:

{% if posted %}

<div id="feedbackmessage’>

=

< on

o =1

24 Chapter 3. Approach

<p class="alert alert—info’'>
Thank vou for vour feedback.
Note that addressing your feedback may take some time
depending on the level of requests.
</p>
</div>
In the improved code listing, lines 9 and 10 replace the posted variable with Django’s
messages framework [14]. Line 10 puts the success message, defined on line 9, into the
Response object, and thus it can be accessed in the template without having to pass in
a variable. This improvement makes the code easer to read, and also easier to maintain,
becanse adding a new success message , or error message, is as simple as

messages . success (request , success_message)
or
messages. error (request , error_message)

Upgrading the codebase from Django 1.6 to 1.10 was not a very big job. The only
incompatability was the code on line 41 of the above code listing. It was removed , and
nothing was required to replace it.

Upgrading the codebase from Python 2.7 to Pvthon 3.5 was also not a big job. The

has key function of the dictionary (Python's dictionary class) class does not exist in
Python 3.5, and so the scattered instances of it had to be replaced with the more pythonic

if ‘key’ in dic

syntax

3.6.4 Writing documentation

Sphinx was used to write the docnmentation. Sphinx is so established as a documentation
writing tool that the cookiecutter-django-package started the app off with a README
file written in the Sphinx (RestructedText) format.

The feedback app wasn't very complicated, so extensive documentation wasn't re-
quired: a few words on how to run the tests, how to intall the feedback app, and what
variables in settings.py the feedback app requires, were documented. The README is
displayed prominently on the feedback app’s GItHub page, for all to see.

3.6.5 Writing tests

The test writing was a success. A code coverage of 86 percent (which exceeds the 85
percent goal) was achieved. That said, code coverage is only a start; testing the same
lines of code under different data — especially data relating to edge cases — matters too,
something that code coverage cannot detect.

In total 44 test cases were created, spanning unit tests and functional tests. The tests
were split across four different files:

3.6 Modularise the feedback app 25

e test_views.py - For testing the functions in views.py

e test_urls.py — For testing the URL regexes in urls.py

.

test_functional.py — For the functional tests

L]

test_models.py — For testing functions defined in models.py
First, a discussion on test_views.py

The decision to call the file test_views.py wasn't arbitrary. The test runner, invoked
by the command python3 runtests.py, looks for files inside the tests directory with the
word test prepended to them. Developers who take up where this project left off should
keep this in mind when creating new test files.

Now, a look at the internals of test_views.py. Each function in views. py corresponds
to a class in test_views.pv. For example:

1 class IndexView(TestCase):

2 def setUp(self):

3 self . factory = RequestFactory ()

4 # the url is irrelevant when RequestFactory is used...
5 self .url = '/’

G

T def test_index_view_renders_right_template(self):

8 EI I

9 "The index’ view should render the 'feedback/index.html’
10 template

11 o

12 request = self . factory.get(self.url)

13 with self.assertTemplateUsed (' feedback /index.html’):
14 response = index(request)

15

16 def test_index_view_returns_200_response_code(self):
17

18 The response code reutrned by the index view

19 should be 200.

20 r

21 request = self.factory.get(self.url)

22 response = index(request)

23 self . assertEqual(response.status_code , 200)

24

25 def test_right_sign_language_is_rendered(self):

26

27 The sign language rendered in the template

28 "feedback /index . html’ should equal the

29
30
31
32
33

000 =] O U o b e

—
-
—

26 Chapter 3. Approach

LTANGUAGENAME' variable in “settings.py’

LANGUAGENAME = settings .LANGUAGENAME
request = self . factory.get(self.url)
response = index(request)

self . assertContains(response , LANGUAGENAME)

The code listsing above defines all of the unit tests that test the index function, which
is defined in the app’s views.py file. The index function happenes to be quite a simple
function — it merely displays a static page — so the tests for it are not very complicated.
That said. all of the other tests defined in test_views,py are structured similarily to the
tests in the above code listing.

Each test class has a SetUp method. This method defines the data that all of the
test cases in the test class have in common. This turned out to be useful because there
were many occassions where it was required that a variable referenced in each test case
be changed. With the variable defined in just one place, however, it only needs to be
changed in one place.

The name of a test case describes what the purpose of the test is. For example, the test
test_index_view_returns 200 _response_code leaves nothing to the imagination. And
to make the purpose of the test even clearer, it has a docstring defining, in prose, what the
purpose of the test is. All of the tests defined in test_view.py have this self-explanatory
nature. This comes in very handy when the tests are run and fail, because one can see
and understand immediately what went wrong without having to search through the test
code.

Most of the test classes test, at a minimum, that the right response code is returned,
and that the right template is rendered. Tests for these two conditions ean be seen in the
code listing directly above. The reason for why these two cases were split across two tests,
instead of testing them both in one test, is that one can be true while the other false.
So the failure of the test_index_view returns.right _template method, for example,
contains no ambiguity as to what failed.

Due to the decision to use the RequestFactory class instead of the Client class (see
chapter 2 for background on this), it was necessary to create two auxillary functions for
running the tests in test_views.py.

def create_request(url = ', method, data=None, permission=None):

This function creates one of various requests. The type

of request that this function creates depends on the parametres

of the function.

Call this function in a test case, and use the returned
request object as an argument to a view.

factory = RequestFactory ()

3.6 Modularise the feedback app 27

11 # Set up the user...

12 user = create_user(permission)

13 if 'GET" in method.upper():

14 request = factory.get(url)

15 elif 'POST’ in method.upper():

16 request = factory.post(url, data)

17 else:

18 raise ValueError("%s is an unrecognised method. % (method))
19 setattr (request , ’session’, 'session ')

20 messages = FallbackStorage (request)

21 setattr (request , '_messages’ ', messages)

22 request . user = user

23 return request

1 def ecreate_user(permission=None):

2 users = User.objects. all ()

3 nusers = len(users)

4 # If a user doesn't exist already...

5 if nusers != 1:

6 user = User.objects.create_user(

7 username="Jacob ', email="jacob@ ",

8 password="top_secret ', first_name = " Jacob”
9 last _name = "smith”)

10 else :

11 # If the user has already been created, use it
12 user = users |[0]

13 if permission is not None:

14 permission = Permission.objects.get (name=permission)
15 user.user_permissions.add(permission)

16 return user

The reason why the create_request function was necessary was that the Request
object returned by the RequestFactory constructor is very bare — something that makes
it good for unit testing, thongh at the cost of extra work by the programmer writing the
tests. The create_function, and its accompanying create_user function, were the extra
work required. That said, it paid off because the tests were closer than they otherwise
would have been to the idea unit test,

The bareness of the Request object returned by RequestFactory is that it lacks the
middleware for handling sessions and the message framework. These two things are
manually added into the Request object on lines 19 to 23 of the create_request function.

For the benefit of future developers who pick up where this project left off, a brief
explanation on how to use these two functions is given.

The function create-request should be called in a test case, and the returned Request
object should be passed to the view being tested, like this:

4

G

1
2
3
5

-]

8

[

b = 0O ~1 O Ot o Lo

—

—
[== v s = R

—

28 Chapter 3. Approach

def test_index_view _returns_ 200 _response_code(self):
The response code reutrned by the index view
should be 200.

request = self.factory.get()
response = index(request)
self.assertEqual({response.status_code , 200)

In the code listing above, the create_request function is called with no arguments.
This means that the default Request object is returned. The default Request object is a
get request, with a user who has no peremissions logged in, and with no data in the query
string.

The create_user function doesn’t need to be called directly by test wrter. Since sub-
mitting the feedback required one to be logged in, it was necessary to create a logged in
user. That is the purpose of the function.

So it’s relatively simple to use, and brings the unit tests closer to the ideal unit
test. That said, there were some difficulties in using it instead of the Client object. The
assertTemplateUsed(response, template name) method doesn’t work for Requets cre-
ated by the RequestFactory. Instead, one must do this:

def test_index _view_renders_right_template(self):

"The index ' view should render the ’'feedback/index.html’

template

request = self.factory.get(self.url)

with self. assertTemplateUsed(' feedback/index.html’):
response = index(request)

This solution took a long time fo discover.
The last thing that will be said about the tests in test_views.py is how they helped
to uncover an insidious bug that existed in the original views.py code.
else:
get sign details from the form
fb . handform = form.cleaned_data [handform ’]

fb . handshape = form.cleaned_data [handshape ']
fb.althandshape = form.cleaned_data [althandshape ’]
fb.location = form.cleaned_data[location 7]
fb.relativelocation = form.cleaned_data[relativelocation ’]
fb . handbodycontact = form.cleaned_data [handbodycontact ']
fb.handinteraction = form.cleaned_data|[handinteraction]
fb.direction = form.cleaned_data[direction ’]

fb . movementtype = form.cleaned_data| movementtype ’]

fb .smallmovement = form.cleaned_data [’ smallmovement ’]

13

e L0 b

-] & n

3.6 Modularise the feedback app 29

fb.repetition = form.cleaned_data [’ repetition ']

The code listing above is part of the missingsign function, defined in views.py. The
code is setting the fields of an instance of the SignFeedback maodel with values obtained
from a submitted form; this is all in preparation for saving the tSignFeedback model
instance to the database. Each of the fields in the code listing above is optional; when no
data for a field are submitted by a user, the field is supposed to default to the number
(integer) 0.

When the tests were ran on this bit of code, however, a database error kept occuring,
saying that 7 was not a valid integer. Somehow, the default value of () was not being
set. In the end, it was worked out that in the code listing above, each of the fields that
did not have values submitted for them were being set to *???. Since Django does not
consider *?’? to be blank, or empty, the default value was not set, hence ** was making
its way into the database for fields that had be be integers.

When the ModelForm upgrade, described in subsection 3.6.3 took place, this error was
resolved. Indeed, one of the reasons for upgrading the code to use ModelForm was to
resolve this issue.

The second test file, test_urls.py, will now be discussed.

This file is responsible for testing that the URL regexes are correct, and that an entry
in urls.py points to the right function in views.py. (For more backround on urls.py,
see chapter 2.

Here is a test defined in fest_urls.py
def test_.r

5

ot_url.resolves_to_index_view (self):

"/’ should be routed to the index function
in 'views.py’

found = resolve(’/")

self . assertEqual(found.func, index)

Like the test cases defined in test_views.py, this test case is self-explanatory. It's
testing that the index url -\ — points, or routes, to the index function in views.py. The
resolve function, on line 6 of the above code listing, searches through the urls defined in
urls.py for the url that matches the string passed in as the first argument to resolve.
If no urls match, an exception is raised; if a url matches, then the next line of code checks
that the matched url points to the correct function in views.py.

The test cases themselves are relatively simple, but there was one complication: what
if the url being tested points to not a function but a class based view? [15]. This oceurred
for the general feedback view, which was implemented as a class based view. Here's how
that was dealt with in test_urls.py

e L0 b

def test_general_feedback_url_resolves_to_general_feedback_view (self):

generalfeedback /’ should be routed to the GeneralFeedbackCreate
class in "views.py’

o

-]

O 00 =] O O o LD b e

T e Sy S
o =] S O o= L0 b = D

30 Chapter 3. Approach

found = resolve(’/generalfeedback/’)
self . assertEqual(found. func. __name__,
GeneralFeedbackCreate . __name__)

Instead of passing a function object to assertEqual, the name of the class based view
is passed, and compared to the name of the class based view that the url points to.

The test in test_models.py will now be discussed.

This file is a small one, containing only one test. The purpose of this file is to test,
directly, the functions defined in models.py. The models.py of the feedback app wasn’t
very complicated, so it didn’t require extensive unit testing.

The tests in test_functional.py will now be discussed.

This file contains functional tests; a test defined in here spans multiple function across
multiple files of the feedback app. (For a bacground on functional testing and unit testing,
see chapter 2.)

These tests, apart from spanning multiple functions across multiple files, enable html
elements, defined in the templates, to be tested. For example, does the right outcome
occeur upon clicking a button?

Clearly the RequestFactory stlye tests, used for the aforementioned unit tests, are not
a good fit for functional testing. Instead, a testing framework called Django-webtest was
used. (For a background on this, see chapter 2).

Basically, these tests mirrow how a user would use the feedback app. Here is an
example test case to illustrate how this works:

class MissingSignFeedbackPage (WebTest):

def test_submit_missing sign _feedback _without_required_field(self):

response = self.app.get(self.url, user=self.user)
The user submits the form without entering the required field
response = response. form.submit ()

He should not have been redirected
self.assertIn (200", response.status)
There should be no success message
self . assertNotln(self. success_message, response)
He should be back on the general feedback form

self . assertTemplateUsed (response , 'feedback/missingsign_form . html")
He should see the error message on the form

required_field = 'meaning’

error_string = "This field is required.”
self.assertFormError(response, 'form’, required_field , error_string)

Make sure that no other fields are displaying errors.
Each field displays two error messages, actually. That's

19
20
21
22
23

25
26

3.6 Modularise the feedback app 31

why | passed 2 as a parameter...

The reason for this is that both booistrap3

and django’'s own form code display an error message.
self . assertContains(response , error_string , 2)

Make sure that no feedback was saved to the database
feedback = MissingSignFeedback.objects.all()
self . assertEqual(len (feedback), 0)

The first thing to notice about the code listing above is that the class, MissingSign-
FeedbackPage, does not inherit from django.test. TestCase. That is due to the fact that
Django-webtest was used, a third party app.

The test, in the above code listing, tests that the right outcomes oceur upon submitting
missing sign feedback but without the required fields of the missing sign feedback form
being submitted. Once again, the name of the test is self-explanatory. It was opted not
to use a docstring for the functional tests, because as can be seen, inline — or hashiag
comments explain what is happening for every line requiring an explanation. This style
of wrtiing comments in functional tests was picked up from Harry J Percival's Test Driven
Development with Pyton [6].

Each line of the test tells a story of the user submitting missing sign feedback without
a required field.

Interestingly, this test found a bug that, due to a time constraint, could not be fixed;
future developers, beginning from where this project left off, should fix this. The bug is
simple: error messages for missing, required data are being displayed twice. This is due
to the fact that both bootstrap?, a django app for integrating the bootstrap framework
with a Django app, and Django, render an error message, and thus two error message are
rendered.

3.6.6 Conclusion

In conclusion, the goals that were set for the feedback app — modularising it, writing tess
for it, writing documentation for it, and updating its codebase to the latest versions of
Django and Python, were achieved. On the modularisation front, a foreign key tying the
feedback app to the dictionary app was removed; on the testing front code coverage of
86 percent was achieved, exceeding the requirement of 85 percent code coverage; on the
documentation front, a simple but informative README, produced with Sphinx, was
created; and on the upgrade front, the code was upgraded to the latest versions of Django
and Python, resulting in fewer lines of code that will be easier to maintain and debug.

There are, however, still a few issues left unresolved. These will be picked up in a later
section on unresolved issues. That said, the feedback app, as it is now, can be integrated
with the other apps successfully.

A

32 Chapter 3. Approach

« Previous Sign | Sign 3583 of 4578 in the Auslan Diclionary ~ Next Sign »

Sign Definition

As a Noun

1. A small tube with a plunger
something and taking hem
them. English = syringe, hy

2 The act of using a syringa |

A The act of injecting someor
= imirranisaton, inoculaton

4. A person who injects thems
intravenous drug user; drug

Keywords: syringe. hypodermic needie. injacion, jab, 3
imoculaton, vaccination, dug addi, hetoin, inoculale, As a Verb or Ad]act

Figure 3.3: The word jab, as it appears in the dictionary. Its accompanying video is on

the left

3.7 Modularise the video app

The video app handles the uploading, storage, retrival, and deletion of videos; both
videos submitted by users as feedback, and the videos of the signs that are displayed in
the dictionary, are handled by the video app.

Here is the GItHub page of the video app created in this project: https://github.com/
hujosh/signbank-video

3.7.1 Overview of the video app

Each word in the dictionary has an accompanying video of a person signing the sign of
the word. This can be seen in figure 3.3. What can’t be seen in figure 3.3, however, are
the options that an administrator has for deleting the video, and uploading a new video;
the video app is responsible for all of these things.

The video app is also responsible for handling videos submitted by users as feedback.
Unfortunately, due to time constraints, this aspect of the video app was not dealt with.
Developers, picking up from where this project left off, should look into this. More will
be said on this in a later section on unresolved issues.

3.7.2 Making the app independent

There were unnecessary dependencies scattered all across views.py. These all had to
do with getting the gloss (this will be explained in the section on the dictionary app)
associated with a video.

Here is an example, from the function addvideo:

def addvideo(request):
""" View to present a video upload form and process
the upload™™”

3.7 Modularise the video app 33

5 if request.method = 'POST":

G

7 form = VideoUploadForGlossForm (request .POST, request.FILES)
8 if form.is_valid ():

9

10 gloss_id = form.cleaned_data [’ gloss_id ']

11 gloss = get_object_or_404 (Gloss , pk=gloss_id)

12

13 vfile = form.cleaned_data [’ videofile 7]

14

15 # construct a filemame for the video, use sn

16 # if present, otherwise use idgloss+gloss id

17 if gloss.sn != None:

18 vfile .name = str(gloss.sn) + 7.mpd”

19 else:

20 vfile .name = gloss.idgloss 4+ "= 4+ str(gloss.pk) + 7. mpd”
21

22 redirect_url = form.cleaned._data[redirect ’]

23

24 # deal with any existing video for this sign

25 oldvids = GlossVideo.objects . filter (gloss=gloss)
26 for v in oldvids:

27 v.reversion ()

28

29 video = GlossVideo(videofile=vfile , gloss=gloss)
30 video .save ()

31

32 # TODO: provide some feedback that it worked (if
33 # immediate display of video isn’'t working)

34 return redirect(redirect_url)

35

36 # if we can’t process the form, just redirect back to the
37 # referring page, should just be the case of hitting

38 # Upload without choosing a file but could be

39 # a malicious request, if no referrer , go back to root
40 if request META. has_key ("THTTPREFERER') :

41 url = request .META["HTTP REFERER ']

42 else:

43 url = °/*

44 return redirect (url)

On line 11 of the code listing above, the gloss_id submitted in the gloss_id field of
the VideoUploadGlessForm is used to retrieve the gloss_id’s corresponding gloss from the
Gloss database, which is defined in the dictionary app. With this gloss retrieved from

34 Chapter 3. Approach

the Gloss database, the video is saved, on line 29 and 30, to the GlossVideo database of
the video app.

While it is true that a video is, logically, associated with a gloss, there's no need for a
video to store the foreign key of its associated gloss; instead, the gloss_id of the associated
gloss can be stored as a string of characters.

Here is how the GlossVideo model was changed so that it stored the gloss_id as a
character string:

1 class GlossVideo(models. Model, VideoPosterMixin):
2 ""UA video that represents a particular idgloss”"”
3 videofile = models. FileField (" video file”,
4 upload_to=settings .GLOSS.VIDEODIRECTORY, storage=storage)
5 #eloss = models. ForeignKey (Gloss)
G gloss_id = models. CharField (max_length=>50)
7 ## video version, version = (0 is always the one that will be displayed
8 # we will increment the version (via reversion) if a new video is added
9 # for this gloss
10 version = models. IntegerField (" Version”, default=0)

The code listing above is part of the GlossVideo model in models.py. On line 6, it
can be seen that the gloss_id is being stored as a character string, and that no foreig key
is therefore required.

There was another dependency in views.py that was related to glosses. Here is the
iframe function, the function in which the dependency occurred.

1 def iframe(request, videoid):

2 """ Generate an iframe with a player for this video”"”
3 try:

4 gloss = Gloss. objects . get (pk=videoid)

5 glossvideo = gloss . get_video ()

G

7 if django_mobile. get_flavour(request) == "mobile *:
8 videourl = glossvideo. get_mohile_url ()

9 else:
10 videour!l = glossvideo. get_absolute_url()
11
12 posterurl = glossvideo . poster_url ()
13 except :
14 gloss = None
15 glossvideo = None
16 videourl = None
17 posterurl = None
18 return render_to_response (" iframe.html”,
19 {’videourl ’: videourl,

20 "posterurl ': posterurl ,

21
22
23

L e

-1 &

3.7 Modularise the video app 35

"aspectRatio 7: settings .VIDEO_ASPECT RATIO,
b,

context_instance=RequestContext (request))

What this code above is doing is the following: some signs are homophones. That is,
words of different meanings sharing the same sign. So for example, the words dog and
biscuit , if they shared the same sign, would be classed as homophones of one another.

The problem then arises that the video of a sign will be stored muliple times if that
sign is shared by multiple homophones. Due to the waste of space that would result from
this, Signbank only stores a video for one of the homophones in a set of homophones. This
means that, in order for a word to find its associated video, it must first determine whether
it has any homophones, and then it must determine for which one of the homophones the
video is stored. The logic that searched for homophones is inside of the dictionary app,
however, the search for the homophone is initiated in the video app, on line 5 of the
above code listing. It would be better if the search for homohpones was initiated in the
dictionary app.

Unfortunately, due to time constraints, this could not be implemented. Developers
picking up from where this project left off should look into this. More will be said on it
in the unreseolved issues section of this document.

There was one final dependency issue that will be mentioned here. The program ffmpeg is
used by the video app to extract a frame from a video. This frame serves as the thumbnail
for the video. Steve, the supervisor of this project, raised whether it would be possible
to replace this with something that was written purely in Python rather than depend on
the external ffmpeg program. Unfourtunately, no purely Python solutions were found.

3.7.3 Upgrade the cosebase

The code for the video app was successfully upgraded to Django version 1.10 and Python
version 3.5. Compatability was also maintained with Python Version 2.7.

As was done with the feedback app, the way that a success message was displayed
to the user was changed. Now, when the adding of a video is sucessful, the user gets
redirected to a view called successpage, which displays a sucess message to the user.
Here is the new function:

def successpage(request):
If there is a success message to display
if messages.get_messages (request):
return render(request , "video/success_page.html”)
else:
If not go back to the index page
return redirect(’/")

On line 3, the Request object is searched for sucesss messages. If one is found, then
the success_page.html template is rendered back to the user; otherwise, the user is

36 Chapter 3. Approach

redirected back to the index page of the website.

On second thought, it would have perhaps been better to redirect back to the dic-
tionary entry for which the video was uploaded, and to display a succes message there.
Again, developers picking up from where this project left off could look into this. The
reason why the alternative solution was not done in the first place was that I did not have
a strong enough knowledge of Django at the time of writing the video app to know how
to do it. That’s why the gantt chart, figure 1.3, shows leaning django as a task that went
on for the life of the project.

3.7.4 Writing documentation

Like for the feedback app, the cookiecutter-django-package created a README that
contained some initial documentation written in the Sphinx (Restructed text) format.
To this initial documentation, provided by cookiecurret-django-package, was added an
explanation on how to set up the fimpeg program to work with the video app. What one
must do is install the £fmpeg program that is compatible with one’s computer system.
Then, in settings.py, one must set the variable FFMPEG_PROGRAM equal to the path to the
ffmpeg program. On Ubuntu, ffmpeg can be installed with the command sudo apt-get
install -y ffmpeg, and it's usually, put into the /usr/bin directory. Of course, for
Mac and Windows, it will be totally different; that’s why it’s worth explaining in the
documentation.

Three other variables, VIDEO_UPLOAD_LOCATION, GLOSS_VIDEO_DIRECTORY, and MEDIA _ROOT
were also documented because they can be confusing. The MEDIA ROOT variable should
be set equal to the root directory in which all uploaded videos are to be stored.

The variables VIDED_UPLOAD_LOCATION, and GLOSS_VIDEO_DIRECTORY, are sub-directories
of the MEDIA ROOT directory: VIDEO_UPLOAD_LOCATION stroes the videos that were up-
loaded by users as feedback, and GLOSS_VIDEO_DIRECTORY stoes all the videos of signs.

3.7.5 Writing tests

The test writing for the video app was exceptionally successful. A code coverage of 91
percent was achieved, greatly exceeding the requirement of 85 percent.

In total, 31 tests were written, all of them unit tests. (Functional tests were not
written because there was no interface defined within the video app with which users
could interact.)

The tests were split across three different files:

e test_views.py — For testing the functions in views.py
e test_urls.py — For testing the URL regexes in urls.py
* test_models.py — For testing functions defined in models. py

The test set up for the video app was different from the feedback app in some respects.
One reason for that was that the video app required test data — a test video. The test

1
2
3
4

20
21
22
23
24
25
26
27
28
29
30
31
32
33

3.7 Modularise the video app 37

video, used in the tests, was stored inside of the tests directory, and further inside of the
testmedia directory.

First, the

tests inside of test_views.py will be discussed.

The tests in test_views.py test the functions defined in views.py As with the the
tests in the feedback app’s test_views.py, the the tests of the video app’s test_views. py
use the RequestFactory rather than the simpler Client object, and they use the creaet_request,
and create_user methods, already discussed in section 3.6. There is a substantial dif-
ference, however. Observe the following except from the test_views.py of the video

app:

class AddVideoTests(BaseTest):

def

def

def

def

setUp(self):
BaseTest.setUp(self)
self . factory = RequestFactory()
the url is irrelevant when RequestFactory is used...
self .url = "Jaddvideo /"’
self.success_url = */success/’
self .data = {"gloss_id” : ”3", "videofile” : self.videofile}
test_add_video_view_redirects_to_success_page_after_successful_
The add video view should redirect
to the success view on succecssful upload of a video.
request = create_request (url=self.url,

method="post ', data=self . data)
response = addvideo(request)
self . assertEqual(response.status_code , 302)
self.assertEqual(reverse(video:successpage '), response.url)
test_add_view_redirects_to_index_if_no_video_uploaded (self):
The add wvideo view should redirect to the index view if
no video is uploaded.
request = create_request(url=self . url, method="post’)
response = addvideo(request)
self . assertEqual(response.status_code , 302)
self.assertEqual(’/’,response.url)
test.add_view_redirects_to_referer_if_referer_present_and_errory

[f the referer attribute in the request is present,

38 Chapter 3. Approach

34 then the view should redirect there on error.

35 e

36 request = create_request (url=self.url, method="post ")

37 test _referer = ’test/test’

38 request META["HTTPREFERER'| = test_referer

39 response = addvideo(request)

40 self . assertEqual(response.status_code , 302)

41 self.assertEqual{test_referer , response.url)

42

43 def test_add_video_calls_reversion_on_existing_videos(self):

44 "1 addvideo is called for a gloss_id that already contains

45 a video, then that video should go through reversion

46 e

47 request = create_request (url=self.url, method="post’, data=self.data)
48 # First, create the video

49 gloss_id = 3

0 vid = GlossVideo.objects.create(videofile=self.videofile , gloss_id=gloss.
1 # Now, add a video via addvideo

2 response = addvideo(request)

(I

print (response)

There should now be two wvideos for the gloss_id

videos = GlossVideo.objects. filter (gloss_id=gloss_id).order_by(version ')
self . assertEqual (len(videos), 2)

The first video in videos has version 0

=1 O I

3 LT L Cn O O Ot Cn e O o
e

8 self . assertEqual(videos [0]. version, 0)
9 # The second video in videos has version 1
60 self . assertEqual (videos [1]. version 1)
61 # The second video’s name should end in.bak
G2 self . assertIn(’.bak’, videos[1l]. videofile.name)

This except of code contains the tests that test the addvideo function. As can be seen,
they are written in a similar style to that of the feedback app’s test — self-explanatory test
case names, docstring, etc. However, there is a substantial difference. Note that on line
1, the AddVideoTests class inherits from BaseTest, and not django.tests.TestCase,
as was done with the feedback app’s tests.

BaseTest is a simple class, defined in the fests directory, that performs two useful
functions:

e Before each test is run, it sets up the test video, stored in the testmedia directory,
that is to be used in the test.

e After each test, it deletes the contents of the VIDED_UPLOAD_LOCATION, and GLOSS_VIDEO_DIRECTORY
directories. Since the tests manipulate these two directories while they are running,
it’s necessary to restore them to their initial state after each test finishes.

Sy O o 0 BD e

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

3.7 Modularise the video app 39

Here is the code of the BaseTest class:

import shutil
import os

from django.test import TestCase
from django.core. files import File
from django.conf import settings

class BaseTest(TestCase):

This class simply defines the setUp() and
tearDown () functions common to all the tests.

def setUp(self):
this is the path to the video used by the tests
self . vidfilename = os.path.join(settings MEDIAROOT, " video.mp4’
self.videofile = File(open(self.vidfilename, "rb”),
"12345.mpd”)

def tearDown{(self):
After each test, delete any left over files that
were created by the test
shutil .rmtree(os.path.join(settings . MEDIAROOT,
settings . VIDEO_UPLOAD LOCATION) ,
ignore_errors=True)

shutil .rmtree(os.path. join(settings . MEDIAROOT,
settings .GLOSS VIDEQ DIRECTORY) ,

ignore_errors=True)

As can be seen on line 9, BaseTest inherits from django.test.TestCase. This means
that, when the classes in test_views.py inherit from BaseTest, they are also inheriting
from django.tests.TestCase. So none of that functionality, or behaviour, is lost.

The SetUp function, on line 14, runs, automatically, before each test case defined in a
class that inherits from BaseTest. First, SetUp locates the test video in the file system,
on line 16, and then. on line 17, Setup turns th located video into a File object, which
renders it ready to be used by the test case waiting for SetUp to finish.

TearDown automatically runs after each test case. It deletes the contents of the
VIDEDO_UPLOAD_LOCATION, and GLOSS_VIDEO_DIRECTORY directories using the shutil.rmtree
function. Now the next test that runs can start out with clean directories, and no lingering
data can thus affect it.

So BaseTest was a useful class that ensured that each test case was independent from

A

Q=] n

[B R R L e

—
(S i e i (o v I |

13
14
15

40 Chapter 3. Approach

the others, thus brining the unit tests of test_views.py closer to the ideal unit test.

The tests in test_urls.py will now be explained.

The tests in test_urls.py serve the same purpose as the tests in the feedback app’s
test_urls.py. See section 3.6 for a thorough explanation on the workings of these tests;
the exlapnation won’t be repeated here.

The tests in test_models.py will now be explained.

The tests in test_models. py test the functions defined in models.py. Unlike the feed-
back app’s test_models. py, the video app’s test_models. py is substantially larger. This
is due the fact that the video's models.py contains more functions than the feedback’s
models.py.

The original video app actually had a couple of tests in test_models.py already. These
tests were changed slightly, however. They were changed so that they inherited from
BaseTest rather than from django.tests.TestCase, and they were distilled somehwat.
What is meant by distilled will be illustrated by two code listings; the first is of a test in
the original test methods. py, and the second shows the test after it was changed.

def test_GlossVideo_create(self):
"""We can create a GlossVideo object™”
vid = GlossVideo.objects.create(videofile=self.videofile)
self.assertTrue(os.path. exists(vid. videofile.path),
"vidfile doesn’'t exist at %s”™ % (vid.videofile.path,))
vid. delete_files ()
self. assertFalse(os.path.exists(vid.videofile.path),
"vidfile still exists after delete at %s” % (vid.videofile.path,))

def test_GlossVideo_create(self):
An instance of the GlossVideo model should
correspond to an actual video in the filesystem ,

sroted in the correect location.

vid = GlossVideo.objects . create(videofile=self. videofile)

self. assertEquals(os.path.dirname (os. path.dirname(vid.videofile .name))

settings .GLOSS VIDEODIRECTORY)
self.assertTrue(os.path.exists (vid.videofile.path),
"vidfile doesn’t exist at %s”™ % (vid.videofile.path,))

def test_GlossVideo_delete (self):

An instance of the GlossVideo model should

16

GO =] S O = QO b e

— = =
[SR e I]

13
14
15
16
17
18

3.7 Modularise the video app 41

be deletable. The file which it represents
should be removed from the file system.
vid = GlossVideo.objects.create(videofile=self.videofile)
vid. delete_files ()
self.assertFalse(os.path.exists (vid.videofile.path),
"vidfile still exists after delete at %s” % (vid.videofile.
the poster should also he deleted
self.assertEqual(vid.poster_path(create=False), None)

In the first code listing. the test test_GLossVideoCreate tests both the creation and
deletion of the video. To bring it closer to the ideal unit test, the creation of a video, and
the deletion of a video, were separated into two different test cases, as can be seen in the
second code listing.

Perhaps the reason for why the original code did not separate between the testing of
the creatio, and deletion of a video was due to the fact that the video had to be deleted to
esnure that the next test that was to run started out with clean directories. This concern
was removed in the second code listing by the useful BaseTest class, which cleans the
directories after each test.

The last thing that must be said about the tests of the video app is how Coverage was
set up. Because the video app contains two files of Python source code that are not used
anywhere in the video app, they had to be excluded from the Coverage calculation. This
was achieved in the .travis.yml thus:

language: pyvthon

python:

(=]

[
=1 #= 2N

before_install:
— pip install codecov
— sudo apt—get —qq update
— sudo apt—get install —y ffmpeg

install: pip install —r requirements_test.txt
script: coverage run ——sonrce video ——omit=x+/fields .py

after_success:
— codecov

On line 15 of the above code listing, the fields.py file is excluded from the the
Coverage calculation because it’s not used anywhere in the Video app. To exclude another

42 Chapter 3. Approach

file, another file can be appended to line 15, preceded by a comma.

3.7.6 Conclusion

In conclusion, the modularising of the video app was a success, although there still remains
work to do. A code coverage of 91 percent was achieved: a dependency with the dictionary
app was removed; documentation was written up; and the code of the video app was
upgraded to Python 3.5, and Django 1.10.

The iframe function of views.py, will, however, require more work. This will be
discussed further in the section on future work.

3.8 Modularise the registration app

Signbank has user accounts. These accounts are used to control access to various resources.
For example, the admin, and only the admin, is allowed to edit the dictionary, and view,
and delete feedback.

The registration component of the original signbank code is, according to the supervi-
sor of this project, Steve, in a bad shape, and therefore not worth refactoring or salvaging.
Instead, it was decided that a third party registration app be used.

A registration app that could be easily integrated with the other Signbank apps, and
that provided social login — the ability to login via, for example. Facebook — was sought.
In the end, a Django app called allauth was decided upon to provide the registration
component.

allauth is recommended by the creators of Django [16]. Here is its GItHub Page.
https://github.com /pennersr/django-allauth.

Because it’s a third party app. no tests, or documentation had to be written for
it; allauth has its own suite of tests, and it has its own documentation, hosted here:
https://django-allanth.readthedocs.io/en/latest/.

Integrating the app with the apps of signbank is very simple. One need only install
allauth, and then add it to the INSTALLED_APS variable in settings.py. Other variables
must also be defined in settings.py; all of this is explained in the documentation of
allauth.

3.9 Modularise the dictionary app

The dictionary app defines the data that are stored in the dictionay; it handles the
searching for these data, the viewing of these data, and the editing of these data. The
dictionary app is subsequently the most critical component of Signbank.

Unfortunately, due to time constraints, only the viewing and searching of data in the
dictionary were implemented. The editing of the data in the dictionary, done by the
administrator, will have to be dealt with by future developers, picking up from where this
project left off.

e

=1 O Qv o

o

Ot

|

3.9 Modularise the dictionary app 43

]
gt Aol | Fosenti= 0 v Sumlakiv Bhick Search Koywords

« Provicass Sign Sige 2610 of 4578 in #he Auslan Diclionary Next Sign » Maiches for the woed cog n 2 3 4

Sign Definition
As a Noun
1. An arimad that & ofen kigl &5 & Pl of Ussd 10 guard o Rt things. Englsh = dog

As a Verb or Adjective
1. Of @ chosg, %o it oni your hind legs and raiss your forelegs. English = beg.

Keywords: dog, beg

Figure 3.4: The sign for the keyword dog

Here is the GItHub page of the dictionary app created in this project: hitps://github.
com /hujosh/signbank-dictionary

3.9.1 Overview of the dictionary app

The structure of the data defined in the dictionary app is rather complicated. It was
mostly devised decades ago, long before the Signbnak website existed. [17]

Let’s begin with the most familiar concept: a word. In the models.py file of the
dictionary app, there is a class called Keyword. This class represents an english word that
is associatd with a sign.

class Keyword(models . Model) :
An english keyword that will be a translation of a sign

def __str.._.(self):
return self.text
text = models.CharField (max_length=100, unique=True)

For example, say that the text field of the Keyword class, in the above code listing,
is dog. That keyword will have an association with a sign, as in figure 3.4. Note that a
sign can be associated with multiple keywords, as beg, and dog are in 3.4.

A keyword of the Keyword class is associated with a sign through a table called
Translation. The Translation table is defined thus:

class Translation (models.Model):

An English translations of Auslan glosses

gloss = models. ForeignKey (" Gloss™)
translation = models. ForeignKey (" Keyword”)

index = models. IntegerField (" Index™)

44 Chapter 3. Approach

A Translatien instance has an associated keyword, an associated sign (the gloss),
and an index. Several Translation instances can be associated with a single Keyword
instance. This oceurs when a keyword has multiple translations into Auslan. Such a thing
occurs in figure 3.4, where, in the top right of the figure, 3 alternative translations of the
keyword dog are visible (next to the text Matches for the word dog). The Translation
class uses its index field to differentiate between the Translation instances that have the
same keyvword. In figure 3.4, the Translation instance associated with the keyvword dog
has an index of 1. The other translations associated with the keyword dog can be viewed
by clicking on the three buttons af the top right of the image, respectively

So that leaves the definition of the sign itself. This is handled by the Gloss class
of models.py. The Gloss class is very complicated, with dozens of fields and cross-
references. It sufficies to say that an instance of the Gloss class is a sign. The two most
important fields of the Gloss class are the gloss_id field, and the sn field. The former
uniquely identifies an instance of the Gloss class, and the latter also uniquely identifies
an instance of the Gloss class. However, the sn field is used not for identification but for
ordering the signs (glosses) in the dictionary.

The dozens of other fields in the Gloss class record linguistic information, not really
of interest to the goals of this project.

So that was a high-level overview of the structure of the data in the dictionary app.
There are many other classes in dictionary’s models.py. though they are not of interest
to the goals of this project; they would be of inferest to a linguist , however. Gaining
an understanding of the structure of these data took a long time. Developers picking up
from where this project left off will hopefully find the explanation given here useful. For
a thorough tutorial on the structure of the data, see [17].

3.9.2 Making the app independent

The dictionary app has many dependencies with the other apps. This is inevitable given
its pivotal role in the Signbank codebase. It wasn’t appropriate, or safe, to start playing
around with its dependencies; it was decided to leave it as it is. Perhaps future developers,
picking up from where this project left off, could look into this.

3.9.3 Upgrade the cosebase

The codebase was successfully updated to the latest versions of Django and Python.

Several new functions were defined in views.py. They were remove_crude words,
remove_words not_belonging to_category, paginate, and get_gloss_position These
functions were created to condense repeated blocks of code that occurred throughout
views.py into self-contained functions.

3.9 Modularise the dicfionary app 45

3.9.4 Writing documentation

The app has its own documentation, created automatically for it by cookiecutter-django-

package. Since the dictionary app required the definition of many variables in settings.py,
writing documentation proved useful in keeping track of them, and will prove useful to

new developers trying to understand the dictionary app.

3.9.5 Writing tests

The test writing for the dictionary app was a sucess. 89 percent code coverage was
achieved, exceeding the requirement of 85 percent.

In total, 29 test cases were written. Unfortunately, due to time constraints, only unit
tests were written.

The following test files were created:

e test_views.py — For testing the functions in views.py
e test_urls.py — For testing the URL regexes in urls.py
e test models.py — For testing functions defined in models.py

These tests follow the same pattern that has already been described in section 3.6,
and section 3.7. So explanations of the files won’t be repeated here.

However, there are a few things worth mentioning.

Due to the complexity of the data of the dictionary app, it was not feasible to create
test data in the test code. Instead, a Django test fixture was used. [15]

A test fixture is a json file that defines data to be loaded into the database. Here is
an excerpted example of the json file used in the dictionary app

1|
2 {

3 pkty 1,

4 "model”: "dictionary .keyword”,
5 "fields”: {

G "text”: Y Aborigine”

7 }

8 }

9 {

10 pk¥: 2

11 "model”: "dictionary .keyword” ,
12 "fields”: {

13 "text”: "Abraham”

14 }

15 ¥,

16

17 |

G G b e

(=2 Q=N LI I

=2
O D 00 =] O O LD bD

—

46 Chapter 3. Approach

The json listing above defines two Keyword instances.
The fixture is used in a test file like so:

class SearchView(TestCase):
Django will populate the database with the data
in the file ’test_data.json’
You should read the django does to understand how this works.
fixtures = ["test_data.json”|

In the above code listing, the fixture is loaded on line 5. For each test case of the
SearchView class, the data defined in the fixture will be loaded into the database; after
the test finishes, the data are remoed, thus ensuring clean, independent test cases.

The final thing to be said about the tests is an interesting but that they uncovered.
In the original views.py, a decorator called login. required config was defined. The
purpose of this decorator was to control whether a view required one to be logged in to
access it depending on the value of the LOGIN_REQUIRED variable in settings.py.

Here is the decorator:

def login_required_config(f):

"7 like @Qlogin.required if the ALWAYSREQUIRELOGIN setting is True”””

if settings. ALWAYS REQUIRE LOGIN:
return login_required ()
else:
return f

It makes the function require login if the REQUIRED_LDGIN variable is set to true.
It seems like it should work. Two test cases were written to test the correctness of this.
One, however, kept failing. Eventually, it was woked out that the login required config
decorator only decorates the function when the function is defined, not necessarily after
the LOGIN_REQUIRED variable is changed. With the cause of the bug known, it became
possible to fix it. The following mofixied login required _config decorator solves the
problem.

def login_required_config(function):
Like @login_required if the ALWAYSREQUIRELOGIN setting is True.

def wrapper(=args, sxkwargs):
if settings . ALWAYSREQUIRE LOGIN:
decorated_function = login_required (function)
return decorated_function (xargs, *xkwargs)
else:
return function(xargs, *xkwargs)
return wrapper

3.10 Modularise the pages app 47

This decorator modifies the function evey time that it is called, so it’s able to pick up
changes to the LOGIN _REQUIRED variable in settings.py. The idea for this was obtained
from the book Learning Python, by Mark Lutz. [19]

3.9.6 Conclusion

Although there is still work to be done, modularising the dictionary app was a success.
The desired code coverage was reached, documentation was written, and the codebase was
upgraded to the latest versions of Django and Python. Improvements to the structure of
the code were also made.

There is still a substantial amount of future work to do on the dictionary app. Un-
fourtunately, time constraints were the cause of this. Future work will be described in the
future work section of this document.

3.10 Modularise the pages app

The pages app enables the administrator of the website to add content to the website,
such as articles or blogs.

Unfortunately, due to time constraints, the modularisation of the pages app was not
completed. That said, the pages app was, according to the supervisor of this project,
Steve, unsalvagable. The future work section will touch on where to go with this going
forward.

3.11 Modularise the attachments app

Unfortunately, due to time constraints, the modularisation of the attachments app was
not completed. That said, the attachments app was, according to the supervisor of this
project, Steve, unsalvagable. The future work section will touch on where to go with this
going forward.

3.12 Integrate the apps

With the dictionary, feedback, video and registration apps modularised, it should be a
very si

mple matter to combine the apps together info a unified Django project. An experi-
mental Signbank project, combining all of the apps together, was successfully completed;
however, due to time constraints, a GitHub page of the unified project has not been
created.

This will be adddressed further in the future work section.

Owerall, the project went reasonably well. Time constraints, notwithstanding. Much
about Django and web-development was leaned, and that was, perhaps, the most useful

48

Chapter 3. Approach

thing to come from this project.

Chapter 4

Conclusion

Here it shall be seen whether the tasks identified in section 1.3.1 were successfully com-
pleted.
The first three conerete tasks:

e Set up Travis CI
e Set up cookiecutter-django-package
e Set up Codecov

were successfully completed for the dictionary, video and feedback apps. However,
due to time constraints, these three tasks were not completed for the pages app or the
attachments app.

The next four tasks:
e Modularise the feedback app
e Modularise the video app
o Modularise the registration app
e Modularise the dictionary app

were successfully completed, though there does remain some work left to do in the video
and dictionary apps.

The pages and attachments apps were not successfully modularised.

A unified Django project integrating the feedback, video, registraion and dictionary
apps was created; however, it was experimental. Where this can go from here will be
discussed in the future work section.

49

Chapter 4. Conelision

Chapter 5

Future work

This section lists, for each app, things which are left to do for future developers. Note
that the registration app is not listed here. This is because it's a third party app, beyond
the control of future Signbank developers.

Also note that the original codebase of Auslan Signbank is located here: https://
github.com/Signbank/Auslan-signbank In order to complete most of the future work tasks
identified in this section, it will be necessary to take the code that didn’t make it into this
project from that GitHub page, and to try to fit it info the various apps created for this
project. Each app’s GitHub page is given in each app’s section of this document. After
applving a change to an app, future developers can run the app’s test suite, ensuring, to
a reasonable degree, that nothing was broken by the change.

5.1 Future work for the feedback app

The feedback app was mostly completed. There remains only two things that are not
finished.

5.1.1 Interpreter feedback

The interpreter feedback form is a form for the submission of feedback by interpreters.
An interprefer is one who translates between, for example, Auslan and English.

Future developers will need to add the InterpreterFeedback model to feedback’s
models.py. That shouldn’t be too difficult, though there is a foreign kev, dependent on
the dictionary app. The form InterpreterFeedbackForm will also have to be defined, in
the feedback app's forms.py file. Lastly, a future developer will need to think of a how
he will show interprefer feedback inside of the show.html template of the feedback app.

5.1.2 User uploaded video
Uses can upload a video when they submit feedback on a missing sign. and on general
feedback. This functionality didn’t make it into the feedback app created in this project

=

ol

52 Chapter 5. Future work

due to time constraints. The problem was that uploading a video in the feedback app
had a dependency on the video app. Future developers will have to think about how they
can bridge the two apps, whist maintaining reasonable independence.

5.2 Future work for the video app

The video app is mostly completed. There was only one thing that was not finished.

5.3 The iframe function

The iframe function, in the video app’s views.py, was not completed. The reason for
this was that it had a tricky dependency on the dictionary app. This dependency was
discussed at length in section 3.7. Future developers should refer to the discussion in
section 3.7 for guidance on how to proceed here.

The iframe function, responsible for the display of a video in the dictionary, is rather
important, so it’s a shame that it wasn't finished.

5.4 Future work for the dictionary app

The dictionary app is, unfortunately, only about half complete. The functionality that
handles the searching, and viewing of a gloss, and word is complete; it’s the function-
ality that handles the creation and editing of a gloss by the administrator that was not
completed.

This functionality can be found in the adminviews.py, and update.py view of the
original Signbank dictionary app.

Also, quite a few class methods of the Gloss class in models. py did not make it into
the dictionary app of this project.

5.5 Future work for the attachments app and pages
app

Due to time constraints, these two apps were not completed. In discussion with the
supervisor of this project, Steve, it was said that these two apps are not worth refactoring;
instead, a third party Content Managemenet System app (CMS) should be sought.
Fature developers should look at the CMS wagtail. It's recommened by the creators
of Django [16].
Finally, a few words will be said about what future developers can do to integrate all
of the apps together

5.6 Future work for the integration 53

5.6 Future work for the integration

The integration won't be fully complete until all of the apps that constitute the integration
are fully complete; so this is still a long way off. Once this is complete, however, integrating
the apps should be as simple as installing each of the apps, and then adding them to the
Django project’s INSTALLED_APPS variable. Each of the apps require their own variables
to be defined in the Django project’s settings.py file. Each app’s README explains
what these variables are.

Finally, cookieentter-django (https: //github.com /pydanny /cookiecutter-django) is rec-
ommended as a template for the integrated Django project. Note that cookiecutter-django
is not the same thing as cookiecutter-django-package; cookiecutter-django-package is a
template for resnable apps, while cookiecutter-django is a template for a Django Project.

Chapter 6

Abbreviations

MVC - Model View Controller

Chapter 6. Abhreviations

Appendix A

Attendance slip

Attached is the attendance slip. Note that my supervisor was overseas, in America, for
the last several weeks, We communicated by email.

=1

w

58

Chapter A. Attendance slip

Figure A.1: Attendance slip

Bibliography

(1]
2l

[3

[4

o

(6]

[7

(8]

9

[10]

1]

[12]

“Sign language,” Fneyclopedia Britannica, 2016.

A. Holovaty and J. Kaplan-Moss, The Django Book. New York, New York: Apress,
2009,

Jo Knupp, “What is a web framework?” [Online]. Available: https:
/ [jeffknupp.com/blog /2014 /03 /03 /what-is-a-web-framework/

“Find your new favorite web framework.” [Online]. Available: http://hotframeworks.
com/

“Django documentation,” 2016. [Online]. Available: https://docs.djangoproject.
com/en/1.10/

H. J. Percival, Test Driven Development with Python. Sebastopol, California:
O'Reilly Media, 2014.

K. Harvey, Test-Driven Development with Django. Birmingham, UK: Packt Pub-
lishing, 2015.

D. R. Greenfield and A. R. Greenfield, Two Scoops of Django. Los Angeles, Cali-
fornia: Two Scoops Press, 2015.

Pydanny, “cookiecutter-djangopackage.” [Online]. Available: https://github.com/
pydanny /cookiecutter-djangopackage

L. Lewis, “Testing django views without using the test
client,” July 2015. [Online]. Available: https://www.ianlewis.org/en/
testing-django-views-without-using-test-client

Selenium documentation, 2016, [Online]. Awvailable: http://www.seleniumhq.org/
docs /01 _introducing _selenium. jsp

I. Bicking, Testing Applications with WebTest, 2016, [Online]. Available:
hitp://webtest.pythonpaste.org/en/latest/

60

BIBLIOGRAPHY

[13]

(14]

(15]

(16]

(17]

(18]

(19]

JoshMock and idanzalz, “Difference between django-webtest and sele-
nium,” 2012, [Online]. Available: hitp://stackoverflow.com/questions/12448878/
difference-between-django-webtest-and-selenium

D. S. Foundation, “The messages framework.” [Online]l. Available: https:
//does.djangoproject.com/en/1.10/ref /contrib/messages/

Django, “Class-based views.” [Online]. Available: https://docs.djangoproject.com/
en/1.10/topics /class-based-views/

J. Triplett, “5 favorite open source django packages,” Decem-
ber 2015. [Online]. Available: https:/ /opensource.com/business/15/12/

5-favorite-open-source-django-packages

T. Johnston, “The lexical database of auslan (australian sign langnage),” 1999.
[Online]. Available: https://www.sign-lang.uni-hamburg.de/intersign /workshop1/
johnston/

D. S. Foundation, “Fixture loading.” [Online]. Available: https://docs.djangoproject.
com/en/1.10/topics/testing /tools/#django.test. Transaction Test Case fixtures

M. Lutz, Learning Python, R. Roumeliotis, Ed. O’Reilly Media, 2013.

	Final Report 42871905
	by Joshua Goddard

